
RL-TR-97-220
Final Technical Report
February 1998

 "% M
"

L
"-

FUNCTIONAL REPRESENTATION OF SOFTWARE
SYSTEMS AND COMPONENT-BASED SOFTWARE
TECHNOLOGY

Ohio State University Research Foundation

Sponsored by
Advanced Research Projects Agency
ARPA Order No. A714 19980415 087

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.

[DnC QUALITY INSPECTED 3

AIR FORCE RESEARCH LABORATORY
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-97-220 has been reviewed and is approved for publication.

^^y^J3£
APPROVED:

DOUGLAS A. WHITE
Project Engineer

A

FOR THE DIRECTOR:
/

WARREN H. DEBANY, Technical Advisor
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory mailing list, or if the addressee is no longer employed by your organization,
please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ALTHOUGH THIS REPORT IS BEING PUBLISHED BY AFRL, THE RESEARCH WAS
ACCOMPLISHED BY THE FORMER ROME LABORATORY AND, AS SUCH, APPROVAL
SIGNATURES/TITLES REFLECT APPROPRIATE AUTHORITY FOR PUBLICATION AT
THAT TIME.

FUNCTIONAL REPRESENTATION OF SOFTWARE SYSTEMS AND
COMPONENT-BASED SOFTWARE TECHNOLOGY

B. Chandrasekaran
Bruce Weide

Contractor: Ohio State University
Contract Number: F30602-93-C-0243
Effective Date of Contract: 1 October 1993
Contract Expiration Date: 31 March 1997
Program Code Number: 6D10
Short Title of Work: Functional Representation of Software

Systems
Period of Work Covered: Oct 93 - Mar 97

Principal Investigator: B. Chandrasekaran
Phone: (614)292-0923

RL Project Engineer: Douglas A. White
Phone: (315)330-2129

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Douglas A. White, AFRL/1FTD, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimete or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222024302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

February 1998

3. REPORT TYPE AND DATES COVERED

Final Oct 93 - Mar 97
4. TITLE AND SUBTITLE

FUNCTIONAL REPRESENTATION OF SOFTWARE SYSTEMS AND
COMPONENT-BASED SOFTWARE TECHNOLOGY
6. AUTHOR(S)

B. Chandrasekaran and Bruce Weide

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

The Ohio State University Research Foundation
1960 Kenny Road
Columbus, OH 43210

5. FUNDING NUMBERS

C - F30602-93-C-0243
PE -61101E
PR -A714
TA -00
WU-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

AFRL/IFTD
525 Brooks Rd.
Rome, NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-220

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Douglas A. White/IFTD/(315) 330-2129

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT {Maximum 200 words)

The overall objectives of this project were to develop approaches to program comprehension that would provide significant
added benefits in many aspects of software engineering. As one part of that effort, the RESOLVE/ACTI framework for a
software component composition technology was developed. The technology focuses on development of software
components that can be reused and a composition discipline that helps in creating programs whose properties can be
efficiently reasoned about. As another part of the effort, a device comprehension framework called Functional
Representation was applied, and its utility shown for software architecture comprehension, legacy software reengineering and
representation of system requirements.

14. SUBJECT TERMS

software, software understanding, software development environments, reuse, reengineering

15. NUMBER OF PAGES

218
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTFIACT

UL

QUM.T^DJaEEClEDfc
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Table of Contents

1. Introduction
1.1. Goals of the Project *
1.2. Organization of the Report ^

2. Overview of the Theoretical Frameworks 4

2.1. RESOLVE/ACTI Framework for Component-Based Software.. 4
2.1.1. RESOLVE 4

2.1.2. ACTI Model of Software Understanding 4

2.2. Functional Representation Framework for Artifact Understanding 6
3. Outline of Results j*

3.1. Component-Based Software °
3.2. FR Applications for System Engineering, Domain Modeling and Requirements Capture 9

3.2.1. Causal and Functional Models of Objects and Reasoning about Their Composition 9
3.2.2. Specifying Functional Requirements 1"

3.3. FR as the Basis for Explaining Software Architecture U
3.4. FR Applications for Legacy Software 12

3. 5. Summary of Results and Benefits 13
Appendices

1. Introduction

This report outlines the progress made in the project entitled "Functional Representation
of Software Systems and Component-Based Software Technology," during the project
period, October 1,1993 to March 31,1997. In order to give context, we restate the goals,
describe the underlying framework, and give a summary of progress. Many of the
detailed results are described in technical reports and papers, some of which were
published during the last three years, while others are in the process of being submitted or
considered for publication. The most important of these are attached as appendices to the
report.

1.1. Goals of the Project
Our project was organized around two related top-level goals:
• To develop a discipline and technology of composing reliable software from parts
• To develop a framework for program comprehension, and to apply it for software

maintenance, reuse and reengineering.

Comprehension and design are dual enterprises. We understand an artifact by
recognizing functional modules or components, and building a picture of how the
components work together to create the functions of the artifact. If an artifact (or natural
system) is so constructed that the component interactions cannot be easily reasoned
about, our comprehension of the artifact is correspondingly limited, resulting in either
incomplete or incorrect predictions of the artifacts behavior. Conversely, we design
artifacts by composing parts, whose behavior we understand, into larger systems. We
reason about the behavior of the composed artifact to assure ourselves that the artifact
realizes intended behavior. How easily we can understand a design depends on two
things: how well we understand what the components do, and whether the composition
was done in such a way that component interactions can be easily reasoned about.

The project was largely organized as two interacting subprojects.
1. The RESOLVE/ACTI project focused on developing both the theoretical

foundations for composable software as well as implementations of component
libraries with the right properties. The ACTI theory develops a software
understanding framework that is especially useful in the software composition task.

2. The Functional Representation project focused on the use of FR - a specific family
of representations for software comprehension - for a number of tasks in software
engineering other than composition. Specifically, we explored the application of FR
to requirements engineering, explanation of software architectures, and reengineering
of legacy software.

As one would expect, the software understanding parts of the two projects interacted
closely. The ACTI and FR frameworks share common points of view, but because of the
difference in applications, focus on different aspects of understanding. FR is a general
theory of comprehension of causal systems, while ACTI's focus is on the mathematical
framework in which to understand software components.

Our work on the project spans a broad range of software engineering goals, processes,
and artifacts in these contexts:

1.) Component-Based Software
2.) Systems, Domain, and Requirements Engineering
3.) Software Architecture
4.) Legacy Software.

In each of these contexts, we developed and characterized technologies to capture and
exploit human understanding of software artifacts. This figure shows these contexts and
locates our work.

Domain/Environment

Requirements

- Specifications -i

RESOLVE/
ACT1

Formal
Proof

Modern
Component-B ased

Code

i -

FR for
Domain and

Requirements

FR-Rapide

_ *-■ Architecture

_ FR-UNPROG

Legacy
Procedural

Code-,

. Understanding.

The vertical dimension displays semantic levels and software engineering artifacts. At the
top, most removed from code, are domain and environment objects and concepts. Going
downward, there are commitments, artifacts, and concepts that are increasingly code-
related - requirements, specifications, architecture, and code.

Our work in FR for domain and requirements captures and formalizes understanding of
the environment, domain objects, and system requirements. This understanding is
hierarchical, containing refinements and languages at various abstraction levels.

FR-Rapide captures intentions and their implementation in an architecture, specifically an
architecture called Rapide. It is similarly hierarchical, and intentions represented involve
requirements, specifications, and architecture design down to architecture description
language code.

RESOLVE/ACTI contains both specifications and their implementation in modern
component-based code. Its captured understanding includes complete abstract behavior,
given by formal specifications, and justification that the behavior is realized in code,
shown by proof.

FR-UNPROG represents understanding of how specifications are implemented in real-
world legacy software. It focuses on hierarchical understanding used in human and
automatic program understanding and reengineering.

1.2. Organization of the Report
Much of our work has been reported in the literature in the form of papers in journals and
conferences, and technical reports that are in the process of being converted to
publications. We devote the next section to a brief account of some of the central
theoretical ideas. We follow this with a section that outlines progress that we have made
in specific areas and their significance. Finally, we attach as appendices a selection of
the most important publications and technical reports, where the reader can find the
technical details of the work.

2. Overview of the Theoretical Frameworks

2.1. RESOLVE/ACTI Framework for Component-Based Software

2.1.1. RESOLVE
RESOLVE refers to three related things: a conceptual framework to guide thinking about
component-based software systems; a specific language to support easy description of
components and systems within that framework; and a general discipline for using that
language (or others with comparable features) to design high-quality software
components and systems. RESOLVE software components are parameterized modules.
A typical specification module formally defines the structural interface and functional
behavior of an encapsulated abstract data type (ADT), and associated operations whose
parameters are of that type and other types. A typical implementation module describes
how such a type is represented as a composition of other ADTs, and how the associated
operations are effected by invoking sequences of operations associated with the types
used in the representation.

At first glance, the basic RESOLVE framework and notation resemble those of modern
formal specification languages (e.g., Z, Larch) and object-based or object-oriented
programming languages (e.g., Ada, C++, Eiffel, ML). What RESOLVE provides beyond
its integrated language is an entire framework in which all the important, but sometimes
conflicting, aspects of software design can be considered at once. In this framework,
component engineering can exploit new perspectives that differ from conventional
approaches in many important ways. The full compass of advantages can best be
appreciated by examining specific reusable software components. This is why we have
spent considerable effort designing, implementing, and using a variety of reusable
components. They are specified and implemented in RESOLVE, and — to facilitate
technology transfer — also implemented in Ada and/or C++.

2.1.2. ACTI Model of Software Understanding
The ACTI model is centered on the notion of a "software subsystem," a generalization of
the idea of a module or a class that serves as the building block from which software is
constructed. A subsystem can vary in grain size from a single module up to a large-scale
generic architecture. ACTI is designed specifically to capture the larger meaning of a
software subsystem in a way that contributes to human understanding, not just the
information necessary to create a computer-based implementation of its behavior. The
ACTI model is based on four different kinds of subsystems:

• Abstract Instance — A disembodied subsystem specification or interface
description. There is no implementation associated with anything defined in the
specification.

• Concrete Instance - A subsystem that provides implementations for its types and
operations. All of the defined types and operations in the subsystem are
represented and/or implemented.

• Abstract Template - A subsystem-to-subsystem function that, when applied to its
argument, which is some abstract instance, will generate another abstract instance.
Effectively, an abstract template is a form of generic subsystem specification.

• Concrete Template - A subsystem-to-subsystem function that, when applied to its
argument, which is some concrete instance, will generate another concrete
instance. Thus, a concrete template is a form of generic subsystem
implementation.

The name "ACTI" is an acronym derived from these four terms: "Abstract and Concrete
Templates and Instances." The distinction between "abstract" and "concrete" embodies
the separation between a specification or interface, and an implementation or
representation. The distinction between "template" and "instance" allows one to talk
about both generic subsystems and the product of fixing (binding) the parameters of such
a generic subsystem: an instance subsystem. Formally, ACTI is a collection of
mathematical spaces, together with relations and functions on those spaces, that can be
used in explaining (or defining) the denotational semantics of program constructs. In
spirit, the model was developed in accordance with the denotational philosophy. In the
denotational philosophy the program, or program fragment, is first given a semantics as
an element of some abstract mathematical object, generally a partially ordered set. The
semantics of the program are a function of the semantics of its constituent parts;
properties of the program are then deduced from a study of the mathematical object in
which the semantics lives. ACTI is not a programming language, however. Instead, it is a
mathematical model that is useful for programming language designers, or researchers
studying the semantics of programming languages. It is a formal, theoretical model of the
structure and meaning of software subsystems. It is rich enough to be used when
designing new languages, and has been shown to subsume the run-time semantic spaces
of several existing languages chosen to be representative of the modern imperative, 00,
and functional philosophies. ACTI has two features that specifically address the
inadequacies described in the introduction:
1. In ACTI, a software subsystem (building-block) has an intrinsic meaning; it is not just

a syntactic construct used for grouping declarations and controlling visibility. This
meaning encompasses an abstract behavioral description of all the visible entities
within a subsystem.

2. The meaning of a software subsystem is not, in general, hierarchically constructed. In
fact, it is completely independent of all the alternative implementations of the
subsystem.

Thus, ACTI provides a mechanism for describing what a subsystem does, not just how it
is implemented. The meaning provided for a subsystem is a true abstraction - a "cover
story" that describes behavior at a level appropriate for human understanding without
explaining how the subsystem is implemented. Further, ACTI provides a formally
defined mechanism, called an interpretation mapping, that captures the explanation of
why an implementation of a subsystem will give rise to the more abstractly described
behavior that comprises the meaning attributed to the subsystem - in short, an
explanation for why the cover story works.

2.2. Functional Representation Framework for Artifact Understanding
For a number of years, one of the Pi's (Chandrasekaran) has been engaged in research
whose goal is to understand understanding, particularly understanding of how an artifact
"works." This research has produced a framework called Functional Representation,
which is one of the technical bases for the project. In this framework, comprehending the
functioning of an artifact consists of producing the following descriptions for it:

• the function (s) of the artifact
• the structure of the artifact, i.e., a specification of its components and how they

are put together
• an account of how the artifact achieves its function based on the roles played by

the components and general laws that pertain to the domain.

Functional Representation (FR) is a general language and framework for representing
functions, structure and the causal processes that underlie the operation of the device.
The FR framework has been applied mostly to engineered physical devices. However, in
our earlier work we have shown that FR is applicable to understanding abstract devices
such a programs and logistic plans. In software engineering, the language of plans has
often been proposed as the basis for encoding comprehension. FR subsumes
programming plans, in that it contains the same information as plans do in general, but
also adds further information to make them fully satisfy the desiderata for
comprehension. In particular, plans as currently represented in software engineering
satisfy to some degree parts 1 and 2 of the desiderata. FR satisfies part 3 as well.

There are different ways of providing an account of how the function is achieved, the
third item in the above list. Mathematically, it is required is to show that the function of
the artifact can be derived from the component properties and the way the components
are composed. For certain purposes, an account giving relevant state changes of the
artifact is useful. In this account, a series of partial state descriptions of the artifact is
given. The initial state corresponds to the starting conditions, and the final state
corresponds to the predicate that describes the function. Each intermediate state change
is explained by appealing to the function of some component. It is explained by showing
which function of which component played the causal role in the transition, and by
showing the precise way in which the state change happened. This kind of explanation
has been used traditionally in the FR work. This form of accounting is useful for
explanation to human beings, and for certain kinds of problem solving activities, such as
debugging and design criticism. Logically, other kinds of demonstrations can be
substituted. For example, the RESOLVE/ACTI framework seeks to ensure that the
composed program satisfies the requirements by developing an effective modular proof
technique.

The RESOLVE/ACTI framework shares a number of intuitions about comprehension
with FR, although it has used somewhat different terminology. Because of its exclusive
focus on software, RESOLVE has a much better developed formalism for representing
the relevant aspects of programs, and techniques for reasoning about composition.
Because FR is a general framework for causal understanding, it needs domain-specific

theories when it is applied to particular domains. RESOLVE provides such a theory for
the software domain.

3. Outline of Results

In this section, we summarize the results of our research. This section is organized
around the contexts that we mentioned in the Introduction.

3.1. Component-Based Software
Our first context is component-based and high-quality software. Reusable components
consist of complete formal specifications and implementing code. They are engineered
for correctness, flexibility, efficiency, understandability etc. Work in component-based
software applies generally to new software development with careful design and formal
specifications.

RESOLVE/ACTI represents understanding of code consisting of formal specifications
and proofs that the specifications are implemented in the code. There is a long history of
research into representing such understanding. Mathematical approaches for representing
specifications and proofs are relatively well-established. However, these approaches have
not been applied in practical software engineering environments, especially for reusable
components. Important issues include the design of productive programming systems
that support correct specification, and the explanatory quality of specifications and
proofs.

RESOLVE/ACTI is an especially complete and robust framework for component-based
software. It includes goals, language, discipline, a semantic model, and a component
library for component-based software. Our work has developed and characterized this
approach with respect to component design and implementation, and with respect to
model-based specification and proof quality.

Work with iterator abstractions illustrates RESOLVE/ACTI components and
characterization. The simplest kind of iterator permits a client progräm to examine each
item of a collection in some order, e.g. to accumulate information about set items, or print
items in a tree. We give an interface model of iterators for arbitrary generic collections.
The model is characterized with respect to both correctness provability and efficiency.
For example, RESOLVE/ACTI's use of the swapping paradigm is shown to permit
modular proof of correctness (unlike pointer copying), while preserving efficiency
(unlike structure copying).

Specific contributions and accomplishments in this software engineering context include:
• Empirical studies showing benefits from RESOLVE black-box reuse
• The RESOLVE/C++ programming discipline, which allows one to build modularly

certifiable/verifiable software components in C++
• A safe method for using white-box code inheritance
• The ACTI model of component-based systems and their semantics
• Specification and proof characterization, including use of observability and

controllability, and abstraction relations.

Appendices 1 to 9 describe in detail the specific contributions summarized above.

3.2. FR Applications for System Engineering, Domain Modeling and
Requirements Capture
Many military and commercial applications —e.g., weapon systems, air traffic control
systems, or even a single aircraft or tank — are heterogeneous systems. They are
assemblages of subsystems from many different domains, e.g., mechanical, electrical,
thermal, and software systems. When high-level design is performed using abstract
functions, perhaps represented by blocks in a diagram, the blocks may represent physical
or software systems. FR is an appropriate framework for representing and reasoning
about such systems. Building such systems also requires a language in which to acquire
system requirements.

3.2.7. Causal and Functional Models of Objects and Reasoning about Their
Composition
We made significant progress in this problem area. We looked at the following issues.

Representing causal models of objects so that the behaviors of configurations of
interacting objects can be reasoned about.
Representing functions of device configurations.
Representing functional requirements for design.

•

•

The technical issues addressed include:
• Representation of an object: its properties and property relations, ports at which an

object can be connected to other objects, and how ports are loci of causal interactions.
Objects are represented in points of view, which select certain properties for
representation. Views also specify the object in the context of some generic
environments, i.e., an object representation is with respect to the kinds of objects it
can be in a causal relationship with. Properties can be static or dynamic. When they
are dynamic, they are called state variables. Behavior of an object is the trajectory of
the values of its selected state variables over time. Property relations are called
behavioral specifications when the properties involved are the state variables. This
basic ontology ~ objects, static and dynamic properties, ports and behavioral
specifications - provides the basic primitives needed to represent individual objects
in specific environments and reason about their properties and behaviors under
various conditions.

• Composing objects and deriving the properties and behavior of composed objects.
Ports are the basic "connection" points. Thus the structure of composed objects is
given by specifying objects and the ports which form the connections between them.
A basic framework for composing the behavioral specifications of the component
objects into a set of behavioral specifications for the composite object has been
developed.

• Various means of abstracting behaviors of the composite objects so that behavioral
abstractions at new levels of description can be introduced. This is important because
one of the most important consequences in assembling components is that some new
behaviors can be described effectively only by using new primitive terms. For

example, at some point a composition of transistors and resistors becomes an "adder,"
whose behavior is described not in terms of currents and voltages, but in terms of
addends and sums. Representing the properties and property relations of the
composed object may get arbitrarily complicated, especially if we wish to focus on
new properties that are not part of the descriptions of the individual objects.

• Structural explanation. Given a composite object and a set of behaviors that it
exhibits, there are different ways of "explaining" the behaviors. One kind of
explanation is to appeal to the behavioral specifications, the laws of behavior of that
object, and relate the behavior to these specifications. Another kind of explanation is
structural: show that the behavior is a result of the behavioral specifications of its
components and the way they are connected. In order to produce the latter kind of
explanation, the object has to be decomposed into its components, their behaviors
composed and abstracted to correspond to the set of behaviors to be explained.

• Functions. Functions are defined in terms of desired state changes in the objects in
the environment. Artifacts are designed such that they cause the desired state changes
in the objects in the environment, i.e., the task of the designer is to compose
components into an artifact such that the behavior of the latter causes the desired state
changes in the world.

Specific contributions in this area and their benefits include:
• A formal framework for representing objects, their causal properties and their

interaction. This framework can be used to build up a device simulation facility that
uses the representations in the object library.

• A formal definition of function that does not make any reference to any aspect of
implementation. This is in contrast to almost all current definitions that define
function in terms of some aspect of the implemented artifact. Our definition enables
the function of a device to be defined before the device is actually designed, and also
enables retrieval by function from component libraries.

Appendix 10 describes the results in some detail.

3.2.2. Specifying Functional Requirements
Software design, like general system design, depends on determining and stating system
requirements. Requirements specify the required behavior of the system in an
environment, involving domain and system objects. Typical requirement artifacts are
informal documents and scenario descriptions. Typical domain models are informal or
semi-formal data models.

We used Functional Representation (FR) to capture and formalize understanding of
system requirements and objects. This is understanding that may be informal in current
requirements artifacts, or which may be present only in the minds of requirements
engineers.

For example, requirements engineers know much more about an automated teller
machine (ATM) and its user interactions than is formalized in requirements documents.

10

Existing requirements formalisms are specialized for particular aspects of the
requirements. We showed how FR can represent a unified, comprehensive understanding
of ATM functional requirements including: 1) the system-environment division, 2) user-
system interactions and scenarios, and 3) requirement refinements through multiple
abstraction levels.

FR was similarly applied to various systems engineering problems, in both hardware and
software domains. This includes representation of system requirements, objects, object
composition, and device libraries to support design and analysis.

Specific contributions and accomplishments in this area include:
• Representing ATM functional requirements, including environment, system, and user,

refined across multiple abstraction levels.
• FR foundations for representing domain and system objects, including object

properties, relationships, ports, compositions, behaviors, functions, and explanations.

Benefits and applications include a unified framework for systems requirements and
objects, a practical means of refining and communicating more formal systems
requirements, and tools which operate on such representations, e.g. to check consistency
or generate explanations. Capturing system requirements more completely and formally
benefits all subsequent system design and evolution.

Appendix 12 gives the technical details of how to apply FR for requirement specification.

3.3. FR as the Basis for Explaining Software Architecture
Our next context is software architecture. Software architectures describe how system
components interact and behave. They are specified using architecture description
languages (ADL's) which give the architecture's components, and their connections,
interactions and behaviors. ADL's are valuable in software design and evolution.
However their value is limited because they specify architectures without reference to
designers' intentions.

We used Functional Representation to capture design intentions and their implementation
in an architecture. Typical design intentions involve implementing abstract design goals
with particular architectural structure and rationale. This is understanding which
designers have, but which is typically lost because it is not recorded. FR-Rapide is our
technology for FR representation of intentions implemented in the Rapide executable
ADL.

An example FR-Rapide representation captures how part of the Two-Phase Commit
protocol is implemented in a Rapide architecture. It incorporates understanding in
domains such as transaction processing, the X/Open standard, concurrent computing, and
distributed computing.

Specific contributions and accomplishments in this area include:

11

• An approach and examples for representing how intentions are implemented in
software architectures using multiple abstraction levels and domains.

• A prototype that answers questions and generates explanations of the architecture.

Benefits and applications include a practical means of recording and communicating
architecture intentions and their implementation, and tools which deliver and exploit
represented understanding, e.g. for applications such as browsing, documentation,
debugging, simulation, design verification, and rationale capture. Representing
architecture understanding benefits many evolution tasks using architecture and ADL's.

Appendix 13 gives detailed technical description of this work.

3.4. FR Applications for Legacy Software
Finally, our work addresses the vast quantity of existing real-world software - legacy
software. Legacy code is typically procedural, written in languages like Cobol and
Fortran, and not amenable to complete and correct formal specification. The legacy
software artifacts considered are primarily source programs.

Much software engineering consists of understanding legacy code, and performing
maintenance and evolution based on this understanding. Most existing representations of
such understanding are based on shallow syntactic understanding, e.g. a flow graph, or
are informal, e.g. documentation. We used Functional Representation to capture and
formalize deeper understanding of how abstract functionality is implemented in existing
code. This includes abstract views and explanation hierarchies for particular intentions,
automatic explanation, functional components, alternative implementations, and
reengineering processes.

This work was conducted in the specific context of human and automatic program
understanding and reengineering. For example, we showed how FR captures
understanding of how "read-process loop" functionality is implemented in the PAYDAY
program (see Appendix 11) and other example programs, and understanding of how it is
re-implemented when reengineering such code. In the case of human reengineering, this
shows FR's generality for capturing understandings needed in a complex task. In the
automatic case, this demonstrates FR's advantages for representing understanding and
knowledge used in understanding and reengineering tools.

FR-UNPROG is the technology for FR representation of understanding in the UNPROG
automatic program understanding and reengineering system. FR-Plans show how FR
subsumes and enhances various formulations of programming plans, including plans with
functional constraints and UNPROG plans.

Specific contributions and accomplishments representing understanding of legacy code
include:
• FR-UNPROG representation of original and reengineered understanding in PAYDAY

and other example programs.

12

• Examples of answering questions and generating explanations from FR-UNPROG
representations, demonstrating how understanding captured by FR can be exploited in
many tools and tasks.

Benefits and applications include capturing, formalizing and communicating previously
informal understanding, and tools and systems that exploit such captured understanding.
Appendix 11 contains technical details on the progress we have made in this problem.

3. 5. Summary of Results and Benefits
We believe that the project made considerable progress in both of the two related goals:
the development of a component-based software composition technology and exploration
of representations and use of software understanding in various software engineering
contexts.

A number of foundational issues were explored in software component research. How
algorithms can be recast to make them into reusable components, how iterators should be
abstracted and encapsulated, why and how abstraction relations are needed to verify
abstract data type representations, and relations between software components are some
of the issues we investigated. We have proposed that a robust software component
technology requires that the components be designed and composed following a
discipline that permits modular reasoning. We have developed arguments regarding why
reverse engineering of most legacy code is unlikely to be promising - it is costly to
understand legacy code sufficiently well to permit changes to be made safely and that,
unless reengineering adopts the kind of component design and composition that we
advocate, comprehensible reengineering will be unattainable.

On the software comprehension side, we have shown the utility of our models of
comprehension for a number of software engineering tasks. Here are examples of
answers that can be given using our representations, in each context:

In Component-Based Software:

Q: What do Queuelterator components do?

A: Queue_Iterator components produce successive items in a queue using operations
Startjterator, Finishjterator, Get_Next_Item and Is_Empty. The behavior and interfaces
of these operations are completely described by a specification based on a mathematical
model. Component code is guaranteed to implement this specification, regardless of the
programs which use and are used by this component.

In Requirements Engineering:

Q: What are the functional requirements that enable a customer to withdraw cash in the
environment of a bank ATM?

13

A: The environment must support the customer function of increasing his cash and
decreasing his balance by $w, subject to certain conditions such as the environment's
withdrawal limit. This requirement can be further decomposed into a plausible sequence
of state transitions and subgoals to satisfy the conditions.

In Software Architecture:

Q: How does the Rapide X/Open architecture ensure transaction consistency under the
Two-Phase Commit protocol?

A: The Transaction Manager decides whether the transaction is safe, then tells the
Resource Managers whether to finalize or rollback the transaction. This Poll-Decide
functionality is implemented by state changes controlled by the functions Poll-Decide-ok,
Poll-Decide-error, Commit and Rollback. The implementation of each of these functions
can be explained in more detailed models etc., leading ultimately to the distributed,
concurrent Rapide code.
In Legacy Software:

Q: What does legacy program part Input_Data_2 do?

A: It implements a "read-process loop" described by a specification for a sequence of
reading and processing data, given certain conditions. The implementation of Read,
Process, and Termination is described using other functions and program parts etc., based
ultimately on the Fortran code.

While our main results are representations that capture such software understanding, we
also investigated their consequences and uses. In each context, it is easy to see that
captured understanding is useful for:

• Formalizing and communicating understanding for human use
• Enabling more powerful software engineering tools and environments.

In many cases, we have shown that the needed understanding can be captured in our
representations. Where this is information that has not previously been represented,
except perhaps in natural language, there are obvious advantages in creating deeper, more
formal, and more machine-accessible descriptions of software artifacts. In other cases, we
have shown technical benefits of our approaches over existing representations.

Our work also has implications beyond the results in each software engineering context.
Taken together, it gives a broad picture of the interactions between software
understanding, design, understandability, tools, and information use in software
evolution.

14

Appendices

We are enclosing the following papers as appendices to the final report. They contain
technical details of the results summarized in previous pages.

1. Weide, B.W., Edwards, S.H., Harms, D.E., and Lamb, D.A., "Design and Specification
of Iterators Using the Swapping Paradigm," IEEE Transactions on Software Engineering
20, 8 (August 1994), 631-643.

2. Weide, B.W., Ogden, W.F., and Sitaraman, M., "Recasting Algorithms to Encourage
Reuse," IEEE Software 11,5 (September 1994), 80-88.

3. Zweben, S.H., Edwards, S.H., Weide, B.W., and Hollingsworth, J.E., "The Effects of
Layering and Encapsulation on Software Development Cost and Quality," IEEE
Transactions on Software Engineering 21, 3 (March 1995), 200-208.

4. Weide, B.W., Edwards, S.H., Heym, W.D., Long, T.J., and Ogden, W.F.,
"Characterizing Observability and Controllability of Software Components," Proceedings
4th International Conference on Software Reuse, IEEE, Orlando, FL, April 1996, 62-71.

5. Edwards, S.H., "Representation Inheritance: A Safe Form of 'White-Box' Code
Inheritance," IEEE Transactions on Software Engineering, 23, 2 (February 1997), 83-92.

6. Sitaraman, M., Weide, B.W., and Ogden, W.F., "On the Practical Need for Abstraction
Relations to Verify Abstract Data Type Representations," IEEE Transactions on Software
Engineering, 23, 3 (March 1997), 157-170.

7. Edwards, S.H., Gibson, D.S., Weide, B.W., and Zhupanov, S., "Software Component
Relationships," Proceedings 8th Annual Workshop on Software Reuse, Columbus, OH,
March 1997.

8. Weide, B.W., Heym, W.D., and Hollingsworth, J.E., "Reverse Engineering of Legacy
Code Exposed," Proceedings 17th International Conference on Software Engineering,
ACM, Seattle, WA, April 1995, 327-331.

9. Edwards, S. H., Modeling Modular Software Structure for Human Understanding,
Technical Report, The Ohio State University, Department of Computer & Information
Science, 1997.

10. B. Chandrasekaran and J. R. Josephson, Representing Function as Effect: Assigning
Functions to Objects in Context and Out, AAAI-96 Workshop on Modeling and
Reasoning with Function, August, 1996, Portland, OR. Also available as technical
report, LAIR, CIS Department, The Ohio State University, 1996.

15

11. Hartman, J. and Chandrasekaran, B., Functional Representation and Understanding of
Software: Technology and Application. Proc. 5th Annual Dual Use Technologies and
Applications Conference, Rome Lab, May 1995.

12. B. Chandrasekaran and H. Kaindl, Representing Functional Requirements and User-
System Interactions, AAAI-96 Workshop on Modeling and Reasoning with Function,
August, 1996, Portland, OR. Also available as technical report, LAIR, CIS Department,
The Ohio State University, 1996.

13. Hartman, J. and Chandrasekaran, B. Functional Representation of Executable
Software Architectures, Technical Report, Laboratory for AI Research, CIS Department,
The Ohio State University, Dec 1995.

16

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL! 20, NO. 8, AUGUST 1994
631

Design and Specification of Iterators
Using the Swapping Paradigm

Bruce W. Weide, Member, IEEE, Stephen H. Edwards, Douglas E. Harms, Member, IEEE, and
David Alex Lamb, Senior Member, IEEE

Abstract—How should iterators be abstracted and encapsulated
in modern imperative languages? We consider the combined
impact of several factors on this question: the need for a com-
mon interface model for user defined iterator abstractions, the
importance of formal methods in specifying such a model, and
problems involved in modular correctness proofs of iterator im-
plementations and clients. A series of iterator designs illustrates
the advantages of the swapping paradigm over the traditional
copying paradigm. Specifically, swapping based designs admit
more efficient implementations while offering relatively straight-
forward formal specifications and the potential for modular
reasoning about program behavior. The final proposed design
schema is a common interface model for an iterator for any
generic collection.

Index Terms—Common interface model, formal specification,
iterator, modular reasoning, program verification, proof of cor-
rectness, swapping

I. INTRODUCTION

AN iterator is an abstraction that supports sequential
access to the individual items of a collection, without

modifying the collection. Although some "academic" lan-
guages (most notably Alphard [16] and CLU [13]) include
special language constructs for iterators, and others have
been proposed [3], the most widely used modern imperative
languages, such as Ada and C++, offer no special support
for iterators. In these languages, iterators must be designed
and encapsulated using the same mechanisms that are used
for other user-defined abstractions: types, procedures, and
packages/classes/modules. This paper discusses why previ-
ously published iterator designs are unsatisfactory in several
respects, and considers the combined impact of several recent
advances on the potential for improvement.

One such development is the proposal by Harms and Weide
[9], [19] that swapping should replace copying as the primary

Manuscript received August 12, 1992; revised March 1994. The work of
the first two authors was supported by the National Science Foundation under
Grants CCR-9111892 and CCR-9311702, and by the U.S. Department of
Defense Advanced Research Projects Agency (ARPA) under ARPA Contract
F30602-93-C-0243, monitored by the U.S. Air Force Material Command,
Rome Laboratories, ARPA Order A714. Recommended by M. Moriconi.

B. W. Weide and S. H. Edwards are with the Department of Computer and
Information Science. Ohio State University, Columbus, OH 43210 USA; e-
mail; weide@cis.ohio-state.edu. edwards@cis.ohio-state.edu.

D. E. Harms is with the Department of Mathematics and Computer Science,
Muskingum College. New Concord. OH 43762 USA; e-mail: harms @musk-
ingum.edu.

D. A. Lamb is with the Department of Computing and Information Science,
Queen's University,. Kingston, ON K7L 3N6 Canada: e-mail: dalamb@
qucis.queensu.ca.

IEEE Log Number 9403568:

data movement mechanism in imperative programs. In the
swapping style of programming, the usual assignment operator,
:=, disappears. (Of course, copying still can be achieved by
calling a procedure to do it.) The universal method of data
movement becomes the swap operator :=:, which exchanges
the values of its two operands. This subtle change leads to
several advantages for designing and implementing generic
reusable software components, including improved efficiency
and simplified modular reasoning about program behavior. The
swapping paradigm is especially valuable when dealing with
potentially large and complex data structures that represent
collections of items—just the situation in which iterators are

normally used.
In other recent work, Edwards [4] proposes that the swap-

ping paradigm might be applied to the design and implemen-
tation of iterators. He also addresses a serious problem facing
software component designers, i.e., developing interface mod-
els that simplify component composition. Tracz [18] discusses
an example involving what Edwards [5], [6] notices is an itera-
tor. Edwards defines a common interface model informally (see
[7] for a formal treatment) as a convention, shared by designers
of piece-part families and their potential clients, for how the
plugs and sockets of plug-compatible software components
are supposed to work. It includes not only parameter profiles
of operations but also a shared understanding of the abstract
behavior of those operations.

A third recent development is the development of formal
trace specifications for iterators by Lamb [12] and by Pearce
and Lamb [15]. These papers clearly explain the need for, and
difficulties in, formal specification of iterators. Two related
aspects of this issue that must be faced when defining a
common interface model are, How should the abstract behavior
of an iterator be designed so that all relevant features can be
formally specified, and how can we use this specification to
reason about program behavior? Especially in a component-
based system, this reasoning must be modular; i.e., it must
be possible to reason about the correctness of the iterator
implementation independently of each client program, and vice
versa. The crucial importance of, and difficulties with, modular
verification of realistically large software systems in modem
languages with data abstraction are noted by Ernst et al. [8]
and Hollingsworth [10], among others.

Previous work on iteration over the elements of a composite
data structure, summarized nicely by Bishop [1], has not
considered together efficiency with respect to copying, the
need for formal specification of a common interface model.

oo98-5589/94$o4.oo © W94 IEEE Reprinted with permission.

17

632
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8. AUGUST 1994

and the importance of modular reasoning about correctness in
the design of iterators. This paper therefore has the following
related objectives:

1) To show how to design an iterator in the swapping par-
adigm, which permits a most-efficient implementation,
i.e., one that does not copy either items of the collection
or the collection's representation data structure;

2) To give an abstract model-oriented specification of an
iterator for a particular abstract collection of items, so the
iterator's abstract interface is clearly and unambiguously
defined;

3) To explain how this specification supports modular rea-
soning about the behavior of the iterator implementation
and its clients, and modular verification of programs
involving iterators; and

4) To demonstrate how the design can be generalized
to lead to similar iterators for any abstract collection,
thereby promoting composability of components.

This paper is, in effect, a proposal for a common interface
model for a large class of iterators. A superficial examination
of this model suggests that it is not much different from
previously published iterators. In fact, however, our designs
resemble others, primarily in having similar names for the
operations. The behavior of these operations—both in func-
tionality and performance—is subtly but importantly different.

Section II begins with a review of past work on iterators
and notes the problems with previous designs. We also review
the swapping paradigm and the RESOLVE notation for formal
specification, and introduce a simple example that forms the
basis for development of a simple iterator: a first-in, first-out
(FIFO) queue abstract data type (ADT). Section III explains,
step-by-step, how to arrive at the design of an acceptable
swapping-style iterator for this ADT. It addresses objectives
l)-3) above for each candidate design along the way. Finally,
Section IV discusses variations and extensions, and shows how
the method used for the simple FIFO queue example can be
generalized to a schema for specifying iterators for arbitrary
collection types. All iterators designed using these principles
share a common interface model, which can serve as the basis
for interfaces exported by Ada generic packages and C++
class templates, among others. Example code for two typical
client operations is provided in the Appendix.

II. BACKGROUND

This section discusses the features required of an acceptable
iterator design, the rationale for limiting the discussion to
user-defined abstractions (as opposed to built-in language
constructs that support iterators), relevant details of the swap-
ping paradigm, and our approach to, and notation for, formal
specification. Throughout the discussion, we refer to the client
(respectively, "client program" or "client code") and to the
implementer (respectively, "implementation"). The former is
the programmer (respectively, program) that uses the abstract
iterator concept. The latter is the programmer (respectively,
program) that realizes the iterator abstraction in the form of
an executable code.

A. Iterators

The simplest kind of iterator permits a client program to
examine (i.e., to execute some piece of code for) each of the
items of a collection without modifying the collection as a
side effect of iterating over it. The items are presented to the
client in some order that is based on the collection abstraction.
Examples include enumerating and accumulating information
about the items in a set, printing all the items in a tree, and
copying a FIFO queue. There is no natural order for iterating
over the elements of a set (any order will do), but there are
several useful presentation orders for trees and an obvious
natural order for a FIFO queue.

There are various more complex iterators and possible uses
for them. For example, we might wish to be able to exit early
from an iteration based on satisfaction of some condition, to
have some control over the order of iteration or to leave it
entirely unspecified and up to the implementer's discretion; or

■ we might wish to change the original collection or its items
while iterating over it. We begin by considering the simplest
case described above, and discuss more complex cases in
Section IV. A review of past work suggests that there are
two subtle aspects of even the simplest iterators.

1) Correctness: It should not be permissible for a (correct)
client program to iterate over a collection while inter-
leaved operations on that collection might be changing
it. We call this property noninterference.

2) Efficiency: It should be possible for a client program to
iterate over a collection without copying the data struc-
ture that represents the collection and without copying
the individual items in the collection.1

Correctness: Recognition of the relationship between non-
interference and the modular verification of correctness dates
back to attempts to verify Alphard programs involving iterators
[16]. Programmers using one of Alphard's iterator constructs
are advised to consider noninterference to be a restriction
on its use, but no formal proof obligation is raised during
verification. Proof rules should permit local verification of
an implementation and its client programs, but this cannot
be achieved without an assurance of noninterference, either
through restriction by language syntax or by the presence of a
noninterference proof obligation. Alphard, like other languages
with iterator constructs, offers neither.

In an attempt to deal with noninterference in user-defined
iterator abstractions, Booch [2] and Bishop [1]- suggest classi-
fying iterators into two categories, which Booch calls active
and passive: An active iterator is a module that exports
an iterator type and associated operations and permits a
client to build iteration loops with standard control constructs,
e.g., while loops. The main difficulty with this approach is
that such a loop body may also contain calls to operations
that manipulate the collection over which iteration is being
done; this is precisely the problem with Alphard's and other
language-supplied iterator constructs. By contrast, a passive
iterator effectively encapsulates the iteration loop in a single

1 In the special case that copying a collection is the purpose of iterating
over it, all copying should take place in the client code that is executed for
each item.'Copying should not be inherent in the iterator itself.

"18

WEIDE el at: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM 633

procedure, which is parameterized by an action that would
be the loop body in an iteration using an active iterator. The
argument is that in this case there is no (obvious) way for a
client to interleave operations that change the collection with
those iterating over it, because the latter are encapsulated in
the passive iterator procedure.

Unfortunately, passive iterators suffer from their own seri-
ous problems, discussed in detail by many authors [1], [2],
[4]. From the standpoint of reusability, they are far less
flexible than active iterators. For example, a client can iterate
simultaneously over multiple collections with an active iterator
(see the appendix), but not with a passive one. In the face of
formal specification and the need for modular verification, the
nature of the action procedure's effects and side effects' must be
formally specified and proofs modularized. It is not clear how
to do this. Moreover, a client still can violate noninterference
by, for instance, declaring a collection to be global to the
iterator's action procedure and interfering with the iteration
by manipulating that collection surreptitiously. The coup de
grace for passive iterators from the standpoint of reuse is the
observation that an implementation of a passive iterator can
be layered easily on top of an active one, but not vice versa.

Therefore, we follow the above-cited papers in concentrat-
ing on designs for active iterators. However, we insist that
clients observe the noninterference property and be modularly
verifiable, which necessarily makes our designs different from
previous ones. That is, like Lamb [12], we write our formal
specification so that noninterference must be observed by a
correct client program. A proof obligation involving noninter-
ference is raised in the client that can and must be discharged
in a provably correct client program.

By contrast, Booch [2] points out that his iterator designs
are relatively unprotected from client abuse. Indeed, nothing
but self-discipline prevents a dient from altering a collection
during iteration over it. The same is true for Bishop's designs
[1]. Several methods for repairing this shortcoming are pro-
posed by Edwards [4]; but like Booch and Bishop, he does
not deal explicitly with formal specification or the need for
a framework for modular verification. These objectives drive
many of our design decisions and account for the differences
between Edwards's designs and the ones we propose here.

Efficiency: Although noninterference has long been seen as
a problem with iterators, Edwards [4] was the first to recognize
the inefficiency inherent in both published iterator abstractions
and language constructs. All previously published designs for
iterators (i.e., those before Edwards's papers [4]-[6]) include
a function called, e.g., Value.Of. This returns to the client a
copy of the next item from the collection.

The execution-time cost of such copying is troubling if the
representations of the items in the collection are themselves
large, complex data structures. As noted by Harms and Weide
[9], the typical method of avoiding this expense—copying

. only a reference (pointer) to an item, äs with the designs
recommended by Booch [2] and Bishop [1]—creates even
more serious problems from the standpoint of our objec-
tives. It significantly "complicates formal specification and,
practically speaking, thwarts modular verification [8], [10].
This formal-proof difficulty has practical consequences: It

means that human understanding of, and informal reasoning
about, program behavior is much harder than it should be.
Replacing copying by swapping is both efficient and amenable
to tractable formal specification and modular proof rules, and
hence to easier understanding of program behavior. This is the
reason why we prefer the swapping paradigm for our designs.

Another efficiency issue is noted by Edwards [4] and by
Lamb [12]. Achieving optimum performance of an iterator
generally requires that the implementer of an iterator have
access to the underlying representation of the collection.
However, this is not essential solely to obtain the required
functionality of an iterator, if the operations on the collection
abstraction are sufficiently powerful [4], [9], [19].

B. Language Features and User-Defined Iterator Abstractions

Alphard [16] and CLU [13] have built-in iterator constructs,
and Cameron [3] proposes some elegant variations. Here we
concentrate on designing iterators as user-defined abstractions
in languages that do not include special constructs to support
iterators, and we do not further consider possible language
support for our designs. There are three reasons for this. First,
the practical successors to Alphard and CLU (e.g., Ada and
C++) simply do not support iterators directly, so there is
clearly a need for a design approach that does not rely on
special language support. Second, even with language support,
one needs to define formally a common interface model
for iterators if a high degree of composability of software
components is to be expected [5], [6]. Finally, none of the
proposed language mechanisms satisfactorily addresses the
problem of noninterference and the need for modular reasoning
about program behavior, or the inefficiency of copying.

C. The Swapping Paradigm

The swapping style of software design [9], [19] differs
from the conventional copying style in using swapping (and
the swap operator :=:) to replace copying (and the standard
:= operator). It is based on two observations about generic
modules, e.g., Ada generic packages. First, items whose types
are parameters to generic modules might have large data struc-
tures as their concrete representations. These items therefore
might be expensive to copy. Second, an attempt to overcome
the cost of copying the abstract values of such items by
copying references to them inevitably leads to difficulties in
establishing program correctness by modular reasoning. This
in turn frustrates both the clients of an abstraction and main-
tainers of its implementations. Therefore, it is advantageous
to design the abstract interface of a generic component so that
an implementation can achieve data movement by swapping
(exchanging) the abstract values of any two variables of the
same type, rather than by copying abstract values (destroying
old values and duplicating new ones) or by copying references
to abstract values.

Harms and Weide [9], [19] and Hollingsworth [10] propose
detailed principles to help designers create generic reusable
software components in the swapping style. For example,
consider the operations on collection types such as a Queue
of Items. Insertion operations such as Enqueue should permit

iy

634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 8. AUGUST 1994

concept Queue_Template
context

parametric context
type Item

interface
type Queue ia aodoled by atring of math [Item]

exemplar <j
initialization

ensure* q = eapty_string
operation Enqueue (

alter a q: Queue
conaumaa x: Item)

ensures q = #q * <#x>
operation Dequeue (

altera q: Queue
produces x: Item)

requires q /= enpty.string
anaurea <x> * q = #q -

operation Is_Empty (
preserves q: Queue): Boolean

anaurea Ig_Empty iff q = empty_atring
end Queue_Template

Fig. 1. FIFO queue specification.

implementations that swap Items into the structure. Inspec-
tion or removal operations such as Dequeue should permit
implementations that swap Items out.

A particularly instructive example is an Array of Items
ADT. The (single) primary operation should take an Array, an
index, and an Item, and swap the indexed element with that
Item. The usual fetch and store become secondary operations
using this primitive. That is, they can be implemented with
an insignificant performance penalty by layering on top of the
primary swap-based operation if they are really needed, and
in most clients they are not [9], [19].

D. Formal Specification

The main example we use throughout the rest of this paper
is a FIFO queue abstraction. The formal specification of the
Queue-Template concept in a dialect of RESOLVE [9], [17],
[19] is shown in Fig. 1.

A concept specifies a generic abstract module consist-
ing of two parts: context, which spells out the informa-
tion needed to complete the specification, and a description
of the exported interface. The conceptual context of
Queue-Template is provided through a generic parameter, an
ADT called Item. The concept exports an ADT called Queue
and primary operations to Enqueue and Dequeue Items and to
test if a Queue IsJEmpty. This is a model-based specification
in which a Queue is modeled as a mathematical string of (the
mathematical model of) Items. String theory notation includes
(x), where a; is an Item, which denotes the string containing
the single Item x; and a*b, where a and 6 are strings, which
denotes the string obtained by concatenating a and 6. Initially,
a variable of type Queue is empty; i.e., its model is the empty
string, denoted by empty-String!

The notation used in ensures clauses (postconditions) is
that a variable stands for the value of its mathematical model
at the conclusion of the operation; the variable prefixed with
(pronounced "old") stands for the value of the variable's
mathematical model at the start of that operation. The # prefix
is not needed or used in requires clauses (preconditions),
where all variables denote values at the start of the operation.

The parameters' modes are used to simplify specification,
and have nothing to do with the mechanism for passing
parameters [9]. Mode alters, means the argument replacing
this formal parameter may be changed as a result of the call;
how it is changed is stated explicitly in the postcondition,
which generally relates that variable's new value to its old
value and to the values of other formal parameters. Mode
preserves means the argument's value at the conclusion of
the operation is the same as it is at the start of the operation.
For example, in operation Is_Empty, there is no need to say
explicitly in the postcondition q = #q. Mode consumes
means the argument's value is changed to an initial value for
its type. For example, consuming a variable of type Queue
would make it equal empty_string, while consuming an
Integer would make it 0 (assuming the initial value for Integers
is 0). Finally, mode produces means that the argument's
value may be changed by the call, but its value at the beginning
of the call has no influence on the operation's behavior.

Lamb [12] and Pearce and Lamb [15] use trace specifica-
tions for iterators. In this paper, we use model-oriented specifi-
cations like the one above. Model-oriented specifications seem
well suited to designs based on swapping, have seen relatively
widespread use in practice (e.g., Larch and Z), and are rather
easily understood, even by those not intimately familiar with
the wide variety of formal specification techniques currently
in use [17], [20]. They also have been used in proof systems
for modular verification of implementations and clients [8].

At the risk of seeming to apologize for writing formal
specifications, we note in advance that the formal specification
of the final iterator design we propose is not as short or as
simple as we might have hoped. We believe this is due to the
moderately complex behavior that the specification describes,
inherent in iterators, and not to a serious shortcoming with
either the specification notation or with our choice of how to
specify iterators in that notation. We know of no comparably
complex behavior specified in any formal way that does
not look at least as imposing. The question arises, though,
whether real programmers can be expected to understand
such a specification, and, if not, what value it has. Others
already have answered this somewhat loaded question [17],
[20]. But we would add that the importance of programmer
understanding of formal specifications only underscores the
need for a common interface model for iterators that, once
understood after, say, a careful reading of this paper, leads to
rapid understanding of an entire class of structurally similar
specifications [6]. We also note that even if most client
programmers could understand iterators from only derived
metaphorical descriptions and examples and could not read
the formalism itself, then a formal specification still would
serve an important role as the legal contract between imple-
menter and client against which formal verification could be
performed by experts or mechanical provers.

HI. DEVELOPMENT OF AN ITERATOR FOR A QUEUE

The goal of this section is to develop a design approach
that applies to iterators for any type of collection of any type
of item. We create an iterator for the generic Queue type of

-TXT

'EIDE et al.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM
635

lection II, then generalize in Section IV. The presentation in
his section is incremental. In each step, we present a proposed
lesign of the iterator and sample client code that uses it, then
liscuss it, critique it, and propose a new design, until the
inal design achieves the stated objectives. The development
proceeds as follows:

• Design #1: Attack problem (1) from Section II-A, i.e.,
noninterference and modular verification of correctness.
We define a companion type Iterator for type Queue
with operations that support iteration over a Queue. The
idea of this step is to make noninterference a nonissue
and thereby permit modular correctness proofs. The chief
problem with this design is that it is based on the copying
paradigm and therefore is inherently inefficient. In fact,
Design #1 might look like a straw man to some readers;
after all, no one really designs iterators this way. But
that is precisely the point: To enforce noninterference and
achieve modularity of correctness proofs, designs based
on the copying paradigm must sacrifice efficiency. Other
real iterator designs attempt to achieve some degree of
efficiency at the expense of assured noninterference and
proof modularity. Design #1 illustrates that the trade-off
might be made in the other direction. It also serves as the
basis for better designs to follow.

• Design #2: Attack problem (2) from Section II-A, i.e.,
efficiency with respect to copying. We revise Design
#1 to use swapping. The purpose of this step is to
permit an implementation of an iterator that still demands
noninterference and supports modular verification, yet
does not need to copy either the data structure that
represents the Queue or any of the Items in it. The main
problems with Design #2 are that it is cumbersome to
write a loop invariant to demonstrate the correctness of a
typical client program, and that some swapping-paradigm
principles still are not completely observed.

• Design #5: Add some abstract state information to the
model of the Iterator type to remedy the verification
problem above, and change the operations slightly to
take advantage of it. The purpose of this step is to
facilitate client correctness proofs and to achieve closer
adherence to swapping paradigm design principles. This
design achieves all the stated objectives. A generalization
that handles arbitrary collections and various extensions
is presented in Section IV.

A. Design #/
First, we define a companion type Iterator for the type

Queue. This new type has its own operations that support
iteration over a Queue. Typical client code involves two steps:
Transfer the Queue value into an Iterator variable; then iterate
over that variable, not over the original Queue. .

An appropriate mathematical model of an Iterator is (like
a Queue) a string of Items.2 This string records the order in
which the Items are to be processed during iteration. Here

■2An Iterator- is not modeled by a Queue, because in our model-based
specification framework, an ADT's model is always a mathematical object,
not another program object.

concept Queue_Iterator_Template
context

global ' context
Queue_Template

parametric contaxt
typ« Item
facility Queue_Pacility is

Queue_Template (Item)
intarfac«

type Iterator i» modeled by string of math[Iteml
examplar i
initialization

•nauraa i = empty_string
operation start_Iterator (

produces i: Iterator
preserves q: Queue)

. ensures i - q
operation Finish_Iterator (

consumes i: Iterator)
operation Get_Next_Item (

alters i: Iterator
. produces x: Item)

requires i /= empty_string
ensures <x> * i = #i

operation Is_Empty (
preserves i: Iterator): Boolean

ensures Is_Empty iff i = empty_string
end Queue_Iterator_Template

Fig. 2. Queue -Iterator Design #1.

we choose this to be the order in which the Items would be
Dequeued from the original Queue. Other orderings can be
specified easily by changing the postcondition of Start-Iterator,
and, for some representations of type Queue, other orderings
can be implemented as easily as the natural order. (See also
Section IV.) The specification for Design #1 is shown in Fig.
2.

Discussion: Design #1 involves a specification mechanism
called a facility parameter. A facility is an instance of
a (generic) concept. In this case, QueueJterator.Template
is parameterized by type Item, and by an instance of
Queue-Template called Queue-Facility, which exports a Queue
(of Items) ADT and associated operations.

As noted earlier, we should be able to layer the implemen-
tation of an iterator on top of the corresponding collection
abstraction, so that the new code respects the collection
abstraction, and this could be done here [9], [14], [19]. How-
ever, there are potential order-of-magnitude efficiency gains
if the underlying collection and the iterator are implemented
together as a single program unit with shared knowledge of
the collection and iterator representations. We specify such a
composite concept in Fig. 3.

Queue.With-Iterator-Template is a concept that exports the
combined interfaces of Queue-Template and Queue .Iterator-
Template. The local context section in Fig. 3 simply
ties down the parameters of these two generic abstractions,
so the combination of interfaces is what we require from the
strong typing standpoint. This is the RESOLVE mechanism
for specification or interface inheritance [11]. In subsequent
discussions of efficiency of iterator operations, we refer to the
direct implementation of Queue.With.Iterator-Template from
Fig. 3.

Here is a sample of client code for iteration using Design

■ Start-Iterator (i, q)

21

636 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 8, AUGUST 1994

concapt Queue_With_Iterator_Template
context

global contaxt
Queue_Template
Queue_Iterator_Template

paraaatric contaxt
• typa Item

local contaxt
facility Queue_Facility ia

Queue_Template (Item)
facility Queue_Iterator_Facility ia

Queue_Iterator_Template (Item, Queue_Facility)
intarfaca

ra-axporta
Queue_Fac i 1 i ty
Queue_Iterator_Facility

and Queue_With_Iterator_Template

Fig. 3. Queue.WithJterator Specification.

while not Is.Empty (i) do
Get-Next.Item (i, x)
(* code to process x .*)

end while
Finish-Iterator (i)

It is evident from the sample code that Design #1 achieves
noninterference by defining it away. The original Queue q
is -completely separate from the Iterator i. The Start Jterator
operation protects q from being changed during iteration. If
the code in the loop body of the sample code manipulates q,
there is no interference with the iteration. Similarly, changes
to x in the code to process x do not influence either q or i.
Therefore, it is acceptable for a client program to manipulate
q inside a loop that is iterating over i, even if i was obtained
from q.

Critique: Noninterference is assured here only at the cost
of efficiency. Design #1 effectively forces an implementation
of Start Jterator to copy q into i. The reason is that simply
copying a reference to q or references to its Items creates
aliases, and hence cannot preserve the independence of the
abstract values of q and i [9], [10]. It is impossible to prove
that such an implementation of Queue.With-Iterator-Template
is correct outside the context of a client program, because
the client program might manipulate q or its Items through
these aliases. The only way to create a modularly verifiable
implementation for Design #1 is to copy q (including all of
its Items).

However, a clever implementation of Queue_With Jterator.
Template might defer copying the data structure that represents
q (but not its Items), as long as there are no calls to Enqueue
or Dequeue on the original Queue q during an iteration over
i. It can keep enough internal state as part of a Queue
representation to recognize that in the abstract view of these
operations, q supposedly has been copied into an Iterator
i. It can determine whether an iteration is in progress by
monitoring whether the call to Start Jterator has been matched
by a bracketing call to Finish Jterator. If a call to Enqueue
or Dequeue occurs during an iteration, the copy of q's data
structure can be made at thai time. Supporting this kind of
implementation is the only real reason for the FinishJterator
operation in Design #1. In the worst case, though, copying
of q is still necessary.

concept Queue_Iterator_Template
conceptual contaxt

Bltl
Queue.Template

parametric context
type Item
facility Queue-Facility ia

Queue-Template (Item)
interface

type family Iterator ia modeled by (
future: atring of math[Item]
present: mathtltem]
original: atring of math[Item])

exemplar i
initialization

enauree i. future = empty—String and
is-initial (i.present) and
i. original = empty.string

operation Start-Iterator (
produces i: Iterator
oonaumea q:. Queue
producea x: Item)

ensures i. future = #q and
i. present = x and
i.original = #q

operation Finish-Iterator (
consumes i: Iterator
produces q: Queue
consumes x: Item)

requires i.present = x
ensures q = #i. original

operation Get_Next_Item (
altars i: Iterator
alters x: Item)

requires i.future /= empty_string and
i. present = x

ensures <x> * i.future = ti.future and
i.present = x and '
i.original = #i.original

operation Is_Empty {
preserves i: Iterator): Boolean

ensures Is_Empty iff i. future = empty_string
end Queue—Iterator—Template

Fig. 4. QueueJterator Design #2.

We again note that nearly all previously published iterator
designs do not force copying of the data structure representing
the collection, but they do force copying of its Items in the
course of iterating. In such designs, the counterpart of Get-
Next Jtem is a function that returns a copy of the next Item in
the collection. Again, a modularly verifiable implementation
may not make this copy cheaply by creating an alias to the
Item. These problems are intrinsic to the copying paradigm
[9], [19].

B. Design #2

Design #1 can be changed to use the swapping paradigm.
The reason for doing this is to permit an implementation that
does not need to copy either the data structure that represents
the Queue or any of the Items in it. Two key ideas make this
approach workable.

The first is a change to StartJterator and FinishJterator.
StartJterator can be modified so that an implementation can
move the original Queue into the Iterator object, and the
matching call to FinishJterator can move the Queue back.
This design relieves the implementer from responsibility for
copying the data structure the represents the Queue. Moving
arbitrarily large data structures in this way can be accom-
plished in constant (uniformly bounded) time with swapping
[9].

22

WEIDE «oA: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM
637

The second idea is to define Get-NextJtem so that its
implementation does not need to return a copy of the Item
to the client, but can swap it out. This is possible if the client
is required to pass that Item back (unchanged) in the next call
to Get_NextJtem. In this case, the implementation can simply
put the Item back into the Queue data structure, and swap out
the next one to return to the client. The only real hurdle is to
get the boundary conditions correct, so that the first and last
calls to Get-NextJtem are not special cases.

The mathematical model of an Iterator becomes an ordered
triple: a string of Items (called future) serving the same
purpose as the model in Design #1, a single Item (called
present) that records the Item value currently held by the client,
and a string of Items (called original) that records the value of
the original Queue. The complete specification for Design #2
is shown in Fig. 4, where the predicate is-initial means
that its argument has an initial value for its type.

Discussion: Below is a sample of client code for iteration
using Design #2.

Start-Iterator (i, q, x)
while not Is_Empty (i) do

Get-Next-Item (i, x)
(* code to process x without
changing i or x *)

end while
Finish-Iterator (i, q, x)

Why is this specification so much more complex than Design
#1? How does it permit the implementer to avoid copying the
Queue data structure and its Items? How can a client check
the preconditions of the Get_NextJtem and FinishJterator
operations? We answer these and other questions below by
considering how to implement Queue_WithJterator_Template.

Fig. 5 traces an example of the effects of the sample client
code segment above. It shows both the abstract models of
i, q, and x (to illustrate the abstract behavior), and the critical
aspects of possible concrete representations for i and q (to
support performance claims). In this case, q is a Queue of
Integers,3 mathematically modeled as a string of mathematical
integers; strings are shown between (). Fig. 5 also shows a
typical Queue representation, which is a record containing two
fields: / points to the front node of the queue and r to the rear.
The representation of an Iterator is identical, except that there
is an additional field in the representation record: p points to
the node whose Item is presently held by the client (if any).
These concrete representations are only illustrative; others also
would achieve the claimed performance.

In the top row of Fig. 5, just before execution of the
sample client code begins, i and x might have any values. For
example, i might have an initial value for type Iterator and x
might be 17, as illustrated. The value of x before Start Jterator
is immaterial; it is just a priming value, and the specification
does not say exactly what Start Jterator (g,'vz) returns in
x. But note that {.present records that value; see the second

. 'This makes it easy to understand the operation of the iterator, but it also
makes the example too simple to illustrate the importance of not copying an
Item, which might be a far more complex type than Integer! We opted for
ease of understanding in choosing the example.

row of Fig. 5. The next three rows show the situation after
the three calls to Get-NextJtem that occur in the case that the
original q is modeled by the three element string (9 6 90).
The value öf x after the call to FinishJterator is 0, because
the specification says that operation consumes x.

One aspect of Fig. 5 might seem mysterious: Why are there
top-level pointers to the records representing an Iterator and
a Queue? These pointers are not strictly necessary in order to
achieve the claimed performance; swapping of Iterators and
Queues still would require only constant time, even without
this extra level of indirection. However, it is important for
implementing swapping in a uniformly bounded time, and
for code-sharing among instances of generics, as noted in
[9].

In the abstract explanation of Start Jterator, the original
value of q is remembered in i.future, from which Items sub-
sequently are to be dispensed to the client by Get-Next Jtem.
An implementation of StartJterator in Design #2 need not
copy the original Queue data structure in order to achieve this
effect. It can acquire the original value of q by swapping.
StartJterator is designed to consume q in order to support this
implementation.

On first reading, it might appear that StartJterator should
have to copy q in order to satisfy the postcondition clause
i.original = #q. This also is not the case, because
{.original is part of the abstract state of an Iterator. There is
no implication that the concrete representation of an Iterator
must explicitly include {.original, and indeed none of the
other operations demands that {.original actually be kept
for correct execution, as explained below. Adding an adjunct
variable (a variable that participates in proofs but not in exe-
cutable code) to the Iterator representation enables us to write
a formal correspondence relation between the representation
and abstract values [10].

Similarly, the postcondition clause i.present = x in
StartJterator means that the Item value returned to the client
in x is remembered as part of the Iterator's state. But as above,
this does not require copying, because {.present is only part
of the abstract state of an Iterator and need not be represented
concretely, unless some operation's implementation calls for
that; none does here.

Similarly, Get_NextJtem need not copy an Item. Its precon-
dition i . present = x requires that the client pass in as x an
Item equal to the one most recently returned by StartJterator or
Get-NextJtem. The implementation can merely put this value
back into the Queue data structure (in the node referenced
by field p in Fig. 5) and return the next Item by swapping
it out of the structure. Again, there is no need for copying,
because the Item returned must be passed back in the. next
call to Get-NextJtem, and so on.

When iteration is completed, the client calls FinishJterator.
This operation's precondition requires that the client give back
the one outstanding Item (whose value is {.present), at which
point the implementation has the entire data structure and all
the Items in the original Queue. It simply swaps this with
parameter q to achieve the stated postcondition.

A point worth noting is that no code in the client or in
the implementation checks the clause i.present=x at the

23

638
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 8. AUGUST 1994

abstract values
of i, q, and x

i = (< >, 0, < »)
q = < 9 6 90 >
x=17

Start Iterator (i, q, x)

c
repr

r=

snerete
ssentation
of 1 f p r

concrete
representation

of q f r
 *1/l/l/l -\ ►k l

9 6 90

i = (< 9 6 90 >, 0, < 9 6 90 >)
q = , >
x = 0

Get Next Item (i, x)

—*Z^ /I, *" / /

9 6 90

f

i = (< 6 90 >, 9, < 9 6 90 >)
q = < >
x = 9

Get Next Item (i x)

rfc^- / —►/!/

0 6 90

f

i = (< 90 >, 6, < 9 6 90 >)
q = , >
x = 6

Get Next Item (i, x) '■

r=i r=i —*a^ / i . i —*1/L^

9 0
w FT 90 |

i = (< >, 90, < 9 6 90 >)
q = < ,
x = 90

Finish Iterator (i, q, x)

s r=\ —■> - 1 1,1 —*-/l/l

9 6 0

t

i = (< • , 0, < .)
q = < 9 6 90 >
x = 0

—w- —►^

9 6 90 1

Fig. 5. Sample execution for design #2.

beginning of a call to Get-Next Jtem or Finish .Iterator. In
fact, because there is no operation that reveals the value of
i.present, a client or an implementer cannot write such
code without copying Items. Thus, the only means for a client
to be sure that no preconditions are violated is to be able to
prove that the code to process x does not change x.

Without the precondition on Get_NextJtem and
FinishJterator, no such proof obligation would be raised in an
arbitrary client program. Although it then might be possible to
verify a particular use of the swapping-based implementation,
there would be no way to separate a proof of correctness of
the implementation from that of the client program. Therefore,
we could not prove the correctness of this implementation in a
modular fashion, and we could not declare the swapping-based
implementation of Queue JteratorJIemplate to be correct out
of the context of a particular client. The feasibility of such a

modular correctness proof was one of the primary objectives
of our design.

Critique: Although Design #2 has a more complex specifi-
cation than Design #1, its swapping-based implementation
is straightforward and efficient. However, experience using
the specification of Design #2 suggests some minor changes.
Most importantly, with Design #2, it is cumbersome to show
in the sample client program that the code to process x actually
is executed for every item in the original Queue q. The proof
relies on a loop invariant that keeps track of the Items that
have been processed and relates them to the Items in i.future
and the original Queue. It is possible to introduce an adjunct
variable for each loop to keep track of the processed Items,
but it is more convenient to include support for this in the
specification. This and other minor modifications are discussed
in the next section.

24

WEIDE aal.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM
639

and
(i.present) and
empty-String and
3 empty-String and
(i.deposit)

ooncapt Queue_Iterator_Template
eonoaptual context

VIII
Queue_Template

paramatric context
typa Item
facility Queue-Facility 1«

Queue-Template (Item)
.Interface

type family Iterator la modeled by (
past: «trios of mathlltem]
present: math[Item]
future: string of mathlltem]
original: string of mathlltem]
deposit: mathlltem])

exemplar i
Initialization

ensures i.past = eavpty_string
la_lnltial
i.future =
i. original
ia.lnltial

operation Start-Iterator (■
altere i: Iterator
consumes q: Queue

i x: Item)
i«_initial li)
i.past = 'empty_atrlng and
i. present = x and
i. future = #q and
i.original = #q and
i.deposit = #x

operation Finish_Iterator {
consumes i: Iterator
produces q: Queue
altere x: Item)

requires i.present = x
ensures q = #i-original and

x = #i.deposit
operation Get_Next_Item (

altars i: Iterator
c: Item)
i.present = x and
i.future /= empty_etrtng
i.past = »i.past * <x> and
i. present = x and
<x> • i.future - *i.future •
i.original = #i.original ax
i.deposit = #i.deposit

operation IS-Empty (
preserves i: Iterator) : Boolean

ensures Is_Empty Iff i. future
end Queue_Iterator_Template

requires
ensures

altars
requires

ensures

empty_strlng

Fig. 6. QueueJterator Design #3.

C. Design #3
In Fig. 6, we add to the abstract model a field (called past)

that records the Items that have been returned to the client
through Get .Next Jtem, and a field (called deposit) that records
the priming Item that the client passed into the first call to
Start Jterator. We also add a precondition to StartJterator to
guarantee that the Iterator i satisfies its initial condition, make
Start Jterator consume the deposited value x, modify the post
condition of Finish-Iterator so that {.deposit is returned in
x, and reorder the Iterator model components to give a more
natural reading.

The representation of an Iterator as specified in Fig. 6
might look like the representation in Fig. 5. In addition, we
have to store {.deposit in the concrete representation; but
this is accomplished simply by swapping the value in during
Start Jterator and swapping it back out during Finish Jterator,
so there are no substantive performance implications of this
change.. .

Discussion: Here is a sample of client code for iteration
using Design #3. (See the appendix for complete client
examples:)

' Start-Iterator(i, q, x)

maintaining i.past * i. future = #i.past
* #i. future and
i.present = xand
i i. original = #i. original and
i.deposit = #i-deposit

while not Is_Empty. (i) do
Get_Next_Item (i, x)
(* code to process x without changing
i or x *)

end while
Finish-Iterator (i, q, x)

In this sample code, we include the loop invariant in a
maintaining clause, which may be considered an extra
syntactic slot in the while loop construct. The notation means
that at the beginning of each iteration of the loop, the concate-
nation of i.past and {.future equals their concatenation just
before the loop is first encountered; that {.present equals x;
and that i.omgmal and Ldeposü equal their respective values
just before the loop is first encountered.

Clearly, this invariant is true at the start of the first iteration.
It is easy to show that it is true for an arbitrary iteration if and
only if the code to process x does not change { or a;. With
the addition of the past field to an Iterator's abstract state, it
also is easy to show that all Items in the original Queue q, and
only those Items, are processed by the loop.

The other changes in Design #3 support a general principle
of the swapping paradigm: There are advantages in simplified
reasoning about program behavior and in the performance
of storage management activities if temporary variables in a
program act as catalyst variables [9]. A catalyst variable is one
that is necessary to carry out a computation, but experiences
no (net) change in value from the beginning to the end of the
computation, or is an initial value for its type at both points.
In the expected use of Queue Jterator-Template, we want to
make sure the local variables { and x are catalysts. Notice that
this is not the case for Design #2; i and x might start out with
any values whatsoever before StartJterator, and their values
after Finish Jterator might be different.

In Design #3, we therefore require that Iterator { be an
initial value for its type before the call to StartJterator.
Finish Jterator consumes {, leaving it again as an initial value
for its type. Also in Design #3, we record the priming value
of x that is passed to StartJterator and restore that value in
FinishJterator; thus, the name {.deposit, reflecting the fact
that we consider the priming value to be like a security deposit
that should be returned to the client upon completion of the
iteration. Now both { and a; act as catalyst variables.

IV. VARIATIONS AND EXTENSIONS

There are several interesting variations and extensions of
this approach to iterators. We briefly discuss them here, and, in
the process, propose a schema for a generic Iterator-Template
concept (Fig. 7) that is flexible enough to accommodate most
interesting uses for iterators. This concept schema constitutes
our proposal for a common interface model for iterators.

25

640
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20. NO. 8, AUGUST 1994

concept Iterator__Template
conceptual context

parametric context
type Item
type Collection

interface
type family Iterator is modeled by {

past: string of math [Item]
present: math[Item}
future: string of math[Item]
original:math[Collection]
deposit: math[Item]1

exemplar i
initialization

ensures i.past = empty_string and
is_initial (i.present) and
i. future = empty_string and
ia_initial (i. original) and
is_initial (i.deposit)

operation Start_Iterator (
alters i: Iterator
consumes c: Collection
consumes x: Item)

requires is_initial {i)
ensures i.past = empty_string and

i.present = x and
p (i.future, #c)' and
i.original = #c and
i.deposit = #x

operation Finish_Iterator (
consumes i: Iterator
produces c: Collection
alters x: Item)

requires i.present = x
ensures c = #i. original and

x = #i.deposit
operation Get_Next_Item (

a Queue to the client in a different order, and/or that iterates
over just those Items that satisfy a particular condition. We
define a binary (mathematical) relation:

altars i: Iterator
alters x: Item)

requires i. present = x and
i. future /= empty_string

ensures i.past = #i.past * <x> and
i.present = x and
<x> * i.future = #i.future and
i.original = #i.original and
i.deposit = #i.deposit

operation Is_Empty (
preserves i: Iterator): Boolean

ensures
end Iterator_Template

Is_Empty iff i. future = empty_string

Fig. 7. Schema for a generic iterator design (with p free).

A. Early Exit from Iteration

A client program that exits from an iteration loop before
the Iterator is empty poses no particular problem for Design
#3. (See the Appendix for an example.) However, the
rationale for implementing Queue.WithJterator.Template
as one module, and not layering the implementation of
QueueJterator.Template on top of Queue-Template, is
efficiency in this special case. If all the Queue-Template
operations take constant time, then all the layered operations
take constant time, except FinishJterator. In the case
of an early exit from an iteration, FinishJterator takes
time proportional to the number of Items remaining in
the Iterator's future string. A direct implementation of
Queue_WithJteratorJTemplate in which the Iterator operations
have access to the underlying Queue representation (as in Fig.
5) achieves constant time performance for all operations.

B. Different Orders of Iteration and Iteration
Over a Subset of All Items

It is easy to generalize the specification of Design #3 to
define a schema for an Iterator type that presents the Items in

p : string of math[Item]

x string of math[Item] Boolean,

so that p(s, t) holds whenever the order of appearance of the
Items in string s is an acceptable or possible order of iteration
for the desired Items in string t. We can now generalize the
ensures clause of Start-Iterator as underlined.

operation Start-Iterator (
alters i: Iterator
consumes q: Queue
consumes x: Item)

requires is_initial (i)

ensures i .past=empty_string and
i.present = xand
p(i.future,#q) and
i.original= # q and
i.deposit =# x

This operation specification, with p a free variable, should
be interpreted as part of a schema for a concept, in the
following sense. A specifier might use it to guide the design
of different but related iterator concepts by binding p in any
of three ways.

1) For each individual iterator concept, replace p by a
particular relation that controls the order in which Items
are to be returned by Get-Next Jtem.

2) Make p a client-supplied parameter to the specification
(like Item and Queue_Facility).

3) Make p an implementer-supplied parameter to the spec-
ification.

In cases (1) and (2), any realization must be further param-
eterized by program operations [4], [10] that satisfy certain
properties involving p and that permit the implementer to write
code that achieves the specified behavior. In case (3), the client
knows only that p is some relation, possibly with additional
mathematical properties dictated by the specifier. Here the
implementer has the freedom to present the Items from the
Iterator in any convenient (efficiently computed) order, and
must supply a definition for p that characterizes the orders it
might produce.

C. Other Collections

To specify Iterators for collections that are not modeled as
mathematical strings, we can adapt the approach suggested
above and parameterize the concept by a Collection type, as
shown in Fig. 7. Again, we introduce a binary (mathematical)
relation:

p: string of math[Item]

x math[Collection] Boolean,

defined so that p(s, c) holds whenever the order of the Items
in string s is an acceptable or possible order of iteration for
the desired Items in Collection c. ■

26

WEIDE « al.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM

We need a relation here, not a function. Consider a Set
ADT, where the mathematical model of a program Set is a
mathematical set. Then a useful implementer-supplied relation
p would have p{s, c) hold exactly when every Item in set c
occurs exactly once in string s. There is no natural order for
iterating over the elements of a Set, but we probably want to
specify that the iteration should see each element exactly once.
If an implementer is free to choose any order that meets this
criterion, there is substantial performance flexibility.

D. Modifying a Collection (But Not Its Items)

We now consider two more advanced kinds of iterators that
involve modifying the collection during iteration. There are
two sorts of changes: those that restructure the collection into
an equivalent form without modifying any of its Items, and
those that (instead or in addition) modify the values of the
Items. An example of the first kind arises if we have a Tree
ADT whose nodes are labeled by Items. We might not care
about the shape of a Tree, as long as an in-order traversal
produces the Items in the same order, e.g., if the Tree is used
as a binary search tree. A side effect of iterating over such a
Tree, then, might be that it is rebalanced.

How can we specify an iterator that has such an effect? We
introduce another relation below:

a: math[Collection] x string of math[Item]

x math[Collection] -+ Boolean,

defined so that a{i, s, f) holds whenever the initial Collection
i, when iterated over with the order of Items in string s, is
equivalent to the final Collection /. We can then generalize
the ensures clause of Finish Jterator from the specification
in Fig. 7, as underlined, below.

operation Finish-Iterator (
consumes i: Iterator
produces c: Collection
alters x: Item)

requires i.present = x .
ensures cr(#i.original, #i.past * #i.f uture, c)

and x = #i.deposit

Now an implementation can return in c any Collection that
is equivalent to the original Collection, offering the possibility
of performance flexibility or even intentional restructuring. A
degenerate case of this schema, where a(i, s, f) holds if and
only if p(s, i) holds and i = f, is the schema of Fig. 7.

E. Modifying the Items in a Collection

The intuitively obvious way to change every Item in a
Collection is to iterate over the Collection and change each one
as it is processed. Of course, this will not work directly with
the proposed design, because getting the next Item requires the
client to pass back exactly the same value that it received in the
previous call to Get-NextJtem. This process works similarly
for FinishJterator.

There are two ways to address this problem. One is to iterate
over the Collection and construct the modified Collection as a
new object. The appendix contains example code for copying

a Queue in this way; there is no modification of each Item as it
is added to the new Queue, but it is easy to see how this would
be done if that were the objective. The difficulty with this as
a general solution is that Items cannot be modified in place.
New ones must be constructed, with the associated efficiency
penalty (which is possibly significant if the Items are large)
that we initially argued we should like to avoid if possible.

Another approach, then, is to further generalize the
Iterator-Template design to support specifying the way in
which each Item is to be modified. Again, we introduce a
relation that characterizes mathematically how the modified
Item values must be related to the old ones:

v : math [Item] x math [Item] —► Boolean.

The specifier or client should define v{a, b) to hold if and only
if b is an allowable new value corresponding to the old value
a. (This relation could be generalized even further to have
a third argument, a string of Items, so that new Item values
could depend on the values of all previously processed Items
as well.)

. Now we generalize the preconditions of Get-NextJtem
and FinishJterator, replacing i. present = x by v
(i.present, x). We also have to do two other things.

The first is to add another component to the Iterator model—a
string of Items perhaps called updates—and to change the
postcondition of Get-Next Jtem, so that this string records the
(modified) Items returned to Get-NextJtem. The second is to
change the relation a from the previous subsection, so that it
depends additionally on another string of Items that includes
the updates, and to change the postcondition of FinishJterator
accordingly.

Note that modifying a collection while iterating over it,
though specifiable arid sometimes useful, is fraught with
danger. Consider iterating over a Set of Integers, squaring
each one. The abstract set model of the program Set object
might have fewer elements following the iteration; e.g., -2
and 2 both yield 4. Similarly, consider iterating over a Tree
of Integers, squaring each one, but trying to maintain the
binary search tree property. These examples illustrate that for
a correct implementation, it is insufficient just to traverse the
data structure representing the Set or Tree and to perform
a squaring operation on each element. This is the kind of
problem, both in client understanding of iteration and in imple-
mentation efficiency, that leads us to warn against modifying
Items during iteration in general, even though it causes no
insurmountable technical difficulties with our specification and
design approach.

V. CONCLUSION

Previously published iterator designs are unsatisfactory
along several dimensions. The iterator design developed
incrementally for Queues in Section III, and generalized to a
schema for arbitrary Collections in Section IV-C, addresses
the deficiencies of prior approaches in the following specific
ways.

• It is designed to support efficient implementations; nei-
ther the implementer nor the client needs to copy the

"ZT

642
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 20. NO. 8, AUGUST 1994

data structure representing the Collection, or any of the
individual Items in it.

• Its abstract behavior (including the noninterference prop-
erty) is formally specified.

• Its implementations and clients can be verified indepen-
dently, i.e., modularly, in the sense of [8].

• It can be specified as a schema for an independent generic
concept that defines an iterator abstraction for arbitrary
Collections, so all iterator abstractions in a system share
a common interface model.

Because of these advantages, the iterator design in Fig. 7
should be considered as a baseline proposal for a common
interface model for iterator abstractions. This baseline supports
sequential access to the individual Items of a Collection in
various orders, but without allowing a Collection or its Items
to be modified during iteration, and is robust enough to handle
any container structure where such iterations are meaningful.

A final note on language issues: Our design shows, in
principle, how iterators can be abstracted and encapsulated
to support modular programming and modular reasoning about
program behavior. But can the design be used in real program-
ming languages? There is no technical difficulty with Ada,
because a generic package may export more than one type,
as an implementation of a Collection.WithJterator.Template
must. (See the RESOLVEIAda Discipline [10]. The particularly
interested reader also should consult [4] for detailed examples
of similar iterator designs coded in Ada.)

For C++, a mismatch with the RESOLVE language
model leads to minor trouble. There is a temptation to use
inheritance to combine interfaces, i.e., to make Queue_With_
IteratorJTemplate a class derived from the Queue-Template
class. However, such a C++ class effectively defines
just one type, not two. This leads inevitably to nontrivial
differences between the abstract specification given here
and even the parameter profiles of the C++ class methods.
So, another solution is preferred: Make Queue-Template and
Queue .Iterator-Template separate but friend classes in order to
get the required efficiency of implementation of the combined
interface.

APPENDIX
CLIENT EXAMPLES FOR DESIGN #3

Here is a sample client for Design #3, an operation to copy
a queue using an iterator.

operation Copy (
preserves ql: Queue
produces q2: Queue)

ensures q2 = ql
begin

variable
cleared: Queue
i: Iterator
xl, x2: Item

q2 :=: cleared
Start-Iterator (i,
maintaining i.past

qi, ■xl)
future =

28

#i .past * "# i. future and
i .present =' xl and
i.original = #i.original
and

i.deposit = #i.deposit
and

q2 = i.past
while not Is-Empty (i) do

Get_Next_Item (i, xl)
Copy-Item (xl, x2)
Enqueue (q2, x2)

end while
Finish-Iterator (i, ql, xl)

end Copy

This example illustrates simultaneous iteration over two
collections, and a possible early exit from an iteration loop:
an operation to determine whether two Queues are equal.

operation Are_Equal (
preserves ql: Queue
preserves q2: Queue): Boolean

ensures Are_Equal iff ql = q2 .

begin
variable

il, i2: Iterator
xl, x2: Item
equal: Boolean

equal := true
Start-Iterator (il, ql, xl)
Start-Iterator (i2, q2, x2)
maintaining iI.past * il.future =

#il.past * #il.future
and

il.present = xl and
il.original =
#il.original and
il.deposit= #il.deposit)
and

i2.past * i2.future =
#i2.past * #i2.future
and

i2.present = x2 and
i2.original =
#i2.original and

i2.deposit = #i2.deposit
and

equal = (il.past =
i2.past)

while equal and not Is_Empty (il) and ■
not Is_Empty (i2) do

Get_Next_Item (il, xl)
Get-Next_Item (i2, x2)
equal := Are_Equal_Items (xl,
x2)

end while
if equal and (not Is_Empty (il) or not

WEIDE etal.: DESIGN AND SPECIFICATION OF ITERATORS USING SWAPPING PARADIGM
643

Is_Empty (i2)) then
equal :— false

end if
Finish-Iterator (il, ql# xl)
Finish-Iterator (i2, q2, x2)
return equal

end Are-Equal

ACKNOWLEDGMENT

We are indebted to W. Heym, J. Hollingsworth, B. Ogden,
M. Sitaraman, S. Zweben, and the anonymous referees for
many helpful comments.

HI

[21

(31

[4]

[51

[6]

[7]

[81

[91

no;

(HI

[121

[131

[14]

[151

[161

[171

REFERENCES

J. M. Bishop, "The effect of data abstraction on loop programming
techniques," IEEE Trans. Software Eng., vol. 16, pp. 38SM02, Apr.
1990.
G. Booch, Software Components with Ada. Redwood City, CA:
Benjamin-Cummings, 1987. „
R. D. Cameron, "Efficient high-level iteration with accumulators, ACM
TOPLAS, vol. 11, pp. 194-211, Apr. 1989.
S H Edwards, "An approach for constructing reusable software com-
ponents in Ada," Tech. Rep. P-2378, Inst. for Defense Analyses,
Alexandria, VA, USA, 1990.
 "Common interface models for components are necessary to
support composability," Proc. 4th Ann. Workshop on Software Reuse,
SPC, Hemdon, VA, USA, 1991. „ , ,
 "Common interface models for reusable software, Int. J.
Software Eng. Knowledge Eng., vol. 3, pp. 193-206, June 1993.
 "A formal model of software subsystems," Ph.D. dissertation,
Dept. of Comput. and Inform. Sei., Ohio State Univ., Columbus, OH,

USA, in preparation. .„,.,, ■<= .•
G.W. Ernst, R.J. Hookway, and W.F. Ogden, "Modular verification
of data abstractions with shared representations," IEEE Trans. Software
Eng., vol. 20, pp. 288-307, Apr. 1994.
D. E. Harms and B. W. Weide, "Copying and swapping: Influences on
the design of reusable software components," IEEE Trans. Software Eng.
vol. 17, pp. 424-435, May 1991.
J. E. Hollingsworth, "Software component design-for reuse: A language
independent discipline applied to Ada," Ph.D. dissertation, Dept. of
Comput. and Inform. Sei., Ohio State Univ., Columbus, OH, USA, 1992.
W. R. LaLonde, "Designing families of data types using exemplars,
ACM Trans. Programming Languages Syst., vol. 11, pp. 212-248, 1989.
D. A. Lamb, "Specification of iterators," IEEE Trans. Software Eng.,
vol. 16, pp. 1352-1360, Dec. 1990.
B Liskov, A. Snyder, R. Atkinson, and C. Schaffen, 'Abstraction
mechanisms in CLU," CACM , vol. 20, no. 8, pp. 564-576, Aug. 1977.
S. Muralidharan and B.W. Weide, "Should data abstraction be violated
to enhance software reuse?" Proc. 8th Ann. Natl. Conf. Ada Technol.,
1990, pp. 515-524. .
T W Pearce and D. A. Lamb, "The property vector specification of a
multiset iterator," Proc: 14th Int. ACMI1EEE Conf. Software Eng. ,1992.
M. Shaw, W.A. Wulf, and R.L. London, "Abstraction and verification
in Alphard: defining and specifying iteration and generators," CACM,
vol. 20, no. 8, pp. 553-564, Aug. 1977.
M. Sitaraman, L. R. Welch, and D. E. Harms, "On specification of
reusable software components," Int. J. Software Eng. Knowledge Eng.,
vol. 3, pp. 207-229, June 1993.

[18] W. Tracz, "Parameterization: A case study," Ada Lett., vol. 9, pp.
92-102, May/June 1989. im ., . „,

[19] B W. Weide, W.F. Ogden, and S.H. Zweben, "Reusable software
components," in M.C. Yovits, Ed., Advances in Computers, vol. 33.

New York: Academic, 1991, pp. 1-65. r„„m„
[20] J.M. Wing, "A specifier's introduction to formal methods, Comput.,

vol. 23, pp. 8-24, Sept. 1990.

B.W. Weide (S'73-M'78) received the B.S.E.E.
degree from the University of Toledo, OH, USA,
and'the ■PH.D. degree in computer science from
Carnegie Mellon University, Pittsburgh, PA, USA.

He is an Associate Professor of Computer and In-
formation Science at Ohio State University, Colum-
bus, OH, USA, and Codirector of the Reusable
Software Research Group with Bill Ogden and Stu
Zweben. His research interests include all aspects
of software component engineering, especially in
applying RSRG work to Ada and C++ practice.

Dr. Weide is a member of the IEEE, ACM, and CPSR.

S.H. Edwards received the B.S.E.E. degree from
the California Institute of Technology and the M.S.
degree in computer and information science from
Ohio State University, Columbus, OH, USA.

He is a Ph.D. degree candidate in computer
and information science at Ohio State University.
Prior to attending Ohio State, he was a Member of
Research Staff at the Institute for Defense Analyses.
His research interests are in software engineering
and reuse, formal models of software structure,
programming languages, and information retrieval
technology.

Mr. Edwards is a member of the IEEE Computer Society and ACM.

D.E. Harms (S'87-M'88) received the B.S. from
Muskingum College, New Concord, OH, USA, and
the M.S. and Ph.D. degrees from Ohio State Uni-
versity, Columbus, OH, USA.

He is an Associate Professor of computer science
at Muskingum College. His research interests are
in software engineering (especially reuse, specifica-
tion, and verification) and programming language
design.

Dr. Harms is a member of the IEEE and ACM.

D A. Lamb (S'75-M'77-SM'87) received the Ph.D. degree in computer
science from Carnegie Mellon University, Pittsburgh, PA, USA, in 1983.

He is an Associate- Professor of Computing and Information Science at
Queen's University, Kingston, ON, Canada. His research interests include
software design methods, configuration management, and formal methods in
software engineering.

Dr. Lamb is a member of ACM and Sigma Xi.

29

Recasting
Algorithms
to Encourage
Reuse

w' Instead of viewing

algorithms as single large

operations, the authors use a

machine-oriented view to show

how they can be viewed as

collections of smaller objects and

operations. Their approach

promises more flexibility,

especially in making

peiformance trade-offs, and

encourages black-box reuse. They

illustrate it with a sample design

of a graph algorithm.

BRUCE W. WEIDE and WILLIAM F. OGDEN,

Ohio State University

MURALI SlTARAMAN, West Virginia University

• 11 large software
systems are built from components of
some kind. A typical modern software
component is a module, which usually
encapsulates an abstract data type.
The data type, in turn, hides the
details of both concrete data structures
and the algorithms that implement
operations to manipulate the abstract
data type's variables.

Reusable software components are
just modules that have been carefully
designed to be useful in several pro-
grams, even unanticipated ones.1 We
focus here on two types of flexibility
— functional and performance — that
make components reusable. We also
advocate a systematic black-box style
of reuse, in which designers use com-
ponents without source-code modifi-
cation. This contrasts to a haphazard

opportunistic style in which designers
scavenge old code for interesting tid-
bits to reshape.

We recommend black-box reuse
because the real value of reused code
lies in its properties, such as correct-
ness with respect to an abstract specifi-
cation. If you make even small struc-
tural or environmental changes, the
confidence in these properties tends to
evaporate, and with it most of the
component's value.-

In this article we show how to
design an entire category of more flex-
ible black-box reusable software com-
ponents by applying a general design
technique that "recasts" algorithms as
objects. To illustrate the technique,
we recast a sorting algorithm and a
spanning-forest algorithm into
objects.

"3Ü
074O.7459/94/$04.CJD(B 1994 BEE Reprinted with permission. SEPTEMBER 1994

RECASTING FOR FLEXIBILITY

Conventional object-oriented
design treats application-specific enti-
ties as objects and application-specific
actions as operations on those objects.
Many of these operations change the
objects a great deal. Because they are
implemented as single operations, they
involve algorithms that manipulate
complex data structures extensively.

The recasting technique we pro-
pose is a refinement of object-oriented
design — it turns a single large-effect
operation into an object by regarding
it as a machine that performs the
action. This effectively replaces one
operation with an entire module. The
module defines an abstract data type
— which records the machine state —
and several operations — each of
which has a smaller effect. One of
these smaller effect operations might
supply input to the machine, for exam-
ple; another might return results. This
kind of design has greater functional
flexibility — the component can be
readily adapted to provide good solu-
tions to any problem requiring its gen-
eral services. A design that uses smaller
effect operations does two things.
First, it provides a finer grain of con-
trol. Second, it gives implementers the
opportunity to offer more performance
flexibility — they can substitute alter-
native implementations of an abstract
component by making trade-offs
among individual operations. This
changes the component's performance
characteristics but retains the same
functional behavior.

Recasting works for two reasons:
♦ Component designers can orga-

nize data processing along one of two
dimensions: The usual object-structure
dimension relates items according to
their explicit representation as data
objects using arrays, records,.lists,
trees, and so on. Our recasting
approach adds a temporal dimension,
which relates items by the time they
appear in a-program.

♦ It takes advantage of the widely
recognized fact that an abstract behav-

ior specification does not prescribe
how behavior is to be realized. In fact,
module specification hides the knowl-
edge of both how and when computa-
tions actually take place.

When you design a component to
use large-effect operations, you are
confining yourself primarily to the
object-structure dimension. You miss
the opportunity to use the temporal
dimension as a data organizer and so
preclude some potentially efficient
implementations of the
desired abstract behavior.
Once you realize you can
amortize the cost of an
algorithm among several
operations in the module
and retain the same func-
tionality, you gain tre-
mendous flexibility. You
can use precomputation,
batch computation, de-
ferred computation, and
related data-structuring
and algorithm-design
techniques.2 This gives
various options to applications (like on-
line and real-time systems) that
demand that individual operations
exhibit certain constrained perfor-
mance profiles in addition to — or
even instead of— optimal performance
for an entire operation sequence.

SAMPLE DESIGN PROBLEM

To explore the nature and benefits
of recasting single large-effect opera-
tions as objects, we present a tradition-
al design problem and show how the
usual design is flawed from the view-
point of reusability. The design prob-
lem is to implement part of a circuit-
layout tool: Given an output terminal
and a set of input terminals to which it
must connect, determine how the terminals
should be wired together in a net that
minimizes total wire length.

The key to attacking this problem
is an abstract mathematical model. In
this case, we can reuse well-developed
ideas from the algorithms community:

THE MACHINE
MODEL LETS
DESIGNERS
TUNE HOW A
COMPONENT
PERFORMS,
NOT WHAT
IT DOES.

The required layout is a minimum
spanning tree of an edge-weighted
graph — a subset of the graph's edges
that connect its vertices with a mini-
mum total weight. The vertices are the
terminals to be connected, and the
edges are weighted by the lengths of
wire required to connect correspond-
ing terminal pairs.2

Whether you use a traditional func-
tional design approach modified to
embrace information-hiding prin-

ciples3 or a conventional
object-oriented design
approach, a typical solu-
tion might be

1. Find the abstractions
to be encapsulated in mod-
ules, identify their opera-
tions, and specify interface
behavior. Here you
encapsulate the graph
abstraction in a module
and identify both opera-
tions sufficient for con-
structing a circuit model
and implementing an op-

eration, Find_MST, to compute the
graph's minimum spanning tree.

2. Implement the graph module and its
associated operations. You might use any
of the many textbook graph represen-
tations.2'4

3. Write a client program that uses the
graph module and Find_MST to

♦ construct a graph g that models the
portion of the circuit for which a net t if to
be selected and

♦ find a subgraph tofgthat isa min-
imum spanning tree ofg.

The graph module should be
reusable in this and in other applica-
tions — if you carefully design it to be
reused and not just to support finding
minimum spanning trees. However,
this design is fundamentally flawed
from the standpoint of reusability and
maintainability. The Find_MST oper-
ation is a single large-effect operation.
It can be recast to make the task of
finding a minimum spanning tree a
separate object, offering the program-
mer who may want to reuse it a design
that is more flexible.

IEEE SOFTWARE
31

Maintenance change. To illustrate,
what happens when the users of this
layout tool request "minor" changes
after it is in the field? For example,
suppose the total required wire length
cannot exceed a certain
bound or the output ter-
minal's electrical features
must be adjusted to han-
dle a heavy load. This in
turn might re-quire
changing some ter-
minal locations, until the
net's total wire length
is within the required
bound. At that point,
you can use the original
net-selection operation
to finish the job. Thus, you must now
add the subtask

♦ Determine if the total wire length of
a net exceeds a given bound.

This operation must be invoked
repeatedly, with different graphs and
bounds before a net can be selected;
something the original code did in one
invocation of the net-selection opera-
tion.

You can easily solve the bounds-
checking problem by adding a step to
the third part of the original solution:

♦ Dete?7?iine if the total edge weight of
t exceeds the given bound.

Unfortunately, this change causes
users to complain of poor performance
for some nets — and you find that
changing the graph module or the
Find_MST operation does not signifi-
candy improve the situation. How can
you tune performance?

There is no easy solution to this
problem because the decision to design
Find_MST as a single operation has
limited its functional and performance
flexibility. Consequently, you must
break into the Find_MST code to
tune performance — eschewing black-
box reuse and all its advantages.

Sorting algorithm. Suppose for the
moment you are satisfied with the
original net-selection program design.
You might continue by refining the
implementation of the Find_MST

CONVENTIONAL
DESIGN FORCES
DEVELOPERS TO
'PEEK UNDER THE
COVERS'TO TUNE
A COMPONENT.

operation, which eventually should
lead to something like textbook code.2,4

Here's what might happen along the
way.

First, you must choose a method for
finding a graph's min-
imum spanning tree.
The one we describe
here is Rruskal's algo-
rithm,2, 4 a greedy
algorithm that com-
bines smaller trees
joining subsets of ver-
tices. This set of trees
is called a spanning
forest. To build it, the
algorithm starts with
an empty set of edges,

T. (a spanning forest in which each ver-
tex is connected only to itself), looks at
the edges of the graph, E, in nonde-
creasing order of edge weight, and
adds a candidate edge to T if that edge
does not form a cycle with those
already in T. If the original graph is
connected by E then T eventually con-
tains a single tree, which is a minimum
spanning tree. Otherwise, T eventually
contains a minimum spanning forest of
the original graph.

Because KruskaFs algorithm exam-
ines the edges in nondecreasing order
of edge weight, it might be best to look
at the problem in terms of sorting:

Given a list of items and some ordering
relation on them, organize the list into
nondecreasing order (where "smallest"
describes the first item).

You might call a procedure from
the body of Find_MST:

procedure Sort_List
(e_list: edge_list)

to sort the edges in e_list (the edges
of the graph) into nondecreasing order
of edge weight.

Because Kruskal's algorithm can
terminate when it discovers a mini-
mum spanning tree, you might not
have to examine many edges. This
suggests a variant of sorting in which
the problem is to enumerate the k
smallest of n items in nondecreasing
order. Unfortunately, in this case it is

hard to capture this behavior in a sin-
gle procedure because k is not pre-
dictable in advance — you don't know
how many edges Kruskal's algorithm
will need to examine before it termi-
nates.

So you must separate the (partial)
sorting problem into two phases:

1. Construct a data structure contain-
ing the set of edges that are to be examined
in sorted order.

2. Incrementally deliver one edge at a
time to Kruskal's algorithm, on demand,
until it needs no more edges to form a
minimum spanning tree.

In some textbook implementations
of Kruskal's algorithm,4 this is essen-
tially how things work. Phase 1 con-
sists of creating a heap data structure
containing the edges, and phase 2
involves removing edges one at a time
from the heap. The heap organization
guarantees that the edges come out in
nondecreasing order of edge weight.

This design makes it possible to
have reasonable overall runtime for
Find_MST because it lets you pre-
compute a sorted order during phase
1, during the transition between phas-
es 1 and 2, during phase 2, or during
any of these, spreading the work
around. Most important, it does not
need to take as much time to get to
phase 2 as it would if the algorithm
sorted all the edges. So, if Kruskal's
algorithm terminates before examining
all the edges, the total time spent on
the (partial) sorting can be substantial-
ly less than with the single Sort_List
operation.

David Parnas' famous KWIC
("keyword in context") example notes
the advantage of breaking up sorting
into slightly smaller chunks of func-
tionality.3 However, to our knowledge
this basic idea has neither been touted
as being as general as it is nor been
further developed and systematically
applied to the design of reusable com-
ponents. Twenty years after Parnas'
paper, object-oriented component
libraries still encapsulate data struc-
tures as objects and algorithms as sin-
gle operations.

32
SEPTEMBER 1994

RECASTING SORTING

To solve the sorting variation in the
Find_MST operation and produce a
highly reusable software component,
you must recast sorting as an object.
Our recasting approach is based on a
machine-oriented-design paradigm, in
which you begin by viewing sorting as
a machine that puts things of type Item
into a sorted order. In this case, Item
is a graph edge that you want to sort by
the usual less-than-or-equal-to order on
edge weights. But the module might as
well be generic so it can be used with
other 11 ems and other orderings.

Sorting machine data type. Imagine a
sorting machine that accepts items to
be sorted, one at a time, then dispens-
es items, one at a time, in sorted
order. In many applications, you must
insert all the Items before extracting
the first one. There are two distinct
phases: an insertion phase and an
extraction phase.

Our encapsulation of a sorting
machine into a module exports an
abstract data type, Sorting_Machine
_State, which records a machine
state, and six operations. (Here, m is of
type Sorting_Machine_State and x
is of type Item).

♦ Change_To_Insertion_
Phase (m) : Prepare m for calls to the
Insert operation. This operation
requires that m be in the extraction
phase at the time of the call.

♦ Insert (m, x) : Insert x into m.
This operation requires that m be in the
insertion phase at the time of the call.

4 Change_To_Extraction_
Phase (m) : Prepare m for calls to the
Extract operation. This operation
requires that m be in the insertion
phase at the time of the call.

♦ Extract (m,x) : Extract a small-
est (remaining) Item from m, return^
ing it in x. This operation requires
that m be in the extraction phase at the
time of the call.

♦ Size (in): Return the number of
Items in m.

♦ is_In_Insertion_Phase(m):

Test if m is in the insertion phase.
Figure 1 shows the specification for

this machine in Resolve.5"7

Intuitively, you may think of the col-
lection of items in a sorting machine as
a set, but this has two problems: First,
sets have no duplicate elements,
although you should be able to sort
even with duplicate items. Second, sets
have no intrinsic order among their
elements. Using a multiset or bag
(INVENT0RY_FUNCTI0N in Figure 1)
solves the first problem. You can
address the ordering problem by spec-
ifying the Extract operation so that
it selects, from among those items
remaining, one that is smallest with
respect to the desired ordering.

Functional flexibility. The Sorting_
Machine_Template component is
functionally more flexible than a sin-
gle Sort_List operation. If you
must sort all items in a collection and
want a procedure like Sort_List,
you can layer it on top of Sorting_
Machine_Template. But if you
must find only the k smallest items, or
remove items until some condition is
met, then you can stop after partial
sorting.

This design has other advantages.
For example, single
large-effect operations
such as Sort_List
must operate on a par-
ticular data structure (it
may be concrete or
abstract, but it must be
a particular kind in any
case). In Sort_List,
this structure is a list. If
a program doesn't hap-
pen to have its data in
list form, it must trans-
late it into that form.
Sorting_Machine_
Template requires
neither the source nor destination of
the data to be a particular data struc-
ture or even the same kind of struc-
ture. For example, if you must get
items from an input device and put
them into a sorted list, you can easily

layer code on Sorting_Machine_
Template to do this.

Performance flexibility. The improved
performance flexibility of Sorting_
Machine_Template over Sort_
List comes from recognizing a key
point: The abstract specification of
functionality is not a prescription for
bow data structures are represented or
when sorting actually takes place. Of
course you can achieve the specified
behavior by representing Sorting_
Machine_State as a list of items
and a Boolean phase flag. And you can
implement the Insert operation by
adding a new Item anywhere in the
list; the Chan.ge_To_Extrac-
tion_Phase operation by toggling
the phase flag; and the Extract
operation by searching for, removing,
and returning the smallest Item in
the list.

But there are many other imple-
mentation strategies with different
performance profiles:

« During each call to Insert,
maintain the list in sorted order.

♦Duringhange_To_Extrac-
tion_Phase, sort the list explicitly
using any sorting algorithm.

♦ Represent a Sorting_Machine_
State using a binary
search tree or a heap or
any other data struc-
ture, in each case facing
similar choices for what
each operation should
do to that structure.
You can precompute to
any extent during each
Insert operation;
batch process during

. Change_To_Ext rac-
tion_Phase; defer
work as long as poss-
ible until an Extract
operation requires it; or

amortize the effort among these oper-
ations in other ways.

A good choice for a minimum-span-
ning-tree application is to embed heap-
sort so that Change_To_Extrac-
tion_Phase creates a heap but does

IN OUR DESIGN,
NEITHER THE
DATA'S SOURCE
NOR ITS
DESTINATION
MUST BE A
CERTAIN DATA
STRUCTURE.

IEEE SOFTWARE
33

not sort the items. The fact that sort-
ing is a two-phase operation makes this
implementation possible. And some
secondary operations (like finding a
smallest Item or a hh smallest Item)
run faster with this implementation
than with one that sorts everything in

Change_To_Extrac t i on_Phas e.

RECASTING FINDJWST

Returning to the original net-selec-
tion problem, note the parallels

between our variation of sorting and a
minimum-spanning-tree algorithm.
Once you realize that you may not
have to sort all items, you can prof-
itably recast sorting as an object. The
same applies to obtaining edges. If you
don't need to obtain all the edges of a

.„concept, Sorting^achineJTempiate^'.i^ >-.'.. "'s-
zlih >*■.»■ v'-j--/.,s.-v *;■*, t.g,.ljJ£yi.,i .,%: ; 'V i-Jv ,'' ' -: '■
.; .context' ",. *';r,,'>'jj.'*','--,' ■'?.'*?■ \ '■''''■i'1'■''->'; ■ ■'?

^...srlobal context" "',4\. ,'/ " . V"!/ ,. ' ''■■- ' ':

^v!ti.?t^dart^oöiean_Facility.-!;: :•''-'. ::; -.'■
t''j;i Standard_Integer Facility . ■ - ■'•" ■

<Ss parametric context"^ :,:.:':.
»ff£&. type Item-.{7, ;.;»; „:\:/-; ' ■. ■ -'
aicg. math operation AREjDRDERED (
fip&s^r^} I x: math [Item],; ,

ÖSC'?rA■-: y':. nathfltem]
, -fs, ,-) : boolean

Jr^- 5estriction(* ARE_ORDERED is a total '
iC:ft'?■'. Pre-ordering *),

.local context '■
t^»:: math subtype INVENTORY_FUNCTION is
'%,:-:'

:" ■"■'. function from math [Item] to integer
PS-T;"?;";- exemplar; f

*»%c constraint for all x: math [Item]
S'^i (f(x)>= 0) .
ii-r», matl1 operation EMPTY_INVENTORY:
Jjtfifc'^ INVENTORY_FUNCTION
'•},.Z- ■ definition for all x: math [Item]

;-;;. (EMPTY_INVENTORY (x) =0)
math operation IS_FtRST (

="'• ,V'fi INVENT°KY_FUNCTION
'fii*--'? x: math [Item]
:p;y):;^:u ,■.:■>, \

 c definition f(x) > 0 and
^•##(P'for ally: mathfitem] where '

kÜ$-Ul ARELORDERED (y, x) and ■■.■■■
SJi^Sin not ARE_PRDERED (x, y)'

^_.interface;~;-'--r;;. _ ..::"■' -;.,."
i^^^ Sorting^aciin^State is modeled by

yK operation-changeJTo_.lnsertion_Phase -'f-',. ',
;0:;i:;^.;... alters£.,... m^,1?,a.y ■.■„,->■ '■
.. Sorting_Machine_State ■"■'■^ '",■-.'■ -" • " s '-'"" '•'' * •
.-;.,;',;..;.) ■■■■■,:., ■■ :-f,.;;^'1/;; n^'"V:

requires;, not' m.insertion_phase "^ ''■
■ ,.; ensures m =: (EMPlSCiNVENTORYrtrue)'
.. operation Insert'(''■•'■i;''":^-'?"/"'' -f'.'"':'-: ■ '-

_"'' alters ' ■[m:'. :: .•i ;'•".•"'' /H' ■■'■''■' ■■■'•
Sorting_Machine_Stat'e'"^ ;tfvv-j:^'dwÄ;srf:<hU.

, consumes x: Item ~ it:'<'v'-':^--f* :.--
- ■) - '.'■.•■ ■JV^.ü;«.-;;.^,...-,-■•.- ,::„:

requires
ensures

m. insertion_phase ö;iv--v^rt;.a-
differ (m.count, #m.count',•••>

{#x}) and ... ^yiV--^i'-:-;
m.count(#x).= #m. count (#xY;-;';.

+ 1. .and...-,.;.'..:., ,;.:'"./■ .'.,'•.':■:■'."
m.insertion__phase ,:'.:'.,' :;:.

operation Change_To_Extractionlphase O ','
alters m: Sorting_Macriine_State-

requires m.insertionlphase: • ';:v~''' :"ft

ensures m= (#m.count, falsej: •;' "L>"-
operation Extract ('"'' .:--.■■-.:- <~K.-.S':;:•■:

. alters m:" ■' ■ :;i"^^-.:"';;v,,x? ;.;.;-

Sorting_Machine_State '.' ■■' '}. V-NC:•' ■-:^f^.
produces x: Item' . '■■"■:U-1;'.■>■.::.:'vw".-

requires

ensures

A-,-.

v..S. 3£^'böuilt?-INVENTORY_FUNCTION' - ' ■ ■ ' '
'|S*UinseH;i6rLpriase: boolean ':'; ä

;j- exemplar: ämB:x%^'3*„;-;?''-,rt'j • ;-.-: :^,■■■;■-.'■ -„ ,
^.initializationfvi -6, , i-. , "^ , - , .
^^sures^^^^p^^iNyiN^Y^ V true)

mi
I

t i.<fl-ai:. .»■■•'• ::'..:.^.\- O-j ■',-::

m. count /= EMPTY_INVENTORY-V;:

and not m.insertion_phasei.'-;

IS_FlRST(.#m.county,x) and' :
differ (m.count, tmicount^.-'-v

...-:■■. r- -{x}}.. and ,".'.,i,;,',;;:3

; m.count'(x)"='"#m'.'count (xf"!'-?;':r

■ . - , -1 ; andf>'-■■".;' -'■•:■'-. J-'V-...
- not m.insertion_phäse'.'''"-'" ;*"

operation Size (! ""'''.'S'*-: ■;' ».f^y^» .%('-H?r"

,. /.prese^es7m^SOTtingjtecKiBel.Statef

■'-.' ■): Integer" :; *,'J'r ,v'',?"*" j!,1v'*f-5t"i.'. i-, s!,f
^ ■ ensures ,. Size"=. sumVx:ma€h[ltemT"-' ^
;'' ■"•"' • '' "-5-*-'! -\-^. •(ffl.:'count tx)V*'~?'-?;'. .'/

■-:\ .operation Is_In_Insereio'fiJ>häse',i(«ffe»^^J
;'i. ■<"•■». ■;•' preserves ■- ?■ ■; -s "< mf s.^tt-f-'is^' --?#i' .y > ■ ■->. -• ■
Sorting_JMachine_Stäte,!,,5riö'"-'.•--•; Vj£r",.,'t* .-.

; sv,:",';--.):.t,. Boolean <■ . '.».*, ^« *•>"
iftf'-»ens

!
u^B.,..i| ; IS-,InH-Insert,ion_Pha'se-,*iff j .

F%are 7. Specification of a sorting-machine concept.

34

SEPTEMBER 1994

.concept ,iÖt>ahhing_Fprest_Machine_Teinplate ■/

^context

' global context* ■ - £.-■■

",j" ^St^dardJooiearL-Facility. ■'•■■■
V "-., ^'Stanaard_Integer_Facility

; |?i~parametric context - "."•.

', ' ' constant itiax_vertex: Integer
restriction max_vertex >. 0

" - local context

:?u\'&;ltaQ subtype EDGE is (
vl: integer

'■\'..~. -j.,-- ■ ;-':.-£ ■' ':■ '■'• v2: integer
'-. "■'■■}'-r-fii: integer'

)
• C:. ■/;/'-/*' exemplar ,.:e ':'.. '. ■

.. Constraint 1 <= e.vl <= max_vertex and
.-.-'" . ; 1 <= e.v2 <= max_vertex and

-'•.■;■: '-'•i-:^~'K-:: ■'"..,■'■': v"' e-w > .0 . ■
; :. math subtype GRAPH is set of EDGE

:•''.math operation IS_MSF (
:: : r;?i>J;;.pf ;insf: 'GRAPH .,'■•■'

g: GRAPH
'!'■ .""^ :): boolean '.'.'■
J ;: v ..definition (* true iff msf is an
'S'':- V'.i-"-:;MSF Of g'*) .' -;■"-..■..
.;; interface ,:-.■. ^j^ii'ir.

' J; '.-, tyP0 Spannihg_^Forest_Machine_State
,.'; is modeled by i ,

>..\. -jl•';>£edges: .GRAPH \rj ...-,"■■
w'w^ •'/t»A,insertion_phase: boolean

) :: .

-operation Insert (.*".•'.';',••* >>*'■
1 alters ' / m: SpanriingJForest JMachine_;

P':,P:''S.e';"'^.^^
■{• ;;v- consumes vl: Integer - * '*,-*' " '/ ™':

>• consumes ;y2: Integer
consumes w: Integer > < '**'!. ^v;

.' ■• requires '. m. insertionjphäse and '^5?
rl <= vl ^'tnax^ertexVancl

.• i <= v2 <= max_vertex' and_
w > 0 • *.,-/, j

ensures .ISJMSF (m.edges*, ■'l'.v"';ff^
#m.edges union\ '. t '"■""'

> '•■ ' ■ "■■■-. {(#vl, #v2, #w)}} ^-and
• • m.insertionlphase * ;,"' •■

operation Change_To_Extract'ion_Phase (•;
alters m:Spanning_Forest_ ^%J

Machine State" %C./S

..- ?

)
requires
ensures

m.insertion_phase

operation Extract
alters

produces
produces
produces

(#m.edges, false) "',;?,';

('.'' 'r.:'"y;-..:'^:<;ßi.
m:Spanning_Forest_ .

Machine_State '-f
vl: Integer '
v2: Integer '.' ■;. ;/v:
w: Integer "';■• -.£

requires m.edges /= empty_set
not m.insertion_phase ''.;

ensures . (vl, v2, w) is in . ." \
#m.edges and .;.;■ •.•;-:;^i

m = (#m. edges without'5
: {(vl, y2,'*)L: false)*

and

exemplar V' ^tft
'. initialization

: ensures / lm

operation Size
preserves

): 'Integer
ensures .;■■::<.)'',

:!empty_set, true)

.,'operation"Changel.¥o_Insertion_Phase (y
'•;"•>'■ ^■.:i^ter8 ' m: Spanning_Forest_Machine_^

State 5 , = r ' ' -;

) • ',*"*
;'_-,_ f'requires "J.ooofcjiU ins"ert.ion_phase "■ " ' *
Ä^s ensures ';m = ' (emptyj»et,:true)" ' -

.:.'. m: Spanning_Forest_jA
';'*, i ^>Machine_State ^

Size =. m-edges ^^^?:

. operation Is_In_Insertipri3&se . ("äSM
preserves ' * v

m: Spanning_Forest_ -';%r '.-M^i'-:'^(-. £.,"vft.-Jf
. Machine_State .=

-■-.; .:';,*J :i.|bolean , -
,, ensures c^Is_InJInser£4öii_Phase _ /iff

' '/^^JV>"-.*-mlinsertionlphase ■' i:, ; »*
end Sparmrig_ForWtlÄchine_Teitpiate VJ. jl'

■llUf «j

»s:

Figure 2. Specification of a spanning-forest-machine concept.

minimum spanning tree, you can prof-
itably recast this operation as an
object.

Two phases. Imagine a spanning-
forest machine that accepts weighted
edges of a graph, one at a time, then
dispenses the edges of a minimum
spanning forest, one at a time. (We
call this a spanning-forest mächine,
not a spanning-tree machine, because
the original graph might not be con-
nected by its edges. In the net-selec-

tion application the graph presumably
is connected and everything will work
fine. But the specification is easier,
implementations are essentially the
same, and the component is more
reusable if the machine can find the
minimum spanning forests of uncon-
nected graphs, too.)

Should a spanning-forest machine
have two phases? The same factors
that influenced the design of Sort-
ing_Machine_Template suggest that
it should have. But there is also anoth-

er reason. Given the way a minimum
spanning forest is defined, it doesn't
make much sense to ask for the next
edge in a graph that is changing as you
extract its edges. Edges previously
extracted could be made erroneous as
new edges are inserted. This addition-
al reason supports the logic behind
making this a two-phase machine.

How you define a spanning-forest
machine is important. It is best to
explain it as an "organizer" machine:
The Insert operation promises to

IEEE SOFTWARE
35

m

realization Krus)<ai_^itiDrtized.>..5j: i- -
;'.:v.7 for Spanhing_Forfest_Kachine_Tempiate '■■■

' context 7\^i|'1^77777''7 . ' • - .-».,,-s.t ,-.
; V global context ,.7 .

i,. • • • •■-.'----i * ' ■ ,■ .

"{:[7v;" parametric*context'.; '■-,.'■.

Vi.-i' , local context;• 7/7~ •"•■:■.-■.
;•,;•- '- type Edge, is record
;. 77:..:<7,-,7 vertexl: Integer '
•4-r'.'■'..'.'V '^ ,'vertex2; .Integer ■■•'
* , " weight':"'Integer ' :'.- :

';.■• end records,,
\y'j4:p.;.. facility Sorting_Machine_Facility is

Sorting_Machine_Template
Öfe'-v': :/-'• (Edge, EDGESJVREjORDERED)
*/&;;•' realized by Heapsort_Embedding (...)

,:.-.|i.jV facility Coalesceable_Equivalence_
.«-:.' Relation_Facility is

;:.';}:"-:..: ;, Coalesceable_Equivalence_
• <'-U7'./'/'. RelationJTeiriplate (max_vertex)
\..-. ..- realized by Disjoint_Set (...)

:-; ;■;'.'-' type Spanning_Forest_Machine_
t'.'i.,',. State_Rep is record

■;'f,'*.",-, r. graph_edges: Sorting_Machine_State
;^."*,,-.. : are_connected: Coalesceable_
y\'%\.-'.': ■'■ ; Eguivalence_Relation
£, 777:7'7-v.. num_spanning_edges: Integer
V<7:V-7 end record .:.''•

'; interface ,
J.j.: type Spanning_Forest_Machine_State
;^- ^ is represented by

■'■■/% '": :■'■'. „■:■■ Spanning_Forest_Machine_State_Rep
i.ji;W convention ?,-■ (* rep invariant *)
^-^correspondence ; (* representation-

-_. J> * ■ abstraction relation *)•

,>J;J operation Ghange_To_Insertion_Phase (
*\-~ . „ alters :v: v. m: Spanning_Forest_
't#V-.'> - Machine_State
^■< .*),;>4o- - ,, , .
j^Tfk&^Ä,new_rep: Spanning_Forest_Machine_
:l?'j'-sr-'*:i'"' ■ i -;-',, State_Rep . '
_ 1 begin

::A.jE/.if-J;: m.rep : = : :new_rep ■ . .
;»'-..- end Change jTo_Insertion_Phase.

v:3_ operation Insert ,(,;, ,; -,

iÄ^i'il--.^ a^ter?^Ä'V' ,m,: Spanning_Forest_. .
ffÄr*?rtX-vr.-';";v,%:--'/!r"J-Machine_State '■ ■
ri.K^vv^Vi--?'.. consumesyl:. Integer-.;' ...;;■.,.• :"'■- '■■::-
"* i*Kv'consuinesv2;r Integer "*::'. "■• •

y^ consumesw'i5'Integer , , ,;'-'< ''.■■-: '■ '",•
•_•").-;, •- *;«;
beginl
^wif not.AreiEguiyalent1 " ■. ,..-■. ■; '<■
y>^r;Oiure^^arj^on^ectedi;vl^ v2)v

then-, ^i'aiS; ss^ #/, - Si % 'j^y.-.-t. ... ,s*.*.:

&&

»A.

9*»*

l irt&fc

end

':.-■-■■. (m.rep.ar'e^lconnected, vl, v2) : .
.-. ih.rep.nui^spannin^edges/'::?- ,. "

>'■.._ m.rep.nu^B|3anhing_edges •+1-
end if .->>5:s^#||A^T.Ä>Ä>;/r '' '/-
Insert (m'.rep.'gr§pCßdges/ (vl, v2, w)>
Insert •'-.!; -W^^^^^Ti-v V?"' ' \. • ■':' ■

operation^ CtongeJToji^actionlj^se'(-x in
.,;■ alters .7-' 'in:^' Spannihg_Fprest^: '. -

•. .■;■ -'-v ;:;u MachinejState."■:■''%■::
'.' ' }'."'.•••■ ''■■^::l''SJMS^l^tö^-^''-

new_equiyalenceilrelätiori:^ .'%<; t* -'
, Coalesceable_Equivalerice_Reiation .

begin .•■';".". ^4^-^ 'y.^^i'1-.v;-'XV.''
' ChangejroJbctraction_Phase';,..C ;>,,';°=^;''
''. (m:rep.graph_edges)>f':■; ' ;C,'5 i.o;.'
m.rep.are_connected , :=V ,.' + .,V. ,,','••' '-''i

new^equivalence^jrelatlorT. 7! ■''.7;' 7 7,:.''}■:■ ?■
end Ghangetjro_ExtractiorijPhase;7 :y-S'~''.

operation Extract (
alters m: Spanning_Forest_:

Machine_State - '
produces vl Integer 'v.'7'•'■7;.
produces v2 Integer
produces W: Integer =

Make_Equ iya 1 en t'
W'

begin ' ' 7■^•':t-.'-''-''-''-'-'.'k--... ;--'- ;■:
loop "■■'■'.'■•;'■■''.
maintaining (* loop invariant *)'."■•■"•■
Extract (m.rep.graph_edges/ • . -"'V :.

(vl,v2, w)) v-;\-' ■■-•'•"-■"'." 77,;/

if not AreL_Equivalent'-!'-;7v •"-.7■?■' 7
m.rep.are_connected, vl,v2) :

then .'•■ • ','"
Makejquivalent' . V':^ *v "' 'y .'.;:.-■
(m. rep. are_connected;'" yl, v2)7

ni. rep. num_spanning_edge's ": ='
m.rep.num_gpanning_edges -1.'7'.-;'■

exit- ;{- -•■•"' •■'■..•-' ■•'■■ -■ .-' '":
end if

end loop
end Extract ' '■ •:.j;. ■;■'■'■: '7.^ ^y-^-,:i~^<:-^tx:

•.-■'•■' "y- j; ,-.'■;:j..:cs;i.;;.;; :r,ß\~:^.;,;.':.%£<?f;
■ c^ieraticm Size (, £ "' %"' ., r -A'''W'i

preserves m: Spanning_Forest_',jv

•; ■',..; _ .■ , tfechine^tate'^;^
.): Integer ■ * '-.' ' ."iä--^: ;r,-'1A « ,;%;:''7/*'

begin . ' > ,:

. .return m.rep.nurn_spanning_edges--'!7'f ,77
;.-. -:;.:.. end.Size. 7 K.: '.,, \ ..ia^Tlil-^Mj? 7s^;'f

operation ls_In_Insertioh_Phase <; . 7/'
",. '..._■-"7 preserves '.m: Spaiming_Foresti'77

••'■ ."'!7 7 ;'\ '" :■::'/: >S^?VAH,,,Mächine_^täte :& &*
■'■:■:): ':>') i Bcxdean'!h;V^ß^f&p^f-^hi'iXi-t

ri'i> <%. begin. ^ , ■"■ » u j <- t :
-■-.v /. /;V.7,i". return Is7jJ_lnsertian7Phaöe 7?jS ^>3i7jj
,K7;V iTki^fti.^i' ''■ ■ <7/"fV^M.rep,insertingj;;«t,^fi4;C:-j7
.:?777 Y. end, Is_ln_lnsertiorUPhase'7 .,-^ %. f \.*,x',
,end Spanning_Forest_Kachine Tarolate^l* "<>5;

Figure 3. An amortized-cost implementation ofSpanning_Forest_Machine_Template.
it_

36
SEPTEMBER 1994

keep only edges that are part of a min-
imum spanning forest, and the
Extract operation simply removes
and returns some remaining ones, as
Figure 2 shows.

You can use the component in
Figure 2 to solve the original net-
selection problem with one Span-
ning_Forest_Machine_State, rrt

while some edge of g is not
yet inserted into m do

let (vl, v2, w) be any edge
of g' not yet inserted
into m

Insert (m, vl, v2, w)
end while
Change_To_Extraction_Phase (m)
while Size (m) > 0 do
Extract {m, vl, v2, w)
record/report that (vl, v2,
w) is an edge of t

end while

An interesting feature of this code is
that you can easily change the second
loop to find if a net's total wire length
exceeds a given bound:

total_weight := 0
while (Size (m) > 0 and

total_weight <= bound) do
Extract (m, vl, v2, w)
total_weight :=
total_weight + w

end while
exceeds_bound :=
(total_weight > bound)

This change by itself is not particu-
larly easier or harder to make than for
the original design. But other ramifi-
cations of the new design are signifi-
cant. Now you can tune performance
without "peeking under the covers"
into KruskaPs algorithm. All you
need to do is select an implemen-
tation that amortizes the costs of
Spanning_Fores t_Machine_
Template so that the Insert
and Change_Tq_Extraction_Phase
operations don't actually compute
a minimum spanning forest —
it's almost all done in the Extract
operation-

Amortizing (osts. Model-based formal
specifications do not favor any par-
ticular -implementation and certainly

do not limit you to a single implemen-
tation. So, despite this specification's
claim that Insert keeps only mini-
mum-spanning-forest edges, you are
free to amortize the cost of finding
a minimum spanning forest among
Insert, Change_To_Extraction_
Phase, and Extract in any
way that makes sense.

For example, you could
choose to do all the in-
teresting work during
Change_To_Extrac-
tion_Phase. To do so,
build a graph from the
inserted edges, use
Kruskal's algorithm to
find a minimum spanning
forest, and save the span-
ning-forest edges in a
list (for example) from which they can
be dispensed during subsequent
Extract operations. This gives the
same performance as the original
solution, and it also means that you
pay for finding a minimum spanning
forest even if you don't need to
extract all the edges — precisely the
performance problem raised by the
maintenance example.

Instead, your implementation
could defer computation until the
Extract operation, as Figure 3
shows. Represent a Spanning_For-
est_Machine_State (in part) with
a Sorting_Machine_State whose
Item type is a record that contains
two vertices and a weight for a single
edge. The EDGES_ARE_ORDERED
relation is less-than-or-equal-to on the
weight field. Then call the Insert
operation on the Sorting_Machine_
State to add the new edge and call
the Change_To_Extraction_
Phase operation on the Sorting_
Machine_State to change the
phase of the Spanning_Forest_
Machine_State. Finally, keep calling
the Extract operation on the
Sprting_Machine_State to get the
smallest remaining edge until you find
one that doesn't form a cycle with the
previously extracted edges.

Besides its use of amortization, the

MACHINE-
ORIENTED
DESIGN IS
EASIER FOR
CLIENTS TO
UNDERSTAND.

code in Figure 3 is subtle in another
respect. It includes a Size operation,
which keeps a count of spanning-forest
edges without knowing which edges
are involved. This means you do not
have to compute the minimum span-
ning forest when Size is first called,

which would have unfor-
tunate performance con-
sequences!

To analyze the perfor-
mance of Figure 3, let n =
the number of edges in m.
Insert (m, . . .) takes
0(l)time,and Change_
To_Extraction_Phase
(m) takes 0(ri) time. Ex-
tract (m, . . .) might
take only 0(log ri) time if
the smallest remaining

edge is an edge of a minimum spanning
forest. If not, it might take much longer,
but not more than 0(w log ri) time.

On any given graph, both the origi-
nal implementation of the Find_
MST operation and its implementa-
tion layered on top of this real-
ization of Spanning_Forest_
Machine_Template use 0(n log ri)
time in the worst case. In summary,
there is no difference in performance
from the original net-selection prob-
lem. However, our recasting design
has a potentially significant perfor-
mance advantage over the convention-
al design for the bounds-checking
problem.

(Incidentally, Figure 3 also uses
a Coalesceable_Equivalence_
Relation type to solve the cycle-
detection problem, and you would
want to use it in Find_MST even if
you settled for the original design.
There are operations to make two
integers equivalent and to test if two
integers in a Coalesceable_Equiva-
lence_Relation are equivalent, but
space prevents us from showing
the formal specification for this
component here. Suffice to say that an
efficient representation of Coalesce-
able_Equivalence_Relation
uses the textbook disjoint-set data
structure with path-compression.2'4)

IEEE SOFTWARE
37

Conventional reusable component design techniques —
even ones based on object-oriented principles —result in

components that encapsulate data structures as objects and
algorithms as single operations. Separating data structures and
algorithms for this purpose is a false dichotomy. Algorithms
can and should be encapsulated as objects, just as data struc-
tures are. By following machine-oriented design principles,
you can achieve more of the functional and performance flexi-
bility potential of systematic component reuse. You also can
make your designs consistent and therefore easier for clients to
understand.

In principle, there are no limits in applying this approach. For
example, you could specify a "record-high" machine that reports
each largest item so far, an "eigenvalue" machine that dispenses
eigenvalues of a matrix in increasing order;8 a "compression" or
"encryption" machine that works on a series of items.

There are several points to consider when you recast a single
large-effect operation as an object First, try to develop a simple,

fully abstract, clearly explainable mathematical model for the
collection of items in the machine.6,7 Then consider if you can
settle for a two-phase machine. You probably should have a two-
phase version of every machine in the reusable component
library even if you can't see the immediate need for it in a partic-
ular application. Often, implementations for two-phase
machines are easier and/or potentially more efficient than for
multiphase or phase-less machines.

Finally, consider which explanation style you should use to
specify the machine's overall behavior by characterizing what it
apparently does during the insert, change-to-extraction, and
extract operations; What and when your machine does some-
thing will depend, in part, on which explanation is most under-
standable. You might just have to use trial and error before you
can judge which is best But don't worry too much about the ini-
tial cost of making these design decisions! If your component
is really reusable, the effort you spend on making a good
design choice will be amortized over many future uses. ♦

ACKNOWLEDGMENTS
We thank Steve Edwards, Wayne Heym, Joe Hollingsworth, Tim Long,

Stu Zweben, and the anonymous IEEE Software referees for many helpful sug-
gestions. We also acknowledge the financial support for our research from the
National Science Foundation (Weide and Ogden are supported under grants
CCR-9111892 and CCR-9311702; Sitaraman is supported under grant CCR-
9204461); the Department of Defense's Advanced Research Projects Agency
(Weide and Ogden are supported under contract F30602-93-C-0243, moni-
tored by the USAF Materiel Command, Rome Laboratories, ARPA order
A714; Sitaraman is supported under ARPA contract DAAH04-94-G-0002,
monitored by the US Army Research Office); and the National Aeronautics
and Space Administration (Sitaraman is supported under grant
7629/229/0824).

REFERENCES
I. B.W. Weide, W.F. Ogden, and S.H. Zweben, "Reusable Software

Components," Advances in Computers Vol. 33, M.C. Yovits, ed., Academic

Press, New York, 1991, pp. 1-65.
2. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,

MIT Press, Cambridge, Mass., 1990.
3. D.L. Pamas, "On the Criteria to Be Used in Decomposing Systems Into

Modules," Comm. ACM, Dec. 1972, pp. 1,053-1,058.
4. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer

Science Press, Rockville, Md., 1976.
5. M. Sitaraman, L.R. Welch, and D.E. Harms, "On Specification of

Reusable Software Components," Int'lJ. of Software Eng. and Knowledge
Eng. June 1993, pp. 207-219.

6. B.W. Weide et al., "Design and Specification of Iterators Using the
Swapping Paradigm," IEEE Trans. Soßware Eng., Aug. 1994.

7. Special feature on "Component-Based Software Using Resolve," SIGSoft
Software Eng. Notes, Oct. 1994, to appear.

8. E.R. Davidson, "Monster Matrices: Their Eigenvalues and Eigenvectors,"
Computers in Physics, Sept./Oct. 1993, pp. 519-522.

Bruce W. Weide is an
associate professor of com-
puter and information sci-
ence at Ohio State Uni-
versity, and codirector of
the Reusable Software
Research Group with Bill
Ogden and Stu Zweben.
His research interests
include all aspects of soft-

ware component engineering, especially in applying
RSRG work to Ada and C++ practice.

Weide received a BS in electrical engineering
from the University of Toledo and a PhD in com-
puter science from Carnegie Mellon University.
He is a member of the IEEE, ACM, and Computer
Professionals for Social Responsibility.

William F. Ogden is an
associate professor of
computer and information
science at Ohio State
University, and codirector
of the Reusable Software
Research Group with
Bruce Weide and Stu
Zweben. His main
research interests are in

, software reuse, software specification, and program
verification.

Ogden received a BS in mathematics from the
University of Arkansas and an MS and a PhD in
mathematics from Stanford University. He is a
member of the IEEE Computer Society and ACM.

a1 1 Murali Sitaraman is on
^ the faculty of statistics and
■ computer science at West
I Virginia University. His
W research interests span all
r areas of software compo-

nent construction includ-
L ing design, formal specifi-
■k cation, and verification.

■^^" Sitaraman received an
ME in computer science from the Indian Institute
of Technology at Bangalore and a PhD in comput-
er and information science from Ohio State
University.

Address questions about this article to Weide at Ohio State University, Computer and Information Science Dept., Columbus, OH 43210; weide@cis.ohio-state.edu.

38
SEPTEMBER 1994

200 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995

The Effects of Layering and Encapsulation on
Software Development Cost and Quality
Stuart H. Zweben, Stephen H. Edwards, Bruce W. Weide, and Joseph E. Hollingsworth

Abstract— Software engineers often espouse the importance
of using abstraction and encapsulation in developing software
components. They advocate the "layering" of new components
on top of existing components, using only information about
the functionality and interfaces provided by the existing com-
ponents. This layering approach is in contrast to a "direct
implementation" of new components, utilizing unencapsulated
access to the representation data structures and code present
in the existing components. By increasing the reuse of existing
components, the layering approach intuitively should result in
reduced development costs, and in increased quality for the
new components. However, there is no empirical evidence that
indicates whether the layering approach improves developer
productivity or component quality. '

We discuss three controlled experiments designed to gather
such empirical evidence. The results support the contention that
layering significantly reduces the effort required to build new
components. Furthermore, the quality of the components, in
terms of the number of defects introduced during their devel-
opment, is at least as good using the layered approach.

Experiments such as these illustrate a number of interesting
and important issues in statistical analysis. We discuss these issues
because, in our experience, they are not well-known to software
engineers.

Index Terms—Empirical study, encapsulation, software compo-
nents, abstract data types, software development, software reuse.

I. INTRODUCTION

IT IS well-known that software systems typically exceed
their expected development and maintenance costs. While

there are many perceived reasons for this, one reason is that
the components of these systems tend to be developed nearly
from scratch, instead of being predominantly reuses of existing
components [15].

The ability to successfully reuse components in new systems
depends on the components being properly encapsulated. That
way, new components can be "layered" on top of them, taking

Manuscript received April 1994; revised September 1994 and November
1994. Recommended by J. Gannon. This work was supported in part by the
National Science Foundation under Grants CCR-9111892 and CCR-9311702,
and by ARPA under Contract F30602-93-C.-0243, monitored by the U.S. Air
Force Material Command, Rome Laboratories, ARPA Order A714.

S. H. Zweben, S. H. Edwards, and B. W. Weide are with Department of
Computer and Information Science, The Ohio State University, Columbus, OH
43210 USA (e-mail: zweben@cis.ohio-state.edu); (e-mail: edwards@cis.ohio-
state.edu); (e-mail: weide@cis.ohio-state.edu).

J. E. Hollingsworth is with the Department of Computer Science,
Indiana University Southeast, New Albany, IN 47150 USA (e-mail:
jholly @ ius.indiana.edu).

IEEE Log Number 9409037.

advantage of the abstract notions already encapsulated and
avoiding reimplementation of these abstractions. For many
years, programming languages have provided various means of
encapsulating data structures and their associated operations,
and the means of layering new components using these encap-
sulated components. Supposedly, there are productivity and
quality gains to be had by following this layering technique
[20].

However, currently we do not see in software systems
the widespread use of encapsulation to layer the system's
components. This is true even in popular component libraries.
For example, Booch [2] represents a map abstraction as a hash
table using chaining for collision resolution. But he codes from
scratch the lists that represent chains. He does not reuse his
list package. Studies of object-oriented class hierarchies often
have found that these "hierarchies" in fact are very fiat [4],
indicating that most components are not really built on top of
existing components.

One possible reason for this lack of layering is that the
original components are not well-designed, so that 1) the
components needed in the next application are not quite those
that are currently available, and 2) the available components
cannot easily be converted (by layering) into those that are
needed. Features and standard use of programming languages,
such as Ada's restriction on the mode for parameters to
functions and mixed use of private and limited private types,
also inhibit one's ability to compose components [11].

Another reason may be that it is not obvious that, even if
there were a useful component available, it would be better
to reuse it by respecting its encapsulation than it would be to
develop the required new functionality by accessing the un-
derlying representation of the component. Performance is most
often mentioned as the basis for this belief, although in our
experience the performance penalty typically is minimal if the
proper abstract functionality is encapsulated in the component.
Language features such as code inheritance actually encourage
violation of encapsulation while appearing to support layering
[12].

We know of no controlled studies showing that the use of
layering and encapsulation improves the cost of component
development or the quality of the components, based on such
measures as time to design/develop or number of defects in
the resulting product. While abstract and anecdotal arguments
have some place in technology assessment, it is vital that sound
empirical support be obtained for the use of emerging software
technologies.

0098-5589/95$04.00 © 1995 IEEE

39
Reprinted with permission.

ZWEBEN et at: EFFECTS OF LAYERING AND ENCAPSULATION
201

Lewis et al. [13], did study differences in productivity
and quality when subjects were allowed to reuse existing
components versus when they were not. They found that
subjects who were allowed to reuse performed significantly
better than those who were not. However, for their exper-
iments, "reuse" included alteration of existing components'
code. Therefore, these experiments really could not show
the effect of layering. The Lewis experiments also studied
the effects due to the language in which the components
were written, using an object-oriented language (C++) or a
procedural language (Pascal). While there undoubtedly were
some potential differences in encapsulation between these
alternatives, the encapsulation did not need to be respected
by the subjects in reusing components, since the subjects
were allowed to see inside the existing encapsulated units and
modify them as they saw fit.

In this paper, we report on three experiments designed
to assess the effect, on effort and quality, of designing and
developing software components by taking full advantage of
existing abstractions, compared with an approach that allows
seeing and using information about the implementation of
the existing abstractions when designing and developing new
components. Each of the experiments is a controlled study
[5], and in each study there are interesting aspects to the
statistical analysis required to determine if there is a significant
difference between the two approaches.

The next section gives some additional background to
motivate the experiments, while Section III describes each
experiment in detail. Section IV discusses important issues that
affect the statistical analyses appropriate for these experiments.
Section V discusses the results.

II. BACKGROUND

Controlled studies are relatively rare in software engi-
neering, and this often is attributed to the prohibitive cost
of repeating large systems development tasks so that the
effect of using a particular method can be examined relative
to a baseline. Most attempts at doing a controlled analysis
have been done with small sets of programmers (frequently
students) on very small projects. While the applicability of the
results of such studies to "real" systems is not obvious, studies
of this nature have proven useful in the past. In some cases,
they have shown that a particular method may not have the
desired effect, or they have helped us to understand better the
various factors that may influence the effect of a method [19].
If the tasks performed by subjects in these experiments indeed
are a subset of the tasks performed in the development of
larger systems, and if the results of these experiments can be
replicated, then the experiments can offer useful information
about pieces of the complex process of software development.

What kinds of tasks might be typical of large systems
development, and therefore worth investigating via controlled
experimental studies? Two possibilities are 1) adding function-
ality to an existing component, and 2) building a component
that has similar functionality to that of an existing component.
In the former case, all that is desired is a new set of operations,
but the existing component is of the right kind to provide

TABLE I
COMPARISON OF COMPONENT DEVELOPMENT APPROACHES

Component
Devel. Approach

Type of
Reuse

Information
Used

- Understanding
Required

Direct
Implementation

White box
(open, transparent)

Coding details,
representation
data structures

Purpose/functionality
and implementation

of existing
components

Layered Black box
(closed, opaque)

Functional specifiNation,
interface description

Purpose/function altty
of existing

components

these operations; the existing component's set of capabilities
just needs to be enhanced. In the latter case, a closely related
component might be available, but the desired component must
provide somewhat different, rather than merely additional,
functionality.

In both types of tasks, one can imagine developing the new
components by reusing existing ones in at least two ways.
One reuse approach is to "directly implement" the desired
functionality using the coding details of existing components.
This involves making use of information about the data
structures used to represent the objects encapsulated by the
existing components. Some people refer to this type of reuse
as "white box," "open," or "transparent" reuse. A second reuse
approach to developing the desired functionality is to use only
the specifications of the functionality of, and the interfaces to,
the existing components. We call this the "layering" approach
because the new functionality is provided by components built
on top of the existing encapsulated units. Other names for this
approach might be "black box," "closed," or "opaque" reuse
(see Table I).

Both approaches require that the implementor understand
the purpose of and functionality provided by the existing com-
ponents. But the first.approach also requires an understanding
of the implementation of the existing components, while the
second approach does not. Intuitively, this suggests that black-
box reuse demands of the implementor a lower cognitive load,
and hence should reduce the effort required, at least for the
initial design and coding of the new components.

The expected effect on quality of layering versus direct
implementation is somewhat less clear. In this paper, we use
the term "quality" in the sense of "correctness," though we
know that quality has other dimensions, too. Since the need to
work with, and possibly misuse, the existing implementation
is eliminated with black box strategies, one might expect
better quality (i.e., fewer defects) from components developed
using layering. On the other hand, since with layering one
has available only the operations provided by the existing
components and not the underlying representation data struc-
tures, the algorithms used in the layering approach might differ
from those used in the direct implementation approach. This
use of different algorithmic approaches might give rise to
different distributions of defects. Even if the same algorithmic
approaches are used in the two methods, most of the defects
might occur in the attempt to synthesize the algorithm from
the existing operations, rather than in the manipulation of
representations of existing data structures.

Both of the tasks described above, that of adding func-
tionality and that of modifying functionality, and both reuse

40

202 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995

approaches, were studied in our experiments. The experiments
are described in detail in the following section.

III. OVERVIEW OF THE EXPERIMENTS

Our experiments were conducted as part of a course on
the subject of "Software Components in Ada." This course
was offered in two separate quarters, once in the summer of
1991 and again in the fall of 1992. In each case, the students
in the course were graduate and upper-division undergraduate
students majoring in computer science. Several of the students
were full-time employees in the computing field.

The lectures heavily emphasized the trade-offs evident with
principles of encapsulation, abstraction and layering, and pre-
sented a detailed engineering discipline for designing, for-
mally specifying, and correctly and efficiently implementing
Ada generic packages exporting abstract data types. Several
programming assignments illustrated main points from the
lectures, and the experiments were conducted in conjunction
with some of these assignments.

Our main independent variable for the experiments was
the reuse approach used by the subjects, and the dependent
variables of interest were effort and component quality. There-
fore, the primary null hypothesis to be tested is that the reuse
approach used has no significant effect on the development
effort or the quality of the resulting component.

To assess effort, we had the subjects keep careful records
of the time spent in the initial designing/coding, testing, and
debugging/recoding phases of the task. These times were
recorded individually for each operation exported by the com-
ponent under investigation. Both the initial designing/coding
time and the total time to complete the task (including the
testing and debugging/recoding time) were of interest to this
study.

To assess quality, for each operation of the component the
subjects recorded the number of defects they needed to fix.
Only those defects that caused run-time failures during testing
were included.

We emphasized to the students the importance of being
internally consistent in keeping and reporting the data, and
stressed that grades in the course would have nothing to
do with the reported numbers. We audited the information
provided by the students through post-assignment interviews,
and the programs submitted by the students were tested by
the instructor to ensure (as well as possible) that no lingering
defects remained. We were somewhat skeptical of the data on
a per-operation basis, but were confident that the aggregate
information provided by the students was accurate.

Several factors other than reuse approach might influence
the results on the dependent variables. One of these, the
nature of the activity (i.e., enhancement of functionality versus
modification of functionality) was mentioned in the previous
section. Other important factors include the component in-
volved in the reuse activity, the subjects' familiarity with the
component specification and representation, and the abilities
of the subjects. In planning the experiments, we attempted to
deal with each of these issues.

The first experiment was an "enhancement of functionality"
exercise using a simple, well-understood unbounded queue
component. In addition to the "universal" package operations
of Initialize, Finalize, and Swap [21], [8], [11], the
basic Ada queue package provided the standard Enqueue,
Dequeue, and Is_Empty operations (specifications for an
Ada queue package can be found in [11]). The enhancement
task was to add operations to Copy a queue, Clear (i.e.,
empty) a queue, Append one queue to another, and Reverse
a queue. The representation structure used for the queue was
a standard linked data structure with pointers to the front
and rear. Eighteen subjects participated in this experiment.
Since the functionality and representation structure used in this
package were so familiar to the subjects—both from classical
data structures and a previous lab exercise—we felt that it
would be difficult to obtain significant differences due to the
approach used. Preliminary results from this experiment were
reported in [10].

The second experiment was.a replication of the first ex-
periment using a more complex component that encapsulated
a "partial map." This component allows a client to create
an associative mapping which is a partial function from an
arbitrary domain type to an arbitrary range type; it is useful
in table processing applications. In addition to Initialize,
Finalize, and Swap, the basic package provided the follow-
ing operations (specifications for an Ada partial map package
can be found in [18]).

• Make_Defined Assign a given range value to a given
domain element (add an association to the map).

• MakeJJndefined Undefine a given, presently defined
domain element (i.e., remove a particular association from
the map).

.• Make_Any_One_Unde fined Undefine some presently
defined domain element, chosen arbitrarily and returned
by the implementation (remove an arbitrary association
from the map).

• Test_If_Defined Test if a given domain element is
defined.

• Test_If _Any_One_Def ined Test if there are any de-
fined elements in the map.

The enhancement task for this experiment was to add
operations that would Display (print) the map, Clear
it (making every domain element undefined, according to
the map), Combine two partial maps (assuming there were
no inconsistently defined mappings in these two maps), and
Remap all domain elements that map to one range value so
they instead map to another range value. The representation
chosen for the partial map was a hash table. The subjects
were taught about this package in a previous lab assignment,
where they were asked to implement the package using the
hash table representation. Nevertheless, in comparison with the
unbounded queue package, both the specification of the partial
map package (i.e., the description of the functionality of the
operations) and the representation of the data type were more
complicated. Furthermore, we felt that the experience with the
representation structure gained in the earlier lab could only
improve the subjects' abilities to do the direct implementation

41

ZWEBEN el at: EFFECTS OF LAYERING AND ENCAPSULATION 203

version of the enhancement, relative to their ability to do the
layered version. Again, we expected that it would be difficult
to obtain significant differences between the reuse approaches.
Ten subjects participated in this experiment.

The third experiment was a "modification of functionality"
experiment using the partial map component. Given the basic
partial map package used in the second experiment, the task
was to create a component that encapsulated the concept
of an almost constant map, which maps all but a finite
number of domain elements to a "default" range value. Other
than Initialize, Finalize, and Swap, the operations
required by this package are as follows.

• Reset Reset the map to a constant function in which all
domain elements map to a specified default value.

• Get_Def ault Return the default value, to which most
of the elements are mapped.

• Swap_Range_Value Modify the range value associated
with a given domain element.

• Remove_Any_Anomaly Make an arbitrary domain ele-
ment, presently not mapping to the default value, instead
map to the default value.

• Test_If .Anomaly Test if a given domain value maps
to the default value.

• Test_lf-Constant Test if all domain values map to
the default value.

In this experiment, the subjects would be creating a rather
unfamiliar component using what, by now, would be a some-
what familiar component. The same ten subjects who partici-
pated in the second experiment also participated in this third
experiment.

To mitigate the differential effects of subjects on task
completion (see, e.g., [3]), in each experiment each subject
performed the task using both the layering and direct imple-
mentation approaches. The order in which the two approaches
were followed was assigned randomly, subject to a counter-
balancing with respect to the experience level of the subjects
(i.e., we didn't want more experienced subjects doing the
tasks in one order while the less experienced subjects did the
tasks in the other order). Due to the uneven distribution of
subject experiences and the relatively small number of subjects
available for study, we chose not to investigate experience
level as a separate factor in the experimental design.

To summarize, each experiment was designed to assess the
effect of the reuse approach (layered or direct implementation)
on each of three dependent variables (initial design and coding
time, total time, and number of defects). Each subject in each
experiment was assigned to one of two sequences in which the
two reuse approaches were employed (layered first or direct
implementation first). Thus, as illustrated in Table II, each of
the experiments was a two-period crossover design [14], [16].

rv. STATISTICAL ANALYSIS ISSUES

The analysis of variance (ANOVA) model for these exper-
iments allows us to decide if there is a significantly different
effect, on.each dependent variable, of the layering approach
versus the direct implementation approach (in statistical termi-
nology, this is the "treatment effect" in the experiment). The

TABLE n
FACTORS IN THE EXPERIMENTAL DESIGN

Treatment
Sequence

Layered First Direct First
Layered 9 subj. in Exp. 1

5 in Exp. 2 and 3
9 subj. in Exp. 1
5 in Exp. 2 and 3 Direct

null hypothesis is that there is no such effect. In addition, the
model allows us to decide if there is a significant difference
in the two possible sequences (orders) in which these two
approaches were employed. Finally, it allows us to assess
if the treatment and the sequence interact; that is, we can
test if there is a different effect of the approach depending
on the order in which the two approaches were employed.
Since each subject did the same task twice (once for each
of the two approaches), but did so in only one of the two
possible sequences, in statistical terminology the subjects are
nested within sequences. Thus, this model is sometimes called
a "nested factorial" design [9]. In the model, the variance
associated with subjects (nested in sequences) is used to test
for the sequence effect, while the variance of the subject by
treatment interaction is used to test for the treatment effect
and the treatment by sequence interaction. Some texts call this
latter variance the "time error term" [14].

However, the normal nested factorial analysis of variance
may not be appropriate for these experiments, for two reasons.

1) An important concern is the potential that a subject's
having done a task once will affect performance on the second
attempt at the task (even though a different approach is being
used). This possibility of a "carryover effect," as it is known
in statistics, requires that care be taken when deciding if there
really is an effect due to the approach used.

A common and accepted way of dealing with this issue
is first to test if there is a significant sequence effect and/or
a significant interaction effect. If there is neither, then the
normal nested factorial analysis of variance is used to test
for the effect of the treatment (i.e., the approach). If either the
sequence effect or the interaction effect is significant, however,
the treatment effect is tested using only the data for the first
period in the sequence. That is, for those subjects who did
the layering approach first, only their data for the layering
approach is used; for those who did the direct implementation
first, only their data for the direct implementation approach is
used. The error estimate used for this test is a function of the
subject error and time error terms [14].

2) The defect data typically will comprise small integer
values, whose distribution does not satisfy the normality
assumptions required of a standard analysis of variance. Defect
data may be modeled more accurately by a Poisson-like
distribution, and there are common statistical procedures to
do Poisson (regression) analysis, allowing tests for the signif-
icance of the sequence, treatment, and sequence by treatment
interaction effects. However, a true Poisson distribution would
imply that the mean and variance are equal. The well-known
vast differences in subjects makes this assumption unlikely to
be met in our experiments. When the true variance is higher
than that assumed by the Poisson model, a phenomenon called

TI

204 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995

"overdispersion" is present. The statistical analysis therefore
must deal not only with nonnormality, but also with overdis-
persion. Without correcting for overdispersion, for example,
the test for significance of the treatment (approach) may
falsely indicate significance. Fortunately, there are statistical
procedures to deal with this [1]. These procedures compute
test statistics to see if a true Poisson regression is appropriate,
or if a correction for overdispersion must be applied.

Some authors [5], [7] suggest, when analyzing data for
which the assumptions of normality are questionable1, that
nonparametric tests may be more appropriate. However, it also
is known that parametric tests on means and in experiments
where cell sizes are equal (characteristics of our experiments),
are fairly robust against deviations from normality [17]. More-
over, though it is easy to perform standard nonparametric tests
such as the Mann-Whitney test [5], [6] to see if the primary
effect due to reuse approach is present, these tests lose other
information present in the experimental design and in the
data (e.g., order, nesting of subjects within order, possible
interactions between order and treatment, and actual values
of the time and number of defects instead of their ranks). The
Mann-Whitney test also is not very powerful for situations
where there are many tied scores (as we have with the defect
data), though it is possible to adjust for ties. Parametric models
therefore allow one to get more information from the data,
and are preferred if the models' assumptions are reasonably
met.

In the following section, we report the detailed analyses
of the parametric tests only. We did perform Mann-Whitney
tests on the treatment effect for each experiment. The results
of these nonparametric tests were exactly the same as their
parametric counterparts, at the same significance level.

V. RESULTS

While there are enough data points to apply the statistical
methods used in this paper, the small sample sizes used in our
experiments adversely affect the power of the statistical tests.
This means that, if indeed there are real differences between
layering and direct implementation, our tests might conclude
otherwise. One way to improve the power of the tests is to
raise the alpha level (the probability of concluding that there
is a significant treatment effect when in fact there is none).
In each of the analyses that follow, the significance tests are
done using the standard alpha level of .05, though a case
might be made that a higher alpha level (e.g., .10) would be
reasonable.

In the first experiment, the subjects already were very
familiar with the component in question (the queue). They
had seen, and likely used several times, the standard linked
representation structure used in this experiment. Hence, the
simplicity and familiarity of the component itself might mask
true effects due to the treatment. Prior to the second and
third experiments, the partial map component used in these
experiments had been studied by the subjects in an exercise in

1 Our time data also could fall into this category. There is some positive
skewness in the data; actual tests for normality are highly volatile on small
samples such as we have in our experiments.

EXPERIMENT 1-
TABLE III

-INITIAL DESIGN/CODING TIME'DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered ; 99.1
94.0

41.8
44.3

57.2 21.3
180.4 65.4

78.2 38.7
137.2 70.1 Direct

Overall 96.6 41.9 118.8 79.0 107.7 63.4

TABLE IV
EXPERIMENT 1—INITIAL DESIGN/CODING TIME ANALYSIS

Source df | Mean Sq. | /

Sequence
Subject (within Sequence)
Sequence x Treatment
Subject x Treatment (within Sequence)

1 4466.7 1.84
16 2434.7

1 37056.3 20.73*
16 1787.5

Treatment (first period only)
Error

1 6609.7 14.09*
16 469.1

which they did an implementation using hashing. A hashing
implementation was, in fact, used as the representation of the
partial map component provided in experiments two and three
(though the actual code for the implementation used in the
experiments likely differed somewhat from that developed by
any of the subjects in their exercise).

By using the standard .05 alpha level we felt that, if our
experiments were biased at all, they were biased in favor of
not getting a significant treatment effect when in fact one was
present. Therefore, our judgment was that, if the experiment
showed a significant treatment effect, it was not likely to be
spurious.

A. Experiment 1—Queue Enhancement

The analysis of variance for this experiment, using initial
design and coding time, revealed no significant effect for
sequence (mean for layering first = 96.6 min., mean for direct
first = 118.8 min., / = 1.84, critical Fi,i6i.95 = 4.49), but did
indicate a significant sequence by treatment interaction (/ =
20.73, Fi,i6,.95 = 4.49). The means and standard deviations
for each of the four cells are shown in Table III, while the
relevant components of the ANOVA table are shown in Table
IV. In the ANOVA tables, statistically significant / values (at
the .05 level) are indicated by an asterisk.

Following the approach outlined in the previous section, the
treatment effect was tested using only the first period data, with
the result that the layering approach required significantly less
effort (/ = 14.09, FM6,.95 = 4.49).

When total time was used as the dependent variable, a
situation similar to that for initial design and coding time
was observed. There was no significant effect for sequence
(mean for layering first = 163.4 min., mean for direct first =
182.6 min., / = 0.30, Fi,i6,.95 = 4.49), there was a significant
sequence by treatment interaction (/ = 7.16, Fi,i6,.95 = 4.49),
and the first period data showed that the layering approach was
significantly faster (/ = 7.81, FM6,.95 = 4.49). Tables V and
VI contain the relevant data and ANOVA, respectively, for
total time.

43

ZWEBEN et al.\ EFFECTS OF LAYERING AND ENCAPSULATION 205

EXPERIMENT 1-
TABLE V

-TOTAL TIME DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 145.1 81.4
181.8 111.0

102.8 47.6
262.3 102.4

123.9 68.2
222.1 111.5 Direct

Overall 163.4 96.3 182.6 112.8 173.0 103.8

EXPERIMENT 2-
TABLE DC .

-INITIAL DESIGN/CODING TIME DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 69.8
127.6

16.6
29.6

119.0 103.8
273.2 131.1

94.4 74.7
200.4 118.0 Direct

Overall 98.7 37.9 196.1 138.0 147.4 110.4

TABLE VI
EXPERIMENT 1—TOTAL TIME ANALYSIS

Source
Sequence
Subject (within Sequence)
Sequence x Treatment
Subject x Treatment (within Sequence)
Treatment (first period only)
Error

df | Mean S"q~
1

16
1

16
1

16
13735.8
1759.6

0.30 3287.1
11087.7
33878.8 7.16*
4748.5

7.81*

EXPERIMENT 2-
TABLE X

-INITIAL DESIGN/CODING TIME ANALYSIS

Source df | Mean Sq. | /
Sequence
Subject (within Sequence)
Sequence x Treatment
Subject x Treatment (within Sequence)

1 47433.8 3.63
8 13082.6
1 11616.2 7.86*
8 1477.5

Treatment (first period only)
Error

1 41371.6 18.87*
8 2912.0

TABLE VO
EXPERIMENT 1—DEFECT DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 0.89 0.93
2.67 3.57

1.33 1.41
4.22 3.99

1.11 1.18
3.44 3.76 Direct

Overall 1.78 2.69 2.78 3.26 2.28 2.99

TABLE XI
EXPERIMENT 2—TOTAL TIME DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 113.0
191.0

62.9
40.5

160.6 147.3
458.2 236.1

136.8 109.7
324.6 212.9 Direct

Overall 152.0 64.6 309.4 242.9 230.7 190.9

TABLE Vm
EXPERIMENT 1—DEFECT ANALYSIS (POISSON REGRESSION)

Source df Mean Sq. /
Sequence 1 1.38 0.48
Treatment 1 7.84 2.72
Sequence x Treatment 1 <0.01 <0.01
Error 32 2.88

TABLE Xn
EXPERIMENT 2—TOTAL TIME ANALYSIS

Source df | Mean Sq. | /
Sequence
Subject (within Sequence)
Sequence x Treatment
Subject x Treatment (within Sequence)

1 123873.8 3.37
8 36725.2
1 60280.2 12.59*
8 4786.8

Treatment (first period only)
Error

1 119163.0 14.35*
8 8302.4

The Poisson analysis of the defect data revealed neither a
significant sequence effect (mean for layering first = 1.78,
mean for direct first = 2.78, / = 0.48, Fi,32,.95 = 4.16)
nor a significant sequence by treatment interaction (/ <
0.01, Fli32,.95 = 4.16). Tables VII and VIII contain the
relevant statistics. There was no significant treatment effect
after correcting for overdispersion (/ = 2.72, Fi 32 95 =
4.16). ' "

B. Experiment 2—Partial Map Enhancement

The analysis of initial design and coding time for the
partial map enhancement was similar to that for the queue
enhancement. There was no significant sequence effect, but
there was a significant sequence by treatment interaction
(Tables IX and X). The test for the treatment effect, using
only the first period data, revealed that the layering approach
required significantly less effort (/ = 18.87, Fi,8,.95 = 5.32).

The analysis of total time gave results similar to that of
initial design and coding time. Tables XI and XII show the

TABLE Xffl
EXPERIMENT 2—DEFECT DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 0.80 1.79
2.60 1.67

0.80 0.84
6.60 2.61

0.80 1.32
4.60 2.95 Direct

Overall 1.70 1.89 ^_^———__— 3.70 3.56 2.70 2.96

data and analysis; the treatment test using only the first period
data was significant in favor of layering (/ = 14.35, Fii8i.95 =
5.32). Again, this replicated the results of Experiment 1.

The Poisson analysis of the defect data showed no sig-
nificant effect either for sequence or sequence by treatment
interaction. The treatment test, after correcting for overdis-
persion, showed a significant difference in favor of layering
(i.e., the layering approach gave rise to significantly fewer
defects). This result differed from that in Experiment 1, where
no significant effect was observed (see Tables XIII and XIV
for details).

44

206
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995

TABLE XTV
EXPERIMENT 2—DEFECT ANALYSIS (POISSON REGRESSION)

Source df | Mean Sq. | /

Sequence
Treatment
Sequence X Treatment
Error

1 4.24 2.37
1 16.52 9.23*
1 0.79 0.44

16 1.79

TABLE XLX
EXPERIMENT 3—DEFECT DATA SUMMARY

Treatment
Sequence

Overall Layered First Direct First
Mean SD Mean SD Mean SD

Layered 3.00
5.00

2.45
4.85

1.00 1.22
2.80 2.49

2.00 2.11
3.90 3.81 Direct

Overall 4.00 3.77 1.90 2.08 2.95 3.15

TABLE XV
EXPERIMENT 3—INITIAL DESIGN/CODING TIME DATA SUMMARY^

Treatment

Sequence
Overall Layered First Direct First

Mean SD Mean SD Mean SD

Layered 65.4
112.4

28.8
65.1

50.6 33.5
133.8 52.6

58.0 30.5
123.1 56.9 Direct

Overall 88.9 53.5 92.2 60.4 90.6 55.6

TABLE XX
EXPERIMENT 3—DEFECT ANALYSIS (POISSON REGRESSION)

Source df | Mean Sq. | /

Sequence
Treatment
Sequence x Treatment
Error

1 2.57 0.84
1 2.09 0.70
1 0.25 0.09

16 2.98

EXPERIMENT 3-
TABLE XVI

-INITIAL DESIGN/CODING TIME ANALYSIS

Source
Sequence
Subject (within Sequence)
Treatment
Sequence x Treatment
Subject x Treatment (within Sequence)

df | Mean Sq. | /
54.5 0.02

3609.0
21190.1 24.42*

1638.1 1.89
867.8

TABLE XVH
EXPERIMENT 3—TOTAL TIME DATA SUMMARY

Treatment

Sequence
Overall Layered First Direct First

Mean SD Mean SD Mean SD

Layered 157.8 99.4
193.2 112.9

112.0 83.6
311.8 327.4

134.9 89.9
252.5 239.2 Direct

Overall 175.5 102.0 211.9 248.7 193.7 185.9

TABLE XVm
EXPERIMENT 3—TOTAL TIME ANALYSIS

Source
Sequence
Subject (within Sequence)
Treatment
Sequence x Treatment
Subject x Treatment (within Sequence)

df [Mean Sq. | /
6624.8

49544.4
69148.8
33784.2
18859.9

0.13

3.67
1.79

C. Experiment 3—Partial Map Modification

In the analysis of initial design and coding time for the
partial map modification experiment, there was no significant
effect for sequence nor for the sequence by treatment inter-
action. The analysis, of the treatment effect, using all of the
data, revealed a significant treatment effect in favor of layering
(Tables XV and XVI).

The analysis of total time also revealed no significant
sequence effect, nor a significant sequence by treatment inter-
action. The treatment effect was not significant (Tables XVII
and XVffl).

The Poisson analysis of the defect data revealed no signif-
icant sequence effect nor a significant sequence by treatment
interaction. After correcting for overdispersion, the test on
treatment was not significant (Tables XIX and XX).

D. Discussion

For this set of experiments, we found that the use of layering
consistently resulted in significantly faster time to complete
the initial design and coding of the new component. This
result held as the component changed from one with which
the subjects were quite familiar to one with which the subjects
were less familiar (and which was more complex as measured
by the number of operations encapsulated in it and total lines
of code). The result also held as the task changed from a
component enhancement to a component modification.

Total time, including that for testing, debugging and re-
coding, also was significantly better using layering when the
component was an enhancement. This result held for both
the simple and familiar queue, and the more complicated
and less familiar partial map. The modification task provided
no such significant effect, though the mean total time for
layering was much less than that for direct implementation.
One possible explanation for this is that some defects made in
the modification task tended to be nastier than those made in
the enhancement task. It turned out that the average number
of defects per subject was slightly higher for the enhancement
task than for the modification task. If some of the defects
for the modification task were, indeed, trickier, the time
to debug and repair these defects would occupy a greater
fraction of total time. Apparently, the nature of the defects
was such that this debugging and repair time was not a
function of the treatment, so the gain for layering in initial
design and coding time is ameliorated when the debugging
and repair time is added. Note that this could mean that
trivial defects were just as trivial and nasty defects were
just as nasty, whether layering or direct implementation was
used.

No consistent effects in favor of layering were found for
the defect data, though the mean number of defects was less

45

ZWEBEN et al.: EFFECTS OF LAYERING AND ENCAPSULATION 207

for layering in each experiment. Here the small scale of the
experiment may influence the results. Almost every subject
had fewer than five defects. Some of these defects likely were
trivial and these relatively trivial defects might be just as likely
to be made when using direct implementation as they are
when using layering. If the fraction of relatively trivial "defects
was high for many of the subjects, it then will be difficult
to obtain statistical significance. With the small number of
defects observed in these data, it is somewhat remarkable
that we obtained any significant effects for this dependent
variable.

A final item worth noting is that, had the analysis of the
defect data for experiment 1 not corrected for overdispersion,
it would falsely have concluded that there was a significant
effect favoring layering. This illustrates how using the wrong
statistical analysis in software engineering experiments such as
these can mistakenly support the use of a particular technology
even when the data do not really indicate such support.

VI. CONCLUSION

The results of our experiments support the contention that,
by using only a description of the functionality of and in-
terfaces to existing components, new components can be
developed with less effort than that required if the source code
and representation data structures of the existing components
are also used. In addition, it appears from our experiments
that there certainly is no loss in the quality of the development
process, at least in terms of the number of defects made during
development, when the layering approach is used.

The empirical studies described in this paper illustrate
interesting issues in the statistical analysis procedure, issues
which, based on the authors' experiences, are not well-known
to software engineering researchers. It is important that the
proper analysis is used, lest the wrong conclusions be reached
regarding the benefits of a particular method and/or best use
is not made of the information contained in the experimental
design and the data collected.

The subjects used in our experiments, while mature stu-
dents many of whom had full-time jobs involving software
development, might not be representative of the typical pro-
grammer. Generally, they had only a couple of years' ex-
perience in commercial software development. Subjects with
different backgrounds might perform differently on our ex-
perimental tasks; this is a potential avenue for future re-
search.

It also might be interesting to compare the actual amount
of code written by the subjects when using layering with
that written when using direct implementation, to see if
layering required less "work." If so, then the. amount of
work required (measured by required changes to the code)
would be an alternative explanation of our results for the
time and defect data. We did not collect this "code change"
data. Of course, from an abstract point of view, the amount
of change required when using layering was identical to
that required when using direct implementation, since the
functionality required was the same in each case. Moreover,
we believe that a software engineer, when faced with the

choice of using layering or direct implementation, would find it
difficult to estimate in advance which approach would require
less work, even when (as in our experiments) the engineer
is quite familiar with the representations used in the direct
implementation.

We are planning further experiments to more carefully
analyze the defects made in the development of components
such as those studied herein. It is important not only to
characterize the kinds of defects observed, but also to provide
if possible some cognitive explanation of these observations.
We also are planning other studies to try to replicate the results
reported herein. Studies such as these serve to provide a more
sound and scientific basis for using (or not using) various
software engineering methods.

ACKNOWLEDGMENT

The authors thank R. Leighty of Ohio State University's
Department of Statistics for his assistance with the statis-
tical analyses, and the referees and editor for their helpful
comments.

REFERENCES

[1] M. Aitkin et al., Statistical Modeling in GLIM. New York: Oxford,
1989.

[2] G. Booch, Software Components in Ada. Menlo Park, CA: Benjamin
Cummings, 1987.

[3] R. Brooks, "Studying programmer behavior experimentally: The prob-
lems of proper methodology," Commun. ACM, vol. 23, no. 4, pp.
207-213, Apr. 1980.

[4] S. Chidamber and C. Kemerer,"A metrics suite for object-oriented
design," IEEE Trans. Software Eng., vol. 20, pp. 476-493, June 1994.

[5] S. Conte, V. Shen, and H. Dunsmore, Software Engineering Metrics and
Models. Menlo Park, CA: Benjamin Cummings, 1986.

[6] W. Daniel, Applied Nonparametric Statistics, 2nd ed. Boston, MA:
PWS-Kent, 1990.

[7] N. Fenton, Software Metrics: A Rigorous Approach. London, U.K.:
Chapman and Hall, 1991.

[8] D. Harms and B. Weide, "Copying and swappihg: Influences on the
design of reusable software components," IEEE Trans. Software Eng.,
vol. 17, pp. 424-435, May 1991.

[9] C. Hicks, Fundamental Concepts in the Design of Experiments, 2nd ed.
New York: Holt, Rinehart and Winston, 1973.

[10] J. Hollingsworth, B. Weide, and S. Zweben, "Confessions of some
used-program clients," in Proc. Fourth Annu. Workshop Software Reuse
(Herndon, VA), Nov. 1991.

[11] J. Hollingsworth, "Software component design-for-reuse: A language-
independent discipline applied to Ada," Ph.D. dissertation, Dept. Corn-
put., Info. Sei., Ohio State University, Columbus, OH, Aug. 1992.

[12] W. R. LaLonde, "Designing families of data types using exemplars,"
ACM Trans. Programming Languages, Syst., vol. 11, no. 2, pp. 212-248,
1989.

[13] J. A. Lewis et al., "An empirical study of the object-oriented paradigm
and software reuse," in Proc. 1991 OOPSLA Conf, pp. 184-196.

[14] G. Milliken and D. Johnson, Analysis of Messy Data, Vol. 1: Designed
Experiments. Princeton, NJ: Van Nostrand Reinhold, 1984.

[15] R. Pressman, Software Engineering: A Practitioner's Approach, 3rd ed.
New York: McGraw-Hill, 1992.

[16] D. Ratkowski, M. Evans, and J. R. Alldredge, Cross-Over Experiments.
New York: Marcel Dekker, 1993.

[17] H. Scheffe, The Analysis of Variance. New York: Wiley, 1959.
[18] M. Sitaraman and B. Weide, Eds., "Special feature: Component-based

software using RESOLVE," ACM SIGSOFT Software Eng. Notes, vol.
19, no. 4, pp. 21-67, Oct. 1994.

[19] E. Soloway and S. Iyengar, Eds., Empirical Studies of Programmers.
Norwood, NJ: Ablex, 1986.

[20] I. Sommerville, Software Engineering, 4th ed. Reading, MA: Addison-
Wesley, 1992.

46

208
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 3, MARCH 1995

[21] B Weide W. Ogden, and S. Zweben, "Reusable software components,"
in Advances in Computers, vol. 33, M. C. Yovits, Ed. New York:
Academic, 1991, pp. 1-65.

Stuart H. Zweben received the Ph.D. degree in
computer science from Purdue University, West
Lafayette, IN.

He is Professor and Chair of the Department of
Computer and Information Science at The Ohio
State University, Columbus. His research interests
are in the areas of software quality evaluation and
software reuse, and he codirects the Reusable Soft-
ware Research Group at Ohio State.

Dr. Zweben is current President of the ACM, is
former President of the Computing Sciences Ac-

creditation Board, and is a member of the editorial board of the IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING. He also is a member of the IEEE
Computer Society, ACM, Upsilon Pi Epsilon, and the American Association
of University Professors.

Stephen H. Edwards received the B.S.E.E. de-
gree from the California Institute of Technology,
Pasadena, and the M.S. degree in computer and
information science from The Ohio State University,
Columbus, where he is working toward the Ph.D.
degree in computer and information science.

Prior to attending Ohio State, he was a Member
of the Research Staff at the Institute for Defense
Analyses. His research interests are in software
engineering and reuse, formal models of software
structure, programming languages, and information

retrieval technology.
Mr. Edwards is a member of the IEEE Computer Society and the ACM.

Bruce W. Weide received the B.S.E.E. degree from
the University of Toledo, Toledo, OH, and the Ph.D.
degree in computer science from Carnegie-Mellon
University, Pittsburgh, PA.

He is Associate Professor of Computer and In-
formation Science at The Ohio State University,
Columbus, and Codirector of the Reusable Software
Research Group with B. Ogden and S. Zweben.
His research interests include all aspects of soft-
ware component engineering, especially in applying
RSRG work to Ada and C++ practice.

Dr. Weide is a member of the ACM and CPSR.

Joseph E. Hollingsworth received the B.S.C.S. degree from Indiana Univer-
sity, the M.S.C.S. from Purdue University, West Lafayette, IN, and the Ph.D.
degree in computer and information science from The Ohio State University,
Columbus.

He is an Assistant Professor of Computer Science at Indiana University
Southeast, New Albany. His research interests include software component
design disciplines for C++ and Ada and the application of those disciplines
to real-world computing problems.

Dr. Hollingsworth is a member of the IEEE Computer Society and the
ACM.

47

Proceedings

Fourth International Conference on

Software Reuse
April 23-26, 1996 Orlando, Florida, USA

Edited by

Murali Sitaraman

Sponsored by

IEEE Computer Society Technical Council on Software Engineering

In cooperation with

Association for Computing Machinery

With support from

Andersen Consulting Loral Federal Systems Reuse, Inc.
Buzzeo Inc. Lucent Technologies SAIC

Digital Equipment Corp. Microsoft Siemens
Intecs Sistemi S.p.A. SIGS

IEEE Computer Society Press
Los Alamitos, California

Washington • Brussels • Tokyo

Reprinted with permission.

48

Characterizing Observability and Controllability of Software Components

Bruce W. Weide, Stephen H. Edwards, Wayne D. Heym, Timothy J. Long, William F. Ogden
Department of Computer and Information Science

The Ohio State University
Columbus, OH 43210

{weide,edwards,heym,long,ogden}@cis.ohio-state.edu

Abstract

Two important objectives when designing a
specification for a reusable software component are
understandability and utility. For a typical component
defining a new abstract data type, a significant common
factor affecting both of these objectives is the choice of a
mathematical model of the (state space of the) ADT,
which is used to explain the behavior of the ADT's
operations to potential clients. There are subtle
connections between the expressiveness of this
mathematical model and the functions computable using
the operations provided with the ADT, giving rise to
interesting issues involving the two complementary
system-theoretic principles of "observability" and
"controllability". This paper discusses problems
associated with formalizing intuitively-stated
observability and controllability principles in accordance
with these tests. Although the example we use for
illustration is simple, the analysis has implications for the
design of reusable software components of every scale
and conceptual complexity.

1. Introduction

Specifying the behavior of a software component —
especially one that is meant to be reused — is a challen-
ging task. Some important "quality" objectives of design
in this area include avoiding implementation bias [10] and
achieving understandability for potential component
clients [16]. How can the specifier's design space be
limited so high quality reusable component designs are
allowed while low quality ones are ruled out? And how
can proposed design principles be made effectively
checkable and not merely slogans?

Surely no general guidelines can succeed completely,
but experience shows that some do constrain the design
space in the right ways. In prior work we surveyed
several specification principles that were intuitively
described in the literature and proposed practical tests for

compliance [18]. In this paper we report on some
interesting problems associated with two of these
principles, observability and controllability, which deal
with the relationship between the expressiveness of the
mathematics used in a specification and the computational
power of the specified component. Informally, they
(together) provide a test for "minimality" of the specified
state space of an ADT.

Our contributions here are:
• We show why it is important to make careful and

unambiguous definitions of these principles, because
superficially reasonable interpretations of the
informal definitions can easily lead to compliance
tests that admit poor designs.

• We illustrate unexpected difficulties in making
careful and unambiguous definitions.

• We lay out a road map of possible ways to formalize
observability and controllability. At each fork in the
road (marked in the text with y) this paper takes a
particular branch in concert with folklore about
specification design, leading toward and beyond
fairly specific principles proposed in the literature
[18]. This gives a depth-first view of the landscape
of Figure 1. A more comprehensive future paper will
discuss the paths we do not follow here.

1.1. The Principle of Observability

One of the most important design decisions facing a
reusable component specifier is the selection of an
appropriate mathematical model (also called "conceptual
model" or "abstract model" or "mental model" [14]) for
the state space of values for variables (or "objects") of a
new abstract data type (ADT) [3, 8, 17, 18, 20]. This
model is used to explain the abstract behavior of a
component's operations, so the choice of model directly
influences the understandability of the concept and the
ease of reasoning about its implementations and clients
that are layered on top of it [4, 16]. Typically, the
specification designer must consider a variety of
candidate mathematical models before identifying the

1085-9098/96 $5.00 © 1996 IEEE

49

"best" one(s). There are many options because both stan-
dard and newly-conceived mathematical models — and
compositions and combinations thereof— are candidates.

V, : Define "computationally" based on some
implementation of the component, or all?

some all

Y2 : Use "relative" versions of definitions,
absolute versions, or something else?

relative

Figure 1 — Major Decision Points in
Formalizing Observability and Controllability

An intuitively pleasing ideal that limits the design
space in this dimension is the principle of observability:
Oo A specification S defining the program type ADT is

observable iff every two unequal values in ADT's
state space are "computationally distinguishable"
using some combination of operations of S.
An appropriate way to view observability is in terms

of the connection between the structure of the state space
imposed on it by its mathematical operators and
predicates, and the computational structure imposed on it
by the specified programming operations. Observability
dictates that the model should define a state space which
makes distinctions that are just sufficient to specify the
intended behavior of the operations — and no more; i.e.,
the model does not distinguish values that are
indistinguishable by the programming operations. One
predicate that is available in nearly every useful
mathematical state space is equality. Basing observability
on equality makes the principle generally applicable,
although it is possible to refine it to other predicates
particular to individual mathematical theories.

Some designers (e.g., one of the referees of this
paper) argue that observability is not an appropriate
objective in the first place. For example, consider a
simple statistical calculator that provides operations to
enter a number and to compute the mean and variance of
all numbers entered so far. An intuitively "natural" state
space seems to be a multiset of all values entered. But a
specification with only the above operations is not
observable if based on this state space because many
different multisets of numbers can have the same mean
and variance. A state space leading to an observable

specification for this simple calculator is the number of
numbers entered so far, their sum, and the sum of their
squares. However, one might argue against this minimal
state space on the grounds that it does not support adding
a new operation, say, to return the median of the numbers
entered so far.

This argument might seem persuasive for traditional
software design where one must add such an additional
operation using cut-and-paste of source code. But it is
inapplicable to a "black-box" component reuse
technology such as we are discussing [18]. The simple
statistical calculator with only mean and variance
operations cannot be used to compute the median without
breaking under the covers of the calculator to change its
internal representation. This fact demonstrates that the
proposed simple calculator is simply not an appropriate
reusable component if the requirement is to find the
median of a set of numbers. This client should choose a
more powerful calculator component.

A prime motivation for demanding observability as a
property of truly reusable components is a psychological
one. In trying to understand a specification, a client
naturally assumes that distinctions in the state space are
important. If a specification makes distinctions (two
model values are unequal mathematically) without
differences (variables with those two distinct values are
computationally indistinguishable), confusion is
inevitable. The conceptual model the specifier is trying to

, give the client fails to convey the true situation, and the
client is likely to look for another model of the
component's behavior and to translate mentally between
the official specification and this alternate view [14]. The
simple calculator above is a good example of this effect.
If the state space is a multiset of numbers, the client is
inclined to think it should be possible to use the compo-
nent to find the median of the numbers entered. This
client's initial expectation first will turn to confusion
about the perceived incompatibility between the large

. state space and the limited power of the provided opera-
tions to observe it, and ultimately to disappointment that
the component is not really reusable in the new situation.

1.2. The Principle of Controllability

A complementary objective to understandability is
utility: a reusable component should be useful to a variety
of clients whose particular needs for variants of a basic
functionality are perforce unknown at component design
time. Another way to view this notion of utility is in
terms of "functional completeness". This suggests that
the combination of operations being specified should be at
least powerful enough to construct any value in the state
space defined by the model.

50

An intuitive statement of this property is the principle
of controllability:
Co A specification S defining the program type ADT is

controllable iff every value in ADT's state space is
"computationally reachable" using some combination
of operations of S.
A prime motivation for seeking controllability is

technical, although it might be argued that observability is
technically even more crucial. An example illustrates
their combined importance. Suppose a client programmer
using the specified component S wants to show that a
code segment preserves the abstract value of some ADT
variable. This means the segment has no net effect on the
value of that variable, although the value may be changed
temporarily within the segment. If S is not both
observable and controllable then generally it is impossible
to argue that any code segment does this — either because
it is impossible to predictably reconstruct the original
value before the end of the segment (e.g., because the
original value resulted from non-deterministic behavior of
some operation that is not repeatable due to lack of
controllability), or because it is impossible to know that a
proposed reconstructed value is really equal to the original
and not simply computationally indistinguishable from it
(due to lack of observability).

1.3. The Need for Practical Compliance Tests

How are observability and controllability applied in
practice? Typically a designer has an informal notion of
what basic functionality is sought. An initial set of
operations is postulated, and the next question is what
model to use to explain the state space over which these
operations work. The principles of observability and
controllability lead the designer to seek a state space for
the specified behavior without redundant values that
cluster into non-singleton congruence classes of compu-
tationally indistinguishable points, and without values that
are not even reachable. A first attempt at specifying the
operations is made using a "natural" model that is thought
(hoped) to lead to a specification which is both observable
and controllable. But sometimes it is not, in which case
there are two repair strategies: try another model, or
modify the behavior of some operations and perhaps add
and/or remove some. In this paper we use an example
that illustrates only the second approach. But in either
case the designer checks again for observability and
controllability. With luck, the process eventually termi-
nates with a design that satisfies both of these design prin-
ciples (and presumably others of simultaneous interest).

In order to carry out this iterative process, then, a
designer has to have effective practical tests for whether a
specification complies with the two principles. This

requires making clear, unambiguous definitions of the
principles, which is the focus of this paper. -

We begin in Section 2 by reviewing related work and
outlining a working example. In Section 3 we discuss
ambiguities in, and possible formalizations of, Oo and
Co; then in Section 4 we explain how these definitions
break down when applied to parameterized components
that typify reusable software components (e.g., Ada
generic packages and C++ class templates). Finally, in
Section 5 we draw conclusions and again relate the path
of this paper to the road map in Figure 1.

2. Background and Working Example

The principles of observability and controllability, as
defined here, are meaningful only in the context of model-
based specifications where mathematical theory and
program specification are separate, as in Larch [8] and
RESOLVE [3]. The question addressed by observability
and controllability is essentially whether the mathematical
model of an ADT is in some sense "minimal" in size and
structure for specifying a programming concept. This is
not a well-formed question for true algebraic specifica-
tions, in which a mathematical theory and a programming
component being specified are treated as inseparable. The
closely related taxonomy of mathematical functions of a
theory into "observers" and "constructors" (e.g., [8, 13])
is clearly related in spirit, but these notions are one level
removed as they pertain to the design of mathematical
theories and not to the design of model-based specifica-
tions that use those theories.

A related issue that received much attention in the
late 1970's in the algebraic specification community is
when two mathematical values should be considered
equal. Some authors [6, 12] considered two values to be
different unless demonstrably equal based on the axioms.
Others [7] considered two values to be equal unless
provably different. While the first group took a traditional
view and insisted that the smallest congruence relation
defined by the axioms be used, the latter group allowed
any congruence relations (including the smallest)
consistent with the axioms. In general, for well-defined
theories that are typically used as models (e.g., the Larch
set trait [8]) the two notions converge. Our consideration
of observability and controllability is independent of this
question, because we simply assume equality in the
mathematical spaces as a given predicate with the
requisite properties.

The most closely related work we know about (also
the most practical in terms of development of design
principles) deals with "expressiveness" of the operation
set of an ADT [11]. This work is similar to ours in that
the authors explore a "distinguishability" relation and take
a formal approach to try to minimize ambiguity in

51

definitions and principles. However, their specification
system is algebraic, and the results apply only to
immutable types and to programming operations that are
total and have functional behavior. Our investigation
reveals that some of the more interesting theoretical and
practical questions involve relationally-defined opera-
tions and operations with non-trivial preconditions —
situations that routinely arise in the design of practical
reusable components. The ultimate difference between
their design principles and ours is visible in our respective
recommended "good" designs for a Set ADT (compare
[11, page 149] with its "max" or "min" operation, and our
Figure 2 with the Remove_Any operation of Section 4.2).
Our design does not require an ordering on the Set ele-
ments. Our design also admits high performance imple-
mentations (e.g., hashing) that are inappropriate and inef-
fective with the ordering requirement. Indeed our Set
ADT can be layered on any implementation of their Set
ADT without a performance penalty, but not vice versa.

There are other papers dealing with issues similar to
observability in other papers from the theoretical
algebraic specification literature, e.g., [1]. However, the
authors do not discuss implications of their work for
practical design, even for algebraically-specified software
components. To our knowledge, the more practical
model-based specification community has not
systematically considered the problem of choosing an
appropriate mathematical model for specifying an ADT.
There is the notion of an "unbiased" or "sufficiently
abstract" or "fully abstract" model [10], which is similar
to observability in the sense that it is defined almost
exactly like Oo- But this informal definition leaves open
the possibility of various interpretations, along the lines
suggested in Sections 3 and 4. This is precisely the
confusion we wish to clear up.

To illustrate these difficulties we use the example in
Figure 2 of a possible specification for a Set ADT. Here
the appropriate mathematical model seems clear. The
question is what operations need to be provided in order
to achieve observability and controllability. The specifi-
cation language is RESOLVE [2, 3, 15], but the issues
arise in any model-based specification language [20].

In RESOLVE, the mathematical model of an ADT is
defined explicitly, as with finite set; or by reference to a
program type, as with math [Item], which denotes the
mathematical model type of the program type Item.
Every program type in RESOLVE carries with it
initialization and finalization operations (invoked in a
client program through automatically-generated calls at
the beginning and end of a variable's scope, respectively),
and a swap operation (invoked in a client program using
the infix ":=:" operator). The effect of initialization is
specified in the initialization ensures clause. The effect
of finalization usually is not specified because it has no

abstract effect; in any event this aspect is unimportant
here. The effect of swapping is to exchange the values of
its two arguments.

Operation specifications are simplified by using
abstract parameter modes alters, produces, consumes,
and preserves [9]. An alters-mode parameter potentially
is changed by executing the operation; the ensures clause
says how. A produces-mode parameter gets a new value
that is specified by the ensures clause, which may not
involve the parameter's old value (denoted using a prefix
"#") because it is irrelevant to the operation's effect. A
consumes-mode parameter gets a new value that is an
initial value for its type, but its old value is relevant to the
operation's effect. (The rationale for using this mode for
the item inserted into a Set is discussed elsewhere [9].) A
preserves-mode parameter suffers no net change in value
between the beginning of the operation and its return,
although its value might be changed temporarily while the
operation is executing.

The example is simple but it helps to illustrate the
nature of the problems facing a specification designer. Is
the specification in Figure 2 observable and controllable?
What does it mean for two Set values to be "computa-
tionally distinguishable", or for a Set value to be "compu-
tationally reachable"?

concept SetJTemplate
context

global context
facility Standard_Boolean_Facility
facility Standard_Integer_Facility

parametric context
type Item

interface
type Set is modeled by finite set of

math [Item]
exemplar s
initialization

ensures s = empty_set
operation Insert (

alters s: Set
consumes x: Item)

requires x is not in s
ensures s = #s union {#x}

operation Remove (
alters s: Set
preserves x: Item)

requires x is in s
ensures s = #s - {x}

operation ls_Member (
preserves s: Set
preserves x: Item): Boolean

ensures Is_Member iff (x is in s)
operation Size (

preserves s: Set): Integer
ensures Size = | s |

end SetJTemplate

Figure 2 — Possible Specification of a Set ADT

52

3. Formalizing the Principles

In this section we consider possible interpretations of
Oo and Q), hoping to pin down the phrases "computation-
ally distinguishable" and "computationally reachable".

3.1. Stating the Principles More Precisely

A big problem with the informal definitions Oo and
Co has to do with the possibility of relationally-specified
behavior. Although every operation in Figure 2 has
functional behavior — the results of each operation are
uniquely determined by its inputs — there are many
situations where it is appropriate to define an operation so
its post-condition can be satisfied in more than one
possible way [19]. A correct implementation might
exhibit functional behavior, but a client of the
specification cannot count on any particular function
being computed — only on the results of each operation
satisfying the relation specified in the post-condition.

The practical difficulty this causes in applying Oo
and Co is that code layered on top of such a component
appears to be non-deterministic, in the sense that it might
do something with one implementation of the component
but quite another with a different implementation. This is
so even when the layered operation is specified to have
functional behavior; among other things, the code
implementing the layered operation might always
terminate with some implementations of the underlying
component, but not with others.
\j/j When we say "computationally distinguishable" or

"computationally reachable", do we mean for some
implementation of the component, or for alii
A strong version of observability is that it should be

possible to write a client program that can decide equality
of two variables for every implementation of the
underlying component specification; similarly for
controllability. We can formalize this by stipulating the
total correctness of certain code layered on top of the
specified concept. An implementation of specified
behavior is totally correct if it is partially correct (i.e.,
correct if terminating) and terminating, for any totally
correct implementations of the components it uses.

We select this path because it leads to the principles
identified in earlier work [18], and we thereby come to the
following possible formalization of observability:
Oi A specification S defining the program type ADT is

observable iff there is a totally correct layered
implementation of:

operation Are_Equal (
preserves xl: ADT
preserves x2: ADT): Boolean

ensures Are_Equal iff (xl = x2)

Controllability is slightly different in flavor, since as
expressed in Co it seems to say something "about an entire
family of operations. It might be formalized as follows:
Ci A specification S defining the program type ADT is

controllable iff for every constant c: math[ADT],
there is a totally correct layered implementation of:

operation Construct_c (
produces x: ADT)

ensures x = c

3.2. Making the Principles Symmetric

A hint that something lurks below the surface here is
the disturbing asymmetry between the definitions Oi and
Ci, the first involving a two-argument program operation
and the second a quantified mathematical variable and a
one-argument program operation.
\|/2 Should observability and controllability be defined in

terms of relationships between two program
variables, or in terms of a program variable and a
universally quantified mathematical variable, or
perhaps in some other way?
Here we choose the first path, which we took in

deriving the principles published earlier [18] and which a
priori seems as reasonable as any other. The revision
needed for controllability, however, makes it clear that the
definition is contingent, or relative, in the following sense.
"Computationally reachable" does not mean (as in Ci)
that every value in the state space can be constructed from
scratch, i.e., starting from an initial value of the ADT. It
means that every value in the state space can be reached
from every other — even if the given starting point could
not itself have been constructed from scratch. The mean-
ing of C 2 is now apparently quite different from that of
Ci, which is an "absolute" notion of controllability in that
there is only one variable involved. So we add the modifi-
er "relatively" in defining both principles as follows:
O2 A specification S defining the program type ADT is

relatively observable iff there is a totally correct
layered implementation of:

operation Are_Equal (
preserves xl: ADT
preserves x2: ADT): Boolean

ensures Are_Equal iff (xl = x2)
C2 A specification S defining the program type ADT is

relatively controllable iff there is a totally correct
layered implementation of:

operation Get_Replica (
preserves xl: ADT
produces x2: ADT) •

ensures x2 = xl
These definitions match practical compliance tests of

prior work [18]. But they still have some technical
problems, which we explore next.

53

3.3. Making the Principles More Independent

By definitions O2 and C2, relative observability is
not entirely independent of relative controllability, since it
demands that the arguments to Are_Equal should be
preserved and this apparently requires some degree of
controllability. Similarly, the first argument to Get_Rep-
lica must be preserved and proving this seemingly re-
quires observability, as noted in Section 1.2. Is it possible
to define the principles so they are not so evidently
connected? The heart of the problem is that both defini-
tions O2 and C2 involve preservation of operation argu-
ments. We are, therefore, led to consider this variation:
O3 A specification S defining the program type ADT is

relatively observable iff there is a totally correct
layered implementation of:

Operatic« Were_Equal (
alters xl: ADT
alters x2: ADT): Boolean

ensures Were_Equal iff (#xl = #x2)
This definition is a bit curious because, technically in

RESOLVE, a function operation may have only
preserves-mode parameters; but a violation here seems
justifiable for ease of explanation. The parallel definition
for relative controllability is:
C3 A specification S defining the program type ADT is

relatively controllable iff there is a totally correct
layered implementation of:

operation Move (
alters xl: ADT
produces x2: ADT)

ensures x2 = #xl

3.4. Relationships Among the Above Definitions

Definitions O3 and C3 make the principles no
stronger than with definitions O2 and C2, in the sense that
any specification that is relatively observable
(controllable) by O2 (respectively, C2) is equally so by
O3 (respectively, C3). The reason is that it is trivial to
layer an implementation of Were_Equal (Move) on top of
Are_Equal (respectively, Get_Replica). Furthermore, if a
specification is relatively observable by definition O3 and
relatively controllable by definition C2, then it is
relatively observable by definition O2 because we can
layer Are_Equal on top of Get_Replica and Were_Equal:

operation Are_Equal (
preserves xl: ADT
preserves x2: ADT): Boolean

local context
variables copyl, copy2: ADT

begin
Get_Replica (xl, copyl)-
Get_Replica (x2, copy2)
return Were_Equal (copyl, copy2)

end Are_Equal

Also note that every RESOLVE specification is
relatively controllable by definition C3, since every type
comes with swapping. Here is a universal implementation
of Move in RESOLVE:

operation Move (
alters xl: ADT
produces x2: ADT)

begin
xl :=: x2

end' Move
In effect, a move is half a swap. This is one reason

we previously suggested the guideline of testing the
stronger criteria O2 and C2 [18]. For components in
other languages, however, C3 is a non-trivial criterion.
For example, consider an Ada package defining a Stack
ADT as a limited private type (no assignment operator),
along with operations Push, Pop, and Is_Empty having the
usual meanings. This is relatively controllable by C3 —
but not because a primitive data movement operator for
Stacks is trivially assumed. Without any one of the three
operations it would not be relatively controllable by C3.

The relationships among the definitions in this
section are depicted in the Venn diagram of Figure 3,
where we take the liberty of labeling sets of specifications
with the labels of the definitions under which their
member specifications qualify.

Legend

0 (Were_Equal)

ITl 02 (Are_Equal)

C, (Move)

I 1 C 2 (Get_Replica)

Figure 3 — Relationships Among Definitions

4. Parameterized Components

At first the above definitions seem clear and
unambiguous. But suppose we try to apply those
definitions to the Set_Template specification of Figure 2.
It seems the specification in Figure 2 should be deemed
not observable by Oo because there is no practical way to
enumerate the elements of a Set, and this should be
crucial in computationally distinguishing between two
unequal Sets. It seems the specification should be deemed
controllable by Co, however, because starting from an
empty set it is easy to construct any finite set by repeated
Inserts. Does this intuition match what the proposed
definitions say? We discuss in detail only O 3,
considerations for the other definitions being similar.

54

4.1. Type Parameters and Modular Proofs

There is a reasonable way to interpret O3 that makes
the Set_Template specification observable. The key
features that permit this view are that O3 defines relative
observability in terms of the existence, not the
practicality, of an implementation of Were_Equal; and
that there is no restriction on the assumptions an
implementer of Were_Equal may make about the
available operations on Items.

We start by noting that the mandated existence of "a
totally correct layered implementation" of the
Were_Equal operation for Set_Template means, in
RESOLVE terms, the existence of a totally correct
implementation of the following concept:

concept Set_Were_Equal_Capability
context

global context
facility Standard_Boolean_Facility
concept SetJTemplate

parametric context
type Item
facility Set_Facility is
SetJTemplate (Item)

interface
operation Were_Equal (

alters si: Set
alters s2: Set): Boolean

ensues Were_Equal iff (#sl = #s2)
end Set_Were_Equal_Capability

This formulation makes clear that the implementation
of Were_Equal must be layered, since an instance of
Set_Template is a parameter to the concept. Moreover, it
makes clear that the implementation must work for any
type Item for the Set elements, since Item also is a
parameter. What it does not make clear, however, is what
other components and services an implementation might
use and depend on.

In the absence of restrictions, presumably any such
services may be assumed — a rather liberal interpretation
of O3. But now what prevents an implementer of
Were_Equal from simply assuming the existence of a
(possibly thinly disguised) operation that tests equality of
Sets of Items, and layering on top of that? Nothing.

So we might wish to use a less liberal interpretation
of O3. For example, suppose we insist that an allowable
implementation of Were_Equal may not use any opera-
tions with Set parameters other than those from SetJTem-
plate itself. Unfortunately, this does not solve the prob-
lem either. For example, below is a possible algorithm for
Were_Equal, which is built on top of SetJTemplate and
an "enumerator" concept for Items. In RESOLVE'S
modular proof system, total correctness is defined in such
a way that the following code is a totally correct
implementation of Were_Equal, because we assume there

is a totally correct implementation of the enumerator
interface and the total correctness of the SetJTemplate
implementation — and because all Sets are finite. As a
result we claim that SetJTemplate is relatively observable
even by this less liberal interpretation of O3.

operation Were_Equal (
alters si: Set
alters s2: Set): Boolean

local context
variables x: Item

begin
if (Size (si) = 0 and Size (s2) = 0)

then return true
else

let x = any Item value not
previously enumerated during the

top level call of Were_Equal
if Is_Member (si, x)

then
if Is_Member (s2, x)
then

Remove (si, x)
Remove (s2, x)
return Were_Equal (si, s2)

else return false
end if

else
if Is_Member (s2, x)

then return false
else return Were_Equal (sl,s2)

end if
end if

end if
end Were_Equal
This illustrates the power of a modular proof system

[5]. There might be Items for which it is impossible to
implement the enumerator interface, but this does not
influence the total correctness of WereJEqual. At the
mathematical level, if the state space math[Item] is
effectively enumerable then in principle there exists an
implementation of the enumerator interface. But only if
the specification of the actual program type Item is at least
controllable, by a reasonable definition, should we expect
to be able to implement the enumerator interface for it.

So perhaps we should insist that the underlying
components actually should be implementable. But then
should the mere possibility of instantiating SetJWere_-
EqualjCapability with an Item for which the enumerator
cannot be implemented be enough to render the
SetJTemplate specification not observable? And does
"possibility" here mean the library of components
actually contains such a type, or that in principle it might
contain such a type? Suppose, for example, that in the
specification language it is simply impossible to specify a
program type whose state space is not enumerable.
Should this situation — which might be reasonably
attributed to inexpressiveness of the specification lan-
guage and not to a problem with the design of Set_-

55

Template — be the deciding factor as we attempt to apply
the observability test to Set_Template?

If we use an interpretation in which the above
implementation of Were_Equal is acceptable, so Set_-
Template is deemed relatively observable, then it is
interesting to see where variants of Set_Template lie in
Figure 3. In Figure 4, we have placed some of them to
illustrate the limited discriminating power of the
definitions. For example, Get_Replica for Sets can be
layered on top of Are_Equal for Sets using only Swap and
Insert: systematically generate candidate Sets by
enumerating Items and inserting them into empty Sets
— first one Set with one Item, then two Sets with one
Item and two Sets with two Items, and so forth —
stopping when the Set to be copied and the current
candidate Are_Equal. There is no need for Remove,
Is_Member, or Size.

Legend

03 (Were_Equal)

ffi.

SftitfCifSHiHKfn !

ftj Set_Template as in Figure 2
(2j without Swap

(3} without Insert

(4) without Remove

0 (Are_Equal)

C (Move)

| 1 C (Get_Replica)

§ without ls_Member
without Size

with just Swap, Insert,
Are_Equal

Figure 4 — Variants of Set_Template Assuming
math[ltem] is Enumerable

It should be clear that these definitions are not really
"right", in the sense that even if they do capture some
sense of observability and controllability they do not rule
out patently poor specifications. For example, Set_Tem-
plate itself (even without Swap) is both relatively obser-
vable and relatively controllable by the strong definitions
O2 and C2, despite providing no practical way to enum-
erate the elements of a Set. Even Set_Template without
Remove is relatively observable and relatively control-
lable, as it is with just Swap, Insert, and Are_Equal.

4.2. Handling Parameterized Components

The difficulties in Section 4.1 are traceable to the
prospect of having specifications that are parameterized
by another type Item, and to the absence of restrictions on
the assumptions an implementation may make about the
actual Item type. Even allowing an implementation of

Were_Equal to rely only on the assumption that the state
space of Item is enumerable weakens the definitions so
much that they are practically worthless.

. Some features of RESOLVE permit us to easily
clarify and strengthen the previous definitions to deal with
parameterized modules, so the observability of a
parameterized type is unaffected by properties of the
arbitrary type by which it is parameterized. Each
realization (implementation) of a concept may require
additional parameters beyond those of the concept, and
these appear in the realization "header" [2]. This mech-
anism lets us require that the implementation of an
operation Were_Equal for type Set may only count on the
always-present initialization, finalization, and swapping
for Items, and on a similarly-defined Items_Were_Equal
operation. Any allowable realization of the concept
exporting Were_Equal should have a realization header in
which this one operation is the only realization parameter.

This leads to a refined definition of relative
observability (the others being similar):
Oy A specification S, parameterized by the program

type Item and defining the program type ADT, is
relatively observable iff there is a totally correct
implementation of:

concept S_Were_Equal_Capability
context

global context
facility Standard_Boolean_Facility
concept S

parametric context
type Item
facility S_Facility is S (Item)

interface
operation Were_Equal (

alters xl: ADT
alters x2: ADT): Boolean

ensures Were_Equal iff
(#xl = #x2)

end S_Were_Equal_Capability
whose realization context makes only the following
additional mention of Item:

realization header Allowed
for S_Were_Equal_Capability

context
parametric context

operation Items_Were_Equal (
alters xl: Item
alters x2: Item) : Boolean

ensures Were_Equal iff
(#xl = #x2)

end Allowed
In applying this definition to Set_Template, we find

there is no way for the realization body of Set_Were_-
Equal_Capability to use any externally-provided
operations involving Items, other than Items_Were_Equal.
This rules out impractical but technically correct
implementations like the one in Section 4.1.

56

Figure 5 is the counterpart of Figure 4, with the
refined definitions. Now Set_Template is not relatively
observable by Oy or by Oj, nor relatively controllable
by C2'. However, by adding the following operation (or
something similar) it becomes relatively observable and
relatively controllable even by Oy and Cy:

operation Remove_Any (
alters s: Set
produces x: Item)

requires s /= enpty_set
ensures (x is in #s) and (s = #s - {x})

Remove_Any (s, x) removes an arbitrary element of
the original s and returns it in x. Now there is a practical
way to enumerate the elements of a Set, leading to
obvious implementations of the required layered
operations that assume no more than the ability to do with
Items what the layered operation is doing to Sets.

Legend

Ü P
/ / / S J m?

m^ yyyy AV '^v5'\v
i £ää(£ **QQQ ,\v

JQyy XV
$yyy XV
.ii ■,,■. ^

EL

Set_Template as in Figure 2
without Swap

without Insert

without Remove
without ls_Member

Oj, (Were_Equal)

0^ (Are_Equal)

Cy (Move)

^^ C (Get_Replica)

8 without Size
with just Swap, Insert,
Are_Equal

8 with Remove_Any
with Remove_Any,
without Insert

Figure 5 — Variants of Set_Template With
Section 4 Definitions

Figure 5 shows what happens to the variants of
Set_Template previously displayed in Figure 4 (circles 1-
7). Two new variants help to illustrate the discrimination
power of the new definitions. Set_Template with
Remove_Any (circle 8) — a good design — passes both
of the stronger compliance tests O2' and C2'- Set_-
Template with Remove_Any but without Insert (circle 9)
— plainly not a good design — still passes both weaker
tests O3' and Cy but neither stronger one. So the
definitions used for Figure 5 seem better than those used
for Figure 4. But again even Oy and Cy clearly are not
"right" in that they still do not rule out patently bad
specifications. It is easy to circumvent their intent by
attacking the symptoms and not the disease: just add
Are_Equal and Get_Replica as primary operations. In
fact, Set_Template with just Are_Eqiml and Get_Replica

and no other operations whatsoever sits in precisely the
same place in Figure 5 as Set_Template with
Remove_Any> despite clearly not satisfying Ci. Fixing
these problems apparently requires taking a different path
altogether, as we discuss in the conclusions below.

5. Conclusions

A fundamental question facing the designer of a
model-based specification of an ADT is the appro-
priateness of the chosen conceptual model. We have
discussed some of the technical problems in carefully
defining two principles that provide the specifier with
criteria for appropriateness: Does the chosen model
interact with the specified operations in a way that makes
the specification observable and controllable? A negative
answer on either count suggests that the specifier needs to
look harder, or be prepared to justify non-compliance on
the basis of other requirements. A positive answer on
both counts gives a certain confidence, though among
satisfactory specifications some may be "better" than
others (e.g., more understandable or more flexible).
However, it hardly guarantees that the specification is
"good" in any reasonable and absolute intuitive sense.

We mentioned alternate paths that might be followed
to formalize observability and controllability. Here are
some conclusions from preliminary exploration of these
paths—conclusions not justified in the body of this paper.
\|/j When we say "computationally distinguishable"

or "computationally reachable", do we mean for some
implementation of the specified component, or for all?

Defining the principles using an existential quantifier
over implementations is largely unexplored territory.
However, there is reason to believe it might be attractive.
Consider, for example, the specification of an ADT called
Computational_Real modeled as a real number. The
operations have relationally-defined behavior. The Add
operation, for example, ensures that the result of adding
two Computational_Reals is a Computational_Real whose
model lies within some small interval around the sum of
the models of the addends. Based on a cardinality argu-
ment, it is clear there is no way the specification can be
deemed controllable if we insist that every implementation
of it must support reaching every real number. However,
the obvious Computational_Real operations (which mirror
the usual mathematical operators for reals) are powerful
enough to allow that every real number might be
reachable in some implementation, since the union of the
allowed intervals over all computations with these
operations just has to cover the reals. The power of
relationally-specified behavior is evident here, but the full
implications of defining observability and controllability
as suggested are not.

57

\|/2 Should observability and controllability be defin-

ed in terms of relationships between two program vari-
ables ("relatively"), or in terms of a program variable and
a universally quantified mathematical variable, or perhaps
in some other way?

Defining both principles the second way leads to
interesting phenomena and to other interesting questions
involving the expressiveness of the mathematics and the
relationships between those definitions and the ones in
this paper. Observability basically becomes a test of
whether, for every point in the state space, it is possible to
tell whether a program variable Was_Equal to it.
Controllability is more properly termed "constructability",
using something like definition Cj. These alternate
definitions cut through diagrams like Figures 3-5 in a
surprising way, since there are specifications that are
observable and/or controllable by the alternate definitions
but not by Oy and/or C2\ and vice versa. So such
definitions might offer distinct useful tests which should
be applied in tandem with the ones described here, when
evaluating a proposed specification.

6. Acknowledgment

We thank Murali Sitaraman and Stu Zweben for
insightful comments on a draft of this paper, and the
anonymous referees for their helpful suggestions and
pointers to some relevant literature (especially [11]). We
also gratefully acknowledge financial support for our
research from the National Science Foundation under
grant CCR-9311702, and from the Advanced Research
Projects Agency of the Department of Defense under
ARPA contract number F30602-93-C-0243, monitored by
the USAF Materiel Command, Rome Laboratories, ARPA
order number A714.

7. References

[1] Bernot, G., Bidoit, M., and Knapik, T., "Observational
Specifications and the Indistinguishability Assumption,"
Theoretical Computer Science 139, 1995, 275-314.

[2] Bucci, P., Hollingsworth, J.E., Krone, J., and Weide,
B.W., "Implementing Components in RESOLVE,"
Software Engineering Notes 19, 4, October 1994, 40-52.

[3] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M.,
Weide, B.W., "Specifying Components in RESOLVE,"

Software Engineering Notes 19, 4, October 1994, 29-39.
[4] Edwards, S.H., A Formal Model of Software Subsystems,

Ph.D. dissertation, Dept. of Computer and Information
Science, The Ohio State Univ., Columbus, March 1995.

[5] Ernst, G.W., Hookway, R.J., and Ogden, W.F., "Modular
Verification of Data Abstractions with Shared
Realizations," IEEE Transactions on Software
Engineering 20,4, April 1994,288-307.

[6] Goguen, J.A., Thatcher, J.W., and Wagner, E.G., "An
Initial Algebra Approach to the Specification, Correctness,
and Implementation of Abstract Data Types," in Current
Trends in Programing Methodology 4, R. T. Yeh, ed.,
Prentice-Hall, 1978, 80-149.

[7] Guttag, J.V., Horowitz, E., and Musser, D.R., "Abstract
Data Types and Software Validation," Communications of
the ACM 21, 12, December 1978, 1048-1064.

[8] Guttag, J.V., and Horning J.J., Larch: Languages and
Tools for Formal Specification, Springer-Verlag, 1993.

[9] Harms, D.E., and Weide, B.W., "Swapping and Copying:
Influences on the Design of Reusable Software
Components," IEEE Transactions on Software
Engineering 17, 5, May 1991,424-435.

[10] Jones, C.B., Systematic Software Development Using
VDM, 2nd ed., Prentice-Hall, 1990.

[11] Kapur, D., and Mandayam, S., "Expressiveness of the
Operation Set of a Data Abstraction," in Conference
Record 7th Annual Symposium on Principles of
Programming Languages, ACM, 1980, 139-153.

[12] Liskov, B.H., and Zilles, S.N., "Specification Techniques
for Data Abstractions," IEEE Transactions on Software
Engineering SE-1, 1, March 1975, 7-19.

[13] Liskov, B., and Guttag, J., Abstraction and Specification
in Program Development, McGraw-Hill, 1986.

[14] Norman, D.A., The Design of Everyday Things,
Doubleday/Currency, 1990.

[15] Ogden, W.F., Sitaraman, M., Weide, B.W., and Zweben,
S.H., "The RESOLVE Framework and Discipline — A
Research Synopsis," Software Engineering Notes 19, 4,
October 1994, 23-28.

[16] Sitaraman, M., Harms, D.E., and Welch, L.W., "On
Specification of Reusable Software Components,"
International Journal of Software Engineering and
Knowledge Engineering 3, 2, June 1993, 207-229.

[17] Spivey, J.M., The Z Notation: A Reference Manual,
Prentice-Hall, 1989.

[18] Weide, B.W., Ogden, W.F., and Zweben, S.H., "Reusable
Software Components", in Advances in Computers, vol.
33, M.C. Yovits, ed., Academic Press, 1991, 1-65.

[19] Weide, B.W., Ogden, W.F., and Sitaraman, M.,
"Recasting Algorithms to Encourage Reuse," IEEE
Software 11, 5, September 1994, 80-88.

[20] Wing, J.M., "A Specifier's Introduction to Formal
Methods", Computer 23,9, September 1990, 8-24.

58

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997 83

Representation Inheritance:
A Safe Form of "White Box" Code Inheritance

Stephen H. Edwards, Member, IEEE Computer Society

Abstract—There are two approaches to using code inheritance for defining new component implementations in terms of existing
implementations. Black box code inheritance allows subclasses to reuse superclass implementations as-is, without direct access to
their internals. Alternatively, white box code inheritance allows subclasses to have direct access to superclass implementation
details, which may be necessary for the efficiency of some subclass operations and to prevent unnecessary duplication of code.

Unfortunately, white box code inheritance violates the protection that encapsulation affords superclasses, opening up the
possibility of a subclass interfering with the correct operation of its superclass' methods. Representation inheritance is proposed as
a restricted form of white box code inheritance where subclasses have direct access to superclass implementation details, but are
required to respect the representation invariant(s) and abstraction relation(s) of their ancestor(s). This preserves the protection that
encapsulation provides, while allowing the freedom of access that component implementers sometimes desire.

Index Terms—Abstraction function, abstraction relation, behavioral subtype, inheritance, model-based specification, object-oriented,
representation invariant, reuse, specialization, subclass.

1 INTRODUCTION

CONVENTIONAL wisdom about how best to use inheri-
tance in object-oriented (oo) programming often

centers around the reasoning problems of component cli-
ents, not implementers. Most solutions, e.g., adherence to
the Liskov Substitutability Principle (LSP) [1], helpfully
instruct component designers in the correct way to use
specification inheritance. Unfortunately, these solutions
do not address the code reuse problems that also affect
class designers.

Specifically, code inheritance that allows a subclass to di-
rectly access the representation it inherits from its parent—
which we might consider white box code inheritance—raises
serious concerns about safety, correctness, and loss of lo-
cality when reasoning about implementations. In contrast,
with black box code inheritance new features in a subclass
are simply additions that are written in terms of the super-
class' external client interface. Fig. 1 illustrates these two
approaches, where a subclass of a basic list abstraction adds
a Reverse () operation to the behavior it inherits from its
parent. This paper addresses the utility of white box code
inheritance as a practical mechanism for component im-
plementers, describes the drawbacks it entails and their
theoretical roots, and proposes representation inheritance—a

.safe variety of white box code inheritance that meets practi-
cal needs without raising the same concerns.

Section 2 explains why problems arise from white box
code inheritance, and defines representation inheritance.
Section 3 elaborates the discussion of the problems of white

• S.H. Edwards is with the Department of Computer Science, Virginia Polytechnic
' Institute and State University, Blacksburg, VA 24061.

E-mail: edwards@cs.vt.edu.

Manuscript received June 26,1996; revised Nov. 11,1996.
Recommended for-acceptance by S.H. Zweben and M. Sitaraman.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S97026.

box code inheritance through a simple example—a two-
way list component. Section 4 then shows how representa-
tion inheritance can be applied in the example. Section 5
comments on methods of enforcing the restrictions imposed
by representation inheritance, and finally Section 6 dis-
cusses relationships with previous work.

Specification Specification

Implementation

Fig. 1. Black box vs. white box inheritance.

2 THE PROBLEM

When defining a new subclass, an 00 programmer often has
the option of implementing some or all of a subclass' new
features by directly manipulating the data members and/or
using the internal operations inherited from its superclass,
which we call white box code inheritance. Unfortunately, a
subclass implemented using white box code inheritance has a
"back door" through the protection that encapsulation nor-
mally affords its parent. This leak opens the possibility of
subclass code compromising the integrity of an encapsulated
object's internal representation. As a result, one can no longer
reason about the behavior of a particular method just by

1. The problems and solutions we discuss may involve either single or
multiple inheritance, but the descriptions in this paper are written in terms
of single inheritance for simplicity.

oo98-5589/97/$io oo ©1997 IEEE Reprinted with permission.
59

84 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 23, NO. 2, FEBRUARY 1997

looking at the class it is in—any present or future subclass has
the potential to interact with it indirectly through the object's
internal state in unforeseen ways.

For these reasons, many researchers and practitioners
alike have advocated avoiding white box code inheritance
completely. Why then would a programmer ever choose to
use it? There are two reasons for using white box code in-
heritance in practical situations. The more commonly cited,
but less compelling, reason is efficiency. In some circum-
stances, subclass operations implemented using black box
techniques suffer large space or time performance penalties
that could be avoided through the use of white-box code
inheritance, as in the example component described in Sec-
tion 3. When such a case arises, one might suggest simply
reimplementing the new class independently, perhaps as a
sibling rather than as a descendant of the chosen superclass.

Unfortunately, this leads to the less commonly cited but
more compelling reason for using white box code inheri-
tance^—avoiding the extra testing and maintenance burden
required by duplicating code. The "cut-and-paste"-style
reuse involved in reimplementing a class separately in or-
der to add a new method that requires direct access may
save coding time, but provides no help for testing or main-
tenance—the two classes will require twice as much effort
as the original class alone [2]. ideally, one would instead
like to consider the newly added code in a subclass to be
independent of any inherited code for the purposes of test-
ing and maintenance. While unrestricted white box code
inheritance does not admit this possibility, representation
inheritance does, as explained in Section 5.

For the remainder of this section, we turn our attention
to the hole in class encapsulation that white box code in-
heritance opens. The difficulties that arise from this leak
occur when a subclass either fails to respect its parent's rep-
resentation invariant, or fails to respect its parent's abstrac-
tion relation.

2.1 Respecting Representation Invariants
Internally, an object's methods interact indirectly with each
other through the state variables the object encapsulates.
Because this interaction is indirect, its success critically de-
pends on assumptions about the meanings attributed to the
variables and to changes in their values—assumptions
shared by all the methods. A class' representation invariant
captures exactly these assumptions [3, pp. 72-74].

As an example, consider a class that implements the ab-
straction of a "list of items." As shown in Fig. 1, one way to
implement such a class is to give it two internal state vari-
ables: an array of items called " elements," and an integer
called "length" recording how much of the array is in use.
One might design the methods for this class so the value of
length always refers to some valid index into the ele-
ments array—a representation invariant which all of the
class methods would share.

Typical OOPLs encourage one to encapsulate object state
information within a class so that clients cannot violate as-
sumptions that are critical to the correct functioning of the
class' methods. However, subclasses may occasionally need
direct access to a superclass' internal state (i.e., the speciali-
zation interface may provide a different view of the class

than the client interface). This access allows them to ma-
nipulate that representation in ways that can violate the
representation invariant, introducing "bug-like" behavior
in previously correct superclass methods.

To preclude the problems this unchecked freedom can
introduce, we propose that:

If a subclass has direct access to the internal state of a super-
class, it is likewise obliged to live by and uphold the com-
mon assumptions shared by all methods that have direct ac-
cess to those internal details—e.g., the superclass' repre-
sentation invariant.

2.2 Respecting Abstraction Relations
A class' client interface is often expressed at a different level
of abstraction from its internal representation details (for
example, a list described to the client as a mathematical
string or sequence, but represented as a linked list of
nodes). The correspondence between the internal state rep-
resentation of an object and its intended conceptual value is
expressed as an abstraction function [3, pp. 70-71] or, more
generally, abstraction relation [4], [5].

Again as an example, consider our "list of items" abstrac-
tion in Fig. 1. One might assume that the items stored in the
list are recorded in the elements array, while the length
state variable records how much of the array is in use. Even
so, there are still a variety of alternatives for representing the
list's conceptual value in these variables. Which series of
contiguous items in the elements array form the list: those
before length, or those after? Does the length state variable
indicate the index of the last item of the list, or does it refer to
the first unused array index after the list? These choices are
part of the abstraction relation for this class.

Subclasses that are intended to be behavioral subtypes of
their superclasses must obey the Liskov Substitutability
Principle, meaning that at the level of abstraction in the
client interface, objects of the subclass must behave in a
manner consistent with the superclass. To ensure that be-
havioral subtypes behave consistently, in addition to the
LSP we propose that:

If a subclass is intended to be a behavioral subtype, yet has
direct access to the representation of its superclass, it must
live by and uphold the abstraction relation shared by all the
methods that have direct access to those internal details. Be-
havioral substitutability (in the LSP sense) must also be
established for any internal superclass methods that are
overridden.

2.3 Representation Inheritance
Representation inheritance is a term for code inheritance
where a subclass has white-box access to its parent's inter-
nals, and the subclass respects the parent's representation
invariant. Because most modern 00 programming lan-
guages (OOPLS) provide only one inheritance mechanism,
when behavioral subtyping is desired we will consider rep-
resentation inheritance to encompass the requirement for a
subclass to respect both superclass invariants and super-
class abstraction relations.

Representation inheritance is built on lessons learned
from model-based specification techniques [6], [7], which
require one to explicitly state representation invariants and
abstraction relations. This solution is notably different from

60

EDWARDS: REPRESENTATION INHERITANCE: A SAFE FORM OF "WHITE BOX" CODE INHERITANCE
85

other proposed solutions, in that it does not involve parti-
tioning a class into groups of interdependent methods that
must be considered together when specializing the class.
Lamping's work [8], [9], as well as that of Stata and Guttag
[10], both indirectly address the difficulties of white-box
reuse by grouping methods that depend on common as-
sumptions, signaling to the specializer that these groups
need to be examined or changed together. Here, we instead
focus directly on the root of the problem—the shared (but
often undocumented) assumptions upon which these
methods depend. By capturing these assumptions in a rep-
resentation invariant, it is possible to treat all inherited
methods uniformly and independently, while simultane-
ously documenting exactly the assumptions about state
maintenance upon which they depend.

3 AN EXAMPLE: A TWO-WAY LIST COMPONENT

3.1 The Two-Way List Abstraction
To ground the discussion of code inheritance, consider a
class implementing the abstract notion of a "two-way list."
Conceptually, the value of a list object is simply a sequence
of items that we can visualize as being arranged in a row
from left to right. Without loss of generality, consider the
left end of the row to be the front or head of the list, and the
right end to be the back. As we advance down the list, we
can imagine that there is also a "fence" separating the items
we have already seen from those that lie ahead—it parti-
tions the row by sitting between two items. This particular
list component is "two-way" because we wish to be able to
move either left or right in the sequence of items.

One simple formalization of this model of two-way lists is:

type Two_Way_List is modeled by (
left : string of math [Item],
right: string of math [item]

)
exemplar 1 .
initialization

ensures l.left = empty_string and
1. right = empty_string

This formalization uses the notation of RESOLVE [11],
although any convenient model-based specification nota-
tion could be used [6]. In this formal model of the type, the
notion of the "fence" dividing the list of items into two
halves is implicit: The value of a list is modeled as two
separate "strings" (or sequences) that model the two parts
of the row of items to the "left" and "right" of the fence.

With this model in mind, it is possible to decide on the ba-
sic operations for two-way lists. The basic operations pro-
vided for two-way list objects, as adapted from [7], include:

Move_To_Start (). Moves the fence to the beginning (left) of
the list.

Movejojinish (), Moves the fence to the end (right) of the
list.

Advance (). Moves the fence one position forward (right).
Retreat (). Moves the fence one position backward (left).
AddJR.igkt (x). Adds x to the list right after (to the right of)

the fence, and returns with x having an initial value for
its type.

Remove_Right (x). Removes the item immediately following
(to the right of) the fence, and returns it in x.

At_Start (). Returns true when the fence is at the far left end
of the list.

At_Finish (). Returns true when the fence is at the far right
end of the list.

In an object-oriented programming language such as
C++, we might declare a class realizing this abstract con-
cept as shown in Fig. 2. The C++ Two_Way_List class
template in Fig. 2 defines a generic component that is
parameterized by the type of item in the list. It is similar in
several respects to Bertrand Meyer's BILINEAR [12, pp.
141-146] and TNO_WAY_LIST [12, pp. 154-155, 299-303]
components, although Meyer's selection of primary opera-
tions and conceptual model differs in several details.

template <class Item>
class Two_Way_List
(
private:

// Prevent assignment
Two_Way_List& operator =(

const Two_Way_List& rhs);
// Prevent copy construction
Two_Way_List (const Two_Way_List& 1);

public:
// The external interface

Two_Way_L ist ();
-Two. _Way_List ();

void Move_To_Start 0
void Move_To_Finish 0
void Advance 0
void Retreat 0
void Add_Right (Items item)
void Remove_Right (Items item)
void Remove_Right (Items item)

Boolean At Start 0;
Boolean At_Finish ();

Fig. 2. A C++ two-way list class template.

3.2 Implementing Two-Way List
Given this Two_Way_List declaration,. we can now turn
our attention to how one might implement a two-way list.
For the purposes of this paper, the sample implementation
will be presented in C++, although any other 00 program-
ming language could be used.

One obvious way to implement the Two_Way_List com-
ponent appears in many data structures text books: Use a
doubly-linked chain of nodes, where the links are imple-
mented using pointers. A technique that can help with this
approach is the use of sentinel nodes. By placing sentinel
nodes (or "dummy" nodes)2 at either end of the chain, all list
operations can be handled uniformly—there are no special
cases to handle when operating on either end of the chain.

2 Joe Hollingsworth, in a private communication, noted he regularly
uses-the approach of dual sentinel nodes when teaching linked representa-
tions to his CS1/CS2 students at Indiana University Southeast. Because of
the subsequent notable reduction in bugs in student programs, he refers to
such sentinels as "smart" nodes.

61

86
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

Given that the sequence of items contained within a
Two_Way_List object will be held in a doubly-linked chain,
only one question remains: What is the exact representation
of a Two_Way_List object? One obvious choice is to repre-
sent a Two_Way_List by a pair of pointers: one to record
the location of the head of the list, and another to record the
location of the fence. Here, we arbitrarily choose for a two-
way list object to have two data members, a pre_front
pointer that points to the sentinel node at the front end of
the chain, and a pre_f ence pointer that points to the node
containing the item immediately preceding the fence. Many
other combinations would work just as well. This choice is
elaborated in Figs. 3 and 4.

template <class Item>
class Two_Way_List

II ...
II The same external declarations as in
II Figure 3
II...

private:
// The representation of the class:
struct TWL_Node 11 A two-way list node

Item i;
TWL_Node* next; 11 forward pointer down

II the list
TWL_Node* previous; //backward pointer up

II the list
};
TWL_Node* pre-front; 11 pointer to first

11 sentinel
TWL_Node* pre_fence; 11 pointer to node fust

//before the "fence"

Fig. 3. The representation of Two_Way_List.

Two_Way_List
pre_fenee

pre_front —.

Abstract fist value: (<15>, <27 11>)

15 27

previous i next -
■ Sentinel Nodes

Fig. 4. A doubly-linked chain with sentinel nodes.

Fig. 3 shows the remainder of the Two_Way_List C++
class template declaration, including the declaration of the
internal TWL_Node struct and of the data members
holding the pre_front and pre_fence pointers. Fig. 4
then gives a pictorial representation of an actual
Two_Way_List object where the items are integers. The
sample list chosen has three items in the list (15, 27, and 11),
with the fence currently between the first and second ele-
ments (after 15 and before 27). Fig. 4 also shows the corre-
sponding abstract value of such a list in terms of the model
defined above. Now that the representation choices have
been made, providing code for the class methods is a
straightforward process that is skipped here.

3.3 An Enhancement
Now that we have an example class component defined and
implemented, we can turn our attention to a typical pro-
gramming task: How can we extend this "component with
new operations that provide additional capabilities? For the
purposes of this paper, we'll restrict ourselves to a simple
extension: the addition of an operation called Swap_Rights
that exchanges the tails (or right halves) of the two lists in-

volved. Fig. 5 shows the Enhanced_Two_Way_List class
template that adds the new method. Fig. 5 also shows a post-
condition describing the behavior of the Swap_Rights op-
eration in terms of the type's abstract model, using "#" to
denote the value of an object before the method invocation.

Fig. 6 more concretely illustrates the effect of the
Swap_Rights operation on two lists, where the items are
integers. The first list has three elements, 15, 27, and 11,
with its fence located between the first and second items.

The second has four elements, 14, 87, 9, and 12, with the
fence between the second and third items. Fig. 6 shows the

effect of invoking the Swap_Rights method of the first list,
passing the second list as the "rhs" argument to the opera-
tion. The sequences of items to the right of the fence in each
list are exchanged.

The Swap_Rights operation is an interesting additional
capability for two-way lists. Using the primary operations
shown in Fig. 2, the only way to combine two lists, or sepa-
rate one list into parts, is through a series of individual add
and remove operations. The Swap_Rights operation is a
useful building block that greatly simplifies the implementa-
tion of higher-level operations like concatenation, splitting,
splicing, etc. Given the implementation for Two_Way_List
based on sentinel nodes, what is the safest and most effective
way of implementing the Swap_Rights operation?

template <class Item>
class Enhanced_Two_Way_List : public
Two_Way_List<Item>
I
public:.

void Swap_Rights (
Enhanced_Two_Way_List& rhs);
//ensures self =

// (#self.left, #rhs.right)
// and rhs =
// (#rhs.left, #self.right)

Fig. 5. The Enhanced_Two_Way_List class.

Current
list: (<15>, <27 11>) (<15>, <9 12>)

"rhs" Z^
list: (<14 87>, <9 12>) 7 (<14 87>, <27 11

Fig. 6. The effect of Swap_Rights.

>)

3.4 Implementing the Enhancement
Note that Enhanced_Two_Way_List can be implemented
without access to the internals of its superclass. By treating
the superclass as a black box, Swap_Rights could be im-
plemented by moving each item from the right half of the
first list over to the second list, one at a time. Then the items

62

EDWARDS: REPRESENTATION INHERITANCE: A SAFE FORM OF "WHITE BOX" CODE INHERITANCE
87

from the right half of the second list have to be moved over
to the first, one at a time. This will take time proportional to
the number of items in the right halves of both lists.

Clearly, black box code reuse is safe, since subclasses
have no more privileges than other clients when it comes
to the internal representation of a superclass. One might
even be tempted to claim that all code reuse should be
achieved through black box methods. Unfortunately, the
Two_Way_List example illustrates why implementers
still turn to white box techniques for some problems.

Two_Way_List's doubly-linked chain representation
lends itself to a much more efficient (and less complex!)
implementation of Swap_Rights. It is only necessary to
change two pointer values in each chain in order to ex-
change the right halves of the two lists, resulting in a con-
stant-time implementation of the operation. Doing this re-
quires access to the representation of the Two_Way_List
superclass. Thus, even for well-designed components,
white box code reuse is occasionally necessary to achieve
algorithmic improvements in efficiency.

4 USING REPRESENTATION INHERITANCE

' In order for Enhanced_Two_Way_List to access its super-
class' representation safely, we use representation inheri-
tance. With this approach, the author of a subclass such as
Enhanced_Two_Way_List is required to obey the representa-
tion invariant(s) and respect the abstraction relation(s) of its
superclass(es). In a language that has support for expressing
representation invariants and abstraction relations, this re-
quirement could be automatically enforced. Otherwise, it
must be enforced by programming conventions and checked
through code reviews and testing. Fortunately, well-defined
representation invariants and abstraction relations should
make the testing of new subclasses much easier—by verify-
ing that subclass methods do in fact respect these superclass
assumptions, the need for retesting of inherited methods or
other nonlocal code artifacts is greatly reduced.

In the two-way list example, we can change the declara-
tion of the Two_Way_List data members from private to
protected, and write down the representation invariant and
abstraction relation for its implementation (perhaps in
structured comments, since C++ does not support formal
descriptions of these assumptions). The author of the En-
hanced_Two_Way_List class can then have direct access to
the representation of list objects when implementing
Swap_Rights, as long as the invariant and abstraction re-
lation are respected—both must be respected, since En-
hanced_Two_Way_List is intended to be a behavioral
subtype of Two_Way_List. Here, "respected" means the
following:

Assume that, before the method is called, the invariant
holds on the two-way list object and the abstraction relation

. gives the correct conceptual value for it. The method then
must ensure that upon its completion, the resulting two-
way list also satisfies the invariant, and that the abstraction
relation gives the correct conceptual value for the new list—
one that appropriately reflects the conceptual changes the
method was intended to make (i.e., one that conforms to the
method's postcondition).

This is the essence of representation inheritance: the flexi-
bility of white box code inheritance is achieved, without
giving up the safety afforded by encapsulation of super-
class representation information.

The implementation of Two_Way_List described in Sec-
tion 3 relies on several conventions, which taken together
form its representation invariant:

1) The TWL_Nodes within a Two_Way_List object are
doubly-connected in a single chain.

2) The pre_front and pre_fence pointers refer to
nodes within the same chain.

3) The unconnected pointers on the sentinel nodes are

set to NULL.
4) The pre_front pointer always refers to the sentinel

node at the beginning of the chain.

These conventions are stated informally here, but they
could be formalized (with some effort). Some programming
languages even provide syntactic slots for expressing repre-
sentation invariants [4], [3].

In practice, a subclass with white box access to its inher-
ited state variables could fail to maintain any one of these
four properties. Fig. 7 gives one example of how an imple-
mentation of Swap_Rights could violate the first clause of
the representation invariant. Fig. 7 depicts the representation
of the two lists introduced in Fig. 6 in detail, both before and
after the call to Swap_Rights. In this case, the implementa-
tion of Swap_Rights has only exchanged the "next" point-
ers in the two lists, and has failed to properly switch the cor-
responding "previous" pointers. Now, neither list's repre-
sentation is a doubly-connected chain—the two chains are
cross-connected. While this can rightly be considered a defect
in the implementation of the Swap_Rights operation, note
that many list operations will continue to operate correctly,
and the effects may only be detected by a test suite that exer-
cises the inherited operations interleaved with the new addi-
tion in a nontrivial way. •

■{ ']
Be lore

X 15
-*• 27 11 X ~!r

^ '\
X 14 87 9 12 X

i_ J. . After

Fig. 7. Violating the representation invariant in Swap_Rights.

The abstraction relation then relates representation val-
ues to the corresponding conceptual values they realize. It

63

88 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

captures the intentions of the implementer about the
"meaning" of the representation—how it encodes the con-
ceptual state that clients reason about. Informally, the dou-
bly-linked chain representation of two-way lists is related
to the conceptual model described in Section 3 as follows:

1) The entire sequence of items in the list, as well as their
order (i.e., l.left * 1.right), is recorded by the
contents and order of the TWL_Nodes in the (single)
chain of the representation.

2) The separation between the "left" and "right" parts of
the conceptual value (implicitly denoting the "fence")
is recorded by the pre_fence pointer. Specifically,
the pre_fence pointer points to the TWL_Node con-
taining the last item in the "left" portion of the list.
The "right" portion of the list begins with the node in
the chain immediately following the one pointed to
by pre_fence (i.e., 'pre_fence->next').

Some programming languages also provide syntactic slots
for expressing abstraction relations or functions [4], [3].

Continuing the running example, Fig. 8 gives one exam-
ple of how an implementation of Swap_Rights could ig-
nore the second clause of the abstraction relation. Here, the
implementation of Swap_Rights has only exchanged the
trailing halves of the two lists, beginning with the nodes
pointed to by the "pre_f ence" pointers. For the two sam-
ple lists under consideration, this behavior does not violate
the representation invariant and will not cause the execu-
tion of any inherited methods to fail at a later point. In-
stead, there is a mismatch between the behavior described
at the conceptual level and the actual representation. When
viewed in the light of the abstraction relation described
above, it is clear that Swap_Rights does not simply ex-
change everything to the right of the two fences—it also
exchanges the item immediately to the left of the fence in
each list. Without a description of the abstraction relation,
however, the software engineer who wrote this version of
Swap_Rights might never see the discrepancy.

:L JL
Before.

Fig. 8. Violating the abstraction relation in Swap_Rights.

The above statements of the representation invariant
and the abstraction relation are informal, but they capture
critical information necessary for the correct functioning

of the Two_Way_List methods. There are many other
possible configurations of invariant and abstraction rela-
tion that could have been chosen (together with slight
differences in the choices about the pointers and node
structures, used). While any of them may work well, the
important point is that one choice was made in the im-
plementation of the Two_Way_List class, and the imple-
menter of that class used it consistently. The correct op-
eration of Two_Way_List's methods critically depends on
this choice (and on consistently following it).

Fig. 9 shows an excerpt of the Two_Way_List class
declaration with an informal version of the representation
invariant and abstraction relation added in comments.
Fig. 10 then shows the corresponding implementation of
Enhanced_Two_Way_List's Swap_Rights method, with
comments marking the locations where critical assump-
tions about the inherited representation invariant and
abstraction relation must be checked.

template <class Item>
class Two_Way_List
(

II ...
II The same external decls. As in Figure 3
II...

protected: // Allow representation inheritance
II The representation of the class:
struct TWL_Node {...);
TWL_Node* pre_front; // ptr. to 1st sentinel
TWL_Node* pre_fence; 11 ptr. to node just

II before the "fence"
! Representation invariant:
! Let HEAD_SENTINEL and TAIL_SENT-
l INEL be the two sentinel TWL_Nodes for
I This list. Then:
! la. HEAD_SENTINEL.next-> ... -> next

== &TAIL_SENTINEL and
f TAIL_SENTINEL.previous-> ...

->previous == &HEAD_SENTINEL
! lb. For all nodes N:

N.next != NULL =>
N. next, previous == N and

N.previous != NULL =>
N. previous, next == N

(prejence == &HEAD_SENTINEL or
prejence == & HEAD_SENTINEL.next->
... ->next) and

pre-fence .'= &TAIL-SENTINEL
13. HEAD_SENTINEL.previous == MILL
' and TAIL=SENTINEL.next ==

NULL (and nothing else is NULL)
14. prejront == &HEAD_SENTINEL

! Abstraction relation:

II
II
II
II
II
II
II
II.
II.
II
II
II
II
II
II
II
II
II
II.
II.
II.
II
II
II
II,
II
II.
II
II
II
II.

"left" == preJront-> next-> item,
pre_jront->next->next->item,

preJence-> item
'right" == pre_frence-> next->item,

pre_frence->next->item,

TAIL_SENTINEL.previous
->item

Fig. 9. The Two_Way_List representation invariant and abstraction
relation.

64

EDWARDS: REPRESENTATION INHERITANCE: A SAFE FORM OF "WHITE BOX» CODE INHERITANCE
89

template <class I tem>
void Enhanced_Two_Way_List<Item>::

Swap_Rights(Enhanced_Two_Way_List& rhs)

(
/// assert(Two_Way_List-repJnvariant(self) ==
//.' true); .
/ / / Assert(Two_Way_List.abs_relation(
lf\ (self.left, self.right),
111 (self.pre Jront, self.presence)));

TWL_Node* my_tail, rhs_tail:

my_tail = pre_fence-mext;
rhs_tail = rhs.pre_fence-»next;

pre_fence—»next = rhs_tail;
rhs_tail->previous = pre_fence;

rhs.pre_fence->next = my_tail;
my_tail->previous = rhs .pre_fence; .

//.' assert(Two_Way_List.rep_invariant(self) ==
//.' true);
11! assert(TwoJNay_List.abs.relation(
III (self.left, self.right),
111 (self.pre Jront, self.pre Jence)));

III My postcondition:
11! assert ((self-left=#selfleft) &&
//! (self.right t=#rhs.right) &&
//! (rhs.left = rhs. left) &&
11! (rhs.right - #self-right));

Fig. 10. Implementing Swap_Rights.

5 ENFORCING OBLIGATIONS

Representation inheritance relies on a subclass living up to
the commitments made by its superclass(es). Thus, the
safety afforded by representation inheritance is only as
strong as the guarantee we have that the subclass will in-
deed fulfill its obligations. Further, it is clear that this safety
is only as strong as the "tightness" of the representation
invariants and abstraction functions documented for each
class. Failure to capture all the restrictions that superclass
methods rely on can still allow too much freedom to sub-
classes. With regard to gauging safety, there are three basic
approaches to establishing the degree to which subclasses
obey their representation inheritance restrictions: formal
verification, run-time checking, and testing.

5.1 Formal Verification
In theory, formal verification support is needed to provide
complete automatic enforcement of representation invari-
ants and abstraction relations. This necessity is brought
about by the fact that some representation invariants or
abstraction relations may not be computable, implying con-
formance may not be checkable by a computer through ei-
ther run-time checks or testing. This should not be surpris-
ing, since conformance to a behavioral specification may be
just as difficult to check, depending on the specification
notation used! Further, regardless of the enforcement tech-
nique used, checking adherence to superclass abstraction
relations requires that one have behavioral specifications
for both super- and subclasses—something lacking in most

present software.

In practice, however, few practitioners are willing to
proceed with formal verification at present. Instead, code
reviews and testing seem to provide acceptably high confi-
dence levels for conformance with behavioral specifica-
tions, so we turn our attention to the natural analogues for
enforcing representation inheritance restrictions.

5.2 Run-Time Checking
Without the resources for formal verification, many practi-
tioners feel that run-time checking of representation invari-
ants is critical to enforcement. Eiffel is one language which
uses run-time checks consistently to provide some level ot
enforcement for programming obligations [13].

For example, in the Two_Way_List component de-
scribed in Section 3, one could write a protected method
that would operationally check the class' representation
invariant. This method could then be called directly
(perhaps using the standard assert () macro) m appropri-
ate places (both in Two_Way_List methods and methods of
its descendant classes) to ensure that the invariant is being
maintained. This would certainly provide some degree of
confidence that the necessary obligations imposed on sub-

classes were being observed.
This is certainly a viable approach to representation in-

heritance enforcement in many cases. It is important to note
that it is not always possible to provide run-time checks
(i e when the representation invariant is not computable).
Further, some run-time checks might be considered pro-
hibitively expensive to consider leaving in place in fielded
software. As a result, one might ask the question of whether
the same degree of confidence could be obtained without
requiring the overhead of run-time checking.

5.3 Enforcement through Testing
The primary strategy for using testing to enforce represen-
tation inheritance restrictions is to:

1) Use run-time checking to operationally test represen-
tation invariants at all necessary points during testing.

2) Expand white box testing techniques to generate test
cases that stress these run-time checks.

This approach utilizes the best features of run-time
checking without requiring run-time checks in fielded code.
Further if test case generation takes into account represen-
tation invariants, run-time checks during testing may even
provide a higher level of confidence the obligations are ob-
served than run-time checks alone.

Simply put, for testing purposes, every class should have
a method that operationally checks the representation in-
variant on its internal state. If all classes export such an op-
eration, it is a simple matter to write "defensive" wrappers
for every class that check invariants on entry and exit to
every method. By providing such defensive wrappers
around superclasses during testing, run-time checking can
be systematically inserted where ever it is desired. Generic
programming provides and effective way to insert or re-
move such defensive wrappers without modifying sub-
classes or their inheritance links [14], [11].

to fully exploit such run-time checks during testing, it is
necessary to consider representation invariants when gen-
erating test cases. Effectively, the obligation to maintain a

65

90 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

representation invariant becomes an extra part of the be-
havioral specification of each method (hidden from the
eventual clients of a class), and thus is subject to the same
test case generation techniques as are used for gauging
conventional behavioral conformance.

Once a subclass has been fully tested with run-time
checks in place, those checks can be safely removed. Any
future subclasses cannot affect code they might inherit, as
long as those subclasses obey their representation inheri-
tance obligations. This allows superclasses and sublcasses
to be validated independently through testing.

5.4 Testing without Representation Inheritance
In light of the previous discussion, it is also worth consid-
ering the requirements for testing when the restrictions of
representation inheritance are not observed or enforced.
Perry and Kaiser [15] describe requirements for adequately
testing 00 programs. They indicate that when subclasses
are added to an inheritance hierarchy, not only must one
test the newly added methods in these subclasses, one must
also retest all of the inherited methods. They also indicate
that clients of the superclasses need to be retested while
using the subclasses. Component regression testing guide-
lines built on these requirements have also been described
by Skublics et al. [16, p. 85].

To most object-oriented programmers, however, this
testing advice is counterintuitive and seems to fly in the
face of conventional wisdom. Instead of simply testing the
newly added code, one must test all methods in every class.
While code reuse may have saved some time during the
coding phase of development, according to Perry and Kai-
ser's recommendations, it saves absolutely no effort in
testing. From the testing viewpoint, it is almost as if no in-
heritance had occurred at all—the testing effort required is
the same as if all of the superclass code were reproduced
from scratch in the new component.

If one is working in a language where the inheritance
mechanism normally allows white box code inheritance,
such as Smalltalk or Eiffel, then the technical reasons for
Perry and Kaiser's recommendation start to make more
sense. When a subclass can cause code outside of itself to
fail, testing in the context of newly added subclasses be-
comes a much more involved process.

From this, we can also infer that white box code inheri-
tance provides little if any savings in maintenance effort.
Changing code in one class method could conceivably have
adverse affects in arbitrarily distant ancestor or descendant
classes. Thus, to make maintenance changes or enhance-
ments in one class, the entire root-to-leaf branch of the in-
heritance hierachy it lives in must be understood, and then
retested after the change—classes fail to provide the fire
walls of modularity that programmers expect..

With representation inheritance, the methods inherited
from a superclass cannot fail because of defects introduced
in subclass method implementations. As a result, changes
in a subclass do not require the retesting of inherited code.
The virtues of modularity and encapsulation are thus pre-
served at class boundaries.

6 RELATION TO PREVIOUS WORK

As mentioned in the introduction, representation inheri-
tance is related in spirit to various work on specification
inheritance. Liskov and Wing's definition of the subtype
relation so that it preserves behavioral abstraction typifies
this work [17], [1]. In a similar vein, Leavens and Weihl
describe, a foundation for the modular verification of 00
software built around interpreting inheritance as a behav-
ioral abstraction [5]. These approaches only address the
client-side reasoning issues posed by inheritance mecha-
nisms, however, and do not directly address code inheri-
tance.

The notions of representation invariant and abstraction
relation (or function) [3] are also taken directly from past
work on formal specification and formal verification. Both
have been used in languages and methods centered on
model-based program specification, including RESOLVE [4].
Leavens and Weihl [5] provides a complete formal treat-
ment of representation invariants and abstraction relations
in an object-oriented context, and they are naturally ex-
tended to other model-based specification approaches, such
as those surveyed in Lano and Haughton [18]. This paper
gives a more pragmatic presentation in order to familiarize
practitioners with the uses of the more theoretical devel-
opment of representation invariants and abstraction rela-
tions presented elsewhere.

The safety problems with white box code reuse have
been described by Muralidharan and Weide [19]. They note
the efficiency concerns that make white box techniques de-
sirable, but concentrate on clearly delineating the disad-
vantages that come with breaking encapsulation. They pro-
pose no solutions to the problem. The RESOLVE program-
ming language [11] does provide the necessary support for
representation invariants and abstraction relations, how-
ever, and there are plans to add representation inheritance
to the language.

As mentioned in Section 2, Lamping [8] also has exam-
ined the risks associated with subclass access during spe-
cialization. His work is type-system oriented, however,
where the solution proposed here derives from model-
theoretic specification techniques. Lamping suggests parti-
tioning classes into groups of methods which share as-,
sumptions, as documentation for use by programmers
writing specializations. He does not specifically address
capturing the assumptions themselves, however.

Stata and Guttag [10] have also explored grouping
methods for this purpose. Their work is more closely re-
lated, since it is also specification-based. They further pro-
pose that instance variables can be partitioned along with
the methods, splitting a superclass into "modular" chunks
that can be treated independently. While this does allow
subfacets of an object to be specialized independently, it
fails to capture the critical assumptions about module state
upon which the methods depend. Stata and Guttag go on to
require that if any method in such a group is overridden by
a subclass, then all methods in that group must be, which is
necessary for safety. Here, we instead explicitly capture the
conventions about how state variables are maintained, we
do not require methods to be grouped, and we allow any
method to be overridden individually.

66

EDWARDS: REPRESENTATION INHERITANCE: A SAFE FORM OF "WHITE BOX" CODE INHERITANCE 91

Perhaps the best-known work that attempts to address
the problems discussed here is Meyer's Eiffel [13]. There are
several critical differences between Eiffel and the ideas de-
scribed in this paper, however, which highlight the contri-
butions of the present paper. At first glance, Eiffel appears
to have all of the machinery necessary to capture both
specification inheritance and representation inheritance
built into the language:

• It supports preconditions and postconditions for de-
scribing method behaviors.

• It supports invariant assertions to capture properties
that methods must preserve when they complete.'

• It ensures that each subclass inherits the precondi-
tions, postconditions, and invariants of its super-
classes)—descendants must live up to the obligations
of their ancestors.

Unfortunately, under practical usage these mechanisms are
not enough to ensure the safety that representation inheri-
tance provides.

Classes in Eiffel represent component implementations,
and there is no linguistic facility for capturing the corre-
sponding component specifications [13, p. 59]. As a result,
the mechanisms in the language only support capturing
information relevant to the implementation, and other de-
tails such as abstraction relations are not addressed.

As a result, Eiffel's invariant assertions must serve
double-duty:

1) Programmers try to use them to capture the abstract
invariant [3, p. 92], which defines client-visible con-
straints on an object's conceptual value.

2) They should also capture the representation invariant,
which defines constraints on an object's internal state
that is invisible to clients.

Of course, assertions that deal with the hidden state of
objects are not helpful for client understanding, so it is
common to see Eiffel invariants phrased in terms of pub-
licly visible accessor functions [12] rather than private state
variables. As a result, Eiffel's invariant assertions become
abstract invariants in practice.

This tendency is exemplified by Meyer's version of
TNO_WAY_LIST [12, pp. 154-155, 299-303]. The Eiffel ver-
sion has its invariant phrased in terms of publicly visible
accessors, and simply constrains client-visible properties,
like the relationships between the number of items in the
list, the position of the fence, and the values of predicates
similar to At_start {) and At_Finish (). None of the rep-
resentation-level constraints shown in Fig. 9 are captured.

In addition, the computational nature of Eiffel's assertion
mechanism prevents some invariants from being expressed
because they are not computable, and discourages pro-
grammers from writing down others that are expensive to
check. For example, consider a component that implements
an associative mapping using a hash table with sorted
buckets. The fact that the buckets are maintained in sorted
order, and that every key in the mapping is unique, are in-
variant properties of this implementation. Unfortunately, it
is expensive to check these properties at run-time, perhaps
prohibitively so. As a result, facets of the component's rep-
resentation invariant may be ignored by component de-
signers when writing Eiffel assertions.

Finally, the lack of separate specifications in Eiffel en-
sures that abstraction relations will not be captured. In the
Two_Way_List example, the assumption that pre_fence
points to the node before the first item in the right half of the
conceptual value of the list cannot be captured in an Eiffel
invariant clause. As a result, subclass methods could vio-
late this assumption, perhaps by leaving a particular list so
that the pre_f ence pointed to the node holding the first
item in the right half of the list. This error could potentially
cause other methods to fail, or simply have the incorrect
behavioral result from the client's point of view. Either
way, however, Eiffel assertions cannot address the issue.

While Eiffel's inheritance rules attempt to achieve the
same goal as representation inheritance in spirit, in practice
none of the assumptions recorded for the Two_Way_List
example in Fig. 9 would have been captured or checked in a
typical Eiffel version of the component. Indeed, none are
for the most similar components in Meyer's library. Eiffel
fails to provide the safety of representation inheritance for
this reason.

7 CONCLUSIONS

Class designers have a choice between black box and white
box techniques when they specialize existing classes. While
it is always best in principle to use black box code inheri-
tance, there are practical situations where programmers
really desire more freedom of access to information encap-
sulated within superclasses. When these situations arise,
white box code inheritance is appropriate.

Unrestricted white box code inheritance is clearly un-
safe, however. By breaking the encapsulation of super-
classes, it allows subclass implementers to violate as-
sumptions upon which superclass methods depend. This
can mean that subclasses actually introduce errors that are
only observed through execution of inherited methods,
making it impossible to reason about class correctness
locally, and seriously complicating the requirements for
adequate testing of software.

If the assumptions that classes depend on are described
in terms of representation invariants and abstraction rela-
tions, then it is possible to address the shortcomings of
white box reuse. Representation inheritance is a controlled
form of white box code inheritance in Which subclasses
must respect the representation assumptions of their an-
cestors. By doing so, subclasses ensure that superclass code
assumptions are protected, while simultaneously enjoying
the benefits of direct access to superclass state representa-
tions. This gives desirable freedom to subclass imple-
menters, while preserving the safety and locality consid-
erations for which all programmers strive.

ACKNOWLEDGMENTS

The author gratefully acknowledges financial support from
the National Science Foundation under Grant No. CCR-
9311702 and the Advanced Research Projects Agency under
Contract No. F30602-93-C-0243 (monitored by the USAF
Materiel Command, Rome Laboratories, ARPA order num-
ber A714). Bruce Weide also deserves special thanks for

67

92
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997

suggesting the ideas that later developed into the notion of
representation inheritance presented here.

REFERENCES

[I] B.H. Liskow and J.M. Wing, "A Behavioral Notion of Subtyping,"
ACM Trans. Programming Languages and Systems, vol. 16, pp.
1,811-1,841, Nov. 1994.
S.H. Edwards, "An Approach for Constructing Reusable Software
Components in Ada," IDA Paper P-2378, Inst. For Defense Analy-
ses, Alexandria, Virginia, Sept. 1990.
B. Liskov and J. Guttag, "Abstraction and Specification in Pro-
gram Development," The MIT Electrical Engineering and Computer
Science Series, Cambridge, Mass.: MIT Press, 1986. '
P. Bucci, J.E. Hollingsworth, J. Krone, and B.W. Weide,
"Implementing Components in RESOLVE," ACM SIGSOFT Soft-
ware Eng. Notes, vol. 19, pp. 50-52, Oct. 1994.
G.T. Leavens and W.E. Weihl, "Specification and Verification of
Object-Oriented Programs Using Supertype Abstraction," Ada
Informatica, vol. 32, no. 8, pp. 705-778,1995.
J.M. Wing, "A Specifier's Introduction to Formal Methods," Com-
puter, vol. 23, no. pp. 8-24, Sept. 1990.
M. Sitaraman, L.R. Welch, and D.E. Harms, "On Specification of
Reusable Software Components," lnt'l]. Software Eng. and Knowl-
edge Eng., vol. 3, no. 2, pp. 207-229,1993.
J. Lamping, "Typing the Specialization Interface," Proc. Conf
OOPSLA'93, pp. 201-214, ACM, Oct. 1993.
J. Lamping and M. Abadi, "Methods as Assertions," ECOOP'94—
Object-Oriented Programming, Proc. Eighth European Conf., Lectures
Notes in Computer Science, vol. 821, pp. 60-80. New York:
Springer-Verlag, 1994.
R. Stata and J.V. Guttag, "Modular Reasoning in the Presence of
Subclassing," Proc. Conf. OOPSLA'95, pp. 200-213. New York:
ACM, 1995.

[II] M. Sitaraman and B.W. Weide, eds., "Special Feature: Compo-
nent-Based Software Using RESOLVE," ACM SIGSOFT Software
Eng. Notes, vol. 19, pp. 21-67, Oct. 1994.

[12] B. Meyer, Reusable Software: The Base Object-Oriented Component
Libraries. Hertfordshire, UK: Prentice Hall lnt'l, 1994.

[13] B. Meyer, Object-Oriented Software Construction. New York: Pren-
tice Hall, 1988.

[14] J. Hollingsworth, "Software Component Design-for-Reuse: A
Language Independent Discipline Applied to Ada," PhD thesis,
Dept. of Computer and Information Science, Ohio State Univ.,
Columbus, 1992.

[15] D.E. Perry and G.E. Kaiser, "Adequate Testing and Object-
Oriented Programming," /. Object-Oriented Programming, vol 2
pp. 13-19, Jan./Feb. 1990.

[16] S. Skublics, E.J. Klimas, and DA. Thomas, Smalltalk with Style.
Englewood Cliffs, N.J.: Prentice Hall, 1996.

[17] B.H. Liskov and J.M. Wing, "A New Definition of the Subtype
Relation," ECOOP'93—Object-Oriented Programming, Proc. Seventh
European Conf, Lecture Notes in Computer Science, vol. 707, pp.
118-141, New York: Springer-Verlag, 1993.

[18] K. Lano and H. Haughton, eds., Object-Oriented Specification Case
Studies. Englewood Cliffs, N.J.: Prentice Hall, 1993.
S. Muralidharan and B.W. Weide, "Should Data Abstraction be
Violated to Enhance Software Resuse?" Proc. Eighth Ann. Nat'l
Conf. Ada Technology, Atlanta, pp. 515-524, ANCOST, Inc., Mar
1990.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

Stephen H. Edwards received the BSEE.degree
from the California Institute of Technology,
Pasadena, and the MS and PhD degrees in
computer and information science from the Ohio
State University, Columbus. He is currently a
visiting assistant professor in the Department of
Computer Science at the Virginia Polytechnic
Institute and State University. He also maintains
a close relationship with the Reusable Software
Research Group at the Ohio State University.
His research interests include software engi-

neering and reuse, the use of formal methods in programming lan-
guages, and information retrieval technology. Dr. Edwards is a member
of the IEEE Computer Society, ACM, and Upsilon Pi Epsilon.

[19]

68

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 23, NO. 3, MARCH 1997 157

On the Practical Need for Abstraction Relations
to Verify Abstract Data Type Representations

Murali Sitaraman, Member, IEEE Computer Society, Bruce W. Weide, Member, IEEE,
and William F. Ogden, Member, IEEE Computer Society

Abstract—The typical correspondence between a concrete representation and an abstract conceptual value of an abstract data
type (ADT) variable (object) is a many-to-one function. For example, many different pointer aggregates give rise to exactly the same
binary tree. The theoretical possibility that this correspondence generally should be relational has long been recognized. By using a
nontrivial ADT for handling an optimization problem, we show why the need for generalizing from functions to relations arises
naturally in practice. Making this generalization is among the steps essential for enhancing the practical applicability of formal
reasoning methods to industrial-strength software systems.

index Terms—Abstract data type, abstraction function, abstraction mapping, abstraction relation, data abstraction, formal
specification, greedy algorithm, program verification, nondeterminism, optimization problem, relation.

1 INTRODUCTION

THE need to separate the specifications and implementa-
tions of abstract data types is widely recognized. To

keep a specification purely conceptual and unbiased with
respect to its many alternative implementations, the be-
havioral explanation should employ an implementation-
neutral abstract model rather than any particular represen-
tation model. The formal verification that a given imple-
mentation does meet this conceptual specification then in-
volves a correspondence mapping, traditionally called an
abstraction function, between the model used in the imple-
mentation (the concrete or representation model) and the
model used in the specification (the abstract or conceptual
model) [10].

For some ADT specifications and implementations, the
natural connection between concrete and abstract models
turns out to be relational, not functional. That is, in some
cases a particular concrete value may represent any of sev-
eral abstract values; see Fig. 1.

The theoretical importance of abstraction relations has
long been recognized. Precluding their expression results in
modular verification systems which are incomplete in the
technical sense that there are implementations that are cor-
rect with respect to their specifications, but which cannot be
proved to be so using only abstraction functions. Moreover,
insisting upon using an abstraction function even when it is
technically possible may increase verification complexity to
the point where it effectively thwarts modular reasoning

• M. Sitaraman is with the Department of Statistics and Computer Science,
West Virginia University, Morgantown, WV 26506.
E-mail: murali@cs.wvu.edu.

• B.W. Weide and W.F. Ogden are with the Department of Computer and
Information Science, The Ohio State University, Columbus, OH 43210.
E-mail: {weide, ogdenl@cis.ohio-state.edu.

' Manuscript received Sept. 18,1995; revised Feb. 14,1997.
Recommended for acceptance by f.D. Gannon.
For information on obtaining reprints of this article, please send e-mail to:
transse@computer.org, and reference IEEECS Log Number S95823.

about correctness. And it is crucial for tractability and reuse
that the verification of an ADT's implementation code
should be modular. This means that the proof of correct-
ness should rely only on the given specification of behavior
to be implemented and on given specifications of lower-
level components that are used in the code. The correctness
argument should be independent of the implementations of
the lower-level components and independent of other parts
of the system that use the code being verified [7], [23].

Here, we formally establish the requirement for sup-
porting abstraction relations by exhibiting a nontrivial ADT
for a practical optimization problem, where not just the
value of—but the outright need for—an abstraction relation
naturally arises. The nature of the example argues that for-
mal reasoning systems must be able to generalize to handle
abstraction relations if they are to be applied with confi-
dence to new and nontrivial data abstractions.

abstract
(conceptual)

space

a2 a3

concrete
(representation)

space
r1 r2 r3 r1 r2 r3

Fig. 1. Abstraction function (left) and abstraction relation (right).

1.1 Prior Work on Abstraction Relations
Previous work involving modular verification of ADTs
with model-based specifications leaves the practical role of
abstraction relations unsettled. Leavens notes the value of
"simulation relations" (essentially abstraction relations) in
defining behavioral subtyping [13]. Jones [11, p. 219] and
Schoett [19] independently observe that, technically, ab-

0098-5589/97/S10.00©is??IEEE Reprinted with permission.

69

158 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

straction relations might be needed in some cases to verify
implementations of ADTs whose specifications are
"biased," or "not fully abstract". Schoett's work is based on
the assumption that nonfully abstract specifications might
arise in practice. But Jones notes that [11, p. 182], "If differ-
ent abstract values correspond to one concrete value, it is
intuitively obvious that such values could have been
merged in the abstraction. So, in the situation where the
objects used in the specification were abstract enough, the
many-to-one situation would not arise."

There also has been some work on abstraction relations
in the context of algebraic specifications. For example, to
show the theoretical need for abstraction relations, Nipkow
describes a construction involving algebras of nondetermi-
nistic data types [18]. The relationship between this work
and the practical need for abstraction relations to verify
implementations of model-based specifications is unclear,
however. So while there are subtle differences in the posi-
tions taken by different authors on the topic, the comments
of Liskov and Wing in their corrigendum to an earlier pa-
per [14] probably best characterize the common belief
among software engineers who use formal methods: Ab-
straction relations are occasionally helpful and might even
be technically necessary in some cases; however, [15, p. 4]
"for most practical purposes, abstraction functions are ade-
quate (compared to relations)."

1.2 Contributions
We show that abstraction relations are practically important
for software specification and modular verification. Techni-
cally, abstraction relations are necessary in order to avoid
incompleteness. Practically, they are necessary in order to
deal with new and nontrivial ADTs such as those resulting
from modern software component design techniques.

We use a sample specification based on the technique of
"recasting" algorithms as data abstractions [24]. This soft-
ware component, if it is to lend support to the claim for
practical significance of abstraction relations, must have
three properties:

1) Realism. The specification must not be artificial and
conceived just for showing the need, i.e., it must be of
a sort that is actually likely to arise in practical sys-
tems. Otherwise, the fact that a reasoning system
based solely on abstraction functions cannot handle it
would have little practical import. Our sample speci-
fication captures solutions to a practical optimization
problem and serves as an exemplar for a larger class
of similar components.

2) Quality. The sample specification must be well-
designed. In particular, it must be fully abstract; i.e.,
every two different conceptual values of the abstract
data type being defined must be computationally dis-
tinguishable [11], [12], [25]. Otherwise, the relational
nature of the correspondence mapping could merely
arise from the sloppiness of the conceptual specifica-
tion. Our sample component is a well-designed, fully
abstract specification.

3) Provable resistance to verification with abstraction func-
tions. There must be an actual proof that shows why
no abstraction function can be found to verify that a

correct implementation satisfies the sample specifica-
tion. Our sample component comes with a correct and
practical realization that we prove cannot be verified
using any abstraction function (but which can be veri-
fied using an abstraction relation).

2 INHERENTLY RELATIONAL BEHAVIOR
SPECIFICATIONS

Optimization problems are a general category of problems in
which relational specifications arise naturally. In many such
problems, it is easy to find multiple solutions which satisfy
the constraints yet which all evaluate to the same objective
function value. The specification for software to solve such a
problem is inherently relational because it should allow an
implementation to produce any optimum solution. The natu-
ral correspondence between such implementations and speci-
fications tends to be relational (even though a functional cor-
respondence might exist in some cases). .

2.1 A Realistic Software Component Example
As a sample relational problem specification we use the
Spanning_Forest_Machine_Template from our recent
paper on "recasting" algorithms as objects [24]. This speci-
fication exhibits the relational behavior we seek because it
requires that some minimum spanning forest (MSF) of a
given graph must be found; there might be ties and any
best answer is acceptable. For a fully connected graph an
MSF is also a minimum spanning tree (MST). For a general
unconnected graph, an MSF is a union of edges of MSTs for
each of the connected components [4].

The concept for Spanning_Forest_Machine_Template
defines a type Spanning_Forest_Machine (a variable of
which type we henceforth call a "machine" for brevity) and
suitable operations. A typical client repeatedly calls opera-
tion Insert to add the edges of the graph for which an
MSF is to be found (one at a time) into a machine; calls
Change_To_Extraction_Phase to change the machine to
extraction phase, and finally makes multiple calls to Ex-
tract to remove, one at a time, the edges of one of the
(possibly many) MSFs of that graph. Operation Insert re-
quires that the machine be in the insertion phase at the time
of the call, whereas Change_TcvExtraction_Phase and
Extract operations require that the machine be in the ex-
traction phase. Is_In_Insertion_Phase tests whether a
machine is in insertion phase. Size returns the number of
MSF edges in the graph and is restricted to be called only
when in the extraction phase (for purposes of simplicity in
this paper).

The concept described informally above, and specified
formally in Fig. 2, is quite different from one providing a sin-
gle procedure that finds, an MSF of a'graph. Our component
prescribes what computation needs to take place, but not
when. Viewed through its abstract interface, the component
does not reveal to a user when (i.e., in which operation or
operations) an MSF is actually being computed. The design
gives the implementer freedom both in how and in when to
do computations, and the attendant performance flexibility
of various kinds of cost amortization, which is part of the
rationale for the recasting technique illustrated by this inter-
face [24]. This observation reinforces an important principle

70

SITARAMAN ET AL: ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS 159

concept Spanning_Forest_Machine_Template

context
global context

facility Standard_Boolean_Facility
facility Standard_Integer_Faci1 i ty

parametric context
constant max_vertex: Integer

restriction ma-x_vertex > 0

local context
math subtype EDGE is (

vl: integer
v2: integer
w: integer

)
exemplar e
constraint

1 <= e.vl <= max_vertex and
1 <= e.v2 <= max_vertex and
e.w > 0

math subtype GRAPH is finite set of EDGE
math operation IS_MSF (

msf: GRAPH
g: GRAPH

): boolean
definition

(* true iff msf is an MSF of g *)

interface
type Spanning_Forest_Machine is modeled by (

edges: GRAPH
insertion_phase: boolean

)
exemplar m
constraint IS_MSF (m.edges, m.edges)
initialization ensures

m = (empty_set, true)

operation Change_To_Insertion_Phase (
alters m: Spanning_Forest_Machine

)
requires

not m.insertion_phase
ensures

m = (empty_set, true)

operation Insert (
alters m: Spanning_Forest_Machine
consumes vl: Integer
consumes v2: Integer
consumes w: Integer

)
requires

m.insertion_phase and
1 <= vl <= max_vertex and
1 <= v2 <= max_vertex and
w > 0

ensures
IS_MSF (m.edges, #m.edges union {(#vl, #v2, #w)}) and
m. insertion_phase

operation Change_To_Extraction_Phase (
alters m: Spanning_Forest_Machine

I
requires
• m.insertion_phase

71

160 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

ensures
m = (#m.edges, false)

operation Extract (
alters
produces
produces
produces

)

m: Spanning_Forest_Machine
vl: Integer
v2: Integer
w: Integer

requires
m.edges /= empty_set and
not m.insertion_phase

ensures
(vl, v2, w) is in #m.edges and
m = (#m.edges - {(vl, v2, w)}, false)

operation Size (
preserves m: Spanning_Forest_Machine

): Integer
requires
not m.insertion_phase

ensures
Size = |m.edges|

operation Is_In_Insertion_Phase (
preserves m: Spanning_Forest_Machine

): Boolean
ensures

Is_In_Insertion_Phase = m.insertion_phase

end Spanning_Forest_Machine_Template

Fig. 2. Specification of Spanning_Forest_Machine_Template.

for implementers of model-based specifications: They must
always distinguish abstract models from concrete representa-
tions and must not let the abstract view bias how or when to
manipulate the concrete representation.

2.2 Recasting and Abstraction Relations
We might have used any of a number of recasting examples in
this paper. When optimization algorithms, such as those for
finding MSFs as well as others such as those for finding single-
source shortest paths, are recast as data abstractions, abstraction
relations arise naturally in verifying some of their implementa-
tions. To see this general need for an entire class of situations
similar to the one used in our sample, consider the relational
specification of any graph optimization problem where the out-
put is specified to be any one of many possible optimum values.
Assume that the specification delineates two distinct phases.as
in the case of Spanning_Forest_Machine_Template: an in-
sertion phase in which edges of a graph can be inserted and an
extraction phase in which an optimum answer (say, a set of
edges) can be extracted one at a time.

A straightforward model of the ADT defined by the above
specification might be an ordered triple: a boolean phase that
indicates the phase of machine m, an input set of edges that
captures the graph edges inserted into m, and an output set
of edges that defines an optimum solution. Initially, phase
indicates insertion phase, and input and output are empty
sets. The specification of the Insert operation changes only
input as it adds a new edge. The postcondition of change__To_
Extraction_Phase is relational and dictates merely that out-
put should become an optimum solution for input. The

72

Extract operation is specified to return one of the re-
maining edges of output. In this specification, then, it
appears that a solution is computed in "batch" fashion
when Change_To_Extraction_Phase is called.

But other implementations might be possible and rea-
sonable. Consider an amortized cost implementation
that accumulates graph edges during the insertion phase
but does no special computation in the Insert or
Change_To_Extraction_Phase operations; it com-
putes and returns each edge of an optimum solution
only incrementally whenever an Extract operation is
called. For example, this is. how any "greedy" algorithm
might be naturally amortized. In the extraction phase,
the natural correspondence between the internal repre-
sentation and the abstract model is relational. It is of the
general form:

IS_AN_OPTIMUM_SOLUTION (m.output, S(m.rep))'

where S is a function from the specific representation of
m to the mathematical set of edges not yet processed.
While there might exist abstraction functions for some
implementations such as outlined here, since abstraction
relations introduce no significant additional complexity
to verification and may actually simplify the condi-
tions—as argued later in this paper—ä practical formal
system should facilitate the use of abstraction relations
in cases like this where they are natural.

The Spanning_Forest_Machine_Template can be
specified in ways other than the one outlined above [22].
But regardless of how the concept is specified, abstrac-

SITARAMAN ET AL.: ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS 161

tion relations arise because the specification needs to capture
and allow only MSFs of the input graphs, whereas some im-
plementations might not compute an MSF when the specifica-
tion suggests. Such situations are typical when the recasting
technique is employed.

3 THE PRACTICAL NEED FOR ABSTRACTION

RELATIONS .
Section 2 addressed the realistic nature of our sample compo-
nent. Now we introduce its formal specification; demonstrate
its quality in the sense that this specification is fully abstract
and, therefore, not defective in the sense discussed in Section
1.1 [11]; and finally prove that there are practical and correct
implementations of this component that cannot be verified
using any abstraction function.

3.1 A Formal Specification of
Sparming_Forest_Machine_Template

Fig. 2 is a reproduction of the Spanning_Forest_Machine_
Template specification from [24] as expressed in the model-
based specification language RESOLVE [21]. The specification
language does not affect the issues discussed in this paper. Any
model-based formal specification language [26] would suffice.

To specify the behavior of the operations described infor-
mally in Section 2, we model a value of type Span-
ning_Forest_Machine as an ordered pair: a weighted graph
edges which is treated as a finite set of positively-weighted
edges, and a boolean flag insertion_phase which is true iff the
machine is in the insertion phase. The specification defines
and uses a mathematical predicate IS_MSF(msf, g) which is
true iff the graph msf is a minimum spanning forest of the
graph g. The details of this definition are elided in Fig. 2 but
they are straightforward.

From the specification it appears that a machine in insertion
phase retains only an MSF for the edges inserted so far—not the
entire set of edges inserted so far—thus giving an external ob-
server the impression that an MSF is kept incrementally all
along. But, as noted earlier, because a client of the component
cannot see the representation, an implementation actually might
keep all the inserted - edges until Change_To_Extraction_
Phase is called and then batch-process them to weed out
nonMSF edges; or it might use an amortized cost implementa-
tion.

The specification in Fig. 2 raises an important question:
Does it really allow an implementation to produce during the
extraction phase any MSF of the inserted edges, or does the
specified incremental nature of the Insert operation rule out
some possible MSFs? It turns out that the specification is not
restrictive, a fact that follows directly from a lemma from
graph theory about MSF properties:

VGj, G2:GRAPH, e: EDGE

(7S_MSF(G,, G2u(e))=*
3G3: GRAPHÜS_MSF(G3, G2) A IS_MSF(.GU G3 U (e))))

1. A summary of RESOLVE specificaiton notations essential for understand-
ing this paper is given in Appendix A. There are a few minor changes in this
specification from the one in [241 to reflect current RESOLVE syntax. The one
substantive change is that the Size operation here has a precondition; it can-
not be called during the insertion phase (but there is no reason to do so in any
case). This change permits a simplified presentation in Section 3 but does not
materially affect any of the issues we raise.

A proof of the lemma involves standard arguments from
graph theory, where a case analysis based on whether e is

in Gj yields a construction for G3. The proof of correctness
of a batch-style implementation of Spanning_Forest_
Machine_Template (see Appendix B) explains the rele-
vance of this lemma and the conclusion that it demon-
strates why the specification in Fig. 2 is not restrictive.

We conclude this section by noting that the specifica-
tion in Fig. 2 is fully abstract, i.e., it is both "observable"
and "controllable" [25]. To be observable (hence fully
abstract), the specification must make it possible to dis-
tinguish every two abstract model values through the
provided operations [11], [12]. We specify that a machine
keeps only MSF edges at all times; clearly any two dif-
ferent MSFs can be distinguished by a sequence of calls
to Extract operations. To be controllable, the specifica-
tion must make it possible to construct every abstract
model value. This also is permitted because any par-
ticular MSF can be constructed through an appropriate
sequence of calls to Insert with just that MSF's edges.

3.2 A Class of Implementations that Need
Abstraction Relations

To prove the practical need for abstraction relations, it
remains to show the existence of a valid and practical im-
plementation of this specification that cannot be proved
correct using any abstraction function, but which can be
verified using an abstraction relation. The argument is
organized as follows. First we characterize a set of valid
"nonmonotonic, deterministic, batch-style" implementa-
tions, any of whose members could serve as this unverifi-
able implementation. Next we show why these imple-
mentations cannot be proved correct using any abstraction
function. In the last subsection, we explain how abstrac-
tion relations can be used to verify these implementations
in a modular proof system [7].

In this discussion, it is important to note that the
specificity of the particular class of implementations to
be considered arises only because we seek to show the
resistance to verification using abstraction functions,
with minimal "hand waving." Other than this there is
nothing special about the class of implementations con-
sidered. Amortized cost implementations, for example,
would have served equally well.

3.2.1 Deterministic Batch-Style Implementations
Let B be the class of valid deterministic batch-style im-
plementations of Spanning_Forest_Machine_Template.
The implementations in B are, first, deterministic: the out-
puts computed by each operation are entirely determined
by its inputs. Two abstract operations (insert and Ex-
tract) have behavioral specifications that are relational,
but their implementations may have deterministic func-
tional behavior. In order to be valid, an implementation
need only exhibit a behavior pattern that is consistent
with the specified relation; it is not necessary for the im-
plementation actually or even potentially to give differ-
ent results when run multiple times with the same in-
puts. We restrict our attention to deterministic imple-
mentations both because deterministic behavior for an

73

162
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

implementation is a typical situation in practice, and because
this determinism simplifies the proof that abstraction relations
are required for verification.

The implementations in B also are batch-style. This means
they just store all the inserted graph edges while a machine
is in insertion phase, deferring computation of a minimum
spanning forest to the start of the extraction phase. So ini-
tially, the edge collection representing a machine state is
empty. The Insert operation adds a new edge to it. Change_
To_Extraction_Phase computes a minimum spanning for-
est of the edge collection (e.g., using Kruskal's algorithm) and
stores only the resulting MSF edges back into the edge collec-
tion. The Extract operation simply removes and returns
any edge from the edge collection. The Size operation re-
turns the number of edges in that collection, and
Change_To_Insertion_Phase empties it.

Why are such batch-style implementations correct, i.e., why
should we consider them to behave as specified? This question
about correctness has to do with the timing of events: Is it pos-
sible for a client of Spanning_Forest_Machine_Template to
detect that a batch-style implementation is being used, as op-
posed to an "eager beaver" implementation that seems natural
from the specification? The behavior of any implementation of
any abstraction can be detected only through the "observer"
operations provided in its interface, in this case Extract and
Size. It is clear that the Size operation as described above
produces the specified result because its precondition limits it
to being called during extraction phase, where the representa-
tion used in a batch-style implementation contains precisely
the same edges as in the conceptual view. Extract as de-
scribed above also works as advertised because, before it can
be called, Change_To_Extraction_Phase has computed an
MSF of the graph that was input during the insertion phase.
The apparent discrepancy between the specification and a
batch-style implementation with respect to when computation
of an MSF occurs (seemingly incrementally during the inser-
tion phase according to the specification, but actually in
Change_To_Extraction_Phase in the implementation) sim-
ply cannot be detected by a client from functional behavior
alone. So a batch-style implementation is as good as any other
from this perspective.

3.2.2 Monotonie Deterministic Batch-Style Implementations
A deterministic batch-style implementation I that can be veri-
fied with an abstraction function exhibits an interesting prop-
erty we term monotonicity, denoted Mono(I). Consider the cli-
ent code labeled Find_MSF which takes, as input, a sequence
of edges E„ = <e,, e2, ..., e„> and produces as output a set of
edges F„ = {/,, f2, ..., fk}. (The output order is irrelevant, so we
view the output edges simply as a set, not a sequence.)

Find_MSF:
if not Is_In_Insertion_Priase (m) then

Change_To_Irrsertion_Phase (m)
end if
for i in 1..n loop

let (vl, v2, w) = eL

Insert (m, vl, v2, w)
end loop

Change_To_Exträction_Phase (m)
k = Size (m)
for i in 'l.-.k loop

Extract (m, vl, v2, w)
let f. ■= (vl, v2, w)

end loop

Given any I e B as the underlying implementation of
Spanning_Forest_Machine_Template, suppose we
run Find_MSF on En = <ev e2,..., en>, producing output F„;
and we run it on E„+1 = <ev e2 en, e„+1>, producing out-
put Fn+1 Then we define:

MonoU) o VE„+]US_MSF(F„+I, F„ «J |?„+]}))

That is, a deterministic batch-style implementation I is
monotonic iff the output of Find_MSF using I, on any
extension of any original input sequence En, is an MSF of
the same extension of the original sequence's MSF F .

Using this property, we define the set of monotonic
batch-style implementations:

M = U\leBAMono(I)}

3.2.3 Sample Execution of a Nonmonotonic
Deterministic Batch-Style Implementation

In Section 3.3, we will see that deterministic batch-style
implementations which can be verified using abstraction
functions are monotonic, so the implementations in B -
M interest us. The obvious question is whether there are
any such implementations and, if so, whether they have
practical significance. Fig. 3 helps us answer both ques-
tions affirmatively by showing the behavior of
Find_MSF on an example for an implementation Ie B-
M. In the figure, heavy lines depict possible minimum
spanning forests of graphs; thin lines depict other edges
inserted so far ("redundant" edges); and program states
are identified by letters on the left.

1

IO^VIO

F2
Insert (m, 2, 3, 10)
(i.e., e3 = (2,3,10))

1 1 1

B 10^\° io/^io io^yo

3 10 2 3 10 2 3 10 10

■ Insert (m, 1,4,15)
(i.e., e4= (1,4,15))

2. The representation also includes a flag indicating the machine's phase,
which is handled in the obvious way and therefore is not discussed further.

Fig. 3. Sample execution of Find_MSF for an implementation I e B
-m.

74

SITARAMAN ET AL.: ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS 163

Starting with an empty machine m in insertion phase, we
first insert edges (1, 2,10) and (1, 3,10), in either order (i.e., E2

= <(1, 2, 10), (1, 3, 10)> or E2 = <(1, 3,10), (1, 2, 10)>). At this
point, state A, there is only one possible minimum spanning
forest of the edges inserted so far. Calling

•Change_To_Extraction_Phase and then Extract until the
machine is empty produces F2 = ((1, 2, 10), (1, 3, 10)). That is,
Find_MSF on input E2 outputs F2.

Instead of calling Change_To_Extraction_Phase after
state A, suppose we insert edge e3 = (2, 3,10). If the insertion
phase ends at state B, Find_MSF returns one of three possible
MSFs. Suppose (without loss of generality) it is the leftmost
one in state B, so Find_MSF on input E3 produces F3 = ((1, 2,
10), (1, 3,10)). The input sequence so far is not a witness to the
nonmonotonicity of I because F3 is an MSF of F2 u |e3).

However, suppose we continue in state B to insert one more
edge e4 = (1, 4, 15). If the insertion phase ends at state C,
Find_MSF again returns one of three possible MSFs. But now
suppose it is the middle one in state C, so Find_MSF on input
E4 produces F4 = {(1, 2,10), (2, 3,10), (1, 4,15)). This input se-
quence is a witness to the nonmonotonicity of I because F4 is
not an MSF of F3 u |e4). (In the figure, note that F3 and F4 in-
clude only the heavy edges.)

Are there really valid batch-style implementations of Span-
ning_Forest_Machine_Template that behave as in Fig. 3?
While the answer to this question would be true even if there
were only pathological programs that behave this way, the
notable feature of the present example is that there is a large
and natural class of implementations that serve as exemplars.
For instance, implementations that do not keep the edges in
input order during the insertion phase, and those that use
typical published code for Kruskal's algorithm [4] and are
based on sorting algorithms which are not necessarily stable
(e.g., quicksort or heapsort), are all examples of actual imple-
mentations in B - M.

3.3 Inadequacy of Abstraction Functions
We wish to prove that if I e B (call this proposition p) and I <£.
M (proposition q), then I cannot be verified using an abstrac-
tion function (proposition r). Notice that:

(p A q) => r = —<r => —ip A q)

= ->r => (-.p A -,q)

= (p A -if) => -I*/

So, we begin by assuming I e B (i.e., proposition p) and that I
can be verified using an abstraction function (i.e., —>r). We
show this implies I e M (i.e., —*q).

Let A be the abstraction function used in the assumed proof
of I. It maps a representation of a Spanning_Forest_
Machine (call it m.rep) to the corresponding conceptual value
m.edges. Now observe the detailed operation of Find_MSF by
considering the trajectory of m.rep as Find_MSF executes with
arbitrary input sequence En = <ev e2, ..., en>, as illustrated in
Fig. 4 (top trajectory). There, m.repj denotes the representation
state immediately after the call that inserts ej into m; m.rep; the
representation state immediately after the call that extracts /

3. We ignore the remainder of the correspondence, which trivally maps a flag
indicating the machine's phase to the other component of the conceptual value,
m.insertion_phase.

from m; and m.rep0 (m.rep0') the state immediately before
the first Insert (Extract) operation.

m.rep 0 m.rep 1

F
n

i i

" m.rep 0, m.rep m.rep R,

m.rep0, m.rep,. m.repk

m-rePn+1

^j Insertion phase state

^ Extraction phase state

te Abstraction function

n+1

Insert

Change_To_Extraction_Phase

Extract

Fig. 4. Behavior of Find_MSF for En_1 and En.

After all edges are inserted, there is a call to Change_
To_Extraction_Phase. Because I is a batch-style im-
plementation we expect that m.rep0, # m.repn. However,
by the assumption that J can be verified we know from
the postcondition of Change_To_Extraction_Phase
that m.edges does not change; thus:

A(m.rep0.) = A(m.repn) (la)

By the same assumption, we know that each subse-
quent call to Extract removes one edge from
A(m.rep0'). This means the loop in Find_MSF produces
Fn as its output; so:

F„ =A(m.rep0.) (lb)
The trajectory of m.rep as Find_MSF executes with in-

put sequence En+1 = <ev e2,..., en, e„+1> is similar. Because
I is deterministic, the representation state follows pre-
cisely the same trajectory as before through insertion of
edge en. But this time we continue by inserting en+],
changing the new representation state to m.repn+l

(bottom trajectory). Subsequent representation states
may be different than for the first input sequence, so we
mark them with double primes (") in place of single
primes (')• But by the same arguments as above we con-
clude:

A(m.rep0„) = A{m.repn+X) (2a)

Fn+1 = A(m.rep0„) (2b)

By assumption, the Insert operation also can be
verified, so it,works correctly when we insert the edge
en+] (the diagonal arrow in Fig. 4). From the postcondi-
tion of Insert with appropriate substitutions for that
invocation, we therefore know:

IS_ MSF(A(m.repn+l), A(m.repn) u {en+1}) (3)

75

164
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

Now substituting in (3) from (la), (lb) and (2a), (2b), we de-
duce:

IS_MSF(Fn+1, Fn ut,|) (4)

But if (4) holds then I e M. We conclude, then, that every
valid deterministic batch-style implementation of Span-
ning_Forest_Machine that can be proved using an abstrac-
tion function is monotonic. Yet we know there are valid and
practical deterministic batch-style implementations that are
nonmonotonic. A proof system that relies solely on abstraction
functions, therefore, cannot be used to verify the correctness of
any member of this entire class of correct and practical imple-
mentations of Spanning_Forest_Machine_Template.

3.4 Verification Using Abstraction Relations
The implementations discussed above have a natural and
simple abstraction relation—the abstract value m.edges is any
one of the MSFs of the graph stored in the internal representa-
tion m.rep. This relation, stated below formally using the
predicate 1SJASF, is sufficient to prove the correctness of the
implementations:

IS_MSF(m.edges, Sim.rep))

where S is a function from the specific representation of ma-
chine m to the mathematical set of edges it contains. Details of
the correctness proof are provided in Appendix B.

The MSF example shows that abstraction relations are es-
sential for proving correctness of some implementations of
nontrivial relational specifications. Such situations should be
expected to arise in industrial-strength software systems. It is
also possible that abstraction relations might be used—even
though with effort they could be avoided in some cases—
where they can simplify verification conditions and can be
easier to understand than abstraction functions.

We note that a relational programming language semantics
ultimately cannot be avoided if specifications are allowed to
be relational—which they must be in order to permit specifi-
cation of behavior such as that desired for Span-
ning_Forest_Machine_Template [7], [17]. Given that a
relational semantics is essential, abstraction relations between
concrete and abstract values do not increase verification com-
plexity. For example, it is much easier to define the relation
ISJASF than the specific function computed by any given im-
plementation, which depends on intricate algorithmic details
involved in finding a particular MSF and which are inessential
in the proof. Using an abstraction relation considerably simplifies
the verification conditions for each of the Spanning_Forest_
Machine_Template operations because the correspondence
mapping is used separately in the verification of each opera-
tion [6], [7].

4 DISCUSSION

The literature on verifying ADTs includes at least two conjec-
tures that abstraction relations, even if technically required in
some circumstances, are probably unnecessary in practice—at
least where specifications are well-designed. When optimization
problems are specified as procedures (for example, a simple
operation for finding an MSF), this conjecture might be true.
That situation demands relational specification of behavior and
relational semantics, but not necessarily abstraction relations.

The abstraction relation problem arises here because an
optimization problem with possible ties has been captured
not as a single procedure, but by recasting it as an ADT. In
light of the advantages of the recasting approach [24], the
abstraction relation issue assumes additional practical
significance.

Formal systems that handle abstraction relations have
been discussed (e.g., [9]) and some formal methods tool
kits support them (e.g., Cogito [2]). But historically, ab-
straction functions have been so important and they.are
so entrenched that the generalization to abstraction rela-
tions tends to be resisted in some quarters: So we now
examine (not necessarily published) attempts we have
seen to avoid abstraction relations, and their ramifica-
tions.

The first approach is to prohibit the specification of
relational behavior of operations. This would be unde-
sirable when, as in this case, the natural intended be-
havior is inherently relational. Refusing to admit this
possibility would leave a class of useful abstractions that
could not be specified or that could not be easily reused
in building other component implementations [7], [11],
[13]. Moreover, specifying functional behavior for the
MSF problem would rule out interesting classes of im-
plementations and would make the specification much
harder to understand—that specification would have to
single out precisely which MSF must be produced, even
in case of ties.

A second approach is to augment m.rep with an adjunct
(auxiliary) variable, say rn.rep.abs, which simply mirrors
the abstract value. This would give a trivial abstraction
function: m = m.rep.abs, and it would introduce a repre-
sentation convention (invariant) relating m.rep.abs to the
rest of m.rep (i.e., the original concrete representation).
Notice that the availability of this approach does not re-
fute our proof in Section 3 because the adjunct code re-
quired to update m.rep.abs would be nondeterministic,
and any implementation written like this would not be in
B. Nonetheless it might be argued that any implementa-.
tion in B could be transformed in this way in order to
avoid abstraction relations.

Even if valid, this suggestion would have little practi-
cal import because following it would just move the ex-
pression of the required relation from the correspon-
dence to the representation convention. Correctness
proofs would not be simplified at all. But the bigger
problem is that a batch implementation of Span-
ning_Forest_Machihe_Template that employed this
device would be incorrect. The adjunct code to update
m.rep.abs in Insert would have to select a particular MSF
prematurely (albeit nondeterministically), and subse-
quent Extract operations could not be proved to return
precisely the edges of the selected MSF.

A third approach involves changing the specifica-
tions. This has been considered both in the ADT frame-
work [11] and in related work [5] on concurrent proc-
esses involving I/O automata and sequences of actions.
Lynch documents the practical utility of "multivalued
possibilities mappings" (the I/O automata counterpart
of abstraction relations) [16]. However, Abadi and Lam-

76

SITARAMAN ET AL.: ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS 165

port show that specifications can be transformed to avoid
multivalued mappings, under certain conditions; "refinement
mappings" (the counterpart of abstraction functions) always
exist [1]. Abadi and Lamport introduce techniques to avoid
abstraction relations which, when adapted to the ADT frame-

. work, require changing the specifications of some of the com-
ponents involved in the proof. Changes to these specifications
are ruled out by the modularity requirements we place on
ADT correctness proofs. •

The issue of changing specifications of components does
raise the question of whether the Spanning_Forest_ Ma-
chine_Template specification could be designed differently
to avoid the need for abstraction relations. For example, sup-
pose that the specification is changed to be along the lines dis-
cussed in Section 3.4, i.e., conceptually all the edges are kept
during the insertion phase, and an MSF is chosen only in
Change_To_Extraction_Phase. Then for an implementation
that mirrors this specification temporally, i.e., for a batch-style
one that computes an MSF in Change_To_ Extrac-
tion_Phase, an abstraction function is sufficient for a proof of
correctness. However, the amortized-cost implementation in
[24], and implementations that defer computation of an MSF
to the Extract operation such as the one discussed in Section
2.2, still require an abstraction relation. Furthermore, if one
must change specifications for the sake of avoiding abstraction
relations in correctness proofs—without regard for the impact
on understandability to potential component clients [20],
[26]—then some of the most important practical benefits of
formal specification for software engineering may be lost.

Even if a specification of Spanning_Forest_Machine_
Template is devised that avoids the need for abstraction re-
lations for that example [22], the completeness and naturalness
needs raised in this paper remain. The practical requirement
for abstraction relations to handle specifications that are not
fully abstract will also continue to exist, because software de-
velopers are likely to continue to design and use such con-
cepts. Fully embracing abstraction relations is therefore an
essential practical step in broadening the applicability of for-
mal methods beyond simplistic data abstractions.

APPENDIX A - RESOLVE NOTATION

The specifications in this paper are written in RESOLVE, a
detailed description of which is available elsewhere [21]. Here
we give a brief overview of RESOLVE notation that (along
with a general understanding of issues in specification and
implementation of abstract data types) should be sufficient to
enable a reader to understand the examples in this paper.

A.1 Specification Notation
A RESOLVE concept specifies an "abstract template" (generic
abstract module) by listing its context, which explicitly defines
all coupling to the environment and makes all local declara-
tions used in the rest of the specification; and its exported in-
terface. The global context section identifies fixed coupling of
this module to others in a shared component library. The
parametric context section defines the ways in which a client
can provide context, through parameters, when instantiating
the generic module. The local context section typically intro-
duces . special-purpose mathematical notation used in the in-

terface specification. For example, in Fig. 2, IS_MSF is a
mathematical operation (function). Its definition should
say formally that IS_MSF(msf,g) is true iff msf is a mini-
mum spanning forest of g. We have elided this to focus
on the more important features of the specification, but
IS_MSF can be formally defined in a few lines.

The interface section explains the concept's exported
types and operations. Each program type (family) is ex-
plained by referring to its mathematical model. For ex-
ample, the type Spanning_Fqrest_Machine in Fig. 2 is
modeled as an ordered pair consisting of a set of EDGEs
and a boolean value. The constraint clause for a mathe-
matical model (e.g., EDGE or the model for Span-
ning_Forest_Machine) says that, of all possible values
of the underlying mathematical space, only those satis-
fying that clause are part of the model space.

Every program type has three implicit operations:

1) The initialize operation is invoked only at the be-
ginning of the scope where its argument is de-
clared. It gives the variable an initial value, which
is specified in the initialization ensures clause of
the type specification.

2) The finalize operation is invoked only at the end of
the scope where its argument is declared, so usually
there is no need to specify its abstract effect—
because there is none. This operation is generally a
hook for the type's implementer to release resources
(e.g., memory) used by the representation.

3) The swap operation (invoked using the infix :=:
operator) exchanges the values of its two argu-
ments [8].

RESOLVE specifications never include preconditions like
"x has been initialized" because client programs always
initialize and finalize variables at the beginning and end of
scope, respectively. In RESOLVE initialize and finalize
work like C++ constructor and destructor operations, with
appropriate calls generated by the compiler.

The effect of each operation is specified using a re-
quires clause (precondition) and an ensures clause
(postcondition). Each of these is an assertion about the
values of the mathematical models of the operation's
parameters. A missing clause means the assertion is the
constant true. Mathematically, an operation defines a
partial relation on the space of input and output values
of the parameters: The requires clause tells where the
relation is defined, and the ensures clause defines it
there. Operationally, the contract between operation cli-
ent and implementer is as follows: If a client calls an op-
eration in a state in which the requires clause holds for
the actual parameters, then the implementer guarantees
that the operation will return in a state in which the en-
sures clause holds; but if the requires clause does not
hold when the call occurs, then the implementer makes
no guarantees whatsoever.

In a requires clause a variable stands for its value at
the beginning of a call. In an ensures clause a variable
stands for its value at the end of the call, while a variable
with a prefixed # (pronounced "old") stands for the
value of that variable at the beginning of the call. Other

77

166

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL 23, NO. 3, MARCH 1997

mathematical notations depend on the mathematical theories
involved in the explanation of behavior. The specification of
Spanning_Forest_Machine_Template uses finite sets, tu-
ples, integers, and booleans.

Operation specifications are considerably simplified by us-
ing abstract parameter modes alters, produces, consumes, and
preserves. An alters-mode parameter potentially is changed
by executing the operation; the ensures clause says how A
produces-mode parameter gets a new value that is defined by.
the ensures clause, which may not involve the parameter's old
value because it is irrelevant to the operation's effect. A con-
sumes-mode parameter gets a new value that is an initial
value for its type, but its old value is relevant to the opera-
tion's effect. A preserves-mode parameter suffers no net
change in value between the beginning of the operation and its
return, although its value might be changed temporarily while
the operation is executing.

A.2 Realization Notation
A RESOLVE realization describes a "concrete template"
(generic implementation module). A facility is an instance of a
concept with an associated instance of a realization which im-
plements it, so its declaration involves choosing and fixing the
parameters of both a concept and one of that concept's reali-
zations. In operation bodies, the representation of a variable
(e.g., m) of an exported type is designated as m.rep so it is clear
that this is the representation model's value and not the con-
ceptual model's value.

RESOLVE realization code contains three kinds of asser-
tions. For every loop there is a loop invariant or loop specifi-
cation; and for every type there is a convention assertion that
characterizes the subspace of representation configurations
that might arise (the representation invariant), and a corre-
spondence assertion that explains how to associate such rep-
resentation configurations with conceptual model values (the
abstraction relation).

The convention clause of Fig. 5 uses the built-in RESOLVE
mathematical function elements, which denotes the set of
entries in the string of items which is its argument. So, if str =
<a, b, c, b>, then elements (str) = (a, b, c).

APPENDIX B - VERIFICATION OF A BATCH-STYLE
IMPLEMENTATION

In this appendix we prove the correctness of the batch-style im-
plementation of Sparming_Forest_Machine_Template shown
m Fig. 5. Its global context section refers to Queue_Template,
which is shown in Fig. 6 for completeness.

A proof of correctness [7] of the realization of Fig. 5 starts
by factoring out two lemmas that arise during the verification
of each individual operation:

Cl. For every representation state for which the convention
clause holds, there is a conceptual state to which the corre-
spondence clause relates it.

C2. For every representation state for which the convention
clause holds, and for every conceptual state related to it by
the correspondence clause, the constraint clause (see Fig.
2) holds for the conceptual state.

In this case, to prove Cl we must prove that there is at
least one conceptual Spanriing_Forest_Machine value
for every Machine_Rep value that can arise. This follows
from the definition of MSF in graph theory (which we
assume is encoded formally in the predicate 7S_MSF)-
i.e., every graph has an MSF. To prove C2 we must
prove that any MSF of any graph is its own MSF; and
again this is a simple lemma in graph theory.

The verification is completed by showing that for
each operation body, the code implements the associated
abstract operation specification. For each operation and
for each fixed assignment of values to all the other ar-
guments, we consider four sets of values for each Span-
mng_Forest_Machine argument: initial and final con-
ceptual states, C,. and C respectively; and initial and
final representation states, R. and Rf, respectively R
contains those representation states lor which- 1) the
convention clause holds, 2) there exists a conceptual
state satisfying the correspondence clause and this par-
ticular operation's abstract precondition, and 3) every
such corresponding conceptual state satisfies this opera-
tion s precondition. Rf contains the representation states
that can be reached from some representation state in R
by correct execution of the operation's body C and C
contain the conceptual states for which the correspon-
dence clause holds for some representation state in R
and Rf, respectively. '

Informally stated, we have three kinds of proof obli-
gations; i.e., the verification conditions are of these three
forms:

VI. For every r e R. and for every trajectory leading
from r through the operation body, all internal as-
sertions (e.g., loop invariants) hold at the appropri-
ate times, and the preconditions of all called opera-
tions hold at the points they are called. (This obliga-
tion arises from the need to define R. since only if a
called operation's precondition holds may we as-
sume that its effect is what we expect from its speci-
fied postcondition.)

V2. For every r e Rf the convention clause holds. (This
obligation arises from the need to define C since
only in this case is it certain that there is some con-
ceptual state to which the correspondence clause
relates every r e Rf.)

V3. For every #r e R, r e Rf, and c s C, for which r is
reachable from #r by some correct execution of the
operation body and where the correspondence
clause relates c and r, there exists some #c e C- for
which the correspondence clause relates #c and #r

" lnt W<herf the °Peration's abstract postcondition
holds for #c and c. (This obligation arises from the
need to complete the "commutativity diagram"
[7, pp. 303-305].) y S

There also is a specialized version of such a proof for the
initialize operation, where we may neither assume that
the convention clause holds for the initial representation
state nor, consequently, that there is any initial concep-
tual state corresponding to it.

In this case, it is easy to discharge the obligations of
the forms VI and V2 for each operation. There is only

78.

SITARAMAN ET AL.: ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS 167

realization body Batch for Spanning_Forest_Machine_Template

context

global context
concept Record3_Template
concept Queue_Template
concept Record2_Template
facility Standard_Boolean_Facility

local context

type Edge is record
vl: Integer
v2 : Integer
e: Integer

end record

facility Edge_Queue_Facility is Queue_Template(Edge)
realized by Queue_Realization_l

operation Produce_MSF (
alters q: Edge_Queue_Facility.Queue

)
ensures

IS_MSF (elements (g), elements (#q)) and
|q| = |elements (q)|

begin
— code that batch computes an arbitrary MSF of q

end Produce_MSF

interface
type Spanning_Forest_Machine is represented by record

graph_edges: Edge_Queue_Facility.Queue
insertion_flag.: Boolean

end record
convention

if not m.rep.insertion_flag
then IS_MSF (elements (m.rep.graph_edges),

elements (m.rep.graph_edges))
correspondence

IS_MSF (m.edges, elements (m.rep.graph_edges)) and
m.insertion_phase = m.rep.insertion_flag

operation initialize
begin .

m.rep.insertion_flag := true
end initialize

operation Change_To_Insertion_Phase (
alters m: Spanning_Forest_Machine

)
local context

variables
new_rep: Spanning_Forest_Machine

begin
m.rep :=: new_rep
m.rep.insertion_flag := true

end Change_To_Insertion_Phase

operation Insert (
alters m:,Spanning_Forest_Machine
consumes vl: Integer
consumes v2: Integer
consumes w: Integer

).
begin

. Enqueue (m.rep.graph_edges, (vl, v2, w))
end Insert

79

168
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

operation Change_To_Extraction_Phase (
alters m: Spanning_Forest_Machine

)
begin

Produce_MSF (m.rep.graph_edges)
m.rep.insertion_flag := false

end Change_To_Extraction_Phase

operation Extract (

alters m: Spanning_Forest_Machine
produces vl: Integer
produces v2: Integer
produces w: Integer

)
begin

Dequeue (m.rep.graph_edges, (vl, v2, w))
end Extract

operation Size (

preserves m: Spanning_Forest_Machine
): Integer

begin
return Length (m.rep.graph_edges)

end Size

operation Is_In_Insertion_Phase (
preserves m: Spanning_Forest_Machine

): Boolean
begin

return m.rep.insertion_flag
end Is_In_Insertion_Phase

end Batch

Fig. 5. Realization body for a batch-style implementation.

concept Queue_Template

context

global context
facility Standard_Integer_Facility

parametric context
type Item

interface

type Queue is modeled by string of math[Item]
exemplar g
initialization ensures

g = empty_string

operation Enqueue (
alters q:. Queue
consumes x: Item

)
ensures

q = #q * <#x>

operation Dequeue (
alters q: Queue
produces x: Item

)
ensures

#q = <x> * q

operation Length (
preserves q: Queue

80

SITARAMAN ET AL, ON THE PRACTICAL NEED FOR ABSTRACTION RELATIONS TO VERIFY ABSTRACT DATA TYPE REPRESENTATIONS
169

): Integer
ensures

Length = |q|

end Queue_Template

Fig. 6. Specification of Queue JTemplate.

one called operation (Dequeue in the body of Extract)
that has a nontrivial precondition, and in this case the
precondition of Extract implies that Rj contains only
representation states where m.rep.graph_edges is not
empty. Showing that the convention clause holds at the
end of each operation body is more tedious because it in-
volves m.rep.insertion Jiag as well as m.rep.graph_edges,
but the details are straightforward.

All the proof obligations of the form V3 are similarly
trivial, except for the insert operation. Here, the proof of
the only troublesome part of the applicable verification
condition follows directly from the graph theory lemma
stated in Section 3.

We observe that the verification of this batch imple-
mentation answers the question posed in Section 3.1.1: Can
the edges obtained from a series of Extract operations be
any MSF of the edges that were inserted into.a Span-
ning_Forest_Machine? The body of procedure Pro-
duce_MSF in Fig. 5 may produce any MSF of the edges it is
given. The realization in Fig. 5 is correct with no further
assumptions about which MSF that must be. So the specifi-
cation of Spanning_Forest_Machine_Template truly
places no restriction on which MSF of the inserted edges
might be produced.

ACKNOWLEDGMENTS

We thank Anish Arora, Steve Edwards, David Fleming,
Wayne Heym, Joe Hollingsworth, Chip Klostermeyer, Tim
Long, Sethu Sreerama, and Stu Zweben for their insightful
comments on drafts of this paper; and Doug Kerr, Nathan
Loofbourrow, Spiro Michaylov, and Tom Page for helpful
discussions on some key technical points. Comments from
the anonymous referees have helped clarify several issues.

Murali Sitaraman was sponsored by the National Science
Foundation (NSF) under grant CCR-9204461; Advanced
Research Projects Agency (ARPA) under contract numbers
DAAH04-96-1-0419 and DAAH04-94-G-0002, both moni-
tored by the U.S. Army Research Office; and the National
Aeronautics and Space Administration (NASA) under
grant 7629/229/0824.

Bruce W. Weide and William F. Ogden were sponsored
by NSF under grant number CCR-9311702 and by ARPA
under contract number F30602-93-C-0243, monitored by the
ÜSAF Materiel Command, Rome Laboratories, ARPA order
number A714.

REFERENCES
[1] M. Abadi and L. Lamport, 'The Existence of Refinement Map-

pings," Theoretical Computing Science, vol. 82, no. 2, pp. 253-284,
May 1991.

[2] A: Bloesch, E.Kazmierczak, P. Kearney, and O. Traynor, "Cogito:
A Methodology and System for Formal Software Development,"

Intl. }. Software Eng. and Knowledge Eng., vol. 5, no. 4 pp. 599-617,
. Dec. 1995. 4 . _ .

[3] S A Cook, "Soundness and Completeness of an Axiom System
for Program Verification," SIAM }. Computing, vol. 7, no. 1, pp.
70-90, Feb. 1978. .,.,„■

[41 T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algo-
rithms. Cambridge, Mass.: MIT Press, 1990.

[5] H.-D. Ehrich and A. Semadas, "Algebraic Implementation of
Obiects over Objects," Stepwise Refinement of Distributed Systems-
Lecture Notes in Computer Science 430. New York: Springer-Verlag,
pp. 239-266,1990. J „rT, _, ,

[6] GW. Ernst, R.J. Hookway, J.A. Menegay, and W.F. Ogden,
"Modular Verification of Ada Generics," Computer Language, vol.
16, nos. 3/4, pp. 259-280,1991.

[71 GW Ernst, R.J. Hookway, and W.F. Ogden, "Modular Verifica-
tion of Data Abstractions with Shared Realizations," IEEE Trans.
Software Eng. vol. 20, no. 4, pp. 288-307, Apr. 1994.

[81 D.E. Harms and B.W. Weide, "Copying and Swapping: Influences
on the Design of Reusable Software Components," IEEE Irans.
Software Eng., vol. 17, no. 5, pp. 424-435, May 1991.

[91 I He C A.R. Hoare, and J.W. Sanders, "Data Refinement Re-
fined," Lecture Notes in Computer Science 213, B. Robinet and R.
Wilhelm, eds., pp. 187-196, Springer-Verlag.

[101 CAR Hoare, "Proof of Correctness of Data Representations,
Ada lnformatica, vol. 1, no. 1, pp. 271-281, 1972; also in D. Cries
ed Programming Methodology: A Collection of Articles by Members of
IFIP WG 2.3, pp. 269-281, New York: Springer-Verlag, 1978.

[11] C.B. Jones, Systematic Software Development Using VDM, Hertford-
shire, U.K.: Prentice Hall Int'l, 1990.

[12] D. Kapur and S. Mandayam, "Expressiveness of the Operation bet
of a Data Abstraction," Conf. Record Seventh Ann. ACM Symp.
Principles of Programming Languages, pp. 139-153, ACM, 1980.

[13] G.T. Leavens, "Modular Specification and Verification of Object-
Oriented Programs," IEEE Software, vol. 8, no. 4, pp. 72-80, July
1991

[14] B. Liskov and J.M. Wing, "A New Definition of the Subtype Rela-
tion," ECOOP 1993—Lecture Notes in Computer Science 707, pp.
118-141. New York: Springer-Verlag, 1993.

[15] B. Liskov and J.M. Wing, "Corrigenda to ECOOP 93 Paper,
ACM SIGPLAN Notices, vol. 29, no. 4, p. 4, Apr. 1994.

[16] N. Lynch, "Multivalued Possibilities Mappings," Stepwise Refine-
ment of Distributed Systems—Lecture Notes in Computer Science 430,
pp. 519-543, New York: Springer-Verlag, 1990.

[17] G Nelson, "A Generalization of Dijkstra's Calculus, ACM Trans,
on Program Languages and Systems, vol. 11, no. 4, pp. 517-561, Oct.
1989

[18] T Nipkow, "Are Homomorphisms Sufficient for Behavioral Im-
plementations of Deterministic and Nondeterminishc Data
Types'" Lecture Notes in Computer Science 247,-V]. Brandenburg,
G. Vidal-Naquet, and M. Wirsing, eds., pp. 260-271, New York:
Springer-Verlag, 1987. „

[19] O. Schoett, "Behavioral Correctness of Data Representations,
Science of Computer Programming, vol. 14, pp. 43-57,1990.

[20] M. Sitaraman, L.R. Welch, and D.E. Harms, "On Specification of
Reusable Software Components," Intl.]. Software Eng. and Knowl-
edge Eng., vol. 3, no. 2, pp. 207-219, June 1993. _

[211 "Special Feature: Component-Based Software Using RESOLVh,
M Sitaraman and B.W. Weide, eds., ACM SIGSOFT Software Eng.
Notes, vol. 19, no. 4, pp. 21-67, Oct. 1994.

[22] M. Sitaraman, "Impact of Performance Considerations on Formal
Specification Design," Formal Aspects of Computing, vol. 8, no. 6,
pp. 716-736,1997. _ ,

[23] B W. Weide and J.E. Hollingsworth, "Scalability of Reuse Tech-
nology to Large Systems Requires Local Certifiability," Proc. Fifth
Ann. Workshop Software Reuse, Palo Alto, Calif., Oct. 1992.

[24] B W Weide, W.F. Ogden, and M. Sitaraman, "Recasting Algo-
rithms to Encourage Reuse," IEEE Software, vol. 11, no. 5 pp. 80-
88, Sept. 1994.

81

170
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 3, MARCH 1997

[25] B.W. Weide, S.U. Edwards, W.D. Heym, T.J. Long, and W.F. Og-
den, "Characterizing Observability and Controllability of Soft-
ware Components," Proc. Fourth Int'l Conf. Software Reuse, M. Sita-
raman, ed., pp. 62-71, IEEE, Apr. 1996,

[26] J.M. Wing, "A Specifier's Introduction to Formal Methods," Com-
puter, vol. 23, no. 9, pp. 8-24, Sept. 1990.

Murali Sitaraman received his ME in computer
science from the Indian Institute of Science,
Bangalore, and his PhD in computer and infor-
mation science from The Ohio State University.
He is presently an associate professor of com-
puter science at West Virginia University. Sita-
raman is a principal investigator of the RE-
SOLVE research effort and directs the Reusable
Software Research Group at WVU (http://www.
cs.wvu.edu/~resolve). His interests span theo-
retical, practical, and educational aspects of

software engineering. Sitaraman served as program chair of the Fourth
International Conference on Software Reuse (Orlando, Florida April
1996). He is a member of the IEEE Computer Society and ACM

ACM, and CPSR.

Bruce W. Weide holds a PhD in computer sci-
ence from Carnegie Mellon University and a
BSEE from the University of Toledo. He is pro-
fessor of computer and information science at
The Ohio State University, where he co-directs
the Reusable Software Research Group with Bill
Ogden and Stu Zweben. His research interests
include all aspects of software component engi-
neering, especially in applying RSRG work to
practice and in teaching its principles to begin-
ning CS students. He is a member of the IEEE,

William F. Ogden received his MS and PhD
degrees from Stanford University, and his BS
degree from the University of Arkansas. He is an
associate professor of computer and information
science at The Ohio State University and co-
director of the Reusable Software Research
Group with Bruce Weide and Stu Zweben. Pre-
viously, he served on the faculties at Case
Western Reserve University and the University
of Michigan. His main research interests are in
software reuse, software specification, and pro-

gram verification. He is a member of the IEEE Computer Society and
ACM.

82

Eighth Annual Workshop on
Software Reuse
March 23-26, 1997
Columbus, Ohio

INDIANA UNIVERSITY
SOUTHEAST

Q, UNIVERSITY OF MAINE

83
Reprinted with permission.

Virginia
Tech

Software Component Relationships

Stephen H. Edwards

Department of Computer Science
Virginia Polytechnic Institute and State University

660 McBryde Hall
Blacksburg, VA 24061-0106

Tel: (540)-231-7537
Email: edwards@cs.vt.edu

David S. Gibson, Bruce W. Weide, and Sergey Zhupanov

Department of Computer and Information Science
The Ohio State University

2015 Neil Avenue
Columbus, OH 43210
Tel: (614) 292-5813

Email: {dgibson|weide|sergey}@cis.ohio-state.edu

Abstract

Large complex software systems are composed of many software components. Construction
and maintenance of component-based systems require a clear understanding of the dependen-
cies between these components. To support reuse, components should be designed to minimize
such dependencies. When component coupling is necessary, however, dependencies need to be
expressed clearly and precisely. Most software analysis and design methodologies rely on re-
lationships such as passes-data-to, calls, is-a-part-of, and inherits-from for this purpose. Our
position is that component relationships such as these are not an effective way to convey impor-
tant dependency information to implementors arid maintainers working with reusable software
components. Precisely-defined conceptual relationships are better suited to this task.

Keywords: Software components, component relationships, software engineering, software
reuse, behavioral substitutability

Workshop Goals: Learning, feedback, networking

Working Groups: (1) Rigorous Behavioral Specification as an Aid to Reuse, (2) Component
Certification Tools, Frameworks and Processes, and (3) Object Technology, Architectures, and
Domain Analysis: What's the Connection? Is There a Connection?

84

1 Background

As members of the Reusable Software Research Group (RSRG) at The Ohio State University,
we have been exploring various aspects of software component engineering for over ten years.
One recent focus of our research has been on the identification, formalization, and expression of
dependency relationships between software components. Many of our ideas on software component
relationships are based on the results of RSRG research which has been incorporated into the
RESOLVE framework, language, and discipline for software component engineering [1]. Newer
ideas and terminology for expressing these relationships are based on a formal model of software
subsystems called ACTI, for "Abstract and Concrete Templates and Instances[2].

To demonstrate the application of our ideas on software component relationships, we have developed
the RESOLVE/C++ and RESOLVE/Ada95 disciplines for software component engineering. Steve
Edwards, Bruce Weide, and Sergey Zhupanov developed the RESOLVE/C++ discipline. David
Gibson developed the RESOLVE/Ada95 discipline. These disciplines use the language mechanisms
of C++ and Ada (as revised in 1995) to encode language-independent software component relation-
ships. Bruce Weide is currently using the RESOLVE/C++ discipline in the introductory Computer
Science course sequence at Ohio State.

2 Position

Building software systems from reusable software components has long been a goal of software
engineers. While other engineering disciplines successfully apply the reusable component approach
to build physical systems, it has proven more difficult to apply in software engineering. A primary
reason for this difficulty is that distinct software components tend to be more tightly coupled with
each other than most physical components. Furthermore, components are often designed with
extremely subtle dependencies on other components are which are not explicitly described. These
dependencies may significantly complicate reasoning about program behavior[3].

Clearly some dependencies between software components are necessary and desirable. These depen-
dencies need to be clearly expressed by component designers and well-understood by implementors
and maintainers. The role of software component relationships is to express dependencies between
components and, in doing so, to provide information about how components may and should be used
in conjunction with other components. Our position is that the software component relationships
used by most analysis and design methodologies are not well-suited for building and maintaining
large complex systems and that there are more suitable alternatives.

Commonly used component relationships suffer from one or more of the following problems:

• they only describe particular component compositions, not what compositions are possible,

• they express vague meanings, which are of limited use, and

• they reflect language-specific views of component composition rather than a conceptual view.

Traditional techniques based on functional decomposition of systems have software "part" relation-
ships depicted in notations such as data flow diagrams and structure charts. Relationships such
as passes-data-to, calls, and is-a-part-of are common to these notations. These relationships may

8.ri

be useful for understanding how components of a particular system are related. However, they do
not directly address how one might reuse individual components to build a new system or modify
an existing system. That is, these notations do not describe the dependencies of a component
independent of a particular use of that component.

Object-oriented analysis, design, and programming methodologies usually rely heavily on the
inherits-from component (class) relationship. Unlike those described above, this relationship can
describe component dependencies independent of a specific component (class instance) usage. How-
ever, inherits-from typically fails to convey precise useful information about component dependen-
cies. Even if the vague and varied meanings of inherits-from play a useful role during analysis
and design, this relationship is much less useful when working with specific components during
implementation and maintenance. Inheritance is a programming language mechanism that can be
used to encode conceptual relationships between software components. Inheritance is not itself a
conceptual relationship.

Some people in the object-oriented community argue that inheritance should only be used to express
the is-a relationship between two components. Unlike inherits-from, is-a is a conceptual relation-
ship between components. However, the is-a relationship does not have a single precisely-defined
meaning. Furthermore, even when formally defined in terms of behavioral substitutability, the is-a
relationship generally does not convey specific design intent. For example, stating that component
X is-a Y does not suggest any information about why X was designed to be substitutable for Y
and thus how X might be used.

To address the problems described above, component relationships should:

• concisely express dependencies describing possible component compositions,

• have precise meanings useful to clients, implementors, and maintainers, and

• reflect a clear conceptual view of component-based software engineering.

We have defined a small set of language-independent component relationships which satisfy these
three criteria. Our relationships describe the dependencies between components at a conceptual
level. The relationships provide implementers and maintainers precise information about how com-
ponents may and should be used. Furthermore, they may be used to express specific design intent.
In the remainder of this section, we briefly introduce the component relationships: implements,
uses, and extends. While we have defined several other useful component relationships, these are
the most general and easiest to understand.

The software component relationships we have defined relate components which may either be ab-
stract (specifications) or concrete (implementations)1. An abstract component describes functional
Jehavior—what services a subsystem provides. A concrete component describes an implementa-
tion— how a subsystem's services are provided. Having separate abstract and concrete components
supports data abstraction, information hiding, multiple implementations, and self-contained de-
scriptions of component behavior.

*e most fundamental component relationship upon which all others rely for meaning and utility
l^J™plemertis. Implements describes the key relationship between an implementation, a concrete

~] 'AA- ■ " :
iwo n h t° the abstract versus concrete dimension, components are either templates or instances. These
iem T g0nal dimensi°ns give rise to four kinds of components: abstract templates, abstract instances, concrete
-on P ateS'.and concrete instances. While the relationships introduced in this paper only deal with the abstract versus

crete dimension, we have identified template-specific relationships.

86

component, and a specification, an abstract component. The implements relationship may k
defined informally as follows: "

Concrete component X implements abstract component Y if and only if X exhibits the
behavior specified by Y.

This is a fairly intuitive relationship between a specification and an implementation. However
fully formal and general definition of the implements relationship is very intricate and has been
the subject of much research. Implements expresses a dependency between two components in the
following sense. If component X implements component Y, then X depends on Y to provide an
abstract, client-level description of its behavior - a "cover story" hiding all implementation details.

While justifying a claim that X implements Y may require significant effort, especially if done
formally, considerable leverage is gained from doing so. If two different concrete components both
implement the same abstract component, then either of them may be used in a context requiring
the functional behavior described by the abstract component. In this case, the two implementations
are behaviorally substitutable with respect to the specification they both implement. The two imple-
mentations may differ in non-functional characteristics such as execution time, space requirements,
cost, warranty, legal use restrictions, level of trust in correctness, and so forth.

The implements relationship describes a dependency between an implementation and a specifica-
tion. The uses relationship may describe a dependency that exists between two different abstrac-
tions. The relation name uses actually applies to three different yet closely related component
relationships. Uses may describe a dependency between two implementations, between two speci-
fications, or between an implementation and an specification. The last of these three relationships
is defined as follows:

Concrete component X uses abstract component Y if and only if X depends on the
behavior specified by Y.

This form of the uses relationship expresses a polymorphic relationship between implementations.
Any component that implements abstract component Y may serve as the actual concrete component
used by instances of component X. Thus, this form of uses reduces unnecessary dependencies
between components. Note that none of the three uses relationships is equivalent to the is-a-part-
of relationship. If implementation X uses implementation Y, Y may or may not be a part of the
data representation of X. The client wishing to use component X does not need to know V's
specific role in X, just that component Y is required in order to use component X.

A third component relationship is extends. The name extends applies to two different, yet closely
related, component relationships. One extends expresses a dependency between two abstract com-
ponents. The other expresses a dependency between two concrete components. Both extend»
relationships may be defined informally as follows:

Component X extends component Y if and only if all of the interface and behavior
described by Y is included in the interface and behavior described by X.

This definition conveys the intuitive meaning of extends, that is, component X extends the interface
and behavior of component Y. It implies the essential property of behavioral substitutability- #

87

abstract component X emends abstract component Y, concrete component XI implements X, and
concrete component Yl implements Y, then XI is behaviorally substitutable for VI with respect
to Y. Note that Yl is not behaviorally substitutable for XI with respect to X in this case. Thus
behavioral substitutability is a ternary relationship, not a binary equivalence relation.

To some readers, the extends relationship may sound very much like an inheritance relationship.
It is important to understand that extends is not an inheritance relationship. Extends describes
a behavioral relationship between two components. Inherits-from does not. Furthermore, while
inheritance may be a convenient programming language mechanism for expressing structural aspects
of the extends relationship, extends may be encoded in programming languages without any use of
inheritance.

3 Comparison

Perhaps the most widely known work which includes definitions of software component relationships
is that by Grady Booch, Ivar Jacobson, and James Rumbaugh on the Unified Modeling Language
(UML). The UML includes software component relationships in the form of class relationships de-
fined in Booch's method for object-oriented analysis and design [4]. Booch identifies three basic
kinds of class relationships: those expressing is-a relationships, those expressing is-a-part-of rela-
tionships, and association relationships which denote some semantic dependency between otherwise
unrelated classes. The specific class relationships used by Booch include association, inheritance,
aggregation, and using. The meanings of these relationships are largely influenced by available
programming language mechanisms (in particular, those of C++).

Booch's association relationship is primarily useful for design and analysis of a particular appli-
cation or composition of components. It does not convey information about what compositions
are possible for a reusable component. Booch's use of the inheritance relationship is limited to
expressing is-a relationships. However, his definition of is-a is not strict enough to imply behav-
ioral substitutability with respect to some specification (as does implements). Thus the component
relationships expressed as class relationships in the UML appear to suffer from all of the problems
described in the last section.

Some object-oriented programming advocates such as Bertrand Meyer do not insist that inheritance
only be used to express the conceptual is-a relationship. Meyer has described twelve different
component relationships that may be expressed using inheritance, only one of which expresses the
is-a relationship [5]. As with the UML's use of inheritance, Meyer's is-a use of inheritance is not
defined precisely enough to imply behavioral substitutability.

Some researchers have studied precisely defined class relationships which do imply behavioral sub-
stitutability of components [6, 7]. This research largely focuses on how the inheritance language
mechanism can and should be used in a manner that supports reasoning about program behav-
ior. Unlike our research, this work does not address conceptual component relationships from a
language-independent perspective.

References

U] M. Sitaraman and B. W. Weide, editors, "Special feature: Component-based software using
RESOLVE," ACM SIGSOFT Software Engineering Notes, vol. 19, no. 4, pp. 21-67, 1994.

88* •

[2] S. H. Edwards, A Formal Model of Software Subsystems. PhD thesis, The Department of
Computer and Information Science, The Ohio State University, Columbus, Ohio, 1995.

[3] B. W. Weide and J. E. Hollingsworth, "Scalability of reuse technology to larege systems requires
local certifiability," in Proceedings of the Fifth Annual Workshop on Software Reuse (L. Latour,

ed.), Oct. 1992.

[4] G. Booch, Object-Oriented Analysis and Design With Applications. Menlo Park, CA: Ben-
jamin/Cummings, 2nd ed., 1994.

[5] B. Meyer, "The many faces of inheritance: A taxonomy of taxonomy," IEEE Computer, vol. 29,
pp. 105-108, May 1996.

[6] B. H. Liskov and J. M. Wing, "A behavioral notion of subtyping," ACM Transactions on
Programming Languages and Systems, vol. 16, pp. 1811-1841, Nov. 1994.

[7] K. K. Dhara and G. T. Leavens, "Forcing behavioral subtyping through specification inheri-
tance," in Proceedings of the 18th International Conference on Software Engineering, pp. 258-
267, IEEE Computer Society Press, Mar. 1996.

Biography

Stephen Edwards is a Visiting Assistant Professor in the Department of Computer Science at the
Virginia Polytechnic Institute and State University. He received a B.S. in Electrical Engineering at
the California Institute of Technology in 1988 and his M.S. and Ph.D in Computer and Information
Science at The Ohio State University in 1992 and 1995, respectively.

David Gibson is a Major in the United States Air Force and a Ph.D. candidate in the Department
of Computer and Information Science at The Ohio State University. He received a B.S. in Physics
and Computer Science from Duke University in 1983 and his M.S. in Computer and Information
Sciences from Trinity University in San Antonio in 1986.

Bruce Weide is a Professor of Computer and Information Science at The Ohio State University.
He received a B.S. in Electrical Engineering from the University of Toledo in 1974 and a Ph.D. in
Computer Science from Carnegie-Mellon University in 1978. He is a co-founder of the Reusable
Software Research Group at The Ohio State University.

Sergey Zhupanov is a Research Associate in the Department of Computer and Information
Science at The Ohio State University. He received his B.S. and M.S in Computer and Information
Science at The Ohio State University in 1994 and 1996, respectively.

We gratefully acknowledge financial support from the National Science Foundation (grant number
CCR-9311702, DUE-9555062, and CDA-9634425), the Advanced Research Projects Agency (con-
tract number F30602-93-C-0243, monitored by the USAF Materiel Command, Rome Laboratories,
ARPA order number A714), and the Fund for the Improvement of Post-Secondary Education un-
der project number P116B60717. Any opinions, findings, and conclusions or recommendations
expressed in this paper are those of the authors and do not necessarily reflect the views of the
National Science Foundation, the Defense Advanced Research Projects Agency, or the U.S. De-
partment of Education.

89

Reverse Engineering of Legacy Code Exposed1

Bruce W. Weide and Wayne D. Heym
Department of Computer and Information Science
The Ohio State University, Columbus, OH 43210

{weide,heym} @cis.ohio-state.edu

Joseph E. Hollingsworth
Department of Computer Science

Indiana University Southeast, New Albany, IN 47150
jholly @ius.indiana.edu

Abstract — Reverse engineering of large legacy software
systems generally cannot meet its objectives because it
cannot be cost-effective. There are two main reasons for
this. First, it is very costly to "understand" legacy code
sufficiently well to permit changes to be made safely,
because reverse engineering of legacy code is intractable in
the usual computational complexity sense. Second, even if
legacy code could be cost-effectively reverse engineered,
the ultimate objective — re-engineering code to create a
system that will not need to be reverse engineered again in
the future — is presently unattainable. Not just crusty old
systems, but even ones engineered today, from scratch,
cannot escape the clutches of intractability until software
engineers learn to design systems that support modular
reasoning about their behavior. We hope these observa-
tions serve as a wake-up call to those who dream of
developing high-quality software systems by transforming
them from defective raw materials.

1. Introduction

Most large software systems, even if apparently well-engi -
neered on a component-by-component basis, have proved
to be incoherent as a whole due to unanticipated long-range
"weird interactions" among supposedly independent parts.
The best anecdotal evidence for this conclusion comes
from reported experience dealing with legacy code, i.e.,
programs2 in which too much has been invested just to
throw away but which have proved to be obscure,
mysterious, and brittle in the face of maintenance.

What should we do when we require a new system whose
behavior is intended to be similar to that of an old system
we already have? One option is to build the new one from
scratch, relying perhaps on experience obtained through

This position paper is adapted from [0,19].

2 We do not consider legacy systems that consist primarily of
data (e.g., databases).

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ICSE '95, Seattle, Washington USA
© 1995 ACM 0-89791-708-1/95/0004...$3.50 Reprinted

design or use of the old one, but not relying substantially
on the old code. Another option is to try to understand the
old code well enough to keep much of it, modifying it to
meet the new needs. The latter approach — re-engineering
— necessarily involves reverse engineering:

Reverse engineering encompasses a wide array of
tasks related to understanding and modifying software
systems. Central to these tasks is identifying the
components of an existing software system and the
relationships among them. Also central is creating
high-level descriptions of various aspects of existing
systems. [15, p. 23]

We consider reverse engineering in its role as an integral
part of the re-engineering approach to new system devel-
opment. The objective of reverse engineering is not (just)
to create documents that chronicle a path from the original
requirements to the present legacy system as, say, a substi-
tute for the documentation that probably was not created
while that journey was in progress. The goal is to achieve
a sufficient understanding of the whats, hows, and whys of
the legacy system as a whole that its code can be re-engi -
neered to meet new requirements on behavior, perfor-
mance, structure, system dependencies, etc.

1.1. Reverse Engineering of Legacy Code is Intractable

There seems to be general agreement that, in practice,
reverse engineering of legacy code is at least quite
laborious [14]. Even if many aspects of large systems are
easy to understand, inevitably there is important behavior
whose explanation is latent in the code yet which resolutely
resists discovery. The basic reason is that software engi-
neers seek modularity — and they generally achieve it well
enough create a very compact representation of system
behavior in the source code, but not well enough to support
modular reasoning about that behavior. In Sections 3-4 we
summarize how this implies that reverse engineering of
legacy code is intractable in the usual computational com-
plexity sense [19]. This fundamental conclusion and the
supporting argument follow up on a suggestion by Hopkins
and Sitaraman [9] that the effort required to reverse
engineer a system is related to the effort required to
formally verify its functional correctness. In fact, if we
argued that program verification of legacy code is
intractable, there probably would be little debate (at least
with those from whom the current position is likely to draw
fire). Yet these are technically equivalent.

with permission.
90

1.2. Forward Engineering is Not a Solved Problem

Of course intractable does not mean impossible. One even
hears occasional stories about "successful" reverse and re-
engineering projects [1]. These should be taken with a
grain of salt, if only because the real problem — successful
re-engineering — cannot be known to have been solved for
years, after there is a long history of maintenance tasks to
sort through or the system has to be re-engineered again.
Even then, without a controlled study, there is no way to
know that building from scratch would not have been more
cost-effective. And even if the reverse engineering battle
can be won once, the re-engineering war ultimately will be
lost without subsequent use of forward engineering
techniques that effectively prevent software "rot".

Unfortunately, almost without exception software
engineers do not know how to design and build truly
modular systems when starting from scratch, let alone
when starting from legacy code [17, 18]. Except for
egregiously poor design practices, they cannot distinguish
fair-to-good software designs from excellent ones. The
reason is that beyond "structured programming" aphorisms
there are almost no accepted community standards for what
software systems should be like at the detail level. By the
intractability argument, some key quality criteria would
seem to be understand ability in general, and susceptibility
to modular reasoning about behavior in particular. Yet this
degree of modularity is almost universally not achieved by
designs in computer science textbooks, technical papers,
and commercial software.

2. Observations and Implications

Reverse engineering of legacy code has proved to be such a
difficult practical problem — experience which lends
credence to the thesis that it is intractable — that serious
attention ought to be devoted to the subject. This is
particularly true because the alternative is also costly. But
we need to have realistic expectations about the ultimate
role of reverse engineering in a comprehensive vision of
software engineering. We are disturbed with the emphasis
on building tools to solve problems whose inherent
complexity suggests that those tools cannot be expected to
scale up to realistically large systems. And we are frankly
alarmed by the following sentiments, which seem typical
among reverse engineering advocates:

... while many of us may dream that the central busi-
ness of software engineering is creating clearly under-
stood new systems, the central business is really
upgrading poorly understood old systems. [15, p. 23]

[The problem of having to deal with] legacy software
is basically the result of management inaction rather
than technology deficiency... [1, p. 23]

Quite the contrary! Most software hasn't been written yet,
and widely taught and practiced "modern" approaches to
the nuts-and-bolts of software engineering still do not lead
to well-designed modular systems. So, if we as a commu-
nity act as though we believe that "the central business [of

software engineering] is really upgrading poorly
understood old systems," then we will squanders fortune
yet continue to face the Sisyphean task of upgrading poorly
understood old systems into slightly less poorly understood
new systems. We might have spent our efforts developing
and exploring truly productive techniques for forward
engineering of well-understood modular systems — and
this progress would help even those who insist that re-
engineering is ultimately where the action will be.

We mentioned above that reverse engineering is as hard as
program verification, and this leads to a common misunder-
standing about the claim of intractability. General program
verification is in principle unsolvable, because the verifica-
tion conditions generated from code and specifications
might include arbitrary mathematical assertions. The prac-
tical consequences of this observation, however, are
minimal. It can be used to show that there exist esoteric
systems for which program verification (hence reverse
engineering) is impossible; but it does not mean that
program verification/reverse engineering cannot succeed
on code that arises in practical situations. Our claim is
about such practical situations. Specifically, for all large
legacy systems, program verification/reverse engineering is
prohibitively expensive; not impossible in principle but
manifestly not cost-effective — and this bears directly on
the business decision regarding whether to re-engineer or to
build anew. The obvious rejoinder to this claim from
reverse engineering advocates is, "People do reverse
engineering all the time; how can it be prohibitively
expensive?" We address this question in Section 3.1.

The news is not all bad; we offer some assistance to reverse
engineering advocates. Specifically, by identifying threats
to modular reasoning from common design and coding
practices as a key technical factor that thwarts cost-effec-
tive reverse engineering, we implicitly suggest an area
where new reverse engineering tools might be helpful
— namely, finding such trouble spots. The ability to do
this will not change the underlying intractability but might
incrementally help those stuck with reverse engineering.

3. The Nature of the Reverse Engineering Task

At first glance, the conclusion that reverse engineering of
legacy code is doomed to fail strikes most people as either
ridiculous and wrong (the "reverse engineering advocates"
camp), or obvious and trivial (the "reverse engineering
skeptics" camp). Some hedge, claiming it could be either
depending on the definition of reverse engineering.

By the putative definition quoted in Section 1, reverse
engineering involves achieving an "understanding" [3, 12,
14] of a system, including "identifying the components of
an existing software system and the relationships among
them" and "creating high-level descriptions". What does
this mean? We argue that successful reverse engineering of
a legacy system entails at least the following two subtasks:

(1) Identifying the functional components of the system
and the roles they play in producing the behavior of
the higher-level system that employs them.

91

(2) Creating a valid explanation of how and why the be-
havior of the higher-level system arises from these
functional components and their roles.

We use "functional" here in the sense of contributing to
functional run-time behavior. This means that the relevant
components of a system, from the standpoint of under-
standing system behavior, are not necessarily the structural
components of its source code (e.g.,. modules, subroutines,
loop bodies, statements). Some functional components
might correspond to easily-identified structural compo-
nents, but others might span several of them — especially
where interesting behavior arises from poor design or from
unanticipated interactions between structural components.

By "valid explanation" we mean, effectively, a proof that
the claimed higher-level behavior results from the identi-
fied functional components and roles. The challenges in
achieving understanding of a poorly understood system are
to generate a hypothesis, which is in fact correct, and to
establish why it is correct.

3.1. Testing vs. Proving

We now consider the claim, "People do reverse
engineering all the time; how can it be prohibitively
expensive?" Certainly one can define reverse engineering
so this is true. But what people really do all the time is to
make plausible hypotheses. They do not check the validity
of those hypotheses in any decisive way. They might, for
instance, make some changes to the code that should not
cause problems according to the hypothesis, then test to see
whether those changes cause obvious problems.

Such an approach can only hope to show that a hypothesis
is invalid, not that it is valid — a conclusion similar to the
well-known aphorism that program testing can only hope to
demonstrate the presence of bugs, not their absence. We
do not trick ourselves into believing we have built correct
software by defining the problem of building correct soft-
ware in such a way that testing alone is sufficient to decide
whether we have succeeded. Yet defining reverse
engineering to consist of hypothesize-and-fesr, not
hypothesize-and-prove, amounts to the same thing.

Advocates of the weaker definition might contend that all
they are hoping for is to obtain "approximate" understand-
ing of a system. But an approximation is not sufficient to
achieve the ultimate objective of reverse engineering.
Furthermore, we can find no reasonable technical definition
of "approximate" reverse engineering. In any event there
must be an absolute standard by which to judge the quality
of an approximation. We therefore define successful
reverse engineering to entail decisive checking of the
validity of hypotheses, not merely guessing.

3.2. Substantive Hypotheses

The reverse engineering hypothesis should contribute
enough to the understanding of a system to suggest and/or
rule out potential modifications that are intended to achieve

the objective of the project. Biggerstaff, et al., seem to
summarize nicely:

A person understands a program when able to explain
the program, its structure, its behavior, its effects on its
operational context, and its relationships to its applica-
tion domain in terms that are qualitatively different
from the tokens used to construct the source code for
the program. [2, p. 72]

We therefore stipulate that reverse engineering hypothesis
H for system S should be substantive in that it is:

• Effective — it provides the ability to predict relevant
behavior of S (e.g., relevant input-output behavior) and
to answer questions about what-if situations (e.g., the
effects of various changes to the source code of S).

• Comprehensive — its validity cannot be decided by a
small set of test cases.

• Concise — it is at worst not much bigger than the
source code of S.

• Independent — it is not a paraphrase of the code of S.

• Systemic —judging its validity requires examining
essentially all the code of S.

The first property is basic to utility. All the others are
technically necessary to rule out trivial hypotheses that
might otherwise be seen as counterexamples to intractabil-
ity, but which in practice contribute nothing to the under-
standing of S. These conditions are not really very strong.
For example, nearly every non-trivial hypothesis is
systemic because there are many ways to get S to exhibit
unhypothesized behavior via long-range weird interactions
among its components. Whether a particular system actu-
ally has such interactions does not even matter; they might
exist because they are not ruled out by static (e.g.,
programming language) constraints. An instruction that
influences whether and why H holds might be lurking
anywhere in the code of S, and there is simply no way to
know whether it is there without looking for it.

4. The Intractability Result

The particular computational problem that we claim to be
intractable is the second reverse engineering subtask:

EXPLAIN — Given as input (S, H) — source code
for a system S and hypothesis H about that system's
behavior — decide whether, and explain why, H does
or does not hold for S.

We do not need to account for the extra time it takes to
generate a hypothesis to be explained. There is every rea-
son to suspect that generating substantive hypotheses is
hard, too, but we do not need to or try to demonstrate this.

We claim there is a lower bound for EXPLAIN for valid
hypotheses which implies that reverse engineering of
legacy code (as defined in Section 3) is intractable:

92

EXPLAIN is Intractable — There is a constant c>\
such that, for every legacy system S and every valid
substantive hypothesis H, EXPLAIN(S,H) takes time
at least cISI, where ISI is the size of S's source code.

This result follows from two premises, which we outline
here because they are empirical statements which, in prin-
ciple, are falsifiable and therefore debatable. The main
argument is completed elsewhere [19].

4.1. Source Code is a Compact Representation of Behavior

It has long been accepted by software and other engineers
that the key to dealing with large systems is to design and
construct them by composing some smaller units that are
independent except at their interfaces — the objective of
modularity. One intended result of modularity is the ability
to reason modularly about program behavior. Liskov and
Guttag clearly state this objective in their description of
how we should like to reason about total correctness, but
the conclusion applies equally to reasoning about any
substantive hypothesis about system behavior:

We reason separately about the correctness of a proce-
dure's implementation and about parts of the program
that call the procedure. To prove the correctness of a
procedure definition, we show that the procedure's
body satisfies its specification. When reasoning about
invocations of a procedure, we use only the specifica-
tion. [11, p. 227-228]

This observation is based on something routinely taught to
first-year programmers: It is hopeless to reason about
execution of non-trivial programs by tracing instruction
execution sequences, either for particular values or by
symbolic execution, because even a small program can
describe arbitrarily long execution sequences through
recursive calls and looping. (Effective reasoning about
program behavior also requires loop bodies to be replaced
by specifications, e.g., loop invariants or loop functions.)
In short, it must be possible to reason about the effect of
any repeatedly-executed piece of code by using a specifi-
cation of that piece, without tracing the code for each
dynamically-occurring use of it. We take as a premise that
software engineers strive to achieve, and succeed in
achieving, part of what they have been taught — to encode
long execution sequences in a concise way by identifying
commonalities in source code and by factoring them out
into separate pieces that are used repeatedly.

Consider any instruction execution sequence E of system S,
and define IEI as the length of a record of the steps (say, in-
structions) taken in E. We claim:

Compact Source Code Premise —There is a con-
stant c > 1 such that, for every legacy system S and for
every substantive hypothesis H, there is some instruc-
tion execution sequence E which H purports to explain
and for which IEI >clsl.

This premise is really quite a weak statement about legacy
systems because most real code describes potential execu-

tion sequences that are not bounded a priori by any func-
tion of ISI, but only by the inputs to S. Consider that if E
were achieved by straight-line code, for example, then we
would need to have ISI > IEI. How could this hold for any
realistic system? Rephrased in these terms, the premise
says the source code for a real legacy system is substan-
tially smaller than the length of the longest behavior history
it can effect, i.e., its size is at most logcIEI. Clearly this
always holds where there is no a priori bound on the
longest execution sequence of S.

4.2. Problems Result From Failed Attempts at Modularity

We should hope that software engineers always succeed in
separating specification from implementation in a way that
achieves modularity. However, designing and imple-
menting code that supports modular reasoning about behav-
ior is more subtle than it appears at first [13, 20]. Problems
arise from coupling through side-effects and aliased
variables [4, 7], arrays, pointers, and dynamic storage
management [6, 8], generics [5], inheritance [10, 16], and
from many other sources. Potentially troublesome tech-
niques are permitted by the programming languages used
for real legacy systems because, in the interest of
performance and other essential considerations, these
techniques can be useful when applied carefully.

However, history gives no evidence that software engineers
in practice do — or that they even know how to — exercise
adequate care in the use of such powerful language
constructs. We therefore claim:

Non-Modularity Premise — Every legacy system is
hard to maintain because, in some crucial places, it has
been designed or coded so that modularity is not
achieved.

We need make no assumption about how the legacy system
got into this state. Perhaps the system was poorly under-
stood from day one, or perhaps became poorly understood
through the cumulative toll of patches, upgrades, and adap-
tations. Whatever the cause, when an "existing" system
graduates to the status of "legacy" system it has already
been observed to be difficult to maintain. Non-modularity
of reasoning about its behavior is a major reason for this.

5. Conclusion

Reverse engineering of large legacy systems is intractable
in the following sense: Given real legacy code, the time
required to show the validity of a proposed explanation for
why it exhibits any significant system-level behavior is at
least exponential in the size of the source code. This does
not mean that the task is impossible. It means that it is
prohibitively costly for large legacy systems.

One lesson from this should be that we need to put more
emphasis, not less, on careful engineering of new systems
[13]; and that this emphasis needs to focus (at least) on
creating systems that admit modular reasoning. There are
many good reasons to continue to work on reverse engi-
neering of legacy code — it is an exciting intellectual

93

challenge and a problem that sometimes has to be faced in
practice. But at the same time we need to be realistic about
what outcomes to expect. Researchers and developers, and
especially their sponsors and the customers buying their
wares, should not be disappointed that nothing seems to
work very well for large legacy systems.

Acknowledgment

Dean Allemang, B. Chandrasekaran, Steve Edwards, John
Hartman, Doug Kerr, Tim Long, Bill Ogden,. Murali
Sitaraman, Neelam Soundararajan, Michael Stovsky,
Sergey Zhupanov, and Stu Zweben have provided helpful
insights and/or feedback on the ideas presented here. We
also gratefully acknowledge the support of the National
Science Foundation through grant CCR-9311702; and the
Advanced Research Projects Agency under ARPA contract
number F30602-93-C-0243, monitored by the USAF
Materiel Command, Rome Laboratories, ARPA order num-
ber A714.

Bibliography

[0] Andersen, H.C. The Emperor's New Clothes: A
Fairy Tale, Addison-Wesley, Reading, MA, 1973.

[1] Bennett, K. Legacy systems: coping with success.
IEEE Software 12, 1 (Jan. 1995), 19-23.

[2] Biggerstaff, T.J., Mitbander, B.G., and Webster,
D.E. Program understanding and the concept
assignment problem. Comm. ACM 37, 5 (May
1994), 72-83.

[3] Chandrasekaran, B., Goel, A.K., and Iwasaki, Y.
Functional representation as design rationale
Computer 26, 1 (Jan. 1993), 48-56.

[4] Cook, S.A. Soundness and completeness of an
axiom system for program verification. SIAM J
Comp. 7, 1 (Feb. 1978), 70-90.

[5] Ernst, G.W., Hookway, R.J., Menegay, J.A., and
Ogden, W.F. Modular verification of Ada generics.
Comp. Lang. 16, 3/4 (1991), 259-280.

[6] Ernst, G.W., Hookway, R.J., and Ogden, W.F.
Modular verification of data abstractions with shared
realizations. IEEE Trans, on Software Eng 20 4
(Apr. 1991), 288-307.

[7] Harms, D.E., and Weide, B.W. Copying and swap-
ping: influences on the design of reusable software
components. IEEE Trans, on Software Eng 17 5
(May 1991), 424-435.

[8] Hollingsworth, J.E. Software Component Design -
for-Reuse: A Language-Independent Discipline
Applied to Ada. Ph.D. dissertation, Dept. of Comp.
and Inf. Sei., Ohio State Univ., Columbus, OH, Aug.
1992; available from "ftp.cis.ohio-state.edu" in
"/pub/tech-re port/1993/TRO1-DIR/*".

[9] Hopkins, J.E., and Sitaraman, M. Software quality
is inversely proportional to potential local
verification effort. Proc. 6th Ann. Workshop on
Software Reuse, Owego, NY, Nov. 1993.

[10] Leavens, G.T., and Weihl, W.E. Reasoning about
object-oriented programs that use subtypes. Proc.
OOPSLA '90/SIGPLAN Notices 25, 10 (Oct. 1990),
212-223.

[11] Liskov, B., and Guttag, J. Abstraction and Speci-
fication in Program Development. McGraw-Hill,
New York, 1986.

[12] Littman, DC, Pinto, J., Letovsky, S., and Soloway,
E. Mental models and software maintenance. In
Empirical Studies of Programmers, E. Soloway and
S. Iyengar, eds., Ablex, 1986, 80-98.

[13] Neumann, P.G. Are dependable systems feasible?
Comm. ACM 36, 2 (Feb. 1993), 146.

[14] Parnas, D.L., Madey, J., and Iglewski, M. Precise
documentation of well-structured programs. IEEE
Trans, on Software Eng. 20, 12 (Dec. 1994), 948-
976.

[15] Waters, R. C, and Chikovsky, E. Reverse engineer-
ing progress along many dimensions. Comm. ACM
37, 5 (May 1994), 23-24.

[16] Weber, F. Getting class correctness and system
correctness equivalent: how to get covariance right.
In Proc. TOOLS USA '92, R. Ege, M. Singh, and B.
Meyer, eds., Prentice-Hall, 1992.

[17] Weide, B.W., Heym, W.D., and Ogden, W.F.
Procedure calls and local certifiability of component
correctness. Proc. 6th Ann. Workshop on Software
Reuse, Owego, NY, Nov. 1993.

[18] Weide, B.W., and Hollingsworth, J.E., On Local
Certfiability of Software Components, tech. report
OSU-CISRC-1/94-TR04, Dept. of Comp. and Inf.
Sei., Ohio State Univ., Columbus, OH, Jan. 1994;
available from "ftp.cis.ohio-state.edu" in "/pub/tech-
report/1994/TRO1 .ps.gz".

[19] Weide, B.W., Heym, W.D., and Hollingsworth, J.E.,
Reverse Engineering of Legacy Code is Intractable,
tech. report OSU-CISRC-10/94-TR55, Dept. of
Comp. and Inf. Sei., Ohio State Univ., Columbus.
OH, Oct. 1994; available from "ftp.cis.ohio-
state.edu" in "/pub/tech-report/1994/TR55.ps.gz".

[20] Wilde, N., Matthews, P., and Huitt, R. Maintaining
object-oriented software. IEEE Software 10, 1 (Jan
1993), 75-80.

94

Modeling Modular Software Structure for Human Understanding

Stephen H. Edwards
Dept. of Computer and Information Science

The Ohio State University
2015 Neil Avenue

Columbus, Ohio 43210-1277
E-Mail: edwardsOcis . ohio-state. edu

URL: http: //www. eis. ohio-state. edu/~edwards

Abstract
People form internal mental models of the things

they interact with in order to understand those in-
teractions. This psychological insight has been used
by the human-computer interaction (HCI) community
to build software systems that are more intuitive for
end users, but it has only been informally applied to
the problems of software designers, programmers, and
maintainers. Conventional programming languages
still do little to help client programmers develop good
mental models of software subsystems.

To address this problem, we have developed
the Abstract and Concrete Templates and Instances
(ACTI) model of modular, parameterized software sub-
systems. This model of software structure addresses
the needs of human software engineers who must rea-
son about collections of interacting software parts dur-
ing design, maintenance, and evolution.

ACTI is different from other module systems and
models of software in several ways. In ACTI, a subsys-
tem never has any implicit dependencies, and never
depends directly on any external definitions—all ex-
ternal dependencies are described through an explicit
interface. In addition, a subsystem specification is
meaningful by itself, even without respect to any im-
plementation. Finally, a subsystem is more than just a
collection of types and operations; it also includes: an
explicit model of behavior, an explicit model of all ex-
ternal dependencies, a collection of definitions used to
construct and describe these models, and (potentially
complex) substructure. There are strong parallels be-
tween ACTI and other research on the understanding
of modularly structured physical devices, particularly
Functional Representation.

Keywords: Mental model, model-based specification,
interfaces, bindings, generics

1 Introduction
Modern programming languages have evolved

from their predecessors with the primary purpose of
describing instructions to computers. Generally, these
languages were not designed to help explain to peo-
ple the meaning of the software that they can de-
scribe. This has led to two significant problems with
programming languages today: modules are consid-
ered to be purely syntactic constructs with no inde-
pendent meaning, and those parts of programs that
are deemed meaningful (usually procedures, in im-
perative languages) have "hierarchically constructed"
meanings.

To address these deficiencies, here we outline a
new model of component-based software that pro-
vides concrete support for recording critical informa-
tion about each software structure, information that
can form the basis for a programmer's own mental
model of that structure. This new model, termed the
ACTI model (for "Abstract and Concrete Templates
and Instances") is both mathematically formal and
programming language-independent. It captures and
formalizes the underlying conceptual view of software
architecture embedded in modern module-structured
languages while simultaneously providing support for
forming mental models. As a result, it can serve as
a general-purpose theory of the nature of software
building-blocks and their compositions.

1.1 Why Conventional Languages Fail
Most modern programming languages have some

construct that is intended to be the primary "building-
block" of complex programs. This building-block may
be called a "module," a "package," a "structure," or
a "class." Unfortunately, these constructs are rarely
given meaningful semantic denotations. Conventional
wisdom in the computer science field is that these
constructs are primarily for grouping related defini-

95

tions, controlling visibility, and enforcing informa-
tion hiding. For example, when considering module-
structured languages like Ada or Modula-2, Bertrand
Meyer writes:

In such languages, the module is purely a
syntactic construct, used to group logically
related program elements; but it is not it-
self a meaningful program element, such as a
type, a variable or a procedure, with its own
semantic denotation. [1, p. 61]

In this view, there is no way for one to make such
building-blocks contribute directly to the understand-
ability of the software comprising them. While object-
oriented languages usually give a stronger intuitive
meaning to the notion of a "class," they also fail to
provide any vision of how the meaning of individual
classes can contribute to a broader understanding of
the software systems in which they are embedded.

In addition, those program elements that are
given a semantic denotation are often given a meaning
that is "hierarchically constructed," or synthesized. In
other words, the meaning of a particular program con-
struct, say a procedure, is defined directly in terms of
its implementation—a procedure "means" what the
sequence of statements implementing it "means." The
meaning of its implementation is defined in terms of
the meanings of the lower-level procedures that it calls.
Thus, a procedure's meaning is constructed from the
meanings of the lower-level program units it depends
on, and the meanings of those lower-level units in turn
depend on how they are implemented, and so on.

This simple synthesis notion of how meaning is de-
fined bottom-up is adequate from a purely technical
perspective. It is also very effective when it comes to
describing the semantics of layered programming con-
structs. Unfortunately, it is at odds with the way hu-
man beings form mental representations of the mean-
ings of software parts [2].

The result of these two features of existing pro-
gramming languages is that they are inadequate for
effectively communicating the meaning of a software
building-block to people (programmers, in particular).
The semantic denotations of programming constructs
in current languages only relate to how a program op-
erates. They fail to capture what a program is in-
tended to do at an abstract level, or why the given im-
plementation exhibits that particular abstract behav-
ior. In order to address these concerns, it is necessary
to assign meaning to software building-blocks, to sep-
arate the abstract description of a software part's in-
tended behavior from its implementation, and to pro-
vide a mechanism for explaining why the implementa-

tion of the part achieves behavior consistent with that
abstract description.

1.2 Toward Understandable Software
The ACTI model directly addresses these deficien-

cies of current programming languages by giving a
software subsystem a well-defined meaning of its own,
independent of how it may be implemented. This
meaning includes an explicit model of behavior, which
can serve as a reference to help a client programmer
understand the subsystem—form an effective mental
model of it. Further, the constant presence of such a
behavioral description acts as a continual cue to aid
the programmer in maintaining the consistency and
correctness of her own understanding.

Because a person's internal mental representa-
tions are so critical for comprehension, supporting the
formation and maintenance of effective mental models
is important if one wishes to support complex software
structures that are understandable by humans. Un-
derstandable software is vital for software designers,
who must design in the context of reusable software
parts; for testing and maintenance personnel, who of-
ten must understand software written by others; and
for reverse engineers or re-engineers, who want to gain
as much value from previous work as possible.

Although a full treatment of ACTI's formal defini-
tion is beyond the scope of this article because of space
considerations, the following sections provide a general
overview of the model at an intuitive level. Section 2
introduces the main entities in ACTI. Next, Section 3
highlights the unique and novel features of the model.
Section 4 then outlines how ACTI provides support
for software understanding. Relationships to previous
work, particularly AI-based work on the understand-
ing of physical devices, is discussed in Section 5.

2 An Overview of ACTI
The ACTI model [2] is centered around the no-

tion of a "software subsystem," a generalization of the
idea of a module or a class that serves as the building-
block from which software is constructed. A subsys-
tem can vary in grain size from a single module up
to a large scale generic architecture. ACTI is designed
specifically to capture the larger meaning of a software
subsystem in a way that contributes to human under-
standing, not just the information necessary to create
a computer-based implementation of its behavior.

The ACTI model is based on four different kinds
of subsystems:

Abstract Instance—A disembodied subsystem
specification or interface description. There is no

96

Table 1: The Four Kinds of Subsystems

Template

Instance

Subsystem Varieties

Abstract
(Specification)

RESOLVE concept
SML functor signature

Ada package spec.
SML signature

Eiffel class interface

Concrete
(Implementation)

RESOLVE realization
SML functor

Ada package body
SML structure

Eiffel class impl.

implementation associated with anything defined
in the specification.

Concrete Instance—A subsystem that provides im-
plementations for its types and operations. All of
the defined types and operations in the subsystem
are represented and/or implemented.

Abstract Template—A subsystem-to-subsystem
function that, when applied to its argument,
which is some abstract instance, will generate
another abstract instance. Effectively, an ab-
stract template is a form of generic subsystem
specification.

Concrete Template—A subsystem-to-subsystem
function that, when applied to its argument,
which is some concrete instance, will generate
another concrete instance. Thus, a concrete
template is a form of generic subsystem imple-
mentation.

The terms used for this classification are all based on
the work of Weide et al. [3, p. 23], and the same ideas
appear in the 3C model [4]. The name "ACTI" is an
acronym derived from these four terms: "Abstract and
Concrete Templates and Instances."

This view of the world allows software subsystems
to be partitioned along two orthogonal dimensions, as
shown in Table 1. The distinction between "abstract"
and "concrete" embodies the separation between a
specification or interface, and an implementation or
representation. The distinction between "template"
and "instance" allows one to talk about both generic
subsystems, and the product of fixing (binding) the
parameters of such a generic subsystem: an instance
subsystem.

Formally, ACTI is a collection of mathematical
spaces, together with relations and functions on those
spaces, that can be used in explaining (or defining)
the denotational semantics of program constructs. In

spirit, the model was developed in accordance with the
denotational philosophy, as described by E. Robinson:

In the denotational philosophy inspired by
Strachey the program, or program fragment,
is first given a semantics as an element of
some abstract mathematical object, gener-
ally a partially ordered set, the semantics of
the program being a function of the seman-
tics of its constituent parts; properties of the
program are then deduced from a study of
the mathematical object in which the seman-
tics lives. [5, p. 238]

ACTI is not a programming language, however.
Instead, it is a mathematical model that is useful
for programming language designers, or researchers
studying the semantics of programming languages. It
is a formal, theoretical model of the structure and
meaning of software subsystems. It is rich enough to
be used as the denotational semantic modeling space
when designing new languages, and has been shown
to subsume the run-time semantic spaces of several
existing languages chosen to be representative of the
modern imperative, 00, and functional philosophies

[2].
ACTI has two features that specifically address

the inadequacies described in the introduction:

1. In ACTI, a software subsystem (building-block)
has an intrinsic meaning; it is not just a syntactic
construct used for grouping declarations and con-
trolling visibility. This meaning encompasses an
abstract behavioral description of all the visible
entities within a subsystem.

2. The meaning of a software subsystem is not, in
general, hierarchically constructed. In fact, it is
completely independent of all the alternative im-
plementations of the subsystem.

97

Context

Specification Adornment

Types :

Variables : <
(■■■

[•'■
Operations :
Invariant : .

[■■•

' SAh H>

Spec. Adorn. Instances :

Spec. Adorn. Templates : <

<> •

\ SATi » ID- D)
Exported Behavior

Types : < T2 i->
{Model of Ti)
{Model of T2)

Variables : < V2 H>
{Model of Vi)
{Model ofV2)

Operations : < 02 H>
{Model ofOi)
{Model of 02)

Invariant : .

Ali »->

Abstract Instances : <

Concrete Instances : <

Interpretation Mappings

Abstract Templates

Concrete Templates

Int. Mapping Templates

{ IMi (->• ft

ATI »(n-D)

{ IMT, -> ([]->ft)

Figure 1: The Details of an Abstract Instance

98

Thus, ACTI provides a mechanism for describ-
ing what a subsystem does, not just how it is imple-
mented. The meaning provided for a subsystem is
a true abstraction—a "cover story" that describes be-
havior at a level appropriate for human understanding
without explaining how the subsystem is implemented.
Further, ACTI provides a formally defined mechanism,
called an interpretation mapping, that captures the
explanation of why an implementation of a subsys-
tem will give rise to the more abstractly described be-
havior that comprises the meaning attributed to the
subsystem—in short, an explanation for why the cover
story works.

2.1 Abstract Instances
Table 1 gives examples of some programming lan-

guage structures that might typify each of the four
kinds of subsystems. We begin with abstract in-
stances.

An abstract instance is a subsystem specification
or interface description. There is no implementation
associated with anything defined in the abstract in-
stance. Further, like all other ACTI subsystems, an
abstract instance cannot directly refer to any entities
outside of itself—it is completely self-contained. If a
given abstract instance relies on external definitions,
they must be imported through an explicit interface
that expresses exactly what expectations the instance
places on its environment—an explicit "context" in-
terface.

To briefly give the flavor of the mathematical
spaces in ACTI, Figure 1 schematically depicts an ab-
stract instance object. The abstract instance is di-
vided into three parts, the most familiar of which is the
Exported Behavior. The exported behavior portion
of the abstract instance defines all of the services pro-
vided by the instance:

• All types that it provides, including a mathemat-
ical model space for each;

• All variables, including their types;

• All operations, including a pre- and
postcondition-oriented model of their behaviors;

• An invariant over the entire instance;

• Nested abstract instances;

• (Specifications of) nested concrete instances;

• Nested interpretation mappings (interpretation
mappings are described below); and

• Nested templates (templates are described be-
low).

Figure 2: An Abstract Instance Is A "Face Plate"

All of these components have values taken from some
complete partial order (CPO) space defined in the
ACTI model.

In addition to providing a behavioral model of all
exported features, ACTI includes complete behavioral
descriptions of all imported features [2]. The Con-
text section shown in Figure 1 is actually one (nested,
possibly empty) abstract instance that is used to com-
pletely define all of the external dependencies of the
main instance shown in the figure.

The remaining section of the abstract instance,
the Specification Adornment section, is rarely
manifested in programming languages. It is an area
where purely mathematical definitions of types, oper-
ations, or other entities can be made, purely for use as
tools in creating more understandable behavioral de-
scriptions. While the Exported Behavior describes
what we would normally consider to be programming-
level properties of a subsystem, and while Context
describes programming-level external dependencies,
Specification Adornment describes mathematical
specification tools.

Intuitively, we can think of an abstract instance
as a "face plate" that describes an explicit interface
at both the syntactic and behavioral levels, as shown
in Figure 2. Here, the "sockets" on the upper half of
the face plate symbolize the explicit interface to exter-
nal dependencies, while the "plugs" on the lower half
symbolize the features provided by this subsystem.

In ACTI, abstract instances can have

99

Figure 3: A Concrete Instance Is An "Open Box"

substructure—that is, abstract instances can be
nested within other abstract instances. This provides
a mechanism for describing cohesive groups of related
features within one "face plate" as a unit, as well as
for modularizing complex specifications.

2.2 Concrete Instances
A concrete instance is a subsystem that pro-

vides implementations for all of its exported features—
types, operations, etc. This is much closer to the usual
programming language notion of a "module." Just
as with abstract instances, a concrete instance has a
meaning in isolation, and cannot implicitly depend on
any external entities—all external dependencies must
be explicitly described in its context interface. The
behavior of all features is also included in the mean-
ing of the concrete instance. Just as with abstract
instances, concrete instances can have substructure,
or be nested within other concrete instances.

Unlike most programming languages, ACTI im-
poses no predetermined relationships between ab-
stract and concrete instances. Implementations are
meaningful in their own right (and in isolation), even
without respect to any particular specification to
which they may conform. While an abstract instance
is in essence an "implementation-free" subsystem
specification, a concrete instance is a "specification-
free" implementation. The traditional notion of "con-
formance" between an implementation and a specifi-
cation is thus many-to-many in this model.

In Figure 3, a concrete instance is shown as an
electrical junction box without a face plate. Just like

Figure 4: A Template Is A "Generator"

the abstract instance, the concrete instance has ex-
ported features (loose wires) and an explicit interface
to its environment (a terminal block). Of course, one
might expect the behavior of these features to be de-
scribed in terms at a different level of abstraction from
those used in the specification(s) to which this con-
crete instance conforms.

2.3 Templates
Templates in ACTI are subsystem generators. One

can think of a template as a "function" that takes a
subsystem as a parameter and produces a new subsys-
tem as its result. An abstract template is a subsystem-
to-subsystem function that can be applied to an ab-
stract instance to generate another abstract instance.
Effectively, an abstract template is a generic subsys-
tem specification. A concrete template is a subsystem-
to-subsystem function that can be applied to a con-
crete instance to generate another concrete instance.
Thus, a concrete template is a generic subsystem im-
plementation.

Figure 4 gives an intuitive impression of an ab-
stract template. One or more abstract instances are
provided as actual parameters, and the template is

100

applied to them (by turning the crank) to generate a
new abstract instance.

2.4 Interpretation Mappings: Relation-
ships Between Subsystems

In ACTI, the relationships between different sub-
systems are expressed explicitly via interpretation
mappings. Intuitively, one can think of an interpre-
tation mapping as being an "impedance matcher" be-
tween different abstract models of behavior. An in-
terpretation mapping explains how one set of features
can be "interpreted as" or "mapped into" another set
of features in a behaviorally consistent way. This is
shown in Figure 5 as a cable with differently shaped
plugs. As with the other ACTI entities, there are also
interpretation mapping templates for describing pa-
rameterized families of mappings between families of
subsystems.

Interpretation mappings are used for several pur-

poses:

• To explain how one abstract instance conforms to
another (how one specification is a generalization

of another).

• To explain how a concrete instance conforms to an
abstract instance (how an implementation fulfills
a specification).

• To explain how one or more external subsystems
conform to the explicit context interface of an ab-
stract or concrete instance.

Interpretation mappings are at heart explicit rep-
resentations of bindings between subsystems. Because
an ACTI subsystem intentionally includes a detailed
description of its behavior, however, such a binding
necessarily involves more than just a name-to-name
correspondence—it must also include the equivalent
of an abstraction function (or, more generally, abstrac-
tion relation) in order to bridge the gap between de-
scriptions presented in completely different abstract

terms. .
While this paper can only give an overview ot the

concepts involved in ACTI, a strong intuitive grasp of
the abstract versus concrete and template versus in-
stance distinctions gives one an effective understand-
ing of the heart of ACTI.

3 What Is Different Here?
All of the varieties of subsystems modeled in ACTI

have already appeared in modern programming lan-
guages in one form or another—although rarely do all
four appear together, and there is much disagreement
about their details. The contributions of ACTI and its

Figure 5: Interpretation Mappings Are
Connectors

crucial differences are in the details of subsystems and
how they fit together.

In ACTI, subsystems are meaningful by them-
selves. In particular, a specification has a well-defined
meaning, including a complete picture of the behav-
ior of the features it describes, even without respect
to any implementation. An implementation also has
meaning, without reference to any specification to
which it might conform.

As a result, subsystems never depend directly on
anything outside of themselves. All external depen-
dencies are described through an explicit context in-
terface, and there is no notion of "implicit" dependen-
cies or hidden coupling between subsystems.

The "meaning" of a subsystem (a specification or
implementation) is more than just a collection of types
and operations. This is critically different than the
notion of "module" in most programming languages.
Instead, the meaning of a subsystem includes:

• An explicit model of behavior (independent of im-
plementation details).

• An explicit model of all external dependencies
(the context interface).

• A collection of definitions used to construct and
describe behavioral models.

• Substructure (which is potentially complex).

In addition to the emphasis on subsystems, ACTI
also includes explicit representation of correspondence

101

relationships between subsystems. In ACTI, all bind-
ings are explicitly represented through these interpre-
tation mappings:

• Binding an external unit to a subsystem's explicit
context interface.

• Mapping a concrete instance to the abstract in-
stance^) it conforms to.

• Mapping an abstract instance to another abstract
instance it conforms to.

Finally, in ACTI all entities can be parameterized.
Implementations can be parameterized independently
of specifications, and interpretation mappings can be
parameterized independently of the subsystems they
relate. Examples of the utility of this flexibility are
surprisingly plentiful [2].

4 Support For Software Understand-
ing
It is well-accepted that people form mental mod-

els—internal representations of external artifacts—for
devices and other bits of technology with which they
interact [6, p. 241]. From psychology, we understand
that people do this naturally, and that such models
help individuals in two ways [6, p. 241]:

1. A mental model allows one to predict the behavior
of the person or thing with which the interaction
takes place.

2. A mental model allows one to explain why the
behavior arises.

Both of these benefits are important for a person to
understand how to interact effectively with another
person, a physical device, or a piece of complex soft-
ware. Hence, a mental model that is effective is
one that provides sufficient predictive and explanatory
power, and which a person can reasonably internalize
and use to understand an interaction.

Here, we are concerned with a "programmer-
user's" interactions with a software subsystem, rather
than with an end-user's interactions with a complete
application. Following Norman's terminology [6], tar-
get system will be used to refer to the component
subsystem with which a person is interacting. The
system image is the entire visible "programmer in-
terface" to the software component seen by a(nother)
software professional. It may include a system spec-
ification, complete source code, manuals and instruc-
tions accompanying the software, and even the way
the software behaves and responds under operating
conditions.

Mental models evolve naturally through interac-
tion with the target system [6, p. 241]. Over time,
people reformulate, modify, and adapt their mental
models whenever these models fail to provide reason-
able predictive or explanatory power. For most pur-
poses, the models need not be completely accurate,
and usually they are not, but they must be functional.
Norman documents the following general observations
about mental models [6, p. 241]:

1. Mental models are incomplete.

2. People's abilities to simulate or men-
tally execute their models are severely
limited.

3. Mental models are unstable: People for-
get the details of the system they are
using, especially when those details (or
the whole system) have not been used
for some period.

4. Mental models do not have firm bound-
aries: similar devices and operations get
confused with one another.

5. Mental models are "unscientific": Peo-
ple maintain "superstitious" behavior
patterns even when they know they are
unneeded because they cost little in
physical effort and save mental effort.

6. Mental models are parsimonious: Of-
ten people do extra physical operations
rather than the mental planning that
would allow them to avoid those ac-
tions.

These observations indicate that mental models
are inherently limited. These limitations stem from
human cognitive limitations, a person's previous ex-
periences with similar systems, and even misleading
system images [6, p. 241]. As Norman points out:

In making things visible [in the system im-
age], it is important to make the correct
things visible. Otherwise people form expla-
nations for the things they can see, explana-
tions that are likely to be false. ... People are
very good at forming explanations, at creat-
ing mental models. It is the designer's task
to make sure that they form the correct in-
terpretations, the correct mental models: the
system image plays the key role. [7, p. 198]

Given this information, how can one support the
formation and maintenance of effective mental mod-
els for complex software systems? Norman points out

102

that the designer of a software subsystem already has
a conceptual model of the system that is (presum-
ably) accurate, consistent, and complete [6, p. 241][7,
pp. 189-190]. The goal, in the best of all possible
worlds, is to ensure that the system image is com-
pletely consistent with the conceptual model of the
designer, and that from this system image the user
forms a mental model consistent with the designer's
conceptual model. Further, the system image should
help alleviate the inherent human limitations of men-
tal models. A well-designed system image can help
to make the user's mental model more complete, to
record details so the user's model has firm boundaries,
and to present those details in such a way that the
user's model is more stable.

ACTI was designed with these issues in mind, and
as a result, explicitly incorporates model-based expla-
nations of behavior in the meaning of each software
subsystem. This behavioral description captures what
the component designer wishes to impart about the
conceptual model he intends for the client software en-
gineer to acquire—it is a semantic (rather than purely
syntactic) system image.

Because an ACTI subsystem has a meaning that
contains the designer's conceptual model, it can serve
as a cue to help the programmer form and maintain a
mental model of the subsystem. By serving as a point
of reference, it also helps to address the natural limita-
tions of the programmer's internal model. This is the
basis for supporting software that is understandable
by humans, not just executable by machines.

5 Relation to Previous Work
In the realm of computer languages, Section 3 de-

lineates the primary ways in which ACTI is unique
with respect to previous work. For a discussion of pre-
vious efforts to effectively capture modular structuring
techniques, Edwards [2] presents a thorough compar-
ison of several programming languages that are rep-
resentative of best current practices: RESOLVE [8, 9],
OBJ [10], Standard ML [11], and Eiffel [1]. As typi-
cal of current efforts, most of these languages inade-
quately support the formation or maintenance of ef-
fective mental models of software parts. The complete
analysis, including a detailed check list of software
structuring and composition properties supported by
these languages, is available electronically [2]. Other
efforts to provide better support for mental models
have concentrated primarily on adding (possibly struc-
tured) comments to component specifications, the in-
adequacy of which is explained in [12].

Interestingly, there are other areas of computer
science where similar work has been and is being car-

ried out. Current work on Functional Representation
[13, 14, 15, 16] (FR) is closely related. FR grew out
of artificial intelligence work on reasoning about phys-
ical systems, partly motivated by diagnostic and de-
sign problem solving. As with other AI work on these
problems, FR originally focused on the functions of
devices—that is, the effects objects have on their envi-
ronment. More recently, B. Chandrasekaran has doc-
umented an ontological framework within which the
notion of "function" can be explained, and which pro-
vides a unified technical vision underlying the various
approaches to device understanding [17].

This more general framework has allowed Chan-
drasekaran to present FR as a general theory of com-
prehension, along with a specific language that serves
as a corresponding representation mechanism [17]. He
defines comprehension to be the task of producing one
or more of the following descriptions of a given arti-
fact:

• The intended function of the artifact, i.e., its
behavior.

• The structure of the artifact, i.e., a specification
of its components and how they are put together.

• A causal account of how the artifact achieves its
function, and the roles played by the components
in achieving it.

The result is that FR can be considered to be a
domain-independent theory for understanding how
system-level behaviors emerge from a system's struc-
ture.

ACTI is aimed at exactly the same goal within
the domain of software systems. As a result, it is not
surprising that ACTI and FR share a number of critical
features:

• Support for human understanding is a primary
goal.

• Behavior is described independently of structure
and implementation. In particular, behavioral de-
scriptions are meaningful in isolation, without re-
spect to any particular device that may provide
such behavior.

• There is the potential for multiple realizations of
the same behavior.

• An explicit bridge must be constructed between
the (more abstract) vocabulary of a system-level
behavioral description and the (lower level) func-
tions achieved by the system's component parts.

103

• Similarly, when devices are composed to form
larger structures, one must explicitly describe the
bridge between them.

• The "context interface" through which external
forces can act on a given artifact is explicitly de-
fined.

Earlier- FR work has even been applied to software for
diagnostic and explanation purposes [18, 19]. To date,
this has been at the "programming-in-the-small" level
of individual statements and their interactions, while
ACTI addresses "programming-in-the-large" issues of
subsystem meaning and composition.

The similarities between ACTI and FR, two efforts
that were arrived at independently, strengthen the
claim that they both make progress toward support-
ing human understanding effectively. Further, there
are areas where the two complement each other. FR,
for example, provides for explicit representation of
a "causal account" of how aggregate behavior arises
from the functions of individual parts, which can con-
tribute to human understanding for modification or
diagnostic purposes. Similarly, ACTI provides explicit
support for specification adornments—a place for de-
signers to capture model-building tools and useful sub-
parts of behavioral descriptions. The complementary
nature of these parallel efforts provides fruitful ground
for future work on integrating the two frameworks.

6 Conclusions
ACTI addresses the problem of understandable

software composition across module- and class-based
languages. To achieve this, it gives a real semantic
denotation to subsystems (modules) that includes a
simple (i.e., not "bottom-up") model of behavior. It
allows one to clearly describe why abstractions (sim-
ple models) correctly capture the behavior of complex
combinations of lower-level parts, using interpretation
mappings.

Because each ACTI subsystem has a meaning that
reflects its designer's conceptual model, it supports
the formation of mental models by client program-
mers, and also addresses their limitations. This is a
critical missing link in the support of understandable
software that has been ignored by previous efforts in
programming language design.

ACTI is universal, in that it is not tied to any
particular programming language. It unifies module-
structured and object-oriented notions of software,
and can serve as a general theory of software struc-
ture and meaning.

Acknowledgements
The author gratefully acknowledges financial sup-

port from the National Science Foundation (grant
number CCR-9311702) and the Advanced Research
Projects Agency (contract number F30602-93-C-0243,
monitored by the USAF Materiel Command, Rome
Laboratories, ARPA order number A714). B. Chan-
drasekaran deserves special thanks for recognizing and
cultivating the ties between Functional Representation
and ACTI.

104

References
[1] B. Meyer, Object-Oriented Software Construc-

tion. New York, NY: Prentice Hall, 1988.

[2] S. Edwards, A Formal Model of Software
Subsystems. PhD thesis, Dept. of Com-
puter and Information Science, The Ohio
State University, Columbus, OH, 1995.
Also available as technical report OSU-
CISRC-4/95-TR14, by anonymous FTP from
ftp://ftp.eis.ohio-state.edu/pub/tech-re-
port/1995/TR14-DIR, or through the author's
home page.

[3] W. F. Ogden, M. Sitaraman, B. W. Weide, and
S. H. Zweben, "The RESOLVE framework and
discipline—a research synopsis," ACM SIGSOFT
Software Engineering Notes, vol. 19, pp. 23-28,
Oct. 1994.

[4] W. Tracz, "Implementation working group sum-
mary," in Reuse in Practice Workshop Summary
(J. Baldo, Jr., ed.), (Alexandria, VA), pp. 10-
19, IDA Document D-754, Institute for Defense
Analyses, Apr. 1990.

[5] E. Robinson, "Logical aspects of denotational se-
mantics," in Category Theory and Computer Sci-
ence (D. H. Pitt, A. Poigne, and D. E. Rydeheard,
eds.), vol. 283 of Lecture Notes in Computer
Science, pp. 238-253, New York, NY: Springer-
Verlag, 1987.

[6] D. A. Norman, "Some observations on mental
models," in Readings In Human-Computer In-
teraction: A Multidisciplinary Approach (R. M.
Baecker and W. A. S. Buxton, eds.), pp. 241-244,
San Mateo, CA: Morgan Kaufmann Publishers,
Inc., 1987.

[7] D. A. Norman, The Design of Everyday Things.
New York, NY: Doubleday/Currency, 1990.

[8] M. Sitaraman and B. W. Weide, editors, "Special
feature: Component-based software using RE-
SOLVE," ACM SIGSOFT Software Engineering
Notes, vol. 19, pp. 21-67, Oct. 1994.

[9] B. W. Weide, W. F. Ogden, and S. H. Zweben,
"Reusable software components," in Advances in
Computers (M. C. Yovits, ed.), vol. 33, pp. 1-65,
Academic Press, 1991.

[10] J. A. Goguen, "Principles of parameterized pro-
gramming," in Software Reusability, Volume I:
Concepts and Models (T. J. Biggerstaff and A. J.

Perlis, eds.), pp. 159-225, New York, NY: ACM
Press, 1989.

[11] R. Milner, M. Tofte, and R. Harper, The Def-
inition of Standard ML. Cambridge, MA: MIT
Press, 1990.

[12] S. H. Edwards, "Good mental models are nec-
essary for understandable software," in Proceed-
ings of the Seventh Annual Workshop on Software
Reuse (L. Latour, ed.), Aug. 1995.

[13] B. Chandrasekaran, "Functional representation
and causal processes," in Advances in Computers
(M. C. Yovits, ed.), vol. 38, pp. 73-143, Academic
Press, 1994.

[14] Y. Iwasaki, R. Fikes, M. Vescoyi, and B. Chan-
drasekaran, "How things are intended to work:
Capturing functional knowledge in device de-
sign," in Proceedings of the 13th Interna-
tional Joint Conference on Artificial Intelligence,
pp. 1516-1522, Morgan KAufmann, 1993.

[15] M. Vescovi, Y. Iwasaki, R. Fikes, and B. Chan-
drasekaran, "CFRL: A language for specifying
the causal functionality of engineered devices,"
in Eleventh National Conference on AI, pp. 626-
633, AAAI Press/MIT Press, 1993.

[16] Y. Iwasaki and B. Chandrasekaran, "Design ver-
ification through function- and behavior-oriented
representation," in Artificial Intelligence in De-
sign '92 (J. S. Gero, ed.), pp. 597-616, Kluwer
Academic Publishers, 1992.

[17] B. Chandrasekaran, "An explication
of function." The Ohio State Univer-
sity, Laboratory for AI Research, draft,
1996. Also available electronically from
http://www.eis.ohio-state.edu/~chandra.

[18] D. Allemang, "Using functional models in auto-
matic debugging," IEEE Expert, vol. 6, pp. 13-
18, 1991.

[19] B. Liver and D. T. Allemang, "A functional
representation for software reuse and design,"
International Journal of Software Engineering
and Knowledge Engineering, vol. 5, pp. 227-269,
1995.

105

Representing Function as Effect:
Assigning Functions to Objects in Context and Out

B. Chandrasekaran and John R. Josephson

Laboratory for AI Research
The Ohio State University
375, Dreese Laboratories

2015 Neil Avenue
Columbus, OH 43210

{Chandra, jj} @cis.ohio-state.edu

Abstract
Various recent representations for device function
capture somewhat different intuitions and are
restricted in their ranges of applicability. Though each
representation solves some set of problems, it is hard
to see how to build on them. In this paper, we
describe a formal framework and definition of device
function that attempts to unify and generalize these
intuitions. We have sought the smallest ontological
framework that is sufficient for developing an idea of
function that will support design problem solving
through the use of functionally indexed device
libraries. As characterized in this ontology, objects are
embedded in an environment and represented in a
view. Objects interact causally with their
environments. Functions are defined in terms of the
effects of objects on their environments. This
definition of function allows for functions to be
specified as requirements during the design process,
and prior to choosing objects to achieve those
functions. An object represented in a device library is
associated with generic environmental properties that
are bound to specifics when the object is deployed. In
this way potential functions are associated with library
objects. In the universe of engineered objects, causal
dependencies can usually be expressed as relations
between the properties of objects and property
relations can usually be expressed as mathematical
functions. However, a formalism based on property
relations appears not to be sufficient to capture all
types of causality relevant to functional reasoning.
This paper presents a definition of function that is
sufficiently general to express static and dynamic
functions, intended and natural functions, and
functions of abstract and physical objects.

Desiderata for a Framework for Functions
The last two decades have seen a flowering of work on
reasoning about physical systems. Recently, motivated by

problems in diagnosis and design, a stream of work has
emerged in which the notion of device function has been
central. This stream of work uses many of the ideas that
have been developed in qualitative reasoning and
qualitative simulation. For example, [1] uses qualitative
simulation to verify design functions.

The various investigations of device function have
mostly lacked a unified technical vision. Different
intuitions about functions are pursued in different contexts
and application domains. Even though each approach
clearly solves some set of problems, it is hard to see how
unify or to build on them. What we need is a minimalist
effort, something that looks for what is common among all
the intuitions about function and seeks to build the smallest
ontological framework within which an adequate notion of
function can be explicated. Of course, for work in
particular domains and applications, additional constructs
and content theories will be needed, but, if the effort is
successful, the minimalist ontology will be usable by all.
This paper is an attempt to provide such an ontology.

A framework for functions should, in our opinion,
satisfy the following desiderata.

• 1. It should apply to intended functions of human-
designed devices, and to functions or roles in natural
systems.

• 2. It should apply to functions of both static and dynamic
objects. Almost all of the work on reasoning about objects
and their functions has focused on functions that are
defined in terms of state changes of objects, e.g., electronic
circuits, buzzers, gears, and so on. However, the notion of
function applies just as well to static objects, e.g., support
beams and windows.
• 3. It should apply to functions of both abstract and
physical objects. Even though most work has been done for
physical objects, one can speak of functions of modules in
software, and of steps in plans, just as naturally as speaking
of functions of physical objects.

106

The Design Task
Let E be an environment and let G be a predicate defined
for E. Let a cognitive agent have a goal to have G be true
in E. This sets up a design task: to specify an object O, and
specify a way to embed O in E, such that when O is so
embedded, G is caused to be true.

Traditional definitions of the design task focus on the
need to specify the object, e.g., to provide a list of
components from some component library and a way of
composing them. Our definition additionally requires that
a way of embedding O in E be specified; the design task is
not complete until the designer specifies a mode of
deployment of O. The mode of deployment makes the
connection between the properties and structure of O and
the achievement of G in E. Specifying the mode of
deployment becomes necessary if G is defined without any
commitment to the properties or structure of O.

The definition of a function should not make any
reference to the structure of the object that has the function.
Consider the example of a buzzer. In the literature, the
function is typically stated as "when the switch is pressed,
a sound is made," which makes reference to the switch, a
part of the structure of the device. It would be better to
give the buzzer function to the designer simply as:

no sound in the environment
 > buzzing sound in the environment

It is useful to think of the definition of buzzing as
potentially existing independently of, and prior to, the
design of the buzzer. By isolating the function definition
from any reference to the structure, we are leaving it open
for the designer to come up with a very different object to
achieve the function. Perhaps one design would achieve the
function when it is twisted, another when it is blown on,
and so on.

Ontology: an object, in an environment,
viewed from a perspective

The world is composed of objects in causal interaction with
each other. The primitive representational notion for us is
that of an object, in an environment, viewed from a
perspective. Representationally, the basic elements are:

<object> in <view>
<object properties>
<generic environmental properties in

potential causal relation with object>
<property relations>

An object in the real world has an open-ended number of
properties: science can discover new properties or
relationships between existing properties, and one can
define new properties from old properties. A view is a
specific modeling stance; it selects certain properties of the
object for representation. The view also implicitly

specifies the classes of external objects with which an
object can be in causal interaction.

Figure 1. An object O in a generic environment E.
Object properties pj and pj are in causal interaction
with generic environmental properties p'i and p'j.
When the object is embedded in a specific
environment, its mode of deployment is specified by
property relations.

The central idea is illustrated in Figure 1. An object
interacts with its environment because some of its
properties either affect or are affected by the properties of
objects in the environment. When two people are in a
room, what one person says affects the mood of the other
person. When an electrical wire comes in contact with an
electrical terminal of an object in its environment,
depending upon which of the voltages is the independent
variable, the voltage of one of the terminals causes the
voltage of the other terminal to have the same value. The
terminals are simply special cases where the property is
localized to a physical location, but a more general way of
talking about causal interaction between objects is by
means of the properties that causally interact. When we
wish to describe the object's potential interactions in some
generality, the environment is specified in general terms.
That is, the environmental properties that the object can
interact with are described by their types.

Finally, a set of property relations is given that
represent the modeler's causal understanding of the object.
The relations state all the causal relations between the
properties, both the object's and environmental ones,
believed by the modeler to be relevant. The property
relations can be in any form: continuous, discrete,
qualitative, etc.

Defining Functions
The central idea we propose for defining functions is that
function of an object is the effect it has on its environment.

107

Definition. Function. Let G be a formula defined over
properties of interest in an environment E. Let us consider
the environment plus an object O. If O (by virtue of
certain of its properties) causes G to be true in E, we say
that D performs, has, or achieves the function (or role) G.

A description of how O is used to achieve the function
(or serve the role, etc.) G has three parts:

1. Functional formula expressing G: what predicate of the
environment will be true, under what conditions.

2. Description of properties: what properties of O are used
in achieving G.

3. Mode of deployment: what property relations (using
what properties of the environment) determine the causal
interactions between the object and its environment. This
is commonly given by specifying the types of connections
between an object and objects in its environment.

Example. Pump: The properties of interest in the
environment are the quantities of water, Qi(t) and Q_2(t), at
time t, in locations Li and L2 respectively. Let G be the

formula corresponding to Ql(to) - Ql(tf) =
Q2(tf) - Q2(t0) = K > 0. That is, a positive quantity of
water is moved from Li to L2 from the initial instant to
final instant. For simplicity let us call this formula
Pump(K,Li,L2).

Note that while G is described as a function of object O,
both preconditions and effects in the specification of G are
defined exclusively in terms of properties outside of O.
The function of an object is the effect it has on its
environment, not its behavior in isolation. In the Pump
example, the formula Pump(K, Li, L2) describes an effect
on the environment. If an object is introduced that causes
the formula to be true, we will say that the object "plays
the role of a Pump" or "has a Pump function." A
particular pump, P, say a reciprocating pump that uses a
piston to repeatedly move equal units of water, has relevant
properties of having an inlet port Porti and an outlet port
Port2, and is deployed by having Porti connected to L]
and Port2 connected to L2 so that (water at Porti) = (water
at Li) and (water at Port2) = (water at L2)

This definition of function applies to both intended
functions and natural functions. For example, if we have a
goal of making the formula Pump(K, Li, L2) true, and we
design a device which, when embedded in the
environment, causes the formula to be true, then we say
that the device has the intended function Pump. Applying
the definition with appropriate locations Li and L2, we can
also say that the heart has a Pump function in the body.
The definition of function is neutral with respect to
whether the cause-effect description is intended or is
described after the fact.

This definition of function applies to both to static and
dynamic objects. For static objects, the object that has

function F causes F to be true of the environment E when it
is appropriately embedded in E. The flower-arrangement,
when placed in the room, causes the predicate Pleasant to
be true of the room. The chair, when it is in a certain
relation to the person sitting in it, causes the sitter's bottom
to be supported comfortably. For dynamic objects,
describing the role or function of an object will typically
require giving a sequence of states of the environment. Let
us consider an example: The Automated Teller Machine is
an example that has been much used in the object-oriented
design community. The description of the function
Customer-Withdraw-cash (k) can be given as:

{Customer-cash =x, balance-in-customer-account
= y, y > k } >

{Customer-cash = x + k, balance-in-customer-
account = y - k }

The intended interpretation is that the antecedent is true at
to and the consequent at tf.

Note that in this example both the antecedent and the
consequent in the functional description are external to the
object. No mention is made of any aspect of the structure
of the object, such as "If User_action = Push at location
switch-button,..." While User_action = Push is an entirely
environmental property, and as such satisfies the
requirements to participate in the function description, this
is only meaningfully in interaction with a specific location
of the object, switch-button. Not mentioning any structural
feature of the functional object allows the desired function
to be expressed prior to choosing or designing an object to
fulfill the function.

Composing Objects
It is attractive to imagine design activity that uses a library
of stored designs and proceeds by specializing and
composing items from the library. When we connect two
objects, we are making it possible for selected properties of
the two objects to be in causal interaction of the type
determined by the type of connection. Thus,
representationally, connecting two objects involves
declaring which properties of the two objects are in causal
interaction. We can identify types of connections and
associate with each type the properties whose causal
interactions are enabled. For example, being in physical
proximity is one type of connection which enables
magnetic and thermal properties to interact. Being in
physical contact is another type which enable properties
associated with force, motion, etc. to interact. Our basic
ontology for an object is not one of the object in isolation,
but in some environment, in contact with other objects.
Composing objects is describing how each becomes part of
the other's environment. They can be conceived as causally
connected only if they are compatible.

108

Figure 2. Composition of two objects. If qi is of the
type p'i, and pi is of the type q'j, then Oi and O2 have
a compatible connection for properties pi and qj.

Example. Composing two resistors. Consider
a resistor with a representation as follows.

Object: resistor
Intrinsic Properties:

vi, v2, type voltage, at terminals pi and p2
I, type current
R, type resistance

Environmental Properties:
v'l , type voltage, in causal interaction with vi
v'2, type voltage, in causal interaction with v2

Property Relations:
v'l =vi,v'2 = v2
I - (vi - v2)/R

v'at V
location location

P'K ih

\ R /
Vlat_A A/\ v2at
location v v v location

P. P2
1 <

I

Figure 3. Resistor, vi and V2 are voltages at terminal
locations pi and p2 respectively, in causal interaction
with voltage properties v'l and v'2 of terminals in the
environment. I is current; R is resistance.

There are four ways that two such objects can be
connected (within the compatibility requirements), two of
them serial and two parallel. Below, we give one instance
for each type. (To represent two different resisters we use
an additional subscript, replacing variables R, vi, V2, pi,

P2,1, v'l and v'2 by Rj, vn, VJ2, Pil, Pi2>Ii> v'ii and v'i2,
for i = 1,2.)

Serial, vj2 in causal interaction with v2l- This calls
for setting v'12 = V21, and v'21 = vi2-

Parallel. v\\ in causal interaction with V21 and vi2
in causal interaction with V22- This requires setting
v'll = V21, v'21 =vn, v'i2 = v22. v'22 = v21-

Composite object in a new view
Our minimalist ontology gives quite a bit of support for
generating a description of a composite object from
descriptions of individual objects and their connections.
The details are somewhat complicated, however, and not
directly relevant to the main points of this paper.

After deriving a representation of the composite object,
we might wish to re-represent the composite object in a
new view, by suppressing some of the component-level
properties, introducing new property abstractions, and by
restricting our representation of its causal interaction with
the external world. In the case of the serial resistors, the
modeler might wish to suppress the identity of the
individual resistors and make only VJI and V22 available
for external interactions. In this case, the composed object
will be represented in a new view, where the object
properties are simply R, vi, v2, and I, and the external
properties are simply the two voltages of objects connected
to the two terminals of the composed resistor. Generating
this sort of reduced representations for certain kinds of
composite objects has been discussed in the literature on
Consolidation [2].

For another example, consider an electronic Adder
circuit. Composing its components, we can generate a
description of it in terms of voltages and currents and
generate a set of property relations involving both object
and external properties. It can also be represented in the
Adder view: instead of voltages and currents, new property
abstractions of addends and sum and their interrelations
would describe the composed object. This would typically
be the user view of the Adder object.

An example that is especially interesting occurs when a
new state variable is created from a behavior trajectory.
Let s be a numerical state variable. A Boolean state
variable oscillating can be defined based on whether the
behavior trajectory of s is of the form {0, 1, 0, -1, 0, ...},
with oscillating being true when the trajectory of s
satisfies the form.

Let us consider the composite object formed from the
series composition of an electrical switch, a battery, and a
heater-resistor. We give two representations, one which
retains all the properties of the components (except that
further external electrical connections are not included),
and one in a new view that we call the "user view." The
user view suppresses the electrical properties.

109

user_action({close-switch, open-switch})

;

o
switch_state({closed,open})

Figure 4. Electrical circuit, with objects
electrical_switch, battery and heater-resistor
composed in series. We show three electrical
terminals pi, p2, and p3, with voltages vi, V2, and V3
as voltage properties. The device has a physical
terminal in interaction with the environmental
property, user_action, and one thermal terminal, with
property Ts, the surface temperature, in interaction
with an external fluid layer with property T'e, its
surface temperature.

Composed-Object: Resistor circuit (in a view that retains
the components' properties).

Intrinsic properties:
voltages vl, v2, and v3 at terminals pi, p2 and p3
I, current through the circuit
R, B, b, k, Ts (resistance, battery voltage, internal

resistance of the battery, conversion constant from
electrical to thermal energy, and the surface

temperature of the heater-resistor, respectively)
Environmental properties:

User_action ({close-switch, open-switch})
T'e, temperature of fluid layer in contact with resistor

surface
Ta, ambient temperature beyond the
immediate layer in contact with resistor surface

Property relations:
If User_action = close-switch, then

Switch_state = closed

I = B / (R+b), vi - v2 = R • I

Ts = Ta + k-(l2), T'e = Ts(>Ta)
If User_action = open-switch, then

Switch_state = open
I = 0,T'e = Ts(= Ta)

user_action({push-button, pull-button}) 1
-O

button_state({pushed, pulled})

Figure 5. Heater. This is a user view that suppresses
electrical properties. There are only three object
properties, button_state, heater temperature rating Tr,
which is presumed to be greater than the ambient
temperature Ta, and heater-surface temperature Ts.
Button_state describes the physical state as opposed to
switch_state, which describes the electrical state. Causal
interactions take place through the environmental
properties, User_action and T'e the temperature of the
fluid layer in contact with the heater surface.

Object: Heater (user view)
Intrinsic properties:

button-state
Tr, heater temperature rating
Ts, heater surface temperature

Environmental properties:
User_action ({push-button, pull-button })
T'e

Property relations:
T'e = Ts

If User_action = push-button, then
button-state = pushed
Ts = Tr (Tr > Ta the ambient temperature)

If User_action = pull-button, then
button-state = pulled
Ts=Ta

Functions of the heater and its components
For each of the objects, selected functions are given below.
Each function is named and has a functional formula
specification, a description of properties, and a mode of
deployment.

Electrical switch
Functions: close_connection (p'i, p'2)

open_connection (p' 1, p'2)
Functional Formulae:

110

close_connection (p' i, p'2):

v' i = v'2 (where v'i is the voltage at p'i)

open_connection (p'i, p'2):
I (fromp'ltop'2) = 0

Properties:
Intrinsic: vi, \2 voltages at terminals pi and p2;
switch_state{Closed, Open })
Environmental:

v' i ,v'2 voltages at terminals p' l and p'2;
user_action{ close-switch, open-switch }

Mode of Deployment:
pi electrically connected to p' i;
P2 electrically connected to p'2;
switch_state in causal interaction with user_action so

that switch_state = Closed iff user_action =
close-switch

Battery ,
Function: Apply_voltage(B) across p'i andp2

Functional Formulae: v' l - v'2 = B
Properties:

Intrinsic: vi and v2 voltages at terminals pi and p2
Environmental: v' i and v'2, at terminals p' l and p'2

Mode of Deployment:
pi electrically connected to p' 1;
P2 electrically connected to p'2

Heater-resistor
Function: Heat_Fluid_Surface (T'e > T'e0>)

Functional Formulae:
Whenv'i- v'2 = 0,

T'e = T'eo (initial fluid-surface temperature)
When v'i- v'2 = va>0,

T'e = k-(va/R)2 + T'e0
Properties:

Intrinsic: vi and V2 voltages at terminals pi and p2;
Ts temperature of surface;
k constant for resistor's transformation of electrical

to heat energy
Environmental:

v* l and v'2, voltages at terminals p' l and p'2;
T'e, fluid-surface temperature

Mode of Deployment:
pi electrically connected to p' i;
P2 electrically connected to p'2;
Ts = T'e (fluid surface in thermal contact with
resistor surface)

Heater (user view)
Functions:

Heat_FMd_Surface (Tr)

Notjiea t_Fluid_Surface
Functional Formulae:

Heat_FMd_Surface (Tr): T'e = Tr > T'e0
Not_Heat_FMd_Surface: T'e = T'e0

Properties:
Intrinsic: button-state {pushed, pulled};

temperature rating Tr; surface temperature Ts

Environmental: fluid surface temperature T'e,
ambient temperature Ta;
user_action {Push-button, Pull -button}

Mode of deployment:
Ts = T'e;
button_state in causal interaction with user_action so

that button_state = pushed iff user_action =
Push-button

Explaining How a Function is Achieved
An important requirement for a functional framework is
that it should support reasoning about the relationships
between the properties of an object and those of its
components. This is essential for both diagnostic and
design problem solving.

The stream of work on functions called Functional
Representation (FR) Language (summarized in [3]) focuses
on the relationships between the functions of a device and
its structure. In particular, it proposes a representation
called a causal process description (CPD) to explain how
the device achieves the function. In the CPD, the causal
transitions are associated with formally interpretable
explanatory annotations. The annotation that links the
device level to the component level is one that explains a
transition by appealing to some function of a component.
This way of explaining has intuitive appeal.

However, in the FR work, function is defined as a sort of
abstraction of an object's own behavior. Thus, in its
definition of function, it does not make the distinction
between the object's behavior and the object's effects on
its environment that we make here. It will be useful to
show that the intuition of explaining a device level function
in terms of component functions can be supported when we
adopt the definition of function proposed here. However,
we do not show it in this short paper.

Related Work and Discussion

There has been an explosion of work on functions in recent
years, so we will only discuss, and that briefly, work
directly relevant to the issues central to the current paper.
A substantial body of work can be thought of as content-
theory that can fit comfortably with the notions developed
here. A set of basic roles in mechanical interactions is
provided in [6] and, in a somewhat different subdomain, in
Goel [19], roles that components of loops play in
algorithms are given in [7], roles that seem to be common

111

to different domains sharing the ontology of flows is given
in [8] et al... The focus on functional roles common to flow
systems is shared by [9] and [10]. There has been a
substantial body of work in visual understanding (see, e.g.,
[11]) wherein recognitional algorithms use a functional
rather than a structural definition of objects to be
recognized. Thus a recognizer for chair would see if the
object can in fact support the sitting of a person rather than
look for specific subparts.

In the pioneering work on function in diagnosis [12], the
function was closely tied to the object. The work in the FR
tradition (summarized in [3]) and on CFRL [1, 13] [14]
treats function as an abstraction of the behavior of a device,
as does [15]. This is entirely adequate for many purposes,
but the separation of function from the object's properties
will help those investigations to reach wider applicability.
Recently, [16] and [17] share some essential intuitions with
the present paper in that they make an effort to separate the
behavior of an object from its function as the role played in
the achievement of a designer's goal. The present paper
proposes what appears to be the simplest ontology in which
this notion can be explicated, and also makes various kinds
of unifications, such as between static and dynamic objects
and between intended functions and functions observed in
natural systems. Research on function types of [18] is
orthogonal to the work here, and can be restated to be
consistent with the definition of function proposed here.

Locating the function in the effects on the environment,
rather than in the object, clarifies the notion of multiple
realizability of functions. When the function is defined
without any reference to the structure of an object, different
realizations of the function become possible.

This multiple realizability also suggests criteria by
which one could decide at what level of organization the
effects of an object should be described. For example, we
may describe the role of the thermostat as "When the room
temperature is below Tset, the furnace is on." Note that
both predicates are of objects in the environment.
However, an effect of the thermostat so configured is also
eventually to make a person in the room warm. Does this
mean that it is equally plausible to attribute to the
thermostat the function, "make a person warm"? Suppose
that "make a person warm" can be multiply realized, for
example, one, by covering the person with a woolen
blanket and two, by using a thermostat-controlled furnace.
The thermostat's effect is actually on the furnace and the
thermostat-furnace configuration as a whole has the effect
of keeping the person warm. Thus, in the given modeling
context, the thermostat's function is best stated as its role
in linking the temperature of the room to the starting of the
furnace.

Need to generalize causality beyond property
relations

It is attractive to represent properties as simply variables
associated with objects that enable them to interact causally
with other objects and properties of their environments.
Then causality can be represent as property relations,
which establish dependencies between variables. This sets
up an attractive formalization for causal relationships as
mathematical functions expressing relations of properties.

Yet it is difficult to see how to represent all causal
relations as property relations and all property relations as
mathematical functions. For one thing, objects can be
created and destroyed; examples include antibodies,
casting molds, and action plans. Further, a configuration
might change, e.g., an object gets out of alignment. In any
case, the object ontology we have described seems not to
be sufficient to handle descriptions like, "heat applied to
water causes boiling." "Water" is not quite an object in the
sense of the simple object-property-environment-view
ontology, and "boiling" is a process, which is unclear how
to represent. The notion of "property relations" needs to be
generalized to include causal relations of all sorts. Perhaps
a better term would be "causal relations" whereby any
proposition standing for a state of affairs (SOA) can be
causally dependent on another SOA, where a SOA can
include properties, configurations, the existence of objects,
the occurrence and properties of processes, and whatever
other entities there are that participate in relationships of
causal dependence.

Acknowledgments
We thank Susan Josephson for several good discussions on
the topic of this paper. The research for this paper was
supported by DARPA under two contracts: one contract
no. F30602-93-C-0243 monitored by USAF Materiel
Command, Rome Laboratories, DARPA order no. A714,
and by grant no. N00014-96-1-0701, DARPA order no
D594.

References

[1] Y. Iwasaki and B. Chandrasekaran, "Design
Verification Through Function- and Behavior-Oriented
Representation: Bridging the gap between function and
behavior," in Artificial Intelligence in Design '92, J. S.
Gero, Ed.: Kluwer Academic Publishers, 1992, pp. 597-
616.

[2] T. Bylander, "A Critique of Qualitative Simulation
From a Consolidation Viewpoint," IEEE Trans. Systems,
Man and Cybernetics, vol. 18, pp. 252-263,1988.

112

[3] B. Chandrasekaran, "Functional representation and
causal processes," in Advances in Computers, vol. 38, M.
C. Yovits, Ed.: Academic Press, 1994, pp. 73-143.

[4] Y. Iwasaki, and H. A. Simon, "Causality in device
behavior," Artificial Intelligence, vol. 29, 1986.

[5] H. A. Simon, "Causal ordering and identifiability," in
Studies in Econometric Methods, T. Koopman and W.
Hood, Eds. New York: John Wiley and Sons, 1953.

[6] J. Hodges, "Naive mechanics: A computational model
of device use and function in design improvisation," IEEE
Expert, vol. 7, pp. 14-27, 1992.
[7] D. Allemang, "Using Functional Models in Automatic
Debugging," in IEEE Expert, vol. 6, 1991, pp. 13-18.

[8] L. Chittaro, C. Tasso, and E. Toppano, "Putting
functional knowledge on firmer ground," International
Journal of Applied Artificial Intelligence, vol. 8, pp. 239-
258, 1994.
[9] M. Lind, "Modeling goals and functions of complex
industrial plants," Applied Artificial Intelligence, vol. 8, pp.
259-283, 1994.
[10] A. N. Kumar, and S. J. Upadhyaya, "Function-based
discrimination using model-based diagnosis," International
Journal of Applied Artificial Intelligence, vol. 9, pp. 65-80,
1995.
[11] L. Stark, and K. W. Boyer, "Achieving generalized
object recognition through reasoning about association of
function to structure," IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 13, pp. 1097-1104,1991.

[12] R. Davis, "Diagnostic Reasoning Based on Structure
and Function," Artificial Intelligence, vol. 24, pp. 7-84,
1984.
[13] Y. Iwasaki, R. Fikes, M. Vescovi, and B.
Chandrasekaran, "How Things Are Intended to Work:
Capturing functional knowledge in device design," in
Proceedings of the 13th International Joint Conference on
Artificial Intelligence. Mountain View, CA: Morgan
Kaufmann, 1993, pp. 1516-1522.
[14] M. Vescovi, Y. Iwasaki, R. Fikes, and B.
Chandrasekaran, "CFRL: A Language for Specifying the
Causal Functionality of Engineered Devices," in Eleventh
National Conference on AI: AAAI Press/MIT Press, 1993,
pp. 626-633.
[15] Y. Umeda, H. Takeda, T. Tomiyama, and H.
Yoshikawa, "Function, behavior and structure," in AI in
Engineering. Computational Mechanics Publications and
Springer Verlag, 1990, pp. 177-193.

[16] M. Sasajima, Y. Kitamura, M. Ikeda, and R.
Mizoguchi, "FBRL: A function and behavior
representation language," in International Joint Conf on
Artificial Intelligence, vol. 2. Montreal: IJCAI, Inc. and
Morgan Kaufmann, 1995, pp. 1830-1836.

[17] J. E. Larsson, "Diagnosis based on explicit means-end
models," Artificial Intelligence, 1995.

[18] A. Keuneke, "Device Representation: The
significance of functional knowledge," in IEEE Expert,
vol. 6, 1991, pp. 22-25.

[19] A. K. Goel, "Integration of cased-based reasoning and
model-based reasoning for adaptive design problem
solving, Ph.D. Thesis, Ohio State University, 1989.

113

Proceedings 5th Annual Dual-Use Technologies & Applications Conference IEEE and Rome
Lab, Utica, NY, May 22-25, 1995, 462-467.

Functional Representation and Understanding of Software:
Technology and Application

John Hartman B. Chandrasekaran

Laboratory for Artificial Intelligence Research, Dept. of Computer and Information Science
The Ohio State University, 2015 Neil Ave., Columbus, OH 43210-1277

http://www.cis.ohio-state.edu/hypertext/LAIR/lair-page.html

hartman or chandra@cis.ohio-state.edu

Abstract

Government and industry spend over $100 billion
a year to preserve and extend existing software. Ex-
isting tools have shallow analysis and limited impact.
Improved tools with deeper, human-like program un-
derstanding will reduce the huge cost of activities
involving existing software.

We describe our automatic program understand-
ing theory and technology. Our approach has two
parts: understanding and representation. The UN-
PROG system uses programming plan knowledge
to recognize deep programming concepts in existing
programs. Functional Representation (FR) is a the-
ory and language for representing understanding of
devices, including programs. We use FR to capture
program understanding to give the explanations re-
quired by applications.

Automatic reverse engineering and reengineering
tools can use this understanding to produce more
useful program descriptions and reengineered code.
We describe what has been accomplished so far, and
discuss how this strategic dual-use technology can be
further developed and applied.

1 Introduction

Perhaps $5 trillion is invested in existing "legacy"
software. Government and industry spend over
$100 billion annually to preserve and extend exist-
ing software.1 Although much of this work is con-
ducted in-house, the current maintenance service and
tools market is estimated to be $15 billion, and rapid
growth is expected.

Much of maintenance (and programming) involves
understanding programs. Current tools for existing
programs have limited effectiveness and impact be-
cause their analysis is shallow. Improved tools with
deeper, human-like program understanding will have
greater acceptance and value, reducing the huge cost
of activities involving existing software.

This paper describes how automatic program un-
derstanding (APU) will improve software tools. Our
theory and technology has two parts: understand-
ing and representation. Automatic program un-
derstanders recognize abstract concepts like "read-
process" and "hash table" in existing programs.
Functional Representation (FR) represents the pro-
gram's function in terms of component functions
found by APU. This gives explanations and expla-
nation structure which can be exploited by many
applications.

In this paper we will briefly: 1) describe automatic
program understanding and the UNPROG program
understander, 2) introduce Functional Representa-
tion, and show how it produces explanations using
concepts recognized by UNPROG, and 3) demon-
strate and discuss how this enabling tool technology
can be applied, developed and commercialized.

°This work was supported by ARPA, Order No. A714
monitored by USAF Materiel Command Rome Laboratories-
Contract F30602-93-C-0243.

^ost of the $20 billion annual Federal expenditure is by
the Department of Defense.

2 Automatic Program
Understanding

Automatic program understanders use programming
knowledge to recognize abstract concepts in pro-
grams. First we briefly review plan-based program
understanding. Then we describe the UNPROG pro-
gram understander.

114

2.1 Plan-Based Understanding

Plans are units of programming knowledge connect-
ing concepts and their implementations.[6]2 Recog-
nizing plans used by the programmer can recover his
abstract concepts and intentions.

Suppose a programmer needs to read and process
employee data in his payroll program. He doesn't
have to reinvent "read-process" because this concept
is part of his programming knowledge, along with
plans used to implement the concept under differ-
ent constraints. The PAYDAY program is the result
of implementing "read-process" with a "read-process
loop" plan consisting of a particular loop form ter-
minated by a signal to a control variable:

processing data, including some of same plans as
the programmer. She forms a program model and
searches it for instances of implementation plans.
Here she finds one and says, "Aha! A 'read-process
loop with control variable' plan!! This must be 'read-
process'!!!" She recovered an abstract concept that
was in the mind of the programmer, but not explicit
in his source code.

Automatic program understanders recognize ab-
stract concepts like "read-process", "hash table" and
"sorting" in source programs. APU's exploit the
knowledge and reasoning processes human program-
mers use to understand programs, especially plans.
Most existing APU's are impractical research sys-
tems built to study difficult recognition tasks.3

N
loop

ZERO;

GET(SSN); GET(JOB); GET(PAY);
PUT(SSN); PUT(JOB); PUT(PAY);
N := N + 1;
exit when SSN < ZERO;
if job < 5 then

if job < 2 then
goto PRINT.PAY

else
goto DED2;

end if;
end if;
DEDUCT := PAY * .2;
goto PRINT.DED;

«DED2» DEDUCT := PAY * P1B;
«PRINT.DED» PUT (DEDUCT);
«PRINT-PAY» PUT (PAY);
end loop;
N := N - 1;
PUT(N);

Figure 1: PAYDAY Source Program

In Figure 2, an automatic or human understander
is trying to understand PAYDAY. The understander

Figure 2: Understanding With A Plan

also has programming knowledge about reading and

2The authors' papers are available from the www address
in the title.

2.2 UNPROG Understander

In contrast, the UNPROG automatic program un-
derstander is designed to investigate program un-
derstanding and its applications with real-world
programs.[4] UNPROG uses plan knowledge to effi-
ciently recognize control concepts. Control concepts
are abstract notions about the interaction of control
flow, data flow and computation, eg. "read-process",
"bounded-linear search" and "do loop".

fpr^amWog
Knowledge _

Abitraet
Progimm

Representation

Modeling

irt» A.
PrOffTeU)]

Part»

Projfrun—
Concept
Binding!

■Q- Decomposition Q Recognition {)->-

5S
Y Pro«

Source
program

Figure 3: UNPROG Program Understander

As shown in Figure 3, UNPROG recognizes con-
cepts by comparing program parts with standard
programming plans from a library of programming
knowledge. Source programs are analyzed to form an
abstract language-independent program representa-
tion. The representation is decomposed into a tree
of small program parts by proper decomposition.

Figure 4 shows how UNPROG compares PAY-
DAY'S loop part with a plan for implementing "read-
process" using a middle exit loop and input termi-
nation signal. The program part is represented with
abstract control and data flow (top). The plan is rep-
resented by control and data flow schemas, and ad-
ditional qualifications (bottom). Here the program
part and plan can be uniquely bound. Therefore,
UNPROG recognizes "read-process", its implemen-
tation, and associated concepts. Its output is bind-

3APU surveys are in [5] and [7].

115

N 11 I 5 1 8 TX1

- is a constant S

performainputS

compares SIGNAL S
and STOP-CONSTANT
doesnt perform Input •
doesnt define SIGNAL •

doesn't perform input •
doesnt define SIGNAL •

Figure 4: Recognizing "Read-Process"

ings and correspondences between the program, plan
and concepts.

UNPROG is a powerful technology for identify-
ing deep programming concepts, regardless of how
they are implemented. However, UNPROG is neu-
tral about how such understanding is represented
and used.

3 Functional Representation
of Programs

Functional Representation is a general theory about
representing understanding. In this section we will
briefly review Functional Representation and func-
tional representation of program understanding. We
will show how we are applying it to capture and use
the understanding created by UNPROG to support
particular explanations and applications.

Causal Process Descriptions Processes in de-
vices are described as transitions between spec-
ified states.

Abstraction Levels Function and transitions
("what") are described in terms of behavior
and other explanations at lower levels ("how").

Components and Structure Function is shown
to emerge from structure consisting of a par-
ticular composition of components.

3.2 Representing Understanding

Allemang showed how Functional Representation
can capture particular reasonings or explanations
about a program.[1] In his work, an FR is a proof
or argument structure that applies to a large class
of programs. Therefore it can be reused for pro-
grams that are found to be members of the class.
The same is true for parts of FR's which apply to
parts of programs. Therefore FR can be used to
represent plans and concepts, their semantics, and
their consequences. Allemang formalized this use of
Functional Representation as program functional se-
mantics. He demonstrated its advantages over tra-
ditional programming language semantics for certain
kinds of reasoning about programs.

We are now addressing practical understanding
and applications using UNPROG and FR. UNPROG
gives the technology to efficiently recognize plan and
concept instances in real-world programs. FR gives
the representation for this understanding and its use,
formally grounded by functional semantics.

In the example above UNPROG recognized "read-
process" and associated concepts in PAYDAY. With
UNPROG output represented in FR, many expla-
nations and applications are possible. For example,
given data dictionary information, the documenta-
tion in Figure 5 can be generated automatically.

3.1 Functional Representation

Functional Representation is a theory and language
for reasoning about functionality and causal pro-
cesses in devices. It has been successfully applied
to a large variety of tasks and devices, eg. explaining
failures in a chemical plant, medical diagnosis, and
engineering design verification. [2]

The main ideas of FR, as they relate to software,
are:

Formal Specification The functions of devices
and their parts are given by formal specifica-
tions describing possible states.

A read-process loop terminated by a negative signal value

in SSN reads and processes employee data. For each employee:

The READ block:

(1) reads and echoes SSN, JOB and PAY,

(2) counts the number of employees processed (N).

The PROCESS block:

(1) determines and prints the deductions

(DEDUCT), if any, using a logic network,

(2) prints PAY.

The number of employees processed (N) is printed.

Figure 5: Automatic PAYDAY Documentation

Automatic question answering is another applica-
tion, which requires a different kind of explanation.
We'll use it to illustrate the functional representation

116

of PAYDAY. The complete FR is large and contains
various abstractions, eg. code to plan, plan to con-
cept, concept to explanation. These abstractions in-
volve various abstraction principles, eg. recognition,
selection, proof, and involve various languages, eg.
programming language semantics, predicate calcu-
lus, and English. We've simplified here.

Q> What does PAYDAY do?

A: Its functions include HISTORY, OUTPUT,

and PAYROLL-CALCULATION

FR represents PAYDAY as a device with various
functions, eg. giving different views or decomposi-
tions.

Q> What does PAYDAY/HISTORY do?

A: Makes History(employees-processed,

»employees-printed)

Functions have ToMake: slots giving their post-
conditions in some state language. The state descrip-
tion in the answer means that the function produces
a temporal history where state employees-processed
was reached and then state »employees-printed was
reached.

Q> How did PAYDAY/HISTORY make
History(employees-processed,»employees-printed)?

FR expresses functions' behaviors with causal pro-
cess descriptions (CPD's). CPD's are state transi-
tion diagrams connecting preconditions and postcon-
ditions. Their links are annotated with justifications
for the transitions, eg. functions, sub-CPD's, or non-
causal links such as definitions. The CPD giving
PAYDAY/HISTORY'S behavior is:

■ employees-processed
Fen:

process-employees

-*• #employees-printed
Fen:

print-#employees

This shows that employees-processed is caused by
the PROCESS-EMPLOYEE function.

PROCESS-EMPLOYEE'S behavior is given by its
CPD:

[RP1-SPEC] ■ employees-processed
Fen: Def

rp1-plan(read,process,termination)

The first transition is justified by a function of a par-
ticular read-process plan, eg. the read-process loop
plan used by UNPROG above. The state reached,
[RP1-SPEC] is a formal specification of a read-process
concept.4 It is provable with the plan instantiated

4The specification says that a history is produced in the
form: R{h),P(R(h)) ■ ■ ■ R(In) with -iT(/i),l < i < n - 1
and T(In)- R and T are functions performed on input items
Ii, and P is a function performed on the results of R.

with PAYDAY program parts in its READ, PROCESS
and TERMINATION slots. The second transition is
a non-causal definition link connecting the string
"employees-processed" in the informal discourse lan-
guage with the formal specification.

In summary, Functional Representation provides
a formal representation of program understanding
based on causal description, useful abstractions, and
component structure. Representing UNPROG out-
put in FR allows many applications to exploit un-
derstanding using these principles.

4 Application

Our approach to developing and applying UNPROG,
FR, and APU assumes that organizations have par-
ticular needs involving their existing software. For
example, imagine a DoD organization mandated to
translate old systems to Ada, or an insurance com-
pany converting to C++. The organization will in-
vestigate how this costly task can be automated.5

The contribution of existing reverse engineering
and reengineering tools is limited because their anal-
ysis is shallow. For example, language translators
may produce syntactically correct code, but it will
have poor human and performance quality because
underlying concepts are not recognized and pre-
served.

Organizations and tool developers should ask,

What concepts would improve the task if
they could be automatically recognized?

Automatic program understanding can provide ben-
efits for many tasks, tools, and concepts. It is an
economically important dual-use technology for in-
ternal use and for commercial products that work on
existing software. In this section we briefly describe
the application and commercialization of automatic
program understanding.

4.1 Reverse Engineering and Reengi-
neering Tools

Reverse engineering consists of understanding soft-
ware to form program descriptions needed for par-
ticular tasks. Important classes of reverse engineer-
ing tools are analyzers, browsers, and inspectors.
Reengineering consists of creating new programs to
meet new needs. It combines reverse engineering and
reimplementation. Important classes of automatic
reengineering tools are reformatters, restructurers,
converters, and translators. Existing tools use only

5A typical out-source conversion price is $10/line.

117

syntactic information and weak general methods.
They produce shallow descriptions and poor code
with degraded human factors and performance. Rec-
ognizing deeper concepts will increase tool perfor-
mance and value.

Automatic program understanding can be devel-
oped and applied, and benefits can be quantified,
using the tool improvement paradigm shown in Fig-
ure 6.

I'ii'rogra filming*
;: Knowledge

Plans-ei

Automatic «
Program '

Understander

concepts... concepts... concepts..., 1
maintenance
programmer

Enhanced
Revers« «net

Re-engineering
;:;.'

?;sTbolsi;.:-':S

adapted code

deeper descriptions

Figure 6: Tool Improvement

In this paradigm an organization identifies a tool's
limitations for a task. Concepts are found which
overcome those limitations when recognized. An au-
tomatic program understander and needed knowl-
edge are developed to recognize instances of these
concepts in the program population. Recognized
concepts by themselves help the programmer per-
form the task. More importantly, the tool is mod-
ified to produce improved output using recognized
concepts.

For example, translation to Ada can be tailored
to concepts such as "read-process". The resulting
concept-specific translation is clearly an improve-
ment over syntactic translation. Recognized con-
cepts will be preserved and highlighted instead of
being destroyed and obscured. Code style and per-
formance can be more closely tailored to the language
and task. Additional possible benefits include docu-
mentation, reuse, formal specification, and entry into
CASE.

We demonstrated this paradigm for an important
reengineering task and tool. Restructuring translates
programs with unstructured control flow graphs to
structured graphs, eg. for improved maintenance or
translation to structured languages. Commercial re-
structurers produce code which, though technically
structured, is larger, stilted, obscure, and less effi-
cient.

RESTRUC uses concepts recognized by UNPROG
to produce restructured code that has quality which
cannot be produced with existing syntactic methods.
RESTRUC uses concepts recognized by UNPROG

to: 1) perform strong, concept-specific structuring
transformations, 2) generate insightful code at the
program, statement, and format levels, and 3) add
documentation, annotation, and other benefits. Here
is part of RESTRUC's PAYDAY output:

 Read-Process Loop

— Terminated by signal variable: SSN,

stop-constant: ZERO

— Transformed from middle-exit loop by:

signal loop-once initialization (RP1-8)

SSN := L00P.0NCE;

while not (SSN < ZERO) loop

 Read

GET(SSN); GET(JOB); GET(PAY);

PUT(SSN); PUT(JOB); PUT(PAY);

N := N + 1;

if not (SSN < ZERO) then

 Process

P2.3.1;

PUT(PAY);

end if;

end loop;

Figure 7: Improved Restructuring

The original middle-exit loop must be transformed
to a WHILE loop. Existing restructurers do this
with general algorithms which necessarily introduce
degradations such as new variables and tests, in-
creased complexity, reordered code, and replicated
code. In contrast, UNPROG recognized the termi-
nation condition in SSN. This was used to produce
a WHILE loop preserving and displaying the original
role of SSN and its test. This cannot be done without
recognizing the concepts of the read-process loop.

4.2 Commercialization

The tool improvement paradigm is a model for APU
development and commercialization, as well as for
application. Academic and industrial researchers
will develop the technology ("push") in cooperation
with organizations who wish to reduce the cost of
tasks involving existing code ("pull"), and tool de-
velopers/vendors. (This model generalizes for many
dual-use technology transfer and commercialization
domains.)

Technical issues for APU development and com-
mercialization include: 1) understander develop-
ment, 2) understanding representation, 3) knowledge
acquisition, and 4) empirical characterization. These
issues can be addressed together in prototype en-
hanced tool projects.

Understander development problems such as ef-
ficiency, representation, decomposition, reasoning,
and hierarchical recognition are addressed in the aca-
demic literature, but in unrealistic contexts. Prac-
tical projects will develop these areas for particu-
lar concepts and program populations. Practical

118

projects will also provide data and constraints for
basic research.

Understanding representation communicates un-
derstanding to applications. Representations must
be designed which are effective (and sufficiently for-
mal) for particular concepts and applications, but
also general for other applications. Functional Rep-
resentation provides a suitable framework. As dis-
cussed above, FR provides an explanation structure
which connects code to concepts needed for partic-
ular applications. A given application's knowledge
and control echoes parts of the structure. Since FR
provides multiple functional explanations or views,
other applications can use shared and distinct parts
of the representation.

Plan libraries containing hundreds or thousands
of plans are needed to produce the concept recogni-
tion rates needed for applications. Acquiring such
knowledge is currently difficult and expensive. Tools
are needed to create, visualize, edit, debug, organize,
and test plans. We have proposed understander-
assisted knowledge acquisition for concurrently per-
forming these tasks during application development,
using an APU and other tools.

Finally, empirical studies are needed to charac-
terize recognition performance and benefit for par-
ticular program populations, concepts, applications
and tasks. We have developed an APU performance
model and measures. An important measure is plan-
fulness, which describes the recognition rate-cost
tradeoff for a program population with various sized
plan libraries. Empirical studies using this and other
measures are needed to evaluate and predict under-
stander performance. Similarly, empirical studies are
needed to quantify the ultimate value of APU ap-
plications. In the tool improvement paradigm, the
value added to a software task and process can be
measured relative to a baseline tool and process.

5 Current Research

As discussed above, we are currently developing
Functional Representation of programs and plans.
The result will be a system, FR-UNPROG, show-
ing how a specific application benefits from concepts
recognized by UNPROG and represented in FR.

We are also applying FR to other software engi-
neering problems. FR can be used to represent and
explain software architectures as well as programs.
We are investigating architecture with David Luck-
ham's Rapide executable architecture definition lan-
guage from Stanford. [3] FR-Rapide is a tool to aid
architecture prototyping with Rapide. It represents
an understanding of an architecture using FR, and

generates useful explanations.
We're beginning to investigate design capture and

verification. This will involve the executable archi-
tecture domain, where designs can be captured in FR
and verified against prototype executions and other
constraints. It also allows us to extend FR and UN-
PROG for requirements and domain concepts. Fi-
nally, we are working on reuse with Bruce Weide
and the Reusable Software Research Group at Ohio
State. Their RESOLVE is a framework for formal
reusable objects. UNPROG and FR have reuse ap-
plications, and RESOLVE, FR and UNPROG share
many representation issues, eg. for plans and con-
cepts.

Acknowledgments

This work benefits from Frank Gutowski, The Ana-
lytix Group. He drew most of the figures for Ana-
lytix proposals. This work also benefits from Bruce
Weide, the OSU AI and Reusable Software Research
Groups, and those acknowledged in previous publi-
cations which provided included material.

References

[1] Dean Allemang and B. Chandrasekaran. Func-
tional representation and program debugging. In
6TH ANNUAL KNOWLEDGE-BASED SOFT-
WARE ENGINEERING CONFERENCE, 1991.

[2] B. Chandrasekaran. Functional representation
and causal processes. In M. Yovits, ADVANCES
in COMPUTERS. Academic Press, 1994.

[3] David C. Luckham et al. Specification and anal-
ysis of system architecture using Rapide. Forth-
coming: IEEE Trans, on Software Engineering.

[4] John Hartman. Understanding natural pro-
grams using proper decomposition. 13th
INTL. CONF. SOFTWARE ENGINRG. , 1991.

[5] John Hartman. Technical introduction. AI and
AUTOMATED PROGRAM UNDERSTAND-
ING WORKSHOP, Tenth National Conference
On Artificial Intelligence, 1992.

[6] John Hartman. Plans in software engineering -
An overview. OSU Lab. For AI Research, 1994.

[7] Linda Mary Wills. Automated program recogni-
tion by graph parsing. Technical Report AI-TR-
1358, MIT AI Lab., 1992. Ph.D. Thesis.

119

Representing Functional Requirements and
User-System Interactions

B. Chandrasekaran
Laboratory for AI Research
The Ohio State University
591 Dreese Laboratories

Columbus, OH 43210
Email: chandra@cis.ohio-state.edu

Hermann Kaindl
Siemens AG Osterreich, PSE

Geusaugasse 17, A - 1030 Vienna Austria
Email: kaih@Siemens.co.at

Abstract
Specifying the requirements for a new system to be
built is a sufficiently important issue in systems
engineering that it has become a research area of its
own called Requirements Engineering. Related to
this issue, designing and specifying the interactions
of potential users with a system is an important
problem in Human-Computer Interaction. In this
paper, we apply Functional Representation (FR) to
model functional requirements and user-system
interaction, in the process clarifying their mutual
relationship.

1. Introduction

It is widely accepted that a clear set of requirements
facilitates system design — whether it is a software,
hardware or a hybrid system. Requirements specification
includes precise description of needed functionalities and
required interactions between the user and the system, as
well as so-called non-functional requirements
(constraining the development process and the developed
system). The more precisely and unambiguously these
requirements are specified, the better off is everyone
involved in the whole process: the customer, the system
designers and implementers, and users. The required
precision and lack of ambiguity can only be achieved if
we have a clear understanding of the kind of things that
need to be stated as part of the requirements — a clear
identification of what has been called the ontology of the
situation — and support the ontology by means of a
formal representation vocabulary.

In this paper we focus on functional requirements and
specification of needed interactions between the user and
the system. Such interactions have been a subject of
discussion in the literature on software engineering and
the design of interactive systems (see for example, [1-4]).
We will adapt a representation from a body of work
known as Functional Representation (FR) (for a review of
this work, see [5]) for specifying such interactions. We
build on the work on requirements specification and task
modeling using functional ideas reported in [6]. In a
recent paper on applying functional representation to
software reuse and design [7], requirements of some
specified functional prototype from other functional
prototypes are specified in its implementation. In contrast,
we describe requirements of some user for a complete
system to be built.

The outline of our argument in this paper is as follows.
We discuss some desiderata for a representational
framework for requirements. We discuss a definition of
function and its relation to the purposes of a user.
Together, these give us some terms for representing
functions. The definition that we provide introduces the
need for specifying how an artifact is to be used — the
way a user is to interact with the device — as an intrinsic
part of the task of design. We term this part of design
interaction design. As interaction design proceeds, the
interactions needed can be articulated to varying degrees
of concreteness. A particularly common representation of
such interactions is through scenarios, which capture the
series of interactions between the user and the system
needed for the function to be achieved. We show that
such scenarios can be represented in a manner similar to

120

the so-called causal process representations in the FR
literature. We motivate our discussion by using as a
concrete example the Automated Teller Machine (ATM).

2. Desiderata for a Framework for Functional
Requirements

We use the shorthand FTRQ to stand for functional and
interaction requirements. We believe that an FIRQ
framework should deal with the following issues to some
degree.

1. Specifying functions. FIRQ should of course allow the
specification of desired functions. In case where it is
appropriate, it should also allow situations to be
avoided, prevented, etc.

2. Specifying interactions. In the design of interactive
systems, the customer would like to specify, at the
design stage, that the intended functions are to come
about as a result of certain interactions between the
device or system and its user. FIRQ should support
the specification of such interactions.

3. Should not demand information not likely to be
available at design time, but should allow
representation of information that is available. FIRQ
are typically given before the design of internal
structures and their connections (though a certain
amount of it might evolve as a result of interaction
between design and requirements modification). This
means that FIRQ should not demand knowledge of the
system — say its structure — that is not available at
the time of requirements specification.

4. Should allow elaboration and refinement of
requirements as interaction design proceeds. By the
same token, FIRQ should allow specification of
changing requirements as design proceeds and
commitments are being made. As interaction design is
performed, a more detailed set of requirements
emerges. Thus a framework for FIRQ should ideally
support requirements evolution during interaction
design.

3. What is a Function?

In much of the work on representing functions,
including in the work on FR, function is treated as a
property of the object or device, often as some abstraction
of a selected behavior of the device. As an example, the
function buzz of the device buzzer might be defined

as follows: "When the switch is pressed by a user, a
sound is produced in its clapper." Note that, in this
description, the switch and the clapper are parts of the
buzzer, and the behavior of interest is described in terms
of the states of these components or ports of the device.
This definition certainly captures certain things we want
from the definition of a function: that it expresses an
intention of a designer or a user, that it is an abstraction of
behavior and so on. However, the function cannot be
defined if we do not have the device in the first place.
Imagine that the buzzer has not been designed yet and a
customer is looking for a device to do what the buzzer
helps to accomplish. The customer — we will imagine
her to be the user of the device — has a purpose in mind
which she would like the device to accomplish or help her
accomplish. How is this purpose to be represented?

Clearly, it cannot use aspects of the device not yet
designed. One of us has argued, in a recent proposal on
the definition of function [8], that & function or role of an
object is an effect it has on its environment. The function
defined in this way is a dual to the purpose of a user. The
user intends — has the purpose to cause — a certain
effect in her world, and if an object or a device can create
the effect, then she may attribute the effect as a function
of the object.

Let us assume an environment consisting of some
objects. The objects may be specified abstractly and
incompletely, as long the state variables of interest to us
in modeling are available. (We only consider dynamic
functions here, i.e., functions defined in terms of state
variables. There are also what one might call static
functions, such as the seating function of a chair or the
light-passing function of a window, that are defined in
terms of objects' static properties. Such functions are
discussed in [8], but we do not consider them further
here.)

Functions and Purposes. A distinguished function or
role is the occurrence of certain events or effects of
interest in the environment. Let us say F stands for such
an identified function or role. Intentional agents often
have purposes to cause certain events or effects in the
environment. If agents have a purpose to cause effect F
in the environment, and, in order to achieve this purpose,
if they use a certain object that causes F, then they may
say that the object has the function F. Suppose a theorist
wishes to explain a certain effect F in some domain. If
she believes that some object O causes the effect F, she
may say that O has the role F in the domain. All of these
concepts use as their central element the idea of a
distinguished effect of interest.

Distinguished Effects (or Functional Predicates) of
Interest. The most general version of these is given by a

121

set of {conditions, effects} where both conditions and
effects are specified as predicates or temporal sequences
of predicates defined over environmental state variables.
The functional predicates or effects are defined purely in
terms of environmental variables. They make no
reference to the properties of any object that might be
introduced into the environment to cause the effects.

Examples. The buzz functional predicate. A selected
part of the environment has a buzzing sound in it.

The sawtooth functional predicate. The
voltage between two given terminals in the environment
to rise over interval T from 0 to V, then instantaneously
drop to zero, and this pattern to be repeated.

Function of an Object. Given a functional effect, how
do we relate it to the function of an object? Since the
functional predicates and conditions may not make any
reference to any part of the structure of the object, we
need to describe a mode of deployment of the object to
make the link between an object and defined effect of
interest.

Mode of Deployment. Given an object O, a mode of
deployment specifies:

1. How O is to be connected to its environment,
i.e., how it is to be configured such that the environment
can effect certain selected properties of O and O can
effect selected properties of the environment. A typical
way to specify this is to define ports of different types for
O as well as the objects in the environment and describe
which ports of O are connected to which ports of the
environment.

2. Required external causes on the object, or,
more generally, required sequences of interactions
between O and external objects. In the case of a device
that is to be used by an external user (as opposed to a
device to be connected to other devices to make a
composite device), the external causes are specified in
terms of actions by a user on O.

Scenarios. The sequence of interactions between the user
and a system has been called a scenario in the literature
on interactive systems and Software Engineering [1-4].
Kaindl [6] emphasized that these are required
interactions, and so scenarios can be viewed as behavioral
requirements. We call them interaction requirements in
this paper, and in order to make the notion of a scenario
less ambiguous we call it an interaction scenario.

Ascribing a function to an object. Given a function F
and an object O, and a mode of deployment, M, we can
say that F is a function of O, if there is a mode of
deployment M such that O under M causes the effects
specified in F under associated conditions.

Intended Function and User Purpose. Function as
defined above is neutral with respect to whether the effect
on the environment is intended, as in the domain of
devices, something undesired, as in the effect that a
malfunctioning device might have on the environment, or
simply a description of a fact, as in scientific descriptions
where talk of intentions of nature are to be avoided. The
more neutral term such as "role" is used to describe the
latter. We elaborate here our earlier discussion on the
relation between agents' purposes, roles of objects and
functions of devices.

User purpose: a user intends or desires a certain
effect in the world under certain conditions. These effects
are described using the {conditions, effects} formalism
described earlier. Let us say that the user intends the
effect F.

Designer task: The task of the designer is as follows.
He is given F as part of the requirements and has to:

1. describe an object, i.e., a set of components
from some agreed on repertoire of objects and
their configuration, and

2. a mode of deployment of the object
such that under the described mode of deployment, the
object causes the effects in F. Then a function, defined
by F, can be attributed to the object.

A main point here is that what unites the user's
purpose, the designer's task and the function of the object
is the effect on the environment. The object causes those
effects and thus has a function defined in terms of the
effects. The user wants those effects, and hence looks for
an object which has a function of causing those effects.
The designer is tasked with making an object which has
the function.

4. FIRQ Specification for ATM

Now we are ready to discuss requirement specification
using the ATM example. Kaindl [6] links scenarios (in the
sense of behavioral/interaction requirements) with
functional requirements, and uses earlier FR work to
define the underlying semantics. In this section, we
develop this more precisely and elaborate on it.
Interaction scenarios are one aspect of the "mode of
deployment" that we talked about earlier.

The Environment. Consider an environment composed
of a bank with customer account records, and (unspecified

122

number of) persons some of whom are bank customers
(that is, they have bank accounts). We will denote a
generic user by U, a generic customer by C, a customer's
account by #(C), the balance in the account by B(#(C)),
and the cash that a user U has by c(U).

Effect or Functional Predicates for the ATM's
withdraw-cash($w, $L) Function. Let us say the
bank officials would like a device one of whose functions
is to let legitimate customers withdraw cash, up to a limit
$L, from their accounts. We define the functional
predicates as in the following figure.

N, NF
We define the effects of interest by defining an initial

state N, and a final state NF, each with certain properties.
We would like the device to cause the transition from N,
to NF. Using the {conditions, effects} formulation, N,
defines the initial predicates and NF the final predicates.

Functional (Effects) Predicates

N, is defined by the predicates:
c(U) = $x, B(#(U)) = $y
NFis defined by the predicates
c(U) = $x + $w, B((#U)) = $y - $w

One purpose of the bank officials for the ATM can be
called Withdraw_cash(C,$w,$L), i.e., they would
like their customers to withdraw cash (within the
withdrawal limit $L set per withdrawal). The purpose is
to cause the above predicates to be true under the
following conditions:

Conditions

U's purpose is (c(U) = $x + $w)
UisaC
$w < $y, $L

They would like a device which can cause NF to be
true, given N, as the initial state and under the conditions
above.

The function of the device ATM can also be called
Withdraw_Cash(C, $w, $L) and defined as the
causing of the effects described under above conditions.

The purpose of a user C regarding an ATM can be
described at several levels of description.

1. Get_cash($w), where $x is his cash reserve at the
initial state and $x + $w is the cash at the final state.

2. Withdraw_cash($w), where the cash reserves at
the initial and final states are as in 1 above, but,
additionally, imposes conditions on the balance in his
account.

Withdraw_cash($w) is a special case of
Get_cash ($w). When the issue is to get some cash
(Get_cash ($w)), a bank customer may choose
Withdraw_cash($w) and might look for a device
which will cause the corresponding NF to become true1.
In that case, the ATM might be a possible device, since
its functional definition suggests that the ATM can cause
NF to become true. Since there are many other ways to
realize Get_cash($w) — borrow from someone, steal
it, and so on — it is much more appropriate for the user to
ascribe the Withdraw_cash(C, $w) function to the
ATM than the more general function of
Get_cash($w).

The main point of the above discussion is to illustrate
the central role played by the functional predicates in
defining the function abstractly and in relating the
function to purposes of agents, users and designers alike.
There are small differences in the way we defined the
purposes of the bank officials and a user, e.g. — the
officials might be more naturally interested than a user in
limiting the amount of withdrawal to $L. There are also
differences in the way the function of the ATM and the
purpose of a user are defined — the function is defined as
allowing any customer to withdraw cash, while for a
given customer C, his purpose is defined in terms of his
being able to withdraw cash. These minor differences
aside, the functional predicates described in the table are
at the heart of descriptions of the purposes of the various
intentional agents and the function of the ATM.

Interaction Design Refinement

The function as specified above can be given to the
designer as part of the requirements. Let us imagine that
either the designer and/or the bank officials engage in
some additional interaction design. The product of this

1 How one matches a goal (in this case Get_cash ($w))
to a device function (Withdraw_cash ($w)) is an issue
that recurs in the literature on reasoning about function.
For example, Umeda, et al [9] discuss search for a
component that can fulfill a given function. Liver [10]
describes an algorithm for incrementally backing off of
requirements until a matching function can be found. The
issues related to matching are important, but not central to
our main points, so we do not discuss this issue further in
this paper.

123

design is going to be certain commitments about the way
the device is to achieve its function. In particular, we
wish to focus on specifying the required interactions
between a user and the device.

Scenarios Emerge from Design by Function
Decomposition. As mentioned earlier, the designer's task
is to come up with a device and instructions for deploying
it so that the function is achieved. Deploying a device
involves specifying input and output ports and any user
interactions needed at the ports to achieve the function.
The function is defined as a set of predicates to be true at
a final state (given another set of predicates is true at the
initial state). These predicates can often suggest a top-
level decomposition of the design task into subtasks. The
point of interest to us here is that some of the subtasks
may have a solution involving user interaction. Thus, as
we move from a function definition which only focuses
abstractly on the predicates intended to be true, to a series
of refinements and decompositions into subtasks, an
interaction scenario starts emerging as well.

In the ATM example, by looking at the function
definition, we can identify a number of subtasks that the
device has to perform:

1. Give U a means of expressing purpose,
"Withdraw $w."

2. Verify U is a C.
3. Verify $w < $L and < B(#(C)).
4. Update B(#(C)) by subtracting $w from it.
5. Dispense $w if 2 and 3 above are satisfied.

We can get some information regarding subtask
ordering by examining the preconditions of the subtasks:
clearly subtask 1 has to precede subtask 3, and subtasks 2
and 3 have to precede subtasks 4 and 5.

Let us just focus on the user-device interaction.
Subtasks 3 and 4 do not require any interaction with the
user — they call for interaction with the bank accounts
database. Subtasks 1, 2 and 5 together determine the
basis for the interaction scenario.

The scenario itself can be abstract [3] — making
little commitment to the details of the device structure —
or it can be concrete, involving commitments about ports,
the places where user-device interaction takes place.

The design task decomposition above immediately
suggests an abstract scenario of interaction:

1. The user initiates a withdrawal transaction
2. The ATM requests identification
3. The user provides identification
4. The ATM asks for the amount needed
5. The user communicates the amount needed
6. The ATM dispenses cash
7. The user takes the cash.

Each of the items in the sequence above is an action,
either of the user or of the system. In this representation,
we treat actions as the user being in certain states.
Actions have effects on things acted upon just like any
state of an entity that causally affects a state of another
entity. Thus, the abstract scenario is a kind of causal
process description. The transitions are one of two types:
it either involves a device (ATM) function or a user
function. Following the CPD representation, we can
annotate the transitions corresponding to the ATM
functions as follows.

124

1 o -►O 2

By-Functions recognize-initiate-transaction and
communicate 'input identity information'

3 O- -O 4

By-Functions verify-identity and
communicate 'input amount needed'

5 O- O 6

By-Functions verify amount under limit and
under balance and
dispense_cash

The transitions 2 to 3, 4 to 5 and 6 to 7 involve user
actions. We can, if we like, annotate them using By-
"Function o of User," but we have not done so in the
above diagram because our focus is on the functional
requirements of the ATM. If the ATM is embedded as a
component in a larger system, where the user functions
are performed by some other component of the larger
system, then of course, it would be quite natural to encode
the transitions using the By-Function annotation. In fact,
this uniform way of treating user functions and
component functions is one of the attractions of the CPD
approach to encoding user interactions — users perform
certain functions which then enable the device to go into
certain states where they then perform other functions.

Each of the functions above can be defined using the
functional definition framework described earlier. Some
of the functions in the annotations of the transitions can
be thought of functions of the components (yet to be
designed) of the ATM while others can be attributed to
the ATM as a whole. In the course of Requirements
Engineering, it is not yet to be defined which components
the ATM consists of. However, the ports can be defined
where the effect of a function is to be achieved.

For example, consider dispense_cash($w). Let
P be a specified port of the ATM. The functional
predicate that defines the function is:

Condition: Given $0 at port P
Effect: (ToMake) $w at P

The above abstract scenario, along with the functions
that account for the transitions, can serve as part of the

requirements specification. The scenario can be much
more concrete as well — if, as part of initial interaction
design, additional commitments are made, and thus
become part of the charge to the designers.

More Concrete Scenarios. Suppose it is decided that
users will have a card with their account numbers, they
will be assigned a password, and that (overall) the
following ports will be available for interaction.

P„ for user placing the card
P2, for user to input password and desired
amount
P3, for the ATM to inform user of actions
needed
P4, for delivery of cash

The scenario can now be written as:

1. The user places card at P,
2. The ATM displays message at P3: "Input password"
3. The user inputs password at P2

4. The ATM displays message at P3 : "Input the amount
needed"

5. The user inputs the amount needed at P2

6. The ATM deposits cash at P4

7. The user takes the cash from P4.

The transitions can be annotated as before, except
that the functions can be much more specific about the
ports at which certain functional predicates have to apply.

125

Why the CPD Works for Representing the Interaction
Scenario. Why does the process description formalism
developed for explaining how a device works prove useful
for specifying user-system interactions? One can view
the user plus the device as yet another "device" in which
the user herself is a component causally interacting with
another component. Thus, user's action states are like the
states of any other component. The interaction scenario
simply becomes the causal process description for this
larger device. While for the presentation above we had
attributed the function Withdraw_Cash (C, $w) to the
ATM device alone, actually the ATM and the user have to
cooperate in order to achieve it. Also the user, as a
component, has a certain number of functions to achieve,
just like any other component such as the ATM. The
interaction scenario then becomes a causal process
description of how the user-ATM combination works. So,
Withdraw_cash(C, $w)is really the function of the
ATM plus the user. That is why, as we refine the design,
the interaction scenario emerges from functional
decomposition, by making explicit also the functions
required from the user.

How Such a Representation Can Be Used. In earlier
work of one of us (see Kaindl [6]), the primary use of
functional representation was to define the underlying
semantics of the new approach of linking interaction
scenarios with functional requirements and purposes. The
cleaner and elaborated representation described above
should be even more useful in this respect.

When making use of one of the systems available for
functional reasoning, our approach may also be useful for
automated analysis of requirements. Requirements
models represented in this way can be simulated in order
to identify problems or validate the requirements.

5. Concluding Remarks

The contributions of this paper can be viewed from
several perspectives. At the simplest level, it shows the
use of a definition of function and the causal process
description formalism of the FR framework to represent
functional requirements for system design. The approach
is as useful for software systems as it is for hardware or
hybrid systems, since the terms used to describe functions
equally apply to all types of systems. The function
framework used here helps to see in a unified way how
user purposes in using a device, designer intentions and
functions of the device are related and arise from certain
basic functional predicates defined in terms of
environmental variables.

At another level, the work presented can be viewed as
a formalism for representing user-system interactions, a

topic of substantial interest to the community concerned
with the design of interactive systems. Again, there are a
number of unifications: the same representational
framework that is used for causal process representations
in FR is used to represent user-system interactions. The
functional annotations for transitions in CPD set a number
of design subtasks for the designer.

Still another dimension of interest is the relation
between interaction design commitments and refinement
of functional requirements. In summary, this paper shows
how modeling in the sense of functional representation
and reasoning can be usefully applied to Requirements
Engineering and Human-Computer Interaction.

Acknowledgments

B. Chandrasekaran's research was supported by ARPA,
order no. A714, and monitored by USAF Rome
Laboratories, contract F30602-93-C-0243. The authors
acknowledge with thanks comments by Dean Allemang
that helped improve the paper.

References

[1] Carroll, J. M. ed. Scenario-Based Design. New
York, NY: John Wiley & Sons, 1995.
[2] Carroll, J. M.; Mack, R. L.; Robertson, S. P;. and
Rosson, M. B. "Bindings scenarios to objects of use,"
International Journal of Human-Computer Studies, vol.
41, pp. 243-276, 1994.
[3] Constantine, L. "Essential Modeling: Use Cases
for User Interfaces," ACM Interactions, vol. 2, pp. 34-46,
1995.
[4] Potts, C; Takahashi, K.; and Anton, A. I.
"Inquiry-based requirements analysis," IEEE Software,
vol. 11, pp. 21-32, 1994.
[5] Chandrasekaran, B. "Functional representation
and causal processes," in Advances in Computers, vol. 38,
M. C. Yovits, Ed.: Academic Press, 1994, pp. 73-143.
[6] Kaindl, H. "An integration of scenarios with their
purposes in task modeling," in Proceedings of the
Symposium on Designing Interactive Systems: Processes,
Practices, Methods & Techniques (DIS '95), pp. 227-235,
Ann Arbor, MI, 1995, ACM.
[7] Liver, B., and Allemang, D. T. "A Functional
Representation for Software Reuse and Design,
International Journal of Software Engineering and
Knowledge Engineering, vol. 5, pp. 227-269, 1995.
[8] Chandrasekaran, B. "An explication of function,"
The Ohio State University, Laboratory for AI Research,
Columbus, OH, Draft, 1996.
[9] Umeda, Y.; Tomiyama, T; and Yoshikawa, H. A
design methodology for a self-maintenance machine

126

based on functional redundancy, in Design Theory and [10] Liver, B. Work^^™%^££%
Methodology DTM 92, D. L. Taylor and L. A. Stauffer, procedures using functional models, in Working Notes on
Ed AmeSn Society of Mechanical Engineers, 1992, the AAAI-93 Workshop on Reasoning about Function,
pp."317-324. 1993.pp.95.101.

127

Functional Representation
of Executable Software Architectures x

John Hartman

B. Chandrasekaran

Laboratory for Artificial Intelligence Research
Dept. of Computer and Information Science

The Ohio State University
hartman or chandra@cis.ohio-state.edu

December 1, 1995

lrrhis work was supported by ARPA, Order No. A714, monitored by USAF Materiel
Command Rome Laboratories, Contract F30602-93-C-0243.

128

Abstract

Software architectures specify how high-level system components interact
and behave. Architecture evolution tasks require knowing an architecture's de-
sign intentions. Existing architecture description languages (ADL's), however
specify architectures without reference to intentions. We describe the use of
Functional Representation to capture understanding of design intentions and
their implementation in an architecture. This approach will reduce the cost of
designing, evolving, and implementing architectures by improving human com-
munication, and by providing more useful tools and environments. Applications
include prototyping, dynamic documentation, design verification, simulation,
execution analysis, and other architecture activities.

Chandrasekaran's Functional Representation is used to connect design inten-
tions to an architecture's ADL specifications. The result is a rich, hierarchical
explanatory structure which is useful for many purposes. Functional Represen-
tation is a theory and language for reasoning about functionality and causal
processes in devices. It has been successfully applied to a large variety of tasks
and devices, including software. Luckham's Rapide is an executable ADL based
on a rule-event execution model. FR-Rapide applies Functional Representation
to aid architecture prototyping with Rapide.

An example functional representation captures understanding of how part
of the Two-Phase Commit protocol is implemented in a Rapide prototype. Its
explanation incorporates understanding in domains such as transaction process-
ing, the X/Open standard, concurrent computing, and distributed computing.
The FR is a formal representation which helps humans understand and com-
municate about the architecture. It also allows understanding to be delivered
and exploited by tools and environments.

The value of this approach is demonstrated with an explanation tool which
supports Rapide prototyping and other architecture activities which can benefit
from captured understanding. Applications and tools include browsing, docu-
mentation, debugging, simulation, design verification, and rationale capture.

129

Contents

Functional Representation of Architecture 5
1.1 Understanding for Architecture Evolution 5
1.2 Goal - Capture Causal Understanding 7
1.3 Functional Representation 8
1.4 Functional Representation of Executable Architectures - FR-

Rapide n
1.4.1 Authoring JQ

1.4.2 Applications J5
1-5 Plan of Report Ig

Rapide Executable Architecture jg
2.1 Rapide - Rapid Architecture Prototyping 19
2.2 Rapide Overview 20
2.3 X/Open Architecture 22
2.4 Poll-Decide Definition and Behavior 23

2.4.1 Simulation 26
2.4.2 Causal History Poset 27

2.5 Understanding the Rapide X/Open Architecture 28
2.5.1 Design Intentions 29
2.5.2 Representation Issues 29

2.6 Summary 01

Functional Representation of the X/Open Architecture 32
3.1 X/Open FR Authoring 32
3.2 The Functional Hierarchy 34
3.3 Top Level - PD6 Poll-Decide 37
3.4 Bottom Level - PDO State Machine 39
3.5 Intermediate Levels 42

3.5.1 PD1 - Abstract Sub-Devices 42
3.5.2 PD2 - Rule Logical States 42
3.5.3 PD3 - Distribution Removal 45
3.5.4 PD4 - Concurrency Removal 47
3.5.5 PD5 - X/Open Standard Call Removal 48
3.5.6 PD6 - X/Open Poll-Decide 43

130

3.6 Summary 50

Rapide Explanation Tool 51
4.1 Delivering Explanations Prom FR's 51
4.2 FR Entities and Relationships 53
4.3 Questions and Answers 54

4.3.1 FR Question Classes 55
4.3.2 FR-Rapide Question Classes 58

4.4 FR-Rapide-Explain Tool Design 60
4.4.1 Question Answering 60
4.4.2 Graphical Hypertext Navigation 61
4.4.3 Tool Design 61

4.5 Summary 62

Evaluation and Discussion 63
5.1 Evaluation Basis 63

5.1.1 FR Benefits 63
5.1.2 FR Costs 64
5.1.3 Relative Cost-Benefit and Empirical Evaluation 65

5.2 FR's for Rapide X/Open Architecture 66
5.2.1 Example X/Open Poll-Decide FR 66
5.2.2 Other X/Open FR's 67

5.3 Rapide Architectures and Applications 68
5.3.1 Other Rapide Architectures 68
5.3.2 Rapide Applications 68

5.4 Architecture-Based Software Engineering 69
5.5 Contributions and Future Work 70

131

List of Figures

1.1 Architecture-Based Evolution Processes 6
1.2 Architecture Understanding 6
1.3 An FR Connects Intentions and Architecture 10
1.4 Functional Abstraction Creates a Hierarchical Explanation ... 14
1.5 FR Components - Abstract Sub-Devices 15

2.1 Rapide Architecture Terminology 20
2.2 An X/Open Architecture 23
2.3 X/Open Poll-Decide 24
2.4 Sample X/Open Rapide Code 25
2.5 Poll-Decide Causal History Poset 27

3.1 Poll-Decide FR Hierarchy 34
3.2 PD6 - Poll-Decide Top-Level 37
3.3 PDO - Poll-Decide Finite State Machine 40
3.4 PD1 - Functional Abstract Sub-Devices 43
3.5 PD2 - Rule Semantics Abstractions 44
3.6 PD3 - Connection Elimination 45
3.7 PD4 - Serial Effect From RM's 47
3.8 PD5 - X/Open Calling Conventions Removed 49
3.9 PD6 - Poll-Decide Top-Level 49

4.1 Delivering a Primitive Explanation From an FR 52
4.2 Generalized Functional Representation 53

132

List of Tables

1.1 FR Authoring n

2.1 X/Open Poll-Decide Intentions 29

4.1 Important FR and FR-Rapide Questions and Relationships ... 55

133

Chapter 1

Functional Representation
of Architecture

Software architectures specify how high-level system components interact and
behave. Architecture evolution tasks require knowing an architecture's design
intentions. Existing architecture description languages, however, specify archi-
tectures without reference to intentions. We describe the use of Functional
Representation to capture understanding of design intentions and their imple-
mentation in an architecture.

1.1 Understanding for Architecture Evolution

Architecture is the high-level design of complex software systems. It addresses
how large-scale system components interact, independent of implementation and
non-architectural details. There is a large movement to study and manipulate
systems at the architecture level.[3, 9] Architecture-based methods design and
evolve systems at this level, with reference to specifications of high-level compo-
nents and their interactions. These specifications are expressed in architecture
description languages (ADL's).

Working at the architectural level has many advantages. For example, start-
ing system design at the architectural level allows important design commit-
ments to be worked out early, independent of less important details. The
architecture description then guides detailed implementation, and serves as
a specification for analysis, debugging, and documentation. More generally,
architecture-based methods use the architecture description to control architec-
ture and system evolution. (Figure 1.1). Even original design can be seen as
evolution - understanding and modifying the architecture under construction.
Subsequent evolution may involve understanding and modifying an unfamiliar
architecture and system. For example, in considering implementations of, or
changes to, communications channels, it is necessary to understand the purpose
of the channels for achieving top-level system goals. In a distributed transaction

134

New Needs
(0

3

 U
nd

er
st

an
d

i
2 o g.
<

V Nc

Architecture - ADL Architecture - ADL

I i I
i

Implemented System Implemented System

Figure 1.1: Architecture-Based Evolution Processes

processing architecture, transactions may be communicated between applica-
tions and resources with particular constraints. To implement or change the
system, it is necessary to understand the role of these constraints in relation to
top-level design goals.

What is the nature of the understanding needed for architecture evolution
tasks? Intuitively, architecture understanding is open-ended and exceedingly

Intentions
and Explanation

Figure 1.2: Architecture Understanding

complex. It includes assertions about the architecture needed to perform arbi-
trary architecture tasks. These assertions may be at many abstraction levels,
in many descriptive frameworks, and may incorporate knowledge and inference
from many domains, including computer science and engineering, mathemat-
ics, and the computational problem and its domain. Furthermore, assertions
about the architecture are connected together in a complex web of deductions,

135

hypotheses, dependencies, justifications, definitions etc. (Figure 1.2)
Intentions are assertions about the architecture that designers (and main-

tamers) may reasonably have. Requirements are intentions about the role of the
system in achieving its purpose in the computational problem domain. There are
many ancillary and subsidiary intentions, e.g. non-functional requirements, anal-
yses, design commitments, rationales, specifications, refinements, implementa-
tions, behavior descriptions etc.

Explanations are assertions and inference links which connect intentions to
each other, and which connect intentions to the architecture. Explanations can
be seen as the logical structure which answers questions about how intentions
are achieved by means of other intentions and the architecture. In practice,
intentions and explanations may be mental and/or written, and may have any
temporal extent, e.g. fleeting, as needed, or permanent.

1.2 Goal - Capture Causal Understanding

All this says that capturing architecture understanding is akin to capturing full
human understanding, which is beyond the scope of this report. We narrow our
representation objectives in several ways. First, we start with an architecture
specified with an ADL. Our goal is to capture intentions that are relatively
close to the architecture, and which do not involve large amounts of problem
domain or other information or knowledge. That is, we don't want to go too
high in abstraction levels, being content with computational requirements like,
"Preserve system consistency regardless of transaction order," rather than do-
main requirements like, "Retrieve patient data." Similarly, we needn't go lower
than the ADL, both because we are supporting architecture-based evolution,
and because a more detailed implementation may not exist. Thus the domain
of discourse is constrained by the relatively simple kinds of concepts that are
present in ADL's.

Secondly, we are only interested in capturing understanding that can be
practically and usefully fixed and recorded. This imposes limits on size and
complexity. Rather than hopelessly attempting to capture the vast fabric of
potential human understanding, we want to record a small subset that is pow-
erfully useful for communication, standardization, and automated assistance.
The subset is only useful if it is small enough to be comprehended and applied.
Therefore we envision information volume roughly like existing documentation,
limited by reading/browsing ability (whether in paper or electronic media), by
creation cost, and by other pragmatic considerations.

Finally, we narrow our focus to a particular class of intentions and expla-
nations. We address intentions regarding causal processes in the architecture.
Temporal quality is an essential characteristic of causal processes. Roughly,
therefore, we are concerned with intentions regarding temporal sequences of
events and states in the architecture. We are not concerned with intentions
and aspects of the architecture that do not have temporal, behavioral quality
and consequences. This eliminates much traditional ADL content, e.g. for-

136

mal relationships such as modularity, interface types, integrity constraints and
non-functional properties. This focus requires an architecture which specifies
temporal behavior, an executable architecture.

Our goal, then, is to capture human causal understanding of architectures
in a way which will help people who design, implement, modify and otherwise
evolve architectures. Specifically, we will add a layer of explanation connecting
intentions to existing ADL's, to assist activities performed with ADL's. The
understanding will recorded by a human, using the process, framework, and
language to be described. This captured understanding will be useful for further
human understanding and communication. It can also be exploited by a large
range of tools and environments.

For more motivation, imagine a specific architecture evolution task, e.g. mod-
ifying a transaction manager component's behavioral specification. For each
such task, it is necessary to know certain intentions, e.g. "The component de-
termines whether transactions should be made permanent," and how and where
these intentions are expressed in the architecture. Providing such understanding
can save the arbitrarily high effort and expense that the evolver must otherwise
expend recreating it. Functional Representation is a well-established means to
capture such understanding.

1.3 Functional Representation

Functional Representation (FR) is a theory about understanding devices. It
addresses how functional, causal device understanding is represented and used.
It has been successfully applied to a large variety of tasks and devices, e.g.
explaining failures in a chemical plant, medical diagnosis, and engineering design
verification.[2] FR provides a framework, process, and language for capturing
understanding of many kinds of devices.

Allemang showed how Functional Representation can capture particular ex-
planations of a program. [1] In his work, an FR is an argument structure which
gives a program correctness proof. Allemang formalized this use of Functional
Representation as program functional semantics, and demonstrated its advan-
tages over traditional programming language semantics for certain kinds of rea-
soning.

We extend this approach to architectures. Architectures pose additional
problems like distribution, concurrency, and weak procedural specification. Fur-
thermore, these and other aspects require more heterogeneous explanation styles
and representations. Therefore the need and benefit for representing architec-
ture understanding is at least as great as for simple programs. Furthermore,
architectures provide a challenging testbed for Functional Representation, where
explanations entail complex and varied description styles, viewpoints, and ap-
plications.

Functional Representation is organized around definitions and representa-
tions for structure, behavior, and function. Structure is the assumed bottom-
level description of a device. Behavior is temporal, causal change in the device,

137

particularly changes in its states ("how"). Function is an interpretation of the
device and its behavior as serving a role in a more abstract context ("what").
There are many-many relationships among possible device structures, behaviors
and functions. For example, given functions may have multiple realizations by
different possible behaviors and structures.

These definitions are relative to an assumed bottom, structural level. This
level is arbitrary. Therefore it is possible for functions to serve as another
structural level, providing (abstract) behavior for still more abstract functional
description.

The details of the FR representation will be described when we present an ar-
chitecture FR in Chapter 3. The features which make FR especially suitable for
representing intentional, causal architecture understanding, as described above,
are:

Functions Formal specifications give functionalities in terms of possible states.
They describe abstract intentions or views.

Abstraction Hierarchy Functions are proven abstractions for behavior and
explanations at lower levels. Explanation is organized by the hierarchy.

Causal Process Descriptions Behavior is described by state transitions.
Transitions are annotated by links giving realization, justification etc.

Components Function is shown to emerge from structure consisting of a par-
ticular composition of components. Components are abstract sub-devices
which modularize the explanation.

The FR language consists of syntax and semantics for representing understand-
ing in terms of these features.

Applying FR involves: 1) authoring a functional representation which rep-
resents a particular human understanding of a particular device, and 2) appli-
cations, in which the functional representation is used to help perform needed
tasks. Applications may be manual, where the functional representation is a
formalized notation for human communication. Applications may also be au-
tomatic, where tools usefully deliver the understanding formalized in the func-
tional representation. For example, FR-based architecture tools can answer
questions, guide browsing, generate dynamic, structured documentation, and
perform inferences forward or backward in causal chains.

1.4 Functional Representation of Executable
Architectures - FR-Rapide

This report describes the use of Functional Representation in architecture evo-
lution. FR represents architectural understanding based on causal description,
functional abstractions, and component structure. Representing architectures

138

in FR allows many applications to exploit understanding using these princi-
ples. We are investigating these topics by applying FR to executable archi-
tectures specified by David Luckham's Rapide architecture definition language

from Stanford.
Rapide is a language for rapidly prototyping, testing, and analyzing ex-

ecutable architectures.[ll, 12] The architecture designer specifies the compo-
nents, connections and constraints of an architecture using Rapide. Compo-
nents have interfaces by which they can interact with other components when
connected by specific connections. Constraints include invariant properties and
abstract behaviors that must be satisfied by implementations. Rapide archi-
tectures may be executed using abstract behaviors and/or implemented compo-
nents. The result is a trace, consisting of a partial ordering of dependent events,
which summarizes many possible ultimate executions by final implementations.

Rapide is a good representative of ADL's and executable architecture design.
It has has been shown to be useful in many architecture evolution tasks. A
variety of architectures have been specified, and there is a large body of Rapide
code. It has a well-developed specification, environment, and community.

We are therefore investigating application of FR to executable architecture
using Rapide. Our approach is tested and demonstrated in FR-Rapide. FR-
Rapide is a method for capturing and exploiting understanding of Rapide ar-
chitecture. A Rapide architecture is given. An FR author writes a functional
representation expressing his or her understanding of the architecture. The
Rapide user uses the FR for subsequent architecture design and evolution, per-
haps through assistant tools. Therefore the application of FR to architecture is
demonstrated in a method for assisting architecture design and evolution with
Rapide.

1.4.1 Authoring
The FR author uses the FR language to represent understanding of the Rapide
architecture prototype. A Rapide prototype and an FR for it are illustrated in
Figure 1.3.

An FR:
Intentions

and Explanation

Two-Phase Commit Protocol

Poll-Decide

Abstract
Devices, A»
Views

Functional
Abstraction

Architecture - ADL
(RAPIDE Prototype)

Figure 1.3: An FR Connects Intentions and Architecture

139

The FR will be constructed for a purpose, e.g. general documentation or
supporting a task like protocol evolution. In light of the goal, representing un-
derstanding in an FR requires the activities given in Table 1.1. These activities

1. Having or acquiring needed understanding of the architecture,

2. Choosing top-level and intermediate intentions and views to repre-
sent,

3. Choosing state languages, formalisms and predicate vocabulary,

4. Writing functional specifications for states at various levels,

5. Forming causal sequences among states at each level

6. Finding functions to form an explanation hierarchy,

7. Modularizing the explanation into abstract devices or components,

8. Validating the explanation.

Table 1.1: FR Authoring

can occur in various orders and iterations. We conservatively called them "rep-
resenting understanding". In fact they create understanding by formalizing in-
tuitions and developing new views, connections, arguments, decompositions etc.
Therefore the process has the complex, individualistic, open-ended character of
other human comprehension and creative activities. FR authoring activities
are described and illustrated in Chapter 3. Here we elaborate each activity to
introduce FR and FR-Rapide authoring:

1. Understanding the Architecture Having or acquiring needed under-
standing of the architecture means the FR author has goals for the FR, and
is able to understand the architecture and represent that understanding so the
goals can be achieved. If the FR author is the architecture designer, presumably
he or she remembers or can recreate his or her design intentions. At the other
extreme, an FR author unfamiliar with the architecture may have to recreate
(or create) putative intentions by referring to design information sources and/or
reverse engineering.

2. Choosing Intentions This understanding is focused around the chosen
top-level and intermediate intentions and views to represent. Top-level inten-
tions are the highest needed to satisfy the goals of the FR. For example, sup-
pose the FR is intended to capture understanding of protocols in a transaction
processing architecture. Understanding resource access protocols includes un-
derstanding how they satisfy requirements such as transaction atomicity and

140

indivisibility. A particular architecture may be understood to achieve such re-
quirements using a design incorporating the well-known Two-Phase Commit
protocol. Two-Phase Commit may then be chosen as a top-level design require-
ment and intention which is consistent with the goals for the FR. Top-level and
intermediate intentions may be essential to all implementations of Two-Phase
Commit, e.g. a Poll-Decide procedure which polls Resource Managers and de-
cides when to commit transactions. Intentions may also be architecture-specific,
e.g. the design of Poll-Decide in a particular architecture committed to partic-
ular components and connections. The top-level and supporting intentions, or
views, form the outline of a hierarchical explanation.

3. and 4. Specifying States These intentions must be expressed in appropri-
ate languages. The choice of language depends on FR goals and the intentions'
domains of discourse. The languages for top-level intentions will chosen in re-
lation to the goals of the FR. The languages for lower level intentions may be
chosen in relation to both both top-level considerations and the kind of expla-
nation desired. In all cases, the languages embody appropriate formalisms and
vocabulary.

Functional Representation is based on states. Therefore languages are
needed which capture possible concrete and abstract states of the architecture.
Concrete states are sets of values of observable, time-varying architecture prop-
erties. Abstract states are sets of values of derived or interpreted properties
not explicitly present in the architecture. States may be complete, completely
characterizing the complete architecture, or partial, characterizing only some
aspects of the architecture. A vocabulary of predicates describes sets of states
useful in each domain of discourse. Intentions are then written as functional
specifications in a language of states and predicates appropriate for the abstrac-
tion level and goals of the intentions.

For example, at the architecture level the ADL provides a language for ar-
chitecture states such as variable values and events, and for intentions, such as
the ADL sub-language used to write temporal architectural constraints. Lan-
guages for abstraction domains chosen by the FR author may derive from ADL
language or may be unrelated. For example, predicates such as "alLok" or
"some_error" can be used to describe abstract states based on semantics of "er-
ror" given by an interpretation of concrete architecture states. Other predicates
and specifications can convey meaning still further from the ADL and closer to
the top-level intentions. For example, "implementS-Two-Phase_Commit" is de-
scriptive in the transaction processing domain, and imports complex semantics
about what is meant by the Two-Phase Commit protocol, and how its presence
can be shown.

5. Forming Causal Sequences Within each level, states are connected in
causal sequences to capture the designer's intentions. Besides states, Functional
Representation is based on causal transitions between states. An executable
architecture undergoes undergoes state changes as it executes. Therefore, it

141

must be understood as a dynamic device, where design intentions are causal
sequences of states. FR represents such concrete and abstract behavior and
intentions with causal process descriptions. Causal process descriptions (CPD's)
are state transition diagrams with annotations which describe the transitions.
We will focus on the transitions here and on annotations in the following activity.

Forming causal sequences means identifying causal relationships among
states and representing them in a state transition diagram. For example, sup-
pose three abstract states were identified in a certain view of the transaction
processing architecture: "check-resources", "resourcel(ok) and resource2(ok)",
and "alLok". Suppose also they are understood to always occur in a temporal,
causal sequence in the order given. Then the following causal process description
is written:

resourcel(ok)
check-resources =>- and *- all_ok

<■■■> resource2(ok) <••■>

The annotations on the causal links are empty or incomplete. The causal rela-
tionship has been identified, but the function represented by the links has not
been fully specified.

Here is another causal process description in a more abstract domain of
discourse:

check-resources =»- POLLING-OK

The state language of this abstraction level shares the "check-resources" pred-
icate with the previous example. It also introduces the new state specification
"POLLING-OK".

6. Functions and the Explanation Functions are used to create a hierar-
chical explanation incorporating and justifying the causal process descriptions.
As a result of the previous activities the FR author has created causal process
descriptions describing the architecture with various levels of abstraction and
views. The CPD's show causal relationships, but lack annotations describing
and justifying these relationships.

In FR, functions describe abstract functionality. They relate behavior to its
role in a more abstract description. Viewed bottom-up, a function abstracts be-
havior, e.g. a sequence of state transitions, as a single state transition in a more
abstract domain. Viewed top-down from the abstract domain, a function justifi-
cation explains how its role is achieved in terms of more concrete understanding
and other justification such as domain knowledge.

Functions also connect the abstraction levels and CPD's into a complete hi-
erarchical explanation of the architecture. The explanation is a hierarchy where
top-level intentions can be traced through intermediate intentions to base-level
implementing structure in the architecture. We say that functions create func-
tional abstraction which induces the explanation hierarchy.

142

check-resources ► POLUNG-OK Protocol Domain
ByFcn: Poll-Decide-ok

Calling Convention
resourcel(ok) __ o|| ^ Domain

and
resource2(ok)

check-resources *- and ** all-0k

ByFcn: User-calU ByFcn: B2_ret

Figure 1.4: Functional Abstraction Creates a Hierarchical Explanation

Figure 1 4 shows part of an explanation where functions complete and con-
nect the CPD's given above. First note that the figure shows the Protocol
Domain above the Calling Convention Domain. Each of these abstraction levels
or domains of discourse contains particular views or models of the architecture,
expressed in particular formalisms and languages. The complete explanation is
a hierarchy in which each level is justified and explained only in terms of lower

levels.
Next note that function names have been added in "ByFcn" annotations

of the CPD links. Functions create the abstraction hierarchy and justify state
transitions. Specifically, functions are defined which show how a transition in a
higher domain is achieved by behavior in a lower domain. Other kinds of justi-
fications can also be captured by the function, including domain knowledge and
definitions. Here the function "Poll-Decide-ok" expresses functionality in the
Protocol Domain whereby the state "POLLING-OK" follows the state "check-
resources". This transition is explained by the indicated transitions in the lower
domain, and by a definition relating the "alLok" state in the lower domain to
"POLLING-OK". These semantics are captured in the justification of the "Poll-
Decide-ok" function. Similarly, the functions "User-calll" and "B2_ret" capture
functionality creating the indicated state transitions in the Calling Convention
Domain. These functions are described in terms of lower views, behaviors and
domain principles.

7. Forming FR Components The FR author may also decompose the ex-
planation into abstract devices or components. The activities above combine all
of the essential elements of the FR into an explanation of the architecture. Such
explanations, however, may be unmanageable because of their size and complex-
ity. Furthermore, they may have lost information about modular groupings in

the architecture.
FR contains a mechanism for dividing the explanation into comfortable

pieces, and for modeling the architecture as interacting components, at all lev-

143

els of abstraction. FR components, or abstract sub-devices, modularize CPD's
within an abstraction level. They can be viewed as named boxes encompassing
sets of states. The FR author can define components as desired, eg to cor
respond with domain concepts, understood relationships, or base architecture
structure (Figure 1.5). They are primarily grouping constructs. They can how-

FR:

Architecture - ADL
(RAPIDE Prototype)

FR
Components

Architecture
Components

Figure 1.5: FR Components - Abstract Sub-Devices

ever, serve as attachment points for additional semantics. Components allow
explanation in terms of interacting components as well as states

For example, consider the base architecture components, e.g. Resource Man-
agers in a distributed transaction processing architecture. These may or may
not be captured as FR components. The FR author is free to create additional
FR components, and/or project the architecture components upwards as com-
ponents in higher abstraction levels. This is possible because the ADL specifies
components as units subject to connection, whereas FR components are state-
based. Therefore FR components can form abstract sub-devices at all levels of
abstraction Close to the base level, they can divide architecture components
based on understanding sub-processes within the components

Components can also unite material from separate architectural components
thereby representing understanding in a view that recognizes functional related-
ness in separate architecture components. This is analogous to logical compo-
nents in mechanical domains. A manufacturer, for example, may describe a car
as containing frame and body components. If we are representing understanding
of the car s crash behavior, we may split and lump the base components, e g
to give a front impact absorption component consisting of the frame and body
components which absorb energy in a front collision.

8; ,yaläati0n Finally' the FR auth0r and others must ens»re the validity
of the FR for its intended purpose. This can be done with various methods

144

for various degrees of required rigor. Our approach is independent of the rigor
desired, and does not guarantee correctness by any objective measure. That is to
say, FR captures a person's understanding. The understanding may be formal
or informal, correct or incorrect. FR enforces neither formality nor correctness.
FR does, however, formalize the explanation structure. This can be checked for
syntactic correctness and consistency.

At one extreme, the architecture may be understood as a formal correct-
ness proof. FR then provides the skeleton syntax in which the proof is written
and organized. Validation consists of checking the proof like any other pro-
gram correctness or mathematical proof, under appropriate domain models and

semantics.
At the other extreme, the architecture may be understood as informal, nat-

ural language description, like written and/or unwritten documentation and
description. In this case, FR can be seen as structuring the description with
the formalized concepts and relationships of causality, functional abstraction,
states, components etc. Validation then consists of inspecting the FR both for
understanding content and usage of the FR language and ontology.

1.4.2 Applications

Suppose we have an FR, capturing an understanding of an architecture, created
as described above. What is it good for?

First, it already has been good for creating and systematizing understanding.
The extant FR is a notation which records and recalls this understanding for the
author. Similarly, the FR is a notation for communication between the author
and others. It serves the role of documentation, but with added formalized
structure and conventions. Finally, the FR allows captured understanding to
be manipulated, delivered, and exploited by automated tools and environments.

In all cases, we answer the question, "What is the FR good for?", with the

principle:

Understanding is as understanding does.

Captured understanding has value and application where it makes it easier to
perform a specific architecture evolution task. Many tasks require understand-
ing that can obviously be captured in FR's. The value of a particular FR for a
task or tasks is an empirical question. Some forms of captured understanding
are clearly useful for a wide range of tasks, e.g. documentation.

In assessing the value of FR for architecture evolution tasks we distinguish
between, 1) the value of FR content that could exist independent of the FR
framework, e.g. isolated architecture models and intentions, 2) the value added
by the FR framework, and 3) the possible synergistic value of combining 1) and
2). We claim there is value from 2) and 3) that more than justifies the cost of FR
creation, and that this benefit/cost can be demonstrated empirically. However,
such empirical studies are beyond the scope of this report. Here we describe
how manual and automatic applications benefit from 2), the value added by the

FR framework.

145

Answers to Questions

The FR framework creates certain kinds of explanations, and makes explicit
certain states and relationships. For example, it encourages a hierarchically
structured explanation in successively more abstract alternative views or do-
mains. States and causal sequences among states are made explicit. Functional
abstraction is made explicit. Abstract components control complexity and en-
capsulate domain concepts. Therefore the FR framework benefits tasks that
require knowing such states and relationships.

More specifically,

The FR makes it easy to answer certain important kinds of questions.

For example, "What?" questions can be easily answered by following func-
tional abstractions upwards, and "How?" questions can be answered by tracing
CPD's, following function annotations downward when more detail is desired
For example, here is a dialog produced from the explicit relationships in an FR
for an architecture containing the Two-Phase Commit Protocol. X/Open-PD6
is a CPD abstractly describing the Poll-Decide procedure in the Two-Phase
Commit Protocol Domain.

Q> What does X/0pen-PD6 do?

A: Poll-Decide for Two-Phase Commit protocol...

Q> How is Poll-Decide implemented?

A: Poll-Decide-ok is followed by Commit,
or Poll-Decide-error is followed by Rollback.

Q> How does B3_Pattern cause B3-some_error?

A: Pattern semantics of Rapide behavior rule B3.

In Chapter 4 we catalog the questions that may easily answered by material
made explicit by FR, and describe procedures and semantics for answering such
questions from the FR. Note well that the ability to answer certain questions
easily is a benefit regardless of whether the FR is being read as a notation or
being interpreted by an automatic tool, e.g. a question answerer or browser.

Answers Useful for Architecture Evolution

The ability to easily answer certain questions benefits many specific architecture
evolution tasks, and tools for those tasks. Furthermore, it is a capability which
enables more complex forms of manual and automatic inference. For example,
consider the architecture evolution task of algorithm/component replacement.'
Suppose, for example, it is desired to replace architecture pieces performing a
particular function. The FR can be used to: 1) identify the function by name

146

or description, 2) locate architecture parts implementing the functions, and 3)
locate architectural and logical dependencies that must be respected by the
replacement.

As another example, consider Rapide debugging or design verification from
execution traces. Such debugging requires: 1) identifying an execution anomaly,
2) finding the architecture part creating the incorrect behavior, and 3) correcting
the architecture. Because FR is state based, an FR for an architecture's intended
design provides state descriptions which may be compared to states reached in
execution and recorded in the Rapide trace. Execution anomalies may therefore
be identified. FR goes beyond Rapide's existing constraint checking mechanism
because it captures specifications, and can interpret traces, in terms of abstract
states and behavior as well as the bare events and constraints used by Rapide.
Similarly, because the FR captures the architecture at various levels and views,
it is possible that one or more of them will provide an appropriate domain for
understanding and correcting the bug.

1.5 Plan of Report
The remainder of this report describes writing and using functional representa-
tions of executable architectures. Particularly, we describe and illustrate FR-
Rapide, and discuss its applications and limitations.

Chapter 2 introduces Rapide and the X/Open reference architecture used
as our example. In Chapter 3 we describe creating a functional representation
for part of X/Open. The example is used to introduce elements of FR-Rapide
including state modeling, architecture and FR components, causal process de-
scriptions, functional abstraction, and domain/view hierarchies.

Chapter 4 describes the value and applications of architecture FR's to easily
answer certain questions. We give a catalog of question types which may be
answered, procedures for answering them, and discuss the design of a practi-
cal question answering explanation tool. Question answering is related to FR
semantics. An explanation tool is described which can support Rapide proto-
typing and other architecture activities.

Chapter 5 evaluates and discusses the limitations, generality, benefits, and
prospects for applying FR to architecture-based software engineering. We first
introduce issues and a basis for evaluation. Then we evaluate FR-Rapide with
respect these criteria at various levels of generality. Applications and tools such
as debugging, simulation and rationale capture are discussed. We conclude by
reviewing our contributions and suggesting further work and implications.

147

Chapter 2

Rapide Executable
Architecture

This chapter introduces Rapide and the X/Open architecture used as our exam-
ple. It concludes by discussing Rapide and X/Open architecture understanding
needs and representations.

2.1 Rapide - Rapid Architecture Prototyping

Rapide is an architecture description language designed for prototyping archi-
tectures of distributed systems.[11, 12] Such systems are complex assemblies
of many components. The distributed components operate and interact con-
currently. They exchange information across specific communications channels.
There are complex timing requirements and constraints.

Rapide provides a language and environment for constructing prototype ar-
chitectures. Rapide views the architecture as the plan which drives system
design, prototyping, development, and validation. Specific emphases of Rapide
include: 1) architecture definition that is executable, for early simulation and
testing; 2) an execution model that summarizes distributed, concurrent behav-
ior and timing; 3) formal constraints and mappings for architecture definition
and comparison; 4) scalability for large industrial systems.

Rapide and its architectures provide a framework for architecture and sys-
tem design and evolution. Architectures are constructed using the Rapide
object-oriented language. The language supports architecture construction with
features for describing architecture components (interfaces) and connections.
There are also features for specifying behaviors and constraints. The language
provides a type system which is used to create the objects which form the ar-
chitecture prototype.

Once constructed, Rapide architectures are used to test, simulate, validate
and otherwise analyze the architecture. Architectures are executed to study
their behavior. They are executed by an interpreter, according to the Rapide

148

execution model, which creates architectural events. Events and their depen-
dencies are recorded in partially ordered set of events called posets. Each poset
summarizes many possible system executions of the kind that are recorded in
traditional event simulation linear traces. Posets are used to compare architec-
ture behavior to desired behavior, including the behavior of other architectures.
The architecture can also be analyzed by runtime checks against formal con-
straints, and by static formal analysis and verification.

In summary, Rapide architectures are formal, dynamic devices with parts
executing concurrently. Functional Representation is designed to capture un-
derstanding of such devices.

2.2 Rapide Overview

A Rapide architecture consists of interfaces of modules, connections which de-
scribe communications between the modules, and constraints which specify cor-
rectness conditions. Interfaces and connections comprise the architecture in the

Connections

Architecture

More
Detailed
Instantiation

Figure 2.1: Rapide Architecture Terminology

top of Figure 2.1. Possible implementing modules are not part of the architec-
ture, as shown in the lower part of the figure.

Interfaces are the basic architecture components.1 Interfaces define the fea-
tures provided to other parts of the architecture, and which must be imple-
mented by modules. Modules are implementations of the interface. The archi-
tecture is instantiated when particular modules are assigned to the interfaces.
Modules may be executable modules forming an implemented system. Modules
may also be other architectures, creating a hierarchical architecture definition.

An interface may contain an abstract behavior specifying the behavior re-
quired by every implementing module. Many possible modules and kinds of
modules can implement a given interface. When no module is present, the

1 Rapide uses "component" for an interface-module pair, and "interface" for what is usu-
ally called a component in the architecture literature. We will continue to use the traditional
architecture terminology, where "component" or "architectural component" is the basic ar-
chitectural unit. We will sometimes use the Rapide terminology in Rapide-specific contexts.

149

abstract behavior is used in simulation to give the module's effects. Abstract
behaviors are given by executable reactive rules. These rules recognize situations
in the execution and create new events in response.

Connections specify communication between interfaces. They are also de-
fined using executable reactive rules. Connection rules create communication by
recognizing output events at interfaces and creating corresponding input events
at the connected interfaces. This communication may be asynchronous, or it
may be synchronized by a clock. Using rules for connections is an important
difference between Rapide and most ADL's, which specify connections with sim-
ple static syntax. Using rules for connections allows information passing across
connections to treated and recorded by the interpreter in the same manner as
other behavior.

The rule-event-poset execution model supports simulation and tracing of
distributed, concurrent architectures with dynamic structure. Events are the
indivisible primitives in Rapide executions. They correspond to things that hap-
pen in the architecture at run-time, e.g. calling a function, passing a message,
changing a memory, or executing a program step. Posets are partially ordered
sets of events which give the causal history of events and their timing. A poset
contains a partial ordering of events connected by their causal dependencies on
other events. Causal dependencies are necessary conditions that must precede
an event, e.g. an event precondition of the rule generating the new event.

Rapide processes are the primitive threads of control. Processes observe
the architecture events and the growing poset. When a triggering pattern is
recognized, a process generates new events. The new events and their causal
dependencies are added to the poset history. Rapide processes may be abstract
interface behaviors, connections, or processes in instantiated modules.

The interpreter controls execution in indivisible steps. Within a step, pro-
cesses observe the current events. They may then create new events. After
all rules have observed current events and posted new events, the process re-
peats. If an event is used by a process to trigger event creation, it may never
be used again by that process. Note that the execution steps are based on the
cycle of rule interpretation, not fixed periods of time. Thus Rapide execution
is dependency-based rather than time-based. This is an important difference
between Rapide and most event simulators, which are time-based. Rapide can
introduce time as needed with clocks which simulate time by creating events
corresponding to specific time intervals.

Formal constraints specify correctness conditions, e.g. communication or-
dering or data integrity relations. They are attached to interfaces and connec-
tions. These constraints are checked at run-time. Constraints can be seen as
secondary to the primary functional specification given by abstract interface
behaviors and connections. In other words, the behavior and connection rules
completely describe the computation. Constraints are specifications for parts
of the computation, and have a more abstract, declarative character than the
rules.

Note that abstract interface behaviors can have either role. When no module
is present, the abstract interface behavior is executed to create the simulation.

150

When a module is supplied for the interface, the module's processes are used for
execution instead of the interface's abstract behavior. The interface's abstract
behavior then becomes a constraint. Module generated behavior is checked
against this constraint.

2.3 X/Open Architecture

We investigated FR-Rapide using the X/Open Reference Architecture. Kenney
developed a Rapide prototype for this architecture[8], and it is the main example
in [11].

X/Open is a standard for distributed transaction processing (DTP). The
standard defines system component interfaces and sequences of interactions be-
tween system components. System components may be applications programs,
e.g. a billing system; resource managers for resources, e.g. databases; and trans-
action managers, which mediate between applications programs and resource
managers. The purpose of the standard is to create a standard reference ar-
chitecture for developing and interchanging various distributed transaction pro-
cessing systems and sub-systems. The reference architecture defines a family of
local instance architectures which are specialized in aspects like the number and
nature of resources and managers. Each local instance architecture, in turn,
defines a family of implemented systems.

The X/Open standard consists of over 900 pages of informal English text,
with system component interfaces given in C. It describes 1) the interfaces, 2)
ways of connecting components which satisfy the standard, and 3) protocols or
calling sequences for using the interfaces.

Besides promoting open systems, the standard is intended to ensure certain
kinds of correctness in conforming systems. The standard particularly empha-
sizes protocols which guarantee transaction atomicity. Atomicity means that a
transaction either executes completely or has no effect. It is ensured by calling
sequences which implement the well-known Two-Phase Commit Protocol.

Figure 2.2 shows the X/Open local instance architecture we will use. The
boxes are interfaces defined for an application program (AP), a transaction
manager (TM) and two resource managers (RM1 and RM2). The arrows are
bundles of connections between interfaces called services. Each service contains
connections between specific functions of the interfaces.

Imagine that the architecture is implemented in a bank. The application
program runs on automatic teller machines. It performs transactions involv-
ing the bank's checking account and savings account databases, each accessed
through a resource manager. The transaction manager mediates between the
application program and resource managers as follows: The AP tells the TM
it wants to perform a transaction. The TM initializes the RM's and returns a
transaction identifier (xid) to the AP. The AP then makes requests and receives
results directly from the RM's. When the transaction is completed the AP asks
the TM to finalize it. To do this, the TM polls both of the RM's for their
approval. If both RM's approve, the TM decides to commit the transaction and

151

Application Program

(AP)

A ^ TX A

AR1
Transaction

Manager
(TM)

AR2

V^^AI xHS^J'
Resource
Mansgerl

(RMl)

Resource
Manager2

(RM2)

Figure 2.2: An X/Open Architecture

tells the RM's to do so. If they signal success, the TM tells the AP that the
transaction is final and usable. If the transaction cannot be committed, e.g.
because an RM says it would place a database in an inconsistent state, the TM
tells the RM's and the AP to rollback the transaction and start over. Each
of these operations is described by particular functions in the interfaces. The
functions each have defined connections, which are contained in the services
shown.

This scenario and the architecture protocols incorporate the Two-Phase
Commit Protocol. Two-Phase Commit assures that transactions will be atomic,
i.e. they will be completed and committed correctly, or they will be aborted and
rolled back. The complete proof that the architecture implements Two-Phase
Commit and guarantees atomicity is complex, involving many aspects of the
architecture and standard. For example, one necessary property is coordina-
tion, where the resource manager must get approval from all of the resource
managers.

We will focus on Poll-Decide, which is a necessary part of Two-Phase Com-
mit and the atomicity guarantee. Poll-Decide is the procedure by which the
TM polls the RM's for their approval or disapproval of the transaction {Polling
Phase), decides to commit or rollback the transaction {Decision Phase), and
causes the necessary actions. We will further narrow our focus to the connec-
tions and abstract behaviors involved in Poll-Decide. See [11] and [8] for more
discussion of the interface definitions, services, constraints, and posets.

2.4 Poll-Decide Definition and Behavior

Recall Kenney created an architecture for a version of the X/Open Reference ar-
chitecture, just as every Rapide author describes an architecture in the Rapide
language. We will use it to further describe Rapide, and as the FR-Rapide

152

example in subsequent chapters. Figure 2.3 summarizes the part of the archi-
tecture which describes the connections and abstract behaviors of Poll-Decide.

XA Connection Rules

C1.1: tm.xa 1 .prepare_call
=> rm 1 .xa.prepare_call

C2.1: rm 1 .xa.prepare_ret(code)
=> tm.xal.prepare_ret(code)

Resource

Manager 1

(RM1)

User

XA1

Transaction

Manager

(TM)

XA2
TM Abstract Behavior Rules

Bl:~ Polling Phase

TX.commit_call
=> (!i in L.NumRMS ll)XAs(!i).prepare_call

B2: — Decision phase, commit case

((?i in L.NumRMs ~) XAs(?i).prepare_ret(ok))
=> (!j in L.NumRMs II) XAs(!j).commit_call

B3: -- Decision phase, rollback case

((?i in L.NumRMs) XAs(?i).prepare_ret(error))
=> (!i in L.NumRMs II) XAs(!).rollback_call

Resource

Manager2

(RM2)

User

Figure 2.3: X/Open Poll-Decide

In the figure we see the XA connection rules which define connections in
the XA1 service between TM and RM1. There are similar rules defining con-
nections in the XA2 service between TM and RM2, but they are not shown.
The figure also shows abstract behavior rules defining the Poll-Decide behavior
in the Transaction Manager (TM) interface. Since this particular architecture
was created with two resource managers, Rapide variable NumRMs used in the
rules has the value 2. Other Rapide rule syntax should be more or less obvious
from our description below.

The actual Rapide code is more complicated and obscure than Figure 2.3.
We do not include the complete Rapide code in this report because it is volumi-
nous and difficult to interpret without detailed knowledge of Rapide. Figure 2.4
shows part of the X/Open Rapide code to give a feel for its syntax and other
characteristics.

In the Rapide code there are various levels of type definitions and instan-
tiations for all of the objects involved. Connections are described in detail at
both ends. Services are defined at both ends for each communicating pair of
components, with reference to all of the bundled connections. Components are
defined with reference to services. Constraints and abstract behaviors are at-
tached at various places. Finally, the entire architecture is instantiated from an
architecture generator type. Much of the language syntax is designed for rapid
architecture configuration and change within families. The resulting complexity
makes it especially hard to understand the architecture from the Rapide code.

153

type XA_Service is interface

public

type return_code is enum

ax_ok, xa_error

end;

action prepare_call(x : xid);

action commit_call(x : xid);

action rollback_call(x : xid);

extern

action prepare_ret(x : xid, re : return_code);

action commit_ret(x : xid, re : return_code);

action rollback_ret(x : xid, re : return_code);

end XA_Service;

type Transaction_Hanager(NumRHs : Integer) is interface

public TX : service TX_Service;

extern XAs : serviced. .NumRHs) XA_Service;
behavior

TX.commit_call

=> (!i in 1..NumRHs II) XAs(!i).prepare_call;

((?i in 1..NumRHs ") XAs(?i).prepare.ret(ok))

=> (!j in 1..NumRHs II) XAs(!j).commit_call;
((?i in 1..NumRHs) XAs(?i).prepare_ret(error))

=> (!i in 1..NumRHs ||) XAs(!).rollback_call;

end Transaction_Manager;

architecture X/Open_Architecture(NumRHs:Integer)

return X/Open is

AP : Application_Program(NumRHs);

TH : Transaction_Hanager(NumRHs);

RHs: array(Integer) of Resource_Hanager;

connect

AP.TX to TH.TX;

for i:integer in 1..NumRHs generate

TH.XAs(i) to RHs[i].XA;

AP.AR(i) to RHs[i].AR;

end architecture X/Open_Architecture;

Figure 2.4: Sample X/Open Rapide Code

154

2.4.1 Simulation

The architecture is analyzed by simulation. Simulation means the architecture
is made to execute in a way that simulates the execution of a final implemented
system. Of course the architecture only describes certain high-level aspects of
the final implemented system, so the simulation will only capture behavior at
the architecture level, e.g. message passing and gross behavior such as initiating
and completing generalized transactions. Furthermore, the user will design and
direct the simulation in order to investigate certain aspects of the architecture,
e.g. message timing or protocol correctness.

Events are the primitive elements in Rapide executions. Events are are
represented by character strings. For example, tm.tx.commit_call(xid) is an
event which models the TM receiving a procedure call from the AP which was
communicated across the TX service, xid is the transaction identifier which is
present in most events, but which we will subsequently omit for brevity.

When the architecture is created, it starts executing using initialization be-
haviors designed to simulate the transaction processing that is being tested.
Suppose the user is investigating the architecture's behavior for a single trans-
action. Let us assume that the simulation has run to the point where the AP has
initialized a transaction and transferred all needed data with the RM's. The AP
then requests transaction completion, and TM receives the tm.tx. commit_call
event.

This event matches Rule Bl in TM, initiating the Polling Phase. Rule
Bl generates events tm.xal.prepare_call and tm.xa2.prepare_call, corre-
sponding to TM issuing calls to the RM's. tm.xal.prepare_call is recog-
nized by Rule Cl.l defining a connection in XA1. This rule creates the event
rml.xa.prepare_call, corresponding to the call from TM being received at
RM1 across a connection in XA1. A similar rule causes a similar event corre-
sponding to another call from TM being received at RM2. Calling and subse-
quent execution in RM1 and RM2 is modeled as proceeding concurrently and
asynchronously.

The RM's do not have detailed behavior descriptions. Furthermore, for
testing the architecture we don't care about detailed database operation. We
merely want to test the architecture's response to transaction approval or
disapproval from the RM's. Therefore, in the current architecture the user
tells each RM whether to signal approval or disapproval. Let us suppose
the user wants to simulate approval by both resource managers. The events
rail. xa. prepare jret (ok) and rm2.xa.preparejret(ok) are therefore gener-
ated, corresponding to the RM's returning from the above calls. In the case of
RM1 and XA1, Connection Rule C2.1 responds to this event and generates the
event tm.xal. prepare jret (ok), corresponding to the return being received at
the TM. Similarly, the event tm.xa2. prepare jret (ok) is generated, recording
TM receiving an approval return from RM2.

The forking into concurrent communication and execution in the RM's now
ends. The only abstract behavior that can next execute is B2, and it must
wait for both prepare jret (ok) events to be posted. When this occurs, the

155

concurrent forks are merged into a single control thread in TM. Satisfaction
of B2's preconditions causes TM to enter the Decision Phase. Since both
RM's approve, TM decides to commit the transaction. This is described by
the consequent of rule B2, which creates the events rm.xal.commit_call and
rm. xa2. commit_call. These events then cause the actions needed to finalize the
transaction with the RM's and the AP. Rules for this behavior are not shown.

If either of the RM's had disapproved, a preparejret (error) return event
would be present instead of two prepare_ret (ok) events. Then the concur-
rent fork would be merged by TM behavior rule B3, also initiating the De-
cision Phase in TM. In this case, TM would decide to rollback the transac-
tion, and B3's consequents would create the events rm.xal .rollback_call and
rm. xa2. rollback_call.

2.4.2 Causal History Poset

Figure 2.5 is the poset created by the interpreter which records the execution
described above. The ovals contain the events described. Following the initiating

TM<->RM1 TM<->RM2

Poll

Decide

Figure 2.5: Poll-Decide Causal History Poset

event at the top, events involving RM1 are on the left and events involving RM2
are on the right.

Arrows show the dependency partial ordering relationship in the poset. An
event at the head of an arrow is immediately dependent on an event at the tail
of an arrow. In other words, events at the tails of arrows occur before events at
heads of arrows, and potentially cause them. In this example, the dependencies
are from the connection rules, behavior rules, and interactions shown. The
interpreter recorded the dependencies in the poset when it executed the rules.

156

This simulation and poset reveal three important characteristics of Rapide
and Rapide execution. First, note that the execution is concrete and precise at
the architecture level. It describes the behavior of the architecture as well as
possible, using all of the description present in the architecture definition. Fur-
thermore, the execution is a particular behavior of the architecture, responding
to particular input and direction. Execution is not "symbolic" or abstract at
the architecture level.

Second, the execution is abstract in comparison to more detailed possible
instantiations, especially ultimate implemented systems. Adding more imple-
mentation makes more details possible and necessary in concrete executions.
However, this added detail is non-architectural. The execution at the architec-
tural level provides an abstract behavior and specification which corresponding
detailed executions must conform to. Every implementation must have steps
corresponding the architectural events and dependencies. For example, the
commit decision must be made based on previous approval responses from the
resource managers, regardless of how the resource managers and decision phase
are implemented.

Third, the execution is abstract with respect to possible detailed his-
tories, even at the architecture level. The execution model is based
on explicit dependencies rather than time. Since execution is concur-
rent, different actual histories could occur under the same dependen-
cies. The poset summarizes all possible event histories that could oc-
cur in linear time. For example, the events in the dependent se-
quence involving RM1, tm.xal.prepare_call -> rml.xa.prepare_call ->
rml.xa. prepare jret (ok) -> tm.xal.preparejret(ok), on the left side of
Figure 2.5 must occur in the order given. However, they can be in any re-
lation to the similar concurrent events involving RM2 on the right side of the
figure. That is, the RM1 events can occur before, after, or in arbitrary temporal
interleaving with the RM2 events.

An important feature of Rapide is the poset's ability to capture the necessary
dependencies and ignore unnecessary temporal detail. In contrast, other event-
based simulators create a linear history trace or total temporal ordering. Such
a linear trace captures scheduling artifacts as well a necessary dependencies.
A Rapide poset subsumes all of the linear histories and traces which could be
produced by time-based execution and simulation.

2.5 Understanding the Rapide X/Open Archi-
tecture

Using this background, we now consider Rapide and X/Open architecture un-
derstanding under the goals given in Chapter 1. First we discuss the kinds of
things that must be understood about Rapide architectures using the X/Open
example. Then we describe how this understanding can be represented in rela-
tion to Rapide.

157

2.5.1 Design Intentions

Our goal is to capture human causal understanding of architectures in a way
which will help people work with architectures. Specifically, we seek to add
a layer of explanation connecting design intentions to Rapide architectures, to
assist activities performed with Rapide architectures.

Some of the intentions which are realized in the Rapide X/Open Poll-Decide
architecture above are listed in Table 2.1.

1. Perform transactions

2. Ensure atomicity

3. Implement Two-Phase Commit

4. Implement Polling

5. Poll RM's concurrently

6. Define distributed TM and RM components

7. Define connections between distributed TM and RM components

8. Pass specific messages between the TM and the RM's, e.g. TM requests
approval or disapproval from RM1

9. Control Poll-Decide in the TM component

10. Interpret specific Rapide events, e.g. interpret xa.prepare_ret(<code>)
events to determine if all RM's approve

11. Fork into concurrent processes in each RM

12. Get all results from concurrent polling before deciding

13. Define specific calling interfaces, e.g. parameter passing in the polling call
from TM to RM1

14. Generate specific Rapide events and dependencies, e.g. generate the
tm.xal.prepare.call event dependent on the tm.tx.commit_call event

Table 2.1: X/Open Poll-Decide Intentions

2.5.2 Representation Issues

Here are some observations about these needed understandings and intentions:

1. None of these intentions is explicitly present in the Rapide code. Each re-
quires interpretation of the Rapide code in domains beyond Rapide syntax
and semantics.

2. Intentions are achieved with various amounts of Rapide code. Some of the
first intentions involve the entire architecture, whereas some of the other
intentions involve involve small elements like single rules.

158

3. Intentions do not necessarily correspond to single Rapide syntactic cate-

gories.

4. Intentions involve different domains of discourse. Domains used include
distributed transaction processing, transaction atomicity and correctness,
the X/Open standard, C calls, Two-Phase Commit, distributed comput-
ing, concurrent computing, the particular instance architecture with two
RM's, and the goals of simulation testing.

5. Different domains must be described with different languages, formalisms,
models of computing etc. These languages involve abstract states of the
architecture.

6. Domains may be seen as views of the architecture which emphasize certain
aspects and ignore others.

7. Intentions have varying temporal extent. They may refer to everything
that happens, or to just things that happen during a particular time pe-

riod.

8. Intentions have varying temporal quality. They may describe temporal
sequences ("procedural") or temporal invariants ("declarative").

9. Intentions need not be temporal or causal. They may refer to time-
invariant, non-temporal characteristics of the architecture, e.g. "Is callable
by the AP and the TM."

10. For given abstraction levels and temporal quality, intentions vary in how
completely they describe the architecture. They may involve the entire
functionality at that level of description, or they may refer to some aspect
or property of the architecture's functionality.

11. The domains and intentions may be roughly ordered based on distance
from Rapide and closeness to requirements. The given list follows such
an ordering. However, the domains and intentions also have orthogonal
dimensions.

12. Given intentions involve complex combinations of domains.

13. Intentions can often be best understood in terms of other abstract do-
mains, not the base Rapide architecture.

14. It may be possible to order intentions so they are explained in terms of
lower intentions, even if there is no monotonic ordering of domains.

15. The realization of intentions can be seen in the poset history as well as in
the static architecture description.

159

16. Poll-Decide intentions directly pertain to single transactions. Our under-
standing, and the simulation, use single transaction abstraction, a view
where the architecture is analyzed by considering a single transaction in-
dependent of other transactions that might be taking place concurrently.
This is supported by understanding that each transaction has a unique
transaction identifier.

17. There is a mapping between the poset history and the Rapide syntax
which produces it. The also reflects other factors such as data and user
interaction.

18. Intentions can be explained using logical groupings which differ from the
architectural groupings of connections and components.

19. Rapide constraints capture intentions, at an abstraction level close to
Rapide. However, the constraints may not be consistent with the ex-
ecutable part of the architecture or possible executions. This may be
because the architecture is incorrect with respect to the constraints, or
because the execution has unanticipated input or interactions.

20. The Rapide architecture also reflects non-functional intentions such as
clarity and execution efficiency.

These complex needs and issues must be addressed by every approach to
representing understanding of Rapide architectures and X/Open.

2.6 Summary

Rapide specifies an architecture at a level that is appropriate for definition
and execution. The architecture, like a program, can be executed to produce
a trace. Unlike programs, the architecture may contain constraints specifying
certain required behaviors.

Tasks involving Rapide architectures require understanding that is not
present in the Rapide code. We described such understanding by giving in-
tentions present in the X/Open architecture. Issues, dimensions and criteria for
representing these intentions were given. Representing understanding of Rapide
architectures differs from representing understanding of simple programs be-
cause of Rapide characteristics including the rule-event-poset execution model,
distribution, concurrency, and the presence of constraints. The remainder of the
report describes the use of Functional Representation to represent and exploit
such understanding.

160

Chapter 3

Functional Representation
of the X/Open Architecture

In this chapter we describe a functional representation for the X/ Open Poll-
Decide architecture. We discuss authoring decisions, the complete hierarchy, the
top level, and the bottom level. Then we describe the functional abstractions
of the complete hierarchy bottom-up.

3.1 X/Open FR Authoring

We constructed a functional representation for X/Open Poll-Decide (PD). This
experiment explored some of the intentions and issues discussed in Section 2.5.
The functional description was constructed using the activities in Table 1.1.
Here is a brief account of the process and some authoring decisions:

Understanding the Architecture The architecture was understood from
the descriptions in [11], reasonable inference, and background reading about
distributed transaction processing protocols. This is the understanding pre-
sented in Section 2.4.

Intentions Example intentions were given in Table 2.1. Design intentions
were chosen from the understanding to explore representation of general, multi-
level explanation involving the problems presented by architecture understand-
ing beyond simple program understanding, e.g. distribution, concurrency, weak
execution model, and components. These choices emphasize understanding the
algorithmic implementation of the Poll-Decide procedure. Rapide constraints
were not used as intentions because they seemed unnecessary and low-level com-
pared to the intentions from understanding.

161

Languages and Vocabulary At the bottom level, X/Open events and
Rapide semantics suggested language, formalism, and vocabulary. These were
blended into terminology from successively more abstract domains, terminating
with the top-level vocabulary used to discuss Two-Phase Commit in the dis-
tributed processing protocol domain. It was possible to completely describe the
architecture at each abstraction level with a state machine formalism. The state
machines are finite and contain states corresponding to complete states of the
architecture at each abstraction level.

Specifications for States The bottom-level states are sets of Rapide events
As appropriate under functional abstraction, lower-level states and causal pro-
cesses are replaced with abstract states. Abstract states are denoted with evoca-
tive names. They are given formal or informal semantics consistent with by the
functional abstractions which justify them.

Causal Sequences The bottom-level causal process description captures all
possible Rapide behavior. It is a finite state machine which incorporates under-
standing of the architecture's distributed, concurrent execution. Causal process
descriptions at higher levels are generally simplifications of this state machine
produced by functional abstraction and abstract states.

Functional Hierarchy The seven level functional hierarchy is described in
the following section. For the most part, each level results from a single kind of
functional abstraction from the level below. This design is influenced by being
an exploratory example, and by desire to make the process and FR simple and
pedagogically useful. In other words, we only wanted to change one thing at each
step to avoid complexity and to clearly display what was happening. As a result
the functional hierarchy corresponds more to particular functional abstractions
than to distinct domains. Particularly, multiple domains are present at each
level, and vocabulary and material from lower domains is gradually supplanted
by more abstract material.

Abstract Devices The use of abstract devices to modularize the explanation
is orthogonal to the preceding issues and activities. The example was simple
enough that abstract devices were not needed to control complexity Further-
more, we they found that heavy use of them would confound the exploratory
and pedagogical clarity of the example. In the FR presented, abstract devices
are introduced only at the first level of the hierarchy. We discuss further and
alternative modularizations and uses of abstract devices in Chapter 5 below.

Validation We will discuss validation when we describe use and application
of the FR in Chapter 5.

162

3.2 The Functional Hierarchy

The Poll-Decide functional representation explains how Two-Phase Commit
Poll-Decide is implemented in the Rapide X/Open architecture. Figure 3.1
gives an overview of the FR. The FR can be visualized as seven layers on top of

Poll-Decide

Call Convention

Serial Effect

Non-Distributed

Rule Semantics

Device Grouping

o
§
a
3 o
C o
U

C
(D
c o

1
o
U

B
4>
O

c o
.1-4
+-
3

■fi «
Q

•4-»

o
U
0)

S3

PL,
I
o

H

-o

WO
e

PD6 8
♦

PN

S
o PD5

t SI
PD4 e

es
u

t H

PD3
S

♦ •p4

PD2
«3
M
0

♦
PD1

t
PI >0 - FSM Model

Ra

X/O

pide Prototype

pen Poll-Decide

Figure 3.1: Poll-Decide FR Hierarchy

the Rapide prototype architecture. The bottom level, PDO, is a state machine
causal process description capturing the architecture's complete behavior. Suc-
cessively higher levels are successively simpler state machine CPD's. Each one
is formed by a particular kind of functional abstraction, shown to the right of
each box. The top level, PD6, is a specification of the Poll-Decide part of the
Two-Phase Commit protocol. The functional abstractions can each be seen as
introducing a more abstract domain of discourse.

The right side of the figure roughly shows some of the domains reflected in the
CPD's. Going bottom-up, the FR successively uses abstractions and terminol-
ogy involving architecture components, Rapide semantics, architecture distribu-
tion, architecture concurrency, the X/Open standard and Two-Phase Commit.
As observed above, the hierarchy is based on single abstractions rather than

163

domains, so material from lower domains is gradually supplanted with material
from more abstract domains. Furthermore, domains themselves are fuzzy and
overlapping. For example, distributed transaction processing intersects some of
the domains mentioned previously.

In the remainder of this section we give an overview of the FR by sum-
marizing each level, going bottom-up. We will emphasize the CPD's and the
functional abstractions which produce them, without dwelling on the functions.
The following sections discuss the representation in detail at each level, including
the functions.

PDO - Architecture Behavior State Machine The bottom level, PDO,
completely captures the architecture's single transaction behavior with a model
which is a finite state machine (fsm). This model is based on understanding
the semantics of the Rapide rule execution model, and on understanding the
Poll-Decide algorithm and its implementation in the Rapide abstract behavior
and connection rules. Fsm states were constructed from sets of architecture
events which occur together. Sequential and concurrent Rapide threads were
distinguished. They are modeled with sequential and concurrent sections in the
fsm, and corresponding fsm semantics. The PDO fsm is execution equivalent to
the architecture in the sense that an architecture execution and an fsm execution
have the same states and state transitions (concurrency non-determinism aside).

Note that PDO, like the architecture, specifies all possible executions or be-
haviors. Therefore it is a stronger behavior description than a single transaction
poset trace, which records a particular execution with particular input. An given
execution of PDO corresponds to a poset trace which would be produced by the
architecture.

The PDO finite state machine is recorded with FR causal process description
syntax. States are connected by transitions. The transitions' justifications are
given by ByRapide annotations which point to Rapide rules.

PD1 - Abstract Sub-Devices PDO can be divided into sub-devices cor-
responding to the architecture components - TM, RM1, and RM2. However,
this produces disjoint regions for the polling and decision behaviors in TM. To
distinguish these computations, PD1 is created with separate abstract devices
or sub-devices for the polling and decision phases. The result is four connected
causal process descriptions.

PD2 — Rule Logical States In Rapide a rule precondition can be satisfied by
various sets of events. There is no event for acceptance by the interpreter. There
is corresponding behavior in the PDO and PD1 CPD's, where states correspond-
ing to precondition events are immediately followed by states corresponding to
postcondition events in the architecture. In PD2 we introduce abstract states
corresponding to acceptance in rules B2 and B3. This uses and captures under-
standing of Rapide rule semantics, and captures anticipation that the new states

164

will be useful for representing the Poll-Decide algorithm. The result consists of
a new CPD with added intermediate states.

PD3 - Distribution Removal Rapide produces events for connection
traversal which have the same status as events from other aspects of archi-
tecture behavior. For algorithmic understanding, we wish to abstract away
these artifacts of architecture component distribution. PD3 eliminates states
and transitions due to connections. This uses and captures understanding of
distribution in the architecture, and of its representation in connection rules
and their events. The result is a simpler CPD for an equivalent non-distributed
device.

PD4 - Concurrency Removal Similarly, the Poll-Decide algorithm is ob-
scured by the mechanisms for concurrent polling in the architecture. PD4 ab-
stracts away concurrent polling. This uses and captures understanding of con-
currency in the Rapide execution model and in the Poll-Decide implementation
The result is a simpler CPD for an equivalent serial device.

PD5 - X/Open Standard Call Removal The architecture was based on
the X/Open standard, in which C calling conventions are used to specify the
interfaces between components. In the prototype architecture, rules were writ-
ten to create events for both calls and returns. In a certain sense, these are
nonessential artifacts of the standard. To focus on the protocol implementation
independent of the calling mechanism, we created a CPD without the states
caused by calling and returning. This uses and captures understanding of the
roles of calls in the standard and the architecture, and of how they were imple-
mented in architecture rules. The resulting simpler CPD, PD5, gives a view of
the algorithm as if it were contained in a single program unit.

PD6 - Poll Decide As a result of these abstractions, PD5 displays condi-
tions leading to alternative logical states and actions. With an understanding
of Two-Phase Commit and its realization in the architecture, this can be inter-
preted and abstracted to concisely give a CPD, PD6, which captures the essence
of Two-Phase Commit Poll-Decide. The states and transitions in PD6 are spec-
ifications of Two-Phase Commit polling leading to approval and commitment,
or to disapproval and rollback. PD6, therefore, uses and captures this top-level
understanding, and comprises a specification of Poll-Decide. It is also the top
level of an explanation showing how Poll-Decide is implemented in the original
Rapide architecture.

We describe this top level and its representation more in the following sec-
tion. Subsequent sections then discuss the detailed representations of the the
bottom level, and of the remaining levels going bottom-up.

165

3.3 Top Level - PD6 Poll-Decide

Here is a statement of the X/Open Poll-Decide architecture's top-level algorith-
mic intention:

Poll resource managers and decide to commit or rollback the resource
operations.

This understanding is necessary for architecture evolution involving Two-Phase
Commit DTP functionality.

This is a succinct statement of the architecture's function because it uses
vocabulary with specific technical meaning in the Two-Phase Commit DTP do-
main. For example, "Poll resource managers" is understood to refer to asking
all resource managers for their final approval of transactions which were previ-
ously requested by the application program. Furthermore, the whole statement
is known to describe the Poll-Decide procedure of Two-Phase Commit, which
ensures transaction atomicity. It implicitly contains the definitions, necessary
conditions, and proof of atomicity. For example, it is assumed that each resource
manager will only give final approval when it can guarantee that the transaction
is consistent and atomic with its other transactions and operations.1

Figure 3.2 shows PD6, the functional representation of this understanding.
PD6 is a causal process description involving the abstract states and functions

commit
ByFcn: Poll-Decide-ok ^^^^ ByFcn: Poll-Decide-error

POLLING-OK POLLING-ERROR

ByFcn: Commit ByFcn: Rollback

rm1-commit rm1-rollback

rm2-commit rm2-rollback

Figure 3.2: PD6 - Poll-Decide Top-Level

at the top of the functional hierarchy of the complete FR (Figure 3.1). It could
be paraphrased in English as:

Following the architecture's commit state, the Two-Phase Com-
mit implementation polls the resource managers and decides
whether to commit (entering POLLING-OK state) or rollback (entering

Note that some of the necessary functionality may not be implemented in the architec-
ture. In this case the FR captures designer intentions which must be realized in the final
implementation. The FR's "proof" of atomicity therefore contains assumptions and specifi-
cations for the final implementation. For example, here the FR displays the unimplemented
intention that the resource managers vote in a way which ensures atomicity. This assumption
is a specification which can be verified in the final implementation.

166

POLLING-ERROR state) the resource operations. Depending on which
of these states is reached, the system next enters a state initiating
commit or rollback.

PD6 and this paraphrase both connect the general statement of Poll-Decide
at the beginning of this section to this specific architecture. PD6 relates the
algorithm to the abstract intentions of Poll-Decide and transaction atomicity.
Furthermore, the abstract algorithm in PD6 is traceable to its implementation
in the architecture.

Contrast PD6 with the Rapide ADL in Figures 2.3 and 2.4. The Rapide
ADL description contains no information about the architecture's intentions,
is computationally obscure because of the rule-event-poset computation model,
and contains many confusing architectural details. The actual Rapide code is
far more obscure because of complex syntax, as discussed in Section 2.4. In
contrast, PD6:

• States top-level intentions,

• Uses a simple, procedural, local model of computation,

• Gives only essential information.

PD6 is a simple and useful view in the DTP domain. Furthermore, it points
to a rich explanation of how the architecture implements Poll-Decide, including
the reasoning leading to the top-level specification. This reasoning and imple-
mentation is explained in the complete hierarchical FR leading from PD6 to
the Rapide code. Since the FR is added on top of the Rapide code, it adds
information and value without losing anything which is initially present.

The connection to lower levels is given by the functions in PD6. The func-
tions are not included in the paraphrase above. States and realized transitions
are sufficient for a top-level description. More detail can be obtained by referring
to the functions which cause the state transitions. For example, the transition
from the architecture's abstract commit state to the abstract state POLLING-OK
is caused by the Poll-Decide-ok function. This is shown by the ByFcn annota-
tion in the CPD. The definition of Poll-Decide-ok then shows how committing
the transaction is justified and realized in terms of more concrete views and
Rapide architectural implementation.

Tracing all the functions downwards through the hierarchy give a complete
explanation, presenting all of our understanding of the architecture. This ex-
planation contains captured views, abstractions, and intentions, and suggests
simple inferences such as:

1. Concurrent polling computations merge.

2. The prepare_call and preparejreturn states are paired, and could cor-
respond to procedure calling in the X/Open specification domain.

3. The prepare_call states produce a Two-Phase Commit "polling" com-
putation.

167

4. Polling's sole effect is a decision branch in the Two-Phase Commit proto-
col.

The nature of the explanation will become more concrete as we present the
FR hierarchy bottom-up in the following two sections.

3.4 Bottom Level - PDO State Machine

The bottom level of every functional representation gives the device's primitive,
uninterpreted structure and/or behavior. This bottom level must be in FR
syntax and conform to FR theory and ontology for describing devices. FR
bottom levels typically describe behavior with a CPD.

The architecture we wish to represent is given by Rapide code like that in
Figure 2.4. The structure creating behavior consists of the connection and ab-
stract behavior rules extracted in Figure 2.3. These rules describe behavior with
semantics given by the Rapide interpreter. Like other kinds of programs, they
describe a range of potential behaviors. Actual behavior depends on particular
run-time input. An example of run-time behavior is given by the poset trace in
Figure 2.5, which is another kind of behavior description.

How can we capture Rapide X/Open behavior in a CPD? There are various
possible CPD's which can be chosen according to goals. Writing each possible
CPD requires determining states and transitions. For example, the poset can
be seen as a CPD where the events are CPD states and the transitions are
satisfied dependencies. However, this is a weak description because states are
partial, because it covers only a single execution, and because it covers only a
single transaction. An alternative CPD, which could also be constructed au-
tomatically from a Rapide representation, consists of disjoint segments where
rule preconditions and postconditions are states connected by a transition cor-
responding to a rule firing. This essentially reformats the rules as a CPD, and
makes the Rapide execution model implicit in the transition justifications. It
has the advantage of generality, being equivalent to the Rapide code for all ex-
ecutions, including multiple transactions. It has the disadvantages of partial
states and obscurity due to the disconnectedness of the rules and the implicit
computation model.

For algorithmic understanding, we chose another representation that displays
important behavioral relationships using total states, for all possible executions
of a single transaction. This is stronger that the alternatives in the sense that
a CPD total state completely describes the state of the architecture, capturing
and facilitating important understanding. It more general than the poset in
the sense of capturing all possible executions for a single transaction. It is
less general than the Rapide code of its CPD equivalent because it covers only
a single transaction. This restriction is necessary to have a fixed number of
complete states.

More positively, the single transaction assumption captures an important,
essential way of viewing and understanding architecture and DTP behavior. For
algorithmic understanding, DTP systems and protocols are typically discussed

168

with respect to single transactions. This is the case in the X/Open and Rapide
literature, much of the DTP literature, and in our descriptions of natural under-
standing of X/Open earlier in this report. Furthermore, the simulation example
in [11], given in Section 2.4, uses a single transaction for analysis.

Figure 3.3 presents PDO, our CPD capturing this Poll-Decide behavior of the
Rapide X/Open architecture. PDO is a state transition diagram for a finite state

ByRapide: Fork

tm.xa1.prepare_cal!

tm.tx.commit_call

I ByRapide: Bl; Polling phase

tm.xa1.prepare_cail

tm.xa2.prepare_call

ByRapide: Cl.l;TM^RM^ T j j^Rapide^CU^TM^RM2_|_

rm1.xa.prepare_call

ByRapide: User

:l
! I rml .xa.prepare_ret(ok)

I

RMHi

rm2.xa.prepare_ca1l

rm1 .xa.prepare_ret(error) I

.1

RM2
rm2.xa.prepare_rel(ok)

ByRapide: User

rm2.xa.prepare ret(error) |;

_l:

j' 1^p7d"S"RM^yrMf" j | |yRa^d"c2^RM2->TM|
-• — — — — ~^ ™ ~ ~ ~ ~ T ~.T ~ ?T-~ \~ ~ "• *" ~ T ~ ~ T^oTronoro rai{nli\ tm YA? nrenare retferrorl

trrua1.prepare_ret(ok) tm.xa1.prepare_ret(error)

ByRapide: Merge

trrucal. prepare jet(ok)

tm.xa2.prepare_ret(ok)

tm.xa1.prepare_rel(ok)

tm.xa2.prepare_ret(error)

ByRapide: B2; De :ision phase, commit

tm.xa1.commit_call

tm.xa2.commH_ca!l

Im.xa! .preparejet(error) tm.xa1 .preparejel(error)

lm.xa2.prepare_rel(ok) lm.xa2.prepare_ret(error)

ByRapide: B3; De :ision phase, rollbacjt.

tm.xal .rollback_call

tm.xa2.ro!lback_call

Figure 3.3: PDO - Poll-Decide Finite State Machine

machine showing all possible executions and internal states involving a given
transaction. It is a complete bottom-level description of how the prototype and
the architecture can behave.

The states of PDO are the complete, mutually exclusive states that can
occur during prototype execution, subject to concurrency. Each state is a set of
architecture events. In the figure, for clarity we show only new events, when in
fact the CPD states consist of all architecture events that have occurred.2 For
example, the state [tm.xal.preparejret(ok) tm.xa2.prepare.ret(error)]
means that those two events have occurred. Other events which have occurred,

2Events can be removed if they are no longer significant. For example, an event can only
trigger a rule in a process once, so it can be removed after all possible triggerings.

169

such as tm.tx.commit_call, may also be in the state but are not shown in the
figure.

The links of the CPD show the transitions in the fsm. CPD links have
annotations justifying the transitions. In PDO all of the transitions are due
to connection or abstract behavior specification rules, or to concurrency in the
architecture, as described below.

PDO is divided according to the architecture components. The states above
the top heavy dashed line and below the bottom heavy dashed line involve the
transaction manager, TM. The states in the heavy dashed boxes involve the
resource managers, RM1 and RM2.

Now we will further explain PDO and its treatment of concurrency by nar-
rating its transitions for the architecture execution described in Section 2.4 and
recorded in the poset in Figure 2.5. PDO covers the architecture beginning with
its tm.tx.commit_call event. PDO begins in its [tm.tx.commit_call] state.
PDO can then change to the [tm.xal.prepare_call tm.xa2.prepare_call]
state. This state corresponds to the architecture after those two new events
have occurred. The link in PDO has the annotation: ByRapide: Bl; Polling
phase. This represents the transition being caused by Rapide rule Bl. "Polling
phase" is a comment from the rule in the architecture which is added as a
comment in the annotation.

The lightly dashed boxes in Figure 3.3 are sub-fsm's that execute
concurrently. From state [tm. xal. prepare_call tm. xa2. prepare.call] ,
PDO enters state [tm.xal.prepare_call] in the left sub-fsm and state
[tm.xa2.prepare_call] in the right sub-fsm. This represents forking into
concurrent execution in the architecture, shown by branching arrows with the
annotation ByRapide: Fork.

The left fsm captures an execution thread involving resource manager RM1.
Within the left sub-fsm there are transitions corresponding to a call passing
across the connection from TM to RM1, user interaction requesting an "ok" or
"error" return, and either return passing across the connection from RM1 to
TM. Each is annotated with a Rapide rule or user interaction as a cause. The
right fsm is similar, capturing a concurrent execution thread involving resource
manager RM2. Each sub-fsm can finish in one of two states.

Following completion of concurrent execution in both sub-fsm's, PDO
enters a state corresponding to one of the possible pairs of finish-
ing states of the sub-fsm's, e.g. PDO state [tm.xal.preparejret(ok)
tm.xa2.preparejret(error)]. The states signify that both events have oc-
curred in the architecture. These transitions correspond to concurrent execution
ending and becoming a single thread in the architecture. Each of the possible
PDO states is at the heads of two joining arrows, one from each sub-fsm, with
annotations ByRapide:Merge.

Finally, the state with both "ok" returns has a transition to a state corre-
sponding to commit_call events for both RM's, with an annotation giving the
cause as Rapide rule B2. The other three states after merging each have at least
one "error" return. They are all followed by transitions to the state correspond-
ing to rollback-call events for both RM's, with an annotation giving the cause

170

as Rapide rule B3.
In summary, PDO is an FR causal process description for the behavior of

the X/Open architecture. It is behaviorally equivalent to the architecture for
all possible executions of a single transaction, in the sense that its states and
transitions completely capture the possible states (sets of events) and transitions
in the architecture. The causal process description is a finite state machine. PDO
has many conceptual and representational advantages over the original Rapide
code. In the following section, we will see how it provides the basis for functional
abstraction as we present the remainder of the FR bottom up.

3.5 Intermediate Levels

The rest of the FR is a hierarchy of CPD's. The CPD at each level is a finite
state machine similar to PDO. However, higher level machines are successively
simpler, and introduce abstract states that may not be sets of architecture events
as in PDO. Furthermore, functions in higher level machines may point to lower
machines and/or other justifications rather than Rapide rules and interactions.

3.5.1 PD1 - Abstract Sub-Devices

PDO can be divided into sub-devices corresponding to the architecture compo-
nents - TM, RM1, and RM2. These components are based on distribution in
the architecture and the X/Open standard. Other components may be better
for creating and representing understanding. FR allows the creation of such
new components, called abstract sub-devices.

In the PDO state machine above we see there are disjoint regions for the
polling and decision behaviors in TM. To distinguish these computations, PD1
is created by dividing PDO with separate abstract sub-devices for the polling
and decision phases, as shown in Figure 3.4. Syntactically, PD1 is a causal
process description consisting of four sub-CPD's connected at common states
(boldface). Each sub-CPD is given a name expressing an understanding of its
function appropriate for this level of the hierarchy.

PD1 introduces a functional decomposition in place of the original archi-
tectural decomposition. This decomposition is suggested by the causal process
description representation of PDO. It is not apparent in the architecture code
(although it is suggested by comments). This functional decomposition will be
useful in forming and representing functional understanding in the higher levels
of the FR described below.

3.5.2 PD2 - Rule Logical States

Functional understanding involves "reading between the lines" to see intentions
that are not explicit in the architecture. This includes reading between the ex-
plicit states of the architecture to see logical states corresponding to intentions.

171

TM:Query
tm .tx.com mlt„call

I ByRapidc: B1; Polling phase

tm.xa1.prepare_.call

tm.xa2.prepare_call

tm.xa1.prepare_cal[

ByRapidc: C1.1;TM->RM1 I

rtn1 .x_.prapare_eall

Im.xa2.prepare_call

ByRapidc: Cl.2; TM->RM2 I

rm2.xa.prepare_call

RM1: Respond
rm1 .xa.prepare_call

ByRapide: User

rml.xa.pfepare_ret(ok) rm1.xa.prepare_rel(errof)

I ByRapide: C2.1; RM1->TM j

tm.xa1 .prepare_ret(ok) tm.xal .prepare_ret(error)

L

RM2: Respond
rm2.xa.prepare_call

ByRapide: User

rm2.xa.preparejet(ok) rm2.xa.prepare_r9t{errof)

ByRapide: C2.2; RM2->TM I

tm.xa2.prepare_ret{ok) tm.xa2.prepare_ret(error)

TM:Choose

tm.xal .prepare_ret(ok) tm.xal .prepare_ret(error)

ByRapide: Merge

tm.xa2.prepare_ret(ok) tm.xa2.prepare_ret(error)

tm.xal.prepare_ret(ok)

tm.xa2.pfepare_retfok)

ByRapide: B2; D cision phase, commit

tm.xal.commit_call

tm.xa2.com mit_call

tm.xa1.prepare_ret(ok)

lm.xa2.prepare_ret(error)

lm.xa1.prepare_ret{error) lm.xa1.prepare_ret(error)

bn.xa2.prepare_r@t(ok) lm.xa2.prepare_rdt{arTor)

ByRapide: B3; Decision phase, rollbac

tm.xal .rollback_call

tm.xa2.rollback_call

Figure 3.4: PD1 - Functional Abstract Sub-Devices

172

PDO makes two such states explicit in a CPD that represents understanding of
intentions that are implemented using Rapide rule semantics.

In PDO and TM:Choose in PD1 we see transitions to the final states caused
by rules B2 and B3. Semantics of Rapide rules and their interpretation are
implicit in these transitions. The interpreter first checks rule preconditions,
leading to an "accept" or "don't-accept" state in the interpreter. When accept
occurs, postcondition events are generated. Furthermore, triggering depends on
satisfying the rule's precondition pattern, which is given in the fairly elaborate
Rapide pattern language. For example, any of the three states ui.PDO and
TM-Choose which contain at least one "error" return will trigger B3. Reading
between the lines here means understanding that acceptance captures a useful
logical property, "some.error", shared by three different states.

Such understanding is represented in the TM:Choose sub-device of PD2,
shown in Figure 3.5. Boldface shows the changes from PDO and PD1. me

TM:Choose

tm.xa1 .prepare_ret(ok) tm.xal .prepare_ret(error)

ByRapide: Merge

tm.xa1 .prepare_ret(ok) tm.xal .p7£are_ret(ok)

tm.xa2.prepare_ret(ok) tm.xa2.prepare_ret(error)

ByFcn: B2_Pattern; All ok

B2-all_ok

ByFcn: B2_Action

tm.xal .commit_caII

tm.xa2.commit_call

tm.xa2.prepare_ret(ok) tm.xa2.prepare_ret(error)

tm.xal .prepare_ret(error)

tm.xa2.prepare_ret(ok)

(Fen: B3jPattern^Sj

B3-3ome_error

ByFcn: B3_Action

tm.xal. rollback_call

tm.xa2.rollback_call

tm.xal .prepare_ret(error)

tm.xa2.prepare_ret(error)

Figure 3.5: PD2 - Rule Semantics Abstractions

additional states B2-all_ok and B3-some.error have been added as abstract
intermediate states. Therefore implicit states and intentions are represented
explicitly PD2 is equivalent to the architecture and PDO in the sense that it
reproduces the original behavior (but also added new states and transitions).

This requires understanding Rapide rule pattern semantics. For ex-
ample, the precondition of rule B3, (?x in xid) (?i in 1. .NumRMs)
XAsCi) preparejret(?x, error), must be understood as matching sets ot
tm xa<i>. preparejret(?x, error) events, where some event has an error
return 3 This understanding is represented by the functions B3_Pattern and
B2_Pattem which annotate the transitions to the new states. The functions
are followed by appropriate comments.

3This is the original rule with a transaction identifier parameter x of type xid. Recall that
the transaction identifier is implicit on our usual event notation for brevity.

173

Similarly, links are added connecting the new abstract states to the original
states which are consequents of the rules. These links are annotated with func-
tions B2_Action and B3_Action to represent that the new logical states cause
the original events, again capturing understanding of Rapide rule semantics.

We will see the usefulness of the new states higher in the FR. For exam-
ple, the "some-error" logical property will be given Two-Phase Commit domain
interpretation as the intention of recognizing when some resource manager dis-
approves finalizing the transaction.

3.5.3 PD3 - Distribution Removal

The X/Open standard and Rapide architecture emphasize that TM, RM1, and
RM2 are geographically distributed components. Connections between them
are denned in the architecture by connection rules. Rapide produces events for
connection traversal which have the same status as events from other aspects of
architecture behavior. Distribution and intermingled connection and behavior
events complicate architecture understanding. For algorithmic understanding,
we wish to abstract away distribution and its connection machinery.

PD3 is a CPD for a non-distributed version of the Rapide X/Open archi-
tecture, shown in Figure 3.6. In PD3 all of the connection machinery and its

.... ByJJcoi JFoxkXanaectL.

rm1-prepare_call

commit_call

ByFcn: Bl_c

rm1-prepare_call

rm2-prepare_call

ByFcn: User_c

rm1-prepare_ret(ok) rm1-prepare_ret(error)

ByFcn: Connect.

rm 1 -prepare_ret(ok) rm1 -prepare_ret(ok)

rm2-prepare_ret(ok) rm2-prepare_ret(error)

ByFcn: B2J>attern_c; All ok

B2-alLok

ByFcn: B2_Action_c

rm1-commit_call

rm2-commit_call

rm1-prepare_ret(error) rm1-prepare_ret(error)

rm2-prepare_ret(ok) rm2-prepare_ret(error)

JlyFcn: B3_Pattern_c; Some erp

B3-some_error

ByFcn: B3_Action_c

rm1-rollback_call

rm2-rollback_call

Figure 3.6: PD3 - Connection Elimination

consequences have been removed, producing a simpler representation. States

174

and transitions due to connections have been eliminated. Most remaining states
have new names, where connection terminology has been removed from event
names. There are also new functions throughout.

The PD3 fsm is functionally equivalent to PD2 and the architecture in the
sense the same function is being computed. Particularly, the final states of
PD3 correspond to the final states of PD2 and the architecture for all input. It
is not strictly execution equivalent because it does not pass through the same
states and transitions. Actually, PD3 passes through states and transitions that
correspond to a subset of the states and transitions in PD2 and the architecture,
and through added abstract states.

This simplification captures understanding of distribution in the architec-
ture and of its implementation with connection rules. This functional abstrac-
tion'is represented by the new functions. The most important new functions,
shown in regular boldface, show how connections are eliminated. For example,

in PDO, PD1, and PD2 we have:

ByRapide: Fork

tm.xal .prepare_call

tm.xa2.prepare_call

tm.xal .prepare_call

ByRapide: Cl.l; TM->RM1

rm1 .xa.prepare_call T>M1_

TM

Function Fork_Connectl represents understanding of the connection in the
architecture, and of how it may be eliminated. The transitions and states in-
volving the connection above are replaced in PD3 with:

ByFcn: Fork_Connectl

rm1-prepare_call

rm2-prepare_call

i rm1-prepare_call j

Note that that states based or original Rapide events are replaced with
states with new names which eliminate connection terminology, e.g. the "xa"
service designation. While indications of distribution are eliminated, "rml" is
still present to distinguish the two RM's in the non-distributed view. Note also
that the finite state machine still has concurrent sections, as indicated by the
dotted box. Other similar functions are shown in regular boldface.

Because all state names were changed to non-distributed conventions, all
states now have new names, and are abstract states. This means all functions
must be changed to explain the new names. This is included in the functions
above. The remaining functions do not directly eliminate connections, but are
changed for new names, and are shown in italicized boldface in Figure 3.6.

175

3.5.4 PD4 - Concurrency Removal

After distribution is removed, PD3 still contains concurrent processes that ob-
scure the essential Two-Phase Commit Poll-Decide algorithm. In the archi-
tecture, the transaction manager polls both resource managers concurrently.
This is not an essential aspect of Poll-Decide.4 Concurrent polling complicates
representation and understanding.

PD4 abstracts away concurrent polling, as shown in Figure 3.7. Compare

commit_call

ByFcn:Bl_c

rm1-pre'pare_call
rm2-prepare_call

ByFcn: User_SeriaIl

rm1-prepare_ret(ok) mrt-prepare_ret(ok)

rm2-prepare_ret(ok) rm2-prepare_ret(error)

ByFcn: B2_Pattern_c; All ok

B2-all_ok

ByFcn: B2_Action_c

rm1-commit_call

rm2-commit_call

m>1-prepare_ret(error) rm1-prepare_ret(error)

rm2-prepare_ret(ok) rm2-prepare_ret(error)

_ByFcn: B3_Pat :ern_c; Some erra

B3-some_error

ByFcn: B3_Action_c

rm1-rollback_call

rm2-rollback_call

Figure 3.7: PD4 - Serial Effect From RM's

PD4 with PD3 in Figure 3.6. PD4 eliminates the concurrent regions and the
states and transitions involving concurrent polling. The result is a CPD which
is a conventional finite state machine, with no concurrent sub-fsm's. PD4 is
functionally equivalent to PD3. It is execution equivalent to the subset of PD3
which is preserved.

PD4 uses and represents understanding of concurrency in the architecture
and the algorithm. This is captured by four functions like User-Serial 1 which
replace the concurrent regions. These functions' justifications contain under-
standing of concurrency in the Rapide execution model, and of its role in this
specific calculation. For example, function User-Serial 1 causes a transition to

4Of course Two-Phase Commit and Poll-Decide are motivated by concurrent resource op-
erations, involving both multiple transactions and multiple resource operations for the same
transaction. However, in the single transaction view, Poll-Decide takes place after these con-
current operations are finished. Polling doesn't have to be concurrent. The architecture
presumably used concurrent polling either because of 1) an architectural decision to use con-
current polling for efficiency, or 2) to avoid specifying irrelevant detail, because Rapide rule
code is concurrent by default, requiring extra coding effort to make it serial.

176

State [rml-prepare^ret(ok) rm2-preparejret(ok)] when the result of con-
current polling is approval from both resource managers. This is justified by
understandings such as: 1) polling forks from and merges into a single sequential
thread 2) the time orderings of the concurrent processes don't affect results,
i.e. they are serializable, and 3) the user interactions in both RM's determine
the state after concurrent polling.

Once again, functional abstraction created a representation that is simpler
and closer to to top-level intentions regarding Poll-Decide. Implementation de-
tails which are irrelevant at this abstraction level were removed using knowledge
and understanding of the architecture, Rapide, and the concurrency domain.
The understanding which permitted abstraction is recorded in the function jus-
tifications. They capture subsidiary intentions, which have implementations
that can be traced down the hierarchy.

3.5.5 PD5 - X/Open Standard Call Removal

For the purpose of understanding Poll-Decide, concurrent polling is an unneces-
sary and distracting artifact of how Poll-Decide was implemented in the architec-
ture We removed it and recorded understanding of its role and implementation.
PD4 contains one remaining artifact of the architecture - C calling conventions.

Because the X/Open standard described interfaces using C calls and returns,
Kenney used them to define the interfaces between operations of the architec-
ture This causes an call event to be generated at the beginning of an operation,
and a corresponding return event to be generated at its conclusion. For example,
in PD4 states contain paired <rm>prepare_call and <rm>preparejret<code>
events from the polling call to and returns from resource managers RM1 and
RM2 Poll-Decide can be implemented without the equivalent of subroutine
calls and returns, so the calling machinery can be seen as an unnecessary and

distracting artifact. .
As in the preceding sections, we use functional abstraction to simplify and

clarify the representation. PD5 abstracts away calls and returns, as shown m
Figure 3.8. Treatment is similar to the functional abstraction which produced
PD3. PD5, in comparison with PD4 (and lower levels), has eliminated the
calling machinery and its consequences. States and connections due to calling
have been eliminated. Most remaining states have new names, where calling
terminology has been removed from event names. There are also new functions

throughout.

3.5.6 PD6 - X/Open Poll-Decide
In our bottom-up narration, the FR hierarchy culminates in the top level, PD6,
which is a specification of Poll-Decide in the Two-Phase Commit and distributed
transaction processing domains. PD6 is presented and described in Section 3.3
above. It is reproduced below for comparison with PD5.

The representation is organized by functions, each of which relates function-
ality in higher levels to behavior and other justifications from lower levels and

177

ByFcn: User_Calll

rml-prepare(ok) rml-prepare(ok)

rm2-prepare(ok) rm2-prepare(error)

ByFcn: B2_Pattern_cc

B2-alLok

ByFcn: B2_Action_cc

rm1-commit

rm2-commit

rml-prepare(error)

rm2-prepare(ok)

JyFcn: B3_Paiern_cc

rml-prepare(error)

rm2-prepare(error)

B3-some_error

ByFcn: B3_Action_cc

rm1-rollback

rm2-rollback

Figure 3.8: PD5 - X/Open Calling Conventions Removed

commit

ByFcn: Poll-Decide-ok

POLLING-OK

ByFcn: Commit

rm1-commit

rm2-commit

ByFcn: Poll-Decide-error

POLLING-ERROR

ByFcn: Rollback

rml-rollback

rm2-rollback

Figure 3.9: PD6 - Poll-Decide Top-Level

178

domains. Note that functions can be replaced with alternative realizations and
justifications without affecting the higher level. This is part of what "functional"
and "abstract" mean. Note also that functions are useful for non-function un-
derstanding and reasoning. For example, they provide an attachment point for
rationales. With the functions creating PD5, for example, the author could
record the rationale for concurrent polling.

Now that the complete hierarchy has been presented, we can appreciate the
explanation that extends downward from PD6. All of the understandings, sub-
sidiary intentions, implementations etc. discussed in the preceding sections are
preserved and accessible in the FR. This material constitutes a rich explanation
of the architecture in terms of intentions and domains at various level. The
next chapter describes how the explanation can be automatically accessed, fol-
lowing formalized relationships in the FR, in response to particular questions
and needs. The semantics of FR can be described using these relationships.

3.6 Summary
This chapter described a functional representation for the X/Open Rapide ar-
chitecture which captures understanding of Two-Phase Commit Poll-Decide.
The FR is a hierarchy produced by various functional abstractions in various
domains. Each level is a causal process description that is a finite state ma-
chine for complete states of the architecture. The bottom level completely
captures architecture behavior for single transactions. Successively higher lev-
els simplify, refine, and focus the description towards the top-level specification
of Poll-Decide. Abstraction between levels is given by functions, which identify
functionality and intentions in various domains. Function justifications capture
the understanding that enable the architecture to be understand bottom-up.
The also reproduce the understanding needed to implement the architecture
top-down. The complete FR captures many kinds of an understanding in a rich
explanation. It can be exploited in various tools and tasks that require such
understanding.

179

Chapter 4

Rapide Explanation Tool

A functional representation captures understanding of a device. This under-
standing is in the form of an explanation of how abstract functionality is real-
ized in the device. As discussed in Chapter 1, writing an FR for an architecture
creates and systematizes understanding for documentation and communication.
Beyond this, the FR has specific benefits at two levels:

1. The FR provides explicit answers to certain questions.

2. These answers are necessary or useful for architecture evolution tasks.

This chapter discusses important question classes, and procedures for easily
obtaining answers from the FR. These answers are the primitive elements of
the FR's complete explanation. Answering such questions is a general quality
of FR's and architecture FR's, independent of ultimate application. Chapter 5
describes how answers delivered for architecture questions can be applied to
improve architecture evolution.

More specifically, here we describe how the explanation can be automatically
accessed in response to particular questions and needs. Answers are delivered
based on the relationships in the FR. We first give a generalized model of FR's,
identifying the major entities and relationships. We then give a catalog of
question types which may be answered and procedures for answering them. A
practical explanation tool is described. We discuss its use for navigating the FR
and providing needed answers and explanations on demand.

4.1 Delivering Explanations From FR's

Explanations are assertions and inference links which connect intentions to each
other, and which connect intentions to the architecture. There are many possible
explanations for an architecture.1 An FR for an architecture makes explicit

1 There are infinite possible explanations for the architecture because there are infinite valid
assertions and inferences that can be made about it. More practically, there are many useful
views, models, theorems etc. for the architecture.

180

one of the possible explanations. Given a particular FR, we say that it is a
complete explanation in the sense that it contains everything the author wanted
to include. The author deemed it sufficient for his or her purposes, and stopped
adding new material. We consider this FR to be the entire explanation universe
for the purposes of this chapter.

Still, FR's for even simple devices and architectures can be large and com-
plex. For example, the X/Open FR in the preceding chapter has many states,
functions, and components in seven layers. In textual functional representation
syntax, the FR is voluminous and the relationships are obscure. Therefore, in
the previous chapter we used drawings for individual CPD's. To be clear, we
could only display a single, greatly simplified CPD at a time. It is not practical
to present the complete FR graphically on normal-sized paper. Size aside, the
relationships, including function definitions and CPD transitions, can include
multiply diverging and converging branching. For these and other reasons, the
complete FR and explanation cannot be presented or comprehended at one time.

Rather, the FR user must focus on parts of the FR, as dictated by his or
her current needs. Parts of the complete FR or explanation are themselves
explanations. At a certain size and complexity they become comprehensible
and useful nuggets of assertions and inferences. The smallest explanations are
the primitive relationships of FR. The FR primitive relationships can be seen
as answering important questions. In this chapter we will describe delivering
explanations in terms of these primitives.

Figure 4.1 summarizes this. A large and complex complete FR or explana-

Two-Phase Commit Protocol

Poll-Decide

Question

Answer:

FR:
Complete

Explanation

Architecture - ADL
(RAPIDE Prototype)

Figure 4.1: Delivering a Primitive Explanation From an FR

tion is shown with a simplified depiction. Delivering a primitive explanation
involving the indicated state transition requires answering the question, "How

181

does the transition occur?" The state change is achieved by a particular abstract
function. The function's justification describes how the transition is achieved
by lower level behavior, principles etc. Therefore the question is answered by
presenting the function definition and its connections in a lower CPD. The func-
tion and function justification are "How" and "How Implemented" relationships
between the questioned transition and its realization.

In general, explanations can be delivered by extracting primitive relation-
ships in the FR based on their semantics. This provides answers to simple
questions. More complex questions may cause larger explanations to be con-
structed and delivered by combining primitive answers. In this chapter we will
mostly describe the primitive relationships of FR and the questions they answer.

4.2 FR Entities and Relationships

The FR language is described in [2], [7] and elsewhere. We will give a simplified
FR-Rapide description based on [7] and FR-Rapide extensions.

To illustrate this description, we will use the generalized example functional
representation in Figure 4.2. The figure includes the elements of the X/Open

CPD2 ByFcn: Fcnl

CPD1 stateM

Figure 4.2: Generalized Functional Representation

FR in the preceding chapter.
The primitive boxes are states, with state names or predicates like "state2-

1". States are connected with directed links or transitions. Sets of connected
states and transitions form state transition diagrams called causal process de-
scriptions or CPD's.

There are various grouping constructs involving CPD's. A named CPD,
e.g. "CPD2", may comprise a complete level in the FR's explanation hierar-
chy. CPD's contain named sub-CPD's called components, e.g. "Componentl".
Logically, components, levels, and larger aggregations in the FR, and the com-
plete FR are all devices.

182

Transitions have various annotations. The most important annotation is
ByFcn which gives a function name with a corresponding function justifi-
cation or definition, e.g. "Fcnl" and "Fcnl Def". Function definitions have
various forms which we won't describe here. Typical elements in the definitions
are preconditions and postconditions (If and ToMake), and definition elements
describing a realization of the function in terms of CPD's, components, func-
tions, definitions, inferences, domain principles etc.

Other annotations are specific to Rapide and architectures. ByRapide
connects a transition to a Rapide rule by which it is realized. InPoset connects
states, transitions, and CPD's to parts of Rapide posets which record instances
of those FR elements in a particular Rapide execution.

4.3 Questions and Answers

The FR syntactic description above included relationships that are specified
explicitly in FR's, e.g. transition(<state>, <state>). There are also implicit
relationships which can be easily inferred from the syntactically explicit rela-

tionships.
Questions are partly specified relationships. Answers are bindings to the

missing elements, which are provided by the FR. For example, the question:

Q> What state makes a transition to state2-2?

is a natural language form of the partly specified relationship: transition(?,
state2-2). It is answered:

A: state2-l makes a transition to state2-2.

by finding in the FR that "state2-l" has a causal link to state2-2 and can be
bound to "?". Similarly, the question:

Q> What is the relationship between state2-l and state2-2?

is a natural language form of ?(state2-l, state2-2). It is answered by binding
"transition" to "?".

There are many syntactic relationships in FR's. Such questions correspond
to the explicit and implicit relationships in the FR, along with possible missing
elements. Therefore there are many such questions that can be answered by the
FR. It would be possible to construct a general facility to answer meaningful
questions, e.g. like a relational database query language.

However, there is a relatively small set of relationships and questions that are
especially important for architecture evolution tasks. Some important question
classes are shown in Table 4.1.

First we will consider questions involving standard FR elements. Then we
will discuss questions involving extensions for FR-Rapide. In both cases, simple
answering procedures will be given for each question type.

183

1. Where is statel-2?

2. When does statel-3 occur?

3. What does Fcnl do?

4. How is state2-2 achieved (starting with state2-l)?

5. How is Fcnl implemented?

6. Why is state-1 used?

7. Why is Rapide rule Bl used?

8. Where is poset event explained?

Table 4.1: Important FR and FR-Rapide Questions and Relationships

4.3.1 FR Question Classes

FR question classes involve FR elements that are used in FR's for all kinds
of devices, not just architectures. Therefore the following discussion applies
to architectures, and to other kinds of devices as well. An explanation tool
delivering answers to these questions can be used for both architectures and
other kinds of devices represented by FR's.

Where Questions — Syntactic Context

Where questions refer to objects' locations and contexts in the FR. An entity
may be located in various, possibly nested contexts.

A simple Where question is answered by finding the object and giving an
immediately enclosing context:

Q> Where is statel-2?

A: statel-2 is in component Componentl.

Nested contexts can be retrieved by subsequent questions:

Q> Where is Componentl?

A: Componentl is in CPD CPD1.

Q> Where is CPD1?

A: CPD1 is the bottom level of the FR.

More complex question forms and answering procedures can be used to re-
trieve nested and/or multiple contexts with a single question.

184

Where explanations are based on Is-In relationships in the FR. There are
corresponding questions based of the inverse relationship, Contains.

When Questions - Causation

When questions retrieve immediate causal relationships. Recall that FR and
Rapide are based on causation rather than time. Therefore, asking "When does
<state> occur?" is asking about what causes the state. "When" refers to
sufficient cause rather than a particular moment in time. It entails logical and
temporal order. Furthermore, FR considers states to be the causes of subsequent
states.

A simple When question is answered by finding the questioned state and
returning state or states that have a transition to it:

Q>When does statel-3 occur?

A: statel-3 depends on statel-2.

More complex question forms and answering procedures can be used to re-
trieve causal sequences and branching within a CPD.

When explanations are based on the May-Cause relationships in the FR.
There are corresponding questions based on the inverse relationship, May-
Depend-On.

What Questions - Function Effect

What questions retrieve functionality represented in the FR. Simple function-
ality is a state change from a function's precondition state to its postcondition
state. The states describe the net effect of the function - what it does.

A simple What question is answered by giving the precondition and post-
condition states of a function:

Q> What does Fcnl do?

A: Given state state2-l, function Fcnl achieves state state2-2.

Note the difference between What questions and When questions. When
questions refer to arbitrary state transitions, which may be of various types. In
contrast, What questions refer only to transitions caused by functions, where
transition links have the ByFcn annotation.

What explanations are based on the Function-Achieves relationship between
a function and its state change effect. The inverse Achieved-By-Function rela-
tionship is important enough to distinguish in the following question type.

How Questions - Function Name

How questions retrieve the names of functions which realize state change func-
tionality. They are an inverse of What questions.

The simplest How question gives the name of a function which achieves a
given state change effect:

185

Q> How is state2-2 achieved (starting with state2-l)?

A: Given state state2-l, function Fcnl achieves state state2-2.

Th function name is obtained from the ByFcn annotation on the transition.
For many purposes, the function name may be evocative enough to be a useful
explanation.

How Implemented Questions - Function Realization

How Implemented questions retrieve descriptions of functions' realizations:

Q> How is Fcnl implemented?

The question is answered by giving the function's definition or justification.
The form of the answer depends on the form of the function justification

and the detail sought. Recall that function justifications can use CPD's, com-
ponents, functions, definitions, inferences, domain principles etc.

The simplest answer can be given when a function is implemented by a
named CPD:

A: Fcnl is implemented by CPD CPD1.

More general and detailed answers can be given by describing the imple-
menting CPD in various ways. For example:

A: Fcnl is implemented by a CPD with the causal sequence:
statel-2 -> statel-2 -> statel-3

Giving all the states is general, but may be confusing when there are many
states and/or the states are obscure. Alternatives depend on the particular
function definition. For example, it may be possible to say that the function is
implemented by a component.

On the other hand, there is more to the justification than just the states. It
may be useful to also convey the annotations, componentization, level, context,
domain connections etc.

Depending again on the function definition and its nature, the diagrammatic
form of the CPD may be the preferred answer. This requires departing from
natural language explanation and the question answering model of explanation.
We discuss alternative explanation modalities in Section 4.4 below.

How Implemented explanations are based on the relationship between func-
tion names and definitions. The inverse relationship is important enough to
distinguish as the following question type.

Why Questions — Abstract Intentions

Why questions recover intentions that are realized by abstract implementations.
Elements in a function justification are associated with the whole function and
functional abstraction:

186

Q> Why is state-1 used?

A: state-1 is used to implement function Fcnl.

The question is answered by giving the function's justification or definition.
The form of the answer depends on the form of the function definition and

the detail sought. Recall that function definitions can use CPD's, components,
functions, definitions, inferences, domain principles etc.

More detailed answers are possible. For example, more about the query el-
ement's role can be shown by giving the function definition. More about the
function can be shown by giving its functionality (as with What questions).
However, the simplest answer may be preferable first, especially when the func-
tion name evokes functionality and other questions can be asked for more details.

Stronger answers may or not be possible. For example, Why questions may
be seen as seeking explanation of the way the querying element interacts with
other elements in the function definition. Or they may be seen as seeking
design rationale. Such interpretations of why questions depend on the function
justification, and on the kind of explanation sought.

4.3.2 FR-Rapide Question Classes

The question types above apply all FR's, for all kinds of devices. Fr-Rapide
extends FR with bits of Rapide-specific syntax designed to specialize certain
explanations to Rapide. They create FR-Rapide specific question classes. Here
are some examples:

How Questions — Rapide Implementation

At the bottom level of the FR, transitions are caused by Rapide structure, not
abstract functions. We give a distinctive answer form for How questions in this
case:

Q> How is statel-2 achieved (starting with statel-1)?

A: By Rapide rule Bl [- <rule>]

The form of the question is the same as the general How question above.
However, at the bottom level states are Rapide events, and transitions are anno-
tated with ByRapide and a pointer to an element of the Rapide code, typically
an abstract behavior rule or a connection rule. The presence on a ByRapide
annotation instead of a ByFcn annotation triggers the Rapide implementation
answer form. The answer form is similar combined answers to a How and a How
Implemented question above.

How questions with Rapide implementations are based on the relationship
between bottom-level FR transitions and implementing Rapide code. The in-
verse relationship is important enough to distinguish as the following question
type.

187

Why Questions - Intentions for Rapide Code

Why questions should be answered for Rapide implementations as well as for
abstract implementations. Given a Rapide element, intentions which the Rapide
code implements are recovered from the FR.

Q> Why is Rapide rule Bl used?

A: Rapide rule Bl is used to achieve statel-2 (starting with statel-1)

The question is answered by giving parts of the FR that use the Rapide element.
In this case the Rapide element is a rule which implements a single transi-

tion. There are more complicated cases. Given Rapide rules may be involved
in various transitions in the FR. Rapide elements besides rules can be queried,
e.g. "Why is Rapide jevent£ used?" The general answering strategy identifies
all places in the FR that directly depend on the Rapide element. These rela-
tionships are more restricted than the relationships involved in the general Why
questions above.

Rapide Behavior Questions — Intention Poset Mappings

Unlike most other FR domains, Rapide provides an explicit, standardized rep-
resentation of behavior - posets. For this behavior record to be useful, it must
be mapped to both Rapide code and abstract intentions, e.g. during analysis
or debugging. Presumably the Rapide environment records pointers to causing
code in posets, and provides tools for relating traces to code. The user is then
left to figure out the code's intentions and relate them to correct or incorrect
behavior in the poset.

With FR we have a record of intentions. Therefore it should be possible to
give some intentions for given behavior in the poset. This could be valuable for
many Rapide activities involving interpreting posets.

Questions involving poset elements could be answered using Rapide methods
to map from poset behavior to Rapide code, and then using the Why question
above to find parts of the FR which depend on that code element. However,
this is circuitous and crude. For example, since there may typically be a many-
to-relationship between events and code, the Why question could return FR
elements for all the events related to a rule, not just the FR elements related to
the single query event.

Therefore we suggest a question type that returns FR elements related to
poset behavior elements. For example:

Q> Where is <poset event> explained?

A: <poset event> is in statel-1

There are various cases, but the answering procedure can be similar to that
for Where questions above. In Where questions a given FR element is located,

188

perhaps anywhere in the FR. In Rapide Behavior questions, the query item is
a behavior element, not an FR element. So it is necessary to look within FR
elements, and the behavior element may be found in multiple places in the FR.
However, the behavior element will only be found low in the FR, in concrete
states or transitions. For example, assume a query is made using a poset event.
The event may be found as part of one or more FR concrete states.

Rapide Behavior questions relate behavior to concrete parts of the FR con-
taining Rapide events and transitions. Other question types can then be used
to expand the explanation with abstract intentions, including functions and
abstract states.

There is obviously an inverse form of this question type. Given an intention
in the form of a concrete FR element, we can see where it is manifested in a
poset behavior description.

Rapide Behavior questions provide the explanation primitives for many
Rapide activities involving simulation and poset behavior traces. Tasks like
architecture debugging, reverse engineering, analysis, and design verification
can benefit from captured understanding that relates behavior to intentions.
This is analogous to uses of FR with simulated behavior in physical devices,
e.g. as described for simulation and design verification in [10] and [5].

4.4 FR-Rapide-Explain Tool Design

We now consider the design of a practical tool for delivering explanations. Recall
that we are emphasizing explanation primitives, as shown by the question types
above. Larger explanations can be constructed from these primitives.

We suggest a tool design that combines two interface paradigms:

1. Question Answering

2. Graphical Hypertext Navigation.

4.4.1 Question Answering

Question answering was described above. That discussion was partly intended
to describe FR explanation semantics in terms of primitive elements of under-
standing and explanation. The discussion was also intended to give a model of
FR content and explanation delivery.

Still, question answering has attractive qualities for practical tools. For
example, the interface itself is easy to implement. Furthermore, interaction
and output is self-documenting, so little training is required. This is because
we already know meanings of the language involved. Only a small, structured
subset of English is used. Therefore it is possible to quickly learn precise FR-
Rapide semantics as specialization of initial intuitive semantics.

Some of the advantages for simple novice use become disadvantages for more
complex explanations and expert use. For example, typing questions is slow,

189

and natural sounding answers seem verbose with familiarity. Similarly, question
answering has narrow bandwidth and single, textual modality.

4.4.2 Graphical Hypertext Navigation

Graphical hypertext navigation offers complementary qualities. It is an alter-
native paradigm for viewing an FR. Navigation is like a human reading a large,
graphical depiction of the FR hierarchy. We can move freely over the FR, ex-
panding or contracting context as needed. Multiple relationships and complex
CPD's are visualized from diagrams. Complexity of the presentation can be con-
trolled, e.g. by clicking to expand of contract the amount of detail presented.
All this contrasts markedly with interaction though a narrow, local question
answerer gate keeper.

Lewis Johnson's I-Doc is an example of delivering explanations of programs
by hypertext browsing, using the World-wide Web. [6] Instead of producing large
documents with general information about a system, I-Doc generates specific
descriptions, sensitive to the user's work context and level of familiarity with
the system. Explanation technology is used to guide the generation process.

I-Doc handles full natural language documentation, with arbitrary hypertext
links. Navigating FR's, in contrast to documentation text, only requires a small
set of link types, e.g. for FR primitives. On the other hand, FR should be more
graphic, using diagrams instead of text, e.g. for CPD's, function definitions,
and hierarchy visualization

4.4.3 Tool Design

We propose a tool that combines features of question answering, graphical hy-
pertext navigation, and I-Doc.

The user sees the FR primarily as a hierarchy of CPD's, with controllable
detail. This is like the presentation of the X/Open FR in the figures in Chap-
ter 3. An initial view could give an overview of the FR, like Figure 3.1. Clicking
on a box gives a diagram for the corresponding CPD, e.g. like the CPD figures
in Chapter 3 such as Figure 3.2. Clicking on a function name gives its justi-
fication, as in Figure 1.4. Displaying such a justifications gives paths between
CPD's, e.g. between PD6 and PD5 in that figure. Point and click interactions
can be equivalent to asking questions (Figure 4.1).

Where it's meaningful, question answering semantics and interface is pro-
vided in parallel with point and click navigation. For example, a menu of
relevant questions is displayed beside the graphical browser. When the cursor
is on graphical elements, e.g. a function name, questions light up giving the
meaning of possible mouse clicks, e.g. What and How questions based on the
function name. Alternatively, navigation can be done by clicking on, or typing,
a question instead of clicking in the diagram. Similarly, when the answer to
a question is displayed graphically, the natural language answer can often be
given in an answer box under the question. This immediately and constantly
provides natural language explanation explicating the graphical explanation.

190

Such a tool could be implemented gradually, starting with the simplest ca-
pabilities and existing interfaces. For example, the CPD figures in Chapter 3
could be combined and browsed in a WWW demonstration.

4.5 Summary

This chapter discussed how explanations can be usefully obtained from FR-
Rapide architecture FR's. Primitive explanation (and FR semantics) were de-
scribed using the question answering paradigm. We gave a catalog of question
types which may be answered and procedures for answering them. There were
question types for all FR's and special question types for FR-Rapide. Asking and
answering questions is similar to certain navigations in the FR. We contrasted
the question answering and graphical navigation paradigms of explanation de-
livery. A practical explanation tool was described for for navigating the FR
and providing needed answers and explanations on demand. It provides con-
nected question answering and graphical hypertext navigation interfaces which
complement each other.

191

Chapter 5

Evaluation and Discussion

This chapter evaluates and discusses the limitations, generality, benefits, and
prospects for applying FR to architecture-based software engineering. We first
introduce issues and a basis for evaluation. Then we discuss FR-Rapide with
respect these criteria at three levels of generality: 1) the Rapide X/Open archi-
tecture, 2) other Rapide architectures and processes, and 3) general application
to architecture-based methods. We conclude by reviewing our contributions and
suggesting further work.

5.1 Evaluation Basis

We will take a top-down, benefit-based approach to evaluation. This means
empirically considering the potential benefits of FR applications to architecture-
based methods, and balancing them with costs and limitations. The resulting
cost-benefit can be compared with alternative approaches for particular FR's,
applications, and tasks.

5.1.1 FR Benefits

The general benefits of creating and using FR's for architectures were discussed
in Introduction Section 1.4.2. Writing an FR creates and systematizes under-
standing. The extant FR is a notation which records and recalls this under-
standing for the author. Similarly, the FR is a notation for communication
between the author and others. It serves the role of documentation, but with
added formalized structure and conventions. Finally, the FR allows captured
understanding to be manipulated, delivered, and exploited by automated tools
and environments.

In all these roles, the captured understanding is beneficial if it makes it easier
to perform architecture evolution tasks. This is described more precisely and
operationally by the question answering paradigm. Question answering shows
exactly what information can be provided to a human or automatic user from

192

an FR This information is beneficial if it is necessary or useful for performing
specific architecture evolution tasks. Chapter 4 gave types of questions that can
be easily answered by an FR. For example, questions of the type "What does
function do?" are answered by giving the state change caused by the function.
The state change is described by precondition and postcondition states in a

state language.
Therefore, beneficial answers and information can be delivered if the b H has

useful content. We evaluate potential benefit by considering the content which
can be represented in FR's, e.g. specific functions and state descriptions. FR is
highly general for representing architecture understanding. We believe FR, in
principle, can capture any useful architecture and software engineering causal
content. There are no known theoretical counter-arguments. This working
hypothesis of FR representational completeness and generality can be stated:

FR can represent any human causal understanding used in software

engineering.

Practical benefit depends on empirical issues, especially scalability, language,
and validity. Scalability means that useful sized FR's can be created without
practical problems of storage or access. Language issues involve the existence
and semantics of adequate languages for FR state and function descriptions
and justifications. Languages may range from informal to formally verifiable,
depending on needs. Validity means that the FR is sufficiently correct for its
intended purpose, within the constraints of its languages. These issues interact.
For example, for given content, an FR with more detailed, formally verifiable
state language requires more storage and access effort than natural language
state descriptions, and is harder to create correctly.

Some beneficial FR's can obviously be created. Consider an architecture
evolution task which depends on one page of documentation, e.g. documenta-
tion describing how architecture components change states in the requirements
domain This documentation can be represented in FR. The FR constitutes
semi-formalized structured documentation. The FR increases the size of the
documentation, perhaps to five pages, but it will still have practical scale. The
FR state language will be natural language, and can have the same semantics
and validity as the original. The FR can answer the same questions, and provide
the same benefits to the task as the original documentation.

Example FR's are existence proofs for benefits. Practical benefits have been
shown for example FR's in non-software domains. An FR for X/Open Rapide
architecture is described in this report. This FR clearly has scale, language,
and validity that is practically useful for tasks involving X/Open Poll-Decide,
as discussed above and below. Practical benefits can be empirically investigated
by creating more architecture FR's of varying size, language, and purpose.

5.1.2 FR Costs
Capturing understanding in FR can clearly be beneficial. However, the benefits
must be worth the cost of creating and using the FR.

193

The obvious, seemingly unavoidable, cost is FR creation. As described in
Chapter 1 and summarized in Table 1.1, creating an FR is a creative, laborious,
expensive, and error-prone process. This cost can be seen as consisting of two
components: 1) the cost of creating needed functional causal understanding,
and 2) the cost of formatting this understanding in FR syntax. In many cases,
1) the cost of creating needed understanding can be fully or partially discounted.
For example, the needed understanding may already exist, and it may also be in
a form close to FR, e.g. related formal specifications. Or, if the understanding
must be created, it is likely to be necessary or useful regardless of whether it is
in FR or some other notation. In this case, the cost of creation can be reduced
by the value of other uses of the created understanding.

The creation costs unique to FR include the costs of creating functional
understanding of a form that would not be used otherwise, writing it in the FR
language, and validating the FR. These costs vary widely, and depend on many
situational and empirical factors. Note that creation is only performed once for
a given FR, and therefore is a one-time overhead cost.

The cost of accessing the FR is also situational and empirical. Access may
produce a net benefit. Free access is provided when the FR is read manually,
like documentation. Other forms of interactive and automatic access, such as
question answering and browsing, as discussed in Chapter 4, cost more but may
offer additional benefits. Particularly, because FR formalizes key understanding
primitives, it enables understanding to be accessed, manipulated, and exploited
by a wide range of tools and environments. Automatic access can therefore
be a net benefit instead of a cost. More broadly, appropriate access enabled
by FR can create valuable synergies. For example, we said that the cost of
creating understanding should not be charged against FR if the understanding
would have been created otherwise, and/or has other uses. Having automatic
access provided by FR may enhance those other uses, and provide additional
applications beyond those which initially motivated FR creation.

5.1.3 Relative Cost-Benefit and Empirical Evaluation

Cost-benefit therefore depends on the value of benefits over time, versus the
overhead of creating and using the FR. It depends on particular FR's, archi-
tectures, goals, tasks, applications, tools, environments, processes, people etc.
Cost-benefit can only be determined empirically, in increasingly realistic appli-
cations and environments.

For both thought experiments, examples, and empirical evaluation, cost-
benefit should be evaluated relative to alternative approaches. Presumably
needed architecture evolution tasks will be performed in a particular environ-
ment, with particular people, process etc., with or without an architecture FR.
FR cost-benefits should be compared with alternative existing or proposed ap-
proaches. The task fixes the scale, language, and validity needed, independent
of FR. For example, above we said that an FR roughly equivalent to given
short documentation can answer the same questions and provide at least the
same benefits. A relative cost-benefit comparison would consider the cost of

194

reformatting the documentation in FR, and the cost and benefit of particular
forms of access for the original documentation and the FR representation. In
certain tasks, the FR gives easier, more useful access than the the documen-
tation, e.g. hypertext browsing by function or isolating functional hierarchies
under particular views.

So far we have one exploratory example of an architecture FR. Examples
explore issues, show feasibility of construction and application, and give an
upper bound data point for costs. The X/Open Poll-Decide example FR gives
particular views, abstractions and languages. We evaluate this FR below. Then
we generalize from our experience to other FR's for X/Open, FR's for other
Rapide architectures and applications, and FR's for architecture-based software
engineering with non-Rapide architectures and ADL's.

5.2 FR's for Rapide X/Open Architecture

5.2.1 Example X/Open Poll-Decide FR

The X/Open Poll-Decide FR and its authoring decisions are described in Chap-
ter 3. Understanding X/Open and its design intentions is discussed at the end
of Chapter 2. Writing this FR was an exploratory exercise, and this influenced
the design designs. Because it was an exploratory exercise, many aspects were
probably not typical, so we won't over-interpret the exercise. Here are some
experiences and observations:

1. Authoring effort was high, in part because of the need to understand the
architecture and its domains.

2. It was possible to understand and model the architecture with a finite
state machine in the bottom level of the FR. This led to complete, simple
descriptions with total states at other levels of the FR.

3. Abstract devices and components were not needed to control complexity.

4. The abstraction hierarchy reflected abstraction towards the chosen top-
level of algorithmic intentions. Particular abstractions, e.g. distribution
and concurrency removal, were somewhat independent of each other and
abstraction order.

5. Intentions were complex, but they were organized into simple, local inten-
tions, domains and languages by the chosen functional abstractions.

6. Given an understanding or view, it was relatively easy to form the FR.
The understanding suggested the functions and state descriptions.

7. Other views and hierarchies could have been constructed to coexist in the
same FR, as discussed below.

195

5.2.2 Other X/Open FR's

The X/Open FR was constructed with a general bias towards algorithmic under-
standing, e.g. for verifying and/or modifying the Two-Phase Commit implemen-
tation. Other tasks require views and abstractions not present or emphasized
in the example FR. From our experience it seems possible to create FR's for
other useful views and functions. Such FR's could exist independently. They
could also be combined, in an FR which shared lower levels, and then branched
upward at various levels to different "top-level" descriptions.

Similar Views and FR's

Here are some alternative views and FR's which seem to be constructible in a
manner similar to the X/Open Poll-Decide FR:

1. Procedure Call Program - The FR displays procedure calling, and ab-
stracts away concurrency and computed function. This could be used to
visualize or modularize the calling structure.

2. Correctness Proof - The FR is a formal correctness proof of Poll-Decide's
correct functioning in a larger atomicity proof. The state language and
function justifications are formal specifications and proof steps. The FR
hierarchy is the proof tree, and displays independent components to the
extent that the implementation and proof are modular.

3. Poset Trace Interpretation - Chapter 4 described how questions can be
answered about how the FR's intentions correspond to the poset behav-
ior trace for a particular execution. Such correspondences could be per-
manently build into an FR, for one or more simulated executions. The
correspondences could be given by a new annotation type or by functions
with justifications specific for each execution.

4. X/Open Patient Billing System - In [11] Luckham and Kenney give an-
other Rapide architecture, Patient Billing System, which incorporates the
X/Open architecture. FR's can be constructed for this combined architec-
ture, and other architectures embedding X/Open. They show the interface
and functionality of X/Open in the larger architectures.

Problematic Views

On the other hand, we identified some views and understandings that could not
be readily captured by FR. Some of these involved limits of static understanding,
rather than FR alone.

Our FR and the others above are nominally based on understanding based on
the single transaction assumption. Views involving multiple transactions were
not attempted, in part because they are not necessary for algorithmic under-
standing of Poll-Decide. Presumably FR's could be created for reasoning about
multiple transactions. They could involve interpretation of poset behaviors with

196

multiple transactions. They could also introduce states justified by the kinds of
multiple transaction variants used in the transaction processing literature.

As one example, the X/Open architecture is parameterized so it describes a
family of architectures. The family consists of architectures with an arbitrary
number of Resource Managers. The parameter NumRMs specifies the number
of Resource Managers at architecture generation time. Our X/Open FR was
for an architecture with two Resource Managers. For a substantial number of
RM's, the FR would explode in complexity. No way is now known to simply
parameterize the FR for NumRMs, like the Rapide code is.

Similarly, Rapide is claimed to support dynamic architectures in the sense
that architecture components can be created and destroyed at simulation time.
It is challenging to represent understanding of such dynamism in FR (and other
representations).

5.3 Rapide Architectures and Applications

5.3.1 Other Rapide Architectures
Here are some issues not encountered in the X/Open example FR which could
affect the construction of FR's for other Rapide architectures.

1. Constructibility with finite number of states

2. Complete states vs. partial states and delocalization, complexity...

3. Use of Rapide constraints.

5.3.2 Rapide Applications
As discussed in Section 1.4.2, and above and below in this chapter, FR's are
applicable to a wide variety of architecture tasks and tools. Tasks require un-
derstanding. When an FR captures and delivers that understanding it can be
useful in an application. Furthermore, FR's can capture a wide range of human
causal understanding.

The general architecture applications below mostly apply to Rapide tasks
and tools. Here we will mention several specific Rapide applications. These are
from the Rapide literature. [11] They would be good examples for studying the
relative cost-benefit of FR-Rapide and possible tools.

The X/Open Patient Billing System shows how Rapide posets reveal a bug
- failure of the Transaction Manager to poll all resource managers. FR's can
be constructed to 1) reveal this bug statically, and 2) explain the bug revealed
in the poset, using connections between the poset and intentions in an FR,
including the failed coordination intention.

An FR can be used to plan simulations and record the rationale for particular
simulation runs and analyses. For example, we can record understanding of
why particular input may reveal a bug or correct function, in terms of abstract
intentions.

197

The X/Open Patient Billing System was both a debugging example and
an example of comparing two architectures, e.g. a local instance architecture
against a reference architecture. FR's can be constructed to 1) compare archi-
tectures statically, based on differences in their FR's, and 2) explain comparison
using Kenney's method of comparing mapped posets.

5.4 Architecture-Based Software Engineering

What are the generality and limitations of FR for architecture-based software
engineering using ADL's and environments other than Rapide?

As we have repeatedly said, FR is broadly applicable, because many archi-
tecture tasks require causal understanding and explanation. FR applicability
for an application to a given task or tool can be assessed by asking potential
users:

"What explanation does your application need?"

If the needed explanation involves causal reasoning, FR could support it,
in principle. We say this because we believe that FR can capture any causal
understanding used in software engineering.

Specific applications could be need driven. They can involve various archi-
tecture processes, tasks, and users. These can each involve process types like
design, maintenance, evolution, testing, analysis, verification, validation, and
system implementation. For each of these, there are many specific tools and
uses. Commonly mentioned categories include debugging, documentation (e.g.
dynamic, structured, natural language, automatic...), explanation, simulation,
rationale capture, question answering, trace interpretation and explanation, de-
sign verification, various kinds of inferences involving causal chains, and task-
specific tools, e.g. an intention-based configurer for a domain-specific family of
architectures and system products.

Perhaps it's easier to discuss what FR does not apply to. It certainly cannot
create understanding that is otherwise impossible. FR, and any other repre-
sentation of understanding, can only represent what can be known from the
information available. One example of this above was the impossibility of rep-
resenting behavior that depends on unavailable dynamic information.

More practically, FR is limited to causal processes. Temporal processes
are usually causal processes. There are causal processes that are not acutely
temporal. Chandrasekaran is refining these limitations of FR in forthcoming
work on the foundations of FR.

Roughly, we say that architectures and ADL's are subject to causal under-
standing and FR representation if they are executable architectures. Architec-
tures that consist only of static, structural relationships, e.g. module-connection
descriptions, have no causal content, and FR is not relevant to them.

On the other hand, architectures that have temporal behavior are causal.
This temporal behavior must be specified by some form of program. There-
fore architecture understanding overlaps program understanding. Architectures

198

may have programming aspects less common in routine imperative, sequential
programming, e.g. rules, distribution, and concurrency. But these aspects are
also present in non-architectural programs. Conversely, imperative, sequential
programming may be used to give architecture behavior, e.g. in implemented

Rapide modules. ,
The point is, there is no clear division between work in program understand-

ing and work in architecture understanding. We are exploring the use of FR to
capture and exploit understanding in both program understanding and archi-
tecture understanding. The use of FR in program understanding is described
in [4] and elsewhere. Insights from FR-Rapide architecture understanding have
helped program understanding work, and vice versa.

5.5 Contributions and Future Work

The contributions of this work include:

1. A framework for discussing architecture understanding, its representation,

and its applications.

2. FR-Rapide, a method of capturing and exploiting understanding of Rapide

architectures.

3. An example FR representing hierarchical understanding of the X/Open

architecture.

4 A model and semantics for FR explanation delivery based on the question
answering paradigm, including important question types and answering

procedures.

5. Design of a tool which delivers explanations from FR's, which combines
question answering and graphic hypertext navigation.

6 Evaluation of with the example FR, and evaluation of the limitations
generality, benefits and prospects for applying FR to architecture-based

software engineering.

Future work may include:

1 Development Examples - Constructing more architecture FR's to explore
scalability, language and validity issues, and specific technical problems
such as partial states and views, function justification syntax, and the use
of abstract sub-devices.

2 Demonstrate Application Benefit - Start relative cost-benefit empirical
studies, perhaps using existing Rapide examples and tools, as described

above.

3. Tool Development - Start developing and testing an explanation tool,
perhaps using some of of the design given above.

199

Acknowledgments

The Stanford Rapide project, including David Luckham, Larry Augustin and
John Kenney, provided helpful insights and information.

200

Bibliography

[1] Dean Allemang and B. Chandrasekaran. Functional representation
and program debugging. In PROCEEDINGS of the 6TH ANNUAL
KNOWLEDGE-BASED SOFTWARE ENGINEERING CONFERENCE.
IEEE Computer Society Press, 1991.

[2] B. Chandrasekaran. Functional representation and causal processes. In
Marshall Yovits, editor, ADVANCES in COMPUTERS. Academic Press,
1994.

[3] David Garlan and Dewayne E. Perry. Introduction to the special issue on
software architecture. IEEE Transactions on Software Engineering, 21(4),
April 1995.

[4] John Hartman and B. Chandrasekaran. Functional representation and
understanding of software: Technology and application. In 5TH AN-
NUAL DUAL-USE TECHNOLOGIES and APPLICATIONS CONFER-
ENCE. Mohawk IEEE and Rome Lab, May 1995. Utica, New York.

[5] Y. Iwasaki and B. Chandrasekaran. Design verification through function-
and behavior-oriented representations. In Proceedings of the Conference on
Artificial Intelligence and Design, 1992.

[6] W. Lewis Johnson and Ali Erdem. Interactive explanation of software
systems. In Proceedings KBSE'95 - The Tenth Knowledge-Based Software
Engineering Conference. IEEE Computer Society Press, November 12-15
1995. Boston, Mass.

[7] John R. Josephson. Technical note on formalizing functional representa-
tion. In J. Hodges, editor, AAAI-94 WORKSHOP on REPRESENTING
and REASONING ABOUT DEVICE FUNCTION AAAI, 1994. Seattle,
Washington.

[8] John J. Kenney. EXECUTABLE FORMAL MODELS of DISTRIBUTED
TRANSACTION SYSTEMS BASED ON EVENT PROCESSING. PhD
thesis, Stanford University, June 1995.

[9] Paul Kogut and Paul Clements. The software architecture renaissance.
CrossTalk, 7(ll):20-23, November 1994.

201

[10] Susan T. Korda. USING FUNCTIONAL REPRESENTATION FOR
SMART SIMULATION OF DEVICES. PhD thesis, The Ohio State Uni-
versity, Dept. of Computer and Information Science, 1993.

[11] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, and Walter Mann. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering, 21(4):336-355
April 1995.

[12] David C. Luckham and James Vera. An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering, 21(9): 717-734,
September 1995.

»U.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-61165

202

DISTRIBUTION LIST

addresses number
of copies

DOUGLAS WHITE 20
RL/C3C8
525 BROOKS ROAD
ROME NY 13441-4505

DR. 8. CHANDRASEKASAN
DEPT. OF COMPUTER L INFORM SCIENCE
THE OHIO STATE UNIVERSITY
2015 NEIL AVENUE
CQLUM8US, OH 43210-1277

ROME LABORATORY/SUL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
OEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROADf STE 0944
FT. BELVOIR, VA 22060-6218

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS CENTER
201 MILL ST.
ROME NY 13440-8200

ROME LAB0RAT0RY/C3AB
525 BROOKS RO
ROME NY 13441-4505

ATTN: GWEN NGUYEN
GIOEP
P.O. BOX 8000
CORONA CA 91718-8000

DL-1

AFIT ACADEMIC LISRARY/LDEE
2950 P STREET
AREA 8, 8L0S 642
WRIGHT-PATTERSON AFB OH 45433-7765

ATTN: R.L. DENISON
WRIGHT LABQRATORY/MLPO, BLDG. 651
3005 P STREET, STE 6
WRIGHT-PATTERSON AFS OH 45433-7707

ATTN: GILBERT G. KUPERMAN
AL/CFHI, 3LDG. 248
2255 H STREET
WRIGHT-PATTERSON AFB OH 45433-7022

ATTN: TECHNICAL DOCUMENTS CENTER
3L AL HSC/HRG
2698 G STREET
WRIGHT-PATTERSON AF3 OH 45433-7604

AIR UNIVERSITY LIBRARY CAUL/LSAD)
600 CHENNAULT CIRCLE
MAXWELL AFB AL 36112-6424

US ARMY SSDC
P.O. BOX 1500
ATTN: CSSD-IM-PA
HUNTSVILLE AL 35807-3801

COMMANDING OFFICER
NCCOSC RDT££ DIVISION
ATTN: TECHNICAL LIBRARY,CODE D0274
53560 HULL STREET
SAN DIEGO CA 92152-5001

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 4BL000D
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

SPACE £ NAVAL WARFARE SYSTEMS CMD
ATTN: PMW163-1 <R. SKIANO)RM 1044A
53560 HULL ST.
SAN DIEGO, CA 92152-5002

OL-2

SPACE & NAVAL WARFARE SYSTEMS
COMMAND, EXECUTIVE DIRECTOR (PD13Ä)
ATTN: MR. CARL ANDRIANI
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COMMANDER, SPACE & NAVAL WARFARE
SYSTEMS COMMAND (CODE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COR, US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSMI-RD-CS-R» DOCS
REDSTONE ARSENAL AL 35898-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AEOC LIBRARY
TECHNICAL REPORTS FILE
100 KINDEL DRIVE, SUITE C211
ARNOLD AFB TN 37389-3211

COMMANDER
USAISC
ASHC-IMD-L, BLDG 61801
FT HUACHUCA M 85613-5000

US DEPT OF TRANSPORTATION LIBRARY
F810A, M-457, RM 930
800 INDEPENDENCE AVE, SW
WASH DC 22591

AWS TECHNICAL LIBRARY
859 BUCHANAN STREET, RM. 427
SCOTT AF3 IL 62225-5118

DL-3

AFIWC/MSY
102 HALL BLVD. STE 315
SAN ANTONIO TX 78243-7016

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PA 15213

NSA/CSS
Kl
FT MEADE MD 20755-6000

ATTN: OM CHAUHftN
OCMC WICHITA
271 WEST THIRD STREET NORTH
SUITE 6000
WICHITA KS 67202-1212

PHILLIPS LABORATORY
PL/TL (LIBRARY)
5 WRIGHT STREET
HANSCOM AF8 MA 01731-3004

ATTN: EILEEN LADUKE/0460
MITRE CORPORATION
202 BURLINGTON RO
BEDFORD MA 01730

OUSDCP)/OTSA/DUTD
ATTN: PATRICK G. SULLIVAN, JR,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

DR. ROBERT PARKER
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR. GARY KOOB
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-4

OR. ROBERT LUCAS
DARPA/ITO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DR. DAVIO GUNNING
OARPA/ITO
3701 NORTH FAIRFAX ORIVE
ARLINGTON VA 22203-1714

JOHN SALASIN
OARPA
3701 N. FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

HOWARD SHR08E
OARPA
3701 N. FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

HELEN GILL
OARPA
3701 N. FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

ROBERT LAODAGA
OARPA
3701 N. FAIRFAX DRIVE
ARLINGTON, VA 22203-1714

MARK SHULTZ
TRI-STATE RESEARCH
P.O. BOX 2194
NATICK MA 01760

DR. TANYA KORELSKY
COGENTEX, INC.
840 HANSHAW ROAD, SUITE
ITHACA, N* 14850-1589

8ARRY HANTMAN
RAYTHEON
MISSLE SYSTEMS DIVISION
50 APPLE HILL DRIVE
TEWKS5URY, MA 01876-0901

DL-5

DR. JOSEPH HINTZ
RAYTHEON
MISSLE SYSTEMS DIVISION
50 APPLE HILL DRIVE
TEWKSBURY, MA 01876-0901

TOM GREENE
EJfPERSOFT
5825 OSERLIN DRIVE
SAN DIEGO, CA 92121

DL-6

