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Using the inverse scattering transform solution for parametric amplification, we     > 
show that the result of the interaction of a small signal pulse with an intense pump 
wave is essentially totally independent of the shape of the pump. Instead, the generated 
output is only determined by the amplitudes of the TWI-solitons contained in the 
pump. 
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1    Introduction 

A new type of soliton generated by a quadratic nonlinearity has recently been observed in 
an experiment with an synchronously pumped optical parametric oscillator [1]. Applications 
of these solitons for second harmonic generation, sum frequency generation and for all- 
optical switching have been considered in references [2] - [4]. In Ref. [3], these solitons 
were termed TWI-solitons. An analytical theory of TWI-solitons, based on the inverse 
scattering transform (1ST), was developed more then 20 years ago [5], [6], but because of the 
mathematical complexity of the required 1ST, these solitons are not familiar to the optical 
community. In this letter, we use the TWI-soliton theory to analyze the process of parametric 
amplification of ultrashort pulses, and to give a simple interpretation of the process. 

The equations describing a quadratic interaction of three waves in a nonlinear medium 

can be written as: 

dz      v\ at 

^ + 1^   =   iA3A\e^ (1) 
az      v2 at 

dA3      1 dA3 iAkz 
 1 ^r   =   iA\A2e 
az      v3 at 

where Aj are the normalized amplitudes: A, = {Ej/EQ)sJnjuJ3lnzuj, u, are the frequencies, 
Vj are the group velocities, AA; = k3 - kx - k2 is the phase velocity mismatch, and Uj are the 
refractive indexes. Eo is a normalization amplitude, defined by Eo = \fn\n2X\X2Xni/{^) , 
where xm is the coefficient of the nonlinear dielectric susceptibility. We also consider the 
pulses to be sufficiently long that all second-order dispersion effects are negligible and we also 
take the amplitudes, A,-, to be real. In this paper we treat the case where the group velocity 
of the wave with the highest frequency. v3, lies between the group velocities of the daughter 
waves, vi and v2: i>i > v3 > v2. This case, we call the FSF interaction (Fundamental - 
Sum frequency - Fundamental) interaction. (In Ref. [7], this interaction was termed the 

" soliton-decay case"). 
A consideration of the Eqs. (1) for the FSF interaction, based on 1ST [5]-[8], shows that if 

all three pulses are initially separated from each other, then under rather general conditions 
(such as the amplitude never crossing zero. etc. [7]), whenever the area under the amplitude 
curve of any of these waves is greater than TT/2, then that wave will contain solitons. In fact, 
the number, n, of solitons contained in that envelope follows directly from the area of the 

envelope: 

^ = r Aifl(t)dt = TTO + Ci (2) 
J -oo 

where \e{\ < 7r/2, A,O is the amplitude of the i-th wave and n is the number of TWI-solitons 
contained in the wave.   The quantity t{ represents the non-soliton (radiation) part of the 

area. 
We will consider only the case of parametric amplification, where in the beginning of 

the interaction, a small trigger pulse (a signal wave) at the frequency wi is placed behind 



some intense pump pulse, which is at the frequency o>3 = u>i + u2. After initialization, the 
signal wave will propagate toward the pump, will overtake it and then interact with it. Any 
time the high-frequency pump contains a soliton, it is unstable. When it decays, it emits 
exactly one soliton into each daughter wave, for each soliton in the pump. Thus each soliton 
in the pump can be thought of as a bound state of zero binding energy, and consisting of a 
signal soliton and an idler soliton, wherein the energies of each are perfectly matched. This 
matching is exactly the relation that is prescribed by the Manley-Rowe relations. When this 
exact balance is disturbed, such as a small trigger pulse overtaking the pump and interacting 
with it, a decoupling of the signal and idler solitons occurs. As a result, the pump decays 
by emitting all of its solitons into the daughter waves (idler and signal) [5], [6]. 

As it follows from (2) the area of an intense pump wave (33 >> 7r/2) will consist almost 
exclusively of the TWI-solitons. Thus we shall neglect the radiation (non-soliton) part of 
the pump (since e3 << 93), and from now on, shall assume that the pump wave consists 
only of TWI-solitons. 

In many ways, a solution of nonlinear equations using the 1ST is similar to a solution of 
the wave equation using the Fourier Transform [7]-[10]. In order to solve a linear differential 
equation using the Fourier transform, one has to decompose an arbitrary shaped wave into 
a superposition of simple plane waves. The amplitudes of such plane waves do not change 
during the propagation. Therefore the spectrum of the wave at the end of propagation is 
exactly the same as it was in the beginning. All that has changed is the phases between 
the spectral components. To solve a propagation problem, it is only necessary to take a 
superposition of the original plane waves, but with new phases as determined by the linear 
propagation. 

Analogous to the linear Fourier transform, in the nonlinear 1ST, the wave with an ar- 
bitrary shape can be represented as a nonlinear superposition of solitons with different 
amplitudes and phases. Similar to the linear case, the number of solitons does not change 
during the interaction, but their phases do. Therefore to find the shapes of the waves after 
an nonlinear interaction, one needs to construct the final envelopes, using the same solitons, 
but with the new phases which they have accrued during the nonlinear interaction. 

Let A^ be a time profile of the pump before the interaction (index V here stands for 
'initial'). Let us also suppose that the pump initially consist of n TWI-solitons with the 
amplitudes 2m and the phases D{. Because of the nonlinear nature of the three-wave inter- 
action, a nonlinear superposition can not be obtained merely by adding together all solitons 
contained in the pump. For the TWI interaction, the law of superposition of n TWI-solitons 
is given by what is called the n-soliton formula. For TWI-solitons, this is [7]: 

4Ht) = 2J2Dj expl-fo + vu)t]{I + N)£ (3) 
j,k=i 

where / is the identity matrix and the matrix N is given by 

fc,i Vk+Vj 



In (3) the negative power denotes the inverse matrix, and 2r)i are the amplitudes of the 
solitons contained in the pump. As can be seen from (3) and (4), the result of a nonlinear 
superposition of n TWI-solitons depends not only on the amplitudes of solitons 2^, but also 
on their phases, Df. (Strictly speaking, the coefficients Dj are not the phases, but they are 
functions of the phases. Still, we shall refer to them loosely as the "phases".) 

When the TWI-solitons are far apart from each other, the coefficients A have a simple 
physical meaning: they determine the positions and phases of the TWI-solitons. To under- 
stand this, let us consider a simple case when the pump contains only one soliton. For ra=l, 
(3) and (4) give: 

A^(t) = 2rhsgn{D1)sech[2r}i(t -10)\ (5) 

where t0 = ln(|Di|/2r/i)/2?71.   As can be seen from (5), t0 gives the position of the center 
of the soliton with respect to the origin. However this simple physical interpretation of the 
phases Dt is legitimate only when the solitons are well-separated from each other.  When 
the solitons are too close to each other and overlap, then it does not make sense to assign 
a position to each individual soliton within the group, since the individual solitons' shapes 
merge and " mix". 

Let us suppose that initially there were only the pump and a small signal wave, and that 
the idler wave is absent before the interaction.   During the interaction, all solitons in the 
pump, will transform into idler and signal wave solitons [5], [6]. The number of solitons in 
each of these waves will therefore be equal to the number of solitons initially contained in 
the pump.  However the phases of each soliton will be changed by the interaction.   (If the 
phases did not change, the shapes of the signal and idler waves on the output would exactly 
repeat the shape of the pump before the interaction).  The final phases in these envelopes 
can be easily obtained using the analytical theory in Ref.   [7].   For the initial conditions 
considered above, after some algebra, one obtains the following expression for the phases 
D[f)k (the index '/' stands here for 'final') of the k - th soliton in the signal wave after the 
interaction: 

)(/) _ 2pi(7?fc)o7?fc ^ f9r^] ^ 
2^ 

The index T here corresponds to the signal wave, a = {vi-v3)/(vi~v2), 2r]k is the amplitude 
of the k - th soliton in the signal pulse (which is a times the corresponding amplitude in 
the pump), p{r)k) is the reflection coefficient of the 1ST theory for the initial signal wave, 
and T)j are the r)'s that were initially in the pump pulse. When the intensity of the signal 
pulse is small initially, then we have p(j)k) ~ /f^, Alfi(t)exp(2r]kt)dt, where Ah0 is the initial 
amplitude of the small signal wave, and provided the integral makes sense. 

Formula (6) shows a remarkable quality of the soliton interaction: the final phases, Dlk, 
depends only on the initial soliton content of the pump and do not depend on the initial 
phases between the solitons in the pump D^k. This means that the result of the nonlinear 
interaction does not depend on the exact pump shape, but depends only on the soliton 
content of the pump. An illustration of this fact, obtained by a numerical calculation of the 
system (1), is given in Fig 1. The first three pictures in this figure show the shape of the large 



pump and the small signal pulses before the interaction. Although the shapes of the pump 
pulses in Fig 1 (a,b, and c) are very different, they all contain exactly two TWI-solitons, with 
r/'s, 771 = 1 and ry2 = 2.7. Because of the identical soliton content, all three waves in Fig 1 
(a,b,c) have the same energy and the same area under the amplitude curve. The expression 
(6) predicts that the output for the signal wave will be exactly the same for all three cases. 
The numerical computations are in complete agreement with this conclusion: the output for 
all three processes is shown in the Fig 1 (d), which consists of only one of the results, with 
the other two being so close to this one, that no differences in the graphs could be seen. As 
can be seen from this picture, the two solitons which initially belonged to the pump finally 

moved to the signal and idler envelopes. 
Let us consider the following physical consequence of (6). The sign of this expression 

is determined by the product in the denominator. Without loss of generality, we can take 
rjj < r)j+i. For the largest soliton, this product is positive. After that, Dljfc will change 
sign every time j is increased by one. Now, according to (5), this means that the largest 
TWI-soliton in the signal wave will have a positive phase, the next TWI-soliton will have a 
negative phase, and the sign will change from one soliton to another, as one can clearly see 
in the example of the numerical calculations for two TWI-solitons in Fig 1 (d). 

There are further physical consequences of (6). Consider the position of each TWI-soliton 

in the output pulse. We can estimate those by taking the logarithm of DQ and dividing the 

result by 2r)k. 
£+ln|(r!i)+ (7) 

v\ 277k 

where in Q(r]k), we have collected all the terms which depend only on 77* in a nonsingular 
fashion. The first term in this expression shows that all TWI-solitons in the final signal 
envelope move with the same speed t^. The second term in (7) shows how much this TWI- 
soliton will be delayed by the nonlinear interaction, this term will be negative for small Ah0- 
The smaller the trigger pulse, the longer the delay. The small solitons corresponding to the 
smaller 77k experience the larger delays. Therefore, the smaller the amplitude of the signal 
wave, the farther apart from each other will be TWI-solitons in the output signal wave. 

In conclusion, using an analogy between the nonlinear 1ST and linear Fourier transform, 
we represent an intense pump pulse as a nonlinear superposition of the TWI-solitons. We 
have shown that the result of the process of parametric amplification of the small signal 
wave by the intense pump does not depend on the shape of the pump. The resulting train of 
TWI-solitons in the output signal wave is determined only by the number and the intensity 
of the TWI-solitons initially contained in the pump. Simple calculations show that the 
separation between the emerging solitons become larger when the intensity of the trigger 
pulse is small. The numerical calculations are in a remarkably excellent agreement with the 

analytical theory. 
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3 Figure captions 

1. Figure 1. Numerical verification of analytical calculations. Pictures (a,b,c) represent a 
temporal distribution of the pump wave calculated using (5). Each pulse contains exactly 
two TWI-solitons with the amplitudes rji = 2.7 and TJ2 = 1, but taken with different phases: 
DX=2,D2 = \ (a), A = 5, D2 = 1 (b), Dx = -3, D2 = 1 (c). The output of the nonlinear 
interaction for all three cases is given in the Figl(d): the signal wave is on the left and the 
idler wave is on the right. Both TWI-solitons, initially contained in the pump, now belong to 
the signal and idler waves. Since the pump did not contain any radiation, it has completely 
disappeared by the end of the interaction. 
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