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Abstract 

Using the variational method, we obtain analytical conditions for stationary propagation of a Gaussian 
pulse in a fibre with strong dispersion management. We consider both the lossless fibre and the one with 
losses and periodic amplification. The analytical predictions have been checked against direct numerical 
simulations, and a good agreement between the two has been demonstrated. In particular, we find that 
in a certain region of parameters, the average dispersion necessary to support the stationary propagation 
is negative (normal). We also show that under a certain assumption, the variance of the Gordon-Haus 
timing jitter for the pulse in a strongly dispersion-managed system approximately equals that for the 
conventional soliton, reduced by an energy enhancement factor. Using our analytical conditions, we 
obtain an estimate for this factor. In particular, we show that in the presence of losses and periodic 
amplification, this jitter suppression factor can be made to be as large as that for the lossless case, by 
properly choosing the segment lengths in the dispersion map. 
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1     Introduction 

The technique of dispersion compensation, or dispersion management (DM), for pulse propagation in 
telecommunication lines has been a subject of intensive theoretical and experimental research in the 
last few years (see [1]—[18] and references therein). We will be using the acronym "DM" for both 
"dispersion management" and "dispersion managed", since this will not result in a confusion. For the 

sake of brevity, we will call the pulse in a DM line a "DM soliton". The DM technique uses periodically 
concatenated pieces of fibre with opposite signs of dispersion. One advantage of the DM technique 

over conventional soliton propagation in a uniform fibre is that it allows one to reduce the four-wave 

mixing, which occurs due to the fibre nonlinearity. The four-wave mixing has been shown [19] to be 
detrimental for wavelength-division multiplexing (WDM) in a conventional soliton transmission line. 
Another advantage of the DM technique is that it allows one to keep the average dispersion small, 
which reduces the Gordon-Haus (GH) timing jitter [20]. Moreover, it has been recently suggested on 
the basis of a numerical evidence [2, 17] and experimentally verified [3] that the GH jitter in a DM 
line is reduced compared to that jitter in a uniform fibre with the same average dispersion. In Ref. 
[3], it was concluded that the corresponding jitter suppression factor is approximately equal to the 
energy enhancement factor, i.e. the ratio of the pulse energy in the DM line to that of the pulse with 
the same width in the uniform fibre [2, 3, 4]. Another nontrivial feature of the jitter suppression by 
means of DM was revealed in Ref. [17], where a model that took into account losses and periodic 
amplification was studied numerically. The results of [17] showed a strong dependence of the jitter 
suppression upon the DM period. In Ref. [18], it was further shown that in a modified model where the 
average dispersion Do ~ 1/z, i.e. slowly decreases with the propagation distance z, the mean squared 
jitter grows proportionally only to z, rather than to z3, as occurs in the GH theory for the nonlinear 

Schrödinger (NLS) soliton. 
Although several attempts at developing a systematic theory of the DM soliton have been made 

[21, 4, 5, 6], such a theory is still far from being complete. The regime of the so-called weak DM, when 
the local dispersion lengths are of the order of magnitude of the nonlinear length, has been studied 
in most detail [22, 21, 4, 5]. It is the strong DM regime, when the local dispersion lengths are much 
smaller than the nonlinear length, that is both the most interesting for the applications and also the 
most difficult for the analysis (we note that this regime has been recently analyzed in [6] using the Lie 
transformation). However, in the strong DM regime, the following simplification occurs: Since the local 
dispersion, but not the nonlinearity, is the main factor affecting the pulse propagation, then that pulse 
must resemble some particular exact solution of the linear part of the evolution. Numerical findings of 
[7, 8, 9], and of a number of other studies, indicate that this particular solution must be a Gaussian 

pulse. 
In this work, we employ the variational method to obtain the conditions for the stationary propa- 

gation of a pulse in the strong DM regime. We consider both the case of a lossless fibre and the case 
where losses and periodic amplification are present in the transmission fine. It should be noted that 
the variational method has been previously used [10, 11, 12, 13, 14] to study the DM soliton, with the 
last two papers specifically focusing on determining the stationary propagation conditions. One of the 



two conditions (the one related to the initial chirp of the pulse) that we obtain here is the same as 
was obtained in [13, 14] and in a number of numerical studies. The other condition, which relates the 
average dispersion to the pulse's maximum amplitude, appears to be different. In particular, we find 
that this latter condition predicts, quite unexpectedly, that a DM soliton can propagate stationarily 
when the average dispersion is negative (i.e. normal). To verify the conditions obtained, we ran a 
series of extensive numerical simulations. The numerical results were found to agree quite well with our 
analytical predictions. 

In the second part of our work, we follow the standard procedure ([20], see also Sec.8.1 in [23]) 
and derive the GH timing jitter for the DM soliton. We point out that such a derivation requires 
a certain assumption about the orthogonality of the solutions of the linearized evolution equation in 
question. With that assumption, we can recover the standard GH result, and then can estimate the 
jitter suppression factor as a function of the dispersion map parameters. In particular, we show that by 
properly choosing the segment lengths in the dispersion map, one can make the jitter suppression factor 
in a system with losses and periodic amplification to be almost as large as that in the corresponding 

lossless system. 

2    Variational approximation 

Pulse propagation in a DM transmission line is conventionally described by the following equation: 

iUz + ^D(Z)UTT + G(Z)U\U\2 = 0, (1) 

where Z, T, and U are the coordinates and the electric field amplitude, D(Z) is the local dispersion 
coefficient, and G(Z), whose form will be specified later, accounts for the damping and periodic am- 
plification of the pulse (see, e.g., [23]). Note that in Eq. (1), D = —d2k/duj2 (where k and UJ are, 
respectively, the wave vector and frequency of the carrier); thus the units of D are [s2/m]. The form of 
the periodic function D(Z) (of period Imap) is 

DIZ) = { ^ '    - < mod(Z' Lmap) < Ll> /2\ 
| D2 ,   L\ < mod(Z, Imap) < Imap , 

with D\D2 < 0. The strong DM regime corresponds to the situation where Lmap -C 1/(G\UQ\
2
) and 

I-ÖlI<i| « IÄ2I2I ~ T2. Here \UQ\
2
 is the pulse peak power, rp is the pulse width, and L2 = lmap — Ii- 

If we introduce new, nondimensional variables: z = Z/Imap, r = Tj\JL\L2\D\ — D2\/Lm3ip, and 
u = U/UQ, then Eq. (1) takes on the form: 

1    , . 
tuz + -D\z)uTT + e -D0uTT + G(z)u\u\2 

(3) 

Here e = Lmap|^o|2 and 

D(z) = { 
^ = 5E(£pÖi) ,   o<mod(z,l)<L1, 

M    - (4) 
D2 = Sga(D2-Dl)t   Li<mod(Z)1)<1) 

Li 

£1,2 = 11,2/Imap,   D0 = {Dxlx + D2L2)I'(Iild-Di - D2\ \Uo\2), and G(z) = G(Z/Lmap). Note that 
for the variables scaled as in Eq. (3), one has the dispersion map period unity and 

I>ili + I>2l2 = 0,        \DiL\\ = \D2L2\ = 1. (5) 



The following important remark regarding the meaning of the small parameter e in Eq. (3) is in 
order here. In the discussion in Section 3 below, we will consider the maximum amplitude A of the 
soliton to be of order unity. Then e is on the order of magnitude of the ratio of the local dispersion 
length to the nonlinear length in the system. On the other hand, as we will show below, the average 
dispersion Do that will be necessary for stationary propagation of a pulse can be rather small. Thus, if 
one defines the measure of the "strength" of the DM in a given fibre to be the ratio of the average and 
local dispersion lengths (as it was implied in the majority of numerical and experimental studies), then 

that "strength" parameter, l/(eJD0), can actually be much greater than 1/e. 
A well known particular solution of Eq. (3) with e = 0 is the Gaussian pulse 

«o =    / = exP 
^/l + 2i(A/r0

2) 

r2 

(r2 + 2iA) 
+ i(/> (6) 

Here A and r0 are, respectively, the maximum amplitude and minimum width of the pulse over one 

map period, A(z) = A0 + /0
r D(z')dz' , and A<j and 4> are real constants. In the majority of previous 

studies, the same ansatz has been used, but in a different form: 

UQ = a(z) exp 
T2 

W2{z) 
+ ic(z)r2 + i(j) (6') 

The relation between the so introduced quantities:  complex amplitude a(z), width W(z), and chirp 
parameter c(z), on one hand, and the parameters used in Eq. (6), on the other, is as follows: 

A JT& + 4A2 2A 
a(z)=    , ,   ,        W(z) = ^J- ,        c(z) =-r-j^. (7) 

v/l + 2i(A/r0
2) r° To +4A 

Our goal is to determine for what values of these parameters the pulse, whose form is assumed to 
be close to (6), will propagate stationarily when e in Eq. (3) is small but nonzero. Following [24], we 
insert the ansatz (6), in which A, r0, A0, and (f> are now allowed to change slowly with z, into the 
Lagrangian density of Eq. (3) and integrate over r. The resulting reduced Lagrangian is then used to 
obtain the evolutions of these four parameters. The phase <f> is eliminated by simple algebra, and then 

one obtains the following three equations: 

A
2
T0 = E = const, (8a) 

^^i^fl, (») 
dz Wi(z) 

dz °^ 2y/2W3{z) K   ' 

Note that for the specific form of ansatz (6), the perturbation terms in Eq. (3) are even functions of 
r. Thus they will not change the soliton's velocity and centre coordinate, and therefore we need not 

include the latter two parameters in the variational ansatz. 
The conditions for the stationary propagation of a pulse require that its amplitude and width remain, 

on average, the same when z is increasing [13, 14]. This is so if TQ(Z) = TQ(Z + 1) and Ao(z) = Ao(z + l) 
(recall that Lmap = 1 in the units of Eq. (3)). Moreover, from Eqs. (8) one sees that r0 and A0 can 
change by no more than 0(e) within one map period. Thus, it is legitimate to obtain the first-order 



conditions in question, by inserting into (8b) and (8c) the unperturbed values for  TO and  Ao, and 
requiring that 

[1!l±dz=[
1*p.dz = 0. (9) 

Jo   dz Jo    dz 

Then these two conditions become, respectively: 

/. 
1/2   [•+*• + &_<•)*... =0i (Ma) 

v'[Tf + q. + *o + W] 
3/2 

n ^,2 4 f1/2 W« + Ao + \? - r0
4] *(«)* 

■'-1/2    [r0* + 4(S + A„ + i)*] ' 

where 
</(S) = LXG (L^S + ±)) + L2G (L,. + L2(^ - *)) . (11) 

Eqs. (10) and (11) can be obtained from Eq. (9) in the following way. First, one integrates over z from 
0 to L\ and makes the variable substitution z = L\{s +1/2). Then one adds to this result, the integral 
over L\ < z < 1, in which one needs to make the variable substitution (z — L{) = L2(l/2 — s). Then 
with (5), one obtains Eqs. (10) and (11). 

Conditions (10) have the following meaning. The first condition determines Ao and hence the initial 
chirp (cf. Eq. (7)) which results in the pulse propagating stationarily down the DM fibre. Then the 
second condition determines the maximum amplitude required for the stationary propagation for a given 
average dispersion of the system. 

3    Comparison of analytical conditions (10) with numerical results 

We now consider different configurations of the periodic amplification relative to the periodic dispersion 
map. The simplest case is when one has no losses and amplification, so that G(z) = 1, and then 
g(s) = 1. In this case, the integrals in Eqs. (10) can be evaluated explicitly, yielding: 

Ao = ™, (12a) 2 

Do = -^A2r0
4 

In   4/I + -T + 4 ^   Jl TK        Ti 0 V^+i 
(126) 

Conditions (8a) and (12a), expressed in a different but equivalent form, have been previously obtained 
analytically in [13, 14]. Condition (12a) has also been found numerically in, e.g., [15, 9, 8]. This 
condition requires that the pulse have zero chirp at midpoint of each fibre segment. Condition (12b) 
coincides with the condition obtained in [14] when TQ 3> 1, which is where the approximation made 
in that paper is only expected to work well; cf. Fig. 2 in [14]. (Since in Eq. (12b) and in subsequent 
formulae, it is TQ and its powers, rather than TO itself, that appear, then we will refer to the parameter 
TQ in our discussion below.) Eq. (12b) is also different from the corresponding condition derived earlier 
in Ref. [13]. (The approaches adopted in Ref. [13] and in the present work appear to be technically not 
equivalent; however, a detailed comparison of these approaches and their results is outside the scope of 
this paper.) Note that Eq. (12b) also predicts, quite unexpectedly, that the DM soliton can propagate 
stationarily for negative DQ provided that TQ < (To)th ~ 0-30. To our knowledge, this fact has never 
been reported before. (Note that the expression derived in Ref. [13] did not predict the sign of Do, but 
only its absolute value.) 



In order to verify the validity of Eqs. (10) (and, in particular, of Eqs. (12) for the lossless case), 
we solved Eq. (3) numerically, with the parameters of the initial Gaussian pulse (6) being taken as 
predicted by these equations. We used the pseudo-spectral method in r and the fourth-order Runge- 
Kutta method in z. The value of e in all our simulations was set to 0.1. For the lossless case, we also 
fixed L\ = 0.4, L2 = 0.6, Di = \/L\ and D2 = -1/L2, and then the only free parameter of a pulse 
with a unit maximum amplitude (i.e. with A — 1) was its minimum width, TO. The average dispersion, 
Do, in Eq. (3) was set in accordance with Eq. (12b). The simulations were run for a number of values 
of the parameter TQ

2
 in the range from 0.05 to 3.0; cf. Fig. 1. In each run, we measured the value of 

TO when the pulse appeared to reach a (quasi-) stationary regime. Then for each TO SO obtained, we 
plotted, in Fig. 1, the ratio of the average dispersion to the pulse energy, along with the corresponding 
analytical curve. The agreement between the theory and the numerics is seen to be good. 

In Fig. 2, we showed the pulse evolution for two typical cases where TQ is initially 0.2 and 0.5. For 

all TQ greater than the threshold value, (To)th, the maximum and minimum amplitudes of the pulse do 
not settle down to constant values, but instead undergo almost periodic, long-term and small-amplitude 

oscillations (Fig. 2a). In this case, very small continuum radiation from the pulse is seen in the numerics. 
On the other hand, for TQ

2
 < (ro)th, the pulse amplitudes undergo a very slow decay, occurring with 

an approximately constant rate, due to emission of continuum radiation. The amount of this radiation 
is still quite small, so that the amplitudes of the pulse with the initial value of TQ

2
 = 0.2 decrease by 

less than 10% over the distance z = 800 (Fig. 2a). Even though this decay intensifies for pulses with 
smaller initial values of TQ , we still observed that even for TQ as small as 0.05, the amplitudes of the 
pulse decay only by about 10% over a distance as large as z = 600. (However, rigorously speaking, there 
exist no (quasi-) stationary pulses for T52 < (To)th. Thus we did not plot the corresponding numerical 
results in Fig. 1.) It is also worth noting that despite the fact that, for large z, the amplitude evolution 
within one period of the dispersion map becomes noticeably different from that assumed by ansatz (6) 
(cf. Fig. 2b), the stationarity conditions (10) (and, in particular, (12)), which were derived using that 

ansatz, still continue to hold remarkably well. 
We also note that for relatively large values of TQ (TQ > 2.0), the long-term oscillations of the pulse 

amplitudes look more like those of an NLS soliton launched with a slightly "wrong" initial amplitude 
(see, e.g., [25]). In fact, this is to be expected: for larger pulse widths, the magnitude of the second 
term in Eq. (3) decreases compared to the magnitude of the last term (recall that the maximum pulse 
amplitude is unity). Thus for large T0, the nonlinear term plays a larger role in the evolution than it 
does for small T0, and therefore the equation becomes closer to the NLS equation. This is also consistent 
with the asymptotics of Eq. (12b) for large T52, where one finds that the product ATQ is proportional 
to DQ

2
, which is characteristic of an NLS soliton. (This was also pointed out earlier in Ref. [13].) 

When there are losses and periodic amplification in the transmission line, then possible configurations 
of the periodic dispersion map relative to the amplification pattern become numerous. Here we will only 
consider three of them, which are representative of those cases that seem to be the most interesting 
from the viewpoint of applications. First, we consider the situation when the amplification and the 
dispersion map periods coincide, so that Lamp = 1(= Lmap) and G(z) = exp(—2amod(z,l)). Here a 

is the damping coefficient. In such a case, g(s) in Eq. (11) takes on the form: 

g(s) = e~aLl [Lie-
2aLlS + L2e-Q+2aL2S] . (13) 

Since L\ + L2 = 1, then the integrals in (10) depend on three parameters: T0, a, and, say, L\. We 
took a = 1.013 (which in physical units corresponds to 2a = 0.22 dB/km and Lamp = 40 km) and 
numerically calculated A0 and the ratio (DQ/E) from Eqs. (10) as functions of T0 for several different 



values of L\, in the range from 1/6 to 5/6. We note that in both these and the previous (i.e. lossless) 
cases, a unique value of Ao was found for each TO- 

Our results for AO(TO) are plotted in Fig. 3a. Next, for all values of L\, the curves showing the 
dependence of (DQ/E) on TQ are very close to each other for all T$ that are just slightly larger than 
the threshold value (To)th- Therefore, in Fig. 1 we only plotted one theoretical curve in this case, 
corresponding to L\ = 7/18 (dashed line). The reason for choosing this particular L\ will be explained 
later. The results of numerical simulations of Eq. (3) for L\ = 7/18 are plotted with squares. Also in 
the same figure, we plotted the results of numerical simulations for L\ = 2/3 (triangles). The agreement 
between the theory and the numerics is again seen to be good. The long-term oscillations of the pulse's 
maximum and minimum amplitudes were found in this case to have significantly larger periods (by more 
than a factor of two) than it was, for the same initial values of TQ , in the lossless case (cf. Fig.2a). 

Next, we considered two cases with: (i) L\ = 4^, L2 < Lamp, and (ii) L2 = 4Z-amp, L\ < Lamp- 
Cases (i) and (ii) correspond to the situations when the dispersion accumulated over four consecutive 
amplification periods in the fibre is compensated by a short piece of fibre with the opposite sign of 

dispersion just before and just after an amplifier, respectively. These cases are sometimes referred to in 
the literature as a postcompensation and a precompensation schemes, respectively (see, e.g., [11]). The 
proportionality coefficient of 4 between the longer segment of the map and Lamp was taken somewhat 
arbitrarily, although it does correspond to the experimental setups considered in [16, 3]. These cases 
are also close to the one for which the jitter suppression factor was found to be maximum in Ref. 
[17].   In case (i),  G(z) = exp [-2a (j^ - k)] for kL^p < z < (k + l)Lamp (k = 0,1,2) and for 

3Lamp < z < 1 (k = 3). In case (ii), G(z) = exp [-2a (f^ - &)] for 0 < z < Lamp + Lx (k = 0) and 
for fcLamp < (z — L\) < (k + l)Lamp (k = 1,2,3). The corresponding forms of g(s) can easily be found 
to be as follows: 

case (i)       g(s) = Lig(s) + L2 exp -a   2 + 
■'amp 

■(I-2s) (14a) 

case (ii) g(s) = Li exp a-^-(l-2S) 
■'-'amp 

L2g(- (146) 

where g(s) = exp [-8a (s - f)] for | < s < *J1 (jfe = -2, -1,0,1). 
The value of the damping parameter, (aLmap), in cases (i) and (ii) was taken to be the same as in 

the case with Lmap = Lamp, i.e. aLmap = 1013. In compliance with the numerical observations of Ref. 
[15] (although made for a slightly different configuration), we found that Eqs. (10), with g(s) given by 
Eqs. (14), yield solutions that are only slightly different from those in the lossless case (see Eqs. (12)). 
In case (i), the curves A0(ro) for all values of L2/Lamp from 0.1 to 0.5 are essentially indistinguishable 
in the plot. Thus we only plotted one such curve, for L2/Lamp = 0.1 (Fig. 3b). In case (ii), AO(TO) 

depends slightly on the ratio Li/Lamp, with Ao(ro) increasing monotonically with Li/Lamp for all To 
(cf. Fig. 3b). The values of (DQ/E) in case (i), as well as these values for Li/Lamp = 0.1 in case (ii), 
are very close to those values found in the case Lmap = Lamp! therefore we did not plot them in Fig. 1. 
We plotted only the corresponding curve for case (ii) with Za/LamP = 0.5 (dash-dotted line), which is 
the most distinct from the other two curves in Fig. 1. Since the numerical simulations confirmed the 
validity of our analytical predictions in the previous cases, we did not perform simulations for cases (i) 
and (ii). 

The proximity of the results obtained in cases (i) and (ii) to those obtained in the lossless case 
holds, however, only for TQ > (fo)th- (This threshold differs slightly from case to case and from one 
value of Li/Lamp or Z^/Lamp *° an°ther within the same case, but it remains close to its value in the 



lossless case, (r^)th « 0.30.) For r^ < (r0
2)th, there exist more than one (up to seven, for very small 

r0) values of Ao- As an example, we considered case (i) with I^/^amp = To = 0-15, where there exist 
five values of Ao. These values were computed numerically from Eq. (10a). Three of them are less 
than -0.5 and the other two are greater than -0.5. All five of the corresponding values of the average 
dispersion, given by Eq. (10b), are negative, and their magnitudes can vary by more than a factor of 
three depending on what particular Ao is taken. We performed simulations for the maximum amplitude 
A being initially unity in all those cases, and the initial pulse chirp and the average dispersion in the 
system taken according to Eqs. (10). The pulse evolution was followed up to z = 300. In all these 
five cases, we observed that the evolution was essentially similar to that in other cases when the initial 
parameter TQ was less than the threshold value and the average dispersion was negative. In particular, 
we observed a buildup of a small amount of radiation near the core of the pulse as well as a slow and 

monotonic change of the pulse's maximum amplitude. 
Finally, we also numerically investigated the stability of a DM soliton against relatively large per- 

turbations of its initial conditions. We restricted our attention to the lossless case, since in the other 

cases the results are expected to be similar. We ran several simulations where the initial energy of a 
DM soliton was taken to be by up to 60% different (both greater and less) from the value predicted 
by Eqs. (8a) and (12b). We considered both cases, of positive and negative average dispersion. In 
all simulations, we observed that the pulse eventually settles down to a new DM soliton surrounded 
by continuum radiation (recall that in the case of negative Do, such a soliton is expected to slowly 
decay due to its continuous emission of radiation). This behaviour is similar to that of the NLS soliton. 
However, there are two essential differences from the NLS case, which we will point out. The first one 
is the observed fact that the radiation remains in the vicinity of a DM soliton for a much longer time 
(the maximum length of the evolution in this series of our simulations was z = 800). The reason is 
that the variable dispersion D(z) in Eq. (3), that determines the evolution of U(Z,T) in the leading 
order, does not allow any initial disturbance to spread out without limit. Indeed, no matter how much 
the disturbance has spread out during its propagation in one segment of the fibre, this will be precisely 
undone (when e = 0) in the next segment. Thus it is only the much weaker average dispersion eD0 

that forces the radiation to eventually separate from the soliton. The second difference from the NLS 
case pertains to the evolution of sufficiently narrow ( TQ

2
 < 0.5) pulses launched with "wrong" initial 

conditions. In that case, the parameters of the pulse tend to remain almost unchanged up to a fairly 
large propagation distance, zc (zc ~ l/(er0

2)). Then they change, within a much shorter distance, and 
the modified pulse continues its propagation at new, stationary values of its parameters. This feature 

of the model is illustrated in Fig. 4. 

4    Estimate of the timing jitter suppression for a DM soliton 

Having demonstrated that the variational method works well in predicting the initial amplitude and 
chirp for launching a stationary DM soliton, we will now use the same method to evaluate the GH 
timing jitter for such a pulse. We will follow the standard derivation for the NLS soliton, but we will 
need to make a certain assumption in order to obtain the jitter variance for the DM soliton. Proceeding 
with that assumption will give us the conventional result, and hence allow us to estimate the jitter 

suppression factor (JSF). 
In order to model the (distributed) noise from the amplifiers, we add to the rhs of Eq. (3) a random 

force R = R{r, z), whose variance we assume to be much smaller than e. Then the solution to Eq. (3) is 

sought in the form: u = u0 + «l + • • •. I«i| < |«o|- Here u0 is given by Eq. (6) in which the parameters 
are now slow functions of z, and Hi is the continuum radiation. Since R is expected to affect the pulse 



velocity V and centre position rc, we need to include these degrees of freedom in the ansatz (6). This 
can easily be done by using the Galilean and translational invariances of Eq. (3). Following, e.g., [26], 
one obtains: 

I    dr \u\T [lhs of (3)] + c.c. } = f    dr {[u*QrR + c.c.  + idz [U*0TUX - c.c.j } , (15) 

where the term in square brackets on the lhs of Eq. (15) is evaluated for u = UQ and c.c. stands for 
the complex conjugate. In [26], where the NLS and other nonlinear evolution equations with constant 
coefficients were considered, the last term on the rhs of the counterpart of Eq. (15) vanished due to 

the orthogonality of the radiation field ui to the Goldstone mode uo,T (see> e-g-i [27]). However, this 
same argument cannot be made at this time for Eq. (3), since the corresponding linearized operator 
has yet to be studied. Thus nothing is certain about the orthogonality of its eigenmodes. In order to 
proceed with the above approach, we shall assume here that the last term on the rhs of Eq. (15) can 
be neglected in comparison with the first one. The main reason why we can justify such an assumption 
is that with it, we will be able to recover the conventional GH result, which was shown to be in good 
agreement with the experimental results [3]. In fact, in Ref. [3], the values of the GH jitter in a DM 
line were compared with those values obtained with the Gordon-Haus formula for the NLS soliton with 
approximately the same width. The agreement between these two sets of data was found to be good 
when the latter values were reduced by a factor approximately equal to the ratio of the energies of the 
DM and NLS solitons. 

Proceeding with the assumption stated above, we will also obtain that the JSF approximately equals 
the ratio of those energies, provided that the widths of both pulses are the same. We shall refer to our 
result as to an estimate for the JSF. Such an estimate, although not fully rigorous, is still expected to 
show the important dependence of the JSF on the parameters of the pulse and the dispersion map. We 
will then use this estimate to show that: (i) the JSF can be made very large, provided that TQ « (ro )th> 
and (ii) when losses and periodic amplification are present, the JSF can be very sensitive to the ratio of 
the lengths of the segments of the dispersion map. 

Neglecting the last term on the rhs of Eq. (15) and then proceeding similarly to [20] (see also [23]), 
one obtains: 

Vg = £(z), (16) 

where £(z) is the white noise with {£(z)) = 0 and 

«Wf(«')> = SFT
1

- fi
(z

27 Z'L ■ (17) 2N0Lamp /_00T'J|uoraT 

Here the angle brackets stand for the average value, Ga is the power gain of the amplifier, and iVo is 
the number of photons per unit energy. 

The following three remarks about Eqs. (16) and (17) are in order. First, Vz appears in (16) from 
the term in Eq. (15) with the slow z-derivative: (uo,z)siow = VzUQy + TCiZuoyTc + ... . Second, in 
deriving Eqs. (16) and (17) from Eq. (15) in which the last term on the rhs has already been dropped, 
one again needs to make an assumption that is equivalent to the one made above. Namely, one needs 
to assume that the continuum radiation ui is orthogonal to the Goldstone mode uo,T- Indeed, in the 
derivation of the timing jitter for the NLS, one implicitly used the fact that the perturbation R could 
be expanded over the complete and orthogonal set of the eigenmodes of the linearized NLS. (A similar 
point has been recently emphasized in the derivation of the timing jitter for a pulse in a fibre laser [28].) 
Finally, the third remark is that Gordon and Haus had a slightly different integrand in the denominator 
of their counterpart of Eq. (17) (for the NLS soliton, they had (tanh2 rsech2r) instead of (r2sech2r) 



as it would follow from (17)). This, however, does not lead to any significant difference between their 

result and ours. 
Prom Eq. (17) one easily deduces that the JSF equals: 

JSF = )J-°° PM (18) 

\J-OO    i ui      yNLS 

Notice that, although this expression is not tantamount to the ratio of the energies of the DM and NLS 
solitons, its value is expected to be close to that ratio when the widths of the two solitons are the same. 
The numerator in (18) is evaluated using Eqs. (6) and (10), whereas the denominator is evaluated for 
the guiding-centre soliton of the NLS that is obtained from Eq. (3) by dropping the term \D(z)uTT- 

The latter soliton has the form (see, e.g., [23]): (|uo|2)NLS = (aoA)A"o)sech2(77To), where the factor 
a0 = (2aLamp)/(l - exp(-2aLamp)) accounts for the periodic amplification. As it stands in (18), the 

JSF is z-dependent, because the numerator in (18) is proportional to W2(z) (see (7)). We then simply 

average over one map period, obtaining: 

JSF~-^ + f + <2*° + f, (19) 
aorQ f{T0,Li,a) 

where /(r0,Li,a) denotes the integral in Eq. (10b). We remind the reader that our goal here is to 
obtain the essential dependence of the JSF on the pulse and system parameters. Therefore we are 
not concerned with the numerical factors of order one that could possibly be introduced by the above 
averaging and/or by taking the width of the NLS soliton to be the minimum width, TO, of the DM 

soliton, rather than the latter's average width, etc. 
Eq. (19) and the previous considerations show that the JSF can be very large near the point where 

the function /(r0,Li,a) vanishes (i.e for r,2 » (fo)th)- Thus, it seems advantageous to launch DM 
solitons with TQ SS (TQ)^ in order to achieve a large jitter suppression. On the other hand, near such a 
point, a so called stretching factor (the ratio of the maximum and minimum widths of the pulse), 

S5^ + (l + |2A, + 1|)> 
ro 

is also rather large. Using pulses with a large stretching factor has the obvious disadvantage that such 
pulses should be launched at sufficiently large separation in order to prevent their overlapping. Thus, in 
designing a transmission line for DM solitons, a certain compromise between these two factors must be 
reached. Another possible technological problem here is that, if one wishes to use pulses with TQ « (To)th 

or less, then the average dispersion has to be made extremely small (cf. Eq. (10b) and also recall that 
the pulse amplitude cannot be too large, so as not to violate the assumption that the term eu|u|2 in 
Eq. (3) is a small perturbation). This might require a very precise tailoring of the parameters of the 
dispersion map. (On the other hand, as illustrated in Fig. 4, slight fluctuations of the average dispersion 
may lead to the destruction of a narrow pulse only after a sufficiently large propagation distance.) 

In Fig. 5, we plotted the JSF evaluated with Eq. (19) versus the stretching factor (20) for the lossless 
case and for all the three cases with different periodic amplification patterns considered above. In the 
case with Lmap = Lamp (Fig. 5a), one can see that the JSF significantly depends on the ratio Li/Lamp. 
The optimal case, where the JSF is even slightly larger than that in the lossless case for the same values 

of the stretching factor, was found to occur when Li/Lamp « 7/18 (*°r (a-^amp) = 1-013). This curve 
and the one for the lossless case are so close to each other that they are essentially the same curve in 
the plot. Note that the ordering of the curves in Fig. 5a, for increasing L\, is: (c), effectively (a), (b), 
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(d), and then (e). Our prediction of the existence of an optimal ratio Li/Lamp appears to correct the 
conclusions of paper [9], which predicted the JSF in a DM line with losses and periodic amplification 
to be significantly lower than that in the lossless line. We also note that there appears to be some 
correlation between the values of Ao and the JSF. First of all, for the optimal ratio Li/Lamp = 7/18, 
AO(TO) for all but very small TQ is very close to its value in the lossless case, i.e. —0.5 (see Fig. 3a). 

Moreover, for Li/Lamp = 1/6 an(i ^l/I'amp = 2/3, the curves AO(TO) are approximately symmetric 
relative to the line Ao = —0.5 (see Fig. 3a), and the corresponding curves in Fig. 5a are also very close 
to each other. 

The results for the JSF in the cases when either L\ or L2 equals 4Lamp, are close to the estimate 
in the lossless case, as expected (Fig. 5b). In case (i), all the curves are almost the same, irrespective 
of the ratio L2/Lamp. In case (ii), the ratio Za/Lamp ~ 0.3 (curve (b)) appears to yield the maximum 
JSF (for (aLamp) = 1.013). 

5    Conclusions 

In this paper, we have found analytical expressions for the values of the initial chirp and amplitude at 
which a nearly Gaussian pulse can propagate almost stationarily in the strong DM regime. This was 
done both for the lossless case and for the case when losses and periodic amplification were present 
simultaneously. Our analytical results are in good agreement with the numerics. Surprisingly, we also 
found that a DM soliton can propagate quasi-stationarily in the regime of normal average dispersion, 
provided that its minimum width is smaller than the threshold value, (ro)th. 

Next, we estimated the GH timing jitter for a DM soliton by assuming that the continuous spectrum 
of the linearized evolution equation in question would be orthogonal to the bound states. Our justifi- 
cation for making this assumption is that the result obtained in this manner here was earlier shown [3] 
to be in good agreement with the results of the physical experiment (in [3], the corresponding formula 
was essentially postulated; cf. also Section 4 above). Having estimated the jitter for a DM soliton 
and using our analytical conditions of stationary propagation, we then estimated the jitter suppression 
factor (which shows how much the jitter for a DM soliton is suppressed, compared to the case of its NLS 
counterpart). We showed that pulses with a relatively large stretching factor (> 2) can have a large 
JSF. We also demonstrated that by a proper choice of the ratio of the segment lengths in the DM map, 
the JSF for a system with losses and periodic amplification can be made to be essentially the same as 
that in the lossless case. In particular, our estimate predicts that a precompensation scheme (case (ii) 
above) can yield a slightly larger jitter suppression factor than a postcompensation scheme (case (i)). 
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Figure Captions 

Fig. 1. Comparison of the ratio of the average dispersion to pulse energy, as given by Eq. (10b), with 
the results of numerical simulations of Eq. (3). Lossless case: solid — theory, circles — numerics. The 
threshold value (TQ )th is marked with a tick mark. The following data pertain to the model with losses 
and amplification. Lm&p — Lamp» L\/L&mp = 7/18: dashed — theory, squares — numerics; Lmap = Lamp, 
L\/Lamp = 2/3: triangles — numerics (see main text); Lmap = Li+4Lamp, Li/Lamp = 0.5: dash-dotted 
— theory (see main text). 

Fig. 2a. Evolution of minimum and maximum pulse amplitudes in the lossless case. Solid — 
To = 0.2; dashed — TQ = 0.5. Other parameters are specified in the text. 

Fig. 2b. Evolution of the pulse amplitude within one map period in the lossless case; 799 < z < 800. 
Thick solid — TQ — 0.2; thick dashed — TQ = 0.5; thin solid and thin dashed — the corresponding 
quantities for 0 < z < 1. 

Fig. 2c. Pulse profiles for the same parameters as in Fig. 2b. Thick solid — TQ = 0.2 at z = 800; 
thick dashed — TQ = 0.5 at z = 800; thin solid and thin dashed — the corresponding profiles at z = 0. 
Note that in order to fit both profiles in the same figure, we shifted the centre of the pulse with TQ = 0.2 
from r = 0 to r = —5, and the centre of the pulse with TQ = 0.5 from r = 0 to r = 10. 

Fig. 3a. AO(TO) for the case with Lmap = Lamp for the following values of Ia/Z>amp: 5/6 (a); 2/3 
(b); 1/2 (c); 7/18 (d); 1/6 (e). 

Fig. 3b. Ao(ro) for cases (i) and (ii). (a) — case (i) with any L2/Lamp] (b) — case (ii) with 

Li/Lamp = 0.5; (c) — case (ii) with la/Lamp = 0-1- Note that the vertical scale is different from that 
in Fig. 3a. 

Fig. 4. Evolution of a pulse launched with TQ = 0.1 and A — 1 in a line with Do = 0.305 (this 
value of £>o corresponds to TQ = 0.5 and A = 1 in Eq. (12b)). Note that the pulse energy is initially 
\/5 less than that of a pulse with TQ = 0.5 and A = 1, which would propagate stationarily at that 
average dispersion. 

Fig. 5a. Jitter suppression factor calculated from Eq. (19). (a) — lossless case (also see main text). 
Other curves calculated for the case Lmap = Lamp with the following values of Li/Lamp: 1/2 (b); 1/6 
(c); 2/3 (d); 5/6 (e). 

Fig. 5b. Jitter suppression factor calculated from Eq. (19) for cases (i) and (ii). (a) — lossless case 
(shown for comparison); (b) — case (ii) with Li/Z»amp = 0.3; (c) — case (i) with any L2/Lamp and case 
(ii) with Li/Iramp = 0.1; (d) — case (ii) with Li/Lamp = 0.5. 
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Fig.l: Ratio of average dispersion to pulse energy 
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Fig.2a: Evolution of Max and Min amplitudes 
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Fig.2b: Evolution of amplitude within one map period 
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Fig.3a: A0 for the case Lmap=Lamp 
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Fig.4: Evolution of a pulse with "wrong" initial parameters 

«5 

s 
a 
a 
OS 

c 
03 

03 

1 00 

0.50 

n nn i i i 

0 100 200 300 



Fig.5a: JSF vs stretching factor (for Lmap=L,amp) 
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Fig.5b: JSF vs stretching factor 
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