
AFTT/GOR/ENY/98M-02

IMPROVING ALGORITHMIC EFFICIENCY
OF AIRCRAFT ENGINE DESIGN FOR
OPTIMAL MISSION PERFORMANCE

THESIS

Paul T. Millhouse, Captain, USAF

AFIT/GOR/ENY/98M-02

19980423 067
Approved for public release, distribution unlimited

AFIT/GOR/ENY/98M-02

Disclaimer Statement

The views expressed in this thesis are those of the author and do not reflect the official policy or

position of the Department of Defense or the U.S. Government.

AFIT/GOR/ENY/98M-02

IMPROVING ALGORITHMIC EFFICIENCY OF AIRCRAFT ENGINE DESIGN

FOR OPTIMAL MISSION PERFORMANCE

THESIS

Presented to the faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Paul T. Millhouse, B.S.

Captain, USAF

March 1998

Approved for public release, distribution unlimited

AFIT/GOR/ENY/98M-02

IMPROVING ALGORITHMIC EFFICIENCY OF AIRCRAFT ENGINE DESIGN

FOR OPTIMAL MISSION PERFORMANCE

Paul T. Millhouse, B.S.
Captain, USAF

Approved:

9 MA<2.<t8

Chairman Date

Date

Acknowledgments

Foremost, I would like to thank my wife, Kimberly, for her selfless giving throughout

this entire thesis process. Through the hundreds of hours that I spent working on this research,

she kept things going at home for our two young children. Additionally, she was always

available for encouragement when things were not going well or when the work-load seemed

insurmountable. Without her faithful support, this project would never have come together.

I would also like to thank my thesis committee, Lt Col Stuart Kramer, Dr. Edward

Mykytka and Dr. Paul King, for their direction and assistance. I appreciate their trust in my

judgement as the focus of this research was determined, and the timely advice they provided as I

worked through the various problems encountered. These gentlemen were consistently available

when I needed their help and provided invaluable expertise in exploring the techniques used in

this thesis. Thank you for all of your hard work on this research over the last 12 months.

in

Table of Contents

Acknowledgments • m

Table of Contents ■ iy

List of Figures V1

List of Tables ix

Nomenclature --x

Abstract xii

1. Introduction 1

1.1 Problem Background 1

1.2 Research Focus 2

1.3 Research and Thesis Report Limitations 4

1.4 Thesis Organization 5

2. Literature Review and Problem Background Information... 6

2.1 Previous Work on Determining Optimal Engine Parameters for Minimum Fuel

Consumption.... • 6

2.2 Current Research Overview 7

3. Jet Engine Optimization Dimension Reduction 21

3.1 Engine Cycle Modeling Improvements 22

3.2 Optimal Fan Pressure Ratio (TV) Dependency 23

3.3 Understanding How (S) and (F) Are Coincidentally Optimized 25

3.4 Determining Optimal Reference Engine Mass Flow (mo) 43

3.5 Conclusions on Jet Engine Optimization Dimension Reduction 51

4. Kriging Techniques • 53

4.1 Overview • 53

IV

4.2 Geostatistics 54

4.3Kriging 71

4.4 Evaluating the Quality of the Kriged Estimate 82

4.5 Determining Feasibility 87

4.6 Kriging and the Use of Penalty Functions 97

4.7 Application of Kriging and the Feasible Region Checking Algorithm to Jet Engine

Optimization 101

5. Final Conclusions and Recommendations for Future Research 112

5.1 Summary of Conclusions 112

5.2 Recommendations for Future Research 113

Appendix A: Kriging and Feasible Region Checking Algorithm Computer Codes 115

Appendix B: Standard Genetic Algorithm Operation 128

Bibliography 136

Vita 138

List of Figures

Figure 2-1. Micro-Genetic Algorithm Flow Diagram 14

Figure 2-2. Funneling Effect Created by Penalty Functions for a Minimizing

Optimization 17

Figure 2-3. Comparison of Regression and Interpolation 19

Figure 3-1. On-Design Uninstalled S and Specific Thrust for the Ideal Mixed-Stream

Turbofan Engine 26

Figure 3-2. On-Design Condition #1: Uninstalled S and Specific Thrust for the

TERMAP Generated Mixed-Stream Turbofan Engine at Varying oc 27

Figure 3-3. On-Design Condition #2: Uninstalled S and Specific Thrust for the

TERMAP Generated Mixed-Stream Turbofan Engine at Varying a 28

Figure 3-4. On-Design Uninstalled S and Specific Thrust for the TERMAP Generated

Mixed-Stream Turbofan Engine at Varying nc ...29

P
Figure 3-5. Optimal On-Design Uninstalled S and Specific Thrust at —— =1.00 for

Varying a 30

p
Figure 3-6. Optimal On-Design Uninstalled S and Specific Thrust at -£- =1.00 for

Varying Kc 31

P Figure 3-7. —^- Variation with Changing itc- at Various a 32
Pt5

Figure 3-8. Off-Design Flight Condition #1: Optimal Off-Design Uninstalled S and

p
Specific Thrust at Reference Engine —^-=1.00 ...33

Pts-

Figure 3-9. Off-Design Flight Condition #2: Optimal Off-Design Uninstalled S and

p
Specific Thrust at Reference Engine -^-«1.00 34

Figure 3-10. Off-Design Flight Condition #3: Optimal Off-Design Uninstalled S and

p
Specific Thrust at Reference Engine -^-=1.00 35

Pt5

VI

p
Figure 3-11. Variation of Off-Design -^- Ratio with Changes in Chosen Values of On-

p
Design — Ratio for Off-Design Condition #1 37

p
Figure 3-12. Variation of Off-Design — Ratio with Changes in Chosen Values of On-

Pt5

Design _£5i Ratio for Off-Design Condition #2 38
P,5

p
Figure 3-13. Variation of Off-Design -Jl- Ratio with Changes in Chosen Values of On-

Design Ell. Ratio for Off-Design Condition #3 39
P>5

Figure 3-14. Process Flow for Determining Optimal Engine Mass Flow with Constant

Installation Losses • 47

Figure 4-1. Response Surface for 2-D Kriging Example : 58

Figure 4-2. Sample Measurement Locations for 2-D Kriging Example 59

Figure 4-3. Plot of Residuals for 2-D Kriging Example 61

Figure 4-4. Graphical Representation of Semi-Variogram Data for Kriging Example 64

Figure 4-5. Kriging Example Semi-Variogram with Fitted Linear Model 70

Figure 4-6. Selection of Closest Points for Estimating v0 =f(x0) 77

Figure 4-7. Determining h0 Threshold to for a Desired Kriging Prediction Error

Magnitude °'

Figure 4-8. Possible Grid Structure for q = 2 89

Figure 4-9. Initialized Feasible/Infeasible Array for Feasible Region Checking

Algorithm "2

Figure 4-10. Updated Feasible/Infeasible Array for Feasible Region Checking Algorithm 93

Figure 4-11. Typical Feasible/Infeasible Array Structure After Processing Sampled

Points 93

Figure 4-12. Funneling Effect Created by Penalty Functions for a Minimizing

Optimization "°

Figure 4-13. Example Determination of Closest Feasible Point , 100

vu

Figure 4-14. Interaction of Optimizer with Response Function and Estimation

Algorithms 103

Figure 4-15. Variable Coding 107

vin

List of Tables

Table 4-1. Response Evaluations for Kriging Example Sample Points 60

Table 4-2. Regression Residuals for Kriging Example 62

Table 4-3. Exhaustive Semi-Variogram Calculations for Kriging Example 63

Table 4-4. Tabular Listing of Semi-Variogram Data Used for Creating Linear Model 69

Table 4-5. Distance and Semi-Variogram Data Between Sample Points and x0 for

Kriging Example 79

Table 4-6. Matrix of Distances Between Sample Points for Kriging Example 79

Table 4-7. Matrix of Semi-Variogram Values Between Sample Points for Kriging

Example 79

Table 4-8. Predictor Variable Correlation with Prediction Error Magnitude 85

Table 4-9. Logic Matrix for Feasible Region Checking Algorithm 91

Table 4-10. Jet Engine Optimization Results With Kriging Disabled and Enabled... 109

Table 4-11 t-Test Results Comparing Optimization Performance With and Without

Kriging Ill

IX

Nomenclature

Chapter 1 and 2 Notation:

mo Overall engine air mass flow (lbm/sec)

Af Standard Genetic Algorithm (SGA) population size

WT0 Gross takeoff weight (lbf)

WE Aircraft empty weight (lbf)

WF Weight of all fuel on-board aircraft (including reserve fuel) (lbf)

WP Aircraft payload weight (lbf)

a Bypass ratio

Kc Fan compressor pressure ratio

Kc High pressure compressor (core) pressure ratio

Chapter 3 Notation:

A0ref On-design free-stream cross-sectional area

A; Engine inlet cross-sectional area

f0 Overall engine fuel-to-air ratio

F Uninstalled engine thrust (lbf)

m0 Overall engine air mass flow (lbm/sec)

M0 Free-stream Mach number

M5 Core flow Mach number at turbine exit

My Bypass flow Mach number at mixer entry

Pt5 Core flow total pressure at turbine exit

Pt5. Bypass flow total pressure at mixer entry

5 Reference wing area; Thrust specific fuel consumption (lbf/lbm/sec)

Tt4 Core burner total temperature (°R)

WTo Gross aircraft takeoff weight (lbf)

a Bypass ratio

ß Aircraft weight fraction

Ttc. Fan compressor pressure ratio

nc High pressure compressor (core) pressure ratio

Chapter 4 Notation:

8«

h

"range

m

n

na

N(h)

P

q

r

2
S

V

V

V

w

w

^Residual

d

r

fo

Grid sub-division in the q dimension in which a new point is located

Euclidean distance between two points

Range of the semi-variogram

Average of the distances between the n points used for kriging and

the point being estimated

Total number of points sampled to generate a semi-variogram

Number of points used to generate a kriged estimate

Total number of grid sub-divisions in the q dimension

Number of pairs of points in a sample that are a distance h apart

Number of independent design variables in an optimization problem

Number of independent design variables that have infeasible values

Number of independent design variables that do not have infeasible

values (p = q + r)

Sample variance

Response value associated with a set of design variables

Response estimate of the actual response v

Average response value for all points sampled

Weight applied in a linear combination of terms

Vector of minimum variance weights

Difference between two points' response value residuals

Semi-variogram value for a distance h

Variance of a kriged estimate

Partial derivative

Matrix of semi-variogram values for the distances between all

possible pairings of the n points being used for kriging

Vector of semi-variogram values for the distances between the n

points used for kriging and the point being estimated

XI

AFIT7GOR/ENY/98M-02

Abstract

Automated techniques for selecting jet engines that minimize overall fuel consumption

for a given aircraft mission have recently been developed. However, the current techniques lack

the efficiency required by Wright Laboratories. Two noted dependencies between turbine engine

fan pressure ratio, bypass ratio, high pressure compressor pressure ratio and overall engine mass

flow allows for a reduction in the number of independent design variables searched in the

optimization process. Additionally, through the use of spatial statistics (specifically kriging

estimation), it is possible to significantly reduce the number of time-consuming response

function evaluations required to obtain an optimal combination of engine parameters. A micro-

Genetic Algorithm (uGA) is employed to perform the non-linear optimization process with these

two computation-saving techniques. Optimal engine solutions were obtained in 25% of the time

required by previous automated search algorithms.

Xll

IMPROVING ALGORITHMIC EFFICIENCY OF AIRCRAFT
ENGINE DESIGN FOR OPTIMAL MISSION PERFORMANCE

1. Introduction

1.1 Problem Background

When a new aircraft is to be developed by the United States Department of Defense

(DoD), a request for proposal (RFP) is established to outline the flight conditions and

performance requirements of a typical mission. From this RFP, aircraft manufacturers and

engine companies are able to initiate the conceptual aircraft design process. Conceptual aircraft

design involves the use of many simplifying assumptions integrated with computer modeling

codes to generate a first-cut aircraft and engine solution to meet the RFP requirements. While

this initial aircraft design may be significantly different from the final aircraft design, it's

importance should not be underestimated - without a realistic starting design, future

modifications can be frustrated by having to re-visit basic design issues.

One of the objectives of the conceptual aircraft design is to make the aircraft as efficient

as possible. Improved efficiency is always desirable - it translates to lighter, faster, and more

maneuverable aircraft. As a means to this end, efficiency improvement can be attacked on

several different fronts, to include using lighter construction materials and reducing individual

component and airframe inefficiencies. However, one of the most important aspects of ensuring

maximum aircraft efficiency is the proper selection of an engine for the airframe.

Although many different engine configurations can provide sufficient thrust to an

airframe capable of meeting RFP requirements, not all engines are equally efficient at the

different mission flight conditions. While an engine may be well-suited for efficient operation at

one flight condition, this same engine may be terribly inefficient at another flight condition.

Based on the mission specified (meaning the flight conditions and the duration of operation

required at each flight condition), an optimal engine (with possible alternate optimal engines)

exists that will minimize the fuel required for the aircraft to complete the mission. It is this

optimal engine design that we seek in this project.

In classical optimization terms, this problem can be viewed as an effort to minimize

overall fuel consumption for a non-linear fuel consumption response function. This

minimization is subject to the engine satisfying the thrust constraints implied by the mission

profile. Additionally, only certain combinations of engine parameters produce engines that can

physically sustain operation. Thus, written in math programming notation, the problem at hand

is:

Minimize {Overall Fuel Consumption}

Subject To:

Viable Combinations of Engine Parameters

Mission Requirements

1.2 Research Focus

Identifying the best engine design for an aircraft mission has been an issue ever since the

beginning of aviation. Although solution techniques have improved over the years, the time and

effort required to identify the most efficient engine design has remained high. In recent years,

advances in conceptual engine-airframe matching techniques have allowed the entire engine

search process to be automated. Although these advances greatly speed the conceptual engine

design process, the amount of computer processing still remains at a level that makes aircraft

design experimentation impractical.

The purpose of this research, which is sponsored by the U.S. Air Force's Wright

Laboratories, is to identify means by which the automated engine search process can be

accelerated. By expediting this engine matching process, Wright Laboratories hopes to more

efficiently explore new aircraft technologies and focus its efforts on aircraft improvements that

will most significantly improve overall mission performance. Two main approaches to

streamlining engine optimization will be researched:

1. Exploration of any possible relationships between the design variables that

may allow for the total number of independent variables to be reduced. The

reduction in design variables will allow the non-linear optimizer to converge

to an optimal solution with less objective function evaluations. This

reduction in evaluations may be offset by increased processing time (to

implement the observed dependencies) required for each evaluation. Thus

the overall time required to locate an optimal solution may or may not be

improved. One additional benefit is that more efficient engine solutions may

be obtained if it is possible to directly select optimal values of the variables

that have been eliminated.

2. The use of an unbiased minimum variance estimation technique called

kriging. Evaluating the fuel consumption implied by each combination of

design variables involves the use of relatively time-consuming computer

codes. If estimation techniques can be used to bypass the actual response

function evaluation codes, significant time-savings in the overall

optimization may be realized.

While the dimension reduction techniques to be explored will only be applicable to

mixed-stream turbofan engine design, kriging, if successful, is potentially useful in any number

of optimization applications involving time-consuming objective function evaluations. In this

application, it may be possible to combine both of these potential time-saving techniques to

further reduce processing required to obtain optimal solutions.

1.3 Research and Thesis Report Limitations

For the purposes of this study, only the mixed-stream turbofan engine will be considered.

While many other turbine engine cycles exist, the mixed-stream turbofan is most commonly used

in modern, high-performance DoD aircraft. Additionally, only four aspects of the engine have

been treated as variables - reference engine bypass ratio (a), fan compressor pressure ratio {KC),

high pressure (or core) compressor pressure ratio (7T6.) and overall engine air mass flow (m0). Any

other engine parameters that may typically be considered variable by engine designers will be

assumed to be constant, regardless of the values of these four design variables.

Since the audience of this research summary is potentially academically mixed - some

with optimization expertise, others with turbine engine design expertise - it is worth stating that

the thesis will be geared to focus on optimization. Although some jet engine discussion may be

required to understand the dimension reduction techniques, this thesis will treat the engine cycle

analysis algorithms and governing equations of flight inherent to evaluating a turbine engine's

mission performance as black-box response functions. This does not imply that the inner

workings of these computer codes are not important to this project. However, the focus of this

thesis will be to shed new light on the use of these algorithms, not to re-state the principles that

were used to create them. The reader is referred to Hill and Peterson (1970) for a more thorough

understanding of turbo-machinery operation. Additionally, a thorough discussion of jet engine

optimization methods and the governing equations of flight can be found in Mattingly, et al.

(1987).

1.4 Thesis Organization

It will first be necessary to present foundational information to understand the context in

which kriging and dimension reduction techniques will be explored. In doing this, we will

review previous work done on the engine optimization problem and familiarize the reader with

the optimization tools and algorithms under-girding the entire optimization effort. Once the

reader is comfortable with the overall optimization problem and how it is being solved, two

potential dimension reduction techniques will be investigated in hopes of streamlining the

optimization process. Then, using the reduced-dimension problem as a starting point, application

of the kriging estimation technique to further streamline the optimization process will be

discussed and results presented. Finally, overall conclusions will be drawn about the successes

and failures of this research, and recommendations will be made for future areas of research.

2. Literature Review and Problem Background Information

The primary goal of this research is to identify methods that expedite the automated

optimization of a jet engine for a specified aircraft mission. In order to achieve this goal, two

primary methods will be investigated - problem dimension reduction and kriging techniques. In

order to understand the context in which these techniques will be applied, it will be useful to first

review past research accomplishments on the jet engine optimization problem and then introduce

the underlying optimization framework of this project. Presentation of the current optimization

framework will include discussion on improvements made to the engine cycle codes used during

this analysis, the introduction of a fifth independent variable (gross takeoff weight (WT0)), and

the use of a micro-Genetic Algorithm (uGA) optimizer algorithm to search the design space. The

dimension reduction techniques and kriging, which are the focus of this research, are also briefly

introduced, although detailed discussion on these topics is reserved for Chapters 3 and 4,

respectively.

2.1 Previous Work on Determining Optimal Engine Parameters for Minimum Fuel
Consumption

Given a specified aircraft mission and payload, it is possible to design an engine which

minimizes the total fuel consumed to execute an aircraft mission. Computer based engine cycle

analysis and mission performance algorithms can be combined manually to perform mission

optimization. This method of optimization is extremely time consuming, requiring numerous

engine design iterations and much trial-and-error searching throughout a large, multi-dimensional

design space for a relatively small feasible solution region. (Mattingly, et al., 1987)

In a significant step towards making this design process faster, Nadon (1996) combined a

genetic algorithm optimization routine with the various Mattingly (1990) algorithms into a

single, automated package capable of locating the optimal engine parameters for a given aircraft

mission. Nadon showed that by introducing extra design variables and penalty functions for

infeasible solutions, optimal engine designs could be located without human assistance.

However, Nadon's ability to locate an optimal engine solution was significantly hindered by

inherent limitations in the engine cycle analysis codes used. These engine cycle analysis

limitations forced Nadon to treat many truly feasible solutions as infeasible, thus distorting the

solution space and, quite possibly, causing a sub-optimal engine solution to be selected as the

optimal solution. Additionally, Nadon's optimization algorithms were dogged by the number of

independent design variables, which had to be increased (via the introduction of extra design

variables) to facilitate the automated optimization. Although significantly more efficient than

performing engine optimization manually, Nadon's automated optimizations required longer

computer run-times than the research sponsor (Wright Laboratories) desired. Regardless of the

practical short-comings, he demonstrated that automated mission optimization is possible and

laid the ground work for future projects (such as this one) to improve both the quality of the

optimal engine solutions and the time required to locate these solutions. (Nadon, 1996).

2.2 Current Research Overview

Before discussion about computation-saving techniques is possible, it is necessary to

establish some of the underlying tools and methods that will be utilized while exploring the use

of kriging and problem dimension reduction.

Improvements to the Engine Cycle Computer Codes. A significant improvement over

Nadon's work made prior to this research was the incorporation of a more robust engine cycle

evaluation algorithm. Turbine Engine Reverse Modeling Aid Program (TERMAP), an on-design

and off-design engine evaluation code created for the U.S. Air Force's Wright Laboratories, was

integrated with Mattingly's (1987) mission fuel consumption equations. The primary advantage

of using TERMAP as the engine cycle code evaluator is that it uses compressor and turbine

mapping information to produce engine performance results at unchoked engine conditions.

Additionally, since this research was sponsored by Wright Laboratories, the end users of this

optimization algorithm were more comfortable with the TERMAP engine cycle results than the

Mattingly engine cycle results (Wright Laboratories has used TERMAP for its engine research

for many years). It is worth noting that, for choked engine conditions, engine cycle results were

similar regardless of whether TERMAP or Mattingly's (1990) engine equations were used.

The Rubber Aircraft and the Introduction of Gross Takeoff Weight as an Independent

Variable. The amount of fuel required to perform a mission profile is directly affected by the

gross takeoff weight (WT0) of the aircraft. Given two identical airframes, one loaded with more

weight than the other, the heavier aircraft will require more thrust and will consume more fuel

during flight than the lighter aircraft. This is because the aerodynamic forces used to generate

lift on an aircraft also create drag as a byproduct.

Just as mission fuel consumption is affected by gross takeoff weight, WT0 is affected by

the fuel stores required to perform the mission (which is directly related to mission fuel

consumption). WT0 is not only affected by the weight of the fuel itself, but also, in the context of

conceptual aircraft design, the weight of the airframe structure required to support the weight of

the fuel. In conceptual aircraft design, the proper size of the airframe and engine is still

undetermined. When the amount of fuel required to perform a mission changes, so does the size

of the airframe required to carry the fuel stores. Thus, in conceptual aircraft design, the size of

the aircraft is a design variable, just as the engine parameters being optimized. Because of this

dynamic re-sizing of the aircraft, it is known as a rubber aircraft during conceptual design. This

inherent dependency between the conceptual airframe and the engine being optimized requires

special handling to locate the optimal combination of both. (Mattingly, et al., 1987, Chapters 1

and 2)

As previously presented in Chapter 1, there are four independent engine variables that

are being considered in this optimization application: reference engine bypass ratio (a), fan

compressor pressure ratio (KC), high pressure (or core) compressor pressure ratio (X) and overall

engine air mass flow (m0). For each set of viable engine parameters, there exists a minimum

WTo that is needed to perform the specified mission. WT0 is calculated by:

WTO=WE+WF+WP (2-1)

where

WE is the empty weight of the aircraft. For conceptual aircraft design, WE can be

modeled as a function of the gross takeoff weight so that WE =f(WT0).

Looking at Eq (2-1) and noting that WT0 =f'!(WE), we see that for a

fixed WP, it is possible to solve for WE so that WE becomes solely a

function of WF. (Mattingly, et al., 1987, 69-70)

WF is the weight of the fuel required to perform the mission plus any required

fuel reserves

WP is the pay load weight, where pay load includes any item (other than fuel) not

fixed to the aircraft. This includes the pilot, equipment and weapons

ordinance.

Notice that WTo is a function of WF, which is a function of WT0.

This dependency of WT0 and WF can be overcome by treating WT0 as an independent

variable. WT0 is selected in conjunction with the independent engine parameters in an

optimization. This WT0 is treated as the gross takeoff weight for the set of engine variables being

evaluated for fuel consumption. After evaluating the fuel consumption implied by these five

variables, the resulting WF(Aauui, is compared with the theoretical amount of fuel on board the

aircraft (WF<Tha)re,icui)), as implied by the gross takeoff weight. Manipulating Eq (2-1):

WF(Thenretical) = WT0 -WE-WP (2-2)

where now

WE is as defined in Eq (2-1)

WT0 is the independent gross takeoff weight variable value for this evaluation

WP is as defined in Eq (2-1)

Based on the function being used to relate WE and WT0, WF{Thetmtiml) can be calculated for

comparison with WF(Actmi).

If WF(Acluai, > WF(The„K,icai), the point is infeasible (more fuel was needed to perform the

mission than was available on-board the aircraft); if WF(Theoretkai) > WF(Actuai), the point is feasible.

The optimal WT0 value for any set of viable engine parameters occurs when WF(Theore,iCal) =

WF(Acmai). When this condition is met, enough fuel exists to perform the mission, but no excess

fuel (and structure) weight has been unnecessarily carried throughout the mission.

By treating WT0 as an independent variable, the optimization algorithm is responsible for

locating the best gross takeoff weight for the best set of engine parameters. By penalizing the

response function value returned to the optimizer for designs with infeasible WT0's, gross takeoff

weights are driven into feasible values. WT0's that are too large are inherently penalized by the

10

excess weight that was carried throughout the mission. This excess weight causes the fuel

consumption to be higher than if WF(Theoreticai) = WF(Acmai).

Probabilistic Non-Linear Optimization Algorithms. Probabilistic, non-linear optimizers

use randomization techniques to search an entire design space for the global optimum, or the

point that produces the best response in the design space. This approach to optimization is

contrasted with gradient-based optimizers which use various techniques to estimate the direction

of greatest improvement. Gradient-based optimizers only have the ability to locate local optima,

or the best points from sub-sets of the design region, and do not have the ability to search outside

of the local region in which they find this optimal point.

The Standard Genetic Algorithm. The Standard Genetic Algorithm (SGA), also

known simply as the Genetic Algorithm (GA), is a popular non-linear, probabilistic optimization

technique that simulates survival-of-the fittest processes to locate an optimal combination of

input design variables. The SGA's primary advantage is its robust ability to identify globally

optimal solutions in highly irregular, even non-continuous response function environments.

However, this robustness comes at the price of large numbers of objective function evaluations

required to locate the optimal solution. Given the highly non-linear nature of the mission fuel

consumption response function, this type of optimizer is well-suited for this application. (Nadon,

1996, 16)

In the SGA, sets of design variable coordinates (JC/, x2,... x„) are encoded into a single

string of binary digits (i.e. 011101001010111010... - see Appendix B for details on how this

encoding is performed). This string of binary numbers represents a chromosome that genetically

describes the point, much like genes in biological organisms. This chromosome, which can be

decoded back to the original coordinates, is unique to this point and, therefore, will not be

repeated by any other point in the design space. The SGA manipulates a collection of points

11

(whose coordinates are converted into chromosomes) known as a population. Each member of

this population has a certain level of fitness, which is analogous to the point's response function

value (favorable response function values equate to high fitness levels). Hence the stage is set

for the SGA to simulate survival-of-the-fittest processes until a globally optimal point (or, in

SGA terms, a most fit member) is located.

An SGA uses three biological processes to search a design space for an optimal solution

- selection, crossover and mutation. Selection is the process by which the most-fit members of a

population are chosen for mating (crossover). This is where the survival-of-the-fittest premise of

the SGA is introduced. The likelihood of a member being selected for mating is directly

proportional to the member's fitness. In other words, the most fit members are most likely to be

chosen to generate the next population. During the selection process, it is also possible to

implement a technique known as elitism, which simply guarantees that the most fit member of a

population is always passed-on to the subsequent population. This ensures that the chromosome

with the most favorable fitness value remains in the population for further manipulation and is

not lost during the selection process. Crossover is the technique used to mate the members

selected for reproduction. It typically involves combining the chromosome bit structures of the

parents to produce two new children chromosome structures. An important point to note about

crossover is that, regardless of the crossover scheme used, mating genetically identical parents

generates children identical to the parents. This is essential to the SGA eventually converging to

an optimal solution. Finally, mutation is a random process by which bits in members'

chromosomes are spontaneously changed to produce new points in the design space (recall that

every chromosome bit structure can be mapped to a unique set of design variable coordinates,

and vice versa). More detail about how these genetic algorithm processes work is located in

Appendix B.

12

The net effect of repetitively evaluating a population for fitness, selecting parents,

combining parents to make new children members, and randomly introducing mutation is that

many chromosome structures are generated and evaluated for fitness. Since each of these unique

chromosomes equates to a unique point in the design space, many different regions of the design

space are searched. The selection process ensures that when promising design-space regions are

encountered (e.g. regions of relatively high fitness), the bit structure of these favorable solutions

is maintained and passed-on to future populations.

It can be shown that the repetitive process of selection and crossover will eventually

result in a population completely comprised of the most fit member (multiple copies of the same

chromosome bit structure). This most-fit chromosome pattern to which the SGA converges is

presumably the optimal point which we seek. While many criteria exist to determine if a

population has converged, the technique used in this application involves evaluating a

population's homogeneity, or genetic likeness, to discern when the SGA has completed its task.

When most of the members of a population have about the same chromosome bit structure, the

ability of the SGA to search new regions has been greatly reduced and the SGA terminates

operation.

In all, the genetic algorithm searches a design region by encoding the coordinates of the

points evaluated into a genetic structure that can then be manipulated to converge to a most-fit

solution. This convergence is a result of the converging properties of the survival-of-the-fittest

approach. Through the various populations created, many different genetic schemes are

encountered. By ensuring survival-of-the-fittest, the most-fit of these genetic structures (which is

the globally optimal solution to the optimization problem) survives to eventually be the only

genetic structure in the population. (Pirlot, 1996, 502-506)

13

The Micro-Genetic Algorithm. The Micro-Genetic Algorithm (ßGA) is a

probabilistic optimization technique that is closely related to the Standard Genetic Algorithm.

Unlike the SGA which relies on manipulation of large populations of chromosome patterns (N >

30, where N is the population size) to adequately search the design space, the uGA employs the

SGA with a micro-population (N<5) combined with an outer-loop operation (see Figure 2-1).

Start
Randomly Generate

Micro-Population
(N < 5)

Combine Best Member
from Previous Loop

with (N-i) Randomly
Generated New

Members to Create New
Micro-Population

Perform Standard
Genetic Algorithm
Processes Using:

Elitism
Tournament Selection
Prob(Crossover) = 1.0
Prob(Mutation) = 0.0

Converged
Micro-Population

Select Best Member of
Converged Micro-

Population

Figure 2-1. Micro-Genetic Algorithm Flow Diagram

In Figure 2-1, we see that a randomly selected initial micro-population is first established

and passed to the SGA. The SGA then performs normal genetic algorithm operations using

elitism, tournament selection and a 100% crossover rate (Prob(Crossover) = 1.0). Elitism

guarantees that the genetic pattern of the most fit member of the current population is passed on

to the subsequent population unaltered by crossover or mutation. This ensures that the most

favorable solutions are not lost during the SGA genetic processes. Tournament selection

14

involves randomly pairing members of a population and selecting the most-fit of the two to be a

potential parent for the next population. Each individual tournament pair (multiple tournaments

are performed) identifies one population member to become a part of the pool of eligible parents.

The parents are then randomly paired to create children for the next population. The 100%

crossover rate ensures that all of the identified parents are mated to generate the subsequent

population. A crossover rate less than 100% would allow some of the parents genetic schemes to

be passed to the next generation without having been modified by the mating process and would

reduce the amount of new genetic structures evaluated during the optimization process. Note

that the elite member that was maintained from the previous population may also have been

selected for crossover. Regardless, the elite member's unaltered genetic pattern is also passed to

the new population, so that the new generation only has (N-l) children generated from the

previous population.

Mutation is disabled (Prob(Mutation) = 0) in the uGA. This process, usually responsible

for introducing diversity into the population to prevent premature convergence, is replaced with

an outer-loop process in the U.GA algorithm. For this reason, each micro-population processed

by the SGA converges relatively quickly. The SGA is considered converged when the micro-

population reaches a user-defined level of homogeneity, at which time the SGA halts and outputs

it's final population. The most fit member of the converged micro-population is then combined

with (N-l) new, randomly selected members and fed back into the SGA for manipulation. This

SGA re-start process is performed until a user-defined outer-loop convergence criteria is met.

The primary advantage of the M-GA is efficiency. The uGA has been shown to converge

to globally optimal solutions significantly faster than SGA routines, reducing the overall number

of objective function evaluations required to obtain an optimal solution. Despite the reduced

15

number of function calls, the thoroughness of the search process is comparable to the SGA.

(Krishnakumar, 1989,289-291)

Use of Penalty Functions. The uGA, like many non-linear optimizers, is not capable of

handling infeasible points by itself. It requires a tangible response value be returned every time

an objective function call is made. In some applications, the objective function is programmed to

return an infeasible response value to the optimizer that is several orders of magnitude worse

than any feasible point response could be. This directs the optimizer away from the region by

this point in the future. However, for many optimizers, convergence is encouraged when an

infeasible point is assigned a penalized response value rather than a single, extremely poor

response value. By penalizing an infeasible response based on how far away it is from the

feasible region, all available information is utilized in assisting the optimizer in moving back

towards the feasible region.

Assume that a point has been determined to be infeasible. If we know the boundaries of

the feasible region, we can generate a pseudo-response for this infeasible point based on the

response from the closest feasible point. That is, we can, starting with the response from the

feasible point, assess a penalty based on how far the infeasible point is from the feasible region.

Written as an equation for a minimization problem, the pseudo-response is generated with:

^ Infeasible Point

^Pseudo - Response,

f Closest Feasible

Point's Response

Penalty, based on Distance from

Infeasible Point to Feasible Region
(2-1)

As depicted for a single independent variable in Figure 2-2, this in effect, funnels the optimizer

back towards the feasible region whenever an infeasible point is evaluated.

16

25 ■

INFEASIBLE FEASIBLE INFEASIBLE
(Pseudo-Responses) (Actual Responses) (Pseudo-Responses) /

20

\
/

15 ■
.

2
^ \ /

10 •

\ /

5 ■

0 - 1 1

V VA
 1 1

/
/

/

 i 1

Figure 2-2. Funneling Effect Created by Penalty Functions for a
Minimizing Optimization

Unfortunately, as will be discussed in Chapter 4, the actual boundaries of the feasible

region are not known a priori in this application. For this reason, the distance to the closest

known feasible point (that is, the closest feasible point that has previously been evaluated) is

used to estimate the distance to the true feasible region.

Introduction to Research Topics. Dimension reduction refers to the elimination

of a portion of the independent design variables in an optimization problem. It is desirable to

reduce the number of independent variables because this allows probabilistic non-linear

optimizers (like the U.GA) to converge more quickly to an optimal solution. In this application,

the baseline optimization process had five independent variables: reference engine bypass ratio

(a), fan pressure ratio (TCC), high pressure compressor (core) pressure ratio {nL), overall engine air

mass flow (m0), and aircraft gross takeoff weight (WT0)- Research will be conducted to

determine if usable dependencies exist between any of these design variables that may be used to

17

reduce the dimensions of the problem. While looking for these relationships, it must be

remembered that exploiting noted dependencies may or may not be more efficient than simply

performing the optimization with the additional independent variables. Achieving this balance of

dimension reduction and efficiency will be the focus of the research presented in Chapter 3.

Working with the reduced independent variable set achieved in Chapter 3, kriging is then

applied to this problem in hopes of accelerating the optimization process. Kriging is a response

estimation technique that uses existing known response values to generate response estimates for

new points in the design space. Its origins are traced to the geological sciences where it is used

to estimate the size of mineral deposits using limited point samples. Unlike many estimation

techniques (like least-squares regression), kriging does not use a pre-defined mathematical

expression fit to existing data to estimate responses at new points in the design space. Instead it

interpolates between known data points. The primary advantage of this approach is that the

estimating function passes through the known data points (see Figure 2-3). Since in the jet

engine optimization problem, the best polynomial for the response data is not known a priori and

can change based on other user-defined mission parameters, interpolation provides a more robust

means of providing accurate estimates. Additionally, since response function evaluations are

deterministic (that is, a single response is always obtained with the same input variables), it is

appropriate that the estimating function pass through all of the known data points.

18

10

Figure 2-3. Comparison of Regression and Interpolation

Kriging is unique among interpolation techniques because it produces minimum variance

response estimates. As will be discussed in Chapter 4, kriging makes use of spatial statistics to

describe response variation in a design region. Using this spatial information, kriged estimates

are generated using linear combinations of known response data to produce response estimates

that minimize the effects of the spatial variation on the new point estimate.

Use of kriging in non-geological applications is a new field of study. For this reason, it

is uncertain if kriging is even appropriate for jet engine optimization. Additionally, it will be

necessary to completely automate the kriging process in order to exploit its use in this application

- a task that, based on the literature search performed, appears to have no precedent in aerospace

applications. If kriging can be automated for this application, it is uncertain if the computations

required to produce kriged estimates will be more efficient than evaluating the actual response

function (although, at least conceptually, it does seem like it will be more efficient). So we see

that, even though the benefits of kriging look promising, new ground will have to be covered to

19

make use of the technique. Chapter 4 contains significant detail on the theory and application of

kriging to the jet engine optimization problem.

20

3. Jet Engine Optimization Dimension Reduction

In non-linear optimization, it is often desirable to reduce the number of independent

design variables in order to minimize the processing required to locate an optimal solution. If the

response function associated with a set of design variables is not guaranteed to be convex (which

is often the case in engineering applications), some type of probabilistic optimizer (like the

genetic algorithm) will be required to adequately search the design region for the global

optimum. It is the necessity of this random search algorithm that drives the need for independent

variable reduction - the smaller the set of input variables, the smaller the number of response

function calls required for the probabilistic optimizer to converge to an optimal solution.

In many engineering applications, evaluating a response function can consume a

significant amount of resources, including computing capability and time. Evaluating one set of

design variables can involve executing lengthy, iterative computer codes requiring anywhere

from a few seconds to hundreds of hours to complete. In this optimization environment, it is

even more important to reduce the number of objective function calls required to locate the

optimal solution.

In this application, a preliminary search was performed to locate the set of mixed-stream,

turbofan engine design variables - engine bypass ratio (a), fan pressure ratio (xc), overall core

pressure ratio (nc) and engine air mass flow (m0) - that minimized the amount of fuel required to

perform a defined aircraft mission. At this stage in the design process, I was able to treat the

airframe as a rubber aircraft, meaning that the size and weight of the airframe were not fixed. As

more efficient engine designs were located (which required less fuel to complete the mission),

less fuel was required on-board the aircraft, therefore reducing the size and weight of the

21

fw \
airframe needed to carry the fuel. While the aircraft drag polar and takeoff wing loading ——

v s)

were assumed to be constant regardless of the size of the aircraft (wing area (S) was varied with

gross takeoff weight (WTo) to maintain a constant wing loading), the size (and more importantly

the weight) of the airframe was allowed to change during the optimization process. For this

reason, WTo was added to the set of design variables to be optimized (see Chapter 2 for details).

While quantifying the computational savings experienced with dimension reduction is

important to the overall engine optimization effort, the focus of the research presented in this

chapter is to describe the noted dependency of two of the design variables on the other three

design variables. In effect, it is proposed that this five dimensional (a, rtc; Kc, m0, and WTo)

optimization problem can be reduced to a three dimensional (a, Kc, and WT0) optimization

problem by exploiting the observed dependencies of rcc- and m0 on the other variables. Exploiting

these variable dependencies involves heuristic search algorithms and has a computational price

of its own. Therefore, depending on the efficiency of these heuristic algorithms, a total

optimization computational savings (with the reduced number of input variables) may or may not

be realized. While it was not practical to experimentally prove that the dimension reduction

made the optimization process more efficient, discussion of this important aspect of the overall

design process is included in this chapter.

3.1 Engine Cycle Modeling Improvements

When Nadon (1996) automated this conceptual engine optimization process, he used

engine cycle and aircraft mission evaluation codes developed by Mattingly (1990). Though these

equations adequately model engine cycle calculations for choked low pressure turbine (LPT)

conditions, engine performance calculations were not possible for unchoked conditions. Since

22

the mission profiles modeled often involved wide ranges of flight Mach numbers and altitudes,

very low throttle settings were sometimes required to perform mission legs. It was at these flight

conditions where Mattingly (1990) codes were unable to provide solutions. The result was that

near-optimal engines were rejected, simply because the true optimal engine design had unchoked

LPT flow on one or more mission legs.

A significant improvement made in this application was the incorporation of a more

robust engine cycle evaluation algorithm. Turbine Engine Reverse Modeling Aid Program

(TERMAP) (1997), an on-design and off-design engine evaluation code created for the U.S. Air

Force's Wright Laboratories, was integrated with Mattingly's (1987) mission fuel consumption

equations. The primary advantage of using TERMAP as the engine cycle code evaluator was

that it used compressor and turbine mapping information to produce engine performance results

at unchoked engine conditions. Additionally, since this research was sponsored by Wright

Laboratories, the end users of this optimization algorithm were more comfortable with the

TERMAP engine cycle results (Wright Laboratories has used TERMAP for its engine research

for many years). It is worth noting that, for choked engine conditions, engine cycle results were

similar regardless of whether TERMAP or Mattingly's (1990) engine codes were used.

3.2 Optimal Fan Pressure Ratio (7^<) Dependency

In this section, we discuss a heuristic approach to choosing the optimal fan pressure ratio

(7TC) for a given a, Kc, and WT0. Note that the engine mass flow (ra0) will not be included in this

dependency relationship. This is because in conceptual engine design, m0 simply defines the size

of the resulting mixed-stream, turbofan engine; it does not affect the inter-relationships of the

various engine cycle components. Said another way, for a given set of rational a, Kc; nc, and WT0

23

inputs, any value of m0 will produce a functional conceptual engine design, though it may not

necessarily be capable of performing the mission.

Background. At the heart of the heuristic used to identify the optimal nc- value is a

relationship first noticed by Branham (1997). While Branham was working with Mattingly's

(1990) on-design conceptual engine design codes (the same codes used by Nadon (1996)), he

noticed that, regardless of the reference flight condition selected, for fixed values of a and nc

(and other engine cycle efficiency factors), there always existed a fan pressure ratio at which on-

design uninstalled Thrust Specific Fuel Consumption (5) was minimized and on-design

uninstalled engine thrust (F) was maximized. Upon closer inspection, he also realized that this

always happened when the bypass flow Mach number at the mixer (M5) was slightly less than

the core flow Mach number at the turbine exit (M5). Although he never explored this

relationship any further, Branham was able to generate engine designs that always had near-

optimal nc- values.

Perhaps some clarification is appropriate as to why the nC' value that minimizes S and

maximizes F is considered optimal. S is calculated using

S = -&- (3-1)
Fln%

where

flbm^
total engine tuel tlow

V
f0 is the overall engine fuel-to-air ratio =

V sec j

... ■ a flbnO engine inlet air flow
V sec J ;

F is the uninstalled engine thrust (lbf)

24

m0 is the overall engine inlet air flow
V sec)

For each mission leg, an aircraft will require a certain amount of installed thrust (Treq) to be

delivered by the engine(s) in order to perform the specified leg maneuver. Treq will be fixed for a

given WT0 and m0 (required thrust is affected by m0 only if non-constant engine installation losses

are being modeled). Since engine cycle models work in terms of uninstalled engine performance,

it is necessary to translate installed engine thrust into uninstalled engine thrust required {Freq).

Thus, for every mission leg, there is an Freq that must be generated in order for the engine to meet

the installed thrust requirement.

In this application, we are trying to identify the engine that performs a specified aircraft

mission while consuming a minimum amount of fuel. Therefore, in meeting the identified Freq, it

is always desirable to make S as small as possible since this value implies the fuel consumption

of the engine. It is important to note that the usefulness of minimizing 5 would be offset if

uninstalled engine thrust was diminished in the process. However, as will be shown, choosing nc-

to minimize S has the added benefit of maximizing uninstalled thrust. Not only is the engine

most efficient in terms of fuel consumption, but it is also most effective in terms of producing

thrust. Both objectives are optimized at the same nc:

3.3 Understanding How (S) and (F) Are Coincidentally Optimized

We now turn our attention to understanding why coincident optimality of S and F occurs.

While understanding this principle for reference engine conditions is foundationally important,

the real value of this phenomenon is realized only if S and F remain optimal for off-design flight

conditions as well. Branham's discovery is explored for both reference and off-design flight

conditions in this section.

25

Application of Reference Flight Conditions. Unfortunately, looking at ideal (that is, no

engine losses or inefficiencies) mixed-stream turbofan engines provides only limited insight into

why the phenomenon observed by Branham exists. Figure 3-1 shows the performance of the

ideal engine, as generated from the ideal engine equations in Mattingly (1996). Note that with no

losses modeled, for a given a, KC, burner total temperature (T,4) and free-stream Mach number

(M0), larger fan pressure ratios always provide more thrust and better fuel consumption

properties, thus implying that an infinitely large fan pressure ratio is optimal. While this is

nonsensical in terms of real engine design, one important piece of information can be taken from

the ideal engine - at this infinitely large TTC-, F is maximized and S is minimized.

rc.

Figure 3-1. On-Design Uninstalled S and Specific Thrust for the Ideal
Mixed-Stream Turbofan Engine

26

We therefore turn our attention to empirical data available from TERMAP on-design

engine evaluations that more realistically model engine operation. Imbedded in the TERMAP

codes used to perform the on-design engine evaluations are realistic component efficiencies.

Figure 3-2 shows the results for the same Kc, burner total temperature (Tt4) and free-stream Mach

number (M0) values used for the ideal engine plots in Figure 3-1. Figure 3-3 demonstrates that

this phenomenon is not dependent on T,4. Additionally, Figure 3-4 shows the same results with

fixed a and varying nc.

2.5

U

0.5

M() = 0.0

Tt4 = = 3500 R

7IC = 15
a = 0.5

F/mo a =1.0

a =1.5

a = 5.0 a = 4.0
a = 3.0

-*= a = 1.5
a = 2.0

1.5 2.5 3.5 4.5

a= 1.0 "
— a = 0.5

80

30 ta

5.5

Figure 3-2. On-Design Condition #1: Uninstalled 5 and Specific Thrust for
the TERMAP Generated Mixed-Stream Turbofan Engine at Varying a

27

3.5 J-

2.5

t/3

2 --

M„ = = 0.0

T,4 = = 2700 R

7tc = 15

F/m«

-• 35

50

- (II in

1
A

• 25 s
£>
s^^'

- 20 i
U.

-■ 10

Figure 3-3. On-Design Condition #2: Uninstalled S and Specific Thrust for
the TERMAP Generated Mixed-Stream Turbofan Engine at Varying a

28

2.5

1.5 -

<Z>

Mo = 0.0

T,4 = 3500 R

a = 2.00

F/m0

7tc = 20

0.5

50

-• 40

it. = 100
itg = 80 it, = 60 ^ = 40 it=30 itc = 20

it. = 10

-+- -+-

i

10

1.2 1.4 1.6 2 2.2 2.4 2.6

Figure 3-4. On-Design Uninstalled S and Specific Thrust for the TERMAP
Generated Mixed-Stream Turbofan Engine at Varying Kr

Notice that with engine inefficiencies modeled, 5 and F reach optimal values at reasonable fan

pressure ratios. Also note that, regardless of the value of T,4, a, or nc, the fan pressure ratio at

which S is minimized is also the fan pressure ratio for which F is approximately maximized.

Although these figures were generated using TERMAP, this phenomenon is also observed using

Mattingly's (1990) engine codes.

Branham first used the -^ ratio to identify the nc- value at which this dual optimality is
Mr

M achieved. Analogous to the Ä ratio is the ratio of the bypass and core flow total pressures at
M

mixer entry
'' P ^

\Pt5 J

, which is a readily available from TERMAP output. When the — ratio is

29

plotted against S and F (all of which are engine cycle outputs), approximately optimal S and F

p
are obtained at a fixed -^- ratio, regardless of the values of a, 7TC, T,4, and M0. Figure 3-5 shows

P that the —— ratio at which this happens is approximately 1.00 for a fixed nc and varying a.

Figure 3-6 shows this same characteristic to be true with a fixed a and varying nc.

2.5

M„ = 0.0

T,4 = 3500 R

tc = 15

Figure 3-5. Optimal On-Design Uninstalled S and Specific Thrust at

-^- =1.00 for Varying a

30

Reference (Pt5/Pt5)

Figure 3-6. Optimal On-Design Uninstalled S and Specific Thrust at

-Sil =1.00 for Varying ^

An important connection to be made here is that the -&- ratio is a function of the fan pressure

P
ratio combined with constant a and nc values. Figure 3-7 shows the relation between -&- ratio

and n ■. Notice that the -£- function for each bypass ratio is monotonically increasing (a

P,v ■
property that will be exploited in locating the nc- at which the optimal -£- is obtained).

31

2.5

P,

1.5 --

0.5

Mo = 0.0

Tt4 = = 3500 R

Kc = 15

—I—

1.5

a = 5.0

-+-
3.5

7tc.

4.5

P.V Figure 3-7. —— Variation with Changing n^ at Various a

P.« Thus, for the on-design engine, it is possible to vary nc- until the —— ratio reaches its optimal

p
value - when this —— ratio is obtained, the best nc- has been (approximately) located. This nc- is

considered best because it maximizes uninstalled thrust output while minimizing engine fuel

consumption . This minimized fuel consumption leads to a minimized amount of fuel required to

meet Treq for the specified duration of a mission leg.

Application to Off-Design Flight Conditions. The on-design engine property noted by

Branham would not be useful in this application if it applied exclusively to on-design engines.

Regardless of the reference conditions chosen for an on-design engine, an aircraft flies some

portion (if not all) of its mission at off-design flight conditions. Hence, if the selection of an

32

optimal Kc- value only minimized S and maximized F on-design, this property would be of very

limited use. However, it was found that by selecting an optimal nc- value for the reference

engine, S and F were also approximately optimized for all off-design flight conditions tested in

this research.

Figure 3-8 through Figure 3-10 show off-design S and F values plotted against reference

p
— ratios for three arbitrary off-design conditions and throttle settings.

<z>

1.5

0.5

Alt = : 10,000 ft
M„ = 0.9

T,4 = 2700 R
nc ref = 15- a = 0.5

Figure 3-8. Off-Design Flight Condition #1: Optimal Off-Design
P.,

Uninstalled S and Specific Thrust at Reference Engine -^ =1.00

33

3.5

AIt = 30,000 ft

Mo = 0.9

Tt4 = 3500 R

^c ref = 15

2.5

VI

-oc = 0.5

0.2 1.4

Reference (PtS. / P«)

Figure 3-9. Off-Design Flight Condition #2: Optimal Off-Design
P

Uninstalled S and Specific Thrust at Reference Engine -^- «1.00

50

40
U

i
30

20

;: 10

34

4.5

3.5 --

3 --

2.5

Alt = = 30,000 ft
M„ = 2.0

Tt4 = 3500 R
TCc ref = 15

0.2 0.6 0.8 1.6

Reference (Pe. / P«)

Figure 3-10. Off-Design Flight Condition #3: Optimal Off-Design

Uninstalled 5 and Specific Thrust at Reference Engine P*
'(5

4.00

It is seen once again that regardless of the reference bypass ratio, off-design S is always

approximately minimized and off-design F is always approximately maximized at the same

P
reference —— ratio. While an exhaustive list of figures showing many different off-design

P,5

conditions is not included, this KC- optimality principle held true for all of the various flight

conditions used in this application.

Understanding Off-Design Optimality Using Reference Engine Optimization. It is

important to understand why 5 and F optimality is maintained once a departure from reference

engine flight conditions has occurred. Similar to operation at reference conditions, the off-design

fan pressure ratio that minimizes 5 and maximizes F is expected to be equal to the value that

35

p
causes the off-design —— ratio to be approximately 1.00. Once reference engine conditions are

P<5

departed, the off-design Kc-, Kc and a can be significantly different from the reference nc-, nc and

p
«(Mattingly, et al., 1987, 120-122). This would seem to imply that the resulting off-design -£-

ratio is likely to be very different as well.

p
However, in reality the -^- ratio does not change significantly with changing flight

Pts

conditions when it is first optimized for the reference engine. This is attributable to the fact that,

for most flight conditions, the engine spool RPM typically remains at 80 - 100% of the full-

throttle reference engine RPM. Over this range of spool RPMs, My and M5 do not vary

significantly from their full-throttle reference engine values (Mattingly, 1996, 558). Since Pt5-

and P,5 are derived directly from these Mach numbers (via the isentropic compressible flow

p
equations), it follows that the—— ratio also remains relatively constant as well. This notion is

p
confirmed in Figure 3-11 through Figure 3-13 where reference and off-design -^- ratios from

^5

TERMAP are compared.

36

Alt = 10,000 ft
M„ = 0.9

Tt4 = 2700 R

0.2 0.8 1 1.2

Reference (Pt5. / Pt5)

Figure 3-11. Variation of Off-Design -&- Ratio with Changes in Chosen

p
Values of On-Design -£- Ratio for Off-Design Condition #1

37

1.6

1.2

e l
.SP

Q 0.8

0.6

0.4

0.2

Alt = 30,000 ft

-- M0 = 0.9
Tt4 = 3500 R

-- 7Ccref= 15

~
a = 0.5

a = 5.0

--

M -N
 —1 1 1 : 1 1

V. P'i)*cf V PI5 Joff-D«

 1 1 1 1

0.2 0.4 0.8 I 1.2

Reference (Pts. / P^)
1.6

Figure 3-12. Variation of Off-Design — Ratio with Changes in Chosen

p
Values of On-Design -^- Ratio for Off-Design Condition #2

Pt5

38

Alt = 30,000 ft

Mo = 2.0

Trt = 3500 R

^c ref = 15

—I—

0.4 0.6 0.8 1 1.2

Reference (Pt5. / P^)

1.6 1.8

Figure 3-13. Variation of Off-Design -^- Ratio with Changes in Chosen
't5

Values of On-Design -^- Ratio for Off-Design Condition #3
'(5

In the previous three figures, we see that, although there may be significant deviations from

quality of
<P ^

\Pt5)

(D \
and

Re/

(T> \

p
V (5 J Off-Des

across the spectrum of chosen
V Pt5 JRef

values, at

(p \

\Pt5 J

(r, \
= 1.00, the curves converge so that

Re/ VPt5) Re/
rt5j Off-Des

Application to Jet Engine Optimization for an Aircraft Mission. In Nadon's (1996) work

on the jet engine optimization problem for a specified mission, fan pressure ratio was treated as

an independent variable. Though this is a viable approach to this optimization, practice has

shown that for a given a and nc, the range of working nc- values for the on-design engine can be

39

small (reference Figure 3-2 through Figure 3-4, which plot all working values of Kc- for the given

a and KC). The range of KC- values that provides a realizable engine across a wide range of off-

design flight conditions is even smaller. Additionally, this range of working nc- values shrinks

significantly as bypass ratio increases. Since this non-linear optimization problem is typically

solved using a probabilistic optimization algorithm (such as the genetic algorithm), it is left to

chance that a proper Kc- value be selected to complement the selected «and Kc values. Since only

a small range of itc- values produce viable engine designs, it is easy for the optimizer to miss

these possible values. Hence, many a and Kc combinations would never be evaluated because an

appropriate nc- values would not be chosen by the optimizer. This is especially true for the high

bypass ratio engines that have extremely narrow ranges of valid KC- values. The net result is that,

without very exhaustive sampling, optimal solutions tend to have low bypass ratios where the

range of functional KC- values is relatively wide. High bypass ratio engines are never fully

explored.

As an alternate approach, the property noted by Branham can be employed to make Kc- a

dependent variable, determined by the selected a and Kc values. The benefit of this approach is

that locating the optimal KC- value is not left to an optimizer that may or may not ever locate its

best value. Because of the narrow range of Kc- values that produce viable engines for a given a

and Kc, using this approach ensures that, not only is a working Kc- value found at every engine

evaluation, but also the identified Kc- is the approximately its best possible value. By

implementing a short algorithm to locate the optimal Kc-, this variable is effectively removed

from the set of independent design variables controlled by the optimizing algorithm. As

previously mentioned, this dimension reduction encourages faster optimizer convergence to the

global optimum.

40

p
In sections 3.2 and 3.3, it was shown that a relationship exists between the optimal ——

^,5

p
ratio, S and F. It was also shown that, regardless of the a or nc values selected, the optimal ——

P,5

P
ratio remained approximately the same. Some iteration was required to discern the best ——

P/5

ratio to achieve 7^- optimality (since there was some variation based on the mission profile), but

P P
it was finally observed that 0.99 < —— < 1.01 produced the best results. This target —— ratio is

■ Pt5 Pl5

p
presented as a range of values because the precise best —— ratio tended to fluctuate slightly

Pts

depending on the mission off-design conditions and the selected values of a and nc. This is

p
consistent with the plots shown in section 3.3 that reveal slight discrepancies in the — ratio

(depending on flight condition, a and nc) at which 5 is minimized and F is maximized.

p
The goal here is to locate the KC' value that produces the optimal —— ratio. To do this, a

Pt5

simple Newton-Raphson convergence algorithm, supplemented by a bisection convergence

algorithm, was employed. A description of the Newton-Raphson and bisection root-finding

algorithms can be found in Burden et al. (1993). Both of these root-finding algorithms are

capable of locating the value of a single input variable that creates a function response of zero.

In this case, the single input variable was Kc- and the response was
f p \

^21-1.00
V Prf J

. Figure 3-7

p
shows that — ratio, as a function of nc-, is a monotonically increasing function. By defining

P,5

41

the function used by the root-finding algorithms as

p
locate where —— = 1.00.

P,5

1 P ^
^-1.00
P,s

, the algorithms are able to
\'t5 J

The Newton-Raphson root-finding method uses gradient estimates to quickly converge to

the root (or zero) of a function. However, it is possible, depending on the function's slope at the

point being evaluated, for this root-finding method to attempt to move to invalid KC- values {nc- <

P 1.00). Such moves produce invalid —— results (as well as other engine cycle evaluation
P/5

outputs), thus confounding the success of this root-finding technique. For this reason, the

bisection root-finding method is needed to back-up the Newton-Raphson method. Although the

bisection method is typically much slower to converge to the root of a function, it is much more

p
robust than Newton-Raphson. Therefore, if invalid values of -^- are experienced while

Pts ■

attempting to use Newton-Raphson, this root-finding algorithm is aborted and the bisection root-

finding method is utilized.

Fan Pressure Ratio Optimization Conclusions. In all, excellent results were obtained

using the fan pressure ratio optimization techniques discussed above. The combination of

Newton-Raphson and bisection root-finding methods had a 100% success rate locating the

P desired —£- ratio, regardless of the a and nc values being evaluated. As might be expected,
P,5

/>., • „, . P,! selecting the target -^- ratio required special attention. When the target -^- ratio was set to
P,5

Pr5

1.00, 7tc- values for optimized engine solutions were likely to be optimal (e.g. changing nc- in

either direction resulted in increased fuel consumption), but were not guaranteed to be optimal.

42

p
By slightly varying the target —— ratio above or below 1.00, the likelihood of the chosen nc-

p
value being optimal decreased. It was therefore concluded that the precisely best — ratio

varies slightly based on other engine and mission parameters and that choosing a target value of

1.00 seemed to provide the highest likelihood of locating the optimal nc-. Despite the short-

comings of using this criteria, use of the fan pressure ratio optimization algorithms proved to be

quick and highly effective at obtaining nearly optimal TTC. values for any valid pair of a and /re-

values. Convergence to the best ^ typically only took 5-10 seconds for each mission evaluation

required by the optimization algorithm.

The most significant benefit of using this algorithm was that high bypass ratio engines

could be properly considered by the optimizer. When nc> was previously treated as an

independent variable, optimal engine solutions tended to have much lower (and less fuel

efficient) bypass ratios. With fan pressure ratio converted into a dependent variable (as a

function of a and nc), functioning high bypass ratio engines could be located by the genetic

algorithm as easily as low bypass ratio engines. This resulted in all valid combinations of a and

nc being considered in the optimization process.

3.4 Determining Optimal Reference Engine Mass Flow (m0)

At this point, four of the five variables required to evaluate the mission for fuel

consumption have been identified. Recall that a, nc and WT0 were determined by the optimizer

algorithm processes, and that nc- was selected as discussed in section 3.2. We are therefore left

with sizing the engine to produce the required thrust. Similar to the fan pressure ratio, Nadon

(1996) simply allowed m0 to be an independent variable selected and optimized by the optimizer

43

algorithm. However, there is a more direct method by which the best m0 can be selected for a

given a, Kc- and nc.

It is intuitive that it would never be desirable to have an engine that is over-sized for an

aircraft's mission. Large engines weigh more than small engines and therefore require more

aircraft structure to support the engine and it's related components. Additionally, the magnitude

of the engine installation losses is directly proportional to the size of the engine (when they are

not assumed to be constant). To suffer either of these penalties when an optimal, most efficient

engine is desired, is counter-productive. It is, therefore, advisable to make the engine just large

enough to meet the aircraft's most thrust-demanding leg. We now turn our discussion to locating

the optimal engine mass flow assuming constant engine installation losses.

Iterating to the Best Reference Engine Mass Flow. In order to perform this iterative

calculation, it is first necessary to realize that we are iterating to a desired off-design thrust by

modifying the mass flow of the reference engine. In order to do this, we must first determine the

ratio of off-design m0 to on-design m0. When sizing an engine at some arbitrary off-design flight

condition, the ratio of the off-design required engine inlet area (A,) to the on-design free-stream

area (A0re/) is constant (A, I A0ref= constant, regardless of the engine size) (Mattingly, et al., 1987,

194). Assuming that the off-design inlet Mach number and the reference free-stream Mach

number are kept constant, it follows that the ratio of the off-design and reference mass flows,

which are directly related to the areas required by the off-design and reference conditions, is also

constant

f \

—— = constant With this relationship, it is now possible to calculate the change in

reference engine mass flow to obtain the required off-design engine thrust.

We will be using uninstalled thrust throughout the following calculations. Uninstalled

thrust is used because TERMAP (like most engine cycle codes) only generates uninstalled engine

44

performance. Since in mission optimization we work in terms of installed thrust (the actual

thrust delivered to the aircraft) and in engine mass flow optimization we work in terms of

uninstalled thrust, it is imperative that the proper uninstalled required thrust has been determined

before any of the following calculations are performed.

First, we calculate the deficit in required uninstalled, off-design thrust.

F = F — F
t'ffdcf _ Offreq "ffmall

(3-2)

Using the thrust deficit and the off-design specific thrust
(F A t

off

V ^»J J

of the engine (output from the

off-design engine cycle analysis), it is possible to calculate the off-design engine mass flow

deficit.

"V„, =
F

offH

'off

v"V J

Off - Design Thrust Deficit

Off - Design Specific Thrust
(3-3)

This deficit off-design mass flow can then be translated to a deficit reference engine mass flow

using the off-design / reference engine mass flow ratio (again, obtained from the engine cycle

analysis).

mo
i%

offdcf

"Uli f \
«0.

(3-4)
uo#

"V

45

It is now possible to adjust the reference engine mass flow (by /w^) to obtain the desired off-

design thrust.

It is important to note that convergence to the proper m0ref is an iterative process,

requiring multiple engine cycle analyses and execution of the above calculations. Another

important point is that, during convergence to the proper m0ref, it is possible to overshoot the

optimal more/- That is, the mass flow becomes larger than is actually required to meet the thrust

requirement. For this reason, the engine may need to be down-sized during the iterative process.

Regardless of whether the mass flow is too small or too large, the same calculations are used

(only the sign of /HQ changes). Convergence is typically achieved when

F „< F « <[F „ + Tolerance], where Tolerance equals some small amount of thrust

determined to be inconsequential to the overall solution. Finally, it is worth re-stating that this

algorithm assumes constant engine installation losses. Were installation losses to be more

realistically modeled, F0# would be affected not only by the aircraft weight, but also by the

variable aerodynamic drag forces on the changing engine and its housing (F# increases for

increasing m0 values, decreases for decreasing m0 values). The complexity involved in

incorporating non-constant loss models is beyond the scope of this study.

At this point, because the engine has been re-sized (e.g. the reference m0 has been

modified), the mission evaluation process must be re-started from the beginning. This is because

all of the fuel consumption properties of the previous legs will have been affected by the change

in engine size. To continue mission evaluation without starting over would propagate inaccurate

aircraft weight estimates for each of the subsequent legs. Recall that the aircraft is getting lighter

as the mission proceeds due to fuel consumption. Since aircraft weight at the beginning of a leg

affects the drag force that will be experienced (and consequently the thrust required and fuel

46

consumption) during the leg, accurate estimates of each leg's beginning aircraft weight are

essential. - .

This entire process is depicted in flow chart format in Figure 3-14.

Determine Most
Demanding Legs and

Store Information
►(End ") Enable "Most Demanding

Leg
Check" Mode

Initialize Engine
Mass Flow to

Arbitrary Small Value

Proceed to Next
Les to be Checked

Initialize Aircraft Weight
to Gross Takeoff Weight

Disable Checkout Mode
and Set Mission Leg
Counter to First Leg

Initialize Aircraft Weight
Using Takeoff Weight
and Estimated Weight

Fraction

Aircraft Weight =
Final Weight From

Previous Lee

Determine Required
Thrust (or Select Full

Throttle) and Call
TERMAP

Calculate Mission Leg
Aircraft Final Weight

Reset Mission Leg
Counter to First Leg

Compare Off-Design
Required Thrust with
Off-Design Available

Thrust

Adjust Engine Mass So
That Available Thrust =

Required Thrust

Call TERMAP to
Evaluate Engine with
Updated Mass Flow

Figure 3-14. Process Flow for Determining Optimal Fngine Mass Flow with
Constant Installation Losses

47

Time-Saving Techniques. As a time saving addition, the algorithm depicted in Figure 3-

14 attempts to guess which mission leg(s) have forced m0 to its current optimal value. At the end

of the engine sizing process, before the algorithm is exited, the most demanding mission legs are

determined and stored. In order to do this, we simply compare the off-design Freq and Favail for

each mission leg. When Favail is equal to or slightly larger than Freq„ the engine is having to

produce maximum thrust to meet the mission leg's thrust requirements. It follows that this leg is

responsible (either solely or in part) for the optimal reference m0 value being as large as it is. It

is likely that, when this leg was encountered during mission processing, the engine had to be re-

sized so that it could produce the thrust necessary to perform the leg's required maneuver. Each

leg that has equal or nearly equal Freq and FavaU values are considered to be among the most

demanding legs.

Every time the m0 optimizing algorithm is called, it first evaluates and sizes the engine to

the leg(s) that have been most demanding in previous m0 optimizations. This is done to prevent

as many iterations as possible in locating the optimal m0. Recall that as the algorithm is stepping

through the mission legs, if the engine is re-sized, the evaluation of the mission must be re-started

at the first leg. Hence, in the worst case, if the mission legs become more demanding with each

successive leg (causing the engine to have to be re-sized), the mission would have to be re-started

numerous times to obtain the optimal m0. However, if the most demanding leg can be identified

and evaluated first, then the engine will be large enough for all other legs, thus preventing

mission re-starts.

In implementing this short-cut technique, it was first noticed that, depending on the

engine design {a, nc; KC and WT0), the most demanding leg of a mission could change.

Therefore, it was necessary to determine the frequency of each mission leg being among the k

most demanding (where 1 < k < Total Number of Mission Legs). Along with this frequency data,

48

running averages of the aircraft weight fractions (ß, where

„ Aircraft Weight at Start of Mission Leg . . , ß = 2 -) experienced in previous m0 optimizations were
WT0

also stored. Then, when the m0 optimization algorithm was initiated for a new engine design, the

it legs with the highest occurrences of being among the most demanding legs were checked first.

The stored ß values were used to estimate the aircraft weight at these most demanding legs

(recall that required thrust is affected by the mission leg aircraft weight). Obviously, choosing

values of A: too large defeats the efficiency of the short-cut technique. However, choosing k too

small also has adverse effects because the most demanding leg for the new engine may not be

included in the set being tested. In this application, k = 2 (for a mission with 15 - 25 mission

legs) provided a good balance of efficiency and thoroughness.

Application to Jet Engine Optimization for an Aircraft Mission. Unfortunately,

implementation of the engine mass flow optimization algorithm had mixed results. While it did

successfully complement the jet engine optimization algorithms, it tended to increase the time

required for each objective function evaluation by 200-300%. On average, an objective function

call for a mission with 20 legs required 60-80 seconds to evaluate with the mass flow optimizer

enabled. Without it, objective function evaluations took 20-35 seconds. Some of this time

penalty was offset by the reduced number of objective function calls required for convergence.

However, it is unlikely that the reduced number of function calls offset the increased processing

time per function call.

Perhaps an increase in processing would be justifiable if the fuel efficiency of the

optimal engine solutions were better than solutions obtained without the mass flow optimizer.

However, initial indications revealed that the m0 values for converged engine solutions were not

optimal. By reducing the mass flow below the value located by the m0 optimizer, significantly

49

more efficient engine solutions were produced. This indicated that the algorithm was not

locating the actual minimum m0 for the a, Kc-, nc and WT0 in question. Off-line tests showed that

the algorithm was properly locating the minimum mass flow for each individual mission leg for

an established leg aircraft weight. It was therefore concluded that the algorithm was not capable

of properly dealing with the entire mission.

Recall that thrust required at each leg is dependent on the aircraft weight at the beginning

of that leg. Also recall that the engine mass flow optimizer only modifies m0 if insufficient thrust

is experienced on a leg. Therefore, if m0 is modified on leg t (2 < t < Total Number of Mission

Legs), the algorithm will re-start evaluating the mission at leg 1. This is because the change in

engine size will have changed the fuel consumption properties of all legs prior to leg t. Because

WT0 remains constant throughout the iterative process, it is expected that by the time leg t is

evaluated the second time (with the updated m0), the aircraft will actually be lighter than it was

on the original evaluation. This is because the engine now has a larger, less efficient m0 than it

had on the first evaluation, causing more fuel to have been consumed by the time leg t is

encountered. The lighter aircraft weight causes the thrust required on leg t to be lower than it

was on the first evaluation. However, the algorithm will not lower m0 this time through because

insufficient thrust is not encountered. The net result is that the engine ends up being larger than

it needs to be.

An obvious solution to this problem would be to have the algorithm adjust mass flow (if

necessary) based on the updated aircraft weight for leg t. Unfortunately, if m0 is lowered on the

second iteration of this algorithm, it is likely that on the third iteration m0 will again be too small

to meet thrust requirements (because aircraft weight will have increased from iteration 2 to 3).

While this iterative process is likely to converge to the true best engine mass flow, the time spent

performing the necessary iterations could be extremely time intensive.

50

One additional negative aspect of the mass flow optimizer is its incompatibility with

non-constant engine installation loss models. Since with non-constant loss models the

modification of engine size directly affects installation losses (which affects the thrust required

for each mission leg), the complexity of converging to an optimal m0 would become even greater

than that previously described for the constant installation loss model. It is likely that even more

mission evaluation iterations would be required to locate the optimal m0, further increasing the

evaluation time for a single set of a, Kc; Kc and WT0 values.

Engine Mass Flow Optimization Conclusions. It is concluded that using the engine mass

flow optimization algorithm is not appropriate for this application. The time required to iterate

to an optimal m0 value could be better spent making more, faster objective function evaluations

treating m0 as an independent variable. It was originally thought that removing this variable from

the variable set controlled by the optimizer algorithm would benefit the overall convergence

time. However, it is now believed that, given a robust non-linear optimization algorithm (like the

genetic algorithm), better mass flow values could be obtained with less processing time without

the mass flow optimizer.

3.5 Conclusions on Jet Engine Optimization Dimension Reduction

In summary, this research revealed both advantages and disadvantages of reducing the

number of independent variables in a non-linear, non-convex optimization problem. The original

supposition that problems with less design variables require less objective function evaluations

was found to be true. However, the processing involved with exploiting variable dependencies

can cause the overall optimizer convergence time to increase.

Using the fan pressure ratio optimization algorithm, it was possible to quickly identify a

Kc- value that was very close to optimal for a given bypass ratio and high pressure compressor

51

ratio. It also enabled the genetic algorithm to locate feasible engine solutions (engines capable of

performing the mission) with much higher bypass ratios than were obtained without the fan

pressure ratio optimizer. These high bypass ratio engines tended to be more fuel efficient than

low bypass engines, thus reducing the amount of fuel required to perform the mission. This

lower fuel weight translated to smaller, lighter conceptual aircraft designs.

In contrast, the engine mass flow optimization algorithm was plagued with inefficiency

and non-optimal results. It required several iterative aircraft mission evaluations to converge to

an optimal m0, effectively squelching any computational savings achieved by its use. The mass

flow optimizer also routinely selected m0 values that were larger than that required by the

mission. One additional problem was that this iterative approach to identifying the best m0 was

found to be incompatible with a non-constant engine installation loss model, thus confounding

this logical next-step improvement to the aircraft / mission optimization problem.

For future work on this problem, it is recommended that nc- be treated as a dependent

variable and that m0 remain part of the independent variable set controlled by the objective

function optimizer. Although this leaves four independent variables to be optimized, this appears

to be the best combination of independent variable reduction and objective function processing

efficiency.

52

4. Kriging Techniques

4.1 Overview

One of the inherent weaknesses of all probabilistic non-linear optimization techniques is

the large number of objective function evaluations required to locate the optimal solution. For

many engineering applications, each objective function call involves the use of lengthy computer

algorithms requiring from a few seconds to hundreds of hours to provide a solution for a single

set of input variables. Compounding the problem, expensive computing resources may be

needed to complete the complex calculations for each objective function evaluation. Even for

applications with moderately computation-intensive objective functions, non-linear optimization

can easily become too slow and costly for practical use.

While choosing the proper non-linear optimization technique can greatly improve the

speed with which the global optimum is located, it is also wise to utilize any methods which

make it possible to circumvent direct objective function evaluations. In particular, estimation

techniques may be used to provide a more quickly obtained, approximate objective function

value that does not hinder the optimization algorithm's efforts to locate the optimum.

One estimation technique that is well-known in the mining industry is called kriging. Its

origin comes from mining engineers' need to estimate ore reserves contained in a volume of

earth using only a limited number of point rock samples. As a means to this end, kriging is a

linear estimation technique that provides a minimum variance estimate of the mineral

concentration for a new geographic point by using information obtained from other samples in

the vicinity of the new point. This approach to point estimation is easily applied in general to

any problem involving evaluation of points throughout a design region.

53

In this application, recall that the original optimization problem contained five

independent variables. Kriging was investigated after the dimension reduction techniques of

Chapter 3 were studied. Therefore, the kriging method was applied when this optimization

problem had three independent variables (instead of five): reference engine bypass ratio (a),

high pressure compressor (core) pressure ratio (KC), and aircraft gross takeoff weight (WT0)- The

other two variables (fan compressor pressure ratio (KC) and engine air mass flow (m0)) were

determined using the dependencies discussed in Chapter 3. In the previous chapter, the it was j

concluded that m0 should continue to be treated as an independent variable. Unfortunately, \

kriging research was performed before it was realized that m0 optimization was impractical. This

discrepancy does not affect the validity of the conclusions of this chapter because the kriging

method can be applied to any number of independent variables. The general conclusions made in

this chapter will hold true regardless of whether m0 is treated as an independent variable or not.

4.2 Geostatistics

Before discussing how kriging can be applied to a problem, it is first necessary to

understand the theory of how the technique works. Kriging makes use of a field of study known

as geostatistics. Geostatistics uses a sampling of known responses from throughout a design

space to describe the space's continuity. The geological science roots from which geostatistics

arose relies on the smoothness of things in nature. That is, things in nature tend to form in a

continuous, smooth fashion. For example, it is expected that earth samples that are rich in

mineral content will be located in regions of rich mineral content, and earth samples that are low

in mineral content will be located in regions of low mineral content. Additionally, transition

from a region of rich mineral content to a region of low mineral content is expected to be

gradual.

54

V

The Semi-Variogram. Much of statistics involves describing large sets of data with a

few descriptive summary indices. Geostatistics is no different. An important tool in geostatistics

is the semi-variogram (also known more casually as the variogram). At the heart of the semi-

variogram is the assumption that all available data samples come from a population with a single

mean and variance. Traditional statistics would assume that, regardless of where in a region a

data point was sampled, it would have an equal probability of being above or below the mean

value. Additionally, the covariance between any two sampled points would be zero (all

responses, regardless of the proximity of the points to each other, are independent). However, in

spatial statistics, it is assumed that points with responses above the mean will tend to be clumped

together, and points with responses below the mean will also tend to be clumped together (due to

the spatial continuity assumptions discussed earlier). The semi-variogram provides a description

of how response data varies from point to point in the region of interest. In doing so, it provides

a description of how points co-vary as a function of the distance (and possibly direction) between

them.

As previously mentioned, an underlying assumption in spatial statistics is that all

sampled data points come from a population with a single mean and variance. Since it is

possible in geological sciences (and other applications) for data to reflect some trend, a common

practice is to remove any trend from the data before creating the semi-variogram. In essence, this

establishes that the mean response of the population (with trend removed) is zero and any

deviation from the trend is due to the implicit variance of the population. A simple way to filter

out any trend in response data is to create a second order linear regression, and then use the

residual values (difference between the predicted linear regression response and the actual

response) of each point to create the semi-variogram. This technique will be used when creating

the semi-variogram for the jet engine optimization problem.

55

Method for Creating the Semi-Variogram. Applying the previously discussed

principles of spatial statistics, it is now possible to create the semi-variogram using the following

method:

1. Collect response data at many different locations in the region of interest.

Preferably, arrange the sample locations so that many points will be the

same distance apart from each other.

2. Fit a second-order, least-squares linear regression to the response data.

Store the residual terms for each data point with the point's

coordinates. These residual values will be used to create the semi-

variogram.

3. Exhaustively calculate the Euclidean distance h between every pair of

sample points. Store this distance along with the difference in

residual values between the two points (AResiduai)-

4. For any given value of h, collect all AResiduai's that are associated with

this distance, average the squared AResiduai values, and divide by two.

This is the semi-variogram value y(h) for any two points in the region

of interest that are a distance h apart. Written as equations:

r(A)=Äl=(rv<)2 (4-2)

where

N(h) represents the number of points that are distance h apart

56

V, and Vj represent the residual values at any points / andy that are

distance h apart.

5. Repeat Step 4 for all h's identified.

6. Plot each h and y(h) pair. This plot is the semi-variogram.

7. Attempt to fit a mathematical model to the data (to be discussed later). The

mathematical model will be needed to make estimates of y(h) at all values of

h (necessary to perform kriging).

It is important to note that the above methodology assumes the region is Isotropie. That is, the

expected variation in response is only a function of the distance between two points (h) and is

not dependent on the direction of travel. If the expected variation in measured response was

different for movement along different axes, the region would be considered anisotropic. For the

purposes of this research, the design space is assumed to be isotropic (for reasons that will later

be discussed).

Creation of Example Semi-Variogram. Working through an example is an

excellent way to demonstrate how to create a semi-variogram. Suppose that a two-dimensional

region exists, 10 units in length in both the Xi and x2 directions. At any point located in this

region, we are able to evaluate a response f(xi, x2). For this example, we will assume that the

response surface is known. Obviously this is not usually the case, or we would not be trying to

estimate responses via kriging.

The surface in Figure 4-1 is obtained by plotting the response as a function of the

location in the (xj, x2) plane. The equation of the surface is shown in Eq (4-3).

57

■
1

!:;

i:

I
SÄ

isrsrs; ::

Hi
\

5t

\

\
.^

:^:

*M

!s

5
\t

s

a
5!

r10

9

55
\\

5 X2

4

© — rJm^?in\ot-oooo

XI

Figure 4-1. Response Surface for 2-D Kriging Example

RESPONSE =
x, — 5 v r*,-5V

+ 2[sin(0.75jc,) + cos(jc2)] + 5 (4-3)

In order to create a semi-variogram that will describe this surface, samples will need to

be taken, preferably at standard intervals to create multiple pairs of points that are the same

distance h from each other. A standard technique in mining is to create a grid of sample points

that are evenly spaced throughout the region. Figure 4-2 shows the locations of the sample

points for such a grid.

58

10 i

9 i

X 5 '

4 i

3 '

2 i

1 i

.0i

0 12 3 4 5 6 7 9 10

Figure 4-2. Sample Measurement Locations for 2-D Kriging Example

Evaluate the response at all of the sample points. Table 4-1 shows the tabular results of these

evaluations.

59

Table 4-1. Response Evaluations for Kriging Example Sample Points
x, X: f(X,.X2) X, x2 f(X„ X;) X, x2 f(X„ X2) X, x2 f(X„ X2)

0 0 19.50 3 0 15.81 6 0 11.54 9 0 18.15

0 1 16.33 3 1 12.64 6 1 8.38 9 1 14.98

0 2 • 12.67 3 2 8.97 6 2 4.71 9 2 11.32

0 3 10.27 3 3 6.58 6 3 2.31 9 3 8.92

0 4 10.19 3 4 6.50 6 4 2.24 9 4 8.84

0 5 11.82 3 5 8.12 6 5 3.86 9 5 10.47

0 6 13.42 3 6 9.73 6 6 5.47 9 6 12.07

0 7 13.76 3 7 10.06 6 7 5.80 9 7 12.41

0 8 13.21 3 8 9.52 6 8 5.25 9 8 11.86

0 9 13.43 3 9 9.73 6 9 5.47 9 9 12.08

0 10 15.82 3 10 12.13 6 10 7.87 9 10 14.47

x, x2 f(X„ X2) X, Xj f(X„ X2) X, x2 f(X„ X2) X, x2 f(X„ X2)

0 18.61 4 0 13.78 7 0 12.53 10 0 21.38

1 15.44 4 1 10.61 7 1 9.36 10 1 18.21

2 11.78 4 2 6.95 7 2 5.70 10 2 14.54

3 9.38 4 3 4.55 7 3 3.30 10 3 12.15

4 9.31 4 4 4.47 7 4 3.22 10 4 12.07

5 10.93 4 5 6.10 7 5 4.85 10 5 13.69

6 12.53 4 6 7.70 7 6 6.45 10 6 15.30

. 7 12.87 4 7 8.04 7 7 6.79 10 7 15.63

8 12.32 4 8 7.49 7 8 6.24 10 8 15.08

9 12.54 4 9 7.71 7 9 6.46 10 9 15.30

10 14.94 4 10 10.10 7 10 8.85 10 10 17.70

x, Xj f(X,, X:) X, X: f(X,. X,) X, x2 f(X„ X2)

2 0 17.49 5 0 12.11 8 0 14.94

2 1 14.33 5 1 8.94 8 1 11.77

2 2 10.66 5 2 5.27 8 2 8.11

2 3 8.27 5 3 2.88 8 3 5.71

2 4 8.19 5 4 2.80 8 4 5.63

2 5 9.81 5 5 4.42 8 5 7.26

2 6 11.42 5 6 6.03 ' 8 6 8.86

2 7 11.75 5 7 6.36 8 7 9.20

2 8 11.20 5 8 5.82 8 8 8.65

2 9 11.42 5 9 6.03 8 9 8.87

2 10 13.82 5 10 8.43 8 10 11.26

Now that sample data has been obtained, the first order of business is to remove any

trend resident in the data. This is obtained by fitting a second-order, least-squares linear

regression to the response data, which turns out to be:

RESPONSE = 19.9563 - 3.3706*, - 2.5853;c2 + 0x,x2 + 0.32895x,2 + 0.2420\x\ (4-4)

After obtaining this second order curve-fit, the residual values must be calculated for the creation

of the semi-variogram. Figure 4-3 shows a plot of the regression residuals for the region of

interest. Table 4-2 lists the residual values in tabular form.

60

1 2: ff m
t

X

'-;*■-
:*z

TQ"

:E-

::
5 zr. zz IZ\

.11
S3

■n

■■&

2Z

O V) tn V) *0 f~i Os

XI

-10

-9

-8

-7

■6

-5

-4

-3

-2

-1

-+0

X2

Figure 4-3. Plot of Residuals for 2-D Kriging Example

61

Table 4-2. Regression Residuals for Kriging Example
x, X; Res(X,, X:) x, X: Res(X,. X,) X, x2 Res(X,, X;) X, X; Res(X,, X,)

0 0 -0.46 3 0 3.00 6 0 -0.03 9 0 1.88
0 1 -1.28 3 1 2.18 6 1 -0.86 9 1 1.06

0 2 -3.09 3 2 0.37 6 2 -2.66 9 2 -0.75
0 3 -4.11 3 3 -0.65 6 3 -3.68 9 3 -1.77
0 4 -3.29 3 4 0.16 6 4 -2.87 9 4 -0.95

0 5 -1.26 3 5 2.19 6 5 -0.84 9 5 1.08

0 6 0.26 3 6 3.72 6 6 0.69 9 6 2.60

0 7 0.04 3 7 3.50 6 7 0.47 9 7 2.38

0 8 -1.55 3 8 1.90 6 8 -1.13 9 8 0.79

0 9 -2.86 3 9 0.59 6 9 -2.44 9 9 -0.52

0 10 -2.48 3 10 0.98 6 10 -2.06 9 10 -0.14

X| X; Res(X„ X:) X, X; Res(X„ X,) X, X; Res(X,.X:) X, X; Res(X,, X,)

0 1.70 4 0 2.05 7 0 0.05 10 0 2.23

1 0.87 4 1 1.22 7 1 -0.77 10 . 1 1.40

2 -0.93 4 2 -0.58 7 2 -2.58 10 2 -0.40

3 -1.95 4 3 -1.61 7 3 -3.60 10 3 -1.42

4 -1.14 4 4 -0.79 7 4 -2.79 10 4 -0.61

5 0.89 4 5 1.24 7 5 -0.75 10 5 1.42

6 2.42 4 6 2.77 7 6 0.77 10 6 2.95

7 2.20 4 7 2.54 7 7 0.55 10 7 2.73

8 0.60 4 8 0.95 7 8 -1.05 10 8 1.13

9 -0.71 4 9 -0.36 7 9 -2.36 10 9 -0.18

10 -0.33 4 10 0.02 7 10 -1.97 10 10 0.20

x, x2 ResfX,. X;) X, X; Res(X,.X:) X, X; Res(X,.X:)

2 0 2.96 5 0 0.78 8 0 0.90

2 1 2.14 5 1 -0.05 8 1 0.07

2 2 0.33 5 2 -1.85 8 2 -1.73

2 3 -0.69 5 3 -2.87 8 3 -2.76

2 4 0.13 5 4 -2.06 8 4 -1.94

2 5 2.16 5 5 -0.03 . 8 5 0.09

2 6 3.68 5 6 1.50 8 6 1.62

2 7 3.46 5 7 1.28 8 7 1.39

2 8 1.87 5 8 -0.32 8 8 -0.20

2 9 0.56 5 9 -1.63 8 9 -1.51

2 10 0.94 5 10 -1.25 8 10 -1.13

The next step is to determine all of the distances h represented by all of the possible pairings of

data points. For example, each point's nearest neighbor in either the x, or x2 direction is 1 unit

away (h = 1). Each point's nearest diagonal neighbor is -v/2 units away (h = V2). By skipping

the closest point in the Xi or x2 direction, the second closest point in the Xi or x2 direction is 2

units away (h = 2). This process continues until all possible point combinations are measured.

Table 4-3 lists all h values represented by the sample, the number of pairs at this distance h, the

sum of squared differences in the residual values for this distance h, and the semi-variogram

value y(h). Figure 4-4 plots the data represented in Table 4-3 and represents how semi-

variograms are typically presented.

62

Table 4-3. Exhaustive Semi-Variogram Calculations for Kriging Example

h N(h) i(v,-v,y
(I,J)IAS=A

YW = —— YiVi-v,)1

0.00 121 0.00 0.00

1.00 220 300.44 0.68

1.41 200 546.25 1.37

2.00 198 898.88 2.27

2.24 360 2125.95 2.95

2.83 162 1470.89 4.54

3.00 176 1233.67 3.50

3.16 320 2680.05 4.19

3.61 288 3326.20 5.77

4.00 154 1007.70 3.27

4.12 280 2214.55 3.95

4.24 128 1794.44 7.01

4.47 252 2792.98 5.54

5.00 356 3571.75 5.02

5.10 240 1302.07 2.71

5.39 216 1857.48 4.30

5.66 98 1282.52 6.54

5.83 192 2125.28 5.53

6.00 110 218.06 0.99

6.08 200 669.60 1.67

6.32 180 1173.99 3.26

6.40 168 1781.33 5.30

6.71 160 1438.70 4.50

7.00 88 93.11 0.53

7.07 232 972.38 2.10

7.21 140 1193.62 4.26

7.28 144 806.08 2.80

7.62 128 1032.64 4.03

7.81 120 725.04 3.02

8.00 66 108.72 0.82

8.06 232 1212.91 2.61

8.25 108 668.20 3.09

8.49 50 198.24 1.98

8.54 96 831.05 4.33

8.60 96 491.30 2.56

8.94 84 688.02 4.10

9.00 44 177.87 2.02

9.06 80 432.65 2.70

9.22 152 861.16 2.83

9.43 72 410.90 2.85

9.49 64 707.33 5.53

9.85 56 592.82 5.29

9.90 32 67.71 1.06

10.00 82 347.70 2.12

10.05 40 290.85 3.64

10.20 36 376.03 5.22

10.30 48 388.91 4.05

10.44 32 413.28 6.46

10.63 48 129.85 1.35

10.77 28 348.57 6.22

10.82 40 241.00 3.01

11.18 24 239.17 4.98

11.31 18 59.30 1.65

11.40 32 163.22 2.55

11.66 20 157.76 3.94

12.04 24 136.55 2.84

12.21 16 111.42 3.48

12.73 8 64.68 4.04

12.81 12 90.63 3.78

13.45 8 79.59 4.97

14.14 2 23.62 5.91

63

Figure 4-4. Graphical Representation of Semi-Variogram Data for Kriging
Example

Comments on the Example Semi-Variogram. As is often the case with semi-

variograms, Figure 4-4 is not as clean as we would like it to be. In theory, the semi-variogram

should gradually rise from y(h = 0) = 0 to some relatively steady-state value that closely

resembles the sample variance (s2) (annotated in Figure 4-4). This pattern is expected because,

once the immediate neighborhood of any point (in which response values are expected to be

correlated) is departed, response values of any new points will be uncorrelated. Thus, if a sample

of responses were taken at an arbitrary large h from any point in the design space, it is expected

that the responses would be independent and their variance would approximate the entire

population's variance (recall that in spatial statistics, the variance of the entire population is

assumed constant).

The steady-state y(h) value for large h is known as the semi-variogram's sill. The value

of h at which the sill is attained is known as the semi-variogram's range. The h-value of the

64

range is denoted by hrange. For semi-variogram models with a sill, the sill value is equal to the

sample (residuals') variance. That is to say

lim y(h) = s2=——Yiv, -v)2 ■ ' (4-5)

where:

h is the distance between points being evaluated

hmax is the maximum h value represented in the response data

y(h) is the semi-variogram value for the distance h

s2 is the sample (residuals') variance

m is the total number of points in the sample

v, is the response value at data point /

v is the average response for all of the data samples, calculated using:

v = -fv,.. (4-6)

where, again, m is the total number of data points in the sample.

(Clark, 1987, 7).

While this example's semi-variogram does show a typical rising y(h) pattern for small

values of h, a clear sill value is not evident from the data. Regardless, this semi-variogram (as

well as all semi-variograms used in the jet engine optimization problem) is assumed to have a sill

equal to s1. The only justification for this apparently gross assumption is that accurate kriging

estimates are still obtained, both in this example and in application. For mining applications,

significant deviations from the sill value for values of h > hrmge may indicate some important

65

geological phenomena. However, for this application, any deviations from this theoretical sill

value are ignored.

It is worth noting that the previous discussion on creating a semi-variogram is equally

valid in the absence of a sample grid. This fact is important in the jet engine optimization

problem at hand. The jet engine optimization is controlled by a micro-genetic algorithm (U.GA)

routine that uses a random search technique to locate the design variable values that achieve the

best objective function value. Rather than use computing resources for the sole purpose of

creating a semi-variogram sampling grid, response samples are obtained on-the-fly as the uGA

searches the design region. This creates a very irregular sampling pattern and causes every pair

of sample points to have its own unique hy value. Regardless, the semi-variogram can still be

generated. The only difference is that a point will exist on the semi-variogram for every pair of

sample points instead of one semi-variogram point representing an average of several sample

point pairs (N(h) = 1 for all h). All of the equations listed in this discussion are still valid. In

addition, the following discussion about mathematical modeling is also valid despite the irregular

sampling pattern.

Mathematical Modeling of the Semi-Variogram. The final step in creating a semi-

variogram is the development of a mathematical model to represent the semi-variogram data.

This model is what will be used for kriging since kriging requires semi-variogram values for all

possible values of h, not just y(h) values for h's represented in the sample data. In both the Clark

(1987) and Isaaks et al. (1989) texts, numerous semi-variogram models are discussed, and the

reader is referred to either of these resources for more in-depth modeling information than is

about to be presented.

Mathematical Modeling Technique. For this application, semi-variogram

models are to be automatically generated in an effort to use kriging to replace actual objective

66

function evaluations. When a user begins the optimization process, no a priori information is

known about the objective function's response surface, let alone the semi-variogram that would

spatially describe this response surface. Thus, any best-model decisions about which semi-

variogram model to use would not be possible without human intervention (which was

undesirable in this application). Additionally, developing software to smartly choose the best

model was impractical. It therefore was decided that a linear model (with a sill) would be used

to represent the semi-variogram data. This model's primary advantage was its simplicity in

creation and use. It also proved to be an effective assumption, producing good kriging results.

Essentially, the linear model used assumes that y(h) increases linearly until the sample

variance (s2) is obtained. The /i-value at which the y(h) = s2 is considered to be the range, and

y(h) is assumed to equal s2 for any h > hmnge. The slope of the line connecting y(h = OJ = 0 and

■yfhrmge) = s2 is determined by the following technique:

1. For every h-value in the semi-variogram, calculate the slope of the line that

would be required to connect the origin and the point. This slope is nothing

y(h)
more than ^—^ for the point since the line is from the origin (0,0) to the

h

point.

2. Obtain the average of the slopes implied by each semi-variogram point. This

becomes the slope of the semi-variogram for h < hmnge.

3. Calculate the value of h at which the line intercepts y(h) = s2. This value of h

is the model's range. For any value of h > hmnge, y(h) = s .

Mathematical Modeling Example. To demonstrate this process, a linear model

will be fit to the example previously discussed. As previously stated, the sample variance (that

67

is, the sample variance of the residuals being used to create the semi-variogram) is s =3.23.

First, the slope obtained from each individual point is calculated. Table 4-4 lists this data.

68

Table 4-4. Tabular Listing of Semi-Variogram Data Used for Creating
Linear Model

h y(h) 7(h)
h

// 7(h) r(h)
h

0.00 0.00 N/A 8.25 3.09 0.38
1.00 0.68 0.68 8.49 1.98 0.23
1.41 1.37 0.97 8.54 4.33 0.51
2.00 2.27 1.13 8.60 2.56 0.30
2.24 2.95 1.32 8.94 4.10 0.46
2.83 4.54 1.61 9.00 2.02 0.22
3.00 3.50 1.17 9.06 2.70 0.30
3.16 4.19 1.32 9.22 2.83 0.31
3.61 5.77 1.60 9.43 2.85 0.30
4.00 3.27 0.82 9.49 5.53 0.58
4.12 3.95 0.96 9.85 5.29 0.54
4.24 7.01 1.65 9.90 1.06 0.11
4.47 5.54 1.24 10.00 2.12 0.21
5.00 5.02 1.00 10.05 3.64 0.36
5.10 2.71 0.53 10.20 5.22 0.51
5.39 4.30 0.80 10.30 4.05 0.39
5.66 6.54 1.16 10.44 6.46 0.62
5.83 5.53 0.95 10.63 1.35 0.13
6.00 0.99 0.17 10.77 6.22 0.58
6.08 1.67 0.28 10.82 3.01 0.28
6.32 3.26 0.52 11.18 4.98 0.45
6.40 5.30 0.83 11.31 1.65 0.15
6.71 4.50 0.67 11.40 2.55 0.22
7.00 0.53 0.08 11.66 3.94 0.34
7.07 2.10 0.30 12.04 2.84 0.24
7.21 4.26 0.59 12.21 3.48 0.29
7.28 2.80 0.38 12.73 4.04 0.32
7.62 4.03 0.53 12.81 3.78 0.29
7.81 3.02 0.39 13.45 4.97 0.37
8.00 0.82 0.10 14.14 5.91 0.42
8.06 2.61 0.32

y(h)
Averaging the slope estimates represented by each point (the —-— values) yields a line slope

h

equal to 0.5740. With this value in hand, we calculate the value of h at which the sill (which is

equal to s2) is attained. This is the range (hrunge).

69

K
s2 3.23

slope ~ 0.5740
= 5.627 (4-7)

Thus, the mathematical model is stated as

7(V: [0.5740-/z,7 0 < hy < 5.627

3.23 hij> 5.627
(4-8)

Figure 4-5 shows the resulting semi-variogram model superimposed on the semi-

variogram data.

6 -

14

Figure 4-5. Kriging Example Semi-Variogram with Fitted Linear Model

Clearly, the linear model does not produce an impressive fit to the semi-variogram data.

However, in practice for this application, the linear model approximation was adequate for

generating accurate kriging estimates.

70

4.3 Kriging

Once the semi-variogram has been created to describe the spatial continuity of the region

of interest and a mathematical model has been generated to approximate the semi-variogram

data, it is possible to use this information to create a minimum variance, linear estimate of

unsampled points in the region using kriging.

Background on Estimation Techniques. Say that a set of sample points exists with

coordinates (represented in vector form) xh x2, x3, ..., x„, response values v,, v2, v3, ...,vn (v, =

f(Xi), for all i from 1 to n), and trend-less response values rh r2, r3, ..., rn (where r, is the residual

response value after trend has been removed). Now say that we are interested in approximating

the response value at a new point x0 that is in the proximity of the known points. One technique

for estimating v0 (v0 =fix0)) would be to form a weighted average (that is, a convex, linear

combination) of the known values. Written as equations:

n

v0 = wlvl +w2v2+w3v3+...+wnvn = £w,v, (4-9)

jj>,.=l. (4-10)

where

v0 is an unbiased estimator of v0, the actual response of the point being

estimated

v, is the response value for point i

wi is the weight applied to response value i

n is the number of data points being used to generate the estimate

71

Regardless of the actual values of the wh as long as they sum to one and the sampled values were

without trend, v0 will be an unbiased estimator of v0. That is to say that if numerous estimations

of different points were to occur using the sample set data, the average estimation error would

equal zero. (Clark, 1987, 99)

Now that we know how to keep estimates unbiased, we turn our attention to choosing the

averaging weights (the w,-'s) in a way that gives us the best possible estimation results.

Numerous criteria exist to choose w, values, ranging from setting all w,'s equal to each other to

sizing wi based on how far away xt is from x0. However, kriging introduces a method for

selecting H>, values that produce a minimum variance estimate of v0.

Kriging Estimation Technique. Generating a minimum variance estimate from a set of

known sample points makes use of the semi-variogram information previously discussed. Recall

that the semi-variogram shows the relative variation in the trend-less residual response (r,) values

as a function of the distance between any two sample points in the region of interest. Using this

spatial information, it is possible to estimate the variance of a new point's (x0) response value

(v0). Estimation variance (G\) for any unbiased linear estimation is

i=! <=1 7=1

where

hij is the Euclidean distance from point i to pointy (a subscript of 0 represents the

point being estimated)

y(hij) is the Semi-variogram value for the distance hy

72

w; is the weighting applied to point i (recall, ^ w(= 1)

n is the number of data points being used to generate the kriged estimate

It is important to note that Eq (4-11) has been modified from its original form presented by Clark

(1987). Kriging, when typically used in geological applications, is employed to estimate a

response for a region of points, not one specific point. For this reason, Eq (4-11) in its original

form also has a term accounting for variation present within the region being estimated. For

point estimation, no variation exists between the point and itself. Thus, this term is dropped from

the overall variance formula. The elimination of this constant term does not affect the validity of

the kriging techniques to be derived.

To obtain the w,'s that produces a minimum variance estimate, the w,'s must be selected

so as to minimize <70
2. To identify the minimum a], we locate the set of w,'s at which all partial

derivatives of the Cf0
2 function (with respect to all of the w,-'s) equals zero. That is, solve for the

set of wi s that makes

^ = 0 for/=1,2,3,...,« (4-12)
dwi

Taking these n partial derivatives produces n equations with n unknowns. However, nothing in

n

this set of equations ensures that ^ w, = 1, which is required for the estimation technique to be

unbiased. Since simply introducing this last equation would create (n+l) equations with only n

unknowns, one further unknown is introduced in the form of a Lagrangian Multiplier (A). In

effect, we return to Eq (4-11) and choose to minimize

73

f n

a0-A, X(^)-1
Vi=l

(4-13)

instead of only o\. To minimize this equation, partial derivatives with respect to each of the

w,'s and X must be set equal to zero. The resulting (n+1) equations with (n+1) unknowns are

wl-y(h,l) + w2-y(hl2) + w3-y(hn)+---+wn-y(h,n) + X = y(h,0)

wI-7(Ä21) + w2-y(Ä22) + w3-y(Ä23)+-+wB-7(Ä2n) + A = y(Ä20)

\-y(K) + wi -7(M+ w3-nh33)+---+wn-r(hin) + X = nhi0) (4-14) w,

wl-y(hnl) + w2-y(hn2) + wi-y(hni)+---+wn-y(hm) + ?i = y(hn0)

Wl+W2 + W3-\ hW„+0=l

or, stated in the more compact matrix form

y(K) Y(M

l l

rtK)
Y(K)

Y(Kn)
1

1

1

1

0

w,

H>,

w„

Y(K)
y(^o)

Y(hn0)

1

(4-15)

For convenience, names are given to the matrix and two vectors in Eq (4-15).

T-w = y0 (4-16)

where

74

r =

7(V y(A,2)

7(^.1) 7(^22)

Y(Ki) Y(Ki)
1 1

Y(K)
Y(K)

1

1

Y(hJ
1

1

0

w -

w.

w.

w„

Yo =

Y(fho)

Y(K)

Y(K0)
1

Now solving for the weights that produce the minimum variance estimate is a simple linear

algebra operation.

w = r-'-y0 (4-17)

where

r_1 is the inverse of the T matrix defined in Eq (4-16). Each ^hy) element of

the T matrix comes from evaluating the semi-variogram for the distance

hy {the distance from sample point i to pointy).

f0 is defined as in Eq (4-16). Each y(hi0) element of the (n+\) by 1 f0 vector

comes from evaluating the semi-variogram for the distance hi0 (the

distance from sample point / to the point being estimated).

vv is the (n+1) by 1 vector of weights plus the Lagrangian Multiplier A (see Eq

(4-16) for details).

75

With the minimum variance estimate weights now in hand, the response value for the

point in question, x0, is easily obtained using the original response values (the v, values). Recall

that up to this point we have been using residual (r,) values to create the semi-variogram, build

the mathematical model and determine the w,'s that will produce a minimum variance estimate of

v0. However, to generate the v0 estimate (instead of the r0 estimate), we must apply the w,'s to

the v,'s, not the r,'s. Thus, to obtain the estimate, we use

n

v0 = u^v, + w2v2 + W3V3+.. .+wnvn = ^lwivi (4-18)
i=\

As with any estimation technique, there is some amount of uncertainty about the validity

of the estimate value. In regression, parameter standard errors are used to calculate confidence

intervals for new response predictions. In kriging, an estimate variance is generated directly

from the information used to develop the response estimate using

*o = Z(*f< • r(Ä,-o))+* = ™T ■ % (4-19)
1=1

where w and f0 are defined as they were in Eq (4-17). (Clark, 1987, Chapter 5)

As was the case in Eq (4-11), Eq (4-19) also has been modified from the form present in

Clark (1987). Again, this is because point estimation is being performed, not region estimation.

Though the derivation is in a different form, Isaaks, et al. (1989) confirms this response estimate

result. Additionally, the validity of the kriging equation (Eq (4-17)) for point estimation (instead

of region estimation) is confirmed in this alternate reference.

Notice that this estimate variance differs from a traditional estimate variance (say from

regression) in that it is not attempting to capture uncertainty in the estimate as a function of

76

uncertainty in the data used to create the estimate (presumably introduced through measurement

error or some other unmodeled noise source). Instead, the estimate variance is a function of

spatial variance as described by the semi-variogram. This subtle distinction is important because

estimate uncertainty is no longer a result of uncertainty in the data, but is a result of the response

variance present throughout the design space. For this reason, estimate variance may or may not

be directly correlated to the accuracy of the prediction. This concept will be further discussed in

section 4.4.

Kriging Example. Returning to the example started in section 4.2, let us now attempt to

estimate the response at the new point x0 = (5.4, 7.2). Rather than use all 121 points, we will

arbitrarily choose to use the 7 closest known sample points to x0. Figure 4-6 shows the point in

question in proximity to the 7 closest sample points.

>< i

Figure 4-6. Selection of Closest Points for Estimating v0 =f(x0)

To begin the kriging process, the distances from the seven closest sample points to the

point being estimated (the ft,0's) must be calculated. Also, the distances from the sample points

to each other (the ft,/s) must be calculated as well. Semi-variogram values must then be assessed

77

for each of these distances for use in the kriging system of equations. Table 4-5 through Table 4-

7 show all of the necessary data to perform kriging.

78

Table 4-5. Distance and Semi-Variogram Data Between Sample Points and
x0 for Kriging Example

Point #
(0

(x/, xi) Coordinates
of Point Xi

Response Value (v,)
from Table 4-1
(trend included)

Euclidean Distance
to x0 (hio)

Y(h,o)
(From Eq (4-8))

1 (4,7) 8.04 1.41 0.81

2 (5,6) 6.03 1.26 0.73

3 (5,7) 6.36 0.45 0.26

4 (5,8) 5.82 0.89 0.51

5 (6,6) 5.47 1.34 0.77

6 (6,7) 5.80 0.63 0.36

7 (6,8) 5.25 1 0.57

Table 4-6. Matrix of Distances Between Sample Points for Kriging Example

Point #

1

1 2 3 4 5 6 7

(Xl, x2)

(4,7)

(4,7) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8)

0.00 1.41 1.00 1.41 2.24 2.00 2.24

2 (5,6) 1.41 0.00 1.00 2.00 1.00 1.41 2.24

3 (5,7) 1.00 1.00 0.00 1.00 .1.41 1.00 1.41

4 (5,8) 1.41 2.00 1.00 0.00 2.24 1.41 1.00

5 (6,6) 2.24 1.00 1.41 2.24 0.00 1.00 2.00

6 (6,7) 2.00 1.41 1.00 1.41 1.00 0.00 1.00

7 (6,8) 2.24 2.24 1.41 1.00 2.00 1.00 0.00

Table 4-7. Matrix of Semi-Variogram Values Between Sample Points for
Kriging Example

Point #

1

1 2 3 4 5 6 7

(xi, x2)
(4,7)

(4,7) (5,6) (5,7) (5,8) (6,6) (6,7) (6,8)

0.00 0.81 0.57 0.81 1.28 1.15 1.28

2 (5,6) 0.81 0.00 0.57 1.15 0.57 0.81 1.28

3 (5,7) 0.57 0.57 0.00 0.57 0.81 0.57 0.81

4 (5,8) 0.81 1.15 0.57 0.00 1.28 0.81 0.57

5 (6,6) 1.28 0.57 0.81 1.28 0.00 0.57 1.15

6 (6,7) 1.15 0.81 0.57 0.81 0.57 0.00 0.57

7 (6,8) 1.28 1.28 0.81 0.57 1.15 0.57 0.00

79

Using Eq (4-16), the component matrix and vectors are generated.

r =

0.81 0.57 0.81 1.28 1.15 1.28 1

0 0.57 1.15 0.57 0.81 1.28 1

0 0.57 0.81 0.57 0.81 1

0.57 0 1.28 0.81 0.57 1

1.28 0.57 0.81 1.28 0 0.57 1.15 1

1.15 0.81 0.57 0.81 0.57 0 0.57 1

1.28 0.81 0.57 1.15 0.57 0 1

1111110

0

0.81

0.57 0.57

0.81 1.15

1.28

1

Yo:

0.81

0.73

0.26

0.51

0.77

0.36

0.57

1

Using Eq (4-17), the minimum variance weights are obtained.

vv = r-'-7(,=

1.1145 0.4304 05561 0.4304 - 0.0750 -0.1523 - 0.0750

0.4304 -15521 05704 -0.1469 0.7837 -0.0017 -0.0838

05561 05704 - 2.2354 05704 -0.0231 05843 -0.0231

0.4304 - 0.1469 05704 -15521 -0.0838 -0.0017 0.7837

0.0750 0.7837 -0.0231 -0.0838 -1.3909 0.7749 0.0143

0.1523 -0.0017 05843 -0.0017 0.7749 -1.9787 0.7749

0.0750 - 0.0838 -0.0231 0.7837 0.0143 0.7749 -1.3909

0.3530 0.1572 -0.2631 0.1572 0.3172 -0.0387 0.3172

0.3530" "0.8 f

0.1572 0.73

-0.2631 0.26

0.1572 051

0.3172 0.77

-0.0387 0.36

0.3172 057

-0.8722_ 1

w

-0.027

0.001

0.493

0.137

-0.004

0.314

0.086

-0.049

The kriged estimate is obtained using Eq (4-18) and the trend-less response data in Table 4-5.

v0 = (-0.027X2.54) + (0.001)(1.50) + (0.493)(1.28)+...

(0.137X-0.32) + (-0.004X0.69) + (0.314)(0.47) + (0.086)(-1.13)

80

v0 = 5.973

The variance of this estimate is also readily available using Eq (4-19).

ol=wT -y0= 0.287

To verify the quality of this estimate, we now compare it with the actual response value

at point x0 . This true value is obtained using Eq (4-3), from which the original response surface

for this example was generated.

v0=fixo) = 5-890

We see that kriging has produced a response estimate that is 0.083 units (1.42% difference) from

the actual value.

Notes on the Krigine Process. Having been through the arduous process of creating a

semi-variogram, representing the semi-variogram mathematically, and then developing a

minimum variance estimate via kriging, the reader may confused as to the value of this

estimation technique given that the true response value could have been obtained simply by using

Eq (4-3). Keep in mind, however, that this was simply an example to demonstrate the process of

kriging, not an example for which kriging was intended. Kriging is intended to save time and

money by avoiding actual response surface evaluations. In geological applications, response

surface evaluations require expensive drilling and laboratory analysis. When applied to the jet

engine optimization problem discussed later in this paper, response function evaluations require

significant computational effort which makes the optimization process very slow. Even though

the kriging process (to include modeling the semi-variogram) involves processing a significant

amount of response information, this process can be readily automated and executed in a fraction

of the time required to evaluate the true response function.

81

4.4 Evaluating the Quality of the Kriged Estimate

Once a response estimate has been obtained, it is desirable to assess the accuracy of the

estimated value. As discussed in section 4.3, it is inappropriate to assume that estimate variance

is the best indicator of the estimate's accuracy. In the previous example, we were able to simply

evaluate the true response at point x0 and compare it with the estimated response. Obviously,

performing this type of accuracy assessment in a real application would defeat the purpose of

developing a response estimate. What we want is an indicator from the kriging process that can

be directly correlated to prediction error. Then, we can set a threshold on this indicator

parameter at which the kriged estimate is either accepted or rejected. If it is rejected, then an

actual response function evaluation will be required.

Possible Estimation Accuracy Indicators. To begin the search for an appropriate

indicator parameter, it is helpful to list parameters that could reasonably be expected to be

correlated with prediction error.

1. Kriging estimate variance (<X0
2) (from Eq (4-19))

2. Kriging estimate standard deviation ((70) (equal to + ,]&*)

3. Distance of any of the n sample points to the point being estimated (hi0)

f l n \

A review of kriging literature revealed that estimate variance (a]) was most commonly used as

the kriged estimate's measure of accuracy. However, given that, in kriging, estimate variance is

a function of the spatial properties of the region and not a function of the response data, it was

not clear that a connection necessarily existed between variance and accuracy. While this

assumption is intuitive for other estimation techniques (i.e. regression), it seemed prudent to

verify this proposal by performing experimentation on sample response surfaces. For the

82

(- 1 "
4. Average of all of the hi0 values h0 = — • ^ fyo

purposes of this experimentation, all of the potential accuracy indicators (including variance)

will be evaluated.

Method for Determining Good Indicator Parameters. In the jet engine optimization

problem, three design variables exist (recall that two of the original five variables have been

eliminated through the techniques discussed in Chapter 3). Very little a priori information exists

about the objective function response surface, primarily because it changes significantly based on

the values of other preset constants in the problem. It has been deduced by experience that the

response surface is relatively smooth and is likely to contain trend that will need to be filtered

before kriging is performed.

Because of the unpredictability of the jet engine response surface, using the jet engine

evaluation codes to develop a general understanding of predictor parameters is no more desirable

than using a simulated response surface. For this reason, a reasonable response surface (that is, a

surface with smooth peaks and troughs) with three input variables was used to isolate promising

predictor parameters. While this may appear to be an arbitrary means of locating the best

indicator variable, application of experimentation results to the jet engine optimization problem

enabled satisfactory distinction to be made between accurate and inaccurate kriged estimates.

The response surface chosen to perform experimentation is actually a three-design-

variable variation of the two-design-variable example surface introduced in section 4.2. The new

surface's mathematical representation is

RESPONSE = 1 ^—^ I +
Ai J ■A-'x ~J

V * J \ * J
■ 2[sin(0.75x,) + cos(*2) + sin(0.50x3)] + 25

(4-20)

The design region is defined as

83

0<JC;<10

0<x2<10

0<xj<10

The goal is to first establish an isotropic semi-variogram that describes this response

surface (with trend removed) and then perform numerous kriging estimations at random locations

in the design space that can be compared with actual response values. Once kriging parameters

from each estimate and the differences between the estimated responses and the actual responses

have been obtained, it will be possible to look for correlations between the parameters and the

prediction errors.

The experiment was set up as follows:

1. 50 randomly selected sample points were established in the design region via

direct response function evaluation (m = 50).

2. The region's semi-variogram was generated using these sample points.

3. A linear mathematical model (with a sill) was applied to represent the semi-

variogram data.

4. Response estimates for 1000 randomly selected points were generated using

the kriging technique. Five sample points were used to generate each kriged

estimate (n - 5).

5. For each of the 1000 points estimated via kriging, actual response values

were obtained in order to calculate kriging estimation error.

6. The magnitude of the estimation error was stored along with the various

kriging indicator parameters for each point estimated via kriging.

7. Off-line analysis on the data was performed to look for correlations between

the various indicator parameters and the estimation error.

84

Best Estimation Indicators. The results of this experiment show that either the kriged

estimate variance or standard deviation is the best indicator of kriging estimation error. Table 4-

8 shows the correlation of each potential indicator with the magnitude of the prediction error.

Table 4-8. Predictor Variable Correlation with Prediction Error
Magnitude

Predictor Correlation with
IPrediction Errorl

°l 0.672417

O"o
0.639926

hw 0.534942

h2o 0.46985

h3o 0.419282
h.40 0.377354

h5o 0.368472

K 0.514043

It is seen that estimate variance (cr,*) is most highly correlated, thus affirming its utility

as an accuracy predictor as presented in various literature references. However, something that

is not captured in Table 4-8 is the range of prediction errors that can be assessed with the various

predictor variables. Recall that estimate variance is generated using semi-variogram information

(see Eq (4-19)). If all of the data points used to generate a kriged estimate lie outside of the

semi-variogram's range (e.g. all of the hi0's > hrange), then each of the yihi0) values will equal the

population variance (s2). Thus, regardless of the weights applied to each data point, the estimate

variance, which is a linear combination of the yihi0) values, will always equal s2 (because

n

^ w, =1). Therefore, as a predictor variable, <T0
2 is not able to discern levels of accuracy once

85

all of the hjoS> hmnge. Since accurate kriging estimates are attainable despite all /z,0's > hmnge, it

is necessary to select a predictor that is not limited in this way.

For this reason, in the jet engine optimization problem, the mean distance of the point

being estimated to the data points (hQ) is used. Although, in Table 4-8, hw actually has a slightly

higher correlation to prediction error, it was decided that, in general, h0 would be less sensitive

to the data sample locations. While h0 does not appear to have impressive predictive qualities,

in practice it is possible to ensure that only response estimates with acceptable estimation errors

are treated as valid. This is achieved by selecting conservative values of h0, which has the

unfortunate side-effect of causing some accurate estimates to be rejected as inaccurate.

Determining Appropriate Acceptance Threshold for the Selected Predictor Variable. To

determine an appropriate hQ value by which estimates are to be accepted or rejected, h0 is

plotted with prediction error magnitude. Using a first-order linear regression, a simple

mathematical expression is developed to relate h0 to the expected prediction error magnitude.

Based on the application, an acceptable level of prediction error can be selected, and the

appropriate 1\ threshold value determined using this linear relationship.

Figure 4-7 depicts this regression process and illustrates that setting the h0 acceptance

threshold = 0.63 provides rough assurance that kriging prediction errors remain at or below 5

response units. If necessary, this h0 threshold can also be lowered to provide added insurance

against prediction error magnitudes greater than 5.

86

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

Improperly Rejected

-""ST"* /i„ = 0.63
1,. -^.J "^ -**• ^»- ^

Properly Accepted Improperly Accepted
 1

4 5

IPrediction Errorl

Figure 4-7. Determining h0 Threshold to for a Desired Kriging Prediction
Error Magnitude

Notice in Figure 4-7 that all kriged responses with h0 < 0.63 would have been accepted

using this as the acceptance criteria. This includes a small set of responses (about 5 out of the

1000) with IPrediction Errorl values greater than the desired 5 units. Also notice that all

estimates with h0 > 0.63 would have been rejected. This includes a significant number of

estimates that actually had prediction errors less than 5 units. Thus, even though a large number

of accurate estimates are unnecessarily rejected, more importantly, only a very small fraction are

incorrectly accepted. It is important to note that appropriate threshold values for the indicator

variable will be specific to each individual application and must be determined (using the

technique displayed in Figure 4-7) for each new response surface.

4.5 Determining Feasibility

The kriging algorithm is not capable of predicting infeasibility - that is, portions of the

design region that are invalid combinations of design variables. It's geological roots do not

require such accommodations. However, in order to use kriging in this and other optimization

87

applications, a means of predicting infeasibility is imperative. Otherwise, it is possible for the

kriging algorithm to return feasible response estimates for points that, if evaluated using the

actual response function, would be handled as infeasible responses.

For problems with constraints that can be explicitly modeled, a simple check to see if the

design variables lie in the feasible region is all that would be required before invoking the kriging

algorithm. However, for many non-linear optimization problems (including this application),

constraints that define the feasible/infeasible regions cannot be explicitly represented. The

constraints may be implicit to the complex, iterative algorithms that generate the response

function values. In these cases, it is necessary to estimate the feasible region so that kriging is

only invoked when feasibility is assured.

Feasible Region Checking Algorithm Description. Presumably, the response function

being called during an optimization is capable of reporting whether or not the design point being

evaluated is feasible or infeasible. If this is the case, it is possible to build a database of feasible

and infeasible points as an optimizer moves throughout a design region looking for the optimal

solution. It is from this feasible/infeasible database that a feasible region checking algorithm can

predict if a new design point is likely to be feasible.

Say that an optimization problem involves p independent design variables, each of which

has a defined range of values to be explored by the optimization algorithm. Note that this

implies an p-dimensional box-shaped design region, since the range of possible values for any of

the design variables is not affected by the values of the other (p-1) variables. Now say that only

q of these variables have regions of infeasible values and that r of these variables do not have

infeasible values (q + r = p). To know that some of the variables do not have regions of

infeasibility requires a priori knowledge of the design region. If no information is known, it is

always possible to let q = p (r = 0) and treat all variables as having regions of infeasibility. For

the purposes of the feasible region checking algorithm, we need only concern ourselves with the

q variables with infeasible regions. Keeping track of infeasible values for the r variables that

have no infeasible values is simply a waste of resources - these r variables do not affect a point's

feasibility.

With the q remaining variables, we will first establish a g-dimensional grid whose grid

spacing is defined by the user. For example, if q = 2, we would establish a two-dimensional grid

that sub-divides the ranges of possible values for both of these variables. If the first of these two

variables (q,) is to be explored for values ranging from -100 to +100 and the second of these

variables (q2) is to be explored for values ranging from +500 to +1000, a possible grid structure

could be as shown in Figure 4-8.

-!0O -92 -84 -76 -68 -60 -52 -14 -36 -38 -20 12 3) 31 36 44 52 60 fin 76 84 92 100

9i

Figure 4-8. Possible Grid Structure for q = 2

Note that in this example, the region has been sub-divided 25 times in each dimension, resulting

in 252 or 625 regional sub-divisions. Also note that the scaling is different on each axis, so these

sub-divisions are actually rectangular in shape. The number of sub-divisions for each variable

89

does not need to be the same; however, it is likely that the range of possible values for each

variable was chosen proportionally, and, therefore, the grid resolution needed in each axis would

be approximately the same.

Once the grid is defined, the feasible region checking algorithm will take the feasible and

infeasible points located by the optimization algorithm and map this information into the grid

structure. This mapping is achieved by first determining the grid sub-division in which a point is

located (as determined by the point's coordinates), and then placing the feasible/infeasible

information associated with the point into the grid. Identifying the grid sub-division in which a

point is located is achieved using

gq. = Integer
(g,-min(gt))

(max(^.)-min(^.))
n„ (4-21)

where

g is the sub-division in the q, dimension in which the new point is located

qt is the value of new point's coordinate in the qx dimension

n is the total number of sub-divisions in the q{ dimension

min (qt) is the minimum possible value in the q-, dimension

max (qt) is the maximum possible value in the q-t dimension

Integer [] implies taking only the integer portion of the floating point number

that result from the division inside of the brackets. In other words,

round down to the closest integer value.

90

At this point, the grid structure is more easily represented as a ^-dimensional array of

numbers. For the jet engine optimization problem, four different numbers were used to indicate

four possible information states of a grid sub-division:

0 = No feasible/infeasible information known

1 = All observed points in grid sub-division are infeasible

2 = Some observed points in grid sub-division are feasible, some are infeasible

3 = All observed points in grid sub-division are feasible

When the feasible region checking algorithm is initialized, all members of the ^-dimensional

array are set to 0 to indicate no information known about the design region. From here, the

algorithm processes the database of feasible and infeasible points (located by the optimizer) and

updates the array using the following logic:

Table 4-9. Logic Matrix for Feasible Region Checking Algorithm

New Database Point is:
Current Grid Sub-

Division Value
Feasible Infeasible

0 3 1
1 2 1
2 2 2
3 3 2

New Grid Sub-Division Value

Returning to the example introduced in Figure 4-8, let us go through the process of

updating this array based on new feasible/infeasible point information. As previously stated, we

start with a two-dimensional array of all Os, indicating no information known about the design

space.

91

11
0 II 11 0 0 I) II 0 (1 0 ü 0 0 0 0 0 0 1) 0 0 0 0 (1 0

0 II 0 0 0 0 II 0 0 0 0 1) 0 0 0 0 0 0 0 0 (1 0 0 0

0 0 0 0 ü 0 11 0 ü 0 0 0 0 0 0 0 0 0 1) 1) 0 11 0 0

0 11 0 II (1 0 (1 0 11 0 0 0 ü 0 0 {) (1 0 0 0 1) 0 1) (1

0 0 ü (1 0 1) 0 0 0 0 0 0 0 fl 0 0 0 0 0 0 0 0 (1 0

0 0 0 (1 0 0 (1 0 0 0 0 0 0 0 0 0 0 0 {) 1) (1 (1 11 I)

0 0 0 ü 0 0 (1 0 0 0 0 ü 0 0 0 0 0 0 0 0 1) 1) (1 {)

1) 0 1) ü 0 0 11 (1 0 0 0 0 ü ü 0 0 0 () 0 {) 1) 1) 0 0

n 1) 0 0 0 II 0 11 (1 0 0 0 0 0 ü 0 (1 0 0 1) (1 0 (1 0

0 0 0 0 0 0 (1 (1 0 0 0 0 0 0 1) u 0 0 0 0 11 0 0 11

ii 0 0 0 I) 1) (1 0 (1 0 0 ü 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1) (1 0 0 0 0 0 0 0 0 0 0 0 0 1) 0 (1 0 1) 0 0 1)

0 0 0 0 0 11 11 u 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 II 1) II 0 0 0 0 0 0 0 0 0 0 (1 0 0 0 0

0 I) I) 0 l) (1 1) 0 0 0 0 0 0 0 ü 0 0 ü 1) 0 0 0 (1 I)

i) 0 1) (1 0 0 0 1) 0 0 0 0 0 0 0 0 0 0 0 0 1) 0 (1 0

0 0 I) 0 0 0 0 0 (1 0 0 0 0 0 0 0 0 0 0 0 0 0 (1 ü

II 0 0 0 0 0 II 0 (1 0 0 0 0 0 ff 0 0 0 0 0 0 (1 0 0

II 0 0 (1 0 11 0 0 0 0 0 0 0 0 0 ü o 0 0 0 0 0 1) 0 0

0 1) 0 (1 0 0 0 0 0 0 0 ü 0 0 0 0 0 0 0 0 0 0 11 0 0

0 0 0 (1 ü 0 0 0 (1 0 0 11 u 0 0 0 0 0 0 0 1) 0 0 0 0

0 1) 0 II II 11 0 11 0 0 0 0 0 0 0 0 (1 1) 0 0 II 1) 0 0 (1

n 0 I) (1 0 (1 1) 0 (1 0 0 0 0 0 ü 0 0 0 II 0 11 0 0 0 0

0 0 0 1) 0 11 1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 II 0 0

0 0 1) (1 0 0 0 0 0 0 0 u 0 0 0 0 (1 0 0 (1 0 I) (1 0 II

I 2 3 4 5 6 7 K t 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 24 25

Figure 4-9. Initialized Feasible/Infeasible Array for Feasible Region
Checking Algorithm

Now say that a point with (q,, q2) coordinates of (18, 645) has been sampled by the optimizer and

has been found to be feasible. We begin by identifying the grid sub-division in which this new

point is located using Eq (4-21).

gq, = Integer

p = Integer

(18-(-100))

(100-(-100))

' (645-500)'

(1000-500)

A
•25 = Integer

118

200
•25 = Integer[l4.75] = 14

25 = Integer
145"

500
25 = Integer[7.25] = 7

We now check the current array value for sub-division (14, 7), which is equal to 0.

Using the logic matrix in Table 4-9, we conclude that this array value should be set equal to 3,

indicating that all points sampled (thus far) in this sub-division are feasible. Thus, the original

array pictured in Figure 4-9 would be updated as shown in Figure 4-10.

92

0
0_
"öl

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 11 20 21 22 23 24 25

Figure 4-10. Updated Feasible/Infeasible Array for Feasible Region
Checking Algorithm

If at a later time an infeasible point is identified in this same (14, 7) sub-division, this 3 would be

changed to a 2, indicating that both feasible and infeasible points have been identified in this sub-

division. After processing all feasible and infeasible points identified by the optimizer, a typical

array would look as shown in Figure 4-11.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 4-11. Typical Feasible/Infeasible Array Structure After Processing
Sampled Points

Note that in this case the feasible region is continuous. The 0s throughout the feasible

region indicate that the optimizing algorithm never sampled any points in these sub-divisions, not

that these sub-divisions are not included in the feasible region. Also, we see the typical pattern

93

of 2s surrounding the feasible region, indicating a transition zone from feasible to infeasible

points.

Using the Feasible Region Checking Algorithm. Once information has been established

concerning the shape of the feasible region, it is possible to use this information to predict the

feasibility of a new point. Recall that the reason we need a feasible region checking algorithm is

to complement the kriging algorithm in making response function estimates without having to

evaluate the actual response function (which is presumably time consuming to evaluate).

Conceptually, the feasible region checking algorithm is accessed before any kriging takes

place. The new point is passed to the kriging algorithm for evaluation only if the

feasible/infeasible array indicates that the point is in a feasible sub-division. That is, a response

function estimate for the point is made if and only if the array sub-division in which it lies equals

3, implying that all points that have been evaluated and that lie in this sub-division have been

feasible. If it equals any other value, which implies either no information is known about this

sub-division or that the sub-division contains at least one known infeasible point, the new point is

sent to the actual response function for evaluation. It is important to note that the point is

evaluated even if it lies in a grid sub-division that has been labeled infeasible (array value of 1).

This ensures that feasible points that share a grid sub-division with infeasible points are not

missed. If a feasible point is identified in a grid sub-division previously deemed infeasible, the

feasible/infeasible array code will be updated to the not-sure value of 2. Regardless of whether

the grid sub-division has a 1 or 2 associated with it, any future points in this sub-division will be

sent to the actual objective function for evaluation. Thus, in reality, the feasible region checking

algorithm is used only to determine if a point lies in a feasible region - it does not attempt to use

any information about the infeasible region in its processing. However, one side-benefit of

94

keeping track of the infeasible points is the graphical representation of both the feasible and

infeasible regions plus the transition area between them (as seen in Figure 4-11).

Note that an array sub-division value of 3 does not guarantee that the point is feasible. It

is conceivable that the sub-division contains both feasible and infeasible points, and that, only by

chance, no infeasible points been identified. The impact of this phenomenon can be minimized

by proper selection of the array grid, but, using this approach, it is not possible to completely

eliminate the possibility of mis-classifying an infeasible point as feasible. This issue will be

discussed in further detail in the next two sections.

Selecting Grid Resolution. Analyzing Figure 4-11 brings light to the question of

choosing the number of divisions to select in each of the q dimensions. If the number of

divisions is too large, then the final resolution of the array will be poor. Especially for more

irregular feasible regions, much information about the intricacies of the feasible region's shape

will be lost if the grid is too coarse, much like the intricacies of a picture are lost when viewed on

a television monitor with low pixel resolution. However, to choose the number of divisions too

large (very fine resolution) inhibits the usefulness of feasible region checking algorithm.

Because the feasible region checking algorithm will always call the actual response

function whenever the feasible array indicates 0, it is counter-productive to make the grid

resolution too fine. Imagine a design region that is sub-divided so finely that over the course of

an optimization, no two points are in the same grid sub-division. Thus, every time the feasible

region checking algorithm is accessed to see if a point is feasible, the feasible array indicates a 0

for no information. This results in the optimizer being directed to the actual response function

for evaluation, causing the possible benefits of the estimation algorithm to be short-circuited.

For this reason, grid resolution must be chosen carefully, ensuring that it is fine enough to

95

adequately distinguish between feasible and infeasible regions, but not so fine that the feasible

region checking algorithm inhibits the use of the estimation algorithm.

Cautionary Notes on Using the Feasible Region Checking Algorithm. As previously

mentioned, one possible short-coming of the feasible region checking algorithm is that it can

label a grid square as definitely feasible (3) when in reality it should be labeled not-sure (2).

This can occur when the first point sampled from a feasible/infeasible region transition sub-

division is feasible.

Say that the optimizer algorithm needs to evaluate a point in a feasible/infeasible

transition sub-division. The first time the optimizer attempts to do this, the feasible array

indicates a 0 for no information. Thus, the point is evaluated by the actual objective function. If

the point being evaluated happens to come from the feasible portion of this transition sub-

division, the entire sub-division will be labeled as definitely feasible (3). From this point on, any

time the optimizer attempts to evaluate a point in this grid sub-division, it will be assumed to be

feasible and the kriging algorithm will be used to estimate the response function value.

Assuming that the kriging estimates always meet the acceptance criteria (see section 4.4 for

details), no further calls to the response function will ever be made. Thus, it is possible for

points that are actually infeasible to be returned to the optimizer as feasible points with response

functions.

While the incidence of this situation may seem rather unimportant, it can cause the

optimizer to be misled into believing that an infeasible point is the optimum. This is especially

true when the optimal solution is located on or near the edge of the feasible region. For this

reason, when kriged estimates have been used to locate an optimal solution, it is always advisable

to perform a truth-check on the optimal point to ensure that it is feasible. If the optimizer is

plagued with convergence to infeasible points, it is recommended that the number of grid sub-

96

divisions be increased. This will cause more calls to the actual response function to be made, but

should help in preventing optimizer convergence to infeasible points.

4.6 Kriging and the Use of Penalty Functions

Aside from providing response estimates for new points, kriging allows for one

additional feature to be added to an optimization process. The U.GA, like many non-linear

optimizers, is not capable of handling infeasible points by itself. It requires a tangible response

value be returned every time an objective function call is made. In some applications, the

objective function is programmed to return an infeasible response value to the optimizer that is

several orders of magnitude worse than any feasible point response could be. This directs the

optimizer away from the region by this point in the future. However, for many optimizers,

convergence may be encouraged when an infeasible point is assigned a penalized response value

rather than a single, extremely poor response value. By penalizing an infeasible response based

on how far away it is from the feasible region, all available information is utilized in assisting the

optimizer in moving back towards the feasible region. (Nadon, 1996, 18-20)

If we knew a priori what the feasible region was, when an infeasible point is

encountered, it would be best to identify the shortest path to the feasible region, evaluate this

feasible point, and use it to generate a pseudo-response for the infeasible point. That is, starting

with the response from the feasible point, we can assess a penalty based on how far the infeasible

point is from the feasible region. Written as an equation for a minimization problem, the pseudo-

response would be generated with:

f Infeasible Point ^

Pseudo - Response

^Closest Feasible

^ Point' s Response

A /
+

Penalty, based on Distance from

Infeasible Point to Feasible Region

(4-22)

97

As depicted for a single independent variable in Figure 4-12, this in effect, funnels the optimizer

back towards the feasible region whenever an infeasible point is evaluated.

20

INFEASIBLE
(Pseudo-Responses)

FEASIBLE
(Actual Responses)

INFEASIBLE
(Pseudo-Responses)

Figure 4-12. Funneling Effect Created by Penalty Functions for a
Minimizing Optimization

Assessing Penalty Functions with Incomplete Feasible/Infeasible Region Information. In

this problem, the feasible/infeasible boundaries are not explicitly stated - we only have an

approximation of it based on the database of feasible points that have previously been located.

Thus, we must use this information to best create the same desired funneling effect towards the

feasible region.

When working with incomplete feasible region information located in the feasible points

database, a method of assessing penalized pseudo-responses for infeasible points is to use the

objective function value of the closest known feasible point as the starting value for the

penalizing function. One possible way of implementing this approach would be to search the

database of feasible points to locate the point that has the shortest Euclidean distance in all p

98

dimensions from the new, infeasible point. However, if any of the p dimensions has no

infeasible values (r is the greater zero), the closest feasible point in the database may not actually

be the closest point to the feasible region.

For example, say that an optimization problem with three decision variables exists (p=3).

In the two dimensions with infeasible regions (along the qi and q2 axes), there exists two points

(called Point 1 and Point 2) with slightly different (q,, q2) coordinates. Point 1 has q, and q2

values that are slightly within the feasible region (hence the point is feasible); Point 2 has qt and

q2 values that are slightly outside of the feasible region (hence the point is infeasible). Note that

the value of the third variable (r7) is irrelevant in determining feasibility for both Point 1 and 2

since all values of rj are feasible as long as qi and q2 are feasible.

From an optimization stand-point, we would like to direct optimization away from Point

2 towards Point 1 since it is the direction needed to achieve feasibility. However, even though

the Euclidean distance between Point 1 and Point 2 in only the q, and q2 dimensions is practically

zero, the values of the third variable (r,), which has no feasible bounds, could possibly be at

opposite extremes of the r, range of possible values. Hence, when Euclidean distance is

measured in all three dimensions, Point 1 may not be the closest point to Point 2. Instead the

closest point could be at some arbitrary location in the feasible region. Pointing the optimizer

towards this arbitrary point may get the optimizer back into the feasible region, but may also

produce erratic pseudo-response surfaces (response values used by the optimizer in the infeasible

regions) that inhibit speedy convergence.

For this reason, it is more desirable to measure Euclidean distance to the feasible region

only in terms of the q design variables with infeasible regions. Once the closest feasible point in

q dimensions is located, our best guess of the distance to the feasible region (based on the

information that we know about the feasible region) is a new, third point with Point l's q; and q2

99

coordinates and Point 2's rt coordinate. The reason for this is simple - to keep the Euclidean

distance to the feasible region in all n dimensions smallest, keep the distance contribution due to

the r variables equal to zero. Let the distance used for the penalty function only be defined by

the difference in the q variables required to return to feasibility.

To better explain this concept, a simple two dimensional example is useful. In this

example, there are a total of two design variables (p = 2), one of which has infeasible values (q =

1) and one of which does not have infeasible values (r = 1). Figure 4-13 shows the actual

(unknown) feasible region, the approximate feasible region (as defined by the identified feasible

points in the feasible points database), and a new, infeasible point being evaluated.

Shortest Distance
to Feasible Region

(1.5, 1.5)

Infeasible Point
to Be Evaluated

Infeasible
Region

Known Feasible

-_£losest Point
* inp dimensions

1(2.5,1.5)

I

I
'(2.5,-2.0)

I ^\ Closest Point (

I in q dimensions

True Feasible
Region Boundaries

Infeasible
Region

<ll

Figure 4-13. Example Determination of Closest Feasible Point

100

In Figure 4-13, we see depicted how using the closest point in all p dimensions to

generate a penalized pseudo-response value for an infeasible point, does not provide the shortest

path to the feasible region. Instead, by using the closest point in q dimensions, and then

projecting the infeasible point onto the known feasible region boundary, we determine the

shortest distance to the feasible region. In practice, this projection simply involves creating a

new point (as depicted by the light gray square in Figure 4-13) that has q coordinates from the

feasible point, and r coordinates from the original, infeasible point. Note that this point is most

likely a point that has not been previously evaluated. We know that it is feasible, but we do not

know its response value.

Using Kriging to Generate Infeasible Point Pseudo-Responses. It is here that kriging

allows a useful shortcut. Just as this estimation algorithm can avoid costly response function

calls during normal feasible point evaluations, it can serve the same purpose for developing a

penalized pseudo-response for the infeasible point. From the kriged estimate of the new feasible

point, a pseudo-response value can be generated based on the distance from the original

infeasible point to the new feasible point. As is the case with normal feasible point kriging, if the

kriged estimate does not meet acceptance criteria, the true response function can be called to

obtain the base response value. Note that we already know the new point to be feasible, so no

checks with the feasible region checking algorithm are required.

4.7 Application of Kriging and the Feasible Region Checking Algorithm to Jet Engine
Optimization

For this application, a micro-Genetic Algorithm (uGA) was selected as the optimization

algorithm to locate the combination of three design variables that minimizes overall fuel

consumption of an aircraft as it performs a stated mission profile. Of the p = 3 design variables,

only two of the variables had infeasible ranges of values associated with them (q = 2, r = 1). The

101

response to be optimized was overall fuel consumption. The response function was actually a

complex sequence of aircraft mission processing codes linked with a jet engine cycle evaluation

algorithm. All constraints that defined the feasible and infeasible regions were implicit to the

response function and varied based on the mission profile being optimized.

The impetus for developing the previously discussed estimation techniques was that each

call to the response function (utilizing both dimension reduction techniques presented in Chapter

3) took on the order of 60 - 80 seconds. Given the large number of objective function calls

required by the |xGA to adequately and consistently converge (on the order of 600 objective

function evaluations), computing time to obtain an optimal solution was unacceptably large.

Given that the response surface was thought to be reasonably smooth, kriging was selected as a

means of estimating objective function evaluations, thus bypassing many calls to the actual

response function. Since regions of infeasibility were anticipated in the design region, the

feasible region checking algorithm was selected to complement the kriging codes in providing

estimated responses. Kriging was also used to generate penalized pseudo-responses for

encountered infeasible points (as discussed in section 4.6).

Implementation. Implementation of the these response function bypassing techniques

was fairly straight-forward. Figure 4-14 provides a graphical representation of how the

estimation algorithms were incorporated into the optimization process.

102

Optimizer

Objective
Function

Value

Vector of Design

Variables Requiring
Evaluation

Yes

Figure 4-14. Interaction of Optimizer with Response Function and
Estimation Algorithms

Once enough feasible points were located for kriging to be performed (recall that the first

step of the kriging algorithm is to remove trend using a second-order, least-squares linear

103

regression, which requires at least 2n +
v2y

+1 data points to solve for this same number of

unknowns), the estimation algorithms were attempted whenever an objective function evaluation

was needed. If the new point fell in a grid sub-division that was considered definitely feasible

(see section 4.5), the kriging algorithm was employed to generate a response estimate. If this

response estimate met the kriging acceptance criteria (based on the average distance to the points

being used to generate the estimate, /i0), this estimated response was passed back to the

optimizer for use. However, if either the grid sub-division check or the kriging acceptance

criteria check failed, a call to the actual response function was made and the resulting response

value passed back to the optimizer. Whenever a call to the actual response function was made,

more true information was learned about the response surface and the feasible/infeasible regions.

Any such information obtained through objective function calls was stored for later incorporation

into the information database used by the kriging and the feasible region checking algorithms.

One of the benefits of using this approach was that the estimates made by the kriging

algorithm became more precise and more likely to be accepted as the optimization proceeded.

Because the kriging algorithm was able to self-detect the accuracy of its estimates, it was able to

assist the optimizer when it could produce good response estimates, and stay out of the way when

it did not have enough information to make good estimates. Of course, whenever a kriging

attempt was failed, the actual response function was called, thus establishing a known data point

in that part of the design region. By establishing another known data point, the kriging algorithm

became better equipped to make better estimates in that region if called upon to do so later in the

optimization. In practice, the (xGA optimizer quickly established a useful database of feasible

points via response function calls, and then was able to reap the processing speed benefits of the

kriging estimator.

104

The same acceptance criteria was applied to all kriged estimates, even if the purpose of

the estimate was for creating a penalized pseudo-response for an infeasible point. If the

acceptance criteria was failed while attempting to estimate this value, the actual response

function was called to obtain the base response from which penalty was applied. While it is

conceivable that such an accurate response value was not needed to apply a penalty function (the

objective of directing the optimizer back to the feasible region can be met with somewhat

inaccurate base responses), it was decided that the most conservative approach was to use only

accurate response values.

Configuration. As previously mentioned, this optimization problem had three design

variables (p = 3), two of which had regions of infeasibility (q = 2). Thus a two-dimensional

feasible/infeasible grid was needed for the feasible region checking algorithm. Given the range

of possible values that these variables could attain and the response sensitivity to variations in

these variables, each dimension was sub-divided into 25 sections. As a result, the design region

in these two dimensions was divided into 252 or 625 sub-divisions (similar to the example

discussed in section 4.5).

The kriging algorithm was configured so that mean distance to the data points (hQ) was

used to determine the quality of the kriged response estimate. The kriged estimate acceptance

threshold was set to reject any estimate that was more than 5 counts different than the true

response value. Of course, remember from section 4.4 that 1\ is not perfectly correlated with

the true estimate error. Hence, this acceptance criteria must be thought of as a rough attempt to

filter bad estimates from the optimizing algorithm. Regardless of the acceptance criteria

threshold value, it is still possible for inaccurate information to be passed to the optimizer (refer

to Figure 4-7 in section 4.4 for a graphical representation of why this is true).

105

Additionally, the kriging algorithm was configured to use the four (4) closest known

points (meaning points that had previously been evaluated using the actual response function) to

the point being estimated in order to generate the kriged estimate (n = 4). The choice to use four

points was fairly arbitrarily, although the decision was made with the intuition that choosing too

few or too many points could introduce distortion into the kriged estimates. While no exhaustive

evaluations were made to find the optimal number of points to use in kriging, four points did, in

practice, generate response estimates with acceptable prediction errors.

Performance Enhancements. In the kriging example presented in sections 4.2 through

4.4, all of the design variables were scaled similarly (possible values ranging from 0 to 10).

However, in the jet engine optimization problem, scaling for each of the three design variables

was widely varied. One of the variables typically ranges from 0 to 8, another from 10 to 100, and

another from 5000 to 40000. As is often the case, changes in response were proportional to the

percent change in each variable rather than the magnitude of the change in each variable.

Creating a semi-variogram (which is heavily dependent on the Euclidean distance between two

points) in this environment produced useless results. However, it was discovered that by

transforming each of the axes into a coded -1 to +1 scale (a practice common in Response

Surface Methodology), useful semi-variograms could be generated. Thus, the kriging algorithm

used in this application converts all data into this coded space before performing any estimation.

Figure 4-15 depicts how variable coding transforms variables with different scalings into

variables with similar scaling.

106

+5.<HX)
+22.500 +40.(KX)

(mid-point) (max)

Original Scaling

Variable A

.. , Coded pealing

-1 0 + 1

-1 0 +]

Coded Scaling

Variable B

Originaj[Scaling

0 +4.0 8.0
(min) (mid-point) (max)

Figure 4-15. Variable Coding

Another enhancement made in this application involved designing the estimation

algorithms to operate as efficiently as possible. Through the use of globally defined information,

it was possible to code both the kriging and the feasible region checking algorithms to store

current semi-variogram and feasible/infeasible array information between estimation routine

calls, and only update them when new points had been added to the information database. This

significantly enhanced computational efficiency since semi-variogram and feasible/infeasible

array generation require a large number of floating point operations. For example, to generate a

semi-variogram, the Euclidean distance and the change in response value must be computed for

every possible pairing of all feasible points. If there are A: feasible points in the database,
,2,

pairings exist. Since what we are really trying to identify is the slope of the line leading up to

semi-variogram's sill, it is possible to update this slope estimate in a running average fashion.

Thus, if only one new point had been added to the database since the last time the kriging

algorithm was invoked, only the pairings with this new point needed to be generated and the

effects incorporated into the current slope estimate. The result was that only k pairings required

107

computations rather than all
(k + l)

2
pairings (of which

,2;
of these pairings had previously

been processed).

Results. Significant reductions in processing time were experienced when the kriging

algorithm (in concert with the feasible region checking algorithm) were enabled. The total

number of objective function calls required for the uGA was unaffected by the kriging

algorithm's operation. Likewise, the optimal objective function values obtained with the

optimizer were also unaffected by the kriging algorithm's operation. In essence, the kriging

algorithm did not hinder the optimizer at all; it did, however, allow for much faster objective

function evaluations.

Recall that the typical call to the actual response function required (utilizing both

dimension reduction techniques presented in Chapter 3) approximately 60 - 80 seconds to return

a response value. The kriging algorithm call required only about 1-2 seconds to return a

response estimate. For a typical optimization run (that is, a start-to-finish convergence of the

U.GA optimizer), out of the approximately 600 response evaluations made by the uGA optimizer

and the penalty function calculations, about 80% of the calls were handled by the kriging

algorithm. Although it is difficult to get an accurate assessment of processing time reduction

(due to variations in computer processor task loading), optimization runs with kriging disabled

took on the order of 7 - 11 hours while optimization runs with kriging enabled only took on the

order of 1 - 3 hours.

Table 4-10 shows the results of 40 uGA convergences, each performed on the same

mission but started at different random number seeds. 20 of the runs were performed with

kriging enabled, 20 were performed with kriging disabled. For the runs performed with kriging,

data is provided showing how much the kriging algorithm was used. Run-time data must not be

108

taken as scientific data, but do indicate a general trend in processing speed that is consistent with

the use of the much faster kriging algorithm.

Table 4-10. Jet Engine Optimization Results With Kriging Disabled and
Enabled

Krisim ; Disabled Kriging Enabled
Run* # Response

Evaluations
to Converge

Time
Required to
Converge

(hours)

Optimal
Objective
Function

Value

Run* # Response
Evaluations
to Converge

Response
Evaluations

Met By
Kriging

Algorithm

Time
Required to
Converge
(hours)

Optimal
Objective
Function

Value

1 417 9.28 5471 1 1046 819 2.63 4517

2 556 10.87 4611 2 749 591 1.95 4714

3 810 12.67 4687 3 707 413 4.37 4766

4 570 9.70 4925 4 636 576 0.91 4618

5 599 9.71 4626 5 632 537 1.45 4634

6 790 12.05 5619 6 519 459 0.92 5617

7 440 4.80 5226 7 611 526 1.33 4649

8 456 4.98 4647 8 466 396 1.21 5276

9 621 7.01 4665 9 689 508 3.18 4705

10 762 8.29 4756 10 551 435 1.92 4725

11 993 11.70 4661 11 683 599 1.35 4642

12 495 5.45 4493 12 1065 942 2.08 4559

13 474 4.71 4844 13 818 714 1.71 4626

14 715 7.77 5222 14 460 389 1.21 4947

15 554 5.74 4722 15 631 591 0.68 6078

16 951 10.75 4499 16 449 364 1.26 4621

17 571 6.28 4503 17 526 477 0.84 4861

18 859 11.67 5036 18 721 639 1.44 4773

19 421 6.73 4603 19 556 405 2.64 5023

20 826 14.42 5084 20 524 411 2.05 4842

Mean 644 8.729 4845 Mean 651.95 539.55 1.7565 4859.65

Standard
Deviation

180.89 2.96 328.76 Standard
Deviation

171.33 151.79 0.90 388.38

Note that when kriging was enabled, the percentage of response evaluations met by the

kriging algorithm increased as the run number increased. This was because the runs were done

consecutively, thus giving later runs the benefit a more populated database of feasible points.

This added benefit that allows for speedy replications of the entire uGA (a must for stochastic

optimization routines) was not available to runs with the kriging algorithm disabled. Essentially,

every run with kriging disabled was truly equivalent to starting from scratch. In contrast, with

109

kriging enabled, fewer and fewer calls to the actual response function were required as the

multiple replications were performed.

A relatively broad range of optimal objective function values was experienced in these

40 uGA optimizations. Typically, if an optimizer is successfully locating the global optimum

(instead of local optima), it will always converge to the same point. The dispersion in the

optimal solutions in these runs implies that the optimizer was not properly configured to

adequately search the highly non-linear response surface in this problem. When a response

surface contains numerous local optima (as is the case in this application), the difficulty of

locating the true globally optimal point is greatly increased. While an SGA or uGA optimizer

can still robustly locate a global optimum in this situation, further study (that was not performed

in this research) is required to fine-tune the optimizer parameters so that the design space is more

thoroughly searched. Regardless of this noted short-coming in the optimizer configuration,

results for runs performed with and without kriging are still comparable since the |JGA optimizer

was configured identically for both sets of runs.

Table 4-10 verifies that, while time required for convergence is much shorter when

kriging is enabled, the number of response evaluations and optimal objective function values are

essentially identical. By assuming the data to be normally distributed and independent, a t-test

(with different population variances) can be performed to confirm our intuition. At the 95%

confidence level, the convergence times means were significantly different, and the number of

objective function calls and optimal values were not significantly different, t-statistic and p-

value (the probability of the null hypothesis being true) results for each of these three categories

tested are shown in Table 4-11.

110

Table 4-11. t-Test Results Comparing Optimization Performance With and
Without Kriging

Category t-Statistic p-Value

Response Evaluations to
Converge

0.143 0.444

Time Required to Converge 10.071 4.22E-10

Optimal Objective Function
Value

0.129 0.449

H0: Sample Means Are Equal
Ha: Sample Means Are Not Equal

Conclusions. The use of kriging estimation, complemented by the feasible region

checking algorithm, was successful at significantly reducing the computation time required for

jet engine optimization to be performed. Using a |lGA optimizer, no negative side-effects from

the operation of the kriging algorithm were experienced. Through these favorable results, it is

apparent that the response surface implied by the aircraft and flight profile parameters used by

the response function is indeed smooth and conducive to the use of kriging for estimation.

While only limited analysis was performed to ensure that poor response estimates were

being rejected, initial indications show that no estimates with significant deviation from its true

response value were accepted and used by the optimizer. It was found, however, that several

kriged estimates were unnecessarily rejected (meaning that the estimate was acceptable but the

h0 value indicated a poor estimate). While further refinement of the acceptance threshold would

enhance processing, leaving this value at a somewhat conservative value does provide a level of

insurance that poor response estimates are not passed to the optimizer.

Ill

5. Final Conclusions and Recommendations for Future Research

5.1 Summary of Conclusions

Problem dimension reduction had mixed results. First, fan pressure ratio optimization

was successful at not only eliminating one of the independent variables, but also was able to

quickly locate nearly the best nc- value for a given bypass and core compression ratio. This

ensured that high bypass ratio engines were fully explored and that the optimal solution was a

much better estimate of the global optimum of the entire design space. It is recommended that

future work on jet engine optimization problems continue to exploit this noted relationship.

In contrast, establishing engine mass flow variable dependency proved to be a poor

enhancement to this design process. The m0 optimization algorithm was plagued with

inefficiency and non-optimality. It also was conceptually shown to be incompatible with non-

constant installation loss models that may be incorporated in the future. In all, it is recommended

that m0 remain an independent variable to be optimized by the probabilistic optimization

algorithm.

It was determined that kriging was highly effective in reducing the computational effort

required to obtain an optimal engine solution. Up to 80% of the response evaluations made by

the uGA optimizer and penalty function calculations were handled by the kriging algorithm

working in concert with the feasible region checking algorithm. Although computational time is

a somewhat unreliable indicator of efficiency, significant reductions in processing time were

experienced with kriging enabled. This time reduction was consistent with the significantly

reduced number of floating point operations required to generate kriged estimates over

evaluating the actual mission response function. No significant reduction in solution quality and

112

no increase in the number of objective function evaluations were required to obtain the optimal

solution were experienced.

Aside from application to jet engine optimization problems, kriging appears to have

potential application to any number of non-linear optimization problems. The kriging algorithm

can be easily automated and is capable of providing quick estimates, regardless of the function

being evaluated. Although care must be given to ensure that the response function is relatively

smooth, kriging appears to have potential application to any problem involving computationally

expensive response function evaluations. If nothing else, a generic kriging algorithm (like the

one located in Appendix A) should be quickly tested for estimation accuracy to see if it could be

used as a time-saving technique.

5.2 Recommendations for Future Research

1. Further exploration of the fan pressure ratio optimality phenomenon should be conducted.

Although a rudimentary explanation of how the principle works was presented in this thesis,

no engine cycle calculations revealed this principle to be true in general for all mixed-stream

turbofan engines.

2. The non-constant installation loss model should be implemented to obtain more accurate

mission modeling results. Regardless of the loss model selected, implementation should be

reasonably generic given the modular design of the optimization codes. There appears to be

no reason why all model codes currently used by Wright Laboratories could not be

incorporated in the mission evaluation codes, thus producing higher fidelity optimizations.

Care will have to be taken to ensure that kriging remains a viable estimation technique with

the implementation of these more complex models.

113

3. Many more mission profiles should be optimized with kriging enabled. The mission tested

was arbitrarily chosen and is not expected to have any special properties that enabled kriging

to work successfully. However, more exhaustive testing is required to ensure that successful

kriging is possible for jet engine optimization in general.

4. For the jet engine optimization problem, kriging should be compared with other estimation

techniques to ensure that it is truly the best choice for bypassing mission evaluations. There

is nothing about kriging theory that guarantees it to be the best estimation technique. The

fact that it produces a minimum variance response estimate does not imply that some other

method of interpolation or extrapolation would not better serve jet engine optimization.

5. As mentioned before, the kriging estimation algorithm should be tested for prediction

accuracy in other various applications involving computationally expensive response

function evaluations. As was experienced in this application, computational savings could

be significant, thus allowing more thorough exploration of the design space.

114

Appendix A: Kriging and Feasible Region Checking Algorithm

Computer Codes

Computer codes have been written to accomplish the kriging estimation discussed in this

thesis. Both the Kriging.m and Check_Feasible.m algorithms are generically coded and can

conceivably be used for any application with any number of independent variables. These

algorithms are written in the Matlab (version 4.2c) programming language, which was the

operating system used for the entire optimization project.

These algorithms may be used freely with the understanding that these codes are not

guaranteed to be free from error and that all liability for the accuracy of these codes rests on the

user. I would appreciate hearing about any uses of these codes via email at

pmillhouse@aol.com.

Ample commenting has been included in the codes, so no additional discussion about the

design of the codes is provided in this appendix.

115

Kriging.m Algorithm:

function [KRIGED_RESP, GOOD_EST, SV_DATA] = Kriging(EST_VEC, DATA_MAT, ..
MAXMIN_MAT, CODE_MAT,
KRIGE_DATA, SV_DATA)

% FILENAME: Kriging.m
% PURPOSE : To perform automated kriging techniques with the specified purpose
% of trying to avoid expensive objective function calls. This will
% take a matrix of collected data and krige estimates for new points.

% CODED BY
% DATE
%
% INPUTS
%
% EST_VEC

DATA_MAT

MAXMIN_MAT

Paul Millhouse
1 March 1998

• Column vector (Pxl) of independent variables for which a
response estimate is needed (P is the number of independent
variables)

- An (Nx(P+D) matrix of known data points and their response
values. N corresponds to the number of known data points.
The first P columns are the independent variable values.
The (P+l)st column is the response associated with the
P design variables. The P variables must be in the same
order as the P variables in EST_VEC.

(Px2) matrix of minimum and maximum possible values for the
P variables. Structure is as follows:

Var(1)_Min
Var(2)_Min

Var(1)_Max
Var(2)_Max

Var(P)_Min Var(P)_Max]

CODE_MAT

KRIGE_DATA

(Px2) matrix of values to be used for variable coding. The
minimum values will correspond to a coded variable value
of (-1). The maximum values will correspond for a coded
variable value of (+1) . Structure is the same as
MAXMIN_MAT.

(3x1) column vector of information needed by the kriging
algorithm. Structure is as follows:

[NUM_EST_POINTS ;
QUALITY_MEASURE;
KRIGINGJTOL]

where:

NUM_EST_POINTS

QUALITY_MEASURE

KRIGINGJTOL

SV_DATA

of known data points to be used in
generating the kriged estimate

=0 for mean coded distance to points
used in generating kriged estimate

=1 for kriged estimate variance
Value used to determine if kriged

estimate is valid. If the quality
measure value is less than
KRIGING_TOL, then GOOD_EST = 1.
Otherwise, GOOD_EST = 0.

A (4x1) column vector of information used to generate the
isotropic semi-variogram. Structure is as follows:

[SLOPE
RANGE
CALC_SV
DATA_MAT_POINT]

where:

116

SLOPE - Current estimate of the slope of the linear
semi-variogram model. If no estimate
is known, user should be set equal to 0.

RANGE - Current estimate of the coded distance (h) at
which the sill of the linear semi-variogram
is obtained. If no estimate is known, user
should set equal to 0.

CALC_SV - =1 to re-calculate semi-variogram with new data.
=0 to use current values of SLOPE and RANGE and
not update them with new data.

DATA_MAT_POINT - Row in DATA_MAT at which new data begins.
Data above this row is assumed to already be
represented in SLOPE and RANGE.

% OUTPUTS

%
%

KRIGED_RESP

GOOD_EST

SV DATA

%
%
%
%
%
% CALLED UNITS
%
% NONE
%
% GLOBAL DATA
%
% None

Estimated response for the given vector of independent
variables

■=1 if the estimate met acceptance criteria
=0 if the estimate did not meet acceptance criteria

Same structure as input vector. SLOPE, RANGE and
DATA_MAT_POINT have been modified (as required) to
reflect data that has been processed in DATA_MAT. These
estimates can be passed to this function next time it is
called to expedite semi-variogram processing (previously
processed data points will not have to be re-processed).

% LIMITATIONS

This algorithm follows the unbiased, minimum variance kriging prediction
method outlined in Edward H. Isaaks and R. Mohan Srivastava's text: An
Introduction to Applied Geostatistics, and in Isobel Clark's text:
Practical Geostatistics. It assumes the semi-variogram to
be isotropic (versus anisotropic), which implies that the same sample
variance is obtained regardless of the axis from which h is measured,
where h is the distance between two points.

This algorithm assumes a linear (with a sill) mathematical semi-variogram
model. That is, semi-variogram data is fit to a sloped line that extends
from the semi-variogram origin to the sill value. The sill value is
defined as the variance of the residual values (from the sample points
after a second-order regression surface has been fit to it). See
Clark's text (chapter 5) for details.

This code can use either kriged estimate variance or the average distance
from the point being estimated to the known data points as acceptance
criteria (as set by QUALITY_MEASURE). The acceptance threshold is defined
by KRIGINGJTOL. The number of points used in for an estimate is set with
the variable NUM_EST_POINTS. All of these settings are embedded in the
KRIGE_DATA input vector.

%
% ADDITIONAL INFO
%
% None
%
%

%
% GLOBAL CONSTANTS
%

117

% None

%
% MAIN CODE
%

% Assign data from input arguments
NUM_EST_POINTS = KRIGE_DATA(1)
QUALITY_MEASURE = KRIGE_DATA(2)
KRIGINGJTOL = KRIGE_DATA (3)
SLOPE = SV_DATA(1);
RANGE = SV_DATA (2) ;
CALC_SV = SV_DATA (3) ;
DATA_MAT_POINT = SV_DATA (4) ;

% Define size of DATA_MAT
N = size(DATA_MAT,l);
P = size(DATA_MAT,2) - 1;

% Calculate "P_CH00SE_2"
P_CH00SE_2 = PMP-U/2;

% Check criteria by which kriging cannot be performed. Exit this function
% if kriging not possible.
if (N < (2*P + P_CH00SE_2 +1)) J (N < NUM_EST_POINTS)
KRIGED_RESP = +inf;
GOOD_EST = 0;
return;

end

% Ensure valid input for NUM_EST_POINTS and QUALITY_MEASURE
if NUM_EST_POINTS <= 0
NUM_EST_POINTS = 5 ;

end
if (QUALITY_MEASURE -= 0) & (QUALITY_MEASURE -= 1)
QUALITY_MEASURE = 1; % Default to using estimate variance

end

% Ensure valid input for SLOPE, RANGE and DATA_MAT_POINT
if SLOPE < 0
SLOPE = 0;

end
if RANGE < 0
RANGE = 0;

end
if (DATA_MAT_POINT < 1) | (DATA_MAT_POINT > (N+D)
DATA_MAT_POINT = 1;

elseif (DATA_MAT_POINT == (N+D)
CALC_SV = 0;

end

% Generate CENTER_VEC and HALF_RANGE_VEC
CENTER_VEC = (MAXMIN_MAT (: , 2) + MAXMIN_MAT (: , 1)) .12;
HALF_RANGE_VEC = (CODE_MAT (: , 2) - CODE_MAT (: , 1)) .12;

a***
% Create coded matrix for regression (used to remove trend form the data
% before kriging) and determining closest points in coded space.

for I = 1:N
REG_DATA(I,1) = 1; % Column of 1's ■
% First order terms
for J = 1:P
REG_DATA(I,(J+l)) = (DATA_MAT(I,J) - CENTER_VEC(J,1)) / HALF_RANGE_VEC(J,1)

end
COUNT = 0;
% First order cross-terms
for J = 1:(P-l)

for K = (J+l):P

118

COUNT = COUNT + 1;
REG_DATA(I,(P+1+COUNT)) = REG_DATA(I, (J+l)) * REG_DATA(I,(K+l));

end
end
% Second order terms
for J = 1:P
REG_DATA(I,(P+1+C0UNT+J)) = REG_DATA(I,(J+l))~2;

end
end

% Create vector of responses to use in regression
RESP0NSE_VEC(:,1) = DATA_MAT(:,(P+l));

if CALC_SV % Only if the semi-variogram is to be updated with new information

% Perform least-squares regression
REG_C0EFFS = inv(REG_DATA. ' * REG_DATA) * REG_DATA. ' * RESPONSE_VEC;

% Generate vector of regression prediction residuals (used in creating the
% semi-variogram)
for I = 1:N
RESID_VEC(I,1) = (REG_DATA(I,:)*REG_COEFFS) - RESPONSE_VEC(I,1);

end

^** * ** ************
% Now that the vector of response errors has been generated, we are ready to
% create the semi-variogram. First we must generate the matrix of changes in
% sample coordinate and the associated changes in response. To facilitate this,
% a new matrix is first created with the original coordinate data with the
% newly calculated regression response error appended in the right-most column.
% We continue to work in coded space so that the different scales of the
% variables is not a problem.
a***

SV_MAT = REG_DATA(1:N,2:(P+l));
for I = 1:N

SV_MAT(I, (P+l)) = RESID_VEC(I) ;
end

TOTAL_DM = 0;
DM_COUNTER = 0;
for I = DATA_MAT_POINT:N

for J = 1:N
DIFF_VEC.= (SV_MAT(I,1:P) - SV_MAT(J,1:P));
DISTANCE = sqrt (DIFF_VEC * DIFF_VEC');
TOTAL_DM = T0TAL_DM + 1;

%* ***
% Since the Euclidean distances stored in column 1 of DELTA_MAT will
% later be used to estimate the slope of the semi-variogram line, it is
% necessary to filter out small-values (this value is in the denominator
% of the slope estimate). Therefore, DELTA_MAT is only updated if
% the Euclidean distance was bigger than 0.01.
£**

if DISTANCE > 0.01
DM_COUNTER = DM_COUNTER + 1;
DELTA_MAT(DM_COUNTER,1) = DISTANCE; % The semi-variogram distance 'h'
DELTA_MAT(DM_COUNTER,(2)) = (1/2)*(SV_MAT(I,P+l) - SV_MAT(J,P+l))"2;

% The semi-variogram function value 'gam(h)'
end

end
end

-***
% Now update the semi-variogram math model. For simplicity, the linear
% model (with a sill) has been used. The least squares estimate of the slope
% of the line is the average slope implied by each data point. The line
% is assumed to pass through the origin
%
SUM = 0;
for I = 1:DM_C0UNTER
SLOPE_EST = DELTA_MAT(1,2),/ DELTA_MAT(1,1);
SUM = SUM + SL0PE_EST;

end

119

NEW_DATA_SLOPE = SUM / DM_COUNTER;

% Obtain variance all sample residuals
VARIANCE = var(RESID_VEC);

**
% Identify the (coded) value of h at which the sill is attained. This
% value of h is known as the range of the semi-variogram. The sill is
% the point at which the predicted variance is equal to the sample variance.
a***

NEW_DATA_RANGE = VARIANCE / NEW_DATA_SLOPE;

a***

% Calculate previous number of slope and sill estimates and to produce a
% weighted average with the newly calculated estimates
a***

if DATA_MAT_POINT ==1 % No previous slope estimate to average
SLOPE = NEW_DATA_SLOPE;
RANGE = NEW_DATA_RANGE;

else
DMP_CH00SE_2 = (DATA_MAT_P0INT-1) * (DATA_MAT_P0INT-2) II;
SLOPE_NUM = DMP_CH00SE_2 «SLOPE + TOTAL_DM*NEW_DATA_SLOPE;
DENOM = DMP_CH00SE_2+T0TAL_DM;
SLOPE = SLOPE_NUM/DENOM;
RANGE_NUM = DMP_CH00SE_2 »RANGE + TOTAL_DM*NEW_DATA_RANGE;
RANGE = RANGE_NUM/DENOM;

end
DATA_MAT_POINT = N+l;
SV_DATA = [SLOPE;

RANGE;
CALC_SV;
DATA_MAT_POINT] ;

else
VARIANCE = RANGE*SLOPE;

end

a***

% Determine the NUM_EST_POINTS that are closest (in coded space) to the point
% being estimated (in coded space)
a***

BEST_MAT = zeros(NUM_EST_POINTS,(P+3));
PREV_BEST_DIST = 0;
EST_VEC_CODE = (<EST_VEC - CENTER_VEC) . / HALF_RANGE_VEC) ' ;
for I = l:NUM_EST_POINTS
NEXT_BEST_DIST = +inf;

. NEXT_BEST_ROW = -1;
for J = 1:N
DIFF_VEC = (REG_DATA(J,2:(P+l)) - EST_VEC_CODE);
DISTANCE = sqrt (DIFF_VEC * DIFF_VEC);
if (DISTANCE < NEXT_BEST_DIST) & (DISTANCE >= PREV_BEST_DIST)

PREV_PICK = 0;
for B = 1:NUM_EST_P0INTS % Check to make sure points has not previously

% been selected as a closest point
if J == BEST_MAT(B,(P+3))
PREV_PICK = 1;
break,-

end
end
if PREV_PICK == 0
NEXT_BEST_DIST = DISTANCE;
NEXT_BEST_ROW = J;

end
end

end

BEST_MAT(I,1:P) = REG_DATA(NEXT_BEST_ROW, 2: (P+l));
BEST_MAT(I,(P+l)) = DATA_MAT(NEXT_BEST_ROW,(P+l));
BEST_MAT(I,(P+2)) = NEXT_BEST_DIST;
BEST_MAT(I,(P+3)) = NEXT_BEST_ROW;
PREV_BEST_DIST = NEXT_BEST_DIST;

end

t******************************* r***

120

% if the acceptance criteria is average coded distance from known points to
% the point being estimated, we have enough information to determine if
% the kriged estimate will be accepted.
0.***

if QUALITY_MEASURE ==0
if mean(BEST_MAT(:,(P+2))) < KRIGING_TOL
GOOD_EST = 1;

else % Estimate deemed "no good" -- exit function
GOOD_EST = 0;
KRIGED.RESP = + inf;
return;

end
end

%***
% Now that we have the NUM_EST_POINTS closest points (in coded space), generate
% the matrices required to make kriging calculations. These matrices are
% the [D] matrix, which is actually a (NUM_EST_POINTS + 1) x 1 vector of
% spatial variances between the known points and the point to be estimated
% (the last element of the vector is a one). The [C] matrix is a
% (NUM_EST_POINTS + 1) x (NUM_EST_POINTS + 1) square matrix of the spatial
% variances between all of the points being used for the
% estimation (the last row and column of [C] is l's, with the bottom, right
% corner element being a "0" — see Isaaks et al. text for details). We
% will be solving for the vector of weights that will be linearly combined with
% the response values of all of the points to develop the estimate and variance
% of the point to be estimated.
%
% Terms in [C] and [D] are obtained by evaluating the variogram at the
% distance (h), which is the Euclidean distance between the
% two points in question.
£************* **

for I = l:NUM_EST_POINTS
H = BEST_MAT(I,(P+2));
if H < RANGE

D(I,1) = (H / RANGE) * VARIANCE;
else

D(I,1) = VARIANCE;
end

end
D((NUM_EST_POINTS+l),1) = 1.0;

for I = l:NUM_EST_POINTS
for J = I:NUM_EST_POINTS
DIFF_VEC = (BEST_MAT(I,1:P) - BEST_MAT(J,1:P)) ;
H = sqrt (DIFF_VEC * DIFF_VEC') ;
if H < RANGE

C(I,J) = (H / RANGE) * VARIANCE;
else

C(I, J) = VARIANCE;
end
C(J,I) = C(I,J) ;

end
C(I,(NUM_EST_POINTS+l)) = 1.0;

end

for I = l:NUM_EST_POINTS
C((NUM_EST_POINTS+l),1) =1.0;

end

C((NUM_EST_POINTS + l) , (NUM_EST_POINTS+l)) = 0.0;

W = inv(C) * D;

** i****************

% Calculate the kriging estimate
%
KRIGED_RESP = W(1 :NUM_EST_POINTS , 1) ' * BEST_MAT (: , (P+l))

*********,»,***,*,»***<

-**,*»****»***
% if the acceptance criteria is estimate variance, determine if the estimate
% meets the acceptance threshold.
a.***

121

if QUALITY_MEASURE == 1
EST_VAR = W * D;
if EST_VAR < KRIGINGJTOL
GOOD_EST = 1;

else % Estimate deemed "no good"
GOOD_EST = 0;
KRIGED_RESP = +inf;

end
end

122

Check_Feasible.m Algorithm:

function [FEASIBLE, SUB_DIVS, CHECK_DATA] Check_Feasible(EST_VEC, ...
MAXMIN_MAT, FEAS_PTS, INFEAS_PTS ,
SUB_DIVS, GRID_RES, CHECK_DATA)

% FILENAME: Check_Feasibile
% PURPOSE : To map known feasible and infeasible points into a Q-dimensional
% array in order to predict if new points are likely to be feasible.

% CODED BY
% DATE
%
% INPUTS
%
% EST VEC

Paul Millhouse
1 March 1998

MAXMIN_MAT

FEAS_PTS

INFEAS_PTS

SUB_DIVS

GRID_RES

CHECK_DATA

(Q x 1) column vector of independent variables to be
tested for feasibility. Note that only variables that
have infeasible ranges need to be input in this function.
Variables with no infeasible values should be excluded
to maximize the efficiency of this function. Q is the
number of variables with infeasible values (i.e. the
application has P independent variables, but only Q of
of these P variables have infeasible values -- such that
Q <= P)

(Px2) matrix of minimum and maximum possible values for
the P variables. Structure is as follows:

Var(1)_Min
Var(2)_Min

Var(P)_Min

Var(1)_Max
Var(2)_Max

Var(P)_Max]

(N x Q) array of known feasible point coordinates that
will be used to establish the feasible region. N is
the number of known feasible points. Q is the
number of variables with infeasible values.

(M x Q) array of known infeasible point coordinates that
will be used to establish the infeasible region. M is
the number of known infeasible points. Q is the
number of variables with infeasible values.

The 2-D array that holds the mapping information for
feasible and infeasible points. From this map, new
points can be deemed feasible or infeasible. This
2-D array actually holds the information for all Q
dimensions. This is done because Matlab 4.2c (in which
this was programmed) does not allow for higher dimension
arrays. Nevertheless, this array portrays the design
space sub-divisions and whether current data implies that
a sub-division is feasible, infeasible, "not sure" or
no information.

If a SUB_DIVS matrix has not previously been created by
this function, set SUB_DIVS = [].

(Q x 1) column vector of the number of grid sub-divisions
to be applied in each of the Q dimensions. This
information defines the resolution of SUB_DIVS.

(2 x 1) column vector of information with format:

[FEAS_POINTER
INFEAS_POINTER]

where:

FEAS_POINTER - Indicates the FEAS_PTS row to begin

123

%
% OUTPUTS
%
% FEASIBLE

mapping information into SUB_DIVS.
Proper management of this value can
avoid repetitively processing known
data points that can hinder efficient
operation.

INFEAS_POINTER - Indicates the INFEAS_PTS row to begin
mapping information into SUB_DIVS.

(2 x 1) vector of feasibility information:
[DEF_FEASIBLE;
FEAS_CODE]

where:

DEF_FEASIBLE

FEAS CODE

Equals 1 if EST_VEC lies in a
sub-division into which only feasible
points have been mapped. Otherwise,
equals 0.

Feasibility code associated with the sub-
division in which EST_VEC is located.
Codes are as defined in the LIMITATIONS
section below.

% SUB_DIVS

% CHECK_DATA

Updated feasible/infeasible array of information. This
array can be passed into this function on subsequent runs
to prevent having to re-process points that have
previously been mapped.

Updated FEAS_POINTER and INFEAS_P0INTER values,
same as listed in INPUTS.

Format

%
% CALLED UNITS
%
% . NONE
%
% GLOBAL DATA
%
% NONE

% LIMITATIONS
%

No assumptions about convexity or holes being in the solution space are
required for this algorithm to work. This algorithm will sub-divide the
Q variables axes input based on the numbers of sub-divisions specified
for each variable. The algorithm will then map the known feasible and
infeasible point information into SUB_DIVS in order to approximate the
feasible and infeasible regions. SUB_DIVS will maintain information
using the following codes:

%

%

0 = NO INFORMATION
1 = INFEASIBLE (at least based on current data)
2 = NOT SURE
3 = FEASIBLE (at least based on current data)

When testing a new point for feasibility, if the test point falls in a
sub-division with any code other than 3, this function will return a
FEASIBLE value of 0. This does not necessarily mean the point is
infeasible, just that it does not fall in a subdivision that is known
to only contain feasible points. If the new point falls in a sub-division
with a code of 3, FEASIBLE will be returned equal to 1. Note that this
is simply an estimation technique and, based on the grid resolution
defined, the point may or may not actually be feasible. This only states
that, for the sub-division resolution defined, of the known feasible and
infeasible points, only feasible points have thus far been found in this
sub-division.

It is important to note that this algorithm is highly dependent on the

124

resolution of the grid. While making the grid excessively fine would
help to prevent this algorithm from improperly calling
an infeasible point feasible, it will also cause many of the feasible
points to be determined infeasible, simply because there is no "grouping"
of information from the grid (i.e. if every feasible point fills its own
grid square, then every future point tested will fall in a grid square that
has not previously been determined, thus this algorithm will return that
the point is infeasible).

%

% ADDITIONAL INFO
%
% This function is intended to be used repetitively, so that as more
% information is learned about the nature of the feasible and infeasible
% regions, predictions of feasibility will improve. For efficiency,
% the function can avoid re-processing known feasible and infeasible points
% that were previously mapped into SUB_DIVS.
%
%

%
% GLOBAL CONSTANTS
%
%
% NONE
%
%
% MAIN CODE
%

%,***
% Initialize utility variables and check to ensure that all inputs are logical
%,***
Q = size(MAXMIN_MAT,1); % Determine number of variables

if FEAS_PTS == []
N = 0;

else
N = size(FEAS_PTS,1); % Determine number of known feasible points
if size(FEAS_PTS,2) -= Q
error ('ERROR: FEAS_PTS not consistent with MAXMINJMAT') ;

end
end

if INFEAS_PTS == []
M = 0;

else
M = size(INFEAS_PTS,1); % Determine number of known infeasible points
if size(INFEAS_PTS,2) ~= Q
error ('ERROR: INFEAS_PTS not consistent with MAXMIN_MAT');

end
end

if size(CHECK_DATA,1) -= 2
error ('ERROR: CHECK_DATA input not in proper format');

end

FEAS_POINTER = CHECK_DATA(1,1);
INFEAS_POINTER = CHECK_DATA (2 , 1) ;

for I = 1:Q
if GRID_RES(I,1) <= 0 .
GRID_RES(I,1) = 1;

end
end

MINJVEC = MAXMIN_MAT(:,1); % Vector of minimum values in SUB_DIVS
RANGEJVEC = MAXMIN_MAT(:,2) - MAXMIN_MAT(:,1); % Vector of value ranges
WIDTHS_VEC = RANGE_VEC./GRID_RES; % Width of each subdivision along each axis

SD_WIDTH = GRID_RES(1,1); % Define width of SUB_DIVS
SD_LENGTH = 1;
for I = 2:size(GRID_RES,l) % Define length of SUB_DIVS

125

SD_LENGTH = SD_LENGTH * GRID_RES(I,1);
end

if (size(EST_VEC,2) == Q) & (size(EST_VEC,1) == 1) % Input is in column format
EST_VEC = EST_VEC

end

if (size(EST_VEC,l) ~= Q)
EST_VEC
MAXMIN_MAT
error ('ERROR: EST_VEC not consistent with MAXMIN_MAT') ;

end

if (FEAS_POINTER > (N+l)) | (FEAS_POINTER <= 0) | (FEAS_POINTER-== [])
FEAS_POINTER = 1;

end

if (INFEAS_POINTER > (M+l)) | (INFEAS_POINTER <= 0) | (INFEAS_PO INTER == [])
INFEAS_POINTER = 1;

end

if (size(SUB_DIVS,2) -= SD_WIDTH) | (size(SUB_DIVS,1) ~= SD_LENGTH)
FEAS_POINTER =1; % SUB_DIVS has changed from previous definition
INFEAS_POINTER = 1; % Will need to re-initialize

end

% Create or update SUB_DIVS

if (FEAS_POINTER == 1) & (INFEAS_POINTER == 1)
SUB_DIVS = zeros(SD_LENGTH, SD_WIDTH); % Initialize SUB_DIVS to all zeros

end

if N >= FEAS_POINTER % There are new feasible points to map to SUB_DIVS
for I = FEAS_POINTER:N

for J = 1:Q
SD_COORDS(J,l) = floor((FEAS_PTS(I,J) - MIN_VEC(J,1))/WTDTHS_VEC(J,1)) + 1;
if (SD_COORDS(J,l) < 1) | (SD_C00RDS(J,1) > GRID_RES(J,1))
error ('ERROR: Feasible Point Exceeds MAXMIN_MAT Definition');

end
end
X_COORD = SD_COORDS(1,1);
if Q == 1 % Only one dimension being mapped
Y_COORD = 1;

else % Multiple dimensions being mapped
Y_COORD = 0;
for K = 2:Q % Convert multi-dimensions into 2-D

. if K == 2
Y_COORD = Y_COORD + SD_COORDS(2,1);

else
INC = 1;
for L = 2:(K-l)

INC = INC * GRID_RES(L,1);
end
Y_C00RD = Y_COORD + ((SD_COORDS(K,1)-1) * INC);

end
end

end
if SUB_DIVS(Y_COORD, X_C00RD) == 0

SUB_DIVS(Y_COORD, X_COORD) = 3;
elseif SUB_DIVS(Y_COORD, X_COORD) == 1

SUB_DIVS(Y_COORD, X_CO0RD) = 2;
end

end
FEAS_POINTER = N+l;

end

if M >= INFEAS_POINTER % There are new feasible points to map to SUB_DIVS
for I = INFEAS_POINTER:M

for J = 1:Q
SD_COORDS(J,l) = floor ((INFEAS_PTS (I, J) - MIN_VEC (J, 1))/WIDTHS_VEC (J, 1)) + 1;
if (SD_C00RDS(J,1) < 1) | (SD_COORDS(J,l) > GRID_RES(J,1))

error ('ERROR: Infeasible Point Exceeds MAXMIN_MAT Definition');

126

end
end
X_COORD = SD_COORDS(1,1);
if Q == 1 % Only one dimension being mapped
Y_COORD = 1;

else % Multiple dimensions being mapped
Y_COORD = 0;
for K = 2:Q % Convert multi-dimensions into 2-D

if K == 2
Y_COORD = Y_COORD + SD_COORDS(2,1);

else
INC = 1;
for L = 2:(K-l)

INC = INC * GRID_RES(L,1);
end
Y_COORD = Y_COORD + ((SD_COORDS(K,1)-1) * INC);

end
end

end
if SUB_DIVS(Y_COORD, X_COORD) == 0
SUB_DIVS(Y_COORD, X_COORD) = 1;

elseif SUB_DIVS(Y_COORD, X_COORD) ==3
SUB_DIVS(Y_COORD, X_COORD) = 2;

end
end
INFEAS_POINTER = M+l;

end

% Update CHECK_DATA to reflect newly processed points
CHECK_DATA = [FEAS_POINTER;

INFEAS_POINTER];

% Determine sub-division in which EST_VEC is located

for J = 1:Q
SD_C00RDS(J,1) = floor((EST_VEC(J,1) - MIN.VEC(J,1))/WIDTHS_VEC(J,1)) + 1;
if (SD_COORDS(J,l) < 1) | (SD_COORDS(J,l) > GRID_RES(J,1))
error ('ERROR: EST_VEC Exceeds MAXMIN_MAT Definition');

end
end
X_COORD = SD_COORDS(1,1);
if Q == 1 % Only one dimension being mapped
Y_COORD = 1;

else % Multiple dimensions being mapped
Y_COORD = 0;
for K = 2:Q % Convert multi-dimensions into 2-D

if K == 2
Y_COORD = Y_COORD + SD_COORDS(2,1);

else
INC = 1;
for L = 2:(K-l)

INC = INC * GRID_RES(L,1);
end
Y_COORD = Y_COORD + ((SD_COORDS (K, 1)-1) * INC) ;

end
end

end

a*************** ******■*********************************** + *********************

% Assess EST_VEC feasibility and assign EST_VEC's feasible code
a**

if SUB_DIVS(Y_COORD, X_COORD) == 3
DEF_FEASIBLE = 1;

else
DEF_FEASIBLE = 0;

end
FEAS_CODE = SUB_DIVS(Y_COORD, X_COORD);
FEASIBLE = [DEF_FEASIBLE;

FEAS_CODE];

127

Appendix B: Standard Genetic Algorithm Operation

This appendix provides discussion about the processes of the Standard Genetic

Algorithm (SGA). Specifically, the method by which a set of floating point variables is encoded

into a string of binary digits (which constitutes the point's genetic chromosome) is discussed.

Additionally, the inner-workings of the selection, crossover and mutation processes are

presented.

Creating the Chromosome. The SGA performs all of its survival-of-the-fittest operations

on strings of binary digits, which are analogous to genetic chromosomes. Very often in

optimization, however, the objective function requires floating point variable inputs. It is

therefore necessary for the SGA to be able to encode a set of floating point variables into a

chromosome for SGA manipulations, and then decode the chromosome back into a set of floating

point variables for evaluation in the objective function. This encoding/decoding scheme is

simply a modification of standard floating point/binary conversion that is used in all digital

processors.

In order to generate a chromosome, it is first necessary to define a numerical precision

(represented by e) to which all of the variables need to be represented. In other words, we must

set the number of decimal places that are significant in the solutions to be obtained. Say, for

example, that our optimal set of variables need only be represented to three decimal places. We

would therefore set our SGA numerical precision to £ = 10" .

Encoding a set of variables into a chromosome involves converting each individual

floating point number into a binary number (using standard digital conversion techniques) and

then concatenating each of the binary numbers sequentially to form a single string of binary

digits. For example, say that two variables, x, and x2, have values of 5.000 and 10.000,

128

respectively, and are to be converted into a chromosome with the defined working precision set

to e=10"3. To convert this (x,, x2) point into a chromosome, each variable is divided by e and the

result converted into binary.

Ä50OO Ä.OOOO
i(r3 io~3

5000 converted to binary: 10000 converted to binary:

1001110001000 10011100010000

Thus the chromosome is formed by combining the two binary numbers together:

(xu x?) => Chromosome

(5.000,10.000) => 100111000100010011100010000

During genetic algorithm operation, it is necessary to ensure that all chromosomes in a

population are the same length. For this reason, we fix the size of the chromosome to the number

of bits required to represent the largest possible values of each of the variables. Each variable

being explored by the SGA will have a user defined upper bound that the SGA will not exceed

when searching for optimal solutions. By sizing the chromosome to the largest possible variable

values, we ensure that all smaller values can also be represented in the chromosome's binary

structure. While we are sizing the chromosome to the maximum variable values, we store the

number of bits allocated to represent each variable. When decoding from the chromosome back

into floating point numbers, this will allow us to partition the chromosome bits and identify the

portions of the chromosome that correspond to the original variables (the decoding process is

presented later in this section).

129

Returning to our example, say that for this SGA optimization, the range of x; values

being searched is from 1.000 to 5.000 and the range of x2 values being searched is from 6.000 to

10.000. Thus, the maximum values of xj and x2 are 5.000 and 10.000, respectively. As was

shown in the conversion example above, the chromosome needs to contain 13 bits forx; and 14

bits for x2 (27 total bits) to represent (5.000, 10.000). Sizing the chromosome to these largest

variable values ensures that enough bits exist in the chromosome structure in order to represent

all possible values of both of these variables. When combinations of smaller values of these

variables are experienced by the SGA, leading zeros are inserted to maintain the chromosome

length. For example, when converting (1.300, 5.800) into a chromosome:

(1.300, 5.800) => Chromosome

1^ = 1300 ^ = 5800
10"3 10"3

1300 converted to binary: 5800 converted to binary:

10100010100 1011010101000

Add Leading Zeros to Maintain Chromosome Length

0010100010100 01011010101000

Thus:

(1.300,5.800) =» 001010001010001011010101000

Decoding from a chromosome back into floating point numbers is simply the reverse of

this process. Because the number of bits representing each variable are fixed and because the

chromosome has been pieced together in the same order as the original floating point variables,

we simply partition the chromosome appropriately and perform binary to floating point

130

conversion. For example, say that the SGA has created the following chromosome for evaluation

in the objective function:

011110101010001111000000100 =>(*/, JC2)

Using the known number of binary digits being used for each variable (13 bits for x, and 14 bits

for x2), we partition the chromosome and convert each section of the chromosome back into

floating point numbers:

Thus:

0111101010100 I 01111000000100

0111101010100 01111000000100

converted to decimal: converted to decimal:

3924 7684

3924 10"3 =3.924 7684 • 10"3 = 7.684

011110101010001111000000100 (3.924, 7.684)

Genetic Operations. With an understanding of how the chromosome structures are

created, we now turn our attention to the genetic operations that are used in the Standard Genetic

Algorithm. Selection, crossover and mutation are the genetic operations used to generate various

chromosome bit patterns (which correspond to points throughout the design space) and enable

the genetic algorithm to locate globally optimal solutions.

Selection. Selection is the process by which the most-fit (the best) members of a

population are chosen for mating (crossover). Selection enforces the survival-of-the-fittest

131

concept in the SGA. Once a population has been evaluated (via the objective function) for

fitness, the selection process ensures that the chromosome bit structures with the best fitness

values are used to create the next population of chromosomes. While various selection methods

exist, they all ensure that the most fit members of a population are most likely to be selected for

crossover. Often times, elitism is introduced into the selection process. Elitism is a rigid

enforcement of survival-of-the-fittest in that it does not leave selection of the most-fit population

member to chance. It guarantees that the best member of the population will be replicated into

the subsequent population and that this best member will be used for crossover with other

chromosome patterns chosen in the selection process. This process ensures that the most-fit

member of a current population is at least as fit as the most-fit member of any previous

population.

Crossover. Crossover causes new regions of the design space to be explored by

creating new chromosome structures from existing chromosome structures. Many techniques can

be used to perform crossover, but they all involve a blending of chromosome bit patterns from

two parent chromosomes (chosen during selection) to create new children chromosome patterns.

A common crossover technique is called simple crossover, which is demonstrated below.

Two parents are chosen for mating (crossover):

Parent#1 001010001010001011010101000

Parent#2 011110101010001111000000100

Both chromosomes have the same number of total bits (27 bits). A break-point is randomly

selected in the chromosome bit structure. For example, a break at bit 6 could be randomly

chosen as shown:

132

Parent #1

Parent #2

001010 001010001011010101000

oinro loioioooiiiiooooooioo

Crossover is performed by swapping the parents' bits to the right of the break-point, thus

producing two new children chromosome patterns:

produces

Parent #1

Parent #2

001010 001010001011010101000

n
011110 101010001111000000100

Child #1 001010101010001111000000100

Child #2 Olli10001010001011010101000

Looking at the parents and children in terms of the floating point coordinates that their

chromosomes represent, we see how crossover causes new regions of a design space to be

searched.

Parent #1 = (1.300, 5.800)

Parent #2 = (3.924, 7.684)

create Child #1 = (1.364, 7.684)

Child #2 = (3.860, 5.800)

Mutation. As the SGA performs selection and crossover, subsequent

populations begin to have more homogenous chromosome bit structures. This is because the best

members of a population are being selected for crossover, and after processing several

133

populations, all of the best population members will be located in the region surrounding the

current most-fit solution. In order to inhibit premature convergence to a point that may not be

the global optimum, the SGA uses mutation to introduce new chromosome patterns into the

population. This causes new points in the design space to be tested for fitness and allows the

SGA to search beyond the local optimum it has located.

A common mutation technique, known as binary mutation, causes bits in population

members' chromosome patterns to flip with some random probability. For example, given a

probability of mutation of 0.05, a chromosome undergoes mutation by picking a uniform random

number (between 0 and 1) for each bit in the chromosome. If the random number associated with

a bit is less than 0.05, then the bit is flipped form 0 to 1 or from 1 to 0. Thus, on average, about

5% of the bits will be randomly flipped via the mutation process. The mutation process is

demonstrated below:

Initial Chromosome Structure 001010001010001011010101000

Randomly select bits to mutate:

001010001010001011010101000

Final Chromosome Structure 00 0 0100010100 01 1 11010101000

Assessing the affect of this mutation in terms of floating point coordinates, we see how mutation

causes new regions of the design space to be searched:

134

Initial = (1.300, 5.800) mutates to Final = (0.276, 7.848)

135

Bibliography

Branham, Richard. United States Air Force Officer and Air Force Institute of Technology
Student, Wright-Patterson Air Force Base OH. Personal interview. May 1997.

Clark, Isobel. Practical Geostatistics. Barking, Essex, England: Elsevier Applied Science
Publishers Ltd, 1987.

Hill, Philip G. and Peterson, Carl R. Mechanics and Thermodynamics of Propulsion. Reading
MA: Addison-Wesley Publishing Company, 1970.

Isaaks, Edward H. and Srivastava, R. Mohan. An Introduction to Applied Geostatistics. New
York: Oxford University Press, 1989.

Krishnakumar, Kalmanje. "Micro-Genetic Algorithms for Stationary and Non-Stationary
Function Optimization," SPIE Vol. 1196 Intelligent Control and Adaptive Systems: 289-296
(1989).

Mattingly, Jack D. And others. Aircraft Engine Design. New York: American Institute of
Aeronautics and Astronautics, 1987.

Mattingly, Jack D. On-Design and Off-Design Aircraft Engine Cycle Analysis Programs.
Washington D.C.: American Institute of Aeronautics and Astronautics, 1990.

Mattingly, Jack D. Elements of Gas Turbine Propulsion. New York: McGraw-Hill, Inc., 1996.

Nadon, Luc J.J.P. Multidisciplinary and Multiobjective Optimization in Conceptual Design for
Mixed-Stream Turbofan Engines. MS thesis, AFIT/GAE/ENY/96D-6. School of
Engineering, Air Force Institute of Technology (AU), Wright-Patterson Air Force Base OH,
December 1996.

Pirlot, Marc. "General Local Search Methods," European Journal of Operations Research, 92:
493-511(1996).

136

Wright Laboratories. Turbine Engine Reverse Modeling Aid Program (TERMAP). Provided by
Wright Laboratories / POTA. Wright-Patterson Air Force Base OH, March 1997.

137

Vita

Captain Paul T. Millhouse was born on 4 November 1970 in Charleston, South Carolina.

He graduated from Middleton High School in 1987 and entered undergraduate studies at Auburn

University in Auburn, Alabama. He graduated with a Bachelor of Science degree in Aerospace

Engineering in August 1991. He received his commission on 31 August 1991 and entered

military service in July 1992.

His first assignment was at Falcon AFB, located in Colorado Springs, Colorado. While

there, he served as a satellite operations officer and chief of operations for the Defense Satellite

Communications System, Phase III (DSCS III) satellite program. In September; 1996, he entered

the Operations Research graduate program at the School of Engineering, Air Force Institute of

Technology. Upon completion of his Master of Science degree, he will be assigned to the

National Reconnaissance Office, located in the Washington DC. metropolitan area.

Paul was married to his wife, Kimberly B. Millhouse, in November 1991. They

currently have two children, Clayton and Cooper.

Permanent Address: 55 Mueller Drive
Charleston, SC 29407

email: pmillhouse@aol.com

138

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average i hour per response, including the time for reviewing instructions, searching existing data sources,
qathenng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway Suite 1204 Arlington, VA 22202-1302, and to the Office of Management and Budget. Paperwork Redunion Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

March 1998
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

Improving Algorithmic Efficiency Of Aircraft Engine Design
For Optimal Mission Performance

6. AUTHOR(S)

Paul T. Millhouse, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology,
2950 P Street
WPAFB OH 45433-7765

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Mr. Glenn Blevins Phone: (937)255-2121
PRTA, Bldg #18
1950 5th Street
WPAFB OH 45433

11. SUPPLEMENTARY NOTES

Lt Col Stuart Kramer

5. FUNDING NUMBERS

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GOR/ENY/98M-02

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 words)

Automated techniques for selecting jet engines that minimize overall fuel consumption for a given aircraft
mission have recently been developed. However, the current techniques lack the efficiency required by
Wright Laboratories. Two noted dependencies between turbine engine fan pressure ratio, bypass ratio, high
pressure compressor pressure ratio and overall engine mass flow allows for a reduction in the number of
independent design variables searched in the optimization process. Additionally, through the use of spatial
statistics (specifically kriging estimation), it is possible to significantly reduce the number of time-consuming
response function evaluations required to obtain an optimal combination of engine parameters. A micro-
Genetic Algorithm (uGA) is employed to perform the non-linear optimization process with these two
computation-saving techniques. Optimal engine solutions were obtained in 25% of the time required by
previous automated search algorithms.

14. SUBJECT TERMS jet Engine Optimization, Kriging, Spatial Statistics, Black-Box
Optimization, Feasible Region Estimation, Problem Dimension Reduction,
Estimation, Micro-Genetic Algorithm, Genetic Algorithm, Estimation Accuracy,
Jet Engine Component Optimization, Non-Linear Optimization. Implicit Constraints
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

L£4
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

