
NAVAL POSTGRADUATE SCHOOL
Monterey, California

N9B0W W
THESIS Vrxc

Q&AIIJY
iÄSSBejfcD4

A SYNTAX DIRECTED EDITOR FOR THE COMPUTER

ADDED PROTOTYPING SYSTEM

by

Charles A. Mock

September 1997

Thesis Advisor: Luqi

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE
September 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
A SYNTAX DIRECTED EDITOR FOR THE COMPUTER AIDED
PROTOTYPING SYSTEM.

6. AUTHOR(S)
Mock, Charles A.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The Computer Aided Prototyping System (CAPS) is an integrated set of software engineering tools developed at

the Naval Postgraduate School (NPS). It is designed to support rapid prototyping of real-time systems. CAPS consists of

four major subcomponents; the graphics/text editor, the user interface, the software database system, and the execution

support system. Reports from users of CAPS, particularly novices, indicated that the clumsy and unintuitive multi-

windowed graphics/text editor present in the system hampered the use of the tool set. This thesis presents the substitution

and integration of an efficient and user-friendly syntax directed editor into CAPS. The new syntax directed editor consists

of a package of seven Ada95 parsers that recognize the elements of the Prototype System Description Language (PSDL)

and an enhanced C\Motif based graphics editor. These modules combine the functionality of all the windows of the

graphics/text editor into one window, using pop-up boxes and menus to guide the designer in providing the proper

information. During integration, particular attention was paid to ensuring the proper manipulation of data was

occurring between modules and the internal consistency was being maintained at the inter-language interfaces. The result

is a faster, intuitive, and more efficient designer interface.

14. SUBJECT TERMS
Syntax Directed Editor, Computer Aided Prototyping

15. NUMBER OF PAGES

177
16. PRICE CODE

17. SECURITY
CLASSIFICATION OF REPORT
Unclassified

18. SECURITY
CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 75404)1-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

A SYNTAX DIRECTED EDITOR FOR THE
COMPUTER AD3ED PROTOTYPING SYSTEM

Charles A. Mock
Captain, United States Marine Corps

B.A., University of Florida, 1989

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author:

Approved by:

Charles A. Mock

Luqi, Thesis Advisor

Michael J. Hplaen, Second Reader

ULL *L.

Ted Lewis, Chairman
Department of Computer Science

m

IV

ABSTRACT

The Computer Aided Prototyping System (CAPS) is an integrated set of software

engineering tools developed at the Naval Postgraduate School (NPS). It is designed to

support rapid prototyping of real-time systems. CAPS consists of four major

subcomponents; the graphics/text editor, the user interface, the software database system,

and the execution support system. Reports from users of CAPS, particularly novices,

indicated that the clumsy and unintuitive multi-windowed graphics/text editor present in

the system hampered the use of the tool set. This thesis presents the substitution and

integration of an efficient and user-friendly syntax directed editor into CAPS. The new

syntax directed editor consists of a package of seven Ada95 parsers that recognize the

elements of the Prototype System Description Language (PSDL) and an enhanced

CXMotif based graphics editor. These modules combine the functionality of all the

windows of the graphics/text editor into one window, using pop-up boxes and menus to

guide the designer in providing the proper information. During integration, particular

attention was paid to ensuring the proper manipulation of data was occurring between

modules and the internal consistency was being maintained at the inter-language

interfaces. The result is a faster, intuitive, and more efficient designer interface.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. GOALS 1
B. BACKGROUND AND MOTIVATION 2
C. RESEARCH QUESTIONS 3
D. ORGANIZATION 4

H. BACKGROUND 5
A. INTRODUCTION 5

1. The Computer Revolution and The Software Crisis 6
2. The Rapid Prototyping Solution 7

B. SOFTWARE DEVELOPMENT SYSTEMS 8
1. The Waterfall Model 8
2. Rapid Prototyping 10
3. The Computer Aided Prototyping System (CAPS) 13
4. Prototype System Design Language (PSDL) 16

C. THE DESIGNER INTERFACE 20
1. Graphical Editor 21
2. Syntax Directed Editor 22
3. PSDL parsing 23
4. Previous Work 26

D. SUMMARY 27
m. ARCHITECTURE OF THE PSDL EDITOR 29

A REQUIREMENTS ANALYSIS 29
B. SPECIFICATION 32
C. DESIGN 34
D. SUMMARY 40

IV. IMPLEMENTATION. 41
A. TOOLS AND ENVIRONMENT 41

1. Introduction 41
2. Environment 42
3. Languages 42
4. Editor 44
5. Miscellaneous Tools '. 45
6. Version Control Tool ,. 46
7. Lexical Analyzers 47
8. Debuggers 47

B. APPROACH 48
C. PROCESS 48
D. TESTING AND EVALUATION 50

V. RESULTS 53
A. GRAPHICAL INTERFACE 53
B. TECHNOLOGY TRANSFER 58

VI. SUMMARY AND RECOMMENDATIONS 59
A. SUMMARY 59
B. LESSONS LEARNED 61
C. RECOMMENDATIONS FORFUTURE RESEARCH 61

APPENDK A: SOURCE CODE (PSDL TYPES) 65
APPENDKB: SOURCE CODE (PARSERS) 71
APPENDIX C: SOURCE CODE (PSDL EDITOR) 109
APPENDKD: PSDL GRAMMAR 145

Vll

APPENDIXE: TEST DATA 153
LIST OF REFERENCES 163

INITIAL DISTRIBUTION LIST 165

Vlll

ACKNOWLEDGEMENTS

This research was possible due to the efforts of many people. Most notably is that

of my thesis advisor, Professor Luqi and the members of the CAPS group. Professor

Berzins' mentorship was truly instrumental in my understanding of the internal workings

and interaction of the graphics editor and the syntax directed editor. The friendship and

infallible cheerfulness of Professor Ying Jing made the long and arduous hours of coding

bearable. I am also deeply indebted to Commander Mike Holden. Undoubtedly in the

top 5% of instructors at this institute, he always places the student first. For his

invaluable contributions to the organization and content of this paper, at a high cost to

himself, I will always be grateful.

I would also like to thank the students and faculty members at the Naval

Postgraduate School. I have found the educational experience to be a positive one and

this is only possible with the outstanding faculty and peers with which this institution is

blessed.

Finally, I am grateful to my wife Juli for her patience and understanding

throughout this research. Without her support, none of this would have been possible.

IX

L INTRODUCTION

A. GOALS

The goals of this thesis are to produce an intuitive and efficient syntax directed

graphical editor and document its integration into the Naval Postgraduate School's

Computer Aided Prototyping System (CAPS).

CAPS operates using the Prototype System Design Language (PSDL), a design

language created to present software designers with a tool for creating rapid prototypes.

A syntax directed editor (SDE) for PSDL is a tool for editing PSDL programs, called

prototypes. The editor checks each element of the PSDL language entered into the

prototype by the designer for errors. This is done using a set of parsers designed to

analyze text for specific words or strings of letters, known as tokens. If the tokens are

correct for the language, the designer may proceed with the design, if not, the designer is

alerted to the error and directed to the position of the mistake. In this way, an SDE can

assist the designer in creating prototypes in a quick and effective manner.

CAPS is an integrated set of tools designed to allow designers to rapidly produce

a prototype matching user specified requirements. Rapid prototyping allows the designer

to clarify the needs and desires of the user early in the software development cycle. This

eliminates costly errors that normally are not discovered until later, when significant

effort is required for correction. The intent in inserting an updated designer interface is to

compress the time necessary to create a working prototype by making CAPS easier to

use. A successful integration of an enhanced syntax directed editor would make CAPS

1

more accessible to novices and allow experienced users to minimize time lost correcting

errors during the prototyping cycle. This, in turn, will speed up the software

development cycle.

B. BACKGROUND AND MOTIVATION

There is a problem with the creation of software today. It is costing the nation

billions of dollars in failed projects and wasted efforts. Often the problem stems from a

faulty design process. One solution to this problem, CAPS, is presently hampered by a

poorly designed interface. Correcting this defect is one step toward solving the greater

issue.

The well-know truism, "time is money", is especially relevant in the design of

software. Certainly, the longer a project takes the higher the cost for labor and materials.

The truth of this is quite obvious. The desire to reduce costs and meet deadlines

invariably results in constricted timelines for identifying requirements, outlining

specifications, and creating a solid design. The rush to implementation allows a product

to be swiftly pushed out the door, but a cost must then be paid in user satisfaction and

maintenance.

Time is money. As much as eighty percent of the cost involved in software

production is maintenance [Ref. 4]. Yet that is not the least of the problem. In 1995,

IEEE reported that for the Department of Defense (DOB) $42 billion in software

programs were canceled due to overruns in time and budget or they simply did not

perform as required [Ref. 4]. The waste of billions of dollars is not confined to the DOD.

Other prominent debacles include the automated baggage system at the Denver airport

and the IRS integrated data network. While expensive, these systems are cheap

compared to the seven billion dollar loss involved in the destruction of the Ariane rocket

[Ref. 14] and the death of 225 passengers in the 6 August 1997 crash of a Boeing 747 on

Guam [Ref. 16], both attributed to software errors.

Few of the problems with modern software systems involve poor coding. A

NASA study performed during the Galileo project found that a full 98% of all software

errors are traceable to incorrect requirements, specifications, or design [Ref. 4]. The

advanced state of modern integrated development suites such as Aonix ObjectAda 7.1,

Microsoft Visual Studio '97 and Borland C++ 5.0, combined with rigorous testing, have

nearly eliminated implementation errors. Unfortunately, few tools exist for properly

creating a design that faithfully represents the user's desire. CAPS is one of them.

Designed for rapid prototyping of real time systems, CAPS is aimed at reducing

software design errors by presenting the user with successively more accurate

representations of the final product. In order to do this effectively, CAPS itself must be

fast and easy to use. That requires an easily learned, intuitive interface. That is the

rationale for this thesis.

C. RESEARCH OBJECTIVES

The objectives for this thesis include the following specific objectives:

• Create parsers that correctly interpret the seven main elements of the

Prototype System Design Language (PSDL).

• Automate coding of large segments of the project using existing UNIX

environment tools and software engineering procedures

• Integrate the new parsers into a previously designed graphical editor.

• Integrate the combined graphical editor/parser package into the main flow of

the CAPS environment.

• Document the flow of control and the design of data structures into a

maintenance handbook to improve maintenance of this new enhanced version

of CAPS.

D. ORGANIZATION

Chapter II provides a general overview of the workings of CAPS, PSDL and the

need for and uses of rapid prototyping. Chapter El examines the processes and structures

created during the analysis of the proposed evolution of CAPS for requirements, the

specification of those requirements, and the creation of a design for the modifications to

the CAPS code, with emphasis on the requirements for the appropriate interfaces, data

manipulation, and improvements in storage management. Chapter* IV presents the

implementation phase of the project as well as testing and evaluation of the new version.

In Chapter V the results are presented, with discussion on the utility of the improved

interface and maintainability of CAPS. Chapter VI summarizes the thesis.

H. BACKGROUND

A. INTRODUCTION

The creation of a modern graphical editor for CAPS is a project that has been

envisioned since 1991. By 1997 it became imperative that this goal become a reality for

two major reasons.

The first is the state of software development. There is a software development

crisis looming over the information age [Ref 8]. The rapid increase in the speed of

computer hardware and the use of computer technology has not been matched by a

corresponding improvement in software design. Software design has not only failed to

keep pace, but has increasingly been the reason for late projects, exceeding budgets, and

often complete failure of projects. This amounts to what was coined in 1968 as 'The

Software Crisis'. This crisis has as its root cause the problem of complexity (brought

about by sheer length of programs) combined with a poor control over how each line of

code affects the overall system [Ref. 17]. These problems can often be corrected by using

an alternative software development model. In many cases, rapid prototyping is a better

method for designing software than current methodologies and CAPS is a powerful tool

that could formalize the creation of software, if it achieves acceptance on a wide scale.

Acceptance of CAPS on a wide scale requires a modern user-friendly interface.

The second reason is the participation of the Software Engineering Group in the

DOD's Technology Transfer Program. The Department of Defense sponsors billions of

dollars in advanced research yearly. In order to enable the various research laboratories

within the DOD to reap the maximum benefit from this effort, the Office of Technology

Transition (OTT) was established. OTT serves as a clearinghouse for coordinating and

facilitating the transition of such technologies and technological advancements within

the DOD to other military organizations and the private sector. CAPS has been

distributed throughout the DOD as a result of this program, and is in use by a large

number of organizations. A number of these supporters have requested that

improvements to the interface and in storage management be included with an enhanced

version. In order for the enhanced version to be available for pending projects, its

creation was necessary as soon as possible.

1. The Computer Revolution And The Software Crisis

The Information Age is here and is expanding at an extraordinary rate. The

burgeoning use of computers and information systems in nearly every aspect of daily life

is undeniable. Microprocessors and software programs inhabit our automobiles,

videocassette recorders, coffee makers, and calculators. Fifty-one million Americans

regularly access the Internet [Ref. 1] and it is the stated goal of the United States

Government to place every classroom in the nation online. Riding the wave of

computing power created by the realization of Moore's Law [Ref. 15], the use and scope

of automated systems are increasing at a geometric rate.

Unfortunately, the same cannot be said for the state of software development.

While microprocessor speed continues to double every 18 months, the creation of

software remains labor intensive. Success is heavily dependent upon the skill and

experience of the individuals involved in production. Improvement is linear, if at all.

Errors are common. The costs for labor are high, with starting salaries over $50,000

common for recent four-year computer science graduates [Ref 13]. Complicating this

equation is the continuing decline in the number of skilled professionals capable of

producing high quality software. Over the previous decade, the number of degrees

awarded for computer science in the U.S. has dropped an astounding 42% [Ref. 13].

2. The Rapid Prototyping Solution

With demand for faster, better, bigger, and more complex software accelerated by

the explosion of information technology and automated systems, the cost of increasingly

scarce software expertise has risen in tandem. It has become incumbent upon software

manufacture's to maximize the productivity of software designers, engineers, and

programmers in order to remain competitive and meet demand. This is where the utility

of integrated rapid-prototyping environments such as CAPS becomes important. By

enhancing the effectiveness in identifying and specifying requirements, CAPS decreases

errors, rework, and reduces the overall time to complete a software project. However,

for CAPS to be seriously considered as a viable alternative solution it must be easily

understood and used. It is the intent of this thesis to make CAPS a more attractive

alternative to other software development systems by creating an intuitive, user friendly

interface.

B. SOFTWARE DEVELOPMENT SYSTEMS

1. The Waterfall Model

Problems exist with the predominant software development methodology, the

Waterfall Model (Figure 1.). The Waterfall Model is a linear plan for the production of

3£S5S5ÄyS»§fcw*iö&*'

>

IW1
ESSSkSSfiSSE HSR» ^S

^^^B

KJ&SySJ&j&jjSffiK'ffly

Figure 1. Waterfall Methodology for the
software life cycle.

software. The user and the designer analyze the users needs and produce a set of

requirements that are used to create the design for the software system. The program is

implemented, tested, and then returned to the user for validation.

Unfortunately, most errors occurring in software are requirements based. This

stems from the imprecise communication that often occurs between the end user, who

understands the problem domain but not software design, and the software designer, who

understands software development but usually possesses little knowledge of the problem

domain. The user, who is the ultimate arbiter of what is correct in the software, is unable

to validate a system effectively until a working version is produced. At this point, a large

portion of the development time and budget has been expended, leaving little time or

$100 f

$50

$0
Reqls Design Coding V&V In-Use

Figure 2. Relative cost for error correction over the software life cycle. [Ref. 4]

money for corrective action. Furthermore, an invalid requirement at this stage has

affected large portions of the implementation code, resulting in a 100 fold increase in the

effort necessary to correct the mistake over detecting the same error before

implementation had taken place (Figure 2).

2. Rapid Prototyping

One workable answer to the problem is rapid prototyping. As illustrated by

Figure 3, rapid prototyping does not rely on validation of a finished product. As in the

Waterfall Model, the users initial goals are analyzed and a set of requirements created.

These are used to create a partially functional prototype that can be demonstrated to the

user. The user then assists in identifying faults in the design of the system very early on,

 fc Anal1 vze Build 1
Initial Goals

—w
Requirements

Pro blems i

^Prototype Architecture

Demo
fc

Optimize Deploy
w

Validation
 w

Product

Figure 3. Rapid Prototyping Software Life Cycle.

before valuable time and money are poured into propagating those faults through the

entire system.

The payoff for using rapid prototyping is evident. Requirements are often

changed repeatedly by users who are initially unsure of the functionality required, leading

to wasted effort and frustration. Rapid prototyping obtains user feedback and solidifies

requirements early, providing a clear path for future progress and reducing friction

between user and designer.

In traditional software development, specifications evolved from the user

requirements are presented in written form or a formal specification language. Neither of

these methods are suitable to users with little or no knowledge of software design.

10

Misunderstandings result. Rapid prototyping allows the user to perform validation on

executable specifications. For example, if a user requires the system to initiate the firing

sequence of a rocket motor when a certain air speed is reached, a prototype of the system,

complete with simulations of the missile hardware, can be completed and demonstrated

to the user long before a physical prototype could be delivered and at a fraction of the

cost. The user could then evaluate the prototype's performance based on whether the

rocket's motor was signaled to ignite at the appropriate air speed without actually having

to launch the missile. This interaction between the user and actual working prototype

results in a clearer understanding by both the user and designer of what the user truly

desires.

The risk of failure in software development is considerable. Colonel Chadwick,

the commander of the Marine Corps Tactical Systems Support Activity stated that

software projects with a budget in excess of $100 million had a 100% failure rate [Ref.

18]. Unfortunately, this is not an isolated phenomenon. In 1995, DOD wide, only 16%

of software programs were completed on time and on budget. Furthermore, an

astounding 31% were cancelled entirely (Figure. 4). Rapid prototyping can help resolve

this problem. Large and complex systems can be modeled quickly, concentrating on the

design of the software architecture while leaving the details for later implementation.

This allows the user and designer to perform risk assessments and feasibility studies

using the prototype. This is preferable to waiting for delivery of the beta version of the

total system, when time and budget are nearly exhausted and changes are much more

expensive.

11

31%

16%
■!&■&

a-.ii-yiKH'^il.:.-:

Jl
>-:»ar:.Mi:

53%

Figure 4. DOD software delivery statistics for 1995 [Ref. 4].

While the advantages of prototyping are many, the prototyping process must be

fast in order to be effective. The designer has limited time in which to create the final

product and the sooner the prototype receives final validation from the user, the sooner it

can be forwarded to the programming team for optimized implementation. This implies

automation. Automation can generate code faster and more accurately than any human

programmer as well as provide organization to help with decision support. Database

software can automate searching through a system to find code that meets specific design

requirements. Allowing software to perform tedious and time consuming tasks can be

used to speed up nearly every aspect of the project.

12

3. The Computer Aided Prototyping System (CAPS)

CAPS supplies the automation that rapid prototyping requires, Hosting an array

of tools to assist in producing a prototype in minimal time, CAPS is a completely

integrated software design environment. The major areas of automation support provided

by CAPS are designer interface, software databases, execution support, and an evolution

control system. Combined, these tools allow the designer to perform all the necessary

functions required by the validation cycle of the rapid prototyping model (Figure 5).

The designer interface contains the syntax directed editors and consists of:

• Editing tools for the Prototype System Design Language (PSDL).

Consisting of the Graphical Editor and the PSDL Editor, this is the portion

of the CAPS system concerned with creating and modifying prototype

GRAPHICAL
HMODEL:

REQUIREMENT
CONSTRAINTS

PROGRAM
GENERATION

DEMONSTRATION
MODEL

SCHEDULING I

DECOMPOSITION f^
MODEL

REUSABLE
.SOT i WARE:

Figure 5. CAPS prototype creation flow diagram.

13

designs. It is also the major subject of this thesis.

• An Ada programming language editor. CAPS currently uses the Verdix

Ada83 editor for creating and modifying Ada modules for use in the

CAPS system.

• A requirements editor. The requirements editor allows for creating,

updating, and tracing the accomplishment of user requirements over the

life of the prototype.

• An interface editor. Currently the interface editor is The Transportable

Applications Environment (TAE) Project, a state-of-the-art user interface

development and management system. The interface editor allows the

designer to rapidly create a graphic user interface from which to display

and input data into the prototype.

These tools are included to assist the designer in rapidly entering information

pertinent to the creation of the prototype. Speed is important. For the selection of

editors, a premium was placed on propagation of appropriate constraints, preventing

syntax errors, and providing for robust error diagnostics. Propagation of constraints is a

necessity to ensure that the final product performs within limits initially set by the user.

Prevention of errors and robust diagnostics serves a dual purpose. In the early stages of

prototype design, the detection and elimination of errors is much less costly than

correcting the same error later in the development cycle. The reduction in the number of

14

errors in the design also serves to reduce the time required to create a prototype, allowing

a working prototype to be demonstrated to the user quicker.

The Database consists of two sections:

• The Design database. The design database provides for the storage of

prototype development data. This allows a designer to search the database for

previous prototypes that may have components that fit functionality in the

present design. Allowing reuse of prototype components not only speeds up

the process, but reduces errors as completed prototypes have been tested

repeatedly during the rapid prototyping cycle.

• The Software database. Just as the design database allows reuse of existing

prototypes, the software database lets the designer search for reusable Ada and

PSDL components. Additionally, since PSDL specifications are formalized,

they can be used as the index for a database query that returns a component

that is a very accurate match to what the designer needs.

Execution support provides compilers and other tools necessary to convert the

PSDL code and graphs into a working real-time prototype. Execution support allows the

designer to make an executable prototype a reality in four easy steps.

These are:

• The Translator - translates PSDL language to Ada code.

• The Scheduler - creates schedules for execution of a real-time prototype with

corresponding Ada code.

15

• The Compiler - compiles Ada code into executable form, presently Sun Ada

version 1.1.

• The Execution Shell- opens a shell in which to run a prototype.

4. Prototype System Design Language (PSDL).

PSDL is the design language that supports CAPS. Standard programming

languages are optimized to support efficient execution of a program. They consist of

complex algorithms and data structures for creating small, fast executables. They are

quite detailed and require a well-trained programmer in order to be used efficiently.

Design languages are quite different. Execution is not the prime motivation. The

objective is the creation of an efficient and easily understood design. Because of this,

design languages are more expressive and simpler to use. Furthermore, where

programming languages provide for comments as an adjunct to the main functionality,

design languages have the recording of goals and justifications as a prime objective.

PSDL achieves these goals. Based on a simple grammar and a graph, PSDL

provides for easy understanding of the language while yielding a powerful ability to

create prototypes.

The most basic building blocks of PSDL are operators and streams. They

represent the two things that can be done with data: manipulation or relocation.

Operators are functions (or state machines) and streams are data flows.

16

Operators have three manifestations. Ordinary operators, represented by circles in

!'

o •""ff,.TBrnr "■ T ------

FMITOffl

^ec
U^tT«> jt|tJOT,

Figure 6. Graphical Interface for CAPS.

the example of the graphical editor shown (Figure 6) perform operations on the data from

the streams. Composite operators, designated by a circle with a double ring, represent a

sub-graph. Sub-graphs are standard PSDL graphs, and are represented by composite

operators for the sake of clarity. A graph would rapidly become cluttered and confusing

without the ability to compress functional areas into composite operators. Decomposition

of functionality is easily achieved using this construct, as composite operators can

contain other composite operators, allowing decomposition to continue until only simple

atomic functions remain. Terminators represent sources of input external to the design.

Terminators are simulations of external systems, are not required for the prototype, and

17

will not be in the delivered software. The third kind of operator is the type operators used

to represent the functionality of abstract data types defined by the user.

A stream is a communications link connecting two or more operators and is

represented in the GE by a line connecting operators. Operators are producers and

consumers. A stream requires at least one operator, producer or consumer. There are two

types of streams available in PSDL, dataflow streams and sampled streams. The

dataflow stream works on the first in, first out principle. Data values are never lost or

replicated. Sampled streams model continuous data input. Only the most recent data

value is used by the consumer with all others being lost.

Triggers are control constructs that act as decision points on the firing of

operators as a result of receiving data through a stream. Triggers can be set to fire in the

event that some or all of a set of data is present. Execution guards are the constructs

within the operator in which triggers operate. If no execution guard is present within an

operator, the default causes the operator to always execute. Execution guards and

triggers can be thought of as implementing an if-then-else programming control structure.

Operators can also be fired through the use of a timer. Timers are software

stopwatches that are declared within a composite operator and hold a time expression

that, while running, is continuously updated to record the passage of real time. Timers

have three control constraints that affect the value held by the timer. They are START,

STOP, and RESET. Start obviously causes the timer to run. Stop freezes the current

value. Reset returns the current value to zero.

18

Like triggers, timers, and execution guards, other output guards exist to assist the

user in controlling the flow of a program. Output guards allow conditional transmission

of data to an output stream. Output guards are assigned by stream and are normally used

to filter output to the remainder of the program. This allows a multiply threaded stream

to pass data selectively rather than broadcasting to all.

PSDL is a real time prototyping language. As such, timing constraints are a

necessary part of the language. The most important of PSDL's timing constraints is the

maximum execution time (MET). The MET is the maximum amount of time that the

operator is allowed to complete its activities. The addition of a MET constraint to an

operator defines that operator as time critical and thus subject to timing constraints. Two

types of time critical operators, periodic and sporadic, are used within PSDL.

Timers trigger periodic operators. A value respresenting the period of the

operator is set to a time value. When the timer reaches that value, the operator is allowed

to fire. It is not necessarily required to fire immediately. A second value, finished within

(FW), is provided to allow flexibility in scheduling. After the operator is triggered by the

period, the program can delay execution of the operator as long as the operator is

completely executed prior to the arrival of the FW time.

Sporadic operators are triggered by the arrival of data. These operators are

executed whenever data arrives subject to the minimum calling period (MCP) of the

operator. The MCP is a time value. If a sporadic operator executes, it cannot be

executed again until the time indicated by the MCP has elapsed, regardless of the receipt

of data. This allows the designer to sample data at intervals, and prevent responses to

19

every byte of data sent to the operator. Sporadic operators also require a maximum

response time (MRT). The MRT is the maximum amount of time that can elapse

between the arrival of data and the completion of the operation. This constraint provides

the designer with a mechanism to ensure that critical work is completed within a known

amount of time.

Operators also contain data elements that assist human users in understanding the

purpose of that component. The description element allows the designer to place a

natural language description of what the operator does within the structure of the PSDL

code. This acts much like a comment would in a programming language. Keywords are

also employed by PSDL. The keyword component allows the designer to place natural

language identifiers within the prototype in order to assist future designers in evaluating

the component for reuse. Keywords are used by the database as indices for queries.

Composite operators contain one other construct of interest, the graph description.

PSDL provides for a component that describes the design graph of a decomposed

composite operator to the graphical editor. The graphical editor translates this

component in order to display the design within the editor window. A complex structure,

the graph description contains coordinates, colors/fonts, and all visual components of

child operators and streams.

C. THE DESIGNER INTERFACE

The graphical editor and the syntax directed editor are two representations of the

same PSDL code. The graphical editor displays a truncated version of the code based on

20

the objects comprising a PSDL graphic. The syntax directed editor displays the hidden

information that gives the prototype depth. When CAPS was originally designed, the use

of graphical interfaces was a rarity and they were often poorly designed. Designers also

prefered to directly access the PSDL code if they wished. These decisions are no longer

valid. Graphical tools are much better and abstraction in software design is realized to be

essential for truly understanding a system. There is no inherent reason for this separation

of PSDL code into two separate interfaces.

1. The Graphical Editor (GE).

The graphical editor is the portion of the designer interface with which the

designer creates the graphical representation of the prototype (Figure 6). The GE is

simple in design and execution, allowing novice operators to begin creating real-time

prototypes using the basic stream and operator objects with little formal training. With the

use of the Quickstart manual for CAPS, a novice can create a simple prototype within

minutes using only the graphical interface. Although a powerful concept and tool, the

CAPS graphical interface is unable to deliver the necessary functionality required by more

complex prototypes. For this, CAPS provides a syntax directed PSDL editor that works in

conjunction with the graphical interface to produce a working design.

21

2. Syntax Directed Editor.

The CAPS syntax directed editor (SDE) displays the text version of the PSDL

prototype - the part that the translator converts to programming language code (Figure 7).

The SDE allows the designer to perform detailed, advanced PSDL programming. It is the

principal interface for the designer, allowing the creation, editing and viewing of CAPS

designs. PSDL language code generated by creating a design is modified within the

SDE. The SDE also provides access to a wide variety of tools, such as the ability to

J>sdl_eciitor:c3i_system.psdl :
VS-Cniils nie Edit View Tools Options Structure Text

ip_mnt/n/sun55AtforWmock/.capsfc3l_system/1.l/c3t_systern4)sdl

of input «onsor data)
EKD
IMPLEMEJnaTIOW ADA analy2e_sen9or_data

EKD

OPERATOR c3i_syatem

I - WRN1H0S. ERRORS AND RLERTS:

- This Is a Root Operator

sPECiricsnoH
DESCRIPTION

{This module implements at simplified version of a generic 031 workstation. (
EHD
TUPT.FWTHTKnoy
GRAPH *
— eee graph viewer for details —

mna STREW
comms_email • filename,
comms_add_track : add_track_tuple,
tdd_filter : set_track_filter,
out_traeks : track_Uj>le,
*eapons_emrep : *eapon_atatus_report.
uiputjlinkmessage : filename,
initiate_trans : initiata_tranamia9ion.sequence,
terminate_tian3 : BOOLEAN,
tcd_emission_control : emi3eions_control_comnend,
tcd_netvork_setup : netvork_aetup,
tcd_archive_setup : archive setup,
tcd_transmit_cammand : tran3mit_command,
position_data : o»nship_navigation_info,
9ensor_add_track : add_track_tuple7

Context: graph

Figure 7. PSDL Editor.

22

query the software database, that assist the designer in creating a prototype.

The separation of these two editors is also the major deficiency in the design of

CAPS release 1.0. As early as 1990 users of CAPS were underscoring the need for a

syntax directed editor combined with the graphical editor for generating PSDL code [Ref.

2]. The necessity of writing PSDL language code in the SDE brings with it the entire

training overhead associated with programming languages. Furthermore, since the

modification of the design in the GE almost always requires a corresponding change in

the SDE, the division of the two editors into separate windows has no practical purpose to

justify the cumbersome environment. Merging these two windows and their underlying

functionality is the major objective of this project.

3. PSDL parsing.

A syntax directed editor assists the designer in creating a prototype by

automatically checking the PSDL language code for appropriate structure. For the

purposes of this project, PSDL has seven major constructs that may be input into the

graphical editor. Each of these constructs must be checked for syntax errors. Needless to

say, the descriptions of the seven parsing elements are truncated. The full specification

of the meanings of each can be found in Appendix D.

The seven constructs are:

• Expressions: Expressions represent a wide range of tokens within PSDL. An

expression can be a string, an integer literal, Boolean expression, a type

23

•

operator identifier, time value, data stream, timer or a combination of the

above. Example: X>2.

Initial expressions: Initial expressions are exactly the same as an expression

except references to time values, timers, and data streams are excluded.

Example: Y = 3.

Output guards: A set of logical statements initiated by the OUTPUT token,

output guard statements consist of a list of identifiers followed by IF, then an

expression and ending with a requirements trace. For example:

OUTPUT temperature IF x<2 reql

In this example temperature is a data stream. When the stream is triggered, if

x is less than two, then requirement #1 is fulfilled.

Timer operations: Timer operations start with a timerop token. This consists

of one of three values - Start, Stop, and Reset. The timef_op token is followed

by the identifier (name) of the timer performing the operation. This is then

followed by the IF token, an expression, and a requirements trace. This works

in the same manner as the output guard, with the exception that the expression

is evaluated when the timer performs the action represented by the timer op

token. Example:

START TIMER

timerl

Operator specifications: A sequence of attributes and requirements traces

comprise the body of this structure, starting with the OPERATOR token and

24

an identifier, followed by the SPECIFICATION token and concluding with an

END token. An attribute is simply a characteristic of an operator, such as an

input, output, state or an exception. Example:

OPERATOR Producer_l
SPECIFICATION

GENERIC
Gl : FLOAT

OUTPUT
DA : Missing Info

MAXIMUM EXECUTION TIME 0 MS
END

Type specifications: This element begins with TYPE token and an identifier

followed by a SPECIFICATION token and ends with an END token, in the

same manner as the operator specification except the interior is more complex.

This component describes the attributes of a user-defined type. Generic

declarations are parsed first, followed by a set of operator specifications as

described above. A final list of functions available to the type completes the

structure. Example:

TYPE STACK
SPECIFICATION

GENERIC
types : private

type_2 : public

OPERATOR PUSH
SPECIFICATION

INPUT
I : INTEGER

INPUT
S : STACK

OUTPUT
S : STACK

END

OPERATOR POP
SPECIFICATION

25

INPUT
S : STACK

OUTPUT
I : INTEGER

OUTPUT
S : STACK

END

OPERATOR Empty
SPECIFICATION

OUTPUT
dummy : STACK

END
KEYWORDS

stack, adt
DESCRIPTION

{This is a generic stack adt}
AXIOMS

{push (s,x) = s::x}
END

• Exception guards: Exception guards begin with the EXCEPTIONS token

followed by an identifier. The IF token is next followed by an expression and

a requirements trace. With the exception of substituting the EXCEPTIONS

token for the OUTPUT token, the exception guard and output guards are

identical.

4. Previous Work.

The grammar necessary for creation of the seven parsers that were created in this

thesis was already a part of the original CAPS code created by Professor Luqi . This

code was combined in the Aflex and Ayacc files for parsing PSDL code as a whole

language. The work necessary for converting these files into useful material for this

project consisted of identifying and separating the syntax elements of a particular PSDL

component from the overall grammar. This greatly simplified this portion of the project.

26

Originally, a commercial graphical editor had been selected for use with the new

version of CAPS. A powerful tool, it also provided a very intuitive user interface.

Unfortunately, licensing restrictions connected to this product would have seriously

hampered the free use and distribution of the completed system. As an alternative, a

graphical editor created as a class project by NPS graduate students, under the guidance

of Professor Mantak Shing , was selected. Although not as robust and extensive as the

commercial version, enhancements added by Ken Moeller, a graduate, have made it a

viable and cost effective replacement for the commercial graphical editor.

D. SUMMARY

Rapid prototyping is a viable solution that is available now that can alleviate

many of the problems presently experienced by the software industry. CAPS is an

excellent system with which to create prototypes. An effort to improve the efficiency

with which a software prototype designer can use CAPS by simplifying and enhancing

the interface is valuable to the Naval Postgraduate School, the DOD, and the software

development community as a whole. An improved interface allows prototypes to be

developed more accurately and in less time. The reduction in time to create a prototype

version creates a corresponding reduction in time to produce a user-validated design. An

improved interface reduces errors; again saving time spent correcting implemented code.

The interface is essential in creating an effective CAPS environment. An

effective CAPS environment is important in extending the use of rapid prototyping.

Extending the use of rapid prototyping will reduce the amount of late, poor, or simply

27

unusable software being produced. This is a small step on a road that can save the DOD

and the nation billions of dollars.

28

m. ARCHITECTURE OF THE PSDL EDITOR

The Software Development Method is normally divided into five distinct phases:

Requirements Analysis, Functional Specification, Architectural Design, Implementation,

and Evolution and Repair [Ref. 5]. This chapter will record the first three phases as they

occurred during the project.

A. REQUIREMENTS ANALYSIS

Requirements analysis begins with the receipt of an initial problem statement

from the customer. The CAPS team possessed an advantage in this respect, being the

customer and the designer. The initial problem statement was quickly developed as:

The purpose of the proposed software system is to provide a more efficient and user friendly

interface for the CAPS environment

The goals of requirements analysis are to define the purpose of the proposed

system and to determine the constraints on development [Ref. 5]. To achieve this, the

initial problem statement is reviewed in the context of the environment. Specific

requirements and constraints for the combined graphical editor are then developed.

Three specific requirements for the system were developed:

• Create seven PSDL parsers to be integrated into an existing graphical

interface that will allow syntax directed editing of PSDL components from

within the graphical editor. The editors must check one of the previously

denoted PSDL constructs for accuracy, and return an error location in the

event that a syntax error is discovered.

29

• Retain all the functionality of the present SDE and graphical interface. It is

necessary to retain all functionality in order to ensure that prototypes currently

developed under CAPS 1.1 are usable in the new version being developed.

• Remove the memory leak present in the current version. The failure to

reclaim memory following the destruction of temporary data structures causes

the previous version of CAPS to slowly drain resources from the overall

system. Over time, if CAPS continues to run, all memory resources are

exhausted and the system fails. The new system will rigorously recycle

memory freed when data structures are no longer necessary and are destroyed.

Constraints on development must also be addressed during requirements analysis.

Constraints are limits which the designer is required to respect in the construction of the

proposed system. There are many ways in which constraints can be documented. For the

CAPS project, constraints were divided into five categories: Resources, Performance,

Environment, Form, and Method.

1. Resources.

Time to complete the project was limited. The Software Engineering Group at

NPS participates in the DOD technology transfer program. As such, a number of

organizations were dependent upon the next release of CAPS to accomplish their own

objectives. Although the original delivery date was set for 17 July 1997, a more realistic

assessment rescheduled the delivery of the product on 12 August 1997.

30

Manpower was also limited. The CAPS team consisted of seven members.

Furthermore, only four of the seven were available for foil time work on the project.

Given that the project resulted in the modification of 65,000 lines of code, having only

seven people provided a limited pool of man-hours from which to draw.

Budget considerations were minor in comparision to a comparable software effort

within the private sector. Over the course of the project 3024 man hours were expended

or about one and a half man-years. At current labor costs for software

programmers/designers this would have represented an investment of approximately

$100,000. Other budget costs were inconsequential.

2. Performance.

Constraints on performance were limited to insistence that memory storage

management be rigidly controlled to correct the memory leak in the original release.

3. Environment.

The targeted system was to use SunOS 4.1.3 operating on a Sparc 10 workstation

The system will have Motif X. 11 available. No other environmental constraints were

imposed.

4. Form.

The system would be implemented in Ada95 to assist in maintainability, and the

Graphical Editor (GE) developed and enhanced by NPS graduate students would be

incorporated into the design.

31

5. Methods.

There were no constraints assigned in regard to methods.

B. SPECIFICATION

The goal of the functional specification stage is to define precisely the external

interfaces of the proposed system [Ref. 5]. The process of integrating the graphical editor

(GE) into CAPS and integrating a PSDL syntax directed editor into the GE creates an

unusual situation where interfaces that normally would be considered internal are

external for our purposes. Three interfaces need to be considered (Figure 8).

The first interface for specification is between the CAPS prototyping menu and

the PSDL editor. The action taking place consists of passing the name of the PSDL file

to the PSDL editor. Passing of data occurs in only one direction. One argument is

CAPS
Prototype

^ PSDL CAPS
Prototype

w
Editor -w

A

1 r

Graphical
Editor

A

Parsers

Figure 8. PSDL Editor Architecture.

32

required. It must be a string with a length of at least six characters, the last five of which

match the string ".psdl".

The second interface is also between the PSDL editor and the CAPS Prototype,

except in the opposite direction, and requiring different arguments. This is not a direct

call but rather an implicit obligation on the part of the PSDL Editor to supply useable

PSDL code for translation. As such, the specification for this interface required that the

PSDL Editor save a valid PSDL prototype to the file called when the editor was

initialized. To accomplish this interface, a filename must be supplied that is exactly the

same six character string as in the first interface. It must also have a valid PSDL

prototype, an abstract data type defined in the editor, to save to the file.

The third interface is between the PSDL Editor and the GE. This interface passes

data in both directions, with the editor feeding the GE the graph description of the

prototype and the GE returning that description along with the users choice for the next

action to be performed and any error messages that may be necessary. The transfer of

information in this interface is complicated by the difference in languages between the

two modules. Fortunately, data types exist within the PSDL Editor that fit the needs of

the interface. The graph can be passed using an in/out parameter Graph_Desc_Node, the

action will use an out Action type, and the error messages will also be an out parameter of

the type error_msg. The Action and errorjnsg types are simply enumerations and are

readily converted to structures of the C programming language. The GraphDescNode

is a specially constructed data type consisting of C compatible structures designed for

passing graph data.

33

The final interface joins the GE and the parsers that make up the SDE. Again, a

cross language exchange of data is necessary and again, data flows in both directions.

The data that needs to be exchanged consists of a character string that requires parsing for

correctness, a Boolean variable designating whether the string passes the parsing test, and

integers designating the line, column, and length of the first error discovered. As the C to

Ada library of functions and available data types is not as extensive as the reverse, the

interface used C pointers., which can be readily converted in Ada95, providing access to

each of the five data elements being passed.

C. DESIGN

Design encompasses the decomposition of the system into software modules.

PSDL Editor: psdl editor

Figure 9. Functional Decomposition of the PSDL Editor

34

Many of the modules were already in place and only required modification, which was

extensive in some cases. However, a description of the improved PSDL editor is in

order. As an aid to understanding, Figures 9-13 show the PSDL editor being used to

model and prototype the PSDL editor.

At the top most level, the PSDL editor is expected to perform two functions

(Figure 9). Upon initiation the program receives a PSDL filename as an argument from

the command line of the operating system. The Open function takes that filename and

searches the default prototype directory in search of the named file. If it exists, it is

opened and the prototype name contained therein is passed to the next function,

PSDL Editor: psdl_eclitor

FFHe
'. ~ ■"- "::*.J..* ,'::.f' r ■:.- '. !. :* '. '.' '. -'.'■* •]

'•S6*s»;

^Täwjl-

Ilaerft:

pltjrogf m~ '•

s-CES
^StelSOUIREB^

Figure 10. Functional Decomposition for Edit_Program

35

edit_program. If the file is not found, a new file is created using the given filename and

an empty prototype is forwarded.

Edit_program receives the prototype name, manipulates its contents and then

returns the modified program to file. Edit_program, because of complexity of the tasks

assigned, must be decomposed further (Figure 10).

When initialized Edit_program begins by assigning the prototype an unique

identification number. This allows the system to recognize the prototype uniquely even

PSBL Editor: psdl_editor

Figure 11. Functional Decomposition of Edit_Operator

36

if the user eventually creates other components using the same name. After assigning the

identity, read_prototype reads the entire PSDL program from the file into a skeleton

prototype data structure. The prototype is then subjected to semantic checks to ensure

that the program is in a useable format and not corrupted in any way. The verified

prototype is then ready to be edited by the GE. This is performed within the substructure

of editoperator, which will be detailed below. Upon completion, editoperator will

have received the modified prototype and an action code indicating the user preference

for further use of the system. Update action tests the action returned and performs the

necessary action, such as savejojile or revert. Reinvoke is then initiated, testing

whether further action is required. If true, the program loops back to semantic check

and performs the cycle again. If false, the Close function closes the opened file and

returns control to the operating system.

Editoperator performs only three functions, but they are vital to the interface

with the GE (Figure 11). First, user defined types and operators are separated within the

operator list. This is necessary because types and operators display difference

characteristics and must be manipulated in different manners in order to present the GE

with a useable graph. The separation results in two lists of operators and types. These

lists and a blank graph data stucture are passed to make_graph_desc. Make^graph_desc

takes the PSDL data presented and manipulated it to form a graph description. The graph

description is a data structure that represents all the information contained in the

prototype, converted to use C language conventions. This allows the edit_graph inter-

language function call to import the data for use within the GE. Upon completion of user

37

action, the GE returns the graph description to edit operator along with the user's next

requested action.

PSDL Editor: pscU_editor

Figure 12. Functional Decomposition of Save_To_Disk

Savejodisk, the most typical of users actions, also needs to be reviewed. It

consists of two functions, updatejprototype and save prototype (Figure 12). Both

functions do what their names suggest, updating the PSDL prototype (as opposed to the

C oriented graph description) and saving the prototype to the file. Of the two,

update jprototype deserves closer inspection.

Update jprototype is the function that unwraps the changes performed within the

GE and converts them into PSDL code that is useable by the remainder of CAPS. It

38

?&&*'■

PSDL Editor: pscll_oditor
»afS^ipMM^^^^^^IMMMBBMB ^^^^^^^^^^^SS 5

Figure 13. Functional Decomposition of Update_Prototype

consists of six subfunctions (Figure 13). The first function is buildeditedjypes. The

second is buildeditedoperators. These two functions review the graph description

returned by editjgraph and determine which types and operators have been changed.

The PSDL structure is then modified to reflect the changes. Upon completion of these

updates, the children of modified composite operators must be updated, as well as any

grandchildren, etc. Modify children performs this task using a recursive structure that

checks for changes rippling through to each operator from the root down. After the

children are checked for changes, the type operations are updated. At this stage, all

39

modifications performed within the GE will have been implemented in PSDL structure.

Unfortunately, the GE will not provide data on operators that were unchanged. This

requires that a function be created to check the original prototype against the one being

built and add any unmodified operators back into the prototype. The final action in the

reconversion of the graph description is synthesizeJnferred_parts. This function

evaluates changes made by the GE that would effect other portions of the PSDL code

indirectly, such as the setting of terminator flags, type definitions, and exception

declarations.

A final note on the design of the seven PSDL parsers is in order. The parsers

were designed to accept a string for an argument, and return an error message and error

location. All are C structures. This allows each individual parser to be called directely

from the appropriate place in the graphical editor.

D. SUMMARY

This chapter detailed the first three of the five phases (Requirements Analysis,

Functional Specification, Architectural Design, Implementation, and Evolution and

Repair) of the software development methodology for the enhanced PSDL Editor. The

next chapter deals with its implementation, and the fifth phase, Evolution and Repair, will

be discussed in Chapter VI.

40

IV. IMPLEMENTATION

Implementation is the fourth phase of the software development cycle. In this

chapter we will cover the aspects of implemention as they applied to the enhanced PSDL

Editor project. The tools used, the approach to attacking the problem, and the process by

which the project was completed will be covered. Repair and Evolution (R&E) is the

final phase of the software development cycle but is properly outside the scope of this

paper. Testing and evaluation are normally considered as part of this phase and were a

very important part of this project and will be covered in the place of R&E.

A. TOOLS AND ENVIRONMENT.

Tools can make or break a software development effort. The CAPS group

attempted to assemble a comprehensive suite of tools that would meet our requirements

at a minimal expense.

1. Introduction.

When a project expands to larger than a few hundred lines at code; extensive

hand coding cannot be done. Hand coding introduces errors and becomes an

unacceptable risk to the robustness of the final product. The proper line of attack is to

use pre-existing tools in order to automate large portions of the implementation process.

41

2. Environment.

The environment for the project was standard for work in the software

engineering lab at the Naval Postgraduate School. The project code was created on a Sun

Micro Systems Sparc 10 workstation networked within the software engineering

laboratory subnet, which in turn is linked to the computer science department network.

Keeping the project confined to a subnet allowed work to continue at all times, even

when the larger department net was offline for backups.

The operating system installed on the test system was SunOS version 4.1.3.

Chosen for proven reliability and known compatibility with the present CAPS system,

version 4.1.3 is the dominant operating system within the NPS computer science

department, ensuring widespread compatibility of newer CAPS versions with the

department at large. One account was used for the entire project with each member of

the team having access.

3. Languages.

Programming languages for the project were chosen in deference to the

constraints applied to the project by previous work.

Ada95 was selected as the main language for working within the main SDE

modules. The original version of CAPS had been implemented using Ada83 in

accordance with the DOD Ada mandate being enforced at the time. Ada95 is a logical

choice as a successor for that reason alone. However, Ada95 has advantages that would

have resulted in its selection regardless. Like CAPS, Ada95 is designed for software

42

engineering. Ada95 includes all of Ada83's discipline enhancing aspects, such as strong

typing and information hiding, which made Ada83 the language of choice for large and

complex projects [Ref 9]. In addition, Ada95 is now object oriented, adding flexibility to

robustness. Using Ada reduces the cost of initial development of software and

significantly reduces the risks involved in program development. Maintenance costs are

reduced. Ada is especially useful for projects that involve a large number of personnel.

Although this project used only seven team members, the nature of work at NPS has

shown that working groups expand and contract. Ada's readability supports easy

understanding of code without recourse to extensive commenting. This is an essential

feature for long term projects, and CAPS, now operational for nine years, is a long-term

project.

GNAT (GNU/NYU Ada Translator) Ada95 version 3.09 became the main

compiler. A perfectly serviceable compiler, GNAT was the first compiler to implement

the Ada95 design [Ref. 7] . It is certified. It was also documented as supporting the

UnboundedStrings abstract datatype, which contained the key functionality for

enhancing storage management, a key requirement. Finally, cost is always a

consideration, and GNAT provided the features needed by the project at no cost.

The choice to use the C programming language was also determined by the

requirements of the project. The existing graphical editor to be integrated into the CAPS

program was created using C. Although regrettable from the standardization and

maintenance points of view, the original creators of the graphical editor did have good

and sufficient reason for choosing C in that the X.ll Motif function calls necessary for

43

building a windowing environment were all in that language. Fortunately, experience in

the C language is widespread and a number of team members were quite proficient in its

use.

The C compiler chosen for the project was "gcc", the gnu C compiler, which is

included as a standard part of SunOS, the reasons for its acceptance were the familiarity

of the compiler to the team members and, as with the GNAT Ada95 compiler, it was

available at no cost.

"Awk", though called a programming language by it's creators (and from whose

initials it gets its name), is really a pattern matching language [Ref. 6]. Awk was

included among the languages needed because early in the design phase, it became

apparent that considerable amounts of hand reworking of code segments could be

avoided if certain recognizable patterns could be replaced automatically. Awk performs

tasks like this using very few lines of code, making it an excellent addition to the arsenal

of tools available.

Make is not in itself a programming language, but is a tool that uses Unix shell

commands to create powerful scripts for building executable code. Make was chosen

because of this ability and the lack of any viable alternative.

4. Editor

The main text editor employed by the project team was vi, the standard visual line

editor provided with the operating system at no cost. If employed, another text editor

would have required installation on the project system, eating into project time and

44

administrative resources. Knowledge of vi's command set was widespread within the

team, even if the knowledge was shallow in some cases. In addition, vi's command set

is easily combined with Unix shell commands to create extremely powerful searching and

replacing routines. This capability in itself was enough to guarantee inclusion in the

project tool set.

5. Miscellaneous Tools

"Sed", the Unix stream editor, acts in much the same way as Awk, but possesses a

simpler grammar. It was chosen in order to perform quick substitutions of text. As part

of the Unix tool set, it also possesses the advantages of availability and cost.

"Gen" is a code manipulation tool for creating loops within the Ada structure that

would normally be considered illegal by the Ada Reference Manual. For example,

consider the following code segment:

For child_vertex: op_id in op_id_set_pkg.scan(vertices(g)) loop

Normally this would not be allowed because there is no way for the compiler to

ascertain the number of child_vertex that will be discovered using the scan function. Gen

solves this problem by unrolling the loop, generating new Ada code in the process. The

advantage of using this tool over hand coding the affected areas was significant

"Gnatchop" is a text search tool for by the the GNAT compiler that scans a file for

Ada package bodies and specifications. Gnatchop then divides the file into

corresponding Ada files. Names are assigned according to the convention that the file is

named the same as the package contained with ".adb" appended for the package body and

45

".ads" for the specification. Gnatchop was recognized as necessary to automate

processes. Gen, Aflex, and Ayacc were all developed for Ada83 and produce files that

require splitting before compilation. Gnatchop not only helped us to produce Ada95

packages, but allowed the use of sophisticated makefile scripts to automate the process.

6. Version Control Tool

The Revision Control System (RCS) was chosen as the archiving system for the

project. RCS tracks changes in files from one version to the next and saves only the

changes made. This delivers a substantial reduction in the amount of magnetic storage

necessary to backup a multiple version library for a large project. In addition, RCS

allows adding comments and descriptions to archived versions for easy recognition in the

event retrieval is necessary. Beyond the standard need for a backup system for the code

being produced, the use of RCS by the implementation team was necessary for project

control. SunOS 4.1.3, while an excellent operating system, has no mechanisms to

prevent simultaneous editing of a file by two or more programmers.

The implementation team used a process of mirrored public and private

directories for holding the latest working version and the current version being modified.

The latest working version was to be exported to the public directories following a full

archive with RCS. The private directories would hold the code being created and

modified. This process possessed two important advantages. Testing could be conducted

on a stable version of the system in parallel with the creation of the next version, and in

46

the event that changes to the code created compiler errors that could not be corrected

immediately, a working version of the system was still available for demonstrations.

7. Lexical Analyzers

Aflex and Ayacc are the Ada versions of the popular C tools, lex and yacc. Aflex

is a lexical analyzer/generator that accepts a file containing the definitions of lexical

element to be recognized and returns a file with a ".a" suffix that contains a lexical

scanner recognizing tokens corresponding to those elements. Ayacc accepts a set of

tokens, such as those created by Aflex, and a set of rules provided by the designer.

Together, the tokens and rules make a grammar. Ayacc generates Ada code for a parser

to recognize that grammar. Both tools have been used for years and are well known. For

a project such as creating parsers for a syntax directed editor, ignoring the benefits

provided by these tools would have cost the team days of hand coding.

8. Debuggers

Two debuggers were employed for this project. Both debuggers were from GNAT

and were designed for the C and Ada languages. The reasons for the choice of these

debuggers were cost, compatibility, and availability. Availability was the key factor in

the choice of the Ada debugger. It is one of the more disheartening aspects of working

with Ada95 at the current time that an effective debugger, public domain or commercial,

is extremely difficult to find for the SunOS environment.

47

B. APPROACH

The CAPS team considered a number of factors when planning how to approach

the implementation of the project. Automation was of prime importance to the group.

Limited time in which to complete the effort and a shortage of available man-hours

required that the maximum value of automated assistance be achieved.

The experience of senior members of the team in creating sophisticated makefiles

was primary importance to achieving maximum automaton. A quick look at some of the

code within the PSDL Editor Makefile will serve to demonstrate this. Eight of the major

packages are created using Gen, one of them being modified by Sed in the process. A

short script is available to run a test case directly following a compilation. Two scripts

were created to allow for easy export of private versions to public directories, and for

entering a current version into the RCS.

The other process used to enhance the effectiveness of the group was the early

division of the four main designers into teams of two. The newer members of the group

were then able to learn the system from experienced personnel while providing a second

set of eyes to spot syntax and logic errors. The investment in time up front undoubtedly

paid off in the end in reduced errors, team spirit, and knowledge learned.

C. PROCESS

The implementation process was performed at multiple sites over a period

stretching from 9 June to 11 August 1997. While the majority of the effort was

performed within the CAPS Laboratory and the Software Engineering Laboratory at

48

NPS, one team member was located in Lancaster, CA. Furthermore, at various times,

other members were working from as far away as San Diego, CA and Brazil. This

dispersion over time and distance complicated the problems of project management,

especially in the initial phases and made the use of the RCS indispensable to success.

The parser creation project was the first part of the implementation phase

undertaken. It was an elementary undertaking that involved the analyzing of an existing

Aflex grammar for PSDL and removing the components that were not applicable to the

parser at hand. This part of the project was very automated, taking advantage of the

properties Awk, Sed, Aflex, and Ayacc to achieve success.

Testing of the parsers outside of the GE proved them to be accurate. Later testing

within the GE found them to be less so. A default property within the GE caused streams

not assigned a specific type to be listed as "?" in the graph description. The "?" had no

meaning to the parsers and locating the error became a difficult process since the

offending symbol was propagated to the graph description from within a window that is

not normally parsed for errors.

The second phase of implementation involved the creation of the PSDL editor

interface to the GE. This was a project of considerable detail. Implementation was

simply a time consuming task occasionally punctuated with challenging problems. The

most serious of these problems involved the GNAT compiler, version 3.09, and the

attempt to improve storage management through use of Ada.Unbounded_Strings, which

was new in Ada95. Repeated system crashes ultimately forced concentration on

discovering what appeared to be a particularly difficult fault in the code. Extensive

49

debugging and testing found no code error, but rather an instability in the

Unbounded_Strings package. This forced the abandonment of large segments of code

created to make use ofthat functionality.

Software engineering princples were enforced during the implementation process

and a number of poor programming practices performed during the original

implementation of CAPS were corrected. There was a strong reliance on large omnibus

utility packages in the original code. This clear violation of the principles of object

oriented programming and information hiding was removed in all cases but one. This

was not a trivial project. The break up of the GE utitilities package alone created 13 new

packages. The one package not broken down is the PSDL concrete types package. This

massive file would have required far more man-hours than was available to reduce to its

component pieces. It is therefore slated for replacement during the next evolution of the

system.

D. TESTING AND EVALUATION

Testing occurred concurrently with integration. This was done to achieve

maximum benefit from working in parallel. Frequently during a project, programmers

lose productive hours waiting for another team to complete testing of a required section

of code. Our concurrent approach avoided this loss. It also ensured that the implementers

received accurate and timely feedback on the viability of code modules, essential in

preventing the propagation of errors throughout the code structure. Testing was

conducted in cycles. When a version was exported to the public directories, testing was

50

performed and the results returned to the programming team. While the testing was

being performed on a version, the implementers were correcting problems identified

during the previous test cycle. During the course of integrating the SDE into CAPS,

twelve testing cycles were completed, uncovering 75 errors that were then corrected. The

improved version of CAPS was not released until three error-free testing cycles had been

completed — testing cycles without an error that could result in an abnormal termination

of the program. While continued testing with real users was necessary to thoroughly test

the design, the system had to be robust enough to allow work to proceed.

51

52

V. RESULTS

A. GRAPHICAL INTERFACE

PSDL Editor: channel eat

Figure 14. Improved Graphical Interface.

The primary objective of this project was the merging of the SDE and the

Graphical Editor into one efficient module. That has been accomplished (Figure 14) and,

without entering into detail appropriate to a user manual, a short display of the new

features is in order. The user now can access the entire functionality for software

prototype design through a single window. Although concentrating the functionality in

53

one window is a major benefit, the true value of the new GE becomes apparent when the

prototype designer requires information. All the most frequently used information groups

are placed at the designer's fingertips. This is the true benefit as it allows the designer to

maintain focus on the task at hand.

Buttons for operators, streams and terminators still exist and perform the same

functions. The properties and select buttons have been removed. Simply clicking on that

object using the left mouse button does selection of a graph component. Accessing the

Operator Property
■••.".>,- :-.■ ./ , --=:_ ■,--.

rta"9? | uwr.interface ; "Operator"'~'l |"

InplBwenUtJqh Language:..'. ada'Ii'l ■'\S*\}y.~"Zzi/\l\

Trigger:- - ^iprötectecp^f^^^^^^^^^^^^^^^^^g?:

■ uiiMn9J:.. 4-

JF Condition-1 j TRUt ■■ "'- :S

Required Ba " -| . ' * . ."

^iiPewSir y-^fy **'-3.. ^~-''ir'-■■=• :r
.;:; : .-!i-.u ;:. .-:-..-.■ r ■■::- ; ■ : •-.• ..--.-.■:■:.-,■•-■. •-.':>-.

KJ; - >■ 200" S-l H§^^^^^I^^^^^^S
.'.Period: •• fell^lffW!!? feSs-^^^l^^®^^^^^

• Finish. .
-.,^ Mithin:^

3 - put Gua

: w ' *'{ 'Re'qairtd By ' |-

-äs"!'

luvKceptiwil-'öüaf' |J;-... j-T.\ ';*-•'•■-::■•...-----•■,■ | :_„ ■••fr-:-- ---,r--

-■■-. ■ .. ■ -STAR! TIMER ^&^^^^^$^.

'■: --■ - "Kaäüoräs - j :rinFoni«i Desc .j • FOTMY'!)&;---{-"-—.

*P ~ "" "%$%%&
..:.:>.: i " ÖK"■:." \ ■' M^SSSj^^PS Hap ' |

-^ -_ji m,^ ^-sj*^ -ttftilife^z^"- *

Figure 15. Operator Property Box.

54

properties of an operator or stream is now performed by clicking on that object using the

right mouse button. This brings up the operator property box (Figure 15) or the stream

property box (Figure 16). The old editor allowed only the modification of the Maximum

Execution Time and the period from the properties box. Now available for modification

are requirements, guards, triggers, implementation languages, descriptions and keywords.

The more extensive variety of fields reflects not an increase in complexity of the editor,

but a decrease in the requirement for hand coded PSDL components. Previously, the

designer would be required to enter these attributes directly into the PSDL code in the

PSDL SDE, with a corresponding loss of focus on the flow of the design and a significant

increase in the possibility of creating an error. The new GE does not increase the

functionality of the CAPS system in this case, but it makes the functionality that always

existed much more accessible. Attributes that were invisible to the novice before are now

readily available.

Added to the tool bar on the left of the improved GE are three new buttons;,

Stream Property

Strew: Nane; .' ;
i-./JdaULTAe.-I.-.

SHäKgiäMlII

.Stream.Taw:;.: :

! s' a, state strea»?. ■

~."1 Integer- <
•■• -.1 -.:■: •:'.;..'•:•.• ■.:

--- vNo -^ Yes
■-

j State Initial Value| 'ji . 1 . '* .V:
Latency; "' " 1 - • - *«i'" -i

£:'\\:^-. id'Amal | !icl§|'
'■'•-.

Figure 16. Stream Property Box.

55

PARENT SPEC, TIMERS and GRAPH DESC.

The first allows access to the timers tool box (Figure 17). The timers tool box

enables the designer to view and modify timers from within the GE at the touch of a

button. The tool box itself contains a suite of options for operating on timers. Prior to

' Time its Tool
Enter or Edit Timers

OK \ rancBlj •" Add | Pelete| Edit j - fclp (

Figure 17. Timers Tool Box.

this modification, timers were created and edited within the PSDL editor, with a

corresponding loss in focus from the task at hand.

The parent specification box (Figure 18) displays and allows editing of

information pertaining to a parent composite operator. When working on a

decomposition graph, it is frequently necessary to access the data of the parent operator

in order to accurately set up the child graph. This used to entail extensive searching for

the appropriate information within the PSDL code. Now it is available, and modifiable,

directly from the interface.

The graph description button on the new GE's toolbar provides data on the PSDL

graph. The PSDL graph contains a wealth of information pertaining to the operation of

56

the prototype. Previously, the designer was required to continually check the PSDL

editor in order to gather the necessary information about the PSDL graph Time is saved

and attention to the project at hand is retained.

Prototype Specification

: Vie« or Edit">rptatgpe-'Specif leation j

OPERftTDRcharneLcatjäß I • ..:•:•
■".SPECIFICATION-." : ■ v'y;-;. • •

*-r-'STATED datislze: Integer INITIALLY 1 :

•:.'STATES, datiperlod: integar INITIALLY 1.
"• STATES daULr'ate: integer INITIALLY 1

r>:-STATES'itirtjstdp: boolean INITIALLY FfiLSE
•- EXCEPTIONS ~e4

EXCEPTION «8 .-.
.EN3 .:

n

Hi
m mi

— OK 1 ? Cancel Help..

Figure 18. Parent Specification Box.

Lastly, the GE provides further two functions to assist the designer. At the bottom

of the editor window (Figure 14.) is an information window and a button labeled

"CHECK". The information window simply informs the designer in the event that the

graph has changed since the last save. If it has, then the designer receives a gentle

reminder to save the prototype. The "CHECK" button is an error checker. If an error is

created that the parsers detect, the label will change to "ERROR MSGS". This is to alert

the users that an mistake has been made in the PSDL code. This can occur without the

syntax parsers alerting the designer when editing data directly on the graph. The user can

then bring up the list of errors and correct them directly from the graph. If the button is

depressed while in "CHECK" mode, the SDE will scan the PSDL program for errors and

57

return the result. In effect, the check button is a miniature compiler for PSDL that

generates a report of correctness.

B. TECHNOLOGY TRANSFER

The Software Engineering Group at the Naval Postgraduate School is a full

participant in the DOD Technology Transfer Program. CAPS version' 1.1 has been in use

by various DOD agencies since its creation in 1988. In accordance with this, on 12

August 1997, the CAPS version 1.2 with the enhanced syntax directed graphical editor

was presented to members of the Army Research Office, the Army Research Lab and the

Naval Research and Development activity for further testing and improvement. When

follow up testing is completed, the new version will be disseminated to the various

agencies within the DOD that support the rapid prototyping paradigm and use or support

CAPS.

Transfer of CAPS technology within the DOD has resulted in the successful

application of rapid prototyping and the CAPS environment to numerous projects.

Currently the Navy's SmartShip and the Distributed Computing Networks programs are

evaluating the use of CAPS in support of DOD research.

58

VI. SUMMARY AND RECOMMENDATIONS

A, SUMMARY

The integration of an improved SDE into the CAPS environment will decrease the

overall time necessary to produce a software prototype and can substantially reduce the

number of errors per thousand line of code. With proper use, a similar decrease can be

achieved in both the time and development costs associated with software development

through the use of CAPS in the early stages of a project. Four of the five original

objectives were completed successfully.

1. Creation of parsers that correctly interpret the seven main elements

ofPSDL.

The first objective completed, the creation of parsers for PSDL, was the simplest

portion of the project. Extensive code reuse contributed to the accomplishment of this

goal. Always a prime tenet of sound software engineering, the reuse of code in this case

significantly reduced the time necessary to create the parsers, by reusing over 3000 lines

of validated and tested code. The parsers themselves work perfectly and the error-

locating mechanism properly presents the position and size of any faulty code the parsers

discover.

59

2. Use existing UNIX environment tools and software engineering

procedures to automate coding of large segments of the project.

The use of Awk, Aflex, Ayacc, and gen significantly reduced the amount of hand

coding necessary to create the parsers needed. However, it was the creative use of the

Unix make utility that allowed large portions of code creation to be automated.

3. Integrate the new parsers into a previously designed graphical editor.

Integration of the parsers into the Graphical Editor was completed and required

relatively little effort.

4. Integrate the combined graphical editor/parser package into the main

flow of the CAPS environment.

This goal required the most extensive work with the system. The multiple levels

at which data was transferred to and from the graphical editor as well as the language

conversion issues tended to make straightforward solutions impractical. Success was due

to hard work and rigorous testing.

5. Document flow control and design of data structures into a

maintenance handbook to improve the maintenance of the enhanced

version.

Although an admirable goal and one that would have greatly enhanced the ability

of future prototype designers to understand the nuances of the code for the SDE, time

60

constraints forced the postponement of this objective. The creation of a maintenance

handbook will be left for future work.

B. LESSONS LEARNED

Planning ahead is a key to success in software development and this project was

not an exception. Time not spent properly specifying requirements and outlining the

design of the new system will be spent correcting errors in the testing and evaluation

phase of development.

Proper use of Unix Makefiles to automate portions of a program was an enormous

time saver and resulted in more accurate code. Effective use of makefiles can only be

accomplished with thorough knowledge of the tools available and how to link them

together, in effect creating an assembly line for the creation of code, much like that used

in manufacturing. The power of an integrated tool set was demonstrated during this

project. Even though only linked by shell commands and the make tool the capabilities

were immense. This concept truly requires more emphasis in computer science curricula.

C. RECOMMENDATIONS FOR FUTURE RESEARCH

CAPS is a versatile and powerful designing environment that can be used by the

DOD now. However, the system could benefit from research in a number of areas. The

DOD is moving toward Microsoft WindowsNT™ as the standard for information

systems. It is essential that a version of CAPS that operates under WindowsNT is

61

produced soon. The graphical editor in CAPS would benefit from a new type of

component, a composite stream, that would decrease the complexity of large designs.

The graphical editor would also benefit from an auto-redraw function to assist the user in

removing clutter. Implementing a CAPS prototype in CAPS would greatly improve the

ability of the system to grow and evolve over time. Lastly, the PSDL parsers function

admirably on PSDL components, but there is no mechanism in place to enforce strong

typing within streams. Examining each of these areas in detail:

• Windows NT™ was first introduced to the network computer community in

1993. In 1995, NT was the operating system of choice on 36% of the network computers

sold. By 1997 that percentage had increased to almost half [Ref 12]. Also in 1997, the

DOD, and the U.S. Navy in particular through the Information Technology Initiative for

the 21st Century (IT-21), opted for the WindowsNT operating system as the standard

toward which the military information system will march. The time when we must count

on a Unix compatible system being available to supporting agencies for the installation of

CAPS is coming to an end. Therefore, it is critical that a IntelPC/Windows compatible

version of CAPS be developed. Although this is a very large task and planning for the

eventuality cannot begin too soon, the increasing usage of Microsoft Foundation Classes

and their Ada95 equivalents will enable significant use of preexisting software

components for the creation of a new graphical interface.

• As a prototype increases in complexity, the number of data streams linking

operators with the graph also increases. While operators can be aggregated into a

composite operator and decomposed in a separate graph, there is no such option to use

62

with streams. Indeed, composite operators often require a large number of data streams

to feed the sub-functions imbedded in the lower levels. The proliferation of streams

makes the graph unwieldy to create and manipulate, and in no way enhances the

designer's overall knowledge of the design. The creation of a composite stream seems to

be the obvious solution. Incorporating all streams between two operators, a composite

stream would be subject to decomposition like an operator and would contain it's own

graph containing the two terminating operators and all the streams linking them. This

addition to CAPS would vastly enhance the functionality of the system especially at the

higher levels of abstraction of the prototype design.

• In the absence of a composite stream, redrawing a prototype containing

numerous streams is an arduous and time-consuming task. Users of CAPS are sometimes

forced to create designs in a separate drawing tool in order to organize the components

prior to drawing them within the graphical editor simply to avoid the time required to

redraw streams. An automatic redraw tool that can create a neat and understandable

output with a minimum of crossed streams would be of inestimable value to the system.

• CAPS was designed and is still evolving using the outmoded Waterfall

methodology. There is also an unfortunate shortage of design information on the CAPS

system. The combination of these two factors makes understanding the workings of the

environment extraordinarily difficult for a designer viewing the code for the first time.

Because of this state of affairs, evolutions to CAPS are necessarily major events requiring

a substantial commitment of time and money. The creation of a CAPS prototype by

reverse engineering the CAPS system would greatly relieve this problem. Although a

63

substantial project, the ability of the CAPS system to decompose the problem at

successively finer levels of detail would allow the project to be spread over several

theses. Alternately, it could be done as an ongoing class project in an advanced

software-engineering course. This would have the added advantage of teaching new

students the utility of the tool while improving it. Upon completion, CAPS would benefit

from all the evolutionary advantages that accrue to projects using rapid prototyping.

• The parsers installed in the Graphical Editor perform quite well in detecting

errors with PSDL components. However, they do not check for type conformity within

operators or streams. For example, if the designer decides that a stream type will be an

integer, the system still allows the designer to enter 1.2, a float, as the initial state

variable. This will undoubtedly result in problems when create problems during

compilation of generated Ada code. Enforcing strong typing for data types within the

PSDL structure should be a minor fix and will have a significant impact upon the

robustness of the system.

• The parsers installed in the Graphical Editor check the designer's input and, if

an error is present, show the point where the error occurs. This is a functional and

adequate system. However, a much more robust method of ensuring that the designer

provides the necessary information in the correct format is by using buttons to display

templates for the various PSDL constructs. The designer can be prompted to choose

from different variations of a component. This would result in a minimal amount of hand

entered data, with a corresponding drop in the number of hand entered errors.

64

APPENDIX A: SELECTED SOURCE CODE (PSDL TYPE)

—Makefile for PSDL TYPE

INCLUDE_FLAGS = \
-I./GENERIC_TYPES \
-I./INSTANTIATIONS

GEN_ADA = \
psdl_io.adb \
old_psdl_io.adb \
psdl_program_pkg.adb \
pre_expander_pkg.adb \
psdl_component_pkg.adb \
psdl_concrete_type_pkg.adb \
psdl_graph_pkg.adb \
parser.adb

SPARSERS = \
exception_guard_io.adb \
exception_io.adb \
expression_io.adb \
op_id_io.adb \
output_guard_io.adb \
parser.adb \
timer_op_guard_io.adb \
type_name_io.adb

EXP_YACC = \
expression_io_goto.ads \
expression_io_shift_reduce.ads \
expression_io_tokens.ads

TYPE_NAME_YACC = \
type_name_io_goto.ads \
type_name_io_shift_reduce.ads \
type_name_io_tokens.ads

OP_ID_YACC = \
op_id_io_goto.ads \
op_id_io_shi ft_reduce.ads \
op_id_io_tokens.ads

OUTPUT_GUARD_YACC = \
output_guard_io_goto.ads \
output_guard_io_shift_reduce.ads \
output guard io tokens.ads

65

EXCEPTION_GUARD_YACC = \
exception_guard_io_goto.ads \
exception_guard_io_shift_reduce.ads \
exception_guard_io_tokens.ads

EXCEPTION_YACC = \
exception_io_goto.ads \
exception_io_shift_reduce.ads \
exception_io_tokens.ads

TIMER__OP_GUARD_YACC = \
timer_op_guard_io_goto.ads \
timer_op_guard_io_shift_reduce.ads \
timer_op_guard_io_tokens.ads

AYACC = \
parser_goto.ads \
parser_shift_reduce„ads \
parser_tokens.ads \
parser.g

AFLEX = \
parser_lex_dfa.ads \
parser_lex_dfa.adb \
parser_lex_io.ads \
parser_lex_io.adb \
parser_lex.ads \
parser_lex.adb

all: $(GEN_ADA) $(SPARSERS) $(AFLEX)
(cd I* ; make gen)
(cd GE* ; make gen)
gnatmake -g -c $(INCLUDE_FLAGS) psdl_io.adb

gen: $(GEN_ADA)
(cd I* ; make gen)
(cd GE* ; make gen)

parsers: $(SPARSERS) $(AFLEX)

psdl_io.adb: psdl_io.g
gen < psdl_io.g > psdl_io.adb

pre_expander_pkg.adb: pre_expander_pkg.g
gen < pre_expander_pkg.g > pre_expander_pkg.adb

old_psdl_io.adb: old_psdl_io.g
gen < old_psdl_io.g > old_psdl_io.adb

psdl_program_pkg.adb: psdl_program_pkg.g
gen < psdl_program_pkg.g > psdl_program_pkg.adb

66

psdl_component_pkg.adb: psdl component pkg.g
gen < psdl_component pkg.g > psdl component pkg.adb

psdl_concrete_type_pkg.adb: psdl concrete type pkg.g
gen < psdl_concrete type pkg.g > psdl concrete type pkg.adb

psdl graph_pkg.adb: psdl graph pkg.g
gen < psdl_graph_pkg.g > psdl graph pkg.adb

$(AFLEX): parser_lex.1
aflex -s parser lex.l
gnatchop -w yylex.adb
/bin/rm yylex.*

$(AYACC): parser.y
ayacc parser.y debug =\> off verbose =\> on
mv yyparse.adb parser.g
/bin/rm yyparse.*

$(EXP YACC) expression io.g: expression io.y
ayacc expression io.y debug =\> off verbose =\> on
mv yyparse.adb expression io.g
/bin/rm yyparse.*

$(TYPE_NAME_YACC) type_name_io.g: type_name_io.y
ayacc type_name_io.y debug =\> off verbose =\>
mv yyparse.adb type name io.g
/bin/rm yyparse.*

on

$(OP_ID_YACC) op_id_io.g: op_id_io.y
ayacc op_id_io.y debug =\> off verbose =\> on
mv yyparse.adb op_id_io„g
/bin/rm yyparse.*

$(OUTPUT_GUARD_YACC) output_guard io.g: output guard_
ayacc output_guard_io.y debug =\> off verbose =
mv yyparse.adb output_guard io.g
/bin/rm yyparse.*

io.y
=\> on

$(EXCEPTION_GUARD_YACC) exception_guard_io.g: exception_guard_io.y
ayacc exception_guard_io.y debug =\> off verbose =\> on
mv yyparse.adb exception guard io.g
/bin/rm yyparse.*

$(EXCEPTION_YACC) exception_io.g: exception_io.y
ayacc exception_io.y debug =\> off verbose =\>
mv yyparse.adb exception io.g
/bin/rm yyparse.*

on

$ (TIMER_OP_GUARD_YACC) timer_op_guard_io.g: timer_op_
ayacc timer_op_guard_io. y debug =\> off verbose
mv yyparse.adb timer_op guard io.g
/bin/rm yyparse.*

guard io.y
=\> on

67

expression_io.adb: expression_io.g $ (AYACC) $(AFLEX)
gen < expression_io.g > expression_io.a
gnatchop -w expression_io.a
@sed -f expression_io.sed expression_io.adb > tmpfile
@mv tmpfile expression_io.adb
/bin/rm expression_io.a

type_name_io.adb: type_name_io.g $(AYACC) $(AFLEX)
gen < type_name_io. g > type_name_io. a
gnatchop -w type_name_io.a
@sed -f type_name_io.sed type_name_io.adb > tmpfile
@mv tmpfile type_name_io.adb
/bin/rm type_name_io.a

op_id_io.adb: op_id_io.g $(AYACC) $(AFLEX)
gen < op_id_io.g > op_id_io.a
gnatchop -w op_id_io.a
@sed -f op_id_io.sed op_id_io.adb > tmpfile
@mv tmpfile op_id_io.adb
/bin/rm op_id_io.a

output_guard_io.adb: output_guard_io.g $(AYACC) $(AFLEX)
gen < output_guard_io.g > output_guard_io.a
gnatchop -w output_guard_io.a
@sed -f output_guard_io.sed output_guard_io.adb > tmpfile
@mv tmpfile output_guard_io.adb
/bin/rm output_guard_io.a

exception_guard_io.adb: exception_guard_io.g $(AYACC) $(AFLEX)
gen < exception_guard_io.g > exception_guard_io..a
gnatchop -w exception_guard_io.a
@sed -f exception_guard_io.sed exception_guard_io.adb > tmpfile
@mv tmpfile exception_guard io.adb
/bin/rm exception_guard_io.a

exception_io.adb: exception_io.g $(AYACC) $ (AFLEX)
gen < exception_io.g > exception_io.a
gnatchop -w exception_io.a
@sed -f exception_io.sed exception_io.adb > tmpfile
@mv tmpfile exception_io.adb
/bin/rm exception_io.a

timer_op_guard_io.adb: timer_op_guard_io.g $(AYACC) $(AFLEX)
gen < timer_op_guard_io.g > timer_op_guard_io.a
gnatchop -w timer_op_guard io.a
@sed -f timer_op_guard_io.sed timer_op_guard_io.adb > tmpfile
@mv tmpfile timer_op_guard_io.adb
/bin/rm timer_op_guard io.a

parser.adb: parser.g $(AYACC) $(AFLEX)
gen < parser.g > parser.a
gnatchop -w parser.a
/bin/rm parser.a

68

currently not used, old my_pkg
add to GEN_ADA if used
psdl_ops_pkg.adb:

gen < psdl_ops_pkg.g > psdl_ops_pkg.adb

ci: gen parsers
ci_files -tRCS/desc *.[Cgly] *.ad[sb] Makefile
sleep 1
touch *.adb
touch *.ali *.o [IG]*/*.ali [IG]*/*.o
(cd GENERICJTYPES ; make ci)
(cd INSTANTIATIONS ; make ci)

test: all
gnatmake -g -IINSTANTIATIONS -IGENERICJTYPES test.adb
./test > test.out

test2: all
gnatmake -g -IINSTANTIATIONS -IGENERICJTYPES test2.adb
,/test2 > test2.out

pre_expander: all
gnatmake -g -IINSTANTIATIONS -IGENERICJTYPES pre_expander.adb
./pre_expander < autopilot.psdl > pre_expander.out

test3: all $(SPARSERS)
gnatmake -g -IINSTANTIATIONS -IGENERICJTYPES test3.adb
./test3 > test3.out

test_text: all
gnatmake -g -IINSTANTIATIONS -IGENERICJTYPES test_text.adb
./test text > test text.out

69

70

APPENDIX B: SELECTED SOURCE CODE (PARSERS)

Makefile for PSDL Parsers:
. Expression
. Initial Expression
. Output Guard
. Timer_op Guard
. Exception Guard
„ Exception List
. Type Spec
. Operator Spec
. Opid

CAPS Lab.
Jun/1997

SOURCES = parse_expression.y parse_init_expression.y
parse_output_guard.y parse_timer_op_guard.y parse_exception_guard.y
parse_exception_list.y parse_type_spec.y parse_oper_spec.y parse_opid.y
parse_lex.l parser_pkg.adb parser_pkg.ads

OBJ = yyparse.ads parse_tokens.ads

COBJ = test.o test_exp.o test_init_exp.o test_output_guard.o
test_timer_op_guard.o test_exception_guard.o test_exception_list.o
test_type_spec.o test_oper_spec.o test_opid.o

OBJ1 = parse_expression_goto.ads parse_expression_shift_reduce.ads
OBJ2 = parse_init_expression_goto.ads
parse_init_expression_shift_reduce.ads
OBJ3 = parse_output_guard_goto.ads parse_output_guard_shift_reduce.ads
OBJ4 = parse_timer_op_guard_goto.ads
parse_timer_op_guard_shift_reduce.ads
OBJ5 = parse_exception_guard_goto.ads
parse_exception_guard_shift_reduce.ads
OBJ6 = parse_exception_list_goto.ads
parse_exception_list_shift_reduce•ads
OBJ7 = parse_type_spec_goto.ads parse_type_spec_shift_reduce.ads
OBJ8 = parse_oper_spec_goto.ads parse_oper_spec_shift_reduce.ads
OBJ9 = parse_opid_goto.ads parse_opid_shift_reduce.ads

SCRIPTS= Makefile parse.awk parse_io.awk

PARSER= yyparse.adb yylex.adb

parsers: parser_pkg.ali

test: parser_pkg.au ${COBJ}
gnatbind -n parser_pkg.ali

71

gnatlink -o test parser_pkg.ali ${COBJ}

parser_pkg.ali: parser_pkg.adb ${PARSER} ${SCRIPTS} ${SOURCES} \
${OBJl} ${0BJ2} ${0BJ3} ${0BJ4} ${0BJ5} ${OBJ6} ${0BJ7}

${OBJ8} ${OBJ9} ${OBJ}
gnatmake parser_pkg.adb

$(0BJ1): parse_expression.y
ayacc parse_expression.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ2): parse_init_expression.y
ayacc parse_init_expression.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ3): parse_output_guard.y
ayacc parse_output_guard.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ4): parse_timer_op_guard.y
ayacc parse_timer_op_guard.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ5): parse_exception_guard.y
ayacc parse_exception_guard.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ6): parse_exception_list.y
ayacc parse_exception_list.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ7): parse_type_spec.y
ayacc parse_type_spec.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ8): parse_oper_spec.y
ayacc parse_oper_spec.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

$(0BJ9): parse_opid.y
ayacc parse_opid.y debug =\> off verbose =\> on
gnatchop -w yyparse.adb

@sed -f expression.sed parser_pkg-parse_expression.adb > tmpfile
@mv tmpfile parser_pkg-parse_expression.adb
@sed -f init_expression.sed parser_pkg-parse_init_expression.adb

> tmpfile

@mv tmpfile parser_pkg-parse_init_expression.adb
@sed -f output_guard.sed parser_pkg-parse_output_guard.adb >

tmpfile

@mv tmpfile parser_pkg-parse_output_guard.adb
@sed -f timer_op_guard.sed parser_pkg-parse_timer_op_guard.adb >

tmpfile

@mv tmpfile parser_pkg-parse_timer_op_guard„adb

72

@sed -f exception_guard.sed parser_pkg-parse_exception_guard.adb
> tmpfile

@mv tmpfile parser_pkg-parse_exception_guard.adb
@sed -f exception_list.sed parser_pkg-parse_exception_list.adb >

tmpfile
@mv tmpfile parser_pkg-parse_exception_list.adb
@sed -f type_spec.sed parser_pkg-parse_type_spec.adb > tmpfile
@mv tmpfile parser_pkg-parse_type_spec.adb
@sed -f oper_spec.sed parser_pkg-parse_oper_spec.adb > tmpfile
@mv tmpfile parser_pkg-parse_oper_spec.adb
@sed -f opid.sed parser_pkg-parse_opid.adb > tmpfile
@mv tmpfile parser_pkg-parse_opid.adb
@yes | rm tmpfile

.IGNORE:

ci:
ci files -tRCS/desc ${SOURCES} ${SCRIPTS} ${OBJ}

yylex.ads yylex.adb: parse_lex.l parse.awk parse_io.awk
aflex -s parse_lex.l
nawk -f parse.awk yylex.adb > yylex.patched
nawk -f parse_io.awk parse_lex_io.adb > temp
mv temp parse_lex_io.adb
gnatchop -w yylex.patched

73

—*********************
— Alex file for Parser
—*********************

— This file is the Aflex input file for PSDL grammar,
— and defines the lexical tokens for the ayacc psdl parser.

— Definitions of lexical classes

Digit [0-9]
Int {Digit}+
Letter [a-zA-Z_]
Alpha ({Letter}|{Digit})
Blank [\t\n]
— Text is anything but '{' and '}'
Text [A{}]
— StrLit is anything but "" and '\' OR a '\' followed by "" or a '\'
StrLit [A"\\]|t\\]["\\]
Quote ["]

%%

axioms | AXIOMS
by{Blank}+all|BY{Blank}+ALL
by{Blank}+some|BY{Blank}+SOME
control|CONTROL
constraints|CONSTRAINTS
data|DATA
stream| STREAM
description|DESCRIPTION
edge|EDGE
end|END
exceptions|EXCEPTIONS
exception|EXCEPTION
finish|FINISH
within|WITHIN
generic|GENERIC
graph|GRAPH
hours|HOURS
if|IF
implementation|IMPLEMENTATION
}lyI INITIALLY
iNPUT
ks|KEYWORDS
m|MAXIMUM
eon|EXECUTION
tME
rselRESPONSE
microsec|MICROSEC|microseconds

return (AXIOMS_TOKEN); }
return (BY_ALL_TOKEN); }
return (BY_SOME_TOKEN); }
return (CONTROLJTOKEN); }
return (CONSTRAINTSJTOKEN); }
return (DATA_TOKEN); }
return (STREAMJTOKEN); }
return (DESCRIPTION_TOKEN); }
return (EDGE_TOKEN); }
return (END_TOKEN); }
return (EXCEPTIONS_TOKEN); }
return (EXCEPTION_TOKEN); }
return (FINISHJTOKEN); }
return (WITHIN_TOKEN); }
return (GENERIC_TOKEN); }
return (GRAPH_TOKEN); }
return (HOURS_TOKEN); }
return (IF_TOKEN); }
return (IMPLEMENTATION_TOKEN);
return (INITIALLY_TOKEN); }
return (INPUT_TOKEN);)
return (KEYWORDS_TOKEN); }
return (MAXIMUM_TOKEN); }
return (EXECUTION_TOKEN); }
return (TIME_TOKEN); }
return (RESPONSEJTOKEN); }

I MICROSECONDS { return (MICROSEC TOKEN);}

74

minimumI MINIMUM { return (MINIMUM_TOKEN)
calling{Blank}+period|CALLING{Blank}+PERIOD

{ return (CALL PERIOD TOKEN)
min|MIN|minutes|MINUTES
ms IMS|milliseconds|MILLISECONDS
operator|OPERATOR
output|OUTPUT
period|PERIOD
property|PROPERTY
required{Blank}+by|REQUIRED{Blank}+BY
reset{Blank}+timer|RESET{Blank}+TIMER
sec|SEC|seconds|SECONDS
specification!SPECIFICATION
start{Blank}+timer|START {Blank}+TIMER
states|STATES
stop{Blank}+timer|STOP{Blank}+TIMER
timer|TIMER
triggered|TRIGGERED
type|TYPE
vertex|VERTEX

return (MINJTOKEN) ; }
return (MS_TOKEN) ; }
return (OPERATORJTOKEN);
return (OUTPUT_TOKEN); }
return (PERIOD_TOKEN); }
return (PROPERTYJTOKEN);
return (REQ_BY_TOKEN); }
return (RESET_TOKEN); }
return (SECJTOKEN); }

{ return (SPECIFICATIONJTOKEN);
return (START_TOKEN); }
return (STATES_TOKEN); }
return (STOP_TOKEN);}
return (TIMER_TOKEN); }

{ return (TRIGGERED_TOKEN);
return (TYPE_TOKEN); }
return (VERTEX TOKEN); }

II ft II I II U «I I Itgtl 1 II CL II I II A II I II ^ II I II % II

ii 9 ti

■i r II

it i ■■

II I II |

■i / it

it \ it

■i r II

■i 1 II

■i e it

II II /
■■ ■■

ii I ii

"and"|"AND"

"or"|"OR"

return
return
return
return
return
return
return
return
return
return
return
return
return

?')
{')
}')

ILLEGALjrOKEN);
(')
) ')
[')
]')
:')
,')
.')
I ') (

(ARROW) ; }

"xor"I"XOR"

■<=■

II /=n I II^=«

set_token_value((token_category => psdl
psdl_id_value => convert(

return (ANDJTOKEN); }
set_token_value((token_category => psdl

psdl_id_value => convert
return (OR_TOKEN); }
set_token_value((token_category => psdl

psdl_id_value => convert(
return (XOR_TOKEN); }
set_token_yalue((token_category => psdl

psdl_id_value => convert(
return (GREATER_THAN_OR_EQUAL); }
set_token_value((token_category => psdl

psdl_id_value => convert
return (LESS_THAN_OR_EQUAL); }
set_token_value((token_category => psdl

psdl_id_value => convert
return (INEQUALITY); }
set_token_value((token_category => psdl

_id_cat,
"AND"));

_id_cat,
("OR"));

_id_cat,
"XOR")));

_id_cat,
">="))),

id_cat,
T"<="))

_id_cat,
("/="))

id cat,

);

);

75

II / II

"mod"|"MOD"

"rem" | "REM"

"abs"|"ABS"

"not"|"NOT"

true|TRUE

false|FALSE

psdl_id_value => convert("=")));
return ('='); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("+")));
return ('+■); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert["-")));
return ('-'); }
set_token_value((token_category => psdl_id cat,

psdl_id_value => convert("*")));
return ('*');}
set_token_value((token_category => psdl_id cat,

psdl_id_value => convert("/")));
return ('/'); }
set_token_value((token_category => psdl_id cat,

psdl_id_value => convert("AND")));
return ('&'); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => converted)));
return ('>'); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => converted)));
return ('<'); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("MOD")));
return (MOD_TOKEN); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("REM")));
return (REMJTOKEN); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert ("**"")));
return (EXP_TOKEN); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("ABS")));
return (ABS_TOKEN); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("NOT")));
return (NOT_TOKEN); }
set_token_value((token_category => psdl_id_cat,

psdl_id_value => convert("TRUE")));
return (TRUE); }
set_token_value((token_category => psdl_id cat,

psdl_id_value => convert("FALSE")));
return (FALSE); }

{Letter} {Alpha}* { set_token_value((token_category => psdl_id cat,
psdl_id_value => convert(yytextT));

return (IDENTIFIER); }

{Quote}{StrLit}*{Quote} { set_token_value((token_category => text_cat,
text_value => convert(yytext)));

return (STRING LITERAL); }

76

{Int} { set_token_value((token_category => integer_cat,
integer_value => string_to_integer(yytext)));

return (INTEGER_LITERAL); }

{Int}"."{Int} { set_token_value((token_category => text_cat,
text_value => convert(yytext)));

return (REAL_LITERAL); }

"{"{Text}*"}" { set_token_value((token_category => text_cat,
text_value => convert(yytext)));

return (TEXT_TOKEN); }

[\n] { increment_line_number; }

[\t] { null; } — ignore spaces and tabs

%%

with parser_tokens; use parser_tokens;
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg;
with psdl_id_pkg; use psdl_id_pkg;
with text_io;

package parser_lex is
— Global variables used by the lexical analyser
line_number: positive := 1;
num_errors: natural := 0;

— Initialization procedure to allow multiple calls .from the parser
procedure initialize_yylex;

— Line numbers to be used for error messages during parsing
function current_line return positive;

— Lexical analyzer function generated by aflex
function yylex return token;

— Procedure that increments line_numbers
procedure increment_line_number;

end parser_lex;

with text_io; use text_io;
package body parsef_lex is
— Externally visible subprograms
procedure initialize_yylex is

begin
line_number := 1; — reset line_number to 1
yy_init := true; — tell yylex to reinitialize itself

end initialize_yylex;

function current_line return positive is

77

begin
return(line_number);

end current_line;

procedure increment_line_nuniber is
begin

line_number := line_number + 1;
end increment_line_number;

— Functions and subprograms used in actions associated with tokens
package nat_io is new integer_io(natural);

function string_to_integer (digit_string: string) return natural is
digit, value : natural := 0;

begin
for i in 1 .. digit_string"length loop

case digit_string(i) is
when ' 01 => digit := 0;
when '1' => digit := 1
when '21 => digit := 2
when '3' => digit := 3
when '4' => digit := 4
when '5' => digit := 5
when '6' => digit := 6
when '7' => digit := 7
when '8' => digit := 8
when '9' => digit := 9
when others => return value;

end case;
value := (10 * value) + digit;

end loop;
return value;

end string_to_integer;

procedure set_token_value(value: yystype) is
— Set the value of a token, like "$$:= value" in ayacc.

begin
yylval := value;

end set_token_value;

— The generated yylex function goes here.

end parser lex;

78

— Ayacc file for Parser

$Header: /work/sde/PSDL_TYPE.NEW/RCS/parser.y,
v 1.19 1997/08/12 21:35:47 sde Exp sde $

— This file is the ayacc source file for PSDL parser.

— token declarations section

%token *?' ■{' '}' ILLEGALJTOKEN ' (' ')' ', ' ' [' '] ' ' : * ' . ' ' I '
%token ARROW
%token TRUE FALSE
%token AXIOMS_TOKEN
%token BY_ALL_TOKEN REQ_BY_TOKEN BY_SOME_TOKEN
%token CALL_PERIOD_TOKEN CONTROL_TOKEN
%token CONSTPAINTS_TOKEN
%token DATA_TOKEN DESCRIPTION_TOKEN
%token EDGE_TOKEN END_TOKEN EXCEPTIONS_TOKEN
%token EXCEPTION_TOKEN EXECUTION_TOKEN
%token FINISH_TOKEN
%token GENERIC_TOKEN GPAPH_TOKEN
%token HOURS_TOKEN
%token IFJTOKEN IMPLEMENTATION_TOKEN
%token INITIALLY_TOKEN INPUT_TOKEN
%token KEYWORDS_TOKEN
%token MAXIMUM_TOKEN MINIMUMJTOKEN
%token MICROSEC_TOKEN
%token MIN_TOKEN MS_TOKEN MODJTOKEN
%token NOT_TOKEN
%token OPERATOR_TOKEN OR_TOKEN OUTPUT_TOKEN
%token PERIOD_TOKEN PROPERTY_TOKEN
%token RESET_TOKEN RESPONSE_TOKEN
%token SEC_TOKEN SPECIFICATION_TOKEN
%token START_TOKEN STATES_TOKEN STOP_TOKEN
%token STREAM_TOKEN
%token TIME_TOKEN
%token TIMER_TOKEN TRIGGERED_TOKEN TYPE_TOKEN
%token VERTEX_TOKEN
%token WITHIN_TOKEN
%token IDENTIFIER
%token INTEGER_LITERAL REAL_LITERAL
%token STRING_LITERAL
%token TEXT_TOKEN

— operator precedences
— left means group and evaluate from the left
%left ANDJTOKEN OR_TOKEN XOR_TOKEN LOGICAL_OPERATOR
%left •<• '>' '=' GREATER_THAN_OR_EQUAL LESS_THAN_OR_EQUAL INEQUALITY
RELATIONAL OPERATOR

79

%left '+' '-' *&' BINARY_ADDING_OPERATOR
%left UNARY_ADDING_OPERATOR
%left '*' '/' MOD_TOKEN REM_TOKEN MULTIPLYING_OPERATOR
%left EXP_TOKEN ABS_TOKEN NOT_TOKEN HIGHEST_PRECEDENCE_OPERATOR

%start start_syinbol
— this is an artificial start symbol, for initialization

— declaration of the value type for the parser stack.

%with psdl_concrete_type_pkg, expression_pkg, psdl_id_pkg;
%use psdl_concrete_type_pkg, expression_j>kg, psdl_id_pkg;

{
type token_category_type is (integer_cat,

text_cat,
psdl_id_cat,
psdl_id_sequence_cat,
op_id_cat,
operator_name_cat,
opt_arg_cat,
type_name_cat,

type_decl_cat,
timer_op_id_cat,
expression_cat,
expression_seq_cat,
property_map_cat,
no_value_cat);

type yystype (token_category: token_category_type := no_value_cat)
is —

record
case token_category is
— lexical token attributes:
when integer_cat =>

integer_value: integer;
when text_cat =>

text_value: text;
— grammar psdl_id attributes:
when psdl_id_cat =>

psdl_id_value: psdl_id;
when psdl_id_sequence_cat =>

psdl_id_sequence_value: psdl_id_sequence;
when op_id_cat =>

op_id_value: op_id;
when operator_name_cat =>

type_name_part, op_name_part: psdl_id;
when opt_arg_cat =>

input_value, output_value: psdl_id_sequence;
when type_name_cat =>

type_name_value: type_name;
when type_decl_cat =>

type_decl_value: type_declaration;

80

when timer_op_id_cat =>
timer_op_id_value: timer_op_id;

when expression_cat =>
expression_value: expression;

when expression_seq_cat =>
expression_seq_value: expression_sequence;

when property_map_cat =>
property_map_value: init_map;

when no_value_cat => null;
end case;

end record;

%%

start_symbol
{ the_program := empty_psdl_program; }

psdl

psdl : psdl component
{ if member(name (the_component), the_program)
then yyerror("Component redefined: "

& convert(name(the_component)));
else bind(name(the_component),

the_component, the_program);
end if; }

I
;

component
: data_type
I operator

data_type
: TYPEJTOKEN IDENTIFIER

{ the_operation_map ;= empty_operation_map;
is_specification := true; }

type_spec
{ is_specification := false; }

type_impl
{ — Construct the psdl type using global variables.
build_psdl_type($2.psdl_id_value,

the_ada_name,
the_imp_lang,
the_model,
the_data_structure,
the_operation_map,
the_type_gen_par,
the_keywords,
the_description,
the_axioms,
is_atomic_type,

81

the_component); }
}

type_spec

SPECIFICATION_TOKEN optional_generic_param optional_type_decl
op_spec_list functionality ENDJTOKEN

7

optional_generic_param
: GENERIC_TOKEN

{ the_type_decl := empty_type_declaration; }
list_of_type_decl

{ the_type_gen_par s= the_type_decl; }
I { the_type_gen_par := empty_type_declaration; }
7

optional_type_decl
: { the_type_decl := empty_type_declaration; }
list_of_type_decl

{ the_model := the_type_decl; }
I { the_model := empty_type_declaration; }
7

op_spec_list
: op_spec_list OPERATOR_TOKEN IDENTIFIER operator_spec

{ build_j?sdl_operator($3.psdl_id_value,
to_ada_id($3.psdl_id_value),
the_imp_lang,
the_gen_par,
the_gen_par_rb,
the_keywords,
the_description,
the_axioms,
the_input,
the_output,
the_state,
the_initial_expression_map,
the_exceptions,
the_specified_met,
the_input_rb,
the_output_rb,
the_state_rb,
the_exception_rb,
the_spec_met_rb,
is_atomic => true,
the_opr => the_operator);

bind_operation ($3.psdl_id_value,
the_operator,
the_operation_map); }

82

operator
: OPERATOR_TOKEN IDENTIFIER

{ is_specification := true; }
operator_spec

{ is_specification := false; }
operator_impl

{ — construct the psdl operator using the global variables
build_psdl_operator($2.psdl_id_value,

the_ada_name,
the_imp_lang,
the_gen_par,
the_gen_par_rb,
the_keywords,
the_description,
the_axioms,
the_input,
the_output,
the_state,
the_initial_expression_map,
the_exceptions,
the_specified_met,
the_input_rb,
the_output_rb,
the_state_rb,
the_exception_rb,
the_spe c_met_rb,
the_graph,
the_streams,
the_timers,
the_trigger_map,
the_exec_guard,
the_out_guard,
the_excep_trigger,
the_timer_op,
the_per,
the_fw,
the_mcp,
the_mrt,
the_impl_des c,
the_eg_rb,
the_per_rb,
the_fw_rb,
the_mcp_rb,
the_mrt_rb,
the_o_rb,
the_e_rb,
the_reset_rb,
the_start_rb,
the_stop_rb,
is_atomic_operator,
the component); }

83

operator_spec
: SPECIFICATION_TOKEN

{ — Initialize the variables used to
— build an operator spec.
the_gen_par := empty_type_declaration;
the_gen_par_rb := empty;
the_input_rb := empty;
the_output_rb := empty;
the_state_rb := empty;
the_exception_rb := empty;
the_spec_met_rb := empty;
the_input := empty_type_declaration;
the_output := empty_type_declaration;
the_state := empty_type_declaration;
expression_sequence_pkg.empty(the_init_exp_seq);
the_initial_expression_map := empty_init_map;

the_exceptions := empty;
the_specified_met := undefined_time; }

interface
{ bind_initial_state(the_state, the_init_exp_seq,

the_initial_expression_map); }
functionality END TOKEN

interface
: interface attribute reqmts_trace

{ bind_spec_rb(the_attribute_type,
$2.psdl_id_sequence_value,
$3.psdl_id sequence value); }

attribute
GENERICJTOKEN

{ the_type_decl := the_gen_par; }
list_of_type_decl

{ $$:= $3;
the_gen_par := the_type_decl;
the_attribute_type := gen par; }

INPUT_TOKEN ~~
{ the_type_decl := the_input; }

list_of_type_decl
{ $$:- $3;
the_input := the_type_decl;
the_attribute_type := input; }

OUTPUT_TOKEN
{ the_type_decl := the_output; }

list_of_type_decl
{ $$:= $3;
the_output := the_type_decl;
the_attribute_type := output; }

STATES_TOKEN
{ the_states_token_line := current_line;
— For error messages. —

84

the_states_token := convert(yytext);
— For error messages.
the_type_decl := the_state; }

list_of_type_decl
{ the_state := the_type_decl; }

INITIALLY_TOKEN initial_expression_list
{ $$:= $3;
expression_sequence_pkg.append(the_init_exp_seq,

$6.expression_seq_value,
the_init_exp_seq);

the_attribute_type := state; }
I EXCEPTIONSJTOKEN id_list

{ $$:= $2;
psdl_id_set_pkg.union(the_exceptions,

to_set($2.psdl_id_sequence_value),
the_exceptions);

the_attribute_type := exc; }
I MAXIMUMJTOKEN EXECUTION_TOKEN TIME_TOKEN time

{$$:=(token_category => psdl_id_sequence_cat,
psdl_id_sequence_value => empty);

if the_specified_met = undefined_time or
$4.integer_value < the_specified_met

then the_specified_met := $4.integer_value;
end if;
the_attribute_type := met; }
— Time is converted into millisec .

— Initialization of the_type_decl is
— done by the callers of this rule.

list_of_type_decl
: list_of_type_decl ',' type_decl

{$$:=(token_category => psdl_id_sequence_cat,
psdl_id_sequence_value =>

psdl_id_sequence_pkg.append($1.psdl_id_sequence_value,
$3.psdl id sequence value)); }

I type_decl
{ $$:= $1; }

type_decl
id_list ':' type_name

{ $$:= $1;
bind_type_declaration($1.psdl_id_sequence_value,

$ 3.type_name_value,
the_type_decl) ; }

type_name
IDENTIFIER

{ — Save the previous value of the_type_decl.
— Needed because the list_of_type_decl below
— might contain nested type declarations.
$$:= (token_category => type_decl_cat,

85

type_decl_value => the_type_decl);
the_type_decl := empty_type_declaration; }

'[' list_of_type_decl ']'
{ the_type_name :=

create(name => $l.psdl_id_value,
formals => $4.psdl_id_sequence_value,
gen_par => the_type_decl);

— Now restore the previous value saved above.
the_type_decl := $2.type_decl_value;

$$:= (token_category => type_name_cat,
type_name_value => the_type_name); }

I IDENTIFIER
{ the_type_name :=

create(name => $l.psdl_id_value,
formals => psdl_id_sequence_pkg.empty,
gen_par => empty_type_declaration);

$$:= (token_category => type_name_cat,
type_name_value => the_type_name); }

id_list
: id_list ',• IDENTIFIER

{$$:=(token_category => psdl_id_sequence_cat,
psdl_id_sequence_value =>

add($3.psdl_id_value,
$l.psdl_id_sequence_value)); }

I IDENTIFIER
{$$:=(token_category => psdl_id_sequence_cat,

psdl_id_sequence_value => add($l.psdl_id_value,
empty)); }

reqmts_trace
: REQ_BY_TOKEN id_list

{ $$:= $2; }
I
{$$:=(token_category => psdl_id_sequence_cat,

psdl_id_sequence_value => empty); }
}

functionality
: keywords informal_desc formal_desc

keywords
: KEYWORDS_TOKEN id_list

{ the_keywords := to_set($2.psdl_id_sequence_value); }
I { the_keywords := empty; }

informal_des c
: DESCRIPTION_TOKEN TEXT_TOKEN

{ if is_specification then
the_description := remove_braces($2.text_value);

86

else the_impl_desc := remove_braces($2.text_value)
end if; }

{ if is_specification then
the_description := empty;

else the_impl_desc := empty;
end if; }

formal_desc
: axioms_TOKEN TEXTJTOKEN

{ the axioms:= remove braces($2.text value); }
I

{ the_axioms:= empty; }

type_impl
: IMPLEMENTATIONJTOKEN IDENTIFIER IDENTIFIER END_TOKEN

{ is_atomic_type s= true;
the_imp_lang := $2.psdl_id_value;
the_ada_name := to_ada_id($3.psdl_id_value); }

i IMPLEMENTATIONJTOKEN type_name op_impl_list END_TOKEN
{ is_atomic_type := false;
the_data_structure s= $2.type_name_value; }

op_imp1_1i s t
: op_impl_list OPERATOR_TOKEN IDENTIFIER operator_impl

{ — add implementation part to the operator in the
operation map

add_op_impl_to_op_map($3.psdl_id_value,
the_ada_name,
is_atomic_operator,
the_operation_map,
the_graph,
the_strearns,
the_timers,
the_t ri gge r_map,
the_exec_guard,
the_out_guard,
the_excep_trigger,
the_timer_op,
the_per,
the_fw,
the_mcp,
the_mrt,
the_impl_desc) ; }

operator_impl
: IMPLEMENTATIONJTOKEN IDENTIFIER IDENTIFIER ENDJTOKEN

{ is_atomic_operator : = true;
the_imp_lang := $2.psdl_id_value;

87

the_ada_name := to_ada_id($3.psdl_id_value); }
I IMPLEMENTATIONJTOKEN psdl_impl END_TOKEN

{ is_atomic_operator := false; }

psdl_impl
: data_flow_diagram streams timers control_constraints

informal_desc

data_flow_diagram
: { the_graph := empty_psdl_graph; }
GRAPH_TOKEN vertex_list edge_list

— Time is the maximum execution time.
vertex_list

: vertex_list VERTEX_TOKEN op_id optional_time graph_properties
{ the_graph := psdl_graph_pkg.add_vertex($3.op_id_value,

the_graph,
$4.integer_value,

$ 5.property_map_value); }
I
r

— Time is the latency.
edge_list

: edge_list EDGEJTOKEN IDENTIFIER
optional_time op_id ARROW op_id graph_properties

{ the_graph := psdl_graph_pkg.add_edge($5.op_id_value,
$ 7.op_id_value,
$3.psdl_id_value,
the_graph,
$4.integer_value,

$ 8.property_map_value); }

graph_properties
: graph_properties PROPERTY_TOKEN IDENTIFIER '=' expression

{ bind($3.psdl_id_value, $5.expression_value,
$l.property_map_value);
$$:=■ (token_category => property_map_cat,

property_map_value => $l.property_map_value); }

{$$:=(token_category => property_map_cat,
property_map_value => empty_init_map); }

op id
operator_name opt arg
{$$:=(token_category => op_id cat,

88

op_id_value =>
(type_name => $l.type_name part,
operation name => $l.op name_part,
inputs => $2.input value,

,
outputs => $2.output value)); }

operator i name

1

IDENTIFIER '.' IDENTIFIER
{$$:=(token_category => operator name cat,

type name part => $l.psdl id value,
op name part => $3.psdl id value); }

IDENTIFIER
{$$:=(token_category => operator name cat,

type name part => empty,

r

op_name_part => $l.psdl id value); }

opt arg
'(' optional_id_list '|' optional_id_list *)'

{ $$:= (token_category => opt arg cat,
input_value => $2.psdl id sequence_value,
output_value => $4.psdl id sequence value); }

1 {$$:=(token_category => opt arg cat,
input_value => empty,
output_value => empty); }

optional_id_list
: id_list { $$:= $1; }
| {$$:=(token_category => psdl_id_sequence_cat,

psdl_id_sequence_value => empty); }

optional_time
: ':* time

{ $$:= (token_category => integer_cat,
integer_value => $2.integer_value),

| { $$:= (token_category => integer_cat,
integer value => undefined time); }

streams
: DATAJTOKEN STREAMJTOKEN

{ the_type_decl := empty_type_declaration; }
list_of_type_decl

{ the_streams := the_type_decl; }
I

{ the_streams := empty_type_declaration; }

— The order of id's is not important, so

89

— we use psdl_id_set as the data structure
— to store the timers.

timers
: TIMERJTOKEN id_list

{ the_timers := to_set($2.psdl_id_sequence_value); }
I { the_timers := empty; }

control_constraints
: CONTROLJTOKEN CONSTRAINTS_TOKEN

{ the_trigger_map := empty_trigger_map;
the_per := empty_timing_map;
the_fw := empty_timing_map;
the_mcp := empty_timing_map;
the_mrt := empty_timing_map;
the_exec_guard := empty_exec_guard_map;
the_out_guard := empty_out_guard map;
the_excep_trigger := empty_excep~trigger_map;
the_timer_op := empty_timer_op_map;
the_eg_rb := empty;
the_per_rb := empty;
the_fw_rb := empty;
the_mcp_rb := empty;
the_mrt_rb := empty;
the_o_srbm := empty;
the_e_srbm := empty;
the_reset_srbm := empty;
the_start_srbm := empty;
the_stop_srbm := empty;
the_o_rb := empty;
the_e_rb := empty;
the_reset_rb := empty;
the_start_rb := empty;
the_stop_rb := empty; }

constraints

constraints
: constraints OPERATOR_TOKEN op_id

{ the_operator_id := $3.op_id_value;
the_timer_op_set := timer_op_set_pkg.empty; }

opt_trigger opt_period opt_finish_within
opt_mcp opt_mrt constraint_options

{ bind(the_operator_id, the_o_srbm, the_o_rb);
bind(the_operator_id, the_e_srbm, the_e_rb);
bind(the_operator_id, the_reset_srbm, the_reset_rb);
bind(the_operator_id, the_start_srbm, the_start_rb);
bind(the_operator_id, the_stop_srbm, the_stop_rb); }

constraint_options
: constraint_options OUTPUT TOKEN

90

the_reset_srbm)

the_s tart_s rbm)

the_stop_srbm);

recognize that.

id_list IF_TOKEN expression reqmts_trace
{ the_output_id.op := the_operator_id;
for id: psdl_id in

psdl_id_sequence_pkg.scan($3.psdl_id_sequence_value)
loop

the_output_id„stream := id;
bind(the_output_id, $5.expression_value,

the_out_guard);
bind(id, $6.psdl_id_sequence_value, the_o_srbm);

end loop; }
I constraint_options EXCEPTION_TOKEN IDENTIFIER
opt_if_predicate reqmts_trace

{ the_excep_id.op := the_operator_id;
the_excep_id•excep := $3„psdl_id_value;
bind(the_excep_id, $4„expression_value,

the_excep_trigger);
bind($3.psdl_id_value, $5.psdl_id_sequence_value,

the_e_srbm); }
| constraint_options timer_op IDENTIFIER
opt_if_predicate reqmts_trace

{ the_timer_op_record.op_id := $2.timer_op_id_value;
the_timer_op_record.timer_id := $3.psdl_id_value;
the_timer_op_record.guard := $4.expression_value;
timer_op_set_pkg.add (the_timer_op_record,

the_timer_op_set);
bind(the_operator_idf the_timer_op_set, the_timer_op);
case the_timer_op_record.op_id is
when t_reset =>

bind($3.psdl_id_value, $5.psdl_id_sequence_value,

when t_start =>
bind($3.psdl_id_value, $5.psdl_id_sequence_value,

when t_stop =>
bind($3.psdl_id_value, $5.psdl_id_sequence_value,

when t_none => null;
— This case is impossible but the compiler can't

end case; }

opt_trigger
: TRIGGERED_TOKEN trigger opt_if_predicate reqmts_trace

{ bind(the_operator_id, $3.expression_value, the_exec_guard);
bind(the_operator_id, $4.psdl_id_sequence_value,

the eg rb); }

trigger
: BY ALL TOKEN id list

91

{ the_trigger.tt := by_all;
the_trigger.streams := to_set($2.psdl_id_sequence_value);
bind(the_operator_id, the_trigger, the_trigger map); }

BY_SOME_TOKEN id_list
{ the_trigger.tt := by_some;
the_trigger.streams := to_set($2.psdl_id_sequence_value);
bind(the_operator_id, the_trigger, the_trigger_map); }

{ the_trigger.tt ;= by_none;
the_trigger.streams := empty;
bind(the_operator_id, the_trigger, the_trigger_map); }

opt_period
: PERIOD_TOKEN time reqmts_trace

{ bind(the_operator_id, $2.integer_value, the_per);
bind(the_operator_id, $3.psdl_id_sequence_value,

the_per_rb); }
I

opt_finish_within
: FINISHJTOKEN WITHIN^TOKEN time reqmts_trace

{ bind(the_operator_id, $3.integer_value, the_fw);
bind(the_operator_id, $4.psdl_id_sequence value,
the_fw_rb) ;• }

I

opt_mcp
: MINIMUM_TOKEN CALL_PERIOD_TOKEN time reqmts_trace

{ bind(the_operator_id, $3.integer_value, the_mcp);
bind(the_operator_id„ $4 ,psdl_id_sequence_value,
the_mcp_rb); }

opt_mrt

I

max_resp_time time reqmts_trace
{ bind(the_operator_id, $2.integer_value, the_mrt);
bind(the_operator_id, $3.psdl_id_sequence_value,
the mrt rb); }

max_resp_time
: MAXIMUM_TOKEN RESPONSE TOKEN TIME TOKEN

timer_op
: RESETJTOKEN

{ $$:= (token_category => timer_op id cat,
timer_op_id_value => t reset)7 }

I START_TOKEN

92

{ $$:= (token_category => timer_op_id_cat,
timer_op_id_value => t_start); }

STOP_TOKEN
{ $$:= (token_category => timer_op_id_cat,

timer op id value => t stop); }

opt_i f_p redi cate
: IF_TOKEN expression

{ $$:= (token_category => expression_cat,
expression_value => $2.expression_value); }

| { $$:= (token_category => expression_cat,
expression_value => true_expression); }

— The expression sequence
— is used by procedure bind_initial_state together with
— the states map to construct the init_map.

initial_expression_list
: initial_expression_list ',' initial_expression

{ $$:= (token_category => expression_seq_cat,
expression_seq_value =>
expression_sequence_pkg.add($3.expression_value,

$l.expression_seq_value)); }
I initial_expression

{ $$:= (token_category => expression_seq_cat,
expression_seq_value =>

expression_sequence_pkg.add($1.expression_value,
empty_exp_seq)); }

— There is one and only one initial state(initial expression)
— for each state variable. This production returns one
— expression to the parent rule corresponding to one state.
— This is done by using the internal stack ($$ convention).

initial_expression
: TRUE

{ $$:= (token_category => expression_cat,
expression_value => true_expression); }

I FALSE
{ $$:= (token_category => expression_cat,

expression_value => false_expression); }
I INTEGER_LITERAL

93

{ $$;= (token_category => expression_cat,
expression_value => —

create_integer_literal($l.integer value)); }
| REAL_LITERAL

{ $$:= (token_category => expression_cat,
expression_value =>
create_real_literal($1.text_value)); }

I STRING_LITERAL
{ $$:= (token_category => expression_cat,

expression_value =>
create_string_literal($1.text value)); }

I IDENTIFIER ~
{ $$:= (token_category => expression_cat,

expression_value =>
create_identifier($l.psdl_id_value)); }

I typejname '.' IDENTIFIER
{ $$: = (token_category => expression_cat,

expression_value =>
create_function_call($1.type_name_value,

psdl_id($3.psdl_id_value),
empty_exp_seq)) ; }

I type_name ».• IDENTIFIER »(' initial_expression_list ')'
{ $$:= (token_category => expression_cat,

expression_value =>
create_function_call($1.type_name_value,

psdl_id($3.psdl_id_value),
$5.expression_seq_value));}

I '(' initial_expresslon ') *
{ $$:= (token_category => expression_cat,

expression_value => $2.expression value) ;
}

I initial_expression log_op initial_expression
%prec logical_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value));

I initial_expression rel_op initial_expression
%prec relational_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value)) ;

I '-' initial_expression
%prec unary_adding_operator

{ $$:= (token_category => expression_cat,
expression_value =>

create_unary_op(convert("-"),
$2.expression_value)); }

I *+* initial_expression

94

%prec unary adding operator
{ $$:= (token category => expression_cat,

expression value =>
create unary op(convert("+"),

$2.expression_value));}
I initial expression bin add op initial expression
%prec binary_adding operator

{ $$:= (token category => expression_cat,
expression value =>
create binary op ($l.expression_value,

$2.psdl id value,
$3.expression value)); }

I initial expression bin mul op initial_expression
%prec multiplying operator

{ $$:= (token category => expression cat,
expression value =>
create_binary op ($l.expression_value,

$2.psdl_id_value,
$3.expression_value)); }

I initial expression EXP TOKEN initial expression
%prec highest_precedence operator

{ $$:= (token category => expression cat,
expression value =>
create binary op ($1.expression value,

convert("**"),

}
$3.expression_value));

I NOT_TOKEN initial expression
%prec highest precedence operator

{ $$:= (token_category => expression_cat,
expression value =>

create unary op(convert("NOT"),
$2.expression value)); }

I ABS_TOKEN initial expression
%prec highest_precedence operator

{ $$:= (token_category => expression cat,
expression value =>

create_unary_op(convert("ABS"),
$2.expression value)); }

| '?' { $$:= (token category => expression cat,
expression value => undefined expression); }

log op
: AND_TOKEN

{ $$:= (token_category => psdl id cat,
psdl id value => convert("AND")); }

I ORJTOKEN
{ $$:= (token_category => psdl id cat,

psdl id value => convert("OR")); }
I XOR_TOKEN

{ $$:= (token_category => psdl id cat,
psdl_id_value => convert("XOR")); }

95

rel_op
: '<■

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert("<")); }

I •>*
{ $$: = (token_category => psdl_id_cat,

psdl_id_value => convert(">")); }
I ' = '

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert ("=")); }

I GREATER_THAN_OR_EQUAL
{ $$:= (token_category => psdl_id cat,

psdl_id_value => convert(">=")); }
I LESS_THAN_OR_EQUAL

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert("<=")); }

I INEQUALITY
{ $$:= (token_category => psdl_id_cat,

psdl_id_value => convert("/=")); }

bin_add_op

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert("+")); }

I '-■
{ $$:= (token_category => psdl_id cat,

psdl_id value => convert (""-"));. }
I *&'

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert (""&")) ; }

bin_mul_op

time

{ $$:= (token_category => psdl_id_cat,
psdl_id value => convert("*")); }

I '/'
{ $$:= (token_category => psdl id cat,

psdl_id_value => convert (V")); }
I MOD_TOKEN

{ $$:= (token_category => psdl_id_cat,
psdl_id_value => convert ("MOD")); }

I REM_TOKEN
{ $$:= (token_category => psdl_id_cat,

psdl_id_value => convert("REM")); }

time_number MICROSEC_TOKEN
{ $$:= (token_category => integer_cat,

integer_value => ($l.integer_value + 999)/1000); }

96

I time_number MS_TOKEN
{ $$:= (token_category => integer_cat,

integer_value => $l.integer_value); }
I time_number SEC_TOKEN

{ $$:= (token_category => integer_cat,
integer_value => $l.integer_value * 1000); }

I time_number MIN_TOKEN
{ $$:= (token_category => integer_cat,

integer_value => $l.integer_value * 60000); }
I time_number HOURS_TOKEN

{ $$:= (token_category => integer_cat,
integer value => $1.integer value * 3600000); }

time_number
: INTEGER_LITERAL

{ $$:= (token_category => integer_cat,
integer_value => $l.integer_value); }

expression_list
: expression_list ',' expression

{ $$:= (token_category => expression_seq_cat,
expression_seq_value =>
expression_sequence_pkg.add($3.expression_value,

$l.expression_seq_value)); }
I expression

{ $$:= (token_category => expression_seq_cat,
expression_seq_value =>
expression_sequence_pkg.add($1.expression_value,

empty exp seq)); }

— Expressions can appear in guards appearing in control constraints.
— These guards can be associated with triggering condition's, or
— conditional outputs, conditional exceptions, or conditional timer
— operations. Similar to initial expression, except that tim e values
— and references to timers and data streams are allowed.

expression
: TRUE

{ $$:=■(token_category => expression_cat,
expression_value => true_expression); }

I FALSE
{ $$:= (token_category => expression_cat,

expression_value => false_expression); }
| INTEGER_LITERAL

{ $$:= (token_category => expression_cat,
expression_value =>
create_integer_literal($1.integer_value)); }

I REAL_LITERAL

97

{ $$:- (token_category => expression_cat,
expression_value =>
create_real_literal($1.text value)); }

I STRING_LITERAL
{ $$:= (token_category => expression_cat,

expression_value =>
create_string_literal($l.text value)); }

I IDENTIFIER
{ $$:= (token_category => expression_cat,

expression_value =>
create_identifier($l.psdl_id_value)); }

— The only difference from the initial expression
I time

{ $$:= (token_category => expression_cat,
expression_value =>

create_time_literal (natural($1.integer_value)));}
I type_name '.' IDENTIFIER

{ $$:= (token_category => expression_cat,
expression_value =>
create_function_call($1.type_name_value,

psdl_id($3.psdl_id_value),
empty_exp_seq)); }

I type_name '.' IDENTIFIER '(' expression_list ')'
{ $$:= (token_category => expression_cat,

expression_value =>
create_function_call($1.type_name_value,

psdl_id($3.psdl_id_value),
$5.expression_seg_value));}

I '(' expression ') '
{ $$:= (tokeri_category => expression_cat,

expression_value => $2.expression value);
} . ~

I expression log_op expression %prec logical_operator
{ $$:= (token_category => expression_cat,

expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value)); }

I expression rel_op expression %prec relational_operator
{ $$:= (token_category => expression_cat,

expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value)); }

I '-' expression %prec unary_adding_operator
{ $$:= (token_category => expression_cat,

expression_value =>
create_unary_op (convert("-"),

$2.expression_value)); }
I '+' expression %prec unary_adding_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_unary_op (convert("+"),

$2.expression_value)); }

98

I expression bin_add_op expression
%prec binary_adding_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value)); }

I expression bin_mul_op expression
%prec multiplying_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_binary_op ($1.expression_value,

$2.psdl_id_value,
$3.expression_value)); }

| expression EXP_TOKEN expression
%prec highest_precedence_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_binary_op ($1.expression_value,

convert("**"),
$3.expression_value)); }

I NOT_TOKEN expression %prec
highest_precedence_operator

{ $$:= (token_category => expression_cat,
expression_value =>
create_unary_op (convert("NOT"),

$2„expression_value)); }
I ABS_TOKEN expression %prec

highest_precedence_operator
{ $$:= (token_category => expression_cat,

expression_value =>
create_unary_op ' (convert("ABS"),

$2.expression_value)); }
| '?' { $$:= (token_category => expression_cat,

expression value => undefined expression) ,

%%

package spec parser

with psdl_program_pkg; use psdl_program_pkg;
with text_io; use text_io;

package parser is
procedure get(item: in out psdl_program);
procedure get(file: in file_type; item: in out psdl_program)

syntax_error: exception;
semantic_error: exception;

99

end parser;

package body parser

with parser_tokens; use parser_tokens;
with parser_goto; use parser_goto;
with parser_shift_reduce; use parser_shift_reduce;
with parser_lex; use parser_lex;
with parser_lex_dfa; use parser_lex_dfa;
with psdl_component_pkg; use psdl_component_pkg;
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg;
with psdl_id_pkg; use psdl_id_pkg;
with ada_id_pkg; use ada_id_pkg;
with psdl_graph_pkg; use psdl_graph_pkg;
with expression_pkg; use expression_pkg;
with spec_req_map_pkg; use spec_req_map_pkg;
with cc_req_map_pkg; use cc_req_map_pkg;
with cc_req_map_map_pkg; use cc_req_map_map_pkg;
with psdl_io; use psdl_io;

package body parser is
subtype exp_seq is expression_sequence_pkg.sequence;

function empty_exp_seq return expression_sequence
renames expression_sequence_pkg.empty;
— Returns an empty expression sequence.

type attribute_type is (gen_par, input, output, state, exc, met);

— global variables used by the parser.
the_program: psdl_program;
the_component: psdl_component;
the_operator: operator;
the_atomic_type: atomic_type;
the_atomic_operator: atomic_operator;
the_composite_type: composite_type;
the_composite_operator: composite_operator;
the_ada_name: ada_id;
the_imp_lang: psdl_id;
the_gen_par: type_declaration;
the_type_gen_par: type_declaration;
the_keywords: psdl_id_set;
the_description: text;
the_axioms: text;
the_output_id: output_id;
— a temporary variable to hold output_id to construct out guard

map —
the_excep_id: excep_id;

a temporary variable to hold excep_id to construct excep trigger
map ~

the_model: type_declaration;

100

the_operation_map: operation_map;
the_data_structure: type_name;
the_input: type_declaration;
the_output: type_declaration;
the_state: type_declaration;
the_states_token_line: natural;
the_states_token: text;
the_initial_expression_map: init_map;
the_exceptions: psdl_id_set;
the_specified_met: millisec;
the_graph: psdl_graph;
the_streams; type_declaration;
the_timers: psdl_id_set;
the_trigger_map: trigger_map;
the_exec_guard: exec_guard_map;
the_out_guard: out_guard_map;
the_excep_trigger: excep_trigger_map;
the_timer_op: timer_op_map;
the_per: timing_map;
the_fw: timing_map;
the_mcp: timing_map;
the_mrt: timing_map;
the_operator_id: op_id;
— is used for storing the operator id's in control constraints

part
is_atomic_type: boolean;
— true if the psdl_component is an atomic type.

is_atomic_operator: boolean;
— true if the psdl_component is an atomic operator.

is_specification: boolean;
— True if the current unit is a psdl specification part.

the_init_exp_seq: exp_seg;
— Holds the initial expressions for all state variables in an

operator spec.
the_type_name: type_name;
the_type_decl: type_declaration;
— Used to hold an inherited/synthesized attribtue pair.

the_trigger: trigger;
the_time r_op_re co rd: timer_op;
the_timer_op_set: timer_op_set;
the_impl_desc: text;
the_attribute_type: attribute_type;

the_gen_par_rb: spec_req_map;
the_input_rb: spec_req_map;
the_output_rb: spec_req_map;
the_state_rb: spec_req_map;
the_exception_rb: spec_req_map;
the_spec_met_rb: psdl_id_sequence;

the_eg_rb: cc_req_map;
the_per_rb: cc_req_map;
the_fw_rb: cc_req_map;
the_mcp_rb: cc_req_map;

101

the_mrt_rb: cc_req_map;

the_o_srbm: spec_req_map;
the_e_srbm: spec_req_map;
the_reset_srbm: spec_req map;
the_start_srbm: spec_req_map;
the_stop_srbm: spec_req_map;

the_o_rb: cc_req_map_map;
the_e_rb: cc_req_map_map;
the_reset_rb: cc_req_map_map;
the_start_rb: cc_req_map_map;
the_s top_rb: cc_req_map_map;

has_syntax_error: boolean := false;

— procedure initialize state variables

procedure initialize_state_variables is
begin

yyval := (token_category => no_value_cat);
end initialize_state_variables;

— procedure yyparse

procedure yyparse; — Body is automatically generated.

— procedure yyerror

procedure yyerror(s: in string := "syntax error";
err_line: natural := current_line;
err_token: text := convert(yytext)) is

space: integer;
begin

new_line;
put_line(standard_error,

"line" & integer'image(err_line) & ": "
& convert(err_token));

space := integer'image(err_line)'length +
integer(convert(err_token)'length) + 5;

for i in 1 .. space loop put(standard_error, "-"); end loop;
put_line(standard_error, "A " & s);
has_syntax_error := true;

end yyerror;

given a string of characters corresponding to a natural number,
— returns the natural value

function convert_to_natural(string_digit: string) return natural is
digit, value : natural := 0;

102

begin
for i in 1 .. string_digit'length loop

case string digit(i) is
when '0' => digit = 0;
when '1' => digit = 1;
when '2* => digit - 2;
when '3* => digit = 3;
when '4' => digit = 4;
when '5' => digit = 5;
when '6' => digit = 6;
when '7' => digit = 7;
when '81 => digit = 8;
when '9' => digit = 9;
when others => return value;

end case;
value := (10 * value + digit;

end loop;
return value ■

end convert to natural;

— procedure get

reads the standard input, parses it, and creates the
psdl adt.

procedure get(item: in out psdl_program) is
begin

initialize_state_variables;
initialize_yylex;
yyparse;
if has_syntax_error then

assign(item, empty_psdl_program) ;
raise syntax_error;

end if;
assign(item, the_program);

end get;

— procedure get

— reads the psdl source file from a file,
parses it, and creates the psdl adt.

procedure get(file: in file_type;
item: in out psdl_program) is

begin
set_input(file);
get(item) ;
set_input(standard_input);

end get;

procedure bind_type_declaration

103

—bind each id in id the id
—set to the type name
—return temp type decl

procedure bind_type_declaration(i_s: in psdl_id_sequence; tn: in
type_name;

td: in out type_declaration) is
begin

for id : psdl_id in psdl_id_sequence_pkg.scan(i_s) loop
bind(id, tn, td);

end loop;
end bind type declaration;

procedure bind_initial_state

— Bind each id in the state map domain
— set to the type name initial expression

procedure bind_initial_state(state: in type_declaration; init seq: in
exp_seq; ~

. init_exp_map: in out init_map) is
i: natural := 0;

begin
— Added by Dave Dampier 20 April 1994 to
— eliminate use of the M4 Macros,

and adopt use of the new generator processor for loops.

for id : psdl_id, td : type_name in
type_declaration_pkg.scan(state) loop

i := i + 1;
if i > expression_sequence_pkg.length(init_seq) then

yyerror("semantic error - some states are not initialized.",
the_states_token._line, the_states_token) ;

raise semantic_error;
else bind(id,

expression_sequence_pkg.fetch(init_seq, i),
init_exp_map);

end if;
end loop;

— End of Added Code.
— Also eliminated old M4 code.

if i < expression_sequence_pkg.length(init_seq) then
yyerror("semantic error -

there are more initializations than the states",
the_states_token_line, the_states_token);

raise semantic_error;
end if;

end bind initial state;

procedure bind_spec_rb

104

— Bind each id in the ids to the required-by sequence
— in the appropriate spec requirements map.

procedure bind_spec_rb(a_t: attribute_type; ids, reqs :
psdl_id_sequence) is

begin
case a_t is
when gen_par =>

for id : psdl_id in psdl_id_sequence_pkg.scan(ids) loop
bind(id, reqs, the_gen_par_rb);

end loop;
when input =>

for id : psdl_id in psdl_id_sequence_pkg.scan(ids) loop
bind(id, reqs, the_input_rb);

end loop;
when output —>

for id : psdl_id in psdl_id_sequence_pkg.scan(ids) loop
bind(id, reqs, the_output_rb);

end loop;
when state =>

for id : psdl_id in psdl_id_sequence_pkg.scan(ids) loop
bind(id, reqs, the_state_rb);

end loop;
when exc =>

for id : psdl_id in psdl_id_sequence_pkg.scan(ids) loop
bind(id, reqs, the_exception_rb);

end loop;
when met =>
— This case is different because the specified-met required-by
— applies to the entire operator.
— Normally there should be at most one specified met,
— but if there is more than one, the requirements traces are
— combined.
for id : psdl_id in psdl_id_sequence_pkg.scan(reqs) loop
if not member(id, the_spec_met_rb) then

add(id, the_spec_met_rb);
end if;

end loop;
end case;

end bind_spec_rb;

function remove_braces(t: text) return text is
s: string := to_string(t);
len: natural := length(t);

begin
return to_text(s(2 .. len-1));

end remove_braces;

— Generated body of yyparse goes here.
##%procedure_parse
end parser;

— Parser Tokens

105

with Psdl_Concrete_Type_Pkg, Expression_Pkg, Psdl_Id_Pkg;
use Psdl_Concrete_Type_Pkg, Expression_Pkg, Psdl_Id_Pkg;
package Parser_Tokens is

type token_category_type is (integer_cat,
text_cat,
psdl_id_cat,
psdl_id_sequence_cat,
op_id_cat,
operator_name_cat,
opt_arg_cat,
type_name_cat,

type_decl_cat,
timer_op_id_cat,
expression_cat,
expression_seq_cat,
property_map_cat,
no_value_cat);

type yystype (token_category: token_category_type := no_value cat)
is —

record
case token_category is
— lexical token attributes:
when integer_cat =>

integer_value: integer;
when text_cat =>

text_value: text;
— grammar psdl_id attributes:
when psdl_id_cat =>

psdl_id_value: psdl_id;
when psdl_id_sequence_cat =>

psdl_id_sequence_value: psdl_id_sequence;
when op_id_cat =>

op_id_value: op_id;
when operator_name_cat =>

type_name_part, op_name_part: psdl_id;
when opt_arg_cat =>

input_value, output_value: psdl_id_sequence;
when type_name_cat =>

type_name_value: type_name;
when type_decl_cat =>

type_decl_value: type_declaration;
when timer_op_id_cat =>

timer_op_id_value: timer_op_id;
when expression cat =>

expression_value: expression;
when expression_seq cat =>

expression_seq_value: expression_sequence;
when property_map_cat =>

property_map_value: initjnap;

106

when no_value_cat => null;
end case;

end record;

YYLVal, YYVal : YYSType;
type Token is

(End_Of_Input, Error, ' ?', '{',
1}', Illegal_Token, '(',
i \ ? i ■ i r i
It II L I

ill l.l il
J l • l 'l

' | *, Arrow, True,
False, Axioms_Token, By_All_Token,
Req_By_Token, By_Some_Token, Call_Period_Token,
Control_Token, Constraints_Token, Data_Token,
Description_Token, Edge_Token, End_Token,
Exceptions_Token, Exception_Token, Execution_Token,
Finish_Token, Generic_Token, Graph_Token,
Hours_Token, If_Token, Implementation_Token,
Initially_Token, Input_Token, Keywords_Token,
Maximum_Token, Minimum_Token, Microsec_Token,
Min_Token, Ms_Token, Mod_Token>
Not_Token, Operator_Token, Or_Token,
Output_Token, Period_Token, Property_Token,
Reset_Token, Response_Token, Sec_Token,
Specification_Token, Start_Token, States_Token,
Stop_Token, Stream_Token, Time_Token,
Timer_Token, Triggered_Token, Type_Token,
Vertex_Token, Within_Token, Identifier,
Integer_Literal, Real_Literal, String_Literal,
Text_Token, And_Token, Xor_Token,
Logical_Operator, '<', ">',
*=', Greater_Than_Or_Equal, Less_Than_Or_Equal,
Inequality, Relational_Operator, '+',
1-•, '&', Binary_Adding_Operator,
Unary_Adding_Operator, ' * *, ' / ',
Rem_Token, Multiplying_Operator, Exp_Token,
Abs_Token, Highest_Precedence_Operator);

Syntax_Error : exception;

end Parser Tokens;

107

—**********************
— AWK script for Parser
—**********************

/procedure YY_USER_ACTION is/ {
keep this line and the "begin" that follows,
print $0
getline
print $0
replace the body of the procedure with our code
print " increment_column_number(yytexflength);"
get the "null;" and discard it
getline
next
}

otherwise pass the line through

{ print $0 }

108

APPENDIX C: SELECTED SOURCE CODE (PSDL EDITOR)

Makefile for PSDL Editor

SHELL = /usr/bin/csh

C_DIR = ./C_Code

INCLUDE_FLAGS = \
-I. \
-I${PT_DIR) \
-I$(PT_DIR)/GENERIC_TYPES \
-I$(PT_DIR)/INSTANTIATIONS \
-I$(PARSER_DIR)

LIBS = -lXm -IXt -IXext -1X11 -Im -lg++ -lgcc

PSDL_TYPE = \
$(PT_DIR)/psdl_io.ali

GE_OBJECTS = \
$(GE_DIR)/graph_editor.o \
$(GE_DIR)/operator_object.o \
$(GE_DIR)/stream_obj ect. o \
$(GE_DIR)/spline_object.o \
$(GE_DIR)/graph_object_list.o \
$(GE_DIR)/font_table.o \
$(GE_DIR)/graph_object.o \
$(GE_DIR)/setcursor.o \
$(GE_DIR)/gettopshell.o \
$(GE_DIR)/postpopup.o \
$(GE_DIR)/build_option.o \
$(GE_DIR)/timer_tool.o \
$(GE_DIR)/action_area.o \
$(GE_DIR)/warning.o \
$(GE_DIR)/ge_utilities.o \
$(GE_DIR)/stream_property_menu.o \
$(GE_DIR)/operator_property_menu.o \
$(GE_DIR)/windows•o \
$(GE_DIR)/get_unique_id.o \
$(GE_DIR)/ge_utilities_debug.o \
$(GE_DIR)/report_errors.o

PARSERS = $(PARSERJDIR)/parser_pkg.ali

LOCAL_OBJECTS = \
$(C_DIR)/main.o \
$(C_DIR)/sde_structure.o \
$(C_DIR)/sde_globals.o \
$(C_DIR)/ge support.o

109

GENERATED_ADA = \
analysis_pkg.adb \
at_list_pkg.adb \
ge_utilities.adb \
id_list_pkg.adb \
io_utilities.adb \
op_list_pkg.adb \
psdl_utilities_pkg.adb \
st_list_pkg.adb \

editor_io_pkg.adb \
editor_io_pkg-utilities.adb

SOURCES = \
action_node_pkg.ads \
action_node_pkg.adb \
analysis_pkg.ads \
analysis_pkg.adb \
at_list_pkg.ads \
at_list_pkg.adb \
c_boolean_pkg•ads \
c_boolean_pkg.adb \
c_int_pkg.ads \
c_string_pkg.ads \
c_string_pkg.adb \
c_unsigned_int_pkg.ads \
duration_type_pkg.ads \
error_msgs_pkg.ads \
error_msgs_pkg.adb \
ge_action_pkg.ads \
ge_action_pkg.adb \
ge_interface_pkg.ads \
ge_op_id_pkg.ads \
ge_op_id_pkg.adb \
ge_operator_pkg.ads \
ge_operator_pkg.adb \
ge_trigger_type_pkg.ads \
ge_trigger_type_pkg.adb \
ge_utilities.ads \
ge_utilities.adb \
graph_desc_pkg.ads \
graph_desc_pkg.adb \
id_list_pkg.ads \
id_list_pkg.adb \
io_utilities.ads \
io_utilities.adb \
op_list_pkg.ads \
op_list_pkg.adb \
property_names_pkg.ads \
property_names_pkg.adb \
psdl_editor.ads \
psdl_editor.adb \
psdl_editor_pkg.ads \

110

p s dl_edi t o r_p kg.adb \
psdl_utilities_pkg.ads \
psdl_utilities_pkg.adb \
spline_ptr_pkg.ads \
spline_ptr_pkg.adb \
st_id_pkg.ads \
st_list_pkg.ads \
st_list_pkg.adb \
stream_pkg•ads \
stream_pkg.adb \
time_trigger_type_pkg.ads \
time_trigger_type_pkg.adb \
time_unit_type_pkg.ads \
time_unit_type_pkg.adb \
unique id pkg.ads

SCRIPTS = \
Makefile \
gen.sed

.SUFFIXES:

all:
{cd $(C_DIR) ; make all)
(cd $(PARSER_DIR) ; make parsers)
(cd $(GE_DIR) ; make ge)
(cd $(PT_DIR) ; make gen parsers)
make generated_sources
make psdl_editor

psdl_editor::
gnatmake -g -o psdl_editor $(INCLUDE_FLAGS) psdl_editor.adb \

-bargs -n $(PARSERS) \
-largs $(GE_OBJECTS) $(LOCAL_OBJECTS) $(LIBS)

generated_sources: $(GENERATED_ADA) $(PARSERS)

at_list_pkg.adb: at_list_pkg.g
gen < at_list_pkg.g > tmp
sed -f gen.sed tmp > at_list_pkg.adb
/bin/rm tmp

id_list_pkg.adb: id_list_pkg.g
gen < id_list_pkg.g > id_list_pkg.adb

io_utilities.adb: io_utilities.g
gen < io_utilities.g > io_utilities.adb

op_list_pkg.adb: op_list_pkg.g
gen < op_list_pkg.g > op_list_pkg.adb

st_list_pkg.adb: st_listjpkg.g
gen < st_listj?kg.g > st_list_pkg.adb

111

psdl_utilities_pkg.adb: psdl_utilities_pkg.g
gen < psdl_utilities_pkg.g > psdl_utilities_pkg.adb

analysis_pkg.adb: analysis_pkg.g
gen < analysis_pkg.g > analysis_pkg.adb

ge_utilities.adb: ge_utilities.g
gen < ge_utilities.g > ge_utilities.adb

ci: generated_sources
ci_files -tRCS/desc *.[Cgly] *.ad[sb] $(SCRIPTS)
(cd C_Code ; make ci)

ci_export: generated_sources
ci_files -tRCS/desc *.[Cgly] *.ad[sb] $(SCRIPTS)
(cd C_Code ; make ci)
sleep 1
touch *.ali *.o

edit: all
cp psdl_editor ../CAPS.RELEASE.1.2/bin
(cd TEST ; psdl_editor test.psdl ; psdl_editor autopilot.psdl)

clean:
rm *.ali *.o

.IGNORE:
ignore nonzero exit codes below.

xref:
gnatf -e -f -x6 $(INCLUDE FLAGS) *.ad*

112

This is the main procedure of the psdl editor.
It is called from a C main program to enable
the loader to find all the code.

The problem is that gnatbind does not allow multiple
Ada root programs with an Ada main program.
Since we have Ada calling C with calls
back to Ada, and there are no direct links between
the Ada driver at the top and the Ada parsers at the
bottom, the binder needs multiple roots to enable
the loader to find all the Ada modules.

procedure psdl_editor;
pragma Export (C, psdl_editor, "psdl_editor");

113

—***

— This is the main program of the PSDL_EDITOR

— Usage:
psdl_editor <psdl-input-filename>

— Change:

—***

with Ada.Command_Line;
with Ada.Exceptions; use Ada.Exceptions;
with Text_Io; use Text_Io;
with psdl_editor_pkg; use psdl_editor_pkg;

procedure psdl_editor is
PSDL_File: File_Type;

begin
if Ada.Command_Line.Argument_Count = 1 then

declare — right number of arguments, get the file name.
filename: string := Ada.Command_Line.Argument(1);

begin
if (filename'length >= 6) and then

filename(filename'last-4 .. filename'last) = ".psdl"
then — File name is ok, open the file and edit it.

begin
Open(PSDL_File, In_File, filename);

exception
when name_error =>

begin
— The file does not exist, try to create one.
Create(PSDL_File, In_File, filename);

exception
when others =>

PUT_LINE(STANDARD_ERROR,
"psdl_editor: couldn't open or create "

& filename);
end;

when others => PUT_LINE(STANDARD_ERROR,
"psdl_editor: couldn't open "

& filename);
end;

— Got a PSDL file, edit and update it under user control.

edit_j?rogram(PSDL_File => PSDL_File,
prototype_name =>
filename (1 .. filename'last-5));

else PUT_LINE(STANDARD_ERROR, "error: bad file name");
PUT_LINE(STANDARD_ERROR,

"usage: psdl_editor prototype_name.psdl");
end if;

end;
else

114

PUT_LINE(STANDARD_ERROR, "psdl_editor:
error, wrong number of arguments") ;

PUT_LINE(STANDARD_ERROR, "usage:
psdl_editor prototype_name.psdl");

— begin debugging patch
PUT_LINE(STANDARD_ERROR, "using file test.psdl");

declare — right number of arguments, get the file name.
filename: string := "test.psdl";

begin
if (filename'length >= 6) and then

filename (filename'last-4 .. filename'last) = ".psdl"
then — File name is ok, open the file and edit it.

begin
Open(PSDL_File, In_File, filename);

exception
when name_error =>
begin
— The file does not exist, try to create one.
Create(PSDL_File, In_File, filename);

exception
when others =>

PUT_LINE(STANDARD_ERROR,
"ps.dl_editor: couldn't open or create "
& filename);

end;
when others => PUT_LINE(STANDARD_ERROR,

"psdl_editor: couldn't open "
& filename);

end;

— Got a PSDL file, edit and update it under user control.

edit_program(PSDL_File => PSDL_File,
prototype_name =>
filename (1. .. filename'last-5));

else PUT_LINE(STANDARD_ERROR, "error: bad file name");
PUT_LINE(STANDARD_ERROR, "usage:

psdl_editor prototype_name.psdl");
end if;

end;
— end debugging patch

end if;
exception
when the_exception: others =>

PUT_LINE(STANDARD_ERROR, "Internal error: unexpected exception " &
Exception_Name(the_exception));

end psdl editor;

115

—***************************

— GE_UTILITIES SPECIFICATION
—***************************

with psdl_program_pkg; use psdl_program_pkg;
with psdl_component_pkg; use psdl_component_pkg;
with GE_Operator_pkg; use GE_Operator_pkg;
with st_list_pkg; use st_list_pkg;
with op_list_pkg; use op_list_pkg;
with psdl_graph_pkg; use psdl_graph_pkg;

package ge_utilities is

procedure add_edges(streams: in St_List; ops: in Op List; g: in out
psdl_graph);

— Includes adding edge properties.

procedure modify_child(child: in GE_Operator; edges: in St_List;
prototype: in psdl_program;
edited_prototype: in out psdl_program);

procedure modify_child_type_op(child: in GE_Operator;
edges: in St_List;
prototype: in psdl_program;
edited_prototype:

in out psdl_program);

procedure modify_child_operator(child: in GE_Operator;
edges: in St_List;
prototype: in psdl_program;
edited_prototype:

in out psdl_program);

procedure update_type_operation_names(current_op:
in composite_operator;

edited_op:
in out composite operator);

end ge_utilities; ~

116

— GE_UTILITIES BODY

with stream_pkg; use stream_pkg;
with psdl concrete_type pkg; use psdl concrete type pkg;
with psdl_utilities_pkg; use psdl utilities pkg;
with psdl id pkg; use psdl id pkg;
with ada id pkg; use ada id pkg;
with expression_pkg; use expression pkg;
with spec req_map_pkg; use spec req map pkg;
with time_unit_type_pkg; use time unit type pkg;
with property_names_pkg; use property_names pkg;
with id list pkg; use id list pkg;
with spline_ptr_pkg; use spline ptr pkg;
with substitution_map_pkg; use substitution map pkg;
with vertex_substitution_map_pkg; use vertex substitution map_pkg;

with text io; use text io;
with psdl io; use psdl_io;

package body ge utilities is
not found: exception;

procedure add edge(S: in STREAM; ops: in Op List; g: in out
psdl_graph) is

— Includes adding edge properties.
source_op, sink_op: GE_Operator;
source, sink : op_id;
str: psdl_id := to_psdl_id(label(S)) ;
lat : millisec;

begin
if not Is_Deleted(S) then
— find an op_id to the sending vertex
source := find_op_id(from(S), ops);
— find an op_id to the receiving vertex
sink := find_op_id(to(S), ops);

— create a new edge and assign properties
lat := Latency(S);
g := add_edge(source, sink, str, g, lat);
set_property(source, sink, str, id p,

create_integer_literal(Integer(Id(S))), g);
set_property(source, sink, str, label font p,

create_integer_literal(Label_Font(S)), g);
set_property(source, sink, str, label_x_offset_p,

create_integer_literal(Label_X_Offset(S)), g);
set_property(source, sink, str, label_y_offset_p,

create_integer_literal(Label Y Offset(S)), g);
set_property(source, sink, str, latency font p,

create_integer_literal(Latency Font(S)), g);
set_property(source, sink, str, latency unit p,

create_integer_literal(to_integer(Latency_Unit(S))), g) ;
setj>roperty(source, sink, str, latency x offset p,

117

create_integer_literal(Latency_X_Offset(S)), g);
set_property(source, sink, str, latency_y_offset_p,

create_integer_literal(Latency_Y_Offset(S)), g);
set_property(source, sink, str, spline_p,

create_string_literal(to_text(Arc(S))), g) ;
end if;

end add_edge;

procedure add_edges(streams: in St_List; ops: in Op_List; g: in out
psdl_graph) is

— Includes adding edge properties.
L: St_List := streams;
current_edge: STREAM;

begin
while not St_List_Is_Null(L) loop

current_edge := ST(L);
add_edge(current_edge, ops, g) ;
L := Next(L);

end loop;
end add_edges;

procedure modify_child(child: in GE_Operator; edges: in St_List;
prototype: in psdl_program;
edited_prototype: in out psdl_program) is

— Create operator specs for new children and
— update operator specs for modified children,

begin
if not Is_Deleted(child) then

if is_type_operation(child) then
modify_child_type_op(child, edges,

prototype, edited_prototype);
else modify_child_operator(child, edges,

prototype, edited_prototype);
end if;

end if;
end modify_child;

procedure modify_child_type op(child: in GE Operator; edges: in
St_List;

prototype: in psdl_program;
edited_prototype: in out psdl_program)

is

— Create operator specs for new children and
— update operator specs for modified children.
child_vertex: op_id := vertex_id(child);
child_name: psdl_id := base_name(child_vertex);
child_type_name: psdl_id := child_vertex.type_name;
child_type: data_type;
child_type_ops: operation_map;
child_op: operator;
exc_list: psdl_id_set;
exc_rb: spec_req_map;

begin

118

child_type := fetch(editedjprototype, child_type_name);
if child_type = null_component then
— The type has not been defined yet, create one.
child_type := make_atomic_type(child_name) ;
add(child_type, edited_prototype);

end if;
child_type_ops := operations(child_type);
if (Is_New(child) or Is_Modified(child)) or else

not member(child_name, child_type_ops)
then

to_exceptions(to_string(Exception_List(child)), exc_list,
exc_rb);

build_psdl_operator(
c_name => child_name,
c_a_name => to_ada_id(child_name),
imp_lang => Impl_Lang(child) ,
g_par => empty_type_declaration, . — GE does not supply this
gen_par_rb => spec_req_map_pkg.empty, —GE doesn't supply this
kwr => to_psdl_id_set(Keyword_List(child)),
i_desc => Informal_Desc(child),
f_desc => Formal_Desc(child),
inp => inputs(Id(child), edges),
otp => outputs(Id(child), edges),
st => empty_type_declaration,
i_exp_map => empty_init_map,
excps => exc_list,
s_met => MET(child),
input_rb => spec_req_map_pkg.empty, — GE does not supply this
output_rb => spec_req_map_pkg.empty, — GE doesn't supply this
state_rb => spec_req_map_pkg.empty, — GE does not supply this
excep_rb => exc_rb,
smet_rb => MET_Reqmts (child),
is_atomic => not Is_Composite(child),
the_opr => child_op);

bind_operation(child_name, child_op, child_type_ops);
set_operations(child_type, child_type_ops);

elsif Is_Modified(child) then
child_op : = fetch(child_type_ops, child_name);
set_name(child_op, child_name);
to_exceptions(to_string(Exception_List(child)),

exc_list, exc_rb);
if not Is_Composite(child) then

set_implementation_language(child_op, Impl_Lang(child));
end if;
set_keywords(child_op, to_psdl_id_set(Keyword_List(child)));
set_informal_description(child_op, Informal_Desc(child));
set_axioms (child_op, Formal_Desc(child));
set_inputs(child_op, inputs(Id(child), edges));
set_outputs(child_op, outputs(Id(child), edges));
set_exceptions(child_op, exc_list);
set_specified_met(child_op, MET(child));
set_specified_met_reqs(child_op, MET_Reqmts(child));
set_exception_reqs(child_op, exc_rb);

else

119

child_op := fetch(child_type_ops, child_name);
set_inputs(child_op, inputs(Id(child), edges));
set_outputs(child_op, outputs(Id(child), edges));

end if;
end modify_child_type_op;

procedure modify_child_operator(child: in GE_Operator;
edges: in St_List;
prototype: in psdl_program;
edited_prototype: in out

psdl_program) is
— Create operator specs for new children and
— update operator specs for modified children.
child_name: psdl_id := name(child);
child_op: operator;
exc_list: psdl_id_set;
exc_rb: spec_req_map;

begin
if Is_New(child) then
to_exceptions(to_string(Exception_List(child)),

exc_list, exc_rb);
build_psdl_operator(

c_name => child_name,
c_a_name => to_ada_id(child_name),
imp_lang => Impl_Lang(child),
g_par => empty_type_declaration, — GE does not supply this
gen_par_rb => spec_req_map_pkg.empty, —GE doesn't supply this
kwr => to_psdl_id_set(Keyword_List(child)),
i_desc => Informal_Desc(child),
f_desc => Formal_Desc(child),
inp => inputs(Id(child), edges),
otp => outputs(Id(child), edges),
st => empty_type_declaration,
i_exp_map => empty_init_map,
excps => exc_list,
s_met => MET(child),
input_rb => spec_req_map_pkg.empty, — GE does not supply this
output_rb => spec_req_map_pkg.empty, — GE doesn't supply this
state_rb => spec_req_map_pkg.empty, — GE does not supply this
excep_rb => exc_rb,
smet_rb => MET_Reqmts(child),
is_atomic => not Is_Composite(child),
the_opr => child_op);

add(child_op, edited_j>rototype) ;
elsif Is_Modified(child) then
assign(child_op, find(suffix(child_name), prototype));
— Find the old operator based on the op num,
— the name may have changed. ~~
— Use assign to make a copy so recycle will be safe.
set_name(child_op, child_name);
to_exceptions(to_string(Exception_List(child)),

exc_list, exc_rb);
if not Is_Composite(child) then

set_implementation_language(child_op, Impl_Lang(child));

120

end if;
set_keywords(child_op, to_psdl_id_set(Keyword_List(child)));
set_informal_description(child_op, Informal_Desc(child));
set_axioms(child_op, Formal_Desc(child));
set_inputs(child_op, inputs(Id(child), edges));
set_outputs(child_op, outputs(Id(child), edges));
set_exceptions(child_op, exc_list);
set_specified_met(child_op, MET(child));
set_specified_met_reqs(child_op, MET_Reqmts(child));
set_exception_reqs(child_op, exc_rb);
add(child_op, edited_prototype);

else
assign(child_op, find(suffix(child_name), prototype));
— Use assign to make a copy so recycle will be safe.

set_name(child_op, child_name);
set_inputs(child_op, inputs(Id(child), edges));
set_outputs(child_op, outputs(Id(child), edges));
— The inputs and outputs are derived from the graph,
— so they could have changed
— even if the explicit attributes of the child did not.

add(child_op, edited_prototype);
end if;

end modify_child_operator;

function find_edge(edge_id: expression; eg: psdl_graph) return edge
is

e_id: expression;
begin

for e: edge in edge_set_pkg.scan(edges(eg)) loop
e_id := get_property(e.source, e.sink, e.stream_name,

id_p, eg);
if eq(e_id, edge_id) then return e; end if; .

end loop;
raise not_found;

end find_edge;

— will not work if different arcs of the same
— stream are renamed in different ways.
function make_renaming(cg, eg; psdl_graph) return substitution_map is

edge_id: expression;
original_edge: edge;
result: substitution_map := empty;

begin
for e: edge in edge_set_pkg.scan(edges(eg)) loop

edge_id := get_property(e.source, e.sink, e.stream_name,
id_p, eg);

begin
original_edge := find_edge(edge_id, eg);

exception
when not_found => original_edge := e;

end;
bind(original_edge.stream_name, e.stream_name, result);

end loop;
return result;

121

end make_renaming;

procedure update_type_operation_names(current_op: in
composite_operator;

edited_op: in out
composite_operator) is

eg: psdl_graph := graph(current_op);
eg: psdl_graph := graph(edited_op);
id_renaming: substitution_map := make_renaming(eg, eg)
vertex_renaming: vertex_substitution_map := empty;
new_name: op_id;

begin
for v: op_id in op_id_set_pkg.scan(vertices(eg)) loop

if is_type_op(v) then
new_name := transform_vertex(v, id_renaming);
bind(v, new_name, vertex_renaming);

end if;
end loop;
rename_vertices(edited_op, vertex_renaming);

end update_type_operation_names;

end ge_utilities;

122

— PSDL_UTILITIES_PKG SPECIFICATION

with psdl_program_pkg; use psdl_program_pkg;
with psdl_component_pkg; use psdl_component_pkg;
with psdl_graph_pkg; use psdl_graph_pkg;
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg;
with psdl_id_pkg; use psdl_id_pkg;
with expression_pkg; use expression_pkg;
with St_List_pkg; use St_List_pkg;
with spec_req_map_pkg; use spec_req_map_pkg;
with ge_op_id_pkg; use ge_op_id_pkg;
with C_Boolean_pkg; use C_Boolean_pkg;
with c_string_pkg; use c_string_pkg;

— The following are needed in the body
— but can't go there because of gen.
with Ada.characters.handling; use Ada.characters.handling;
with Ada.strings; use Ada.strings;
with Ada.strings.fixed; use Ada.strings.fixed;
with Ada.strings.maps; use Ada.strings.maps;
with Ada.strings.maps.constants; use Ada.strings.maps.constants;

package PSDL_Utilities_Pkg is

function get_is_terminator(op_name: psdl_id; parent: operator) return
boolean;

— returns true if the named operator is a terminator bubble
— in the graph of the parent operator.
— If there are several nodes with the given operator name,
— uses the properties of the first one it finds.

function Extract_State_Ids(c s in psdl_component) return psdl_id_set;
— returns the set of psdl_ids which are names of state streams

declared in the spec
— of the operator

function Extract_Implementation_Id(c: in psdl_component) return Text;
— returns the implementation id of the atomic operator,
— e.g. Ada, TAE, C, etc

function Extract_Vertex_Ids(c: in psdl_component) return op_id_set;

function Extract_Period_Reqmts_Ids(name : in op_id;
c : in psdl_component)

return psdl_id_set;

function Extract_FW_Reqmts_Ids(name : in op_id;
c : in psdl_component)

return psdl_id_set;

function Extract_MRT_Reqmts_Ids(name : in op_id;

123

c : in psdl_component)
return psdl_id_set;

function Extract_MCP_Reqmts_Ids(name : in op_id;
c : in psdl_component)

return psdl_id_set;

function Extract_Trigger_Reqmts_Ids(name : in op_id;
c : in psdl_component)

return psdl_id_set;

function Extract_Edge_Set(c; in psdl_component) return edge_set;

function Get_PSDL_0_GENERICS_Text(c : in psdl_component) return Text;
~ the output string consists of all generic parameter declarations
— in the spec of the operator c

function Get_Psdl_Types_Text(prog : in psdl_program) return Text;
— prog is a psdl_program that contains only user-defined types

function Get_Op_Spec_Text(o ; in operator) return Text;
— gets the specification of the operator as a text string.

function Get_Expression_Text(e : in expression) return Text;
— white characters are not allowed in the output
— string except when they
— are blanks inside a string literal, i.e.
— between two matching quotes

function Get_Psdl_Id_Sequence_Text(s : in psdl id sequence) return
Text;

— the output string consists of a sequence of
— non-white characters which
— correspons to a list of ids separated by commas

function Get_Output_Guards_Text(name : in op_id; c : in
psdl_component) return text;

— the output string consists of all
— the output guards and requirements
— traces associated with the vertex "name"
— in the control constraint of c

function Get_Exception_Triggers_Text(name : in op_id; c : in
psdl_component)

return text;
— the output string consists of all the
— exception triggers and requirements
— traces associated with the vertex
— "name" in the control constraint of c

function Get_Exception_List_Text(name : in op_id;
c : in psdl_component)

return text;

124

function Get_Timer_Operations_Text (name : in op_id; c : in
psdl_component)

return text;
— the output string consists of all the timer
— operations and requirements
— traces associated with the vertex "name"
— in the control constraint of c

function Get_Type_Name_Text(name : in type_name) return text;
— the output string represents the type_name as
— a sequence of non-white characters

procedure separate_types(prototype: in psdl_program;
root_name: in psdl_id;
types: in out psdl_program);

— Separates the operators from the types.

procedure create_root_name (prototype_name: in string;
prototype: in out psdl_program;
root_name: out psdl_id);

— Produces the name of the root node if there is one,
— otherwise constructs one from the prototype name
— and creates a corresponding root node.

procedure check_suffixes(prototype: in out psdl_program);
— Check for suffixes and generates them if not there.

function to_psdl_id_set(s: psdl_id_sequence) return psdl_id_set;
— converts the sequence to a set.

function to_type_name(s: c_string) return type_name;
— converts the string to a psdl type_name.

function to_op_id(label: text) return op_id;
— converts the label and suffixes to a psdl op_id.

function to_expression(s: c_string) return expression;
— converts the string to a psdl expression.

function to_operator(spec: text) return operator;
— returns an atomic operator with the given name
— and psdl specification.

procedure to_exceptions(s: in string; exc_list: out psdl_id_set;
exc_rb: out spec_req_map);

procedure to_out_guard_map(s: in string; og: out out_guard_map;
ogrb: out spec_req_map);

procedure to_exception_guard_map(s: string;
eg: out excep_trigger_map;
egrb: out spec_req_map);

procedure to_timer_op_set(s: in string; timer_op: out timer_op_set;

125

resetrb, startrb, stoprb:
in out spec_req_map);

procedure add_output_guards(id : in op_id;
og : in out_guard_map;
o_guard; in out out_guard_map);

procedure add_exception_guards(id : in op_id;
eg : in excep_trigger_map;
e_guard: in out excep_trigger_map);

end PSDL_Utilities_Pkg;

126

— PSDL_UTILITIES_PKG BODY

with raw_text_file_pkg; use raw_text_file_pkg;
with text_io; use text_io;
with io_utilities; use io_utilities;
with psdl_io; use psdl_io;
with expression_io; use expression_io;
with type_name_io; use type_name_io;
with op_id_io; use op_id_io;
with output_guard_io; use output_guard_io;
with exception_guard_io; use exception_guard_io;
with exception_io; use exception_io;
with timer_op_guard_io; use timer_op_guard_io;

with Unique_Id_Pkg; use Unique_Id_Pkg;
with property_names_pkg; use property_names_pkg;
with cc_req_map_pkg; use cc_req_map_pkg;
with substitution_map_pkg; use substitution_map_pkg;
with vertex_substitution_map_pkg; use vertex_substitution_map_pkg;

package body PSDL_Utilities_Pkg is

function get_is_terminator(op_name: psdl_id; parent: operator) return
boolean is

— returns true if the named operator is a terminator bubble
— in the graph of the parent operator.
— If there are several nodes with the given operator name,
— uses the properties of the first one it finds,
g: psdl_graph;

begin
g := graph(parent);
— Find the graph vertex corresponding to the given operator name,
for v: op_id in op_id_set_pkg.scan(vertices(g)) loop

if eq(base_name (v), op_name) then — found it.
return eq(get_property(v, is_terminator_p, g),
true_expression);

end if;
end loop;
— Should never get here.
put_line(standard_error, "get_is_terminator: node name "

& convert(op_name));
put_line(standard_error, " not found in the graph of "

& convert(name(parent)));
return false;

exception
when others =>

put_line(standard_error,
"get_is_terminator: unexpected exception");

return false;
end get_is_terminator;

127

function Extract_Input_Ids(c : in psdl_component) return psdl id set
is — —

returns the set of psdl_ids which are names of input streams to
the operator

input_ids : psdl_id_set;
td : type_declaration;

begin
td := inputs(c);
assign(input_ids, map_domain(td)) ;
return input_ids;

end Extract_Input_Ids;

function Extract_Output_Ids(c s in psdl_component) return psdl id set
is — —

returns the set of psdl__ids which are names of output
— streams to the operator
output_ids : psdl_id_set;
td : type_declaration;

begin
td := outputs(c);
assign(output_ids, map_domain(td)) ;
return output_ids;

end Extract_Output_Ids;

function Extract_State_Ids(c s in psdl_component) return psdl id set
is — —

returns the set of psdl_ids which are names of state
— streams declared in the spec
— of the operator
state_ids : psdl_id_set;
td : type_declaration;

begin
td := states(c);
assign (state_ids, map_domain (td)) ;
return state_ids;

end Extract_State_Ids;

function Extract_Input_Reqmts_Ids(name t in psdl_id;
c : in psdl_component)

return psdl_id_set is
returns the set of reqmts associated with the name

— input stream of the operator
td : psdl_id_sequence;
input_reqmts_ids : psdl_id_set;

begin
td := input_reqs(c, name);
return to_psdl_id_set(td);

end Extract_Input_Reqmts_Ids;

function Extract_Output_Reqmts_Ids(name : in psdl_id;
c : in psdl_component)

return psdl_id_set is
—returns the set of reqmts associated with
—the name output stream of the operator

128

td : psdl_id_sequence;
begin

td := output_reqs(c, name);
return to_psdl_id_set(td);

end Extract_Output_Reqmts_Ids;

function Extract_State_Reqmts_Ids(name : in psdl_id;
c : in psdl_component)

return psdl_id_set is
— returns the set of reqmts associated with the name
— state stream of the operator
td : psdl_id_sequence;

begin
td := state_reqs(c, name);
return to_psdl_id_set(td);

end Extract_State_Reqmts_Ids;

function Extract_Exception_Reqmts__Ids(name : in psdl_id;
c : in psdl_component)

return psdl_id_set is
— returns the set of reqmts associated with the name
— exception of the operator
td : psdl_id_sequence;

begin
td := exception_reqs(c, name);
return to_psdl_id_set(td);

end Extract_Exception_Reqmts_Ids;

function Extract_Met_Reqmts_Ids(c : in psdl__component) return
psdl_id_set is

td : psdl_id_sequence;
begin

td := specified_maximum_execution_time_reqs(c);
return to_psdl_id_set(td);

end Extract_Met_Reqmts_Ids;

function Extract_Implementation_Id(c: in psdl_component) return Text
is

— returns the implementation id of the
— atomic operator, e.g. Ada, TAE, C, etc

begin
return to_text(implementation_language(c));

end Extract_Implementation_Id;

function Extract_Vertex_Ids(c: in psdl_component) return op_id_set is
begin

return vertices(graph(c));
end Extract_Vertex_Ids;

function Extract_Edge_Set(c: in psdl_component) return edge_set is
begin

return edges(graph(c));
end Extract Edge Set;

129

function Extract_Period_Reqmts_Ids (name : in op_id;
c : in psdl_component)

return psdl_id_set is
period_reqmts_ids : psdl_id_sequence;

begin
period_reqmts_ids := fetch(period_reqs_map(c), name);
return tc_psdl_id_set(period_reqmts_ids);

end Extract_Period_Reqmts_Ids;

function Extract_FW_Reqmts_Ids (name : in op_id;
c : in psdl_component)

return psdl_id_set is
fw_reqmts_ids : psdl_id_sequence;

begin

fw_reqmts_ids := fetch(finish_within_reqs_map(c), name);
return to_psdl_id_set(fw_reqmts_ids);

end Extract_FW_Reqmts_Ids;

function Extract_MCP_Reqmts_Ids (name : in op_id;
c s in psdl_component)

return psdl_id_set is
mcp_reqmts_ids : psdl_id_sequence;

begin

mcp_reqmts_ids := fetch (minimum_calling_period_reqs_map (c), name);
return to_psdl_id_set (mcp_reqmts_ids) ;

end Extract_MCP_Reqmts_Ids;

function Extract_MRT_Reqmts_Ids (name : in op_id;
c : in psdl_component)

return psdl_id_set is
mrt_reqmts_ids : psdl_id_sequence;

begin

mrt_reqmts_ids := fetch (maximum_response_time_reqs_map (c), name);
return to_psdl_id_set(mrt_reqmts_ids);

end Extract_MRT_Reqmts_Ids;

function Extract_Trigger_Reqmts_Ids (name : in op_id;
c : in psdl_component)

return psdl_id_set is
trigger_reqmts_ids : psdl_id_sequence;

begin

trigger_reqmts_ids := fetch(execution_guard_reqs_map(c), name);
return to_psdl_id_set(trigger_reqmts_ids) ;

end Extract_Trigger_Reqmts_Ids;

function Get_PSDL_0_GENERICS_Text(c : in psdl_component) return Text
is

— the output string consists of all generic parameter declarations
— in the spec of the operator c

begin
— not finished, probably not needed,
return empty;

end Get PSDL 0 GENERICS Text;

130

function Get_Expression_Text(e : in expression) return Text is
— white characters are not allowed in the output
— string except when they
— are blanks inside a string literal, i.e.
— between two matching quotes
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the expression to a temporary file
temporary_text_file(out_f) ;
Set_Output(out_f);
put_expression(e);
Set_Output(Standard_Output);
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
raw_text_file_pkg.Delete(in_f);
remove_last_char(result) ;
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "Get_Expression_Text: io error");
return empty;

end Get_Expression_Text;

function Get_Psdl_Id_Sequence_Text(s : in psdl_id_sequence) return
Text is

— the output string consists of a
— sequence of non-white characters which
— correspons to a list of ids separated by commas
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f) ;
Set_Output(out_f);
put_id_seq(s);
Set_Output(Standard_Output) ;
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
remove_last_char(result) ;
raw_text_file_pkg.Delete(in_f);
return result;

131

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Psdl_Id_Sequence_Text;

function Get_Output_Guards_Text(name : in op_id; c : in
psdl_component) return text is

— the output string consists of
— all the output guards and requirements
— traces associated with the vertex
— "name" in the control constraint
— of c
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f);
Set_Output(out_f);
put_output_gua rd(name, c) ;
Set_Output(Standard_Output);
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get{in_f);
remove_last_char(result);
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Output_Guards_Text;

function Get_Exception_Triggers_Text(name : in op_id; c : in
psdl_component) return text is

— the output string consists of all the
— exception triggers and requirements
— traces associated with the vertex
—"name" in the control constraint
— of c
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f);
Set_Output(out_f);
put_excep_trigger(name, c);
Set_Output(Standard_Output);
Close(out f);

132

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
remove_last_char(result) ;
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Exception_Triggers_Text;

function Get_Exception_List_Text(name : in op_id; c : in
psdl_component) return text is

— the output string consists of all the
— exception triggers and requirements
— traces associated with the vertex
— "name" in the control constraint
— of c
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f) ;
Set_Output(out_f) ;
put_id_set(exceptions(c) , "EXCEPTIONS", exception_reqs_map(c));
Set_Output(Standard_Output);
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
raw_text_file_pkg.Delete(in_f) ;
remove_last_char(result) ;
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Exception_List_Text;

function Get_Timer_Operations_Text(name : in op_id;
c : in psdl_component)

return text is
— the output string consists of all the
— timer operations and requirements
— traces associated with the vertex "name"
— in the control constraint
— of c
out_f: text_file;
in_f: raw_text_file;
result: text;

133

begin

Write the id sequence to a temporary file
temporary_text_file(out_f);
Set_Output(out_f);
put_timer_op(name, c);
Set_Output(Standard_Output);
Close(out_f);

Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result : = get(in_f);
remove_last_char(result);
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Timer_Operations_Text;

function Get_Type_Name_Text(name : in type_name) return text is
— the output string represents the type_name

as a sequence of non-white characters
out_f: text_file;
in_f: raw_text_file;
result: text;

begin

Write the id sequence to a temporary file
temporary_text_file(out_f) ;
Set_Output(out_f);
put_type_name(name);
Set_Output(Standard_Output);
Close(out_f);

Read it in as a text string, from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
remove_last_char(result);
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Type_Name_Text;

function Get_Op_Spec_Text(o : in operator) return Text is
— gets the specification of the operator as a text strinq.
out_f: text_file;
in_f: raw_text_file;
result: text;

134

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f);
Set_Output(out_f);
put_component_spec(o);
Set_Output(Standard_Output);
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
remove_last_char(result);
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Op_Spec_Text;

function Get_Psdl_Types_Text(prog : in psdl_program) return Text is
— prog is a psdl_program that contains only user-defined types
out_f: text_file;
in_f: raw_text_file;
result: text;

begin
— Write the id sequence to a temporary file
temporary_text_file(out_f);
Set_Output(out_f);
put(out_f, prog);
Set_Output(Standard_Output);
Close(out_f);

— Read it in as a text string from the temporary file
temporary_raw_text_file(in_f);
result := get(in_f);
remove_last_char(result);
raw_text_file_pkg.Delete(in_f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "error: bad file name");
return result;

end Get_Psdl_Types_Text;

procedure separate_types(prototype: in psdl_program; root_name: in
psdl_id;

types: in out psdl_program) is
— Separates the operators from the types.
procedure bind(name: in psdl_id; module: in psdl_component;

program: in out psdl_program)
renames psdl_program_map_pkg.bind;
— Make sure we use the internal bind operation.
— Means ops and types do not have valid parent pointers,

135

— and that get_definition will not
— work for data type operations.

begin
for id : psdl_id, c : psdl_component in

psdl_program_map_pkg.scan(prototype) loop
if component_category(c) = psdl_type then

bind(id, c, types);
end if;

end loop;
end separate_types;

procedure create_root_name (prototype_name: in string;
prototypes in out psdl_program;
root_name: out psdl_id) is

— Produces the name of the root node if there is one,
— otherwise constructs one from the prototype name
— and creates a corresponding root node.
obsolete_roots: id_set := id_set_pkg.empty;
root, op: operator;
old_root_name: psdl_id;

begin
root_name := find_root(prototype) ;
begin — check root name

if prefix(root_name) /= prototype_hame then
root_name := convert(prototype__name, Get_Unique_Id);
root := fetch(prototype, root_name);
set_name(root, root_name);

end if;
exception
when constraint_error => — The root does not

— have an op_num suffix.
root_name := convert(prototype_name, Get_Unique_Id);
root := fetch(prototype, rootjname);
set_name(root, root_name);

end;
exception
when no_root =>

root_name := convert(prototype_name, Get_Unique_Id);
root := make_composite_operator(root_name);
add(root, prototype);

when multiple_roots =>
root_name s= convert(prototype_name, Get_Unique_Id);
old_root_name := to_psdl_id(prototype_name);
root := fetch(prototype, old_root_name);
if root = null_component then root :=

make_composite_operator(root_name);
else set_name(root, root_name);
end if;
for id : psdl_id, c : psdl_component in

psdl_program_map_pkg.scan(prototype) loop
if component_category(c) = psdl_operator and

parent(c) = null_component then
id_set_pkg.add(id, obsolete_roots);
op := c;

136

— recycle(op);
end if;

end loop;
remove(obsolete_roots, prototype);
add(root, prototype);

end create_root_name;

function make_vertex_renaming(g: psdl_graph;
renaming: in substitution_map)

return vertex_substitution_map is
result: vertex_substitution_map := empty;
op_num: ge_op_id;
new_id: psdl_id;
new_vertex: op_id;

begin
for child_vertex: op_id in op_id_set_pkg.scan(vertices(g)) loop

if not eq(child_vertex, external) then
if member(child_vertex.operation_name, renaming) then
— We have an old style vertex, the op_id operation name
— matches the psdl_id in the original definition.
new_vertex := child_vertex;
— get the renamed operation name.
new_id := fetch(renaming, child_vertex.operation_name);
— add the v_num.
op_num := ge_op_id(Get_Unique_Id) ;
new_id := to_psdl_id(to_text(new_id), op_num);
— install the transformed operation name.
new_vertex.operation_name := new_id;
bind(child_vertex, new_vertex, result);

elsif
member (to_psdl_id(prefix(child_vertex.operation_name))-,

renaming) then
— Somehow, we got a new-style graph
— with vertex numbers but
— an old-style operator definition without op_num's.
new_vertex := child_vertex;
— get the renamed operation name.
new_id := fetch(renaming,

to_psdl_id(prefix(child_vertex.operation_name)));
— add the v_num.
op_num := suffix(child_vertex.operation_name);
new_id := to_psdl_id(to_text(new_id), op_num);
— install the transformed operation name.
new_vertex.operation_name := new_id;
bind(child_vertex, new_vertex, result);

end if;
end if;

end loop;
return result;

end make_vertex_renaming;

function member(id: psdl_id; vertices: op_id_set) return boolean is
begin

for oid: op_id in op_id_set_pkg.scan(vertices) loop

137

if eq(oid.operation_name, id) then return true; end if;
end loop;
return false;

end member;

procedure check_suffixes(prototype: in out psdl_program) is
op_num: ge_op_id;
old_id, new_id: psdl_id;
renaming: substitution_map := empty;
co: composite_operator;
result: psdl_program := empty_psdl_program;

begin

Find the bad names, generate names with suffixes, construct a
renaming map,

— change the names of the components, and bind them into the
result map.

for id : psdl_id, c : psdl_component in
psdl_program_map_pkg.scan(prototype) loop

if component_category(c) = psdl_operator then
begin

old_id := name(c);
op_num := suffix(old_id);
— If this works the suffix exists.
if parent(c) /= null_component and then

member(old_id, vertices(graph(parent(c))))
then

— We have an old-style graph and definition, which happened
— to have a numeric suffix. To prevent the original numeric suffix
— from disappearing from sight, we add another invisble suffix.

loop
op_num := ge_op_id(Get_Unique_Id) ;
new_id := to_psdl_id(to_text(old_id), op_num);
exit when not member(new_id, result);

end loop;
set_name(c, new_id);
add(c, result);
bind(old_id, new_id, renaming);

else add(c, result);
end if;

exception
when constraint_error =>

The component does not have an op_num suffix.
— We need to create and install a suffix,
loop

op_num := ge_op_id(Get_Unique_Id);
new_id := to_psdl_id(to_text(old_id), op_num);
exit when not member(new_id, result);

end loop;
s et_name(c, new_id);
add(c, result);
bind(old_id, new_id, renaming);

end;
else add(c, result);
end if;

138

end loop;
— Now apply the renaming substitution to
— the graphs and control constriants
— of all the composite operators in the result map.
for id : psdl_id, c : psdl_component in

psdl_program_map_pkg.scan(result) loop
if component_category(c) = psdl_operator and then

component_granularity(c) = composite
then co := c;

rename_vertices(co, make_vertex_renaming(graph(co),
renaming));

end if;
end loop;
assign(prototype, result);

end check_suffixes;

function to_psdl_id_set(s: psdl_id_sequence) return psdl_id_set is
— converts the sequence to a set.
result: psdl_id_set := empty;

begin
for id: psdl_id in psdl_id_sequence_pkg.scan(s) loop

add(id, result);
end loop;
return result;

end to_psdl_id_set;

function find_name(op_spec: text) return psdl_id is
str: string := to_string(op_spec);
len: natural := length(op_spec);
id_char_set: character_set := Alphanumeric_set or To_Set('_');
first, last: natural;

begin
Find_Token(str, id_char_set, inside, first, last);
— OPERATOR keyword
Find_Token(str(last+1 .. len), id_char_set, inside, first, last);
— The name
return to_psdl_id(head(str(first .. last), 1 + last - first));

end find_name;

function to_operator(spec: text) return operator is
— returns an atomic operator with the given name and psdl

specification.
f: text_file;
prog : psdl_program;
name: psdl_id := find_name(spec);

begin
temporary_text_file(f);
put(f, to_string(spec));
new_line(f);
put_line(f, "IMPLEMENTATION ADA " & to_string(name) & " END");
reset(f, input);
get(f, prog);
delete(f);
return fetch(prog, find_root(prog));

139

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_operator: I/O error");
return make_atomic_operator(name);

end to_operator;

function to_type_name(s: c_string) return type_name is
— converts the string to a psdl type_name. ~~
f: text_file;
result: type_name;

begin
temporary_text_file(f);
put(f, value(s));
reset(f, input);
get(f, result);
delete(f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_type_name: I/O error");
return null_type;

end to_type_name;

function to_op_id(label: text) return op_id is
— converts the string to a psdl op_id.
f: text_file; —

result: op_id;
begin
— convert the label to an op id
temporary_text_file(f); -

put(f, to_string(label)) ;
reset(f, input);
get(f, result);
delete(f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_op_id: I/O error");
return empty;

end to_op_id;

function is_blank(s: string) return boolean is
begin

for i in s*range loop
if not is_control(s(i)) then return false; end if;

end loop;
return true;

end is blank;

function to_expression(s: c_string) return expression is
— converts the string to a psdl expression.

140

f: text_file;
result: expression;
str: string := value(s);

begin
if is_blank(str) then return undefined_expression; end if;
temporary_text_file(f);
put(f, str);
reset(f, input);
get(f, result);
delete(f);
return result;

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_expression: I/O error");
return undefined_expression;

end to_expression;

procedure to_exceptions(s: in string; exc_list: out psdl_id_set;
exc_rb: out spec_req_map) is

f: text_file;
begin

temporary_text_file(f);
put(f, s);
reset(f, input);
get(f, exc_list, exc_rb);
delete(f);

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_exceptions: I/O error");
exc_list := empty;
exc_rb := empty;

end to_exceptions;

procedure to_out_guard_map (s: in string; og: out out_guard_map;
ogrb: out spec_req_map) is

f: text_file;
begin

temporary_text_file(f);
put(f, s);
reset(f, input);
get(f, og, ogrb);
delete(f);

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_out_guard_map: I/O error");
og := empty_out_guard_map;
ogrb := empty;

end to_out_guard_map;

procedure to_exception_guard_map(s: string; eg: out excep_trigger_map;
egrb: out spec_req_map) is

f: text_file;
begin

temporary_text_file(f);

141

put(f, s);
reset(f, input);
get(f, eg, egrb);
delete(f);

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_exception_guard_map: I/O error");
eg := empty_excep_trigger_map;
egrb := empty;

end to_exception_guard_map;

procedure to_timer_op_set(s: in string; timer_op: out timer_op_set;
resetrb, startrb, stoprb:
in out spec_req_map) is

f: text_file;
begin

temporary_text_file(f);
put(f, s);
reset(f, input);
get(f, timer_op, resetrb, startrb, stoprb);
delete(f);

exception
when others =>

PUT_LINE(STANDARD_ERROR, "to_timer_op_set: I/O error") ;
timer_op := empty;
resetrb := empty;
startrb := empty;
stoprb := empty;

end to_timer_op_set;

procedure add_output_guards(id : in op id;
og : in out_guard_map;
o_guard: in out out_guard_map) is

tid: output_id;
begin

for oid: output_id,
e: expression in out_guard_map_pkg.scan(og) loop

tid := oid;
tid.op := id;
bind(tid, e, o_guard) ;

end loop;
end add_output_guards;

procedure add_exception_guards(id : in op id;
eg : in excep_trigger_map;
e_guard: in out excep trigger map) is

tid: excep_id; —

begin
for eid: excep_id,

e: expression in excep_trigger_map_j>kg.scan(eg) loop
tid := eid;
tid.op := id;
bind(tid, e, e_guard);

end loop;

142

end add_exception_guards;

end PSDL Utilities Pkg;

143

144

APPENDIX D: PSDL GRAMMAR

— $Header: $

%%
start_symbol

: psdl

psdl
: psdl component

I

component
: data_type
I operator

data_type
: TYPE_TOKEN IDENTIFIER
type_spec
type impl

type spec

SPECIFICATION_TOKEN optional_generic_param optional_type_decl
op spec list functionality END TOKEN

optional_generic_param
: GENERIC_TOKEN
list_of_type_decl

I

optional_type_decl

list of_type_decl
I

op_spec_list
: op_spec_list OPERATOR_TOKEN IDENTIFIER operator_spec
I

operator
: OPERATOR_TOKEN IDENTIFIER
operator_spec
operator impl

145

operator_spec
: SPECIFICATION_TOKEN
interface
functionality ENDJTOKEN

interface
: interface attribute reqmts_trace

attribute
: GENERIC_TOKEN
list_of_type_decl

I INPUT_TOKEN
list_of_type_decl

I OUTPUT_TOKEN
1ist_of_type_decl

I STATES_TOKEN
list_of_type_decl
INITIALLY_TOKEN initial_expression_list

I EXCEPTIONS_TOKEN id_list
I MAXIMUM_TOKEN EXECUTION_TOKEN TIME_TOKEN time

— Initialization of the_type_decl is done by the callers of this rule,
list_of _type_decl

: list_of_type_decl ',' type_decl
I type_decl
/

type_decl
: id_list ':' type_name

type_name
: IDENTIFIER

'[' list_of_type_decl ']'
I IDENTIFIER

id_list
: id_list ',' IDENTIFIER
I IDENTIFIER

reqmts_trace — Ignored in this version.
: REQ BY TOKEN id list

functionality

146

: keywords informal_desc formal_desc

keywords
: KEYWORDS TOKEN id list

informal_des c
: DESCRIPTION TOKEN TEXT TOKEN

formal_desc
: axioms_TOKEN TEXT_TOKEN
I

type_impl
: IMPLEMENTATION_TOKEN ADA_TOKEN IDENTIFIER END_TOKEN
| IMPLEMENTATIONJTOKEN type_name op_impl_list END_TOKEN

op_imp1_1i s t
: op_impl_list OPERATOR_TOKEN IDENTIFIER operator_impl
I

operator_im.pl
: IMPLEMENTATION_T0KEN ADA_TOKEN IDENTIFIER END_TOKEN
| IMPLEMENTATION_TOKEN psdl_impl END_TOKEN

psdl_impl
: data_flow_diagram
streams
timers
control_constraints
informal desc

data_flow_diagram

GRAPH_TOKEN vertex_list edge_list

— Time is the maximum execution time.
vertex_list

: vertex_list VERTEX_TOKEN op_id optional_time graph_properties
I
}

— Time is the latency.

147

edge_list
: edge_list EDGE_TOKEN IDENTIFIER
optional_time op_id ARROW op_id graph properties

graph_properties
J graph_properties PROPERTY_TOKEN IDENTIFIER '=' expression

op_id
: operator_name opt arg

operator_name
: IDENTIFIER '.* IDENTIFIER
I IDENTIFIER

opt_arg
: ' (* optional_id_list '|' optional id list ') •
I ~ ~

optional_id_list
: id_list
I

optional_time
: *:* time

streams
: DATA_TOKEN STREAM_TOKEN
list_of_type_decl

— The order of id's is not important, so we use psdl_id set
— as the data structure to store the timers. ~~

timers
: TIMER_TOKEN id_list
I

control_constraints
: CONTROL_TOKEN CONSTRAINTS TOKEN

148

constraints
r

constraints
: constraints OPERATOR_TOKEN op_id
opt_trigger opt_period opt_finish_within
opt_mcp opt_mrt constraint_options

I OPERATOR_TOKEN op_id
opt_trigger opt_period opt_finish_within
opt_mcp optjmrt constraint_options

constraint_options
: constraint_options OUTPUT_TOKEN
id_list IF_TOKEN expression reqmts_trace

I constraint_options EXCEPTION_TOKEN IDENTIFIER
opt_if_predicate reqmts_trace

I constraint_options timer_op IDENTIFIER
opt_if_predicate reqmts_trace

I

opt_trigger
: TRIGGERED_TOKEN trigger opt_if_predicate reqmts_trace
I

trigger
: BY_ALL_TOKEN id_list
I BY_SOME_TOKEN id_list
I

opt_period
: PERIOD_TOKEN time reqmts_trace

opt_finish_within
: FINISH_TOKEN WITHIN_TOKEN time reqmts_trace
I

opt mcp

opt mrt

MINIMUM_TOKEN CALL_PERIOD_TOKEN time reqmts_trace

: max_resp_time time reqmts_trace
I

max_resp_time

149

: MAXIMUM_TOKEN RESPONSE_TOKEN TIME_TOKEN

timer_op
: RESET_TOKEN
I START_TOKEN
I STOP TOKEN

opt_if_predicate
: IF_TOKEN expression
I

— The expression sequence
— is used by procedure bind_initial_state together with
— the states map to construct the init_map.

initial_expression_list
: initial_expression_list ',* initial_expression
I initial_expression

— There is one and only one initial state(initial expression)
— for each state variable. This production returns one
— expression to the parent rule corresponding to one state.
— This is done by using the internal stack ($$ convention).

initial_expression
: TRUE
I FALSE
I INTEGER_LITERAL
I REAL_LITERAL
I STRING_LITERAL
I IDENTIFIER
I type_name •.' IDENTIFIER
I type_name ■.■ IDENTIFIER '(• initial_expression_list ')»
I *(' initial_expression ')'
I initial_expression log_op initial_expression
%prec logical_operator

I initial_expression rel_op initial_expression
%prec relational_operator

I '-' initial_expression
%prec unary_adding_operator

I '+' initial_expression
%prec unary_adding_operator

I initial_expression bin_add_op initial_expression
%prec binary_adding_operator

I initial_expression bin_mul_op initial_expression
%prec multiplying_operator

150

1 initial_expression EXP TOKEN initial expression
%prec highest_precedence operator

1 NOT_TOKEN initial expression
%prec highest_precedence operator

1 ABS_TOKEN initial_expression

}

%prec highest_precedence operator

log_op

1
AND TOKEN
OR TOKEN

1 XORJTOKEN

rel op
■<'

'>'
i — i

GREATER THAN OR EQUAL

/

LESS THAN OR EQUAL
INEQUALITY

bin add_ op

1 1 — '

1 '&'

bin mul op

1
1

i * i

V
MOD TOKEN

1 REM_TOKEN

time

1
1
1

time_number MICROSEC TOKEN
time number MS TOKEN
time number SEC TOKEN
time_number MIN TOKEN

1
1

time_number HOURS_TOKEN

time_number
: INTEGER LITERAL

expression_list
: expression_list ',* expression
I expression

151

— Expressions can appear in guards appearing in control constraints.
— These guards can be associated with triggering conditions, or
— conditional outputs, conditional exceptions, or conditional timer
— operations. Similar to initial expression, except that tim e values
— and references to timers and data streams are allowed.

expression
: TRUE
FALSE
INTEGER_LITERAL
REAL_LITERAL
STRING_LITERAL
IDENTIFIER
— The only difference from the initial expression
time
type_name '.' IDENTIFIER
type_name *.' IDENTIFIER '(• expression_list *)'
'(' expression ')'
expression log_op expression %prec logical_operator
expression rel_op expression %prec relational_operator
'-' expression %prec unary_adding_operator
'+' expression %prec unary_adding_operator
expression bin_add_op expression
%prec binary_adding_operator
expression bin_mul_op expression
%prec multiplying_operator
expression EXP_TOKEN expression
%prec highest_precedence_operator
NOT_TOKEN expression
%prec highest_precedence_operator
ABS_TOKEN expression
%prec highest_precedence operator

%%

152

APPENDIXE: TEST DATA

TYPE STACK
SPECIFICATION

GENERIC
types : private

type_2 : public

OPERATOR PUSH
SPECIFICATION

INPUT
I : INTEGER

INPUT
S : STACK

OUTPUT
S : STACK

END

OPERATOR POP
SPECIFICATION

INPUT
S : STACK

OUTPUT
I : INTEGER

OUTPUT
S : STACK

END

OPERATOR Empty
SPECIFICATION

OUTPUT
dummy : STACK

END
KEYWORDS

stack, adt
DESCRIPTION

{This is a generic stack adt}
AXIOMS

{push (s,x) = s::x}
END
IMPLEMENTATION ADA STACK

END

OPERATOR Compute_8
SPECIFICATION

INPUT
XI : INTEGER

INPUT
X2 : INTEGER

INPUT

153

X3 : INTEGER
OUTPUT

XI : INTEGER
OUTPUT

X2 : INTEGER
OUTPUT

X3 : INTEGER
OUTPUT

DC : INTEGER
OUTPUT

DX s FLOAT
OUTPUT

DY : BOOLEAN
EXCEPTIONS

El
EXCEPTIONS

E2
KEYWORDS

software, bubbles
DESCRIPTION

{This is an atomic bubble.
Line 2.
Line 3. }

AXIOMS
{P = NP }

END
IMPLEMENTATION ADA Compute_8

END

OPERATOR Consumer_4
SPECIFICATION

INPUT
DB : INTEGER

INPUT
DC : INTEGER

EXCEPTIONS
El

EXCEPTIONS
E2

MAXIMUM EXECUTION TIME 0 MS
END
IMPLEMENTATION ADA Consumer_4

END

OPERATOR OBSOLETE_ROOT_0
SPECIFICATION
END
IMPLEMENTATION ADA OBSOLETE_ROOT_0

END

OPERATOR OP_A_135

154

SPECIFICATION
INPUT

DX : FLOAT
END
IMPLEMENTATION ADA OP_A_135

END

OPERATOR OP_B_136
SPECIFICATION

INPUT
DY : BOOLEAN

END
IMPLEMENTATION ADA OP_B_136

END

OPERATOR Process_Data_5
SPECIFICATION

INPUT
DA : Missing Info

OUTPUT
DB : INTEGER

OUTPUT
DC : INTEGER

OUTPUT
DX : FLOAT

OUTPUT
DY : BOOLEAN

STATES
X2 : INTEGER
INITIALLY

2
STATES

XI : INTEGER
INITIALLY

1
STATES

S : STACK
INITIALLY
EMPTY

EXCEPTIONS
El

EXCEPTIONS
E2

EXCEPTIONS
E3

MAXIMUM EXECUTION TIME 150 MS
KEYWORDS

Compute, Composite, Parent
DESCRIPTION

{This is an composite bubble. }
AXIOMS

{P != NP, believe it or not }

155

END
IMPLEMENTATION

GRAPH
VERTEX STACK.POP_14(S | DB, S) : 120 MS

PROPERTY x = 456
PROPERTY y = 110
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = - 25
PROPERTY label_y_offset = 84
PROPERTY met_font = 0
PROPERTY met_x_offset = 35
PROPERTY met_y_offset = - 10
PROPERTY is_terminator = FALSE

VERTEX STACK.PUSH_13(DA, S | S)
PROPERTY x = 210
PROPERTY y = 110
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = - 43
PROPERTY label_y_offset = 82
PROPERTY met_font = 0
PROPERTY met_x_offset = 244
PROPERTY met_y_offset =78
PROPERTY is_terminator = FALSE

VERTEX Compute_8_19
PROPERTY x = 330
PROPERTY y = 341
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = 3
PROPERTY label_y_offset = 34
PROPERTY met_font = 0
PROPERTY met_x_offset = 298
PROPERTY met_y_offset = 205
PROPERTY is_terminator = FALSE

EDGE S
STACK.POP_14(S | DB, S) ->
STACK.PUSH_13(DA, S | S)

PROPERTY id = 33
PROPERTY label_font = 0
PROPERTY label_x_offset = - 4
PROPERTY label_y_offset = 5
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 318
PROPERTY latency_y_offset = 182
PROPERTY spline = "362 71 "

156

EDGE DB
STACK.P0P_14(S | DB, S) ->
EXTERNAL

PROPERTY id = 32
PROPERTY label_font = 0
PROPERTY label_x_offset = 3
PROPERTY label_y_offset = 1
PROPERTY latency_font = 0
PROPERTY latency_x_offset =292
PROPERTY latency_y_offset =243
PROPERTY spline = "593 102 675 137

EDGE DA
EXTERNAL ->
STACK.PUSH_13(DA, S | S)

PROPERTY id = 31
PROPERTY label_font = 0
PROPERTY label_x_offset = - 19
PROPERTY label_y_offset = - 17
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 131
PROPERTY latency_y_offset = 123
PROPERTY spline = "46.137 142 107 '

EDGE XI
Compute_8_19 ->
Compute_8_19

PROPERTY id = 51
PROPERTY label_font = 0
PROPERTY label_x_offset = 15
PROPERTY label_y_offset = 24
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 124
PROPERTY latency_y_offset = 249
PROPERTY spline = "437 402 403 443

EDGE X2
Compute_8_19 ->
Compute_8_19

PROPERTY id = 51
PROPERTY label_font = 0
PROPERTY label_x_offset = - 29
PROPERTY label_y_offset = 18
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 224
PROPERTY latency_y_offset =149
PROPERTY spline = "287 407 318 444

EDGE S
STACK.PUSH_13(DA, S | S) ->
STACK.POP_14(S | DB, S)

PROPERTY id = 34
PROPERTY label_font = 0
PROPERTY label_x_offset = - 1

157

PROPERTY label_y_offset = 12
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 154
PROPERTY latency_y_offset =196
PROPERTY spline = "365 185 "

EDGE X3
Compute_8_19 ->
Compute_8_19

PROPERTY id = 50
PROPERTY label_font =0,
PROPERTY label_x_offset = - 10
PROPERTY label_y_offset = - 10
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 124
PROPERTY latency_y_offset = 149
PROPERTY spline = "330 299 383 297 "

EDGE DC
Compute_8_19 ->
EXTERNAL

PROPERTY id = 2909
PROPERTY label_font = 2
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY latency_font = 2
PROPERTY latency_x_offset = 0
PROPERTY latency_y_offset = 15
PROPERTY spline = "439 309 496 266 "

EDGE DX
Compute_8_19 ->
EXTERNAL

PROPERTY id = 2910
PROPERTY label_font = 2
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY latency_font = 2
PROPERTY latency_x_offset = 0
PROPERTY latency_y_offset = 15
PROPERTY spline = "482 360 574 351 "

EDGE DY
Compute_8_19 ->
EXTERNAL

PROPERTY id = 2911
PROPERTY label_font = 2
PROPERTY label_x_offset = 0
PROPERTY label_y_offset = 0
PROPERTY latency_font = 2
PROPERTY latency_x_offset = 0
PROPERTY latency_y_offset = 15
PROPERTY spline = "477 400 566 423 "

158

DATA STREAM
X3 : INTEGER

CONTROL CONSTRAINTS

OPERATOR STACK.POP_14(S | DB, S)
MINIMUM CALLING PERIOD 100 MS
MAXIMUM RESPONSE TIME 4500 MICROSEC
OUTPUT

S
IF S /= STACK.EMPTY

OUTPUT
DB
IF DB > 0

EXCEPTION E3
IF S = STACK.EMPTY

EXCEPTION E4
IF DB < 0

START TIMER
Timerl

RESET TIMER
Timer 2

OPERATOR STACK.PUSH_13(DA, S | S)
OUTPUT

S
IF S /= STACK.EMPTY

EXCEPTION E3
IF S = STACK.EMPTY

START TIMER
Timerl

OPERATOR Compute 8 19
END

OPERATOR Producer_l
SPECIFICATION

GENERIC
Gl : FLOAT

OUTPUT
DA : Missing Info

MAXIMUM EXECUTION TIME 0 MS
END
IMPLEMENTATION ADA Producer_l

END

OPERATOR objects_2
SPECIFICATION
END
IMPLEMENTATION

GRAPH
VERTEX Process_Data_5_20 : 150 MS

159

PROPERTY x = 183
PROPERTY y = 139
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = 5
PROPERTY label_y_offset = 44
PROPERTY met_font = 0
PROPERTY met_x_offset = 8
PROPERTY met_y_offset = - 12
PROPERTY is_terminator = FALSE

VERTEX Producer_l_12 : 0 MS
PROPERTY x = 14
PROPERTY y = 79
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = 20
PROPERTY label_y_offset = 39
PROPERTY met_font = 0
PROPERTY met_x_offset = 63
PROPERTY met_y_offset = . - 5
PROPERTY is_terminator = TRUE

VERTEX Consumer_4_ll : 0 MS
PROPERTY x = 353
PROPERTY y = 205
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 0
PROPERTY label_x_offset = 14
PROPERTY label_y_offset = 33
PROPERTY met_font = 0
PROPERTY met_x_offset = 63
PROPERTY met_y_offset = - 5
PROPERTY is_terminator = TRUE

VERTEX OP_A_135_129
PROPERTY x = 114
PROPERTY y = 306
PROPERTY radius =30
PROPERTY color = 62
PROPERTY label_font = 2
PROPERTY label_x_offset = 28
PROPERTY label_y_offset =40
PROPERTY met_font = 2
PROPERTY met_x_offset = 144
PROPERTY met_y_offset = 306
PROPERTY is_terminator = FALSE

VERTEX OP_B_136_131
PROPERTY x = 427
PROPERTY y = 77

160

PROPERTY radius =30
PROPERTY color = 62
PROPERTY label font = 2
PROPERTY label_x_offset = 20
PROPERTY label_y_offset =40
PROPERTY met_font = 2
PROPERTY met x offset = 457
PROPERTY met y offset = 77
PROPERTY is_terminator = FALSE

EDGE DA
Producer 1 12 ->
Process Data 5 20
PROPERTY id = 30
PROPERTY label_font = 0
PROPERTY label_x offset = 6
PROPERTY label_y_offset = - 8
PROPERTY latency font = 0
PROPERTY latency_x_offset = 124
PROPERTY latency y offset = 149
PROPERTY spline = "143 140 "

EDGE DB
Process Data 5 20 ->
Consumer 4 11

PROPERTY" "id = 40
PROPERTY label_font = 0
PROPERTY label x offset = 1
PROPERTY label_y offset = - 6
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 269
PROPERTY latency y offset = 204
PROPERTY spline = "297 199 "

EDGE DC
Process Data 5 20 ->
Consumer 4 11

PROPERTY "id = 42
PROPERTY label_font = 0
PROPERTY label x offset = - 8
PROPERTY label_y_offset = - 11
PROPERTY latency_font = 0
PROPERTY latency_x_offset = 0
PROPERTY latency y offset = 16
PROPERTY spline = "302 358 "

EDGE DX
Process Data 5 20 ->
OP A 135 129

PROPERTY id = 130
PROPERTY label_font = 2
PROPERTY label_x offset = - 27
PROPERTY label_y_offset = - 6
PROPERTY latency font = 2

161

PROPERTY latency_x_offset = 184
PROPERTY latency_y_offset = 237
PROPERTY spline = "169 250 "

EDGE DY
Process_Data_5_20 ->
OP_B_136_131

PROPERTY id = 134
PROPERTY label_font = 2
PROPERTY label_x_offset = - 17
PROPERTY label_y_offset = - 15
PROPERTY latency_font = 2
PROPERTY latency_x_offset = 288
PROPERTY latency_y_offset = 165
PROPERTY spline = "335 138 "

DATA STREAM
DY
DX
DC
DB
DA

BOOLEAN,
FLOAT,
INTEGER,
INTEGER,
Missing Info

CONTROL CONSTRAINTS

OPERATOR Process_Data_5_20

OPERATOR Producer_l_12
PERIOD 4000 MS
FINISH WITHIN 100 MS

OPERATOR Consumer_4_ll
TRIGGERED BY ALL

DB
IF DB > 0

OPERATOR OP_A_135_129

OPERATOR OP B 136 131
END

162

LIST OF REFERENCES

1. San Jose Mercury News, Section C, Tech Ticker, September 6, 1997.

2. Anderson, Steven E, Functional Specification for a Generic C3I Workstation,
Master's Thesis, Naval Postgraduate School, Monterey, California, September 90.

3. CAPS Interface Manual, Software Engineering Group, Naval Postgraduate School,
Monterey, California.

4. CAPS Executive Briefing, Software Engineering Group, Naval Postgraduate
School, Monterey, California.

5. Berzins, V., Luqi, Software Engineering with Abstractions, Addison Wesley, 1991.

6. Aho, A, Kernighan, B., Weinberger, P., The Awk Programming Language,
Addison Wesley, 1988.

7. Feldman, M., Koffman, E., Ada95: Problem Solving and Program Design,
Addison Wesley, 1991.

8. Booch, G., Bryan, D., Software Engineering with Ada, Benjamin/Cummings,
Redwood City, California, 1995.

9. Barnes, J., Programming in Ada.95, Addison Wesley, 1996.

10. Luqi, " Software Evolution Through Rapid Prototyping", IEEE Transactions on
Software Engineering, May 1989.

11. Luqi, Berzins, V., Yeh, R, "A Prototyping Language for Real-Time Software,"
IEEE Transactions on Software Engineering, October 1988.

12. San Jose Mercury News, Section E, Can Silicon Graphics Evolve, June 2, 1997.

13. San Jose Mercury News, Section A, Help Wanted: Tech Grads, February 2, 1997.

14. The New York Times, Cybertimes, 1 Teensy Little Bug, 1 Humongous Crash,
December 1, 1996.

15. Biggerstaff, T., "Moore's Law: Change or Die!", IEEE Software, Vol 13, No. 1,
January 1996.

16. San Jose Mercury News, Section A, Radar System Failed in Crash, Software
Glitch Prevented Warning, August 11,1997.

17. J.A. McDermid, "Safety-critical software: a vignette", Software Engineering
Journal, Vol. 8, No. 1, pp. 2-3,1993

163

18. Chadwick, C, in personal conversation with the author, June 26, 1996.

164

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, Ste 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Director, Training and Education 1
MCCDC, Code C46
1019 Elliot Road
Quantico, VA 22134-5027

4. Director, Marine Corps Research Center 2
MCCDC, Code C40RC
2040 Broadway Street
Quantico, VA 22134-5107

5. Director, Studies and Analysis Division 1
MCCDC, Code C45
3300 Russell Road
Quantico, VA 22134-5130

6. Marine Corps Representative 1
Naval Postgraduate School
Code 037, Bldg. 234, HA-220
Monterey, CA 93940

165

7. Cmdr Michael J. Holden, Code CS/Hm
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. Marine Corps Tactical Systems Support Activity
Technical Advisory Branch
ATTN: Maj. J. C. Cummiskey
Box 555171
Camp Pendleton, CA 92055-5080

Dr. Luqi, Code CS/Lq
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

166

