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Using the complex Toda chain (CTC) as a model for the propagation of the rV-soliton pulse trains 
of the nonlinear Schrödinger (NLS) equation, we can predict the stability and the asymptotic behav- 
ior of these trains. We show that the following asymptotic regimes are stable: (i) asymptotically free 
propagation of all TV solitons; (ii) bound state regime where the N solitons move quasi-equidistantly; 
and (iii) various different combinations of (i) and (ii). On the example of N = 3 we show how the 
CTC model can be used to determine analytically the set of initial soliton parameters corresponding 
to regime (ii). We compare these analytical results against the corresponding numerical solutions 
of the NLS and find excellent agreement in most cases. We concentrate on the quasi-equidistant 
propagation of all N solitons because it is of importance for optical fiber soliton communication. 
We check numerically that such propagation takes place for N = 2 to 8. Finally we propose realistic 
configurations for the sets of the amplitudes, for which the trains show quasi-equidistant behavior 
to very large run lengths. 
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I. INTRODUCTION 

One of the important problems in optical fiber soliton 
communication is to achieve as high of a bit rate as pos- 
sible. In order to do this, one needs to be able to pack 
the solitons into as short of a space as possible. However, 
if the solitons are too close together, then their mutual 
(linear and nonlinear) interactions can cause them to col- 
lide and/or separate, thereby corrupting the signal. The 
current solution of this problem is simply to require each 
soliton to be sufficiently far apart from all others (usu- 
ally 6 or so soliton widths) so that such interactions can 
be totally neglected. However, at the same time, it was 
predicted [1,2] and experimentally confirmed [3] that for 
certain values of relative soliton parameters, this separa- 
tion can be reduced, and at the same time, still maintain 
signal integrity. Our main purpose here is to analytically 
and numerically detail the soliton parameter regime, in- 
side of which, signal integrity can be maintained. In par- 
ticular, we are interested to determine how one may use 
this inter-soliton interaction for stabilizing a soliton train. 

Any communication signal will be composed of "ran- 
dom" combinations of O's and l's. It can also be viewed 
as being composed of a random collection of N-soliton 
trains, with varying widths of O's between them. Thus it 
is then adequate for us to simply analyze the stability of 
individual N-soliton trains, for finite N. This we will do 
and will study a nonperiodic and finite train (chain) of 
soliton pulses by both analytical and numerical methods 
using and developing the ideas in [4,5]. 

The basic model and description of JV-soliton trains in 
optical fibers is provided by the nonlinear Schrödinger 
(NLS) equation and its perturbed version: 

iut + -uxx + \u\2u(x, t) = iR[u}. (1) 

This equation describes a variety of wave interactions, 
including solitons in nonlinear fiber optics [1,6-11] and 
spatial solitons in nonlinear refractive media [9]. 

The inverse scattering method [6] allows one to solve 
exactly Eq. (1) when R[u] = 0 and to calculate explicitly 
its AT-soliton solutions. However for our purposes, this 
method is impractical for two reasons. First, there are 
important perturbations of this system which have no 
explicit solutions. Second, an approximate method can 
serve much better than an exact approach since the N- 
soliton trains here are rather special and can only be 
approximated by iV-soliton solutions. Such trains are 
actually sums of 1-soliton pulses, which are spaced almost 
equally apart, have almost equal amplitudes, and move 
with essentially the same velocity. More specifically, they 
are the solutions to Eq. (1) with R[u] = 0 satisfying the 
following initial conditions: 

N 

u(x,Q) = J2 
2i/fcei<**'o(x) 

^cosh(2ffc(o;-^fc)o)' 
(2) 

where 0k.o(x) = 2Mo(3"-£fc.o) + <5fc.o> and <5fc.o- sfc.o- 2i^.o. 
and 2/ifc.o are the initial phase, position, amplitude and 
velocity' respectively of the fc-th soliton: by 2VQ and 2^o 
we mean the averages of the initial amplitudes and ve- 
locities. 

An effective method for studying the interaction of 
such trains of soliton pulses was first proposed by Karp- 
man and Solov'ev (KS), for the simplest nontrivial case 
of a 2-soliton interaction [12]. For further developments 
and analysis for different physically important perturba- 
tions can be found in [13,14] and the references therein; 
for a review see Ref. [7]. The KS method is based on 
the adiabatic approximation. It is valid for any collec- 
tion of well separated solitons, such that their mutual 
interactions will lead to a slow deformation in the soliton 
parameters. As a result the soliton interactions should 
be described by a dynamical system for £t, Vt, Mt and <5t. 

Gorshkov [15] and Arnold [16], have conjectured that 
an infinite train of out-of-phase soliton pulses, with equal 
amplitudes and velocities could be described by the real 
Toda chain: 

dr2 
p9*+i-9fc Dg*-9ic-i (3) 

where r = 4v0t, k — 0, ±1, ±2,... and qk are real func- 
tions related to the soliton positions. This system will 
be referred to as the real Toda chain (RTC). The valid- 
ity of this description for finite number of solitons (see 
also below) has been verified also numerically [17]. 

Recently in Refs. [4,5,17], the Karpman-Solov'ev 
method was extended to ./V-soliton pulses, and then with 
additional approximations, was reduced to the complex 
Toda chain equations (CTC) (3) with N sites. The cor- 
responding system of equations is (3), but with k = 
1,..., N and e~qo = e9"+1 = 0. The complex valued 
functions qk(t) are related to the soliton parameters by: 

Qk+i - 9fc = -2^ofe+i - &) +1«4^ 
+ i (TT + 2jio(£fc+i - &) - (4+1 - <5fc)) ■    (4) 

Thus the problem of determining the evolution of an NLS 
iV-soliton train has been reduced to the problem of solv- 
ing the CTC for N sites. CTC, like RTC is integrable 
and we may use the special techniques valid for integrable 
lattices, see [18-20]. 

Our main results are the following: 
(i) we show by analyzing the exact analytic solutions of 

CTC, that it has several qualitatively different classes of 
asymptotic regimes. Besides the asymptotically free mo- 
tion (which is the only one possible for the RTC [19,20]), 
CTC allows also for: (a) bound state regime when all 
the N particles move quasi-equidistantly; (b) all possi- 
ble intermediate regimes when one (or several) group(s) 
of particles form bound state(s) and the rest of them 
go into free motion asymptotics. In addition to these 
relatively stable regimes of motion there are also less sta- 
ble regions in the space of soliton parameters, where one 
regime switches into another one.   There one can find 



(c) singular solutions, and (d) various types of degener- 
ate solutions. 

(ii) we compare the predictions from the CTC model 
with the numerical solutions of the NLS, that bound 
states regimes indeed take place in the soliton interac- 
tions and are very well described by the CTC model. 
Our analytic approach allows us to predict the set of 
initial parameters, for which these asymptotic regimes 
takes place. We put special stress on the bound state 
and quasi-equidistant regimes since such solutions would 
be the desirable in long range fiber optics communica- 
tions. 

n. ASYMPTOTIC REGIMES OF THE CTC 

As in [4,5], one can generalize the RTC [18-20] to the 
complex CTC case. We list the four most important 
points concerning this below: 

Si) The CTC Lax representation is the same as for the 

RTC: L = [B, L\, where 

N 

L = 2J (bkEkk + ak(Ek,k+i + Ek+i,k)), (5) 
fc=i 

Here afc = ^qk+1~^)/2 and bk = %(pk + ivk)- The 
matrices (Ekn)pq = ^kp^nq, and (Ekn)pq = 0 whenever p 
or q becomes 0 or N + 1. 

52) The integrals of motion in involution are provided 
by the eigenvalues, £&, of Lo — L(r = 0). 

53) The solutions of both the CTC and the RTC are 
determined by the scattering data SL0 of Lo- If Cfc 7^ Cj 
for k ^ j, then SL0 = {Cfc>rfc}fcLi- Here rk are the first 
components of the corresponding eigenvectors f(fe) of Lo, 
which are fixed (up to an overall sign) by the condition 

Y^=\ (dfc)) = !> [see (19>2°]]- SL0 uniquely determines 

both Lo and the solution of the CTC. 
54) Lastly, Cfc uniquely determine the asymptotic be- 

havior of the solutions of the CTC and can be calculated 
from the initial conditions. We will use this fact to de- 
scribe the different classes of asymptotic behavior. 

In addition to the dynamical variables becoming com- 
plex valued, there are other, important differences be- 
tween the RTC and CTC, and their properties. For the 
RTC, one has that [19,20], both the eigenvalues, Cfc> and 
the coefficients, rk, are always real-valued. Moreover, 
one can prove that £fc ^ £,- for k ^ j. As a consequence 
the only possible asymptotic behavior in the RTC is an 
asymptotically separating, free motion of the solitons. 

For CTC not only the dynamical variables qk, but also 
Cfc = Kfc + iilk and rk take complex values. The collec- 
tion of eigenvalues, £k. still determines the asymptotic 
behavior of the solitons. In particular, it is Kk that de- 
termines the asymptotic velocity of the fc-th soliton. For 
simplicity and without loss of generality we assume that: 
trLo = 0; Cfc 7^ Cj f°r ^ ¥" J (this does not necessarily 

mean that Kk ^ Kj); and that the ecfc's are ordered as: 
«1 < K2 < ■ • ■ < KN- Then in any train of solitons. there 
are three possible general configurations: 

Dl) Kit 7^ Kj f°r k ^ j, i.e. the asymptotic velocities 
are all different. Then we have asymptotically separating, 
free solitons, see [4,5] 

D2) KI = K2 = ■ ■ ■ = KN, i.e. all N solitons will move 
with the same mean asymptotic velocity, and therefore 
will form a "bound state". The key question now will be 
the nature of the internal motions in such a bound state. 
In particular, one would want any two adjacent solitons 
to move quasi-equidistantly. 

D3) One may have also a variety of intermediate situa- 
tions when only one group (or several groups) of particles 
move with the same mean asymptotic velocity; then they 
would form one (or several) bound state(s) and the rest 
of the particles will have free asymptotic motion. 

Obviously the cases D2) and D3) have no analogies in 
the RTC and physically are qualitatively different from 
Dl). The same is also true for the special degenerate 
cases, where two or more of the Ot's may become equal. 
These cases will be considered elsewhere. Another type 
of solutions of the CTC which should be dealt with sep- 
arately are the singular solutions, see e.g. [22]. 

We will say that the motion is "quasi-equidistant" if 
AjCl, where 

Ak = (max(£fc+i - &) - min(^+i - &)) /r0,       (6) 

then the solitons will not asymptotically separate, but 
instead will slowly oscillate with some small amplitude. 

i,From here on, we will denote the various sets of ini- 
tial conditions for the AT-soliton trains by quadruplets 
AT|r0|A|Ph, where N is the number of pulses, r0 is the 
distance between neighboring pulses and A and Ph stand 
for the configuration of initial amplitudes and phases re- 
spectively. In our runs, listed in the tables, the pulses are 
initially equidistant (i.e. ffc+1,0 — £fc,o = ro — 8, which 
corresponds to 4 pulsewidths), and the initial velocities, 
2/ifco are all vanishing. We use here several configurations 
of amplitudes: 

Ai: the amplitudes are monotonic, i.e. AMD = Vk+1,0 — 
vk,o = 2di and such that the average amplitude equals 
2uo\ this we denote by the number 2Aiv0.102; 

A2: configurations with two different alternating am- 
plitudes Vifi, 1^,0, 1^1,0, • • •; 

A.3(4): configurations with three (or four) different al- 
ternating amplitudes 1/1,0, • • •, i/3(4);o) ^1,0 • • •; these we 
denote by "3sw" (or "4sw") assuming that 1/1,0 is the 
smallest one. 

in. THE SOLITON BOUND STATES 

A. Analytical results 

For the sake of brevity we present here some of the 
analytical results only for N = 3; it is possible to extend 



these results to any N. 
We assume that Y2l=\<lk(T) = °- ue- tne center of 

mass is fixed at the origin. This is compatible with 
trLo = 0. The initial soliton parameters determine 
LQ through (4) and (5) and the regimes of propagation 
are determined by the eigenvalues of Lo- In particular, 
the three solitons form a bound state if the eigenvalues 
tjfc = ir\k are purely imaginary. 

The explicit analytic solution to the N = 3 CTC is 
well known [19,20]. Choosing the "symmetric" one for 
which 92 = 0. <}i = -<?3 and £fc = (2 - fc)"7i we find that 
it is periodic with period Tjf = ir/QvovT) where 

2ijjt = ^J(Avo)2 ± (Ai/cr,3)
2 (7) 

Afcr,3 = 2v/2eo and e0 = uoe~Varo. The choices for the 
soliton parameters here are Ai and Ph = {0,62,0,0}, 
and the signs plus and minus correspond to 62,0 = 0 and 
52 0 = 7T respectively. For this solution we find 

^=^ = ±2^ln ~2      ' 
"■0 

(8) 

where ZQ = \Avo\/Avcttz- Note that similar results for 
Af hold also for the N = 2 case with the only difference 
being that Ai/cr,3 should be replaced by 4eo- The motion 
will be quasi-equidistant if Af <C 1. The formulas (8) 
show that the increase of |A^o| diminishes Af. Another 
way to diminish Ai for fixed Auo and ro, is to increase 
the average amplitude i/o- 

The singular behavior of Af for AI/Q —* 0 corresponds 
to a singular solution of the CTC; the numeric solution 
of the NLS shows that the solitons do not collide, but do 
come rather close to each other at the values of t where 
the CTC solution develop singularities. We will come 
back to this question in Subsection III.B below. 

On the other hand the singularity of A~[ for AVQ = 
Ai/cr,3 corresponds to the fact that at this critical point 
the quasi-equidistant regime switches over into the free 
motion regime. Indeed, as we will see below, for Ai^o < 
AvCI 3 we have regime (i) and the distance between the 
solitons grows infinitely, while for Ai/o > Afcr>3 we get 
regime (ii) and a possible quasi-equidistant behavior. 

Let us now describe the particular choices of the soliton 
parameters, which lead to the regimes described above. 
Such analysis must be based on the solution of the char- 
acteristic equation for Z-o, which for N = 3 with tr Lo = 0 
and generic choice for A and Ph is: 

C
3
 + CP + <7 = O, 

P=^K + d2 + d3)_a?_a2' 

q = - (a?d3 + ajdi) + 
64 

did^dz, 

(9a) 

(9b) 

(9c) 

where dk = 2(i/fc,0 - v0), and a\ = -e0e,<4-'-'1 '*■'". 
Now we can use Cardano formulas to evaluate the roots 
i,"fc which determine the asymptotic regime predicted by 
CTC. For brevity and simplicity we limit ourselves to 
two special choices of the initial amplitudes. Skipping 
the details, we find that the bound state regime occurs 
for each of the following choices of the soliton parameters. 

Case Ai. 
ii.a) Ph = {0,0.0} and |Ai/0| > 0: 
ii.b) Ph = {0,±7r.0} and \Av0\ > 2%/2e0 = At/cr.3; 
ii.c) Ph = {0,6o,6o) and Ph = {0,0.60} where 60 = 

±7T and |Az/0| > 2 • 33/4e0; 
Case A2. 
ii.d) Ph = {0,0,0} and \Av0\ > 0; 
ii.e) Ph = {0,±TT,0} and \Av0\ > 4v

/2£0; 
ii.f) Ph = {0,62,0,0} and |A^0| > 0 if cos62,0 > 0; 

if cos 62,0  < 0 then the bound state regime holds for 

|Afo| > 4^/—2cos 62,060; 
As one may expect the asymptotic behavior depends 

very much on the initial choice of phases. Thus in the 
cases ii.a) and ii.d) the bound state regime is obtained 
for any value of Ai^o, while in all other cases this regime 
is entered only if \Ai/o\ is larger than some critical value, 
which of course, depends on the initial parameters, com- 
pare e.g. ii.b), i.c), ii.e) and ii.f). 

B. Comparison Between CTC and NLS 

In this subsection we compare the analytical results 
obtained above with the numerical solutions of the un- 
perturbed NLS (R[u] = 0) (1) with initial conditions (2). 

In tables I, II and III we list the values of max-A/t 
obtained from the numerical solution of the NLS equation 
with the corresponding CTC solution. It is seen that the 
agreement is very good and improves with the increasing 
of Ai^o and ro. In addition we show that max^fc (6) 
indeed has very low values, which is a reason to call such 
regime quasi-equidistant. 

We find an excellent match between CTC and NLS for 
the description of all soliton parameters in most cases. 
The exceptions in this respect happen for those sets of 
soliton parameters at which: a) CTC has singular or de- 
generate solutions and b) transition from one regime to 
another takes place. The choice of Ai with Av0 = 0 and 
6fc,o = 0 leads to singular solution of CTC for any N. On 
the other hand the NLS solutions are always analytic and 
never have singularities. Our numerical checks show that 
such sets of initial conditions correspond either to solitons 
collisions or soliton coalescence depending on the value 
of ro. In the regions where this happens, the adiabatic 
approximation is no longer valid and the CTC does not 
match with the numeric solutions. For N = 3 and ro = 8 
the first coalescence takes place at tx ~ (T3"/2)|AI/0=O 

and the next ones tend to repeat periodically with pe- 
riod very close to T3

+
|AI/0=O (7). The quasi-equidistant 

propagation of the solitons is maintained for t < 0.9f 1. 



For 2Afo > 0.1 we see that in the quasi-equidistant 
regime the soliton positions display periodic behavior 
with small periods (much less than ti) and with small 
amplitudes of oscillations given by Ak. In several occa- 
sions we extended the runs to lengths of t = 600 and 996 
getting the same type of behavior and the same results 
for Ak- Thus we conclude that these sets of initial pa- 
rameters lead to a very stable behavior. In particular, 
for Ai configurations with 2A^o — 0.2 and TQ = 8 we 
have an equidistant behavior with an error Ak )$ 10%. 

The bound state regime is characteristic for Ai trains 
with any N. However the Ai configurations become im- 
practical if one needs a very long sequences of bytes all 
equal to one. so we should explore other possibilities. 

One of them is to use a soliton train of in-phase 
solitons, with A2 amplitude configurations [2], where 
2v\ = 21/3 = 1.0, 2v2 — 2^4 = 1.25 and the run length 
is about 140. This idea was verified experimentally by 
[3] where 20 Gbit/s single channel soliton transmission 
over 11 500 km using alternating amplitude solitons was 
reported. To check and develop this idea we did a se- 
ries of runs of N in-phase soliton trains with A2, A3 
and A4 amplitude configurations with TV = 3 to 8, see 
Tables II and III. For the A2 and A3 configurations we 
find that the quasi-equidistant propagation takes place 
for t < 0.9Tqed with T™Jf ~ 250. For larger values of 
t some of the solitons come rather close to each other. 
CTC also predicts the same type of behavior but with 
larger value for TSj£c ~ 460. This is the reason why in 
Table II the numerical data from NLS shows non equidis- 
tant propagation when considered for run length 300. We 
extended some of these runs to lengths of 600 and 996. 
The results for N = 3 show a structure close to a peri- 
odic one with a period of about 2Ti^js. So if the goal 
is to achieve a quasi-equidistant propagation to lengths 
t < Tf^f then such configurations can be used. 

For larger run lengths other configurations must be 
used, see also [1]. The next possibility which we explored 
is the A4 configurations of soliton amplitudes. The re- 
sults are collected in Table III for N = 4 to 8. We see a 
substantially different picture. Both the NLS and CTC 
show a quasi-equidistant behavior with the same small 
values of Ak like in the last column of Table III to run 
lengths of 1200; for the CTC this behavior persists even 
to lengths of 12000. 

soliton trains with Ai^o large enough; b) increasing the 
value 2^o of the average amplitude: and c) increasing the 
distance ro between the neighboring solitons. 

The critical values of the soliton parameters, for which 
one regime switches over to another one have been eval- 
uated. We find that near these critical values, the match 
between CTC and NLS becomes worse, as expected. 

The CTC-model provides one with a tool for construct- 
ing sets of initial data for the AT-soliton trains which 
will possess a given asymptotic trait, determined by the 
eigenvalues ^ of Lo- 

The monotonically increasing amplitudes cannot be 
used in case one needs trains with larger number of soli- 
tons. That is why we investigated A2, A3 and A4 ampli- 
tude configurations, for which the propagation is quasi- 
equidistant. We find that the A2 and A3 amplitudes con- 
figurations may provide quasi-equidistant propagation to 
run lengths of the order of T^s. The A4 configurations 
with four different amplitudes show quasi-equidistant be- 
havior to much larger run lengths. 
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IV. CONCLUSIONS 

A method for the description of the asymptotic behav- 
ior of the AT-soliton pulse trains of the NLS equation is 
proposed, based on the CTC model for the soliton inter- 
action. It describes correctly several qualitatively differ- 
ent classes of asymptotic regimes. Several sets of soliton 
parameters have been described for which the propaga- 
tion is quasi-equidistant. Such behavior with a conve- 
niently low value for Ak can be achieved by: a) taking 
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3|8|sl|0 3|8|ls|0 4|8|sl|0 

0.62 0.08 0.012 0.026 0.42 0.07* 

4|8|ls|0 5|8|sl|0 5|811s|0 

0.42 0.078 0.23 0.058 0.59 0.031 

6|8|sl|0 6|8|ls|0 7|8|sl|0 

0.27 0.039 0.28 0.039 0.26 0.073 

7]8|ls[0 8|8|sl|0 8|8|ls|0 

0.27 0.035 0.25 0.04 0.31 0.04 

TABLE HI. The 
value of ma.-x.Ak from NLS and CTC for r0 = 8 and A3, 
and A4 configurations: 3sw — {0.85,1.00,1.15,0.85,...} and 
4sw — {0.85,1.00,1.15,1.30,0.85,...}. Run lengths equal 
1200. 

NLS           CTC NLS           CTC NLS          CTC 

4|8|3sw|0 5|8|3sw|0 5|8|4sw|0 

0.19            0.07 0.47           0.07 0.06           0.04 

6|8|3sw|0 6|8|4sw|0 7|8|3sw|0 

0.46            0.20 0.10           0.04 0.79           0.44 

7|8|4sw|0 8|8|3sw|0 8|8|4sw|0 

0.09            0.04 0.84            0.33 0.09           0.03 

TABLE I.  The value of maxAt from NLS and CTC for 
r0 = 8 and Ai configuration. Run lengths equal 300.  

NLS CTC 
2|8|10|0 

0.055 0.054 
3]8|10|0 

0.099 0.03 
4|8|10|0 

0.14 0.13 
5|8|10|0 

0.20 0.09 

NLS CTC 
2|8|15|0 

0.029 0.026 
3 8|15)0 

0.053 0.014 
4|811510 

0.085 0.051 

0.13 
8|15|0 

0.026 

NLS CTC 
2|8|20|0 

0.019 0.016 
318|20|0 

0.031 0.008 
4|8|20]0 

0.064 0.026 
8|20|0 

0.11 0.019 


