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Abstract 

We develop a perturbation theory for the Benjamin-Ono (BO) equation. This perturbation theory is 
based on the Inverse Scattering Transform for the BO equation, which was originally developed by Fokas 
and Ablowitz and recently refined by Kaup and Matsuno. We find the expressions for the variations 
of the scattering data with respect to the potential, as well as the dual expression for the variation of 
the potential in terms of the variations of the scattering data. This allows us to introduce the squared 
eigenfunctions for the BO equation, whose completeness and orthogonality in both x- and A-spaces 
we also establish. We consider the two most important applications of the developed machinery. First, 
we present an explicit first-order solution of the BO equation driven by a small perturbation. Second, 
we introduce the Poisson bracket and a set of the canonical action-angle variables for the BO equation, 
and thus demonstrate its complete integrability as a Hamiltonian dynamical system. 
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1 Introduction 

In this paper, we develop a perturbation theory for the Benjamin-Ono (BO) equation   1;: 

ut + 2uux + Huxx = 0        Hv(x) = -P r P^-dZ (1.1) 

where P stands for a principal value, and the background solution u(x) is assumed to vanish at infinity. 
We also assume that u(x) and its variation. Su(x), are real functions, and that they and all their 
derivatives are smooth and decay sufficiently rapidly as ixj -*■ oc. This problem has previously been 
addressed in a number of studies. As early as in 1980, Chen and Kaup [2] have found a general solution 
of the BO linearized on the background of an exact 1-soliton solution. Later on. Matsuno has developed 
a multi-soliton perturbation theory [3] which, however, did not allow one to compute the radiation 
emitted by the soliton. Very recently, Matsuno and Kaup have found [4] a general solution of the BO 
linearized about an JV-soliton solution, thus generalizing the result of [2] and overcoming the limitations 
of [3]. The common feature of all these works was that the solution of the linearized BO was found 
without an explicit recourse to the exact integrability of the BO by the Inverse Scattering Transform 

(1ST). 
In the present paper, we develop the perturbation theory for the BO based on the 1ST formalism, 

which was developed in Ref. [5]. According to [5], u{x) is the potential in the scattering problem for the 
corresponding operator in the Lax pair. We will also use refined information about the scattering data 
and their asymptotics as A ->■ 0, that was recently obtained in Refs. [6, 7]. Of course, for any initial 
AT-soliton solution, the results of our perturbation theory will agree completely with those of Ref. [4], 
obtained by algebraic means. 

The plan of this paper is as follows. After a summary of relevant results from earlier works [5, 7, 8], 
presented in Section 2, we obtain the variational derivatives of the scattering data: 

6u 5u 8u 

where /3(A) is the reflection coefficient, \j is the discrete eigenvalue, and y, is the normalization constant. 
This is done in Section 3. Then, in Section 4, we obtain the equation for Su{x) and deduce from it the 
completeness relation for the "squared eigenfunctions" (SE). Also in Section 4, we produce an expansion 
of the potential u(x) over the complete set of SE and demonstrate that the SE solve the direct and adjoint 
linearized BO. In Section 5, we first present, and then give a direct proof of, the orthogonality relation 
satisfied by the SE. In Section 6, we present the explicit first-order solution for the BO with an arbitrary 
perturbation, and then further specify the form of that solution, when the background solution of Eq. 
(1.1) is a single soliton. In Section 7, we introduce the Poisson brackets for the BO equation and hence 
prove its integrability as a Hamiltonian system. Finally, in Section 8, we summarize the results obtained 
and discuss the similarities of the perturbation theory for the BO with the perturbation theories for 
other integrable 1-1-1 and 2 + 1 evolution equations. 

2 Background 

The i-operator of the Lax pair for the BO is (see [5] and references therein): 

i(f>t + \(<fi+ - 4>~) = -u<t>+ . (2.1) 

Here <j>+ and <p~ are functions analytic in the upper and lower halves of the complex i-plane (in what 
follows referred to as i-UHP and z-LHP), respectively, and u(x) is the solution of (1.1). There are two 
solutions of (2.1), specified by their asymptotics at, say, i -*■ +oo: 

N(x, A) -> eiXx       x ->+oo (2-2) 



N(x.\) — I        x —► —oc 12.31 

They both are analytic functions in the x-UHP (i.e.  they correspond to o~ in !2.1)1.  These functions 
can be shown i5l to satisfy the following respective homogeneous and nonhomogeneous equations: 

Nx - iXN = iP~{uN)        (A > 0 and real) 12.4) 

~X~X - iXN = iP~(uX) - iX        (A arbitrary; i2.5'i 

where P~ are the projection operators defined by 

■ay        t = -t-U. 
2m J-oc y - (x ± it 

For A > 0, they also satisfy [5] Fredholm integral equations of the same kernel, but with different 
inhomogeneous terms: 

N{x, A) = elXx + /     G-(x,y,\)u{y)N(y,\)dy (2.6) 
J -OO -oo 

r-OO 

N(x, A) = 1 + f°° G_(x, y, \)u(y)N{y, X)dy (2.7) 
7-00 

where ., 
I      roo ei(i-y)p 

G_(x,y,A) = G(x,y,A-ie)        G(x,y,A) = — /      -dp. (2.8) 

Obviously, the function G(x,y,A), as a function of A, is analytic in the entire A-plane except for the 
positive semi-axis A > 0. Therefore, in [8] we were able to define a function W(x,X) satisfying the 
Fredholm equation: 

W (x,A) = l+ f° G(x,y,X)u(y)W(y,X)dy        (A£[0,oo)). (2.9) 
J -oo 

Since G(x,y,A) is analytic in A away from A > 0, then by Fredholm theory, the function W{x,X) 
is analytic in the entire A-plane except for (i) the positive semi-axis and (ii) isolated points where 
homogeneous solutions of (2.9) exist. Then, 7J(x, A) is the boundary value of this function from below: 
N(x,X > 0) = W(x,X - it). In fact, in [5] there was defined and used yet another solution of (2.5), 
M(x, A), which was the boundary value of W{x,\) from above: M(x, A > 0) = W{x, A + it) (cf. also 
Fig. 1). Obviously, M(x,A) satisfies the equation of the form of (2.7), with G_ being replaced by 
G+(x,y,A) = G(x,y,A + ie). Since G(x,y, A) is analytic in x in the x-UHP, then M(x,A) is also analytic 
in that domain. 

From the definitions of M and N, the following relation can be easily obtained [5]: 

M = N + ß{X)N       (A>0) (2.10) 

where /3(A) is the reflection coefficient given by 

/3(A) = i r u(y)M(y, \)e-
iXydy. (2.11) 

J -oo 

In (2.10) and below, we will omit the arguments of functions when they are obvious. From Eqs. (2.2), 
(2.3), and (2.10) one finds the asymptotics of M as x ->■ +00: 

M->l+/3eiAx (x^+00    A>0). (2.12) 

The asymptotics of N, N, and Mati-> -00 axe [5, 7]: 

N->r-1(A)e,Al x^-00 (2.13) 



.V - 1 - j(A)r-1(A)e'Ar        x oc 2.14! 

M — 1 x :c 2.15' 

I   I    fx j(A')J-|A'WA'\ ,, 

In Section 3 we will need asymptotics for .V when i - x and r is in the UHP. This follows from 
the integral equation 12.6) and the asymptotic form of G(x.y.X) as 'x\ — oc: 

^■»■*' = ds;-0(?)- 
Substituting Eq. (2.17) into Eq. (2.6) and using Eqs. (2.34) and (2.35) below, one obtains: 

.V(x,A)^f(A)e^-|^-0(^) A>0. (2.18) 

Here f(A) = 1 for x -> ^oo, f(A) - IT"1 (A) for x -» -oo. and for Imx ->• +oo the value of f is 
unimportant since the corresponding term in (2.18) is exponentially small. 

We will also need the asymptotics of the Jost functions W and N as A ->■ oo.  For IV". this follows 

from the asymptotic form of G: G = 0{{). whence [5] 

W->l + o(-) A-oc. (2.19) 

For N, the asymptotics for A > 0 and real, and for real x only, can be obtained from (2.4) in the following 
wav. As will be shown later. N(x, A -+ oo) ~ eiAl.V0O(x) for some N^x). Substituting this form in (2.4) 

and using the well-known formula (which is valid only for real x and y) lim^oo y-(x~lt) = -™(x ~ !/'• 
and also the asymptotics (2.2), one can determine this N-dx), rinding: 

N -* exp f iAx - i /     u(y)dy x real     A -> +oc . (2.20) 

This relation was derived in [9]; however, it was not pointed out there that it is valid, in general, only 

for real x. 
It was shown in [5] that the homogeneous solutions of (2.9) (i. e. those satisfying (2.9) without "1 

in the rhs), which are also analytic function of x in the x-UHP, may exist for a finite number of isolated 
points A = X}. j = 1, ••• ■ Moreover, in [10] it was proven that all A; < 0. Each discrete eigenvalue X} 

in (2.1) gives rise to one soliton in the original evolution equation (1.1). The corresponding solution of 

(2.9), denoted as *j(x), satisfies the equation: 

*jx-»Aj*j = iP-h(u*>). (2.21) 

The asymptotics of $j is defined to be 

$j(x) -+• -        x -*■ CO. 
x 

It was shown [5] that as A ->■ A;, one has 

W(x, A) -> -=^- + (x + 7j)*> + (A - Xj)Wj{x) + 0(X - A; 

(2.22) 

(2.23) 



which defines the normalization constant -._,. The exact form of \V}[x) in Eq. :2.23; was not needed m 
earlier studies, so it will be determined in Section 3 below. The following relation 11 ;see aiso 10. 7'' 
between ~j and Xj will be of future use in this paper: 

Im^- = -^->0. i2.24i 

Thus, it is Re--; and A; that are the functionally independent discrete scattering data. 
The following relations between .V and .V can be obtained _5:: 

2m Jo      X'-(X-ie) ^X-X} 

■       7j)   J       fr^-Afc      2mJo X'-Xj 
K->-J 

(2.26) 

Note that Eq.   (2.25) can also be obtained by applying the Cauchy residue theorem to the function 
,w   /x   . .. and using Eqs. (2.10), (2.19). and (2.23). Then (2.26) is a consequence of (2.25) and (2.23). 
(A —(A — i£y) 

To insure the convergence of the integral in (2.25), one needs to use the asympotics of the Jost 
functions and the reflection coefficient at A -^ 0 [7] (see also [5. 6]). These asymptotics are different in 
the generic and non-generic cases, with the latter including, but not being limited to. the pure N-soliton 
case. Following [7]. define NOQ(X) as the solution of: 

<-00 \ TOO 

N00{x) - i /     u(y)Noo{y)dy + — /     u{y)Nm{y) ln(i -y- ie)dy = 1 (2.27) 
Jx ^K J-oo 

and then define loo to be the following integral: 

/oo = r u(x)Nm(x)dx. (2.28) 

Then in the generic case (Too ^ 0), one has, as A -> 0 [5, 6, 7]: 

1V(r.A).W(r.A)^2';:V;o(f) +0 1-^-1 (2.29) 

W-£+°   lib    ■ .2.30, 

Zoo In X \ In A 

2ni (    1 
In A Vln2A 

In the non-generic case (Zoo = 0), one has [7]: 

N{x,X),N{x,X)^N00{x)[l + O{X\nX)] + O(X) (2.31) 

/3(A)-v O(A). (2.32) 

Also of great importance for the 1ST scheme of the BO equation is the connection formula between 
the Jost functions, established in [5]: _ 

Nx - ixN = f{X)N (2.33) 

where the subscript A, as usual, means the corresponding partial differentiation, and 

f(X) = -^r I" u(y)N(y,X)dy       A > 0. (2.34) 

In [10] it was demonstrated that Eq. (2.33) is an analogue of the symmetry relation that usually exists 
between the Jost functions for (1+1) integrable models, when the potential in the Lax operator exhibits 
some symmetry or is, e.g., purely real (see, e.g., Eq. (4.22) or Eq. (4.27) in [12]). We emphasize, however, 



that for the BO equation, the connection formula (2.33) was established without any assumption except 
sufficient smoothness and decay properties) about the potential UIJTI. Moreover, if one further assumes 
that u(xi in Eq.  i'2.1) is real, then one can obtain '7' the following relation between /'A) and v A : 

Note that in the limit A — oc it follows from (2.33) that 

.V(x.A) = exp(zAx)   X(x.O) + f°° f{X)Xix. A') exp( -iX'x)dX' - j    /(X)X\x. A') exp( -i\'x)d\' 

° (2.36) 
For real x. the last term in Eq. (2.36) is exponentially small if uix) and all its derivatives are smooth 
and vanish at least as fast as (1/x2) at infinity (cf. (2.35). (2.11). (2.19)). Thus in the limit A - -x. 
one has .V(x,A) -> exp(iAx)iV0(x), which was the starting point of the derivation of the asymptotics 

(2.20). 
In what follows we will also require the orthogonality relations, first found in [7], between the Jost 

functions .V(x,A) and $j(x). Here we will present these relations in a simplified form, as pointed out 

in [8]: 

oo 

oo 

N'{x, A')iV(x, X)dx = 2nS(X - A') (2.37) 

N'{x,\)$j{x)dx = 0        (A>0) (2.38) 

/oo 
*;(z)$fc(i)di =-2n5kj\j (2.39) 

-oo 

where Skj is the Kroneker's delta.  Note that Eq.  (2.38) holds in the sense of distributions, i.e.  terms 
like XS{X) have been neglected. 

To conclude this summary of known results for the 1ST for the operator (2.1), we present here the 
completeness relation for the Jost functions, originally found in [8]: 

f 
Jo «»•M»M-J:«-^ <*■«» 

; A, </-(* +l£) 

The rhs of Eq. (2.40) is equivalent to the conventional [13] term 2nS{x - y) when it acts on functions 
that are analytic in the x-UHP and decay as x -> oo. In Appendix A, we outline an alternative derivation 
of Eq. (2.40), that is based on a purely algebraic procedure (it still uses, however, the 1ST equations 

(2.25), (2.26), and (2.33)). 
Using Eqs. (2.37)-(2.40), one can write down the solution to an inhomogeneous form of Eqs. (2.4) 

or (2.21): 
Kx(x, A) - iXK(x, A) - iP+(u(x)K(x, A)) = Ä(i, A) (2.41) 

where A is either positive or is one of the A; for the given u(x), and R is an arbitrary function analytic 
in the x-UHP. This equation naturally arises (see, e.g., [14]) when one considers the perturbed Jost 
functions, corresponding to the potential u + <Ju (cf.   Section 3 below).   The general solution of Eq. 

where the constant C is arbitrary, K0 = N{x, A) for A > 0 and K0 = $;(x) for A = A;; in the latter case 
the sum in Eq. (2.42) does not contain the term with I = j. The notation {...) here and below stands 

for/Sody(...)- 



3     Variational Derivatives of the Scattering Data 

Here we shall give the derivations of the variational derivatives i 1.2). Consider the equation for j.\[: .v. \ 
that follows from i 2.5) upon replacing u(x) with u(x) - dmx): 

SMX - iXSM - iP-(udM) = iP'ldu M). i3.li 

Multiply Eq. .; 3.1) by X'(x.y) and integrate it over x from -x to x. using Eq. (2.4). the asymptotic* 
(2.2). (2.12). 12.13). and (2.15). and the relations 

p-.V = .V        P".V* = .V*. (3.2) 

The result is: - or w 
d-ßß = i\I(x,X)X*(x.X). 13.3) 
du(x) 

To determine the other two quantities in the set (1.2). consider the analogue of Eq.(3.1) for S\V 
Multiply it by $*(x) and integrate over x from -oc to oc. with the result being: 

(A - \j)(^'5W) = -(SuQ'jW). (3.4) 

In deriving (3.4), one needs to use Eq. (2.21) as well as the analyticity of $*(x) in the x-LHP. Now 
use the expansion (2.23) of W near the pole A = A_, and compare the consecutive powers of (A - A_,) on 
both sides of Eq. (3.4). The term 0((A - A^)"1) yields: 

&2± = -!_$*$, (3.5) 
6u       2irXj   ]   J 

where we have used Eq. (2.39). 
Before we proceed to the next order, 0(1), we need to obtain an equation for <5$;, since this quantity- 

appears in the pole expansion of 5W. From the equation 

(J*J)I - *V*j _ iP*(u6*j) = MX,*} + iP^(6u$j), (3.6) 

and also Eqs. (3.5), (2.42), and (3.2) one easily obtains: 

1      f°°      rlX 
<5$;(x) = C;$;(x) + — / X(x. \){5u*jN') (3.7) 

27T Jo     A - A; 

O^r  2-1 

$i(x)(5u$j$'} 

2TT^     A,(A, -A;) 

Then substituting Eq. (3.7) into Eq. (3.4) and equating the coefficients at the 0(1) terms yields: 

C> = --4r((i + 7j)<Ju*'*j). (3.8) 

We will now verify that this value of C} guarantees that the asymptotics of <5$j at x -> oc is 0(|x|~2), 
as it is required by Eq. (2.22). Using Eq. (2.18), one can perform the integration in (3.7), obtaining: 

_ i /    W(> = °»+ (M) 
1      x \ 2m\j 

o° ß'(X){8u^N'{X))dX      lr  W[).Kn(I l    r°°ß*{X)(Su^JN'{X))dX _ J_ y- 
hrWo A(A-A,-) 2nf-^ (27r)27o A(A-Aj) 2TT £- A,(A, - A;) / \x 

O   ^ 



Next one uses the equation: 
Xix.O) = .Vfj.Oi ■> W' 

icf. Eqs. (2.29). (2.31i) and Eq. (2.25) to find .Y'iA = OK and then substitutes the result into Eq. 
(3.9). Finally, one uses Eqs. (3.3), (2.24). and the complex conjugate of Eq. (2.261 to verify that the 
l/j-term in Eq. (3.9) vanishes. This, along with the analyticity of <)'$, in the r-UHP. implies that 

r dxdSj =0. '311) 
J -X 

Now we can proceed to the next order, where 5;l; Su will be determined. To this end. we first refine 
the expansion (2.23) by specifying the form of \V}(x). This follows, for example, from Eq. :2.25K 

1     f=° 3(\').\'(x.X')d\'     ^    /*/(JI .., 10, 

^(x) = 2^/o (A'-A;)'       ^giÄ^V" 

We also note from Eq. (2.23) the following obvious relation that will be of future use (in Appendix D): 

W3(x) =l-dli(\- \j)W(x.\)}x=X]. (3.13) 

Now, from Eqs. (3.4) and (2.23) we obtain in the order 0(X - A;): 

J$; [{x + 7;M$; + S-VjQj - SXjWj]) = - (du Q'Wj) . (3.14) 

Finally, we use the complex conjugate'of Eq.  (2.26) to compute (Q'xSQj). and also Eqs.  (3.7). (3.8). 

(2.37)-(2.39), (3.11), and (3.12) to obtain: 

(3.151 

oo (WjN - 3'$}N*)d\ 

J27r)2i\j Jo (A- A;; 
+ -2n)2i\}J0 "- * '2 

One can easily verify that Eq. (3.15) is consistent with Eqs. (2.24) and (3.5). 
Remark: Note that lim,,^«, 5Re^/6u{x) = 0. This is in contrast to the case of the KdV. where the 

corresponding quantity has' non-vanishing asymptotics (see Eq. (0.9) in [15]). This fact will be important 
in the calculation of the Poisson brackets between the variables of the continuous and discrete spectra 

in Section 7 below. 

4    Variational Derivatives of the Potential and  Completeness of the 

SE. 

In this Section, we will first obtain the variation of the potental in terms of the variation of the scattering 
data and then present a completeness relation for the SE. Starting with Eq. (2.33) and its consequence 

for 6N, one arrives at the following equation: 

dx(N'6N) = fSNN* + f'SNN* + of N'N. (4-1) 

Next, one uses Eqs. (2.10) and (2.35) to transform Eq. (4.1) into the form: 

AV ' 27TZA 27TlA 



Recall that .V and M for A > 0 are the boundary values W(x.X) from below and above, respectively. 
Then the first term in the r.h.s of Eq. (4.2) can be rewritten as: 

1 
2-zA- 

<-5W W ■A-ie 
JA — it (4.3) 

(cf. also Eq. (2.25) and its analogue for M. which differs from Eq. (2.25) by having (A +- iej instead 
0f (_\ _ ;'e)) Then both sides of Eq. (4.2) can be integrated over A from 0 to cc. with the integration 
of the first term on the r.h.s. being performed by using the contour in Fig.l. We use the asymptotics 
(2.20). (2.29). (2.19) and Eqs. (2.23). (3.12). and (2.24) to obtain the final answer: 

A; 
J du{x)     3 (4.4) 

1    r° {53N*N + 6ß*N*N)dX -I A 

where (SReij/Su) is found from Eq. (3.15). Using now the obvious identity 5u(x)/5u(y) = S(x - y). 
one can straightforwardly obtain from Eqs. (4.4), (3.3), (3.5), and (3.15) the completeness relation for 
the SE of the BO: 

S(x - y) 
dx £ $j(y)$;(y) dRe7j      $>(I)$;(I) SRe^ 

\j        6u(x) Xj Su(y) 
+ (4.5) 

1 /-00  ,-l\    r   
+ J_ /     ^\N(x,X)N'(x,X)N*(y,X)M(y,\)-N*(x,X)N(x,\)N(y,X)M'(y,X) 

2m Jo     X  L 

In Appendix C, we outline a direct proof of Eq. (4.5) that uses the 1ST equations (2.25), (2.26), and 
(2.33). We note, however, that a proof of Eq. (4.5) that would use contour integration, which is well 
known for 1 + 1 integrable equations (see, e.g., [16] or [17] and references therein), is still to be found 
for the BO. 

Next, we will obtain the expansion of the background potential, u(x), over the set of the SE. To that 
end, we first derive the following relations: 

l°° u(x)^ (N*(X,\)N{X,\)) dx = -Xß(X) 

L 
I 

u(x)£(*;(x)*j(i))«fx = 0 

Eq. (4.6) can be obtained as follows. From Eqs. (2.4) and (2.5) one finds that 

(N*N)X = ]- (NH{uNM) + N*H(uN)) - iXN* 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(here H is the Hilbert operator, cf. Eq. (1.1)). Then Eq. (4.6) follows from Eq. (4.9), Eq. (5.15) 
below, and Eqs. (2.34) and (2.35). Eq. (4.7) is obtained similarly. To obtain, along the same lines, Eq. 
(4.8), a little more work is required. First one uses Eq. (D.l) in Appendix D to rewrite SRer/j/Su in 
terms of <£j and W(X -*■ Xj). Next, from Eqs. (2.5) and (2.21) one obtains: 

ds($'jW) = i{X - \j)$)W + l- {WH{v&)) + $)H{uWJ) - i\S). (4.10) 



Using then Eqs. (4.10). (D.l). (5.15). (2.23). (2.24). and also the equation 0.   i 

$}udx = 2-i\j = 4.11) 
c 

one obtains Eq. (4.8). (Note that Eq. (4.8) can also be obtained by taking the variational derivative with 
respect to A; of Eq. (7.17) below with n = 2 and then using the relation (JRe- , 6u)r - i 1 2~idu 6X,. 

which follows from Eq. (4.4).) 
Now. taking the inner product of Eq.   (4.5) with u(x) and using Eqs.   (4.6W4.S). one obtains the 

expansion of the background potential over the SE to be as follows: 

u i   = 
*;*; 1       /-oo w   Sf 

-i: /     3(\)X(x.\)\r(x.\)d\-Y.^- 
Im Jo ,     -A; 

c.c. (4.12) 

Using Eq. (A.6) of Appendix A. where one has to put x = y. and Eq. (2.10) to transform the integrand 
in Eq. (4.12). one can obtain an alternative expression for u(x): 

**(x)*j(x) POO WAX)* 

u(x) = /    (N*(x. X)N(x, A) - l)d\ - Y, -i—T 
Jo ;- AJ 

(4.13) 

Another derivation of this equation, that uses the completeness relation (2.40) for the Jost functions, is 
given in Appendix B. Note that in contrast to the expansion (4.4) for 6u(x), the expansion (4.12) for 
u(x) itself involves only quadratic combinations of the Jost functions, but not the terms (5Re~fj/6u{x)). 
The latter terms are the counterparts of the so called derivative (or associated) states (cf. Eq. (3.13)) 
that are required for completeness of the set of the SE [13]. This situation, when the derivative states 
are absent in the expansion of the potential, is typical for other 1 + 1 integrable equations as well (see, 

e.g., [17] and references therein). 
Finally, we mention another useful application of the SE. Notice that the linearized BO 

qt + 2(u0q)x + H qxx = 0 (4.14) 

is satisfied by the following functions, related to the SE in a simple way 

MxXX)=e'^(NW)x        F; = !(«;*,■),        <*i = {^r)x- <4-15) 

This can be shown straightforwardly by using the equations of the Lax pair for :Y. N. and $; [5]. 
Similarly, one can show that the quantities 

4, = eiXiiNM'       Fj^^-Mj       G; = ^ (4.16) 
^ }      \j    }   J J du 

satisfy an equation that is adjoint to the linearized BO: 

qt + 2u0qx + Hqxx = 0. (4-17) 

Then completeness of the set of the SE implies that the initial value problem, given by Eq. (4.14) and 

an initial condition 
q(x,0)=q0(x) (4-18) 

has the following solution: 

q(x, t) =  r dX (0(i, t, X)q'(X) + c.c.) + £ (G;(X, t)qf] - F,-(x, t)q\F)) (4.19) 
Jo j 
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where 
q(X) = /      goUlu'lx.O. AloLr ■4.20a; 

2THA y_x 

(G) /'=c 

qy> =  /      ^(xjFjlx.O)^ 14.206) 
^ — 30 

gjF) =   P q0(x)Gj(x,0)dx. (4.20c! 
y -3C 

The SE can also be used to construct the solution of an inhomogeneous version of Eq. (4.14). which 
arises when one considers a perturbed BO equation. This problem is addressed in Section 6 below. 

5     Orthogonality of the SE 

In this Section, we will give a direct proof of the orthogonality relations among the SE. For the continuous 
spectrum, such a relation is suggested by the formal indentity 63(X)/63{X') = <5(A - A'), which upon 
using Eqs. (3.3) and (4.4) becomes: 

/oo ft   
N'(x, A)M(x, A)^-LV(x, X')N {x, X')]dx = 2m\5{\ - A'). (5.1) 

-oo °x 

Similarly, the identities d\j/d\k = dRe-yj/dRe-yk = &jk both imply 

/_%;W*jW|(^)^ = AÄ. (5.2, 

Below we present a direct proof of Eq. (5.1), while transferring the specific details of the proof of Eq. 
(5.2) to Appendix D. The idea of the proof given here is similar to the corresponding proof for the 
KP-II equation [18] ( see Section 8 for a detailed comparison between these two proofs). Thus, giving 
such a proof for the BO is intended to stress the similarity of this latter equation with 2 4-1 integrable 

equations [5]. 
We start by putting the l.h.s. of Eq. (5.1) in the following form: 

l.h.s. of (5.1) = \ r dx(AB + AB) + \AÄ\™O0 (5.3) 

where     
A = M(x,\)N\x,\') B = M(x,\)Nl(x,\')-Mx(x,\)N*(x,\') (5.4a) 

Ä = N-(x,\)N(x,\') B = N*(X,\)NX(X,\')-N;(X,\)N(X,\'). (5.46) 

From Eqs. (2.4), (2.5), and their analogue for M, one finds the following relations: 

Ax=i(\-\')A + \(MH{UW) + WH{UM)) -iXN* +i\'M (5.5) 

B = -i(X + X')A +\{M H{UW) - N*H{uM)) - iuA + iX'M + iXN* . (5.6) 

Let us now compute HAX. To this end, we first note that 

P+ (7TH{uM)) = iP+ (uMN*) (5.7) 

where we have used the relations 

HT = -iT+i p+T = ^. (5.8) 
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Similarly.     
P~ [MH(uX')) = -iP~ (uX'.U) . 3.0 ■ 

Using Eqs. (5.7H.5.9) and the identities P~ = \ ~ ±H. we find: 

iHAz = -(A - X')HA - \ (UH(uX*) -TH(UM)) - iuA - i\X* - iX'M - MA - A\        -5.10. 

Adding Eqs. i 5.6) and (5.10). we obtain the key relation: 

iHAx -B = -(A- X')HA- i(\ + \')A - 2iuA - i{\ - A'). i5.ll'> 

Similarly to Eq. (5.11). one obtains 

iHAx - B = (A- X')HÄ-i{\-<-X')Ä-2iuÄ. 15.12) 

Let us remark that the important difference between Eqs. (5.11) and (5.12) is in the last termjm the 
r.h.s. of (5.11). To make the reason for its occurrence in (5.11) clear, first recall that .4. = A/.Y^ and 
then note that the large-J asymptotics of M and N contain constant terms, and hence so do P'X etc. 
(cf. Eq. (5.8)). On the contrary. A = X*X. and P-X do not contain constant terms (cf. Eq. (.3.2)). 
hence the term z'(A + A') is absent in (5.12). 

Using Eqs.   (5.11) and (5.12), one can cast the first term on the r.h.s.   of (5.3) into the following 

form: ^ 
/     dx(AB + ÄB)= (5.13) 

J — oo 

/oo _ /-oo _ . /-oo 
dxA + i        dx{AHAx-AHAx)-(X-\')        dx(AHA + AHA). 

-oo J-oo J--oo 

Consider first the second term on the r.h.s. of (5.13) and note the following identities: 

Hgx = (Hg)x (5.14) 

/■oo /-oo /-co 
/     dx(gHh + hHg)=g0 dxHh + h0 dxHg (5.15) 
J-oo J-oo J-oo 

where functions g(x) and h{x) are arbitrary except for the condition that for each of them, the asymp- 
totics at plus and minus infinities coincide: 

go =   lim   g{x) h0 =   lim   h{x). (5.16) 

In (5.16), the limits are taken in the sense of distributions, i.e. terms like e'Al are_considered to be zero 
as |x| -> oo. Using then Eqs. (5.14), (5.15) and the asymptotics of X. M. and X, we obtain: 

r dx(AHÄx - ÄHAX) = AHA]™,» = 0 (5.17) 
7-00 

where, again, we have neglected the terms elXx etc. for z -t ±oc (see._ however, the discussion at the 
end of this Section). Next, using (5.15) and the asymptotics of A and Ä, we transform the last term in 

(5.13) as follows: 

(A-A')/     dx{AHA + AHA) = (\-\')        HAdx. (5.18) 
J-oo J-oo 

To simplify it, let us integrate the analogue of Eq. (5.10) for Ä, whence one obtains that the r.h.s. of 
(5.18) vanishes.   In arriving at this result, one needs to also use Eqs.   (5.14), (5.15) and the identity 

HN = iN. 

12 



Now. the value of the first term on the r.h.s. of Eq.  (5.13) follows directly from Eq.  !'2.37'i.  Thus 
we find that t ^ 

'" dxiAB - ÄB) = 4-2'Ad(A - A'). 15. L9 . 

Finally, using the asymptotics of M, -V. and .V for x — :roc, one can see that the contribution from 
the boundaries on the r.h.s. of Eq. (5.3) vanishes in the sense of distributions. Thus from Eqs. '5.31 
and (5.19). Eq. (5.1) follows. 

Using the above method, one can also prove orthogonality relations between other quadratic com- 
binations of the Jost functions. Since some of these relations are used in the calculation of the Poisson 
brackets in Section 7. we will list them below: 

r dxNNr(X)-^- []V\V(A')1 = 27riA<J(A - A') - J(A)J*(A')0(A - A') (5.20) 
./-oo ox L J 

dxMW(X)^-  A'W(A')   = 0 (5.21) 
, OX  L J 

r dxN\\'(X)^-\7rN{X')\ = 3'(X')@(X - A') (5.22) 
7-0O M' 

/CO fi 

dxN'N(X)j- l-V*-V(A')] = 0 (5.23) 

/     dxMNm{\)-?-{*j&) = dxiV\V(A) —($,$*) =0. (5.25) 
/-co OX J -co OX 

Here 0(A - A') is the Heaviside step function: 0(A - A') = 1 for A > A', and 6(A - A') = 0 for A < A'. 
Note also that Eq. (5.21) is equivalent to the formal identity 53*{X)/S,3(\') = 0, and the first equations 
in (5.24) and (5.25) are equivalent to 80(X)/5Xj = 0, etc. (cf. Eqs. (3.3) and (4.4)). Eqs. (5.25) are 
obtained straightforwardly, while Eqs. (5.24) can be derived following the lines of Appendix D. 

Before concluding this Section, let us remark on a subtle point in the derivation of Eqs. (5.20)-(5.23), 
which we could avoid when deriving Eq. (5.1). Indeed, in the latter case, the integral in the middle 
part in Eq. (5.17) vanished in the sense of distributions. However, this would not be the case if one 
considers, e.g., the derivation of Eq. (5.20). The reason for this lies in the large-x asymptotics of the 
quantities A and Ä, which for Eq. (5.20) are defined differently than for Eq. (5.1). Indeed, in the case 
of Eq. (5.20), one should define these quantities to be 

A = N{X)N*(X') i = ;V(A):V(A'). (5.26) 

Their asymptotics are 
A -». 1 A -+ e'(A-V)l (x -> +oo) (5.27a) 

A _> (1 - m Hfl " ^ e-*'*) i->    eliX'~X)X (X--00). (5.276) A    V    r(A)e   A    r*(A')      ) r*(A)r(A')     l ; y     ' 
One can rewrite the term HA as follows: 

f°°   dyÄ{y)\   ,   1_  fL Ä(y + x)dy 
HÄ=±(rL+r—)+lp[L 

7T \J-oo        Jx+L   y - x J       n     J-L 
(5.28) 

where 1 < L < |x| (we consider the width of the potential u(x) to be 0(1)). Let us take the limit in 
Eq. (5.28) as x -> -co. Then, using Eq. (5.27b), one can see that the first two integrals in Eq. (5.28) 
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o-ive a contribution Of x,_'L). whereas in the last integral, one can replace A(y - xi by its asymptotic 

value. This yields: 
■   !(A'-A)x / ]\ 

HA=r\.  -,.,   sgn(A'-A)-^0    - (x--*). 529) 
r*(A)r(A') \xj 

Using Eq. (5.29) and its analogue for x — -cc. as well as the asymptotics (5.27). one obtains that for 

.4 and A as in (5.26). one has 

r dx(AHÄx - ÄHAX) = -;3(A) J*(A')sgn(A' - A) . 1.5.30) 
J -yc 

Note that this is nonzero, in contrast to Eq. (5.17), which gave zero instead. Now. continuing, we 
combine Eqs. (5.30), (5.13), (5.3), and (5.27) to obtain Eq. (5.20). Calculations of the counterparts of 
Eq. (5.17) for the other orthogonality relations are similar. 

6    Perturbation Theory for the BO Equation 

The most important application of the developed machinery in the context of physics is, certainly, 
finding the variation of the potential 6u{x,t > 0) that could be caused either by a perturbation to the 
BO or by a small deviation of the initial profile from a certain special solution (e.g.. .V-soliton solution). 
Let us first consider the perturbed BO in the form: 

ut + 2uuT + Huxx = eR[u,x,t] (6.1) 

where e is a small parameter characterizing the strength of the perturbation R. Let u = u0 + e8u -\ , 
where u0{x) is the background solution in the absence of a perturbation. Then Su(x) is given by Eq. 
(4.4), where the Jost functions should be computed using the unperturbed "potential" u0{x), and the 
variations of the scattering data can be found as follows. First, one has 

6ßt(X,t)= r dx6-fut= (6.2) 

/     dx-^[(-2uux-Huxx) + eR} = i\26ß + ej_    dx — R. 

In arriving at the last expression in Eq. (6.2), we have used the well known time evolution equation for 
3 in the unperturbed BO: 3X = i\23 [5]. Finally, using Eq. (3.3), we obtain: 

Sßt = iX2Sß + it r MN'{x,X)R[u,x,t)dx. (6.3) 
J -<x> 

Similarly, one derives the following equation for A; = Aj0 + SXj and Re-y, = (Re7;)o + 6Re~fj\ 

^ = 2k-f-J^Rdx {64) 

{Reij)t = 2X]+eJCOJ-^Rdx. (6.5) 

However, if we now substitute 5X7 and JRcy,-, found from Eqs. (6.4) and (6.5), into Eq. (4.4), we will, 
in general, find that these terms may grow (usually, linearly) with t, which will invalidate the expansion 
(4.4) for t = 0{l/e). The remedy for this situation is well known: Instead of taking the background 
solution u0(x) with fixed parameters A;0 and 7;0, one takes it with the parameters Xj(t) = A;0 + 8Xj{t), 
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-,-{t) = -jo -S-.j(t). which evolve according to Eqs.  (6.4) and (6.5).  Thus one obtains the solution of 

Eq. (6.1) in the following form: 

u - u.o[Xj(t).Re~!j{ty. ~ T~ a L J ' 2T OX 

where 

1   d    f* 53.X A" - c.c. 
dX i 6.6s 

53(X.t)=S3(\.0)elX2t -16 f dselX~!t-s) H dx M.X'ix. s)R'u. x. s] . .6.71 
JO J-x 

The following four remarks about Eq. (6.6) are in order. First, in the case of a pure .V-soliton background 
potential u(x), this result has been obtained by the direct perturbation method in 4,. In the case of 
the 1-soliton background potential, an equivalent result was obtained even earlier in ;2:. Second. Eq. 
(4.19) becomes a particular case of Eq. (6.6) when R = 0 and when one does not include the potentially 

secular terms (see above) in the background solution. Third remark: The second term on the r.h.s. of 
Eq. (6.6) describes the evolution of purely radiational modes. Obviously, expansion (6.6) is valid only 
for such times when the integral term in (6.7) can still be considered to be small. However, even when 
53(X,t) is small, the integral in (6.6) could still possibly produce secular growth in time, as it occurs 
for the KdV (the celebrated tail recoil phenomenon; see, e.g., [19]). The question of whether this also 

occurs for the BO is outside the scope of this paper and will be addressed elsewhere. 
Fourth remark: When u0(x) is a pure iV-soliton solution, then 3(X) = 0 and the Jost functions in 

(6.6) can be found explicitly. One first finds $_, from (2.26) and then N (which for ,3 = 0 also equals 
M) from (2.25). To obtain N{x,X) in this case, one notices from (2.33) and (2.29) that 

N{x,X) = eiXxN{x,Q). (6.8) 

Thus, all the quantities in (6.6) can be explicitly computed. Below we will list them for the case of the 

1-soliton potential 

«o(*,0 = 7 2/° 2     , , 2 (6-9) v      '      (i-i0 -at)2 + l/a2 

where (see [7]) 

Then from Eqs. (2.25), (2.26), and (6.8), one has: 

*!(!) = —— (6.11) 
i + 7l 

N{x, X) = M{x, A) = 1 - -^- (6-12) 
A — Ai 

iV(x,A) = e,Al(l + ^-$i) . (6.13) 

7    Hamiltonian Structure of the BO Equation 

In this section, we show that the BO equation is an infinite-dimensional, completely integrable Hamil- 
tonian system, and present a set of its canonical action-angle variables. In Ref. [8], we performed 
the corresponding calculations using the antisymmetrized version of the Gardner Poisson bracket (PB). 
However, as it was first pointed out in [20], both the Gardner bracket and its antisymmetrized version 
do not satisfy the Jacobi identity, and hence neither of them constitutes a proper form of the PB for 
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the class of long-wave equations, to which the BO equation belongs.  Therefore, below we will use the 
so called Arkad'ev-Pogrebkov-Polivanov (APP) form of the PB: 

1   f°° SF    d    SG SG    d    SF 
5u[x) dxSuix)      6u[x) dxduix) 

1 /   SF      SG SF      SG 

dx , 7. 11 

2 \Sui-) du(-)      du(-) du(-) 

where F = Flu] and G = G[u] are functional of u. and SF Su( = ) = \imI^-xSF :6u\x). The APP 
bracket (7.1) was first introduced in [21]. where it was pointed out that it satisfies the Jacobi identity 
and. moreover, separates the canonical variables corresponding to the discrete and continuous parts 
of the spectrum. Another well-known form of the PB that also satisfies the Jacobi identity is the 
Faddeev-Takhtajan (FT) bracket [201; it has a plus, instead of the minus, in front of the boundary 
terms in (7.1). However, the FT bracket does not separate the discrete and continuous action-angle 
variables. A detailed comparison of the APP and FT brackets can be found in Refs. [15. 22]. Here we 
only make two remarks: First, all of the aforementioned versions of the PB's lead to the same evolution 
equations for the field u and the action-angle variables [15]. For instance, the BO equation (1.1) can 

be rewritten as 
ut = {u,H} 17.2) 

where the Hamiltonian % is given by 

f°°  f"3 
n = -l      [^- + \uHux\dx (7.3) 

and {. ..} denote any of the PB's mentioned above. Second, using the APP bracket rather than the FT 
one is more convenient technically, in the sense that the former does not require taking account of the 
terms like A<5(A) in the canonical brackets (Eqs. (7.12)-(7.16) below), whereas the latter does require 
that (cf. [15, 20]). Thus, since below we are using the APP bracket, we did not need to keep terms like 
\5{\) in the orthogonality relations (5.1) and (5.20)-(5.25) in Section 5. 

Following Ref.   [8], we define the action-angle variables corresponding to the continuous spectrum 

to be the following: 

LIT A 

«w-äta$Ktar<*> (75) 

and for the discrete spectrum, we define them to be 

P, = A; (™) 

q, = 27rRe -y} . (7-7) 

In order to calculate the PB's for these action-angle variables, we first note from Eqs. (2.16), (3.3). and 
(A.6) that the variational derivatives of p(A) and q{\) are given by 

*E^1 = —(ß'N'M - ßNM*) = --L-(ß-N'N - i3NW) (7.8) 
Su{x) 2mXK^ 2THA

V 

^_1/^     ^ N = l/^     ^ + iV.N\ (7.9) 
Su(x) ~2\   ß    +    ß*       l    l )      2\   ß ß* ) 
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where in passing to the last expression in Eq.   (7.9). the relation (2.10) has been used.    Using the 
asymptotics (2.2). (2.3). (2.13). and (2.14). one finds from Eqs. (7.S) and i 7.9) that 

O'PU)  =Q        ^g(A]_ = _1_ 71Qi 

du(-) Su(^z) 2 

A similar caluculation. using Eqs. (2.22). (3.5). and (3.15). gives the corresponding boundary values for 

the discrete variables: 

du( = ) du( = ) 

It is now straightforward to calculate the various PB's between p(A) and q(X). Indeed, substituting Eqs. 
(7.8H7.10) into Eq. (7.1) and using the orthogonality relations (5.1) and (5.20H5.25). we obtain: 

{p(X).q(fi)} = -S(X-tM) (7.12) 

{p(A),p(M)} = {9(A).9(M)}=0. (7.13) 

In the same way. we can calculate the PB's for the discrete variables, as well as those between the 

discrete and continuous variables. The result is as follows: 

{Pj,<lk} = öjk I714) 

{Pj.Pfc} = {9j-?fc}=0 (7.15) 

{Pi.?(A)} = {P„P(A)} = {<?;,<7(A)} = {<?;,p(A)} =0. (7.16) 

In terms of the action-angle variables, the nth conserved quantity of the BO equation [7] can be 

represented by 

/n = (-l)n /°°An-lp(A)dA + 27rV(-p;)
n-1        (n = l,2,...). (7.17) 

Jo j 

Since by Eqs. (7.13) and (7.16), p(A) and p, commute with each other, then the PB between any Im 

and /„ vanishes: 
{Im,J„}=0        (m,n=l,2,...). (7.18) 

The existence of an infinite number of commuting integrals of motion is an important feature of a 
completely integrable Hamiltonian system. We note that Eq. (7.18) was derived in earlier works [231 

and [24] by different means. 
Now, in view of the relation U = -I3, the Hamiltonian (7.3) takes the following simple form: 

U= I™ \2p(\)d\-2nTpj. (7.19) 
Jo } 

Then, using Eqs. (7.12)-(7.16) and (7.19), one finds the time evolution of the action-angle variables to 

be as follows: 

2e£U{p(A),tt}=0        ^U{,(A).W} = A' (7.20) 

^ = {pjtW} = 0        ^ = {9;^}=47rp;. (7.21) 

The above system of equations is integrated trivially and it reproduces the time evolution of the scat- 

tering data derived by the 1ST [5]. This proves the complete integrability of the BO equation as an 

infinite-dimensional Hamiltonian dynamical system. 
It will be appropriate here to remark on some useful properties of the conserved quantities associated 

with the SE, introduced in Section 4. It follows from Eqs.  (2.20), (2.29), (7.8), (7.17) and (A.6) that 
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the variational derivative of the nth conserved quantity of the BO equation is expressed in terms of the 
SE as follows: 

Sin = (n-l) (-Hn /     \n-2(.\'ix.t.\).X(x.t.\> -l)d\ 
Suix.t) L' Jo 

+ ^(-Aj)n_3*;(x.t)*J(x.n| (n > 2). 

Remarkably, this quantity is found to give an explicit solution1 to the adjoint of the linearized BO. Eq. 
(4.17), since both .V*.V and <£>*<J?j satisfy that equation. In particular, if we take n = 2 in Eq. (7.22) 
and use the relation dlojdu = u. we can also obtain the expansion (4.13). 

The following relation, which is derived with the use of Eq. (2.4). is also worth noting: 

N'(x.t,X)N{x.tX) - l)dx = -3*iX]3{X) . (7.23) 
' 2TTA 

Integrating Eq. (7.22) with respect to x and substituting Eqs. (7.23) and (2.39) into the resultant 

expression, one has 

I0" Jr-xdx^in-DIn-x        (n>2) (7.24) 

where we have used the expression of In-\ in terms of the scattering data, as found from Eqs. (7.4), 
(7.6) and (7.17)- The above relation shows that 5In/6u is proportional to the conserved density of /n-i- 
While Eq. (7.24) has been obtained earlier in [25] by analyzing the recurrence formula for the conserved 
quantities, the derivation presented here gives an independent proof relying on the properties of the SE. 

As is well known (see, e.g., [15]), the accounting for the boundary terms in the PB, as in Eq. (7.1), 
affects the value of any PB containing the first conserved quantity, which for the BO equation is 

/oo roo 
udx = -        p(X)d\ + 27rn (7.25) 

-oo JO 

where n is the total number of the bound states. Obviously, one has 6Ii/Su = 1. Then for any functional 
F with nonvanishing boundary values, Eq. (7.1), yields: 

{F/l} = _(J£l_JL_V (7.26) {r,lli \6u(+)      Su(-)J 

Among the action-angle variables (7.4)-(7.7), only the continuous angle variable q{\) has nonvanishing 
boundary values, as seen from Eqs. (7.10) and (7.11). Hence, we put F = q{X) in the above expression 

and see that 
{g(A),A} = -1 (7-27) 

i.e. h does not annihilate the PB (7.1). In contrast to this, one can easily show that the FT bracket 
between I\ and q{\) or any other allowed functional [20. 26] vanishes, and hence the FT bracket has 
an annihilator (as is also the case with the FT bracket for the KdV equation). 

To conclude this section, we derive yet another useful relation.  First, using Eqs.   (A.6) and (7.8), 

one obtains: 
rrr = -|r(^(*.A).v(x,A)). (7.28) 
du(x) oX \ ' 

Next, integrating Eq.   (7.28) with respect to A with the boundary conditions (2.20) and (2.29), one 

obtains ^      ... 
rÄA = -l. (7.29) 

Jo    du{x) 

'This fact was originally noticed by Case [24]. 
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Finally, taking the variational derivative with respect to u(x) of Eq. (7.25) and then substituting Eq. 
(7.29) and the identity SIi/Su = 1 into the resultant expression, we obtain the following important 

relation: 
dn    =0. i7.30i 

du(x) 

Let us emphasize that both Eqs. (7.29) and (7.30) are derived only for the case of a generic potential 
u (compare Eq. (2.29). which was used in the derivation of (7.29). with Eq. (2.31) for a nongeneric 
potential). Thus. Eq. (7.30) indicates that the number of bound states, n. corresponding to a generic 

background potential, is invariant under small change of the potential. 

8     Conclusions and Discussion 

In this work, we have developed the perturbation theory for the BO equation. (1.1). when the background 

potential decays at infinity. Our perturbation theory is based on the 1ST. which was first developed 
in Ref. [5]. We have also made use of the essential relation between the scattering coefficients jf A) 

and /(A), Eq. (2.35), that was found in [7], as well as the asymptotics for the Jost functions and the 

scattering coefficients at A -> 0 [5, 6, 7]. The most essential results of this work2 are as follows: 

1. The variational derivatives 50/8u, 5Xj/Su, and Sjj/du are given by Eqs. (3.3), (3.5), and (3.15). 

respectively. 

2. The expansion of 6u over the SE, with the variation of the scattering data being the coefficients 

of that expansion, is given by Eq. (4.4). 

3. The completeness relation for the SE is given by Eq. (4.5); note also an independent proof of 
this relation in Appendix C. Various applications of Eq. (4.5) are discussed in Section 4. Among 

those, we note the solution of the linearized BO; see Eq. (4.19). 

4. The first-order solution of the perturbed BO is given by Eq. (6.6), for the perturbation of a general 
form. We also give the explicit form of that solution, Eq. (6.6), for the case when the background 

solution is a single soliton. 

5. A proof of the complete integrability of the BO as a Hamiltonian system, by using the Arkad'ev- 
Pogrebkov-Polivanov form of the Poisson bracket is given in Section 7. 

It has been long known [5] that the 1ST for the BO has common features with both 1 + 1 and 2 +1 
integrable equations. In the remainder of this section, we will discuss these features in some detail. We 
will limit ourselves to pointing out only two features for each of these two classes of equations. 

First, we note that the expression (3.15) for the variation of the normalization contant. 5Re~fj/8u, 

involves the so-called derivative state [13], i.e. the A-derivative of a quadratic combination of the Jost 
functions at the pole A = A;; cf. Eq. (D.l). This situation is a common place for other 1 + 1 equations; 

see, e.g., [17] and references therein. 
Second, the derivation of Eq. (4.4) for Su{x) has a number of similarities with the analogous deriva- 

tions for other 1 + 1 equations. The scheme of the latter derivations is as follows (see, e.g., [27, 17, 28] 
and references therein). First, one uses the connection formula between the Jost functions that have 
simple asymptotics at the opposite ends of the i-axis (such as Eqs. (4.1) and (4.5) in [12]), as well as 
the analyticity properties of these functions in the A-plane, to cast the direct scattering problem for 
the corresponding Lax operator in the form of a Riemann-Hilbert problem. The analogue of the con- 
nection formula for the BO is Eq. (2.10), and the function that has analytic properties in the A-plane 
is W(x, A). Next, solvability of the Riemann-Hilbert problem in the case of 1 + 1 equations essentially 

2 Most of these results have been announced in [8]. 

19 



depends on whether a certain symmetry exists between the Jost functions 26 isee also a discussion 
in [121). The analogue of the symmetry relation for the BO is Eq. > 2.33). Finally, one considers a 
variation of the above Riemann-Hilbert problem and then uses the asymptotics of the Jost functions at 

the essential singularities in the complex A-plane (usually, at A - x I. from which asymptotics. one can 
determine the potential and/or its variation. 6u. The corresponding asymptotics for the BO are Eqs. 
(2.19) and (2.20). Thus, one can see that the "ingredients" in this scheme and in the derivation of the 
d'u in Section 4 are the same, although the order in which they are used is different. For example, in 
Section 4. we first used the analogue of the symmetry relation. Eq. (2.33). and only after that, used the 

connection formula (2.10) and the analyticity of W(x.X). 
The most prominent similarity of the perturbation scheme for the BO with that of the 2-1 integrable 

equations is the following. In order to find a perturbed Jost function, as in Eq. (2.41). that corresponds 
to a certain value. A0. of the spectral parameter, it is necessary to know the Greens function of the 
Lax operator (cf. Eq. (2.42)). That Green's function involves the unperturbed Jost functions for all 

values of A. In contrast, to find the perturbed Jost functions in the case of the 1 - 1 equations, it is 
always sufficient to use the method of variation of parameters, which only involves the unperturbed Jost 

functions for the same A0 (see, e.g., (14, 19]). 
Another interesting similarity with the 2 + 1 equations concerns the proof of the orthogonality of the 

SE, given in Section 5. In contrast to the 1 +1 case, we did not need to make use of the so called recursion 
operator, i.e. the operator whose eigenfunctions are the SE. in order to prove their orthogonality. (This 
appears to be consistent with the conclusion made in Ref. [29, 30], that both 2 + 1 equations and the 
BO do not possess non-singular recursion operators.) Instead, our proof closely followed that presented 

in [18] for the KP-II equation (see also [31]). Indeed, a crucial role in Section 5 was played by the 
connection formulae (5.11) and (5.12), which are just the counterparts of the corresponding connection 

formula for the KP-II (see the unnumbered equation immediately preceding Eq. (65) in [18]). Note that 
the quadratic combinations A,Ä,B,B of the Jost functions pertain to different values of the spectral 

parameter (cf. Eqs. (5.4))), similarly to the quantities defined in Eq. (65) in [18]. 

Acknowledgements 

This research was supported in part by the Office of Naval Research and by the Air Force Office of 

Scientific Research. 

Appendix A.    Completeness Relation for the Jost Functions 

Here we present an algebraic proof of the completeness relation (2.40) for the Jost functions without 

recourse to the procedure of Ref. [8] that used contour integration. The idea is analogous to that 
originated in the proof of the completeness relation [4] for the eigenfunctions corresponding to the 

JV-soliton potential. 
We begin with an obvious identity 

v*,-(x) v n(y) ^^ «;■(*)*;(») (A.i) 

^^-AfcVA-Afc      \-\j> 

Introducing the second term on the left-hand side of Eq. (2.26) into the second term on the right-hand 

side of Eq. (A.I), we can transform the latter equation into the form 

Ji(x)!^_     M_iy^ E!^       (A.2) 

L(X-X,)(X-X.) - *^A-A,       4-A-A*      V       y'^     X~XJ ;.fc(A-A;)(A 
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y- A') $j(j)^(y) _ J_ „ ^(»    /•= J'(A').V!i, 
' y \j(\- A;)2      2- Y A - A; J0 A' - A, 

1   y^ *'j{y)   fx 3{X').\(x.X')     , 
2TT 2- A - Aj Jo A' - Aj 

where we have used the relation 7; = Re -Vj - i(l/2Aj). It now follows from Eq. (2.25) that 

— 1     /"^ JfA).V(j.A) jx 
.V(x.0-1-—   /        : : -dX 

1-r I Jo X~l€ 
A.3) 

y *>(£)  p J*(A).V«(y,A)dA 

V    ./o A-A, 

= /     d\3*(X)N*{y,X)   -{N(x,\)-N(x.O)}- — 
JO LA 27T Jo 

3{X')N(x.X') 
dX' [A. 4) 

/o    A'(A' - A - ie) 

If we put A = 0 in Eq. (A.2) and substitute (A.3) and (A.4) into the resultant expression, we find that 
most terms are cancelled and we are left with the relation 

N(x.0)N*(y.0) = I - i(x - y)Y, 
j 

r°° d\ 

*>(*)*,*(y) 
lA.5) 

-T- /     ?r[-ß'WN(x,X)N*(y,X) + Ö(X)N(x,X)N (y,X)}. 
lit Jo       A 

In view of relations (2.33) and (2.35), the integrand on the right-hand side of Eq. (A.5) can be rewritten 
as 

" ri (" 0*wN(x> A)N*(y'A) + PWW*' vN*foA)) [A.6) 

= i(x - y)N(x, X)N*(y, A) - |- (N(X, X)N'(y, A)) 
dX 

After integrating over A and using the relation N(x,0) = N{x,0) (see Eqs. (2.29) and (2.31)), Eq. (A.5) 
becomes 

0 = 1 - i(x - y) £ J       + »(* ~ V) /    dXN(x. A)iV*(y, A) - <V(i, \)N'(y, A) 
■ Xj Jo 

(A.7) 

where A is a large positive constant, which is to be taken to be infinity at the end.  If we divide both 
sides of Eq. (A.7) by -i{x - y) and take the limit A -> +oo, we arrive at Eq. (2.40) upon invoking the 

• A(l-y) 
asymptotic (2.20) and the formula lim^-n-oo P e x        = 7"<5(x - y). 

Appendix B.    Alternative Derivation of Eq. (4.13) 

Here we present another derivation of the expansion (4.13) for the potential that employs the complete- 
ness relation for the Jost function. We first differentiate Eq. (A.7) by y to obtain the relation 

J2——r-* *(*-y)y, ^— * /    dXN{x,X)N (y,A) 

+i{x-y) /    dA7V(x,A)^4^ 
JO ay 

(B.l) 

^(^)_,((iA)w[Mao 
<?y 
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It follows from the equation for A' (see (2.4)) that 

dY*(ü A)                                    1    [^  ui:;.\   (z. A) , 
°     {y        = -i\.\'<y.\)- — /       — dz. B.2 

If we substitute Eq. (B.2) into the last term on the left-hand side of Eq. (B.l) and then put y = x. we 

find that 

A, r — x — le 

Lastly, taking the limit A -> -oc and using the asymptotic (2.20) for .V together with the formula 
limA 0Oe

lX{x~:)/(x - z - te) = 2m6{x - z). we arrive at (4.13). 

Appendix C.     Direct Proof of the Completeness Relation for the SE 

The proof of the completeness relation (4.5) almost parallels that presented in [4] for the A'-soliton 
potential. Therefore, here we shall describe only the outline of the proof. 

First, we consider the integral which stems from the continuous part of (4.5): 

/ = _,- /A ^N(x.X)N*(x.X)N'(y,X)M(y. 
Jo    A 

A) (C.l) 

In what follows, we will first fix the upper limit A of the integration and set it to infinity in the final stage 
of the calculation. By virtue of (2.10), the above integral can be splitted into two parts as I = h + h, 

where A 

h = _,- f   °*v(z. X)N*(x, X)N'(y, X)N(y, A) (C.2) 
Jo    A 

h = _i /"* ^ß(X)N(x, A)ÄT (x, A)JV(y, \)N(y, A). 
Jo    A 

We modify the integral Ix by substituting N from Eq. (2.25). Doing the multiplication under the 
integral term by term, one can see that the product N%{x,X)N{y,X) yields nine different terms. We 
introduce Eq. (A.2) into the corresponding term and then use Eq. (2.25). After adding h to the 
resultant expression, we find that I is simplified considerably to become: 

(C3) 

(C4) rAd\ r _$;(x)$,(y)    x ^ $;(*)*,-(y) 
I = -lL TN^x)N'{y^1-i{x~y)^'    A-A,    "A^A"(Ä^Ä^ 

_J_ /"A       dX' ( - 3(X')7r(x,X')N(y,X') + f{X')N*{x,X')N(y,X')\ . 
2m Jo   A' - A - te v 

Using Eq.   (A.6), the last term on the right-hand side of Eq.   (C.4) can be integrated by parts.   In 
evaluating the contribution from the upper limit of the integral, we retain the term of order A/A. This 

gives 
fAdA 

/ = -,-/    ^N(x,\)N*(y,\) 
Jo     A 

_*;(*)*,(y)     ,^$;(z)$,(y) (C.5) 

N*(x,A)iV(y,A) 

-N*(z, A)iV(y, A) - i{x - y) /    d\N*{x, X)N{y, A) 
Jo 

., rA N*(x,X')N(y,X')^,      f* iV*(z, A')iV(y, A')      \ 
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Substituting Eq. i A.7i into Eq. (C.5) and adding the resultant expression to its complex conjugate, we 

obtain: 

I-r = -i I    dXX(x.X)X'iy.X) 
Jo 

-i[x -*)Y. 

$;(x)$;(y)      .V(j.A).V(y.A) 
2-~> \,i\ - \.)i A 

$*(x)$j(y; 

- A.i A — A.) 
j      y' J' 

(c.c.). 

■C.6i 

Now. with the use of Eqs. (2.20) and (2.33). the following estimate is possible for large A: 

.V(x.A).V(y.A) 

Ä 
d\X{x.\)X'{y,\) — ice. x.- 

= N'{x.A)N{y,A) [' d\N{x, X)N*{y. A) + (c.c.) - 0(A~l) 
Jo 

Furthermore, it follows from Eqs. (A.7) and (2.20) that 

,V*(x.A),V(y,A) /   dXN{x)X)N'{y,X) -»■  
Jo x — y — i€ 

(A -oc (C.3) 

Let the contribution from the continuous spectrum in Eq.   (6.1) be J.   Then Eqs.   (C.6), (C.7), and 

(C.8) yield 

J=    lim   —(/ + /*) = 27T<J(i-y) 
A->+oo dx 

(C9) 

d_ 
dx 
pAjV(,,A)^y,A)^^ 

^ A,(A-A;)      '^(A-A,-^ 

Lastly, upon substituting Eq.  (C.9) into Eq.  (4.5) and integrating the resultant expression once with 

respect to x, one sees that the completeness relation to be proved reduces now to the form: 

|-,tttf(,.A)JHy^ 

= 2*£ 

A;(A-A,)  "' 

^•(y)^(y) «5Re 7j 

(CIO) 

Su(x) 
(x <-► y) 

where the notation (x <-> y) indicates the interchange of the variables x and y in the preceding expression. 
The next step is to modify the right-hand side of Eq.   (CIO) while employing the 1ST equations 

(2.25), (2.26), and (2.33) as well as the completeness relation (A.7) for the Jost functions. The starting 

point is the following algebraic identity 

$*(x)$j(y)       Sfc(i)*'fc(y) _ v *;(x)$j(z)*j(y)*j(y) 

2-     A-A;     \     *-*■ Z- A-Afc 

-E 1 1 

j*k X> Xk \ A - Afc      A - Aj 

(A-A;)2 

*;(z)*>(i/)*fc(x)*:(y) 

(Cll) 

After manipulating the second term on the right-hand side of (Cll) following the similar procedure as 
that developed in [4], we find that the relation corresponding to Eq. (B7) in [4] now takes the form 

x^*;(x)*j(y)^*fc(x)*;(y) ^(x)^(x)^(y)^(y) 

A-Afc A7(A - A; 
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■' E 7^—rrrk rV^^U^y)^-^) - (J - y) 
~"i (A - Afc)Aj(Afc - A] )' 

-Ed 
j*fc 

E 

A-A* 

*J(i/)*j(i/j -*fc(y)**(y)      1 ... . 

2~ Jo 

(A;-Afc)2 

»i*(A').V*(y.A')dA/ 
x <->• yj 

A-A, 

o (A'-Afc)
2 

w~^'mev>-(*^) 

JfA'l.Vty.A'i     , 

(A'-Afc)
2 

.V(x.A').V(y.A') 
 a A 

A' -A, 

/o (A'-A;)
2 

We differentiate Eq. (C.12) with respect to A and then put A = 0. Substituting <5Re v,/<5u from Eq. 

(3.15) into the third term on the right-hand side of the resultant expression, we can see that most terms 

are cancelled and the final result leads to the relation (CIO). This completes the proof of (4.5). 

Appendix D.    Orthogonality of the SE corresponding to the discrete 
spectrum 

Here we will outline the differences in the derivation of Eq. (5.2) from that of Eq. (5.1). First, use Eqs. 

(3.15), (2.23), and (3.13) to obtain: 

SRe-yk 
$> _Ldx{{X-\k)w*) + dl((\-\k)W) 

.    Afc Su 47rAfc 

Then, following the lines of Section 5, denote 

A = QjW(\) A = $*$* 

l\=\k 

+ (c.c.) (D.l) 

(D.2) 

with B and B being defined accordingly (cf.  Eqs.  (5.4)).  Note that with these notations, the sought 

integral is (cf. Eq. (5.3)): 

fy^m---Mi(-^y x=xk 

+ (c.c.; 

where 
I = (\-\k) f dx{AB + ÄB) 

Now, the analogues of Eqs. (5.11) and (5.12) take on the form 

iHAx + B = -{Xj - X)HA - i{X + Xj)A- 2iuA 

- iHÄx + B = -{Xj - Xk)HÄ + i{Xj + Xk)Ä + 2iuÄ. 

Prom these two equations, the analogue of Eq. (5.13) becomes: 

/ = (A - Afc)2 [°° Ä {HA - iA) dx. 
J -co 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 

Other terms in (D.7) vanish by virtue of Eq. (5.15) and the decaying behavior of A and Ä at x -»■ ±oo. 
Next, in the expansion of A near A = Afc, it is sufficient to take into account only the first two terms (cf. 
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Eq.  (2.23!).  Substituting the result in Eq.  (D.7) and then in Eq.  (D.3i. and taking the limit A — .\t. 
one obtains that the term in the curly brackets in Eq. (D.3) is: 

2    fx 

Ai- J—•- 
D.Sl 

J -oc L 

/oo 

dx 
-00 LAfc 

-$,-$£$*$* 

In deriving Eq. (D.8), we have used Eqs. (5.15) and (2.24). Using these two equations one more time, 
as well as the identity 

H(xg) = - r g(y)dy + xHg (D.9) 
7T J-oo 

one transforms Eq. (D.8) into the simple form: 

(£>.8) = - 

Finally, using Eq. (2.39), one obtains: 

l.h.s. of (D.3) = 

$*$fc(fx 

4n2\-kSkj = Xkhj- 

(D.10) 

7tAfc   7T 
iD.ll) 
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Figure Caption 

Fig. 1    Contour used in the derivation oi Eq.  i4.4l. 
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