
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

IMPROVING SYNTACTIC MATCHING
FOR MULTI-LEVEL FILTERING

by

Jeffrey S. Herman

September, 1997

Thesis Advisor:
Co-Advisor:

V. Berzins
Luqi

Approved for public release; distribution is unlimited.

19980414 140 »TIC qUALUT nrSSEÜTED 3

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)
Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) REPORT DATE

September 1997
3. REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE:
IMPROVING SYNTACTIC MATCHING FOR MULTI-LEVEL FILTERING

6. AUTHOR(S) Herman, Jeffrey S.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School

Monterey CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the

Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

At the center of software reuse is the search and retrieval of software components from large software libraries. Recent
research has illuminated a promising approach called multi-level filtering that breaks the problem up into a series of
increasingly stringent filters that move along a continuum of high-recall, low-precision syntactic techniques towards the
more computationally expensive, high-precision semantic techniques.

In multi-level filtering, syntactic matching is decomposed into two phases: profile filtering and signature matching.
This thesis presents improvements to the resolution of syntactic profiles where the intent is to increase precision without a
loss in recall during profile filtering. Large integer representation of profiles and profile lookup tables lead to an optimal
time-and-space solution to profile representation. Finally, a new approach to signature matching is proposed that provides
early pruning of the search-space in an effort to cut down the time it takes to find valid signature maps.

The resulting software is mature enough for future integration with the other elements of multi-level filtering as well as
inclusion in a CASE tool such as CAPS.

14. SUBJECT TERMS
Software Reuse, Syntactic Matching, Signature Matching, Multi-level Filtering

15. NUMBER OF
PAGES 146

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

»no QUALITY iwTssmm g

11

Approved for public release; distribution is unlimited.

IMPROVING SYNTACTIC MATCHING
FOR MULTI-LEVEL FILTERING

Jeffrey S. Herman

B.A., Computer Science, University of California San Diego, 1990

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1997

Author:

Approved by:.

S /
^—

Jeffrey S. Herman
)<r

V. Berzins, Thesis Advisor

Tt ■^r
Luqi, Co-Advisor

-s^. ^Y/g^
T. Lewis, Chairman

Department of Computer Science

in

IV

ABSTRACT

At the center of software reuse is the search and retrieval of software components

from large software libraries. Recent research has illuminated a promising approach

called multi-level filtering that breaks the problem up into a series of increasingly

stringent filters that move along a continuum of high-recall, low-precision syntactic

techniques towards the more computationally expensive, high-precision semantic

techniques.

In multi-level filtering, syntactic matching is decomposed into two phases: profile

filtering and signature matching. This thesis presents improvements to the resolution of

syntactic profiles where the intent is to increase precision without a loss in recall during

profile filtering. Large integer representation of profiles and profile lookup tables lead to

an optimal time-and-space solution to profile representation. Finally, a new approach to

signature matching is proposed that provides early pruning of the search-space in an

effort to cut down the time it takes to find valid signature maps.

The resulting software is mature enough for future integration with the other

elements of multi-level filtering as well as inclusion in a CASE tool such as CAPS.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

II. BACKGROUND 3

A. KEYWORD MATCHING 3

B. SYNTACTIC MATCHING 4

C. SEMANTIC MATCHING 4

D. MULTI-LEVEL FILTERING 5

E. SOFTWARE BASE DESIGN AND POPULATION 5

III. MULTI-LEVEL FILTERING ARCHITECTURE 7

IV. PROFILE FILTERING 9

A. CURRENT STATE OF THE ART 9

B. PROFILE IMPROVEMENTS 10

1. Resolution 10

2. Time-and-Space ■ 13

C. DESIGN AND IMPLEMENTATION 15

1. Component Types 16

2. Profile Types 20

3. Haase Diagram Types 21

4. Candidate Types 23

5. Software Base Types 24

6. Profile Filtering Strategy. 25

V. SIGNATURE MATCHING 29

A. CURRENT STATE OF THE ART 29

B. IMPROVEMENTS 29

1. Operation Ordering 30

2. Match Outputs 31

3. Match Predefined Types 32

C. DESIGN AND IMPLEMENTATION 33

vii

1. Signature Matching Types 33

2. Signature Matching Strategy 35

3. Subtype Matching 42

VI. EXPERIMENTATION 45

A. GENERIC COMPONENT INSTANTIATION 48

B. PROFILE FILTERING 49

1. Software Base Resolution 49

2. Profile Filtering Performance 50

C. SIGNATURE MATCHING 56

1. Effectiveness of Profile Improvements on Signature Matching 56

2. Signature Matching Algorithm Performance 60

VII. CONCLUSION AND FUTURE RESEARCH 63

A. ACCOMPLISHMENTS 63

B. FUTURE RESEARCH 63

REFERENCES 65

APPENDIX - SOURCE CODE 67

INITIAL DISTRIBUTION LIST 135

vm

I. INTRODUCTION

Effective software reuse becomes increasingly more important as the cost and

complexity of software development escalates. At the center of the issue is the search

and retrieval of software components from large software libraries. When enterprises that

encourage the creation of reusable software components succeed in their efforts they are

often met with the discouraging reality that large software bases are difficult to use.

Issues such as query formulation, component storage, component retrieval, and

presentation of query results must all be addressed with the same technology/usability

tradeoffs that accompany most tools. Searching and retrieving components in large

software bases has typically been plagued by poor recall and precision, slow algorithms,

and demanding query requirements.

In an effort to address such shortcomings, the literature has shed light on

numerous techniques for searching and retrieving components in large software bases but

they usually fall short due to their narrow approaches. A promising new hybrid approach

called multi-level filtering combines many of the traditional aspects of search and

retrieval, such as keyword matching, syntactic matching, and semantic matching. The

method breaks the problem up into a series of increasingly stringent filters that move

along a continuum of high-recall, low-precision syntactic techniques towards the more

computationally expensive, high-precision semantic techniques. This thesis is focused on

improving the syntactic matching filters used early in the process of multi-level filtering.

To begin, section II reviews the relevant literature leading up to multi-level

filtering. Section III more specifically discusses the architecture of multi-level filtering,

including the decomposition of syntactic matching into its two phases of profile filtering

and signature matching. Section IV presents improvements to the resolution of syntactic

profiles1 that can increase precision without a loss in recall during profile filtering. Also

presented are improvements to the internal representation of syntactic profiles that lead to

an optimal time-and-space solution to profile representation. Section V outlines

improvements to signature matching that provide early pruning of the search-space in an

1 Unique to the multi-level filtering method, a syntactic profile is a normalized representation of a software
component's syntactic properties. A more detailed definition is found in section IV.

effort to cut down the time it takes to find valid signature maps. Section VI discusses the

effectiveness of the improvements through a series of experiments. Section VII draws

some conclusions and suggests areas for future research. The last sub-section in sections

IV and V contain a detailed design of the improvements and the appendix contains the

source code representing the design's implementation. The resulting software is mature

enough for future integration with the other elements of multi-level filtering as well as

inclusion in a CASE tool such as CAPS.

II. BACKGROUND

A sampling of previous work in software component search and retrieval is

presented in this section to provide some background and basis for the ideas proposed in

this thesis.

A. KEYWORD MATCHING

The classical and somewhat popular approach to software search and retrieval has

been the employment of keyword matching. Components are assigned keywords that

describe their attributes and functionality. Queries are specified with keywords and a

simple search through the software base for components with matching keywords returns

the candidate set of components. Such an approach breaks down, however, as the size of

the software base increases. A large set of keywords can cause loss of recall and small

sets of keywords can cause loss of precision.

[11] improves on the classical keyword technique by utilizing a faceted approach

that better structures the terms used for classifying the components. Terms chosen from a

set of facets are used to categorize all the components. This facilitates a closer fit of

terms and reduces the problem of deciding the best keyword to use from a fixed set of

standard keywords.

Among the problems with keyword-based approaches is the inherent requirement

of a well-versed librarian. The infamous garbage-in/garbage-out principle certainly

applies to the software base population activity. If the librarian does not have appropriate

domain knowledge for each component admitted into the software base then the

keywords will not be chosen correctly and penalties in recall and precision during search

and retrieval will ensue.

A long overdue use of keyword matching is to apply it along side other

techniques. The multi-level filtering method in [9] is an example of such a hybrid

approach. The results of keyword matching are summarized in a computed keyword ratio

that can be used to determine if a candidate should be forwarded to the next filter. If

problems with recall and precision emerge, the keyword filter threshold can be adjusted

or the keyword filter can be deactivated altogether.

B. SYNTACTIC MATCHING

Syntactic matching has been proposed as an effective method for quickly ruling

out components that cannot match the query [13]. The process can be successfully

automated when syntactic normalizing procedures are applied. Syntactic normalization

procedures come in many forms [2][6][13] but perhaps the most promising approach

proposed recently is the application of syntactic profiles [9]. This approach is discussed

and improved upon in section IV of this thesis.

The presence of subtypes in queries and components has often plagued syntactic

matching by imposing penalties in recall. For example, if the query is an operation that

takes a positive as an input and the operation components in the software base only

contain integer inputs then the query will fail even though positives are legitimate

subtypes of integers. Such a shortcoming is addressed in [2] and further refined in [9].

C. SEMANTIC MATCHING

A major shortcoming of syntactic matching is its inability to retrieve components

based on their behavior. If syntactic matching were the sole approach to search and

retrieval a query for a square-root function would indeed return a square-root function

but, to the user's dismay, most of the other math functions in the software base would be

returned as well! Recent efforts have attempted to address this shortcoming through

various approaches to semantic matching. Specification-based approaches found in [6]

and [8] require the user to form queries as behavioral specifications but haven't been met

with great success due to the difficulty of forming correct specifications.

The approach of using algebraic specifications [13] for encoding a component's

behavior has led to promising results for successfully automating semantic matching [9].

A set of ground equations describing the component's behavior can be specified

algebraically using algebraic specification languages such as OBJ3 [3] and included with

the component. The terms in the equations can be applied from left to right to simplify

them to their canonical form where they can then be easily compared to a query's set of

ground equations. Algebraic specifications, however, are not much of an improvement

with regards to ease of use. Specification languages such as OB J3 have to be absorbed

by the librarian and the user and the domain of the component needs to be understood. A

librarian will be met with a cumbersome task when preparing an entire software base for

this type of semantic matching [10].

D. MULTI-LEVEL FILTERING

Multi-level filtering [9] is an approach that integrates keyword, syntactic, and

semantic matching. It is attractive because it applies a series of increasingly stringent

filters that move along a continuum of high-recall, low-precision syntactic techniques

towards the more computationally expensive, high-precision semantic techniques. The

purpose of the work described in this thesis is to improve upon the syntactic matching

processes of multi-level filtering. Hence, a discussion regarding the specifics of the

multi-level filtering approach will be postponed to their relevant sections of this

document.

E. SOFTWARE BASE DESIGN AND POPULATION

Populating the software base usually involves annotating the components with

additional information to facilitate search and retrieval. In every approach cited above

this is the case. PSDL [5] has been shown to be an effective language for representing

components independently of their native language [10]. In addition to its real-time

specification support, PSDL supports operations (including generic operations), abstract

data types (including generic types), state machines, and the common predefined types

found in most popular programming languages. Thus PSDL is more than sufficient for

representing the syntactical properties of queries and reusable components in a software

base. PSDL also provides a placeholder for axioms to provide semantic information for

the component. Algebraically specified ground equations in the form of OBJ3, for

instance, can be placed in this section of the PSDL file.

CAPS [7], a CASE tool for rapid prototyping of embedded hard real-time

systems, represents great strides in integrating modern software engineering technologies.

The system includes a graphical editor, an execution support system, an evolution control

system, automated real-time schedulers, automated integration of Ada modules, and

placeholders for making use of a software base. Its initial software base [10] includes

reusable components from the Booch library. The components include syntactic

specifications in PSDL and semantic specifications in OBJ3 thereby providing a good test

suite for multi-level filtering and the ideas proposed in this thesis.

III. MULTI-LEVEL FILTERING ARCHITECTURE

The model of multi-level filtering is illustrated in Figure 1. The entire process can

be generalized into two main activities: syntactic matching and semantic matching.

Syntactic matching quickly filters out candidates based on syntactic properties to

eliminate as many candidates as possible that must undergo the computationally

expensive semantic matching. Clearly it is advantageous to filter out large numbers of

candidates early to minimize the use of the more laborious filters later in the process. At

any stage of the process the user should be able to set the thresholds that determine the

constraints within which a candidate may pass. Furthermore, the user should be able to

browse the set of candidates from the prior filters and have the option of manually

filtering the results that are passed to the next filter.

Syntactic Matching

Profile
Filtering

Signature
Matching

Semantic Matching

Ground
Equation
Checking

User
Browsing

Figure 1: Multi-level Filtering Model

This thesis focuses on improving syntactic matching by making improvements to

profile filtering and signature matching. Section IV discusses improvements to profile

filtering and section V discusses improvements to signature matching. In addition to the

presentation of theoretical improvements, each section also covers a detailed design and

implementation for realizing a software module that can be practically used within the

entire context of multi-level filtering and ultimately in CAPS.

IV. PROFILE FILTERING

A. CURRENT STATE OF THE ART

In [9] a component's syntactic properties are represented as a Component Profile.

A component profile is the multiset of Operation Profiles for all the operations in a

component. An operation profile is a sequence of integers each representing a unique

syntactic property2 of an operation. Definition 4 in [9] defines an operation profile as:

1. The first integer is the total number of occurrences of sorts.

2. If the total number of sort groups, N, is greater than 0, then the second to (1 +

N)th integers are the cardinalities of the sort groups, in descending order.

3. The (2+N)th integer is the cardinality of the unrelated sort group.

4. The (S+N)* integer is:

0 if the value sort is different from any of the argument sorts; and

1 if the value sort belongs to some sort group.

By computing the component profiles for each reusable component in the software base,

components can be placed into partitions where each partition is identified by the

component profile of the components it contains. An ordering of these partitions can then

be obtained to organize the software base into a haase-diagram for facilitated traversal

during a process [9] defines as Profile Filtering.

Profile filtering is a process in which components in the software base can be

easily ruled out based on whether their syntactic profiles match the query's syntactic

profile. This is a high-speed (relative to signature and semantic matching) process where

the goal is to increase precision in a typically high-recall/low-precision stage of retrieval.

2 These properties have been referred to as profile components but we will use the term property rather than
component to eliminate an overloading of the term component which we have been using to refer to a
reusable component such as a type.

B. PROFILE IMPROVEMENTS

One way to increase precision in [9]'s approach to profile filtering is to make

improvements to the definition of an operation profile. Two categories of improvement

that can be easily quantified are Resolution and Space-and-Time.

1. Resolution

The point of increasing the resolution of syntactic profiles is to better distinguish

between syntactically similar software components. In terms of [9]'s architecture this

would result in an increase in the number of partitions in the software base. In terms of

[9]'s profile filtering process this would mean an increase in the number of nodes in the

haase-diagram that maps the software base's organization.

Gains in resolution can be obtained two ways:

1. Add more properties to the profile.

2. Use properties that can be measured with more possible values.

In keeping with the spirit of syntactic normalization, however, one has to be careful to

define measurements that will not be affected by the permutation of the arguments or by

any renaming of the types.

[1] inspired several resolution improvements to profiles that can prove quite

useful in partitioning the software base more effectively. The first improvement follows

the second resolution-gain technique described above and the other improvements

subscribe to the first technique.

10

a. Value Sort Frequency

Item 4 of [9]'s operation profile definition has two possible values, 0 or 1,

indicating if the value sort3 is in the same sort group as other arguments in the operation

or if it is a member of the unrelated sort group. The resolution of this particular property

can be increased by modifying its definition to be the number of occurrences of the value

sort in the operation's signature. Table 1 illustrates this improvement:

Table 1

Component Operations Old New
add: id set ->• set
union: set set —> set
member: id set -» bool
choose: set ->• id

1
1
0
0

2
3
1
1

The increase in resolution is well illustrated with the operations add and

union. When using the old definition we notice that add and union have the same value

for the value-sort property. When using the new definition we see that add and union

each have different measurements for this property. Such a difference guarantees that

add and union will have different profiles and therefore contributes to an increased

resolution of the software base.

b. Type Sort Frequency

A majority of the reusable components the author has come across have

been abstract data types. In most cases these types refer to themselves in the operations

they define. For instance, in Table 1 the component is a set and one will notice the

operations refer to set frequently. The frequency of such self-references can be measured

and can contribute to the component's profile. Table 2 illustrates the additional property:

3 The term value sort is used by [9] to refer to the type of the output argument of an operation. In this
thesis the terms value and output are used interchangeably but an effort to use value when referring to
concepts in [9] will be made.

11

Table 2

Component Operations Old New
add: id bag -*■ bag n/a 2
merge: bag bag ->• bag n/a 3
equal: bag bag -> bool n/a 2
equal_with_set: bag set -> bool n/a 1
member: id bag -» bool n/a 1
freq: id bag -» natural n/a 1

The new property measures the number of times bag is referred to in the

operation's signature. Notice that equal and equal_with_set are assigned different values

for this new property. In the old profile definition, these two operations would have the

same profile. Again, we have an improvement in resolution.

c. Predefined Sort Frequencies

The final resolution improvement to introduce involves representing the

sizes of the various sort groups for the predefined4 types. [9] and [2] both note that during

signature matching the predefined types can only map to predefined types of the same

sort group.5 Given this requirement, it would be beneficial to filter out components

during profile filtering that would violate such a requirement. Hence we can add an

integer for each predefined sort group that would reflect the size of that sort group in the

operation's signature. In Table 3, five predefined sort groups are recognized in the

following order: boolean, character, string, integer, and real.

Table 3

Component Operations Old New
add: id bag -> bag n/a 00000
merge: bag bag -> bag n/a 00000
member: id bag -> bool n/a 10000
freq: id bag -> natural n/a 00010

The operations member and freq are good examples of the increased

resolution this improvement provides. The old profile definition would assign these two

4 [9] refers to predefined types as basic types. The two terms are used interchangeably in this thesis.
5 [2] further restricts this statement with rules regarding subtype matching within the sort group. This is
addressed in the section on Signature Matching where the discussion is more applicable.

12

operations the same profile. The enhancement assigns different profiles thereby

increasing the resolution and eliminating the signature-matching algorithm from trying to

map incompatible predefined types.

2. Time-and-Space

Software bases can become enormous rather quickly. A large enterprise's

software base can contain thousands of reusable components. Representing such a large

software base in the architecture proposed by [9] can tax the resources of the enterprise's

computer/s responsible for maintaining and searching the software base. To this end, the

representation of syntactic profiles is an issue worth special attention since thousands of

components can actually translate into tens of thousands of operations!

[9] suggests the operation profile be represented as a sequence of integers. This

requires a sequence abstract data type with standard operations defined such as equality

and less-than (for sorting). Numerous instantiations of such an abstract data type could

require a substantial amount of memory. Two possible suggestions for making time-and-

space improvements to syntactic profile representation are explained below.

a. Large Integer Representation

A representation that would take up less space would be a large integer of

something like 64 bits. Each digit in the integer would represent each integer in the

profile. Besides space, speed issues regarding the testing for equality and less-than would

be greatly sped up because the default operations for the integer would apply, thereby

eliminating the need for putting a user-defined function on the stack each time these

common operations are called.

The biggest disadvantage to this approach should be evident: such a

representation would limit the number of sort occurrences in the signature to nine. A

function with ten sort occurrences is rather rare, however. One could use two digits for

each property thereby potentially relaxing the restriction to 99 sort occurrences, which is

definitely enough. Two digits per property, however, would require a much larger integer

13

than one that could be represented with 64 bits and it is questionable if any high-level

language can efficiently represent greater-than-64-bit integers any more efficiently than a

smart implementation of a sequence.

b. Profile Lookup Table

A component profile is traditionally thought of as a sequence of operation

profiles. In other words, it is a sequence of sequences of integers. Given thousands of

components, this can take up a lot of space and can tax the component profile equality

operations. Especially wasteful is the fact that the number of unique operation profiles is

much smaller than the actual number of components in the software base.

A promising approach for improving the time-and-space issues of

component profiles is the employment of a profile lookup table. To eliminate the

redundancy of integer sequences that represent operation profiles throughout the software

base, this table would map a unique integer to each unique operation profile used in the

software base. A component profile can then be represented as sequence of these unique

integers rather than a sequence of integer sequences. Below is an example to illustrate

the concept:

Table 4: Profile Lookup Table

Lookup ID Operation Profile
[2,1,2,1,0,0,0,0,0]
[3,1,3,1,0,0,0,1,0]
[3,1,3,1,1,0,0,0,0]
[3,2,1,2,0,0,0,0,0,2]
[3,3,0,3,0,0,0,0,0,3]

Table 5: Set

Component Operations Operation Profiles Lookup ID
add: id set -» set
union: set set —> set
member: id set -> bool
choose: set —> id

[3,2,1,2,0,0,0,0,0,2]
[3,3,0,3,0,0,0,0,0,3]
[3,1,3,1,1,0,0,0,0]
[2,1,2,1,0,0,0,0,0]

4
5
3
1

14

Table 6: Bag

Component Operations Operation Profiles Lookup ID
add: id bag -» bag
merge: bag bag -»■ bag
member: id bag -» bool
freq: id bag -> natural

[3,2,1,2,0,0,0,0,0,2]
[3,3,0,3,0,0,0,0,0,3]
[3,1,3,1,1,0,0,0,0]
[3,1,3,1,0,0,0,1,0]

4
5
3
2

Table 4 depicts the profile lookup table after the set and bag components

from Table 5 and Table 6 have been loaded. The first thing to note from this example is

the redundancy in operation profiles between set and bag. Three out of the five unique

operation profiles in the lookup table are shared between set and bag. The second thing

to note is the huge space savings gained for a component profile. Without the lookup

table the set's component profile would be [[3,2,1,2,0,0,0,0,0,2], [3,3,0,3,0,0,0,0,0,3],

[3,1,3,1,1,0,0,0,0], [2,1,2,1,0,0,0,0,0]]. By using the lookup table set's component profile

can be represented as [4,5,3,l].6 Given thousands of components the amount of space

saved is significant. Furthermore, the amount of time saved checking for component

profile equality can be substantial since the number of actual integer comparisons is cut

drastically.

The profile lookup table represents an optimal time-and-space solution to

profile filtering. During profile filtering, the actual profiles themselves are irrelevant.

What is relevant is whether two profiles are the same. The profile lookup table ensures

that each profile is represented by a unique identifier. Since this identifier can be

represented by an integer we have an optimal time-and-space solution to profile

representation.

C. DESIGN AND IMPLEMENTATION

The software used in [9] is not very conducive to reusability and extendibility and

therefore is difficult to use for testing the improvements in syntactic matching outlined in

this thesis. Furthermore, it is desirable to have a software module that is practical for

inclusion in CAPS. To this end, a significant amount of design and implementation is

15

necessary. This section details the various data types and implementation strategies used

to implement a practical system to test the improvements proposed in this thesis with the

understanding that such a system should ultimately integrate with other elements of

multi-level filtering and CAPS in the large.

1. Component Types

[13] proposed components ultimately be stored in an object-oriented database to

easily associate the various elements of a software component required for search and

retrieval. This idea is highly appropriate for a production quality implementation of a

software base but given the lack of engineering resources at this stage of the research

such an idea has not yet come to fruition. The CAPS software base is currently

composed of a set of files for each component where each file for the component

represents a different element of the component that is useful for reuse [10]. Specifically

this includes the component's native language (e.g. Ada) specification, native language

body, PSDL specification, and OBJ3 specification.

The first task, then, is to organize these files into an intelligent scheme to support

the goals of this thesis and the short-term goals of the CAPS project. The organization

proposed here is to create a directory for each component that contains all of its files.

Figure 2 illustrates examples of these directories.

/CAPS/sb/set/ /CAPS/sb/map/
2\

set.psdl
set_s.a
set_b.a
set.obi3

/ \
map.psdl
map_s.a
map_b.a
maD.obi3

Figure 2: Sample Directories for a Software Base

A header file is used to identify all of the components that comprise the software base.

An example of such a header file is shown in Figure 3. Notice that a unique integer is

6 The component profile in this example is not ordered but could be for improved signature matching. A
discussion of this can be found in section V.B.I.

16

assigned to each component. This ID will be used to identify the component in the data

structures that internally represent the software base because it is easier to manipulate and

it saves space. A nice feature the header file provides is the ability to represent a

distributed software base due to the use of a networked file system. Notice components

1100 and 1400 are components that actually exist on remote machines.

1000/CAPS/sb/set
1100 /net/pegasi/comp_lib/seqüence
1200/CAPS/sb/trig
1300/CAPS/sb/map
1400 /net/taurus/CAPS/sb/stack

Figure 3: Sample Header File for a Software Base

Now that we have a way of representing the components in secondary storage we

need a way of representing them internally. Figure 4 shows the objects used to represent

components in memory using Rational's Unified Method [12].

17

Integer

ComponentlD

Component

psdl_filename: string

createComponent
addGenericsMapping
componentEqual

genencs_mapping

GenericsMap<psdl_id, psdljd, eq, eq>

Y key, result, eq_key, eq_res

generic_map_pkg

A

ComponentlDMap<ComponentlD, Component,
"=", componentEqual>

Figure 4: Component Types

The ComponentlDMap maps the ComponentlD to a Component. The ComponentlD is

the unique integer read in from the software base's header file. The Component contains

the filename of the component's PSDL specification and an association to an instance of

a GenericsMap. A GenericsMap maps the generic parameter identifiers in generic

components to actual type names. This needs some explanation.

Suppose we have the following PSDL specification for the generic component

Stack:

TYPE Stack
SPECIFICATION
GENERIC

Item : PRIVATEJTYPE

OPERATOR Push
SPECIFICATION

INPUT
The_Item : Item,
On_The_Stack : Stack

OUTPUT
On_The_Stack : Stack

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Pop
SPECIFICATION

INPUT
The_Stack : Stack

OUTPUT
The_Stack : Stack

EXCEPTIONS
Overflow, Underflow

END

18

OPERATOR Depth_Of
SPECIFICATION

INPUT
The_Stack : Stack

OUTPUT
Result : Natural

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Is_Empty
SPECIFICATION

INPUT
The_Stack : Stack

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, underflow

END

END

This component has one generic parameter named Item and makes reference to three

different types: Stack, Natural, and Boolean. Instantiating Item to the different types

used in the component can potentially yield a different component profile for each

instantiation. This could place the various instantiations into different partitions. Hence,

each generic component must undergo the generic instantiation process to obtain the

various generic parameter mappings. Each instantiation is stored internally as a separate

component with its unique generic mapping. The ComponentID for each instantiation is

based on the base ID from the header file. For example, if the header file assigns the ID

1200 for the stack component listed above then the ComponentID entries in the

ComponentlDMap would be 1201, 1202, 1203, and 1204. Table 7 illustrates this

mapping.

Table 7

ComponentID Component Component.genericmapping
1201 Stack Item -» Stack
1202 Stack Item -> Natural
1203 Stack Item -> Boolean
1204 Stack Item —> Item

Notice there is a fourth entry for mapping Item to itself. This is a simple way of

representing the possibility that the generic parameter does not map to any of the types

used in the component. Another important point to note is the ids in the header file need

to be spaced sufficiently to give the generic instantiation algorithm room for the

automatic generation of unique ids for a given component. The software base used to test

the ideas in this thesis was given a spacing of 100 between component ids, which

provided sufficient room for generic instantiation.

19

One final point to note regarding generic parameter instantiation is a single

generic component can end up being instantiated into numerous components through the

generic parameter instantiation process. This is especially true for components with more

than one generic parameter because the cross-product of the generic parameters and the

normal types in the component must be computed to exhaust all the possible

combinations. Measurements regarding the instantiation of generic components are

presented in section VI.A.

2. Profile Types

The natural design for profiles and component profiles is to use sequences. A

Profile would be implemented as a sequence of integers and a ComponentProfile would

be implemented as a sequence of Profiles. This approach is depicted in Figure 5.

t, average_size

generic_sequence_pkg

~?r "^T

Profile<lnteger, 4>

profileEqual<"=">
profileLessThan<"<">

ComponentProfile<Profile, 4>

componentProfileEqual<profileEqual>
componentProfileMember<profileEqual>
componentProfileRemove<profileEqual>
componentProfileSort<profileLessThan>
subbag<profileEqual>
addProfile
addProfiles

Figure 5: Profile Data Types

The method profileLessThan provides a means of ordering the Profiles lexicographically

in the ComponentProfile. The advantages of such an ordering are detailed in section

V.B.I. The method subbag is a multiset subset operation that can be used to order the

partitions in the haase diagram since the partitions are keyed using ComponentProfiles.

The design and implementation of the haase diagram is discussed in section IV.C.3.

20

Section IV.B.2 introduced time-and-space improvements to the design in Figure

5. These improvements are represented in Figure 6.

Long_Long_lnteger Integer

A L a

Profile
ProfilelD

profileLes >sThan

t, average_size

generic_sequence_pkg

 Ä

key, result, eq_tey, eq_res

generic_map_pkg

/FT

ComponentProfile<ProfilelD, 4>

componentProfileEqual<profileEqual>
componentProfileMember<profileEqual>
componentProfileRemove<profileEqual>
componentProfileSort<profileLessThan>
subbag<profileEqual>
addProfile
addProfiles

ProfileLookupTable<ProfilelD, Profile, "=", "=">

createProfileLookupTable
addProfile

Figure 6: Time-and-Space Improvements for Profile Types

This shows all of the improvements used together but it is possible through the use of

abstract data types to mix and match the designs. For example, if one wanted to be able

to handle operations with more than nine arguments (see section IV.B.2.a) then Profile

could be implemented as a sequence of integers rather than the LongLonglnteger and

still be able to take advantage of the ProfileLookupTable.

3. Haase Diagram Types

The haase diagram can be constructed using the objects in Figure 7.

21

ComponentProfile

HaaseNode

createHaaseNode
addComponent
addChild
haaseNodeEqual
haaseNodeAssign

2:7 Ü-

,key components children

ComponentlDSet ComponentProfileSet

-\ key, result, eq_key, eq_res

generic_map_pkg

/T

HaaseDiagram<ComponentProfile, HaaseNode, componentProfileEqual, haaseNodeEqual>

createHaaseDiagram
addHaaseNode
addBaseNodes
connectNodes
generateGML

Figure 7: Haase Diagram Data Types

A HaaseNode is a partition that is keyed by a ComponentProfile. The node contains

components that have the same ComponentProfile as the key. Notice the components are

a set of ComponentlDs rather than Components to save space. When access to the actual

component is necessary the ComponentID can be used to fetch the component from the

ComponentlDMap as described in section IV.C.l. The HaaseNode is related to other

nodes (or partitions) through its children association. This association is implemented as

a set of ComponentProfiles, which are the keys to the next partitions in the ordering.

Relating nodes in this way allows the use of a map to represent the entire haase diagram.

Direct access to partitions can be obtained by fetching with a ComponentProfile key.

Constructing the haase diagram is a three step process.

Step 1: for each component check if a node exists with that component's

CompoentProfile. If it does then put that component in that node

(add it to the node's components association). Otherwise add a

22

new node with the component's ComponentProfile as the key

and put the component in it.

Step 2: for each Profile in each HaaseNode's key add a node to represent

a base node. This is accomplished by calling addBaseNodes on

the populated HaaseDiagram from step 1.

Step 3: connect the nodes (set the children association for each node)

based on the following invariant from [9]: n2 is nl's child if and

only if subbagfnl. key, n2.key) and there is no node n3 such that

subbag(nl.key, n3.key) and subbag(n3.key, n2.key). This is

accomplished by calling connectNodes on the populated

HaaseDiagram from step 2.

4. Candidate Types

Candidates are the "currency" passed between the various stages of the multi-

level filtering process. Figure 8 shows these data types.

Candidate

profile_rank
keyword_rank

candidateEqual
candidateLessThan
candidateAssign
newCandidate

Signatur«

/
3_matches < lompon ent id

SigMatchNodeSet ComponentID

t, eq, "<» |

ord ered_set_pkg

A

CandidateSet<Candidate, candidateEqual, candidateLessThan>

Figure 8: Candidate Data Types

23

A Candidate is a component with a ranking. The component is identified through the

ComponentID association. The ranking is a combination of the results of profile filtering,

keyword filtering, and signature matching. [9] calls this combination the KPS value.

Each candidate can have multiple signature matches, each with a different signature rank,

so an association to a SigMatchNodeSet is present (see section V.C). Notice the

CandidateSet is an ordered set. The ordering is provided through the candidateLessThan

method which uses the KPS value to determine the ordering.

5. Software Base Types

The software base ties everything together. The software_base object and the

functional summary of its methods are shown in Figure 9. The initialize method is

responsible for parsing the header file, loading the components' PSDL specifications,

generating the generics mappings for the generic components, computing the profiles,

and populating the haase diagram and component id map. The software base also

provides some methods for gathering statistics, including a method to generate a GML

[4] file to graphically depict the haase diagram. Finally, the software base contains

methods for profile filtering and signature matching.

24

software base

initialize(header_filename: string)
profile Filter(query_filename) return CandidateSet
signatureMatch(query_filename, Candidate) return Candidate
numPartitions return natural
numOccupiedPartition return natural
numComponents return natural
generateGML(gml_filename: string)

the_component_id_map thejiaasejiiagram

ComponentlDMap HaaseDiagram

CandidateSet -

Figure 9: Software Base Types and Functions

6. Profile Filtering Strategy

We now have an infrastructure with which to experiment and conduct profile

filtering and have laid the groundwork for a signature matching implementation which is

presented in section V.C. The profile filtering strategy laid out in [9] can now be applied

to this design and is encapsulated in the method profileFilter. A high level expansion of

the profileFilter method in the software base is shown in Figure 10.

25

-query filename ^. signature matching
and ranking

header filename

Figure 10: Decomposition of profileFilter

profileFilter decomposes into two main functions: getComponentProfile and

findCandidates. getComponentProfile reads a PSDL specified query, computes its

ComponentProfile and passes it to findCandidates where the actual profile filtering takes

place. The decomposition of getComponentProfile is shown in Figure 11.

getComponentProfile has been designed to take a GenericsMap if the component it is

processing is generic. To process queries, which are assumed to NOT be generic

however7, the GenericsMap passed in to getComponentProfile can just be empty.

7 [9] cites the handling of generic queries as a topic of future research.

26

PSDL filename

ComponentProfile / .. \ ComponentProfile
mmmi^i~^^^m^J profile_sequence \

generator message

Figure 11: Decomposition of getComponentProfile

The algorithm to compute profiles was given as a class project in [1]. The

approach taken by the author's group was to have the algorithm use a language

independent (including independence from PSDL) signature for greater reuse potential

with other specification languages. The resulting signature, which is referred to as a

numeric signature, is represented as an array of integers where each unique integer

represents a different sort group and each entry in the array indicates to which sort group

each argument belongs. Negative integers were used for generic sort groups and the array

was terminated with a 0. For example, given id from the component listed in Table 6 was

a generic parameter, the numeric signatures for each operation would be generated as

listed in Table 8.

27

Table 8: Numeric Signatures for Bag

Component Operations Numeric Signature
add: id bag -» bag
merge: bag bag -» bag
member: id bag -> bool
freq: id bag -> natural

[-1,1,1,0]
[1,1,1,0]
[-1,1,2,0]
[-1,1,2,0]

This format works fine for the profile definition in [9] and even for the value sort

frequency improvement presented in section IV.B.l. The problem with this format arises

when adding the other profile improvements that are concerned with measuring the

frequency of predefined and user-defined sorts. The integers in the numeric signature do

not carry with them sort identity. Hence the numeric signature was modified to contain

these two profile improvement properties directly. The first integer after the original

terminating 0 represents the type sort frequency and the remaining integers represent the

frequency of the predefined sort groups. Also, the createNumericSignatures method was

modified to take a GenericsMap to create a numeric signature with the generic parameters

instantiated and therefore remove any negative integers representing generic parameters.

The improvements are represented in Table 9 and assume id is mapped to a boolean.

Table 9: Improved Numeric Signatures

Component Operations Numeric Signature
add: id bag -> bag
merge: bag bag -> bag
member: id bag -» bool
freq: id bag -> natural

[1,2,2,0,2,0,0,0,0,0]
[1,1,1,0,3,0,0,0,0,0]
[1,2,1,0,1,2,0,0,0,0]
[1,2,3,0,1,0,0,0,1,0]

With these improvements to the numeric signatures we can now develop an algorithm to

compute profiles for generic components with all the improvements presented in this

thesis from a language independent format. This algorithm is represented by the function

computeProfile and its source code can be found in the appendix.

28

V. SIGNATURE MATCHING

A. CURRENT STATE OF THE ART

[9] proposes a strategy for signature matching that involves the discovery of

Partial Signature Maps. A partial signature map maps operations and sorts from the

query to operations and sorts in the candidate. The signature maps are called partial

because it is possible that not all of the query's operations can be mapped to operations in

the candidate component. A signature map that successfully maps all of the query's

operations is considered a Full Signature Map.

In [9] syntactic profiles play an important role in signature matching. Their use in

profile filtering eliminate syntactically incompatible components from being passed on to

signature matching, but most importantly they provide a quick test for determining which

operations in the query and the candidate have the potential for matching. Simply stated,

signature matching is only performed on operations that have equal operation profiles.

B. IMPROVEMENTS

Signature matching becomes expensive as the sizes of the query and the candidate

grow. More specifically, the number of possible operation pairings grows exponentially

as the number of syntactically compatible operations (operations with equal syntactic

profiles) increases. To compound the problem, the number of possible sort matches for

each pairing grows exponentially as the number sort occurrences increases. These

combinatorial explosions can result in large search spaces. Table 10 illustrates the

problem:

29

Table 10

Query Operation Profiles Component
Q1:EAD->B
Q2: A B C D -> F
Q3: D B C A -» E

[4,1,4,0,0,0,0,0,0]
[5,1,5,0,0,0,0,0]
[5,1,5,0,0,0,0,0]
[5,1,5,0,0,0,0,0]

C1:VWY->Z
C2: J K L M -> Y
C3: WXYZ-»T
C4:WXYZ-»S

The query operation Ql can only match to Cl because Cl is the only operation in the

component that contains a compatible operation profile. Q2, however, can match to C2,

C3 and C4. Furthermore C3 can also match to C2, C3, and C4. Before sort matching

occurs we already have many possible combinations of operation parings to test. The

problem really explodes as the sorts for each of these possible pairings undergo the

matching process. For the Q2/C2 pairing, A can match to J, K, L or M. For each of these

possibilities B must then be matched to the remaining types in C2. This continues until

all the possibilities are permuted for the Q2/C2 pairing. And this is just for the Q2/C2

pairing!

Below are several improvements that can be made to combat the combinatorial

explosion problems associated with matching large components.

1. Operation Ordering

[9] suggests ordering the operations in the query and components by their

syntactic profiles as a possible improvement to signature matching. This would allow the

signature matching algorithm to sequentially step through the operations for matching

and reduce the number of combinations to be considered.

The signature matching algorithm presented in this thesis uses the concept of

operation ordering to help constrain the search by matching smaller operations before

larger operations. By ordering profiles lexicographically, the smallest operations would

be the operations with profiles that come first in the ordering. For example, in Table 10

Ql is smaller than Q2 because it contains less sort occurrences. This is indicated by the

first property in the profile and therefore Ql's profile is ordered before Q2. Given this

ordering, we can intelligently match the sorts for smaller operations before matching the

30

sorts for larger operations. This is advantageous because smaller operations constrain the

number of matching possibilities and therefore can contribute to a quick reduction of the

search space. This is explored in greater detail in the section on design and

implementation for signature matching.

Additional techniques for reducing the search space that are not dependant on

operation orderings are considered next.

2. Match Outputs

When a query operation is mapped to a candidate operation we can immediately

attempt to map the value sorts of the operations because all operations are normalized to

the point of having a single output [9] [10]. This reduces the search space in two ways.

First, if either of the value sorts is already mapped (because of a previous operation

mapping) then it is possible the operations cannot be mapped. This would be based

simply on the fact that the value parameters are already mapped to different sorts. Table

11 illustrates this concept:

Table 11

Query Operation Profiles Component
Q1:EAD->B
Q2: A B C D -» B
Q3:DBCA->E

[4,1,4,0,0,0,0,0,0]
[5,1,5,0,0,0,0,0]
[5,1,5,0,0,0,0,0]
[5,1,5,0,0,0,0,0]

Cl: VWY->Z
C2: J K L M -» Y
C3:WXYZ->T
C4:WXYZ-4S

Suppose we map Ql to Cl. This would mean B would have to map to Z. Now we move

to Q2. Suppose we attempt to map Q2 to C2. This would mean B would have to map to

Y but this is illegal because B was already mapped to Z! Thus we can immediately prune

this branch of the search space and try to map Q2 to C3, which coincidentally will not

work either. Hence we have a way of quickly eliminating possible operation mappings

before moving on to the potentially more expensive task of mapping the input sorts.

The second way this technique reduces the search space is by constraining the

number of input sorts that have to be matched in an operation. As we saw from the

31

example Table 10 illustrated, the search space grows exponentially as the number of

unmapped sorts for an operation grows. Using Table 10 again, if we map Ql to Cl and

Q2 to C2 then by applying the technique of immediately matching the output sort, we

would have B mapped to Z and F mapped to Y. The fact that B is mapped means that we

can eliminate B from the set of unmapped sorts in Q2 when performing sort matching for

the Q2/C2 pair. This means only three of the four input sorts would have to be permuted

to discover a sort mapping. It turns out that in this particular case, however, since B is

mapped to Z, Z, or some supertype of Z, would have to be present in C2's set of input

sorts but it is not, therefore we can eliminate the Q2/C2 pairing immediately and prune

this branch from the search space.

3. Match Predefined Types

[9] and [2] both allude to the fact that basic types must be preserved in the partial

signature map. Such a rule well serves the quest for reducing the signature matching

search space by establishing more constraints that can be applied early in the process.

For example, the previous section described how the output parameters could be matched

immediately following an operation mapping to determine if such a pairing was worth

exploring further. Incompatibilities were not caught, however, until at least two

operations had been proposed for matching. By applying the constraints that predefined

types impose, we have an opportunity to short circuit the branch even earlier. Consider

Table 11 for example. If B is an integer, then Z must belong to the integer sort group

such that Z is a subtype of B.8 If Z does not meet this criteria than the branch can be

pruned immediately and Ql and Cl will never be considered for matching. If Z did pass

such constraints then Q2 and C2 can be considered for matching, thereby subjecting Y to

the same constraints that Z was required to pass.

The preservation rules of predefined types can also be used to reduce the number

of unmapped input sorts to permute. All of the query's predefined sorts can be tested for

8 [2] explicitly declares subtype matching rules for input and output parameters. Such rules and their
applicability to the method of signature matching described in this thesis are addressed in section V.C.3.

32

compatibility with the candidate before the permutation process begins. If they all have

matches then they can all be removed from the query's set of input parameters, leaving

just the unmapped user-defined types for permutation. Clearly this can have profound

effects on the number of permutations required to evaluate and therefore pare the search

space down significantly.

C. DESIGN AND IMPLEMENTATION

This section is divided into two subsections. The first subsection introduces the

objects used to implement the signature matching algorithms and the second subsection

discusses the signature matching approach in terms of the objects defined in the first

subsection.

1. Signature Matching Types

In order to better illustrate the signature matching strategy proposed in this thesis

we must first examine the data types used to carry out the strategy. Figure 12 depicts the

signature matching objects.

33

SigMatchNode

id: natural
signature_rank: float
semantic_rank: float
validation: ValidationType
expanded_forJnputs: boolean

createSigMatchNode
sigMatchNodeEqual
sigMatchNodeLessThan
sigMatchNodeAssign
addBranch
removeBranch
removeAIIMatching Branches
getLeafNodes
getValidLeafNodes
valid PairingExists
generateGML

T

rage_size | '■ t pfi " <" ; I , eq,

generic_sequence__pkg ordered_set_pkg

A A

SigMatchNodeSeq<SigMatchNode, 4>

sigMatchNodeSeqEqual<sigMatchNodeEqual>
sigMatchNodeSeqMember<sigMatchNodeEqual>
sigMatchNodeSeqRemove<stgMatchNodeEqual>

SigMatchNodeSeteSigMatchNode,
SigMatchNodeEqual,

sigMatchNodeLessThan>

key, result, eq_key, eq_res

generic_map_pkg

TypeMap<type_name, type_name, equal, equal> OpMap<operator, operator, eq, eq>

SignatureMap

createSignatureMap
signatureMapEqual
addTypeMapping
addOpMapping

Figure 12: Signature Matching Types

The first object of interest is the SignatureMap. This is used to store the operation

and type mappings between a query and a candidate and follows [9]'s definition of a

partial signature map.

At the crux of the design is the SigMatchNode. This data type is used to represent

solutions in the signature matching search space by being represented as a node in a tree

data structure. The node stores the signature and semantic ranks of the solution (the

SignatureMap V) it represents and maintains validation and expansion information for

search space maintenance. Since this object is used to form a tree, a handle to a single

SigMatchNode can be used to contain the entire search space. When the signature

matching process is finished, all the leaves of this tree can be considered valid solutions

and therefore can be "clipped" from the tree and returned as the set of solutions. The

getLeafNodes method is the leaf "clipper" in this case.

Finally, the SigMatchNodeSet is used to store the set of SigMatchNodes that will

be placed in the Candidate (section IV.C.4) object. Notice first that this collection is a set

34

so that duplicate solution nodes can be easily eliminated and second that this set is

ordered. The ordering is defined by the signature rank until semantic matching is

performed. Once semantic matching has taken place, the semantic rank takes precedence.

Signature Matching Strategy

A high-level view of the signature matching strategy is depicted in Figure 13.

-queiy filename

-empty GenericsMai

—candidate's GenericsMai

► / Sqnatura Rank \

(2. add u> return Candidate—
\ CanHifart»'| |»t of /

-candidate's filenami
\ / geropsWith

Figure 13: High-level View of Signature Matching

This illustration shows the context in which the core signature matching function,

matchOps, operates. Once profile filtering is complete, each candidate with a profile rank

above a certain threshold is passed to signatureMatch along with the original query.

signatureMatch then outputs the same candidate passed in but with its set of

SigMatchNodes populated.

signatureMatch decomposes into four major steps. The first step calculates the

profiles for the operations in the query and the candidate and returns them in the form of

OpWithProfile sequences. An OpWithProfile, depicted in Figure 14, is simply an

association between an operator and its profile. An OpWithProfileSeq is a sequence of

OpWithProfiles ordered by the lexicographic ordering on profiles used in

opWithProfileLessThan. The advantages of such an ordering were detailed in section

V.B.I. The query's and candidate's OpWithProfileSeq is then passed to matchOps where

the actual signature matching takes place. matchOps passes the root SigMatchNode of

35

the entire signature matching search space for the particular query and candidate to

getLeafNodes where the valid signature match solutions represented in the leaves of the

search space are extracted into a set of SigMatchNodes. Finally, the signature rank for

each SigMatchNode in the set is computed and the set is then assigned to the Candidate.

OpWithProfile

opWithProfileEqual
opWithProfileLessThan

~P~

t, average_size

generic_sequence_pkg

Tfr

J_
op

operator

op_profile
\

Profile

OpWithProfileSeq<OpWithProfile, 4>

addOpWithProfile
owpSeqEqual<opWithProfileEqual>
owpSeqMember<opWithProfileEqual>
owpSeqRemove<opWithProfileEqual>
owpSeqSort<opWithProfileLessThan>

Figure 14: OpWithProfile Data Types

The core signature matching routine is matchOps. Ada-like pseudo-code for

matchOps is listed below:

procedure match_ops(query: in OpWithProfileSeq, candidate: in OpWithProfileSeq,
root_sn: in out SigMatchNode) is

temp_sn, return_val: SigMatchNode;
temp_query, temp_candidate: OpWithProfileSeq;
q_op, c_op: OpWithProfile;

begin
return val := root sn;

— depth-first-search into possible operation pairings

temp_query := query;
temp_candidate := candidate;
foreach OpWithProfile q_op in query loop

foreach OpWithProfile c_op in candidate
where q_op.op_profile = c_op.op_profile loop

temp_sn := root_sn;
op_map_pkg.bind(q_op.op, c_op.op, temp_sn.V.OM);
if not validPairingExists(temp_sn.V.OM, return_val) then

if match_outputs(temp_sn) then
if match_basics(get_basics(q_op.inputs),

get_basics(c_op.inputs)) then
temp_query := temp_query - q_op;
temp_candidate := temp_candidate - c_op;
match_ops(temp_query, temp_candidate, temp_sn),
addBranch(temp_sn, return__val) ;

end if;
end if;

end if;
end loop;

end loop;

36

— depth-first-search into possible input pairings
— prune until all leaves are valid solutions

pruned := true;
while pruned loop

pruned := false;
root_sn := return_val;
foreach leafnode leaf_sn in root_sn loop

if leaf_sn.validation = UNKNOWN then
if not match_inputs(leaf_sn) then

leaf_sn.validation := INVALID;
elsif not verify_subtypes(leaf_sn) then

leaf_sn.validation := INVALID;
else

if length(leaf_sn.branches) = 0 then
leaf_sn.validation := VALID;

else
leaf_sn.expanded_for_inputs := true;

end if;
end if;
if leaf_sn.validation = INVALID then

removeAHMatchingBranches (leaf_sn, return_val) ;
pruned := true;

end if;
end if;

end loop;
end loop;

root_sn := return_val;
end match_ops;

There are two main sections to this procedure. The first is a depth-first search into the

space of all compatible operation pairs and the second is a combined matching of input

sorts and retraction of invalid nodes. The first section steps through each operation in the

query, trying to match it to an operation in the candidate. This is done by invoking the

following three steps in order: first verifying that the profiles are equal, second verifying

if the outputs match (see section V.B.2) and third verifying that the predefined types can

match (see section V.B.3). If any of these three steps fail, the operation pairing is not

considered and the remaining tests are immediately short-circuited to reduce time. If the

three steps succeed then the pairing is added as a branch to the root SigMatchNode

passed in to matchOps and matchOps is recursively called again with the same query and

candidate OpWithProfileSeqs with the operations just paired removed. Figure 15

illustrates the search space for possible operation pairings for the query and component in

Table 10. The highlighted path is the path searched before moving on to the second part

of matchOps that involves matching the input sorts and performing any possible

retractions of invalid nodes. The rest of the space is depicted here to illustrate the nature

of the search space but at this point only the highlighted nodes have been instantiated.

37

V.OM: [(Q1,C1),(Q2,C2),(Q3,C3)]
V.TM: [(B,Z), (F.Y), (E,T)]

V.OM: [(Q1,C1),(Q2,C2),(Q3,C4)]
V.TM: [(B,Z), (F,Y), (E,S)]

Figure 15: Example Search Space for Compatible Operations

Now that we have searched to the bottom of this particular path we can now begin

expanding the search space for matching the inputs for the various operations paired in

the node. Ada-like psuedo-code is listed below for this phase of signature matching.

— Function: match_inputs

function match_inputs(root_sn: in out SolutionNode) return boolean is

function match(q_inputs: in TypeSequence; c_inputs: in TypeSequence;
root_sn: in out SolutionNode) return boolean is

begin
— recursive stopping case
if size(q_inputs) = 0 then

return;
end if;

return_val := root_sn;

new_q_inputs := q_inputs;
new_c_inputs := c_inputs;

— verify mapped inputs in q_inputs are legally mapped
— and set new_q_inputs and new_c_inputs to only
— the unmapped inputs
foreach input_type qi in q_inputs loop

if type_map_pkg.member(qi, root_sn.V.TM) then
ci := type_map_pkg.fetch(root_sn.V.TM, qi);
— if the current input type is already mapped
— then make sure it is mapped to an existing type

. — in the candidate's input.
if not type_sequence_pkg.member(ci, c_inputs) then

return false;
end if;
new_q_inputs := new_q_inputs - qi;
new_c_inputs := new_c_inputs - ci;

end if;
end loop;

qi := q_inputs[1];
foreach input_type ci in c_inputs loop

temp_sn := root_sn;
temp_sn.expanded_for_inputs := false;

38

type_map_pkg.bind(qi, ci, temp_sn.V.TM);
if not match(new_q_inputs-qi, new_c_inputs-ci, temp_sn) then

return false;
end if;
addBranch(temp_sn, return_val);

end loop;

root_sn := return_val;
return true;

end match;

begin
foreach op_mapping om in root_sn.V.OM loop

— remove the input types that have already been mapped
q_inputs := om.key.inputs - type_map_pkg.map_domain(root_sn.V.TM);
c_inputs := om.result.inputs - type_map_pkg.map_range(root_sn.V.TM) ;

— if the number of remaining input types for the query and
— the candidate are unequal than the operations cannot match
if type_sequence_pkg.length(q_inputs) /=

type_sequence_pkg.length(c_inputs) then
return false;

end if;

— if the node has already been expanded before to try and match
— the inputs and it still has unmapped input types then return
— false so we won't try again
if root_sn.expanded_for_inputs then

return size(q_inputs) = 0;
else

return match(get_basics(q_inputs), get_basics(c_inputs), root_sn);
end if;

end loop;
end match_inputs;

This function first removes any sorts from the set of inputs that have already been

mapped. At this point in our example, this would mean removing any input sorts that

were the same as the output sorts since the output sorts have been mapped. If this results

in an uneven number of unmapped sorts between the query and the candidate then we can

immediately stop and return false since there cannot be a match. Next, if this node has

already been expanded in the past and it ultimately led to an invalid node then we do not

want to expand this node again since we know where it leads. Finally, if we make it

through these preliminary checks then we can pass the node on to the recursive function

match that will expand the node into all the possible input sort pairings to be investigated.

If there are no legal possibilities, match will return false and cause match_inputs to return

false, signaling match_ops to flag this node as invalid.

Going back to our example, the node for which we are currently trying to match

inputs cannot be expanded because Ql's first input sort, E, is already mapped to T but

there is no T in the input sorts for Cl! The test for making sure the number of unmapped

input sorts in the query is equal to the number of unmapped input sorts for the candidate

39

will fail and cause match_inputs to return false. Looking back at match_ops, this will

cause the node to be pruned and match_ops will pop back to its previous instantiation on

the stack and search the next possibility in the search space. The tree at this point is

shown in Figure 16.

V.OM: [(Q1.C1)]
V.TM: [(B,Z)l

V.OM: [(Q2.C2)]
V.TM: [(F,Y)]

V.OM: [(Q3.C3)]
V.TM: [(E,T)]

VOM: [(Q3.C4)]
V.TM: [(E,S)]

V.OM: [(Q1,C1),(Q2,C2),(Q3,C4)]
V.TM: [(B,Z). (F,Y), (E,S)]

Figure 16: Search Space after First Pruning

The current node will be pruned for the same reasons the first node was pruned: E is

already mapped to a sort that does not exist in the candidate's input sorts. So again,

another node is pruned, match_ops pops back up and we are now left with the tree in

Figure 17.

V.OM:[(Q1,C1)]
V.TM: [(B,Z)]

V.OM: [(Q2.C2)]
V.TM: [(F,Y)]

V.OM: [(Q3,C3)l
V.TM: [(E.T)]

V.OM: [(Q3.C4)]
V.TM: [(E,S)]

Figure 17: Search Space after Second Pruning

Now we have a node that will pass all the preliminary steps and successfully

expand for all the possible input pairings. Given the relatively large number of

40

unmapped inputs in Ql and Q2, the expansion is quite significant. Figure 18 shows part

of this expansion.

Figure 18: Input Sort Matching Expansion

The figure effectively illustrates the combinatorial explosion associated with large

numbers of unmapped inputs and underscores the need for the improvements cited in

section V.B. Figure 18 only shows the expansion for the first pairing Ql/Cl and one

node for the pairing Q2/C2. Q2/C2 is expanded in the same way Ql/Cl is expanded but

is not shown here due to space limitations. The entire expansion is ultimately returned

back to match_ops where the valid leaves will continue to go through the match_inputs

expansion. In this case all the leaves shown in Figure 18 will have to be expanded further

to add any more mappings Q2/C2 brings on top of the Ql/Cl mappings. Similarly this

would be done for Ql/Cl on top of the Q2/C2 mappings in the portion of the tree not

shown. The expansion/prune loop in matchops continues until there are no more leaves

to expand and all of the existing leaves are valid.

A legitimate concern might arise from the example thus far regarding the fact that

Ql/Cl and Q2/C2 are expanded twice, but in different order. This must take place

because it is possible to have different input sort mappings depending on which order the

operations are expanded in. For instance, notice in the first node representing Q2/C2's

input matching (whose expansion is not shown further in Figure 18 due to space) that A

is mapped to J. In the Ql/Cl expansions A is never mapped to J. This possibility would

41

never be explored in this part of the search space if the different ordering of pairing

expansions were not represented.

3. Subtype Matching

In section V.C.2 we see that match_ops tests if the predefined types in the

operations for an operation pairing can be legally matched. The Ada-like pseudo-code

for determining this legality for the input types is listed below.

function match_basics(q_basics: in out TypeSequence; c_basics: in out TypeSequence)
return boolean is

begin
— cannot match if query has different number of basics than the
— candidate
if size(q_basics) /= size(c_basics) then

return false;
end if;

— Basic types: either they must match exactly
— or the query's input type must be a
— subtype of the component's input type.

— filter out the basics that match exactly

new_q_basics := q_basics;
new_c_basics := c_basics;
foreach input_type qi in q_basics loop

foreach input_type ci in c_basics loop
if equal(qi, ci) then

new_q_basics := new_q_basics - qi;
new_c_basics := new_c_basics - ci;
break; — out of inner foreach loop

end if;
end loop;

end loop;
q_basics := new_q_basics;
c_basics := new_c_basics;

— Filter out the remaining basics that can match to supertypes.
— This is done by temporally mapping each query input types to a
— supertype in the candidate that is closest in the partial ordering.

foreach input_type qi in q_basics loop
foreach input_type ci in c_basics loop

if subtype_of(qi, ci) then
found_ci2 := false;
foreach input_type ci2 in new_c_basics loop

if not found_ci2 and subtype_of(qi, ci2) and not equal(ci, ci2)
and subtype_of(ci2, ci) then

found_ci2 := true;
end if;

end loop;
if not found_ci2 then

new_q_basics := new_q_basics - qi;
new_c_basics := new_c_basics - ci;

end if;
end if;

end loop;

42

end loop;

— if there are any basics left over than match is not possible
— since basics cannot be matched to non-basics

return type_sequence_pkg.length(new_q_basics) = 0;
end match_basics;

Of particular note is the portion of the function that is responsible for subtype matching.

Without subtype matching the operation pairing would fail if there were predefined types

left over after all the predefined types that can find exact matches were mapped. With

subtype matching, however, the possibilities of mapping the remaining predefined types

are explored.

[2] defines subtype matching rules for mapping the input and output types of an

operation. These rules are summarized below:

1. an input type of a query must be a subtype of the input type in the candidate to

which it is mapped

2. an output type of a query must be supertype of the output type in the candidate

to which it is mapped

These rules are followed in the pseudo-code above. An interesting case arises when there

is more than one supertype available in the candidate. In such a case the algorithm above

will choose the supertype closest in the partial ordering for that particular sort group. For

instance, if we are trying to map a positive in the query and the candidate has a natural

and an integer still unmapped, then the natural is selected over the integer because the

positive is closer to the natural in the partial ordering of the integer sort group. This has

the advantage that the less refined sorts remain available in the candidate for potential

mappings with less refined sorts in the query.

[9] extends [2]'s rules by maintaining subtype consistency throughout the partial

signature map. For example, suppose we are trying to match Ql and Cl from Table 10

and we map E to V and A to W. The subtype rules in [9] state that if E is a subtype of A

then V must be a subtype of W, otherwise the mapping is invalid. The test of such

consistency in the approach outlined in this thesis is made by the call to verifyjsubtypes

43

in match_ops. If the test fails for all the mapped sorts in the node then the node is

considered invalid and pruned.

44

VI. EXPERIMENTATION

To test the effectiveness of the syntactic matching improvements presented in this

thesis the CAPS software base [10] was selected as well as the following four queries:

Ouerv: Stack

TYPE Stack SPECIFICATION
SPECIFICATION INPUT
OPERATOR Copy Left : Stack,
SPECIFICATION Right : Stack

INPUT OUTPUT
From_The_Stack : Stack, Result : Boolean
To The Stack : Stack EXCEPTIONS

OUTPUT Overflow, Underflow
To The Stack : Stack END

EXCEPTIONS
Overflow, Underflow OPERATOR Depth Of

END SPECIFICATION
INPUT

OPERATOR Clear The Stack : Stack
SPECIFICATION OUTPUT

INPUT Result : Natural
The Stack : Stack EXCEPTIONS

OUTPUT Overflow, Underflow
The Stack : Stack END

EXCEPTIONS
Overflow, Underflow OPERATOR Is Empty

END SPECIFICATION
INPUT

OPERATOR Push The Stack : Stack
SPECIFICATION OUTPUT

INPUT Result : Boolean
The Integer : Integer, EXCEPTIONS
On The Stack : Stack Overflow, Underflow

OUTPUT END
On The Stack : Stack

EXCEPTIONS OPERATOR Top Of
Overflow, Underflow SPECIFICATION

END INPUT
The Stack : Stack

OPERATOR Pop OUTPUT
SPECIFICATION Result : Integer

INPUT EXCEPTIONS
The Stack : Stack Overflow, Underflow

OUTPUT END
The Stack : Stack

EXCEPTIONS END
Overflow, Underflow IMPLEMENTATION ADA

END Stack Sequential Bounded Managed Iterator
END

OPERATOR IS_Equal

Ouerv: Set

TYPE Set OUTPUT
SPECIFICATION To The Set : Set
OPERATOR COPY- EXCEPTIONS
SPECIFICATION Overflow, Item Is In Set,

INPUT Item Is Not In Set
From_The_Set : Set, END
To_The_Set : Set

4 5

OPERATOR Clear
SPECIFICATION

INPUT
The_Set : Set

OUTPUT
The_Set : Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Add
SPECIFICATION

INPUT
The_Item : Item,
To_The_Set : Set

OUTPUT
To_The_Set : Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Remove
SPECIFICATION

INPUT
The_Item : Item,
From_The_Set : Set

OUTPUT
From_The_Set : Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Union
SPECIFICATION

INPUT
Of_The_Set : Set,
And_The_Set : Set,
To_The_Set : Set

OUTPUT
To_The_Set : Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Intersection
SPECIFICATION

INPUT
Of_The_Set
And_The_Set
To_The_Set

OUTPUT
To_The_Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Difference
SPECIFICATION

INPUT
Of_The_Set : Set,
And_The_Set : Set,
To_The_Set : Set

OUTPUT
To_The_Set : Set

EXCEPTIONS
Overflow, Item_Is_In_Set,

11em_Is_Not_In_S et
END

OPERATOR Is_Equal

Set,
: Set,
Set

Set

SPECIFICATION
INPUT
Left : Set,
Right : Set

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Extent_Of
SPECIFICATION

INPUT
The_Set : Set

OUTPUT
Result : Natural

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Is_Empty
SPECIFICATION

INPUT
The_Set : Set

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Is_A_Member
SPECIFICATION

INPUT
The_Item : Item,
Of_The_Set : Set

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Is_A_Subset
SPECIFICATION

INPUT
Left : Set,
Right : Set

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

OPERATOR Is_A_Proper_Subset
SPECIFICATION

INPUT
Left : Set,
Right : Set

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Item_Is_In_Set,

Item_Is_Not_In_Set
END

END
IMPLEMENTATION ADA
Set_Simple_Sequential_Bounded_Managed_Ite
rator
END

46

Query: Map

TYPE Map
SPECIFICATION
OPERATOR Copy
SPECIFICATION

INPUT
From_The_Map : Map,
To_The_Map : Map

OÜTP0T
To_The_Map : Map

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Clear
SPECIFICATION

INPUT
The_Map : Map

OUTPUT
The_Map : Map

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Bind
SPECIFICATION

INPUT
The_Domain : Natural,
And_The_Range : Ranges,
In_The_Map : Map

OUTPUT
In_The_Map : Map

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Unbind
SPECIFICATION

INPUT
The_Domain
In_The_Map

OUTPUT
In_The_Map

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR IS_Equal'
SPECIFICATION

INPUT
Left : Map,
Right : Map

OUTPUT
Result : Boolean

Natural,
Map

Map

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Extent_Of
SPECIFICATION

INPUT
The_Map : Map

OUTPUT
Result : Natural

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR IS_Empty
SPECIFICATION

INPUT
The_Map : Map

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Is_Bound
SPECIFICATION

INPUT
The_Domain : Natural,
In_The_Map : Map

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

OPERATOR Range_Of
SPECIFICATION

INPUT
The_Domain : Natural,
In_The_Map : Map

OUTPUT
Result : Ranges

EXCEPTIONS
Overflow, Domain_Is_Not_Bound,

Multiple_Binding
END

END
IMPLEMENTATION ADA
Map_Simple_Noncached_Sequential_Unbounded
_Managed_Iterator
END

Query: Queue

TYPE Queue
SPECIFICATION
OPERATOR Copy

SPECIFICATION
INPUT

From The Queue Queue,

47

To_The_Queue : Queue
OUTPUT
To_The_Queue : Queue

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Clear
SPECIFICATION

INPUT
The_Queue : Queue

OUTPUT
The_Queue : Queue

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Add
SPECIFICATION

INPUT
The_Item : Item,
To_The_Queue : Queue

OUTPUT
To_The_Queue : Queue

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Pop
SPECIFICATION

INPUT
The_Queue : Queue

OUTPUT
The_Queue : Queue

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Is_Equal
SPECIFICATION

INPUT
Left : Queue,

Right : Queue
OUTPUT

Result : Boolean
EXCEPTIONS
Overflow, Underflow

END

OPERATOR Length_Of
SPECIFICATION

INPUT
The_Queue : Queue

OUTPUT
Result : Natural

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Is_Empty
SPECIFICATION

INPUT
The_Queue : Queue

OUTPUT
Result : Boolean

EXCEPTIONS
Overflow, Underflow

END

OPERATOR Front_Of
SPECIFICATION

INPUT
The_Queue : Queue

OUTPUT
Result : Item

EXCEPTIONS
Overflow, Underflow

END

END
IMPLEMENTATION ADA
Queue_Nonpriority_Nonbalking_Sequential_B
ounded_Managed_Iterator
END

The queries are instantiations of generic components from the software base to ensure

interesting matching activity. An attempt was made to instantiate the generic parameters

differently in order to facilitate observation of the different manifestations of

improvement in this thesis. For instance, the stack and queue query use predefined types

for the generic parameters, whereas the set and map queries do not. As a result, the

sensitivity to improvements involving predefined types will be different amongst the

queries.

A. GENERIC COMPONENT INSTANTIATION

The CAPS software base contained 80 components, most of which are generic

abstract data types. After instantiating all of the generic components with all possible

48

combinations (see section IV.C) the number of searchable components increased to 566.

This is a substantial increase and demonstrates the need for quick filters early in the

search process.

B. PROFILE FILTERING

1. Software Base Resolution

As mentioned in section IV.B.l, increasing the resolution of profiles will increase

the resolution of the software base by requiring more non-empty partitions (haase-nodes)

to store the components. An increased partition count means there will be fewer

components sharing partitions and therefore contributes to an increase in precision

without a loss in recall during profile filtering. A simple metric for determining the

effectiveness of the resolution improvements is the number of partitions necessary to

store all the components in the software base. The more partitions, the more effective the

profile resolution improvement. Figure 19 illustrates the effectiveness of the resolution

improvements outlined in this thesis on the CAPS software base. The graph shows that

applying all the resolution improvements yields a 65% gain in the number of partitions

over no improvements at all.

49

Effectiveness of Profile Resolution
Improvements

90
« 80
.2 70

60
50

o 40
2 30

re
Q.

E
3 z

20
10
0

y/| 84-

-49-
: ■■-.*

 »„- m^M»T.
_,

_
-49 ' ..53;.

■ —

3MSS
'■jSfc'

/: .•

_— iH
~~~r~~ 

|H| —__ 
„_  

__ 

None Value Sort 
Frequency 

Type Sort 
Frequency 

Predef. Sort 
Frequency 

All 

Resolution Improvement 

Figure 19: Effectiveness of Profile Resolution Improvements on Software 
Base Partitioning 

By observing the effects of the different resolution improvements individually it is 

evident that the kind of components in the software base drive the effectiveness of the 

various improvements differently. For instance, in the CAPS software base the 

components have similar operations to one another that do not vary in the frequency of 

the value sort. Thus the value sort frequency improvement has no effect. The 

components do, however, make reference to various predefined types thereby causing the 

substantial increase in partitions. If the CAPS software base did not use predefined types 

at all, however, then such an improvement would obviously have no effect. 

2. Profile Filtering Performance 

Increasing the resolution of the profiles should cause an increase in precision 

without a recall penalty. Hence, we want to see a reduction in the number of components 

returned at high profile rank thresholds. Such behavior is exactly what we see in the 

graphs illustrated in Figure 20 through Figure 23. For each query a substantially greater 

number of components are filtered out at high profile rank thresholds when all of the 

profile improvements are employed then when none of the improvements are employed. 

50 



The effectiveness of each profile improvement individually is again dependent upon the 

properties of the query and the components in software base. As we saw in Figure 19, the 

CAPS software base is rather sensitive to the predefined sort frequency improvement. As 

expected, this sensitivity is evident during profile filtering. For example, when the 

profile rank threshold is set at 1 (requiring a 100% match) the predefined sort frequency 

causes the number of recalled components to be drastically reduced. 

Histogram Comparison of Profile Filtering Results 

Query: Stack 
200 

c o a. 
E 
/?   100 

a> 
|     50 
3 
Z 1 I ILjL £1 

1 0.88       0.75        0.63 0.5 0.38        0.25        0.13 0 

Profile Rank 

I None ■ Value Sort Freq rjType Sort Freq. □ Predefined Sort Freq. ■ All 

Figure 20: Histogram Comparison of Profile Filtering Results with Stack Query 

51 



250 

A   200 
<o 
c 

|-   150 
o 
ü 
0 100 
a> 

1 50 

Histogram Comparison of Profile Filtering Results 

Query: Set 

r 

f 
■ 

™|1 

Jill Hi nti™    n   ' 
1 0.92       0.77       0.38       0.31        0.23       0.15       0.08 0 

Profile Rank 

üNone ■ Value Sort Freq oType Sort Freq. o Predefined Sort Freq. »All 

Figure 21: Histogram Comparison of Profile Filtering Results with Set Query 

Histogram Comparison of Profile Filtering Results 

Query: Map 
300 

w   250 
£ 

o   200 
o. 
E 
8   150 
o 
5>  100 
E 
3     50 

1'•'•'. '         '■'■■:"'■" ■   ' 

 — ■■■■  

\\ 

■ 

m --    n    nrhm ITL n 
0.89      0.78      0.67      0.56      0.44      0.33      0.22      0.11 0 

Profile Rank 

U None ■ Value Sort Freq oType Sort Freq. □ Predefined Sort Freq. ■ All 

Figure 22: Histogram Comparison of Profile Filtering Results with Map Query 

52 



Histogram Comparison of Profile Filtering Results 

Query: Queue 
250 

|   200 

150 
o 
Q. 
E o 
ü 
0 100 
0) n 
1 50 i a XL £1 

1 0.88        0.75        0.63 0.5        0.38        0.25        0.13 0 

Profile Rank 

^None H Value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. a All 

Figure 23: Histogram Comparison of Profile Filtering Results with Queue Query 

Figure 24 through Figure 27 present a different perspective on the effectiveness of 

the resolution improvements during profile filtering. These graphs maintain a running 

sum of the number of recalled components throughout the continuum of profile rank 

thresholds. They show us that at a profile rank threshold of .65 (65% of the operations in 

the query must be in the component) the improvements lose their advantage. In other 

words, if the user sets the profile rank threshold above .65, the resolution improvements 

presented in this thesis will have a significantly positive effect on increasing precision. 

53 



Running-Sum Comparison of Profile Filtering Results 

Query: Stack 

in 
c 
c 
o 
Q. 
E o 
o 

0) n 
E 

600 

500 

400 

300 

200 

100 

1   0.88  0.75  0.63  0.5  0.38  0.25  0.13   0 

Profile Rank 

nNone ■ Value Sort Freq rjType Sort Freq. o Predefined Sort Freq. a All 

Figure 24: Running-Sum Comparison of Profile Filtering with Stack Query 

Running-Sum Comparison of Profile Filtering Results 

Query: Set 

& c o c 

E 
o 
o 

0) 

E 

600 

500 

400 

300 

200 

100 1 
"lU 

0.92      0.77      0.38      0.31      0.23      0.15      0.08 

Profile Rank 

uNone ■ Value Sort Freq rjType Sort Freq. □ Predefined Sort Freq. >All 

Figure 25: Running-Sum Comparison of Profile Filtering with Set Query 

54 



Running-Sum Comparison of Profile Filtering Results 

Query: Map 
600 

(0 
c 500 
0) c 
o 
Q. 

400 
E 
o 
O 300 
♦- o 
l_ !»()() 
<B 
A 
E 100 

*-] 

0 n 
K 

■ ■   -   2                                  u '              #" i             V- i                 A 

~»      '             fe 1             '^ 1             il i             :^ 1            Ä1 

|„        _c      _,       _j       _:       .; ■ 

?, 

m-- n k« i ■ -■ 
0.89     0.78     0.67     0.56    0.44     0.33     0.22     0.11 

Profile Rank 

jNone B Value Sort Freq n Type Sort Freq.  a Predefined Sort Freq.  BAII 

Figure 26: Running-Sum Comparison of Profile Filtering with Map Query 

Running-Sum Comparison of Profile Filtering Results 

Query: Queue 

i2 
c 
a> 
c 
o 
a. 
E 
o 
ü 

Q) n 
E 
3 

600 

500 

400 

300 

200 

100 

0 

Fk-TL 
rm^ 

f^iSi^^llÄ^i^^^^^^P^^^ft^^^^ÄS 

I I I I •! 

1   0.88  0.75  0.63  0.5  0.38  0.25  0.13   0 

Profile Rank 

I None ■ Value Sort Freq rjType Sort Freq. □ Predefined Sort Freq. BAII 

Figure 27: Running-Sum Comparison of Profile Filtering with Queue Query 

55 



C.        SIGNATURE MATCHING 

This thesis has presented improvements to signature matching both indirectly 

through improvements to profile resolution and directly through early pruning of the 

search space. This section illustrates the effectiveness of these improvements 

respectively. 

1. Effectiveness of Profile Improvements on Signature Matching 

Determining the effects profile resolution improvements have on signature 

matching is difficult because the traditional rankings that order the outcome of profile 

filtering and signature matching are not orthogonal. Furthermore, it is difficult to 

compare the effects the individual profile resolution improvements have on signature 

matching because they will cause the profile filtering process to potentially return 

different sets of components to pass on to signature matching. Finally, different queries 

can cause behavior that is difficult to correlate. To this end, a concise quantification of 

the effectiveness profile improvements have on signature matching will not be made in 

this thesis. Rather, informal comments can be made regarding the results of the signature 

matching process for the four queries and the various resolution improvements in Figure 

28 through Figure 31. These graphs compare the effects the different profile resolution 

improvements have on signature matching by showing distributions of the number of 

valid partial signature maps for each signature rank. The signature matching was 

performed on a randomly selected component that had a profile rank of 1 (100% of the 

query's operations had compatible operation profiles in the component), meaning a 

signature rank of 1 was possible. 

To begin, Figure 28 shows that when all of the profile resolution improvements 

are active, a valid signature map where 88% of the stack query's operations are mapped 

can be obtained. For the particular candidate chosen, this is not possible when no 

improvements are active. 

56 



5 - 

Effectiveness of Profile Improvements on Signature Matching 
Query: Stack 

w 
10 
2 
£ 
*   3 
c 
O) 

■5  2 
k. 
0) 

i 1 I 
0.88 0.75 

Signature Rank 

0.63 

pjNone ■ Value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. ■ All 

Figure 28: Effectiveness of Profile Improvements on Signature Matching with Stack Query 

In Figure 29 two main characteristics are visible. First, the number of valid 

signature maps that are generated is substantially more than with the other queries. This 

is due to the fact that the set query has many operations that are compatible with the 

candidate from the software base. As described in section V.B, the possible permutations 

grow exponentially as the number of operations with compatible operation profiles 

grows. The second characteristic to notice is the lack of performance from the predefined 

sort frequency improvement. Throughout the distribution it returns the same number of 

maps as the version without improvements. This can be attributed to the lack of 

predefined types in the inputs of the operation signatures, causing the predefined sort 

frequency improvement to make only a small precision improvement over no resolution 

improvements for a profile rank of 1 (see Figure 25). The same candidate happened to be 

chosen for both cases and hence the same signature matching results ensued. 

57 



300 

Effectiveness of Profile Improvements on Signature Matching 
Query: Set 

250 

to a 
nt 
S   200 

(0 

§)   150 
55 

Si 
E 
3 
z 

50 

0.92 0.85 0.77 

Signature Rank 

0.69 0.62 

FfNone «Value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. «All 

Figure 29: Effectiveness of Profile Improvements on Signature Matching with Set Query 

Figure 30 and Figure 31 both have examples of 100% success in syntactic 

matching. The profile resolution improvements do not make any difference in these 

examples, however, primarily because the combination of the query and software base 

caused the random selection of the candidate to select the same candidate. 

58 



Effectiveness of Profile Improvements on Signature Matching 

Query: Map 

V) a. n 
E 
£ 
3 
A 

§,    1 
55 
o 
o 

E 
3 
Z 

fti^^^S^^:'^S^^^Ä||^^i^^^; ^^^^^^^1 

ji^^|f»^^^>Si^^l!^p!|l^|| illBlISp 
lit 

^^Hi^^8i^ti!M^Äi IS'lflliillStlllll 

mulls SllllS 

:':■•'•?'■ 
H 

""' ?* 1 

1 

Signature Rank 

|None ■ Value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. a All 

Figure 30: Effectiveness of Profile Improvements on Signature Matching with Map Query 

Effectiveness of Profile Improvements on Signature Matching 

Query: Queue 

(0 a 
A 
S 
|   2 
A 
C 
O) 

CO 
«*• 
2 1 
0> 

E 
3 z reim 

if; 

0.88 

Signature Rank 

|None M value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. HAII 

Figure 31: Effectiveness of Profile Improvements on Signature Matching with Queue Query 

59 



2. Signature Matching Algorithm Performance 

The signature matching improvements presented in section V.B can be observed 

by counting the number of nodes that pass and fail the early tests for output matching and 

predefined type matching. Of particular interest is the number of failed nodes. Failed 

nodes represent nodes that are pruned. Clearly, the more nodes pruned the better. Such a 

measurement shows off the signature matching improvements presented in this thesis. 

The graphs in Figure 32 through Figure 35 show pass/fail node measurements for each 

query and compare between the various profile resolution improvements. 

Signature Matching Algorithm Performance 

Query: Stack 
120 

en 
v 

■o o z 

E 
3 

Passed Output Failed Output Passed Predef. Failed Predef. 
Matching Matching Matching Matching 

Signature Matching Improvements 

I None ■ Value Sort Freq []TyPe Sort Freq. □ Predefined Sort Freq. ■ All 

Figure 32: Signature Matching Algorithm Performance with Stack Query 

60 



1400 

vt 
0) 

■a 
o 

XI 
E 
3 

Signature Matching Algorithm Performance 

Query: Set 

Passed Output Failed Output        Passed Predef. Failed Predef. 
Matching Matching Matching Matching 

Signature Matching Improvements 

I None ■ Value Sort Freq □ Type Sort Freq. □ Predefined Sort Freq. gAII 

Figure 33: Signature Matching Algorithm Performance with Set Query 

w 
CD 

■o 
O 

0) 
ja 
E 

Signature Matching Algorithm Performance 

Query: Map 

Passed Output Failed Output Passed Predef. Failed Predef. 
Matching Matching Matching Matching 

Signature Matching Improvements 

g None HVa,ue Sort Freq DTYPe Sort FrecI- öPredef'ned Sort Frecl- ■All 

Figure 34: Signature Matching Algorithm Performance with Map Query 

61 



Signature Matching Algorithm Performance 

Query: Queue 

Passed Output Failed Output Passed Predef. Failed Predef. 
Matching Matching Matching Matching 

Signature Matching Improvements 

|None ■ Value Sort Freq rjType Sort Freq. p Predefined Sort Freq. ■ All 

Figure 35: Signature Matching Algorithm Performance with Queue Query 

Observing the number of failed nodes, however, does not consider the notion that 

the profile resolution improvements implicitly "prune" during the profile matching 

process. For example, the predefined sort frequency profile improvement, in many cases, 

can beat the predefined-matching signature matching improvement to the punch because 

it causes less operation pairs to be generated for operations with predefined types 

(operation pairs are generated when an operation in the query has an equal profile with an 

operation in the candidate). Hence, to merely look for a large number of failed nodes 

does not properly measure the full effectiveness of the complete syntactic filtering 

improvements outlined in this thesis because of the lack of orthogonality between profile 

filtering and signature matching. 

62 



VII.   CONCLUSION AND FUTURE RESEARCH 

A. ACCOMPLISHMENTS 

This thesis has presented improvements to profile filtering and signature matching 

that help multi-level filtering achieve its goal of reducing large amounts of candidate 

components early in the process. More specifically, the resolution improvements to 

syntactic profiles enable the profile filtering process to significantly cut down the number 

of components passed on to the more computationally intensive signature matching 

process. Furthermore, we have seen that large-integer representations of syntactic 

profiles and exclusive use of a profile lookup table can lead to an optimal time-and-space 

implementation. 

The improvements to signature matching included techniques for pruning the 

search-space of signature maps in an effort to find valid mappings quicker and with less 

computational resources. Initial experiments have backed up the theoretical instinct that 

the signature matching improvements are sensitive to the profile resolution 

improvements. 

Finally, a detailed design and implementation of a syntactic matching software 

module that includes the improvements proposed in this thesis has been developed. The 

software has been written in Ada 95 and is mature enough for future inclusion with the 

other elements of multi-level filtering and CASE tools such as CAPS. 

B. FUTURE RESEARCH 

Future research should include more experiments with different software bases to 

better measure the effectiveness of the profile resolution improvements. Additionally, 

more data could be collected to better assess the effect profile resolution improvements 

have on signature matching. 

The implementation facilitated the collection of statistics for generic component 

expansion.  More software bases with generic components should be experimented with 

63 



to gain more insight into the bloat generic components so quickly create. Further 

research into generic queries would also be insightful. The algorithms that instantiated 

generic components for search and retrieval preparation can also be used to instantiate a 

generic query. A study in using concurrent search and retrieval processes for each 

instantiation would certainly prove interesting. 

Finally, research into effective graphical user interfaces for the user is needed. 

The multi-level filtering concept is natural for supporting incremental updates of query 

results, much like a web-browser incrementally updates information from a web-page. 

As the efficient front-end filters finish they provide early results that can be output to the 

user quickly. The user can then either select from these results or let the search process 

continue refining them. Either way, the user is given quick feedback that is important for 

user acceptance. 

64 



REFERENCES 

[I] Valdis Berzins, CS4570 Class Notes, Naval Postgraduate School, Fall 1996. 

[2]    Scott Dolgoff, "Automated Interface for Retrieving Reusable Software 
Components", Master's Thesis, Naval Postgraduate School, September 1992. 

[3]    Joseph Goguen, Timothy Winkler, "Introducing OBJ3", Computer Science 
Laboratory, SRI International, SRI-CSL-88-9, August 1988. 

[4]    Himsolt, "GML: Graph Modeling Language", Draft, Deutsche 
Forschungsgemeinschaft Grant Br 835/6-2, December 1996. 

[5]    Luqi, "A Prototyping Language for Real-time Software", IEEE Transactions of 
Software Engineering, Vol. 14, No. 10, pp. 1409-1423, October 1988. 

[6]    Luqi, "Normalized Specifications for Identifying Reusable Software", Proceedings 
of the 1987 Fall Joint Computer Conference, pp. 46-49, IEEE, October, 1987. 

[7]    Luqi, and M. Ketabchi, "A Computer-Aided Prototyping System," IEEE 
Transactions on Software Engineering, October 1988. 

[8]    Mili, R. Mili, R. Mittermeir, "Storing and Retrieving Software Components", 
Proceedings 16™ International Conference on Software Engineering, pp. 15-19, 
1994. 

[9]    Doan Nguyen, "An Architectural Model for Software Component Search", Ph.D. 
Dissertation, Naval Postgraduate School, December 1995. 

[10] Tuan Nguyen, "Populating the Software Database", Master's Thesis, Naval 
Postgraduate School, March 1996. 

[II] Rubin Prieto-Diaz, "Implementing Faceted Classification for Software Reuse", 
Communication of the ACM, pp. 89-97, May 1991. 

[12]  Grady Booch, Ivar Jacobson, James Rumbaugh, UML Documentation Set, Rational 
Software Corporation, January 1997. 

[13] Robert Steigerwald, Luqi, and John McDowell, "CASE Tool for Reusable Software 
Component Storage and Retrieval in Rapid Prototyping.", Information and Software 
Technology, pp. 698-705,1991. 

65 



66 



APPENDIX - SOURCE CODE 

Makefile 

#PSDL_TYPE_R0OT = /home/jsherman/MSSE/PSDL_TYPE-May97 
PSDL_TYPE_ROOT = /home2/jsherman/PSDL_TYPE-May97 

GEN = m4 generator.m4 
#GEN = gen 

INCLUDES = -I$(PSDL_TYPE_ROOT)/GNAT -1$ (PSDL_TYPE_ROOT) /GENERIC_TYPES/GNÄT - 
1$(PSDL_TYPE_ROOT)/INSTÄNTIATIONS/GNAT 

GEN_OBJECTS = candidate_types.adb haase_diagram.adb profile_calc.adb 
profile_filter_pkg.adb psdl_profile.adb run_batch.adb sig_match.adb sig_match_types.adb 
software_base.adb 

.SUFFIXES: .g .adb 

..g.adb: 
$(GEN) $< > $@ 

#all: run_batch test_profile_calc 
all: run_batch 

runjoatch: $(GEN_OBJECTS) 
gnatmake $(INCLUDES) run_batch.adb 

test_profile_calc: $(GENJDBJECTS) 
gnatmake $(INCLUDES) test_profile_calc.adb 

clean: 
rm -f *.o *.ali $(GEN_OBJECTS) test_profile_calc run_batch 

cleangen: 
rm -f $(GEN OBJECTS) 

67 



candidate tvpes.ads 

— Package Spec: candidate_types 

with generic_sequence_pkg; 
with ordered_set_pkg; 
with component_id_types; use component_id_types; 
with sig_match_types; use sig_match_types; 

package candidate_types is 

RANK_UNKNOWN: constant := -1.0; 

— Candidate 

type Candidate is record 
profile_rank: float; 
keyword_rank: float; 
signature_matches: SigMatchNodePtrSet; 
component_id: ComponentID; 

end record; 

function candidateEqual(cl: in Candidate; c2: in Candidate) return boolean; 
function candidateLessThan(cl: in Candidate; c2: in Candidate) return boolean; 
procedure candidateAssign(cl: in out Candidate; c2: in Candidate); 
procedure candidatePut(the_candidate: in Candidate); 
procedure candidatePrint(the_candidate: in Candidate); 

function newCandidate return Candidate; 
procedure generateSigMatchHistogram(filename: in string; c: in Candidate); 

— CandidateSequence 

— Note: should use addCandidate to add a candidate to the CandidateSequence. 
addCandidate keeps the CandidateSequence sorted. 

package candidate_sequence_pkg is new generic_sequence_pkg( 
t => Candidate, average_size => 4); 

subtype CandidateSequence is candidate_sequence_pkg.sequence; 

function candidateSequenceEqual is 
new candidate_sequence_pkg.generic_equal(eq => candidateEqual); 

function candidateSequenceMember is 
new candidate_sequence_pkg.generic_member(eq => candidateEqual); 

procedure candidateSequenceRemove is 
new candidate_sequence_pkg.generic_remove(eq => candidateEqual); 

function candidateSequenceSort is 
new candidate_sequence_pkg.generic_sort("<" => candidateLessThan); 

procedure candidateSequencePut is 
new candidate_se'quence_pkg.generic_put (put => candidatePut); 

procedure addCandidate(c: in Candidate; cs: in out CandidateSequence); 

— CandidateSet 

package candidate_set_pkg is new ordered_set_pkg(t => Candidate, 
eq => candidateEqual, "<" => candidateLessThan); 

subtype CandidateSet is candidate_set_pkg.set; 

procedure candidateSetPut is 
new candidate_set_pkg.generic_put(put => candidatePut); 

function profileSkim(profile_threshold: in float; 
the_candidates: in CandidateSet) return CandidateSet; 

procedure generateProfileHistogram(filename: in string; 

68 



the_candidates: in CandidateSet) ; 

end candidate_types; 

69 



candidate tvpes.g 

— Package Body: candidate_types 

with gnat.io; 
with ada.text_io; 
with ada.float_text_io; 
with ada.integer_text_io; 

with component_id_types; use component_id_types; 

package body candidate_types is 

— Function: candidateEqual 

function candidateEqual(cl: in Candidate; c2: in Candidate) return boolean is 
begin 

return cl.component_id = c2.component_id; 
end candidateEqual; 

— Function: candidateLessThan 

— Description: sort candidates in rank descending order (highest 
rank first). 

function candidateLessThan(cl: in Candidate; c2: in Candidate) return boolean is 
begin 
— TODO 
if cl.profile_rank > c2.profile_rank then 

return true; 
— the followin test for less-than is just being paranoid 
— about potential float equality problems 
elsif cl.profile_rank < c2.profile_rank then 

return false; 
else 

return cl.component_id < c2.component_id; 
end if; 

end candidateLessThan; 

— Procedure: candidateAssign 

— Description: makes a safe copy of a Candidate.  This is primarily 
necessary because of the SigMatchNodeSet 

procedure candidateAssign(cl: in out Candidate; c2: in Candidate) is 
begin 

cl.profile_rank := c2.profile_rank; 
cl.keyword_rank := c2.keyword_rank; 
cl.component_id := c2.component_id; 
sig_match_node_ptr_set_pkg.assign(cl.signature_matches, 

c2.signature_matches); 
end candidateAssign; 

— Procedure: candidatePut 

procedure candidatePut(the_candidate: in Candidate) is 
begin 

gnat. io. put ("("); 
gnat.io.put(the_candidate.component_id) ; 
gnat.io.putC I "); 
ada.float_text_io.put(the_candidate.profile_rank, 1, 2, 0) ; 
gnat.io.putC | "); 
sigMatchNodePtrSetPut(the_candidate.signature_matches) ; 
gnat.io.put(")"); 

end candidatePut; 

— Procedure: candidatePrint 

70 



procedure candidatePrint(the_candidate: in Candidate) is 
begin 

gnat.io.put("Component ID: "); 
gnat.io.put(the_candidate.component_id); 
gnat.io.new_line; 
gnat.io.put("Profile Rank: "); 
ada.float_text_io.put(the_candidate.profile_rank, 1, 2, 0); 
gnat.io.new_line; 
gnat.io.put(sig_match_node_ptr_set_pkg.size( 

the_candidate.signature_matches)) ; 
gnat.io.put(" Signature Match Solutions:"); 
gnat.io.new_line; 
sigMatchNodePtrSetPrint(the_candidate.signature_matches); 

end candidatePrint; 

— Function: newCandidate 

function newCandidate return Candidate is 
return_val: Candidate; 

begin 
return_val.profile_rank := RANK_UNKNOWN; 
return_val.keyword_rank := RANKJJNKNOWN; 
return_val.signature_matches := sig_match_node_ptr_set_pkg.empty; 
return return_val; 

end newCandidate; 

— generateSigMatchHistogram 

— Description: generates histogram data of the signature ranks for the 
set of signature matches and saves it to a file so it can be 
read by a charting program.  The format is one line 
for each pair where the first item of the pair is the 
profile rank and the second item is the number of 
candidates with that rank. 

procedure generateSigMatchHistogram (filename: in string; c: in Candidate) is 
ft: ada.text_io.file_type; 
last_rank: float; 
count: natural := 0; 
temp_snp: SigMatchNodePtr; 

procedure putPair(the_rank: float; the_count: natural) is 
begin 

ada.float_text_io.put(ft, the_rank, 1, 2, 0); 
ada.text_io.put(ft, " "); 
ada.integer_text_io.put(ft, the_count); 
ada.text_io.new_line(ft) ; 

end putPair; 

begin 
ada.text_io.create(ft, ada.text_io.out_file, filename); 

if sig_match_node_ptr_set_pkg.size(c.signature_matches) = 0 then 
ada.text_io.close(ft); 
return; 

end if; 

temp_snp := sig_match_node_ptr_set_pkg.fetch(c.signature_matches, 1); 
last_rank := temp_snp.signature_rank; 
foreach((snp: SigMatchNodePtr), sig_match_node_ptr_set_pkg.scan, 

(c.signature_matches) , 
if snp.signature_rank /= last_rank then 

putPair(last_rank, count); 
last_rank := snp.signature_rank; 
count := 1; 

else 
count := count + 1; 

end if; 
) 
putPair(last_rank, count); 

ada.text_io.close(ft) ; 
end generateSigMatchHistogram; 

71 



— Procedure: addCandidate 

procedure addCandidate(c: in Candidate; cs: in out CandidateSequence) is 
begin 

candidate_sequence_pkg.add(c, cs); 
cs := candidateSequenceSort(cs); 

end addCandidate; 

— Function: profileSkim (for CandidateSet) 

— Description: filters out the candidates that do not meet the given 
profile threshold. 

function profileSkim(profile_threshold: in float; 
the_candidates: in CandidateSet) return CandidateSet is 

return_val: CandidateSet; 
begin 

return_val := candidate_set_pkg.empty; 
foreach((c: Candidate), candidate_set_pkg.scan, (the_candidates), 

if c.profile_rank >= profile_threshold then 
candidate_set_pkg.add(c, return_val) ; 

end if; 
) 
return return_val; 

end profileSkim; 

— Procedure: generateProfileHistogram 

— Description: generates histogram data of the profile ranks for the 
set of candidates and saves it to a file so it can be 
read by a charting program.  The format is one line 
for each pair where the first item of the pair is the 
profile rank and the second item is the number of 

— candidates with that rank. 

procedure generateProfileHistogram(filename: in string; 
the_candidates: CandidateSet) is 

ft: ada.text_io.file_type; 
last_rank: float; 
count: natural := 0; 
temp_candidate: Candidate; 

procedure putPair(the_rank: float; the_count: natural) is 
begin 

ada.float_text_io.put(ft, the_rank, 1, 2, 0); 
ada.text_io.put(ft, " "); 
ada.integer_text_io.put(ft, the_count); 
ada.text_io.new_line(ft); 

end putPair; 

begin 
ada.text_io.create(ft, ada.text_io.out_file, filename); 

if candidate_set_pkg.size(the_candidates) = 0 then 
ada.text_io.close(ft); 
return; 

end if; 

temp_candidate := candidate_set_pkg.fetch(the_candidates, 1); 
last_rank := temp_candidate.profile_rank; 
foreach((c: Candidate), candidate_set_pkg.scan, (the_candidates), 

if c.profile_rank /= last_rank then 
putPair(last_rank, count); 
last_rank := c.profile_rank; 
count := 1; 

else 
count := count + 1; 

end if; 
) 
putPair(last_rank, count); 

ada.text_io.close(ft); 
end generateProfileHistogram; 

72 



end candidate_types; 

73 



component id types.ads 

— Package Spec: component_id_types 

with gnat.io; 

with generic_map_pkg; 
with generic_set_pkg; 
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 

with psdl_profile; use psdl_profile; 

package component_id_types is 

— ComponentID 

subtype ComponentID is integer; 

procedure componentlDPut(c_id: ComponentID); 

— Component 

— Note: Make sure to use createComponent to instantiate a new Component. 
This will ensure that generics_mapping is initialized. 

type Component is record 
psdl_filename: text; 
genericsjmapping: GenericsMap; 

end record; 

function createComponent return Component; 

procedure addGenericsMapping(generic_type_id: psdl_id; 
actual_type_id: psdl_id; the_component:in out Component); 

function componentEqual(cl: in Component; c2: in Component) return boolean; 

procedure componentPut(the_component: in Component); 

— ComponentIDMap 

package component_id_map_pkg is new generic_map_pkg( 
key => ComponentID, 
result => Component, 
eq_key => '"=", 
eq_res => ComponentEqual, 
average_size => 8); 

subtype ComponentIDMap is component_id_map_pkg.map; 

procedure componentlDMapPut is new component_id_map_pkg.generic_put( 
key_put => gnat.io.put, res_put => componentPut); 

— ComponentlDSet 

package component__id_set_pkg is new generic_set_pkg( 
t => ComponentID, 
average_size => 8, 
eq => "="); 

subtype ComponentlDSet is component_id_set_pkg.set; 

procedure componentlDSetPut is 
new component_id_set_pkg.generic_put(put => gnat.io.put); 

procedure componentlDSetFilePut is 
new component_id_set_pkg.generic_file_put(put => componentlDPut); 

end component_id_types; 

74 



component id types.adb 

Package Body: component_id_types 

with gnat.io; 
with text_io; 

with psdl_concrete_type_pkg;  use psdl_concrete_type_pkg; 

package body component_id_types  is 

— Procedure: componentlDPut 

procedure componentlDPut(c_id: ComponentID) is 
begin 

text_io.put(integer'image(c_id)) ; 
end componentlDPut; 

— Procedure: createComponent 

function createComponent return Component is 
return_val: Component; 

begin 
generics_map_pkg.create(empty, return_val.generics_mapping); 
return return_val; 

end createComponent; 

— Procedure: addGenericsMapping 

procedure addGenericsMapping(generic_type_id:   psdl_id; 
actual_type_id:   psdl_id;   the_component:   in out Component)   is 

begin 
generics_map_pkg.bind(generic_type_id,   actual_type_id, 

the_component.generics_mapping) ; 
end addGenericsMapping; 

— Function: componentEqual 

function componentEqual(cl: in Component; c2: in Component) return boolean is 
begin 

if not eq(cl.psdl_filename, c2.psdl_filename) then 
return false; 

end if; 

return generics_map_pkg.equal(cl.generics_mapping, c2.generics_mapping); 
end componentEqual; 

— Procedure: componentPut 

procedure componentPut(the_component: in Component) is 
begin 

gnat.io.put(convert(the_component.psdl_filename)); 
gnat.io.put(" I "); 
genericsMapPut(the_component.generics_mapping) ; 

end componentPut; 

end component id types; 

75 



haase diagram.ads 

— Package Spec: haase_diagram 

with generic_map_pkg; 

with profile_types; use profile_types; 
with component_id_types; use component_id_types; 

package haase_diagram is 

— Types 

— type HaaseNode is private; 
— type HaaseDiagram is private; 

— HaaseNode 

type HaaseNode is record 
key: ComponentProfile; 
components: ComponentlDSet; 
children: ComponentProfileSet; 

end record; 

function haaseNodeEqual(hnl: in HaaseNode; hn2: in HaaseNode) 
return boolean; 

procedure haaseNodeAssign(hnl: in out HaaseNode; hn2: in HaaseNode) 

procedure haaseNodePut(the_haase_node: in HaaseNode); 

procedure haaseNodePrint(the_haase_node: HaaseNode); 

— HaaseDiagram 

package haase_node_map_pkg is new generic_map_pkg( 
key => ComponentProfile, 
result => HaaseNode, 
eq_key => componentProfileEqual, 
eq_res => haaseNodeEqual, 
average_size => 8); 

subtype HaaseDiagram is haase_node_map_pkg.map; 

procedure haaseDiagramPut is new haase_node_map_pkg.generic_put{ 
key_put => componentProfilePut, res_put => haaseNodePut); 

procedure haaseDiagramPrint(the_haase_diagram: HaaseDiagram); 

procedure generateGML(the_haase_diagram: in HaaseDiagram; 
filename: in string); 

— Operations 

function createHaaseNode{key: in ComponentProfile) return HaaseNode; 
function createHaaseDiagram return HaaseDiagram; 

procedure addComponent(the_comp_id: in ComponentID; 
the_haase_node: in out HaaseNode); 

procedure addChild(the_child_key: in ComponentProfile; 
the_haase_node: in out HaaseNode); 

procedure addHaaseNode(the_haase_node: in HaaseNode; 
the_haase_diagram: in out HaaseDiagram); 

procedure addBaseNodes(the_haase_diagram: in out HaaseDiagram); 

procedure connectNodes(the_haase_diagram: in out HaaseDiagram); 

76 



— private 

end haase_diagram; 

77 



haase diagram.g 

— Package Body: haase_diagram 

with text_io; use text_io; 

with generic_map_pkg; 

with profile_types; use profile_types; 
with component_id_types; use component_id_types; 
with psdl_profile; use psdl_profile; 
with software_base; 

package body haase_diagram is 

— Function: createHaaseNode 

— Description: create and initialize a HaaseNode for use. 

function createHaaseNode(key: in ComponentProfile) return HaaseNode is 
return_val: HaaseNode; 

begin 
profile_id_sequence_pkg.assign(return_val.key, key); 
return_val.components := component_id_set_pkg.empty; 
return_val.children := component_profile_set_pkg.empty; 
return return_val; 

end createHaaseNode; 

— Function: createHaaseDiagram 

— Description: create and initialize a HaaseDiagram for use. 

function createHaaseDiagram return HaaseDiagram is 
begin 

return haase_node_map_pkg.create( 
createHaaseNode(profile_id_sequence_pkg.empty)) ; 

end createHaaseDiagram; 

— Function: addComponent 

— Description: add a ComponentID to the HaaseNode. 

procedure addComponent(the_comp_id: in ComponentID; 
the_haase_node: in out HaaseNode) is 

begin 
component_id_set_pkg.add(the_comp_id, the_haase_node.components); 

end addComponent; 

— Function: addChild 

— Description: add a ComponentProfile that represents the 
key to a child HaaseNode to the HaaseNode. 

procedure addChild(the_child_key: in ComponentProfile; 
the_haase_node: in out HaaseNode) is 

begin 
component_profile_set_pkg.add(the_child_key, the_haase_node.children), 

end addChild; 

— Function: addHaaseNode 

— Description: add a HaaseNode to the HaaseDiagram. 

procedure addHaaseNode(the_haase_node: in HaaseNode; 
the_haase_diagram: in out HaaseDiagram) is 
temp_key: ComponentProfile; 

begin 
profile_id_sequence_pkg.assign(temp_key, the_haase_node.key); 

78 



haase_node_map_pkg.bind(temp_key, the_haase_node, the_haase_diagram); 
end addHaaseNode; 

— Procedure: addBaseNodes 

— Description: add base nodes for the nodes already in the diagram. 
This is done by adding a node for each profile in 
the key for each node in the diagram.  Note, duplicates 
will not be added. 

procedure addBaseNodes(the_haase_diagram: in out HaaseDiagram) is 
new_diagram: HaaseDiagram; 
new_node: HaaseNode; 
new_key: ComponentProfile; 

begin 
new_diagram := createHaaseDiagram; 
haase_node_map_pkg.assign(new_diagram, the_haase_diagram); 
new_key := profile_id_sequence_pkg.empty; 

— for each((node_key: ComponentProfile; node: HaaseNode), 
haase_node_map_pkg.scan, (the_haase_diagram), 

— for each((p_id: ProfilelD), profile_id_sequence_pkg.scan, 
(node_key), 

foreach((p_id: ProfilelD), 
profile_lookup_table_pkg.res_set_pkg.scan, 
(software_base.getProfileIDs) , 

addProfilelD(p_id, new_key); 
if not haase_node_map_pkg.member(new_key, the_haase_diagram) then 

new_node := createHaaseNode(new_key); 
addHaaseNode(new_node, new_diagram) ; 

end if; 
new_key := profile_id_sequence_pkg.empty; 

) 
— ) 

haase_node_map_pkg.assign(the_haase_diagram, new_diagram); 
haase_node_map_pkg.recycle(new_diagram); 

end addBaseNodes; 

— Procedure: connectNodes 

— Description: connect nodes in diagram.  Invariant: 
n2 is til's child iff subbag (nl. key, n2.key) and 
there is no node n3 such that subbag(nl.key, n3.key) 
and subbag(n3.key, n2.key). 

Note, an entirely new diagram is constructed because 
scan returns copies of the nodes in the_haase_diagram, 

not the actual nodes. 

procedure connectNodes(the_haase_diagram: in out HaaseDiagram) is 
new_node: HaaseNode; 
new_diagram: HaaseDiagram; 
found_n3: boolean; 

begin 
new_diagram := createHaaseDiagram; 
foreach((nl_key: ComponentProfile; nl: HaaseNode), 

haase_node_map_pkg.scan, (the_haase_diagram), 
new_node := createHaaseNode(nl_key); 
haaseNodeAssign(new_node, nl); 

foreach((n2_key: ComponentProfile; n2: HaaseNode), 
haase_node_map_pkg.scan, (the_haase_diagram), 

if not haaseNodeEqual(nl,n2) then 
if subbag(nl_key, n2_key) then 

found_n3 := false; 
foreach((n3_key: ComponentProfile; n3: HaaseNode), 

haase_node_map_pkg.scan, (the_haase_diagram), 
if not found_n3 then 

if (not haaseNodeEqual(nl,n3)) and 
(not haaseNodeEqual(n2,n3)) then 

if subbag(nl_key, n3_key) and 
subbag(n3_key, n2_key) then 

79 



found_n3 := true; 
end if; 

end if; 
end if; 

) 
if not found_n3 then 

addChild(n2_key, new_node); 
end if; 

end if; 
end if; 

) 
addHaaseNode(new_node, new_diagram); 

) 
haase_node_map_pkg.assign(the_haase_diagram, new_diagram); 
haase_node_map_pkg.recycle(new_diagram) ; 

end connectNodes; 

— Function: haaseNodeEqual 

— Description: checks for equality of two haase nodes by 
comparing the keys. 

function haaseNodeEqual(hnl: in HaaseNode; hn2: in HaaseNode) 
return boolean is 

begin 
return componentProfileEqual(hnl.key, hn2.key); 

end haaseNodeEqual; 

— Procedure: haaseNodeAssign 

— Description: creates a duplicate of hn2. 

procedure haaseNodeAssign(hnl: in out HaaseNode; hn2: in HaaseNode) is 
begin 

profile_id_sequence_pkg.assign(hnl.key, hn2.key) ; 
component_id_set_pkg.assign(hnl.components, hn2.components); 
— component_profile_set_pkg.assign(hnl.children, hn2.children); 

end haaseNodeAssign; 

— Procedure: haaseNodePut 

procedure haaseNodePut(the_haase_node: in HaaseNode) is 
begin 

componentProfilePut(the_haase_node.key) ; 
put("I"); 
componentlDSetPut(the_haase_node.components) ; 
putC'l"); 
componentProfileSetPut(the_haase_node.children); 

end haaseNodePut; 

— Procedure: haaseNodePrint 

procedure  haaseNodePrint(the_haase_node:   in HaaseNode)   is 
begin 

put("Key:   "); 
componentProfilePut(the_haase_node.key) ; 
new_line; 
put("Components: "); 
componentlDSetPut(the_haase_node.components) ; 
new_line; 
put("Children: "); 
componentProfileSetPut(the_haase_node.children) ; 
new_line; 

end haaseNodePrint; 

—  Procedure:   haaseDiagramPrint 

procedure haaseDiagramPrint(the_haase_diagram:   in HaaseDiagram)   is 
begin 

foreach((node_key:   ComponentProfile;   node:   HaaseNode), 
haase_node_map_pkg.scan,   (the_haase_diagram), 

80 



haaseNodePrint(node); 
new_line; 

) 
new_line; 

end haaseDiagramPrint; 

Procedure: generateGML 

— Description: generate a GML file to graphically represent the 
HaaseDiagram. 

procedure generateGML(the_haase_diagram: in HaaseDiagram; 
filename: in string) is 

id: natural := 0; — unique ID counter 
the_id: natural; 
gml_file: file_type; 

function new_id return natural is 
begin 

id := id + 1; 
return id; 

end new_id; 

package temp_map_pkg is new generic_map_pkg( 
key => ComponentProfile, 
result => natural, 
eq_key => componentProfileEqual, 
eq_res => "=", 
average_size => 8); 

subtype tempMap is temp_map_pkg.map; 

t emp_map: tempMap; 

begin 
create(gml_file, out_file, filename); 
put(gml_file, "graph [ id "); 
put(gml_file, integer'image(new_id)) ; 
put_line(gml_file, " directed 1"); 

temp_map_pkg.create(id, temp_map); 

— make the nodes 
foreach((node_key: ComponentProfile; node: HaaseNode), 

haase_node_map_pkg.scan, (the_haase_diagram), 
put(gml_file, "node [ id "); 
the_id := new_id; 
put(gml_file, integer'image(the_id)) ; 
put(gml_file, " label """) ; 
componentProfileFilePut(gml_file, node.key); 
— put_line(gml_file, "\"); 
— componentlDSetFilePut(gml_file, node.components); 
put_line(gml_fi1e, """ ] "); 

temp_map_pkg.bind(node.key, the_id, temp_map); 
) 

— make the edges 
foreach((node_key: ComponentProfile; node: HaaseNode), 

haase_node_map_pkg.scan, (the_haase_diagram), 
foreach((child_key: ComponentProfile), 

component_profile_set_pkg.scan, (node.children), 
put(gml_file, "edge [ id "); 
put(gml_file, integer'image(new_id)); 
put(gml_file, " source "); 
put(gml_file, integer'image(temp_map_pkg.fetch(temp_map, 

node.key))); 
put(gml_file, " target "); 
put(gml_file, integer'image(temp_map_pkg.fetch(temp_map, 

child_key))); 
put_line(gml_file, " ]"); 

) 
) 

put_line(gml_file, "]"); 
close(gml_file); 

81 



temp_map_pkg.recycle(temp_map), 
end generateGML; 

end haase diagram; 

82 



profile calcads 

— Package Spec: profile_calc 

— This package contains functions and types that support the computation 
— of profiles from numeric representations of signatures. 

— Description of numeric signatures: Positive integers represent 
— instances of non-generic types in the signature.  Negative integers 
— represent instances of generic types in the signature.  Finally, 
— a 0 is used to terminate the array of integers representing the 
— signature. 

— Examples of numeric signatures: 
— [integer, char, float -> integer] ==> [1,2,3,1,0] 
— [integer, generic, float -> float] ==> [1,-1,2,3,0] 
— [genericl, generic2 -> generic2] ==> [-1,-2,-2,0] 

— Profiles are sequences of integers. 

— Generic Types: 
— Generic types cause more than one profile to be generated for a 
— single signature.  Hence, computeArrayProfileWithGenerics returns an 
— array of ArrayProfiles, ProfileValues, bound by NumProfiles. 

— ArrayProfiles are terminated with PROFILE_TERMINATOR.  For example, 
— the profile [3,1,1,2] is returned as [3,1,1,2,-99]. 

— Eventually a different method for handling generic types will be 
— employed and will likely do away with the ArrayProfile data type. 

with profile_types; use profile_types; 

package profile_calc is 

— Types 

MAX_SIG_LENGTH: constant := 100; 
MAX_PROFILE_LENGTH: constant := 100; 
MAX_PROFILE_VARIATIONS: constant := 100; — for generic types 
PROFILEJTERMINATOR: constant := -99; 

subtype SignatureLengthRange is Positive range 1..MAX_SIG_LENGTH; 
subtype ProfileLengthRange is Positive range 1..MAX_PROFILE_LENGTH; 
subtype ProfileVariationRange is Positive range 1..MAX_PROFILE_VARIATIONS; 

type Signature is array (SignatureLengthRange) of Integer; 
type ArrayProfile is array (ProfileLengthRange) of Integer; 
type ArrayProfiles is array (ProfileVariationRange) of ArrayProfile; 

— Functions 

function computeProfile(T: in Signature) return Profile; 
function computeArrayProfile(T: in Signature) return ArrayProfile; 

— note NumProfiles should be 0..MAX_PROFILE_VARIATIONS, not Natural 
procedure computeArrayProfileWithGenerics( 

T: in Signature; 
ProfileValues: out ArrayProfiles; 
NumProfiles: out Natural); 

function printSignature(sig: Signature) return SignatureLengthRange; 
function printArrayProfile(prof: ArrayProfile) return ProfileLengthRange; 

end profile_calc; 

83 



profile calcg 

— Package Body: profile_calc 

with gnat.io; use gnat.io; 

with profile_types; use profile_types; 

package body profile_calc is 

— Function: convertToSequence 

— Description: helper function to convert an ArrayProfile (an 
array of ints terminated with PROFILEJFERMINATOR) 
to a Profile (a sequence of ints). 

function convertToSequence(Prof: ArrayProfile) return Profile is 
return_val: Profile; 
i, count: ProfileLengthRange; 

begin 
count := 1; 
while Prof(count) /= PROFILE_TERMINATOR and count <= MAX_PROFILE_LENGTH loop 

count : = count + 1 ; 
end loop; 
count := count - 1; 

return_val := 0; 
for i in 1..count loop 

return_val := return_val + (long_long_integer(Prof(i) ) * 
(10 ** (count-i))); 

end loop; 

return return_val; 
end convertToSequence; 

function printsignature(Sig: Signature) return SignatureLengthRange is 
Num: SignatureLengthRange; 

begin 
Num := 1; 
Put("["); 
while Sig(Num +1) /= 0 loop 

Put (Sig(Num)); 
if Sig(Num +2) /= 0 then 

Put (", "); 
end if; 
Num  := Num +  1; 

end loop; 
Put   ("  ->  "); 
Put   (Sig(Num)); 
Put("]") ; 
return Num; 

end printsignature; 

function printArrayProfile(Prof:   ArrayProfile)   return ProfileLengthRange  is 
Num:   ProfileLengthRange; 

begin 
Num  :=  1; 
Put("["); 
while Prof (Num) /= PROFILEJTERMINATOR and Num < MAX_PROFILE_LENGTH loop 

Put (Prof(Num)); 
if Prof (Num + 1) /= PROFILE_TERMINATOR then 

Put (", "); 
end if; 
Num := Num + 1; 

end loop; 
Put ("]"); 
return Num; 

end printArrayProfile; 

function computeProfile(T: Signature) return Profile is 
begin 

return convertToSequence(computeArrayProfile(T)) ; 
end computeProfile; 

84 



function computeArrayProfile(T: Signature) return ArrayProfile is 
Result: ArrayProfile; 
Result_Count : Integer; 
NumResSort: Integer; 
NumOneSorts: Integer; 
I,J: Integer; 
L: SignatureLengthRange; 
SortValues: array (SignatureLengthRange) of Integer; 
SortNums: array (SignatureLengthRange) of Integer; 
NumSorts: Integer; 
Found: Boolean; 

begin 
— Compute Profile[l], Total Number of Sorts. 
Result_Count := 1; 
J := 0; 

— set L to number of elements in T 
— note, this is the first number in the profile 
I := 1; 
while (T(I) /= 0 and I <= MAX_SIG_LENGTH) loop 

I := I + 1; 
end loop; 
L := I - 1; 

Result(Result_Count) := L; 

— Compute Profile[2], Number of Times Result Sort in Signature. 
— note, Nguyen's thesis just uses 0 or 1 to indicate if the 
— result sort is used in the input arguments.  Representing 
— the number of times the result sort is used is finer resolution, 
— which should partition of the software base better. 
NumResSort := 0; 
for I in 1..L loop 

if T(I) = T(L) then 
NumResSort := NumResSort + 1; 

end if; 
end loop; 
Result_Count := Result_Count + 1; 

— Herman 
— Result(Result_Count) := NumResSort; 

— Nguyen 
if NumResSort > 1 then 

Result(Result_Count) := 1; 
else 

Result(Result_Count) := 0; 
end if; 

— Herman Improvement Profile[3] 
— Add the number of occurrences of the type being defined by the 
— component (if the component is a type). 
—Result_Count := Result_Count + 1; 
—Result(Result_Count) := T(L+2); 

— Herman Improvement Profile[4..8] 
— Add the number of occurrences of types in the basic sort groups 
Result_Count := Result_Count + 1; 
Result(Result_Count) := T(L+3); 
Result_Count := Result_Count + 1; 
Result(Result_Count) :=T(L+4); 
—Result_Count := Result_Count + 1; 
—Result(Result_Count) := T(L+5); 
Result_Count := Result_Count + 1; 
Result(Result_Count) := T(L+6); 
Result_Count := Result_Count + 1; 
Result(Result_Count) := T(L+7); 

— Generate Helper Arrays 
— SortValues: an ordered SET of sort values 

e.g. if the signature input T was [1, 1, 2, 1, 0] 
SortValues would be [1, 2] 

— NumSorts: the cardinality of the ordered set SortValues 
e.g. in the above example, NumSorts would be 2 

— SortNums: the cardinality of each sort in SortValues 

85 



e.g. in the above example, SortValues would be [3, 1] 
for I in 1..L loop 

SortNums(I) := 0; 
end loop; 
SortValues(1) := T(l) ; 
NumSorts := 1; 
SortNums(l) := 1; 
for I in 2..L loop 

Found := False; 
for J in 1..NumSorts loop 

if T(I) = SortValues(J) then 
SortNums(J) := SortNums(J) + 1; 
Found := True; 

end if; 
end loop; 
if not Found then 
NumSorts := NumSorts + 1; 
SortValues(NumSorts) :=T(I); 
SortNums(NumSorts) := 1; 

end if; 
end loop; 

— Becomes Profile[9] 
— Compute Profile[3], Number of Sort Groups of Size One. 
NumOneSorts := 0; 
for I in 1..NumSorts loop 

if SortNums(I) = 1 then 
NumOneSorts := NumOneSorts + 1; 

end if; 
end loop; 
Result_Count := Result_Count + 1; 
Result(Result_Count) := NumOneSorts; 

— Becomes Profile[10..N] 
— Compute Profile[4..N], Sequence of Sizes of the Sort Groups that 
— Have Size Greater than One. 
for I in 0..L-2 loop 

for J in 1..NumSorts loop 
if SortNums(J) = L-I then 

Result_Count := Result_Count + 1; 
Result(Result_Count) := L-I; 

end if; 
end loop; 

end loop; 

— Terminate the ArrayProfile 
Result(Result_Count+l) := PROFILEJTERMINATOR; 
return Result; 

end computeArrayProfile; 

procedure computeArrayProfileWithGenerics( 
T: in Signature; 
ProfileValues: out ArrayProfiles; 
NumProfiles: out Natural) is 
I, G, J, K: Integer; 
L: SignatureLengthRange; 
NewSig: Signature; 
NumGenerics:  Integer; 
NumDiffGenerics: Integer; 
Found: Boolean; 
Valj: Integer; 
GenericPos: array (SignatureLengthRange) of Integer; 
ProfileVal: ArrayProfile; 

begin 
NumGenerics := 0; 
NumProfiles := 0; 
Valj:=0; 
NumDiffGenerics := 0; 
G := 0; 
J := 0 
K := 0 

— set L to number of elements in T 
I := 1; 
while (T(I) /= 0 and I <= MAX_SIG_LENGTH) loop 

I := I + 1; 

86 



end loop; 
L := I - 1; 

for I in 1..L loop 
if T(I) < 0 then 

if T(I) < NumDiffGenerics then 
NumDiffGenerics := T(I); 

end if; 
NumGenerics := NumGenerics + 1; 
GenericPos(NumGenerics) := I; 

end if; 
end loop; 
NumDiffGenerics := -1 * NumDiffGenerics ; 
if NumGenerics = 0 then 
NumProfiles := 1; 
ProfileVal := computeArrayProfile(T) ; 
ProfileValues(l) := ProfileVal; 

else 
for G in 1..NumDiffGenerics loop 
for I in 1..L loop 
NewSig(I) := T(I) ; 

end loop; 
NewSig(L+l) := 0; 
for J in 1..L loop 

for I in 1.. NumGenerics loop 
if T(GenericPos(I)) >= -1 * G then 
NewSig(GenericPos(I)) :=T(J); 

end if; 
end loop; 

— These following lines are good for debugging. 
— They print out all the combinations of signatures computed 
Valj:= printSignature(NewSig); 
New_Line; 

ProfileVal := computeArrayProfile(NewSig) ; 
if NumProfiles = 0 then 
NumProfiles := 1; 
ProfileValues(l) := ProfileVal; 

else 
Found := False; 
for K in 1..NumProfiles loop 

if ProfileValues(K) = ProfileVal then 
Found := True; 

end if; 
end loop; 
if not Found then 
NumProfiles := NumProfiles + 1; 
ProfileValues(NumProfiles) := ProfileVal; 

end if; 
end if; 

end loop; 
end loop; 

end if; 
end computeArrayProfileWithGenerics; 

end profile_calc; 

87 



profile filter pkg.ads 

— Package Spec: profile_filter 

with haase_diagram; use haase_diagram; 
with candidate_types; use candidate_types; 
with profile_types; use profile_types; 

package profile_filter_pkg is 

function findCandidates(query_profile: in ComponentProfile; 
the_haase_diagram: in HaaseDiagram) return CandidateSet; 

end profile_filter_pkg; 

88 



profile filter pkg.g 

— Package Body: profile_filter 

with haase_diagram; use haase_diagram; 
with candidate_types; use candidate_types; 
with component_id_types; use component_id_types; 

package body profile_filter_pkg is 

— Function: findCandidates 

— Description: for each profile in query_profile start at the base-node 
that represents that profile and perform a depth-first 
search on the haase-diagram. At each node calculate the 
profile rank, create a Candidate with that rank and the 
components in that node, and add it to return_val. 

function findCandidates(queryjprofile: in ComponentProfile; 
the_haase_diagram: in HaaseDiagram) return CandidateSet is 

return_val: CandidateSet; 
base_node: HaaseNode; 
base_node_key: ComponentProfile; 
num_matches: natural; 
i, j: natural; 

procedure DFSFW(hn: in HaaseNode) is 
temp_candidate: Candidate; 

begin 
— count the number of profiles in the node that 
— are also in the query 
num_matches := 0; 
i := 1; 
j := 1; 
while i <= profile_id_sequence_pkg.length(query_profile) and 

j <= profile_id_sequence_pkg.length(hn.key) loop 
if profile_id_sequence_pkg.fetch(query_profile, i) = 

profile_id_sequence_pkg.fetch(hn.key, j) then 
num_matches :« num_matches + 1; 
i := i + 1; 
j := j + 1; 

elsif profilelDLessThan(profile_id_sequence_pkg.fetch(query_profile, i), 
profile_id_sequence_pkg.fetch(hn.key, j)) then 

i := i + 1; 
else 

j := j + 1; 
end if; 

end loop; 

— add the node's components to return val 
foreacht(comp_id: ComponentID), component_id_set_pkg.scan, 

(hn.components), 
temp_candidate := newCandidate; 
temp_candidate.profile_rank := 

float(num_matches) / float(profile_id_sequence_pkg.length(query_profile)) , 
temp_candidate.component_id := comp_id; 
candidate_set_pkg.add(temp_candidate, return_val); 

) 

— recursively call DFSFW on each child 
foreachf(child: ComponentProfile), component_profile_set_pkg.scan, 

(hn.children), 
DFSFW(haase_node_map_pkg.fetch(the_haase_diagram, child)); 

) 
end DFSFW; 

begin 
return_val := candidate_set_pkg.empty; 

foreachf(p_id: ProfilelD), profile_id_sequence_pkg.scan, (query_profile), 
base_node_key := profile_id_sequence_pkg.empty; 
addProfileID(p_id, base_node_key); 

89 



if haase_node_map_pkg.member(base_node_key, the_haase_diagram) then 
base_node := 

haase_node_map_pkg.fetch(the_haase_diagram, base_node_key); 
DFSFW(base_node); 

end if; 
) 

return return_val; 
end findCandidates; 

end profile_filter_pkg; 

90 



profile tvpes.ads 

— Package Spec: profile_types 

with gnat.io; 

with generic_sequence_pkg; 
with generic_set_pkg; 
with ordered_map_pkg; 

package profile_types is 

procedure mylntPut(i: integer); 

— Profile 

— package int_sequence_pkg is new generic_sequence_pkg( 
— t => integer, average_size => 4); 
— subtype Profile is int_sequence_pkg.sequence; 

— function profileEqual is new int_sequence_pkg.generic_equal(eq => "="); 
— function profileLessThan is new int_sequence_pkg.generic_less_than("<" => "<"); 
— procedure profilePut is new int_sequence_pkg.generic_put(put => gnat.io.put); 
— procedure profileFilePut is new int_sequence_pkg.generic_put(put => mylntPut); 

subtype Profile is long_long_integer; 

function profileEqual(pi, p2: Profile) return boolean; 
function profileLessThan(pi, p2: Profile) return boolean; 
procedure profilePut(p: Profile); 
procedure profileFilePut(p: Profile); 

— ProfilelD 

subtype ProfilelD is integer; 

function profilelDLessThan(pi, p2: ProfilelD) return boolean; 
procedure profilelDPut(p_id: ProfilelD); 
procedure profilelDFilePut(p_id: ProfilelD); 

— ProfileLookupTable 

DEFAULT_PROFILE_ID: constant := -1; 
package profile_lookup_table_pkg is new ordered_map_pkg( 

key => Profile, 
result => ProfilelD, 
eq_key => profileEqual, 
eqres => "=", 
"<"  => profileLessThan); 

subtype  ProfileLookupTable is profile_lookup_table_pkg.map; 

procedure profileLookupTablePut is new profile_lookup_table_pkg.generic_put( 
key_put => profilePut,   res_put => profilelDPut); 

— ComponentProfile 

— Note: should use addProfilelD to add a profile id to the ComponentProfile. 
addProfilelD keeps the ComponentProfile sorted which is important 
for equality and subbag (multiset subset) testing. 

package profile_id_sequence_pkg is new generic_sequence_pkg( 
t => ProfilelD, average_size => 4); 

subtype ComponentProfile is profile_id_sequence_pkg. sequence; 

function componentProfileEqual is 
new profile_id_sequence_pkg.generic_equal(eq => "="); 

function componentProfileMember is 
new profile_id_sequence_pkg.generic_member(eq => "="); 

91 



procedure componentProfileRemove is 
new profile_id_sequence_pkg.generic_remove(eq => "="); 

function componentProfileSort is 
new profile_id_sequence_pkg.generic_sort("<" => "<"); 

function componentProfileLessThan is 
new profile_id_sequence_pkg.generic_less_than("<" => profilelDLessThan) 

procedure componentProfilePut is 
new profile_id_sequence_pkg.generic_put(put => profilelDPut); 

procedure componentProfileFilePut is 
new profile_id_sequence_pkg.generic_file_put(put => profilelDFilePut); 

function subbag is 
new profile_id_sequence_pkg.generic_subsequence(eq => "="); 

package component_profile_set_pkg is new generic_set_pkg( 
t => ComponentProfile, eq => componentProfileEqual, average_size => 8); 

subtype ComponentProfileSet is component_profile_set_pkg.set; 

procedure componentProfileSetPut is 
new component_profile_set_pkg.generic_put(put => componentProfilePut); 

procedure addProfileID(p_id: in ProfilelD; cp: in out ComponentProfile); 
procedure addProfiles(new_profiles: in ComponentProfile; 

target: in out ComponentProfile); 

end profile_types; 

92 



profile types.adb 

— Package Body: profile_types 

with text_io; 
with ada.long_long_integer_text_io; 
with software_base; 

package body profile_types is 

— Procedure: mylntPut 

procedure mylntPut(i: integer) is 
begin 

text_io.put(integer'image(i) ); 
end mylntPut; 

— Procedure: addProfilelD 

— Description: adds a ProfilelD to a ComponentProfile by adding the 
ProfilelD to the sequence then sorting the sequence. 

procedure addProfileID(p_id: in ProfilelD; cp: in out ComponentProfile) is 
begin 

profile_id_sequence_pkg.add(p_id, cp); 
cp := componentProfileSort(cp); 

end addProfilelD; 

— Procedure: addProfiles 

— Description: appends the profiles from new_profiles to target then 
sorts target. 

procedure addProfiles(new_profiles: in ComponentProfile; 
target: in out ComponentProfile) is 

begin 
target := profile_id_sequence_pkg.append(target, new_profiles); 
target := componentProfileSort(target); 

end addProfiles; 

— Function: profileEqual 

function profileEqual(pi, p2: Profile) return boolean is 
begin 

return pi = p2; 
end profileEqual; 

— Function: profileLessThan 

function profileLessThan(pi, p2: Profile) return boolean is 
begin 

return pi < p2; 
end profileLessThan; 

— Function: profilePut 

procedure profilePut(p: Profile) is 
begin 

ada.long_long_integer_text_io.put(p, 0); 
end profilePut; 

— Function: profileFilePut 

procedure profileFilePut(p: Profile) is 
begin 

profilePut(p); 

93 



end profileFilePut; 

— Function: profilelDLessThan 

function profilelDLessThan(pi, p2: ProfilelD) return boolean is 
begin 

return software_base.getProfile(pi) < software_base.getProfile(p2); 
end profilelDLessThan; 

— Procedure: profilelDPut 

procedure profilelDPut(p_id: ProfilelD) is 
begin 

text_io.put(integer'image(p_id)); 
end profilelDPut; 

— Function: profilelDFilePut 

procedure profilelDFilePut(p_id: ProfilelD) is 
begin 

profilelDPut(p_id); 
end profilelDFilePut; 

— Function: createProfileLookupTable 

function createProfileLookupTable return ProfileLookupTable is 
begin 

return profile_lookup_table_pkg.create(0); 
end createProfileLookupTable; 

end profile_types; 

94 



psdl profile.ads 

— Package Spec: psdl_profile 

— This package contains functions and types that support the collection 
— of operation profiles from a component specified in PSDL. 

with generic_sequence_pkg; 
with generic_map_pkg; 
with generic_set_pkg; 
with ordered_set_pkg; 

with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 
with psdl_component_pkg; use psdl_component_pkg; 

with profile_types; use profile_types; 

package psdl_profile is 

— Types 

— OpWithProfile 

type OpWithProfile is record 
op: operator; 
op_profile: ProfilelD; 

end record; 

function opWithProfileEqual(owpl: in OpWithProfile; owp2: in OpWithProfile) 
return boolean; 

function opWithProfileLessThan(owpl: in OpWithProfile; owp2: in OpWithProfile) 
return boolean; 

procedure opWithProfilePut(owp: in OpWithProfile); 

— OpWithProfileSeq 

— Note: should use addOpWithProfile to add an OpWithProfile to the sequence. 
addOpWithProfile keeps the sequence sorted. 

package owp_sequence_pkg is new generic_sequence_pkg( 
t => OpWithProfile, average_size => 4); 

subtype OpWithProfileSeq is owp_sequence_pkg.sequence; 

function opWithProfileSeqEqual is 
new owp_sequence_pkg.generic_equal(eq => opWithProfileEqual); 

function opWithProfileSeqMember is 
new owp_sequence_pkg.generic_member(eq => opWithProfileEqual); 

procedure opWithProfileSeqRemove is 
new owp_sequence_pkg.generic_remove(eq => opWithProfileEqual); 

function opWithProfileSeqSort is 
new owp_sequence_pkg.generic_sort("<" => opWithProfileLessThan) ; 

procedure opWithProfileSeqPut is 
new owp_sequence_pkg.generic_put(put => opWithProfilePut) ; 

procedure opWithProfileSeqPrint(owp_seq: in OpWithProfileSeq); 

procedure addOpWithProfile(owp: in OpWithProfile; 
owp_seq: in out OpWithProfileSeq); 

— OpWithProfileSet 

package owp_set_pkg is new ordered_set_pkg( 

95 



t => OpWithProfile, eq => opWithProfileEqual, 
"<" => opWithProfileLessThan); 

subtype OpWithProfileSet is owp_set_pkg.set; 

procedure opWithProfileSetPut is 
new owp_set_pkg.generic_put(put => opWithProfilePut); 

procedure opWithProfileSetPrint(owp_set: in OpWithProfileSet), 

— GenericsMap 

— Description: this is a mapping of generic type identifiers to 
— actual types that exist in the component.  For example, if the 
— PSDL type Stack has one generic type named Item and has methods 
— that have parameters that use the types natural, Stack, and 
— boolean then there would be four different instantiations of 
— Stack in the software base representing the four possible 
— mappings for Item:  1. Item => natural; 2. Item => Stack, 
— 3. Item => boolean, 4. Item => Item.  Option 4 really just 
— means that Item is mapped to a type that does not appear in the 
— component.  Suppose Stack used two generic types.  In that case 
— each instantiation's GenericsMap would have two entries, one 
— for each generic type.  In such a case the number of different 
— instantiations present in the software base grows rapidly; 
— specifically the number would be the cross product of the number 
— of types across each generic type. 

package generics_map_pkg is new generic_map_pkg( 
key => psdl_id, 
result => psdl_id, 
eq_key => eq, 
eq_res => eq, 
average_size => 8); 

subtype GenericsMap is generics_map_pkg.map; 

procedure psdl_idPut(the_id: in psdl_id); 

procedure genericsMapPut is new generics_map_pkg.generic_put( 
key_put => psdl_idPut, res_put => psdl_idPut); 

— GenericsMapSet 

package generics_map_set_pkg is new generic_set_pkg( 
t => GenericsMap,   eq =>  generics_map_pkg.equal); 

subtype GenericsMapSet is  generics_map_set_pkg.set; 

procedure  genericsMapSetPut  is 
new generics_map_set_pkg.generic_put(put => genericsMapPut); 

— Functions 

function getGenericsMaps(filename: in string) return GenericsMapSet; 

function getComponentProfile(filename: in string; 
generics_mapping: in GenericsMap) return ComponentProfile; 

function getOpsWithProfiles(filename: in string; 
generics_mapping: in GenericsMap) return OpWithProfileSeq; 

function getOpsWithProfiles(filename: in string; 
generics_mapping: in GenericsMap) return OpWithProfileSet; 

end psdl_profile; 

96 



psdl profilcg 

— Package Body: psdl_profile 

with text_io; use text_io; 

with profile_types; use profile_types; 
with profile_calc; use profile_calc; 

with psdl_io; 
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 
with psdl_component_pkg; use psdl_component_pkg; 
with psdl_program_pkg; use psdl_program_pkg; 
with psdl_id_set_subtype_pkg; 
with psdl_id_pkg; 
with software_base; 

with generic_map_pkg; 
with generic_sequence_pkg; 

package body psdl_profile is 

package signature_seq_pkg is new generic_sequence_pkg( 
t => Signature, average_size => 2); 

subtype SignatureSequence is signature_seq_pkg.sequence; 

— Function: opWithProfileEqual 

function opWithProfileEqual(owpl: in OpWithProfile; owp2: in OpWithProfile) 
return boolean is 

begin 
— if not profileEqual(owpl.op_profile, owp2.op_profile) then 
if owpl.op_profile /= owp2.op_profile then 

return false; 
end if; 
return eq(owpl.op, owp2.op); 

end opWithProfileEqual; 

— Function: opWithProfileLessThan 

function opWithProfileLessThan(owpl: in OpWithProfile; 
owp2: in OpWithProfile) 

return boolean is 
begin 

— return profileLessThan(owpl.op_profile, owp2.op_profile); 
return profileLessThan(software_base.getProfile(owpl.op_profile), 

software_base.getProfile(owp2.op_profile)) ; 
end opWithProfileLessThan; 

— Function: opWithProfilePut 

procedure opWithProfilePut(owp: in OpWithProfile) is 
begin 

put("("); 
put(convert(name(owp.op) ) ) ; 
put(": "); 
foreachl(the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (inputs(owp.op)), 
put(convert(the_tn.name)) ; 
put(" "); 

) 
put("-> "); 
foreachl(the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (outputs(owp.op)), 
put(convert(the_tn.name)); 
put(" "); 

) 
put("I "); 
profilePut(software_base.getProfile(owp.op_profile)); 
put(")"); 

end opWithProfilePut; 

97 



— Function: opWithProfileSeqPrint 

procedure opWithProfileSeqPrint(owp_seq: in OpWithProfileSeq) is 
begin 

foreach((owp: OpWithProfile), owp_sequence_pkg.scan, (owp_seq), 
put(convert(name(owp.op))); 
put(": "); 
foreach((the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (inputs(owp.op)), 
put(convert(the_tn.name)); 
put(" "); 

) 
put{"-> "); 

foreach((the_id: psdl_id; the_tn: type_name), 
type_declaration_pkg.scan, (outputs(owp.op)), 

put(convert(the_tn.name)); 
put(" "); 

) 
put("  "); 
profilePut(software_base.getProfile(owp.op_profile)); 
new_line; 

) 
end opWithProfileSeqPrint; 

— Function: opWithProfileSetPrint 

procedure opWithProfileSetPrint(owp_set: in OpWithProfileSet) is 
begin 

foreach((owp: OpWithProfile), owp_set_pkg.scan, (owp_set), 
put(convert(name(owp.op))); 
put(": "); 
foreach((the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (inputs(owp.op)), 
put(convert(the_tn.name)); 
put(" "); 

) 
put("-> "); 

foreach((the_id: psdl_id; the_tn: type_name), 
type_declaration_pkg.scan, (outputs(owp.op)), 

put(convert(the_tn.name)); 
put(" "); 

) 
new_line; 
profilePut(software_base.getProfile(owp.op_profile)); 
new_line; 

) 
end opWithProfileSetPrint; 

— Function: addOpWithProfile 

procedure addOpWithProfile(owp: in OpWithProfile; 
owp_seq: in out OpWithProfileSeq) is 

begin 
owp_sequence_pkg.add(owp, owp_seq); 
owp_seq := opWithProfileSeqSort(owp_seq); 

end addOpWithProfile; 

— Function: createNumericSignatures 

— Description: helper function to create numeric signatures for 
an operator. 

function createNumericSignatures(op: in operator; 
generics_mapping: GenericsMap; type_id: psdl_id) 
return SignatureSequence is 

package type_map_pkg is 
new generic_irtap_pkg ( 
key => type_name, 
result => integer, 

98 



eq_key => equal, 
eq_res => "=", 
average_size => 2) ; 

subtype type_map is type_map_pkg.map; 

— if a type from the same sort group is already in the map 
— then return the number that represents that sort group 
— otherwise return 0, indicating this a type from a new 
— sort group 
function getSortGroupNum(the_type: type_name; 

the_type_map: type_map) return integer is 
return_val: integer; 

begin 
return_val := 0; 
foreach((the_tn: type_name; the_num: integer), 

type_map_pkg.scan, (the_type_map), 
if same_sort_group(the_type, the_tn) then 

return_val := the_num; 
— TODO: should be exit loop here but don't know how to 

end if; 
) 
return return_val; 

end getSortGroupNum; 

the_inputs: type_declaration := inputs(op); 
the_outputs: type_declaration := outputs(op); 
the_type_map: type_map; 
i, t: natural; 
sort_group_num: integer; 
gen_set: psdl_id_set_subtype_pkg.psdl_id_set; 
temp_signature: Signature; 
temp_tn: type_name; 
return_val: SignatureSequence; 
type_occurrence_count: natural; 
bool_count, char_count, string_count, int_count, float_count: natural; 

procedure update_additional_counts(the_tn: type_name) is 
begin 

if eq(temp_tn.name, type_id) then 
type_occurrence_cdunt := type_occurrence_count +1; . 

elsif same_sort_group(the_tn, boolean_type) then 
bool_count := bool_count +1; 

elsif same_sort_group(the_tn, character_type) then 
char_count := char_count + 1; 

elsif same_sort_group(the_tn, string_type) then 
string_count := string_count + 1; 

elsif same_sort_group(the_tn, integer_type) then 
int_count := int_count + 1; 

elsif same_sort_group(the_tn, float_type) then 
float_count := float_count + 1; 

end if; 
end; 

begin 

type_map_pkg.create(0, the_type_map); 

— for each output 
foreach((o_id: psdl_id; o_tn: type_name), 

type_declaration_pkg.scan, (the_outputs), 
type_map_pkg.recycle(the_type_map) ; 
t := 0; 
i := 0; 
type_occurrence_count := 0; 
bool_count := 0; 
char_count := 0; 
string_count := 0; 
int_count := 0; 
float_count := 0; 

— for each input 
foreach((i_id: psdl_id; i_tn: type_name), 

type_declaration_pkg.scan,    (the_inputs), 

—  check if type is  a generic type or a regular type 
if  generics_map_pkg.member(i_tn.name,   generics_mapping)   then 

99 



temp_tn := create! 
generics_map_pkg.fetch(generics_mapping, i_tn.name), 
psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)); 

else 
— could probably use i_tn as is rather than create 
— a copy but we're being safe in case i_tn has some 
— residue in its formals and gen_pars 
temp_tn := create(i_tn.name, 

psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)); 

end if; 

update_additional_counts(temp_tn); 

— if the type isn't in the map yet then put it in 
if not type_map_pkg.member(temp_tn, the_type_map) then 

sort_group_num := getSortGroupNum(temp_tn, the_type_map); 
if sort_group_num = 0 then 

t := t + 1; 
type_map_pkg.bind(temp_tn, t, the_type_map); 

end if; 
end if; 

— add the input's sort group number 
i := i + 1; 
temp_signature(i) := getSortGroupNum(temp_tn, the_type_map); 

— handle the output 

— check if type is a generic type or a regular type 
if generics_map_pkg.member(o_tn.name, generics_mapping) then 

temp_tn := create( 
generics_map_pkg.fetch(generics_mapping, o_tn.name), 
psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)); 

else 
— could probably use o_tn as is rather than create 
— a copy but we're being safe in case o_tn has some 
— residue in its formals and genjpars 
temp_tn := create(o_tn.name, 

psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)); 

end if; 

update_additional_counts(temp_tn); 

— if the type isn't in the map yet then put it in 
if not type_map_j?kg.member(temp_tn, the_type_map) then 

sort_group_num := getSortGroupNum(temp_tn, the_type_map); 
if sort_group_num = 0 then 

t := t + 1; 
type_map_pkg.bind(temp_tn, t, the_type_map); 

end if; 
end if; 

— add the output's sort group number 
i := i + 1; 
temp_signature(i) := getSortGroupNum(temp_tn, the_type_map); 

— mark end of signature 
i := i + 1; 
temp_signature(i) := 0; 

— add the type_occurrence_count to the signature 
i := i + 1; 
temp_signature(i) := type_occurrence_count; 

— add basic type counts in 
i := i + 1; 
temp_signature(i) := bool_count; 
i := i + 1; 
temp_signature(i) := char_count; 
i := i + 1; 
temp_signature(i) := string_count; 

100 



i := i + 1; 
temp_signature(i) := int_count; 
i := i + 1; 
temp_signature(i) := float_count; 

i := i + 1; 
temp_signature(i) := 0; 

— add the signature to the sequence of signatures 
signature_seq_pkg.add(temp_signature, return_val); 

return return_val; 
end createNumericSignatures; 

— Function: getOperatorProfiles 

— Description: helper function to collect the profiles for 
an operator. A ComponentProfile (sequence of 
profiles) is used because if an operator has 
more than one output it is treated as if there 
is a separate operator for each output. 

function getOperatorProfiles(op: operator; 
generics_mapping: in GenericsMap; type_id: psdl_id) 
return ComponentProfile is 

return_val: ComponentProfile; 
numeric_sigs: SignatureSequence; 

begin 
— convert the operator's signature to numeric signatures 
— (see the comments in the specification of profile_calc) 
numeric_sigs := createNumericSignatures(op, generics_mapping, type_id)j 

— compute the profile for each signature 
foreach((sig: Signature), signature_seq_pkg.scan, (numeric_sigs), 

addProfileID(software_base.getProfileID(computeProfile(sig)), 
return_val); 

) 

return return_val; 
end getOperatorProfiles; 

— Function: getComponentProfile 

— Description: this function will return the ComponentProfile 
for a component specified in PSDL in the PSDL 
file filename. 

function getComponentProfile(filename: in string; 
generics_mapping: in GenericsMap) return ComponentProfile is 

the_file: file_type; 
the_prog: psdl_program; 
return_val: ComponentProfile; 

begin 
— parse the psdl file to create a psdl_program 
open(the_file, IN_FILE, filename); 
assign(the_prog, psdl_program_pkg.empty_psdl_program); 
psdl_io.get(the_file, the_prog); 
close(the_file); 

— if the program contains more than one component 
— then just get the first one since the program 
— is only supposed to have one (a requirement of 
— this implementation) 
foreach((c_id: psdl_id; c: psdl_component), 

psdl_program_map_pkg.scan, (the_prog), 

— if the component is a single operator then just 

101 



— get the profile for that operator 
if component_category(c) = psdl_operator then 

addProfiles(getOperatorProfiles(c, generics_mapping, empty), 
return_val); 

— otherwise the component is a type so get the profiles 
— for each of its operators 
else 

foreach((id: psdl_id; o: operator), 
operation_map_pkg.scan, (operations(c)), 

addProfiles(getOperatorProfiles(o, generics_mapping, 
psdl_id_pkg.Upper_To_Lower(c_id)) , return_val); 

) 
end if; 

— TODO: need to break out of this loop so that only the 
first component is processed. 

return return_val; 
end getComponentProfile; 

— Function: splitOp 

— Description: helper function to split an operator with more 
than one output into a sequence of operators 
where each operator has one of the outputs. 
When splitting, instances of the operator's generic 
types in the inputs and the outpus are converted to 
their mapped types according to the generics_mapping. 
Each split operator's profile is then calculated. 

function splitOp(op: operator; generics_mapping: in GenericsMap; 
type_id: psdl_id) 

return OpWithProfileSeq is 

return_val: OpWithProfileSeq; 
temp_owp: OpWithProfile; 
temp_output_name: psdl_id; 
temp_output_type: type_name; 
numeric_sigs: SignatureSequence; 

begin 
— for each output 
foreach((o_id: psdl_id; o_tn: type_name), 

type_declaration_pkg.scan, (outputs(op)), 

— make a copy of op but with only the current output 
temp_owp.op := make_atomic_operator( 

psdl_name => name(op), 
ada_name => ada_name(op), 
gen_par => generic_parameters(op) , 
keywords ->  keywords(op), 
axioms => axioms(op), 
state => states(op)); 

— add the inputs 
foreachf(i_id: psdl_id; i_tn: type_name) , 

type_declaration_pkg.scan, (inputs(op)), 
if generics_map_pkg.member(i_tn.name, generics_mapping) then 

add_input(i_id, create) 
generics_map_pkg.fetch(generics_mapping, i_tn.name), 

psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)), 

temp_owp.op); 
else 

add_input(i_id, i_tn, temp_owp.op); 
end if; 

) 

— add the output 
if generics_map_pkg.member(o_tn.name, generics_mapping) then 

add output(o_id, create( 

102 



generics_map_pkg.fetch(generics_mapping, o_tn.name), 
psdl_id_sequence_pkg.empty, 
type_declaration_pkg.create(null_type)), 

temp_owp.op); 
else 

add_output(o_id, o_tn, temp_owp.op); 
end if; 

— Convert the new operator's signature to numeric signatures 
— (see the comments in the specification of profile_calc). 
— Note the call to createNumericSignatures can now just pass 
— an empty GenericsMap since the generics were mapped to actual 
— types in the above code. 
numeric_sigs := 

createNumericSignatures(temp_owp.op, 
generics_map_pkg.create(empty), type_id); 

— compute the new operator's profile 
temp_owp.op_profile := software_base.getProfileID(computeProfile( 

signature_seq_pkg.fetch(numeric_sigs, 1))); 

— add the new operator-with-profile to return_val 
addOpWithProfile(temp owp, return val) ; 

return return_val; 
end splitOp; 

— Function: getOpsWithProfiles 

— Description: constructs a sequence of OpWithProfiles (a PSDL operator 
and its corresponding profile) representing the operators 
in the PSDL component specified in filename. 

function getOpsWithProfiles(filename: in string; 
generics_mapping: in GenericsMap) return OpWithProfileSeq is 

the_file: file_type; 
the_prog: psdl_program; 
return_val, foo: OpWithProfileSeq := owp_sequence_pkg.empty; 

begin 
— parse the psdl file to create a psdl_program 
open(the_file, IN_FILE, filename); 
assign(the_prog, psdl_program_pkg.empty_psdl_program); 
psdl_io.get(the_file, the_prog); 
close(the_file); 

— if the program contains more than one component 
— then just get the first one since the program 
— is only supposed to have one (a requirement of 
— this implementation).  Generic maps need a method 
— that allows the user to fetch a single mapping 
— in the map. 
foreach((c_id: psdl_id; c: psdl_component), 

psdl_program_map_pkg.scan, (the_prog), 

— if the component is a single operator then just 
— get that operator 
if component_category(c) = psdl_operator then 

foreach((owp: OpWithProfile), owp_sequence_pkg.scan, 
(splitOpfc, generics_mapping, empty)), 

addOpWithProfile(owp, return_val); 
) 

— otherwise the component is a type so get 
— each of its operators 
else 

foreach((id: psdl_id; o: operator), 
operation_map_pkg.scan, (operations(c)), 

foreach((owp: OpWithProfile), owp_sequence_pkg.scan, 
(splitOpto, generics_mapping, 

psdl_id_pkg.Upper_To_Lower(c_id))), 

103 



) 
addOpWithProfile(owp, return_val); 

in the above statement we 
temporally pass the generic parameters for the whole 
type, c.  Should really just pass the generic 
parameters for the operation, o, only. This will 
happen when generics get reworked. 

end if; 

TODO: need to break out of this loop so that only the 
first component is processed. 

return return_val; 
end getOpsWithProfiles; 

— Function: getOpsWithProfiles 

— Description: constructs a set of OpWithProfiles (a PSDL operator 
and its corresponding profile) representing the operators 
in the PSDL component specified in filename. 

function getOpsWithProfiles(filename: in string; 
generics_mapping: in GenericsMap) return OpWithProfileSet is 

the_file: file_type; 
the_prog: psdl_program; 
return_val: OpWithProfileSet; 

begin 
— parse the psdl file to create a psdl_program 
open(the_file, IN_FILE, filename); 
assign(the_prog, psdl_program_pkg.empty_psdl_program); 
psdl_io.get(the_file, the_prog); 
close(the_file); 

— if the program contains more than one component 
— then just get the first one since the program 
— is only supposed to have one (a requirement of 
— this implementation).  Generic maps need a method 
— that allows the user to fetch a single mapping 
— in the map. 
foreachf(c_id: psdl_id; c: psdl_component) , 

psdl_program_map_pkg.scan, (the_prog), 

— if the component is a single operator then just 
— get that operator 
if component_category(c) = psdl_operator then 

foreach((owp: OpWithProfile), owp_sequence_pkg.scan, 
(splitOp(c, generics_mapping, empty)), 

owp_set_pkg.add(owp, return_val); 
) 

— otherwise the component is a type so get 
— each of its operators 
else 

foreach((id: psdl_id; o: operator), 
operation_map_pkg.scan, (operations(c)), 

foreach((owp: OpWithProfile), owp_sequence_pkg.scan, 
(splitOp(o, generics_mapping, 

psdl_id_pkg.Upper_To_Lower(c_id))), 
owp_set_pkg.add(owp, return_val); 

) 

— in the above statement we 
— temporally pass the generic parameters for the whole 
— type, c.  Should really just pass the generic 
— parameters for the operation, o, only. This will 
— happen when generics get reworked. 

) 
end if; 

104 



TODO: need to break out of this loop so that only the 
first component is processed. 

return return_val; 
end getOpsWithProfiles; 

Procedure: psdl_idPut 

procedure psdl_idPut(the_id: in psdl_id) is 
begin 

put(convert(the_id)) ; 
end psdl_idPut; 

— Function: getGenericsMap 

— Description: generates all the possible mappings of generic types 
to actual types for all the generic parameters in 
the component specified in the PSDL file, filename. 
See description of GenericsMap in psdl_profile.ads. 

This is done by collecting all the types used in the 
operatations of the component (note we are only processing 
type components, not operator components) into a set 
and then performing the cross-product of this set with 
the set of generic parameters. 

function getGenericsMaps(filename: in string) return GenericsMapSet is 

the_file: file_type; 
the_prog: psdl_program; 
return_val: GenericsMapSet; 
gen_set: psdl_id_set; 
type_set: psdl_id_set; 
temp_map: GenericsMap; 

procedure cross_product(g_set, t_set: psdl_id_set; gens_map: GenericsMap) is 
temp_set: psdl_id_set; 
g: psdl_id; 
local_map: GenericsMap; 

begin 
generics_map_pkg.assign(local_map, gens_map); 
if psdl_id_set_pkg.size(g_set) > 0 then 

psdl_id_set_pkg.assign(temp_set, g_set); 
g := psdl_id_set_pkg.choose(g_set); 
foreach((the_type_id: psdl_id), psdl_id_set_pkg.scan, (t_set), 

generics_map_pkg.bind(g, the_type_id, local_map); 
psdl_id_set_pkg.remove(g, temp_set); 
cross_product(temp_set, t_set, local_map); 
generics_map_pkg.assign(local_map, gens_map); 

) 
generics_map_pkg.recycle(temp_map); 

else 
generics_map_set_pkg.add(local_map, return_val); 

end if; 
end cross_product; 

begin 
return_val := generics_map_set_pkg.empty; 

— parse the psdl file to create a psdl_program 
open(the_file, IN_FILE, filename); 
assign(the_prog, psdl_program_pkg.empty_psdl_program); 
psdl_io.get(the_file, the_prog); 
close(the_file); 

— if the program contains more than one component 
— then just get the first one since the program 
— is only supposed to have one (a requirement of 
— this implementation).  Generic maps need a method 
— that allows the user to fetch a single mapping 
— in the map. 
foreach((c_id: psdl_id; c: psdl_component), psdl_program_map_pkg.scan, 

(the_prog), 

105 



— collect the names of the generic parameters 
foreach((the_id: psdl_id; the_tn: type_name) , 

type_declaration_pkg.scan, (generic_parameters(c)), 
if eq(psdl_id_pkg.Upper_To_Lower(the_tn.name) , 

convert("private_type")) then 
psdl_id_set_pkg.add(psdl_id_pkg.Upper_To_Lower(the_id) , 

gen_set); 
end if; 

) 

— collect the types used in all the operators 
if component_category(c) = psdl_type then 

foreach((o_id: psdl_id; o: operator), 
operation_map_pkg.scan, (operations(c)), 

— inputs 
foreach((the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (inputs(o)), 
psdl_id_set_pkg.add( 

psdl_id_pkg.Upper_To_Lower(the_tn.name), type set)j 
) 

— outputs 
foreach!(the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (outputs(o)), 
psdl_id_set_pkg.add( 

psdl_id_pkg.üpper_To_Lower(the_tn.name), type_set); 
) 

) 
end if; 

— TODO: need to break out of this loop so that only the 
first component is processed. 

generics_map_pkg.create(empty, temp_map); 
cross_product(gen_set, type_set, tempjmap); 

return return_val; 
end getGenericsMaps; 

end psdl_profile; 

106 



run batch.g 

— Program: run_batch 

— Description: collects statistics for measuring the effect different 
profile definitions have on profile filtering and 
signature matching. 

with text_io; use text_io; 

with a_strings; use a_strings; 
with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 

with profile_calc; use profile_calc; 
with psdl_profile; use psdl_profile; 
with profile_types; use profile_types; 
with component_id_types; use component_id_types; 
with haase_diagram; use haase_diagram; 
with candidate_types; use candidate_types; 
with software_base; 
with sig_match_types; use sig_match_types; 
with sig_match; use sig_match; 

procedure run_batch is 
the_candidates: CandidateSet; 
sn, the_branch, another_branch: SigMatchNode; 
q_ops, c_ops: OpWithProfileSeq; 
batch_file: file_type; 
input_line: stringd. .256); 
line_length: natural; 
queries_dir, results_dir: a_string; 
query_filename, sm_filename, p_hist_filename, sm_hist_filename: a_string; 
temp_candidate: Candidate; 

procedure printArrayProfiles(profile_array: in ArrayProfiles; 
num_profiles: in integer) is 

the_profile: ArrayProfile; 
i: integer; 
rval: integer; 

begin 
for i in 1..num_profiles loop 

the_profile := profile_array(i) ; 
rval := printArrayProfile(the_profile); 
new_line; 

end loop; 
end printArrayProfiles; 

begin 
put_line("Initializing Software Base..."); 
software_base.initialize("sb_header.txt"); 
—put_line("finished."); 

put(integer'image(software_base.numComponents)); 
put(" components in "); 
put(integer'image(software_base.numOccupiedPartitions)); 
put_line(" partitions."); 
new_line; 

put("Generating GML..."); 
software_base.generateGML("haase_diagram. gml") ; 
put_line("finished."); 
new_line; 

open(batch_file, in_file, "batch.txt"); 
get_line(batch_file, input_line, line_length); 
queries_dir := to_a(input_line(1..line_length)) & "/queries/"; 
results_dir := to_a(input_line(1..line_length)) & "/results/"; 

put_line(convert(text(queries_dir))) ; 
put_line(convert(text(results_dir))) ; 

while (not end_of_file(batch_file)) loop 
get_line(batch_file, input_line, line_length); 
new_line; 
put("PROCESSING "); 
put_line(input_line(1..line_length)) ; 

107 



new_line; 
query_filename := queries_dir & to_a(input_line(1..line_length)) S ".psdl"; 
p_hist_filename := results_dir S to_a(input_line(1..line_length)) s "-p-hist.txt"; 
sm_hist_filename := results_dir & to_a(input_line(1..line_length)) S "-sm- 

hist.txt"; 
sm_filename := results_dir s to_a(input_line(1..line_length)) & "-sm-stat.txt"; 
put("Profile Filtering..."); 
the_candidates := software_base.profileFilter( 

convert(text(query_filename))); 
put_line("finished."); 

put(integer'image(candidate_set_pkg.size(the_candidates))) ; 
put_line(" candidates.") ; 
candidateSetPut(the_candidates); 
new_line; 
new_line; 

generateProfileHistogram(convert(text(p_hist_filename)), the_candidates); 

the_candidates := profileSkim(1.0, the_candidates); 
put(integer1image(candidate_set_pkg.size(the_candidates))) ; 
put_line(" candidates have profile rank >= 1.0"); 
candidateSetPut(the_candidates); 
new_line; 
new_line; 

put("Signature Matching..."); 
if candidate_set_pkg.size(the_candidates) > 0 then 

temp_candidate := software_base.signatureMatch( 
convert(text(query_filename)), 
candidate_set_pkg.choose(the_candidates)) ; 

generateSigMatchHistogramtconvert(text(sm_hist_filename)), 
temp_candidate); 

sigMatchStatsPut(convert(text(sm_filename))) ; 
end if; 

end loop; 
close(batch_file); 

end run batch; 

108 



sig match.ads 

— Package Spec: sig_match 

with psdl_profile; use psdl_profile; 
with sig_match_types; use sig_match_types; 

package sig_match is 

procedure match_ops(query, candidate: in OpWithProfileSeq; 
root_sn: in out SigMatchNode); 

procedure sigMatchStatsReset; 
procedure sigMatchStatsPut(filename: string); 

end sig_match; 

109 



sig match.g 

— Package Body: sig_match 

with text_io; use text_io; 

with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 
with psdl_component_pkg; use psdl_component_pkg; 

with profile_types; use profile_types; 
with psdl_profile; use psdl_profile; 
with sig_match_types; use sig_match_types; 

package body sig_match is 

failed_outputs: natural := 0; 
passed_outputs: natural := 0; 
failed_basics: natural := 0; 
passed_basics: natural := 0; 
duplicates: natural := 0; 
total_inputs: natural := 0; 
failed_inputs: natural := 0; 

— Function: getjbasics 

— Description: removes any user-defined types from the inputs argument, 
thereby returning a type_declaration with predefined 
types only. 

function get_basics(inputs: in type_declaration) return type_declaration is 
return_val: type_declaration; 

begin 
type_declaration_pkg.assign(return_val, inputs); 
foreach((the_id: psdl_id; the_tn: type_name), type_declaration_pkg.scan, 

(inputs), 
if not is_predefined(the_tn) then 

type_declaration_pkg.remove(the_id, return_val); 
end if; 

) 
return return_val; 

end get_basics; 

— Function: get_user_defined 

— Description: removes any predefined types from the inputs argument, 
thereby returning a type_declaration with user-defined 
types only. 

function get_user_defined(inputs: in type_declaration) 
return type_declaration is 

return_val: type_declaration; 
begin 

type_declaration_pkg.assign(return_val, inputs); 
foreach((the_id: psdl_id; the_tn: type_name), type_declaration_pkg.scan, 

(inputs), 
if is_predefined(the_tn) then 

type_declaration_pkg.remove(the_id, return_val); 
end if; 

) 
return return_val; 

end get_user_defined; 

Function: match_basics 

Description: determines if the query's basic input types can match the 
candidate's basic input types given the following rule: 
Basic types: either they must match exactly or the 
query's input type must be a subtype of the component's 
input type. 

110 



function match_basics(q_basics, c_basics: in type_declaration) 
return boolean is 

the_q_basics: type_declaration; 
the_c_basics: type_declaration; 
new_q_basics: type_declaration; 
new_c_basics: type_declaration; 
found_match, found_c2, return_val: boolean; 

begin 
type_declaration_pkg.assign(new_q_basics, q_basics); 
type_declaration_pkg.assign(new_c basics, c basics); 

— cannot match if query has different number of basics then 
— the candidate 

if type_declaration_pkg.size(q_basics) /= 
type_declaration_pkg.size(c_basics) then 

return false; 
end if; 

— filter out the basics that match exactly 

type_declaration_pkg.assign(the_c_basics, new_c_basics) ; 
foreacht(q_id: psdl_id; q_tn: type_name), type_declaration_pkg.scan, 

(q_basics) , 
found_match := false; 
foreach((c_id: psdl_id; c_tn: type_name), type_declaration_pkg.scan, 

(new_c_basics), 
if not found_match then 

if equal(q_tn, c_tn) then 
type_declaration_pkg.remove(q_id, new_q_basics); 
type_declaration_pkg.remove(c_id, the_c_basics); 
found_match := true; 

end if; 
end if; 
— TODO: would rather break out of the inner for loop when a 

match is found rather than do this found_match stuff. 
) 
type_declaration_pkg.assign(new_c_basics, the_c basics); 

— Filter out the remaining basics that can match to supertypes. 
— This is done by temporally mapping each query input type to a 
— supertype in the candidate that is closest in the partial ordering 
— of basic types. 

type_declaration_pkg.assign(the_q_basics, new_q_basics) ; 
foreach((q_id: psdl_id; q_tn: type_name), type_declaration_pkg.scan, 

(the_q_basics), 
found_match := false; 
type_declaration_pkg.assign(the_c_basics, new_c_basics); 
foreacht(c_id: psdl_id; c_tn: type_name), type_declaration_pkg.scan, 

(the_c_basics), 
if not found_match then 

if subtype_of(q_tn, c_tn) then 
found_c2 := false; 
foreach((c2_id: psdl_id; c2_tn: type_name), 

type_declaration_pkg.scan, (the_c_basics), 
if not found_c2 then 

if not equal(c_tn, c2_tn) then 
if subtype_of(q_tn, c2_tn) and 

subtype_of(c2_tn, c_tn) then 
found_c2 := true; 

end if; 
end if; 

end if; 
) 
if not found_c2 then 

type_declaration_pkg.remove(q_id, new_q_basics); 
type_declaration_pkg.remove(c_id, new_c_basics); 
found_match := true; 

end if; 
end if; 

111 



end if; 
) 

) 

— if there are any basics left over than match is not possible since 
— basics cannot be matched to non-basics 

return_yal := type_declaration_pkg.size(new_q_basics) = 0; 

— recycle local variables 

type_declaration_pkg.recycle(new_q_basics) ; 
type_declaration_pkg.recycle(new_c_basics); 
type_declaration_pkg.recycle(the_q_basics) ; 
type_declaration_pkg.recycle(the_c_basics) ; 

return return_val; 
end match basics; 

— Procedure: match_outputs 

— Description: This function serves two purposes: 1. to determine if 
the outputs of the matched operations can match, and 
2. if they can match, add the type mappings to sn.V.TM. 

procedure match_outputs(sn: in out SigMatchNode; success: out boolean) is 
q_output_type, c_output_type: type_name; 

begin 
success := true; 
foreach((q_op: operator; c_op: operator), op_map_pkg.scan, (sn.V.OM), 

if success then 
— get q_op's one-and-only output type 
q_output_type := type_declaration_pkg.res_set_pkg.choose( 

type_declaration_pkg.map_range(outputs(q_op))); 
— get c_op's one-and-only output type 
c_output_type := type_declaration_pkg.res_set_pkg.choose( 

type_declaration_pkg.map_range(outputs(c_op))); 

if is_predefined(q_output_type) or 
is_predefined(c_output_type) then 

if not subtype_of(c_output_type, q_output_type) then 
success := false; 

end if; 
elsif type_map_pkg.member(q_output_type, sn.V.TM) then 

if not equal(c_output_type, 
type_map_pkg.fetch(sn.V.TM, q_output_type)) then 

success := false; 
end if; 

else 
type_map_pkg.bind(q_output_type, c_output_type, sn.V.TM); 

end if; 
end if; 

) 
end match_outputs; 

— Procedure: match_inputs 

— Description: 

procedure match_inputs(root_sn: in out SigMatchNode; success: out boolean) is 

procedure match(q_inputs, c_inputs: in type_declaration; 
root_sn: in out SigMatchNode; success: out boolean) is 

new_q_inputs, new_c_inputs: type_declaration; 
temp_q_inputs, temp_c_inputs: type_declaration; 
ci: type_name; 
temp_sn: SigMatchNodePtr; 
temp_id: psdl_id; 
found_temp_id: boolean; 
got first qi: boolean; 

112 



return_val: SigMatchNode; 
begin 

return_val := createSigMatchNode; 
sigMatchNodeAssign(return_val, root_sn); 

type_declaration_pkg.assign(new_q_inputs, q_inputs); 
type_declaration_pkg.assign(new_c_inputs, c_inputs); 
success := true; 
foreach((q_id: psdl_id; qi: type_name), 

type_declaration_pkg.scan, (q_inputs), 
if success then 

if type_map_pkg.member(qi, root_sn.V.TM) then 
ci := type_map_pkg.fetch(root_sn.V.TM, qi); 
— if the current query input type is already mapped 
— then make sure it is mapped to an existing type in 
— the candidate's inputs.  Note to test this we must 
— look at the type_declaration's range (the types) 
— not its domain (the psdl_ids). 
if not type_declaration_pkg.res_set_pkg.member(ci, 

type_declaration_pkg.map_range(c_inputs)) then 
success := false; 

else 
— remove qi from new_q_inputs 
type_declaration_pkg.remove(q_id, new_q_inputs); 
— remove ci from new_c_inputs 
found_temp_id := false; 
if not found_temp_id then 

foreach((c_id: psdl_id; c_tn: type_name), 
type_declaration_pkg.scan, (new_c_inputs), 

if equal(ci, c_tn) then 
temp_id := c_id; 
found_temp_id := true; 
— TODO: would rather break out of for loop, 

end if; 
) 

end if; 
if found_temp_id then 

type_declaration_pkg.remove(temp_id, new_c_inputs); 
else 

— if this else block gets called 
— there is something wrong 
put_line("there is something wrong"); 
success := false; 

end if; 
end if; 

end if; 
end if; 

) 
if success then 

— got_first_qi is a cheesy way of only getting the first 
— element out of the map.  Maps need a way of fetching by 
— i'th element. 
got_first_qi := false; 
foreach((q_id: psdl_id; qi: type_name), 

type_declaration_pkg.scan, (q_inputs), 
if not got_first_qi then 

got_first_qi := true; 
foreach((c_id: psdl_id; c_tn: type_name), 

type_declaration_pkg.scan, (c_inputs), 
temp_sn := new SigMatchNode'(createSigMatchNode); 
sigMatchNodeAssign(temp_sn.all, root_sn); 
temp_sn.expanded_for_inputs := false; 
type_map_pkg.bind(qi, c_tn, temp_sn.V.TM); 
type_declaration_pkg.assign(temp_q_inputs, 

new_q_inputs); 
type_declaration_pkg.assign(temp_c_inputs, 

new_c_inputs); 
type_declaration_pkg.remove(q_id, temp_q_inputs); 
type_declaration_pkg.remove(c_id, temp_c_inputs); 
match(temp_q_inputs, temp_c_inputs, temp_sn.all, 

success); 
if success then 

addBranch(temp_sn, return_val); 
end if; 

) 
end if; 

113 



) 
end if; 
sigMatchNodeAssign(root_sn, return_val) ; 

end match; 

q_inputs, c_inputs: type_declaration; 

begin 
success := true; 
foreach((q_op: operator; c_op: operator), op_map_pkg.scan, (root_sn.V.OM), 

if success then 

— Remove the input types that have already been mapped. 

type_declaration_pkg.assign(q_inputs, inputs(q_op)); 
type_declaration_pkg.assign(c_inputs, inputs(c_op)); 

— query 
foreach((the_id: psdl_id; the_tn: type_name), 

type_declaration_pkg.scan, (inputs(q_op)), 
if type_map_pkg.key_set_pkg.member(the_tn, 

type_map_pkg.map_domain(root_sn.V.TM)) then 
— If the type was mapped make sure it was mapped to 
— a type in the candidate operator.  This is necessary 
— because inputs are mapped for one operator at a time, 
if type_declaration_pkg.res_set_pkg.member( 

type_map_pkg.fetch(root_sn.V.TM, the_tn), 
type_declaration_pkg.map_range(c_inputs)) then 

type_declaration_pkg.remove(the_id, q_inputs); 
else 

success := false; 
end if; 

end if; 
) 

— candidate 
foreach((the_id: psdl_id; the_tn: type_name) , 

type_declaration_pkg.scan, (inputs(c_op)), 
if type_map_pkg.res_set_pkg.member(the_tn, 

type_map_pkg.map_range(root_sn.V.TM)) then 
type_declaration_pkg.remove(the_id, c_inputs); 

end if; 
) 

— if the number of remaining inputs types for the query and 
— the candidate are not equal 'then the operations cannot match 

if success then 
if type_declaration_pkg.size(q_inputs) /= 

type_declaration_pkg.size(c_inputs) then 
success := false; 

else 
— if the node has already been expanded for inputs then 
— all of its operators' inputs must already be mapped 
— otherwise the node fails. 
if root_sn.expanded_for_inputs then 

success := type_declaration_pkg.size(q_inputs) = 0; 
else 

match(get_user_defined(q_inputs), 
get_user_defined(c_inputs),      root_sn, success); 

end if; 
end if; 

end if; 
end if; 

) 
end match inputs; 

— Function: verify_subtypes 

— Description: 

function verify_subtypes(root_sn: in SigMatchNode) return boolean is 
begin 

114 



— TODO 
return true; 

end verify_subtypes; 

Procedure: match_ops 

— Description: this is the main procedure for signature matching. 
Given the operations and their profiles for a query and a 
candidate, this method will return a SigMatchNode whose 
branches contain valid operation and type mappings. 

procedure match_ops(query, candidate: in OpWithProfileSeq; 
root_sn: in out SigMatchNode) is 

return_val: SigMatchNode; 
temp_sn: SigMatchNodePtr; 
success, pruned: boolean; 
temp_query, temp_candidate: OpWithProfileSeq; 
temp_char: character; 

begin 
return_val := createSigMatchNode; 
sigMatchNodeAssign(return_val, root_sn); 

owp_sequence_pkg.assign(temp_query, query); 
owp_sequence_pkg.assign(temp_candidate, candidate); 
foreach((q_owp: OpWithProfile), owp_sequence_pkg.scan, (query), 

foreach((c_owp: OpWithProfile), owp_sequence_pkg.scan, (candidate), 
if q_owp.op_profile = c_owp.op_profile then 

temp_sn := new SigMatchNode'(createSigMatchNode); 
sigMatchNodeAssign(temp_sn.all, root_sn); 
op_map_pkg.bind(q_owp.op, c_owp.op, temp_sn.V.OM); 
if not validPairingExists(temp_sn.V.OM, return_val) then 

match_outputs(temp_sn.all, success); 
if success then 

passed_outputs := passed_outputs + 1; 
if match_basics(get_basics(inputs(q_owp.op)), 

get_basics(inputs(c_owp.op))) then 
opWithProfileSeqRemove(q_owp, temp_query); 
opWithProfileSeqRemove(c_owp, temp_candidate); 
match_ops(temp_query, temp_candidate, temp_sn.all) i 
addBranch(temp_sn, return_val); 
passed_basics := passed_basics + 1; 

else 
failed_basics := failed_basics + 1; 

end if; 
else 

failed_outputs := failed_outputs + 1; 
end if; 

else 
duplicates := duplicates + 1; 

end if; 
end if; 

— prune leaf nodes until all leaves are valid solutions 

pruned := true; 
while pruned loop 

pruned := false; 
sigMatchNodeAssign(root_sn, return_val); 
foreacht(leaf_snp: SigMatchNodePtr) , sig_match_node_ptr_seq_pkg.scan, 

(getLeafNodePtrs(root_sn)), 
if leaf_snp.validation = UNKNOWN then 

match_inputs(leaf_snp.all, success); 
total_inputs := total_inputs + 1; 
if not success then 

leaf_snp.validation := INVALID; 
elsif not verify_subtypes(leaf_snp.all) then 

leaf_snp.validation := INVALID; 
else 

if sig_match_node_ptr_seq_pkg.length( 
leaf_snp.branches) = 0 then 

leaf_snp.validation := VALID; 

115 



else 
leaf_snp.expanded_for_inputs := true; 

end if; 
end if; 
if leaf_snp.validation = INVALID then 

— removeBranch(leaf_snp, return_val); 
removeAHMatchingBranches(leaf_snp, return_val), 
failed_inputs := failed_inputs + 1; 
pruned := true; 

end if; 
end if; 

) 
end loop; 

— recycle local variables 

owp_sequence_pkg.recycle(temp_query); 
owp_sequence_pkg.recycle(temp_candidate); 

sigMatchNodeAssign(root_sn, return_val); 
end match_ops; 

procedure sigMatchStatsReset is 
begin 

failed_outputs := 0; 
passed_outputs := 0; 
failed_basics := 0; 
passed_basics := 0; 
duplicates := 0; 
total_inputs := 0; 
failed_inputs := 0; 

end sigMatchStatsReset; 

procedure sigMatchStatsPut(filename: string) is 
the_file: file_type; 

begin 
create(the_file, out_file, filename); 
put(the_file, "Duplicates: "); 
put_line(the_file, integer'image(duplicates)) ; 
put(the_file, "Passed Output Matching: "); 
put_line(the_file, integer'image(passed_outputs)) ; 
put(the_file, "Failed Output Matching: "); 
put_line(the_file, integer1image(failed_outputs)) ; 
put(the_file, "Passed Predefined Type Matching: "); 
put_line(the_file, integer'image(passed_basics)); 
put(the_file, "Failed Predefined Type Matching: "); 
put_line(the_file, integer'image(failed_basics)) ; 
put(the_file, "Total Inputs: "); 
put_line(the_file, integer'image(total_inputs)); 
put(the_file, "Failed Inputs: "); 
put_line(the_file, integer•image(failed_inputs)); 
close(the_file); 

end sigMatchStatsPut; 

end sig_match; 

116 



sig match types.ads 

-- Package Spec: sig_match_types 

with text io; use text io; 

with psdl_concrete_type_pkg; use psdl_concrete_type_pkg; 
with psdl_component_pkg; use psdl_component_pkg; 

with generic_map_pkg; 
with generic_sequence_pkg; 
with generic_set_pkg; 
with ordered_set_pkg; 

package sig_match_types is 

— Types 

— TypeMap 

package type_map_pkg is new generic_map_pkg( 
key => type_name, 
result ->  type_name, 
eq_key => equal, 
eq_res => equal, 
average_size => 4); 

subtype TypeMap is type_map_pkg.map; 

procedure typeNamePut(the_tn: type_name); 

procedure typeMapPut is new type_map_pkg.generic_put( 
key_put => typeNamePut, res_put => typeNamePut) ; 

procedure typeMapFilePut is new type_map_j>kg.generic_file_put ( 
key_put => typeNamePut, res_put => typeNamePut); 

— OpMap 

package op_map_j?kg is new generic_map_pkg ( 
key => operator, 
result => operator, 
eq_key => eq, 
eq_res => eq, 
average_size => 4); 

subtype OpMap is op_map_pkg.map; 

procedure opPut(the_op: operator); 

procedure opMapPut is new op_map_pkg.generic_put ( 
key_put => opPut, res_put => opPut); 

procedure opMapFilePut is new op_map_pkg.generic_file_put( 
key_put => opPut, res_put => opPut); 

— SignatureMap 

type SignatureMap is record 
TM: TypeMap; 
OM: OpMap; 

end record; 

function createSignatureMap return SignatureMap; 

procedure addTypeMappingftnl: in type_name; tn2: in type_name; 
sm: in out SignatureMap); 

procedure addOpMapping(opl: in operator; op2: in operator; 
sm: in out SignatureMap); 

117 



function signatureMapEqual(sml: in SignatureMap; sm2: in SignatureMap) 
return boolean; 

procedure signatureMapPut(sm: in SignatureMap); 

— SignatureMapSet 

package sig_map_set_pkg is new generic_set_pkg( 
t => SignatureMap, eq => signatureMapEqual); 

subtype SignatureMapSet is sig_map_set_pkg.set; 

procedure signatureMapSetPut is 
new sig_map_set_pkg.generic_put(put => signatureMapPut) 

— SigMatchNodePtr 

type SigMatchNode; 
type SigMatchNodePtr is access SigMatchNode; 

function sigMatchNodePtrEqual(smnpl: in SigMatchNodePtr; 
smnp2: in SigMatchNodePtr) return boolean; 

function sigMatchNodePtrLessThan(smnpl: in SigMatchNodePtr; 
smnp2: in SigMatchNodePtr) return boolean; 

procedure sigMatchNodePtrPut(smnp: in SigMatchNodePtr); 

— SigMatchNodePtrSeq 

package sig_match_node_ptr_seq_pkg is new generic_sequence_pkg( 
t => SigMatchNodePtr, average_size => 4); 

subtype SigMatchNodePtrSeq is sig_match_node_ptr_seq_pkg.sequence; 

function sigMatchNodePtrSeqEqual is 
new sig_match_node_ptr_seq_pkg.generic_equal(eq => sigMatchNodePtrEqual); 

'function sigMatchNodePtrSeqMember is 
new sig_match_node_ptr_seq_pkg.generic_meniber (eq => SigMatchNodePtrEqual); 

procedure sigMatchNodePtrSeqRemove is 
new sig_match_node_ptr_seq_pkg.generic_remove(eq => SigMatchNodePtrEqual); 

procedure sigMatchNodePtrSeqPut is 
new sig_match_node_ptr_seq_pkg.generic_put(put => sigMatchNodePtrPut); 

— SigMatchNodePtrSet 

package sig_match_node_ptr_set_pkg is new ordered_set_pkg( 
t => SigMatchNodePtr, eq => sigMatchNodePtrEqual, 
"<" => sigMatchNodePtrLessThan) ; 

subtype SigMatchNodePtrSet is sig_match_node_ptr_set_pkg.set; 

procedure sigMatchNodePtrSetPut is 
new sig_match_node_ptr_set_pkg.generic_put(put => SigMatchNodePtrPut); 

procedure sigMatchNodePtrSetPrint(the_set: SigMatchNodePtrSet); 

— SigMatchNode 

type ValidationType is (UNKNOWN, VALID, INVALID); 
type SigMatchNode is record 

id: natural; 
signature_rank: float; 
semantic_rank: float; 
V: SignatureMap; 
validation: ValidationType; 
expanded_for_inputs: boolean; 
branches: SigMatchNodePtrSeq; 

end record; 

118 



function createSigMatchNode return SigMatchNode; 

procedure addBranch(the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode); 

procedure removeBranch(the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode); 

procedure removeAHMatchingBranches (the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode); 

function sigMatchNodeEqual(smnl: in SigMatchNode; smn2: in SigMatchNode) 
return boolean; 

function sigMatchNodeLessThan(smnl: in SigMatchNode; smn2: in SigMatchNode) 
return boolean; 

procedure sigMatchNodeAssign(smnl: in out' SigMatchNode; 
smn2: in SigMatchNode); 

procedure sigMatchNodePut(the_node: in SigMatchNode); 

procedure sigMatchNodePrint(the_node: SigMatchNode); 

procedure generateGML(the_node: in SigMatchNode; filename: in string); 

function getLeafNodePtrs(the_node: in SigMatchNode) return SigMatchNodePtrSeq; 

function getLeafNodePtrs(the_node: in SigMatchNode) return SigMatchNodePtrSet; 

function getValidLeafNodePtrs(the_node: in SigMatchNode) 
return SigMatchNodePtrSet; 

function validPairingExists(pairing: in OpMap; the_node: in SigMatchNode) 
return boolean; 

end sig_match_types; 

119 



sig match tvpes.g 

Package Body: sig_match_types 

with text_io; use text_io; 
with ada.float_text_io; 

with psdl_concrete_type_pkg;   use psdl_concrete_type_pkg; 
with psdl_component_pkg;   use psdl_component_pkg; 

with candidate_types; 

package body sig_match_types  is 

— Procedure: typeNamePut 

— Description: outputs the type_name's name 

procedure typeNamePut(the_tn: type_name) is 
begin 

if not equal(the_tn, null_type) then 
put(convert(the_tn.name)) ; 

end if; 
end typeNamePut; 

— Procedure: opPut 

— Description: outputs the operator's name 

procedure opPut(the_op: operator) is 
begin 

if the_op /«= null_component then 
put(convert(name(the_op))); 

end if; 
end opPut; 

— Function: createSignatureMap 

— Description: create and initialize a SignatureMap for use. 

function createSignatureMap return SignatureMap is 
return_val: SignatureMap; 

begin 
return_val.TM := type_map_pkg.create(null_type); 
return_val.OM := op_map_pkg.create(null_component) ; 
return return_val; 

end createSignatureMap; 

— Procedure: addTypeMapping 

— Description: binds two types together and adds them to the 
SignatureMap's TypeMap. 

procedure addTypeMapping(tnl: in type_name; tn2: in type_name; 
sm: in out SignatureMap) is 

begin 
type_map_pkg.bind(tnl, tn2, sm.TM); 

end addTypeMapping; 

— Procedure: addOpMapping 

— Description: binds two operators together and adds them to the 
SignatureMap's OpMap. 

procedure addOpMapping(opl: in operator; op2: in operator; 
sm: in out SignatureMap) is 

begin 
op_map_pkg.bind(opl, op2, sm.OM); 

end addOpMapping; 

120 



— Function: signatureMapEqual 

function signatureMapEqual(sml: in SignatureMap; sm2: in SignatureMap) 
return boolean is 

begin 
return type_map_pkg.equal(sml.TM, sm2.TM) and 

op_map_pkg.equal(sml.OM, sm2.OM); 
end signatureMapEqual; 

— Function: signatureMapPut 

procedure signatureMapPut(sm:   in SignatureMap)   is 
begin 

putfOM:   "); 
opMapPut(sm.OM); 
put("   |   TM:   "); 
typeMapPut(sm.TM); 

end signatureMapPut; 

— Function: sigMatchNodePtrEqual 

function sigMatchNodePtrEqual(smnpl: in SigMatchNodePtr; 
smnp2: in SigMatchNodePtr) return boolean is 

begin 
return sigMatchNodeEqual(smnpl.all, smnp2.all); 

end sigMatchNodePtrEqual; 

— Function: sigMatchNodePtrLessThan 

function sigMatchNodePtrLessThan(smnpl: in SigMatchNodePtr; 
smnp2: in SigMatchNodePtr) return boolean is 

begin 
return sigMatchNodeLessThan(smnpl.all, smnp2.all); 

end SigMatchNodePtrLessThan; 

— Procedure: sigMatchNodePtrPut 

procedure  SigMatchNodePtrPut(smnp:   in SigMatchNodePtr)   is 
begin 

sigMatchNodePut(smnp.all); 
end sigMatchNodePtrPut; 

— Function: sigMatchNodeEqual 

function sigMatchNodeEqual(smnl: in SigMatchNode; smn2: in SigMatchNode) 
return boolean is 

begin 
if smnl.signature_rank /= smn2.signature_rank then 

return false; 
end if; 

if smnl.semantic_rank /= smn2.semantic_rank then 
return false; 

end if; 

if smnl.validation /= smn2.validation then 
return false; 

end if; 

if smnl.expanded_for_inputs /= smn2.expanded_for_inputs then 
return false; 

end if; 

if not signatureMapEqual(smnl.V, smn2.V) then 
return false; 

end if; 

return sigMatchNodePtrSeqEqual(smnl.branches, smn2.branches); 
end SigMatchNodeEqual; 

121 



—  Function:   sigMatchNodeLessThan 

function sigMatchNodeLessThan(smnl:   in  SigMatchNode; 
smn2:   in SigMatchNode)   return boolean is 

begin 
if smnl.signature_rank > smn2.signature_rank then 

return true; 
— the following test for less-than is just being paranoid 
— about potential float equality problems 
elsif smnl.signature_rank < smn2.signature_rank then 

return false; 
elsif smnl.semantic_rank > smn2.semantic_rank then 

return true; 
— the following test for less-than is just being paranoid 
— about potential float equality problems 
elsif smnl.semantic_rank < smn2.semantic_rank then 

return false; 
else 

return smnl.id < smn2.id; 
end if; 

end sigMatchNodeLessThan; 

— Procedure: sigMatchNodeAssign 

procedure sigMatchNodeAssign(smnl: in out SigMatchNode; 
smn2: in SigMatchNode) is 

begin 
smnl.signature_rank := smn2.signature_rank; 
smnl.semantic_rank := smn2.semantic_rank; 
smnl.validation := smn2. validation; 
smnl.expanded_for_inputs := smn2.expanded_for_inputs; 
type_map_pkg.assign(smnl.V.TM, smn2.V.TM); 
op_map_pkg.assign(smnl.V.OM, smn2.V.0M); 
— TODO: might have to do the deep copy myself here 

rather than call assign 
sig_match_node_ptr_seq_pkg.assign(smnl.branches, smn2.branches); 

end sigMatchNodeAssign; 

— Procedure: sigMatchNodePut 

procedure sigMatchNodePut(the_node: in SigMatchNode) is 
begin 

put("(S i gnature Rank: "); 
if the_node.signature_rank = candidate_types.RANK_UNKNOWN then 

put("unknown"); 
else 

ada.float_text_io.put(the_node.signature_rank, 1, 2, 0); 
end if; 
put(" I "); 
put("(Semantic Rank: "); 
if the_node.semantic_rank = candidate_types.RANK_UNKNOWN then 

put("unknown"); 
else 

ada.float_text_io.put(the_node.semantic_rank, 1, 2, 0); 
end if; 
put(" I "); 
case the_node.validation is 

when UNKNOWN => put("Validation Unknown"); 
when VALID => put("Valid") ; 
when INVALID => put("Invalid"); 

end case; 
put(" I "); 
if the_node.expanded_for_inputs then 

put("Expanded"); 
else 

put("Not Expanded"); 
end if; 
put(" | "); 
put("Op Map: "); 
opMapPut(the_node.V.OM); 
put(" | "); 
put("Type Map: "); 

122 



typeMapPut(the_node.V.TM); 
put(" I "); 
put("(Branches: "); 
sigMatchNodePtrSeqPut(the_node.branches) 
put("}") 
put(")") 
new_line; 

end sigMatchNodePut; 

— Procedure: sigMatchNodePrint 

procedure sigMatchNodePrint(the_node: SigMatchNode) is 
begin 

put("Signature Rank: "); 
if the_node.signature_rank = candidate_types.RANK_UNKNOWN then 

put("unknown"); 
else 

ada.float_text_io.put(the_node.signature_rank, 1, 2, 0) ; 
end if; 
new_line; 
put("Semantic Rank: "); 
if the_node.semantic_rank = candidate_types.RANK_UNKNOWN then 

put("unknown"); 
else 

ada.float_text_io.put(the_node.semantic_rank, 1, 2, 0) ; 
end if; 
new_line; 
case the_node.validation is 

when UNKNOWN => put("Validation Unknown"); 
when VALID => put("Valid"); 
when INVALID => put("Invalid"); 

end case; 
put(", "); 
if the_node.expanded_for_inputs then 

put_line("Expanded"); 
else 

put_line("Not Expanded"); 
end if; 
put("Op Map: "); 
opMapPut(the_node.V.OM); 
new_line; 
put("Type Map: "); 
typeMapPut(the_node.V.TM); 
new_line; 
put("Branches: "); 
sigMatchNodePtrSeqPut(the_node.branches) ; 
new_line; 

end sigMatchNodePrint; 

— Function: createSigMatchNode 

— Description: create and initialize a SigMatchNode for use. 
Note, a unique node id is maintained to facilitate 
sorting when two nodes have equal signature and 
semantic ranks. 

unique_node_id: natural := 0; 
function createSigMatchNode return SigMatchNode is 

return_val: SigMatchNode; 
begin 

return_val.id := unique_node_id; 
unique_node_id := unique_node_id + 1; 
return_val.signature_rank := candidate_types.RANK_UNKNOWN; 
return_val.semantic_rank := candidate_types.RANK_UNKNOWN; 
return_val.validation := UNKNOWN; 
return_val.expanded_for_inputs := false; 
return_val.V := createSignatureMap; 
return_val.branches := sig_match_node_ptr_seq_pkg.empty; 
return return_val; 

end createSigMatchNode; 

Function: addBranch 

123 



— Description: add a branch (a child SigMatchNode) to the SigMatchNode. 
A branch represents a superset of the node it belongs to. 
What this really means is the branch node contains all the 
type and operator mappings plus of the node it belongs to 
plus more. 

procedure addBranch(the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode) is 

begin 
sig_match_node_ptr_seq_pkg.add(the_branch, the_node.branches); 

end addBranch; 

— Function: removeBranch 

— Description: 

procedure removeBranch(the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode) is 

begin 
sigMatchNodePtrSeqRemove (the_branch, the_node.branches); 

end removeBranch; 

— Function: removeAHMatchingBranches 

— Description: 

procedure removeAHMatchingBranches (the_branch: in SigMatchNodePtr; 
the_node: in out SigMatchNode) is 

begin 
sigMatchNodePtrSeqRemove(the_branch, the_node.branches) ; 
foreach((branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(the_node.branches), 
removeAHMatchingBranches(the_branch, branch.all); 

) 
end removeAHMatchingBranches; 

— Procedure: generateGML 

— Description: generate a GML file to graphically represent the 
SigMatchNode's relationship with its branches. 

procedure generateGML(the_node: in SigMatchNode; filename: string) is 
id: natural := 0; — unique ID counter 
the_id: natural; — place holder for call to put_node_gml 
gml_file: file_type; 

function new_id return natural is 
begin 

id := id + 1; 
return id; 

end new_id; 

procedure put_node_gml(sn: in SigMatchNode; my_id: out natural) is 
child_id: natural; 

begin 
my_id := new_id; 
put(gml_file, "node [ id "); 
put(gml_file, integer'image(my_id)); 
put(gml_file, " label """); 
opMapFilePut(gml_file, sn.V.OM); 
put_line(gml_file, "\"); 
typeMapFilePut(gml_file, sn.V.TM); 
put_line(gml_file, "\"); 
case sn.validation is 

when UNKNOWN ->  put(gml_file, "Validation Unknown"); 
when VALID => put(gml_file, "Valid"); 
when INVALID => put(gml_file, "Invalid"); 

end case; 
put_line(gml_file, "\"); 
if sn.expanded_for_inputs then 

put(gml_file, "Expanded") ; 
else 

put(gml_file, "Not Expanded") ; 

124 



end if; 
put_line(gml_file, """ ]"); 

— recursively call put_node_gml for each of its branches 
foreach((branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(sn.branches), 
put_node_gml(branch.all, child_id); 

— make the edge to the branch 
put(gml_file, "edge [ id "); 
put(gml_file, integer'image(new_id)) ; 
put(gml_file, " source "); 
put(gml_file, integer'image(my_id)); 
put(gml_file, " target "); 
put(gml_file, integer'image(child_id)) ; 
put_line(gml_file, " ]"); 

) 
end put_node_gml; 

begin 
create(gml_file, out_file, filename); 
put(gml_file, "graph [ id "); 
put(gml_file, integer'image(new_id)); 
put_line(gml_file, " directed 1"); 
put_node_gml(the_node, the_id); 
put_line(gml_file, "]"); 
close(gml_file); 

end generateGML; 

— Function: getLeafNodePtrs 

— Description: collect the leaf nodes of the_node into a sequence. 

function getLeafNodePtrs(the_node: in SigMatchNode) 
return SigMatchNodePtrSeq is 

return_val: SigMatchNodePtrSeq; 

procedure processNode(smnp: in SigMatchNodePtr) is 
begin 

if sig_match_node_ptr_seq_pkg.length(smnp.branches) = 0 then 
sig_match_node_ptr_seq_pkg.add(smnp, return_val); 
return; 

end if; 
foreachf(branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(smnp.branches), 
processNode(branch); 

) 
end processNode; 

begin 
return_val := sig_match_node_ptr_seq_pkg.empty; 
foreachf(branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(the_node.branches), 
processNode(branch); 

) 
return return_val; 

end getLeafNodePtrs; 

— Function: getLeafNodePtrs 

— Description: collect the leaf nodes of the_node into a set. 
Note the set will keep duplicates out. 

function getLeafNodePtrs(the_node: in SigMatchNode) 
return SigMatchNodePtrSet is 

return_val: SigMatchNodePtrSet; 

procedure processNode(smnp: in SigMatchNodePtr) is 
begin 

if sig_match_node_ptr_seq_pkg.length(smnp.branches) = 0 then 
sig_match_node_ptr_set_pkg.add(smnp, return_val); 
return; 

end if; 
foreachf(branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

125 



(smnp.branches), 
processNode(branch); 

) 
end processNode; 

begin 
return_val := sig_match_node_ptr_set_pkg.empty; 
foreach((branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(the_node.branches), 
processNode(branch); 

) 
return return_val; 

end getLeafNodePtrs; 

— Function: getValidLeafNodePtrs 

— Description: collect the valid leaf nodes of the_node into a set. 
Note the set will keep duplicates out. 

function getValidLeafNodePtrs(the_node: in SigMatchNode) 
return SigMatchNodePtrSet is 

return_val: SigMatchNodePtrSet; 

procedure processNode(smnp: in SigMatchNodePtr) is 
begin 

if sig_match_node_ptr_seq_pkg.length(smnp.branches) = 0 then 
if smnp.validation = VALID then 

sig_match_node_ptr_set_pkg.add(smnp, return_val); 
end if; 
return; 

end if; 
foreach((branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(smnp.branches) , 
processNode(branch) ; 

) 
end processNode; 

begin 
return_val := sig_match_node_ptr_set_pkg.empty; 
foreach((branch: SigMatchNodePtr), sig_match_node_ptr_seq_pkg.scan, 

(the_node.branches), 
processNode(branch); 

) 
return return_val; 

end getValidLeafNodePtrs; 

— Function: validPairingExists 

— Description: gets all the valid leaf nodes and checks if the pairing 
exists in any of them 

function validPairingExists(pairing: in OpMap; the_node: in SigMatchNode) 
return boolean is 

return_val: boolean; 
begin 

return_val := false; 
foreach((sn: SigMatchNodePtr), sig_match_node_ptr_set_pkg.scan, 

(getValidLeafNodePtrs(the_node)) , 
if not return_val then 

return_val := op_map_pkg.submap(pairing, sn.V.OM); 
— TODO: if return_val is true then should immediately return 

but for each doesn't let me do this 
end if; 

) 
return return_val; 

end validPairingExists; 

— Procedure: sigMatchNodePtrSetPrint 

procedure SigMatchNodePtrSetPrint(the_set: SigMatchNodePtrSet) is 
begin 

foreach((the_node: SigMatchNodePtr), sig_match_node_ptr_set_pkg.scan, 
(the set), 

126 



sigMatchNodePrint(the_node.all); 
new_line; 

) 
end sigMatchNodePtrSetPrint; 

end sig_match_types; 

127 



softwarebase.ads 

— Package Spec: software_base 

with component_id_types; use component_id_types; 
with haase_diagram; use haase_diagram; 
with candidate_types; use candidate_types; 
with profile_types; use profile_types; 

package software_base is 

procedure initialize(header_filename: in string); 

function numComponents return natural; 

function numPartitions return natural; 

function numOccupiedPartitions return natural; 

procedure generateGML(gml_filename: in string); 

function profileFilter(query_filename: in string) return CandidateSet; 

function signatureMatch(query_filename: in string; 
the_candidate: in Candidate) return Candidate; 

function getProfileID(p: Profile) return ProfilelD; 

function getProfile(p_id: ProfilelD) return Profile; 

function getProfilelDs return profile_lookup_table_pkg.res_set; 

private 

— the_component_id_map 

the_component_id_map: ComponentlDMap; 

— the_haase_diagram 

the_haase_diagram: HaaseDiagram; 

— the_profile_lookup_table 

the_profile_lookup_table: ProfileLookupTable; 

end software base; 

128 



software base.g 

— Package Body: software_base 

with text_io;   use text_io; 
with ada.integer_text_io;   use ada.integer_text_io; 

with a_strings; 
with psdl_concrete_type_pkg;  use psdl_concrete_type_pkg; 

with component_id_types;   use component_id_types; 
with haase_diagram;   use haase_diagram; 
with candidate_types;   use candidate_types; 
with profile_types;   use profile_types; 
with psdl_profile;   use psdl_profile; 
with sig_match_types;   use  sig_match_types; 
with profile_filter_pkg; 
with sig_match; 

package body software_base  is 

— Procedure: initialize 

— Description: reads the header file to construct the_component_id_map 
and the_haase_diagram. 

procedure initialize(header_filename: in string) is 
use a_strings; 

header_file: file_type; 
comp_id: ComponentID; 
dir_name: a_string; 
input_line: string(1..25 6); 
line_length: natural; 
comp_id_last : natural; 
temp_comp_profile: ComponentProfile; 
temp_haase_node: HaaseNode; 
temp_component: Component; 
the_generics_maps: GenericsMapSet; 
generics_mapping: GenericsMap; 

id: natural := 0; 
old_start: natural := 0; 
function new_id(start: natural) return natural is 
begin 

if start /= old_start then 
id := 0; 
old_start := start; 

end if; 
id := id + 1; 
return start + id; 

end new_id; 

begin 

— parse header file.and construct the_component_id_map 

component_id_map_pkg.create(createComponent, the_component_id_map); 

open(header_file, in_file, header_filename); 
while (not end_of_file(header_file)) loop 

get_line(header_file, input_line, line_length) ; 
get(input_line, comp_id, comp_id_last); 

— trim spaces before and after directory name 
dir_name := reverse_order(trim( 

reverse_order(trim(a_strings.to_a( 
input_line(comp_id_last+l..line_length)))))); 

put("preparing "); 
put(dir_name.s); 
put("..."); 

129 



— create a component for each generic_mapping 
the_generics_maps := getGenericsMaps(convert(text(dir_name & "/PSDL_SPEC"))) , 

put(integer'image(generics_map_set_pkg.size(the_generics_maps))); 
put(" components..."); 

foreach((the_map: GenericsMap), generics_map_set_pkg.scan, 
(the_generics_maps) , 

temp_component := createComponent; 
temp_component.psdl_filename := text(dir_name &  "/PSDL_SPEC"); 
generics_map_pkg.assign(temp_component.generics_mapping, the_map); 
component_id_map_pkg.bind(new_id(comp_id), temp_component, 

the_component_id_map); 
) 

put_line("done"); 
end loop; 
close(header_file); 

— Create the ProfileLookupTable 

the_profile_lookup_table := 
profile_lookup_table_pkg.create(DEFAULT_PROFILE_ID); 

— construct haase diagram 

the_haase_diagram := createHaaseDiagram; 

— for each item in the_component_id_map, get the component's 
— profile and add it to the_haase_diagram 
foreach((the_comp_id: ComponentID; the_component: Component), 

component_id_map_pkg.scan, (the_component_id_map), 

put("inserting "); 
put(integer'image(the_comp_id)); 
put<"..."); 

temp_comp_profile := getComponentProfile( 
convert(the_component.psdl_filename), the_component.generics_mapping); 

check if haase node with temp_comp_profile as its key 
already exists.  If it does then add the component id 

— to that node rather than make a new node. 
if haase_node_map_pkg.member(temp_comp_profile, the_haase_diagram) then 

temp_haase_node := haase_node_map_pkg.fetch(the_haase_diagram, 
temp_comp_profile); 

else 
temp_haase_node := createHaaseNode(temp_comp_profile); 

end if; 
addComponent(the_comp_id, temp_haase_node); 
addHaaseNode(temp_haase_node, the_haase_diagram); 

put_line("done"); 
) 

put("Profile Lookup Table: "); 
profileLookupTablePut(the_profile_lookup_table); 
new_line; 

put("adding base nodes..."); 
addBaseNodes(thg_haase_diagram); 

put_line("done"); 
put("connecting nodes..."); 

connectNodes(the_haase_diagram); 
put_line("done"); 
end initialize; 

— Function: numComponents 

— Description: return the number of components in the software base. 

function numComponents return natural is 
return_val: natural; 

begin 
return component_id_map_pkg.size(the_component_id_map); 

end numComponents; 

130 



— Function: numPartitions 

— Description: return the number of partitions in the software base. 

function numPartitions return natural is 
begin 

return haase_node_map_pkg.size(the_haase_diagram); 
end numPartitions; 

— Function: numOccupiedPartitions 

— Description: return the number of occupied partitions in the 
software base. 

function numOccupiedPartitions return natural is 
return_val: natural := 0; 

begin 
foreacht(the_key: ComponentProfile; the_hn: HaaseNode), 

haase_node_map_pkg.scan, (the_haase_diagram), 
if component_id_set_pkg.size(the_hn.components) > 0 then 

return_yal := return_val + 1; 
end if; 

) 
return return_val; 

end numOccupiedPartitions; 

— Function: generateGML 

procedure generateGML(gml_filename: string) is 
begin 

generateGML(the_haase_diagram, gml_filename); 
end generateGML; 

— Function: profileFilter 

— Description: performs profile filtering with the PSDL specified query 
and returns an ordered set of candidates with the highest 
profile ranking first. 

— Note the PSDL query must NOT contain generics. 

function profileFilter(query_filename: in string) return CandidateSet is 
query_profile: ComponentProfile; 

begin 
query_profile := getComponentProfile(query_filename, 

generics_map_pkg.create(empty)); 
return profile_filter_pkg.findCandidates(query_profile, the_haase_diagram) , 

end profileFilter; 

— Function: signatureMatch 

— Description: performs signature matching between the PSDL specified 
query and the_candidate and returns a copy of the_candidate 
with the signature_matches field set. 

function signatureMatch(query_filename: in string; 
the_candidate: in Candidate) return Candidate is 

q_ops, c_ops: OpWithProfileSeq; 
sn: SigMatchNode; 
temp_snp_set: SigMatchNodePtrSet; 
temp_component: Component; 
return_val: Candidate; 

begin 
— get the query's operators 
q_ops := getOpsWithProfiles(query_filename, generics_map_pkg.create(empty)); 

new_line; 
put_line("Query: "); 

131 



opWithProfileSeqPrint(q_ops); 
new_line; 

— get the candidate's operators 
temp_component := component_id_map_pkg.fetch(the_component_id_map, 

the_candidate.component_id); 
c_ops := getOpsWithProfiles(convert(temp_component.psdl_filename), 

temp_component.generics_mapping); 
put("Candidate: "); 
put_line(integer'image(the_candidate.component_id) ) ; 
put("Generics Mapping: "); 
genericsMapPut(temp_component.generics_mapping) ; 
new_line; 
new_line; 
opWithProfileSeqPrint(c_ops); 
new_line; 

— perform signature matching 
sn := createSigMatchNode; 
sig_match.sigMatchStatsReset; 
sig_match.match_ops(q_ops, c_ops, sn); 

— calculate the signature ranks 
sig_match_node_ptr_set_pkg.assign(temp_snp_set, getLeafNodePtrs(sn)); 
foreachf(smnp: SigMatchNodePtr), sig_match_node_ptr_set_pkg.scan, 

(temp_snp_set), 
smnp.signature_rank := float(op_map_pkg.size(smnp.V.OM)) / 

float(owp_sequence_pkg.length(q_ops)); 

— The following calculation for signature rank measures how well the 
— signature matching method works on its own.  The calculation above 
— is really a mixture of profile filtering AND signature matching. 

smnp.signature_rank := float(op_map_pkg.size(smnp.V.OM)) / 
(return_val.profile_rank * float(owp_sequence_pkg.length(q_ops))); 

) 

— add each SigMatchNodePtr to make sure return_val's signature_matches 
— field is sorted 
candidateAssign(return_val, the_candidate) ; 
foreach((smnp: SigMatchNodePtr), sig_match_node_ptr_set_pkg.scan, 

(temp_snp_set), 
sig_match_node_ptr_set_pkg.add(smnp, return_val.signature_matches); 

) 

return return_val; 
end signatureMatch; 

— Function: getProfilelD 

— Description: if the profile doesn't exist then add it first then 
return its id.  A new id is obtained from the global 
variable unique_profile_id. 

unique_profile_id: ProfilelD := 0; 

function getProfilelD(p: Profile) return ProfilelD is 
return_val: ProfilelD; 

begin 
return_val := 

profile_lookup_table_pkg.fetch(the_profile_lookup_table, p); 
if return_val = DEFAULT_PROFILE_ID then 

return_val := unique_profile_id; 
unique_profile_id := unique_profile_id + 1; 

put("binding "); 
profilePut(p); 
put(" to "); 
put(integer'image(return_val)); 
put("..."); 

profile_lookup_table_pkg.bind(p, return_val, the_profile_lookup_table) ; 
end if; 
return return_val; 

end getProfilelD; 

132 



— Function: getProfile 

function getProfile(p_id: ProfilelD) return Profile is 
return_val: Profile; 

begin 
return_val := 0; 
foreach((p: Profile; id: ProfilelD), profile_lookup_table_pkg.scan, 

(the_profile_lookup_table), 
if id = p_id then 

return_val := p; 
— TODO: should return here but for each doesn't let me 

end if; 
) 
return return_val; 

end getProfile; 

— Function: getProfilelDs 

function getProfilelDs return profile_lookup_table_pkg.res_set is 
begin 

return profile_lookup_table_pkg.map_range(the_profile_lookup_table), 
end getProfilelDs; 

end software base; 

133 



134 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center.... 
8725 John J. Kingman Road, Suite 0944 
Fort Belvoir, VA 22060-6218 

2. Dudley Knox Library  
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, CA 93943 

3. Center for Naval Analysis.. 
4401 Ford Ave. 
Alexandria, VA 22302 

Dr. Ted Lewis, Chairman, Code CS/LT. 
Computer Science Dept. 
Naval Postgraduate School 
Monterey, CA 93943 

5.      Chief of Naval Research. 
800 North Quincy St. 
Arlington, VA 22217 

Dr. Luqi, Code CS/Lq  
Computer Science Dept. 
Naval Postgraduate School 
Monterey, CA 93943 

7.      Dr. Marvin Langston  
1225 Jefferson Davis Highway 
Crystal Gateway 2 / Suite 1500 
Arlington, VA 22202-4311 

8. David Hislop  
U.S. Army Research Office 
PO Box 12211 
Research Triangle Park, NC 27709-2211 

9. Capt. Talbot Manvel  
Naval Sea System Command 
2531 Jefferson Davis Hwy. 
Atta: TMS 378 Capt. Manvel 
Arlington, VA 22240-5150 

135 



10. CDR Michael McMahon  
Naval Sea System Command 
2531 Jefferson Davis Hwy. 
Arlington, VA 22242-5160 

11. Dr. Elizabeth Wald  
Office of Naval Research 
800 N. Quincy St. 
ONR CODE 311 
Arlington, VA 22217-5660 

12. Dr. Ralph Wächter  
Office of Naval Research 
800 N. Quincy St. 
CODE 311 
Arlington, VA 22217-5660 

13. Army Research Lab  
115 O'Keefe Building 
Attn: Mark Kendall 
Atlanta, GA 30332-0862 

14. National Science Foundation  
Attn: Bruce Barnes 
Div. Computer & Computation Research 
1800GSt.NW 
Washington, DC 20550 

15. National Science Foundation  
Attn: Bill Agresty 
4201 Wilson Blvd. 
Arlington, VA 22230 

16. Hon. John W. Douglass  
Assistant Secretary of the Navy 
(Research, Devlopment and Aquisition) 
Room E741 
1000 Navy Pentagon 
Washington, DC 20350-1000 

17. Technical Library Branch  
Naval Command, Control, and Ocean Surveillance Center 
RDT&E Division, Code D0274 
San Diego, CA 92152-5001 

136 



18. Head, Command and Control Department  
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, Code D40 
San Diego, CA 92152-5001 

19. Head, Simulation and Human Systems Technology Division. 
Naval Command, Control and Ocean Surveillance Center 
RDT&E Division, Code D44 
San Diego, CA 92152-5001 

137 


