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Abstract 

Automated techniques for selecting jet engines that minimize overall fuel consumption 

for a given aircraft mission have recently been developed. However, the current techniques lack 

the efficiency required by Wright Laboratories. Two noted dependencies between turbine engine 

fan pressure ratio, bypass ratio, high pressure compressor pressure ratio and overall engine mass 

flow allows for a reduction in the number of independent design variables searched in the 

optimization process. Additionally, through the use of spatial statistics (specifically kriging 

estimation), it is possible to significantly reduce the number of time-consuming response 

function evaluations required to obtain an optimal combination of engine parameters. A micro- 

Genetic Algorithm (uGA) is employed to perform the non-linear optimization process with these 

two computation-saving techniques. Optimal engine solutions were obtained in 25% of the time 

required by previous automated search algorithms. 

Xll 



IMPROVING ALGORITHMIC EFFICIENCY OF AIRCRAFT 
ENGINE DESIGN FOR OPTIMAL MISSION PERFORMANCE 

1. Introduction 

1.1 Problem Background 

When a new aircraft is to be developed by the United States Department of Defense 

(DoD), a request for proposal (RFP) is established to outline the flight conditions and 

performance requirements of a typical mission. From this RFP, aircraft manufacturers and 

engine companies are able to initiate the conceptual aircraft design process. Conceptual aircraft 

design involves the use of many simplifying assumptions integrated with computer modeling 

codes to generate a first-cut aircraft and engine solution to meet the RFP requirements. While 

this initial aircraft design may be significantly different from the final aircraft design, it's 

importance should not be underestimated - without a realistic starting design, future 

modifications can be frustrated by having to re-visit basic design issues. 

One of the objectives of the conceptual aircraft design is to make the aircraft as efficient 

as possible. Improved efficiency is always desirable - it translates to lighter, faster, and more 

maneuverable aircraft. As a means to this end, efficiency improvement can be attacked on 

several different fronts, to include using lighter construction materials and reducing individual 

component and airframe inefficiencies. However, one of the most important aspects of ensuring 

maximum aircraft efficiency is the proper selection of an engine for the airframe. 



Although many different engine configurations can provide sufficient thrust to an 

airframe capable of meeting RFP requirements, not all engines are equally efficient at the 

different mission flight conditions. While an engine may be well-suited for efficient operation at 

one flight condition, this same engine may be terribly inefficient at another flight condition. 

Based on the mission specified (meaning the flight conditions and the duration of operation 

required at each flight condition), an optimal engine (with possible alternate optimal engines) 

exists that will minimize the fuel required for the aircraft to complete the mission. It is this 

optimal engine design that we seek in this project. 

In classical optimization terms, this problem can be viewed as an effort to minimize 

overall fuel consumption for a non-linear fuel consumption response function. This 

minimization is subject to the engine satisfying the thrust constraints implied by the mission 

profile. Additionally, only certain combinations of engine parameters produce engines that can 

physically sustain operation. Thus, written in math programming notation, the problem at hand 

is: 

Minimize {Overall Fuel Consumption} 

Subject To: 

Viable Combinations of Engine Parameters 

Mission Requirements 

1.2 Research Focus 

Identifying the best engine design for an aircraft mission has been an issue ever since the 

beginning of aviation. Although solution techniques have improved over the years, the time and 



effort required to identify the most efficient engine design has remained high. In recent years, 

advances in conceptual engine-airframe matching techniques have allowed the entire engine 

search process to be automated. Although these advances greatly speed the conceptual engine 

design process, the amount of computer processing still remains at a level that makes aircraft 

design experimentation impractical. 

The purpose of this research, which is sponsored by the U.S. Air Force's Wright 

Laboratories, is to identify means by which the automated engine search process can be 

accelerated. By expediting this engine matching process, Wright Laboratories hopes to more 

efficiently explore new aircraft technologies and focus its efforts on aircraft improvements that 

will most significantly improve overall mission performance. Two main approaches to 

streamlining engine optimization will be researched: 

1. Exploration of any possible relationships between the design variables that 

may allow for the total number of independent variables to be reduced. The 

reduction in design variables will allow the non-linear optimizer to converge 

to an optimal solution with less objective function evaluations. This 

reduction in evaluations may be offset by increased processing time (to 

implement the observed dependencies) required for each evaluation. Thus 

the overall time required to locate an optimal solution may or may not be 

improved. One additional benefit is that more efficient engine solutions may 

be obtained if it is possible to directly select optimal values of the variables 

that have been eliminated. 

2. The use of an unbiased minimum variance estimation technique called 

kriging. Evaluating the fuel consumption implied by each combination of 

design variables involves the use of relatively time-consuming computer 



codes. If estimation techniques can be used to bypass the actual response 

function evaluation codes, significant time-savings in the overall 

optimization may be realized. 

While the dimension reduction techniques to be explored will only be applicable to 

mixed-stream turbofan engine design, kriging, if successful, is potentially useful in any number 

of optimization applications involving time-consuming objective function evaluations. In this 

application, it may be possible to combine both of these potential time-saving techniques to 

further reduce processing required to obtain optimal solutions. 

1.3 Research and Thesis Report Limitations 

For the purposes of this study, only the mixed-stream turbofan engine will be considered. 

While many other turbine engine cycles exist, the mixed-stream turbofan is most commonly used 

in modern, high-performance DoD aircraft. Additionally, only four aspects of the engine have 

been treated as variables - reference engine bypass ratio (a), fan compressor pressure ratio {KC), 

high pressure (or core) compressor pressure ratio (7T6.) and overall engine air mass flow (m0). Any 

other engine parameters that may typically be considered variable by engine designers will be 

assumed to be constant, regardless of the values of these four design variables. 

Since the audience of this research summary is potentially academically mixed - some 

with optimization expertise, others with turbine engine design expertise - it is worth stating that 

the thesis will be geared to focus on optimization. Although some jet engine discussion may be 

required to understand the dimension reduction techniques, this thesis will treat the engine cycle 

analysis algorithms and governing equations of flight inherent to evaluating a turbine engine's 

mission performance as black-box response functions. This does not imply that the inner 

workings of these computer codes are not important to this project. However, the focus of this 



thesis will be to shed new light on the use of these algorithms, not to re-state the principles that 

were used to create them. The reader is referred to Hill and Peterson (1970) for a more thorough 

understanding of turbo-machinery operation. Additionally, a thorough discussion of jet engine 

optimization methods and the governing equations of flight can be found in Mattingly, et al. 

(1987). 

1.4  Thesis Organization 

It will first be necessary to present foundational information to understand the context in 

which kriging and dimension reduction techniques will be explored. In doing this, we will 

review previous work done on the engine optimization problem and familiarize the reader with 

the optimization tools and algorithms under-girding the entire optimization effort. Once the 

reader is comfortable with the overall optimization problem and how it is being solved, two 

potential dimension reduction techniques will be investigated in hopes of streamlining the 

optimization process. Then, using the reduced-dimension problem as a starting point, application 

of the kriging estimation technique to further streamline the optimization process will be 

discussed and results presented. Finally, overall conclusions will be drawn about the successes 

and failures of this research, and recommendations will be made for future areas of research. 



2. Literature Review and Problem Background Information 

The primary goal of this research is to identify methods that expedite the automated 

optimization of a jet engine for a specified aircraft mission. In order to achieve this goal, two 

primary methods will be investigated - problem dimension reduction and kriging techniques. In 

order to understand the context in which these techniques will be applied, it will be useful to first 

review past research accomplishments on the jet engine optimization problem and then introduce 

the underlying optimization framework of this project. Presentation of the current optimization 

framework will include discussion on improvements made to the engine cycle codes used during 

this analysis, the introduction of a fifth independent variable (gross takeoff weight (WT0)), and 

the use of a micro-Genetic Algorithm (uGA) optimizer algorithm to search the design space. The 

dimension reduction techniques and kriging, which are the focus of this research, are also briefly 

introduced, although detailed discussion on these topics is reserved for Chapters 3 and 4, 

respectively. 

2.1  Previous Work on Determining Optimal Engine Parameters for Minimum Fuel 
Consumption 

Given a specified aircraft mission and payload, it is possible to design an engine which 

minimizes the total fuel consumed to execute an aircraft mission. Computer based engine cycle 

analysis and mission performance algorithms can be combined manually to perform mission 

optimization. This method of optimization is extremely time consuming, requiring numerous 

engine design iterations and much trial-and-error searching throughout a large, multi-dimensional 

design space for a relatively small feasible solution region. (Mattingly, et al., 1987) 



In a significant step towards making this design process faster, Nadon (1996) combined a 

genetic algorithm optimization routine with the various Mattingly (1990) algorithms into a 

single, automated package capable of locating the optimal engine parameters for a given aircraft 

mission. Nadon showed that by introducing extra design variables and penalty functions for 

infeasible solutions, optimal engine designs could be located without human assistance. 

However, Nadon's ability to locate an optimal engine solution was significantly hindered by 

inherent limitations in the engine cycle analysis codes used. These engine cycle analysis 

limitations forced Nadon to treat many truly feasible solutions as infeasible, thus distorting the 

solution space and, quite possibly, causing a sub-optimal engine solution to be selected as the 

optimal solution. Additionally, Nadon's optimization algorithms were dogged by the number of 

independent design variables, which had to be increased (via the introduction of extra design 

variables) to facilitate the automated optimization. Although significantly more efficient than 

performing engine optimization manually, Nadon's automated optimizations required longer 

computer run-times than the research sponsor (Wright Laboratories) desired. Regardless of the 

practical short-comings, he demonstrated that automated mission optimization is possible and 

laid the ground work for future projects (such as this one) to improve both the quality of the 

optimal engine solutions and the time required to locate these solutions. (Nadon, 1996). 

2.2  Current Research Overview 

Before discussion about computation-saving techniques is possible, it is necessary to 

establish some of the underlying tools and methods that will be utilized while exploring the use 

of kriging and problem dimension reduction. 

Improvements to the Engine Cycle Computer Codes. A significant improvement over 

Nadon's work made prior to this research was the incorporation of a more robust engine cycle 



evaluation algorithm. Turbine Engine Reverse Modeling Aid Program (TERMAP), an on-design 

and off-design engine evaluation code created for the U.S. Air Force's Wright Laboratories, was 

integrated with Mattingly's (1987) mission fuel consumption equations. The primary advantage 

of using TERMAP as the engine cycle code evaluator is that it uses compressor and turbine 

mapping information to produce engine performance results at unchoked engine conditions. 

Additionally, since this research was sponsored by Wright Laboratories, the end users of this 

optimization algorithm were more comfortable with the TERMAP engine cycle results than the 

Mattingly engine cycle results (Wright Laboratories has used TERMAP for its engine research 

for many years). It is worth noting that, for choked engine conditions, engine cycle results were 

similar regardless of whether TERMAP or Mattingly's (1990) engine equations were used. 

The Rubber Aircraft and the Introduction of Gross Takeoff Weight as an Independent 

Variable. The amount of fuel required to perform a mission profile is directly affected by the 

gross takeoff weight (WT0) of the aircraft. Given two identical airframes, one loaded with more 

weight than the other, the heavier aircraft will require more thrust and will consume more fuel 

during flight than the lighter aircraft. This is because the aerodynamic forces used to generate 

lift on an aircraft also create drag as a byproduct. 

Just as mission fuel consumption is affected by gross takeoff weight, WT0 is affected by 

the fuel stores required to perform the mission (which is directly related to mission fuel 

consumption). WT0 is not only affected by the weight of the fuel itself, but also, in the context of 

conceptual aircraft design, the weight of the airframe structure required to support the weight of 

the fuel. In conceptual aircraft design, the proper size of the airframe and engine is still 

undetermined. When the amount of fuel required to perform a mission changes, so does the size 

of the airframe required to carry the fuel stores. Thus, in conceptual aircraft design, the size of 

the aircraft is a design variable, just as the engine parameters being optimized. Because of this 



dynamic re-sizing of the aircraft, it is known as a rubber aircraft during conceptual design. This 

inherent dependency between the conceptual airframe and the engine being optimized requires 

special handling to locate the optimal combination of both. (Mattingly, et al., 1987, Chapters 1 

and 2) 

As previously presented in Chapter 1, there are four independent engine variables that 

are being considered in this optimization application: reference engine bypass ratio (a), fan 

compressor pressure ratio (KC), high pressure (or core) compressor pressure ratio (X) and overall 

engine air mass flow (m0). For each set of viable engine parameters, there exists a minimum 

WTo that is needed to perform the specified mission. WT0 is calculated by: 

WTO=WE+WF+WP (2-1) 

where 

WE is the empty weight of the aircraft. For conceptual aircraft design, WE can be 

modeled as a function of the gross takeoff weight so that WE =f(WT0). 

Looking at Eq (2-1) and noting that WT0 =f'!(WE), we see that for a 

fixed WP, it is possible to solve for WE so that WE becomes solely a 

function of WF. (Mattingly, et al., 1987, 69-70) 

WF is the weight of the fuel required to perform the mission plus any required 

fuel reserves 

WP is the pay load weight, where pay load includes any item (other than fuel) not 

fixed to the aircraft. This includes the pilot, equipment and weapons 

ordinance. 

Notice that WTo is a function of WF, which is a function of WT0. 



This dependency of WT0 and WF can be overcome by treating WT0 as an independent 

variable. WT0 is selected in conjunction with the independent engine parameters in an 

optimization. This WT0 is treated as the gross takeoff weight for the set of engine variables being 

evaluated for fuel consumption. After evaluating the fuel consumption implied by these five 

variables, the resulting WF(Aauui, is compared with the theoretical amount of fuel on board the 

aircraft (WF<Tha)re,icui)), as implied by the gross takeoff weight. Manipulating Eq (2-1): 

WF(Thenretical) = WT0 -WE-WP (2-2) 

where now 

WE is as defined in Eq (2-1) 

WT0 is the independent gross takeoff weight variable value for this evaluation 

WP is as defined in Eq (2-1) 

Based on the function being used to relate WE and WT0, WF{Thetmtiml) can be calculated for 

comparison with WF(Actmi). 

If WF(Acluai, > WF(The„K,icai), the point is infeasible (more fuel was needed to perform the 

mission than was available on-board the aircraft); if WF(Theoretkai) > WF(Actuai), the point is feasible. 

The optimal WT0 value for any set of viable engine parameters occurs when WF(Theore,iCal) = 

WF(Acmai). When this condition is met, enough fuel exists to perform the mission, but no excess 

fuel (and structure) weight has been unnecessarily carried throughout the mission. 

By treating WT0 as an independent variable, the optimization algorithm is responsible for 

locating the best gross takeoff weight for the best set of engine parameters. By penalizing the 

response function value returned to the optimizer for designs with infeasible WT0's, gross takeoff 

weights are driven into feasible values. WT0's that are too large are inherently penalized by the 
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excess weight that was carried throughout the mission. This excess weight causes the fuel 

consumption to be higher than if WF(Theoreticai) = WF(Acmai). 

Probabilistic Non-Linear Optimization Algorithms. Probabilistic, non-linear optimizers 

use randomization techniques to search an entire design space for the global optimum, or the 

point that produces the best response in the design space. This approach to optimization is 

contrasted with gradient-based optimizers which use various techniques to estimate the direction 

of greatest improvement. Gradient-based optimizers only have the ability to locate local optima, 

or the best points from sub-sets of the design region, and do not have the ability to search outside 

of the local region in which they find this optimal point. 

The Standard Genetic Algorithm. The Standard Genetic Algorithm (SGA), also 

known simply as the Genetic Algorithm (GA), is a popular non-linear, probabilistic optimization 

technique that simulates survival-of-the fittest processes to locate an optimal combination of 

input design variables. The SGA's primary advantage is its robust ability to identify globally 

optimal solutions in highly irregular, even non-continuous response function environments. 

However, this robustness comes at the price of large numbers of objective function evaluations 

required to locate the optimal solution. Given the highly non-linear nature of the mission fuel 

consumption response function, this type of optimizer is well-suited for this application. (Nadon, 

1996, 16) 

In the SGA, sets of design variable coordinates (JC/, x2,... x„) are encoded into a single 

string of binary digits (i.e. 011101001010111010... - see Appendix B for details on how this 

encoding is performed). This string of binary numbers represents a chromosome that genetically 

describes the point, much like genes in biological organisms. This chromosome, which can be 

decoded back to the original coordinates, is unique to this point and, therefore, will not be 

repeated by any other point in the design space. The SGA manipulates a collection of points 
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(whose coordinates are converted into chromosomes) known as a population. Each member of 

this population has a certain level of fitness, which is analogous to the point's response function 

value (favorable response function values equate to high fitness levels). Hence the stage is set 

for the SGA to simulate survival-of-the-fittest processes until a globally optimal point (or, in 

SGA terms, a most fit member) is located. 

An SGA uses three biological processes to search a design space for an optimal solution 

- selection, crossover and mutation. Selection is the process by which the most-fit members of a 

population are chosen for mating (crossover). This is where the survival-of-the-fittest premise of 

the SGA is introduced. The likelihood of a member being selected for mating is directly 

proportional to the member's fitness. In other words, the most fit members are most likely to be 

chosen to generate the next population. During the selection process, it is also possible to 

implement a technique known as elitism, which simply guarantees that the most fit member of a 

population is always passed-on to the subsequent population. This ensures that the chromosome 

with the most favorable fitness value remains in the population for further manipulation and is 

not lost during the selection process. Crossover is the technique used to mate the members 

selected for reproduction. It typically involves combining the chromosome bit structures of the 

parents to produce two new children chromosome structures. An important point to note about 

crossover is that, regardless of the crossover scheme used, mating genetically identical parents 

generates children identical to the parents. This is essential to the SGA eventually converging to 

an optimal solution. Finally, mutation is a random process by which bits in members' 

chromosomes are spontaneously changed to produce new points in the design space (recall that 

every chromosome bit structure can be mapped to a unique set of design variable coordinates, 

and vice versa). More detail about how these genetic algorithm processes work is located in 

Appendix B. 
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The net effect of repetitively evaluating a population for fitness, selecting parents, 

combining parents to make new children members, and randomly introducing mutation is that 

many chromosome structures are generated and evaluated for fitness. Since each of these unique 

chromosomes equates to a unique point in the design space, many different regions of the design 

space are searched. The selection process ensures that when promising design-space regions are 

encountered (e.g. regions of relatively high fitness), the bit structure of these favorable solutions 

is maintained and passed-on to future populations. 

It can be shown that the repetitive process of selection and crossover will eventually 

result in a population completely comprised of the most fit member (multiple copies of the same 

chromosome bit structure). This most-fit chromosome pattern to which the SGA converges is 

presumably the optimal point which we seek. While many criteria exist to determine if a 

population has converged, the technique used in this application involves evaluating a 

population's homogeneity, or genetic likeness, to discern when the SGA has completed its task. 

When most of the members of a population have about the same chromosome bit structure, the 

ability of the SGA to search new regions has been greatly reduced and the SGA terminates 

operation. 

In all, the genetic algorithm searches a design region by encoding the coordinates of the 

points evaluated into a genetic structure that can then be manipulated to converge to a most-fit 

solution. This convergence is a result of the converging properties of the survival-of-the-fittest 

approach. Through the various populations created, many different genetic schemes are 

encountered. By ensuring survival-of-the-fittest, the most-fit of these genetic structures (which is 

the globally optimal solution to the optimization problem) survives to eventually be the only 

genetic structure in the population. (Pirlot, 1996, 502-506) 
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The Micro-Genetic Algorithm. The Micro-Genetic Algorithm (ßGA) is a 

probabilistic optimization technique that is closely related to the Standard Genetic Algorithm. 

Unlike the SGA which relies on manipulation of large populations of chromosome patterns (N > 

30, where N is the population size) to adequately search the design space, the uGA employs the 

SGA with a micro-population (N<5) combined with an outer-loop operation (see Figure 2-1). 

Start 
Randomly Generate 

Micro-Population 
(N < 5) 

Combine Best Member 
from Previous Loop 

with (N-i) Randomly 
Generated New 

Members to Create New 
Micro-Population 

Perform Standard 
Genetic Algorithm 
Processes Using: 

Elitism 
Tournament Selection 
Prob(Crossover) = 1.0 
Prob(Mutation) = 0.0 

Converged 
Micro-Population 

Select Best Member of 
Converged Micro- 

Population 

Figure 2-1. Micro-Genetic Algorithm Flow Diagram 

In Figure 2-1, we see that a randomly selected initial micro-population is first established 

and passed to the SGA. The SGA then performs normal genetic algorithm operations using 

elitism, tournament selection and a 100% crossover rate (Prob(Crossover) = 1.0). Elitism 

guarantees that the genetic pattern of the most fit member of the current population is passed on 

to the subsequent population unaltered by crossover or mutation. This ensures that the most 

favorable solutions are not lost during the SGA genetic processes. Tournament selection 
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involves randomly pairing members of a population and selecting the most-fit of the two to be a 

potential parent for the next population. Each individual tournament pair (multiple tournaments 

are performed) identifies one population member to become a part of the pool of eligible parents. 

The parents are then randomly paired to create children for the next population. The 100% 

crossover rate ensures that all of the identified parents are mated to generate the subsequent 

population. A crossover rate less than 100% would allow some of the parents genetic schemes to 

be passed to the next generation without having been modified by the mating process and would 

reduce the amount of new genetic structures evaluated during the optimization process. Note 

that the elite member that was maintained from the previous population may also have been 

selected for crossover. Regardless, the elite member's unaltered genetic pattern is also passed to 

the new population, so that the new generation only has (N-l) children generated from the 

previous population. 

Mutation is disabled (Prob(Mutation) = 0) in the uGA. This process, usually responsible 

for introducing diversity into the population to prevent premature convergence, is replaced with 

an outer-loop process in the U.GA algorithm. For this reason, each micro-population processed 

by the SGA converges relatively quickly. The SGA is considered converged when the micro- 

population reaches a user-defined level of homogeneity, at which time the SGA halts and outputs 

it's final population. The most fit member of the converged micro-population is then combined 

with (N-l) new, randomly selected members and fed back into the SGA for manipulation. This 

SGA re-start process is performed until a user-defined outer-loop convergence criteria is met. 

The primary advantage of the M-GA is efficiency. The uGA has been shown to converge 

to globally optimal solutions significantly faster than SGA routines, reducing the overall number 

of objective function evaluations required to obtain an optimal solution. Despite the reduced 
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number of function calls, the thoroughness of the search process is comparable to the SGA. 

(Krishnakumar, 1989,289-291) 

Use of Penalty Functions. The uGA, like many non-linear optimizers, is not capable of 

handling infeasible points by itself. It requires a tangible response value be returned every time 

an objective function call is made. In some applications, the objective function is programmed to 

return an infeasible response value to the optimizer that is several orders of magnitude worse 

than any feasible point response could be. This directs the optimizer away from the region by 

this point in the future. However, for many optimizers, convergence is encouraged when an 

infeasible point is assigned a penalized response value rather than a single, extremely poor 

response value. By penalizing an infeasible response based on how far away it is from the 

feasible region, all available information is utilized in assisting the optimizer in moving back 

towards the feasible region. 

Assume that a point has been determined to be infeasible. If we know the boundaries of 

the feasible region, we can generate a pseudo-response for this infeasible point based on the 

response from the closest feasible point. That is, we can, starting with the response from the 

feasible point, assess a penalty based on how far the infeasible point is from the feasible region. 

Written as an equation for a minimization problem, the pseudo-response is generated with: 

^ Infeasible Point 

^Pseudo - Response, 

f Closest Feasible 

Point's Response 

Penalty, based on Distance from 

Infeasible Point to Feasible Region 
(2-1) 

As depicted for a single independent variable in Figure 2-2, this in effect, funnels the optimizer 

back towards the feasible region whenever an infeasible point is evaluated. 
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Figure 2-2. Funneling Effect Created by Penalty Functions for a 
Minimizing Optimization 

Unfortunately, as will be discussed in Chapter 4, the actual boundaries of the feasible 

region are not known a priori in this application. For this reason, the distance to the closest 

known feasible point (that is, the closest feasible point that has previously been evaluated) is 

used to estimate the distance to the true feasible region. 

Introduction to Research Topics. Dimension reduction refers to the elimination 

of a portion of the independent design variables in an optimization problem. It is desirable to 

reduce the number of independent variables because this allows probabilistic non-linear 

optimizers (like the U.GA) to converge more quickly to an optimal solution. In this application, 

the baseline optimization process had five independent variables: reference engine bypass ratio 

(a), fan pressure ratio (TCC), high pressure compressor (core) pressure ratio {nL), overall engine air 

mass flow (m0), and aircraft gross takeoff weight (WT0)- Research will be conducted to 

determine if usable dependencies exist between any of these design variables that may be used to 
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reduce the dimensions of the problem. While looking for these relationships, it must be 

remembered that exploiting noted dependencies may or may not be more efficient than simply 

performing the optimization with the additional independent variables. Achieving this balance of 

dimension reduction and efficiency will be the focus of the research presented in Chapter 3. 

Working with the reduced independent variable set achieved in Chapter 3, kriging is then 

applied to this problem in hopes of accelerating the optimization process. Kriging is a response 

estimation technique that uses existing known response values to generate response estimates for 

new points in the design space. Its origins are traced to the geological sciences where it is used 

to estimate the size of mineral deposits using limited point samples. Unlike many estimation 

techniques (like least-squares regression), kriging does not use a pre-defined mathematical 

expression fit to existing data to estimate responses at new points in the design space. Instead it 

interpolates between known data points. The primary advantage of this approach is that the 

estimating function passes through the known data points (see Figure 2-3). Since in the jet 

engine optimization problem, the best polynomial for the response data is not known a priori and 

can change based on other user-defined mission parameters, interpolation provides a more robust 

means of providing accurate estimates. Additionally, since response function evaluations are 

deterministic (that is, a single response is always obtained with the same input variables), it is 

appropriate that the estimating function pass through all of the known data points. 
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Figure 2-3. Comparison of Regression and Interpolation 

Kriging is unique among interpolation techniques because it produces minimum variance 

response estimates. As will be discussed in Chapter 4, kriging makes use of spatial statistics to 

describe response variation in a design region. Using this spatial information, kriged estimates 

are generated using linear combinations of known response data to produce response estimates 

that minimize the effects of the spatial variation on the new point estimate. 

Use of kriging in non-geological applications is a new field of study. For this reason, it 

is uncertain if kriging is even appropriate for jet engine optimization. Additionally, it will be 

necessary to completely automate the kriging process in order to exploit its use in this application 

- a task that, based on the literature search performed, appears to have no precedent in aerospace 

applications. If kriging can be automated for this application, it is uncertain if the computations 

required to produce kriged estimates will be more efficient than evaluating the actual response 

function (although, at least conceptually, it does seem like it will be more efficient). So we see 

that, even though the benefits of kriging look promising, new ground will have to be covered to 

19 



make use of the technique. Chapter 4 contains significant detail on the theory and application of 

kriging to the jet engine optimization problem. 
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3. Jet Engine Optimization Dimension Reduction 

In non-linear optimization, it is often desirable to reduce the number of independent 

design variables in order to minimize the processing required to locate an optimal solution. If the 

response function associated with a set of design variables is not guaranteed to be convex (which 

is often the case in engineering applications), some type of probabilistic optimizer (like the 

genetic algorithm) will be required to adequately search the design region for the global 

optimum. It is the necessity of this random search algorithm that drives the need for independent 

variable reduction - the smaller the set of input variables, the smaller the number of response 

function calls required for the probabilistic optimizer to converge to an optimal solution. 

In many engineering applications, evaluating a response function can consume a 

significant amount of resources, including computing capability and time. Evaluating one set of 

design variables can involve executing lengthy, iterative computer codes requiring anywhere 

from a few seconds to hundreds of hours to complete. In this optimization environment, it is 

even more important to reduce the number of objective function calls required to locate the 

optimal solution. 

In this application, a preliminary search was performed to locate the set of mixed-stream, 

turbofan engine design variables - engine bypass ratio (a), fan pressure ratio (xc), overall core 

pressure ratio (nc) and engine air mass flow (m0) - that minimized the amount of fuel required to 

perform a defined aircraft mission. At this stage in the design process, I was able to treat the 

airframe as a rubber aircraft, meaning that the size and weight of the airframe were not fixed. As 

more efficient engine designs were located (which required less fuel to complete the mission), 

less fuel was required on-board the aircraft, therefore reducing the size and weight of the 
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airframe needed to carry the fuel. While the aircraft drag polar and takeoff wing loading   —— 

v s ) 

were assumed to be constant regardless of the size of the aircraft (wing area (S) was varied with 

gross takeoff weight (WTo) to maintain a constant wing loading), the size (and more importantly 

the weight) of the airframe was allowed to change during the optimization process. For this 

reason, WTo was added to the set of design variables to be optimized (see Chapter 2 for details). 

While quantifying the computational savings experienced with dimension reduction is 

important to the overall engine optimization effort, the focus of the research presented in this 

chapter is to describe the noted dependency of two of the design variables on the other three 

design variables. In effect, it is proposed that this five dimensional (a, rtc; Kc, m0, and WTo) 

optimization problem can be reduced to a three dimensional (a, Kc, and WT0) optimization 

problem by exploiting the observed dependencies of rcc- and m0 on the other variables. Exploiting 

these variable dependencies involves heuristic search algorithms and has a computational price 

of its own. Therefore, depending on the efficiency of these heuristic algorithms, a total 

optimization computational savings (with the reduced number of input variables) may or may not 

be realized. While it was not practical to experimentally prove that the dimension reduction 

made the optimization process more efficient, discussion of this important aspect of the overall 

design process is included in this chapter. 

3.1  Engine Cycle Modeling Improvements 

When Nadon (1996) automated this conceptual engine optimization process, he used 

engine cycle and aircraft mission evaluation codes developed by Mattingly (1990). Though these 

equations adequately model engine cycle calculations for choked low pressure turbine (LPT) 

conditions, engine performance calculations were not possible for unchoked conditions. Since 
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the mission profiles modeled often involved wide ranges of flight Mach numbers and altitudes, 

very low throttle settings were sometimes required to perform mission legs. It was at these flight 

conditions where Mattingly (1990) codes were unable to provide solutions. The result was that 

near-optimal engines were rejected, simply because the true optimal engine design had unchoked 

LPT flow on one or more mission legs. 

A significant improvement made in this application was the incorporation of a more 

robust engine cycle evaluation algorithm. Turbine Engine Reverse Modeling Aid Program 

(TERMAP) (1997), an on-design and off-design engine evaluation code created for the U.S. Air 

Force's Wright Laboratories, was integrated with Mattingly's (1987) mission fuel consumption 

equations. The primary advantage of using TERMAP as the engine cycle code evaluator was 

that it used compressor and turbine mapping information to produce engine performance results 

at unchoked engine conditions. Additionally, since this research was sponsored by Wright 

Laboratories, the end users of this optimization algorithm were more comfortable with the 

TERMAP engine cycle results (Wright Laboratories has used TERMAP for its engine research 

for many years). It is worth noting that, for choked engine conditions, engine cycle results were 

similar regardless of whether TERMAP or Mattingly's (1990) engine codes were used. 

3.2  Optimal Fan Pressure Ratio (7^<) Dependency 

In this section, we discuss a heuristic approach to choosing the optimal fan pressure ratio 

(7TC) for a given a, Kc, and WT0. Note that the engine mass flow (ra0) will not be included in this 

dependency relationship. This is because in conceptual engine design, m0 simply defines the size 

of the resulting mixed-stream, turbofan engine; it does not affect the inter-relationships of the 

various engine cycle components. Said another way, for a given set of rational a, Kc; nc, and WT0 
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inputs, any value of m0 will produce a functional conceptual engine design, though it may not 

necessarily be capable of performing the mission. 

Background. At the heart of the heuristic used to identify the optimal nc- value is a 

relationship first noticed by Branham (1997). While Branham was working with Mattingly's 

(1990) on-design conceptual engine design codes (the same codes used by Nadon (1996)), he 

noticed that, regardless of the reference flight condition selected, for fixed values of a and nc 

(and other engine cycle efficiency factors), there always existed a fan pressure ratio at which on- 

design uninstalled Thrust Specific Fuel Consumption (5) was minimized and on-design 

uninstalled engine thrust (F) was maximized. Upon closer inspection, he also realized that this 

always happened when the bypass flow Mach number at the mixer (M5) was slightly less than 

the core flow Mach number at the turbine exit (M5). Although he never explored this 

relationship any further, Branham was able to generate engine designs that always had near- 

optimal nc- values. 

Perhaps some clarification is appropriate as to why the nC' value that minimizes S and 

maximizes F is considered optimal. S is calculated using 

S = -&- (3-1) 
Fln% 

where 

flbm^ 
total engine tuel tlow 

V 
f0 is the overall engine fuel-to-air ratio = 

V sec j 

...     ■ a      flbnO engine inlet air flow     
V sec J ; 

F is the uninstalled engine thrust (lbf) 
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m0 is the overall engine inlet air flow     
V sec ) 

For each mission leg, an aircraft will require a certain amount of installed thrust (Treq) to be 

delivered by the engine(s) in order to perform the specified leg maneuver. Treq will be fixed for a 

given WT0 and m0 (required thrust is affected by m0 only if non-constant engine installation losses 

are being modeled). Since engine cycle models work in terms of uninstalled engine performance, 

it is necessary to translate installed engine thrust into uninstalled engine thrust required {Freq). 

Thus, for every mission leg, there is an Freq that must be generated in order for the engine to meet 

the installed thrust requirement. 

In this application, we are trying to identify the engine that performs a specified aircraft 

mission while consuming a minimum amount of fuel. Therefore, in meeting the identified Freq, it 

is always desirable to make S as small as possible since this value implies the fuel consumption 

of the engine. It is important to note that the usefulness of minimizing 5 would be offset if 

uninstalled engine thrust was diminished in the process. However, as will be shown, choosing nc- 

to minimize S has the added benefit of maximizing uninstalled thrust. Not only is the engine 

most efficient in terms of fuel consumption, but it is also most effective in terms of producing 

thrust. Both objectives are optimized at the same nc: 

3.3  Understanding How (S) and (F) Are Coincidentally Optimized 

We now turn our attention to understanding why coincident optimality of S and F occurs. 

While understanding this principle for reference engine conditions is foundationally important, 

the real value of this phenomenon is realized only if S and F remain optimal for off-design flight 

conditions as well. Branham's discovery is explored for both reference and off-design flight 

conditions in this section. 
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Application of Reference Flight Conditions. Unfortunately, looking at ideal (that is, no 

engine losses or inefficiencies) mixed-stream turbofan engines provides only limited insight into 

why the phenomenon observed by Branham exists. Figure 3-1 shows the performance of the 

ideal engine, as generated from the ideal engine equations in Mattingly (1996). Note that with no 

losses modeled, for a given a, KC, burner total temperature (T,4) and free-stream Mach number 

(M0), larger fan pressure ratios always provide more thrust and better fuel consumption 

properties, thus implying that an infinitely large fan pressure ratio is optimal. While this is 

nonsensical in terms of real engine design, one important piece of information can be taken from 

the ideal engine - at this infinitely large TTC-, F is maximized and S is minimized. 

rc. 

Figure 3-1. On-Design Uninstalled S and Specific Thrust for the Ideal 
Mixed-Stream Turbofan Engine 
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We therefore turn our attention to empirical data available from TERMAP on-design 

engine evaluations that more realistically model engine operation. Imbedded in the TERMAP 

codes used to perform the on-design engine evaluations are realistic component efficiencies. 

Figure 3-2 shows the results for the same Kc, burner total temperature (Tt4) and free-stream Mach 

number (M0) values used for the ideal engine plots in Figure 3-1. Figure 3-3 demonstrates that 

this phenomenon is not dependent on T,4. Additionally, Figure 3-4 shows the same results with 

fixed a and varying nc. 
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Figure 3-2. On-Design Condition #1: Uninstalled 5 and Specific Thrust for 
the TERMAP Generated Mixed-Stream Turbofan Engine at Varying a 
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Figure 3-4. On-Design Uninstalled S and Specific Thrust for the TERMAP 
Generated Mixed-Stream Turbofan Engine at Varying Kr 

Notice that with engine inefficiencies modeled, 5 and F reach optimal values at reasonable fan 

pressure ratios. Also note that, regardless of the value of T,4, a, or nc, the fan pressure ratio at 

which S is minimized is also the fan pressure ratio for which F is approximately maximized. 

Although these figures were generated using TERMAP, this phenomenon is also observed using 

Mattingly's (1990) engine codes. 

Branham first used the -^ ratio to identify the nc- value at which this dual optimality is 
Mr 

M achieved. Analogous to the Ä ratio is the ratio of the bypass and core flow total pressures at 
M 

mixer entry 
'' P   ^ 

\Pt5 J 

, which is a readily available from TERMAP output. When the — ratio is 
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plotted against S and F (all of which are engine cycle outputs), approximately optimal S and F 

p 
are obtained at a fixed -^- ratio, regardless of the values of a, 7TC, T,4, and M0. Figure 3-5 shows 

P that the —— ratio at which this happens is approximately 1.00 for a fixed nc and varying a. 

Figure 3-6 shows this same characteristic to be true with a fixed a and varying nc. 
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T,4 = 3500 R 
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Figure 3-5. Optimal On-Design Uninstalled S and Specific Thrust at 

-^- =1.00 for Varying a 
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Reference (Pt5/Pt5) 

Figure 3-6. Optimal On-Design Uninstalled S and Specific Thrust at 

-Sil =1.00 for Varying ^ 

An important connection to be made here is that the -&- ratio is a function of the fan pressure 

P 
ratio combined with constant a and nc values. Figure 3-7 shows the relation between -&- ratio 

and n ■. Notice that the -£- function for each bypass ratio is monotonically increasing (a 

P,v  ■ 
property that will be exploited in locating the nc- at which the optimal -£- is obtained). 
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P.« Thus, for the on-design engine, it is possible to vary nc- until the —— ratio reaches its optimal 

p 
value - when this —— ratio is obtained, the best nc- has been (approximately) located. This nc- is 

considered best because it maximizes uninstalled thrust output while minimizing engine fuel 

consumption . This minimized fuel consumption leads to a minimized amount of fuel required to 

meet Treq for the specified duration of a mission leg. 

Application to Off-Design Flight Conditions. The on-design engine property noted by 

Branham would not be useful in this application if it applied exclusively to on-design engines. 

Regardless of the reference conditions chosen for an on-design engine, an aircraft flies some 

portion (if not all) of its mission at off-design flight conditions. Hence, if the selection of an 
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optimal Kc- value only minimized S and maximized F on-design, this property would be of very 

limited use. However, it was found that by selecting an optimal nc- value for the reference 

engine, S and F were also approximately optimized for all off-design flight conditions tested in 

this research. 

Figure 3-8 through Figure 3-10 show off-design S and F values plotted against reference 

p 
— ratios for three arbitrary off-design conditions and throttle settings. 
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It is seen once again that regardless of the reference bypass ratio, off-design S is always 

approximately minimized and off-design F is always approximately maximized at the same 

P 
reference —— ratio. While an exhaustive list of figures showing many different off-design 

P,5 

conditions is not included, this KC- optimality principle held true for all of the various flight 

conditions used in this application. 

Understanding Off-Design Optimality Using Reference Engine Optimization. It is 

important to understand why 5 and F optimality is maintained once a departure from reference 

engine flight conditions has occurred. Similar to operation at reference conditions, the off-design 

fan pressure ratio that minimizes 5 and maximizes F is expected to be equal to the value that 
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p 
causes the off-design —— ratio to be approximately 1.00. Once reference engine conditions are 

P<5 

departed, the off-design Kc-, Kc and a can be significantly different from the reference nc-, nc and 

p 
«(Mattingly, et al., 1987, 120-122). This would seem to imply that the resulting off-design -£- 

ratio is likely to be very different as well. 

p 
However, in reality the -^- ratio does not change significantly with changing flight 

Pts 

conditions when it is first optimized for the reference engine. This is attributable to the fact that, 

for most flight conditions, the engine spool RPM typically remains at 80 - 100% of the full- 

throttle reference engine RPM. Over this range of spool RPMs, My and M5 do not vary 

significantly from their full-throttle reference engine values (Mattingly, 1996, 558). Since Pt5- 

and P,5 are derived directly from these Mach numbers (via the isentropic compressible flow 

p 
equations), it follows that the—— ratio also remains relatively constant as well. This notion is 

p 
confirmed in Figure 3-11 through Figure 3-13 where reference and off-design -^- ratios from 

^5 

TERMAP are compared. 
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In the previous three figures, we see that, although there may be significant deviations from 
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Application to Jet Engine Optimization for an Aircraft Mission. In Nadon's (1996) work 

on the jet engine optimization problem for a specified mission, fan pressure ratio was treated as 

an independent variable. Though this is a viable approach to this optimization, practice has 

shown that for a given a and nc, the range of working nc- values for the on-design engine can be 
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small (reference Figure 3-2 through Figure 3-4, which plot all working values of Kc- for the given 

a and KC). The range of KC- values that provides a realizable engine across a wide range of off- 

design flight conditions is even smaller. Additionally, this range of working nc- values shrinks 

significantly as bypass ratio increases. Since this non-linear optimization problem is typically 

solved using a probabilistic optimization algorithm (such as the genetic algorithm), it is left to 

chance that a proper Kc- value be selected to complement the selected «and Kc values. Since only 

a small range of itc- values produce viable engine designs, it is easy for the optimizer to miss 

these possible values. Hence, many a and Kc combinations would never be evaluated because an 

appropriate nc- values would not be chosen by the optimizer. This is especially true for the high 

bypass ratio engines that have extremely narrow ranges of valid KC- values. The net result is that, 

without very exhaustive sampling, optimal solutions tend to have low bypass ratios where the 

range of functional KC- values is relatively wide. High bypass ratio engines are never fully 

explored. 

As an alternate approach, the property noted by Branham can be employed to make Kc- a 

dependent variable, determined by the selected a and Kc values. The benefit of this approach is 

that locating the optimal KC- value is not left to an optimizer that may or may not ever locate its 

best value. Because of the narrow range of Kc- values that produce viable engines for a given a 

and Kc, using this approach ensures that, not only is a working Kc- value found at every engine 

evaluation, but also the identified Kc- is the approximately its best possible value. By 

implementing a short algorithm to locate the optimal Kc-, this variable is effectively removed 

from the set of independent design variables controlled by the optimizing algorithm. As 

previously mentioned, this dimension reduction encourages faster optimizer convergence to the 

global optimum. 
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p 
In sections 3.2 and 3.3, it was shown that a relationship exists between the optimal —— 

^,5 

p 
ratio, S and F. It was also shown that, regardless of the a or nc values selected, the optimal —— 

P,5 

P 
ratio remained approximately the same. Some iteration was required to discern the best —— 

P/5 

ratio to achieve 7^- optimality (since there was some variation based on the mission profile), but 

P P 
it was finally observed that 0.99 < —— < 1.01 produced the best results. This target —— ratio is 

■     Pt5 Pl5 

p 
presented as a range of values because the precise best —— ratio tended to fluctuate slightly 

Pts 

depending on the mission off-design conditions and the selected values of a and nc. This is 

p 
consistent with the plots shown in section 3.3 that reveal slight discrepancies in the — ratio 

(depending on flight condition, a and nc) at which 5 is minimized and F is maximized. 

p 
The goal here is to locate the KC' value that produces the optimal —— ratio. To do this, a 

Pt5 

simple Newton-Raphson convergence algorithm, supplemented by a bisection convergence 

algorithm, was employed. A description of the Newton-Raphson and bisection root-finding 

algorithms can be found in Burden et al. (1993). Both of these root-finding algorithms are 

capable of locating the value of a single input variable that creates a function response of zero. 

In this case, the single input variable was Kc- and the response was 
f p \ 

^21-1.00 
V Prf J 

. Figure 3-7 

p 
shows that — ratio, as a function of nc-, is a monotonically increasing function. By defining 

P,5 
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the function used by the root-finding algorithms as 

p 
locate where —— = 1.00. 

P,5 

1 P ^ 
^-1.00 
P,s 

, the algorithms are able to 
\'t5 J 

The Newton-Raphson root-finding method uses gradient estimates to quickly converge to 

the root (or zero) of a function. However, it is possible, depending on the function's slope at the 

point being evaluated, for this root-finding method to attempt to move to invalid KC- values {nc- < 

P 1.00). Such moves produce invalid —— results (as well as other engine cycle evaluation 
P/5 

outputs), thus confounding the success of this root-finding technique. For this reason, the 

bisection root-finding method is needed to back-up the Newton-Raphson method. Although the 

bisection method is typically much slower to converge to the root of a function, it is much more 

p 
robust than Newton-Raphson. Therefore, if invalid values of -^- are experienced while 

Pts ■ 

attempting to use Newton-Raphson, this root-finding algorithm is aborted and the bisection root- 

finding method is utilized. 

Fan Pressure Ratio Optimization Conclusions. In all, excellent results were obtained 

using the fan pressure ratio optimization techniques discussed above. The combination of 

Newton-Raphson and bisection root-finding methods had a 100% success rate locating the 

P desired —£- ratio, regardless of the a and nc values being evaluated. As might be expected, 
P,5 

/>.,  • „, .   P,! selecting the target -^- ratio required special attention. When the target -^- ratio was set to 
P,5 

Pr5 

1.00, 7tc- values for optimized engine solutions were likely to be optimal (e.g. changing nc- in 

either direction resulted in increased fuel consumption), but were not guaranteed to be optimal. 
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p 
By slightly varying the target —— ratio above or below 1.00, the likelihood of the chosen nc- 

p 
value being optimal decreased. It was therefore concluded that the precisely best — ratio 

varies slightly based on other engine and mission parameters and that choosing a target value of 

1.00 seemed to provide the highest likelihood of locating the optimal nc-. Despite the short- 

comings of using this criteria, use of the fan pressure ratio optimization algorithms proved to be 

quick and highly effective at obtaining nearly optimal TTC. values for any valid pair of a and /re- 

values. Convergence to the best ^ typically only took 5-10 seconds for each mission evaluation 

required by the optimization algorithm. 

The most significant benefit of using this algorithm was that high bypass ratio engines 

could be properly considered by the optimizer. When nc> was previously treated as an 

independent variable, optimal engine solutions tended to have much lower (and less fuel 

efficient) bypass ratios. With fan pressure ratio converted into a dependent variable (as a 

function of a and nc), functioning high bypass ratio engines could be located by the genetic 

algorithm as easily as low bypass ratio engines. This resulted in all valid combinations of a and 

nc being considered in the optimization process. 

3.4 Determining Optimal Reference Engine Mass Flow (m0) 

At this point, four of the five variables required to evaluate the mission for fuel 

consumption have been identified. Recall that a, nc and WT0 were determined by the optimizer 

algorithm processes, and that nc- was selected as discussed in section 3.2. We are therefore left 

with sizing the engine to produce the required thrust. Similar to the fan pressure ratio, Nadon 

(1996) simply allowed m0 to be an independent variable selected and optimized by the optimizer 
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algorithm. However, there is a more direct method by which the best m0 can be selected for a 

given a, Kc- and nc. 

It is intuitive that it would never be desirable to have an engine that is over-sized for an 

aircraft's mission. Large engines weigh more than small engines and therefore require more 

aircraft structure to support the engine and it's related components. Additionally, the magnitude 

of the engine installation losses is directly proportional to the size of the engine (when they are 

not assumed to be constant). To suffer either of these penalties when an optimal, most efficient 

engine is desired, is counter-productive. It is, therefore, advisable to make the engine just large 

enough to meet the aircraft's most thrust-demanding leg. We now turn our discussion to locating 

the optimal engine mass flow assuming constant engine installation losses. 

Iterating to the Best Reference Engine Mass Flow. In order to perform this iterative 

calculation, it is first necessary to realize that we are iterating to a desired off-design thrust by 

modifying the mass flow of the reference engine. In order to do this, we must first determine the 

ratio of off-design m0 to on-design m0. When sizing an engine at some arbitrary off-design flight 

condition, the ratio of the off-design required engine inlet area (A,) to the on-design free-stream 

area (A0re/) is constant (A, I A0ref= constant, regardless of the engine size) (Mattingly, et al., 1987, 

194). Assuming that the off-design inlet Mach number and the reference free-stream Mach 

number are kept constant, it follows that the ratio of the off-design and reference mass flows, 

which are directly related to the areas required by the off-design and reference conditions, is also 

constant 

f \ 

—— = constant With this relationship, it is now possible to calculate the change in 

reference engine mass flow to obtain the required off-design engine thrust. 

We will be using uninstalled thrust throughout the following calculations. Uninstalled 

thrust is used because TERMAP (like most engine cycle codes) only generates uninstalled engine 
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performance. Since in mission optimization we work in terms of installed thrust (the actual 

thrust delivered to the aircraft) and in engine mass flow optimization we work in terms of 

uninstalled thrust, it is imperative that the proper uninstalled required thrust has been determined 

before any of the following calculations are performed. 

First, we calculate the deficit in required uninstalled, off-design thrust. 

F       = F      — F 
t'ffdcf _ Offreq "ffmall 

(3-2) 

Using the thrust deficit and the off-design specific thrust 
(F    A t

off 

V   ^»J J 

of the engine (output from the 

off-design engine cycle analysis), it is possible to calculate the off-design engine mass flow 

deficit. 

"V„, = 
F

offH 

'off 

v"V J 

Off - Design Thrust Deficit 

Off - Design Specific Thrust 
(3-3) 

This deficit off-design mass flow can then be translated to a deficit reference engine mass flow 

using the off-design / reference engine mass flow ratio (again, obtained from the engine cycle 

analysis). 

mo 
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«0. 

(3-4) 
uo# 

"V 

45 



It is now possible to adjust the reference engine mass flow (by /w^    ) to obtain the desired off- 

design thrust. 

It is important to note that convergence to the proper m0ref is an iterative process, 

requiring multiple engine cycle analyses and execution of the above calculations. Another 

important point is that, during convergence to the proper m0ref, it is possible to overshoot the 

optimal more/- That is, the mass flow becomes larger than is actually required to meet the thrust 

requirement. For this reason, the engine may need to be down-sized during the iterative process. 

Regardless of whether the mass flow is too small or too large, the same calculations are used 

(only the sign of /HQ       changes). Convergence is typically achieved when 

F „< F «     <[F „   + Tolerance], where Tolerance equals some small amount of thrust 

determined to be inconsequential to the overall solution. Finally, it is worth re-stating that this 

algorithm assumes constant engine installation losses. Were installation losses to be more 

realistically modeled, F0#    would be affected not only by the aircraft weight, but also by the 

variable aerodynamic drag forces on the changing engine and its housing (F#    increases for 

increasing m0 values, decreases for decreasing m0 values). The complexity involved in 

incorporating non-constant loss models is beyond the scope of this study. 

At this point, because the engine has been re-sized (e.g. the reference m0 has been 

modified), the mission evaluation process must be re-started from the beginning. This is because 

all of the fuel consumption properties of the previous legs will have been affected by the change 

in engine size. To continue mission evaluation without starting over would propagate inaccurate 

aircraft weight estimates for each of the subsequent legs. Recall that the aircraft is getting lighter 

as the mission proceeds due to fuel consumption. Since aircraft weight at the beginning of a leg 

affects the drag force that will be experienced (and consequently the thrust required and fuel 
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consumption) during the leg, accurate estimates of each leg's beginning aircraft weight are 

essential. - . 

This entire process is depicted in flow chart format in Figure 3-14. 

Determine Most 
Demanding Legs and 

Store Information 
►(     End     ") Enable "Most Demanding 

Leg 
Check" Mode 

Initialize Engine 
Mass Flow to 

Arbitrary Small Value 

Proceed to Next 
Les to be Checked 

Initialize Aircraft Weight 
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Disable Checkout Mode 
and Set Mission Leg 
Counter to First Leg 

Initialize Aircraft Weight 
Using Takeoff Weight 
and Estimated Weight 
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Aircraft Weight = 
Final Weight From 

Previous Lee 

Determine Required 
Thrust (or Select Full 

Throttle) and Call 
TERMAP 

Calculate Mission Leg 
Aircraft Final Weight 

Reset Mission Leg 
Counter to First Leg 

Compare Off-Design 
Required Thrust with 
Off-Design Available 

Thrust 

Adjust Engine Mass So 
That Available Thrust = 

Required Thrust 

Call TERMAP to 
Evaluate Engine with 
Updated Mass Flow 

Figure 3-14. Process Flow for Determining Optimal Fngine Mass Flow with 
Constant Installation Losses 

47 



Time-Saving Techniques. As a time saving addition, the algorithm depicted in Figure 3- 

14 attempts to guess which mission leg(s) have forced m0 to its current optimal value. At the end 

of the engine sizing process, before the algorithm is exited, the most demanding mission legs are 

determined and stored. In order to do this, we simply compare the off-design Freq and Favail for 

each mission leg. When Favail is equal to or slightly larger than Freq„ the engine is having to 

produce maximum thrust to meet the mission leg's thrust requirements. It follows that this leg is 

responsible (either solely or in part) for the optimal reference m0 value being as large as it is. It 

is likely that, when this leg was encountered during mission processing, the engine had to be re- 

sized so that it could produce the thrust necessary to perform the leg's required maneuver. Each 

leg that has equal or nearly equal Freq and FavaU values are considered to be among the most 

demanding legs. 

Every time the m0 optimizing algorithm is called, it first evaluates and sizes the engine to 

the leg(s) that have been most demanding in previous m0 optimizations. This is done to prevent 

as many iterations as possible in locating the optimal m0. Recall that as the algorithm is stepping 

through the mission legs, if the engine is re-sized, the evaluation of the mission must be re-started 

at the first leg. Hence, in the worst case, if the mission legs become more demanding with each 

successive leg (causing the engine to have to be re-sized), the mission would have to be re-started 

numerous times to obtain the optimal m0. However, if the most demanding leg can be identified 

and evaluated first, then the engine will be large enough for all other legs, thus preventing 

mission re-starts. 

In implementing this short-cut technique, it was first noticed that, depending on the 

engine design {a, nc; KC and WT0), the most demanding leg of a mission could change. 

Therefore, it was necessary to determine the frequency of each mission leg being among the k 

most demanding (where 1 < k < Total Number of Mission Legs). Along with this frequency data, 
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running averages of the aircraft weight fractions (ß, where 

„    Aircraft Weight at Start of Mission Leg . .   , . . ..   .    .. ß = 2 -) experienced in previous m0 optimizations were 
WT0 

also stored. Then, when the m0 optimization algorithm was initiated for a new engine design, the 

it legs with the highest occurrences of being among the most demanding legs were checked first. 

The stored ß values were used to estimate the aircraft weight at these most demanding legs 

(recall that required thrust is affected by the mission leg aircraft weight). Obviously, choosing 

values of A: too large defeats the efficiency of the short-cut technique. However, choosing k too 

small also has adverse effects because the most demanding leg for the new engine may not be 

included in the set being tested. In this application, k = 2 (for a mission with 15 - 25 mission 

legs) provided a good balance of efficiency and thoroughness. 

Application to Jet Engine Optimization for an Aircraft Mission. Unfortunately, 

implementation of the engine mass flow optimization algorithm had mixed results. While it did 

successfully complement the jet engine optimization algorithms, it tended to increase the time 

required for each objective function evaluation by 200-300%. On average, an objective function 

call for a mission with 20 legs required 60-80 seconds to evaluate with the mass flow optimizer 

enabled. Without it, objective function evaluations took 20-35 seconds. Some of this time 

penalty was offset by the reduced number of objective function calls required for convergence. 

However, it is unlikely that the reduced number of function calls offset the increased processing 

time per function call. 

Perhaps an increase in processing would be justifiable if the fuel efficiency of the 

optimal engine solutions were better than solutions obtained without the mass flow optimizer. 

However, initial indications revealed that the m0 values for converged engine solutions were not 

optimal. By reducing the mass flow below the value located by the m0 optimizer, significantly 
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more efficient engine solutions were produced. This indicated that the algorithm was not 

locating the actual minimum m0 for the a, Kc-, nc and WT0 in question. Off-line tests showed that 

the algorithm was properly locating the minimum mass flow for each individual mission leg for 

an established leg aircraft weight. It was therefore concluded that the algorithm was not capable 

of properly dealing with the entire mission. 

Recall that thrust required at each leg is dependent on the aircraft weight at the beginning 

of that leg. Also recall that the engine mass flow optimizer only modifies m0 if insufficient thrust 

is experienced on a leg. Therefore, if m0 is modified on leg t (2 < t < Total Number of Mission 

Legs), the algorithm will re-start evaluating the mission at leg 1. This is because the change in 

engine size will have changed the fuel consumption properties of all legs prior to leg t. Because 

WT0 remains constant throughout the iterative process, it is expected that by the time leg t is 

evaluated the second time (with the updated m0), the aircraft will actually be lighter than it was 

on the original evaluation. This is because the engine now has a larger, less efficient m0 than it 

had on the first evaluation, causing more fuel to have been consumed by the time leg t is 

encountered. The lighter aircraft weight causes the thrust required on leg t to be lower than it 

was on the first evaluation. However, the algorithm will not lower m0 this time through because 

insufficient thrust is not encountered. The net result is that the engine ends up being larger than 

it needs to be. 

An obvious solution to this problem would be to have the algorithm adjust mass flow (if 

necessary) based on the updated aircraft weight for leg t. Unfortunately, if m0 is lowered on the 

second iteration of this algorithm, it is likely that on the third iteration m0 will again be too small 

to meet thrust requirements (because aircraft weight will have increased from iteration 2 to 3). 

While this iterative process is likely to converge to the true best engine mass flow, the time spent 

performing the necessary iterations could be extremely time intensive. 
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One additional negative aspect of the mass flow optimizer is its incompatibility with 

non-constant engine installation loss models. Since with non-constant loss models the 

modification of engine size directly affects installation losses (which affects the thrust required 

for each mission leg), the complexity of converging to an optimal m0 would become even greater 

than that previously described for the constant installation loss model. It is likely that even more 

mission evaluation iterations would be required to locate the optimal m0, further increasing the 

evaluation time for a single set of a, Kc; Kc and WT0 values. 

Engine Mass Flow Optimization Conclusions. It is concluded that using the engine mass 

flow optimization algorithm is not appropriate for this application. The time required to iterate 

to an optimal m0 value could be better spent making more, faster objective function evaluations 

treating m0 as an independent variable. It was originally thought that removing this variable from 

the variable set controlled by the optimizer algorithm would benefit the overall convergence 

time. However, it is now believed that, given a robust non-linear optimization algorithm (like the 

genetic algorithm), better mass flow values could be obtained with less processing time without 

the mass flow optimizer. 

3.5 Conclusions on Jet Engine Optimization Dimension Reduction 

In summary, this research revealed both advantages and disadvantages of reducing the 

number of independent variables in a non-linear, non-convex optimization problem. The original 

supposition that problems with less design variables require less objective function evaluations 

was found to be true. However, the processing involved with exploiting variable dependencies 

can cause the overall optimizer convergence time to increase. 

Using the fan pressure ratio optimization algorithm, it was possible to quickly identify a 

Kc- value that was very close to optimal for a given bypass ratio and high pressure compressor 
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ratio. It also enabled the genetic algorithm to locate feasible engine solutions (engines capable of 

performing the mission) with much higher bypass ratios than were obtained without the fan 

pressure ratio optimizer. These high bypass ratio engines tended to be more fuel efficient than 

low bypass engines, thus reducing the amount of fuel required to perform the mission. This 

lower fuel weight translated to smaller, lighter conceptual aircraft designs. 

In contrast, the engine mass flow optimization algorithm was plagued with inefficiency 

and non-optimal results. It required several iterative aircraft mission evaluations to converge to 

an optimal m0, effectively squelching any computational savings achieved by its use. The mass 

flow optimizer also routinely selected m0 values that were larger than that required by the 

mission. One additional problem was that this iterative approach to identifying the best m0 was 

found to be incompatible with a non-constant engine installation loss model, thus confounding 

this logical next-step improvement to the aircraft / mission optimization problem. 

For future work on this problem, it is recommended that nc- be treated as a dependent 

variable and that m0 remain part of the independent variable set controlled by the objective 

function optimizer. Although this leaves four independent variables to be optimized, this appears 

to be the best combination of independent variable reduction and objective function processing 

efficiency. 
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4. Kriging Techniques 

4.1  Overview 

One of the inherent weaknesses of all probabilistic non-linear optimization techniques is 

the large number of objective function evaluations required to locate the optimal solution. For 

many engineering applications, each objective function call involves the use of lengthy computer 

algorithms requiring from a few seconds to hundreds of hours to provide a solution for a single 

set of input variables. Compounding the problem, expensive computing resources may be 

needed to complete the complex calculations for each objective function evaluation. Even for 

applications with moderately computation-intensive objective functions, non-linear optimization 

can easily become too slow and costly for practical use. 

While choosing the proper non-linear optimization technique can greatly improve the 

speed with which the global optimum is located, it is also wise to utilize any methods which 

make it possible to circumvent direct objective function evaluations. In particular, estimation 

techniques may be used to provide a more quickly obtained, approximate objective function 

value that does not hinder the optimization algorithm's efforts to locate the optimum. 

One estimation technique that is well-known in the mining industry is called kriging. Its 

origin comes from mining engineers' need to estimate ore reserves contained in a volume of 

earth using only a limited number of point rock samples. As a means to this end, kriging is a 

linear estimation technique that provides a minimum variance estimate of the mineral 

concentration for a new geographic point by using information obtained from other samples in 

the vicinity of the new point. This approach to point estimation is easily applied in general to 

any problem involving evaluation of points throughout a design region. 
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In this application, recall that the original optimization problem contained five 

independent variables. Kriging was investigated after the dimension reduction techniques of 

Chapter 3 were studied. Therefore, the kriging method was applied when this optimization 

problem had three independent variables (instead of five): reference engine bypass ratio (a), 

high pressure compressor (core) pressure ratio (KC), and aircraft gross takeoff weight (WT0)- The 

other two variables (fan compressor pressure ratio (KC) and engine air mass flow (m0)) were 

determined using the dependencies discussed in Chapter 3. In the previous chapter, the it was       j 

concluded that m0 should continue to be treated as an independent variable. Unfortunately, \ 

kriging research was performed before it was realized that m0 optimization was impractical. This 

discrepancy does not affect the validity of the conclusions of this chapter because the kriging 

method can be applied to any number of independent variables. The general conclusions made in 

this chapter will hold true regardless of whether m0 is treated as an independent variable or not. 

4.2  Geostatistics 

Before discussing how kriging can be applied to a problem, it is first necessary to 

understand the theory of how the technique works. Kriging makes use of a field of study known 

as geostatistics. Geostatistics uses a sampling of known responses from throughout a design 

space to describe the space's continuity. The geological science roots from which geostatistics 

arose relies on the smoothness of things in nature. That is, things in nature tend to form in a 

continuous, smooth fashion. For example, it is expected that earth samples that are rich in 

mineral content will be located in regions of rich mineral content, and earth samples that are low 

in mineral content will be located in regions of low mineral content. Additionally, transition 

from a region of rich mineral content to a region of low mineral content is expected to be 

gradual. 
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The Semi-Variogram. Much of statistics involves describing large sets of data with a 

few descriptive summary indices. Geostatistics is no different. An important tool in geostatistics 

is the semi-variogram (also known more casually as the variogram). At the heart of the semi- 

variogram is the assumption that all available data samples come from a population with a single 

mean and variance. Traditional statistics would assume that, regardless of where in a region a 

data point was sampled, it would have an equal probability of being above or below the mean 

value. Additionally, the covariance between any two sampled points would be zero (all 

responses, regardless of the proximity of the points to each other, are independent). However, in 

spatial statistics, it is assumed that points with responses above the mean will tend to be clumped 

together, and points with responses below the mean will also tend to be clumped together (due to 

the spatial continuity assumptions discussed earlier). The semi-variogram provides a description 

of how response data varies from point to point in the region of interest. In doing so, it provides 

a description of how points co-vary as a function of the distance (and possibly direction) between 

them. 

As previously mentioned, an underlying assumption in spatial statistics is that all 

sampled data points come from a population with a single mean and variance. Since it is 

possible in geological sciences (and other applications) for data to reflect some trend, a common 

practice is to remove any trend from the data before creating the semi-variogram. In essence, this 

establishes that the mean response of the population (with trend removed) is zero and any 

deviation from the trend is due to the implicit variance of the population. A simple way to filter 

out any trend in response data is to create a second order linear regression, and then use the 

residual values (difference between the predicted linear regression response and the actual 

response) of each point to create the semi-variogram. This technique will be used when creating 

the semi-variogram for the jet engine optimization problem. 
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Method for Creating the Semi-Variogram. Applying the previously discussed 

principles of spatial statistics, it is now possible to create the semi-variogram using the following 

method: 

1. Collect response data at many different locations in the region of interest. 

Preferably, arrange the sample locations so that many points will be the 

same distance apart from each other. 

2. Fit a second-order, least-squares linear regression to the response data. 

Store the residual terms for each data point with the point's 

coordinates. These residual values will be used to create the semi- 

variogram. 

3. Exhaustively calculate the Euclidean distance h between every pair of 

sample points. Store this distance along with the difference in 

residual values between the two points (AResiduai)- 

4. For any given value of h, collect all AResiduai's that are associated with 

this distance, average the squared AResiduai values, and divide by two. 

This is the semi-variogram value y(h) for any two points in the region 

of interest that are a distance h apart. Written as equations: 

r(A)=Äl=(rv<)2 (4-2) 

where 

N(h) represents the number of points that are distance h apart 
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V, and Vj represent the residual values at any points / andy that are 

distance h apart. 

5. Repeat Step 4 for all h's identified. 

6. Plot each h and y(h) pair. This plot is the semi-variogram. 

7. Attempt to fit a mathematical model to the data (to be discussed later). The 

mathematical model will be needed to make estimates of y(h) at all values of 

h (necessary to perform kriging). 

It is important to note that the above methodology assumes the region is Isotropie. That is, the 

expected variation in response is only a function of the distance between two points (h) and is 

not dependent on the direction of travel. If the expected variation in measured response was 

different for movement along different axes, the region would be considered anisotropic. For the 

purposes of this research, the design space is assumed to be isotropic (for reasons that will later 

be discussed). 

Creation of Example Semi-Variogram. Working through an example is an 

excellent way to demonstrate how to create a semi-variogram. Suppose that a two-dimensional 

region exists, 10 units in length in both the Xi and x2 directions. At any point located in this 

region, we are able to evaluate a response f(xi, x2). For this example, we will assume that the 

response surface is known. Obviously this is not usually the case, or we would not be trying to 

estimate responses via kriging. 

The surface in Figure 4-1 is obtained by plotting the response as a function of the 

location in the (xj, x2) plane. The equation of the surface is shown in Eq (4-3). 
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Figure 4-1. Response Surface for 2-D Kriging Example 

RESPONSE = 
x, — 5 v r*,-5V 

+ 2[sin(0.75jc,) + cos(jc2)] + 5 (4-3) 

In order to create a semi-variogram that will describe this surface, samples will need to 

be taken, preferably at standard intervals to create multiple pairs of points that are the same 

distance h from each other. A standard technique in mining is to create a grid of sample points 

that are evenly spaced throughout the region. Figure 4-2 shows the locations of the sample 

points for such a grid. 
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Figure 4-2. Sample Measurement Locations for 2-D Kriging Example 

Evaluate the response at all of the sample points. Table 4-1 shows the tabular results of these 

evaluations. 
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Table 4-1. Response Evaluations for Kriging Example Sample Points 
x, X: f(X,.X2) X, x2 f(X„ X;) X, x2 f(X„ X2) X, x2 f(X„ X2) 

0 0 19.50 3 0 15.81 6 0 11.54 9 0 18.15 

0 1 16.33 3 1 12.64 6 1 8.38 9 1 14.98 

0 2 • 12.67 3 2 8.97 6 2 4.71 9 2 11.32 

0 3 10.27 3 3 6.58 6 3 2.31 9 3 8.92 

0 4 10.19 3 4 6.50 6 4 2.24 9 4 8.84 

0 5 11.82 3 5 8.12 6 5 3.86 9 5 10.47 

0 6 13.42 3 6 9.73 6 6 5.47 9 6 12.07 

0 7 13.76 3 7 10.06 6 7 5.80 9 7 12.41 

0 8 13.21 3 8 9.52 6 8 5.25 9 8 11.86 

0 9 13.43 3 9 9.73 6 9 5.47 9 9 12.08 

0 10 15.82 3 10 12.13 6 10 7.87 9 10 14.47 

x, x2 f(X„ X2) X, Xj f(X„ X2) X, x2 f(X„ X2) X, x2 f(X„ X2) 

0 18.61 4 0 13.78 7 0 12.53 10 0 21.38 

1 15.44 4 1 10.61 7 1 9.36 10 1 18.21 

2 11.78 4 2 6.95 7 2 5.70 10 2 14.54 

3 9.38 4 3 4.55 7 3 3.30 10 3 12.15 

4 9.31 4 4 4.47 7 4 3.22 10 4 12.07 

5 10.93 4 5 6.10 7 5 4.85 10 5 13.69 

6 12.53 4 6 7.70 7 6 6.45 10 6 15.30 

.  7 12.87 4 7 8.04 7 7 6.79 10 7 15.63 

8 12.32 4 8 7.49 7 8 6.24 10 8 15.08 

9 12.54 4 9 7.71 7 9 6.46 10 9 15.30 

10 14.94 4 10 10.10 7 10 8.85 10 10 17.70 

x, Xj f(X,, X:) X, X: f(X,. X,) X, x2 f(X„ X2) 

2 0 17.49 5 0 12.11 8 0 14.94 

2 1 14.33 5 1 8.94 8 1 11.77 

2 2 10.66 5 2 5.27 8 2 8.11 

2 3 8.27 5 3 2.88 8 3 5.71 

2 4 8.19 5 4 2.80 8 4 5.63 

2 5 9.81 5 5 4.42 8 5 7.26 

2 6 11.42 5 6 6.03       ' 8 6 8.86 

2 7 11.75 5 7 6.36 8 7 9.20 

2 8 11.20 5 8 5.82 8 8 8.65 

2 9 11.42 5 9 6.03 8 9 8.87 

2 10 13.82 5 10 8.43 8 10 11.26 

Now that sample data has been obtained, the first order of business is to remove any 

trend resident in the data. This is obtained by fitting a second-order, least-squares linear 

regression to the response data, which turns out to be: 

RESPONSE = 19.9563 - 3.3706*, - 2.5853;c2 + 0x,x2 + 0.32895x,2 + 0.2420\x\        (4-4) 

After obtaining this second order curve-fit, the residual values must be calculated for the creation 

of the semi-variogram. Figure 4-3 shows a plot of the regression residuals for the region of 

interest. Table 4-2 lists the residual values in tabular form. 
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Figure 4-3. Plot of Residuals for 2-D Kriging Example 
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Table 4-2. Regression Residuals for Kriging Example 
x, X; Res(X,, X:) x, X: Res(X,. X,) X, x2 Res(X,, X;) X, X; Res(X,, X,) 

0 0 -0.46 3 0 3.00 6 0 -0.03 9 0 1.88 
0 1 -1.28 3 1 2.18 6 1 -0.86 9 1 1.06 

0 2 -3.09 3 2 0.37 6 2 -2.66 9 2 -0.75 
0 3 -4.11 3 3 -0.65 6 3 -3.68 9 3 -1.77 
0 4 -3.29 3 4 0.16 6 4 -2.87 9 4 -0.95 

0 5 -1.26 3 5 2.19 6 5 -0.84 9 5 1.08 

0 6 0.26 3 6 3.72 6 6 0.69 9 6 2.60 

0 7 0.04 3 7 3.50 6 7 0.47 9 7 2.38 

0 8 -1.55 3 8 1.90 6 8 -1.13 9 8 0.79 

0 9 -2.86 3 9 0.59 6 9 -2.44 9 9 -0.52 

0 10 -2.48 3 10 0.98 6 10 -2.06 9 10 -0.14 

X| X; Res(X„ X:) X, X; Res(X„ X,) X, X; Res(X,.X:) X, X; Res(X,, X,) 

0 1.70 4 0 2.05 7 0 0.05 10 0 2.23 

1 0.87 4 1 1.22 7 1 -0.77 10 . 1 1.40 

2 -0.93 4 2 -0.58 7 2 -2.58 10 2 -0.40 

3 -1.95 4 3 -1.61 7 3 -3.60 10 3 -1.42 

4 -1.14 4 4 -0.79 7 4 -2.79 10 4 -0.61 

5 0.89 4 5 1.24 7 5 -0.75 10 5 1.42 

6 2.42 4 6 2.77 7 6 0.77 10 6 2.95 

7 2.20 4 7 2.54 7 7 0.55 10 7 2.73 

8 0.60 4 8 0.95 7 8 -1.05 10 8 1.13 

9 -0.71 4 9 -0.36 7 9 -2.36 10 9 -0.18 

10 -0.33 4 10 0.02 7 10 -1.97 10 10 0.20 

x, x2 ResfX,. X;) X, X; Res(X,.X:) X, X; Res(X,.X:) 

2 0 2.96 5 0 0.78 8 0 0.90 

2 1 2.14 5 1 -0.05 8 1 0.07 

2 2 0.33 5 2 -1.85 8 2 -1.73 

2 3 -0.69 5 3 -2.87 8 3 -2.76 

2 4 0.13 5 4 -2.06 8 4 -1.94 

2 5 2.16 5 5 -0.03      . 8 5 0.09 

2 6 3.68 5 6 1.50 8 6 1.62 

2 7 3.46 5 7 1.28 8 7 1.39 

2 8 1.87 5 8 -0.32 8 8 -0.20 

2 9 0.56 5 9 -1.63 8 9 -1.51 

2 10 0.94 5 10 -1.25 8 10 -1.13 

The next step is to determine all of the distances h represented by all of the possible pairings of 

data points. For example, each point's nearest neighbor in either the x, or x2 direction is 1 unit 

away (h = 1). Each point's nearest diagonal neighbor is -v/2 units away (h = V2). By skipping 

the closest point in the Xi or x2 direction, the second closest point in the Xi or x2 direction is 2 

units away (h = 2). This process continues until all possible point combinations are measured. 

Table 4-3 lists all h values represented by the sample, the number of pairs at this distance h, the 

sum of squared differences in the residual values for this distance h, and the semi-variogram 

value y(h). Figure 4-4 plots the data represented in Table 4-3 and represents how semi- 

variograms are typically presented. 
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Table 4-3. Exhaustive Semi-Variogram Calculations for Kriging Example 

h N(h) i(v,-v,y 
(I,J)IAS=A 

YW = ——    YiVi-v,)1 

0.00 121 0.00 0.00 

1.00 220 300.44 0.68 

1.41 200 546.25 1.37 

2.00 198 898.88 2.27 

2.24 360 2125.95 2.95 

2.83 162 1470.89 4.54 

3.00 176 1233.67 3.50 

3.16 320 2680.05 4.19 

3.61 288 3326.20 5.77 

4.00 154 1007.70 3.27 

4.12 280 2214.55 3.95 

4.24 128 1794.44 7.01 

4.47 252 2792.98 5.54 

5.00 356 3571.75 5.02 

5.10 240 1302.07 2.71 

5.39 216 1857.48 4.30 

5.66 98 1282.52 6.54 

5.83 192 2125.28 5.53 

6.00 110 218.06 0.99 

6.08 200 669.60 1.67 

6.32 180 1173.99 3.26 

6.40 168 1781.33 5.30 

6.71 160 1438.70 4.50 

7.00 88 93.11 0.53 

7.07 232 972.38 2.10 

7.21 140 1193.62 4.26 

7.28 144 806.08 2.80 

7.62 128 1032.64 4.03 

7.81 120 725.04 3.02 

8.00 66 108.72 0.82 

8.06 232 1212.91 2.61 

8.25 108 668.20 3.09 

8.49 50 198.24 1.98 

8.54 96 831.05 4.33 

8.60 96 491.30 2.56 

8.94 84 688.02 4.10 

9.00 44 177.87 2.02 

9.06 80 432.65 2.70 

9.22 152 861.16 2.83 

9.43 72 410.90 2.85 

9.49 64 707.33 5.53 

9.85 56 592.82 5.29 

9.90 32 67.71 1.06 

10.00 82 347.70 2.12 

10.05 40 290.85 3.64 

10.20 36 376.03 5.22 

10.30 48 388.91 4.05 

10.44 32 413.28 6.46 

10.63 48 129.85 1.35 

10.77 28 348.57 6.22 

10.82 40 241.00 3.01 

11.18 24 239.17 4.98 

11.31 18 59.30 1.65 

11.40 32 163.22 2.55 

11.66 20 157.76 3.94 

12.04 24 136.55 2.84 

12.21 16 111.42 3.48 

12.73 8 64.68 4.04 

12.81 12 90.63 3.78 

13.45 8 79.59 4.97 

14.14 2 23.62 5.91 
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Figure 4-4. Graphical Representation of Semi-Variogram Data for Kriging 
Example 

Comments on the Example Semi-Variogram. As is often the case with semi- 

variograms, Figure 4-4 is not as clean as we would like it to be. In theory, the semi-variogram 

should gradually rise from y(h = 0) = 0 to some relatively steady-state value that closely 

resembles the sample variance (s2) (annotated in Figure 4-4). This pattern is expected because, 

once the immediate neighborhood of any point (in which response values are expected to be 

correlated) is departed, response values of any new points will be uncorrelated. Thus, if a sample 

of responses were taken at an arbitrary large h from any point in the design space, it is expected 

that the responses would be independent and their variance would approximate the entire 

population's variance (recall that in spatial statistics, the variance of the entire population is 

assumed constant). 

The steady-state y(h) value for large h is known as the semi-variogram's sill. The value 

of h at which the sill is attained is known as the semi-variogram's range. The h-value of the 
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range is denoted by hrange. For semi-variogram models with a sill, the sill value is equal to the 

sample (residuals') variance. That is to say 

lim y(h) = s2=——Yiv, -v)2 ■      '   (4-5) 

where: 

h is the distance between points being evaluated 

hmax is the maximum h value represented in the response data 

y(h) is the semi-variogram value for the distance h 

s2 is the sample (residuals') variance 

m is the total number of points in the sample 

v, is the response value at data point / 

v is the average response for all of the data samples, calculated using: 

v = -fv,.. (4-6) 

where, again, m is the total number of data points in the sample. 

(Clark, 1987, 7). 

While this example's semi-variogram does show a typical rising y(h) pattern for small 

values of h, a clear sill value is not evident from the data. Regardless, this semi-variogram (as 

well as all semi-variograms used in the jet engine optimization problem) is assumed to have a sill 

equal to s1. The only justification for this apparently gross assumption is that accurate kriging 

estimates are still obtained, both in this example and in application. For mining applications, 

significant deviations from the sill value for values of h > hrmge may indicate some important 
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geological phenomena. However, for this application, any deviations from this theoretical sill 

value are ignored. 

It is worth noting that the previous discussion on creating a semi-variogram is equally 

valid in the absence of a sample grid. This fact is important in the jet engine optimization 

problem at hand. The jet engine optimization is controlled by a micro-genetic algorithm (U.GA) 

routine that uses a random search technique to locate the design variable values that achieve the 

best objective function value. Rather than use computing resources for the sole purpose of 

creating a semi-variogram sampling grid, response samples are obtained on-the-fly as the uGA 

searches the design region. This creates a very irregular sampling pattern and causes every pair 

of sample points to have its own unique hy value. Regardless, the semi-variogram can still be 

generated. The only difference is that a point will exist on the semi-variogram for every pair of 

sample points instead of one semi-variogram point representing an average of several sample 

point pairs (N(h) = 1 for all h). All of the equations listed in this discussion are still valid. In 

addition, the following discussion about mathematical modeling is also valid despite the irregular 

sampling pattern. 

Mathematical Modeling of the Semi-Variogram. The final step in creating a semi- 

variogram is the development of a mathematical model to represent the semi-variogram data. 

This model is what will be used for kriging since kriging requires semi-variogram values for all 

possible values of h, not just y(h) values for h's represented in the sample data. In both the Clark 

(1987) and Isaaks et al. (1989) texts, numerous semi-variogram models are discussed, and the 

reader is referred to either of these resources for more in-depth modeling information than is 

about to be presented. 

Mathematical Modeling Technique. For this application, semi-variogram 

models are to be automatically generated in an effort to use kriging to replace actual objective 
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function evaluations. When a user begins the optimization process, no a priori information is 

known about the objective function's response surface, let alone the semi-variogram that would 

spatially describe this response surface. Thus, any best-model decisions about which semi- 

variogram model to use would not be possible without human intervention (which was 

undesirable in this application). Additionally, developing software to smartly choose the best 

model was impractical. It therefore was decided that a linear model (with a sill) would be used 

to represent the semi-variogram data. This model's primary advantage was its simplicity in 

creation and use. It also proved to be an effective assumption, producing good kriging results. 

Essentially, the linear model used assumes that y(h) increases linearly until the sample 

variance (s2) is obtained. The /i-value at which the y(h) = s2 is considered to be the range, and 

y(h) is assumed to equal s2 for any h > hmnge. The slope of the line connecting y(h = OJ = 0 and 

■yfhrmge) = s2 is determined by the following technique: 

1. For every h-value in the semi-variogram, calculate the slope of the line that 

would be required to connect the origin and the point. This slope is nothing 

y(h) 
more than ^—^ for the point since the line is from the origin (0,0) to the 

h 

point. 

2. Obtain the average of the slopes implied by each semi-variogram point. This 

becomes the slope of the semi-variogram for h < hmnge. 

3. Calculate the value of h at which the line intercepts y(h) = s2. This value of h 

is the model's range. For any value of h > hmnge, y(h) = s . 

Mathematical Modeling Example. To demonstrate this process, a linear model 

will be fit to the example previously discussed. As previously stated, the sample variance (that 
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is, the sample variance of the residuals being used to create the semi-variogram) is s =3.23. 

First, the slope obtained from each individual point is calculated. Table 4-4 lists this data. 
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Table 4-4. Tabular Listing of Semi-Variogram Data Used for Creating 
Linear Model 

h y(h) 7(h) 
h 

// 7(h) r(h) 
h 

0.00 0.00 N/A 8.25 3.09 0.38 
1.00 0.68 0.68 8.49 1.98 0.23 
1.41 1.37 0.97 8.54 4.33 0.51 
2.00 2.27 1.13 8.60 2.56 0.30 
2.24 2.95 1.32 8.94 4.10 0.46 
2.83 4.54 1.61 9.00 2.02 0.22 
3.00 3.50 1.17 9.06 2.70 0.30 
3.16 4.19 1.32 9.22 2.83 0.31 
3.61 5.77 1.60 9.43 2.85 0.30 
4.00 3.27 0.82 9.49 5.53 0.58 
4.12 3.95 0.96 9.85 5.29 0.54 
4.24 7.01 1.65 9.90 1.06 0.11 
4.47 5.54 1.24 10.00 2.12 0.21 
5.00 5.02 1.00 10.05 3.64 0.36 
5.10 2.71 0.53 10.20 5.22 0.51 
5.39 4.30 0.80 10.30 4.05 0.39 
5.66 6.54 1.16 10.44 6.46 0.62 
5.83 5.53 0.95 10.63 1.35 0.13 
6.00 0.99 0.17 10.77 6.22 0.58 
6.08 1.67 0.28 10.82 3.01 0.28 
6.32 3.26 0.52 11.18 4.98 0.45 
6.40 5.30 0.83 11.31 1.65 0.15 
6.71 4.50 0.67 11.40 2.55 0.22 
7.00 0.53 0.08 11.66 3.94 0.34 
7.07 2.10 0.30 12.04 2.84 0.24 
7.21 4.26 0.59 12.21 3.48 0.29 
7.28 2.80 0.38 12.73 4.04 0.32 
7.62 4.03 0.53 12.81 3.78 0.29 
7.81 3.02 0.39 13.45 4.97 0.37 
8.00 0.82 0.10 14.14 5.91 0.42 
8.06 2.61 0.32 

y(h) 
Averaging the slope estimates represented by each point (the —-— values) yields a line slope 

h 

equal to 0.5740. With this value in hand, we calculate the value of h at which the sill (which is 

equal to s2) is attained. This is the range (hrunge). 
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K 
s2 3.23 

slope ~ 0.5740 
= 5.627 (4-7) 

Thus, the mathematical model is stated as 

7(V: [0.5740-/z,7      0 < hy < 5.627 

3.23 hij> 5.627 
(4-8) 

Figure 4-5 shows the resulting semi-variogram model superimposed on the semi- 

variogram data. 

6 - 

14 

Figure 4-5. Kriging Example Semi-Variogram with Fitted Linear Model 

Clearly, the linear model does not produce an impressive fit to the semi-variogram data. 

However, in practice for this application, the linear model approximation was adequate for 

generating accurate kriging estimates. 
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4.3 Kriging 

Once the semi-variogram has been created to describe the spatial continuity of the region 

of interest and a mathematical model has been generated to approximate the semi-variogram 

data, it is possible to use this information to create a minimum variance, linear estimate of 

unsampled points in the region using kriging. 

Background on Estimation Techniques. Say that a set of sample points exists with 

coordinates (represented in vector form) xh x2, x3, ..., x„, response values v,, v2, v3, ...,vn (v, = 

f(Xi), for all i from 1 to n), and trend-less response values rh r2, r3, ..., rn (where r, is the residual 

response value after trend has been removed). Now say that we are interested in approximating 

the response value at a new point x0 that is in the proximity of the known points. One technique 

for estimating v0 (v0 =fix0)) would be to form a weighted average (that is, a convex, linear 

combination) of the known values. Written as equations: 

n 

v0 = wlvl +w2v2+w3v3+...+wnvn = £w,v, (4-9) 

jj>,.=l. (4-10) 

where 

v0 is an unbiased estimator of v0, the actual response of the point being 

estimated 

v, is the response value for point i 

wi is the weight applied to response value i 

n is the number of data points being used to generate the estimate 
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Regardless of the actual values of the wh as long as they sum to one and the sampled values were 

without trend, v0 will be an unbiased estimator of v0. That is to say that if numerous estimations 

of different points were to occur using the sample set data, the average estimation error would 

equal zero. (Clark, 1987, 99) 

Now that we know how to keep estimates unbiased, we turn our attention to choosing the 

averaging weights (the w,-'s) in a way that gives us the best possible estimation results. 

Numerous criteria exist to choose w, values, ranging from setting all w,'s equal to each other to 

sizing wi based on how far away xt is from x0. However, kriging introduces a method for 

selecting H>, values that produce a minimum variance estimate of v0. 

Kriging Estimation Technique. Generating a minimum variance estimate from a set of 

known sample points makes use of the semi-variogram information previously discussed. Recall 

that the semi-variogram shows the relative variation in the trend-less residual response (r,) values 

as a function of the distance between any two sample points in the region of interest. Using this 

spatial information, it is possible to estimate the variance of a new point's (x0) response value 

(v0). Estimation variance ( G\ ) for any unbiased linear estimation is 

i=! <=1 7=1 

where 

hij is the Euclidean distance from point i to pointy (a subscript of 0 represents the 

point being estimated) 

y(hij) is the Semi-variogram value for the distance hy 
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w; is the weighting applied to point i (recall, ^ w( = 1) 

n is the number of data points being used to generate the kriged estimate 

It is important to note that Eq (4-11) has been modified from its original form presented by Clark 

(1987). Kriging, when typically used in geological applications, is employed to estimate a 

response for a region of points, not one specific point. For this reason, Eq (4-11) in its original 

form also has a term accounting for variation present within the region being estimated. For 

point estimation, no variation exists between the point and itself. Thus, this term is dropped from 

the overall variance formula. The elimination of this constant term does not affect the validity of 

the kriging techniques to be derived. 

To obtain the w,'s that produces a minimum variance estimate, the w,'s must be selected 

so as to minimize <70
2. To identify the minimum a], we locate the set of w,'s at which all partial 

derivatives of the Cf0
2 function (with respect to all of the w,-'s) equals zero. That is, solve for the 

set of wi s that makes 

^ = 0     for/=1,2,3,...,« (4-12) 
dwi 

Taking these n partial derivatives produces n equations with n unknowns. However, nothing in 

n 

this set of equations ensures that ^ w, = 1, which is required for the estimation technique to be 

unbiased. Since simply introducing this last equation would create (n+l) equations with only n 

unknowns, one further unknown is introduced in the form of a Lagrangian Multiplier (A). In 

effect, we return to Eq (4-11) and choose to minimize 
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f   n 

a0-A, X(^)-1 
Vi=l 

(4-13) 

instead of only o\. To minimize this equation, partial derivatives with respect to each of the 

w,'s and X must be set equal to zero. The resulting (n+1) equations with (n+1) unknowns are 

wl-y(h,l) + w2-y(hl2) + w3-y(hn)+---+wn-y(h,n) + X = y(h,0) 

wI-7(Ä21) + w2-y(Ä22) + w3-y(Ä23)+-+wB-7(Ä2n) + A = y(Ä20) 

\-y(K) + wi -7(M+ w3-nh33)+---+wn-r(hin) + X = nhi0) (4-14) w, 

wl-y(hnl) + w2-y(hn2) + wi-y(hni)+---+wn-y(hm) + ?i = y(hn0) 

Wl+W2 + W3-\ hW„+0=l 

or, stated in the more compact matrix form 

y(K)  Y(M 

l        l 

rtK) 
Y(K) 

Y(Kn) 
1 

1 

1 

1 

0 

w, 

H>, 

w„ 

Y(K) 
y(^o) 

Y(hn0) 

1 

(4-15) 

For convenience, names are given to the matrix and two vectors in Eq (4-15). 

T-w = y0 (4-16) 

where 

74 



r = 

7(V y(A,2) 

7(^.1) 7(^22) 

Y(Ki) Y(Ki) 
1        1 

Y(K) 
Y(K) 

1 

1 

Y(hJ 
1 

1 

0 

w - 

w. 

w. 

w„ 

Yo = 

Y(fho) 

Y(K) 

Y(K0) 
1 

Now solving for the weights that produce the minimum variance estimate is a simple linear 

algebra operation. 

w = r-'-y0 (4-17) 

where 

r_1 is the inverse of the T matrix defined in Eq (4-16). Each ^hy) element of 

the T matrix comes from evaluating the semi-variogram for the distance 

hy {the distance from sample point i to pointy). 

f0 is defined as in Eq (4-16). Each y(hi0) element of the (n+\) by 1 f0 vector 

comes from evaluating the semi-variogram for the distance hi0 (the 

distance from sample point / to the point being estimated). 

vv is the (n+1) by 1 vector of weights plus the Lagrangian Multiplier A (see Eq 

(4-16) for details). 
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With the minimum variance estimate weights now in hand, the response value for the 

point in question, x0, is easily obtained using the original response values (the v, values). Recall 

that up to this point we have been using residual (r,) values to create the semi-variogram, build 

the mathematical model and determine the w,'s that will produce a minimum variance estimate of 

v0. However, to generate the v0 estimate (instead of the r0 estimate), we must apply the w,'s to 

the v,'s, not the r,'s. Thus, to obtain the estimate, we use 

n 

v0 = u^v, + w2v2 + W3V3+.. .+wnvn = ^lwivi (4-18) 
i=\ 

As with any estimation technique, there is some amount of uncertainty about the validity 

of the estimate value. In regression, parameter standard errors are used to calculate confidence 

intervals for new response predictions. In kriging, an estimate variance is generated directly 

from the information used to develop the response estimate using 

*o = Z(*f< • r(Ä,-o))+* = ™T ■ % (4-19) 
1=1 

where w and f0 are defined as they were in Eq (4-17). (Clark, 1987, Chapter 5) 

As was the case in Eq (4-11), Eq (4-19) also has been modified from the form present in 

Clark (1987). Again, this is because point estimation is being performed, not region estimation. 

Though the derivation is in a different form, Isaaks, et al. (1989) confirms this response estimate 

result. Additionally, the validity of the kriging equation (Eq (4-17)) for point estimation (instead 

of region estimation) is confirmed in this alternate reference. 

Notice that this estimate variance differs from a traditional estimate variance (say from 

regression) in that it is not attempting to capture uncertainty in the estimate as a function of 
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uncertainty in the data used to create the estimate (presumably introduced through measurement 

error or some other unmodeled noise source). Instead, the estimate variance is a function of 

spatial variance as described by the semi-variogram. This subtle distinction is important because 

estimate uncertainty is no longer a result of uncertainty in the data, but is a result of the response 

variance present throughout the design space. For this reason, estimate variance may or may not 

be directly correlated to the accuracy of the prediction. This concept will be further discussed in 

section 4.4. 

Kriging Example. Returning to the example started in section 4.2, let us now attempt to 

estimate the response at the new point x0 = (5.4, 7.2). Rather than use all 121 points, we will 

arbitrarily choose to use the 7 closest known sample points to x0. Figure 4-6 shows the point in 

question in proximity to the 7 closest sample points. 

>< i 

Figure 4-6. Selection of Closest Points for Estimating v0 =f(x0) 

To begin the kriging process, the distances from the seven closest sample points to the 

point being estimated (the ft,0's) must be calculated. Also, the distances from the sample points 

to each other (the ft,/s) must be calculated as well. Semi-variogram values must then be assessed 
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for each of these distances for use in the kriging system of equations. Table 4-5 through Table 4- 

7 show all of the necessary data to perform kriging. 

78 



Table 4-5. Distance and Semi-Variogram Data Between Sample Points and 
x0 for Kriging Example 

Point # 
(0 

(x/, xi) Coordinates 
of Point Xi 

Response Value (v,) 
from Table 4-1 
(trend included) 

Euclidean Distance 
to x0 (hio) 

Y(h,o) 
(From Eq (4-8)) 

1 (4,7) 8.04 1.41 0.81 

2 (5,6) 6.03 1.26 0.73 

3 (5,7) 6.36 0.45 0.26 

4 (5,8) 5.82 0.89 0.51 

5 (6,6) 5.47 1.34 0.77 

6 (6,7) 5.80 0.63 0.36 

7 (6,8) 5.25 1 0.57 

Table 4-6. Matrix of Distances Between Sample Points for Kriging Example 

Point # 

1 

1 2 3 4 5 6 7 

(Xl, x2) 

(4,7) 

(4,7) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8) 

0.00 1.41 1.00 1.41 2.24 2.00 2.24 

2 (5,6) 1.41 0.00 1.00 2.00 1.00 1.41 2.24 

3 (5,7) 1.00 1.00 0.00 1.00 .1.41 1.00 1.41 

4 (5,8) 1.41 2.00 1.00 0.00 2.24 1.41 1.00 

5 (6,6) 2.24 1.00 1.41 2.24 0.00 1.00 2.00 

6 (6,7) 2.00 1.41 1.00 1.41 1.00 0.00 1.00 

7 (6,8) 2.24 2.24 1.41 1.00 2.00 1.00 0.00 

Table 4-7. Matrix of Semi-Variogram Values Between Sample Points for 
Kriging Example 

Point # 

1 

1 2 3 4 5 6 7 

(xi, x2) 
(4,7) 

(4,7) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8) 

0.00 0.81 0.57 0.81 1.28 1.15 1.28 

2 (5,6) 0.81 0.00 0.57 1.15 0.57 0.81 1.28 

3 (5,7) 0.57 0.57 0.00 0.57 0.81 0.57 0.81 

4 (5,8) 0.81 1.15 0.57 0.00 1.28 0.81 0.57 

5 (6,6) 1.28 0.57 0.81 1.28 0.00 0.57 1.15 

6 (6,7) 1.15 0.81 0.57 0.81 0.57 0.00 0.57 

7 (6,8) 1.28 1.28 0.81 0.57 1.15 0.57 0.00 
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Using Eq (4-16), the component matrix and vectors are generated. 

r = 

0.81   0.57 0.81 1.28 1.15 1.28 1 

0     0.57 1.15 0.57 0.81 1.28 1 

0 0.57 0.81 0.57 0.81 1 

0.57     0 1.28 0.81 0.57 1 

1.28    0.57   0.81 1.28      0 0.57 1.15 1 

1.15    0.81   0.57 0.81 0.57     0 0.57 1 

1.28    0.81 0.57 1.15 0.57 0 1 

1111110 

0 

0.81 

0.57   0.57 

0.81    1.15 

1.28 

1 

Yo: 

0.81 

0.73 

0.26 

0.51 

0.77 

0.36 

0.57 

1 

Using Eq (4-17), the minimum variance weights are obtained. 

vv = r-'-7(,= 

1.1145 0.4304 05561 0.4304 - 0.0750 -0.1523 - 0.0750 

0.4304 -15521 05704 -0.1469 0.7837 -0.0017 -0.0838 

05561 05704 - 2.2354 05704 -0.0231 05843 -0.0231 

0.4304 - 0.1469 05704 -15521 -0.0838 -0.0017 0.7837 

0.0750 0.7837 -0.0231 -0.0838 -1.3909 0.7749 0.0143 

0.1523 -0.0017 05843 -0.0017 0.7749 -1.9787 0.7749 

0.0750 - 0.0838 -0.0231 0.7837 0.0143 0.7749 -1.3909 

0.3530 0.1572 -0.2631 0.1572 0.3172 -0.0387 0.3172 

0.3530" "0.8 f 

0.1572 0.73 

-0.2631 0.26 

0.1572 051 

0.3172 0.77 

-0.0387 0.36 

0.3172 057 

-0.8722_ 1 

w 

-0.027 

0.001 

0.493 

0.137 

-0.004 

0.314 

0.086 

-0.049 

The kriged estimate is obtained using Eq (4-18) and the trend-less response data in Table 4-5. 

v0 = (-0.027X2.54) + (0.001)(1.50) + (0.493)(1.28)+... 

(0.137X-0.32) + (-0.004X0.69) + (0.314)(0.47) + (0.086)(-1.13) 
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v0 = 5.973 

The variance of this estimate is also readily available using Eq (4-19). 

ol=wT -y0= 0.287 

To verify the quality of this estimate, we now compare it with the actual response value 

at point x0 . This true value is obtained using Eq (4-3), from which the original response surface 

for this example was generated. 

v0=fixo) = 5-890 

We see that kriging has produced a response estimate that is 0.083 units (1.42% difference) from 

the actual value. 

Notes on the Krigine Process. Having been through the arduous process of creating a 

semi-variogram, representing the semi-variogram mathematically, and then developing a 

minimum variance estimate via kriging, the reader may confused as to the value of this 

estimation technique given that the true response value could have been obtained simply by using 

Eq (4-3). Keep in mind, however, that this was simply an example to demonstrate the process of 

kriging, not an example for which kriging was intended. Kriging is intended to save time and 

money by avoiding actual response surface evaluations. In geological applications, response 

surface evaluations require expensive drilling and laboratory analysis. When applied to the jet 

engine optimization problem discussed later in this paper, response function evaluations require 

significant computational effort which makes the optimization process very slow. Even though 

the kriging process (to include modeling the semi-variogram) involves processing a significant 

amount of response information, this process can be readily automated and executed in a fraction 

of the time required to evaluate the true response function. 
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4.4 Evaluating the Quality of the Kriged Estimate 

Once a response estimate has been obtained, it is desirable to assess the accuracy of the 

estimated value. As discussed in section 4.3, it is inappropriate to assume that estimate variance 

is the best indicator of the estimate's accuracy. In the previous example, we were able to simply 

evaluate the true response at point x0 and compare it with the estimated response. Obviously, 

performing this type of accuracy assessment in a real application would defeat the purpose of 

developing a response estimate. What we want is an indicator from the kriging process that can 

be directly correlated to prediction error. Then, we can set a threshold on this indicator 

parameter at which the kriged estimate is either accepted or rejected. If it is rejected, then an 

actual response function evaluation will be required. 

Possible Estimation Accuracy Indicators. To begin the search for an appropriate 

indicator parameter, it is helpful to list parameters that could reasonably be expected to be 

correlated with prediction error. 

1. Kriging estimate variance (<X0
2) (from Eq (4-19)) 

2. Kriging estimate standard deviation ((70) (equal to + ,]&* ) 

3. Distance of any of the n sample points to the point being estimated (hi0) 

f l       n \ 

A review of kriging literature revealed that estimate variance (a]) was most commonly used as 

the kriged estimate's measure of accuracy. However, given that, in kriging, estimate variance is 

a function of the spatial properties of the region and not a function of the response data, it was 

not clear that a connection necessarily existed between variance and accuracy. While this 

assumption is intuitive for other estimation techniques (i.e. regression), it seemed prudent to 

verify this proposal by performing experimentation on sample response surfaces. For the 
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purposes of this experimentation, all of the potential accuracy indicators (including variance) 

will be evaluated. 

Method for Determining Good Indicator Parameters. In the jet engine optimization 

problem, three design variables exist (recall that two of the original five variables have been 

eliminated through the techniques discussed in Chapter 3). Very little a priori information exists 

about the objective function response surface, primarily because it changes significantly based on 

the values of other preset constants in the problem. It has been deduced by experience that the 

response surface is relatively smooth and is likely to contain trend that will need to be filtered 

before kriging is performed. 

Because of the unpredictability of the jet engine response surface, using the jet engine 

evaluation codes to develop a general understanding of predictor parameters is no more desirable 

than using a simulated response surface. For this reason, a reasonable response surface (that is, a 

surface with smooth peaks and troughs) with three input variables was used to isolate promising 

predictor parameters. While this may appear to be an arbitrary means of locating the best 

indicator variable, application of experimentation results to the jet engine optimization problem 

enabled satisfactory distinction to be made between accurate and inaccurate kriged estimates. 

The response surface chosen to perform experimentation is actually a three-design- 

variable variation of the two-design-variable example surface introduced in section 4.2. The new 

surface's mathematical representation is 

RESPONSE = 1 ^—^ I + 
Ai J ■A-'x        ~J 

V    *    J \    *    J 
■ 2[sin(0.75x,) + cos(*2) + sin(0.50x3)] + 25 

(4-20) 

The design region is defined as 
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0<JC;<10 

0<x2<10 

0<xj<10 

The goal is to first establish an isotropic semi-variogram that describes this response 

surface (with trend removed) and then perform numerous kriging estimations at random locations 

in the design space that can be compared with actual response values. Once kriging parameters 

from each estimate and the differences between the estimated responses and the actual responses 

have been obtained, it will be possible to look for correlations between the parameters and the 

prediction errors. 

The experiment was set up as follows: 

1. 50 randomly selected sample points were established in the design region via 

direct response function evaluation (m = 50). 

2. The region's semi-variogram was generated using these sample points. 

3. A linear mathematical model (with a sill) was applied to represent the semi- 

variogram data. 

4. Response estimates for 1000 randomly selected points were generated using 

the kriging technique. Five sample points were used to generate each kriged 

estimate (n - 5). 

5. For each of the 1000 points estimated via kriging, actual response values 

were obtained in order to calculate kriging estimation error. 

6. The magnitude of the estimation error was stored along with the various 

kriging indicator parameters for each point estimated via kriging. 

7. Off-line analysis on the data was performed to look for correlations between 

the various indicator parameters and the estimation error. 
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Best Estimation Indicators. The results of this experiment show that either the kriged 

estimate variance or standard deviation is the best indicator of kriging estimation error. Table 4- 

8 shows the correlation of each potential indicator with the magnitude of the prediction error. 

Table 4-8. Predictor Variable Correlation with Prediction Error 
Magnitude 

Predictor Correlation with 
IPrediction Errorl 

°l 0.672417 

O"o 
0.639926 

hw 0.534942 

h2o 0.46985 

h3o 0.419282 
h.40 0.377354 

h5o 0.368472 

K 0.514043 

It is seen that estimate variance (cr,*) is most highly correlated, thus affirming its utility 

as an accuracy predictor as presented in various literature references. However, something that 

is not captured in Table 4-8 is the range of prediction errors that can be assessed with the various 

predictor variables. Recall that estimate variance is generated using semi-variogram information 

(see Eq (4-19)). If all of the data points used to generate a kriged estimate lie outside of the 

semi-variogram's range (e.g. all of the hi0's > hrange), then each of the yihi0) values will equal the 

population variance (s2). Thus, regardless of the weights applied to each data point, the estimate 

variance, which is a linear combination of the yihi0) values, will always equal s2 (because 

n 

^ w, =1). Therefore, as a predictor variable, <T0
2 is not able to discern levels of accuracy once 
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all of the hjoS> hmnge. Since accurate kriging estimates are attainable despite all /z,0's > hmnge, it 

is necessary to select a predictor that is not limited in this way. 

For this reason, in the jet engine optimization problem, the mean distance of the point 

being estimated to the data points (hQ) is used. Although, in Table 4-8, hw actually has a slightly 

higher correlation to prediction error, it was decided that, in general, h0 would be less sensitive 

to the data sample locations. While h0 does not appear to have impressive predictive qualities, 

in practice it is possible to ensure that only response estimates with acceptable estimation errors 

are treated as valid. This is achieved by selecting conservative values of h0, which has the 

unfortunate side-effect of causing some accurate estimates to be rejected as inaccurate. 

Determining Appropriate Acceptance Threshold for the Selected Predictor Variable. To 

determine an appropriate hQ value by which estimates are to be accepted or rejected, h0 is 

plotted with prediction error magnitude. Using a first-order linear regression, a simple 

mathematical expression is developed to relate h0 to the expected prediction error magnitude. 

Based on the application, an acceptable level of prediction error can be selected, and the 

appropriate 1\ threshold value determined using this linear relationship. 

Figure 4-7 depicts this regression process and illustrates that setting the h0 acceptance 

threshold = 0.63 provides rough assurance that kriging prediction errors remain at or below 5 

response units. If necessary, this h0 threshold can also be lowered to provide added insurance 

against prediction error magnitudes greater than 5. 
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Figure 4-7. Determining h0 Threshold to for a Desired Kriging Prediction 
Error Magnitude 

Notice in Figure 4-7 that all kriged responses with h0 < 0.63 would have been accepted 

using this as the acceptance criteria. This includes a small set of responses (about 5 out of the 

1000) with IPrediction Errorl values greater than the desired 5 units. Also notice that all 

estimates with h0 > 0.63 would have been rejected. This includes a significant number of 

estimates that actually had prediction errors less than 5 units. Thus, even though a large number 

of accurate estimates are unnecessarily rejected, more importantly, only a very small fraction are 

incorrectly accepted. It is important to note that appropriate threshold values for the indicator 

variable will be specific to each individual application and must be determined (using the 

technique displayed in Figure 4-7) for each new response surface. 

4.5 Determining Feasibility 

The kriging algorithm is not capable of predicting infeasibility - that is, portions of the 

design region that are invalid combinations of design variables. It's geological roots do not 

require such accommodations. However, in order to use kriging in this and other optimization 
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applications, a means of predicting infeasibility is imperative. Otherwise, it is possible for the 

kriging algorithm to return feasible response estimates for points that, if evaluated using the 

actual response function, would be handled as infeasible responses. 

For problems with constraints that can be explicitly modeled, a simple check to see if the 

design variables lie in the feasible region is all that would be required before invoking the kriging 

algorithm. However, for many non-linear optimization problems (including this application), 

constraints that define the feasible/infeasible regions cannot be explicitly represented. The 

constraints may be implicit to the complex, iterative algorithms that generate the response 

function values. In these cases, it is necessary to estimate the feasible region so that kriging is 

only invoked when feasibility is assured. 

Feasible Region Checking Algorithm Description. Presumably, the response function 

being called during an optimization is capable of reporting whether or not the design point being 

evaluated is feasible or infeasible. If this is the case, it is possible to build a database of feasible 

and infeasible points as an optimizer moves throughout a design region looking for the optimal 

solution. It is from this feasible/infeasible database that a feasible region checking algorithm can 

predict if a new design point is likely to be feasible. 

Say that an optimization problem involves p independent design variables, each of which 

has a defined range of values to be explored by the optimization algorithm. Note that this 

implies an p-dimensional box-shaped design region, since the range of possible values for any of 

the design variables is not affected by the values of the other (p-1) variables. Now say that only 

q of these variables have regions of infeasible values and that r of these variables do not have 

infeasible values (q + r = p). To know that some of the variables do not have regions of 

infeasibility requires a priori knowledge of the design region. If no information is known, it is 

always possible to let q = p (r = 0) and treat all variables as having regions of infeasibility. For 



the purposes of the feasible region checking algorithm, we need only concern ourselves with the 

q variables with infeasible regions. Keeping track of infeasible values for the r variables that 

have no infeasible values is simply a waste of resources - these r variables do not affect a point's 

feasibility. 

With the q remaining variables, we will first establish a g-dimensional grid whose grid 

spacing is defined by the user. For example, if q = 2, we would establish a two-dimensional grid 

that sub-divides the ranges of possible values for both of these variables. If the first of these two 

variables (q,) is to be explored for values ranging from -100 to +100 and the second of these 

variables (q2) is to be explored for values ranging from +500 to +1000, a possible grid structure 

could be as shown in Figure 4-8. 

-!0O -92  -84  -76  -68  -60  -52  -14  -36  -38  -20 12  3)  31  36  44  52  60  fin  76  84  92  100 

9i 

Figure 4-8. Possible Grid Structure for q = 2 

Note that in this example, the region has been sub-divided 25 times in each dimension, resulting 

in 252 or 625 regional sub-divisions. Also note that the scaling is different on each axis, so these 

sub-divisions are actually rectangular in shape. The number of sub-divisions for each variable 
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does not need to be the same; however, it is likely that the range of possible values for each 

variable was chosen proportionally, and, therefore, the grid resolution needed in each axis would 

be approximately the same. 

Once the grid is defined, the feasible region checking algorithm will take the feasible and 

infeasible points located by the optimization algorithm and map this information into the grid 

structure. This mapping is achieved by first determining the grid sub-division in which a point is 

located (as determined by the point's coordinates), and then placing the feasible/infeasible 

information associated with the point into the grid. Identifying the grid sub-division in which a 

point is located is achieved using 

gq. = Integer 
(g,-min(gt)) 

(max(^.)-min(^.)) 
n„ (4-21) 

where 

g   is the sub-division in the q, dimension in which the new point is located 

qt is the value of new point's coordinate in the qx dimension 

n   is the total number of sub-divisions in the q{ dimension 

min (qt) is the minimum possible value in the q-, dimension 

max (qt) is the maximum possible value in the q-t dimension 

Integer [] implies taking only the integer portion of the floating point number 

that result from the division inside of the brackets. In other words, 

round down to the closest integer value. 
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At this point, the grid structure is more easily represented as a ^-dimensional array of 

numbers. For the jet engine optimization problem, four different numbers were used to indicate 

four possible information states of a grid sub-division: 

0 = No feasible/infeasible information known 

1 = All observed points in grid sub-division are infeasible 

2 = Some observed points in grid sub-division are feasible, some are infeasible 

3 = All observed points in grid sub-division are feasible 

When the feasible region checking algorithm is initialized, all members of the ^-dimensional 

array are set to 0 to indicate no information known about the design region. From here, the 

algorithm processes the database of feasible and infeasible points (located by the optimizer) and 

updates the array using the following logic: 

Table 4-9. Logic Matrix for Feasible Region Checking Algorithm 

New Database Point is: 
Current Grid Sub- 

Division Value 
Feasible Infeasible 

0 3 1 
1 2 1 
2 2 2 
3 3 2 

New Grid Sub-Division Value 

Returning to the example introduced in Figure 4-8, let us go through the process of 

updating this array based on new feasible/infeasible point information. As previously stated, we 

start with a two-dimensional array of all Os, indicating no information known about the design 

space. 
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Figure 4-9. Initialized Feasible/Infeasible Array for Feasible Region 
Checking Algorithm 

Now say that a point with (q,, q2) coordinates of (18, 645) has been sampled by the optimizer and 

has been found to be feasible. We begin by identifying the grid sub-division in which this new 

point is located using Eq (4-21). 

gq, = Integer 

p   = Integer 

(18-(-100)) 

(100-(-100)) 

' (645-500)' 

(1000-500) 

A 
•25 = Integer 

118 

200 
•25 = Integer[l4.75] = 14 

25 = Integer 
145" 

500 
25 = Integer[7.25] = 7 

We now check the current array value for sub-division (14, 7), which is equal to 0. 

Using the logic matrix in Table 4-9, we conclude that this array value should be set equal to 3, 

indicating that all points sampled (thus far) in this sub-division are feasible. Thus, the original 

array pictured in Figure 4-9 would be updated as shown in Figure 4-10. 
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Figure 4-10. Updated Feasible/Infeasible Array for Feasible Region 
Checking Algorithm 

If at a later time an infeasible point is identified in this same (14, 7) sub-division, this 3 would be 

changed to a 2, indicating that both feasible and infeasible points have been identified in this sub- 

division. After processing all feasible and infeasible points identified by the optimizer, a typical 

array would look as shown in Figure 4-11. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Figure 4-11. Typical Feasible/Infeasible Array Structure After Processing 
Sampled Points 

Note that in this case the feasible region is continuous. The 0s throughout the feasible 

region indicate that the optimizing algorithm never sampled any points in these sub-divisions, not 

that these sub-divisions are not included in the feasible region. Also, we see the typical pattern 
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of 2s surrounding the feasible region, indicating a transition zone from feasible to infeasible 

points. 

Using the Feasible Region Checking Algorithm. Once information has been established 

concerning the shape of the feasible region, it is possible to use this information to predict the 

feasibility of a new point. Recall that the reason we need a feasible region checking algorithm is 

to complement the kriging algorithm in making response function estimates without having to 

evaluate the actual response function (which is presumably time consuming to evaluate). 

Conceptually, the feasible region checking algorithm is accessed before any kriging takes 

place. The new point is passed to the kriging algorithm for evaluation only if the 

feasible/infeasible array indicates that the point is in a feasible sub-division. That is, a response 

function estimate for the point is made if and only if the array sub-division in which it lies equals 

3, implying that all points that have been evaluated and that lie in this sub-division have been 

feasible. If it equals any other value, which implies either no information is known about this 

sub-division or that the sub-division contains at least one known infeasible point, the new point is 

sent to the actual response function for evaluation. It is important to note that the point is 

evaluated even if it lies in a grid sub-division that has been labeled infeasible (array value of 1). 

This ensures that feasible points that share a grid sub-division with infeasible points are not 

missed. If a feasible point is identified in a grid sub-division previously deemed infeasible, the 

feasible/infeasible array code will be updated to the not-sure value of 2. Regardless of whether 

the grid sub-division has a 1 or 2 associated with it, any future points in this sub-division will be 

sent to the actual objective function for evaluation. Thus, in reality, the feasible region checking 

algorithm is used only to determine if a point lies in a feasible region - it does not attempt to use 

any information about the infeasible region in its processing. However, one side-benefit of 
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keeping track of the infeasible points is the graphical representation of both the feasible and 

infeasible regions plus the transition area between them (as seen in Figure 4-11). 

Note that an array sub-division value of 3 does not guarantee that the point is feasible. It 

is conceivable that the sub-division contains both feasible and infeasible points, and that, only by 

chance, no infeasible points been identified. The impact of this phenomenon can be minimized 

by proper selection of the array grid, but, using this approach, it is not possible to completely 

eliminate the possibility of mis-classifying an infeasible point as feasible. This issue will be 

discussed in further detail in the next two sections. 

Selecting Grid Resolution. Analyzing Figure 4-11 brings light to the question of 

choosing the number of divisions to select in each of the q dimensions. If the number of 

divisions is too large, then the final resolution of the array will be poor. Especially for more 

irregular feasible regions, much information about the intricacies of the feasible region's shape 

will be lost if the grid is too coarse, much like the intricacies of a picture are lost when viewed on 

a television monitor with low pixel resolution. However, to choose the number of divisions too 

large (very fine resolution) inhibits the usefulness of feasible region checking algorithm. 

Because the feasible region checking algorithm will always call the actual response 

function whenever the feasible array indicates 0, it is counter-productive to make the grid 

resolution too fine. Imagine a design region that is sub-divided so finely that over the course of 

an optimization, no two points are in the same grid sub-division. Thus, every time the feasible 

region checking algorithm is accessed to see if a point is feasible, the feasible array indicates a 0 

for no information. This results in the optimizer being directed to the actual response function 

for evaluation, causing the possible benefits of the estimation algorithm to be short-circuited. 

For this reason, grid resolution must be chosen carefully, ensuring that it is fine enough to 
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adequately distinguish between feasible and infeasible regions, but not so fine that the feasible 

region checking algorithm inhibits the use of the estimation algorithm. 

Cautionary Notes on Using the Feasible Region Checking Algorithm. As previously 

mentioned, one possible short-coming of the feasible region checking algorithm is that it can 

label a grid square as definitely feasible (3) when in reality it should be labeled not-sure (2). 

This can occur when the first point sampled from a feasible/infeasible region transition sub- 

division is feasible. 

Say that the optimizer algorithm needs to evaluate a point in a feasible/infeasible 

transition sub-division. The first time the optimizer attempts to do this, the feasible array 

indicates a 0 for no information. Thus, the point is evaluated by the actual objective function. If 

the point being evaluated happens to come from the feasible portion of this transition sub- 

division, the entire sub-division will be labeled as definitely feasible (3). From this point on, any 

time the optimizer attempts to evaluate a point in this grid sub-division, it will be assumed to be 

feasible and the kriging algorithm will be used to estimate the response function value. 

Assuming that the kriging estimates always meet the acceptance criteria (see section 4.4 for 

details), no further calls to the response function will ever be made. Thus, it is possible for 

points that are actually infeasible to be returned to the optimizer as feasible points with response 

functions. 

While the incidence of this situation may seem rather unimportant, it can cause the 

optimizer to be misled into believing that an infeasible point is the optimum. This is especially 

true when the optimal solution is located on or near the edge of the feasible region. For this 

reason, when kriged estimates have been used to locate an optimal solution, it is always advisable 

to perform a truth-check on the optimal point to ensure that it is feasible. If the optimizer is 

plagued with convergence to infeasible points, it is recommended that the number of grid sub- 
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divisions be increased. This will cause more calls to the actual response function to be made, but 

should help in preventing optimizer convergence to infeasible points. 

4.6 Kriging and the Use of Penalty Functions 

Aside from providing response estimates for new points, kriging allows for one 

additional feature to be added to an optimization process. The U.GA, like many non-linear 

optimizers, is not capable of handling infeasible points by itself. It requires a tangible response 

value be returned every time an objective function call is made. In some applications, the 

objective function is programmed to return an infeasible response value to the optimizer that is 

several orders of magnitude worse than any feasible point response could be. This directs the 

optimizer away from the region by this point in the future. However, for many optimizers, 

convergence may be encouraged when an infeasible point is assigned a penalized response value 

rather than a single, extremely poor response value. By penalizing an infeasible response based 

on how far away it is from the feasible region, all available information is utilized in assisting the 

optimizer in moving back towards the feasible region. (Nadon, 1996, 18-20) 

If we knew a priori what the feasible region was, when an infeasible point is 

encountered, it would be best to identify the shortest path to the feasible region, evaluate this 

feasible point, and use it to generate a pseudo-response for the infeasible point. That is, starting 

with the response from the feasible point, we can assess a penalty based on how far the infeasible 

point is from the feasible region. Written as an equation for a minimization problem, the pseudo- 

response would be generated with: 

f Infeasible Point ^ 

Pseudo - Response 

^Closest Feasible 

^ Point' s Response 

A / 
+ 

Penalty, based on Distance from 

Infeasible Point to Feasible Region 

(4-22) 
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As depicted for a single independent variable in Figure 4-12, this in effect, funnels the optimizer 

back towards the feasible region whenever an infeasible point is evaluated. 

20 

INFEASIBLE 
(Pseudo-Responses) 

FEASIBLE 
(Actual Responses) 

INFEASIBLE 
(Pseudo-Responses) 

Figure 4-12. Funneling Effect Created by Penalty Functions for a 
Minimizing Optimization 

Assessing Penalty Functions with Incomplete Feasible/Infeasible Region Information. In 

this problem, the feasible/infeasible boundaries are not explicitly stated - we only have an 

approximation of it based on the database of feasible points that have previously been located. 

Thus, we must use this information to best create the same desired funneling effect towards the 

feasible region. 

When working with incomplete feasible region information located in the feasible points 

database, a method of assessing penalized pseudo-responses for infeasible points is to use the 

objective function value of the closest known feasible point as the starting value for the 

penalizing function. One possible way of implementing this approach would be to search the 

database of feasible points to locate the point that has the shortest Euclidean distance in all p 
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dimensions from the new, infeasible point. However, if any of the p dimensions has no 

infeasible values (r is the greater zero), the closest feasible point in the database may not actually 

be the closest point to the feasible region. 

For example, say that an optimization problem with three decision variables exists (p=3). 

In the two dimensions with infeasible regions (along the qi and q2 axes), there exists two points 

(called Point 1 and Point 2) with slightly different (q,, q2) coordinates. Point 1 has q, and q2 

values that are slightly within the feasible region (hence the point is feasible); Point 2 has qt and 

q2 values that are slightly outside of the feasible region (hence the point is infeasible). Note that 

the value of the third variable (r7) is irrelevant in determining feasibility for both Point 1 and 2 

since all values of rj are feasible as long as qi and q2 are feasible. 

From an optimization stand-point, we would like to direct optimization away from Point 

2 towards Point 1 since it is the direction needed to achieve feasibility. However, even though 

the Euclidean distance between Point 1 and Point 2 in only the q, and q2 dimensions is practically 

zero, the values of the third variable (r,), which has no feasible bounds, could possibly be at 

opposite extremes of the r, range of possible values. Hence, when Euclidean distance is 

measured in all three dimensions, Point 1 may not be the closest point to Point 2. Instead the 

closest point could be at some arbitrary location in the feasible region. Pointing the optimizer 

towards this arbitrary point may get the optimizer back into the feasible region, but may also 

produce erratic pseudo-response surfaces (response values used by the optimizer in the infeasible 

regions) that inhibit speedy convergence. 

For this reason, it is more desirable to measure Euclidean distance to the feasible region 

only in terms of the q design variables with infeasible regions. Once the closest feasible point in 

q dimensions is located, our best guess of the distance to the feasible region (based on the 

information that we know about the feasible region) is a new, third point with Point l's q; and q2 
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coordinates and Point 2's rt coordinate. The reason for this is simple - to keep the Euclidean 

distance to the feasible region in all n dimensions smallest, keep the distance contribution due to 

the r variables equal to zero. Let the distance used for the penalty function only be defined by 

the difference in the q variables required to return to feasibility. 

To better explain this concept, a simple two dimensional example is useful. In this 

example, there are a total of two design variables (p = 2), one of which has infeasible values (q = 

1) and one of which does not have infeasible values (r = 1). Figure 4-13 shows the actual 

(unknown) feasible region, the approximate feasible region (as defined by the identified feasible 

points in the feasible points database), and a new, infeasible point being evaluated. 

Shortest Distance 
to Feasible Region 

(1.5, 1.5) 

Infeasible Point 
to Be Evaluated 

Infeasible 
Region 

Known Feasible 

-_£losest Point 
*    inp dimensions 

1(2.5,1.5) 

I 

I 
'(2.5,-2.0) 

I ^\ Closest Point   ( 

I      in q dimensions 

True Feasible 
Region Boundaries 

Infeasible 
Region 

<ll 

Figure 4-13. Example Determination of Closest Feasible Point 
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In Figure 4-13, we see depicted how using the closest point in all p dimensions to 

generate a penalized pseudo-response value for an infeasible point, does not provide the shortest 

path to the feasible region. Instead, by using the closest point in q dimensions, and then 

projecting the infeasible point onto the known feasible region boundary, we determine the 

shortest distance to the feasible region. In practice, this projection simply involves creating a 

new point (as depicted by the light gray square in Figure 4-13) that has q coordinates from the 

feasible point, and r coordinates from the original, infeasible point. Note that this point is most 

likely a point that has not been previously evaluated. We know that it is feasible, but we do not 

know its response value. 

Using Kriging to Generate Infeasible Point Pseudo-Responses. It is here that kriging 

allows a useful shortcut. Just as this estimation algorithm can avoid costly response function 

calls during normal feasible point evaluations, it can serve the same purpose for developing a 

penalized pseudo-response for the infeasible point. From the kriged estimate of the new feasible 

point, a pseudo-response value can be generated based on the distance from the original 

infeasible point to the new feasible point. As is the case with normal feasible point kriging, if the 

kriged estimate does not meet acceptance criteria, the true response function can be called to 

obtain the base response value. Note that we already know the new point to be feasible, so no 

checks with the feasible region checking algorithm are required. 

4.7 Application of Kriging and the Feasible Region Checking Algorithm to Jet Engine 
Optimization 

For this application, a micro-Genetic Algorithm (uGA) was selected as the optimization 

algorithm to locate the combination of three design variables that minimizes overall fuel 

consumption of an aircraft as it performs a stated mission profile. Of the p = 3 design variables, 

only two of the variables had infeasible ranges of values associated with them (q = 2, r = 1). The 
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response to be optimized was overall fuel consumption. The response function was actually a 

complex sequence of aircraft mission processing codes linked with a jet engine cycle evaluation 

algorithm. All constraints that defined the feasible and infeasible regions were implicit to the 

response function and varied based on the mission profile being optimized. 

The impetus for developing the previously discussed estimation techniques was that each 

call to the response function (utilizing both dimension reduction techniques presented in Chapter 

3) took on the order of 60 - 80 seconds. Given the large number of objective function calls 

required by the |xGA to adequately and consistently converge (on the order of 600 objective 

function evaluations), computing time to obtain an optimal solution was unacceptably large. 

Given that the response surface was thought to be reasonably smooth, kriging was selected as a 

means of estimating objective function evaluations, thus bypassing many calls to the actual 

response function. Since regions of infeasibility were anticipated in the design region, the 

feasible region checking algorithm was selected to complement the kriging codes in providing 

estimated responses. Kriging was also used to generate penalized pseudo-responses for 

encountered infeasible points (as discussed in section 4.6). 

Implementation. Implementation of the these response function bypassing techniques 

was fairly straight-forward. Figure 4-14 provides a graphical representation of how the 

estimation algorithms were incorporated into the optimization process. 
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Figure 4-14. Interaction of Optimizer with Response Function and 
Estimation Algorithms 

Once enough feasible points were located for kriging to be performed (recall that the first 

step of the kriging algorithm is to remove trend using a second-order, least-squares linear 
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regression, which requires at least 2n + 
v2y 

+1 data points to solve for this same number of 

unknowns), the estimation algorithms were attempted whenever an objective function evaluation 

was needed. If the new point fell in a grid sub-division that was considered definitely feasible 

(see section 4.5), the kriging algorithm was employed to generate a response estimate. If this 

response estimate met the kriging acceptance criteria (based on the average distance to the points 

being used to generate the estimate, /i0), this estimated response was passed back to the 

optimizer for use. However, if either the grid sub-division check or the kriging acceptance 

criteria check failed, a call to the actual response function was made and the resulting response 

value passed back to the optimizer. Whenever a call to the actual response function was made, 

more true information was learned about the response surface and the feasible/infeasible regions. 

Any such information obtained through objective function calls was stored for later incorporation 

into the information database used by the kriging and the feasible region checking algorithms. 

One of the benefits of using this approach was that the estimates made by the kriging 

algorithm became more precise and more likely to be accepted as the optimization proceeded. 

Because the kriging algorithm was able to self-detect the accuracy of its estimates, it was able to 

assist the optimizer when it could produce good response estimates, and stay out of the way when 

it did not have enough information to make good estimates. Of course, whenever a kriging 

attempt was failed, the actual response function was called, thus establishing a known data point 

in that part of the design region. By establishing another known data point, the kriging algorithm 

became better equipped to make better estimates in that region if called upon to do so later in the 

optimization. In practice, the (xGA optimizer quickly established a useful database of feasible 

points via response function calls, and then was able to reap the processing speed benefits of the 

kriging estimator. 
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The same acceptance criteria was applied to all kriged estimates, even if the purpose of 

the estimate was for creating a penalized pseudo-response for an infeasible point. If the 

acceptance criteria was failed while attempting to estimate this value, the actual response 

function was called to obtain the base response from which penalty was applied. While it is 

conceivable that such an accurate response value was not needed to apply a penalty function (the 

objective of directing the optimizer back to the feasible region can be met with somewhat 

inaccurate base responses), it was decided that the most conservative approach was to use only 

accurate response values. 

Configuration. As previously mentioned, this optimization problem had three design 

variables (p = 3), two of which had regions of infeasibility (q = 2). Thus a two-dimensional 

feasible/infeasible grid was needed for the feasible region checking algorithm. Given the range 

of possible values that these variables could attain and the response sensitivity to variations in 

these variables, each dimension was sub-divided into 25 sections. As a result, the design region 

in these two dimensions was divided into 252 or 625 sub-divisions (similar to the example 

discussed in section 4.5). 

The kriging algorithm was configured so that mean distance to the data points (hQ) was 

used to determine the quality of the kriged response estimate. The kriged estimate acceptance 

threshold was set to reject any estimate that was more than 5 counts different than the true 

response value. Of course, remember from section 4.4 that 1\ is not perfectly correlated with 

the true estimate error. Hence, this acceptance criteria must be thought of as a rough attempt to 

filter bad estimates from the optimizing algorithm. Regardless of the acceptance criteria 

threshold value, it is still possible for inaccurate information to be passed to the optimizer (refer 

to Figure 4-7 in section 4.4 for a graphical representation of why this is true). 
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Additionally, the kriging algorithm was configured to use the four (4) closest known 

points (meaning points that had previously been evaluated using the actual response function) to 

the point being estimated in order to generate the kriged estimate (n = 4). The choice to use four 

points was fairly arbitrarily, although the decision was made with the intuition that choosing too 

few or too many points could introduce distortion into the kriged estimates. While no exhaustive 

evaluations were made to find the optimal number of points to use in kriging, four points did, in 

practice, generate response estimates with acceptable prediction errors. 

Performance Enhancements. In the kriging example presented in sections 4.2 through 

4.4, all of the design variables were scaled similarly (possible values ranging from 0 to 10). 

However, in the jet engine optimization problem, scaling for each of the three design variables 

was widely varied. One of the variables typically ranges from 0 to 8, another from 10 to 100, and 

another from 5000 to 40000. As is often the case, changes in response were proportional to the 

percent change in each variable rather than the magnitude of the change in each variable. 

Creating a semi-variogram (which is heavily dependent on the Euclidean distance between two 

points) in this environment produced useless results. However, it was discovered that by 

transforming each of the axes into a coded -1 to +1 scale (a practice common in Response 

Surface Methodology), useful semi-variograms could be generated. Thus, the kriging algorithm 

used in this application converts all data into this coded space before performing any estimation. 

Figure 4-15 depicts how variable coding transforms variables with different scalings into 

variables with similar scaling. 
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Figure 4-15. Variable Coding 

Another enhancement made in this application involved designing the estimation 

algorithms to operate as efficiently as possible. Through the use of globally defined information, 

it was possible to code both the kriging and the feasible region checking algorithms to store 

current semi-variogram and feasible/infeasible array information between estimation routine 

calls, and only update them when new points had been added to the information database. This 

significantly enhanced computational efficiency since semi-variogram and feasible/infeasible 

array generation require a large number of floating point operations. For example, to generate a 

semi-variogram, the Euclidean distance and the change in response value must be computed for 

every possible pairing of all feasible points. If there are A: feasible points in the database, 
,2, 

pairings exist. Since what we are really trying to identify is the slope of the line leading up to 

semi-variogram's sill, it is possible to update this slope estimate in a running average fashion. 

Thus, if only one new point had been added to the database since the last time the kriging 

algorithm was invoked, only the pairings with this new point needed to be generated and the 

effects incorporated into the current slope estimate. The result was that only k pairings required 
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computations rather than all 
(k + l) 

2 
pairings (of which 

,2; 
of these pairings had previously 

been processed). 

Results. Significant reductions in processing time were experienced when the kriging 

algorithm (in concert with the feasible region checking algorithm) were enabled. The total 

number of objective function calls required for the uGA was unaffected by the kriging 

algorithm's operation. Likewise, the optimal objective function values obtained with the 

optimizer were also unaffected by the kriging algorithm's operation. In essence, the kriging 

algorithm did not hinder the optimizer at all; it did, however, allow for much faster objective 

function evaluations. 

Recall that the typical call to the actual response function required (utilizing both 

dimension reduction techniques presented in Chapter 3) approximately 60 - 80 seconds to return 

a response value. The kriging algorithm call required only about 1-2 seconds to return a 

response estimate. For a typical optimization run (that is, a start-to-finish convergence of the 

U.GA optimizer), out of the approximately 600 response evaluations made by the uGA optimizer 

and the penalty function calculations, about 80% of the calls were handled by the kriging 

algorithm. Although it is difficult to get an accurate assessment of processing time reduction 

(due to variations in computer processor task loading), optimization runs with kriging disabled 

took on the order of 7 - 11 hours while optimization runs with kriging enabled only took on the 

order of 1 - 3 hours. 

Table 4-10 shows the results of 40 uGA convergences, each performed on the same 

mission but started at different random number seeds. 20 of the runs were performed with 

kriging enabled, 20 were performed with kriging disabled. For the runs performed with kriging, 

data is provided showing how much the kriging algorithm was used. Run-time data must not be 
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taken as scientific data, but do indicate a general trend in processing speed that is consistent with 

the use of the much faster kriging algorithm. 

Table 4-10. Jet Engine Optimization Results With Kriging Disabled and 
Enabled 

Krisim ; Disabled Kriging Enabled 
Run* # Response 

Evaluations 
to Converge 

Time 
Required to 
Converge 

(hours) 

Optimal 
Objective 
Function 

Value 

Run* # Response 
Evaluations 
to Converge 

# Response 
Evaluations 

Met By 
Kriging 

Algorithm 

Time 
Required to 
Converge 
(hours) 

Optimal 
Objective 
Function 

Value 

1 417 9.28 5471 1 1046 819 2.63 4517 

2 556 10.87 4611 2 749 591 1.95 4714 

3 810 12.67 4687 3 707 413 4.37 4766 

4 570 9.70 4925 4 636 576 0.91 4618 

5 599 9.71 4626 5 632 537 1.45 4634 

6 790 12.05 5619 6 519 459 0.92 5617 

7 440 4.80 5226 7 611 526 1.33 4649 

8 456 4.98 4647 8 466 396 1.21 5276 

9 621 7.01 4665 9 689 508 3.18 4705 

10 762 8.29 4756 10 551 435 1.92 4725 

11 993 11.70 4661 11 683 599 1.35 4642 

12 495 5.45 4493 12 1065 942 2.08 4559 

13 474 4.71 4844 13 818 714 1.71 4626 

14 715 7.77 5222 14 460 389 1.21 4947 

15 554 5.74 4722 15 631 591 0.68 6078 

16 951 10.75 4499 16 449 364 1.26 4621 

17 571 6.28 4503 17 526 477 0.84 4861 

18 859 11.67 5036 18 721 639 1.44 4773 

19 421 6.73 4603 19 556 405 2.64 5023 

20 826 14.42 5084 20 524 411 2.05 4842 

Mean 644 8.729 4845 Mean 651.95 539.55 1.7565 4859.65 

Standard 
Deviation 

180.89 2.96 328.76 Standard 
Deviation 

171.33 151.79 0.90 388.38 

Note that when kriging was enabled, the percentage of response evaluations met by the 

kriging algorithm increased as the run number increased. This was because the runs were done 

consecutively, thus giving later runs the benefit a more populated database of feasible points. 

This added benefit that allows for speedy replications of the entire uGA (a must for stochastic 

optimization routines) was not available to runs with the kriging algorithm disabled. Essentially, 

every run with kriging disabled was truly equivalent to starting from scratch. In contrast, with 
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kriging enabled, fewer and fewer calls to the actual response function were required as the 

multiple replications were performed. 

A relatively broad range of optimal objective function values was experienced in these 

40 uGA optimizations. Typically, if an optimizer is successfully locating the global optimum 

(instead of local optima), it will always converge to the same point. The dispersion in the 

optimal solutions in these runs implies that the optimizer was not properly configured to 

adequately search the highly non-linear response surface in this problem. When a response 

surface contains numerous local optima (as is the case in this application), the difficulty of 

locating the true globally optimal point is greatly increased. While an SGA or uGA optimizer 

can still robustly locate a global optimum in this situation, further study (that was not performed 

in this research) is required to fine-tune the optimizer parameters so that the design space is more 

thoroughly searched. Regardless of this noted short-coming in the optimizer configuration, 

results for runs performed with and without kriging are still comparable since the |JGA optimizer 

was configured identically for both sets of runs. 

Table 4-10 verifies that, while time required for convergence is much shorter when 

kriging is enabled, the number of response evaluations and optimal objective function values are 

essentially identical. By assuming the data to be normally distributed and independent, a t-test 

(with different population variances) can be performed to confirm our intuition. At the 95% 

confidence level, the convergence times means were significantly different, and the number of 

objective function calls and optimal values were not significantly different, t-statistic and p- 

value (the probability of the null hypothesis being true) results for each of these three categories 

tested are shown in Table 4-11. 
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Table 4-11. t-Test Results Comparing Optimization Performance With and 
Without Kriging 

Category t-Statistic p-Value 

# Response Evaluations to 
Converge 

0.143 0.444 

Time Required to Converge 10.071 4.22E-10 

Optimal Objective Function 
Value 

0.129 0.449 

H0: Sample Means Are Equal 
Ha: Sample Means Are Not Equal 

Conclusions. The use of kriging estimation, complemented by the feasible region 

checking algorithm, was successful at significantly reducing the computation time required for 

jet engine optimization to be performed. Using a |lGA optimizer, no negative side-effects from 

the operation of the kriging algorithm were experienced. Through these favorable results, it is 

apparent that the response surface implied by the aircraft and flight profile parameters used by 

the response function is indeed smooth and conducive to the use of kriging for estimation. 

While only limited analysis was performed to ensure that poor response estimates were 

being rejected, initial indications show that no estimates with significant deviation from its true 

response value were accepted and used by the optimizer. It was found, however, that several 

kriged estimates were unnecessarily rejected (meaning that the estimate was acceptable but the 

h0 value indicated a poor estimate). While further refinement of the acceptance threshold would 

enhance processing, leaving this value at a somewhat conservative value does provide a level of 

insurance that poor response estimates are not passed to the optimizer. 
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5. Final Conclusions and Recommendations for Future Research 

5.1  Summary of Conclusions 

Problem dimension reduction had mixed results. First, fan pressure ratio optimization 

was successful at not only eliminating one of the independent variables, but also was able to 

quickly locate nearly the best nc- value for a given bypass and core compression ratio. This 

ensured that high bypass ratio engines were fully explored and that the optimal solution was a 

much better estimate of the global optimum of the entire design space. It is recommended that 

future work on jet engine optimization problems continue to exploit this noted relationship. 

In contrast, establishing engine mass flow variable dependency proved to be a poor 

enhancement to this design process. The m0 optimization algorithm was plagued with 

inefficiency and non-optimality. It also was conceptually shown to be incompatible with non- 

constant installation loss models that may be incorporated in the future. In all, it is recommended 

that m0 remain an independent variable to be optimized by the probabilistic optimization 

algorithm. 

It was determined that kriging was highly effective in reducing the computational effort 

required to obtain an optimal engine solution. Up to 80% of the response evaluations made by 

the uGA optimizer and penalty function calculations were handled by the kriging algorithm 

working in concert with the feasible region checking algorithm. Although computational time is 

a somewhat unreliable indicator of efficiency, significant reductions in processing time were 

experienced with kriging enabled. This time reduction was consistent with the significantly 

reduced number of floating point operations required to generate kriged estimates over 

evaluating the actual mission response function. No significant reduction in solution quality and 
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no increase in the number of objective function evaluations were required to obtain the optimal 

solution were experienced. 

Aside from application to jet engine optimization problems, kriging appears to have 

potential application to any number of non-linear optimization problems. The kriging algorithm 

can be easily automated and is capable of providing quick estimates, regardless of the function 

being evaluated. Although care must be given to ensure that the response function is relatively 

smooth, kriging appears to have potential application to any problem involving computationally 

expensive response function evaluations. If nothing else, a generic kriging algorithm (like the 

one located in Appendix A) should be quickly tested for estimation accuracy to see if it could be 

used as a time-saving technique. 

5.2 Recommendations for Future Research 

1. Further exploration of the fan pressure ratio optimality phenomenon should be conducted. 

Although a rudimentary explanation of how the principle works was presented in this thesis, 

no engine cycle calculations revealed this principle to be true in general for all mixed-stream 

turbofan engines. 

2. The non-constant installation loss model should be implemented to obtain more accurate 

mission modeling results. Regardless of the loss model selected, implementation should be 

reasonably generic given the modular design of the optimization codes. There appears to be 

no reason why all model codes currently used by Wright Laboratories could not be 

incorporated in the mission evaluation codes, thus producing higher fidelity optimizations. 

Care will have to be taken to ensure that kriging remains a viable estimation technique with 

the implementation of these more complex models. 
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3. Many more mission profiles should be optimized with kriging enabled. The mission tested 

was arbitrarily chosen and is not expected to have any special properties that enabled kriging 

to work successfully. However, more exhaustive testing is required to ensure that successful 

kriging is possible for jet engine optimization in general. 

4. For the jet engine optimization problem, kriging should be compared with other estimation 

techniques to ensure that it is truly the best choice for bypassing mission evaluations. There 

is nothing about kriging theory that guarantees it to be the best estimation technique. The 

fact that it produces a minimum variance response estimate does not imply that some other 

method of interpolation or extrapolation would not better serve jet engine optimization. 

5. As mentioned before, the kriging estimation algorithm should be tested for prediction 

accuracy in other various applications involving computationally expensive response 

function evaluations. As was experienced in this application, computational savings could 

be significant, thus allowing more thorough exploration of the design space. 
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Appendix A: Kriging and Feasible Region Checking Algorithm 

Computer Codes 

Computer codes have been written to accomplish the kriging estimation discussed in this 

thesis. Both the Kriging.m and Check_Feasible.m algorithms are generically coded and can 

conceivably be used for any application with any number of independent variables. These 

algorithms are written in the Matlab (version 4.2c) programming language, which was the 

operating system used for the entire optimization project. 

These algorithms may be used freely with the understanding that these codes are not 

guaranteed to be free from error and that all liability for the accuracy of these codes rests on the 

user. I would appreciate hearing about any uses of these codes via email at 

pmillhouse@aol.com. 

Ample commenting has been included in the codes, so no additional discussion about the 

design of the codes is provided in this appendix. 
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Kriging.m Algorithm: 

function [KRIGED_RESP, GOOD_EST, SV_DATA] = Kriging(EST_VEC, DATA_MAT, .. 
MAXMIN_MAT, CODE_MAT, 
KRIGE_DATA, SV_DATA) 

% FILENAME: Kriging.m 
% PURPOSE : To perform automated kriging techniques with the specified purpose 
% of trying to avoid expensive objective function calls.  This will 
% take a matrix of collected data and krige estimates for new points. 

% CODED BY 
% DATE 
% 
% INPUTS 
% 
% EST_VEC 

DATA_MAT 

MAXMIN_MAT 

Paul Millhouse 
1 March 1998 

• Column vector (Pxl) of independent variables for which a 
response estimate is needed (P is the number of independent 
variables) 

- An (Nx(P+D) matrix of known data points and their response 
values.  N corresponds to the number of known data points. 
The first P columns are the independent variable values. 
The (P+l)st column is the response associated with the 
P design variables.  The P variables must be in the same 
order as the P variables in EST_VEC. 

(Px2) matrix of minimum and maximum possible values for the 
P variables.  Structure is as follows: 

Var(1)_Min 
Var(2)_Min 

Var(1)_Max 
Var(2)_Max 

Var(P)_Min Var(P)_Max ] 

CODE_MAT 

KRIGE_DATA 

(Px2) matrix of values to be used for variable coding. The 
minimum values will correspond to a coded variable value 
of (-1). The maximum values will correspond for a coded 
variable value of (+1) .  Structure is the same as 
MAXMIN_MAT. 

(3x1) column vector of information needed by the kriging 
algorithm.  Structure is as follows: 

[ NUM_EST_POINTS ; 
QUALITY_MEASURE; 
KRIGINGJTOL     ] 

where: 

NUM_EST_POINTS 

QUALITY_MEASURE 

KRIGINGJTOL 

SV_DATA 

# of known data points to be used in 
generating the kriged estimate 

=0 for mean coded distance to points 
used in generating kriged estimate 

=1 for kriged estimate variance 
Value used to determine if kriged 

estimate is valid.  If the quality 
measure value is less than 
KRIGING_TOL, then GOOD_EST = 1. 
Otherwise, GOOD_EST = 0. 

A (4x1) column vector of information used to generate the 
isotropic semi-variogram.  Structure is as follows: 

[ SLOPE 
RANGE 
CALC_SV 
DATA_MAT_POINT ] 

where: 
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SLOPE   - Current estimate of the slope of the linear 
semi-variogram model.  If no estimate 
is known, user should be set equal to 0. 

RANGE - Current estimate of the coded distance (h) at 
which the sill of the linear semi-variogram 
is obtained. If no estimate is known, user 
should set equal to 0. 

CALC_SV - =1 to re-calculate semi-variogram with new data. 
=0 to use current values of SLOPE and RANGE and 
not update them with new data. 

DATA_MAT_POINT - Row in DATA_MAT at which new data begins. 
Data above this row is assumed to already be 
represented in SLOPE and RANGE. 

% OUTPUTS 

% 
% 

KRIGED_RESP 

GOOD_EST 

SV DATA 

% 
% 
% 
% 
% 
% CALLED UNITS 
% 
%    NONE 
% 
% GLOBAL DATA 
% 
%    None 

Estimated response for the given vector of independent 
variables 

■=1 if the estimate met acceptance criteria 
=0 if the estimate did not meet acceptance criteria 

Same structure as input vector.  SLOPE, RANGE and 
DATA_MAT_POINT have been modified (as required) to 
reflect data that has been processed in DATA_MAT.  These 
estimates can be passed to this function next time it is 
called to expedite semi-variogram processing (previously 
processed data points will not have to be re-processed). 

% LIMITATIONS 

This algorithm follows the unbiased, minimum variance kriging prediction 
method outlined in Edward H. Isaaks and R. Mohan Srivastava's text: An 
Introduction to Applied Geostatistics, and in Isobel Clark's text: 
Practical Geostatistics.  It assumes the semi-variogram to 
be isotropic (versus anisotropic), which implies that the same sample 
variance is obtained regardless of the axis from which h is measured, 
where h is the distance between two points. 

This algorithm assumes a linear (with a sill) mathematical semi-variogram 
model.  That is, semi-variogram data is fit to a sloped line that extends 
from the semi-variogram origin to the sill value.  The sill value is 
defined as the variance of the residual values (from the sample points 
after a second-order regression surface has been fit to it).  See 
Clark's text (chapter 5) for details. 

This code can use either kriged estimate variance or the average distance 
from the point being estimated to the known data points as acceptance 
criteria (as set by QUALITY_MEASURE).  The acceptance threshold is defined 
by KRIGINGJTOL.  The number of points used in for an estimate is set with 
the variable NUM_EST_POINTS.  All of these settings are embedded in the 
KRIGE_DATA input vector. 

% 
% ADDITIONAL INFO 
% 
%   None 
% 
%  

%  
% GLOBAL CONSTANTS 
%  
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% None 

%  
% MAIN CODE 
%  

% Assign data from input arguments 
NUM_EST_POINTS = KRIGE_DATA(1) 
QUALITY_MEASURE = KRIGE_DATA(2) 
KRIGINGJTOL = KRIGE_DATA (3 ) 
SLOPE = SV_DATA(1); 
RANGE = SV_DATA (2 ) ; 
CALC_SV = SV_DATA (3 ) ; 
DATA_MAT_POINT = SV_DATA (4 ) ; 

% Define size of DATA_MAT 
N = size(DATA_MAT,l); 
P = size(DATA_MAT,2) - 1; 

% Calculate "P_CH00SE_2" 
P_CH00SE_2 = PMP-U/2; 

% Check criteria by which kriging cannot be performed.  Exit this function 
% if kriging not possible. 
if (N < (2*P + P_CH00SE_2 +1)) J (N < NUM_EST_POINTS) 
KRIGED_RESP = +inf; 
GOOD_EST = 0; 
return; 

end 

% Ensure valid input for NUM_EST_POINTS and QUALITY_MEASURE 
if NUM_EST_POINTS <= 0 
NUM_EST_POINTS = 5 ; 

end 
if (QUALITY_MEASURE -= 0) & (QUALITY_MEASURE -= 1) 
QUALITY_MEASURE = 1;  % Default to using estimate variance 

end 

% Ensure valid input for SLOPE, RANGE and DATA_MAT_POINT 
if SLOPE < 0 
SLOPE = 0; 

end 
if RANGE < 0 
RANGE = 0; 

end 
if (DATA_MAT_POINT < 1)   | (DATA_MAT_POINT > (N+D) 
DATA_MAT_POINT = 1; 

elseif  (DATA_MAT_POINT == (N+D) 
CALC_SV = 0; 

end 

% Generate CENTER_VEC and HALF_RANGE_VEC 
CENTER_VEC = (MAXMIN_MAT ( : , 2 ) + MAXMIN_MAT ( : , 1) ) .12; 
HALF_RANGE_VEC = (CODE_MAT ( : , 2 ) - CODE_MAT ( : , 1) ) .12; 

a***************************************************************************** 
% Create coded matrix for regression (used to remove trend form the data 
% before kriging) and determining closest points in coded space. 

for I = 1:N 
REG_DATA(I,1) = 1;   % Column of 1's   ■ 
% First order terms 
for J = 1:P 
REG_DATA(I,(J+l)) = (DATA_MAT(I,J) - CENTER_VEC(J,1)) / HALF_RANGE_VEC(J,1) 

end 
COUNT = 0; 
% First order cross-terms 
for J = 1:(P-l) 

for K = (J+l):P 
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COUNT = COUNT + 1; 
REG_DATA(I,(P+1+COUNT)) = REG_DATA(I, (J+l)) * REG_DATA(I,(K+l)); 

end 
end 
% Second order terms 
for J = 1:P 
REG_DATA(I,(P+1+C0UNT+J)) = REG_DATA(I,(J+l))~2; 

end 
end 

% Create vector of responses to use in regression 
RESP0NSE_VEC(:,1) = DATA_MAT(:,(P+l)); 

if CALC_SV % Only if the semi-variogram is to be updated with new information 

% Perform least-squares regression 
REG_C0EFFS = inv(REG_DATA. ' * REG_DATA) * REG_DATA. ' * RESPONSE_VEC; 

% Generate vector of regression prediction residuals (used in creating the 
% semi-variogram) 
for I = 1:N 
RESID_VEC(I,1) = (REG_DATA(I,:)*REG_COEFFS) - RESPONSE_VEC(I,1); 

end 

^** * ************************************************************** ************ 
% Now that the vector of response errors has been generated, we are ready to 
% create the semi-variogram.  First we must generate the matrix of changes in 
% sample coordinate and the associated changes in response.  To facilitate this, 
% a new matrix is first created with the original coordinate data with the 
% newly calculated regression response error appended in the right-most column. 
% We continue to work in coded space so that the different scales of the 
% variables is not a problem. 
a***************************************************************************** 

SV_MAT = REG_DATA(1:N,2:(P+l)); 
for I = 1:N 

SV_MAT(I, (P+l)) = RESID_VEC(I) ; 
end 

TOTAL_DM   = 0; 
DM_COUNTER = 0; 
for I = DATA_MAT_POINT:N 

for J = 1:N 
DIFF_VEC.= (SV_MAT(I,1:P) - SV_MAT(J,1:P)); 
DISTANCE = sqrt (DIFF_VEC * DIFF_VEC'); 
TOTAL_DM = T0TAL_DM + 1; 

%* *********************************************************************** 
% Since the Euclidean distances stored in column 1 of DELTA_MAT will 
% later be used to estimate the slope of the semi-variogram line, it is 
% necessary to filter out small-values (this value is in the denominator 
% of the slope estimate).  Therefore, DELTA_MAT is only updated if 
% the Euclidean distance was bigger than 0.01. 
£************************************************************************ 

if DISTANCE > 0.01 
DM_COUNTER = DM_COUNTER + 1; 
DELTA_MAT(DM_COUNTER,1) = DISTANCE;  % The semi-variogram distance 'h' 
DELTA_MAT(DM_COUNTER,(2)) = (1/2)*(SV_MAT(I,P+l) - SV_MAT(J,P+l))"2; 

% The semi-variogram function value 'gam(h)' 
end 

end 
end 

-*************************************************************************** 
% Now update the semi-variogram math model.  For simplicity, the linear 
% model (with a sill) has been used. The least squares estimate of the slope 
% of the line is the average slope implied by each data point.  The line 
% is assumed to pass through the origin 
% 
SUM = 0; 
for I = 1:DM_C0UNTER 
SLOPE_EST = DELTA_MAT(1,2),/ DELTA_MAT(1,1); 
SUM = SUM + SL0PE_EST; 

end 

*************************************************************************** 
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NEW_DATA_SLOPE = SUM / DM_COUNTER; 

% Obtain variance all sample residuals 
VARIANCE = var(RESID_VEC); 

****************************************************************************** 
% Identify the (coded) value of h  at which the sill is attained.  This 
% value of h is known as the range of the semi-variogram.  The sill is 
% the point at which the predicted variance is equal to the sample variance. 
a***************************************************************************** 

NEW_DATA_RANGE = VARIANCE / NEW_DATA_SLOPE; 

a***************************************************************************** 

% Calculate previous number of slope and sill estimates and to produce a 
% weighted average with the newly calculated estimates 
a***************************************************************************** 

if DATA_MAT_POINT ==1 % No previous slope estimate to average 
SLOPE = NEW_DATA_SLOPE; 
RANGE = NEW_DATA_RANGE; 

else 
DMP_CH00SE_2 = (DATA_MAT_P0INT-1) * (DATA_MAT_P0INT-2 ) II; 
SLOPE_NUM = DMP_CH00SE_2 «SLOPE + TOTAL_DM*NEW_DATA_SLOPE; 
DENOM     = DMP_CH00SE_2+T0TAL_DM; 
SLOPE     = SLOPE_NUM/DENOM; 
RANGE_NUM = DMP_CH00SE_2 »RANGE + TOTAL_DM*NEW_DATA_RANGE; 
RANGE     = RANGE_NUM/DENOM; 

end 
DATA_MAT_POINT = N+l; 
SV_DATA = [SLOPE; 

RANGE; 
CALC_SV; 
DATA_MAT_POINT] ; 

else 
VARIANCE = RANGE*SLOPE; 

end 

a***************************************************************************** 

% Determine the NUM_EST_POINTS that are closest (in coded space) to the point 
% being estimated (in coded space) 
a***************************************************************************** 

BEST_MAT = zeros(NUM_EST_POINTS,(P+3)); 
PREV_BEST_DIST = 0; 
EST_VEC_CODE = (<EST_VEC - CENTER_VEC) . / HALF_RANGE_VEC) ' ; 
for I = l:NUM_EST_POINTS 
NEXT_BEST_DIST = +inf; 

.  NEXT_BEST_ROW = -1; 
for J = 1:N 
DIFF_VEC = (REG_DATA(J,2:(P+l)) - EST_VEC_CODE); 
DISTANCE = sqrt (DIFF_VEC * DIFF_VEC); 
if (DISTANCE < NEXT_BEST_DIST) & (DISTANCE >= PREV_BEST_DIST) 

PREV_PICK = 0; 
for B = 1:NUM_EST_P0INTS  % Check to make sure points has not previously 

% been selected as a closest point 
if J == BEST_MAT(B,(P+3)) 
PREV_PICK = 1; 
break,- 

end 
end 
if PREV_PICK == 0 
NEXT_BEST_DIST = DISTANCE; 
NEXT_BEST_ROW  = J; 

end 
end 

end 

BEST_MAT(I,1:P) = REG_DATA(NEXT_BEST_ROW, 2: (P+l)); 
BEST_MAT(I,(P+l)) = DATA_MAT(NEXT_BEST_ROW,(P+l)); 
BEST_MAT(I,(P+2)) = NEXT_BEST_DIST; 
BEST_MAT(I,(P+3)) = NEXT_BEST_ROW; 
PREV_BEST_DIST = NEXT_BEST_DIST; 

end 

t******************************* r********************************************* 
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% if the acceptance criteria is average coded distance from known points to 
% the point being estimated, we have enough information to determine if 
% the kriged estimate will be accepted. 
0.***************************************************************************** 

if QUALITY_MEASURE ==0 
if mean(BEST_MAT(:,(P+2))) < KRIGING_TOL 
GOOD_EST = 1; 

else  % Estimate deemed "no good" -- exit function 
GOOD_EST = 0; 
KRIGED.RESP = + inf; 
return; 

end 
end 

%***************************************************************************** 
% Now that we have the NUM_EST_POINTS closest points (in coded space), generate 
% the matrices required to make kriging calculations.  These matrices are 
% the [D] matrix, which is actually a (NUM_EST_POINTS + 1) x 1 vector of 
% spatial variances between the known points and the point to be estimated 
% (the last element of the vector is a one).  The [C] matrix is a 
% (NUM_EST_POINTS + 1) x (NUM_EST_POINTS + 1) square matrix of the spatial 
% variances between all of the points being used for the 
% estimation (the last row and column of [C] is l's, with the bottom, right 
% corner element being a "0" — see Isaaks et al. text for details).  We 
% will be solving for the vector of weights that will be linearly combined with 
% the response values of all of the points to develop the estimate and variance 
% of the point to be estimated. 
% 
% Terms in [C] and [D] are obtained by evaluating the variogram at the 
% distance (h), which is the Euclidean distance between the 
% two points in question. 
£************* **************************************************************** 

for I = l:NUM_EST_POINTS 
H = BEST_MAT(I,(P+2)); 
if H < RANGE 

D(I,1) = (H / RANGE) * VARIANCE; 
else 

D(I,1) = VARIANCE; 
end 

end 
D((NUM_EST_POINTS+l),1) = 1.0; 

for I = l:NUM_EST_POINTS 
for J = I:NUM_EST_POINTS 
DIFF_VEC = (BEST_MAT(I,1:P) - BEST_MAT(J,1:P)) ; 
H        = sqrt (DIFF_VEC * DIFF_VEC' ) ; 
if H < RANGE 

C(I,J) = (H / RANGE) * VARIANCE; 
else 

C(I, J) = VARIANCE; 
end 
C(J,I) = C(I,J) ; 

end 
C(I,(NUM_EST_POINTS+l)) = 1.0; 

end 

for I = l:NUM_EST_POINTS 
C((NUM_EST_POINTS+l),1) =1.0; 

end 

C( (NUM_EST_POINTS + l) , (NUM_EST_POINTS+l) ) = 0.0; 

W = inv(C) * D; 

************************************************************ i**************** 

% Calculate the kriging estimate 
% 
KRIGED_RESP = W( 1 :NUM_EST_POINTS , 1) ' * BEST_MAT ( : , (P+l) ) 

*********,»,***,*,»*****************************************************< 

-**,*»****»******************************************************************* 
% if the acceptance criteria is estimate variance, determine if the estimate 
% meets the acceptance threshold. 
a.***************************************************************************** 
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if QUALITY_MEASURE == 1 
EST_VAR = W * D; 
if EST_VAR < KRIGINGJTOL 
GOOD_EST = 1; 

else  % Estimate deemed "no good" 
GOOD_EST = 0; 
KRIGED_RESP = +inf; 

end 
end 
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Check_Feasible.m Algorithm: 

function [FEASIBLE, SUB_DIVS, CHECK_DATA] Check_Feasible(EST_VEC, ... 
MAXMIN_MAT, FEAS_PTS, INFEAS_PTS , 
SUB_DIVS, GRID_RES, CHECK_DATA) 

% FILENAME:  Check_Feasibile 
% PURPOSE :  To map known feasible and infeasible points into a Q-dimensional 
% array in order to predict if new points are likely to be feasible. 

% CODED BY 
% DATE 
% 
% INPUTS 
% 
%    EST VEC 

Paul Millhouse 
1 March 1998 

MAXMIN_MAT 

FEAS_PTS 

INFEAS_PTS 

SUB_DIVS 

GRID_RES 

CHECK_DATA 

(Q x 1) column vector of independent variables to be 
tested for feasibility.  Note that only variables that 
have infeasible ranges need to be input in this function. 
Variables with no infeasible values should be excluded 
to maximize the efficiency of this function.  Q is the 
number of variables with infeasible values (i.e. the 
application has P independent variables, but only Q of 
of these P variables have infeasible values -- such that 
Q <= P) 

(Px2) matrix of minimum and maximum possible values for 
the P variables.  Structure is as follows: 

Var(1)_Min 
Var(2)_Min 

Var(P)_Min 

Var(1)_Max 
Var(2)_Max 

Var(P)_Max  ] 

(N x Q) array of known feasible point coordinates that 
will be used to establish the feasible region.  N is 
the number of known feasible points.  Q is the 
number of variables with infeasible values. 

(M x Q) array of known infeasible point coordinates that 
will be used to establish the infeasible region.  M is 
the number of known infeasible points.  Q is the 
number of variables with infeasible values. 

The 2-D array that holds the mapping information for 
feasible and infeasible points.  From this map, new 
points can be deemed feasible or infeasible.  This 
2-D array actually holds the information for all Q 
dimensions.  This is done because Matlab 4.2c (in which 
this was programmed) does not allow for higher dimension 
arrays.  Nevertheless, this array portrays the design 
space sub-divisions and whether current data implies that 
a sub-division is feasible, infeasible, "not sure" or 
no information. 

If a SUB_DIVS matrix has not previously been created by 
this function, set SUB_DIVS = []. 

(Q x 1) column vector of the number of grid sub-divisions 
to be applied in each of the Q dimensions.  This 
information defines the resolution of SUB_DIVS. 

(2 x 1) column vector of information with format: 

[ FEAS_POINTER 
INFEAS_POINTER ] 

where: 

FEAS_POINTER   - Indicates the FEAS_PTS row to begin 
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% 
% OUTPUTS 
% 
%    FEASIBLE 

mapping information into SUB_DIVS. 
Proper management of this value can 
avoid repetitively processing known 
data points that can hinder efficient 
operation. 

INFEAS_POINTER - Indicates the INFEAS_PTS row to begin 
mapping information into SUB_DIVS. 

(2 x 1) vector of feasibility information: 
[DEF_FEASIBLE; 
FEAS_CODE   ] 

where: 

DEF_FEASIBLE 

FEAS CODE 

Equals 1 if EST_VEC lies in a 
sub-division into which only feasible 
points have been mapped.  Otherwise, 
equals 0. 

Feasibility code associated with the sub- 
division in which EST_VEC is located. 
Codes are as defined in the LIMITATIONS 
section below. 

%    SUB_DIVS 

%    CHECK_DATA 

Updated feasible/infeasible array of information.  This 
array can be passed into this function on subsequent runs 
to prevent having to re-process points that have 
previously been mapped. 

Updated FEAS_POINTER and INFEAS_P0INTER values, 
same as listed in INPUTS. 

Format 

% 
% CALLED UNITS 
% 
%  . NONE 
% 
% GLOBAL DATA 
% 
%    NONE 

% LIMITATIONS 
% 

No assumptions about convexity or holes being in the solution space are 
required for this algorithm to work.  This algorithm will sub-divide the 
Q variables axes input based on the numbers of sub-divisions specified 
for each variable.  The algorithm will then map the known feasible and 
infeasible point information into SUB_DIVS in order to approximate the 
feasible and infeasible regions.  SUB_DIVS will maintain information 
using the following codes: 

% 

% 

0 = NO INFORMATION 
1 = INFEASIBLE (at least based on current data) 
2 = NOT SURE 
3 = FEASIBLE (at least based on current data) 

When testing a new point for feasibility, if the test point falls in a 
sub-division with any code other than 3, this function will return a 
FEASIBLE value of 0.  This does not necessarily mean the point is 
infeasible, just that it does not fall in a subdivision that is known 
to only contain feasible points.  If the new point falls in a sub-division 
with a code of 3, FEASIBLE will be returned equal to 1.  Note that this 
is simply an estimation technique and, based on the grid resolution 
defined, the point may or may not actually be feasible.  This only states 
that, for the sub-division resolution defined, of the known feasible and 
infeasible points, only feasible points have thus far been found in this 
sub-division. 

It is important to note that this algorithm is highly dependent on the 

124 



resolution of the grid.  While making the grid excessively fine would 
help to prevent this algorithm from improperly calling 
an infeasible point feasible, it will also cause many of the feasible 
points to be determined infeasible, simply because there is no "grouping" 
of information from the grid (i.e. if every feasible point fills its own 
grid square, then every future point tested will fall in a grid square that 
has not previously been determined, thus this algorithm will return that 
the point is infeasible). 

% 

% ADDITIONAL INFO 
% 
% This function is intended to be used repetitively, so that as more 
% information is learned about the nature of the feasible and infeasible 
% regions, predictions of feasibility will improve.  For efficiency, 
% the function can avoid re-processing known feasible and infeasible points 
% that were previously mapped into SUB_DIVS. 
% 
%  

%  
% GLOBAL CONSTANTS 
%  
% 
% NONE 
% 
%  
% MAIN CODE 
%  

%,***************************************************************************** 
% Initialize utility variables and check to ensure that all inputs are logical 
%,***************************************************************************** 
Q = size(MAXMIN_MAT,1);    % Determine number of variables 

if FEAS_PTS == [] 
N = 0; 

else 
N = size(FEAS_PTS,1);    % Determine number of known feasible points 
if size(FEAS_PTS,2) -= Q 
error ('ERROR: FEAS_PTS not consistent with MAXMINJMAT' ) ; 

end 
end 

if INFEAS_PTS == [] 
M = 0; 

else 
M = size(INFEAS_PTS,1);  % Determine number of known infeasible points 
if size(INFEAS_PTS,2) ~= Q 
error ('ERROR: INFEAS_PTS not consistent with MAXMIN_MAT'); 

end 
end 

if size(CHECK_DATA,1) -= 2 
error ('ERROR:  CHECK_DATA input not in proper format'); 

end 

FEAS_POINTER   = CHECK_DATA(1,1); 
INFEAS_POINTER = CHECK_DATA (2 , 1) ; 

for I = 1:Q 
if GRID_RES(I,1) <= 0 . 
GRID_RES(I,1) = 1; 

end 
end 

MINJVEC    = MAXMIN_MAT(:,1);  % Vector of minimum values in SUB_DIVS 
RANGEJVEC  = MAXMIN_MAT(:,2) - MAXMIN_MAT(:,1);  % Vector of value ranges 
WIDTHS_VEC = RANGE_VEC./GRID_RES;  % Width of each subdivision along each axis 

SD_WIDTH  = GRID_RES(1,1);  % Define width of SUB_DIVS 
SD_LENGTH = 1; 
for I = 2:size(GRID_RES,l)  % Define length of SUB_DIVS 
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SD_LENGTH = SD_LENGTH * GRID_RES(I,1); 
end 

if (size(EST_VEC,2) == Q) & (size(EST_VEC,1) == 1)  % Input is in column format 
EST_VEC = EST_VEC 

end 

if (size(EST_VEC,l) ~= Q) 
EST_VEC 
MAXMIN_MAT 
error ('ERROR:  EST_VEC not consistent with MAXMIN_MAT') ; 

end 

if (FEAS_POINTER > (N+l)) | (FEAS_POINTER <= 0) | (FEAS_POINTER-== []) 
FEAS_POINTER = 1; 

end 

if (INFEAS_POINTER > (M+l)) | (INFEAS_POINTER <= 0) | (INFEAS_PO INTER == []) 
INFEAS_POINTER = 1; 

end 

if (size(SUB_DIVS,2) -= SD_WIDTH) | (size(SUB_DIVS,1) ~= SD_LENGTH) 
FEAS_POINTER  =1;   % SUB_DIVS has changed from previous definition 
INFEAS_POINTER = 1;   % Will need to re-initialize 

end 

% Create or update SUB_DIVS 

if (FEAS_POINTER == 1) & (INFEAS_POINTER == 1) 
SUB_DIVS = zeros(SD_LENGTH, SD_WIDTH);  % Initialize SUB_DIVS to all zeros 

end 

if N >= FEAS_POINTER  % There are new feasible points to map to SUB_DIVS 
for I = FEAS_POINTER:N 

for J = 1:Q 
SD_COORDS(J,l) = floor((FEAS_PTS(I,J) - MIN_VEC(J,1))/WTDTHS_VEC(J,1)) + 1; 
if (SD_COORDS(J,l) < 1) | (SD_C00RDS(J,1) > GRID_RES(J,1)) 
error ('ERROR: Feasible Point Exceeds MAXMIN_MAT Definition'); 

end 
end 
X_COORD = SD_COORDS(1,1); 
if Q == 1   % Only one dimension being mapped 
Y_COORD = 1; 

else        % Multiple dimensions being mapped 
Y_COORD = 0; 
for K = 2:Q  % Convert multi-dimensions into 2-D 

. if K == 2 
Y_COORD = Y_COORD + SD_COORDS(2,1); 

else 
INC = 1; 
for L = 2:(K-l) 

INC = INC * GRID_RES(L,1); 
end 
Y_C00RD = Y_COORD + ((SD_COORDS(K,1)-1) * INC); 

end 
end 

end 
if SUB_DIVS(Y_COORD, X_C00RD) == 0 

SUB_DIVS(Y_COORD, X_COORD) = 3; 
elseif SUB_DIVS(Y_COORD, X_COORD) == 1 

SUB_DIVS(Y_COORD, X_CO0RD) = 2; 
end 

end 
FEAS_POINTER = N+l; 

end 

if M >= INFEAS_POINTER % There are new feasible points to map to SUB_DIVS 
for I = INFEAS_POINTER:M 

for J = 1:Q 
SD_COORDS(J,l) = floor ( (INFEAS_PTS (I, J) - MIN_VEC (J, 1) )/WIDTHS_VEC (J, 1) ) + 1; 
if (SD_C00RDS(J,1) < 1) | (SD_COORDS(J,l) > GRID_RES(J,1)) 

error ('ERROR: Infeasible Point Exceeds MAXMIN_MAT Definition'); 
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end 
end 
X_COORD = SD_COORDS(1,1); 
if Q == 1   % Only one dimension being mapped 
Y_COORD = 1; 

else        % Multiple dimensions being mapped 
Y_COORD = 0; 
for K = 2:Q  % Convert multi-dimensions into 2-D 

if K == 2 
Y_COORD = Y_COORD + SD_COORDS(2,1); 

else 
INC = 1; 
for L = 2:(K-l) 

INC = INC * GRID_RES(L,1); 
end 
Y_COORD = Y_COORD + ((SD_COORDS(K,1)-1) * INC); 

end 
end 

end 
if SUB_DIVS(Y_COORD, X_COORD) == 0 
SUB_DIVS(Y_COORD, X_COORD) = 1; 

elseif SUB_DIVS(Y_COORD, X_COORD) ==3 
SUB_DIVS(Y_COORD, X_COORD) = 2; 

end 
end 
INFEAS_POINTER = M+l; 

end 

% Update CHECK_DATA to reflect newly processed points 
CHECK_DATA = [FEAS_POINTER; 

INFEAS_POINTER]; 

% Determine sub-division in which EST_VEC is located 

for J = 1:Q 
SD_C00RDS(J,1) = floor((EST_VEC(J,1) - MIN.VEC(J,1))/WIDTHS_VEC(J,1)) + 1; 
if (SD_COORDS(J,l) < 1) | (SD_COORDS(J,l) > GRID_RES(J,1)) 
error ('ERROR: EST_VEC Exceeds MAXMIN_MAT Definition'); 

end 
end 
X_COORD = SD_COORDS(1,1); 
if Q == 1   % Only one dimension being mapped 
Y_COORD = 1; 

else        % Multiple dimensions being mapped 
Y_COORD = 0; 
for K = 2:Q  % Convert multi-dimensions into 2-D 

if K == 2 
Y_COORD = Y_COORD + SD_COORDS(2,1); 

else 
INC = 1; 
for L = 2:(K-l) 

INC = INC * GRID_RES(L,1); 
end 
Y_COORD = Y_COORD + ( (SD_COORDS (K, 1)-1) * INC) ; 

end 
end 

end 

a*************** ******■*********************************** + ********************* 

% Assess EST_VEC feasibility and assign EST_VEC's feasible code 
a****************************************************************************** 

if SUB_DIVS(Y_COORD, X_COORD) == 3 
DEF_FEASIBLE = 1; 

else 
DEF_FEASIBLE = 0; 

end 
FEAS_CODE = SUB_DIVS(Y_COORD, X_COORD); 
FEASIBLE = [DEF_FEASIBLE; 

FEAS_CODE]; 
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Appendix B: Standard Genetic Algorithm Operation 

This appendix provides discussion about the processes of the Standard Genetic 

Algorithm (SGA). Specifically, the method by which a set of floating point variables is encoded 

into a string of binary digits (which constitutes the point's genetic chromosome) is discussed. 

Additionally, the inner-workings of the selection, crossover and mutation processes are 

presented. 

Creating the Chromosome. The SGA performs all of its survival-of-the-fittest operations 

on strings of binary digits, which are analogous to genetic chromosomes. Very often in 

optimization, however, the objective function requires floating point variable inputs. It is 

therefore necessary for the SGA to be able to encode a set of floating point variables into a 

chromosome for SGA manipulations, and then decode the chromosome back into a set of floating 

point variables for evaluation in the objective function. This encoding/decoding scheme is 

simply a modification of standard floating point/binary conversion that is used in all digital 

processors. 

In order to generate a chromosome, it is first necessary to define a numerical precision 

(represented by e) to which all of the variables need to be represented. In other words, we must 

set the number of decimal places that are significant in the solutions to be obtained. Say, for 

example, that our optimal set of variables need only be represented to three decimal places. We 

would therefore set our SGA numerical precision to £ = 10" . 

Encoding a set of variables into a chromosome involves converting each individual 

floating point number into a binary number (using standard digital conversion techniques) and 

then concatenating each of the binary numbers sequentially to form a single string of binary 

digits. For example, say that two variables, x, and x2, have values of 5.000 and 10.000, 
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respectively, and are to be converted into a chromosome with the defined working precision set 

to e=10"3. To convert this (x,, x2) point into a chromosome, each variable is divided by e and the 

result converted into binary. 

Ä50OO Ä.OOOO 
i(r3 io~3 

5000 converted to binary: 10000 converted to binary: 

1001110001000 10011100010000 

Thus the chromosome is formed by combining the two binary numbers together: 

(xu x?) => Chromosome 

(5.000,10.000) => 100111000100010011100010000 

During genetic algorithm operation, it is necessary to ensure that all chromosomes in a 

population are the same length. For this reason, we fix the size of the chromosome to the number 

of bits required to represent the largest possible values of each of the variables. Each variable 

being explored by the SGA will have a user defined upper bound that the SGA will not exceed 

when searching for optimal solutions. By sizing the chromosome to the largest possible variable 

values, we ensure that all smaller values can also be represented in the chromosome's binary 

structure. While we are sizing the chromosome to the maximum variable values, we store the 

number of bits allocated to represent each variable. When decoding from the chromosome back 

into floating point numbers, this will allow us to partition the chromosome bits and identify the 

portions of the chromosome that correspond to the original variables (the decoding process is 

presented later in this section). 
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Returning to our example, say that for this SGA optimization, the range of x; values 

being searched is from 1.000 to 5.000 and the range of x2 values being searched is from 6.000 to 

10.000. Thus, the maximum values of xj and x2 are 5.000 and 10.000, respectively. As was 

shown in the conversion example above, the chromosome needs to contain 13 bits forx; and 14 

bits for x2 (27 total bits) to represent (5.000, 10.000). Sizing the chromosome to these largest 

variable values ensures that enough bits exist in the chromosome structure in order to represent 

all possible values of both of these variables. When combinations of smaller values of these 

variables are experienced by the SGA, leading zeros are inserted to maintain the chromosome 

length. For example, when converting (1.300, 5.800) into a chromosome: 

(1.300, 5.800) => Chromosome 

1^ = 1300 ^ = 5800 
10"3 10"3 

1300 converted to binary: 5800 converted to binary: 

10100010100 1011010101000 

Add Leading Zeros to Maintain Chromosome Length 

0010100010100 01011010101000 

Thus: 

(1.300,5.800) =»   001010001010001011010101000 

Decoding from a chromosome back into floating point numbers is simply the reverse of 

this process. Because the number of bits representing each variable are fixed and because the 

chromosome has been pieced together in the same order as the original floating point variables, 

we simply partition the chromosome appropriately and perform binary to floating point 
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conversion. For example, say that the SGA has created the following chromosome for evaluation 

in the objective function: 

011110101010001111000000100 =>(*/, JC2) 

Using the known number of binary digits being used for each variable (13 bits for x, and 14 bits 

for x2), we partition the chromosome and convert each section of the chromosome back into 

floating point numbers: 

Thus: 

0111101010100 I 01111000000100 

0111101010100 01111000000100 

converted to decimal: converted to decimal: 

3924 7684 

3924 10"3 =3.924 7684 • 10"3 = 7.684 

011110101010001111000000100 (3.924, 7.684) 

Genetic Operations. With an understanding of how the chromosome structures are 

created, we now turn our attention to the genetic operations that are used in the Standard Genetic 

Algorithm. Selection, crossover and mutation are the genetic operations used to generate various 

chromosome bit patterns (which correspond to points throughout the design space) and enable 

the genetic algorithm to locate globally optimal solutions. 

Selection. Selection is the process by which the most-fit (the best) members of a 

population are chosen for mating (crossover). Selection enforces the survival-of-the-fittest 
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concept in the SGA. Once a population has been evaluated (via the objective function) for 

fitness, the selection process ensures that the chromosome bit structures with the best fitness 

values are used to create the next population of chromosomes. While various selection methods 

exist, they all ensure that the most fit members of a population are most likely to be selected for 

crossover. Often times, elitism is introduced into the selection process. Elitism is a rigid 

enforcement of survival-of-the-fittest in that it does not leave selection of the most-fit population 

member to chance. It guarantees that the best member of the population will be replicated into 

the subsequent population and that this best member will be used for crossover with other 

chromosome patterns chosen in the selection process. This process ensures that the most-fit 

member of a current population is at least as fit as the most-fit member of any previous 

population. 

Crossover. Crossover causes new regions of the design space to be explored by 

creating new chromosome structures from existing chromosome structures. Many techniques can 

be used to perform crossover, but they all involve a blending of chromosome bit patterns from 

two parent chromosomes (chosen during selection) to create new children chromosome patterns. 

A common crossover technique is called simple crossover, which is demonstrated below. 

Two parents are chosen for mating (crossover): 

Parent#1 001010001010001011010101000 

Parent#2 011110101010001111000000100 

Both chromosomes have the same number of total bits (27 bits). A break-point is randomly 

selected in the chromosome bit structure. For example, a break at bit 6 could be randomly 

chosen as shown: 
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Parent #1 

Parent #2 

001010 001010001011010101000 

oinro  loioioooiiiiooooooioo 

Crossover is performed by swapping the parents' bits to the right of the break-point, thus 

producing two new children chromosome patterns: 

produces 

Parent #1 

Parent #2 

001010 001010001011010101000 

n 
011110    101010001111000000100 

Child #1 001010101010001111000000100 

Child #2 Olli10001010001011010101000 

Looking at the parents and children in terms of the floating point coordinates that their 

chromosomes represent, we see how crossover causes new regions of a design space to be 

searched. 

Parent #1 = (1.300, 5.800) 

Parent #2 = (3.924, 7.684) 

create Child #1 = (1.364, 7.684) 

Child #2 = (3.860, 5.800) 

Mutation. As the SGA performs selection and crossover, subsequent 

populations begin to have more homogenous chromosome bit structures. This is because the best 

members of a population are being selected for crossover, and after processing several 
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populations, all of the best population members will be located in the region surrounding the 

current most-fit solution. In order to inhibit premature convergence to a point that may not be 

the global optimum, the SGA uses mutation to introduce new chromosome patterns into the 

population. This causes new points in the design space to be tested for fitness and allows the 

SGA to search beyond the local optimum it has located. 

A common mutation technique, known as binary mutation, causes bits in population 

members' chromosome patterns to flip with some random probability. For example, given a 

probability of mutation of 0.05, a chromosome undergoes mutation by picking a uniform random 

number (between 0 and 1) for each bit in the chromosome. If the random number associated with 

a bit is less than 0.05, then the bit is flipped form 0 to 1 or from 1 to 0. Thus, on average, about 

5% of the bits will be randomly flipped via the mutation process. The mutation process is 

demonstrated below: 

Initial Chromosome Structure 001010001010001011010101000 

Randomly select bits to mutate: 

001010001010001011010101000 

Final Chromosome Structure 00 0 0100010100 01 1 11010101000 

Assessing the affect of this mutation in terms of floating point coordinates, we see how mutation 

causes new regions of the design space to be searched: 
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Initial = (1.300, 5.800) mutates to Final = (0.276, 7.848) 
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