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1    Summary 

We have made progress in the following areas 

1. The Loading Problem: The proof that the loading problem for analog neural networks with 
only 6 nodes is AfV-complete, first announced by the author in 1992, was completed early in 
1993. 

2. Threshold Functions with Real- Valued Inputs: Foundational results on linear threshold func- 
tions with Boolean inputs have been extended to real-valued inputs. 

3. Dynamic Range of Weights: Hastad's lower bound on the dynamic range of weights for linear 
threshold functions has been improved slightly. 

4. Hop field Networks for Knight's Tours: Takefuji's a Hopfield network for knight's tours was 
analyzed theoretically and experimentally in comparison with conventional algorithms. We 
have proven a new lower bound for the number of knight's tours on a generalized chessboard, 
which throws further light on why Takefuji's Hopfield network for knight's tours works as well 
as it does. 

5. VCS-completeness of the stable state problem for Hopfield nets: It has been proved that the 
problem of finding stable states for some restricted classes of Hopfield nets is just as difficult 
as the general problem. 

6. Exponential lower bounds for planar Hopfield networks: We have constructed planar Hopfield 
networks that take time 2n/3 to converge under sequential operation, and 2n/7 to converge in 
parallel operation. 

'Author's address: Department of Computer Sciences, University of North Texas, P.O. Box 13886, Denton, TX 
76203-6886, U.S.A. Electronic mail: ian9cs.unt.edu. 



2 Statement of Work 

The Principal Investigator and his Research Assistant shall conduct research into the scalability of 
neural networks. The research shall analyze the resource requirements of neural network compu- 
tation and learning as a function of the size of the input domain. The project will investigate the 
general topic of scalability in neural networks, including the specific areas of research listed below 
and any related subjects whose interest and relevance are uncovered in the course of this research. 

1. The researchers shall investigate whether the loading problem for analog neural networks with 
a small fixed number of nodes is AfV-complete. 

2. A hitherto unexplored complexity class, called ATC°, shall be investigated. This class consists 
of the problems that can be solved by a neural network with a fixed number of layers and 
a polynomial number of nodes, in which the first layer of nodes compute linear threshold 
functions and nodes in the remaining layers compute conjunction and disjunction. Open 
questions about the relationships between ATC° and the well-studied complexity classes AC0 

and TC° shall be explored. 

3. The problem of determining improved upper and lower bounds on the size of weights in neural 
networks shall be investigated. 

4. Open problems concerning the running time of Hopfield networks used to solve local opti- 
mization problems shall be investigated. The theory of VCS completeness shall be used to to 
determine whether Hopfield networks for local optimization problems shall require running 
time that is exponential in the number of inputs. 

3 Status of Research 

Progress has been made in six areas: the complexity of the loading problem, properties of threshold 
functions with real-valued inputs, lower bounds for the dynamic range of weights in linear threshold 
functions, Hopfield networks for knight's tours, Hopfield networks for local optimization, and lower 
bounds for Hopfield network convergence. Each is discussed below in a separate subsection. • 

3.1    The Loading Problem 

Judd [10, 11, 12, 13] has shown that the problem of loading simple tasks onto neural networks with 
a fixed architecture is A^P-complete, which implies that there is quite likely to be no fast general- 
purpose learning algorithms even for quite simple architectures and node function sets. Surprisingly, 
it was shown by Blum and Rivest [1, 2] that the loading problem is A^P-complete even for networks 
consisting of only 3 nodes when the node function set is the set of linear threshold functions. One 
limitation of the result of Blum and Rivest is that it holds only for node function sets that are 
exactly linear threshold functions. Judd's techniques work for any node function set that includes 
ACi, and hence apply to analog neural networks, but he has no results for a fixed number of nodes. 
Our new result is as general as Judd's, but has a fixed node bound. Specifically, we show that 
the loading problem for a 6-node neural network with node function set AC\ is A/T-complete, and 
deduce deduce that the loading problem for a 6-node analog neural network is jVP-hard. 

How does one interpret the meaning of ^/'^-completeness results for the loading problem? They 
imply that, any learning algorithm that takes as input a set of tasks and a fixed architecture runs the 
risk of taking exponential time in the worst case even for architectures drawn from quite innocuous 



architecture classes. This can be avoided either by limiting the node function set and choosing 
specific architectures for which the loading problem is not intractable, by allowing the architecture 
to change during learning, or by only loading task sets that do not cunningly encode ATP-complete 
problems. Results such as ours indicate that even very simple architectures and node function sets 
can have task sets that encode Af'P-complete problems. This can be a major pitfall for the unwary 
neural network designer, and may explain why some learning algorithms scale badly. 

3.2 Threshold Functions with Real-Valued Inputs 

Discrete linear threshold functions are popular as node functions in discrete neural networks. While 
there is a fairly substantial body of foundational results on linear threshold functions with Boolean 
inputs, the corresponding body of work for linear threshold functions with real inputs is not so 
well-studied. We have shown that over the real domain, all weight-sets of a given linear threshold 
function are a real multiple of each other. In contrast, it is also shown that every separable linear 
threshold function over an infinite but bounded domain has an integer weight-set. The latter result 
is applied to extend the upper bound on the weights in an integer weight^set, and the running time 
and mistake bounds of the perceptron learning algorithm from the Boolean domain to all finite real 
domains. 

3.3 Dynamic Range of Weights 

Hästad [17] has shown that there exist linear threshold functions that requires weights approxi- 
mately nnl2~n. We have, by a careful analysis, tightened the lower bound to the following: 

n(n-logn-l)/2e7(log2n+31ogn+8)(log2n _ logn + -g 

where ß = log(3/2) « 0.585, 7 = ln(4/3) « 0.288. 

3.4 Hopfield Networks for Knight's Tours 

We began our study of the running time required by Hopfield nets for solving optimization problems 
by embarking on experimental work. A knight's tour is a series of moves made by a knight visiting 
every square of an n x n chessboard exactly once. The knight's tour problem is the problem of 
constructing such a tour, given n. The knight's tour problem is interesting because it is a restricted 
case of the travelling salesperson problem. Takefuji and Lee [19] (reproduced apparently verbatim in 
Takefuji [18, Chapter 7]) recently proposed a Hopfield-style network for the knight's tour problem. 
We have compared their algorithm with existing algorithms, both sequentially and in parallel, both 
for producing single tours and producing multiple tours. We observed that: 

1. The Hopfield network was too slow to use for boards larger than 26 x 26. 
2. A random walk algorithm that combines two algorithms invented by Euler (1759) and Warns- 

dorf (1800s) was tested. It was found to be practical for boards up to 66 x 66. 
3. A divide-and-conquer algorithm quickly gave solutions for boards of size up to 1000 x 1000. 
4. Comparative running times can be seen in Figure 1. 

We can conclude that: 

1. Experimental evidence has shown that both the Hopfield net and the random walk algorithm 
run in exponential time. Even so, the random walk algorithm is vastly superior. 



2. Theoretical analysis has shown that the divide-and-conquer algorithm runs in linear time. 
Hence the divide-and-conquer algorithm is far preferable to the other two. 

3. In this instance, neural networks don't scale as well as conventional algorithms. 

Parallel speedup of the Hopfield network cannot reduce the exponential running time signifi- 
cantly unless exponentially many processors are used. In contrast, the divide-and-conquer algorithm 
can be implemented in optimal time (that is, proportional to the diameter of the interconnection 
pattern) using polynomially many processors on many popular architectures. This includes: 

• time 0(n2/p) by a bounded degree network with p processors for all p = 0(n2/ log n), 
• time 0(n2/p2) by a p x p mesh for all p < n2/3, 
• 0(1) time on an n x n mesh with multiple CREW buses, and 
• 0(1) time on a CREW PRAM with 0(n2) processors. 

Similar research has shown that the divide-and-conquer algorithm is much better than the 
Hopfield network and the random walk algorithm at finding large numbers of tours. We were able 
to find a lower bound of fi(1.1259n ) on the number of knight's tours on an n x n board for all even 
n > 6, and a stronger lower bound of fi(1.2484n ) when n is of the form 6x2* for some fceN. 

Neural networks research has progressed to the point at which the mere fact of existence of a 
neural network solution for a problem is no longer interesting. Long term interest in neural network 
research can only be sustained if neural networks can compete with conventional algorithm design 
techniques. A new algorithm is significant if it can be demonstrated beyond reasonable doubt to 
be more practical, more effective, or more efficient than existing techniques. We have found that 
this is not the case for a neural network for the knight's tour problem, neither for finding single 
tours sequentially or in parallel, nor for finding bounds on the number of tours. 

We have worked with Olaf Kyek and Ingo Wegener at the University of Dortmund to show that 
for all even n > 12, the number of knight's tours on an n x n chessboard is 

• at least 1.1646n2, 
• at most 4n , 
• asymptotically fi(1.3535n2). 

This indicates that knight's tours are reasonably dense, but decrease exponentially as n approaches 
infinity. This helps explains why the performance of Takefuji's neural network decreases so rapidly 
as n increases. 

3.5    Hopfield Nets for Local Optimization 

■P£5-completeness is the analog of A^P-completeness for local optimization problems. A local op- 
timization problem that is P£«S-complete is considered very unlikely to have a polynomial time 
algorithm. ^^CS-completeness was invented by Johnson, Papadimitriou, and Yannakakis [9].' Re- 
cently, Papadimitriou, Schäffer, and Yannakakis [16] showed that the problem of finding stable 
states in a Hopfield network in 73£5-complete. This is both good news and bad news for propo- 
nents of Hopfield nets. It shows that they are powerful computational models that are capable 
of encoding problems that are difficult for conventional computers, but also shows that they are 
unlikely to run in polynomial time. 

The argument of Papadimitriou, Schäffer, and Yannakakis [16] shows that the stable state 
problem for Hopfield nets is "P£5-complete in general, but does not address the case of restricted 
Hopfield nets. The Hopfield nets found in the literature typically have restrictions on the underlying 
graph. We have preliminary proofs of the following results. The stable state problem for Hopfield 
nets is still 7>£<S-complete even for: 
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Figure 1: Running times for the Hopfield network, random walk algorithm, and the divide-and- 
conquer algorithm on an n x n board. Note that the time scale is logarithmic. 



Figure 2: A grid graph. 

1. Hopfield nets whose interconnection pattern is bipartite, that is, the neurons are divided into 
two sets L and R such that if there is a connection between neurons v and w, then v € L and 
w € R, or vice-versa. 

2. Hopfield nets of degree 3, that is, every neuron is connected to at most 3 other neurons. 
3. Hopfield nets whose interconnection pattern is a very simple grid graph with crossovers in 

each grid element (see Figure 2). 
4. Hopfield nets whose interconnection pattern is one of a class of graphs used heavily in par- 

allel computation, including the hypercube, the butterfly, the cube-connected cycles, and 
the shuffle-exchange (see, for example, Leighton [14]). Hopfield nets whose interconnection 
pattern is the dual of the knight's graph, used by Takefuji and Lee [19]. 

Result (1) is proved by adapting a technique due to Brück and Goodman [4, 5]. Results (2-4) 
are proved using a graph embedding technique. It is first shown that the stable state problem for 
Hopfield nets with interconnection pattern from an arbitrary class of graphs C is 'P£tS-complete if 
an arbitrary graph G can be embedded in a graph from C with congestion 1, load 1, and polynomial 
expansion. (An embedding of a graph G\ = (Vi,Ei) into G2 = (^2,-^2) is a function f:Vi-*V2 
such that for all (v,w) G Ei, there exists a path between f(v) and f(w) in Ei- The congestion is 
the maximum number of such paths that uses any single edge, the load is the maximum number of 
vertices in V\ that have the same image under /, and the expansion is the size of V2 as a function 
of the size of V\.) We are then able to show that suitable embeddings exist for the required classes 
of graphs. 

■p/35-completeness results for Hopfield nets can be interpreted in two ways. An optimistic 
interpretation is that they identify the problem of finding stable states in a Hopfield network as a 
key problem in the theory of local optimization. A pessimistic interpretation is that it is unlikely 
that a fast algorithm can be found for finding stable states in Hopfield networks, since such an 
algorithm would provide fast algorithms for problems that have resisted such attempts for a long 
period of time. We have provided strong evidence that there are no polynomial time algorithms for 
finding stable states in some very simple classes of Hopfield nets, and in particular that each class 
includes Hopfield networks that do not converge in polynomial time. 

3.6    Lower Bounds for Hopfield Network Convergence 

A planar Hopfield network is one whose interconnection graph is planar, that is, can be drawn 
on the Euclidean plane without crossing edges. Haken and Luby [8] describe a planar Hopfield 
network that provably takes exponential time to converge. Yet there exists an algorithm for the 
stable state problem that runs in polynomial time on all Hopfield networks. The proof follows from 



the fact that the maximal cut in a planar graph can be found in polynomial time (see, for example, 
Hadlock [7]), combined with results of Papadimitriou, Schäffer, and Yannakakis [16]. Thus, we 
have proved that conventional computers are exponentially faster than planar Hopfield networks in 
sequential mode. 

We further considered the question of how long the convergence time for a planar Hopfield 
network can be, in both sequential and parallel operation. In the case of sequential updates, Haken 
and Luby [8] construct a planar Hopfield network on n nodes that takes time 2n/7 to converge. Goles 
and Martinez [6], building on the work of Orponen [15], extended this to 2n/6 in the nonplanar 
case. Using different techniques, we were able to prove a lower bound of 2n/3 in the planar case, 
thus improving substantially on both results. 

In the case of parallel updates, Goles and Martinez [6], and Brück [3] separately described a 
Hopfield network that takes time 2n/3 to converge. There were no corresponding results for planar 
Hopfield networks in parallel mode. We have constructed a planar Hopfield network that takes 
time 2n/7 to converge. 
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