
Naval Research Laboratory
Washington, DC 20375-5320

NRL/FR/5510--98-9876

The Hobbes Software Architecture for Virtual
Environment Interface Development

KAPIL DANDEKAR

JAMES TEMPLEMAN

LINDA SBBERT

Navy Center for Applied Research in Artificial Intelligence
Information Technology Division

ROBERT PAGE

ITT Systems & Sciences Corporation
Alexandria, Virginia

April 16, 1998

DUO QUAin^ iSSPEeTED *

Approved for public release; distribution is unlimited.

19980423 021

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave Blank) 2. REPORT DATE

April 16, 1998

3. REPORTTYPE AND DATES COVERED

Final Report

4. TITLE AND SUBTITLE

The Hobbes Software Architecture for Virtual Environment Interface Development

5. FUNDING NUMBERS

PN - 55-7029
PE-0602233N
TA - 03328 6. AUTHOR(S)

Kapil Dandekar, James Templeman, Robert Page,* and Linda Sibert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Research Laboratory
Washington, DC 20375-5320

8. PERFORMING ORGANIZATION
REPORT NUMBER

NRL/FR/5510-98-9876

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
800 North Quincy Street
Arlington, VA 22217-5660

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

*ITT Systems & Sciences Corporation
Alexandria, VA 22303

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

This report describes the design and use of the Hobbes system. This system is a framework for rapid interface development for
high performance graphics and virtual reality (VR) applications. The design of the system incorporates the following fundamental
features: object-oriented design, transparency of the underlying windowing system and graphics application program interface (API),
transparency of multiprocessing and shared memory systems, and portability and extendibility. The system also supports the follow-
ing capabilities: creation of real-time three-dimensional graphics applications; simultaneous, independent use of multiple I/O devices
(not limited to mouse and keyboard); and transparent, high throughput use of local or networked I/O devices. The reader of the report
will acquire an appreciation of the potential benefits of the Hobbes system as a tool for both development and research, particularly
concerning applications that require rapid prototyping of novel human-computer interaction (HCI) techniques. The reader will also
gain an understanding for how the Höbbes system architecture could evolve to include the functionality of a general virtual environ-
ment (VE) testbed. The current C++ implementation of the Hobbes system runs on Silicon Graphics workstations and makes exten-
sive use of the Performer application development environment.

14. SUBJECT TERMS

Virtual reality Evaluation tool
Application framework
Interactive graphics

15. NUMBER OF PAGES

38

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-550 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std 239-18
298-102

CONTENTS

EXECUTIVE SUMMARY E-l

1. INTRODUCTION 1

2. BASIC SYSTEM CONCEPTS 2

2.1 Real-Time Graphics API 2
2.2 Object-Oriented Design 3
2.3 Application Structure 3
2.4 Event Handling 4
2.5 I/O Devices 4

3. ARCHITECTURE COMPONENTS 5

3.1 System Manager 6

3.1.1 Applications 7
3.1.2 Windows 7
3.1.3 Views 7
3.1.4 Graphical User Interface 8

3.2 Communications Manager 8
3.3 I/O Devices 8

4. RELATED SYSTEMS 9

4.1 Object-Oriented Graphics Systems 9
4.2 Virtual Environment Systems 10

5. SHADWELL VIRTUAL ENVIRONMENT WALK-THROUGH EXAMPLE 11

5.1 Application Development 11
5.2 Novel I/O Devices 12

6. FUTURE ADDITION 13

7. CONCLUSIONS 13

8. ACKNOWLEDGMENTS 14

9. REFERENCES 14

iii

APPENDIX A — System Configuration File 15

APPENDIX B — Application Class Implementation 17

APPENDK C — Hobbes Application Example 23

IV

EXECUTIVE SUMMARY

This report describes the design and utilization of the Hobbes system. This system is a framework
for rapid interface development for high-performance graphics and virtual reality (VR) applications.
The design of the system incorporates the following fundamental features:

• object-oriented design,
• transparency of the underlying windowing system and graphics application program interface

(API),
• transparency of multiprocessing and shared memory systems, and
• portability and extendibility.

The system also supports the following capabilities:

• creation of real-time three-dimensional (3-D) graphics applications;
• simultaneous, independent use of multiple I/O devices (not limited to mouse and keyboard);

and
• transparent, high throughput use of local or networked I/O devices.

The reader will acquire an appreciation of the potential benefits of the Hobbes system as a tool
for both development and research, particularly concerning applications that require rapid
prototyping of novel human-computer interaction (HCI) techniques. The reader will also gain an
understanding for how the Hobbes system architecture could evolve to include the functionality of a
general virtual environment (VE) testbed. The current C++ implementation of the Hobbes system
runs on Silicon Graphics workstations and makes extensive use of the Performer application
development environment.

E-l

THE HOBBES SOFTWARE ARCHITECTURE FOR VIRTUAL
ENVIRONMENT INTERFACE DEVELOPMENT

1. INTRODUCTION

The Hobbes system is an object-oriented framework for interface development for high-
performance graphics and virtual reality (VR) applications. It is designed to facilitate the addition of
prototype input and output devices for the purpose of rapidly evaluating new human-computer
interaction (HCI) techniques. As part of this evaluation procedure, the Hobbes system supports the
instrumentation of the HCI technique. Instrumentation refers to the ability of the HCI developer to
view and record the actions of test subjects. The Hobbes system provides an object-oriented, modular,
development facility to fulfill these needs while providing relative transparency to the underlying
windowing system and graphics application program interface (API). Fundamentally, the system
incorporates the following features:

• object-oriented design,
• transparency of the underlying windowing system and graphics API,
• transparency of multiprocessing and shared memory systems, and
• portability and extendibility.

The system also supports the following capabilities:

• creation of real-time three-dimensional (3-D) graphics applications;
• simultaneous, independent use of multiple I/O devices (not limited to mouse and keyboard);

and
• transparent, high throughput use of local or networked I/O devices.

Hobbes was designed to solve the broad problem of efficiently developing computer programs to
test HCI techniques. Three-dimensional graphics and VR applications need to have a high frame rate
so that the user feels that these applications are truly interactive. They need to support commercial
and custom-made I/O device hardware and thus need a mechanism for ensuring that this support can
be quickly provided and modified. These kinds of systems also need to reuse existing code in an
efficient manner so that the application programmers can spend their time working on testing HCI
techniques rather than having to relearn intricate details of the underlying windowing and graphics
API for each new project.

A software package such as Hobbes specifically designed to prototype and evaluate HCI
techniques is useful to both researchers developing new 3-D interfaces and to human factors and
experimental psychologists studying the way people use and react to VR. As a tool for both
development and research, Hobbes supports the creation of both finished applications and
instrumented applications.

Manuscript approved November 11, 1997.

Dandekar et al

The current version of the Hobbes system contains the following components:

• Object-oriented System Manager class hierarchy used to rapidly prototype high-performance
graphics applications. This hierarchy allows these applications to be developed while providing
transparency to the underlying windowing system, graphics API, and system multiprocessing
capability.

• Object-oriented Device class hierarchy used to permit the development of new device drivers
for local or networked I/O devices using a wide variety of communications protocols.

• Device drivers supporting several commercial and custom-made input devices.
• The Communications Manager, a separate process that allows for independent, high

throughput use of local or networked I/O devices while providing transparency to an
underlying shared memory information transfer paradigm.

• Object-oriented graphics class hierarchy used to provide a library of graphics primitives while
providing transparency to the underlying graphics API.

2. BASIC SYSTEM CONCEPTS

The following sections describe the rationale behind the design of the Hobbes system. This
design primarily addresses the concerns of the application programmer. Specifically, the system is
designed to ensure that the application programmer does not have to "reinvent the wheel" with each
new project. While, in principle, this is the modus operandi of all computer programmers, the design
of the Hobbes system is such that low level graphics and window code is reused and project
development is as productive as possible. Please refer to Section 4 for a discussion comparing Hobbes
with some other existing systems.

Hobbes is not an independent, stand-alone system. It is a framework that utilizes the power of the
fundamental systems that it is built upon. It does not seek to totally isolate the application
programmer from these fundamental systems. Hobbes encapsulates the basic functionality of the
underlying systems so that the application programmer does not need to know the specific details of
the operation of these systems. The application programmer may still directly access the features of
these fundamental systems. Thus, the Hobbes system is more of an unobtrusive bookkeeper that
allows for uniform application design. The framework remains the same while the details of
implementation for the specific project are left to the application programmer.

2.1 Real-Time Graphics API

The Hobbes system is currently built upon the IRIS Performer application development
environment for creating real-time graphics applications on SGI workstations. IRIS Performer is the
development environment of choice for the kinds of applications that Hobbes is intended to facilitate.
Specifically, Performer supports many different types of database formats needed in the construction
of virtual environments (VEs). It also contains routines for the efficient storage and rendering of
these complex scenes while allowing the introduction of a transparent multiprocessing capability. It
should be emphasized, however, that Hobbes does not seek to provide wrapper code for all the
functionality possible in Performer. To do that would be both unnecessary and wasteful. Rather, the
purpose of the Hobbes system is to provide easy, transparent access to Performer functionality
(coupled with that of X-Windows, OpenGL, and that of I/O devices) while still allowing the availability
of the full power of Performer for programmers who are proficient using Performer. In other words,
choosing to use the Hobbes system does not require the application programmer to give up any of
the functionality of Performer. However, choosing Hobbes allows novice Performer users to gain

The Hobbes Virtual Reality Interface Development System

access to a large amount of Performer functionality with a smaller initial learning curve and thus
allows for the rapid prototyping of high-performance graphics applications.

2.2 Object-Oriented Design

One of the guiding principles in the design and utilization of the Hobbes system is object-
oriented programming. The object-oriented language used in the initial implementation of the
Hobbes system is C++. This language was chosen because it not only supports object-oriented
programming, but also because it is highly compatible with IRIS Performer. Past development
systems have an underlying object-oriented design, which is accessed and utilized in a nonobject-
oriented fashion. These systems are object oriented only up to the level at which the application
programmer uses the system. If the application programmer desires an object-oriented
implementation, the transition often requires much time and effort.

The Hobbes system has an object-oriented design extending from the lowest levels of the system
up through and including code written by the application programmer. This paradigm allows the
functionality of Hobbes' underlying systems along with many initialization tasks to be encapsulated.
If this low-level code needs to be modified, it is accessible; otherwise, this code is effectively
"hidden" from the application programmers so that they can start project development at a higher
level and minimize work time. This allows for a short project start-up time and allows the rapid
prototyping of Hobbes applications.

As with any effectively designed C++ system should the need eventually arise, the Hobbes
architecture could be maintained while using a different application development environment. For
example, the system could be moved from X windows to Windows NT by changing the window and
event-handling code. This would allow Hobbes application code to be relatively portable from one
platform to another.

2.3 Application Structure

Multiple windows can be created in the Hobbes system. Each of these windows can have
graphical objects displayed from multiple viewpoints. An application, in the terminology of the
Hobbes system, is a logical grouping of windows so that each individual group performs some
overall, well-defined task. The Hobbes system is capable of simultaneously running multiple
applications simply through the addition of a line in the system configuration file (discussed in
Appendix A). It may be easier to think of applications as "plug and play" modules, with each module
capable of multiple windows on screen, that may perform their given purpose either in standalone
operation or with other tasks simultaneously.

The following example illustrates two ways in which the same program may be implemented in
the Hobbes system. One approach has the program written as a single application with multiple
windows, whereas the other consists of a group of applications with a small number of windows each.
Either of the approaches outlined in the paragraphs below could be used by the application
programmer. However, the discussion is included to present both sides of the issue from the
standpoint of the Hobbes system and illustrates how instrumentation can be implemented in a
versatile way.

Consider a maneuvering task over a virtual landscape in which a custom-made input device is
used. This task consists of several different windows. One window shows a graphical representation of
the terrain map. Another window shows a schematic of the custom-made input device, while the final

Dandekar et cd.

window shows an X-Y plot of the data received from individual sensors on the custom-made input
device. Conceivably, this could all be considered to be one application or task when broadly thinking
of all of the windows grouped together as the "Maneuvering Task with the Custom-Made Device."
However, there is another way of considering this problem made possible through the use of the
Hobbes system that allows greater flexibility.

All of the windows mentioned above may not always be required. Considering the situation
above, the input device schematic and X-Y plot can be thought of as instrumentation functions only.
If the terrain map window was used to drive a head mounted display, the window would require as
high a graphics throughput as possible. A conventional solution to this problem, such as that in the
first method, would be to comment out the code for whatever group of windows that is not being used
at any given moment and recompile the program. This has several disadvantages. First, the input
device data in conventional programs are usually collected specifically for one of the windows with
the information being passed along to the other two. The Hobbes system can let you bypass this
difficulty by breaking the above simulation into two applications. In this method, each application in
the Hobbes system has independent access to all of the input devices. Another disadvantage of the
first method's conventional solution is that it requires recompiling. When pilot studies are being run
while further application development is still going on, this can be inconvenient and wasteful. Setting
up the above scenario as two applications-one with the terrain overview (single window application)
and one with the instrumentation windows-solves these problems. The Hobbes configuration file
(discussed in Appendix A) allows these subsystems to run individually or together easily without
having to recompile. Furthermore, these individual instrumentation applications are highly portable
from one task to another.

2.4 Event Handling

The Hobbes system supports a structured system for event handling that relies on the
specification of application-programmer-defined callbacks. Application programmers can "register"
event handlers with the applications that they write. These event handlers can be specified for high-
level events sent to applications, or for low-level events sent to individual windows. By design, these
programmer-defined event handlers are given access to the public interface of the application/window
in which the event occurred.

In the current version of the Hobbes system, the X Window System is used to provide a
mechanism for event handling and low-level window management. Performer supports the use of X
event-handling and its own internal event-handling system. Hobbes uses XEvents nearly exclusively
because it allows greater flexibility in communicating between any kind of window, Performer or
otherwise. For example, inter-application communication is facilitated through the use of X client
message events. In addition, the handshaking needed for the transfer of data between applications and
I/O devices is facilitated through X client message events.

In the future, a different windowing system could be supported using the Hobbes architecture.
All X-specific routines required by the system are localized in the C++ code hierarchy and could be
replaced with routines specific to another event handling system (e.g. Windows NT).

2.5 I/O Devices

A major design feature of the Hobbes system is to provide independent, easy access to input
devices. Input devices are not limited to just the mouse or the keyboard. The Hobbes system contains
a C++ device hierarchy used to develop interface classes for novel input devices. These input device

The Hobbes Virtual Reality Interface Development System

classes can then be used to produce Hobbes device drivers, which provide data to any number of
Hobbes applications requesting data from them. Using the Hobbes system can provide a uniform
interface to any number of custom-made I/O devices, which will greatly decrease the amount of time
it takes to develop novel hardware with new applications.

Hobbes device drivers are separately running processes whose sole function is to transfer data to
and from a given I/O device. Device driver processes transfer data to or from a given location in
shared memory where any number of Hobbes applications can readily and independently access it.
The handshaking required to initiate this shared memory connection is facilitated through the use of
X client message events.

3. ARCHITECTURE COMPONENTS

The running system operates on multiple levels in several processes. On the top level, in the main
process, is the System Manager, which handles applications, windows, a graphical user interface
(GUI), and the relaying of events. Below the System Manager are Applications which can contain
any number of Windows. Each window can similarly contain any number of Views. Processing time
for both applications and views is handled through the use of callback routines executed by the
System Manager either sequentially or through the use of the system multiprocessing capability.
Figure 1 illustrates this structure.

f

SYSTEM MANAGER

APPLICATION REGISTRY

)
APPLICATION APPLICATION APPLICATION

/ I \ : J PRE/POST ± EvENT

FRAME T HANDLER

WINDOW

I V
VIEW

EVENT

HANDLER

/ I V I APP ± CULL

CALLBACK ▼ CALLBACK
DRAW

CALLBACK

Fig. 1 - System Manager hierarchy

Dandekaret cd.

In a separate process, the Communications Manager sets up the interaction through shared
memory between any number of individual input device processes and the applications managed by
the System Manager. The structure of the Communications Manager (illustrated in Fig. 2) will also be
discussed in greater detail later.

COMMUNICATIONS

MANAGER

X-EVENT >r ^ X-EVENT

DEVICE

DRIVER
APPLICATION

t
SHARED

MEMORY

DEVICE

Fig. 2 - Communications Manager

3.1 System Manager

The System Manager is the heart of the Hobbes system. It handles all basic system and Performer
initialization, oversees the storage and dynamic allocation of applications, and contains routines for
distributing XEvents to applications and windows as needed. The System Manager also contains the
main program loop that allocates time for individual application processing, event handling, and
graphics rendering.

In the main loop of the System Manager process, the first step is to sequentially allocate pre-
frame rendering time to individual applications for application-specific processing. Next, channel-
specific processing and rendering is handled through the use of multiprocessing. After that,
individual applications are allocated post-frame rendering time for further application processing.
Finally, the graphical user interface is updated and events are pulled off the event queue of the
underlying window manager (e.g., X) and distributed to application-specific callback routines. Each
application-specific callback routine may further choose to distribute the event along to individual
windows contained within the application.

Note that the System Manager does not deal directly with individual applications. The
Application Registry class parses application configuration files and oversees the actual allocation of
Performer resources to any given application. The Application Registry is a class and an object of this
class is contained in the System Manager.

The application programmer should have very little need to directly modify or use the System
Manager. A notable exception to this rule is that the System Manager may be directly invoked to
query the overall system time or any other system parameter contained within the System Manager

The Hobbes Virtual Reality Interface Development System

class. Another exception to this rule involves the use of the routine that informs the System Manager
that an application has signaled for system termination. This routine is most often used in event-
handler code.

3.1.1 Applications

The Application class is an abstract base class from which specific application classes are derived.
The Application class has basic routines defined for the creation and management of windows and
viewports, event handling, and pre- and post-frame routines that are accessed by the Application
Registry should the application be registered. It also has member functions that define the condition
through which the application may be exited and the function to execute when the application exits.

Since the Application has pure virtual functions, an object of type Application cannot be
declared. Derived applications should contain specific data and methods relevant to each particular
application. With this approach and with the nature of the supplied callback routines, there should be
no need for global variables. This discussion is not meant to imply that there can only be a single
level of inheritance by all application programmer defined applications. For large systems,
application programmers can use object-oriented programming to develop a hierarchy of objects
derived from the Application abstract base class.

Individual windows inside of an application all share the same application data and can
communicate with each other in a straightforward manner. Applications are enscapulated; they do not
share data with one another directly but rather rely on event sending through the System Manager to
share information and communicate. This modular "plug and play" aspect allows for greater run-time
flexibility and ease of development.

For a detailed explanation of the implementation of the Application class in the current version
of the Hobbes system, refer to Appendix B.

3.1.2 Windows

The Window class is responsible for storing all information regarding a single window on the
screen. In the current implementation of Hobbes, the main component of this class is the Performer
pfPipeWindow. While the Hobbes system design philosophy seeks to hide the details of
implementation to allow a quick start-up time, the full functionality of the Performer window object
can be accessed by the application programmer if needed. In a completely analogous manner, the
functionality of X-Windows can be accessed through the Performer window object. Methods and data
also exist to perform event handling (assuming the specific application in question passes events
down to the window level), coordinate with X, and handle as many Views as the application
programmer specifies.

3.1.3 Views

In the terminology of Performer, a View is essentially a pfChannel that includes scene
information. Specifically, information about the viewing volume of the scene is stored along with
low-level callback routines for drawing and culling. This class has some very specific default actions
to perform when setting up a View, especially when all that is specified in the View initialization is
model file name. In this case, a default viewing volume is set up that can easily be modified through
manipulation of the Performer pfChannel object inside of this class.

Dandekar et cd.

3.1.4 Graphical User Interface

Every program developed in the Hobbes system has a single GUI associated with it. This GUI can
have widgets (buttons, sliders, dials, etc.) added to it by each application managed by the System
Manager. The System GUI informs the owner application of widget activation through the use of X
client messages. Thus, any application that adds a widget to the GUI should define a client message
handler for itself to handle widget activation/manipulation.

The current version of Hobbes only supports a primitive method for adding widgets to the
System GUI. The application should define the position and size of its GUI widgets relative to a
current reference point stored in the System GUI. Thus, the System GUI does not explicitly enforce
the fact that widgets should not overlap. Future releases of Hobbes may provide some form of
GUI/Application editor.

3.2 Communications Manager

The Communications Manager is the process responsible for registering applications and devices
and transmitting data between applications and device driver processes. In the registration process for
an input device, applications specify the type of data to be collected while device driver processes
specify the type of data provided. The Communications Manager then handles the initial matching of
applications seeking a particular type of data with the input device process providing the given data
type. The transfer of data between application and device driver is facilitated through the use of
UNIX System V shared memory. The Communications Manager continues to mediate the
relationship between application and device driver during the execution of the program to ensure that
either the application, in the System Manager process, or device driver process knows of any change
in status (e.g., exit, crash, etc.) of the other. Through the use of this approach, all applications in the
System Manager can have robust, simultaneous, and independent access to as many input devices as is
required.

3.3 I/O Devices

There are two relevant constructs to examine when considering the operation of input/output
devices. The first is the Device, a class containing the methods and data necessary to initialize and
interact with the I/O hardware. The second is the Device Driver, an individual process that uses a
specific Device object to read data from an input device and store the data in shared memory so that
applications may access it. A device driver for an output device would take data stored in shared
memory by applications and use the Device class to transfer the data. It is important to realize that
this is not a UNTX kernel level driver communicating directly with hardware but, rather, a user process
level driver.

Hobbes device drivers make use of existing low-level drivers (serial connection, socket, etc.). For
the convenience of the application programmer, Hobbes provides a library of these UNIX level
drivers in a C++ class hierarchy (illustrated in Fig. 3). This hierarchy provides support for many
different kinds of communications links in a uniform manner. This means that there is a uniform
manner in which the application programmer accesses all devices, with commands such as "open,"
"close," "read," and "write." The details of the implementation of each particular kind of
communications link is effectively hidden from the application programmer through this C++
implementation. Application programmers can implement a particular kind of device by deriving
their Device class from the appropriate communications link in the hierarchy.

The Hobbes Virtual Reality Interface Development System

Fig. 3 - I/O device hierarchy

4. RELATED SYSTEMS

The Hobbes system is specifically designed to facilitate the implementation, refinement, and
evaluation of new interaction techniques for use in VEs. This makes it hard to compare the current
implementation of Hobbes with existing VE development systems. Most VE development systems
emphasize tools for constructing animation-rich, complex VEs while maintaining a high level of
graphics performance. However, the object-oriented framework of the Hobbes system was designed
to grow to include the functionality of conventional VE development systems. This extension is
currently being implemented.

There are several factors to consider when comparing Hobbes to commercially available
packages. The first major issue is that commercial packages are proprietary and cannot be readily
modified to meet the needs of the application programmer. They may not be flexible enough to
allow the addition of commercial and custom I/O devices and the smooth integration of novel HCI
techniques. They also may not allow the addition of data gathering and visualization tools
(instrumentation) at different levels throughout the code. The easily accessible object-oriented
structure of the Hobbes system, along with the included class libraries, were designed to encourage
and support these kinds of modifications. Hobbes supports the development process and provides a
framework for complete VE systems.

Related existing systems fall into two main categories: object-oriented graphics systems and
complete VE development systems. These systems are discussed in greater detail in the following
sections.

4.1 Object-Oriented Graphics Systems

Object-oriented graphics systems deal with graphics structures in much the same manner as the
Hobbes system. Specifically, they make the transition from traditional methods of graphics to
complete object-oriented programming implementations. For example, the GRaphics using Object-

10 DandekaretaL

Oriented Programming (GROOP) system, developed by Koved and Wooten [6], follows the same
end-to-end object-oriented design methodology that is present in the Hobbes system. The GROOP
system is designed to help programmers who know object-oriented programming but may not
necessarily know about graphics programming. This idea of helping programmers through the use of
object-oriented design is also a central theme in the Hobbes system. The current implementation of
the Hobbes system contains a similar kind of object-oriented graphics hierarchy meant to aid
programmers by providing a level of abstraction to the functionality of OpenGL.

For the Hobbes system to become a complete VE system, the object-oriented graphics hierarchy
needs to be further developed. This involves the addition of an object-oriented system that
enscapulates the geometrical and behavioral properties of objects in VR. A system that is designed to
fulfill this goal is the Object Modeling Language (OML) developed by Green and Halliday [5]. OML
is a procedural programming language built on the MR Toolkit [8], discussed later, that is graphics-
language independent and allows for 3-D object geometry and behavior specification. A similar
system, developed at Brown University [9], goes one step further and integrates modeling, animation,
and rendering into a single framework. While in concept, the Hobbes system could use modeling
languages such as these, the finished language would have to fit the end-to-end object-oriented
design paradigm of the Hobbes system.

4.2 Virtual Environment Systems

Another class of system that the Hobbes design philosophy can be compared to is that of
complete VE systems. One system developed at Xerox Palo Alto Research Center [7] relies on a
system called the Cognitive Coprocessor. This Cognitive Coprocessor is a user interface architecture
meant to support multiple, asynchronous data providers while providing for smooth animation. The
concepts used by this system are. present in many other VE systems. The design of the
Communications Manager in the Hobbes system is analogous to this Cognitive Coprocessor
architecture.

The VB2 architecture, developed by Gobbetti and Balaguer [4], is similar to Hobbes because
they are both designed for the rapid prototyping and testing of novel interaction techniques. They
both also provide a basis for the construction of applications. VB2, built in the Eiffel object-oriented
programming language, operates on a Decoupled Simulation Model that has device, application, and
animation functions in separate processes communicating with standard inter-process communication
(DPC) methods. This multiprocessing capability is similar to the combination of the Communications
Manager and System Manager multiprocessing structure of the Hobbes system.

Another system is the MR Toolkit [8], developed at the University of Alberta. This library of
subroutines is portable and has many applications including the building of VEs. It has support for a
wide range of input and output devices and provides a C, C++, and Fortran 77 API. Unlike the
Hobbes system, MR Toolkit does not emphasize rapid prototyping [3] nor does it contain an end-to-
end object-oriented design. However, the MR Toolkit does support distributed computing. While the
Hobbes system does not explicitly support distributed computing, the use of the Communications
Manager, using distributed processors abstracted as input devices, can provide some of the same
functionality. A more formal implementation of distributed computing in the Hobbes system is
necessary for it to become a complete VE development system.

The Virtual Environment Operating Shell (VEOS) system, developed by Bricken and Coco [2], is
another distributed VE construction system. In this system, unlike Hobbes, it is possible to replicate
procedural or object-oriented programming techniques. This system also has a virtual entity

The Hobbes Virtual Reality Interface Development System 11

management system like that described in Section 4.1. However, this system is no longer supported
[3].

The I/O device management paradigm in the Hobbes system is very similar in concept to those of
existing VE development systems. Hobbes, however, is fairly unique when it comes to the strong end-
to-end object-oriented design of the system. This object-oriented design extends from the lowest
levels of the system up through and including the code developed by the application programmer.
These concepts can be continued in Hobbes with the addition of a virtual entity management system
and support for distributed computing.

5. SHADWELL VIRTUAL ENVIRONMENT WALK-THROUGH EXAMPLE

The preceding sections have described the design philosophy and structure of the Hobbes
system. In this section, a specific example is given to show how the Hobbes system could be used to
develop a VE walk-through system. This first major application of the Hobbes system was the
redesign of the Ex-USS Shadwell simulation initially developed by the Advanced Information
Technology Branch, Code 5580, and the Navy Technology Center for Safety and Survivability, Code
6180, at the Naval Research Laboratory (NRL); and LCDR Tony King of the Naval Computer and
Telecommunications Station.

This Ex-USS Shadwell simulation was originally developed to study shipboard damage control.
The simulation is now being used by the Interface Design and Evaluation Section, Code 5513, to
study locomotion techniques for VE walk-throughs. Novel input devices are being designed and
constructed as part of this research project. The overall purpose of the study is to compare three
different techniques for maneuvering in a VE. The methods compared are travel where looking (head
directed), travel where pointing (hand directed), and travel through gestural walking.

The original Shadwell code was procedural and was developed for a very specific purpose. The
need for more flexibility in this code was clearly identified. The Hobbes system is well suited to the
requirements of this project for the following reasons:

• The C++ structure of the Hobbes system and applications allow greater flexibility and
extendibility for future development.

• The multi-application and instrumentation capability, along with the I/O device hierarchy of
the Hobbes system, allows for rapid input device development and iterative refinement.

• The "plug and play" nature of input device drivers allows for a rapid insertion of different
device controllers and HCI techniques.

• Minimal knowledge of X and Performer will be required for future development because
many X and Performer details are handled transparently by the system.

Since this project is fairly complex, code will not be provided to illustrate how to develop this
specific application in the Hobbes system. However, Appendix C gives a comprehensive example of
writing a simple Hobbes graphics application.

5.1 Application Development

The first step in the redesign of the Shadwell simulation under the Hobbes system was to consider
the general structure of the necessary set of Hobbes applications. A novice programmer might be
inclined to derive a "Shadwell_Application" class off the Application abstract base class that contains

12 Dandekaret cd.

everything. However, this solution does not make effective use of the Hobbes design paradigm, nor
does it consider the critical issue of code reuse.

A more effective solution is to have multiple Hobbes applications. Some of these applications are
derived directly off the Application abstract base class for instrumentation while others drive the
primary display. For example, graphics windows were created for instrumentation applications such
as graphs of sensor output values and pictorial representations of various novel input device operation
These instrumentation applications were used as diagnostics during the development of the novel HCI
techniques. They were also used as modular, supplemental illustrations of the final system. The
structure of Hobbes allow these various components to be easily configurable and removable in the
completed system.

Rather than have a single main Shadwell walk-through application derived directly off the
Application abstract base class, several levels of inheritance were used. Anticipating the need for
future VE walk-throughs, a Virtual Walk-through class was derived from the Application abstract base
class. This Virtual Walk-through class contained general viewing routines for navigating through a
generic model and was implemented as an abstract base class with virtual functions for the I/O
subsystems. A more task specific application for the Shadwell Virtual Walk-through was derived from
this class. This Shadwell Virtual Walk-through class implemented the elements of a VE walk-through
specific to the model and HCI techniques used in the study. This general approach allows a large
amount of code reuse making future VE walk-through projects easier. This aspect of the Hobbes
design philosophy can be expanded upon in future releases to turn the system into a more well-
rounded VE development system.

5.2 Novel I/O Devices

The application programmer working on the Shadwell VE Walk-through project needs to be able
to rapidly prototype novel input devices. These devices consist of pressure sensors for gestural
walking recognition, position sensors for avatar update information, and button information from a
hand controller. Furthermore, these input device systems are continually being developed and refined
so code flexibility is important. To develop these systems, the application programmer first needs to
consider the basic mechanism through which data will be transferred (serial connection, sockets,
tcp/ip, etc.). From this, the programmer uses the Hobbes I/O device hierarchy to develop a Hobbes
device definition. Specifically, the application programmer derives the Device Definition class from
the applicable class in the I/O device hierarchy. Using the Device class, the programmer then wrote a
Hobbes Device Driver. Recall that this is a separate process that collects data using the Device class
and places this data into shared memory. This device driver used code from a Hobbes library to
interact with the Communications Manager.

The Hobbes design philosophy allows several convenient options to be added into the system.
These conveniences are available because of the method in which input device drivers and
applications register with the Communications Manager. Recall that when a device driver registers
with the Communications Manager, the type of data available is included with the registration
information. Thus, the device drivers for each of the three techniques that used to control
maneuvering are written to supply information of the same type. Which technique is used is then
determined by which device driver the user invokes. From the application's perspective, the change is
completely transparent and the true "plug and play" nature of Hobbes I/O devices is realized.
Alternatively, the device drivers could have been written to register with the Communications
Manager using different data types. This would have allowed the choice of which technique to use to
be determined at the application level. The first option is preferable in the context of testing different

TheHobbes Virtual Reality Interface Development System 13

HCI techniques because it allows for rapid switching between techniques without recompilation
during an experiment.

6. FUTURE ADDITION

The future direction of Hobbes involves extending the system into a complete VE development
testbed. Several readily apparent additions can be made to the system in order to facilitate this
extension. The first is the addition of an object-modeling language such as the one developed by
Green and Halliday. Ideally, the object modeling language in the Hobbes system would provide a
mechanism through which the 3-D object geometry of a VE could be specified. Furthermore, this
extension would also include a facility for the specification of object behavior and characteristics
both in terms of animation and interactive response.

Another planned extension to the Hobbes system is the addition of a Human class. This class
would enscapulate the functionality of translating raw user input into virtual motion based upon a
library of possible movement models. In addition, it would handle matters such as view updates,
collision detection, and interaction with the environment. Furthermore, the class would provide a
mechanism through which avatars could be added. A possible implementation of this class in the
Hobbes architecture would be to represent the body of the human as a collection of specialized
nodes. Each node would have a different function such as a "Head" node, which is tied to a particular
Hobbes view, or a "Collision" node, which determines the bounding volume of the human for
collision detection purposes. The Human class itself would be an abstract base class; descendent
classes would define the particular geometry, motion model, and general characteristics of a particular
kind of human. These specialized human classes would be used to provide a "wing man" view of a VE
or define a realistic human avatar for interaction in the VE.

Another extension that would enhance the usefulness of the Hobbes system as a VE development
testbed is support for distributed simulations. The Communications Manager concept in the current
Hobbes system makes the addition of this support fairly transparent to the overall system architecture.
This facility would allow multiple virtual avatars from remote machines to interact in a single VE.
Such a system would be realized by having an output device driver of a running Hobbes system
transmit data over a high-speed network to an input device driver of another running Hobbes system
on a remote machine. This would allow several avatars to interact with one another in the VE.

7. CONCLUSIONS

The Hobbes system provides many benefits for application programmers. The system provides a
low start-up time to programmers not familiar with the underlying graphics and windowing API.
From the lowest levels of the system all the way through and including the code developed by
application programmers, Hobbes is an object-oriented system. For this reason, the system
encourages strong object-oriented design along with code reuse from a development standpoint. The
object-oriented design could also allow the underlying graphics and windowing API to be changed
while retaining the modular system structure and application code.

Hobbes also provides a uniform interface to many different kinds of I/O devices. This interface
along with the information transfer paradigm of the system allows simultaneous, independent, and
high throughput use of local or networked devices. These features of the Hobbes system make it ideal
for both rapid prototyping of different HCI techniques and the instrumentation of high-performance

14 DandekaretaL

graphics and VR systems. Furthermore, as discussed in Section 6, many possibilities exist in the
current Hobbes architecture for expanding the system into a general VE testbed. The Hobbes system
is a valuable tool for both research and development.

8. ACKNOWLEDGMENTS

We especially thank Ankush Gosain and Jennifer Flanagan for their invaluable contributions to the
design and implementation of the Hobbes system. We also thank Jim Durbin and the Virtual Reality
Lab of NRL's Advanced Information Technology Branch. This work is sponsored by the NRL Base
Multi-Mode Interaction Project IT-34-1-02, work unit 6481. It was originally part of the Decision
Support Technology block (RL2C) within the ONR Exploratory Development Program, which is
managed'by Dr. Elizabeth Wald. It is now a part of the NRL Base Program in Human-Computer
Interaction managed by Dr. Alan Meyrowitz.

9. REFERENCES

1. P. Appino, J.B. Lewis, L. Koved, D. Ling, D. Rabenhorst, and C. Codella, "An Architecture for
Virtual Worlds," Presence 1(1), 1-17 (1992).

2. W. Bricken and G. Coco, "The VEOS Project," Presence 3(2), 111-129 (1994).

3. Naval Air Warfare Center (Orlando) Report 96-002,"Software Design of a Virtual Environment
Training Technology Testbed and Virtual Electronic Systems Trainer," S.W. Davidson (1996).

4. E. Gobbetti and J. Balaguer, "VB2 An Architecture for Interaction in Synthetic Worlds,"
Proceedings of the ACM Symposium on User Interface Software and Technology, November
3-5, 1993, Atlanta, GA, pp. 167-178.

5. M. Green and S. Halliday, "A Geometric Modeling and Animation System for Virtual
Reality," Communications of the ACM 39(5), 46-53 (1996).

6. IBM Research Division Report RC 18732, "GROOP: An Object-Oriented Toolkit for Animated
3-D Graphics," L. Koved and W. Wooten, 1993.

7. G. Robertson, S. Card, and J. Mackinlay, "The Cognitive Coprocessor Architecture for
Interactive User Interfaces," Proceedings of the ACM Symposium on User Interface Software
and Technology, November 13-15, 1989, Williamsburg, VA, pp. 10-18.

8. C. Shaw, M. Green, M. Liang, and Yunqi Sun, "Decoupled Simulation in Virtual Reality with
the MR Toolkit," ACM Transactions on Information Systems 11(3), 287-317 (1993).

9. R. Zeleznik, D. Conner, M. Wloka, D. Aliaga, N. Huang, P. Hubbard, B. Knep, H. Kaufman,
J. Hughes, J., and A. van Dam, "An Object-Oriented Framework for the Integration of
Interactive Animation Techniques," Computer Graphics 25(4), 105-112 (1991).

Appendix A

SYSTEM CONFIGURATION FILE

A system configuration file is used in the Hobbes system to specify various system parameters and
determine what applications should be loaded at run-time by the system. The default system configuration
file is the .hobbesrc file. However, to specify a new configuration file, simply specify the name ofthat file
in the command line of the hbLoader command. For the most part, all values specified in the system
parameter section have default values that can be overridden in the system configuration file. This file is
processed by the C++ preprocessor so C++ include files and commenting may be used. Here is what a
sample file might look like:

// Hobbes System Default Configuration File
#include "Performer/pf.h"
#include "hbAppsList.h"

#define TRUE 1
#define FALSE 0

beginConfig
beginSystem

numPipes 1 //
useSync TRUE //

//
phaseMode PFPHASE LOCK //
frameRate 60.0
videoRate 60.0
guiOrigin 0 0 //
guiSize 400 400
beginFilePath

data

Number of pipes in the system
Indicates whether or not synchonization
should be used to attain given frame rate.
Frame rate management parameters

Graphical User Interface parameters

// File path in which to search for model

. /textures
/usr/share/Performer/data
/usr/demos/models
/usr/demos/data/fit

endFilePath
endSystem

beginAppList
App SPACESHIP Spacel spaceship.hb
App EARTHSKY Eskyl earthSky.hb

endAppList
endConfig

15

16 , Dandekar et al.

System specific values are given in the begin/end System section of the file. In the begin/end
AppList section, application programmer defined applications may be specified. Applications that may
be thought of as modules may each be run independently or with other modules at the application
programmer's discretion. In the above example, two different applications are invoked. The App
command tells the file parser that a new application is to be added. The next parameter is a unique
constant associated with the application defined in hbAppsList. h. The following string is a unique
name associated with that particular invocation of the application, since multiple applications of the same
type can be started simultaneously, that name is used to distinguish them. Finally, the last parameter is the
application configuration file name. The method in which this file is parsed is left completely up to the
application programmer in the application member function par seFile. If no application configuration
file is required, simply provide a dummy file name and leave the application's parseFile member
function blank.

Appendix B

APPLICATION CLASS IMPLEMENTATION

The Application abstract base class is defined like this:

// Class definition
class hbApplication

{
public:

// Constructors
hbApplication();
hbApplication(char *newName, char *appFile);

// Destructors
-hbApplication{) ;

// Trigger application exit
void setExitFlag() ;
// Check for application exit
int getExitFlag() ;

// Pure virtual functions that should be defined by derived classes
virtual void startup() = 0; // Start up for each application
virtual void parseFile() = 0; // Parse application datafile
virtual int exitCondFunc() = 0;

// Function to check for application exit
virtual void exitFunc() = 0; // Execute upon application exit
virtual void preFrame() = 0;

// Pre-frame routine (access by Application registry)
virtual void postFrame{) = 0;

// Post-frame routine (access by Application registry)

// Window handling routines
// Allocate a window for the application
int allocateWindow(char *WinName);

// Initialize a window in the application
int initWindow(char *WinName, int whichPipe,

int originX, int originY, int sizeX, int sizeY);

17

18 Dandekar et al.

int initWindow(char *WinName, pfPipeWindow *addWindow);

// View handling routines

// Event handling routines
void addEventHandler(int event_type,

void (*ptr)(hbEventHandler Sevent, void *data));
int removeEventHandler(int event type) ;

// Communications manager routines
void allocateDevice(int dataType, hbAppWindow *devWindow,

size_t bufferSize);
int initDevice(int dataType, key_t deviceKey);
void *getData (int dataType);

private:
... Internal data

} ;

Several notable observations can be drawn through examination of this Application base class. The
first is that this class is an abstract base class, that is, it contains pure virtual functions. The existence of
these functions alone implies that objects of this type cannot be declared. Only objects based upon
descendants of this type may be declared if these pure virtual functions are defined as regular C++
member functions.

From the constructor of this class, it should be noticed that all applications have a name and file
name associated with them. If the constructor without parameters is for some reason used, a default name
and file name will be assigned to the application. Application constructors are called by the Application
Registry in the System Manager. Please note that there is a distinction between what initialization code
should go in the application constructor and what code should go in the startup subroutine. The need
for this distinction is dictated by the general structure of Performer programs. All Performer programs
start off with initialization of objects that will be placed into shared memory that will subsequently be
visible to all other processes in the program. These multiple processes are created at the invocation of the
pf Conf ig command (note: the "pf' prefix indicates a Performer routine). After this point, data may not
be added to shared memory, but graphical objects may be initialized and opened for later processing in
the main loop of the program. In other words, the space for all Hobbes objects must be allocated in the
constructor of the objects and executed before the pf Conf ig. The actual act of initialization of these
objects must occur in the startUp member function.

The application name should be a distinct name given to each application. The application file name
may be used for application-specific configuration information. The parsing of this file should be handled
in the parseFile member function in the application. The actual format of the file and the method of
parsing is left up to the application programmer. It should be noted that should an application

The Hobbes Virtual Reality Interface Development System 19

configuration file not be required, a dummy file name can be provided and the parseFile member
function can be left blank.

Also note that each application has an exit flag. When the constructor for an application is called, the
exit flag is initialized to zero. At any point inside of the code of the application, this exit flag can be set.
In this event, the System Manager will know that the application is ready to terminate execution. Prior to
removing this application from its application list in the Application Registry, the exitFunc of the
application is invoked. This is user-defined code, which needs to be written for each application. In this
routine, various shutdown tasks should be called for the application followed by the command: delete
this. This is required to free the memory for the application and call the application destructor. An exit
flag may also be set for the System Manager in this exitFunc routine to signify that the entire system
should be terminated with the termination of the application in question. If this flag is not specifically set
in the System Manager, the application with the set exit flag will be stopped, while all other applications
managed by the System Manager will continue operation.

A member function related to the discussion of terminating applications is the exitCondFunc
member function. This function is called every time that the application is given time to execute. Based
upon the criteria placed within it by the application programmer, if the function returns zero, application
operation will continue unhindered. However, if the function returns a non-zero value, the exit flag for the
application will be set and application operation will be terminated through the actions mentioned in the
preceding paragraph.

The preFrame and postFrame member functions refer to code executed prior to and after the
rendering of the current frame. This code is called for each application at the appropriate time in the main
loop of the System Manager, using the application list stored in the Application Registry.

The use of all of these member functions would be best demonstrated through the use of a specific
example that is given in Appendix C.

Once the class is written, it must be integrated with the existing code. This is done in three steps:

1. Edit the file hbAppsList. h and define a name to be associated with a given application with a
unique integer value. For example, a sample hbAppsList. h file might look like this:

// hbAppsList.h - Application List header file
// Kapil Dandekar
// dandekar@itd.nrl.navy.mil
// Interface Design and Evaluation - Code 5513
// Navy Center for Applied Research in Artificial Intelligence
// United States Naval Research Laboratories

#define SPACESHIP 1
#define EARTHSKY 2

In the example shown above, for a new application class of type MyApplication, the
following line could be added to the file.

#define MYAPPLICATION 3

20 Dandekar et al.

2. Edit the file hbAppReg.C and add an #include directive to include the header file
containing your new application header file. Also, edit the function void
hbApplicationRegistry: : startApplication and add a case statement to invoke your
new application. For example, hbAppReg. C might look something like this before editing:

// hbAppReg.C - Application Registry class definition file
// Kapil Dandekar
// dandekar@itd.nrl.navy.mil
//■ Interface Design and Evaluation - Code 5513
// Navy Center for Applied Research in Artificial Intelligence
// United States Naval Research Laboratories

// General Include files
#include <stdio.h>

// Hobbes Include files
#include "hbAppReg.h"
tinclude " hbAppsList.h"

// Application Include files
#include "spaceShipapp.h"
#include "earthSkyapp.h

void hbApplicationRegistry::startApplication(int appCode,
char *appName, char *appFile)

{
hbApplication *myApp;
switch(appCode)

{
case SPACESHIP:

myApp = new SpaceShipApp(appName, appFile);
myApp->parseFile();
addApplication(myApp);

break;

case EARTHSKY:
myApp = new EarthSkyApp(appName, appFile);
myApp->parseFile();
addApplication(myApp);

break;

default:
cout « "Application code "

« appCode « " undefined!" « endl;
break;

The Hobbes Virtual Reality Interface Development System 21

For the example mentioned above, add the line #include "MyApplication.h" in the
Application Include Files section. In the startApplication member function, add the lines:

case MYAPPLICATION:
myApp = new MyApplication(appName, appFile);
myApp->parseFile() ;
addApplication(myApp);

break;

3. Finally, if you desire to load the application at program run-time, edit the System Configuration
File and add the appropriate line to the application list. For example, if the file looks like this:

// Hobbes System Default Configuration File
#include "Performer/pf.h"

tinclude "hbAppsList.h"

#define TRUE 1
tdefine FALSE 0

beginConfig

beginSystem
numPipes 1
useSync TRUE
phaseMq.de PFPHASE_LOCK
frameRate 60.0
videoRate 60.0
guiOrigin 0 0
guiSize 400 400
beginFilePath

./textures
/usr/share/Performer/data
/usr/demos/models
/usr/demos/data/fit

endFilePath

endSystem

beginAppList
App SPACESHIP Spacel spaceship.hb

endAppList

If the new application is to replace the application currently listed, comment out or delete the current
entry in the begin/end AppList section and add a line like the following:

App MYAPPLICATION TestApp test.hb

22 Dandekar et al.

The "App" in that line tells the file parser that a new application is being added. The
MYAPPLICATION is the flag defined in hbAppList. h and is used in hbAppReg. C. The TestApp is
a name given to that particular invocation of application MyApplication (multiple invocations with
unique application names are possible). The test. hb is a configuration file for the application that is
parsed by the parseFile member function in the application class. If no application configuration file
is required, simply provide a dummy file name and leave the parseFile member function empty.

Appendix C

HOBBES APPLICATION EXAMPLE

Now we describe in detail how a simple application using the Hobbes system can be written. This
application draws two spaceships in a single window with each in their own view. This window has event
handlers defined to handle keyboard input and mouse button presses. The user input simply changes the
scaling of the animated spaceships in the window. These event handlers are also used by the application
to interface with the System Manager GUI and with the Communications Manager. The application also
has another window that can be used to provide another place where mouse input can be applied to the
spaceship window. The window with the spaceships has application callbacks defined to allow the ships
to rotate.

This small application is meant to illustrate how the Hobbes system can be used to quickly prototype
a simple graphics application that relies on mouse input. Mouse input was chosen for illustration
purposes since it is universally available on today's graphics workstations. Using traditional techniques,
the development of this simple application would require a large amount of time for a beginner
programmer because details of the underlying windowing and graphics API would have to be handled.
Hobbes alleviates this large start-up cost and allows study of the HCI technique to take place as soon as
possible.

The header file for our sample application looks like this:

// Space Ship application code header file
// Kapil Dandekar

tifndef SPACESHIP_APP_H
tdefine SPACESHIP_APP_H

#include "hbApplication.h"
#include "hbFastrakData.h"
#include "hbBirdData.h"

class SpaceShipApp : public hbApplication
{

public:
SpaceShipApp();
SpaceShipApp(char *newName, char *appFile);
~SpaceShipApp();

// Define pure - virtual functions from abstract base class
void startup();
void parseFile();
int exitCondFunc();

23

24 Dandekar et al.

void exitFunc() ;
void preFrame();
void postFrame();

// Application specific routines
pfuWidget * getHideWidget() { return(HideWidget); }
int getHideToken() { return(HideToken); }

float getEntExtentRadius() { return(Ent_extentRadius); }
void setEntExtentRadius(float newVal)

{ Ent_extentRadius = newVal; }

float getKlgExtentRadius() { return(Klg_extentRadius); }
void setKlgExtentRadius(float newVal)

{ Klg_extentRadius = newVal; }

private:

float Ent_extentRadius;
float Klg_extentRadius;
char filel[50] ;
char file2[50] ;
pfuWidget *HideWidget;
int HideToken;

// Buffer for input device data
fastrakBuffer *fsData;
birdBuffer *bdData;

} ;

#endif

In addition to the new definitions for the pure virtual functions from the abstract base class, other
member functions and data present are application specific. Note that some routines in the class make
application data available to external routines. This is to facilitate the operation of the general event
handler functions.

In particular, the HideWidget and HideToken variables are used by this application to add a
button to the System GUI. Also notice the two input device data buffer variables. Inspection of the
application code and the following discussion should reveal how applications can read data from multiple
input devices.

The code for defining the class for the "Space Ship" application, whose header file is shown
above, will now be considered in small parts:

// Space Ship Application code implementation file
// Kapil Dandekar

#include "spaceShipapp.h"
#include "hbSysManager.h"

The Hobbes Virtual Reality Interface Development System 25

finclude "hbParse.h"

extern hbSystemManager *hbSysMan;

const int windowlPipe = 0;
char *windowlName = "Space Ship Application";
const int windowloriginX = 400;
const int windowloriginY = 400;
const int windowlsizeX = 4 00;
const int windowlsizeY = 4 00;

const int secondsActive = 100;

This is the start of the file in which the code is defined. Note that the global System Manager is
declared as an external variable. Applications seeking to query public System Manager parameters or set
System Manager flags need to have this variable declared. Note the use of constants to set some
parameters in the particular application. There are three ways that application programmers may store this
kind of data:

• class variable,
• predefined constant, and
• data loaded from application data file.

Application programmers may choose any of these options shown above. In our example, we have
used the second option purely for instructive purposes. In general, the first or third options are highly
recommended.

The constructors and destructor of this class are defined like this:

SpaceShipApp::SpaceShipApp()

{
SpaceShipApp("Space Ship Application", "spaceship.hb");

// Invoke application with default name and data file
}

SpaceShipApp::SpaceShipApp(char *newName, char *dataFile) :
hbApplication(newName, dataFile)

{
hbAppWindow *winlPtr;

fsData = NULL;
bdData = NULL;

// Initialize shared memory area for input devices

HideToken = 0;

// Initialize widget token to zero before widget allocation

allocateWindow(windowlName);

26 Dandekar et al.

allocateWindow("Click inside me too");
// Allocate the two windows of the application

winlPtr = getWindow(windowlName);
winlPtr->allocateView("USS Enterprise");
winlPtr->allocateView("Klingon Ship");

// Allocate the two views inside one of the windows

allocateDevice(POLHEMUS, winlPtr, sizeof(fastrakBuffer));
// Allocate Polhemus device

allocateDevice(BIRD, winlPtr, sizeof(birdBuffer));
// Allocate Bird device

winlPtr->removeEventHandler(ButtonPress) ;
// Remove the default button handler for the
// window (a user-define window specific handler can be
// added if desired)

removeEventHandler(ButtonPress);
addEventHandler(ButtonPress, spinButtonHandler);

// Remove the default button handler for the application and
// add a user-defined application specific handler

removeEventHandler(ClientMessage);
addEventHandler(ClientMessage, shipClientMessageHandler) ;

// Remove the default client message handler for the
// application and add a user-defined, application specific handler

}

SpaceShipApp::-SpaceShipApp()

{
pfuDisableWidget(HideWidget) ;

}

Note that, as mentioned previously, allocation of application resources (windows, views, devices,
etc.) occurs in the constructor of the application class. This has the effect of allocating shared storage for
all of the resources so that, once multiple processes have been created by the System Manager,
information can be shared between the processes. The actual initialization of the objects does not occur
until these multiple processes exist; this is the purpose for the addition of the startup member function
in the application.

Event handlers, on the other hand, can be fully specified in the constructor of the application. Both
applications and windows have event handlers. Note that in the above example, we remove the default
button-press event handler for the first window. Next, the default button-press event handler for the
application is removed and replaced with a routine called spinButtonHandler. The implication of
making this an application event handler instead of a window event handler is that button-press events
received in any window in the application will use the event handler. This eliminates the need to have an
identical event handler for each window. Note too, that the second window in the application did not have
its button-press handler removed. This means that the default handler, a routine that prints out mouse

The Hobbes Virtual Reality Interface Development System 27

event information, remains in effect for the second window. However, the consideration of the
"propagation" of application event handlers to window event handlers should be remembered.

The code for these event handlers is shown below:

void spinButtonHandler(hbEventHandler Sevent, void *data)
// User defined button handler

{
XEvent currentEvent;
hbAppWindow *winPtr;
SpaceShipApp *appPtr;

// Application specific event handling
currentEvent = event.getXEvent();
appPtr = (SpaceShipApp *)data;

switch(currentEvent.xbutton.button)

{
case 1: appPtr->setKlgExtentRadius(appPtr->getKlgExtentRadius()/2.0

);
break;

case 2: break;
case 3: appPtr->setKlgExtentRadius(appPtr->getKlgExtentRadius()*2.0

);
break;

}

// Pass the event along to the individual window in which it occurred
// (unnecessary, but sometimes useful)
winPtr = appPtr->getWindow(currentEvent.xany.window);
if(winPtr)

winPtr->handleEvent(currentEvent);

}

void shipClientMessageHandler(hbEventHandler &event, void *data)
// User defined client message handler

{
XEvent currentEvent;
SpaceShipApp *appPtr;
hbAppWindow *winPtr;
int widgetID;
int hideTokenID;
pfuWidget *hideWidget;

// Application specific event handling
currentEvent = event. getXEvent (') ;
appPtr = (SpaceShipApp *)data;
winPtr = appPtr->getWindow(windowlName);

widgetID = currentEvent.xclient.data.1[0];

28 Dandekar et cd.

hideTokenID = appPtr->getHideToken();
hideWidget = appPtr->getHideWidget();

if(widgetID == hideTokenID)

{
if(winPtr)

{
if(winPtr->isShown())

{
winPtr->hideWindow() ; // Hide the window after first

press

pfuWidgetLabel(hideWidget, "Kill Task");

}
else

appPtr->setExitFlag(); // Kill application after second
press

}
}

}

Note that in the button handler, events propagate from application to window. In the client message
handler, events do not propagate to the windows. Note that both of these event handler functions are not
member functions of the Application. Thus, they do not have access to private data or member functions.
Public member functions exist for this class, so that event handlers can set and query selected application
data.

Remember that the System GUI "communicates" widget selection with applications through the use
of client message events. Thus, application programmers seeking to control widgets on the System GUI
must have a client-message event handler defined for the widget to have any functionality. In the case
above, the application has a single button that hides the window in which the two spaceships are
contained after the first button press. At this point, the button changes into a button that kills the
application when activated.

The parseFile member function is shown below. Note that in this application, the specified
application data file contains two file names corresponding to the files containing the model data of the
spaceships that will be loaded.

void SpaceShipApp::parseFile()
// Parse the datafile associated with any particular invocation of
// the application.
// The application programmer may decide on the data file format
// and parsing method.

{
// Open file
FILE *fp;
if(.(fp=fopen(getFile() , " r")) == NULL)
{

cout « "Cannot open " « getFileO « " !" « endl;
exit(-1) ;

}

The Hobbes Virtual Reality Interface Development System 29

// Dynamically link Dynamic Shared Objects of specified model files
hbreadWord(filel, f p);
cout « "Loader for " « filel;
if{ pfdlnitConverter(filel))

cout « " dynamically linked" « endl;
else

cout « " not found" « endl;

hbreadWord(file2, fp);
cout « "Loader for " « file2;

if(pfdlnitConverter(file2))
cout « " dynamically linked" « endl;

else
cout « " not found" « endl;

fclose(fp);

}

This routine reads the two model file names in question and dynamically links the loader needed to
read the model. Again, the file names could be hard coded into the application (not recommended) but,
for illustrative purposes, we use the application configuration file.

The next member function we consider is the startup function:

void SpaceShipApp::startup()
// Start up the application (invoked by the
// Application Registry)

{
hbAppWindow *winlPtr;
hbAppWindow *win2Ptr;
hbAppWinView *viewPtr;
pfChannel *pfchanPtr;
hbSysGUI *AppGUI;

// Initialize the window in the program
initWindow(windowlName, windowlPipe, windowloriginX, windowloriginY,

windowlsizeX, windowlsizeY);
winlPtr = getWindow(windowlName);

// Retrieve the window from the Application
// window list

winlPtr->selectEvents(KeyPressMasklButtonPressMask);
// Set the X-event mask for the Window

// Initialize the Views in the Window

// Enterprise View
winlPtr->initView("USS Enterprise", filel, 0.5, 1.0, 0.5, 1.0);
viewPtr = winlPtr->getView("USS Enterprise");

// Retrieve the View from the Window View list

30 Dandekar et al.

pfchanPtr = viewPtr->getChannel();
// Retrieve the Performer pfChannel of the View

Ent_extentRadius = viewPtr->getExtentRadius();
pfchanPtr->setChanData((void*)this, sizeof(SpaceShipApp));

// Set the data that will be passed to the View callback
functions

viewPtr->setAppFunc(spinEntAppFunc);
// Set a callback function

// Klingon Ship View

winlPtr->initView("Klingon Ship", file2, 0.0, 0.5, 0.0, 0.5) ;
viewPtr = winlPtr->getView("Klingon Ship");

// Retrieve the View from the Window View list

Klg_extentRadius = viewPtr->getExtentRadius() ;
pfchanPtr = viewPtr->getChannel();

// Retrieve the Performer pfChannel of the View
pfchanPtr->setChanData((void*)this, sizeof(SpaceShipApp));

// Set the data that will be passed to the View callback
functions
viewPtr->setAppFunc(spinKlgAppFunc);

// Set a callback function

// Initialize the second window
initWindow("Click inside me too", 0, 400, 0, 200, 50);
win2Ptr = getWindow("Click inside me too");
win2Ptr->selectEvents(ButtonPressMask);

// Initialize the widget
AppGUI = hbSysMan->getAppGUI();
HideWidget = AppGUI->allocateWidget(PFUGUI_BUTTON, winlPtr, SHideToken

);
AppGUI->setWidgetY(AppGUI->getWidgetY() - PFUGUI_BUTTON_YINC);
pfuWidgetDim(HideWidget, AppGUI->getWidgetX(), AppGUI->getWidgetY(),

PFUGUI_BUTTON_VLONG_XSIZE,
PFUGUI_BUTTON_YSIZE);

pfuWidgetLabel(HideWidget, "Hide Ships");
}

In the first section of this member function, windows (referred to by name) are initialized with a
screen origin location and dimensions. Next, the two views inside the first window are initialized. There
are several ways to initialize the views and the windows. In this example we use one of the simpler
approaches. That is, through specification of a ship graphics model file name, a view is set up of that
model with default viewing conditions. To use the full power of Performer, pfChannel can be
"manually" created in this part of the code and then added as a view to the System with whatever viewing
transformations that are desired.

The Hobbes Virtual Reality Interface Development System 31

Also note in the view initialization code, that the views can be referred to by name and have their
respective pf Channel extracted. This is tö allow the application programmer to work within the
Hobbes system framework while still having the full power of Performer available. Another very
important command to note is the setting of the Performer pf Channel data. This command ensures the
proper operation of the callback routines. By adding a " (void *) this", a copy of the Application
object is passed along to all the view callback routines. This information will be available to the callback
function, which is not a member function of the application.

Each view has three callback functions: App, Cull, and Draw, which specify any view-specific
application processing, cull procedure, or draw routine, respectively. Note that in our example, we only
specify a view-specific application processing callback. If there is any application processing that
involves anything other than a View, it must be handled in the preFrame or postFrame member function
in the application. The "pre" and "post" mean that these routines are invoked just prior to and after,
respectively, the initiation of the frame draw and cull processing (pf Frame).

After initializing the second window in the application, the System GUI is obtained and appended to
by the application. In this specific example, we add a single button to the System GUI. Note the
interaction between the widget dimensions and placement with the "current" X and Y location in the GUI
itself. Hopefully, future releases of Hobbes will make this widget placement automatic (chosen for the
application programmer by the GUI) or better automated (program to add widgets to GUI).

The next section of the code is the definition of the exit condition function, exitCondFunc and the
exit function exitFunc. These two routines are defined like this:

int SpaceShipApp::exitCondFunc()
// Condition through which application will terminate execution

{

float time = hbSysMan->getSystemManagerTime();
if((time>secondsActive))
{

cout « "Application egg-timer has run-out" « endl;
cout « "Application exiting" « endl;
return(1);

}
return(0);

}

void SpaceShipApp::exitFunc()
// Code to execute upon application exit

{
// Comment/Uncomment the following line to indicate application
// exit also signifies overall program termination
// hbSysMan->setExitFlag{);

delete this;
// Call destructor

}

The exitCondFunc defined for this particular application will cause the application to terminate
execution after the global System Manager time reaches a given application defined value. Upon exit, the

32 Dandekar et al.

exitFunc simply invokes the destructor for the object. Currently commented out in the exitFunc is
the command that would be used to terminate System execution upon application exit.

We now consider the preFrame and postFrame member functions mentioned earlier in this
document:

void SpaceShipApp::preFrame()
// Application specific, pre frame rendering routine

{

pfChannel *pChanl;
pfChannel *pChan2;

iff IfsData)

{
iff deviceExists(POLHEMUS))

fsData = (fastrakBuffer *)getData(POLHEMUS);
}
else
{

fsData->mutex.wait(0);
/* Uncomment to see Polhemus Fastrak Sensor 1 Data */

cout « getName() « " Fastrak:";
cout « "X " « fsData->data.X[0] « "
cout « "Y " « fsData->data.Y[0] « "
cout « "Z " « fsData->data.Z[0] « "
cout « "Az " « fsData->data.Az[0] «
cout « "El " « fsData->data.El[0] «
cout « "Roll " « fsData->data.Roll[0] « endl;

fsData->mutex.signal(0);

iff IbdData)

{
iff deviceExists(BIRD))

bdData = (birdBuffer *)getData(BIRD);
}
else

{
bdData->mutex.wait(0) ;

/* Uncomment to see Bird Data */

cout « getName() « " Bird:" ;
cout « "X " « bdData->data.pos.x « " ";
cout « "Y " « bdData->data.pos.y « " ";
cout « "Z " « bdData->data.pos.z « endl;
bdData->mutex.signal(0);

The Hobbes Virtual Reality Interface Development System 33

pChanl = (getView("USS Enterprise"))->getChannel();
pChan2 = (getView("Klingon Ship"))->getChannel(};
pChanl->passChanData();
pChan2->passChanData();

}

void SpaceShipApp::postFrame()
// Application specific, post frame rendering routine

In the pre Frame routine, input device data are read and displayed, assuming that the device exists.
If the input device does not exist or the Communications Manager is not active, nothing will be displayed.
Notice the use of the mutex used to provide mutual exclusion when reading from either input device.
Since the data buffer in question is being written to by a different process and can be read by an indefinite
number of other applications, this kind of access control is necessary.

In the last part of the pre Frame routine, the actual pf Channels of the two Views in the first
window are retrieved. These pf Channels are used to pass channel data, at that point of program
execution, to whatever View callback functions are defined. It is also very important to know that all time
critical commands should be performed in pre Frame.

