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Summary 
The present final Report contains final chapters 4, 5 and 6 describing the Computational 
Damage Model for Thermoviscoelastic Laminated Composite Materials. The detailed 
models for damageable composite elements for the general 3D case was described in [1], 
Chapters 1 and 2. The model was based on detailed physical description and developed 
kinetic equations for accumulations of damages in shear, tension and delamination. The 
model constants were distinguished that should be determined from the experiments. 

The Chapter 3 [2] contained the description of the experimental procedure on twisting 
and tension of thin-walled tubular samples. The application of the damage model for 
2D cases of deforming thin shells was developed. Some solutions were obtained within 
the frames of quasistatical approximation enabling to develop some of the damage con- 
stants for low rates of loading. Recommendations for developing constants by comparing 
experimental and theoretical results were worked out. 

The present report contains the derivation of the model equations for quasidynamical 
problems on twisting and tension of tubular thin shells (Chapter 4). The solutions of the 
problem are obtained for different rates of loading (Chapter 5). Based on the obtained 
solutions for dynamical behavior of parameters under different rates of loading (twisting 
and tension) detailed recommendations are worked out for the test procedures wich need to 
be performed to develop the constants for the model of damageable laminated composite 
materials. 

The Chapter 6 contains the developed mathematical methods to model numerically the 
behavior of material and its further dynamical deforming after accumulation of damages 
leads ^ to destruction of material  in the damaged zone. 



Chapter 4 

Quasidynamical problems of 
deforming and breakup of 
thin-walled cylindrical tubular 
two-phase laminated composite 
samples 

We regard the classical problems of quasidynamical twisting or tension of a thin-walled 
tubular sample. The length of the sample is denoted i, the radius (external) a, the 
thickness of the walls h {h/a < 1, a/L < 1). Let the sample be loaded monotonously 
by the growing rotating moment M = M{t) (M(t) > 0) applied to the end points of the 
sample along the z-axis, or by axial tensile forces F = F(t) (F(t) > 0) (Fig. 4.1). 

In the very beginning (t = t0) there are no stresses and strains in the sample and its 
temperature is uniform (T = TQ). Let the time of loading until breakup be much larger 
than the characteristic time of elastic wave traveling along the sample but much less than 
the characteristic time of heat propagation along the sample due to thermal conductivity. 
Then the problem could be regarded within the frames of quasidynamical approximation. 
In fact the term "quasidynamical" means that we apply a quasistatical approximation to 
mechanical processes and adiabatic approximation to the thermal processes. 

4.1     Twisting of a thin-walled tubular sample 

In case of pure twisting of a sample F(t) = 0 only one component of the stresses tensor 
(shear stress <Tez) differes from zero: 

M(t) 
<T6z(t) = 2na2h' 

Let <r6z(t) = f-t,    f =const> 0. 
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where: 

Then the system of constitutive equations for the problem will take the form: 

(C22 - C23)e
e

6z + 2AClog(l - a)% = ft, 

eez - ie
ez = (a22 - a23)ft + ß2~B.A9z + ^^log(l - u*)^^, 

1 — a Z\ 

ee
zz = ee

ee = -ß+B+(A+ - 6{T - %)) -. ^^ log(l - a;.)^, 

ie
Tr = -ßtB+{A+ - 9{T - TQ)) - 2^y log(l - «A)^*,   . 

A+ = -jB+(A+ - 9{T - T0)) - ^^log(l - u;A) *± 

A*, = -2/32"/t - 37ß- A6z - 
U?DA* log(l - a,A) ^, 

1 — a A 

"^^((l-aKl-^-^^Gl-aMl-^)-^) 
Tri = 2ft(iez - ee

Bz) - q+A+ - q9zA0z + Act2 + AAwA, 

T = To- dl£
e

rr - 2d2e
e

zz + P(TJ - B+6A+), (4.1) 

A = ^A* + AL,        el = ^-{ezz - &„)* + 2fo)*, 

q+ = B+(A+ - 0(T - To)) + ^^y log(l - WA)^t,       - 

X
R A     ■ 1DU, A6z qez = ^B-A0Z + log(l -u>A)—-. 

The constants used in (4.1) have the following form [2]: 

C22 - C23 = 2(fi),    a22 - a23 = (-) , 
2(/i)2\r/ 

A'2U      n;'    A"" 12(A) Un     /W'    ^2 "4(/x)U"r2J' 

c(l-4J2 c(l-CyiM2 aW-aj2) 
B+ ~ (E)        '    *" ~ (/x)        '    ^ = —3—' 



7      12 VcAiiTi + (l-c)^rJ' 

A„ = 
Ea 

12 Vc^iTi     (1 
A 

A     \ 2 + 
Zna (E) \ A + 2/i /     3(Aa + 2/ia)' 

(*««<a))V 

£« = 
A*a(3Aa + 3/ia) 

Aa + 2/xa 

Aa — Aa — 
c<"> 

To,        (a = 1,2) (4.2) 

where Ea - isothermic Young modulus, Aa - isothermic Lame coefficient. The physical 
meaning of all the constants was discussed in details in [1,2]. 

4.2     Tension of a thin-walled tubular sample 

In case of pure tension of the sample (M(t) = 0) only one component of stress tension 
azz differes from zero: 

Let <rzz{t)■= f -t, f = const > 0. 
Then the governing system of equations will have the following form: 

C12e
e

rr + C22e
e

zz + C23e
e

ee - cfefo - B+6A+) + Afllog(l - «) + 

log(l - «) ; = ft, 
3(1-a;) 

c« - elz = <*22ft + ßtB+(A+ - 0{T - To)) + ß2B.A. + 
DA, 

2(l-a;)(l-a) 
log(l-u;A) 

ß+A++ß2~A- 

ee
TT = -a12ft - ßtB+(A+ - 6(T - T0)) - 

DAA 

2(l-a;)(l-a) 
log(l-a;A) 

A+A+ 

?» = - W* - ßtB+(A+ - 0{T - TQ)) + fcB-A_ - 
DA, 

2(l-w)(l-a) 
log(l-a;A) 

ßtA+ - ft A_ 

A+ = -ßtft - 7B+(A+ - 0(T -To)) - 2(^_a)log(l - «A)£, 

A_ = -/?"/«-375_A_- 
37^AA       , A_ 

2(l-a;)(l-a)l0g(1"a;A)X' 



w = iH—r^—£*)H{—r^>—£V' 

^((ir^^^ 

"A = P((l-c,)(l-a)(l-a,A)-A*)F((l-a,)(l-a)(l-a;A)-A*)' 

T») = ft(i„ -ie
zz)- q+A+ - g-A_ + Aw2 + 4ä2 + AAÜ2, 

T = To - <flC^ - d2(ee
zz + ej,) + Pfo - B+0A+), (4.3) 

where: 

A = J\(Al + A2_),        < = J\[{e°zz - e<rry + fc, - *)» + (e<r - eg,)»], 

g+ = JB+(A+-ö(r-To)) + 

g_ = £_A_ + 

#AA ,    , .A+ 
2(1-^(1-a) l0g(1-WA)X' 

£AA A_ 
2(l-a,)(l-a)l0g(1-a,A)-Ä-- 

The constants in (4.3) that have not been described in (4.2) are the following: 
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A'+ 2/i 

«12 = 
2(Ä) \ 

/iA^ 

«22 = 
12 (^}2(^) + 4(/i)2(r)'    a23~]^\^)-^w(r} 



Chapter 5 

Dynamical behavior of governing 
parameters in deforming and 
breakup of thin-walled two-phase 
cylindrical tubular composite 
samples 

The present chapter contains the results of numerical investigations of the damage pa- 
rameters behavior for the model laminated composite material in possible experiments on 
twisting and tension of tubular samples for different rates of loading. Since the damage 
parameters cannot be measured directly in the experiment the data on the behavior of 
strains and temperatures depending on the damage parameters accumulation is also en- 
closed. The results are aimed to illustrate the influence of occuring damages of different 
type (damages in shear, tension and delamination) on the behavior of shear and tensile 
strains under different rates of loading. The sharp differences in strains on switching on 
the damage parameters make, it possible to determine the values of damage parame- 
ters [2] ensuring coincidence of theoretical and experimental curves for shear and tensile 
strains under different rates of loading. The strain history is given for each rate of loading 
for the cases accounting for and neglecting the accumulation of damages, illustrating the 
differences in dynamical behavior of materials. 

5.1     Twisting thin-walled tubular samples at differ- 
ent rates 

In pure twisting of tubular samples by a rotating moment the shear stress <TQZ was assumed 
to change linearly (Chapter 4): 

<r6z(t) = f-t. (5.1) 

9 



The experimentally measurable values eez and T under these conditions can depend only 
on damages in shear 

(«) 

and delamination (<*)&). Now we will illustrate the solution of the direct problem: choosing 
the model composite material with given values of all the parameters we will determine 
variations of strains and temperatures under different rates of loading. That will help us to 
determine the necessary experiments for the solution of the inverse problem of developing 
the material parameters. 

The values of parameters for the model composite material are given in the table 5.1. 
All the parameters were maintained constant. Only the twisting stress rate / (5.1) varied 
from 105 Pa/s to 109 Pa/s. 

Parameter 
c 

To 
Pi 
P2 

P\ 
/i2 

Ax 

A2 

cW 

<42) 

n 

C 
D 
A 
A 

AA 

e* 
e; 
A, 

/ 
/ 

Value 
0.61 
300 
1600 
1300 

53 • 109 

1.98 • 109 

94 • 109 

7.54 • 109 

1000 
2000 

2 • 10"5 

1.5 • 10~4 

900 
10 
25 
25 
25 

108 

108 

108 

; 0.01 
0.01 
0.005 

105 -r109 

105 + 1010 

3 
3 
3 

Unit 

K 
kg/m3 

kg/m3 

Pa 
Pa 
Pa 
Pa 

J/(kg-K) 
J/(kg-K) 

K-1 

K-1 

s 
s 

s-1 

s-1 

s-1 

Pas 
Pas 
Pas 

Pa/s 
Pa/s 

Description 
matrix (phase 1) share in composite 
initial temperature 
density of the phase 1 
density of the phase 2 
shear modulus of the phase 1 
shear modulus of the phase 2 
adiabatic Lame Lambda coefficient of the phase 1 
adiabatic Lame Lambda coefficient of the phase 2 
specific heat capacity of the phase 1 
specific heat capacity of the phase 2 
volumetric thermal expansion modulus (phase 1) 
volumetric thermal expansion modulus (phase 2) 
relaxation time of the phase 1 
relaxation time of the phase 2 
Omega (tensile damage) kinetic factor 
Alpha (shear damage) kinetic factor 
Omega-Delta (delamination damage) kinetic factor 
Omega enthropy factor 
Alpha enthropy factor 
Omega-Delta enthropy factor 
critical strain factor 
critical shear factor 
critical phases fitness factor 
twisting process stress per time factor 
straining process stress per time factor  

Table 5.1. Parameters for the model composite 

The results for the rate / = 105 Pa/s are illustrated in Fig. 5.1(a-d). The strain 
eez grows slowly (Fig. 5.1a) until damage parameter WA starts accumulating (Fig. 5.1c). 
Then EQZ starts growing much faster.   The corresponding time f, strain e*6z and stress 

10 



a*z = ft* can be easily detected since from t = t* the behavior of egz{t) curve differs 
sharply from that in the absence of delamination (O>A = 0, see the dashed curve in 
Fig. 5.1a). The other damage parameter a remains zero under these loading conditions 
(Fig. 5.1b). The temperature variations AT are shown in Fig. 5.Id. While all the damage 
parameters are equal to zero AT turns to be slightly negative in deforming but those 
negative values cannot be distinguished within the scale of the figure. But on accumulation 
of the damage parameters (u>& in the present case) the temperature grows rapidly in 
irreversible transformations (Fig. 5.Id). 

The Figs. 5.2a-d illustrate the behavior of parameters under the rate of loading / = 
106 Pa/s. It is seen that in faster loading the growth of WA starts earlier but brings to 
similar picture (Fig. 5.2a). The dashed curve on the Fig. 5.2a shows the behavior of 
egz in the absence of delamination. Damages in shear have not occured yet (Fig. 5.2b). 
Temperature variarions (Fig. 5.2d) are higher under these loading conditions. 

Under even faster loading (Fig. 5.3; / = 107 Pa/s) the picture is qualitatively the 
same. Only the accumulation of damages in delamination starts much earlier and the 
critical values of e*6z and (r*-z are higher for the present case than that for the previous 
cases. This result shows that under higher rates of loading the critical breakup limits turn 
to be higher. 

Thus we can have a number of experiments under low rates of loading to determine the 
critical values e*>z, <rgz for developing damage parameters and validation of results. The 
results for temperature variations can be also used for developing the model parameters 
and validating purposes. 

The increase of the loading rate (/ = 108 Pa/s) radically changes the scenarium 
of the process (Fig. 5.4). The rapid growth of strain €ez starts much earlier due to 
accumulation of damages in shear (Fig. 5.4a); the dashed curve illustrates the strain e$z 

behavior in the absence of shear damages accumulation. The damage parameter a grows 
very rapidly (Fig. 5.4b) while the damage parameter U>A remains zero (Fig. 5.4c). The 
damages in delamination have not enough time to proceed since damages in shear bring 
to breakup very fastly. The temperature growth (Fig. 5.4d) takes place due to irreversible 
transformations in shear damaging. 

The further increase of loading rate (/ = 109 Pa/s) does not change the scenarium 
qualitatively (Fig. 5.5). The critical values e*e* and a£ = f • t for the present case can be 
determined as well and they turn to be higher than that for the previous case (Fig. 5.4a). 
Those critical values enable to develop the damage parameters responsible for damages 
in shear solving the inverse problem of developing model parameters based on the-results 
of experiments. 

11 
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Fig. 5.1 Twisting of a tubular sample at f = 105 Pa / s. 
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Fig. 5.3 Twisting of a tubular sample at f = l07Pa / s. 
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Fig. 5.4 Twisting of a tubular sample at f = 108 Pa / s. 
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Fig. 5.5 Twisting of a tubular sample at f = 109 Pa / s. 
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5.2    Tension of a tubular sample 

In pure tension of samples the only component of the stress tensor different from zero is 

assumed to change linearly: 
P^ <rtz(t) = f-t. (5.2) 

The experimentally measured values <rzz(t) and T(t) depend on all the damage parameters 
under these conditions: damages in tension a;, in shear a and delamination WA. 

The low rate of loading (/ = 105 Pa/s) brings to the case of slow long-lasting growth 
of ezz (Fig. 5.6a) that is changed for a rapid growth when delamination occurs (Fig. 5.6c). 
The dashed curve on the Fig. 5.6a shows the behavior of ezz in the absence of delamination. 
The other damage parameters remain constant (Figs. 5.6b,d). Temperature variation in 
irreversible transformations is relatively not very high (Fig. 5.6e). The critical values of 
e* , <T* (t*) = f -1* can be determined from the picture. In solving the inverse problems 

ZZ '       zz V      / » 
of developing the damage constants from experiments the values <r*xx, e*zz can be used 
for validating the damage in delamination constants determined in the experiments on 

twisting the sample. 
The increase of the rate of loading (/ = 106 Pa/s) does not change the picture qualita- 

tively, but quantitatively decreases the breakup time and increases the critical values e*z 

and a*zz (Fig. 5.7). The damage parameters a and u remain equal to zero (Figs. 5.7b,d) 
since the critical values e*zz and a*zz are still much lower than that necessary for damages 
in tension and shear to proceed. 

The increase of loading rate up to / = 10r Pa/s does not change the scenarium 
qualitatively (Fig. 5.8) but brings to essential quantitative changes. The critical values 
e*zz and <rzz grow up and approach ones under which the damages in shear and tension 
can occur. 

The future increase of the loading rate (/ = 108 Pa/s) brings to the scenarium when 
breakup is achieved due to growth of damages in shear (Fig. 5.9b) and tension (Fig. 5.9d). 
The rapid growth of ezz followed by the breakup (Fig. 5.9a) takes place very quickly so 
that damage in delamination cannot occur (its critical parameters e*zz and a*zz under the 
present loading conditions are higher than that for damages in shear (e** and a**z) and 
tension (e*** and a**z*). 

The dashed curve on the Fig. 5.9a marked "a = 0" shows the behavior of ezz in the 
absence of shear damages accumulation; it is placed very near to the actual ezz curve 
(solid line), that means that the breakup under present loading conditions occurs mostly 
because of tensile damages accumulation, and the accumulation of damages in shear 
practically does not influence the breakup scenarium. The dashed curve on the Fig. 5.9a 
marked "w = 0" shows the behavior of ezz in the absence of tensile damages; it separates 
from the dashed curve marked "a = w = 0" later. Comparison of the dashed curves 
marked "a; = 0" on the Figs. 5.9b,c,d shows that in case of neglecting the tensile damages 
accumulation the breakup will be delayed, and both shear and delamination will take 
place. However the delamination does not take place when we account for the the tensile 

damages. 
Damages in tension occur a little bit earlier than in shear (Fig. 5.9d) and their growth 
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brings to strong changes in ezz(t) function behavior. At the same time, the successive 
growth of the «-parameter does not bring essential changes to the growth of the v- 
parameter (Fig. 5.9d), ezz strain and temperature under the present loading conditions. 
The dashed curve marked "a = 0" in Fig. 5.9d shows the growth of w under the condition 
of a (shear damages accumulation) remaining zero. 

The critical strains £*** and stress a*** can be determined from Fig. 5.9a. 
In solving the inverse problem the critical values determined from the experimental 

curve ezz(i) could be used for developing the model constants for damages in tension (fi, 
A, e*) since the model parameters for damages in shear could be determined from the 
experiments on twisting the samples (section 5.1). 

Fig. 5.10 illustrates the results for the higher rate of loading / = 109 Pa/s. It is seen 
that accumulations of both damage parameters a and u contribute to the rapid growth 
of ezz after the critical values are reached (Fig. 5.10a). The absence of one of the damage 
parameters aorw essentially influences the growth of^ther (Figs. 5.10b,d). The growth 
of temperature under present rate of loading takes place mostly due to the growth of a 
(damages in shear). 

The further increase of the rate of loading (/ = 1010 Pa/s) does not change the picture 
qualitatively but brings to an increase of the critical values of e*** and a*** = /•<*** and to 
a decrease of characteristic breakup time. The results for the rate of loading / = 1010 Pa/s 
are shown on the Fig. 5.11a-e. 
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5.3    Recommendations on developing the model dam- 
age constants in experiments 

The numerical simulations of dynamical behavior of parameters in twisting and tension 
of tubular composite samples shown definite peculiarities of scenario for the materials 
posessing the properties close to that given in the table 5.1. 

For the low rates of loading both in twisting and tension the breakup takes place 
due to accumulation of damages in delamination while the damage parameters in shear 
and tension remain equal to zero. Thus the critical values for parameters £ez,e*zz,(Tgz,alz 

can be determined from the experimental strain-time diagram enabling to develop the 
damage constants D, AA, A*. The experimental results under different rates of loading 
can be used for validating purposes. 

For the high rates of loading in twisting the breakup takes place due to accumuation 
of damages in shear, and for the loading in tension - due to accumulation of damages 
both in shear and tension, while the damage parameter U>A remains equal to zero. Thus 
the critical values e*e*z, <rj* can be determined from the experiments in twisting. Different 
rates of loading can provide with different pairs of ej*, <rj* that would make it possible 
to determine the damage constants for the damage in shear: C, A, e*. The experimental 
data on temperature growth AT can provide with additional data for developing those 
constants and validation. 

Experiments in high rate tension can provide with the critical parameters e*zz,o*zz 

characterizing the beginning of damaging in tension. Assuming the model constants for 
the shear damages known from independent experiments in twisting one can develop the 
model constants tt, A,e* for the damages in tension based on the experimental ezz(t) and 
T(t) curves. 
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yi       I Chapter 6 

On the methods of modeling the 
material behavior after destruction 
criteria having been satisfied in 
some zones 

Intensive dynamic loading of the structure elements (in impact, explosion or thermal 
loading) brings to destruction of materials. Dynamical breakup is a complex multistage 
process involving origination, growth and coalescence of microdefects, formation of mi- 
crocracks, their growth to macroscale, intersections leading to fragmentation of material. 

Two characteristic stages can be distinguished within the process of dynamical breakup. 
The first stage - predestruction (continual, or uniformly distributed destruction) : orig- 
ination of microdefects, their growth and coalescence, formation of initial macrocracks 
and pores in the process of irreversible deformation of material. 

The second stage - destruction of material : formation of macrocracks and growth of 
pores inside the material, their coming to free surface, separation of fragments. 

Mathematical modeling of the predestruction stage can be performed introducing dam- 
age parameters for materials. Models of this type applied for two-phase laminated com- 
posite materials were described in [1,2] and are discussed in the chapters 4 and 5 of the 
present report. After the destruction criteria for the critical specific dissipation is satisfied 
in some place 

D = £>*, (6.1) 

the present computation cell gives birth to a new destruction interface free of loadings 
(in case the destruction criterion (6.1) was not satisfied in the adjacent cells before). 
Otherwise the crack born in the adjacent cell should grow through the present cell. 

Here we regard the approaches to mathematical modeling of the second stage of de- 
struction. There exist at least two different approaches [3-6]. The first one is based on 
the explicit tracking of the free surfaces of the crack. The second is replacing the de- 
structed material by a number of discrete particles characterized by their sizes, mass and 
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momentum. Those particles can interact with each other and with the free surfaces of 
the continuous material following a given law. 

The second approach is not in fact an alternative to the first one but rather its further 
development. The second approach permits to create a simplified procedure for numerics: 
the destructed material is assumed to be a media resisting compression but irresistible for 
expansion in tension. In a number of cases this -simplification is significant for practical 
applications. 

Further we regard the both approaches taking a two-dimensional case as an example. 

6.1     The method of explicit free surface tracking in 
macroscopical destruction of material 

Using the Lagrangian approach for description of the media deformation the cells move 
with the media. Thus the most effective method of free surface tracking is based on the 
local reconstruction of the grid in the zone of the crack [3-6]. On giving birth to a crack 
the cell is removed from the grid and replaced by the two free surfaces on the both sides 
of the gap. The mass, momentum and other characteristics of the cell are redistributed 
among the adjacent ones. The both sides of the crack are either free of tensions or have 
the "contact" boundary conditions depending on the process. If the crack is expanding 
a free surface boundary conditions are applied. In case of the collapse of the gap the 
calculations are conducted using the contact boundary conditions algorithm [7]. 

The basic ideas of the method will be discussed using an example of modeling the 
border surfaces of an arbitrary curved crack in a continuum. 

Let the conditions for macrodestruction (6.1) be satisfied in some cell of the grid. The 
first alternative to be checked under conditions is either birth of a new crack takes place 
or the further propagation of a crack existing in the adjacent cell. In other words, we 
check if all the adjacent cells are not destructed. 

I. In case of a new crack is being born in the cell the following algorithm is applied: 
1) The center if the cell where the destruction criterion (6.1) was satisfied is deter- 

mined: 
,4 X    4 

* Jk=l 
'!> = TE '2J 

k=l 

k = 1,2,3,4 - numbers of the grid points surrounding the cell (Fig. 6.1). The procedure 
is performed in the laboratory system of coordinates {zi,a;2}. 

2) The orientation of the gap plane in the center of the cell is determined. The orien- 
tations of the planes of maximal orthogonal <rn and tangential <rT stresses are determined 
for the purpose as well as their values within the cell: 

<rn = (rna2 + 2a12aß + <r22/?2; 

<rT = yj\Sn\* - a\ = ^„a + <rl2ßf + {<r12a + <r22/?)2 - <r»; 
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a2+/?2 = l; 

where n = (a,/?) - a unit normal vector to the plane of maximal stresses (Fig. 6.1). 
The procedure described above enables to determine two planes characterized by normal 
vectors nn = (a„,/3n) and nT = (aT,ßr). The first one (nn) is that of maximal normal 
stress crn in the cell, the second one (nT) is the plane of maximal tangential stresses crr. So 
one has an alternative of two probable orientations of the originating crack. The following 
criterion permits to make the choice of the direction of the crack: 

max 

where rg is the maximal shear limit, as - maximal tensile limit (material constants). 
If the condition 

TB      as 
is satisfied it is assumed that the shear crack is born within the cell along the plane 
characterized by the normal vector nT. 

If the condition 

TB      OB 

is satisfied within the cell the tensile crack is to be born along the plane characterized by 
the normal vector nn. The criterion formulated above is the classical one of Davidenkov- 
Friedmann. 

3) The intersections of the crack plane with the grid lines surrounding the cell are 
determined (Fig. 6.1). Let the intersection A be on (ji, J2) and the intersection B be on 

4) The grid points ji and j2 are moved into the point A, the grid points Js,j4 are 
moved into the point B (Fig. 6.2). All the parameters related to the grid points and the 
adjacent cells are relocated following the procedures described in [8]. The idea of the grid 
modification of this type is illustrated in the Fig. 6.2. 

II. In case of propagation of the crack from an adjacent cell a different procedure is 
used. The Fig. 6.2 shows that the crack can propagate further either in the cell i\ or in 
the cell %i. There can take place more complicated cases that will be regarded later. 

A. Let the crack grow into the cell t'i, i.e. the destruction criterion for the critical 
value of dissipation (6.1) is satisfied in the cell t'i. And the values of the normal vector 
to the plane n = (a, ß) are determined. Then the border interfaces of the crack in the t'i 
cell can be determined in the following way. 

1) Knowing the orientation of the crack plane in the cell ti one can construct the plane 
beginning from point C of its intersection with the border of the cell j'sjj'e as shown in 
the Fig. 6.3. 

2) The grid points js and j6 are moved to the point C. All the values of parameters, 
mass, momentum, energy in the cells is and i4 are redetermined following the new grid 
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pattern. The Fig. 6.4 presents a fragment of the computational grid with a gap in two 

cells. 
B. Let the crack due to determined orientation of maximal stresses planes grow outside 

the cell ii (Fig. 6.2) and cross the cell i3 for example (Fig. 6.3). Then tracking the borders 
of the crack is performed by the following algorithm. 

1) The gap plane is constructed beginning in the point A and tracked until it intersects 
with the borders of the cell i3. Two cases are possible: 

a) the point of intersection D is found on the border J5J7 or 
b) the point of intersection E is found on the border jVis (Fig. 6.5). 
2a) In case "a" the grid points j5, ji are moved into the point D, the grid points j6 

and js are moved into the center of AD. The new grid fragment after the reconstruction 
is shown in Fig. 6.6. 

2b) In the opposite case "b" the grid points j7 and j8 are moved into the point E, the 
grid point j5 is moved into the center of j5A as shown in Fig. 6.7. 

Thus successive satisfying the destruction criterion in the cells enables to track uniquely 
the macroscopical crack. In case the macroscopical crack comes to a free surface, separa- 
tion of some part of material as a fragment is possible. 

The precision of the described above procedure of localization of a crack is one half a 
mesh width. 

6.2     Replacing the destructed material with descrete 
particles 

Most of numerical algorithms are constructed in a way providing at each timestep the 
following data: 

1) in every cell: density of material, stress, strain and strain rates tensors, specific 
internal energy, dissipation, temperature, damadge parameters (in case the model for 
damadgeable media is used); 

2) in the grid points: velocities and current coordinates. Thus the first group of 
parameters is related to the centers of the cells, the second - to the grid points. 

In case the destruction criterion (6.1) is satisfied in a cell the material in the cell is 
considered to be macroscopically damadged. To model the behavior of the material within 
the damadged cell it is assumed that the material resists the compression only and has 
no resistance to expansion and shear. That means the stress tensor for the damadged 
medium <Tij is a spherical one: <Tij = —pSij. The equation of state for pressure p within 
the damadged cell has the following form, for example: 

.('(H" 
0, 

P> 9* 

P<9* 

(6.2) 

where p* is the density of the material within the cell by the time of destruction (the time 
for the criterion (6.1) is satisfied), K,n - material constants. 
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In case the damadged cell is an internal one, the calculations are run Mowing the 
same algorithm but for the equation of state that needs to be taken in the form (6.2). 

In case the damadged cell is at the boundary of the computational domain the material 
of the cell is replaced by a number of discrete particles with the radii determined from the 
condition fitting the cell. The mass of the cell is redistributed among the particles. Only 
one layer of the boundary cells can be transformed into discrete particles during one time 
step because it is assumed that the velocity of the destruction wave does not exceed the 
velocity of acoustic disturbances in the media. 

Thus applying such an algorithm can lead in some cases to replacing all the cells with 
discrete particles, i.e. converting a continuous body into a cloud of fragments 

Velocity vectors for the mass points (grid points and discrete particles) are determined 
from the following finite-differences equations: 

T 2(pi 

where i is the number of a grid point or a particle, n - the number of a time step, 2j* - 
mass of the respective mass point, r - time step value, J* - vector of forces caused by 
internal stresses, R> - vector of reaction forces, that is equal to zero in the internal grid 
points and is determined or assigned for the boundary grid points. 

Let us regard the most general case when the computational domain contains both the 
grid points and discrete particles. The discrete particles are assumed to be incompressible 
and interacting with the boundaries of the continuos medium and with each other An 
elementary act of interaction of a fragment with the boundary of continuous media is 

modeled in the following way. .      ^ 
The known by the time t = tn values of coordinate vectors x? and velocities vt 

(i = a, 6, c) for the grid points "a", "b" and the discrete fragment "c" make it possible to 
determine intermediate values of coordinates and velocities x?+\ v?+1 (Fig. 6.8) not taking 
into account reaction forces.  If the following condition is satisfied for the intermediate 

values 
h = 

lab 
<r, ci 

then the penetration of the particle "c" into the continuous material must ^ve J=aken 
place. Then the corection of coordinate vectors and velocities for the grid points "a ,   b 
and the particle "c" is necessary. Here rc is the particle's radius, lab - the distance between 
"a" and "b" grid points, h - the height of the triangle "abc". Under the condition h > rc 

there is no interaction of particle "c" with the boundaries of the continuous material. 
To perform the corrections the random vector components being the result of interac- 

tions are determined. The friction forces are determined as well if the law is given. The 
grid points "a", "b" and the particle V are affected by the following forces: 

Rc = Ncii + TCT,    Ra = -(1 - ct)Rc,    Rb = -ocRc (6.3) 

where 

Nc = 
[(1 - «)*C + «<6 ~ <cl Tc = 

T(p* 

(i-a)v;a + <xv;b-v; 
Tip* 
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?• = -+ 
(l - ay + a 

i: <Pc fa <fb *a6 

C.= |x.-ft|,    « = &/&,    (n,f) = 0. 

Here Z*fc = |x£ — x£|, the point with coordinates Xk is the projection of the center of masses 
of the particle onto the boundary ab. 

The value of the tangential force Tc is determined in (6.3) under the assumption of a 
no-slip condition. In case a law for the friction is given the value Tc determined in (6.3) 
remains valid when the following inequality is satisfied: 

\TC\ < k\Ne\, (6.4) 

In case (6.4) is not satisfied, Tc is determined by the formula 

Tc = *|JVe|sign(Tc*), (6.5) 

where the value T* is given by (6.3). The value of k in (6.4), (6.5) is a friction coefficient. 
It is evident that on assuming k = 0 one obtains a free slip condition on the boundary. 

Since the sizes of the particles are final (not infinitely small) the particles interact not 
only with boundaries but with one another as well. Each particle is characterized by its 
radius, mass, velocity and coordinate of its center of masses. 

Let the line segment Uj connect the centers of i-th and j'-th particles (radii Ti and Tj). 
If the condition 

U i <ri + rs 

is satisfied then the particles are in contact. To determine the reaction forces it is necessary 
to adopt some law for interaction of particles. Using the analogy with the interaction 
between particles and the boundary one can choose the law of absolutely unelastic impact. 
Then one has the following sets of formulas: 

—* —* 
vii - v{j 

RKS = rm 
Rhi = -Riij, m. *j 

»j 

1        1 
—+ — 
m;     m,- 

»ii = (iT»Wi» h = 13-31 
(6.6) 

where a% - intermediate value for the vector of the z'-th particle center; v^ - the projection 
of the velocity vector on the line connecting the centers of particles; Zy - a unit vector 
along that fine. 

If there is no friction between the particles then the tangential component of the 
reaction force vector is zero, and there is no necessity in the corrections of the tangential 
component of the velocity vector. 

If there exists friction given by the law (6.4) then computations are run similar to the 
case of particle's interaction with a boundary of a rigid body described above. 

If the i-tk particle interacts with a number of particles then all the vectors of forces 
are summed up. 

If one adopts any other law of particles interactions (that is possible) then it is neces- 
sary to define an appropriate function for the kinetic energy. 
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6.3    Determining the number of fragments within a 
destructed cell 

The number of fragments in destruction of a cell after the dissipation in the cell reaches 
its critical value cannot be arbitrary. The crack formation is a process that needs energy. 
Thus the number of fragments obtained in breakup should be found accounting for the 
balance of the elastic energy accumulated by the material by the time of breakup, and 
the energy necessary to form all the free surfaces (cracks) bounding fragments: 

Eh = \jlds, (6.7) 

where S is the total area of the free surfaces originating within the cell, 7 - energy 
necessary for breach square unit formation, E - elastic energy accumulated within the 
cell, ke - coefficient of elastic energy transformation. The equation (6.7) still leaves some 
degrees of freedom for determining the number and masses of particles. Thus empirical 
data on particles sizes distributions in breakups should be taken into account. 

* 
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