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Abstract 

In this paper, we examine the use of machine learning to improve a rooftop detection process, which 
is one step in a vision system that recognizes buildings in overhead imagery. We review the problem 
of analyzing aerial images and describe an existing vision system that automates the recognition 
of buildings in such images. After this, we briefly review two well-known learning algorithms, 
representing different inductive biases, that we selected to improve rooftop detection. An important 
aspect of this problem is that the data sets are highly skewed and the cost of mistakes differs for the 
two classes, so we evaluate the algorithms under varying misclassification costs using ROC analysis. 
We report three sets of experiments designed to illuminate facets of applying machine learning to the 
image analysis task. One set of studies focuses on within-image learning, in which both training 
and testing data are derived from the same image. Another addresses between-image learning, 
in which training and testing sets come from different images. A final set investigates learning 
using all available images in an effort to determine the best performing method. Experimental 
results demonstrate that useful generalization occurs when training and testing on data derived 
from images that differ in location and in aspect. Furthermore, they demonstrate that, under most 
conditions and across a range of misclassification costs, a trained naive Bayesian classifier exceeded, 
by as much as a factor of two, the predictive accuracy of nearest neighbor and a handcrafted linear 
classifier, the solution currently used in the building detection system. Analysis of learning curves 
reveals that naive Bayes achieved superiority using as little as 6% of the available training data. 
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IMPROVED ROOFTOP DETECTION THROUGH MACHINE LEARNING 

1. Introduction 

The number of images available to image analysts is growing rapidly, and will soon outpace their 
ability to process them. Computational aids will be required to filter this flood of images and 
focus the analyst's attention on interesting events, but current image understanding systems are 
not yet robust enough to support this process. Successful image understanding relies on knowledge, 
and despite theoretical progress, implemented vision systems still rely on heuristic methods and 
consequently remain fragile. Handcrafted knowledge about when and how to use particular vision 
operations can give acceptable results on some images but not others. 

In this paper, we explore the use of machine learning as a means for improving knowledge used 
in the vision process, and thus for producing more robust software. Recent applications of machine 
learning in business and industry (Langley & Simon 1995) hold useful lessons for applications in 
image analysis. A key idea in applied machine learning involves building an advisory system that 
recommends actions but gives final control to a human user, with each decision generating a training 
case, gathered in an unobtrusive way, for use in learning. This setting for knowledge acquisition 
is similar to the scenario in which an image analyst interacts with a vision system, finding some 
system analyses acceptable and others uninteresting or in error. The aim of our research program 
is to embed machine learning into this interactive process of image analysis. 

This adaptive approach to computer vision promises to greatly reduce the number of decisions 
that image analysts must make per picture, thus improving their ability to deal with a high flow 
of images. Moreover, the resulting systems should adapt their knowledge to the preferences of 
individuals in response to feedback from those users. The overall effect should be a new class 
of systems for image analysis that reduces the workload on human analysts and give them more 
reliable results, thus speeding the image analysis process. 

In the sections that follow, we report progress on using machine learning to improve decision 
making at one stage in an existing image understanding system. We begin by explaining the task 
domain—identifying buildings in aerial photographs—and then describe the vision system designed 
for this task. Next, we review two well-known algorithms for supervised learning that hold potential 
for improving the reliability of image analysis in this domain. After this, we report the design of 
experiments to evaluate these methods and the results of those studies. In closing, we discuss 
related and future work. 

2. Nature of the Image Analysis Task 

The image analyst interprets aerial images of ground sites with an eye to unusual activity or 
other interesting behavior. The images under scrutiny are usually complex, involving many objects 
arranged in a variety of patterns. Overhead images of Fort Hood, Texas, collected as part of the 
RADIUS project (Firschein & Strat 1997), are typical of a military base and include buildings 
in a range of sizes and shapes, major and minor roadways, sidewalks, parking lots, vehicles, and 
vegetation. A common task faced by the image analyst is to detect change at a site as reflected in 
differences between two images, as in the number of buildings, roads, and vehicles. This in turn 
requires the ability to recognize examples from each class of interest. In this paper, we focus on 
the performance task of identifying buildings in satellite photographs. 
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Aerial images can vary across a number of dimensions. The most obvious factors concern viewing 
parameters, such as distance from the site (which affects size and resolution) and viewing angle 
(which affects perspective and visible surfaces). But other variables also influence the nature of 
the image, including the time of day (which affects contrast and shadows), the time of year (which 
affects foliage), and the site itself (which determines the shapes of viewed objects). Taken together, 
these factors introduce considerable variability into the images that confront the analyst. 

In turn, this variability can significantly complicate the task of recognizing object classes. Al- 
though a building or vehicle will appear different from alternative perspectives and distances, the 
effects of such transformations are reasonably well understood. But variations due to time of day, 
the season, and the site are more serious. Shadows and foliage can hide edges and obscure surfaces, 
and buildings at distinct sites may have quite different structures and layouts. Such variations serve 
as mere distractions to the human image analyst, yet they provide serious challenges to existing 
computer vision systems. 

This suggests a natural task for machine learning: given aerial images as training data, acquire 
knowledge that improves the reliability of such an image analysis system. However, we cannot 
study this task in the abstract. We must explore the effect of specific induction algorithms on 
particular vision software. In the next two sections, we briefly review one such system for image 
analysis and two learning methods that might give it more robust behavior. 

3. An Architecture for Image Analysis 

Lin and Nevatia (1996) report a computer vision package, called the Buildings Detection and 
Description System (BUDDS), for the analysis of ground sites in aerial images. Like many programs 
for image understanding, their system operates in a series of processing stages. Each step involves 
aggregating lower level features into higher level ones, eventually reaching hypotheses about the 
locations and descriptions of buildings. We will consider these stages in the order that they occur. 

Starting at the pixel level, BUDDS uses an edge detector to group pixels into edgels, and then 
invokes a line finder to group edgels into lines. Junctions and parallel lines are identified and 
combined to form three-sided structures or "Us". The algorithm then groups selected Us and 
junctions to form parallelograms. Each such parallelogram constitutes a hypothesis about the 
position and orientation of the roof for some building, so we may call this step rooftop generation. 

After the system has completed the above aggregation process, a rooftop selection stage evaluates 
each rooftop candidate to determine whether it has sufficient evidence to be retained. The aim 
of this process is to remove candidates that do not correspond to actual buildings. Ideally, the 
system will reject most spurious candidates at this point, although a final verification step may still 
collapse duplicate or overlapping rooftops. This stage may also exclude candidates if there is no 
evidence of three-dimensional structure, such as shadows and walls. 

Analysis of the system's operation suggested that rooftop selection held the most promise for 
improvement through machine learning, because this stage must deal with many spurious rooftop 
candidates. This process takes into account both local and global criteria. Local support comes 
from features such as lines and corners that are close to a given parallelogram. Since these suggest 
walls and shadows, they provide evidence that the candidate corresponds to an actual building. 
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Global criteria consider containment, overlap, and duplication of candidates. Using these evalua- 
tion criteria, the set of rooftop candidates is reduced to a more manageable size. The individual 
constraints applied in this process have a solid foundation in both theory and practice. 

The problem is that we have only heuristic knowledge about how to combine these constraints. 
Moreover, such rules of thumb are currently crafted by hand, and they do not fare well on images 
that vary in their global characteristics, such as contrast and amount of shadow. However, methods 
from machine learning, to which we now turn, may be able to induce better conditions for selecting 
or rejecting candidate rooftops. If these acquired heuristics are more accurate than the existing 
handcrafted solutions, they will improve the reliability of the rooftop selection process. 

4. A Review of Three Learning Techniques 

We can formulate the task of acquiring rooftop selection heuristics in terms of supervised learning. 
In this process, training cases of some concept are labeled as to their class. In rooftop selection, 
only two classes exist—rooftop and non-rooftop—which we will refer to as positive and negative 
examples of the concept "rooftop". Each instance consists of a number of attributes and their 
associated values, along with a class label. These labeled instances constitute training data that are 
provided as input to an inductive learning routine, which generates concept descriptions designed 
to distinguish the positive examples from the negative ones. These knowledge structures state the 
conditions under which the concept, in this case "rooftop", is satisfied. 

In a previous study (Maloof et al. 1997), we evaluated a variety of machine learning methods 
for the rooftop detection task and selected the two that showed promise of achieving a balance be- 
tween the true positive and false positive rates: nearest neighbor, and naive Bayes. These methods 
use different representations, performance schemes, and learning mechanisms for supervised con- 
cept learning, and exhibit different inductive biases, meaning that each algorithm acquires certain 
concepts more easily than others. 

The nearest-neighbor method (e.g., Aha, Kibler, & Albert 1991), uses an instance-based repre- 
sentation of knowledge that simply retains training cases in memory. This approach classifies new 
instances by finding the "nearest" stored case, as measured by some distance metric, then predict- 
ing the class associated with that case. For numeric attributes, a common metric (which we use in 
our studies) is Euclidean distance. In this framework, learning involves nothing more than storing 
each training instance, along with its associated class. Although this method is quite simple and 
has known sensitivity to irrelevant attributes, in practice it performs well in many domains. Some 
versions select the k closest cases and predict the majority class; here we will focus on the "simple" 
nearest neighbor scheme, which uses only the nearest case for prediction. 

The naive Bayesian classifier (e.g., Langley, Iba, & Thompson 1992) stores a probabilistic concept 
description for each class. This description includes an estimate of the class probability and the 
estimated conditional probabilities of each attribute value given the class. The method classifies 
new instances by computing the posterior probability of each class using Bayes' rule, combining the 
stored probabilities by assuming that the attributes are independent given the class and predicting 
the class with the highest posterior probability. Like nearest neighbor, naive Bayes has known lim- 



IMPROVED ROOFTOP DETECTION THROUGH MACHINE LEARNING 

itations, such as sensitivity to attribute correlations and an inability to represent multiple decision 
regions, but in practice it behaves well on many natural domains. 

Currently, BUDDS uses a handcrafted linear classifier for rooftop detection (Lin & Nevatia 1996), 
which is equivalent to a perceptron classifier (e.g., Zurada 1992). Although we did not train this 
method as we did naive Bayes and nearest neighbor, we included this method in our evaluation for 
the purpose of comparison. This method represents concepts using a collection of weights w and 
a threshold 6. To classify an instance, which we represent as a vector of n numbers x, we compute 
the output o of the classifier using the formula: 

0     f +1   if E?=i mxi > 0 
1—1   otherwise 

For our application, the classifier predicts the positive class if the output is +1 and predicts the 
negative class otherwise. There are a number of established methods for training perceptrons, but 
our preliminary studies suggested that they fared worse than the manually set weights, so we did 
not use the automatically trained perceptrons here. Henceforth, we will refer to the handcrafted 
linear classifier used in BUDDS as the "BUDDS classifier". 

5. Generating, Representing, and Labeling Rooftop Candidates 

We were interested in how well the various induction algorithms could learn to classify rooftop 
candidates in aerial images. This required three things: a set of images that contain buildings, 
some means to generate and represent plausible rooftops, and labels for each such candidate. 

As our first step, we selected two images, FHOV1027 and FHOV625, of Fort Hood, Texas, which 
were collected as part of the RADIUS program (Firschein & Strat 1997). These images cover 
the same area but were taken from different viewpoints, one from a nadir angle and the other 
from an oblique angle. We subdivided each image into three subimages, focusing on locations that 
contained concentrations of buildings, to maximize the number of positive rooftop candidates. This 
gave us three pairs of images, each pair covering the same area but viewed from different aspects, 
as summarized in Table 1. 

Our aim was to improve BUDDS so we used this system to generate candidate rooftops for each 
image, producing six data sets. Following Lin and Nevatia (1996), the data sets described each 
rooftop candidate in terms of nine continuous features that summarize the evidence gathered from 
the various levels of analysis. For example, positive indications for the existence of a rooftop 
included evidence for edges and corners, the degree to which a candidate's opposing lines are 
parallel, support for the existence of orthogonal trihedral vertices, and shadows near the corners 
of the candidate. Negative evidence included the existence of lines that cross the candidate, L- 
junctions adjacent to the candidate, similarly adjacent T-junctions, gaps in the candidate's edges, 
and the degree to which enclosing lines failed to form a parallelogram. 

We should note that induction algorithms are often sensitive to the features one uses to describe 
the data, and we make no claims that these nine attributes are the best ones for recognizing rooftops 
in aerial images. However, because our aim was to improve the robustness of BUDDS, we needed to 
use the same features as Lin and Nevatia's handcrafted classifier. Moreover, it seemed unlikely that 
we could devise better features than the system's authors had developed during years of research. 



IMPROVED ROOFTOP DETECTION THROUGH MACHINE LEARNING 

Table 1. Characteristics of the images and data sets. We began with a nadir and an oblique image of an 
area of Fort Hood, Texas, and derived three subimages from each that contained concentrations of 
buildings. We then used BUDDS to extract rooftop candidates and labeled each as either a positive 
or negative example of the concept "rooftop". 

Image Original Positive Negative 
Number Image Location Aspect Examples Examples 

1 FHOV1027 1 Nadir 197 982 
2 FHOV625 1 Oblique 238 1955 
3 FHOV1027 2 Nadir 71 2645 
4 FHOV625 2 Oblique 74 3349 
5 FHOV1027 3 Nadir 87 3722 
6 FHOV625 3 Oblique 114 4395 

The third problem, labeling the generated rooftop candidates, proved the most challenging and 
the most interesting. BuDDS itself classifies each candidate, but since we were trying to improve 
on its ability, we could not use those labels. Thus, we tried an approach in which an expert 
specified the vertices of actual rooftops in the image, then we automatically labeled candidates as 
positive or negative depending on the distance of their vertices from the nearest actual rooftop's 
corners. We also tried a second scheme that used the number of candidate vertices that fell within 
a region surrounding the actual rooftop. Unfortunately, upon inspection neither approach gave us 
satisfactory labeling results. 

Analysis revealed the difficulties with using such relations to actual rooftops in the labeling 
process. One is that they ignore information about the candidate's shape; a good rooftop should 
be a parallelogram, yet nearness of vertices is neither sufficient or necessary for this form. A 
second drawback is that they ignore other information contained in the nine BUDDS attributes, 
such as shadows and crossing lines. The basic problem is that such methods deal only with the 
two-dimensional space that describes location within the image, rather than the nine-dimensional 
space that we want the vision system to use in classifying a candidate. 

Reluctantly, we concluded that manual labeling by a human was necessary, but this task was 
daunting, as each image produced thousands of candidate rooftops. To support the process, we 
implemented an interactive labeling system using JAVA, shown in Figure 1, that successively displays 
each extracted rooftop to the user. The system draws each candidate over the portion of the image 
from which it was extracted, then lets the user click buttons for 'Roof or 'Non-Roof to label the 
example. 

The visual interface itself incorporates a simple learning mechanism—nearest neighbor—designed 
to improve the labeling process. As the system obtains feedback from the user about positive 
and negative examples, it divides unlabeled candidates into three classes: likely rooftops, unlikely 
rooftops, and unknown. The interface displays likely rooftops using green rectangles, unlikely 
rooftops as red rectangles, and unknown candidates as blue rectangles. The system includes a 
sensitivity parameter1 that affects how certain the system must be before it proposes a label. After 

1. The user can set this parameter using the slider bar and number field in the bottom right corner of Figure 1. 
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Figure 1. Visualization interface for labeling rooftop candidates. The system presents candidates to a user 
who labels them by clicking either the 'Roof or 'Non-Roof button. It also incorporates a simple 
learning algorithm to provide feedback to the user about the statistical properties of a candidate 
based on previously labeled examples. 

displaying a rooftop, the user either confirms or contradicts the system's prediction by clicking 
either the 'Roof or 'Non-Roof button. The simple learning mechanism then uses this information 
to improve subsequent predictions of candidate labels. 

Our intent was that, as the interface gained experience with the user's labels, it would display 
fewer and fewer candidates about which it was uncertain, and thus speed up the later stages of 
interaction. Informal studies suggested that the system achieves this aim: By the end of the labeling 
session, the user typically confirms nearly all of the interface's recommendations. However, because 
we were concerned that our use of nearest neighbor might bias the labeling process in favor of this 
algorithm during later studies, we generated the data used in Section 7 by the setting sensitivity 
parameter so that the system presented all candidates as uncertain. Even handicapped in this 
manner, the interface required only about five hours to label the 17,829 roof candidates extracted 
from the six images. This comes to under one second per candidate, which still seems quite efficient. 

In summary, what began as the simple task of labeling visual data led us to some of the more 
fascinating issues in our work. To incorporate supervised concept learning into vision systems, 
which can generate thousands of candidates per image, we must develop methods to reduce the 
burden of labeling these data. In future work, we intend to measure more carefully the ability of 
our adaptive labeling system to speed this process. We also plan to explore extensions that use the 
learned classifier to order candidate rooftops (showing the least certain ones first) and even to filter 
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candidates before they are passed on to the user (automatically labeling the most confident ones). 
Techniques such as selective sampling (e.g., Freund et al. 1997) and uncertainty sampling (Lewis 
k Catlett 1994) should prove useful toward these ends. 

6. Cost-Sensitive Learning and Skewed Data 

Two aspects of the rooftop selection task influenced our approach to implementation and evaluation. 
First, BUDDS works in a bottom-up manner, so if the system discards a rooftop, it cannot retrieve it 
later. Consequently, errors on the rooftop class (false negatives) are more expensive than errors on 
the non-rooftop class (false positives), so it is better to retain a false positive than to discard a false 
negative. The system has the potential for discarding false positives in later stages of processing 
when it can draw upon accumulated evidence, such as the existence of walls and shadows. However, 
since false negatives cannot be recovered, we need to minimize errors on the rooftop class. 

Second, we have a severely skewed data set, with training examples distributed non-uniformly 
across classes (781 rooftops vs. 17,048 non-rooftops). Given such skewed data, most induction 
algorithms have difficulty learning to predict the minority class. Moreover, we have established that 
errors on our minority class (rooftops) are most expensive, and the extreme skew only increases 
such errors. This interaction between skewed class distribution and unequal error costs occurs in 
many computer vision applications, in which a vision system generates thousands of candidates 
but only a handful correspond to objects of interest. It also holds many other applications of 
machine learning, such as fraud detection (Fawcett & Provost 1997), discourse analysis (Soderland 
& Lehnert 1994), and telecommunications risk management (Ezawa, Singh, & Norton 1996). 

These issues raise two challenges. First, they highlight the need to achieve higher accuracy on 
the minority class, whether through modified learning algorithms or altered distributions. Second, 
they require an experimental methodology that lets us compare different methods on domains like 
rooftop detection, in which the classes are skewed and errors have different costs. In the remainder 
of this section, we further clarify the nature of the problem, after which we propose some cost- 
sensitive learning methods and an approach to experimental evaluation. 

6.1 Favoritism Toward the Majority Class 

In a previous study (Maloof et al. 1997), we evaluated several algorithms without taking into 
account the cost of classification errors and got confusing experimental results. Some methods, like 
the standard error-driven algorithm for revising perceptron weights (e.g., Zurada 1992), learned to 
always predict the majority class. The naive Bayesian classifier found a more comfortable trade-off 
between the true positive and false positive rates, but still favored the majority class.2 For data 
sets that are skewed, an inductive method that learns to predict the majority class will often have a 
higher overall accuracy than a method that finds a balance between true positive and false positive 
rates. Indeed, always predicting the majority class for our problem yields a hit rate of 95 percent, 
which makes it a misleading measure of performance. 

This bias toward the majority class only causes difficulty when we care more about errors on 
the minority class. For the rooftop domain, if the error costs for the two classes were the same, 

2. Covering algorithms, like AQ15 (Michalski et al. 1986) or CN2 (Clark k Niblett 1989), may be less susceptible 
to skewed data sets, but this is highly dependent on their rule selection criteria. 
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then we would not care on which class we made errors, provided we minimized the total number of 
mistakes. Nor would there be any problem if mistakes on the majority class were more expensive, 
since most learning methods are biased toward minimizing such errors anyway. However, if the 
class distribution runs counter to the relative cost of mistakes, as in our domain, then we must take 
actions both to improve accuracy on the minority class and to refine our performance measure. 

Breiman et al. (1984) note the close relation between the distribution of classes and the relative 
cost of errors. In particular, they point out that one can mitigate the bias against the minority 
class by duplicating examples of that class in the training data. This also helps explain why most 
induction methods give more weight to accuracy on the majority class, since skewed training data 
implicitly places more weight on errors for that class. In response, several researchers have explored 
approaches that alter the distribution of training data in various ways, including use of weights 
to bias the performance element (Cardie & Howe 1997), removing unimportant examples from the 
majority class (Kubat & Matwin 1997), and 'boosting' the examples in the under-represented class 
(Freund & Schapire 1996). However, as we will see shortly, one can also modify the algorithms 
themselves to more directly respond to error costs. 

6.2 Cost-Sensitive Learning Methods 

Empirical comparisons among machine learning algorithms seldom focus on the cost of classification 
errors, possibly because most learning methods do not provide ways to take such costs into account. 
Happily, some researchers have explored variations on standard algorithms that effectively bias the 
method in favor of one class over others. For example, Lewis and Catlett (1994) introduced a 
loss ratio into C4.5 (Quinlan 1993) to bias it toward under-represented classes.   Pazzani et al. 
(1994) have also done some preliminary work along these lines, which they describe as addressing 
the costs of different error types. Their method finds the minimum-cost classifier for a variety of 
problems using a set of hypothetical error costs. Bradley (1997) presents results from an empirical 
evaluation of algorithms that take into account the cost of classification error, whereas Turney 
(1995) also addresses the cost of tests to measure attributes. 

When implementing cost-sensitive learning methods, the basic idea is to change the way the 
algorithm treats instances from the more expensive class relative to the other instances, either 
during the learning process or at the time of testing. In essence, we want to incorporate a cost 
heuristic into the algorithms so we can bias them toward making mistakes on the less costly class 
rather than on the more expensive class. 

To accomplish this, we defined a cost for each class on the range [0.0,1.0] that indicates the 
relative cost of making a mistake on one class versus another. Zero indicates that errors cost 
nothing, whereas one means that errors are maximally expensive. To incorporate a cost heuristic 
into the algorithms, we chose to modify the performance element of the algorithms, rather than the 
learning element, by using the cost heuristic to adjust the decision boundary at which the algorithm 
selects one class versus the other. 

Recall that naive Bayes predicts the class with the highest posterior probability as computed 
using Bayes' rule, so we want the cost heuristic to bias prediction in favor of the more expensive 
class. For a cost parameter Cj € [0.0,1.0], we computed the expected cost 5j for the class UJ using 
the formula: 
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*i = P(wj|x)+ci(l-P(a;j|x)) 

where x is the query, and P(WJ|X) is the posterior probability of the jth class given the query. The 
cost-sensitive version of naive Bayes predicts the class UJ with the least expected cost Sj. 

Nearest neighbor, as normally used, predicts the class of the example that is closest to the query. 
Therefore, the cost heuristic should have the effect of moving the query point closer to the closest 
example of the more expensive class. The magnitude of this change should be proportional to the 
magnitude of the cost parameter. Therefore, we computed the expected cost Sj for the class ab- 

using the formula: 

Sj = dß(x,Xj) - Cjd,E{x,Xj) 

where Xj is the closest neighbor from class Uj to the query point, and 0^(2:, y) is the Euclidean 
distance function. The cost-sensitive version of nearest neighbor predicts the class with the least 
expected cost. This modification also works for k nearest neighbor, which considers the k closest 
neighbors when classifying unknown instances. 

Finally, because our modifications focused on the performance elements rather than on the learn- 
ing algorithms, we can make similar changes to the BUDDS classifier. Since this classifier uses a 
linear discriminant function, we want the cost heuristic to adjust the threshold so the hyperplane 
of discrimination is farther from the hypothetical region of examples of the more expensive class, 
thus enlarging the decision region of that class. The degree to which the algorithm adjusts the 
threshold is again dependent on the magnitude of the cost parameter. The adjusted threshold 6' 
is computed by: 

2 

0, = ö-53sgn(wj)cjffj 

where 6 is the original threshold for the linear discriminant function, sgn(u;j) returns +1 for the 
positive class and —1 for the negative class, and Oj is the maximum value the weighted sum can 
take for the jth class. The cost-sensitive version of the BUDDS classifier predicts the positive class 
if the weighted sum of an instance's attributes surpasses the adjusted threshold 6'; otherwise, it 
predicts the negative class. 

6.3 ROC Analysis for Evaluating Performance 

Our second challenge was to identify an experimental methodology that would let us compare 
the behavior of our cost-sensitive learning methods on the rooftop data. We have already seen 
that comparisons based on overall accuracy are not sufficient for domains that involve non-uniform 
costs or skewed distributions. Rather, we must separately measure accuracy on both classes, in 
terms of false positives and false negatives. Given information about the relative costs of errors, 
say from conversations with domain experts or from a domain analysis, we could then compute 
a weighted accuracy for each algorithm that takes cost into account (e.g., Pazzani et al. 1994; 
Fawcett & Provost 1997). 

However, in this case, we had no access to image analysts or enough information about the results 
of their interpretations to determine the actual costs for the domain. In such situations, rather 
than aiming for a single performance measure, as typically done in machine learning experiments, 
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Figure 2. An idealized Receiver Operating Characteristic (ROC) curve. 

a natural solution is to evaluate each learning method over a range of cost settings. ROC (Re- 
ceiver Operating Characteristic) analysis (Swets 1988) provides a framework for carrying out such 
comparisons. The basic idea is to systematically vary some aspect of the situation, such as the 
cost ratio or the class distribution, and to plot the false positive rate against the false negative 
rate for each situation. Although researchers have used such ROC curves in signal detection and 
psychophysics for decades (e.g., Green & Swets 1974; Egan 1975), this technique has only recently 
begun to filter into machine learning research (e.g., Bradley 1997; Ezawa, Singh, & Norton 1996; 
Maloof et al. 1997; Provost & Fawcett 1997). 

Figure 2 shows an idealized ROC curve generated by varying the cost parameter of a cost-sensitive 
learning algorithm. The lower left corner of the figure represents the situation in which mistakes 
on the negative class are maximally expensive (i.e., c+ = 0.0 and c_ = 1.0). Conversely, the upper 
right corner of the ROC graph represents the situation in which mistakes on the positive class are 
maximally expensive (i.e., c+ = 1.0 and c_ = 0.0). By varying over the range of cost parameters 
and plotting the classifier's true positive and false positive rates, we produce a series of points that 
represents the algorithm's accuracy trade-off. The point (0, 1) is where classification is perfect, 
with a false positive rate of zero and a true positive rate of one, so we want ROC curves that "push" 
toward this corner. 

Traditional ROC analysis uses area under the curve as the preferred measure of performance, 
with curves that cover larger areas generally being viewed as better (Hanley & McNeil 1982; Swets 
1988). Given the skewed nature of the rooftop data, and the different but imprecise costs of errors 
on the two classes, we decided to use area under the ROC curve as the dependent variable in our 
experimental studies. This measure raises problems when two curves have similar areas but are 
dissimilar and asymmetric, and thus occupy different regions of the ROC space. In such cases, 
other types of analysis are more useful (e.g., Provost & Fawcett 1997), but area under the curve 
appears to be most appropriate when curves have similar shapes and when one is nested within the 
other. As we will see, this relation typically holds for our cost-sensitive algorithms in the rooftop 
detection domain. 
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Figure 3. ROC curves for Images 1 and 2. We ran each method by training and testing using data derived 
from the same image over a range of misclassification costs. We conducted ten such runs and 
plotted the average true positive and false positive rates. These images are of the same location 
but different aspects: Image 1 is a nadir view, while Image 2 is an oblique. 

7. Experimental Studies 

To investigate the use of machine learning for the task of rooftop detection, we conducted experi- 
ments using the cost-sensitive versions of naive Bayes, nearest neighbor, and the BUDDS classifier. 
As typically done in such studies, in each experiment we trained the induction methods on data 
(rooftop candidates) separate from those used to test the learned classifiers. As we will see, the 
experiments differed in whether the training and test cases came from the same or distinct images, 
which let us examine different forms of generalization beyond the training data. 

7.1 Within-Image Learning 

Our first experimental study examined how the various methods behaved given within-image learn- 
ing, that is, when generalizing to test cases taken from the same image on which we trained them. 
Our research hypothesis was that the learned classifiers would be more accurate, over a range of 
misclassification costs, than the handcrafted linear classifier. Because our measure of performance 
was area under the ROC curve, this translates into a prediction that the ROC curves of the learned 
rooftop classifiers would have larger areas than those of the BUDDS classifier. 

For each image and method, we varied the error costs and measured the resulting true positive 
and false positive rates for ten runs. Since costs are relative (i.e., c+ = 0.0 and c_ = 0.5 is equivalent 
to c+ = 0.25 and c_ = 0.75) and our domain involved only two classes, we varied the cost parameter 
for only one class at a time and fixed the other at zero. Each run involved partitioning the data set 
randomly into training (60%) and test (40%) sets, running the learning algorithms on the instances 
in the training set, and evaluating the resulting concept descriptions using the data in the test 
set. Because the BUDDS classifier was hand-configured, it had no training phase, so we applied it 
directly to the instances in the test set. For each cost setting and each classifier, we plotted the 
average false positive rate against the average true positive rate over the ten runs. 

Figure 3 presents the ROC curves for Images 1 and 2. Naive Bayes and nearest neighbor give 
similar results, but both fare better than the BUDDS classifier.   Rather than present the curves 
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Table 2. Results for within-image experiments. For each image, we generated ROC curves by training and 
testing each method over a range of costs. We used the approximate area under the curve as the 
measure of performance, which appear with 95% confidence intervals. Naive Bayes performed best 
overall, with the BUDDS classifier outperforming nearest neighbor on three of the six images. 

Classifier Image 1 
Approximate Area under ROC Curve 

Image 2 Image 3 Image 4 Image 5 Image 6 

Naive Bayes 0.870±0.008    0.812±0.017    0.962±0.013    0.908±0.025    0.869±0.016    0.835±0.025 
BUDDS Classifier  0.717±0.009    0.773±0.004    0.899±0.015    0.901±0.007    0.833±0.021    0.849±0.010 
Nearest Neighbor 0.823±0.019    0.833±0.016    0.911±0.010    0.801±0.028    0.819±0.027    0.739±0.017 

for the remaining four images, we follow Swets (1988) and report, in Table 2, the area under 
each ROC curve, which we approximated by summing the areas of the trapezoids defined by each 
pair of adjacent points in the ROC curve. For all images except for Image 6, naive Bayes produced 
curves with areas greater than those for the BUDDS classifier, thus generally supporting our research 
hypothesis. On Images 4, 5, and 6, nearest neighbor did worse than the handcrafted method, which 
runs counter to our prediction. 

7.2 Between-Image Learning 

We geared our next set of experiments more toward the goals of image analysis. Recall that 
our motivating problem is the large number of images that the analyst must process. In order to 
alleviate this burden, we want to apply knowledge learned from some images to many other images. 
But we have already noted that several dimensions of variation pose problems to transferring such 
learned knowledge to new images. For example, one viewpoint of a given site can differ from other 
viewpoints of the same site in orientation or in angle from the perpendicular. Images taken at 
different times and images of different areas present similar issues. 

We designed experiments to let us understand better how the knowledge learned from one image 
generalizes to other images that differ along such dimensions. Our hypothesis here was a refined 
version of the previous one: classifiers learned from one set of images would be more accurate on 
unseen images than handcrafted classifiers. However, we also expected that between-image learning 
would give lower accuracy than the within-image situation, since differences across images would 
make generalization more difficult. 

One experiment focused on how the methods generalize over aspect. Recall from Table 1 that we 
had images from two aspects (i.e., nadir and oblique) and from three locations. This let us train 
the learning algorithms on an image from one aspect and test on an image from another aspect but 
from the same location. As an example, for the nadir aspect, we chose Image 1 and then tested 
on Image 2, which is an oblique image of the same location. We ran the algorithms in this manner 
using the images from each location, while varying their cost parameters and measuring their true 
positive and false positive rates. We then averaged these measures across the three locations and 
plotted the results as ROC curves, as shown in Figure 4. The areas under these curves and their 
95% confidence intervals appear in Table 3. 
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Figure 4. ROC curves for experiments that tested generalization over aspect. Left: For each location, we 
trained each method on the oblique image and tested the resulting concept descriptions on the 
nadir image. We plotted the average true positive and false positive rates. Right: We followed a 
similar methodology, except that we trained the methods on the nadir images and tested on the 
oblique images. 

One obvious conclusion is that the nadir images appear to pose an easier problem than the 
oblique images, since the curves for testing on nadir candidates are generally higher than those 
for testing on data from oblique images. For example, Table 3 shows that naive Bayes generates 
a curve with an area of 0.878 for the nadir images, but produces a curve with an area of 0.842 
for the oblique images. The other two methods show a similar degradation in performance when 
generalizing from nadir to oblique images rather than from oblique to nadir images. 

Upon comparing the behavior of different methods, we find that, for oblique to nadir generaliza- 
tion, naive Bayes (with an area under the ROC curve of 0.878) performs better than the BUDDS 

classifier, with an area of 0.837, which in turn did better than nearest neighbor (0.795). For nadir 
to oblique generalization, naive Bayes performs slightly better than the BUDDS classifier, which 
produce areas of 0.842 and 0.831, respectively. Nearest neighbor's curve in this situation covers an 
area of 0.785, which is considerably smaller. 

A second experiment examined generalization over location. To this end, we trained the learning 
methods on pairs of images from one aspect and tested on the third image from the same aspect. 
As an example, for the nadir images, one of the three learning runs involved training on rooftop 
candidates from Images 1 and 3, then testing on candidates from Image 5. We then ran each of the 
algorithms across a range of costs, measuring the false positive and true positive rates. We plotted 
the averages of these measures across all three learning runs for one aspect in an ROC curve, as 
shown in Figure 5. 

In this context, we again see evidence that the oblique images presented a more difficult recog- 
nition task than the nadir aspect, since the oblique areas are less than those for the nadir images. 
Comparing the behavior of the various methods, Table 3 shows that, for the nadir aspect, naive 
Bayes performs slightly better than the BUDDS classifier, which give areas of 0.901 and 0.837. 
As before, both did better than nearest neighbor, which yielded an area of 0.819 under its ROC 
curve. When generalizing over location on the oblique images, naive Bayes and the BUDDS classi- 
fier produced ROC curves with equal areas of 0.831. These were considerably better than nearest 
neighbor's, which had an area of 0.697. 
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Figure 5. ROC curves for experiment that tested generalization over location. Left: For each pair of images 
for the nadir aspect, we trained the methods on that pair and tested the resulting concept descrip- 
tions on the third image. We then plotted the average true positive and false positive rates. Right: 
We applied the same methodology using the images for the oblique aspect. 

Thus, the results with the naive Bayesian classifier support our main hypothesis. In all exper- 
imental conditions this method fared better than or equal to the BUDDS linear classifier. On the 
other hand, the behavior of nearest neighbor typically gave worse results than the handcrafted 
rooftop detector, which went against our original expectations. 

Recall that we also anticipated that generalizing across images would give lower accuracies than 
generalizing within images. To test this hypothesis, we must compare the results from these exper- 
iments with those from the within-image experiments (see Table 3). Simple calculation shows that, 
for the within-image condition (Table 2), naive Bayes produced an average ROC area of 0.9 for the 
nadir images and 0.851 for the oblique images. Similarly, nearest neighbor averaged 0.851 for the 
nadir images and 0.791 for the oblique images. Most of these these areas are substantially higher 
than the analogous areas that resulted when these methods generalized across location and aspect. 
The one exception is that naive Bayes actually did equally well when generalizing over location for 
the nadir image, but the results generally support our prediction. 

Also note that naive Bayes' performance degraded less than that of nearest neighbor when gen- 
eralizing to unseen images. This can be seen by comparing the differences between each method's 
performance in the within-image condition and in the between-image conditions. For example, 
naive Bayes' average degradation in performance over all experimental conditions was 0.013, while 
nearest neighbor's was 0.47. This constitutes further evidence that naive Bayes is better suited for 
this domain, at least when operating over the nine features used in our experiments. 

7.3 Learning from All Available Images 

Our next study used all of the rooftop candidates generated from the six Fort Hood images, since 
we wanted to replicate our previous results in a situation similar to that we envision being used in 
practice, which would draw on training cases from all images. Based on the earlier experiments, we 
anticipated that the naive Bayesian classifier would yield an ROC curve of greater area than those 
of the other methods. 



IMPROVED ROOFTOP DETECTION THROUGH MACHINE LEARNING 15 

Table 3. Results for between-image experiments. We again used the approximate area under the ROC 
curve as the measure of performance, along with 95% confidence intervals. Naive Bayes performed 
the best, while the BUDDS classifier generally outperformed nearest neighbor. The labels 'Nadir' 
and 'Oblique' indicate the testing condition. We derived analogous results for the within-image 
experiments by averaging the results for each condition. Approximate areas appear with 95% 
confidence intervals. 

Classifier 
Aspect Experiment 
Nadir Oblique 

Location Experiment 
Nadir Oblique 

Within Image 
Nadir Oblique 

Naive Bayes 0.878±0.042    0.842±0.063    0.90Ü0.079    0.831±0.067    0.900±0.012    0.851±0.022 
BUDDS Classifier  0.837±0.085    0.83Ü0.068    0.837±0.085    0.831±0.068    0.837±0.085    0.831±0.068 
Nearest Neighbor 0.795±0.035    0.785±0.053    0.819±0.058    0.697±0.027    0.851±0.019    0.791±0.020 

Combining the rooftop candidates from all six images gave us 17,829 instances, 781 labeled 
positive and 17,048 labeled negative. We ran each algorithm ten times over a range of costs. For 
each run and set of cost parameters, we randomly split the data into training (60%) and testing 
(40%) sets, then averaged the results for each cost level over its ten runs. 

Figure 6 shows the resulting ROC curves, which plot the true positive and false positive rates, 
whereas Table 4 gives the approximate area under these curves. As anticipated, naive Bayes 
performed the best overall, producing a curve with area 0.85. Nearest neighbor fared slightly 
better than the BUDDS classifier, yielding an area of 0.801, compared to 0.787 for the latter. 

In practice, image analysts will not evaluate a classifiers performance using area under the ROC 
curve but, rather, will have specific error costs in mind, even if they cannot state them formally. 
We have used ROC curves because we do not know these costs in advance, but we can inspect 
behavior of the various classifiers at different points on these curves to give further insight into how 
much the learned classifiers are likely to aid analysts during actual use. 

For example, consider the behavior of the naive Bayesian classifier when it achieves a true positive 
rate of 0.84 and a false positive rate of 0.27, the third diamond from the right in Figure 6. To obtain 
the same true positive rate, the BUDDS classifier produced a 0.62 false positive rate. This means 
that, for a given true positive rate, naive Bayes reduced the false positive rate by more than half 
over the handcrafted classifier. Hence, for the images we considered, the naive Bayesian classifier 
would have rejected 5,969 more non-rooftops than BUDDSSimilarly, by fixing the false positive rate, 
naive Bayes improved the true positive rate by 0.12 over the BUDDS classifier. In this case, the 
Bayesian classifier would have found 86 more rooftops than BUDDS would have detected. 

7.4 Rates of Learning 

We were also interested in the behavior of the learning methods as they processed increasing 
amounts of training data. Our long-term goal is to embed the learned classifier in an interactive 
system that supports an image analyst. For this reason, we would prefer a learning algorithm that 
achieves high accuracy from relatively few training cases, since this should reduce the load on the 
human analyst. 
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Figure 6. ROC curve for the experiment using all available image data. We ran each method over a range of 
costs using a training set (60%) and a testing set (40%) and averaged the true positive and false 
positive rates over ten runs. Naive Bayes produced the curve with the largest area, but nearest 
neighbor also yielded a curve larger in area than that for the BUDDS classifier. 

To this end, we carried out a final experiment in which we systematically varied the number 
of training cases available to the learning method. We again used all of the available rooftop 
candidates, splitting the data into training (60%) and test (40%) sets, but further dividing the 
training set randomly into ten subsets (10%, 20%, ..., 100%). We ran the learning algorithms on 
each of the training subsets and evaluated the acquired concept descriptions on the reserved testing 
data, averaging our results over 25 separate training/test splits. 

Figure 7 shows the resulting learning curves, each point of which corresponds to the average area 
under the ROC curves for a given number of training cases. As expected, the learning curve for 
the the BUDDS classifier is flat, since it involves no training and we simply applied it to the same 
test set for each number of training cases. However, nearest neighbor produces a curve that starts 
below that of the BUDDS classifier and then surpasses it after seeing 70% of the training data. Naive 
Bayes shows similar improvement with increasing amounts of training data, but its performance 
was better than the BUDDS classifier from the start, after observing only 10% of the training data. 
This equates to roughly 6% of the available data and is less than the amount of data derived from 
one image. Not only was naive Bayes the best performing method, but also it was able to achieve 
this performance using very little of the available training data. 

7.5 Summary 

From the within-learning experiments, in which we trained and tested the learning methods using 
data derived from the same image, it was apparent that at least one machine learning method, 
naive Bayes, showed promise of improving the rooftop detection task over the handcrafted linear 
classifier. The results from this experiment also established baseline performance conditions for the 
methods because they controlled for differences in aspect and location. 

In an effort to test the learning methods for their ability to generalize to unseen images, we found 
that rooftop detection for oblique images posed a more difficult problem than for nadir images. 
This could be because BUDDS was initially developed using nadir images and then extended to 
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Table 4. Results for the experiment using all of the image data. We split the data into training (60%) and 
test (40%) sets and ran each method over a range of costs. We then computed the average area 
under the ROC curve and 95% confidence intervals over ten runs. 

Classifier Approximate Area 

Naive Bayes 0.850±0.008 
Nearest Neighbor 0.80Ü0.008 
BUDDS Classifier 0.787±0.008 

handle oblique images. Thus, the features may be biased toward nadir-view rooftops. A more 
likely explanation is that oblique images are simply harder than nadir images (R. Nevatia, personal 
communication, 1998). Nevertheless, under all circumstances, the performance of naive Bayes 
was equal to or better than that of the handcrafted linear classifier. Finally, we also discovered 
that the performance of the methods degraded when generalizing to unseen images, but that the 
performance of naive Bayes degraded less than that of nearest neighbor. 

Our final experiment used all of the available image data for learning and demonstrated that 
naive Bayes and nearest neighbor outperformed the BUDDS classifier. Further analysis of specific 
points on the ROC curves revealed that naive Bayes improved upon the false positive rate of 
the handcrafted solution by more than a factor of two for true positive rates of 0.84 and higher. 
Learning curves demonstrated that naive Bayes achieved superior performance using very little of 
the available training data. 

8. Related Work 

Research on learning in computer vision has become increasingly common in recent years. Some 
work in visual learning takes an image-based approach (e.g., Beymer & Poggio 1996), in which the 
images themselves, usually normalized or transformed in some way, are used as input to a learning 
process, which is responsible for forming the intermediate representations necessary to transform 
the pixels into a decision or classification. Researchers have used this approach extensively for face 
and gesture recognition (e.g., Chan, Nasrabadi, & Mirelli 1996; Gutta et al. 1996; Osuna, Freund, & 
Girosi 1997; Segen 1994), although it has seen other applications as well (e.g., Nayar & Poggio 1996; 
Pomerleau 1996; Viola 1993). 

A slightly different approach relies on handcrafted vision routines to extract relevant image fea- 
tures, based on intensity or shape properties, then recognizes objects using learned classifiers that 
take these features as inputs. For example, Shepherd (1983) used decision-tree induction to con- 
struct classifiers for chocolate shapes in an industrial vision application. Cromwell and Kak (1991) 
took a similar approach to recognizing electrical components, such as transistors, resistors, and ca- 
pacitors. Maloof and Michalski (1997) examined various methods of learning shape characteristics 
for detecting blasting caps in X-ray images, whereas additional work (Maloof et al. 1996) discussed 
learning in a multi-step vision system for the same detection problem. 

Several researchers have also investigated learning for three-dimensional vision systems. Papers 
by Conklin (1993), Connell and Brady (1987), Cook et al. (1993), Provan, Langley, and Binford 
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Figure 7. Learning curves for area under the ROC curve using all available image data. We ran each method 
on increasing amounts of training data and evaluated the resulting concept descriptions on reserved 
testing data. Each point is an average of ten runs. 

(1996), and Sengupta and Boyer (1993) all describe inductive approaches aimed at improving object 
recognition. The aim here is to learn the three-dimensional structure that characterizes an object or 
object class, rather than its appearance. Another line of research, which falls midway between this 
approach and image-based schemes, instead attempts to learn a small set of characteristic views, 
each of which can be used to recognize an object from a different perspective (e.g., Gros 1993; 
Pope & Lowe 1996). 

Most work on visual learning ignores the importance of misclassification costs, but our work along 
these lines has some precedents. In particular, Draper, Brodley, and Utgoff (1994) incorporate the 
cost of errors into their algorithm for constructing and pruning multivariate decision trees. They 
tested this approach on the task of labeling pixels from outdoor images for use by a road-following 
vehicle. They determined that, in this context, labeling a road pixel as non-road was more costly 
than the reverse, and showed experimentally that their method could reduce such errors on novel 
test pixels. Woods, Bowyer, and Kegelmeyer (1996), as well as Rowley, Baluja, and Kanade (1996), 
report similar work that takes into account the cost of errors. 

Much of the research on visual learning uses images of scenes or objects viewed at eye level (e.g., 
Draper 1997; Teller & Veloso 1997). One exception is Connell and Brady's (1987) work on learning 
structural descriptions of airplanes from aerial views. Their method converted training images 
into semantic networks that it then generalized by comparing to descriptions of other instances. 
However, the authors do not appear to have tested experimentally their algorithm's ability to 
accurately classify objects in new images. Another example is the SKICAT system (Fayyad et al. 
1996), which catalogs celestial objects, such as galaxies and stars, using images from the Second 
Palomar Observatory Sky Survey. 

A related system, JARTool (Fayyad et al. 1996), also analyzes aerial images, in this case to 
detect Venusian volcanos, using synthetic aperture radar on the Magellan spacecraft. Asker and 
Maclin (1997) extend JARTool by using an ensemble of 48 neural networks to improve performance. 
Using ROC curves, they demonstrate that the ensemble achieved better performance than either 
the individual learned classifiers or the one used originally in JARTool. They also document some 
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of the difficulties associated with applying machine learning techniques to real-world problems, such 
as feature selection and instance labeling, which were similar to problems we encountered. 

Finally, Draper (1996) reports a careful study of learning in the context of analyzing aerial images. 
His approach adapts methods for reinforcement learning to assign credit in multi-stage recognition 
procedure (for software similar to BUDDS), then uses an induction method (backpropagation in 
neural networks) to learn conditions on operator selection. He presents initial results on a RADIUS 
task that also involves the detection of roofs. Our framework shares some features with Draper's 
approach, but assumes that learning is directed by feedback from a human expert. We predict 
that our supervised method will be more computationally tractable than his use of reinforcement 
learning, which is well known for its high complexity. Our approach does require more interaction 
with users, but we believe this interaction will be unobtrusive if cast within the context of an 
advisory system for image analysis. 

9. Concluding Remarks 

Although this study has provided some insight into the role of machine learning in image analysis, 
much still remains to be done. For example, we may want to consider other measures of performance 
that take into account the presence of multiple valid candidates for a given rooftop. Classifying 
one of these candidates correctly is sufficient for the purpose of image analysis. 

In addition, although the rooftop selection stage was a natural place to start in applying our 
methods, we intend to work at both earlier and later levels of the building detection process. The 
goal here is not only to increase classification accuracy, which could be handled entirely by candidate 
selection, but also to reduce the complexity of processing by removing poor candidates before they 
are aggregated into larger structures. With this aim in mind, we plan to extend our work to all 
levels of the image understanding process. We must address a number of issues before we can make 
progress on these other stages. One involves identifying the cost of different errors at each level, 
and taking this into account in our modified induction algorithms. Another concerns whether we 
should use the same induction algorithm at each level or use different methods at each stage. 

As we mentioned earlier, in order to automate the collection of training data for learning, we also 
hope to integrate learning routines into BUDDS. This system was not designed initially to be inter- 
active, but we intend to modify it so that the image analyst can accept or reject recommendations 
made by the image understanding system, generating training data in the process. At intervals 
the system would invoke its learning algorithms, producing revised knowledge that would alter the 
system's behavior in the future and, hopefully, reduce the user's need to make corrections. The 
interactive labeling system described in Section 5 could serve as an initial model for this interface. 

In conclusion, our studies suggest that machine learning has an important role to play in improv- 
ing the accuracy, and thus the robustness, of image analysis systems. However, we need additional 
experiments to give better understanding of the factors affecting between-image generalization and 
we need to extend learning to additional levels of the image understanding process. Also, before we 
can build a system that truly aids the human image analyst, we must further develop unobtrusive 
ways to collect training data to support learning. 
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