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1. Introduction 

This report outlines the progress made in the project entitled "Functional Representation 
of Software Systems and Component-Based Software Technology," during the project 
period, October 1,1993 to March 31,1997. In order to give context, we restate the goals, 
describe the underlying framework, and give a summary of progress. Many of the 
detailed results are described in technical reports and papers, some of which were 
published during the last three years, while others are in the process of being submitted or 
considered for publication. The most important of these are attached as appendices to the 
report. 

1.1. Goals of the Project 
Our project was organized around two related top-level goals: 
• To develop a discipline and technology of composing reliable software from parts 
• To develop a framework for program comprehension, and to apply it for software 

maintenance, reuse and reengineering. 

Comprehension and design are dual enterprises. We understand an artifact by 
recognizing functional modules or components, and building a picture of how the 
components work together to create the functions of the artifact. If an artifact (or natural 
system) is so constructed that the component interactions cannot be easily reasoned 
about, our comprehension of the artifact is correspondingly limited, resulting in either 
incomplete or incorrect predictions of the artifacts behavior. Conversely, we design 
artifacts by composing parts, whose behavior we understand, into larger systems. We 
reason about the behavior of the composed artifact to assure ourselves that the artifact 
realizes intended behavior. How easily we can understand a design depends on two 
things: how well we understand what the components do, and whether the composition 
was done in such a way that component interactions can be easily reasoned about. 

The project was largely organized as two interacting subprojects. 
1. The RESOLVE/ACTI project focused on developing both the theoretical 

foundations for composable software as well as implementations of component 
libraries with the right properties. The ACTI theory develops a software 
understanding framework that is especially useful in the software composition task. 

2. The Functional Representation project focused on the use of FR - a specific family 
of representations for software comprehension - for a number of tasks in software 
engineering other than composition. Specifically, we explored the application of FR 
to requirements engineering, explanation of software architectures, and reengineering 
of legacy software. 

As one would expect, the software understanding parts of the two projects interacted 
closely. The ACTI and FR frameworks share common points of view, but because of the 
difference in applications, focus on different aspects of understanding. FR is a general 
theory of comprehension of causal systems, while ACTI's focus is on the mathematical 
framework in which to understand software components. 



Our work on the project spans a broad range of software engineering goals, processes, 
and artifacts in these contexts: 

1.) Component-Based Software 
2.) Systems, Domain, and Requirements Engineering 
3.) Software Architecture 
4.) Legacy Software. 

In each of these contexts, we developed and characterized technologies to capture and 
exploit human understanding of software artifacts. This figure shows these contexts and 
locates our work. 
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The vertical dimension displays semantic levels and software engineering artifacts. At the 
top, most removed from code, are domain and environment objects and concepts. Going 
downward, there are commitments, artifacts, and concepts that are increasingly code- 
related - requirements, specifications, architecture, and code. 

Our work in FR for domain and requirements captures and formalizes understanding of 
the environment, domain objects, and system requirements. This understanding is 
hierarchical, containing refinements and languages at various abstraction levels. 

FR-Rapide captures intentions and their implementation in an architecture, specifically an 
architecture called Rapide. It is similarly hierarchical, and intentions represented involve 
requirements, specifications, and architecture design down to architecture description 
language code. 



RESOLVE/ACTI contains both specifications and their implementation in modern 
component-based code. Its captured understanding includes complete abstract behavior, 
given by formal specifications, and justification that the behavior is realized in code, 
shown by proof. 

FR-UNPROG represents understanding of how specifications are implemented in real- 
world legacy software. It focuses on hierarchical understanding used in human and 
automatic program understanding and reengineering. 

1.2. Organization of the Report 
Much of our work has been reported in the literature in the form of papers in journals and 
conferences, and technical reports that are in the process of being converted to 
publications. We devote the next section to a brief account of some of the central 
theoretical ideas. We follow this with a section that outlines progress that we have made 
in specific areas and their significance. Finally, we attach as appendices a selection of 
the most important publications and technical reports, where the reader can find the 
technical details of the work. 



2. Overview of the Theoretical Frameworks 

2.1. RESOLVE/ACTI Framework for Component-Based Software 

2.1.1. RESOLVE 
RESOLVE refers to three related things: a conceptual framework to guide thinking about 
component-based software systems; a specific language to support easy description of 
components and systems within that framework; and a general discipline for using that 
language (or others with comparable features) to design high-quality software 
components and systems. RESOLVE software components are parameterized modules. 
A typical specification module formally defines the structural interface and functional 
behavior of an encapsulated abstract data type (ADT), and associated operations whose 
parameters are of that type and other types. A typical implementation module describes 
how such a type is represented as a composition of other ADTs, and how the associated 
operations are effected by invoking sequences of operations associated with the types 
used in the representation. 

At first glance, the basic RESOLVE framework and notation resemble those of modern 
formal specification languages (e.g., Z, Larch) and object-based or object-oriented 
programming languages (e.g., Ada, C++, Eiffel, ML). What RESOLVE provides beyond 
its integrated language is an entire framework in which all the important, but sometimes 
conflicting, aspects of software design can be considered at once. In this framework, 
component engineering can exploit new perspectives that differ from conventional 
approaches in many important ways. The full compass of advantages can best be 
appreciated by examining specific reusable software components. This is why we have 
spent considerable effort designing, implementing, and using a variety of reusable 
components. They are specified and implemented in RESOLVE, and — to facilitate 
technology transfer — also implemented in Ada and/or C++. 

2.1.2. ACTI Model of Software Understanding 
The ACTI model is centered on the notion of a "software subsystem," a generalization of 
the idea of a module or a class that serves as the building block from which software is 
constructed. A subsystem can vary in grain size from a single module up to a large-scale 
generic architecture. ACTI is designed specifically to capture the larger meaning of a 
software subsystem in a way that contributes to human understanding, not just the 
information necessary to create a computer-based implementation of its behavior. The 
ACTI model is based on four different kinds of subsystems: 

• Abstract Instance — A disembodied subsystem specification or interface 
description. There is no implementation associated with anything defined in the 
specification. 

• Concrete Instance - A subsystem that provides implementations for its types and 
operations. All of the defined types and operations in the subsystem are 
represented and/or implemented. 



• Abstract Template - A subsystem-to-subsystem function that, when applied to its 
argument, which is some abstract instance, will generate another abstract instance. 
Effectively, an abstract template is a form of generic subsystem specification. 

• Concrete Template - A subsystem-to-subsystem function that, when applied to its 
argument, which is some concrete instance, will generate another concrete 
instance. Thus, a concrete template is a form of generic subsystem 
implementation. 

The name "ACTI" is an acronym derived from these four terms: "Abstract and Concrete 
Templates and Instances." The distinction between "abstract" and "concrete" embodies 
the separation between a specification or interface, and an implementation or 
representation. The distinction between "template" and "instance" allows one to talk 
about both generic subsystems and the product of fixing (binding) the parameters of such 
a generic subsystem: an instance subsystem. Formally, ACTI is a collection of 
mathematical spaces, together with relations and functions on those spaces, that can be 
used in explaining (or defining) the denotational semantics of program constructs. In 
spirit, the model was developed in accordance with the denotational philosophy. In the 
denotational philosophy the program, or program fragment, is first given a semantics as 
an element of some abstract mathematical object, generally a partially ordered set. The 
semantics of the program are a function of the semantics of its constituent parts; 
properties of the program are then deduced from a study of the mathematical object in 
which the semantics lives. ACTI is not a programming language, however. Instead, it is a 
mathematical model that is useful for programming language designers, or researchers 
studying the semantics of programming languages. It is a formal, theoretical model of the 
structure and meaning of software subsystems. It is rich enough to be used when 
designing new languages, and has been shown to subsume the run-time semantic spaces 
of several existing languages chosen to be representative of the modern imperative, 00, 
and functional philosophies. ACTI has two features that specifically address the 
inadequacies described in the introduction: 
1. In ACTI, a software subsystem (building-block) has an intrinsic meaning; it is not just 

a syntactic construct used for grouping declarations and controlling visibility. This 
meaning encompasses an abstract behavioral description of all the visible entities 
within a subsystem. 

2. The meaning of a software subsystem is not, in general, hierarchically constructed. In 
fact, it is completely independent of all the alternative implementations of the 
subsystem. 

Thus, ACTI provides a mechanism for describing what a subsystem does, not just how it 
is implemented. The meaning provided for a subsystem is a true abstraction - a "cover 
story" that describes behavior at a level appropriate for human understanding without 
explaining how the subsystem is implemented. Further, ACTI provides a formally 
defined mechanism, called an interpretation mapping, that captures the explanation of 
why an implementation of a subsystem will give rise to the more abstractly described 
behavior that comprises the meaning attributed to the subsystem - in short, an 
explanation for why the cover story works. 



2.2. Functional Representation Framework for Artifact Understanding 
For a number of years, one of the Pi's (Chandrasekaran) has been engaged in research 
whose goal is to understand understanding, particularly understanding of how an artifact 
"works." This research has produced a framework called Functional Representation, 
which is one of the technical bases for the project. In this framework, comprehending the 
functioning of an artifact consists of producing the following descriptions for it: 

• the function (s) of the artifact 
• the structure of the artifact, i.e., a specification of its components and how they 

are put together 
• an account of how the artifact achieves its function based on the roles played by 

the components and general laws that pertain to the domain. 

Functional Representation (FR) is a general language and framework for representing 
functions, structure and the causal processes that underlie the operation of the device. 
The FR framework has been applied mostly to engineered physical devices. However, in 
our earlier work we have shown that FR is applicable to understanding abstract devices 
such a programs and logistic plans. In software engineering, the language of plans has 
often been proposed as the basis for encoding comprehension. FR subsumes 
programming plans, in that it contains the same information as plans do in general, but 
also adds further information to make them fully satisfy the desiderata for 
comprehension. In particular, plans as currently represented in software engineering 
satisfy to some degree parts 1 and 2 of the desiderata. FR satisfies part 3 as well. 

There are different ways of providing an account of how the function is achieved, the 
third item in the above list. Mathematically, it is required is to show that the function of 
the artifact can be derived from the component properties and the way the components 
are composed. For certain purposes, an account giving relevant state changes of the 
artifact is useful. In this account, a series of partial state descriptions of the artifact is 
given. The initial state corresponds to the starting conditions, and the final state 
corresponds to the predicate that describes the function. Each intermediate state change 
is explained by appealing to the function of some component. It is explained by showing 
which function of which component played the causal role in the transition, and by 
showing the precise way in which the state change happened. This kind of explanation 
has been used traditionally in the FR work. This form of accounting is useful for 
explanation to human beings, and for certain kinds of problem solving activities, such as 
debugging and design criticism. Logically, other kinds of demonstrations can be 
substituted. For example, the RESOLVE/ACTI framework seeks to ensure that the 
composed program satisfies the requirements by developing an effective modular proof 
technique. 

The RESOLVE/ACTI framework shares a number of intuitions about comprehension 
with FR, although it has used somewhat different terminology. Because of its exclusive 
focus on software, RESOLVE has a much better developed formalism for representing 
the relevant aspects of programs, and techniques for reasoning about composition. 
Because FR is a general framework for causal understanding, it needs domain-specific 



theories when it is applied to particular domains. RESOLVE provides such a theory for 
the software domain. 



3. Outline of Results 

In this section, we summarize the results of our research. This section is organized 
around the contexts that we mentioned in the Introduction. 

3.1. Component-Based Software 
Our first context is component-based and high-quality software. Reusable components 
consist of complete formal specifications and implementing code. They are engineered 
for correctness, flexibility, efficiency, understandability etc. Work in component-based 
software applies generally to new software development with careful design and formal 
specifications. 

RESOLVE/ACTI represents understanding of code consisting of formal specifications 
and proofs that the specifications are implemented in the code. There is a long history of 
research into representing such understanding. Mathematical approaches for representing 
specifications and proofs are relatively well-established. However, these approaches have 
not been applied in practical software engineering environments, especially for reusable 
components. Important issues include the design of productive programming systems 
that support correct specification, and the explanatory quality of specifications and 
proofs. 

RESOLVE/ACTI is an especially complete and robust framework for component-based 
software. It includes goals, language, discipline, a semantic model, and a component 
library for component-based software. Our work has developed and characterized this 
approach with respect to component design and implementation, and with respect to 
model-based specification and proof quality. 

Work with iterator abstractions illustrates RESOLVE/ACTI components and 
characterization. The simplest kind of iterator permits a client progräm to examine each 
item of a collection in some order, e.g. to accumulate information about set items, or print 
items in a tree. We give an interface model of iterators for arbitrary generic collections. 
The model is characterized with respect to both correctness provability and efficiency. 
For example, RESOLVE/ACTI's use of the swapping paradigm is shown to permit 
modular proof of correctness (unlike pointer copying), while preserving efficiency 
(unlike structure copying). 

Specific contributions and accomplishments in this software engineering context include: 
• Empirical studies showing benefits from RESOLVE black-box reuse 
• The RESOLVE/C++ programming discipline, which allows one to build modularly 

certifiable/verifiable software components in C++ 
• A safe method for using white-box code inheritance 
• The ACTI model of component-based systems and their semantics 
• Specification and proof characterization, including use of observability and 

controllability, and abstraction relations. 



Appendices 1 to 9 describe in detail the specific contributions summarized above. 

3.2. FR Applications for System Engineering, Domain Modeling and 
Requirements Capture 
Many military and commercial applications —e.g., weapon systems, air traffic control 
systems, or even a single aircraft or tank — are heterogeneous systems. They are 
assemblages of subsystems from many different domains, e.g., mechanical, electrical, 
thermal, and software systems. When high-level design is performed using abstract 
functions, perhaps represented by blocks in a diagram, the blocks may represent physical 
or software systems. FR is an appropriate framework for representing and reasoning 
about such systems. Building such systems also requires a language in which to acquire 
system requirements. 

3.2.7. Causal and Functional Models of Objects and Reasoning about Their 
Composition 
We made significant progress in this problem area. We looked at the following issues. 

Representing causal models of objects so that the behaviors of configurations of 
interacting objects can be reasoned about. 
Representing functions of device configurations. 
Representing functional requirements for design. 

• 

• 

The technical issues addressed include: 
• Representation of an object: its properties and property relations, ports at which an 

object can be connected to other objects, and how ports are loci of causal interactions. 
Objects are represented in points of view, which select certain properties for 
representation. Views also specify the object in the context of some generic 
environments, i.e., an object representation is with respect to the kinds of objects it 
can be in a causal relationship with. Properties can be static or dynamic. When they 
are dynamic, they are called state variables. Behavior of an object is the trajectory of 
the values of its selected state variables over time. Property relations are called 
behavioral specifications when the properties involved are the state variables. This 
basic ontology ~ objects, static and dynamic properties, ports and behavioral 
specifications - provides the basic primitives needed to represent individual objects 
in specific environments and reason about their properties and behaviors under 
various conditions. 

• Composing objects and deriving the properties and behavior of composed objects. 
Ports are the basic "connection" points. Thus the structure of composed objects is 
given by specifying objects and the ports which form the connections between them. 
A basic framework for composing the behavioral specifications of the component 
objects into a set of behavioral specifications for the composite object has been 
developed. 

• Various means of abstracting behaviors of the composite objects so that behavioral 
abstractions at new levels of description can be introduced. This is important because 
one of the most important consequences in assembling components is that some new 
behaviors can be described effectively only by using new primitive terms. For 



example, at some point a composition of transistors and resistors becomes an "adder," 
whose behavior is described not in terms of currents and voltages, but in terms of 
addends and sums. Representing the properties and property relations of the 
composed object may get arbitrarily complicated, especially if we wish to focus on 
new properties that are not part of the descriptions of the individual objects. 

• Structural explanation. Given a composite object and a set of behaviors that it 
exhibits, there are different ways of "explaining" the behaviors. One kind of 
explanation is to appeal to the behavioral specifications, the laws of behavior of that 
object, and relate the behavior to these specifications. Another kind of explanation is 
structural: show that the behavior is a result of the behavioral specifications of its 
components and the way they are connected. In order to produce the latter kind of 
explanation, the object has to be decomposed into its components, their behaviors 
composed and abstracted to correspond to the set of behaviors to be explained. 

• Functions. Functions are defined in terms of desired state changes in the objects in 
the environment. Artifacts are designed such that they cause the desired state changes 
in the objects in the environment, i.e., the task of the designer is to compose 
components into an artifact such that the behavior of the latter causes the desired state 
changes in the world. 

Specific contributions in this area and their benefits include: 
• A formal framework for representing objects, their causal properties and their 

interaction. This framework can be used to build up a device simulation facility that 
uses the representations in the object library. 

• A formal definition of function that does not make any reference to any aspect of 
implementation. This is in contrast to almost all current definitions that define 
function in terms of some aspect of the implemented artifact. Our definition enables 
the function of a device to be defined before the device is actually designed, and also 
enables retrieval by function from component libraries. 

Appendix 10 describes the results in some detail. 

3.2.2. Specifying Functional Requirements 
Software design, like general system design, depends on determining and stating system 
requirements. Requirements specify the required behavior of the system in an 
environment, involving domain and system objects. Typical requirement artifacts are 
informal documents and scenario descriptions. Typical domain models are informal or 
semi-formal data models. 

We used Functional Representation (FR) to capture and formalize understanding of 
system requirements and objects. This is understanding that may be informal in current 
requirements artifacts, or which may be present only in the minds of requirements 
engineers. 

For example, requirements engineers know much more about an automated teller 
machine (ATM) and its user interactions than is formalized in requirements documents. 

10 



Existing requirements formalisms are specialized for particular aspects of the 
requirements. We showed how FR can represent a unified, comprehensive understanding 
of ATM functional requirements including: 1) the system-environment division, 2) user- 
system interactions and scenarios, and 3) requirement refinements through multiple 
abstraction levels. 

FR was similarly applied to various systems engineering problems, in both hardware and 
software domains. This includes representation of system requirements, objects, object 
composition, and device libraries to support design and analysis. 

Specific contributions and accomplishments in this area include: 
• Representing ATM functional requirements, including environment, system, and user, 

refined across multiple abstraction levels. 
• FR foundations for representing domain and system objects, including object 

properties, relationships, ports, compositions, behaviors, functions, and explanations. 

Benefits and applications include a unified framework for systems requirements and 
objects, a practical means of refining and communicating more formal systems 
requirements, and tools which operate on such representations, e.g. to check consistency 
or generate explanations. Capturing system requirements more completely and formally 
benefits all subsequent system design and evolution. 

Appendix 12 gives the technical details of how to apply FR for requirement specification. 

3.3. FR as the Basis for Explaining Software Architecture 
Our next context is software architecture. Software architectures describe how system 
components interact and behave. They are specified using architecture description 
languages (ADL's) which give the architecture's components, and their connections, 
interactions and behaviors. ADL's are valuable in software design and evolution. 
However their value is limited because they specify architectures without reference to 
designers' intentions. 

We used Functional Representation to capture design intentions and their implementation 
in an architecture. Typical design intentions involve implementing abstract design goals 
with particular architectural structure and rationale. This is understanding which 
designers have, but which is typically lost because it is not recorded. FR-Rapide is our 
technology for FR representation of intentions implemented in the Rapide executable 
ADL. 

An example FR-Rapide representation captures how part of the Two-Phase Commit 
protocol is implemented in a Rapide architecture. It incorporates understanding in 
domains such as transaction processing, the X/Open standard, concurrent computing, and 
distributed computing. 

Specific contributions and accomplishments in this area include: 

11 



• An approach and examples for representing how intentions are implemented in 
software architectures using multiple abstraction levels and domains. 

• A prototype that answers questions and generates explanations of the architecture. 

Benefits and applications include a practical means of recording and communicating 
architecture intentions and their implementation, and tools which deliver and exploit 
represented understanding, e.g. for applications such as browsing, documentation, 
debugging, simulation, design verification, and rationale capture. Representing 
architecture understanding benefits many evolution tasks using architecture and ADL's. 

Appendix 13 gives detailed technical description of this work. 

3.4. FR Applications for Legacy Software 
Finally, our work addresses the vast quantity of existing real-world software - legacy 
software. Legacy code is typically procedural, written in languages like Cobol and 
Fortran, and not amenable to complete and correct formal specification. The legacy 
software artifacts considered are primarily source programs. 

Much software engineering consists of understanding legacy code, and performing 
maintenance and evolution based on this understanding. Most existing representations of 
such understanding are based on shallow syntactic understanding, e.g. a flow graph, or 
are informal, e.g. documentation. We used Functional Representation to capture and 
formalize deeper understanding of how abstract functionality is implemented in existing 
code. This includes abstract views and explanation hierarchies for particular intentions, 
automatic explanation, functional components, alternative implementations, and 
reengineering processes. 

This work was conducted in the specific context of human and automatic program 
understanding and reengineering. For example, we showed how FR captures 
understanding of how "read-process loop" functionality is implemented in the PAYDAY 
program (see Appendix 11) and other example programs, and understanding of how it is 
re-implemented when reengineering such code. In the case of human reengineering, this 
shows FR's generality for capturing understandings needed in a complex task. In the 
automatic case, this demonstrates FR's advantages for representing understanding and 
knowledge used in understanding and reengineering tools. 

FR-UNPROG is the technology for FR representation of understanding in the UNPROG 
automatic program understanding and reengineering system. FR-Plans show how FR 
subsumes and enhances various formulations of programming plans, including plans with 
functional constraints and UNPROG plans. 

Specific contributions and accomplishments representing understanding of legacy code 
include: 
•    FR-UNPROG representation of original and reengineered understanding in PAYDAY 

and other example programs. 

12 



•    Examples of answering questions and generating explanations from FR-UNPROG 
representations, demonstrating how understanding captured by FR can be exploited in 
many tools and tasks. 

Benefits and applications include capturing, formalizing and communicating previously 
informal understanding, and tools and systems that exploit such captured understanding. 
Appendix 11 contains technical details on the progress we have made in this problem. 

3. 5. Summary of Results and Benefits 
We believe that the project made considerable progress in both of the two related goals: 
the development of a component-based software composition technology and exploration 
of representations and use of software understanding in various software engineering 
contexts. 

A number of foundational issues were explored in software component research. How 
algorithms can be recast to make them into reusable components, how iterators should be 
abstracted and encapsulated, why and how abstraction relations are needed to verify 
abstract data type representations, and relations between software components are some 
of the issues we investigated. We have proposed that a robust software component 
technology requires that the components be designed and composed following a 
discipline that permits modular reasoning. We have developed arguments regarding why 
reverse engineering of most legacy code is unlikely to be promising - it is costly to 
understand legacy code sufficiently well to permit changes to be made safely and that, 
unless reengineering adopts the kind of component design and composition that we 
advocate, comprehensible reengineering will be unattainable. 

On the software comprehension side, we have shown the utility of our models of 
comprehension for a number of software engineering tasks.   Here are examples of 
answers that can be given using our representations, in each context: 

In Component-Based Software: 

Q: What do Queuelterator components do? 

A: Queue_Iterator components produce successive items in a queue using operations 
Startjterator, Finishjterator, Get_Next_Item and Is_Empty. The behavior and interfaces 
of these operations are completely described by a specification based on a mathematical 
model. Component code is guaranteed to implement this specification, regardless of the 
programs which use and are used by this component. 

In Requirements Engineering: 

Q: What are the functional requirements that enable a customer to withdraw cash in the 
environment of a bank ATM? 

13 



A: The environment must support the customer function of increasing his cash and 
decreasing his balance by $w, subject to certain conditions such as the environment's 
withdrawal limit. This requirement can be further decomposed into a plausible sequence 
of state transitions and subgoals to satisfy the conditions. 

In Software Architecture: 

Q: How does the Rapide X/Open architecture ensure transaction consistency under the 
Two-Phase Commit protocol? 

A: The Transaction Manager decides whether the transaction is safe, then tells the 
Resource Managers whether to finalize or rollback the transaction. This Poll-Decide 
functionality is implemented by state changes controlled by the functions Poll-Decide-ok, 
Poll-Decide-error, Commit and Rollback. The implementation of each of these functions 
can be explained in more detailed models etc., leading ultimately to the distributed, 
concurrent Rapide code. 
In Legacy Software: 

Q: What does legacy program part Input_Data_2 do? 

A: It implements a "read-process loop" described by a specification for a sequence of 
reading and processing data, given certain conditions. The implementation of Read, 
Process, and Termination is described using other functions and program parts etc., based 
ultimately on the Fortran code. 

While our main results are representations that capture such software understanding, we 
also investigated their consequences and uses. In each context, it is easy to see that 
captured understanding is useful for: 

• Formalizing and communicating understanding for human use 
• Enabling more powerful software engineering tools and environments. 

In many cases, we have shown that the needed understanding can be captured in our 
representations. Where this is information that has not previously been represented, 
except perhaps in natural language, there are obvious advantages in creating deeper, more 
formal, and more machine-accessible descriptions of software artifacts. In other cases, we 
have shown technical benefits of our approaches over existing representations. 

Our work also has implications beyond the results in each software engineering context. 
Taken together, it gives a broad picture of the interactions between software 
understanding, design, understandability, tools, and information use in software 
evolution. 
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Design and Specification of Iterators 
Using the Swapping Paradigm 

Bruce W. Weide, Member, IEEE, Stephen H. Edwards, Douglas E. Harms, Member, IEEE, and 
David Alex Lamb, Senior Member, IEEE 

Abstract—How should iterators be abstracted and encapsulated 
in modern imperative languages? We consider the combined 
impact of several factors on this question: the need for a com- 
mon interface model for user defined iterator abstractions, the 
importance of formal methods in specifying such a model, and 
problems involved in modular correctness proofs of iterator im- 
plementations and clients. A series of iterator designs illustrates 
the advantages of the swapping paradigm over the traditional 
copying paradigm. Specifically, swapping based designs admit 
more efficient implementations while offering relatively straight- 
forward formal specifications and the potential for modular 
reasoning about program behavior. The final proposed design 
schema is a common interface model for an iterator for any 
generic collection. 

Index Terms—Common interface model, formal specification, 
iterator, modular reasoning, program verification, proof of cor- 
rectness, swapping 

I. INTRODUCTION 

AN iterator is an abstraction that supports sequential 
access to the individual items of a collection, without 

modifying the collection. Although some "academic" lan- 
guages (most notably Alphard [16] and CLU [13]) include 
special language constructs for iterators, and others have 
been proposed [3], the most widely used modern imperative 
languages, such as Ada and C++, offer no special support 
for iterators. In these languages, iterators must be designed 
and encapsulated using the same mechanisms that are used 
for other user-defined abstractions: types, procedures, and 
packages/classes/modules. This paper discusses why previ- 
ously published iterator designs are unsatisfactory in several 
respects, and considers the combined impact of several recent 
advances on the potential for improvement. 

One such development is the proposal by Harms and Weide 
[9], [19] that swapping should replace copying as the primary 
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data movement mechanism in imperative programs. In the 
swapping style of programming, the usual assignment operator, 
:=, disappears. (Of course, copying still can be achieved by 
calling a procedure to do it.) The universal method of data 
movement becomes the swap operator :=:, which exchanges 
the values of its two operands. This subtle change leads to 
several advantages for designing and implementing generic 
reusable software components, including improved efficiency 
and simplified modular reasoning about program behavior. The 
swapping paradigm is especially valuable when dealing with 
potentially large and complex data structures that represent 
collections of items—just the situation in which iterators are 

normally used. 
In other recent work, Edwards [4] proposes that the swap- 

ping paradigm might be applied to the design and implemen- 
tation of iterators. He also addresses a serious problem facing 
software component designers, i.e., developing interface mod- 
els that simplify component composition. Tracz [18] discusses 
an example involving what Edwards [5], [6] notices is an itera- 
tor. Edwards defines a common interface model informally (see 
[7] for a formal treatment) as a convention, shared by designers 
of piece-part families and their potential clients, for how the 
plugs and sockets of plug-compatible software components 
are supposed to work. It includes not only parameter profiles 
of operations but also a shared understanding of the abstract 
behavior of those operations. 

A third recent development is the development of formal 
trace specifications for iterators by Lamb [12] and by Pearce 
and Lamb [15]. These papers clearly explain the need for, and 
difficulties in, formal specification of iterators. Two related 
aspects of this issue that must be faced when defining a 
common interface model are, How should the abstract behavior 
of an iterator be designed so that all relevant features can be 
formally specified, and how can we use this specification to 
reason about program behavior? Especially in a component- 
based system, this reasoning must be modular; i.e., it must 
be possible to reason about the correctness of the iterator 
implementation independently of each client program, and vice 
versa. The crucial importance of, and difficulties with, modular 
verification of realistically large software systems in modem 
languages with data abstraction are noted by Ernst et al. [8] 
and Hollingsworth [10], among others. 

Previous work on iteration over the elements of a composite 
data structure, summarized nicely by Bishop [1], has not 
considered together efficiency with respect to copying, the 
need for formal specification of a common interface model. 

oo98-5589/94$o4.oo © W94 IEEE      Reprinted with permission. 
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and the importance of modular reasoning about correctness in 
the design of iterators. This paper therefore has the following 
related objectives: 

1) To show how to design an iterator in the swapping par- 
adigm, which permits a most-efficient implementation, 
i.e., one that does not copy either items of the collection 
or the collection's representation data structure; 

2) To give an abstract model-oriented specification of an 
iterator for a particular abstract collection of items, so the 
iterator's abstract interface is clearly and unambiguously 
defined; 

3) To explain how this specification supports modular rea- 
soning about the behavior of the iterator implementation 
and its clients, and modular verification of programs 
involving iterators; and 

4) To demonstrate how the design can be generalized 
to lead to similar iterators for any abstract collection, 
thereby promoting composability of components. 

This paper is, in effect, a proposal for a common interface 
model for a large class of iterators. A superficial examination 
of this model suggests that it is not much different from 
previously published iterators. In fact, however, our designs 
resemble others, primarily in having similar names for the 
operations. The behavior of these operations—both in func- 
tionality and performance—is subtly but importantly different. 

Section II begins with a review of past work on iterators 
and notes the problems with previous designs. We also review 
the swapping paradigm and the RESOLVE notation for formal 
specification, and introduce a simple example that forms the 
basis for development of a simple iterator: a first-in, first-out 
(FIFO) queue abstract data type (ADT). Section III explains, 
step-by-step, how to arrive at the design of an acceptable 
swapping-style iterator for this ADT. It addresses objectives 
l)-3) above for each candidate design along the way. Finally, 
Section IV discusses variations and extensions, and shows how 
the method used for the simple FIFO queue example can be 
generalized to a schema for specifying iterators for arbitrary 
collection types. All iterators designed using these principles 
share a common interface model, which can serve as the basis 
for interfaces exported by Ada generic packages and C++ 
class templates, among others. Example code for two typical 
client operations is provided in the Appendix. 

II. BACKGROUND 

This section discusses the features required of an acceptable 
iterator design, the rationale for limiting the discussion to 
user-defined abstractions (as opposed to built-in language 
constructs that support iterators), relevant details of the swap- 
ping paradigm, and our approach to, and notation for, formal 
specification. Throughout the discussion, we refer to the client 
(respectively, "client program" or "client code") and to the 
implementer (respectively, "implementation"). The former is 
the programmer (respectively, program) that uses the abstract 
iterator concept. The latter is the programmer (respectively, 
program) that realizes the iterator abstraction in the form of 
an executable code. 

A. Iterators 

The simplest kind of iterator permits a client program to 
examine (i.e., to execute some piece of code for) each of the 
items of a collection without modifying the collection as a 
side effect of iterating over it. The items are presented to the 
client in some order that is based on the collection abstraction. 
Examples include enumerating and accumulating information 
about the items in a set, printing all the items in a tree, and 
copying a FIFO queue. There is no natural order for iterating 
over the elements of a set (any order will do), but there are 
several useful presentation orders for trees and an obvious 
natural order for a FIFO queue. 

There are various more complex iterators and possible uses 
for them. For example, we might wish to be able to exit early 
from an iteration based on satisfaction of some condition, to 
have some control over the order of iteration or to leave it 
entirely unspecified and up to the implementer's discretion; or 

■ we might wish to change the original collection or its items 
while iterating over it. We begin by considering the simplest 
case described above, and discuss more complex cases in 
Section IV. A review of past work suggests that there are 
two subtle aspects of even the simplest iterators. 

1) Correctness: It should not be permissible for a (correct) 
client program to iterate over a collection while inter- 
leaved operations on that collection might be changing 
it. We call this property noninterference. 

2) Efficiency: It should be possible for a client program to 
iterate over a collection without copying the data struc- 
ture that represents the collection and without copying 
the individual items in the collection.1 

Correctness: Recognition of the relationship between non- 
interference and the modular verification of correctness dates 
back to attempts to verify Alphard programs involving iterators 
[16]. Programmers using one of Alphard's iterator constructs 
are advised to consider noninterference to be a restriction 
on its use, but no formal proof obligation is raised during 
verification. Proof rules should permit local verification of 
an implementation and its client programs, but this cannot 
be achieved without an assurance of noninterference, either 
through restriction by language syntax or by the presence of a 
noninterference proof obligation. Alphard, like other languages 
with iterator constructs, offers neither. 

In an attempt to deal with noninterference in user-defined 
iterator abstractions, Booch [2] and Bishop [1]- suggest classi- 
fying iterators into two categories, which Booch calls active 
and passive: An active iterator is a module that exports 
an iterator type and associated operations and permits a 
client to build iteration loops with standard control constructs, 
e.g., while loops. The main difficulty with this approach is 
that such a loop body may also contain calls to operations 
that manipulate the collection over which iteration is being 
done; this is precisely the problem with Alphard's and other 
language-supplied iterator constructs. By contrast, a passive 
iterator effectively encapsulates the iteration loop in a single 

1 In the special case that copying a collection is the purpose of iterating 
over it, all copying should take place in the client code that is executed for 
each item.'Copying should not be inherent in the iterator itself. 
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procedure, which is parameterized by an action that would 
be the loop body in an iteration using an active iterator. The 
argument is that in this case there is no (obvious) way for a 
client to interleave operations that change the collection with 
those iterating over it, because the latter are encapsulated in 
the passive iterator procedure. 

Unfortunately, passive iterators suffer from their own seri- 
ous problems, discussed in detail by many authors [1], [2], 
[4]. From the standpoint of reusability, they are far less 
flexible than active iterators. For example, a client can iterate 
simultaneously over multiple collections with an active iterator 
(see the appendix), but not with a passive one. In the face of 
formal specification and the need for modular verification, the 
nature of the action procedure's effects and side effects' must be 
formally specified and proofs modularized. It is not clear how 
to do this. Moreover, a client still can violate noninterference 
by, for instance, declaring a collection to be global to the 
iterator's action procedure and interfering with the iteration 
by manipulating that collection surreptitiously. The coup de 
grace for passive iterators from the standpoint of reuse is the 
observation that an implementation of a passive iterator can 
be layered easily on top of an active one, but not vice versa. 

Therefore, we follow the above-cited papers in concentrat- 
ing on designs for active iterators. However, we insist that 
clients observe the noninterference property and be modularly 
verifiable, which necessarily makes our designs different from 
previous ones. That is, like Lamb [12], we write our formal 
specification so that noninterference must be observed by a 
correct client program. A proof obligation involving noninter- 
ference is raised in the client that can and must be discharged 
in a provably correct client program. 

By contrast, Booch [2] points out that his iterator designs 
are relatively unprotected from client abuse. Indeed, nothing 
but self-discipline prevents a dient from altering a collection 
during iteration over it. The same is true for Bishop's designs 
[1]. Several methods for repairing this shortcoming are pro- 
posed by Edwards [4]; but like Booch and Bishop, he does 
not deal explicitly with formal specification or the need for 
a framework for modular verification. These objectives drive 
many of our design decisions and account for the differences 
between Edwards's designs and the ones we propose here. 

Efficiency: Although noninterference has long been seen as 
a problem with iterators, Edwards [4] was the first to recognize 
the inefficiency inherent in both published iterator abstractions 
and language constructs. All previously published designs for 
iterators (i.e., those before Edwards's papers [4]-[6]) include 
a function called, e.g., Value.Of. This returns to the client a 
copy of the next item from the collection. 

The execution-time cost of such copying is troubling if the 
representations of the items in the collection are themselves 
large, complex data structures. As noted by Harms and Weide 
[9], the typical method of avoiding this expense—copying 

. only a reference (pointer) to an item, äs with the designs 
recommended by Booch [2] and Bishop [1]—creates even 
more serious problems from the standpoint of our objec- 
tives. It significantly "complicates formal specification and, 
practically speaking, thwarts modular verification [8], [10]. 
This formal-proof difficulty has practical consequences: It 

means that human understanding of, and informal reasoning 
about, program behavior is much harder than it should be. 
Replacing copying by swapping is both efficient and amenable 
to tractable formal specification and modular proof rules, and 
hence to easier understanding of program behavior. This is the 
reason why we prefer the swapping paradigm for our designs. 

Another efficiency issue is noted by Edwards [4] and by 
Lamb [12]. Achieving optimum performance of an iterator 
generally requires that the implementer of an iterator have 
access to the underlying representation of the collection. 
However, this is not essential solely to obtain the required 
functionality of an iterator, if the operations on the collection 
abstraction are sufficiently powerful [4], [9], [19]. 

B. Language Features and User-Defined Iterator Abstractions 

Alphard [16] and CLU [13] have built-in iterator constructs, 
and Cameron [3] proposes some elegant variations. Here we 
concentrate on designing iterators as user-defined abstractions 
in languages that do not include special constructs to support 
iterators, and we do not further consider possible language 
support for our designs. There are three reasons for this. First, 
the practical successors to Alphard and CLU (e.g., Ada and 
C++) simply do not support iterators directly, so there is 
clearly a need for a design approach that does not rely on 
special language support. Second, even with language support, 
one needs to define formally a common interface model 
for iterators if a high degree of composability of software 
components is to be expected [5], [6]. Finally, none of the 
proposed language mechanisms satisfactorily addresses the 
problem of noninterference and the need for modular reasoning 
about program behavior, or the inefficiency of copying. 

C. The Swapping Paradigm 

The swapping style of software design [9], [19] differs 
from the conventional copying style in using swapping (and 
the swap operator :=:) to replace copying (and the standard 
:= operator). It is based on two observations about generic 
modules, e.g., Ada generic packages. First, items whose types 
are parameters to generic modules might have large data struc- 
tures as their concrete representations. These items therefore 
might be expensive to copy. Second, an attempt to overcome 
the cost of copying the abstract values of such items by 
copying references to them inevitably leads to difficulties in 
establishing program correctness by modular reasoning. This 
in turn frustrates both the clients of an abstraction and main- 
tainers of its implementations. Therefore, it is advantageous 
to design the abstract interface of a generic component so that 
an implementation can achieve data movement by swapping 
(exchanging) the abstract values of any two variables of the 
same type, rather than by copying abstract values (destroying 
old values and duplicating new ones) or by copying references 
to abstract values. 

Harms and Weide [9], [19] and Hollingsworth [10] propose 
detailed principles to help designers create generic reusable 
software components in the swapping style. For example, 
consider the operations on collection types such as a Queue 
of Items. Insertion operations such as Enqueue should permit 
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concept   Queue_Template 
context 

parametric     context 
type   Item 

interface 
type   Queue   ia   aodoled   by   atring   of   math [Item] 

exemplar   <j 
initialization 

ensure* q  =  eapty_string 
operation   Enqueue   ( 

alter a   q:   Queue 
conaumaa   x:   Item) 

ensures        q = #q * <#x> 
operation   Dequeue   ( 

altera   q:   Queue 
produces   x:   Item) 

requires      q   /=  enpty.string 
anaurea        <x> * q = #q - 

operation   Is_Empty   ( 
preserves  q:   Queue):   Boolean 

anaurea        Ig_Empty     iff     q = empty_atring 
end Queue_Template 

Fig. 1.   FIFO queue specification. 

implementations that swap Items into the structure. Inspec- 
tion or removal operations such as Dequeue should permit 
implementations that swap Items out. 

A particularly instructive example is an Array of Items 
ADT. The (single) primary operation should take an Array, an 
index, and an Item, and swap the indexed element with that 
Item. The usual fetch and store become secondary operations 
using this primitive. That is, they can be implemented with 
an insignificant performance penalty by layering on top of the 
primary swap-based operation if they are really needed, and 
in most clients they are not [9], [19]. 

D. Formal Specification 

The main example we use throughout the rest of this paper 
is a FIFO queue abstraction. The formal specification of the 
Queue-Template concept in a dialect of RESOLVE [9], [17], 
[19] is shown in Fig. 1. 

A concept specifies a generic abstract module consist- 
ing of two parts: context, which spells out the informa- 
tion needed to complete the specification, and a description 
of the exported interface. The conceptual context of 
Queue-Template is provided through a generic parameter, an 
ADT called Item. The concept exports an ADT called Queue 
and primary operations to Enqueue and Dequeue Items and to 
test if a Queue IsJEmpty. This is a model-based specification 
in which a Queue is modeled as a mathematical string of (the 
mathematical model of) Items. String theory notation includes 
(x), where a; is an Item, which denotes the string containing 
the single Item x; and a*b, where a and 6 are strings, which 
denotes the string obtained by concatenating a and 6. Initially, 
a variable of type Queue is empty; i.e., its model is the empty 
string, denoted by empty-String! 

The notation used in ensures clauses (postconditions) is 
that a variable stands for the value of its mathematical model 
at the conclusion of the operation; the variable prefixed with 
# (pronounced "old") stands for the value of the variable's 
mathematical model at the start of that operation. The # prefix 
is not needed or used in requires clauses (preconditions), 
where all variables denote values at the start of the operation. 

The parameters' modes are used to simplify specification, 
and have nothing to do with the mechanism for passing 
parameters [9]. Mode alters, means the argument replacing 
this formal parameter may be changed as a result of the call; 
how it is changed is stated explicitly in the postcondition, 
which generally relates that variable's new value to its old 
value and to the values of other formal parameters. Mode 
preserves means the argument's value at the conclusion of 
the operation is the same as it is at the start of the operation. 
For example, in operation Is_Empty, there is no need to say 
explicitly in the postcondition q = #q. Mode consumes 
means the argument's value is changed to an initial value for 
its type. For example, consuming a variable of type Queue 
would make it equal empty_string, while consuming an 
Integer would make it 0 (assuming the initial value for Integers 
is 0). Finally, mode produces means that the argument's 
value may be changed by the call, but its value at the beginning 
of the call has no influence on the operation's behavior. 

Lamb [12] and Pearce and Lamb [15] use trace specifica- 
tions for iterators. In this paper, we use model-oriented specifi- 
cations like the one above. Model-oriented specifications seem 
well suited to designs based on swapping, have seen relatively 
widespread use in practice (e.g., Larch and Z), and are rather 
easily understood, even by those not intimately familiar with 
the wide variety of formal specification techniques currently 
in use [17], [20]. They also have been used in proof systems 
for modular verification of implementations and clients [8]. 

At the risk of seeming to apologize for writing formal 
specifications, we note in advance that the formal specification 
of the final iterator design we propose is not as short or as 
simple as we might have hoped. We believe this is due to the 
moderately complex behavior that the specification describes, 
inherent in iterators, and not to a serious shortcoming with 
either the specification notation or with our choice of how to 
specify iterators in that notation. We know of no comparably 
complex behavior specified in any formal way that does 
not look at least as imposing. The question arises, though, 
whether real programmers can be expected to understand 
such a specification, and, if not, what value it has. Others 
already have answered this somewhat loaded question [17], 
[20]. But we would add that the importance of programmer 
understanding of formal specifications only underscores the 
need for a common interface model for iterators that, once 
understood after, say, a careful reading of this paper, leads to 
rapid understanding of an entire class of structurally similar 
specifications [6]. We also note that even if most client 
programmers could understand iterators from only derived 
metaphorical descriptions and examples and could not read 
the formalism itself, then a formal specification still would 
serve an important role as the legal contract between imple- 
menter and client against which formal verification could be 
performed by experts or mechanical provers. 

HI. DEVELOPMENT OF AN ITERATOR FOR A QUEUE 

The goal of this section is to develop a design approach 
that applies to iterators for any type of collection of any type 
of item. We create an iterator for the generic Queue type of 
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lection II, then generalize in Section IV. The presentation in 
his section is incremental. In each step, we present a proposed 
lesign of the iterator and sample client code that uses it, then 
liscuss it, critique it, and propose a new design, until the 
inal design achieves the stated objectives. The development 
proceeds as follows: 

• Design #1: Attack problem (1) from Section II-A, i.e., 
noninterference and modular verification of correctness. 
We define a companion type Iterator for type Queue 
with operations that support iteration over a Queue. The 
idea of this step is to make noninterference a nonissue 
and thereby permit modular correctness proofs. The chief 
problem with this design is that it is based on the copying 
paradigm and therefore is inherently inefficient. In fact, 
Design #1 might look like a straw man to some readers; 
after all, no one really designs iterators this way. But 
that is precisely the point: To enforce noninterference and 
achieve modularity of correctness proofs, designs based 
on the copying paradigm must sacrifice efficiency. Other 
real iterator designs attempt to achieve some degree of 
efficiency at the expense of assured noninterference and 
proof modularity. Design #1 illustrates that the trade-off 
might be made in the other direction. It also serves as the 
basis for better designs to follow. 

• Design #2: Attack problem (2) from Section II-A, i.e., 
efficiency with respect to copying. We revise Design 
#1 to use swapping. The purpose of this step is to 
permit an implementation of an iterator that still demands 
noninterference and supports modular verification, yet 
does not need to copy either the data structure that 
represents the Queue or any of the Items in it. The main 
problems with Design #2 are that it is cumbersome to 
write a loop invariant to demonstrate the correctness of a 
typical client program, and that some swapping-paradigm 
principles still are not completely observed. 

• Design #5: Add some abstract state information to the 
model of the Iterator type to remedy the verification 
problem above, and change the operations slightly to 
take advantage of it. The purpose of this step is to 
facilitate client correctness proofs and to achieve closer 
adherence to swapping paradigm design principles. This 
design achieves all the stated objectives. A generalization 
that handles arbitrary collections and various extensions 
is presented in Section IV. 

A. Design #/ 
First, we define a companion type Iterator for the type 

Queue. This new type has its own operations that support 
iteration over a Queue. Typical client code involves two steps: 
Transfer the Queue value into an Iterator variable; then iterate 
over that variable, not over the original Queue. . 

An appropriate mathematical model of an Iterator is (like 
a Queue) a string of Items.2 This string records the order in 
which the Items are to be processed during iteration. Here 

■2An Iterator- is not modeled by a Queue, because in our model-based 
specification framework, an ADT's model is always a mathematical object, 
not another program object. 

concept   Queue_Iterator_Template 
context 

global ' context 
Queue_Template 

parametric     contaxt 
typ«   Item 
facility   Queue_Pacility   is 

Queue_Template   (Item) 
intarfac« 

type   Iterator   i»   modeled  by   string   of   math[Iteml 
examplar   i 
initialization 

•nauraa i   =  empty_string 
operation   start_Iterator   ( 

produces   i:   Iterator 
preserves   q:   Queue) 

.  ensures        i - q 
operation  Finish_Iterator   ( 

consumes   i:   Iterator) 
operation   Get_Next_Item   ( 

alters   i:   Iterator 
. produces   x:   Item) 

requires      i   /=   empty_string 
ensures        <x> *  i = #i 

operation   Is_Empty   ( 
preserves   i:   Iterator):   Boolean 

ensures Is_Empty      iff     i  = empty_string 
end Queue_Iterator_Template 

Fig. 2.   Queue -Iterator Design #1. 

we choose this to be the order in which the Items would be 
Dequeued from the original Queue. Other orderings can be 
specified easily by changing the postcondition of Start-Iterator, 
and, for some representations of type Queue, other orderings 
can be implemented as easily as the natural order. (See also 
Section IV.) The specification for Design #1 is shown in Fig. 
2. 

Discussion: Design #1 involves a specification mechanism 
called a facility parameter. A facility is an instance of 
a (generic) concept. In this case, QueueJterator.Template 
is parameterized by type Item, and by an instance of 
Queue-Template called Queue-Facility, which exports a Queue 
(of Items) ADT and associated operations. 

As noted earlier, we should be able to layer the implemen- 
tation of an iterator on top of the corresponding collection 
abstraction, so that the new code respects the collection 
abstraction, and this could be done here [9], [14], [19]. How- 
ever, there are potential order-of-magnitude efficiency gains 
if the underlying collection and the iterator are implemented 
together as a single program unit with shared knowledge of 
the collection and iterator representations. We specify such a 
composite concept in Fig. 3. 

Queue.With-Iterator-Template is a concept that exports the 
combined interfaces of Queue-Template and Queue .Iterator- 
Template. The local context section in Fig. 3 simply 
ties down the parameters of these two generic abstractions, 
so the combination of interfaces is what we require from the 
strong typing standpoint. This is the RESOLVE mechanism 
for specification or interface inheritance [11]. In subsequent 
discussions of efficiency of iterator operations, we refer to the 
direct implementation of Queue.With.Iterator-Template from 
Fig. 3. 

Here is a sample of client code for iteration using Design 

■ Start-Iterator (i,   q) 
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concapt   Queue_With_Iterator_Template 
context 

global    contaxt 
Queue_Template 
Queue_Iterator_Template 

paraaatric     contaxt 
•   typa   Item 

local    contaxt 
facility  Queue_Facility  ia 

Queue_Template   (Item) 
facility   Queue_Iterator_Facility  ia 

Queue_Iterator_Template   (Item,   Queue_Facility) 
intarfaca 

ra-axporta 
Queue_Fac i 1 i ty 
Queue_Iterator_Facility 

and Queue_With_Iterator_Template 

Fig. 3.    Queue.WithJterator Specification. 

while not Is.Empty (i) do 
Get-Next.Item (i, x) 
(* code to process x .*) 

end while 
Finish-Iterator (i) 

It is evident from the sample code that Design #1 achieves 
noninterference by defining it away. The original Queue q 
is -completely separate from the Iterator i. The Start Jterator 
operation protects q from being changed during iteration. If 
the code in the loop body of the sample code manipulates q, 
there is no interference with the iteration. Similarly, changes 
to x in the code to process x do not influence either q or i. 
Therefore, it is acceptable for a client program to manipulate 
q inside a loop that is iterating over i, even if i was obtained 
from q. 

Critique: Noninterference is assured here only at the cost 
of efficiency. Design #1 effectively forces an implementation 
of Start Jterator to copy q into i. The reason is that simply 
copying a reference to q or references to its Items creates 
aliases, and hence cannot preserve the independence of the 
abstract values of q and i [9], [10]. It is impossible to prove 
that such an implementation of Queue.With-Iterator-Template 
is correct outside the context of a client program, because 
the client program might manipulate q or its Items through 
these aliases. The only way to create a modularly verifiable 
implementation for Design #1 is to copy q (including all of 
its Items). 

However, a clever implementation of Queue_With Jterator. 
Template might defer copying the data structure that represents 
q (but not its Items), as long as there are no calls to Enqueue 
or Dequeue on the original Queue q during an iteration over 
i. It can keep enough internal state as part of a Queue 
representation to recognize that in the abstract view of these 
operations, q supposedly has been copied into an Iterator 
i. It can determine whether an iteration is in progress by 
monitoring whether the call to Start Jterator has been matched 
by a bracketing call to Finish Jterator. If a call to Enqueue 
or Dequeue occurs during an iteration, the copy of q's data 
structure can be made at thai time. Supporting this kind of 
implementation is the only real reason for the FinishJterator 
operation in Design #1. In the worst case, though, copying 
of q is still necessary. 

concept   Queue_Iterator_Template 
conceptual     contaxt 

Bltl 
Queue.Template 

parametric     context 
type   Item 
facility  Queue-Facility   ia 

Queue-Template   (Item) 
interface 

type    family   Iterator   ia   modeled   by   ( 
future:   atring  of  math[Item] 
present:   mathtltem] 
original:   atring  of  math[Item]) 

exemplar   i 
initialization 

enauree i. future   =   empty—String     and 
is-initial   (i.present)      and 
i. original   =   empty.string 

operation   Start-Iterator   ( 
produces   i:   Iterator 
oonaumea   q:. Queue 
producea  x:   Item) 

ensures i. future =  #q    and 
i. present = x    and 
i.original = #q 

operation   Finish-Iterator   ( 
consumes   i:   Iterator 
produces  q:   Queue 
consumes  x:   Item) 

requires        i.present = x 
ensures q = #i. original 

operation  Get_Next_Item   ( 
altars   i:   Iterator 
alters   x:   Item) 

requires i.future   /=   empty_string    and 
i. present = x 

ensures <x>  *  i.future =  ti.future    and 
i.present  = x    and   ' 
i.original = #i.original 

operation   Is_Empty   { 
preserves   i:   Iterator):   Boolean 

ensures Is_Empty     iff     i. future  =  empty_string 
end Queue—Iterator—Template 

Fig. 4.   QueueJterator Design #2. 

We again note that nearly all previously published iterator 
designs do not force copying of the data structure representing 
the collection, but they do force copying of its Items in the 
course of iterating. In such designs, the counterpart of Get- 
Next Jtem is a function that returns a copy of the next Item in 
the collection. Again, a modularly verifiable implementation 
may not make this copy cheaply by creating an alias to the 
Item. These problems are intrinsic to the copying paradigm 
[9], [19]. 

B. Design #2 

Design #1 can be changed to use the swapping paradigm. 
The reason for doing this is to permit an implementation that 
does not need to copy either the data structure that represents 
the Queue or any of the Items in it. Two key ideas make this 
approach workable. 

The first is a change to StartJterator and FinishJterator. 
StartJterator can be modified so that an implementation can 
move the original Queue into the Iterator object, and the 
matching call to FinishJterator can move the Queue back. 
This design relieves the implementer from responsibility for 
copying the data structure the represents the Queue. Moving 
arbitrarily large data structures in this way can be accom- 
plished in constant (uniformly bounded) time with swapping 
[9]. 
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The second idea is to define Get-NextJtem so that its 
implementation does not need to return a copy of the Item 
to the client, but can swap it out. This is possible if the client 
is required to pass that Item back (unchanged) in the next call 
to Get_NextJtem. In this case, the implementation can simply 
put the Item back into the Queue data structure, and swap out 
the next one to return to the client. The only real hurdle is to 
get the boundary conditions correct, so that the first and last 
calls to Get-NextJtem are not special cases. 

The mathematical model of an Iterator becomes an ordered 
triple: a string of Items (called future) serving the same 
purpose as the model in Design #1, a single Item (called 
present) that records the Item value currently held by the client, 
and a string of Items (called original) that records the value of 
the original Queue. The complete specification for Design #2 
is shown in Fig. 4, where the predicate is-initial means 
that its argument has an initial value for its type. 

Discussion: Below is a sample of client code for iteration 
using Design #2. 

Start-Iterator (i, q, x) 
while not Is_Empty (i) do 

Get-Next-Item (i, x) 
(* code to process x without 
changing i or x *) 

end while 
Finish-Iterator   (i,   q,   x) 

Why is this specification so much more complex than Design 
#1? How does it permit the implementer to avoid copying the 
Queue data structure and its Items? How can a client check 
the preconditions of the Get_NextJtem and FinishJterator 
operations? We answer these and other questions below by 
considering how to implement Queue_WithJterator_Template. 

Fig. 5 traces an example of the effects of the sample client 
code segment above. It shows both the abstract models of 
i, q, and x (to illustrate the abstract behavior), and the critical 
aspects of possible concrete representations for i and q (to 
support performance claims). In this case, q is a Queue of 
Integers,3 mathematically modeled as a string of mathematical 
integers; strings are shown between ( ). Fig. 5 also shows a 
typical Queue representation, which is a record containing two 
fields: / points to the front node of the queue and r to the rear. 
The representation of an Iterator is identical, except that there 
is an additional field in the representation record: p points to 
the node whose Item is presently held by the client (if any). 
These concrete representations are only illustrative; others also 
would achieve the claimed performance. 

In the top row of Fig. 5, just before execution of the 
sample client code begins, i and x might have any values. For 
example, i might have an initial value for type Iterator and x 
might be 17, as illustrated. The value of x before Start Jterator 
is immaterial; it is just a priming value, and the specification 
does not say exactly what Start Jterator (g,'vz) returns in 
x. But note that {.present records that value; see the second 

. 'This makes it easy to understand the operation of the iterator, but it also 
makes the example too simple to illustrate the importance of not copying an 
Item, which might be a far more complex type than Integer! We opted for 
ease of understanding in choosing the example. 

row of Fig. 5. The next three rows show the situation after 
the three calls to Get-NextJtem that occur in the case that the 
original q is modeled by the three element string (9 6 90). 
The value öf x after the call to FinishJterator is 0, because 
the specification says that operation consumes x. 

One aspect of Fig. 5 might seem mysterious: Why are there 
top-level pointers to the records representing an Iterator and 
a Queue? These pointers are not strictly necessary in order to 
achieve the claimed performance; swapping of Iterators and 
Queues still would require only constant time, even without 
this extra level of indirection. However, it is important for 
implementing swapping in a uniformly bounded time, and 
for code-sharing among instances of generics, as noted in 
[9]. 

In the abstract explanation of Start Jterator, the original 
value of q is remembered in i.future, from which Items sub- 
sequently are to be dispensed to the client by Get-Next Jtem. 
An implementation of StartJterator in Design #2 need not 
copy the original Queue data structure in order to achieve this 
effect. It can acquire the original value of q by swapping. 
StartJterator is designed to consume q in order to support this 
implementation. 

On first reading, it might appear that StartJterator should 
have to copy q in order to satisfy the postcondition clause 
i.original = #q. This also is not the case, because 
{.original is part of the abstract state of an Iterator. There is 
no implication that the concrete representation of an Iterator 
must explicitly include {.original, and indeed none of the 
other operations demands that {.original actually be kept 
for correct execution, as explained below. Adding an adjunct 
variable (a variable that participates in proofs but not in exe- 
cutable code) to the Iterator representation enables us to write 
a formal correspondence relation between the representation 
and abstract values [10]. 

Similarly, the postcondition clause i.present = x in 
StartJterator means that the Item value returned to the client 
in x is remembered as part of the Iterator's state. But as above, 
this does not require copying, because {.present is only part 
of the abstract state of an Iterator and need not be represented 
concretely, unless some operation's implementation calls for 
that; none does here. 

Similarly, Get_NextJtem need not copy an Item. Its precon- 
dition i . present = x requires that the client pass in as x an 
Item equal to the one most recently returned by StartJterator or 
Get-NextJtem. The implementation can merely put this value 
back into the Queue data structure (in the node referenced 
by field p in Fig. 5) and return the next Item by swapping 
it out of the structure. Again, there is no need for copying, 
because the Item returned must be passed back in the. next 
call to Get-NextJtem, and so on. 

When iteration is completed, the client calls FinishJterator. 
This operation's precondition requires that the client give back 
the one outstanding Item (whose value is {.present), at which 
point the implementation has the entire data structure and all 
the Items in the original Queue. It simply swaps this with 
parameter q to achieve the stated postcondition. 

A point worth noting is that no code in the client or in 
the implementation checks the clause i.present=x at the 
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abstract values 
of i, q, and x 

i = (< >, 0, < ») 
q = < 9 6 90 > 
x=17 

Start Iterator (i, q, x)  

c 
repr 

r= 

snerete 
ssentation 
of 1       f     p     r 

concrete 
representation 

of q     f r 
 *1/l/l/l -\ ►k      l 

9 6 90 

i = (< 9 6 90 >, 0, < 9 6 90 >) 
q = , > 
x = 0 

Get Next Item (i, x) 

—*Z^ /I,  *" / / 

9 6 90 

f 

i = (< 6 90 >, 9, < 9 6 90 >) 
q = < > 
x = 9 

Get Next Item (i x) 

rfc^- / —►/!/ 

0 6 90 

f 

i = (< 90 >, 6, < 9 6 90 >) 
q = , > 
x = 6 

Get Next Item (i, x)  '■  

r=i r=i —*a^ / i . i —*1/L^ 

9 0 
w FT 90 | 

i = (< >, 90, < 9 6 90 >) 
q = < , 
x = 90 

Finish Iterator (i, q, x)  

s r=\ —■> - 1   1,1 —*-/l/l 

9 6 0 

t 

i = (< • , 0, < .) 
q = < 9 6 90 > 
x = 0 

—w- —►^ 

9 6 90 1 

Fig. 5.    Sample execution for design #2. 

beginning of a call to Get-Next Jtem or Finish .Iterator. In 
fact, because there is no operation that reveals the value of 
i.present, a client or an implementer cannot write such 
code without copying Items. Thus, the only means for a client 
to be sure that no preconditions are violated is to be able to 
prove that the code to process x does not change x. 

Without the precondition on Get_NextJtem and 
FinishJterator, no such proof obligation would be raised in an 
arbitrary client program. Although it then might be possible to 
verify a particular use of the swapping-based implementation, 
there would be no way to separate a proof of correctness of 
the implementation from that of the client program. Therefore, 
we could not prove the correctness of this implementation in a 
modular fashion, and we could not declare the swapping-based 
implementation of Queue JteratorJIemplate to be correct out 
of the context of a particular client. The feasibility of such a 

modular correctness proof was one of the primary objectives 
of our design. 

Critique: Although Design #2 has a more complex specifi- 
cation than Design #1, its swapping-based implementation 
is straightforward and efficient. However, experience using 
the specification of Design #2 suggests some minor changes. 
Most importantly, with Design #2, it is cumbersome to show 
in the sample client program that the code to process x actually 
is executed for every item in the original Queue q. The proof 
relies on a loop invariant that keeps track of the Items that 
have been processed and relates them to the Items in i.future 
and the original Queue. It is possible to introduce an adjunct 
variable for each loop to keep track of the processed Items, 
but it is more convenient to include support for this in the 
specification. This and other minor modifications are discussed 
in the next section. 
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and 
(i.present)      and 
empty-String    and 
3  empty-String    and 
(i.deposit) 

ooncapt  Queue_Iterator_Template 
eonoaptual     context 

VIII 
Queue_Template 

paramatric     context 
typa   Item 
facility Queue-Facility 1« 

Queue-Template  (Item) 
.Interface 

type   family   Iterator   la  modeled  by   ( 
past:   «trios   of   mathlltem] 
present:   math[Item] 
future:   string   of   mathlltem] 
original:   string  of  mathlltem] 
deposit:  mathlltem]) 

exemplar   i 
Initialization 

ensures i.past   =  eavpty_string 
la_lnltial 
i.future   = 
i. original 
ia.lnltial 

operation   Start-Iterator   ( ■ 
altere   i:   Iterator 
consumes   q:   Queue 

i   x:   Item) 
i«_initial    li) 
i.past  = 'empty_atrlng    and 
i. present = x    and 
i. future = #q    and 
i.original  =  #q    and 
i.deposit = #x 

operation   Finish_Iterator   { 
consumes   i:   Iterator 
produces   q:   Queue 
altere  x:   Item) 

requires i.present = x 
ensures q =  #i-original    and 

x = #i.deposit 
operation  Get_Next_Item   ( 

altars   i:   Iterator 
c:    Item) 
i.present  = x    and 
i.future   /=   empty_etrtng 
i.past  =  »i.past  *  <x>    and 
i. present  = x      and 
<x>  •  i.future - *i.future    • 
i.original  =  #i.original       ax 
i.deposit = #i.deposit 

operation   IS-Empty   ( 
preserves   i:   Iterator) :   Boolean 

ensures Is_Empty     Iff     i. future 
end Queue_Iterator_Template 

requires 
ensures 

altars 
requires 

ensures 

empty_strlng 

Fig. 6.    QueueJterator Design #3. 

C. Design #3 
In Fig. 6, we add to the abstract model a field (called past) 

that records the Items that have been returned to the client 
through Get .Next Jtem, and a field (called deposit) that records 
the priming Item that the client passed into the first call to 
Start Jterator. We also add a precondition to StartJterator to 
guarantee that the Iterator i satisfies its initial condition, make 
Start Jterator consume the deposited value x, modify the post 
condition of Finish-Iterator so that {.deposit is returned in 
x, and reorder the Iterator model components to give a more 
natural reading. 

The representation of an Iterator as specified in Fig. 6 
might look like the representation in Fig. 5. In addition, we 
have to store {.deposit in the concrete representation; but 
this is accomplished simply by swapping the value in during 
Start Jterator and swapping it back out during Finish Jterator, 
so there are no substantive performance implications of this 
change.. . 

Discussion: Here is a sample of client code for iteration 
using Design #3. (See the appendix for complete client 
examples:) 

' Start-Iterator(i, q, x) 

maintaining i.past * i. future = #i.past 
* #i. future and 
i.present = xand 
i i. original = #i. original and 
i.deposit = #i-deposit 

while not Is_Empty. (i) do 
Get_Next_Item (i, x) 
(* code to process x without changing 
i or x *) 

end while 
Finish-Iterator (i,   q,   x) 

In this sample code, we include the loop invariant in a 
maintaining clause, which may be considered an extra 
syntactic slot in the while loop construct. The notation means 
that at the beginning of each iteration of the loop, the concate- 
nation of i.past and {.future equals their concatenation just 
before the loop is first encountered; that {.present equals x; 
and that i.omgmal and Ldeposü equal their respective values 
just before the loop is first encountered. 

Clearly, this invariant is true at the start of the first iteration. 
It is easy to show that it is true for an arbitrary iteration if and 
only if the code to process x does not change { or a;. With 
the addition of the past field to an Iterator's abstract state, it 
also is easy to show that all Items in the original Queue q, and 
only those Items, are processed by the loop. 

The other changes in Design #3 support a general principle 
of the swapping paradigm: There are advantages in simplified 
reasoning about program behavior and in the performance 
of storage management activities if temporary variables in a 
program act as catalyst variables [9]. A catalyst variable is one 
that is necessary to carry out a computation, but experiences 
no (net) change in value from the beginning to the end of the 
computation, or is an initial value for its type at both points. 
In the expected use of Queue Jterator-Template, we want to 
make sure the local variables { and x are catalysts. Notice that 
this is not the case for Design #2; i and x might start out with 
any values whatsoever before StartJterator, and their values 
after Finish Jterator might be different. 

In Design #3, we therefore require that Iterator { be an 
initial value for its type before the call to StartJterator. 
Finish Jterator consumes {, leaving it again as an initial value 
for its type. Also in Design #3, we record the priming value 
of x that is passed to StartJterator and restore that value in 
FinishJterator; thus, the name {.deposit, reflecting the fact 
that we consider the priming value to be like a security deposit 
that should be returned to the client upon completion of the 
iteration. Now both { and a; act as catalyst variables. 

IV. VARIATIONS AND EXTENSIONS 

There are several interesting variations and extensions of 
this approach to iterators. We briefly discuss them here, and, in 
the process, propose a schema for a generic Iterator-Template 
concept (Fig. 7) that is flexible enough to accommodate most 
interesting uses for iterators. This concept schema constitutes 
our proposal for a common interface model for iterators. 
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concept   Iterator__Template 
conceptual     context 

parametric     context 
type   Item 
type   Collection 

interface 
type    family   Iterator   is   modeled   by   { 

past:   string   of   math [Item] 
present:   math[Item} 
future:    string   of   math[Item] 
original:math[Collection] 
deposit:   math[Item]1 

exemplar   i 
initialization 

ensures i.past   =   empty_string     and 
is_initial    (i.present)      and 
i. future   =   empty_string     and 
ia_initial    (i. original)      and 
is_initial    (i.deposit) 

operation   Start_Iterator   ( 
alters   i:   Iterator 
consumes   c:   Collection 
consumes   x:    Item) 

requires is_initial    {i) 
ensures i.past   =   empty_string     and 

i.present  = x    and 
p   (i.future,   #c)'   and 
i.original  =  #c    and 
i.deposit  = #x 

operation   Finish_Iterator   ( 
consumes   i:   Iterator 
produces   c:   Collection 
alters   x:   Item) 

requires i.present  = x 
ensures c   =   #i. original     and 

x  =  #i.deposit 
operation   Get_Next_Item    ( 

a Queue to the client in a different order, and/or that iterates 
over just those Items that satisfy a particular condition. We 
define a binary (mathematical) relation: 

altars i:    Iterator 
alters x:    Item) 

requires i. present  = x    and 
i. future   /=   empty_string 

ensures i.past  =  #i.past  *  <x>    and 
i.present  = x       and 
<x>  *  i.future =  #i.future    and 
i.original  =  #i.original       and 
i.deposit  =  #i.deposit 

operation   Is_Empty   ( 
preserves   i:   Iterator):   Boolean 

ensures 
end   Iterator_Template 

Is_Empty     iff     i. future   =   empty_string 

Fig. 7.   Schema for a generic iterator design (with p free). 

A. Early Exit from Iteration 

A client program that exits from an iteration loop before 
the Iterator is empty poses no particular problem for Design 
#3. (See the Appendix for an example.) However, the 
rationale for implementing Queue.WithJterator.Template 
as one module, and not layering the implementation of 
QueueJterator.Template on top of Queue-Template, is 
efficiency in this special case. If all the Queue-Template 
operations take constant time, then all the layered operations 
take constant time, except FinishJterator. In the case 
of an early exit from an iteration, FinishJterator takes 
time proportional to the number of Items remaining in 
the Iterator's future string. A direct implementation of 
Queue_WithJteratorJTemplate in which the Iterator operations 
have access to the underlying Queue representation (as in Fig. 
5) achieves constant time performance for all operations. 

B. Different Orders of Iteration and Iteration 
Over a Subset of All Items 

It is easy to generalize the specification of Design #3 to 
define a schema for an Iterator type that presents the Items in 

p : string of math[Item] 

x string of math[Item] Boolean, 

so that p(s, t) holds whenever the order of appearance of the 
Items in string s is an acceptable or possible order of iteration 
for the desired Items in string t. We can now generalize the 
ensures clause of Start-Iterator as underlined. 

operation Start-Iterator ( 
alters i: Iterator 
consumes q: Queue 
consumes x: Item) 

requires  is_initial (i) 

ensures  i .past=empty_string and 
i.present = xand 
p(i.future,#q) and 
i.original= # q and 
i.deposit =# x 

This operation specification, with p a free variable, should 
be interpreted as part of a schema for a concept, in the 
following sense. A specifier might use it to guide the design 
of different but related iterator concepts by binding p in any 
of three ways. 

1) For each individual iterator concept, replace p by a 
particular relation that controls the order in which Items 
are to be returned by Get-Next Jtem. 

2) Make p a client-supplied parameter to the specification 
(like Item and Queue_Facility). 

3) Make p an implementer-supplied parameter to the spec- 
ification. 

In cases (1) and (2), any realization must be further param- 
eterized by program operations [4], [10] that satisfy certain 
properties involving p and that permit the implementer to write 
code that achieves the specified behavior. In case (3), the client 
knows only that p is some relation, possibly with additional 
mathematical properties dictated by the specifier. Here the 
implementer has the freedom to present the Items from the 
Iterator in any convenient (efficiently computed) order, and 
must supply a definition for p that characterizes the orders it 
might produce. 

C. Other Collections 

To specify Iterators for collections that are not modeled as 
mathematical strings, we can adapt the approach suggested 
above and parameterize the concept by a Collection type, as 
shown in Fig. 7. Again, we introduce a binary (mathematical) 
relation: 

p: string of math[Item] 

x     math[Collection] Boolean, 

defined so that p(s, c) holds whenever the order of the Items 
in string s is an acceptable or possible order of iteration for 
the desired Items in Collection c.  ■ 
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We need a relation here, not a function. Consider a Set 
ADT, where the mathematical model of a program Set is a 
mathematical set. Then a useful implementer-supplied relation 
p would have p{s, c) hold exactly when every Item in set c 
occurs exactly once in string s. There is no natural order for 
iterating over the elements of a Set, but we probably want to 
specify that the iteration should see each element exactly once. 
If an implementer is free to choose any order that meets this 
criterion, there is substantial performance flexibility. 

D. Modifying a Collection (But Not Its Items) 

We now consider two more advanced kinds of iterators that 
involve modifying the collection during iteration. There are 
two sorts of changes: those that restructure the collection into 
an equivalent form without modifying any of its Items, and 
those that (instead or in addition) modify the values of the 
Items. An example of the first kind arises if we have a Tree 
ADT whose nodes are labeled by Items. We might not care 
about the shape of a Tree, as long as an in-order traversal 
produces the Items in the same order, e.g., if the Tree is used 
as a binary search tree. A side effect of iterating over such a 
Tree, then, might be that it is rebalanced. 

How can we specify an iterator that has such an effect? We 
introduce another relation below: 

a: math[Collection] x string of math[Item] 

x math[Collection] -+ Boolean, 

defined so that a{i, s, f) holds whenever the initial Collection 
i, when iterated over with the order of Items in string s, is 
equivalent to the final Collection /. We can then generalize 
the ensures clause of Finish Jterator from the specification 
in Fig. 7, as underlined, below. 

operation Finish-Iterator ( 
consumes i:   Iterator 
produces c:   Collection 
alters x:   Item) 

requires     i.present = x   . 
ensures       cr(#i.original, #i.past * #i.f uture, c) 

and x = #i.deposit 

Now an implementation can return in c any Collection that 
is equivalent to the original Collection, offering the possibility 
of performance flexibility or even intentional restructuring. A 
degenerate case of this schema, where a(i, s, f) holds if and 
only if p(s, i) holds and i = f, is the schema of Fig. 7. 

E. Modifying the Items in a Collection 

The intuitively obvious way to change every Item in a 
Collection is to iterate over the Collection and change each one 
as it is processed. Of course, this will not work directly with 
the proposed design, because getting the next Item requires the 
client to pass back exactly the same value that it received in the 
previous call to Get-NextJtem. This process works similarly 
for FinishJterator. 

There are two ways to address this problem. One is to iterate 
over the Collection and construct the modified Collection as a 
new object. The appendix contains example code for copying 

a Queue in this way; there is no modification of each Item as it 
is added to the new Queue, but it is easy to see how this would 
be done if that were the objective. The difficulty with this as 
a general solution is that Items cannot be modified in place. 
New ones must be constructed, with the associated efficiency 
penalty (which is possibly significant if the Items are large) 
that we initially argued we should like to avoid if possible. 

Another approach, then, is to further generalize the 
Iterator-Template design to support specifying the way in 
which each Item is to be modified. Again, we introduce a 
relation that characterizes mathematically how the modified 
Item values must be related to the old ones: 

v :     math [Item] x math [Item] —► Boolean. 

The specifier or client should define v{a, b) to hold if and only 
if b is an allowable new value corresponding to the old value 
a. (This relation could be generalized even further to have 
a third argument, a string of Items, so that new Item values 
could depend on the values of all previously processed Items 
as well.) 

. Now we generalize the preconditions of Get-NextJtem 
and FinishJterator, replacing i. present = x by v 
(i.present, x). We also have to do two other things. 

The first is to add another component to the Iterator model—a 
string of Items perhaps called updates—and to change the 
postcondition of Get-Next Jtem, so that this string records the 
(modified) Items returned to Get-NextJtem. The second is to 
change the relation a from the previous subsection, so that it 
depends additionally on another string of Items that includes 
the updates, and to change the postcondition of FinishJterator 
accordingly. 

Note that modifying a collection while iterating over it, 
though specifiable arid sometimes useful, is fraught with 
danger. Consider iterating over a Set of Integers, squaring 
each one. The abstract set model of the program Set object 
might have fewer elements following the iteration; e.g., -2 
and 2 both yield 4. Similarly, consider iterating over a Tree 
of Integers, squaring each one, but trying to maintain the 
binary search tree property. These examples illustrate that for 
a correct implementation, it is insufficient just to traverse the 
data structure representing the Set or Tree and to perform 
a squaring operation on each element. This is the kind of 
problem, both in client understanding of iteration and in imple- 
mentation efficiency, that leads us to warn against modifying 
Items during iteration in general, even though it causes no 
insurmountable technical difficulties with our specification and 
design approach. 

V. CONCLUSION 

Previously published iterator designs are unsatisfactory 
along several dimensions. The iterator design developed 
incrementally for Queues in Section III, and generalized to a 
schema for arbitrary Collections in Section IV-C, addresses 
the deficiencies of prior approaches in the following specific 
ways. 

• It is designed to support efficient implementations; nei- 
ther the implementer nor the client needs to copy the 
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data structure representing the Collection, or any of the 
individual Items in it. 

• Its abstract behavior (including the noninterference prop- 
erty) is formally specified. 

• Its implementations and clients can be verified indepen- 
dently, i.e., modularly, in the sense of [8]. 

• It can be specified as a schema for an independent generic 
concept that defines an iterator abstraction for arbitrary 
Collections, so all iterator abstractions in a system share 
a common interface model. 

Because of these advantages, the iterator design in Fig. 7 
should be considered as a baseline proposal for a common 
interface model for iterator abstractions. This baseline supports 
sequential access to the individual Items of a Collection in 
various orders, but without allowing a Collection or its Items 
to be modified during iteration, and is robust enough to handle 
any container structure where such iterations are meaningful. 

A final note on language issues: Our design shows, in 
principle, how iterators can be abstracted and encapsulated 
to support modular programming and modular reasoning about 
program behavior. But can the design be used in real program- 
ming languages? There is no technical difficulty with Ada, 
because a generic package may export more than one type, 
as an implementation of a Collection.WithJterator.Template 
must. (See the RESOLVEIAda Discipline [10]. The particularly 
interested reader also should consult [4] for detailed examples 
of similar iterator designs coded in Ada.) 

For C++, a mismatch with the RESOLVE language 
model leads to minor trouble. There is a temptation to use 
inheritance to combine interfaces, i.e., to make Queue_With_ 
IteratorJTemplate a class derived from the Queue-Template 
class. However, such a C++ class effectively defines 
just one type, not two. This leads inevitably to nontrivial 
differences between the abstract specification given here 
and even the parameter profiles of the C++ class methods. 
So, another solution is preferred: Make Queue-Template and 
Queue .Iterator-Template separate but friend classes in order to 
get the required efficiency of implementation of the combined 
interface. 

APPENDIX 
CLIENT EXAMPLES FOR DESIGN #3 

Here is a sample client for Design #3, an operation to copy 
a queue using an iterator. 

operation Copy ( 
preserves ql: Queue 
produces q2: Queue) 

ensures q2 = ql 
begin 

variable 
cleared: Queue 
i: Iterator 
xl, x2: Item 

q2 :=: cleared 
Start-Iterator (i, 
maintaining i.past 

qi, ■xl) 
future = 

28 

#i .past * "# i. future and 
i .present =' xl and 
i.original = #i.original 
and 

i.deposit = #i.deposit 
and 

q2 = i.past 
while not Is-Empty (i) do 

Get_Next_Item (i, xl) 
Copy-Item (xl, x2) 
Enqueue (q2, x2) 

end while 
Finish-Iterator (i, ql, xl) 

end Copy 

This example illustrates simultaneous iteration over two 
collections, and a possible early exit from an iteration loop: 
an operation to determine whether two Queues are equal. 

operation Are_Equal ( 
preserves ql: Queue 
preserves q2: Queue): Boolean 

ensures Are_Equal iff ql = q2 . 

begin 
variable 

il, i2: Iterator 
xl, x2: Item 
equal: Boolean 

equal := true 
Start-Iterator (il, ql, xl) 
Start-Iterator (i2, q2, x2) 
maintaining iI.past * il.future = 

#il.past * #il.future 
and 

il.present = xl and 
il.original = 
#il.original and 
il.deposit= #il.deposit) 
and 

i2.past * i2.future = 
#i2.past * #i2.future 
and 

i2.present = x2 and 
i2.original = 
#i2.original and 

i2.deposit = #i2.deposit 
and 

equal = (il.past = 
i2.past) 

while equal and not Is_Empty (il) and ■ 
not Is_Empty (i2) do 

Get_Next_Item (il, xl) 
Get-Next_Item (i2, x2) 
equal := Are_Equal_Items (xl, 
x2) 

end while 
if equal and (not Is_Empty (il) or not 
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Is_Empty (i2)) then 
equal :— false 

end if 
Finish-Iterator (il, ql# xl) 
Finish-Iterator (i2, q2, x2) 
return equal 

end Are-Equal 
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Recasting 
Algorithms 
to Encourage 
Reuse 

w'   Instead of viewing 

algorithms as single large 

operations, the authors use a 

machine-oriented view to show 

how they can be viewed as 

collections of smaller objects and 

operations. Their approach 

promises more flexibility, 

especially in making 

peiformance trade-offs, and 

encourages black-box reuse. They 

illustrate it with a sample design 

of a graph algorithm. 

BRUCE W. WEIDE and WILLIAM F. OGDEN, 

Ohio State University 

MURALI SlTARAMAN, West Virginia University 

• 11 large software 
systems are built from components of 
some kind. A typical modern software 
component is a module, which usually 
encapsulates an abstract data type. 
The data type, in turn, hides the 
details of both concrete data structures 
and the algorithms that implement 
operations to manipulate the abstract 
data type's variables. 

Reusable software components are 
just modules that have been carefully 
designed to be useful in several pro- 
grams, even unanticipated ones.1 We 
focus here on two types of flexibility 
— functional and performance — that 
make components reusable. We also 
advocate a systematic black-box style 
of reuse, in which designers use com- 
ponents without source-code modifi- 
cation. This contrasts to a haphazard 

opportunistic style in which designers 
scavenge old code for interesting tid- 
bits to reshape. 

We recommend black-box reuse 
because the real value of reused code 
lies in its properties, such as correct- 
ness with respect to an abstract specifi- 
cation. If you make even small struc- 
tural or environmental changes, the 
confidence in these properties tends to 
evaporate, and with it most of the 
component's value.- 

In this article we show how to 
design an entire category of more flex- 
ible black-box reusable software com- 
ponents by applying a general design 
technique that "recasts" algorithms as 
objects. To illustrate the technique, 
we recast a sorting algorithm and a 
spanning-forest algorithm into 
objects. 
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RECASTING FOR FLEXIBILITY 

Conventional object-oriented 
design treats application-specific enti- 
ties as objects and application-specific 
actions as operations on those objects. 
Many of these operations change the 
objects a great deal. Because they are 
implemented as single operations, they 
involve algorithms that manipulate 
complex data structures extensively. 

The recasting technique we pro- 
pose is a refinement of object-oriented 
design — it turns a single large-effect 
operation into an object by regarding 
it as a machine that performs the 
action. This effectively replaces one 
operation with an entire module. The 
module defines an abstract data type 
— which records the machine state — 
and several operations — each of 
which has a smaller effect. One of 
these smaller effect operations might 
supply input to the machine, for exam- 
ple; another might return results. This 
kind of design has greater functional 
flexibility — the component can be 
readily adapted to provide good solu- 
tions to any problem requiring its gen- 
eral services. A design that uses smaller 
effect operations does two things. 
First, it provides a finer grain of con- 
trol. Second, it gives implementers the 
opportunity to offer more performance 
flexibility — they can substitute alter- 
native implementations of an abstract 
component by making trade-offs 
among individual operations. This 
changes the component's performance 
characteristics but retains the same 
functional behavior. 

Recasting works for two reasons: 
♦ Component designers can orga- 

nize data processing along one of two 
dimensions: The usual object-structure 
dimension relates items according to 
their explicit representation as data 
objects using arrays, records,.lists, 
trees, and so on. Our recasting 
approach adds a temporal dimension, 
which relates items by the time they 
appear in a-program. 

♦ It takes advantage of the widely 
recognized fact that an abstract behav- 

ior specification does not prescribe 
how behavior is to be realized. In fact, 
module specification hides the knowl- 
edge of both how and when computa- 
tions actually take place. 

When you design a component to 
use large-effect operations, you are 
confining yourself primarily to the 
object-structure dimension. You miss 
the opportunity to use the temporal 
dimension as a data organizer and so 
preclude some potentially efficient 
implementations of the 
desired abstract behavior. 
Once you realize you can 
amortize the cost of an 
algorithm among several 
operations in the module 
and retain the same func- 
tionality, you gain tre- 
mendous flexibility. You 
can use precomputation, 
batch computation, de- 
ferred computation, and 
related data-structuring 
and algorithm-design 
techniques.2 This gives 
various options to applications (like on- 
line and real-time systems) that 
demand that individual operations 
exhibit certain constrained perfor- 
mance profiles in addition to — or 
even instead of— optimal performance 
for an entire operation sequence. 

SAMPLE DESIGN PROBLEM 

To explore the nature and benefits 
of recasting single large-effect opera- 
tions as objects, we present a tradition- 
al design problem and show how the 
usual design is flawed from the view- 
point of reusability. The design prob- 
lem is to implement part of a circuit- 
layout tool: Given an output terminal 
and a set of input terminals to which it 
must connect, determine how the terminals 
should be wired together in a net that 
minimizes total wire length. 

The key to attacking this problem 
is an abstract mathematical model. In 
this case, we can reuse well-developed 
ideas from the algorithms community: 

THE MACHINE 
MODEL LETS 
DESIGNERS 
TUNE HOW A 
COMPONENT 
PERFORMS, 
NOT WHAT 
IT DOES. 

The required layout is a minimum 
spanning tree of an edge-weighted 
graph — a subset of the graph's edges 
that connect its vertices with a mini- 
mum total weight. The vertices are the 
terminals to be connected, and the 
edges are weighted by the lengths of 
wire required to connect correspond- 
ing terminal pairs.2 

Whether you use a traditional func- 
tional design approach modified to 
embrace information-hiding prin- 

ciples3 or a conventional 
object-oriented design 
approach, a typical solu- 
tion might be 

1. Find the abstractions 
to be encapsulated in mod- 
ules, identify their opera- 
tions, and specify interface 
behavior. Here you 
encapsulate the graph 
abstraction in a module 
and identify both opera- 
tions sufficient for con- 
structing a circuit model 
and implementing an op- 

eration, Find_MST, to compute the 
graph's minimum spanning tree. 

2. Implement the graph module and its 
associated operations. You might use any 
of the many textbook graph represen- 
tations.2'4 

3. Write a client program that uses the 
graph module and Find_MST to 

♦ construct a graph g that models the 
portion of the circuit for which a net t if to 
be selected and 

♦ find a subgraph tofgthat isa min- 
imum spanning tree ofg. 

The graph module should be 
reusable in this and in other applica- 
tions — if you carefully design it to be 
reused and not just to support finding 
minimum spanning trees. However, 
this design is fundamentally flawed 
from the standpoint of reusability and 
maintainability. The Find_MST oper- 
ation is a single large-effect operation. 
It can be recast to make the task of 
finding a minimum spanning tree a 
separate object, offering the program- 
mer who may want to reuse it a design 
that is more flexible. 
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Maintenance change. To illustrate, 
what happens when the users of this 
layout tool request "minor" changes 
after it is in the field? For example, 
suppose the total required wire length 
cannot exceed a certain 
bound or the output ter- 
minal's electrical features 
must be adjusted to han- 
dle a heavy load. This in 
turn   might   re-quire 
changing   some   ter- 
minal locations, until the 
net's total wire length 
is within the required 
bound. At that point, 
you can use the original 
net-selection operation 
to finish the job. Thus, you must now 
add the subtask 

♦ Determine if the total wire length of 
a net exceeds a given bound. 

This operation must be invoked 
repeatedly, with different graphs and 
bounds before a net can be selected; 
something the original code did in one 
invocation of the net-selection opera- 
tion. 

You can easily solve the bounds- 
checking problem by adding a step to 
the third part of the original solution: 

♦ Dete?7?iine if the total edge weight of 
t exceeds the given bound. 

Unfortunately, this change causes 
users to complain of poor performance 
for some nets — and you find that 
changing the graph module or the 
Find_MST operation does not signifi- 
candy improve the situation. How can 
you tune performance? 

There is no easy solution to this 
problem because the decision to design 
Find_MST as a single operation has 
limited its functional and performance 
flexibility. Consequently, you must 
break into the Find_MST code to 
tune performance — eschewing black- 
box reuse and all its advantages. 

Sorting algorithm. Suppose for the 
moment you are satisfied with the 
original net-selection program design. 
You might continue by refining the 
implementation of the Find_MST 

CONVENTIONAL 
DESIGN FORCES 
DEVELOPERS TO 
'PEEK UNDER THE 
COVERS'TO TUNE 
A COMPONENT. 

operation, which eventually should 
lead to something like textbook code.2,4 

Here's what might happen along the 
way. 

First, you must choose a method for 
finding a graph's min- 
imum spanning tree. 
The one we describe 
here is Rruskal's algo- 
rithm,2, 4 a greedy 
algorithm that com- 
bines smaller trees 
joining subsets of ver- 
tices. This set of trees 
is called a spanning 
forest. To build it, the 
algorithm starts with 
an empty set of edges, 

T. (a spanning forest in which each ver- 
tex is connected only to itself), looks at 
the edges of the graph, E, in nonde- 
creasing order of edge weight, and 
adds a candidate edge to T if that edge 
does not form a cycle with those 
already in T. If the original graph is 
connected by E then T eventually con- 
tains a single tree, which is a minimum 
spanning tree. Otherwise, T eventually 
contains a minimum spanning forest of 
the original graph. 

Because KruskaFs algorithm exam- 
ines the edges in nondecreasing order 
of edge weight, it might be best to look 
at the problem in terms of sorting: 

Given a list of items and some ordering 
relation on them, organize the list into 
nondecreasing order (where "smallest" 
describes the first item). 

You might call a procedure from 
the body of Find_MST: 

procedure Sort_List 
(e_list: edge_list) 

to sort the edges in e_list (the edges 
of the graph) into nondecreasing order 
of edge weight. 

Because Kruskal's algorithm can 
terminate when it discovers a mini- 
mum spanning tree, you might not 
have to examine many edges. This 
suggests a variant of sorting in which 
the problem is to enumerate the k 
smallest of n items in nondecreasing 
order. Unfortunately, in this case it is 

hard to capture this behavior in a sin- 
gle procedure because k is not pre- 
dictable in advance — you don't know 
how many edges Kruskal's algorithm 
will need to examine before it termi- 
nates. 

So you must separate the (partial) 
sorting problem into two phases: 

1. Construct a data structure contain- 
ing the set of edges that are to be examined 
in sorted order. 

2. Incrementally deliver one edge at a 
time to Kruskal's algorithm, on demand, 
until it needs no more edges to form a 
minimum spanning tree. 

In some textbook implementations 
of Kruskal's algorithm,4 this is essen- 
tially how things work. Phase 1 con- 
sists of creating a heap data structure 
containing the edges, and phase 2 
involves removing edges one at a time 
from the heap. The heap organization 
guarantees that the edges come out in 
nondecreasing order of edge weight. 

This design makes it possible to 
have reasonable overall runtime for 
Find_MST because it lets you pre- 
compute a sorted order during phase 
1, during the transition between phas- 
es 1 and 2, during phase 2, or during 
any of these, spreading the work 
around. Most important, it does not 
need to take as much time to get to 
phase 2 as it would if the algorithm 
sorted all the edges. So, if Kruskal's 
algorithm terminates before examining 
all the edges, the total time spent on 
the (partial) sorting can be substantial- 
ly less than with the single Sort_List 
operation. 

David Parnas' famous KWIC 
("keyword in context") example notes 
the advantage of breaking up sorting 
into slightly smaller chunks of func- 
tionality.3 However, to our knowledge 
this basic idea has neither been touted 
as being as general as it is nor been 
further developed and systematically 
applied to the design of reusable com- 
ponents. Twenty years after Parnas' 
paper, object-oriented component 
libraries still encapsulate data struc- 
tures as objects and algorithms as sin- 
gle operations. 
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RECASTING SORTING 

To solve the sorting variation in the 
Find_MST operation and produce a 
highly reusable software component, 
you must recast sorting as an object. 
Our recasting approach is based on a 
machine-oriented-design paradigm, in 
which you begin by viewing sorting as 
a machine that puts things of type Item 
into a sorted order. In this case, Item 
is a graph edge that you want to sort by 
the usual less-than-or-equal-to order on 
edge weights. But the module might as 
well be generic so it can be used with 
other 11 ems and other orderings. 

Sorting machine data type. Imagine a 
sorting machine that accepts items to 
be sorted, one at a time, then dispens- 
es items, one at a time, in sorted 
order. In many applications, you must 
insert all the Items before extracting 
the first one. There are two distinct 
phases: an insertion phase and an 
extraction phase. 

Our encapsulation of a sorting 
machine into a module exports an 
abstract data type, Sorting_Machine 
_State, which records a machine 
state, and six operations. (Here, m is of 
type Sorting_Machine_State and x 
is of type Item). 

♦ Change_To_Insertion_ 
Phase (m) : Prepare m for calls to the 
Insert operation. This operation 
requires that m be in the extraction 
phase at the time of the call. 

♦ Insert (m, x) : Insert x into m. 
This operation requires that m be in the 
insertion phase at the time of the call. 

4 Change_To_Extraction_ 
Phase (m) : Prepare m for calls to the 
Extract operation. This operation 
requires that m be in the insertion 
phase at the time of the call. 

♦ Extract (m,x) : Extract a small- 
est (remaining) Item from m, return^ 
ing it in x. This operation requires 
that m be in the extraction phase at the 
time of the call. 

♦ Size (in): Return the number of 
Items in m. 

♦ is_In_Insertion_Phase(m): 

Test if m is in the insertion phase. 
Figure 1 shows the specification for 

this machine in Resolve.5"7 

Intuitively, you may think of the col- 
lection of items in a sorting machine as 
a set, but this has two problems: First, 
sets have no duplicate elements, 
although you should be able to sort 
even with duplicate items. Second, sets 
have no intrinsic order among their 
elements. Using a multiset or bag 
(INVENT0RY_FUNCTI0N in Figure 1) 
solves the first problem. You can 
address the ordering problem by spec- 
ifying the Extract operation so that 
it selects, from among those items 
remaining, one that is smallest with 
respect to the desired ordering. 

Functional flexibility. The Sorting_ 
Machine_Template component is 
functionally more flexible than a sin- 
gle Sort_List operation. If you 
must sort all items in a collection and 
want a procedure like Sort_List, 
you can layer it on top of Sorting_ 
Machine_Template. But if you 
must find only the k smallest items, or 
remove items until some condition is 
met, then you can stop after partial 
sorting. 

This design has other advantages. 
For example, single 
large-effect operations 
such as Sort_List 
must operate on a par- 
ticular data structure (it 
may be concrete or 
abstract, but it must be 
a particular kind in any 
case). In Sort_List, 
this structure is a list. If 
a program doesn't hap- 
pen to have its data in 
list form, it must trans- 
late it into that form. 
Sorting_Machine_ 
Template  requires 
neither the source nor destination of 
the data to be a particular data struc- 
ture or even the same kind of struc- 
ture. For example, if you must get 
items from an input device and put 
them into a sorted list, you can easily 

layer code on Sorting_Machine_ 
Template to do this. 

Performance flexibility. The improved 
performance flexibility of Sorting_ 
Machine_Template over Sort_ 
List comes from recognizing a key 
point: The abstract specification of 
functionality is not a prescription for 
bow data structures are represented or 
when sorting actually takes place. Of 
course you can achieve the specified 
behavior by representing Sorting_ 
Machine_State as a list of items 
and a Boolean phase flag. And you can 
implement the Insert operation by 
adding a new Item anywhere in the 
list; the Chan.ge_To_Extrac- 
tion_Phase operation by toggling 
the phase flag; and the Extract 
operation by searching for, removing, 
and returning the smallest Item in 
the list. 

But there are many other imple- 
mentation strategies with different 
performance profiles: 

« During each call to Insert, 
maintain the list in sorted order. 

♦Duringhange_To_Extrac- 
tion_Phase, sort the list explicitly 
using any sorting algorithm. 

♦ Represent a Sorting_Machine_ 
State using a binary 
search tree or a heap or 
any other data struc- 
ture, in each case facing 
similar choices for what 
each operation should 
do to that structure. 
You can precompute to 
any extent during each 
Insert operation; 
batch process during 

. Change_To_Ext rac- 
tion_Phase; defer 
work as long as poss- 
ible until an Extract 
operation requires it; or 

amortize the effort among these oper- 
ations in other ways. 

A good choice for a minimum-span- 
ning-tree application is to embed heap- 
sort so that Change_To_Extrac- 
tion_Phase creates a heap but does 

IN OUR DESIGN, 
NEITHER THE 
DATA'S SOURCE 
NOR ITS 
DESTINATION 
MUST BE A 
CERTAIN DATA 
STRUCTURE. 
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not sort the items. The fact that sort- 
ing is a two-phase operation makes this 
implementation possible. And some 
secondary operations (like finding a 
smallest Item or a hh smallest Item) 
run faster with this implementation 
than with one that sorts everything in 

Change_To_Extrac t i on_Phas e. 

RECASTING FINDJWST 

Returning to the original net-selec- 
tion problem, note the parallels 

between our variation of sorting and a 
minimum-spanning-tree algorithm. 
Once you realize that you may not 
have to sort all items, you can prof- 
itably recast sorting as an object. The 
same applies to obtaining edges. If you 
don't need to obtain all the edges of a 

.„concept, Sorting^achineJTempiate^'.i^ >-.'.. "'s- 
zlih >*■.»■ v'-j--/.,s.-v *;■*, t.g,.ljJ£yi.,i   .,%: ;  'V i-Jv ,'' ' -:   '■ 
.; .context' ",. *';r,,'>'jj.'*','--,' ■'?.'*?■ \ '■''''■i'1'■''->'; ■ ■'? 

^...srlobal context" "',4\. ,'/ " . V"!/ ,. '   ''■■- ' ': 

^v!ti.?t^dart^oöiean_Facility.-!;: :•''-'. ::;   -.'■ 
t''j;i Standard_Integer Facility .   ■    - ■'•" ■ 

<Ss  parametric context"^   :,:.:':. 
»ff£&. type Item-.{7, ;.;»; „:\:/-; '   ■. ■ -' 
aicg. math operation AREjDRDERED ( 
fip&s^r^} I x: math [ Item],; , 

ÖSC'?rA■-: y':. nathfltem] 
, -fs, ,- ) : boolean 

Jr^- 5estriction(* ARE_ORDERED is a total ' 
iC:ft'?■'. Pre-ordering *), 

.local context '■ 
t^»::  math subtype INVENTORY_FUNCTION is 
'%,:-:'

:" ■"■'. function from math [Item] to integer 
PS-T;"?;";- exemplar; f 

*»%c constraint for all x: math [Item] 
S'^i       (f(x)>= 0) . 
ii-r», matl1 operation EMPTY_INVENTORY: 
Jjtfifc'^ INVENTORY_FUNCTION 
'•},.Z- ■  definition for all x: math [Item] 

;-;;. (EMPTY_INVENTORY (x) =0) 
math operation IS_FtRST ( 

="'• ,V'fi INVENT°KY_FUNCTION 
'fii*--'?  x: math [Item] 
:p;y):;^:u ,■.:■>, \   .... 

 c definition f(x) > 0 and 
^•##(P'for ally:  mathfitem]  where  ' 

$k$Ü$-Ul ARELORDERED (y, x)    and ■■.■■■ 
SJi^Sin   not ARE_PRDERED   (x,   y)' 

^_.interface;~;-'--r;;. _ ..::"■'  -;.,." 
i^^^ Sorting^aciin^State is modeled by 

yK operation-changeJTo_.lnsertion_Phase -'f-',. ', 
;0:;i:;^.;...    alters ....£.,... m^,1?,a.y  ■.■„,->■    ......'■ 
.. Sorting_Machine_State ■"■'■^ '",■-.'■ -" • " s '-'""   '•''   * • 
.-;.,;',;..;.) ■■■■■,:., ■■ :-f,.;;^'1/;; n^'"V: 

requires;, not' m.insertion_phase "^ ''■ 
■ ,.;  ensures    m =: (EMPlSCiNVENTORYrtrue)' 
..  operation Insert'(''■•'■i;''":^-'?"/"'' -f'.'"':'-: ■  '- 

_"'' alters ' ■[  m:'. :: .•i ;'•".•"'' /H' ■■'■''■' ■■■'• 
Sorting_Machine_Stat'e'"^ ;tfvv-j:^'dwÄ;srf:<hU. 

,     consumes   x: Item ~ it:'<'v'-':^--f* :.-- 
- ■   ) -    '.'■.•■ ■JV^.ü;«.-;;.^,...-,-■•.- ,::„: 

requires 
ensures 

m. insertion_phase ö;iv--v^rt;.a- 
differ (m.count, #m.count',•••> 

{#x}) and ... ^yiV--^i'-:-; 
m.count(#x).= #m. count (#xY;-;';. 

+ 1. .and...-,.;.'..:., ,;.:'"./■ .'.,'•.':■:■'." 
m.insertion__phase ,:'.:'.,' :;:. 

operation Change_To_Extractionlphase O ',' 
alters    m: Sorting_Macriine_State- 

requires   m.insertionlphase: • ';:v~''' :"ft 

ensures    m= (#m.count, falsej: •;' "L>"- 
operation Extract ( '"''    .:--.■■-.:- <~K.-.S':;:•■: 

.  alters    m:" ■' ■     :;i"^^-.:"';;v,,x? ;.;.;- 

Sorting_Machine_State '.' ■■'      '}.  V-NC:•' ■-:^f^. 
produces       x: Item' . '■■"■:U-1;'.■>■.::.:'vw".- 

requires 

ensures 

A-,-. 

v..S. 3£^'böuilt?-INVENTORY_FUNCTION' -  ' ■      ■  ' ' 
'|S*UinseH;i6rLpriase: boolean ':'; ä 

;j- exemplar: ämB:x%^'3*„;-;?''-,rt'j •  ;-.-: :^,■■■;■-.'■ -„  , 
^.initializationfvi -6, , i-. ,  "^   , - ,  . 
^^sures^^^^p^^iNyiN^Y^ V true) 

mi 
I 

t i.<fl-ai:. .»■■•'• ::'..:.^.\- O-j  ■',-:: 

m. count /= EMPTY_INVENTORY-V;: 

and not m.insertion_phasei.'-; 

IS_FlRST(.#m.county,x) and' : 
differ (m.count, tmicount^.-'-v 

...-:■■. r- -{x}}.. and     ,".'.,i,;,',;;:3 

; m.count'(x)"='"#m'.'count (xf"!'-?;':r 

■ . - ,  -1 ; andf>'-■■".;' -'■•:■'-. J-'V-... 
-      not m.insertion_phäse'.'''"-'" ;*" 

operation Size (! ""'''.'S'*-: ■;' ».f^y^» .%('-H?r" 

,. /.prese^es7m^SOTtingjtecKiBel.Statef 

■'-.'    ■   ):   Integer" :; *,'J'r ,v'',?"*" j!,1v'*f-5t"i.'. i-, s!,f 
^  ■       ensures   ,.    Size"=. sumVx:ma€h[ltemT"-' ^ 
;''    ■"•"'   •  '' "-5-*-'! -\-^. •(ffl.:'count tx)V*'~?'-?;'. .'/ 

■-:\  .operation Is_In_Insereio'fiJ>häse',i(«ffe»^^J 
;'i. ■<"•■». ■;•' preserves ■- ?■ ■; -s "< mf s.^tt-f-'is^' --?#i' .y > ■ ■->. -• ■ 
Sorting_JMachine_Stäte,!,,5riö'"-'.•--•; Vj£r",.,'t* .-. 

; sv,:",';--.   ):.t,. Boolean      <■     . '.».*,    ^« *•>" 
iftf'-»ens

!
u^B.,..i| ; IS-,InH-Insert,ion_Pha'se-,*iff j . 

F%are 7. Specification of a sorting-machine concept. 
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.concept ,iÖt>ahhing_Fprest_Machine_Teinplate ■/ 

^context 

' global context* ■ - £.-■■ 

",j" ^St^dardJooiearL-Facility. ■'•■■■ 
V "-., ^'Stanaard_Integer_Facility 

; |?i~parametric context     - "."•. 

', '   '   constant itiax_vertex:  Integer 
restriction   max_vertex >. 0 

" - local context 

:?u\'&;ltaQ subtype EDGE is  ( 
vl:  integer 

'■\'..~. -j.,-- ■ ;-':.-£ ■' ':■   '■'• v2: integer 
'-. "■'■■}'-r-fii:  integer' 

) 
• C:. ■/;/'-/*' exemplar ,.:e ':'.. '. ■ 

.. Constraint 1 <= e.vl <= max_vertex and 
.-.-'" .  ;     1 <= e.v2 <= max_vertex and 

-'•.■;■: '-'•i-:^~'K-:: ■'"..,■'■': v"' e-w > .0 .  ■ 
; :. math subtype GRAPH is set of EDGE 

:•''.math operation IS_MSF ( 
:: : r;?i>J;;.pf ;insf: 'GRAPH .,'■•■' 

g:  GRAPH 
'!'■ .""^   :   ): boolean    '.'.'■ 
J ;:  v ..definition (* true iff msf is an 
'S'':- V'.i-"-:;MSF Of g'*) .' -;■"-..■.. 
.;; interface ,:-.■. ^j^ii'ir. 

' J; '.-, tyP0 Spannihg_^Forest_Machine_State 
,.'; is modeled by i       , 

>..\. -jl•';>£edges: .GRAPH \rj      ...-,"■■ 
w'w^ •'/t»A,insertion_phase: boolean 

) ::  . 

-operation Insert (.*".•'.';',••* >>*'■ 
1 alters ' / m: SpanriingJForest JMachine_; 

P':,P:''S.e';"'^.^^ 
■{• ;;v-  consumes    vl: Integer    - * '*,-*' " '/ ™': 

>• consumes   ;y2: Integer 
consumes   w: Integer >        <   '**'!. ^v; 

.' ■• requires     '. m. insertionjphäse   and '^5? 
rl <= vl ^'tnax^ertexVancl 

.• i <= v2 <= max_vertex' and_ 
w > 0   • *.,-/,    j 

ensures      .ISJMSF  (m.edges*, ■'l'.v"';ff^ 
#m.edges union\ '. t    '"■""' 

>     '•■      '   ■     "■■■-.    {(#vl,  #v2,  #w)}} ^-and 
• • m.insertionlphase        * ;,"' •■ 

operation Change_To_Extract'ion_Phase  (   •; 
alters m:Spanning_Forest_ ^%J 

Machine State" %C./S 

..- ? 

) 
requires 
ensures 

m.insertion_phase 

operation Extract 
alters 

produces 
produces 
produces 

(#m.edges, false) "',;?,'; 

( '.'' 'r.:'"y;-..:'^:<;ßi. 
m:Spanning_Forest_ . 

Machine_State '-f 
vl: Integer ' 
v2: Integer '.' ■;.  ;/v: 
w: Integer   "';■• -.£ 

requires    m.edges /=  empty_set 
not m.insertion_phase ''.; 

ensures .    (vl, v2, w) is in  . ." \ 
#m.edges and .;.;■ •.•;-:;^i 

m = (#m. edges without'5 
: {(vl, y2,'*)L: false)* 

and 

exemplar V' ^tft 
'. initialization 

: ensures / lm 

operation Size 
preserves 

): 'Integer 
ensures .;■■::<.)'', 

:!empty_set, true) 

.,'operation"Changel.¥o_Insertion_Phase   (   y 
'•;"•>'■ ^■.:i^ter8  '   m:  Spanning_Forest_Machine_^ 

State 5 ,    =    r   ' ' -; 

) •   ',*"*  
;'_-,_ f'requires "J.ooofcjiU ins"ert.ion_phase "■     " ' * 
Ä^s ensures    ';m = ' (emptyj»et,:true)"     '  - 

.:.'. m: Spanning_Forest_jA 
';'*, i ^>Machine_State ^ 

Size =. m-edges ^^^?: 

.       operation Is_In_Insertipri3&se . ( "äSM 
preserves ' * v 

m: Spanning_Forest_ -';%r '.-M^i'-:'^(-. £.,"vft.-Jf 
. Machine_State  .= 

-■-.;     .:';,*J :i.|bolean ,   - 
,, ensures c^Is_InJInser£4öii_Phase _ /iff 

'     '/^^JV>"-.*-mlinsertionlphase ■' i:, ; »* 
end Sparmrig_ForWtlÄchine_Teitpiate  VJ. jl' 

■llUf «j 

»s: 

Figure 2. Specification of a spanning-forest-machine concept. 

minimum spanning tree, you can prof- 
itably recast this operation as an 
object. 

Two phases. Imagine a spanning- 
forest machine that accepts weighted 
edges of a graph, one at a time, then 
dispenses the edges of a minimum 
spanning forest, one at a time. (We 
call this a spanning-forest mächine, 
not a spanning-tree machine, because 
the original graph might not be con- 
nected by its edges. In the net-selec- 

tion application the graph presumably 
is connected and everything will work 
fine. But the specification is easier, 
implementations are essentially the 
same, and the component is more 
reusable if the machine can find the 
minimum spanning forests of uncon- 
nected graphs, too.) 

Should a spanning-forest machine 
have two phases? The same factors 
that influenced the design of Sort- 
ing_Machine_Template suggest that 
it should have. But there is also anoth- 

er reason. Given the way a minimum 
spanning forest is defined, it doesn't 
make much sense to ask for the next 
edge in a graph that is changing as you 
extract its edges. Edges previously 
extracted could be made erroneous as 
new edges are inserted. This addition- 
al reason supports the logic behind 
making this a two-phase machine. 

How you define a spanning-forest 
machine is important. It is best to 
explain it as an "organizer" machine: 
The Insert   operation promises to 
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realization Krus)<ai_^itiDrtized.>..5j: i- - 
;'.:v.7 for Spanhing_Forfest_Kachine_Tempiate '■■■ 

'    context 7\^i|'1^77777''7  . ' • - .-».,,-s.t ,-. 
; V global context ,.7 . 

i,. • • •  •■-.'----i *  ' ■ ,■ . 

"{:[7v;" parametric*context'.; '■-,.'■. 

Vi.-i' , local context;• 7/7~ •"•■:■.-■. 
;•,;•- '- type Edge, is record 
*;. 77:..:<7,-,7 vertexl:* Integer ' 
•4-r'.'■'..'.'V '^ ,'vertex2; .Integer ■■•' 
* ,  "  weight':"'Integer    ' :'.- : 

';.■•  end records,, 
\y'j4:p.;.. facility Sorting_Machine_Facility is 

Sorting_Machine_Template 
Öfe'-v': :/-'• (Edge, EDGESJVREjORDERED) 
*/&;;•' realized by Heapsort_Embedding (...) 

,:.-.|i.jV facility Coalesceable_Equivalence_ 
.«-:.' Relation_Facility is 

;:.';}:"-:..: ;, Coalesceable_Equivalence_ 
• <'-U7'./'/'.  RelationJTeiriplate (max_vertex) 
\..-. ..-  realized by Disjoint_Set (...) 

:-; ;■;'.'-' type Spanning_Forest_Machine_ 
t'.'i.,',. State_Rep is record 

■;'f,'*.",-, r. graph_edges: Sorting_Machine_State 
;^."*,,-.. : are_connected: Coalesceable_ 
y\'%\.-'.': ■'■ ;   Eguivalence_Relation 
£, 777:7'7-v.. num_spanning_edges: Integer 
V<7:V-7 end record .:.''• 

'; interface  , 
J.j.: type Spanning_Forest_Machine_State 
;^- ^  is represented by 

■'■■/% '": :■'■'. „■:■■ Spanning_Forest_Machine_State_Rep 
i.ji;W convention ?,-■      (* rep invariant *) 
^-^correspondence ;   (* representation- 

-_. J> * ■ abstraction relation *)• 

,>J;J operation Ghange_To_Insertion_Phase ( 
*\-~ . „ alters :v: v. m: Spanning_Forest_ 
't#V-.'>    - Machine_State 
^■< .* ),;>4o- - ,, , . 
j^Tfk&^Ä,new_rep: Spanning_Forest_Machine_ 
:l?'j'-sr-'*:i'"' ■ i -;-',, State_Rep    . ' 
_ 1   begin 

::A.jE/.if-J;: m.rep : = : :new_rep ■ .       . 
;»'-..-  end Change jTo_Insertion_Phase. 

v:3_ operation Insert ,(,;,    ,; -, 

iÄ^i'il--.^ a^ter?^Ä'V' ,m,: Spanning_Forest_. . 
ffÄr*?rtX-vr.-';";v,%:--'/!r"J-Machine_State '■ ■ 
ri.K^vv^Vi--?'.. consumesyl:. Integer-.;' ...;;■.,.•  :"'■- '■■::- 
"* i*Kv'consuinesv2;r Integer "*::'.  "■• • 

y^  consumesw'i5'Integer , , ,;'-'< ''.■■-: '■ '",• 
•_•").-;, •- *;«; 
beginl 
^wif not.AreiEguiyalent1  "    ■. ,..-■.   ■; '<■ 
y>^r;Oiure^^arj^on^ectedi;vl^ v2)v 

then-, ^i'aiS; ss^ #/, - Si % 'j^y.-.-t. ... ,s*.*.: 

&& 

»A. 

9*»* 

l irt&fc 
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Figure 3. An amortized-cost implementation ofSpanning_Forest_Machine_Template. 
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keep only edges that are part of a min- 
imum spanning forest, and the 
Extract operation simply removes 
and returns some remaining ones, as 
Figure 2 shows. 

You can use the component in 
Figure 2 to solve the original net- 
selection problem with one Span- 
ning_Forest_Machine_State, rrt 

while some edge of g is not 
yet inserted into m do 

let (vl, v2, w) be any edge 
of g' not yet inserted 
into m 

Insert (m, vl, v2, w) 
end while 
Change_To_Extraction_Phase (m) 
while Size (m) > 0 do 
Extract {m, vl, v2, w) 
record/report that (vl, v2, 
w) is an edge of t 

end while 

An interesting feature of this code is 
that you can easily change the second 
loop to find if a net's total wire length 
exceeds a given bound: 

total_weight := 0 
while (Size (m) > 0 and 

total_weight <= bound) do 
Extract (m, vl, v2, w) 
total_weight := 
total_weight + w 

end while 
exceeds_bound := 
(total_weight > bound) 

This change by itself is not particu- 
larly easier or harder to make than for 
the original design. But other ramifi- 
cations of the new design are signifi- 
cant. Now you can tune performance 
without "peeking under the covers" 
into KruskaPs algorithm. All you 
need to do is select an implemen- 
tation that amortizes the costs of 
Spanning_Fores t_Machine_ 
Template so that the Insert 
and Change_Tq_Extraction_Phase 
operations don't actually compute 
a minimum spanning forest — 
it's almost all done in the Extract 
operation- 

Amortizing (osts. Model-based formal 
specifications do not favor any par- 
ticular -implementation and certainly 

do not limit you to a single implemen- 
tation. So, despite this specification's 
claim that Insert keeps only mini- 
mum-spanning-forest edges, you are 
free to amortize the cost of finding 
a minimum spanning forest among 
Insert, Change_To_Extraction_ 
Phase, and Extract in any 
way that makes sense. 

For example, you could 
choose to do all the in- 
teresting work during 
Change_To_Extrac- 
tion_Phase. To do so, 
build a graph from the 
inserted edges, use 
Kruskal's algorithm to 
find a minimum spanning 
forest, and save the span- 
ning-forest edges in a 
list (for example) from which they can 
be dispensed during subsequent 
Extract operations. This gives the 
same performance as the original 
solution, and it also means that you 
pay for finding a minimum spanning 
forest even if you don't need to 
extract all the edges — precisely the 
performance problem raised by the 
maintenance example. 

Instead, your implementation 
could defer computation until the 
Extract operation, as Figure 3 
shows. Represent a Spanning_For- 
est_Machine_State (in part) with 
a Sorting_Machine_State whose 
Item type is a record that contains 
two vertices and a weight for a single 
edge. The EDGES_ARE_ORDERED 
relation is less-than-or-equal-to on the 
weight field. Then call the Insert 
operation on the Sorting_Machine_ 
State to add the new edge and call 
the Change_To_Extraction_ 
Phase operation on the Sorting_ 
Machine_State to change the 
phase of the Spanning_Forest_ 
Machine_State. Finally, keep calling 
the Extract operation on the 
Sprting_Machine_State to get the 
smallest remaining edge until you find 
one that doesn't form a cycle with the 
previously extracted edges. 

Besides its use of amortization, the 

MACHINE- 
ORIENTED 
DESIGN IS 
EASIER FOR 
CLIENTS TO 
UNDERSTAND. 

code in Figure 3 is subtle in another 
respect. It includes a Size operation, 
which keeps a count of spanning-forest 
edges without knowing which edges 
are involved. This means you do not 
have to compute the minimum span- 
ning forest when Size is first called, 

which would have unfor- 
tunate performance con- 
sequences! 

To analyze the perfor- 
mance of Figure 3, let n = 
the number of edges in m. 
Insert    (m, . . .) takes 
0(l)time,and Change_ 
To_Extraction_Phase 
(m)   takes 0(ri) time. Ex- 
tract    (m, . . .) might 
take only 0(log ri) time if 
the smallest remaining 

edge is an edge of a minimum spanning 
forest. If not, it might take much longer, 
but not more than 0(w log ri) time. 

On any given graph, both the origi- 
nal implementation of the Find_ 
MST operation and its implementa- 
tion layered on top of this real- 
ization of Spanning_Forest_ 
Machine_Template use 0(n log ri) 
time in the worst case. In summary, 
there is no difference in performance 
from the original net-selection prob- 
lem. However, our recasting design 
has a potentially significant perfor- 
mance advantage over the convention- 
al design for the bounds-checking 
problem. 

(Incidentally, Figure 3 also uses 
a Coalesceable_Equivalence_ 
Relation type to solve the cycle- 
detection problem, and you would 
want to use it in Find_MST even if 
you settled for the original design. 
There are operations to make two 
integers equivalent and to test if two 
integers in a Coalesceable_Equiva- 
lence_Relation are equivalent, but 
space prevents us from showing 
the formal specification for this 
component here. Suffice to say that an 
efficient representation of Coalesce- 
able_Equivalence_Relation 
uses the textbook disjoint-set data 
structure with path-compression.2'4) 
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Conventional reusable component design techniques — 
even ones based on object-oriented principles —result in 

components that encapsulate data structures as objects and 
algorithms as single operations. Separating data structures and 
algorithms for this purpose is a false dichotomy. Algorithms 
can and should be encapsulated as objects, just as data struc- 
tures are. By following machine-oriented design principles, 
you can achieve more of the functional and performance flexi- 
bility potential of systematic component reuse. You also can 
make your designs consistent and therefore easier for clients to 
understand. 

In principle, there are no limits in applying this approach. For 
example, you could specify a "record-high" machine that reports 
each largest item so far, an "eigenvalue" machine that dispenses 
eigenvalues of a matrix in increasing order;8 a "compression" or 
"encryption" machine that works on a series of items. 

There are several points to consider when you recast a single 
large-effect operation as an object First, try to develop a simple, 

fully abstract, clearly explainable mathematical model for the 
collection of items in the machine.6,7 Then consider if you can 
settle for a two-phase machine. You probably should have a two- 
phase version of every machine in the reusable component 
library even if you can't see the immediate need for it in a partic- 
ular application. Often, implementations for two-phase 
machines are easier and/or potentially more efficient than for 
multiphase or phase-less machines. 

Finally, consider which explanation style you should use to 
specify the machine's overall behavior by characterizing what it 
apparently does during the insert, change-to-extraction, and 
extract operations; What and when your machine does some- 
thing will depend, in part, on which explanation is most under- 
standable. You might just have to use trial and error before you 
can judge which is best But don't worry too much about the ini- 
tial cost of making these design decisions! If your component 
is really reusable, the effort you spend on making a good 
design choice will be amortized over many future uses.   ♦ 
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The Effects of Layering and Encapsulation on 
Software Development Cost and Quality 
Stuart H. Zweben, Stephen H. Edwards, Bruce W. Weide, and Joseph E. Hollingsworth 

Abstract— Software engineers often espouse the importance 
of using abstraction and encapsulation in developing software 
components. They advocate the "layering" of new components 
on top of existing components, using only information about 
the functionality and interfaces provided by the existing com- 
ponents. This layering approach is in contrast to a "direct 
implementation" of new components, utilizing unencapsulated 
access to the representation data structures and code present 
in the existing components. By increasing the reuse of existing 
components, the layering approach intuitively should result in 
reduced development costs, and in increased quality for the 
new components. However, there is no empirical evidence that 
indicates whether the layering approach improves developer 
productivity or component quality. ' 

We discuss three controlled experiments designed to gather 
such empirical evidence. The results support the contention that 
layering significantly reduces the effort required to build new 
components. Furthermore, the quality of the components, in 
terms of the number of defects introduced during their devel- 
opment, is at least as good using the layered approach. 

Experiments such as these illustrate a number of interesting 
and important issues in statistical analysis. We discuss these issues 
because, in our experience, they are not well-known to software 
engineers. 

Index Terms—Empirical study, encapsulation, software compo- 
nents, abstract data types, software development, software reuse. 

I. INTRODUCTION 

IT IS well-known that software systems typically exceed 
their expected development and maintenance costs. While 

there are many perceived reasons for this, one reason is that 
the components of these systems tend to be developed nearly 
from scratch, instead of being predominantly reuses of existing 
components [15]. 

The ability to successfully reuse components in new systems 
depends on the components being properly encapsulated. That 
way, new components can be "layered" on top of them, taking 

Manuscript received April 1994; revised September 1994 and November 
1994. Recommended by J. Gannon. This work was supported in part by the 
National Science Foundation under Grants CCR-9111892 and CCR-9311702, 
and by ARPA under Contract F30602-93-C.-0243, monitored by the U.S. Air 
Force Material Command, Rome Laboratories, ARPA Order A714. 

S. H. Zweben, S. H. Edwards, and B. W. Weide are with Department of 
Computer and Information Science, The Ohio State University, Columbus, OH 
43210 USA (e-mail: zweben@cis.ohio-state.edu); (e-mail: edwards@cis.ohio- 
state.edu); (e-mail: weide@cis.ohio-state.edu). 

J. E. Hollingsworth is with the Department of Computer Science, 
Indiana University Southeast, New Albany, IN 47150 USA (e-mail: 
jholly @ ius.indiana.edu). 

IEEE Log Number 9409037. 

advantage of the abstract notions already encapsulated and 
avoiding reimplementation of these abstractions. For many 
years, programming languages have provided various means of 
encapsulating data structures and their associated operations, 
and the means of layering new components using these encap- 
sulated components. Supposedly, there are productivity and 
quality gains to be had by following this layering technique 
[20]. 

However, currently we do not see in software systems 
the widespread use of encapsulation to layer the system's 
components. This is true even in popular component libraries. 
For example, Booch [2] represents a map abstraction as a hash 
table using chaining for collision resolution. But he codes from 
scratch the lists that represent chains. He does not reuse his 
list package. Studies of object-oriented class hierarchies often 
have found that these "hierarchies" in fact are very fiat [4], 
indicating that most components are not really built on top of 
existing components. 

One possible reason for this lack of layering is that the 
original components are not well-designed, so that 1) the 
components needed in the next application are not quite those 
that are currently available, and 2) the available components 
cannot easily be converted (by layering) into those that are 
needed. Features and standard use of programming languages, 
such as Ada's restriction on the mode for parameters to 
functions and mixed use of private and limited private types, 
also inhibit one's ability to compose components [11]. 

Another reason may be that it is not obvious that, even if 
there were a useful component available, it would be better 
to reuse it by respecting its encapsulation than it would be to 
develop the required new functionality by accessing the un- 
derlying representation of the component. Performance is most 
often mentioned as the basis for this belief, although in our 
experience the performance penalty typically is minimal if the 
proper abstract functionality is encapsulated in the component. 
Language features such as code inheritance actually encourage 
violation of encapsulation while appearing to support layering 
[12]. 

We know of no controlled studies showing that the use of 
layering and encapsulation improves the cost of component 
development or the quality of the components, based on such 
measures as time to design/develop or number of defects in 
the resulting product. While abstract and anecdotal arguments 
have some place in technology assessment, it is vital that sound 
empirical support be obtained for the use of emerging software 
technologies. 

0098-5589/95$04.00 © 1995 IEEE 
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Lewis et al. [13], did study differences in productivity 
and quality when subjects were allowed to reuse existing 
components versus when they were not. They found that 
subjects who were allowed to reuse performed significantly 
better than those who were not. However, for their exper- 
iments, "reuse" included alteration of existing components' 
code. Therefore, these experiments really could not show 
the effect of layering. The Lewis experiments also studied 
the effects due to the language in which the components 
were written, using an object-oriented language (C++) or a 
procedural language (Pascal). While there undoubtedly were 
some potential differences in encapsulation between these 
alternatives, the encapsulation did not need to be respected 
by the subjects in reusing components, since the subjects 
were allowed to see inside the existing encapsulated units and 
modify them as they saw fit. 

In this paper, we report on three experiments designed 
to assess the effect, on effort and quality, of designing and 
developing software components by taking full advantage of 
existing abstractions, compared with an approach that allows 
seeing and using information about the implementation of 
the existing abstractions when designing and developing new 
components. Each of the experiments is a controlled study 
[5], and in each study there are interesting aspects to the 
statistical analysis required to determine if there is a significant 
difference between the two approaches. 

The next section gives some additional background to 
motivate the experiments, while Section III describes each 
experiment in detail. Section IV discusses important issues that 
affect the statistical analyses appropriate for these experiments. 
Section V discusses the results. 

II. BACKGROUND 

Controlled studies are relatively rare in software engi- 
neering, and this often is attributed to the prohibitive cost 
of repeating large systems development tasks so that the 
effect of using a particular method can be examined relative 
to a baseline. Most attempts at doing a controlled analysis 
have been done with small sets of programmers (frequently 
students) on very small projects. While the applicability of the 
results of such studies to "real" systems is not obvious, studies 
of this nature have proven useful in the past. In some cases, 
they have shown that a particular method may not have the 
desired effect, or they have helped us to understand better the 
various factors that may influence the effect of a method [19]. 
If the tasks performed by subjects in these experiments indeed 
are a subset of the tasks performed in the development of 
larger systems, and if the results of these experiments can be 
replicated, then the experiments can offer useful information 
about pieces of the complex process of software development. 

What kinds of tasks might be typical of large systems 
development, and therefore worth investigating via controlled 
experimental studies? Two possibilities are 1) adding function- 
ality to an existing component, and 2) building a component 
that has similar functionality to that of an existing component. 
In the former case, all that is desired is a new set of operations, 
but the existing component is of the right kind to provide 

TABLE I 
COMPARISON OF COMPONENT DEVELOPMENT APPROACHES 

Component 
Devel. Approach 

Type of 
Reuse 

Information 
Used 

- Understanding 
Required 

Direct 
Implementation 

White box 
(open, transparent) 

Coding details, 
representation 
data structures 

Purpose/functionality 
and implementation 

of existing 
components 

Layered Black box 
(closed, opaque) 

Functional specifiNation, 
interface description 

Purpose/function altty 
of existing 

components 

these operations; the existing component's set of capabilities 
just needs to be enhanced. In the latter case, a closely related 
component might be available, but the desired component must 
provide somewhat different, rather than merely additional, 
functionality. 

In both types of tasks, one can imagine developing the new 
components by reusing existing ones in at least two ways. 
One reuse approach is to "directly implement" the desired 
functionality using the coding details of existing components. 
This involves making use of information about the data 
structures used to represent the objects encapsulated by the 
existing components. Some people refer to this type of reuse 
as "white box," "open," or "transparent" reuse. A second reuse 
approach to developing the desired functionality is to use only 
the specifications of the functionality of, and the interfaces to, 
the existing components. We call this the "layering" approach 
because the new functionality is provided by components built 
on top of the existing encapsulated units. Other names for this 
approach might be "black box," "closed," or "opaque" reuse 
(see Table I). 

Both approaches require that the implementor understand 
the purpose of and functionality provided by the existing com- 
ponents. But the first.approach also requires an understanding 
of the implementation of the existing components, while the 
second approach does not. Intuitively, this suggests that black- 
box reuse demands of the implementor a lower cognitive load, 
and hence should reduce the effort required, at least for the 
initial design and coding of the new components. 

The expected effect on quality of layering versus direct 
implementation is somewhat less clear. In this paper, we use 
the term "quality" in the sense of "correctness," though we 
know that quality has other dimensions, too. Since the need to 
work with, and possibly misuse, the existing implementation 
is eliminated with black box strategies, one might expect 
better quality (i.e., fewer defects) from components developed 
using layering. On the other hand, since with layering one 
has available only the operations provided by the existing 
components and not the underlying representation data struc- 
tures, the algorithms used in the layering approach might differ 
from those used in the direct implementation approach. This 
use of different algorithmic approaches might give rise to 
different distributions of defects. Even if the same algorithmic 
approaches are used in the two methods, most of the defects 
might occur in the attempt to synthesize the algorithm from 
the existing operations, rather than in the manipulation of 
representations of existing data structures. 

Both of the tasks described above, that of adding func- 
tionality and that of modifying functionality, and both reuse 
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approaches, were studied in our experiments. The experiments 
are described in detail in the following section. 

III. OVERVIEW OF THE EXPERIMENTS 

Our experiments were conducted as part of a course on 
the subject of "Software Components in Ada." This course 
was offered in two separate quarters, once in the summer of 
1991 and again in the fall of 1992. In each case, the students 
in the course were graduate and upper-division undergraduate 
students majoring in computer science. Several of the students 
were full-time employees in the computing field. 

The lectures heavily emphasized the trade-offs evident with 
principles of encapsulation, abstraction and layering, and pre- 
sented a detailed engineering discipline for designing, for- 
mally specifying, and correctly and efficiently implementing 
Ada generic packages exporting abstract data types. Several 
programming assignments illustrated main points from the 
lectures, and the experiments were conducted in conjunction 
with some of these assignments. 

Our main independent variable for the experiments was 
the reuse approach used by the subjects, and the dependent 
variables of interest were effort and component quality. There- 
fore, the primary null hypothesis to be tested is that the reuse 
approach used has no significant effect on the development 
effort or the quality of the resulting component. 

To assess effort, we had the subjects keep careful records 
of the time spent in the initial designing/coding, testing, and 
debugging/recoding phases of the task. These times were 
recorded individually for each operation exported by the com- 
ponent under investigation. Both the initial designing/coding 
time and the total time to complete the task (including the 
testing and debugging/recoding time) were of interest to this 
study. 

To assess quality, for each operation of the component the 
subjects recorded the number of defects they needed to fix. 
Only those defects that caused run-time failures during testing 
were included. 

We emphasized to the students the importance of being 
internally consistent in keeping and reporting the data, and 
stressed that grades in the course would have nothing to 
do with the reported numbers. We audited the information 
provided by the students through post-assignment interviews, 
and the programs submitted by the students were tested by 
the instructor to ensure (as well as possible) that no lingering 
defects remained. We were somewhat skeptical of the data on 
a per-operation basis, but were confident that the aggregate 
information provided by the students was accurate. 

Several factors other than reuse approach might influence 
the results on the dependent variables. One of these, the 
nature of the activity (i.e., enhancement of functionality versus 
modification of functionality) was mentioned in the previous 
section. Other important factors include the component in- 
volved in the reuse activity, the subjects' familiarity with the 
component specification and representation, and the abilities 
of the subjects. In planning the experiments, we attempted to 
deal with each of these issues. 

The first experiment was an "enhancement of functionality" 
exercise using a simple, well-understood unbounded queue 
component. In addition to the "universal" package operations 
of Initialize, Finalize, and Swap [21], [8], [11], the 
basic Ada queue package provided the standard Enqueue, 
Dequeue, and Is_Empty operations (specifications for an 
Ada queue package can be found in [11]). The enhancement 
task was to add operations to Copy a queue, Clear (i.e., 
empty) a queue, Append one queue to another, and Reverse 
a queue. The representation structure used for the queue was 
a standard linked data structure with pointers to the front 
and rear. Eighteen subjects participated in this experiment. 
Since the functionality and representation structure used in this 
package were so familiar to the subjects—both from classical 
data structures and a previous lab exercise—we felt that it 
would be difficult to obtain significant differences due to the 
approach used. Preliminary results from this experiment were 
reported in [10]. 

The second experiment was.a replication of the first ex- 
periment using a more complex component that encapsulated 
a "partial map." This component allows a client to create 
an associative mapping which is a partial function from an 
arbitrary domain type to an arbitrary range type; it is useful 
in table processing applications. In addition to Initialize, 
Finalize, and Swap, the basic package provided the follow- 
ing operations (specifications for an Ada partial map package 
can be found in [18]). 

• Make_Defined Assign a given range value to a given 
domain element (add an association to the map). 

• MakeJJndefined Undefine a given, presently defined 
domain element (i.e., remove a particular association from 
the map). 

.• Make_Any_One_Unde fined Undefine some presently 
defined domain element, chosen arbitrarily and returned 
by the implementation (remove an arbitrary association 
from the map). 

• Test_If_Defined Test if a given domain element is 
defined. 

• Test_If _Any_One_Def ined Test if there are any de- 
fined elements in the map. 

The enhancement task for this experiment was to add 
operations that would Display (print) the map, Clear 
it (making every domain element undefined, according to 
the map), Combine two partial maps (assuming there were 
no inconsistently defined mappings in these two maps), and 
Remap all domain elements that map to one range value so 
they instead map to another range value. The representation 
chosen for the partial map was a hash table. The subjects 
were taught about this package in a previous lab assignment, 
where they were asked to implement the package using the 
hash table representation. Nevertheless, in comparison with the 
unbounded queue package, both the specification of the partial 
map package (i.e., the description of the functionality of the 
operations) and the representation of the data type were more 
complicated. Furthermore, we felt that the experience with the 
representation structure gained in the earlier lab could only 
improve the subjects' abilities to do the direct implementation 
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version of the enhancement, relative to their ability to do the 
layered version. Again, we expected that it would be difficult 
to obtain significant differences between the reuse approaches. 
Ten subjects participated in this experiment. 

The third experiment was a "modification of functionality" 
experiment using the partial map component. Given the basic 
partial map package used in the second experiment, the task 
was to create a component that encapsulated the concept 
of an almost constant map, which maps all but a finite 
number of domain elements to a "default" range value. Other 
than Initialize, Finalize, and Swap, the operations 
required by this package are as follows. 

• Reset Reset the map to a constant function in which all 
domain elements map to a specified default value. 

• Get_Def ault Return the default value, to which most 
of the elements are mapped. 

• Swap_Range_Value Modify the range value associated 
with a given domain element. 

• Remove_Any_Anomaly Make an arbitrary domain ele- 
ment, presently not mapping to the default value, instead 
map to the default value. 

• Test_If .Anomaly Test if a given domain value maps 
to the default value. 

• Test_lf-Constant Test if all domain values map to 
the default value. 

In this experiment, the subjects would be creating a rather 
unfamiliar component using what, by now, would be a some- 
what familiar component. The same ten subjects who partici- 
pated in the second experiment also participated in this third 
experiment. 

To mitigate the differential effects of subjects on task 
completion (see, e.g., [3]), in each experiment each subject 
performed the task using both the layering and direct imple- 
mentation approaches. The order in which the two approaches 
were followed was assigned randomly, subject to a counter- 
balancing with respect to the experience level of the subjects 
(i.e., we didn't want more experienced subjects doing the 
tasks in one order while the less experienced subjects did the 
tasks in the other order). Due to the uneven distribution of 
subject experiences and the relatively small number of subjects 
available for study, we chose not to investigate experience 
level as a separate factor in the experimental design. 

To summarize, each experiment was designed to assess the 
effect of the reuse approach (layered or direct implementation) 
on each of three dependent variables (initial design and coding 
time, total time, and number of defects). Each subject in each 
experiment was assigned to one of two sequences in which the 
two reuse approaches were employed (layered first or direct 
implementation first). Thus, as illustrated in Table II, each of 
the experiments was a two-period crossover design [14], [16]. 

rv. STATISTICAL ANALYSIS ISSUES 

The analysis of variance (ANOVA) model for these exper- 
iments allows us to decide if there is a significantly different 
effect, on.each dependent variable, of the layering approach 
versus the direct implementation approach (in statistical termi- 
nology, this is the "treatment effect" in the experiment). The 

TABLE n 
FACTORS IN THE EXPERIMENTAL DESIGN 

Treatment 
Sequence 

Layered First Direct First 
Layered 9 subj. in Exp. 1 

5 in Exp. 2 and 3 
9 subj. in Exp. 1 
5 in Exp. 2 and 3 Direct 

null hypothesis is that there is no such effect. In addition, the 
model allows us to decide if there is a significant difference 
in the two possible sequences (orders) in which these two 
approaches were employed. Finally, it allows us to assess 
if the treatment and the sequence interact; that is, we can 
test if there is a different effect of the approach depending 
on the order in which the two approaches were employed. 
Since each subject did the same task twice (once for each 
of the two approaches), but did so in only one of the two 
possible sequences, in statistical terminology the subjects are 
nested within sequences. Thus, this model is sometimes called 
a "nested factorial" design [9]. In the model, the variance 
associated with subjects (nested in sequences) is used to test 
for the sequence effect, while the variance of the subject by 
treatment interaction is used to test for the treatment effect 
and the treatment by sequence interaction. Some texts call this 
latter variance the "time error term" [14]. 

However, the normal nested factorial analysis of variance 
may not be appropriate for these experiments, for two reasons. 

1) An important concern is the potential that a subject's 
having done a task once will affect performance on the second 
attempt at the task (even though a different approach is being 
used). This possibility of a "carryover effect," as it is known 
in statistics, requires that care be taken when deciding if there 
really is an effect due to the approach used. 

A common and accepted way of dealing with this issue 
is first to test if there is a significant sequence effect and/or 
a significant interaction effect. If there is neither, then the 
normal nested factorial analysis of variance is used to test 
for the effect of the treatment (i.e., the approach). If either the 
sequence effect or the interaction effect is significant, however, 
the treatment effect is tested using only the data for the first 
period in the sequence. That is, for those subjects who did 
the layering approach first, only their data for the layering 
approach is used; for those who did the direct implementation 
first, only their data for the direct implementation approach is 
used. The error estimate used for this test is a function of the 
subject error and time error terms [14]. 

2) The defect data typically will comprise small integer 
values, whose distribution does not satisfy the normality 
assumptions required of a standard analysis of variance. Defect 
data may be modeled more accurately by a Poisson-like 
distribution, and there are common statistical procedures to 
do Poisson (regression) analysis, allowing tests for the signif- 
icance of the sequence, treatment, and sequence by treatment 
interaction effects. However, a true Poisson distribution would 
imply that the mean and variance are equal. The well-known 
vast differences in subjects makes this assumption unlikely to 
be met in our experiments. When the true variance is higher 
than that assumed by the Poisson model, a phenomenon called 
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"overdispersion" is present. The statistical analysis therefore 
must deal not only with nonnormality, but also with overdis- 
persion. Without correcting for overdispersion, for example, 
the test for significance of the treatment (approach) may 
falsely indicate significance. Fortunately, there are statistical 
procedures to deal with this [1]. These procedures compute 
test statistics to see if a true Poisson regression is appropriate, 
or if a correction for overdispersion must be applied. 

Some authors [5], [7] suggest, when analyzing data for 
which the assumptions of normality are questionable1, that 
nonparametric tests may be more appropriate. However, it also 
is known that parametric tests on means and in experiments 
where cell sizes are equal (characteristics of our experiments), 
are fairly robust against deviations from normality [17]. More- 
over, though it is easy to perform standard nonparametric tests 
such as the Mann-Whitney test [5], [6] to see if the primary 
effect due to reuse approach is present, these tests lose other 
information present in the experimental design and in the 
data (e.g., order, nesting of subjects within order, possible 
interactions between order and treatment, and actual values 
of the time and number of defects instead of their ranks). The 
Mann-Whitney test also is not very powerful for situations 
where there are many tied scores (as we have with the defect 
data), though it is possible to adjust for ties. Parametric models 
therefore allow one to get more information from the data, 
and are preferred if the models' assumptions are reasonably 
met. 

In the following section, we report the detailed analyses 
of the parametric tests only. We did perform Mann-Whitney 
tests on the treatment effect for each experiment. The results 
of these nonparametric tests were exactly the same as their 
parametric counterparts, at the same significance level. 

V. RESULTS 

While there are enough data points to apply the statistical 
methods used in this paper, the small sample sizes used in our 
experiments adversely affect the power of the statistical tests. 
This means that, if indeed there are real differences between 
layering and direct implementation, our tests might conclude 
otherwise. One way to improve the power of the tests is to 
raise the alpha level (the probability of concluding that there 
is a significant treatment effect when in fact there is none). 
In each of the analyses that follow, the significance tests are 
done using the standard alpha level of .05, though a case 
might be made that a higher alpha level (e.g., .10) would be 
reasonable. 

In the first experiment, the subjects already were very 
familiar with the component in question (the queue). They 
had seen, and likely used several times, the standard linked 
representation structure used in this experiment. Hence, the 
simplicity and familiarity of the component itself might mask 
true effects due to the treatment. Prior to the second and 
third experiments, the partial map component used in these 
experiments had been studied by the subjects in an exercise in 

1 Our time data also could fall into this category. There is some positive 
skewness in the data; actual tests for normality are highly volatile on small 
samples such as we have in our experiments. 

EXPERIMENT 1- 
TABLE III 

-INITIAL DESIGN/CODING TIME'DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean SD Mean     SD Mean    SD 

Layered ; 99.1 
94.0 

41.8 
44.3 

57.2    21.3 
180.4    65.4 

78.2    38.7 
137.2    70.1 Direct 

Overall 96.6 41.9 118.8    79.0 107.7    63.4 

TABLE IV 
EXPERIMENT 1—INITIAL DESIGN/CODING TIME ANALYSIS 

Source df | Mean Sq. |     / 

Sequence 
Subject (within Sequence) 
Sequence x Treatment 
Subject x Treatment (within Sequence) 

1        4466.7     1.84 
16        2434.7 

1       37056.3    20.73* 
16         1787.5 

Treatment (first period only) 
Error 

1         6609.7    14.09* 
16          469.1 

which they did an implementation using hashing. A hashing 
implementation was, in fact, used as the representation of the 
partial map component provided in experiments two and three 
(though the actual code for the implementation used in the 
experiments likely differed somewhat from that developed by 
any of the subjects in their exercise). 

By using the standard .05 alpha level we felt that, if our 
experiments were biased at all, they were biased in favor of 
not getting a significant treatment effect when in fact one was 
present. Therefore, our judgment was that, if the experiment 
showed a significant treatment effect, it was not likely to be 
spurious. 

A. Experiment 1—Queue Enhancement 

The analysis of variance for this experiment, using initial 
design and coding time, revealed no significant effect for 
sequence (mean for layering first = 96.6 min., mean for direct 
first = 118.8 min., / = 1.84, critical Fi,i6i.95 = 4.49), but did 
indicate a significant sequence by treatment interaction (/ = 
20.73, Fi,i6,.95 = 4.49). The means and standard deviations 
for each of the four cells are shown in Table III, while the 
relevant components of the ANOVA table are shown in Table 
IV. In the ANOVA tables, statistically significant / values (at 
the .05 level) are indicated by an asterisk. 

Following the approach outlined in the previous section, the 
treatment effect was tested using only the first period data, with 
the result that the layering approach required significantly less 
effort (/ = 14.09, FM6,.95 = 4.49). 

When total time was used as the dependent variable, a 
situation similar to that for initial design and coding time 
was observed. There was no significant effect for sequence 
(mean for layering first = 163.4 min., mean for direct first = 
182.6 min., / = 0.30, Fi,i6,.95 = 4.49), there was a significant 
sequence by treatment interaction (/ = 7.16, Fi,i6,.95 = 4.49), 
and the first period data showed that the layering approach was 
significantly faster (/ = 7.81, FM6,.95 = 4.49). Tables V and 
VI contain the relevant data and ANOVA, respectively, for 
total time. 
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EXPERIMENT 1- 
TABLE V 

-TOTAL TIME DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean      SD Mean     SD Mean     SD 

Layered 145.1      81.4 
181.8    111.0 

102.8     47.6 
262.3    102.4 

123.9     68.2 
222.1    111.5 Direct 

Overall 163.4      96.3 182.6    112.8 173.0    103.8 

EXPERIMENT 2- 
TABLE DC . 

-INITIAL DESIGN/CODING TIME DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean SD Mean     SD Mean     SD 

Layered 69.8 
127.6 

16.6 
29.6 

119.0    103.8 
273.2    131.1 

94.4     74.7 
200.4    118.0 Direct 

Overall 98.7 37.9 196.1    138.0 147.4    110.4 

TABLE VI 
EXPERIMENT 1—TOTAL TIME ANALYSIS 

Source 
Sequence 
Subject (within Sequence) 
Sequence x Treatment 
Subject x Treatment (within Sequence) 
Treatment (first period only) 
Error 

df | Mean S"q~ 
1 

16 
1 

16 
1 

16 
13735.8 
1759.6 

0.30 3287.1 
11087.7 
33878.8 7.16* 
4748.5 

7.81* 

EXPERIMENT 2- 
TABLE X 

-INITIAL DESIGN/CODING TIME ANALYSIS 

Source df | Mean Sq. |     / 
Sequence 
Subject (within Sequence) 
Sequence x Treatment 
Subject x Treatment (within Sequence) 

1      47433.8     3.63 
8       13082.6 
1       11616.2    7.86* 
8         1477.5 

Treatment (first period only) 
Error 

1      41371.6   18.87* 
8        2912.0 

TABLE VO 
EXPERIMENT 1—DEFECT DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean      SD Mean     SD Mean    SD 

Layered 0.89      0.93 
2.67      3.57 

1.33    1.41 
4.22    3.99 

1.11    1.18 
3.44    3.76 Direct 

Overall 1.78      2.69 2.78    3.26 2.28    2.99 

TABLE XI 
EXPERIMENT 2—TOTAL TIME DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean SD Mean      SD Mean     SD 

Layered 113.0 
191.0 

62.9 
40.5 

160.6    147.3 
458.2    236.1 

136.8    109.7 
324.6    212.9 Direct 

Overall 152.0 64.6 309.4    242.9 230.7    190.9 

TABLE Vm 
EXPERIMENT 1—DEFECT ANALYSIS (POISSON REGRESSION) 

Source df Mean Sq. / 
Sequence 1 1.38 0.48 
Treatment 1 7.84 2.72 
Sequence x Treatment 1 <0.01 <0.01 
Error 32 2.88 

TABLE Xn 
EXPERIMENT 2—TOTAL TIME ANALYSIS 

Source df | Mean Sq. |      / 
Sequence 
Subject (within Sequence) 
Sequence x Treatment 
Subject x Treatment (within Sequence) 

1     123873.8     3.37 
8       36725.2 
1       60280.2    12.59* 
8        4786.8 

Treatment (first period only) 
Error 

1     119163.0    14.35* 
8        8302.4 

The Poisson analysis of the defect data revealed neither a 
significant sequence effect (mean for layering first = 1.78, 
mean for direct first = 2.78, / = 0.48, Fi,32,.95 = 4.16) 
nor a significant sequence by treatment interaction (/ < 
0.01, Fli32,.95 = 4.16). Tables VII and VIII contain the 
relevant statistics. There was no significant treatment effect 
after correcting for overdispersion (/ = 2.72, Fi 32 95 = 
4.16). '   " 

B. Experiment 2—Partial Map Enhancement 

The analysis of initial design and coding time for the 
partial map enhancement was similar to that for the queue 
enhancement. There was no significant sequence effect, but 
there was a significant sequence by treatment interaction 
(Tables IX and X). The test for the treatment effect, using 
only the first period data, revealed that the layering approach 
required significantly less effort (/ = 18.87, Fi,8,.95 = 5.32). 

The analysis of total time gave results similar to that of 
initial design and coding time. Tables XI and XII show the 

TABLE Xffl 
EXPERIMENT 2—DEFECT DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean      SD Mean     SD Mean     SD 

Layered 0.80      1.79 
2.60      1.67 

0.80    0.84 
6.60    2.61 

0.80    1.32 
4.60    2.95 Direct 

Overall 1.70      1.89 ^_^———__— 3.70    3.56 2.70    2.96 

data and analysis; the treatment test using only the first period 
data was significant in favor of layering (/ = 14.35, Fii8i.95 = 
5.32). Again, this replicated the results of Experiment 1. 

The Poisson analysis of the defect data showed no sig- 
nificant effect either for sequence or sequence by treatment 
interaction. The treatment test, after correcting for overdis- 
persion, showed a significant difference in favor of layering 
(i.e., the layering approach gave rise to significantly fewer 
defects). This result differed from that in Experiment 1, where 
no significant effect was observed (see Tables XIII and XIV 
for details). 
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TABLE XTV 
EXPERIMENT 2—DEFECT ANALYSIS (POISSON REGRESSION) 

Source df | Mean Sq. |     / 

Sequence 
Treatment 
Sequence X Treatment 
Error 

1            4.24    2.37 
1          16.52    9.23* 
1            0.79    0.44 

16            1.79 

TABLE XLX 
EXPERIMENT 3—DEFECT DATA SUMMARY 

Treatment 
Sequence 

Overall Layered First Direct First 
Mean SD Mean     SD Mean    SD 

Layered 3.00 
5.00 

2.45 
4.85 

1.00    1.22 
2.80    2.49 

2.00    2.11 
3.90    3.81 Direct 

Overall 4.00 3.77 1.90    2.08 2.95    3.15 

TABLE XV 
EXPERIMENT 3—INITIAL DESIGN/CODING TIME DATA SUMMARY^ 

Treatment 

Sequence 
Overall Layered First Direct First 

Mean SD Mean     SD Mean     SD 

Layered 65.4 
112.4 

28.8 
65.1 

50.6    33.5 
133.8    52.6 

58.0    30.5 
123.1    56.9 Direct 

Overall 88.9 53.5 92.2    60.4 90.6    55.6 

TABLE XX 
EXPERIMENT 3—DEFECT ANALYSIS (POISSON REGRESSION) 

Source df | Mean Sq. |    / 

Sequence 
Treatment 
Sequence x Treatment 
Error 

1            2.57   0.84 
1            2.09    0.70 
1            0.25   0.09 

16            2.98 

EXPERIMENT 3- 
TABLE XVI 

-INITIAL DESIGN/CODING TIME ANALYSIS 

Source 
Sequence 
Subject (within Sequence) 
Treatment 
Sequence x Treatment 
Subject x Treatment (within Sequence) 

df | Mean Sq. |      / 
54.5      0.02 

3609.0 
21190.1    24.42* 

1638.1      1.89 
867.8 

TABLE XVH 
EXPERIMENT 3—TOTAL TIME DATA SUMMARY 

Treatment 

Sequence 
Overall Layered First Direct First 

Mean      SD Mean     SD Mean     SD 

Layered 157.8      99.4 
193.2    112.9 

112.0     83.6 
311.8    327.4 

134.9     89.9 
252.5    239.2 Direct 

Overall 175.5    102.0 211.9   248.7 193.7    185.9 

TABLE XVm 
EXPERIMENT 3—TOTAL TIME ANALYSIS 

Source 
Sequence 
Subject (within Sequence) 
Treatment 
Sequence x Treatment 
Subject x Treatment (within Sequence) 

df [ Mean Sq. |    / 
6624.8 

49544.4 
69148.8 
33784.2 
18859.9 

0.13 

3.67 
1.79 

C. Experiment 3—Partial Map Modification 

In the analysis of initial design and coding time for the 
partial map modification experiment, there was no significant 
effect for sequence nor for the sequence by treatment inter- 
action. The analysis, of the treatment effect, using all of the 
data, revealed a significant treatment effect in favor of layering 
(Tables XV and XVI). 

The analysis of total time also revealed no significant 
sequence effect, nor a significant sequence by treatment inter- 
action. The treatment effect was not significant (Tables XVII 
and XVffl). 

The Poisson analysis of the defect data revealed no signif- 
icant sequence effect nor a significant sequence by treatment 
interaction. After correcting for overdispersion, the test on 
treatment was not significant (Tables XIX and XX). 

D. Discussion 

For this set of experiments, we found that the use of layering 
consistently resulted in significantly faster time to complete 
the initial design and coding of the new component. This 
result held as the component changed from one with which 
the subjects were quite familiar to one with which the subjects 
were less familiar (and which was more complex as measured 
by the number of operations encapsulated in it and total lines 
of code). The result also held as the task changed from a 
component enhancement to a component modification. 

Total time, including that for testing, debugging and re- 
coding, also was significantly better using layering when the 
component was an enhancement. This result held for both 
the simple and familiar queue, and the more complicated 
and less familiar partial map. The modification task provided 
no such significant effect, though the mean total time for 
layering was much less than that for direct implementation. 
One possible explanation for this is that some defects made in 
the modification task tended to be nastier than those made in 
the enhancement task. It turned out that the average number 
of defects per subject was slightly higher for the enhancement 
task than for the modification task. If some of the defects 
for the modification task were, indeed, trickier, the time 
to debug and repair these defects would occupy a greater 
fraction of total time. Apparently, the nature of the defects 
was such that this debugging and repair time was not a 
function of the treatment, so the gain for layering in initial 
design and coding time is ameliorated when the debugging 
and repair time is added. Note that this could mean that 
trivial defects were just as trivial and nasty defects were 
just as nasty, whether layering or direct implementation was 
used. 

No consistent effects in favor of layering were found for 
the defect data, though the mean number of defects was less 
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for layering in each experiment. Here the small scale of the 
experiment may influence the results. Almost every subject 
had fewer than five defects. Some of these defects likely were 
trivial and these relatively trivial defects might be just as likely 
to be made when using direct implementation as they are 
when using layering. If the fraction of relatively trivial "defects 
was high for many of the subjects, it then will be difficult 
to obtain statistical significance. With the small number of 
defects observed in these data, it is somewhat remarkable 
that we obtained any significant effects for this dependent 
variable. 

A final item worth noting is that, had the analysis of the 
defect data for experiment 1 not corrected for overdispersion, 
it would falsely have concluded that there was a significant 
effect favoring layering. This illustrates how using the wrong 
statistical analysis in software engineering experiments such as 
these can mistakenly support the use of a particular technology 
even when the data do not really indicate such support. 

VI. CONCLUSION 

The results of our experiments support the contention that, 
by using only a description of the functionality of and in- 
terfaces to existing components, new components can be 
developed with less effort than that required if the source code 
and representation data structures of the existing components 
are also used. In addition, it appears from our experiments 
that there certainly is no loss in the quality of the development 
process, at least in terms of the number of defects made during 
development, when the layering approach is used. 

The empirical studies described in this paper illustrate 
interesting issues in the statistical analysis procedure, issues 
which, based on the authors' experiences, are not well-known 
to software engineering researchers. It is important that the 
proper analysis is used, lest the wrong conclusions be reached 
regarding the benefits of a particular method and/or best use 
is not made of the information contained in the experimental 
design and the data collected. 

The subjects used in our experiments, while mature stu- 
dents many of whom had full-time jobs involving software 
development, might not be representative of the typical pro- 
grammer. Generally, they had only a couple of years' ex- 
perience in commercial software development. Subjects with 
different backgrounds might perform differently on our ex- 
perimental tasks; this is a potential avenue for future re- 
search. 

It also might be interesting to compare the actual amount 
of code written by the subjects when using layering with 
that written when using direct implementation, to see if 
layering required less "work." If so, then the. amount of 
work required (measured by required changes to the code) 
would be an alternative explanation of our results for the 
time and defect data. We did not collect this "code change" 
data. Of course, from an abstract point of view, the amount 
of change required when using layering was identical to 
that required when using direct implementation, since the 
functionality required was the same in each case. Moreover, 
we believe that a software engineer, when faced with the 

choice of using layering or direct implementation, would find it 
difficult to estimate in advance which approach would require 
less work, even when (as in our experiments) the engineer 
is quite familiar with the representations used in the direct 
implementation. 

We are planning further experiments to more carefully 
analyze the defects made in the development of components 
such as those studied herein. It is important not only to 
characterize the kinds of defects observed, but also to provide 
if possible some cognitive explanation of these observations. 
We also are planning other studies to try to replicate the results 
reported herein. Studies such as these serve to provide a more 
sound and scientific basis for using (or not using) various 
software engineering methods. 
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Abstract 

Two important objectives when designing a 
specification for a reusable software component are 
understandability and utility. For a typical component 
defining a new abstract data type, a significant common 
factor affecting both of these objectives is the choice of a 
mathematical model of the (state space of the) ADT, 
which is used to explain the behavior of the ADT's 
operations to potential clients. There are subtle 
connections between the expressiveness of this 
mathematical model and the functions computable using 
the operations provided with the ADT, giving rise to 
interesting issues involving the two complementary 
system-theoretic principles of "observability" and 
"controllability". This paper discusses problems 
associated with formalizing intuitively-stated 
observability and controllability principles in accordance 
with these tests. Although the example we use for 
illustration is simple, the analysis has implications for the 
design of reusable software components of every scale 
and conceptual complexity. 

1.   Introduction 

Specifying the behavior of a software component — 
especially one that is meant to be reused — is a challen- 
ging task. Some important "quality" objectives of design 
in this area include avoiding implementation bias [10] and 
achieving understandability for potential component 
clients [16]. How can the specifier's design space be 
limited so high quality reusable component designs are 
allowed while low quality ones are ruled out? And how 
can proposed design principles be made effectively 
checkable and not merely slogans? 

Surely no general guidelines can succeed completely, 
but experience shows that some do constrain the design 
space in the right ways. In prior work we surveyed 
several specification principles that were intuitively 
described in the literature and proposed practical tests for 

compliance [18]. In this paper we report on some 
interesting problems associated with two of these 
principles, observability and controllability, which deal 
with the relationship between the expressiveness of the 
mathematics used in a specification and the computational 
power of the specified component. Informally, they 
(together) provide a test for "minimality" of the specified 
state space of an ADT. 

Our contributions here are: 
• We show why it is important to make careful and 

unambiguous definitions of these principles, because 
superficially reasonable interpretations of the 
informal definitions can easily lead to compliance 
tests that admit poor designs. 

• We illustrate unexpected difficulties in making 
careful and unambiguous definitions. 

• We lay out a road map of possible ways to formalize 
observability and controllability. At each fork in the 
road (marked in the text with y) this paper takes a 
particular branch in concert with folklore about 
specification design, leading toward and beyond 
fairly specific principles proposed in the literature 
[18]. This gives a depth-first view of the landscape 
of Figure 1. A more comprehensive future paper will 
discuss the paths we do not follow here. 

1.1.  The Principle of Observability 

One of the most important design decisions facing a 
reusable component specifier is the selection of an 
appropriate mathematical model (also called "conceptual 
model" or "abstract model" or "mental model" [14]) for 
the state space of values for variables (or "objects") of a 
new abstract data type (ADT) [3, 8, 17, 18, 20]. This 
model is used to explain the abstract behavior of a 
component's operations, so the choice of model directly 
influences the understandability of the concept and the 
ease of reasoning about its implementations and clients 
that are layered on top of it [4, 16]. Typically, the 
specification designer must consider a variety of 
candidate mathematical models before identifying the 
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"best" one(s). There are many options because both stan- 
dard and newly-conceived mathematical models — and 
compositions and combinations thereof— are candidates. 

V,      : Define "computationally" based on some 
implementation of the component, or all? 

some all 

Y2       : Use "relative" versions of definitions, 
absolute versions, or something else? 

relative 

Figure 1 — Major Decision Points in 
Formalizing Observability and Controllability 

An intuitively pleasing ideal that limits the design 
space in this dimension is the principle of observability: 
Oo A specification S defining the program type ADT is 

observable iff every two unequal values in ADT's 
state space are "computationally distinguishable" 
using some combination of operations of S. 
An appropriate way to view observability is in terms 

of the connection between the structure of the state space 
imposed on  it by  its  mathematical  operators  and 
predicates, and the computational structure imposed on it 
by the specified programming operations.  Observability 
dictates that the model should define a state space which 
makes distinctions that are just sufficient to specify the 
intended behavior of the operations — and no more; i.e., 
the   model   does   not  distinguish   values   that  are 
indistinguishable by the programming operations.   One 
predicate  that is  available  in  nearly  every  useful 
mathematical state space is equality. Basing observability 
on equality makes the principle generally applicable, 
although it is possible to refine it to other predicates 
particular to individual mathematical theories. 

Some designers (e.g., one of the referees of this 
paper) argue that observability is not an appropriate 
objective in the first place. For example, consider a 
simple statistical calculator that provides operations to 
enter a number and to compute the mean and variance of 
all numbers entered so far. An intuitively "natural" state 
space seems to be a multiset of all values entered. But a 
specification with only the above operations is not 
observable if based on this state space because many 
different multisets of numbers can have the same mean 
and variance.   A state space leading to an observable 

specification for this simple calculator is the number of 
numbers entered so far, their sum, and the sum of their 
squares. However, one might argue against this minimal 
state space on the grounds that it does not support adding 
a new operation, say, to return the median of the numbers 
entered so far. 

This argument might seem persuasive for traditional 
software design where one must add such an additional 
operation using cut-and-paste of source code. But it is 
inapplicable to a "black-box" component reuse 
technology such as we are discussing [18]. The simple 
statistical calculator with only mean and variance 
operations cannot be used to compute the median without 
breaking under the covers of the calculator to change its 
internal representation. This fact demonstrates that the 
proposed simple calculator is simply not an appropriate 
reusable component if the requirement is to find the 
median of a set of numbers. This client should choose a 
more powerful calculator component. 

A prime motivation for demanding observability as a 
property of truly reusable components is a psychological 
one. In trying to understand a specification, a client 
naturally assumes that distinctions in the state space are 
important. If a specification makes distinctions (two 
model values are unequal mathematically) without 
differences (variables with those two distinct values are 
computationally indistinguishable), confusion is 
inevitable. The conceptual model the specifier is trying to 

, give the client fails to convey the true situation, and the 
client is likely to look for another model of the 
component's behavior and to translate mentally between 
the official specification and this alternate view [14]. The 
simple calculator above is a good example of this effect. 
If the state space is a multiset of numbers, the client is 
inclined to think it should be possible to use the compo- 
nent to find the median of the numbers entered. This 
client's initial expectation first will turn to confusion 
about the perceived incompatibility between the large 

. state space and the limited power of the provided opera- 
tions to observe it, and ultimately to disappointment that 
the component is not really reusable in the new situation. 

1.2. The Principle of Controllability 

A complementary objective to understandability is 
utility: a reusable component should be useful to a variety 
of clients whose particular needs for variants of a basic 
functionality are perforce unknown at component design 
time. Another way to view this notion of utility is in 
terms of "functional completeness". This suggests that 
the combination of operations being specified should be at 
least powerful enough to construct any value in the state 
space defined by the model. 
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An intuitive statement of this property is the principle 
of controllability: 
Co A specification S defining the program type ADT is 

controllable iff every value in ADT's state space is 
"computationally reachable" using some combination 
of operations of S. 
A prime motivation for seeking controllability is 

technical, although it might be argued that observability is 
technically even more crucial. An example illustrates 
their combined importance. Suppose a client programmer 
using the specified component S wants to show that a 
code segment preserves the abstract value of some ADT 
variable. This means the segment has no net effect on the 
value of that variable, although the value may be changed 
temporarily within the segment. If S is not both 
observable and controllable then generally it is impossible 
to argue that any code segment does this — either because 
it is impossible to predictably reconstruct the original 
value before the end of the segment (e.g., because the 
original value resulted from non-deterministic behavior of 
some operation that is not repeatable due to lack of 
controllability), or because it is impossible to know that a 
proposed reconstructed value is really equal to the original 
and not simply computationally indistinguishable from it 
(due to lack of observability). 

1.3. The Need for Practical Compliance Tests 

How are observability and controllability applied in 
practice? Typically a designer has an informal notion of 
what basic functionality is sought. An initial set of 
operations is postulated, and the next question is what 
model to use to explain the state space over which these 
operations work. The principles of observability and 
controllability lead the designer to seek a state space for 
the specified behavior without redundant values that 
cluster into non-singleton congruence classes of compu- 
tationally indistinguishable points, and without values that 
are not even reachable. A first attempt at specifying the 
operations is made using a "natural" model that is thought 
(hoped) to lead to a specification which is both observable 
and controllable. But sometimes it is not, in which case 
there are two repair strategies: try another model, or 
modify the behavior of some operations and perhaps add 
and/or remove some. In this paper we use an example 
that illustrates only the second approach. But in either 
case the designer checks again for observability and 
controllability. With luck, the process eventually termi- 
nates with a design that satisfies both of these design prin- 
ciples (and presumably others of simultaneous interest). 

In order to carry out this iterative process, then, a 
designer has to have effective practical tests for whether a 
specification complies with the two principles.    This 

requires making clear, unambiguous definitions of the 
principles, which is the focus of this paper. - 

We begin in Section 2 by reviewing related work and 
outlining a working example. In Section 3 we discuss 
ambiguities in, and possible formalizations of, Oo and 
Co; then in Section 4 we explain how these definitions 
break down when applied to parameterized components 
that typify reusable software components (e.g., Ada 
generic packages and C++ class templates). Finally, in 
Section 5 we draw conclusions and again relate the path 
of this paper to the road map in Figure 1. 

2.  Background and Working Example 

The principles of observability and controllability, as 
defined here, are meaningful only in the context of model- 
based specifications where mathematical theory and 
program specification are separate, as in Larch [8] and 
RESOLVE [3]. The question addressed by observability 
and controllability is essentially whether the mathematical 
model of an ADT is in some sense "minimal" in size and 
structure for specifying a programming concept. This is 
not a well-formed question for true algebraic specifica- 
tions, in which a mathematical theory and a programming 
component being specified are treated as inseparable. The 
closely related taxonomy of mathematical functions of a 
theory into "observers" and "constructors" (e.g., [8, 13]) 
is clearly related in spirit, but these notions are one level 
removed as they pertain to the design of mathematical 
theories and not to the design of model-based specifica- 
tions that use those theories. 

A related issue that received much attention in the 
late 1970's in the algebraic specification community is 
when two mathematical values should be considered 
equal. Some authors [6, 12] considered two values to be 
different unless demonstrably equal based on the axioms. 
Others [7] considered two values to be equal unless 
provably different. While the first group took a traditional 
view and insisted that the smallest congruence relation 
defined by the axioms be used, the latter group allowed 
any congruence relations (including the smallest) 
consistent with the axioms. In general, for well-defined 
theories that are typically used as models (e.g., the Larch 
set trait [8]) the two notions converge. Our consideration 
of observability and controllability is independent of this 
question, because we simply assume equality in the 
mathematical spaces as a given predicate with the 
requisite properties. 

The most closely related work we know about (also 
the most practical in terms of development of design 
principles) deals with "expressiveness" of the operation 
set of an ADT [11]. This work is similar to ours in that 
the authors explore a "distinguishability" relation and take 
a formal approach to try to minimize ambiguity in 
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definitions and principles.  However, their specification 
system is algebraic, and the results apply only to 
immutable types and to programming operations that are 
total and have functional behavior.   Our investigation 
reveals that some of the more interesting theoretical and 
practical   questions involve relationally-defined opera- 
tions and operations with non-trivial preconditions — 
situations that routinely arise in the design of practical 
reusable components.  The ultimate difference between 
their design principles and ours is visible in our respective 
recommended "good" designs for a Set ADT (compare 
[11, page 149] with its "max" or "min" operation, and our 
Figure 2 with the Remove_Any operation of Section 4.2). 
Our design does not require an ordering on the Set ele- 
ments. Our design also admits high performance imple- 
mentations (e.g., hashing) that are inappropriate and inef- 
fective with the ordering requirement.   Indeed our Set 
ADT can be layered on any implementation of their Set 
ADT without a performance penalty, but not vice versa. 

There are other papers dealing with issues similar to 
observability in other papers from the theoretical 
algebraic specification literature, e.g., [1]. However, the 
authors do not discuss implications of their work for 
practical design, even for algebraically-specified software 
components. To our knowledge, the more practical 
model-based specification community has not 
systematically considered the problem of choosing an 
appropriate mathematical model for specifying an ADT. 
There is the notion of an "unbiased" or "sufficiently 
abstract" or "fully abstract" model [10], which is similar 
to observability in the sense that it is defined almost 
exactly like Oo- But this informal definition leaves open 
the possibility of various interpretations, along the lines 
suggested in Sections 3 and 4. This is precisely the 
confusion we wish to clear up. 

To illustrate these difficulties we use the example in 
Figure 2 of a possible specification for a Set ADT. Here 
the appropriate mathematical model seems clear. The 
question is what operations need to be provided in order 
to achieve observability and controllability. The specifi- 
cation language is RESOLVE [2, 3, 15], but the issues 
arise in any model-based specification language [20]. 

In RESOLVE, the mathematical model of an ADT is 
defined explicitly, as with finite set; or by reference to a 
program type, as with math [Item], which denotes the 
mathematical model type of the program type Item. 
Every program type in RESOLVE carries with it 
initialization and finalization operations (invoked in a 
client program through automatically-generated calls at 
the beginning and end of a variable's scope, respectively), 
and a swap operation (invoked in a client program using 
the infix ":=:" operator). The effect of initialization is 
specified in the initialization ensures clause. The effect 
of finalization usually is not specified because it has no 

abstract effect; in any event this aspect is unimportant 
here. The effect of swapping is to exchange the values of 
its two arguments. 

Operation specifications are simplified by using 
abstract parameter modes alters, produces, consumes, 
and preserves [9]. An alters-mode parameter potentially 
is changed by executing the operation; the ensures clause 
says how. A produces-mode parameter gets a new value 
that is specified by the ensures clause, which may not 
involve the parameter's old value (denoted using a prefix 
"#") because it is irrelevant to the operation's effect. A 
consumes-mode parameter gets a new value that is an 
initial value for its type, but its old value is relevant to the 
operation's effect. (The rationale for using this mode for 
the item inserted into a Set is discussed elsewhere [9].) A 
preserves-mode parameter suffers no net change in value 
between the beginning of the operation and its return, 
although its value might be changed temporarily while the 
operation is executing. 

The example is simple but it helps to illustrate the 
nature of the problems facing a specification designer. Is 
the specification in Figure 2 observable and controllable? 
What does it mean for two Set values to be "computa- 
tionally distinguishable", or for a Set value to be "compu- 
tationally reachable"? 

concept SetJTemplate 
context 

global context 
facility Standard_Boolean_Facility 
facility Standard_Integer_Facility 

parametric context 
type Item 

interface 
type Set is modeled by finite set of 

math [Item] 
exemplar s 
initialization 

ensures s = empty_set 
operation Insert ( 

alters s: Set 
consumes x: Item) 

requires x is not in s 
ensures  s = #s union {#x} 

operation Remove ( 
alters s: Set 
preserves x: Item) 

requires x is in s 
ensures  s = #s - {x} 

operation ls_Member ( 
preserves s: Set 
preserves x: Item): Boolean 

ensures  Is_Member iff  (x is in s) 
operation Size ( 

preserves s: Set): Integer 
ensures  Size = | s | 

end SetJTemplate 

Figure 2 — Possible Specification of a Set ADT 
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3.  Formalizing the Principles 

In this section we consider possible interpretations of 
Oo and Q), hoping to pin down the phrases "computation- 
ally distinguishable" and "computationally reachable". 

3.1. Stating the Principles More Precisely 

A big problem with the informal definitions Oo and 
Co has to do with the possibility of relationally-specified 
behavior. Although every operation in Figure 2 has 
functional behavior — the results of each operation are 
uniquely determined by its inputs — there are many 
situations where it is appropriate to define an operation so 
its post-condition can be satisfied in more than one 
possible way [19]. A correct implementation might 
exhibit functional behavior, but a client of the 
specification cannot count on any particular function 
being computed — only on the results of each operation 
satisfying the relation specified in the post-condition. 

The practical difficulty this causes in applying Oo 
and Co is that code layered on top of such a component 
appears to be non-deterministic, in the sense that it might 
do something with one implementation of the component 
but quite another with a different implementation. This is 
so even when the layered operation is specified to have 
functional behavior; among other things, the code 
implementing the layered operation might always 
terminate with some implementations of the underlying 
component, but not with others. 
\j/j When we say "computationally distinguishable" or 

"computationally reachable", do we mean for some 
implementation of the component, or for alii 
A strong version of observability is that it should be 

possible to write a client program that can decide equality 
of two variables for every implementation of the 
underlying component specification; similarly for 
controllability. We can formalize this by stipulating the 
total correctness of certain code layered on top of the 
specified concept. An implementation of specified 
behavior is totally correct if it is partially correct (i.e., 
correct if terminating) and terminating, for any totally 
correct implementations of the components it uses. 

We select this path because it leads to the principles 
identified in earlier work [18], and we thereby come to the 
following possible formalization of observability: 
Oi A specification S defining the program type ADT is 

observable iff there is a totally correct layered 
implementation of: 

operation Are_Equal ( 
preserves xl: ADT 
preserves x2: ADT): Boolean 

ensures  Are_Equal iff  (xl = x2) 

Controllability is slightly different in flavor, since as 
expressed in Co it seems to say something "about an entire 
family of operations. It might be formalized as follows: 
Ci A specification S defining the program type ADT is 

controllable iff for every constant c: math[ADT], 
there is a totally correct layered implementation of: 

operation Construct_c   ( 
produces x:  ADT) 

ensures      x = c 

3.2. Making the Principles Symmetric 

A hint that something lurks below the surface here is 
the disturbing asymmetry between the definitions Oi and 
Ci, the first involving a two-argument program operation 
and the second a quantified mathematical variable and a 
one-argument program operation. 
\|/2 Should observability and controllability be defined in 

terms of relationships between two program 
variables, or in terms of a program variable and a 
universally quantified mathematical variable, or 
perhaps in some other way? 
Here we choose the first path, which we took in 

deriving the principles published earlier [18] and which a 
priori seems as reasonable as any other.   The revision 
needed for controllability, however, makes it clear that the 
definition is contingent, or relative, in the following sense. 
"Computationally reachable" does not mean (as in Ci) 
that every value in the state space can be constructed from 
scratch, i.e., starting from an initial value of the ADT. It 
means that every value in the state space can be reached 
from every other — even if the given starting point could 
not itself have been constructed from scratch. The mean- 
ing of C 2 is now apparently quite different from that of 
Ci, which is an "absolute" notion of controllability in that 
there is only one variable involved. So we add the modifi- 
er "relatively" in defining both principles as follows: 
O2 A specification S defining the program type ADT is 

relatively observable iff there is a totally correct 
layered implementation of: 

operation Are_Equal   ( 
preserves xl:  ADT 
preserves x2:  ADT):  Boolean 

ensures      Are_Equal    iff     (xl = x2) 
C2 A specification S defining the program type ADT is 

relatively controllable iff there is a totally correct 
layered implementation of: 

operation Get_Replica   ( 
preserves xl:  ADT 
produces x2:  ADT)   • 

ensures      x2 = xl 
These definitions match practical compliance tests of 

prior work [18].   But they still have some technical 
problems, which we explore next. 
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3.3. Making the Principles More Independent 

By definitions O2 and C2, relative observability is 
not entirely independent of relative controllability, since it 
demands that the arguments to Are_Equal should be 
preserved and this apparently requires some degree of 
controllability. Similarly, the first argument to Get_Rep- 
lica must be preserved and proving this seemingly re- 
quires observability, as noted in Section 1.2. Is it possible 
to define the principles so they are not so evidently 
connected? The heart of the problem is that both defini- 
tions O2 and C2 involve preservation of operation argu- 
ments. We are, therefore, led to consider this variation: 
O3 A specification S defining the program type ADT is 

relatively observable iff there is a totally correct 
layered implementation of: 

Operatic« Were_Equal   ( 
alters xl:  ADT 
alters x2: ADT):  Boolean 

ensures      Were_Equal    iff     (#xl = #x2) 
This definition is a bit curious because, technically in 

RESOLVE,  a  function  operation  may  have  only 
preserves-mode parameters; but a violation here seems 
justifiable for ease of explanation. The parallel definition 
for relative controllability is: 
C3 A specification S defining the program type ADT is 

relatively controllable iff there is a totally correct 
layered implementation of: 

operation Move   ( 
alters xl:  ADT 
produces x2:  ADT) 

ensures      x2  =  #xl 

3.4. Relationships Among the Above Definitions 

Definitions O3 and C3 make the principles no 
stronger than with definitions O2 and C2, in the sense that 
any specification that is relatively observable 
(controllable) by O2 (respectively, C2) is equally so by 
O3 (respectively, C3). The reason is that it is trivial to 
layer an implementation of Were_Equal (Move) on top of 
Are_Equal (respectively, Get_Replica). Furthermore, if a 
specification is relatively observable by definition O3 and 
relatively controllable by definition C2, then it is 
relatively observable by definition O2 because we can 
layer Are_Equal on top of Get_Replica and Were_Equal: 

operation Are_Equal   ( 
preserves xl: ADT 
preserves x2:  ADT):  Boolean 

local context 
variables copyl,   copy2:  ADT 

begin 
Get_Replica   (xl,   copyl)- 
Get_Replica   (x2,   copy2) 
return Were_Equal   (copyl,   copy2) 

end Are_Equal 

Also note that every RESOLVE specification is 
relatively controllable by definition C3, since every type 
comes with swapping. Here is a universal implementation 
of Move in RESOLVE: 

operation Move  ( 
alters xl:  ADT 
produces x2:  ADT) 

begin 
xl   :=:  x2 

end' Move 
In effect, a move is half a swap. This is one reason 

we previously suggested the guideline of testing the 
stronger criteria O2 and C2 [18]. For components in 
other languages, however, C3 is a non-trivial criterion. 
For example, consider an Ada package defining a Stack 
ADT as a limited private type (no assignment operator), 
along with operations Push, Pop, and Is_Empty having the 
usual meanings. This is relatively controllable by C3 — 
but not because a primitive data movement operator for 
Stacks is trivially assumed. Without any one of the three 
operations it would not be relatively controllable by C3. 

The relationships among the definitions in this 
section are depicted in the Venn diagram of Figure 3, 
where we take the liberty of labeling sets of specifications 
with the labels of the definitions under which their 
member specifications qualify. 

Legend 

0      (Were_Equal) 

ITl      02    (Are_Equal) 

C,    (Move) 

I 1    C 2    (Get_Replica) 

Figure 3 — Relationships Among Definitions 

4.  Parameterized Components 

At first the above definitions seem clear and 
unambiguous. But suppose we try to apply those 
definitions to the Set_Template specification of Figure 2. 
It seems the specification in Figure 2 should be deemed 
not observable by Oo because there is no practical way to 
enumerate the elements of a Set, and this should be 
crucial in computationally distinguishing between two 
unequal Sets. It seems the specification should be deemed 
controllable by Co, however, because starting from an 
empty set it is easy to construct any finite set by repeated 
Inserts. Does this intuition match what the proposed 
definitions say? We discuss in detail only O 3, 
considerations for the other definitions being similar. 
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4.1. Type Parameters and Modular Proofs 

There is a reasonable way to interpret O3 that makes 
the Set_Template specification observable. The key 
features that permit this view are that O3 defines relative 
observability in terms of the existence, not the 
practicality, of an implementation of Were_Equal; and 
that there is no restriction on the assumptions an 
implementer of Were_Equal may make about the 
available operations on Items. 

We start by noting that the mandated existence of "a 
totally correct layered implementation" of the 
Were_Equal operation for Set_Template means, in 
RESOLVE terms, the existence of a totally correct 
implementation of the following concept: 

concept Set_Were_Equal_Capability 
context 

global context 
facility Standard_Boolean_Facility 
concept SetJTemplate 

parametric context 
type Item 
facility Set_Facility is 
SetJTemplate (Item) 

interface 
operation Were_Equal   ( 

alters si:   Set 
alters  s2:   Set):   Boolean 

ensues      Were_Equal    iff     (#sl = #s2) 
end Set_Were_Equal_Capability 

This formulation makes clear that the implementation 
of Were_Equal must be layered, since an instance of 
Set_Template is a parameter to the concept. Moreover, it 
makes clear that the implementation must work for any 
type Item for the Set elements, since Item also is a 
parameter. What it does not make clear, however, is what 
other components and services an implementation might 
use and depend on. 

In the absence of restrictions, presumably any such 
services may be assumed — a rather liberal interpretation 
of O3. But now what prevents an implementer of 
Were_Equal from simply assuming the existence of a 
(possibly thinly disguised) operation that tests equality of 
Sets of Items, and layering on top of that? Nothing. 

So we might wish to use a less liberal interpretation 
of O3. For example, suppose we insist that an allowable 
implementation of Were_Equal may not use any opera- 
tions with Set parameters other than those from SetJTem- 
plate itself. Unfortunately, this does not solve the prob- 
lem either. For example, below is a possible algorithm for 
Were_Equal, which is built on top of SetJTemplate and 
an "enumerator" concept for Items. In RESOLVE'S 
modular proof system, total correctness is defined in such 
a way that the following code is a totally correct 
implementation of Were_Equal, because we assume there 

is a totally correct implementation of the enumerator 
interface and the total correctness of the SetJTemplate 
implementation — and because all Sets are finite.  As a 
result we claim that SetJTemplate is relatively observable 
even by this less liberal interpretation of O3. 

operation Were_Equal   ( 
alters si:   Set 
alters s2:   Set):  Boolean 

local context 
variables x:   Item 

begin 
if   (Size   (si)   = 0 and Size   (s2)   = 0) 

then return true 
else 

let x = any Item value not 
previously enumerated during the 

top level call of Were_Equal 
if Is_Member  (si,  x) 

then 
if Is_Member   (s2,  x) 
then 

Remove   (si,   x) 
Remove   (s2,   x) 
return Were_Equal   (si,   s2) 

else return false 
end if 

else 
if Is_Member   (s2,   x) 

then return false 
else return Were_Equal   (sl,s2) 

end if 
end if 

end if 
end Were_Equal 
This illustrates the power of a modular proof system 

[5]. There might be Items for which it is impossible to 
implement the enumerator interface, but this does not 
influence the total correctness of WereJEqual. At the 
mathematical level, if the state space math[Item] is 
effectively enumerable then in principle there exists an 
implementation of the enumerator interface. But only if 
the specification of the actual program type Item is at least 
controllable, by a reasonable definition, should we expect 
to be able to implement the enumerator interface for it. 

So perhaps we should insist that the underlying 
components actually should be implementable. But then 
should the mere possibility of instantiating SetJWere_- 
EqualjCapability with an Item for which the enumerator 
cannot be implemented be enough to render the 
SetJTemplate specification not observable? And does 
"possibility" here mean the library of components 
actually contains such a type, or that in principle it might 
contain such a type? Suppose, for example, that in the 
specification language it is simply impossible to specify a 
program type whose state space is not enumerable. 
Should this situation — which might be reasonably 
attributed to inexpressiveness of the specification lan- 
guage and not to a problem with the design of Set_- 

55 



Template — be the deciding factor as we attempt to apply 
the observability test to Set_Template? 

If we use an interpretation in which the above 
implementation of Were_Equal is acceptable, so Set_- 
Template is deemed relatively observable, then it is 
interesting to see where variants of Set_Template lie in 
Figure 3. In Figure 4, we have placed some of them to 
illustrate the limited discriminating power of the 
definitions. For example, Get_Replica for Sets can be 
layered on top of Are_Equal for Sets using only Swap and 
Insert: systematically generate candidate Sets by 
enumerating Items and inserting them into empty Sets 
— first one Set with one Item, then two Sets with one 
Item and two Sets with two Items, and so forth — 
stopping when the Set to be copied and the current 
candidate Are_Equal. There is no need for Remove, 
Is_Member, or Size. 

Legend 
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Figure 4 — Variants of Set_Template Assuming 
math[ltem] is Enumerable 

It should be clear that these definitions are not really 
"right", in the sense that even if they do capture some 
sense of observability and controllability they do not rule 
out patently poor specifications. For example, Set_Tem- 
plate itself (even without Swap) is both relatively obser- 
vable and relatively controllable by the strong definitions 
O2 and C2, despite providing no practical way to enum- 
erate the elements of a Set. Even Set_Template without 
Remove is relatively observable and relatively control- 
lable, as it is with just Swap, Insert, and Are_Equal. 

4.2.    Handling Parameterized Components 

The difficulties in Section 4.1 are traceable to the 
prospect of having specifications that are parameterized 
by another type Item, and to the absence of restrictions on 
the assumptions an implementation may make about the 
actual Item type.   Even allowing an implementation of 

Were_Equal to rely only on the assumption that the state 
space of Item is enumerable weakens the definitions so 
much that they are practically worthless. 

.   Some features of RESOLVE permit us to easily 
clarify and strengthen the previous definitions to deal with 
parameterized  modules,  so  the observability  of a 
parameterized type is unaffected by properties of the 
arbitrary type by which it is parameterized.    Each 
realization (implementation) of a concept may require 
additional parameters beyond those of the concept, and 
these appear in the realization "header" [2]. This mech- 
anism lets us require that the implementation of an 
operation Were_Equal for type Set may only count on the 
always-present initialization, finalization, and swapping 
for Items, and on a similarly-defined Items_Were_Equal 
operation.   Any allowable realization of the concept 
exporting Were_Equal should have a realization header in 
which this one operation is the only realization parameter. 

This  leads  to  a refined  definition  of relative 
observability (the others being similar): 
Oy        A specification S, parameterized by the program 

type Item and defining the program type ADT, is 
relatively observable iff there is a totally correct 
implementation of: 

concept S_Were_Equal_Capability 
context 

global context 
facility Standard_Boolean_Facility 
concept S 

parametric context 
type Item 
facility S_Facility is S   (Item) 

interface 
operation Were_Equal   ( 

alters xl:  ADT 
alters x2: ADT):  Boolean 

ensures      Were_Equal    iff 
(#xl = #x2) 

end S_Were_Equal_Capability 
whose realization context makes only the following 
additional mention of Item: 

realization header Allowed 
for S_Were_Equal_Capability 

context 
parametric context 

operation Items_Were_Equal   ( 
alters xl:   Item 
alters x2:   Item) :  Boolean 

ensures      Were_Equal    iff 
(#xl = #x2) 

end Allowed 
In applying this definition to Set_Template, we find 

there is no way for the realization body of Set_Were_- 
Equal_Capability   to   use   any   externally-provided 
operations involving Items, other than Items_Were_Equal. 
This  rules  out  impractical  but  technically  correct 
implementations like the one in Section 4.1. 
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Figure 5 is the counterpart of Figure 4, with the 
refined definitions.  Now Set_Template is not relatively 
observable by Oy or by Oj, nor relatively controllable 
by C2'. However, by adding the following operation (or 
something similar) it becomes relatively observable and 
relatively controllable even by Oy and Cy: 

operation Remove_Any  ( 
alters s:  Set 
produces x:  Item) 

requires s /= enpty_set 
ensures  (x is in #s) and (s = #s - {x}) 

Remove_Any (s, x) removes an arbitrary element of 
the original s and returns it in x. Now there is a practical 
way to enumerate the elements of a Set, leading to 
obvious implementations of the required layered 
operations that assume no more than the ability to do with 
Items what the layered operation is doing to Sets. 

Legend 
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Figure 5 — Variants of Set_Template With 
Section 4 Definitions 

Figure 5 shows what happens to the variants of 
Set_Template previously displayed in Figure 4 (circles 1- 
7). Two new variants help to illustrate the discrimination 
power of the new definitions. Set_Template with 
Remove_Any (circle 8) — a good design — passes both 
of the stronger compliance tests O2' and C2'- Set_- 
Template with Remove_Any but without Insert (circle 9) 
— plainly not a good design — still passes both weaker 
tests O3' and Cy but neither stronger one. So the 
definitions used for Figure 5 seem better than those used 
for Figure 4. But again even Oy and Cy clearly are not 
"right" in that they still do not rule out patently bad 
specifications. It is easy to circumvent their intent by 
attacking the symptoms and not the disease: just add 
Are_Equal and Get_Replica as primary operations. In 
fact, Set_Template with just Are_Eqiml and Get_Replica 

and no other operations whatsoever sits in precisely the 
same place in Figure 5 as Set_Template with 
Remove_Any> despite clearly not satisfying Ci. Fixing 
these problems apparently requires taking a different path 
altogether, as we discuss in the conclusions below. 

5. Conclusions 

A fundamental question facing the designer of a 
model-based specification of an ADT is the appro- 
priateness of the chosen conceptual model. We have 
discussed some of the technical problems in carefully 
defining two principles that provide the specifier with 
criteria for appropriateness: Does the chosen model 
interact with the specified operations in a way that makes 
the specification observable and controllable? A negative 
answer on either count suggests that the specifier needs to 
look harder, or be prepared to justify non-compliance on 
the basis of other requirements. A positive answer on 
both counts gives a certain confidence, though among 
satisfactory specifications some may be "better" than 
others (e.g., more understandable or more flexible). 
However, it hardly guarantees that the specification is 
"good" in any reasonable and absolute intuitive sense. 

We mentioned alternate paths that might be followed 
to formalize observability and controllability. Here are 
some conclusions from preliminary exploration of these 
paths—conclusions not justified in the body of this paper. 
\|/j When we say "computationally distinguishable" 

or "computationally reachable", do we mean for some 
implementation of the specified component, or for all? 

Defining the principles using an existential quantifier 
over implementations is largely unexplored territory. 
However, there is reason to believe it might be attractive. 
Consider, for example, the specification of an ADT called 
Computational_Real modeled as a real number. The 
operations have relationally-defined behavior. The Add 
operation, for example, ensures that the result of adding 
two Computational_Reals is a Computational_Real whose 
model lies within some small interval around the sum of 
the models of the addends. Based on a cardinality argu- 
ment, it is clear there is no way the specification can be 
deemed controllable if we insist that every implementation 
of it must support reaching every real number. However, 
the obvious Computational_Real operations (which mirror 
the usual mathematical operators for reals) are powerful 
enough to allow that every real number might be 
reachable in some implementation, since the union of the 
allowed intervals over all computations with these 
operations just has to cover the reals. The power of 
relationally-specified behavior is evident here, but the full 
implications of defining observability and controllability 
as suggested are not. 

57 



\|/2 Should observability and controllability be defin- 

ed in terms of relationships between two program vari- 
ables ("relatively"), or in terms of a program variable and 
a universally quantified mathematical variable, or perhaps 
in some other way? 

Defining both principles the second way leads to 
interesting phenomena and to other interesting questions 
involving the expressiveness of the mathematics and the 
relationships between those definitions and the ones in 
this paper. Observability basically becomes a test of 
whether, for every point in the state space, it is possible to 
tell whether a program variable Was_Equal to it. 
Controllability is more properly termed "constructability", 
using something like definition Cj. These alternate 
definitions cut through diagrams like Figures 3-5 in a 
surprising way, since there are specifications that are 
observable and/or controllable by the alternate definitions 
but not by Oy and/or C2\ and vice versa. So such 
definitions might offer distinct useful tests which should 
be applied in tandem with the ones described here, when 
evaluating a proposed specification. 

6. Acknowledgment 

We thank Murali Sitaraman and Stu Zweben for 
insightful comments on a draft of this paper, and the 
anonymous referees for their helpful suggestions and 
pointers to some relevant literature (especially [11]). We 
also gratefully acknowledge financial support for our 
research from the National Science Foundation under 
grant CCR-9311702, and from the Advanced Research 
Projects Agency of the Department of Defense under 
ARPA contract number F30602-93-C-0243, monitored by 
the USAF Materiel Command, Rome Laboratories, ARPA 
order number A714. 

7. References 

[1] Bernot, G., Bidoit, M., and Knapik, T., "Observational 
Specifications and the Indistinguishability Assumption," 
Theoretical Computer Science 139, 1995, 275-314. 

[2] Bucci, P., Hollingsworth, J.E., Krone, J., and Weide, 
B.W., "Implementing Components in RESOLVE," 
Software Engineering Notes 19, 4, October 1994, 40-52. 

[3] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., 
Weide, B.W., "Specifying Components in RESOLVE," 

Software Engineering Notes 19, 4, October 1994, 29-39. 
[4]     Edwards, S.H., A Formal Model of Software Subsystems, 

Ph.D. dissertation, Dept. of Computer and Information 
Science, The Ohio State Univ., Columbus, March 1995. 

[5]     Ernst, G.W., Hookway, R.J., and Ogden, W.F., "Modular 
Verification   of   Data   Abstractions   with   Shared 
Realizations,"   IEEE   Transactions   on   Software 
Engineering 20,4, April 1994,288-307. 

[6]     Goguen, J.A., Thatcher, J.W., and Wagner, E.G., "An 
Initial Algebra Approach to the Specification, Correctness, 
and Implementation of Abstract Data Types," in Current 
Trends in Programing Methodology 4, R. T. Yeh, ed., 
Prentice-Hall, 1978, 80-149. 

[7]     Guttag, J.V., Horowitz, E., and Musser, D.R., "Abstract 
Data Types and Software Validation," Communications of 
the ACM 21, 12, December 1978, 1048-1064. 

[8]     Guttag, J.V., and Horning J.J., Larch: Languages and 
Tools for Formal Specification, Springer-Verlag, 1993. 

[9]    Harms, D.E., and Weide, B.W., "Swapping and Copying: 
Influences  on  the  Design  of Reusable  Software 
Components,"   IEEE   Transactions   on   Software 
Engineering 17, 5, May 1991,424-435. 

[10]   Jones, C.B., Systematic Software Development Using 
VDM, 2nd ed., Prentice-Hall, 1990. 

[11]   Kapur, D., and Mandayam, S., "Expressiveness of the 
Operation Set of a Data Abstraction," in Conference 
Record   7th  Annual   Symposium   on   Principles   of 
Programming Languages, ACM, 1980, 139-153. 

[12]   Liskov, B.H., and Zilles, S.N., "Specification Techniques 
for Data Abstractions," IEEE Transactions on Software 
Engineering SE-1, 1, March 1975, 7-19. 

[13]   Liskov, B., and Guttag, J., Abstraction and Specification 
in Program Development, McGraw-Hill, 1986. 

[14]   Norman,   D.A.,   The   Design   of Everyday   Things, 
Doubleday/Currency, 1990. 

[15]   Ogden, W.F., Sitaraman, M., Weide, B.W., and Zweben, 
S.H., "The RESOLVE Framework and Discipline — A 
Research Synopsis," Software Engineering Notes 19, 4, 
October 1994, 23-28. 

[16]   Sitaraman, M., Harms, D.E., and Welch, L.W., "On 
Specification  of Reusable  Software  Components," 
International Journal of Software Engineering and 
Knowledge Engineering 3, 2, June 1993, 207-229. 

[17]   Spivey, J.M., The Z Notation: A Reference Manual, 
Prentice-Hall, 1989. 

[18]   Weide, B.W., Ogden, W.F., and Zweben, S.H., "Reusable 
Software Components", in Advances in Computers, vol. 
33, M.C. Yovits, ed., Academic Press, 1991, 1-65. 

[19]   Weide,   B.W.,   Ogden,   W.F.,   and   Sitaraman,   M., 
"Recasting Algorithms to Encourage Reuse," IEEE 
Software 11, 5, September 1994, 80-88. 

[20]   Wing, J.M., "A Specifier's Introduction to Formal 
Methods", Computer 23,9, September 1990, 8-24. 

58 



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 23, NO. 2, FEBRUARY 1997 83 

Representation Inheritance: 
A Safe Form of "White Box" Code Inheritance 

Stephen H. Edwards, Member, IEEE Computer Society 

Abstract—There are two approaches to using code inheritance for defining new component implementations in terms of existing 
implementations. Black box code inheritance allows subclasses to reuse superclass implementations as-is, without direct access to 
their internals. Alternatively, white box code inheritance allows subclasses to have direct access to superclass implementation 
details, which may be necessary for the efficiency of some subclass operations and to prevent unnecessary duplication of code. 

Unfortunately, white box code inheritance violates the protection that encapsulation affords superclasses, opening up the 
possibility of a subclass interfering with the correct operation of its superclass' methods. Representation inheritance is proposed as 
a restricted form of white box code inheritance where subclasses have direct access to superclass implementation details, but are 
required to respect the representation invariant(s) and abstraction relation(s) of their ancestor(s). This preserves the protection that 
encapsulation provides, while allowing the freedom of access that component implementers sometimes desire. 

Index Terms—Abstraction function, abstraction relation, behavioral subtype, inheritance, model-based specification, object-oriented, 
representation invariant, reuse, specialization, subclass. 

1   INTRODUCTION 

CONVENTIONAL wisdom about how best to use inheri- 
tance in object-oriented (oo) programming often 

centers around the reasoning problems of component cli- 
ents, not implementers. Most solutions, e.g., adherence to 
the Liskov Substitutability Principle (LSP) [1], helpfully 
instruct component designers in the correct way to use 
specification inheritance. Unfortunately, these solutions 
do not address the code reuse problems that also affect 
class designers. 

Specifically, code inheritance that allows a subclass to di- 
rectly access the representation it inherits from its parent— 
which we might consider white box code inheritance—raises 
serious concerns about safety, correctness, and loss of lo- 
cality when reasoning about implementations. In contrast, 
with black box code inheritance new features in a subclass 
are simply additions that are written in terms of the super- 
class' external client interface. Fig. 1 illustrates these two 
approaches, where a subclass of a basic list abstraction adds 
a Reverse () operation to the behavior it inherits from its 
parent. This paper addresses the utility of white box code 
inheritance as a practical mechanism for component im- 
plementers, describes the drawbacks it entails and their 
theoretical roots, and proposes representation inheritance—a 

.safe variety of white box code inheritance that meets practi- 
cal needs without raising the same concerns. 

Section 2 explains why problems arise from white box 
code inheritance, and defines representation inheritance. 
Section 3 elaborates the discussion of the problems of white 
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box code inheritance through a simple example—a two- 
way list component. Section 4 then shows how representa- 
tion inheritance can be applied in the example. Section 5 
comments on methods of enforcing the restrictions imposed 
by representation inheritance, and finally Section 6 dis- 
cusses relationships with previous work. 

Specification Specification 

Implementation 

Fig. 1. Black box vs. white box inheritance. 

2  THE PROBLEM 

When defining a new subclass, an 00 programmer often has 
the option of implementing some or all of a subclass' new 
features by directly manipulating the data members and/or 
using the internal operations inherited from its superclass, 
which we call white box code inheritance. Unfortunately, a 
subclass implemented using white box code inheritance has a 
"back door" through the protection that encapsulation nor- 
mally affords its parent. This leak opens the possibility of 
subclass code compromising the integrity of an encapsulated 
object's internal representation. As a result, one can no longer 
reason about the behavior of a particular method just by 

1. The problems and solutions we discuss may involve either single or 
multiple inheritance, but the descriptions in this paper are written in terms 
of single inheritance for simplicity. 

oo98-5589/97/$io oo ©1997 IEEE Reprinted with permission. 
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looking at the class it is in—any present or future subclass has 
the potential to interact with it indirectly through the object's 
internal state in unforeseen ways. 

For these reasons, many researchers and practitioners 
alike have advocated avoiding white box code inheritance 
completely. Why then would a programmer ever choose to 
use it? There are two reasons for using white box code in- 
heritance in practical situations. The more commonly cited, 
but less compelling, reason is efficiency. In some circum- 
stances, subclass operations implemented using black box 
techniques suffer large space or time performance penalties 
that could be avoided through the use of white-box code 
inheritance, as in the example component described in Sec- 
tion 3. When such a case arises, one might suggest simply 
reimplementing the new class independently, perhaps as a 
sibling rather than as a descendant of the chosen superclass. 

Unfortunately, this leads to the less commonly cited but 
more compelling reason for using white box code inheri- 
tance^—avoiding the extra testing and maintenance burden 
required by duplicating code. The "cut-and-paste"-style 
reuse involved in reimplementing a class separately in or- 
der to add a new method that requires direct access may 
save coding time, but provides no help for testing or main- 
tenance—the two classes will require twice as much effort 
as the original class alone [2]. ideally, one would instead 
like to consider the newly added code in a subclass to be 
independent of any inherited code for the purposes of test- 
ing and maintenance. While unrestricted white box code 
inheritance does not admit this possibility, representation 
inheritance does, as explained in Section 5. 

For the remainder of this section, we turn our attention 
to the hole in class encapsulation that white box code in- 
heritance opens. The difficulties that arise from this leak 
occur when a subclass either fails to respect its parent's rep- 
resentation invariant, or fails to respect its parent's abstrac- 
tion relation. 

2.1 Respecting Representation Invariants 
Internally, an object's methods interact indirectly with each 
other through the state variables the object encapsulates. 
Because this interaction is indirect, its success critically de- 
pends on assumptions about the meanings attributed to the 
variables and to changes in their values—assumptions 
shared by all the methods. A class' representation invariant 
captures exactly these assumptions [3, pp. 72-74]. 

As an example, consider a class that implements the ab- 
straction of a "list of items." As shown in Fig. 1, one way to 
implement such a class is to give it two internal state vari- 
ables: an array of items called " elements," and an integer 
called "length" recording how much of the array is in use. 
One might design the methods for this class so the value of 
length always refers to some valid index into the ele- 
ments array—a representation invariant which all of the 
class methods would share. 

Typical OOPLs encourage one to encapsulate object state 
information within a class so that clients cannot violate as- 
sumptions that are critical to the correct functioning of the 
class' methods. However, subclasses may occasionally need 
direct access to a superclass' internal state (i.e., the speciali- 
zation interface may provide a different view of the class 

than the client interface). This access allows them to ma- 
nipulate that representation in ways that can violate the 
representation invariant, introducing "bug-like" behavior 
in previously correct superclass methods. 

To preclude the problems this unchecked freedom can 
introduce, we propose that: 

If a subclass has direct access to the internal state of a super- 
class, it is likewise obliged to live by and uphold the com- 
mon assumptions shared by all methods that have direct ac- 
cess to those internal details—e.g., the superclass' repre- 
sentation invariant. 

2.2 Respecting Abstraction Relations 
A class' client interface is often expressed at a different level 
of abstraction from its internal representation details (for 
example, a list described to the client as a mathematical 
string or sequence, but represented as a linked list of 
nodes). The correspondence between the internal state rep- 
resentation of an object and its intended conceptual value is 
expressed as an abstraction function [3, pp. 70-71] or, more 
generally, abstraction relation [4], [5]. 

Again as an example, consider our "list of items" abstrac- 
tion in Fig. 1. One might assume that the items stored in the 
list are recorded in the elements array, while the length 
state variable records how much of the array is in use. Even 
so, there are still a variety of alternatives for representing the 
list's conceptual value in these variables. Which series of 
contiguous items in the elements array form the list: those 
before length, or those after? Does the length state variable 
indicate the index of the last item of the list, or does it refer to 
the first unused array index after the list? These choices are 
part of the abstraction relation for this class. 

Subclasses that are intended to be behavioral subtypes of 
their superclasses must obey the Liskov Substitutability 
Principle, meaning that at the level of abstraction in the 
client interface, objects of the subclass must behave in a 
manner consistent with the superclass. To ensure that be- 
havioral subtypes behave consistently, in addition to the 
LSP we propose that: 

If a subclass is intended to be a behavioral subtype, yet has 
direct access to the representation of its superclass, it must 
live by and uphold the abstraction relation shared by all the 
methods that have direct access to those internal details. Be- 
havioral substitutability (in the LSP sense) must also be 
established for any internal superclass methods that are 
overridden. 

2.3 Representation Inheritance 
Representation inheritance is a term for code inheritance 
where a subclass has white-box access to its parent's inter- 
nals, and the subclass respects the parent's representation 
invariant. Because most modern 00 programming lan- 
guages (OOPLS) provide only one inheritance mechanism, 
when behavioral subtyping is desired we will consider rep- 
resentation inheritance to encompass the requirement for a 
subclass to respect both superclass invariants and super- 
class abstraction relations. 

Representation inheritance is built on lessons learned 
from model-based specification techniques [6], [7], which 
require one to explicitly state representation invariants and 
abstraction relations. This solution is notably different from 
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other proposed solutions, in that it does not involve parti- 
tioning a class into groups of interdependent methods that 
must be considered together when specializing the class. 
Lamping's work [8], [9], as well as that of Stata and Guttag 
[10], both indirectly address the difficulties of white-box 
reuse by grouping methods that depend on common as- 
sumptions, signaling to the specializer that these groups 
need to be examined or changed together. Here, we instead 
focus directly on the root of the problem—the shared (but 
often undocumented) assumptions upon which these 
methods depend. By capturing these assumptions in a rep- 
resentation invariant, it is possible to treat all inherited 
methods uniformly and independently, while simultane- 
ously documenting exactly the assumptions about state 
maintenance upon which they depend. 

3  AN EXAMPLE: A TWO-WAY LIST COMPONENT 

3.1 The Two-Way List Abstraction 
To ground the discussion of code inheritance, consider a 
class implementing the abstract notion of a "two-way list." 
Conceptually, the value of a list object is simply a sequence 
of items that we can visualize as being arranged in a row 
from left to right. Without loss of generality, consider the 
left end of the row to be the front or head of the list, and the 
right end to be the back. As we advance down the list, we 
can imagine that there is also a "fence" separating the items 
we have already seen from those that lie ahead—it parti- 
tions the row by sitting between two items. This particular 
list component is "two-way" because we wish to be able to 
move either left or right in the sequence of items. 

One simple formalization of this model of two-way lists is: 

type Two_Way_List is modeled by ( 
left   : string of math [Item], 
right: string of math [item] 

) 
exemplar 1 . 
initialization 

ensures       l.left = empty_string and 
1. right = empty_string 

This formalization uses the notation of RESOLVE [11], 
although any convenient model-based specification nota- 
tion could be used [6]. In this formal model of the type, the 
notion of the "fence" dividing the list of items into two 
halves is implicit: The value of a list is modeled as two 
separate "strings" (or sequences) that model the two parts 
of the row of items to the "left" and "right" of the fence. 

With this model in mind, it is possible to decide on the ba- 
sic operations for two-way lists. The basic operations pro- 
vided for two-way list objects, as adapted from [7], include: 

Move_To_Start (). Moves the fence to the beginning (left) of 
the list. 

Movejojinish (), Moves the fence to the end (right) of the 
list. 

Advance (). Moves the fence one position forward (right). 
Retreat (). Moves the fence one position backward (left). 
AddJR.igkt (x). Adds x to the list right after (to the right of) 

the fence, and returns with x having an initial value for 
its type. 

Remove_Right (x). Removes the item immediately following 
(to the right of) the fence, and returns it in x. 

At_Start (). Returns true when the fence is at the far left end 
of the list. 

At_Finish (). Returns true when the fence is at the far right 
end of the list. 

In an object-oriented programming language such as 
C++, we might declare a class realizing this abstract con- 
cept as shown in Fig. 2. The C++ Two_Way_List class 
template in Fig. 2 defines a generic component that is 
parameterized by the type of item in the list. It is similar in 
several respects to Bertrand Meyer's BILINEAR [12, pp. 
141-146] and TNO_WAY_LIST [12, pp. 154-155, 299-303] 
components, although Meyer's selection of primary opera- 
tions and conceptual model differs in several details. 

template  <class  Item> 
class Two_Way_List 
( 
private: 

// Prevent assignment 
Two_Way_List& operator =( 

const Two_Way_List&  rhs); 
// Prevent copy construction 
Two_Way_List  (const Two_Way_List&  1); 

public: 
// The external interface 

Two_Way_L ist   (); 
-Two. _Way_List   (); 

void Move_To_Start 0 
void Move_To_Finish 0 
void Advance 0 
void Retreat 0 
void Add_Right (Items item) 
void Remove_Right (Items item) 
void Remove_Right (Items item) 

Boolean At  Start                0; 
Boolean At_Finish               (); 

Fig. 2. A C++ two-way list class template. 

3.2 Implementing Two-Way List 
Given this Two_Way_List declaration,. we can now turn 
our attention to how one might implement a two-way list. 
For the purposes of this paper, the sample implementation 
will be presented in C++, although any other 00 program- 
ming language could be used. 

One obvious way to implement the Two_Way_List com- 
ponent appears in many data structures text books: Use a 
doubly-linked chain of nodes, where the links are imple- 
mented using pointers. A technique that can help with this 
approach is the use of sentinel nodes. By placing sentinel 
nodes (or "dummy" nodes)2 at either end of the chain, all list 
operations can be handled uniformly—there are no special 
cases to handle when operating on either end of the chain. 

2 Joe Hollingsworth, in a private communication, noted he regularly 
uses-the approach of dual sentinel nodes when teaching linked representa- 
tions to his CS1/CS2 students at Indiana University Southeast. Because of 
the subsequent notable reduction in bugs in student programs, he refers to 
such sentinels as "smart" nodes. 
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Given that the sequence of items contained within a 
Two_Way_List object will be held in a doubly-linked chain, 
only one question remains: What is the exact representation 
of a Two_Way_List object? One obvious choice is to repre- 
sent a Two_Way_List by a pair of pointers: one to record 
the location of the head of the list, and another to record the 
location of the fence. Here, we arbitrarily choose for a two- 
way list object to have two data members, a pre_front 
pointer that points to the sentinel node at the front end of 
the chain, and a pre_f ence pointer that points to the node 
containing the item immediately preceding the fence. Many 
other combinations would work just as well. This choice is 
elaborated in Figs. 3 and 4. 

template  <class  Item> 
class Two_Way_List 

II ... 
II The same external declarations as in 
II Figure 3 
II... 

private: 
// The representation of the class: 
struct TWL_Node 11 A two-way list node 

Item  i; 
TWL_Node* next; 11 forward pointer down 

II    the list 
TWL_Node* previous;   //backward pointer up 

II    the list 
}; 
TWL_Node*  pre-front;  11 pointer to first 

11      sentinel 
TWL_Node*  pre_fence; 11 pointer to node fust 

//before the "fence" 

Fig. 3. The representation of Two_Way_List. 

Two_Way_List 
pre_fenee 

pre_front —. 

Abstract fist value: (   <15>,   <27   11>) 

15 27 

previous    i    next - 
■ Sentinel Nodes  

Fig. 4. A doubly-linked chain with sentinel nodes. 

Fig. 3 shows the remainder of the Two_Way_List C++ 
class template declaration, including the declaration of the 
internal TWL_Node struct and of the data members 
holding the pre_front and pre_fence pointers. Fig. 4 
then gives a pictorial representation of an actual 
Two_Way_List object where the items are integers. The 
sample list chosen has three items in the list (15, 27, and 11), 
with the fence currently between the first and second ele- 
ments (after 15 and before 27). Fig. 4 also shows the corre- 
sponding abstract value of such a list in terms of the model 
defined above. Now that the representation choices have 
been made, providing code for the class methods is a 
straightforward process that is skipped here. 

3.3 An Enhancement 
Now that we have an example class component defined and 
implemented, we can turn our attention to a typical pro- 
gramming task: How can we extend this "component with 
new operations that provide additional capabilities? For the 
purposes of this paper, we'll restrict ourselves to a simple 
extension: the addition of an operation called Swap_Rights 
that exchanges the tails (or right halves) of the two lists in- 

volved. Fig. 5 shows the Enhanced_Two_Way_List class 
template that adds the new method. Fig. 5 also shows a post- 
condition describing the behavior of the Swap_Rights op- 
eration in terms of the type's abstract model, using "#" to 
denote the value of an object before the method invocation. 

Fig. 6 more concretely illustrates the effect of the 
Swap_Rights operation on two lists, where the items are 
integers. The first list has three elements, 15, 27, and 11, 
with its fence located between the first and second items. 

The second has four elements, 14, 87, 9, and 12, with the 
fence between the second and third items. Fig. 6 shows the 

effect of invoking the Swap_Rights method of the first list, 
passing the second list as the "rhs" argument to the opera- 
tion. The sequences of items to the right of the fence in each 
list are exchanged. 

The Swap_Rights operation is an interesting additional 
capability for two-way lists. Using the primary operations 
shown in Fig. 2, the only way to combine two lists, or sepa- 
rate one list into parts, is through a series of individual add 
and remove operations. The Swap_Rights operation is a 
useful building block that greatly simplifies the implementa- 
tion of higher-level operations like concatenation, splitting, 
splicing, etc. Given the implementation for Two_Way_List 
based on sentinel nodes, what is the safest and most effective 
way of implementing the Swap_Rights operation? 

template  <class  Item> 
class  Enhanced_Two_Way_List : public 
Two_Way_List<Item> 
I 
public:. 

void  Swap_Rights   ( 
Enhanced_Two_Way_List&  rhs); 
//ensures   self = 

// (#self.left,   #rhs.right) 
// and rhs  = 
// (#rhs.left,   #self.right) 

Fig. 5. The Enhanced_Two_Way_List class. 

Current 
list:  (<15>,   <27   11>) (<15>,   <9   12>) 

"rhs" Z^ 
list: (<14   87>,   <9   12>) 7   (<14   87>,   <27   11 

Fig. 6. The effect of Swap_Rights. 

>) 

3.4 Implementing the Enhancement 
Note that Enhanced_Two_Way_List can be implemented 
without access to the internals of its superclass. By treating 
the superclass as a black box, Swap_Rights could be im- 
plemented by moving each item from the right half of the 
first list over to the second list, one at a time. Then the items 
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from the right half of the second list have to be moved over 
to the first, one at a time. This will take time proportional to 
the number of items in the right halves of both lists. 

Clearly, black box code reuse is safe, since subclasses 
have no more privileges than other clients when it comes 
to the internal representation of a superclass. One might 
even be tempted to claim that all code reuse should be 
achieved through black box methods. Unfortunately, the 
Two_Way_List example illustrates why implementers 
still turn to white box techniques for some problems. 

Two_Way_List's doubly-linked chain representation 
lends itself to a much more efficient (and less complex!) 
implementation of Swap_Rights. It is only necessary to 
change two pointer values in each chain in order to ex- 
change the right halves of the two lists, resulting in a con- 
stant-time implementation of the operation. Doing this re- 
quires access to the representation of the Two_Way_List 
superclass. Thus, even for well-designed components, 
white box code reuse is occasionally necessary to achieve 
algorithmic improvements in efficiency. 

4  USING REPRESENTATION INHERITANCE 

' In order for Enhanced_Two_Way_List to access its super- 
class' representation safely, we use representation inheri- 
tance. With this approach, the author of a subclass such as 
Enhanced_Two_Way_List is required to obey the representa- 
tion invariant(s) and respect the abstraction relation(s) of its 
superclass(es). In a language that has support for expressing 
representation invariants and abstraction relations, this re- 
quirement could be automatically enforced. Otherwise, it 
must be enforced by programming conventions and checked 
through code reviews and testing. Fortunately, well-defined 
representation invariants and abstraction relations should 
make the testing of new subclasses much easier—by verify- 
ing that subclass methods do in fact respect these superclass 
assumptions, the need for retesting of inherited methods or 
other nonlocal code artifacts is greatly reduced. 

In the two-way list example, we can change the declara- 
tion of the Two_Way_List data members from private to 
protected, and write down the representation invariant and 
abstraction relation for its implementation (perhaps in 
structured comments, since C++ does not support formal 
descriptions of these assumptions). The author of the En- 
hanced_Two_Way_List class can then have direct access to 
the representation of list objects when implementing 
Swap_Rights, as long as the invariant and abstraction re- 
lation are respected—both must be respected, since En- 
hanced_Two_Way_List is intended to be a behavioral 
subtype of Two_Way_List. Here, "respected" means the 
following: 

Assume that, before the method is called, the invariant 
holds on the two-way list object and the abstraction relation 

. gives the correct conceptual value for it. The method then 
must ensure that upon its completion, the resulting two- 
way list also satisfies the invariant, and that the abstraction 
relation gives the correct conceptual value for the new list— 
one that appropriately reflects the conceptual changes the 
method was intended to make (i.e., one that conforms to the 
method's postcondition). 

This is the essence of representation inheritance: the flexi- 
bility of white box code inheritance is achieved, without 
giving up the safety afforded by encapsulation of super- 
class representation information. 

The implementation of Two_Way_List described in Sec- 
tion 3 relies on several conventions, which taken together 
form its representation invariant: 

1) The TWL_Nodes within a Two_Way_List object are 
doubly-connected in a single chain. 

2) The pre_front  and pre_fence pointers refer to 
nodes within the same chain. 

3) The unconnected pointers on the sentinel nodes are 

set to NULL. 
4) The pre_front pointer always refers to the sentinel 

node at the beginning of the chain. 

These conventions are stated informally here, but they 
could be formalized (with some effort). Some programming 
languages even provide syntactic slots for expressing repre- 
sentation invariants [4], [3]. 

In practice, a subclass with white box access to its inher- 
ited state variables could fail to maintain any one of these 
four properties. Fig. 7 gives one example of how an imple- 
mentation of Swap_Rights could violate the first clause of 
the representation invariant. Fig. 7 depicts the representation 
of the two lists introduced in Fig. 6 in detail, both before and 
after the call to Swap_Rights. In this case, the implementa- 
tion of Swap_Rights has only exchanged the "next" point- 
ers in the two lists, and has failed to properly switch the cor- 
responding "previous" pointers. Now, neither list's repre- 
sentation is a doubly-connected chain—the two chains are 
cross-connected. While this can rightly be considered a defect 
in the implementation of the Swap_Rights operation, note 
that many list operations will continue to operate correctly, 
and the effects may only be detected by a test suite that exer- 
cises the inherited operations interleaved with the new addi- 
tion in a nontrivial way. • 

■{ '] 
Be lore 

X 15 
-*• 27 11 X ~!r 

^ '\ 
X 14 87 9 12 X 

i_  J. . After 

Fig. 7. Violating the representation invariant in Swap_Rights. 

The abstraction relation then relates representation val- 
ues to the corresponding conceptual values they realize. It 
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captures the intentions of the implementer about the 
"meaning" of the representation—how it encodes the con- 
ceptual state that clients reason about. Informally, the dou- 
bly-linked chain representation of two-way lists is related 
to the conceptual model described in Section 3 as follows: 

1) The entire sequence of items in the list, as well as their 
order (i.e., l.left * 1.right), is recorded by the 
contents and order of the TWL_Nodes in the (single) 
chain of the representation. 

2) The separation between the "left" and "right" parts of 
the conceptual value (implicitly denoting the "fence") 
is recorded by the pre_fence pointer. Specifically, 
the pre_fence pointer points to the TWL_Node con- 
taining the last item in the "left" portion of the list. 
The "right" portion of the list begins with the node in 
the chain immediately following the one pointed to 
by pre_fence (i.e., 'pre_fence->next'). 

Some programming languages also provide syntactic slots 
for expressing abstraction relations or functions [4], [3]. 

Continuing the running example, Fig. 8 gives one exam- 
ple of how an implementation of Swap_Rights could ig- 
nore the second clause of the abstraction relation. Here, the 
implementation of Swap_Rights has only exchanged the 
trailing halves of the two lists, beginning with the nodes 
pointed to by the "pre_f ence" pointers. For the two sam- 
ple lists under consideration, this behavior does not violate 
the representation invariant and will not cause the execu- 
tion of any inherited methods to fail at a later point. In- 
stead, there is a mismatch between the behavior described 
at the conceptual level and the actual representation. When 
viewed in the light of the abstraction relation described 
above, it is clear that Swap_Rights does not simply ex- 
change everything to the right of the two fences—it also 
exchanges the item immediately to the left of the fence in 
each list. Without a description of the abstraction relation, 
however, the software engineer who wrote this version of 
Swap_Rights might never see the discrepancy. 

:L JL 
Before. 

Fig. 8. Violating the abstraction relation in Swap_Rights. 

The above statements of the representation invariant 
and the abstraction relation are informal, but they capture 
critical information necessary for the correct functioning 

of the Two_Way_List methods. There are many other 
possible configurations of invariant and abstraction rela- 
tion that could have been chosen (together with slight 
differences in the choices about the pointers and node 
structures, used). While any of them may work well, the 
important point is that one choice was made in the im- 
plementation of the Two_Way_List class, and the imple- 
menter of that class used it consistently. The correct op- 
eration of Two_Way_List's methods critically depends on 
this choice (and on consistently following it). 

Fig. 9 shows an excerpt of the Two_Way_List class 
declaration with an informal version of the representation 
invariant and abstraction relation added in comments. 
Fig. 10 then shows the corresponding implementation of 
Enhanced_Two_Way_List's Swap_Rights method, with 
comments marking the locations where critical assump- 
tions about the inherited representation invariant and 
abstraction relation must be checked. 

template <class Item> 
class Two_Way_List 
( 

II ... 
II The same external decls. As in Figure 3 
II... 

protected: // Allow representation inheritance 
II The representation of the class: 
struct TWL_Node {...); 
TWL_Node*  pre_front; // ptr. to 1st sentinel 
TWL_Node*  pre_fence; 11 ptr. to node just 

II before the "fence" 
! Representation invariant: 
! Let HEAD_SENTINEL and TAIL_SENT- 
l INEL be the two sentinel TWL_Nodes for 
I This list. Then: 
! la. HEAD_SENTINEL.next-> ... -> next 

== &TAIL_SENTINEL and 
f TAIL_SENTINEL.previous-> ... 

->previous == &HEAD_SENTINEL 
! lb. For all nodes N: 

N.next != NULL => 
N. next, previous == N and 

N.previous != NULL => 
N. previous, next == N 

(prejence == &HEAD_SENTINEL or 
prejence == & HEAD_SENTINEL.next-> 
... ->next) and 

pre-fence .'= &TAIL-SENTINEL 
13. HEAD_SENTINEL.previous == MILL 
'    and TAIL=SENTINEL.next == 

NULL (and nothing else is NULL) 
14. prejront == &HEAD_SENTINEL 

! Abstraction relation: 

II 
II 
II 
II 
II 
II 
II 
II. 
II. 
II 
II 
II 
II 
II 
II 
II 
II 
II 
II. 
II. 
II. 
II 
II 
II 
II, 
II 
II. 
II 
II 
II 
II. 

"left"      ==   preJront-> next-> item, 
pre_jront->next->next->item, 

preJence-> item 
'right"   ==   pre_frence-> next->item, 

pre_frence->next->item, 

TAIL_SENTINEL.previous 
->item 

Fig. 9. The Two_Way_List representation invariant and abstraction 
relation. 
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template <class I tem> 
void Enhanced_Two_Way_List<Item>:: 

Swap_Rights(Enhanced_Two_Way_List&  rhs) 

( 
/// assert(Two_Way_List-repJnvariant(self) == 
//.' true);     . 
/ / / Assert(Two_Way_List.abs_relation( 
lf\ (self.left, self.right), 
111 (self.pre Jront, self.presence))); 

TWL_Node*  my_tail,   rhs_tail: 

my_tail = pre_fence-mext; 
rhs_tail = rhs.pre_fence-»next; 

pre_fence—»next = rhs_tail; 
rhs_tail->previous = pre_fence; 

rhs.pre_fence->next = my_tail; 
my_tail->previous = rhs .pre_fence; . 

//.' assert(Two_Way_List.rep_invariant(self) == 
//.' true); 
11! assert(TwoJNay_List.abs.relation( 
III (self.left, self.right), 
111 (self.pre Jront, self.pre Jence))); 

III My postcondition: 
11! assert ((self-left=#selfleft) && 
//! (self.right t=#rhs.right)    && 
//! (rhs.left = rhs. left) && 
11! (rhs.right - #self-right)); 

Fig. 10. Implementing Swap_Rights. 

5  ENFORCING OBLIGATIONS 

Representation inheritance relies on a subclass living up to 
the commitments made by its superclass(es). Thus, the 
safety afforded by representation inheritance is only as 
strong as the guarantee we have that the subclass will in- 
deed fulfill its obligations. Further, it is clear that this safety 
is only as strong as the "tightness" of the representation 
invariants and abstraction functions documented for each 
class. Failure to capture all the restrictions that superclass 
methods rely on can still allow too much freedom to sub- 
classes. With regard to gauging safety, there are three basic 
approaches to establishing the degree to which subclasses 
obey their representation inheritance restrictions: formal 
verification, run-time checking, and testing. 

5.1 Formal Verification 
In theory, formal verification support is needed to provide 
complete automatic enforcement of representation invari- 
ants and abstraction relations. This necessity is brought 
about by the fact that some representation invariants or 
abstraction relations may not be computable, implying con- 
formance may not be checkable by a computer through ei- 
ther run-time checks or testing. This should not be surpris- 
ing, since conformance to a behavioral specification may be 
just as difficult to check, depending on the specification 
notation used! Further, regardless of the enforcement tech- 
nique used, checking adherence to superclass abstraction 
relations requires that one have behavioral specifications 
for both super- and subclasses—something lacking in most 

present software. 

In practice, however, few practitioners are willing to 
proceed with formal verification at present. Instead, code 
reviews and testing seem to provide acceptably high confi- 
dence levels for conformance with behavioral specifica- 
tions, so we turn our attention to the natural analogues for 
enforcing representation inheritance restrictions. 

5.2 Run-Time Checking 
Without the resources for formal verification, many practi- 
tioners feel that run-time checking of representation invari- 
ants is critical to enforcement. Eiffel is one language which 
uses run-time checks consistently to provide some level ot 
enforcement for programming obligations [13]. 

For example, in the Two_Way_List component de- 
scribed in Section 3, one could write a protected method 
that would operationally check the class' representation 
invariant. This method could then be called directly 
(perhaps using the standard assert () macro) m appropri- 
ate places (both in Two_Way_List methods and methods of 
its descendant classes) to ensure that the invariant is being 
maintained. This would certainly provide some degree of 
confidence that the necessary obligations imposed on sub- 

classes were being observed. 
This is certainly a viable approach to representation in- 

heritance enforcement in many cases. It is important to note 
that it is not always possible to provide run-time checks 
(i e when the representation invariant is not computable). 
Further, some run-time checks might be considered pro- 
hibitively expensive to consider leaving in place in fielded 
software. As a result, one might ask the question of whether 
the same degree of confidence could be obtained without 
requiring the overhead of run-time checking. 

5.3 Enforcement through Testing 
The primary strategy for using testing to enforce represen- 
tation inheritance restrictions is to: 

1) Use run-time checking to operationally test represen- 
tation invariants at all necessary points during testing. 

2) Expand white box testing techniques to generate test 
cases that stress these run-time checks. 

This approach utilizes the best features of run-time 
checking without requiring run-time checks in fielded code. 
Further if test case generation takes into account represen- 
tation invariants, run-time checks during testing may even 
provide a higher level of confidence the obligations are ob- 
served than run-time checks alone. 

Simply put, for testing purposes, every class should have 
a method that operationally checks the representation in- 
variant on its internal state. If all classes export such an op- 
eration, it is a simple matter to write "defensive" wrappers 
for every class that check invariants on entry and exit to 
every method. By providing such defensive wrappers 
around superclasses during testing, run-time checking can 
be systematically inserted where ever it is desired. Generic 
programming provides and effective way to insert or re- 
move such defensive wrappers without modifying sub- 
classes or their inheritance links [14], [11]. 

to fully exploit such run-time checks during testing, it is 
necessary to consider representation invariants when gen- 
erating test cases. Effectively, the obligation to maintain a 
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representation invariant becomes an extra part of the be- 
havioral specification of each method (hidden from the 
eventual clients of a class), and thus is subject to the same 
test case generation techniques as are used for gauging 
conventional behavioral conformance. 

Once a subclass has been fully tested with run-time 
checks in place, those checks can be safely removed. Any 
future subclasses cannot affect code they might inherit, as 
long as those subclasses obey their representation inheri- 
tance obligations. This allows superclasses and sublcasses 
to be validated independently through testing. 

5.4 Testing without Representation Inheritance 
In light of the previous discussion, it is also worth consid- 
ering the requirements for testing when the restrictions of 
representation inheritance are not observed or enforced. 
Perry and Kaiser [15] describe requirements for adequately 
testing 00 programs. They indicate that when subclasses 
are added to an inheritance hierarchy, not only must one 
test the newly added methods in these subclasses, one must 
also retest all of the inherited methods. They also indicate 
that clients of the superclasses need to be retested while 
using the subclasses. Component regression testing guide- 
lines built on these requirements have also been described 
by Skublics et al. [16, p. 85]. 

To most object-oriented programmers, however, this 
testing advice is counterintuitive and seems to fly in the 
face of conventional wisdom. Instead of simply testing the 
newly added code, one must test all methods in every class. 
While code reuse may have saved some time during the 
coding phase of development, according to Perry and Kai- 
ser's recommendations, it saves absolutely no effort in 
testing. From the testing viewpoint, it is almost as if no in- 
heritance had occurred at all—the testing effort required is 
the same as if all of the superclass code were reproduced 
from scratch in the new component. 

If one is working in a language where the inheritance 
mechanism normally allows white box code inheritance, 
such as Smalltalk or Eiffel, then the technical reasons for 
Perry and Kaiser's recommendation start to make more 
sense. When a subclass can cause code outside of itself to 
fail, testing in the context of newly added subclasses be- 
comes a much more involved process. 

From this, we can also infer that white box code inheri- 
tance provides little if any savings in maintenance effort. 
Changing code in one class method could conceivably have 
adverse affects in arbitrarily distant ancestor or descendant 
classes. Thus, to make maintenance changes or enhance- 
ments in one class, the entire root-to-leaf branch of the in- 
heritance hierachy it lives in must be understood, and then 
retested after the change—classes fail to provide the fire 
walls of modularity that programmers expect.. 

With representation inheritance, the methods inherited 
from a superclass cannot fail because of defects introduced 
in subclass method implementations. As a result, changes 
in a subclass do not require the retesting of inherited code. 
The virtues of modularity and encapsulation are thus pre- 
served at class boundaries. 

6   RELATION TO PREVIOUS WORK 

As mentioned in the introduction, representation inheri- 
tance is related in spirit to various work on specification 
inheritance. Liskov and Wing's definition of the subtype 
relation so that it preserves behavioral abstraction typifies 
this work [17], [1]. In a similar vein, Leavens and Weihl 
describe, a foundation for the modular verification of 00 
software built around interpreting inheritance as a behav- 
ioral abstraction [5]. These approaches only address the 
client-side reasoning issues posed by inheritance mecha- 
nisms, however, and do not directly address code inheri- 
tance. 

The notions of representation invariant and abstraction 
relation (or function) [3] are also taken directly from past 
work on formal specification and formal verification. Both 
have been used in languages and methods centered on 
model-based program specification, including RESOLVE [4]. 
Leavens and Weihl [5] provides a complete formal treat- 
ment of representation invariants and abstraction relations 
in an object-oriented context, and they are naturally ex- 
tended to other model-based specification approaches, such 
as those surveyed in Lano and Haughton [18]. This paper 
gives a more pragmatic presentation in order to familiarize 
practitioners with the uses of the more theoretical devel- 
opment of representation invariants and abstraction rela- 
tions presented elsewhere. 

The safety problems with white box code reuse have 
been described by Muralidharan and Weide [19]. They note 
the efficiency concerns that make white box techniques de- 
sirable, but concentrate on clearly delineating the disad- 
vantages that come with breaking encapsulation. They pro- 
pose no solutions to the problem. The RESOLVE program- 
ming language [11] does provide the necessary support for 
representation invariants and abstraction relations, how- 
ever, and there are plans to add representation inheritance 
to the language. 

As mentioned in Section 2, Lamping [8] also has exam- 
ined the risks associated with subclass access during spe- 
cialization. His work is type-system oriented, however, 
where the solution proposed here derives from model- 
theoretic specification techniques. Lamping suggests parti- 
tioning classes into groups of methods which share as-, 
sumptions, as documentation for use by programmers 
writing specializations. He does not specifically address 
capturing the assumptions themselves, however. 

Stata and Guttag [10] have also explored grouping 
methods for this purpose. Their work is more closely re- 
lated, since it is also specification-based. They further pro- 
pose that instance variables can be partitioned along with 
the methods, splitting a superclass into "modular" chunks 
that can be treated independently. While this does allow 
subfacets of an object to be specialized independently, it 
fails to capture the critical assumptions about module state 
upon which the methods depend. Stata and Guttag go on to 
require that if any method in such a group is overridden by 
a subclass, then all methods in that group must be, which is 
necessary for safety. Here, we instead explicitly capture the 
conventions about how state variables are maintained, we 
do not require methods to be grouped, and we allow any 
method to be overridden individually. 
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Perhaps the best-known work that attempts to address 
the problems discussed here is Meyer's Eiffel [13]. There are 
several critical differences between Eiffel and the ideas de- 
scribed in this paper, however, which highlight the contri- 
butions of the present paper. At first glance, Eiffel appears 
to have all of the machinery necessary to capture both 
specification inheritance and representation inheritance 
built into the language: 

• It supports preconditions and postconditions for de- 
scribing method behaviors. 

• It supports invariant assertions to capture properties 
that methods must preserve when they complete.' 

• It ensures that each subclass inherits the precondi- 
tions, postconditions, and invariants of its super- 
classes)—descendants must live up to the obligations 
of their ancestors. 

Unfortunately, under practical usage these mechanisms are 
not enough to ensure the safety that representation inheri- 
tance provides. 

Classes in Eiffel represent component implementations, 
and there is no linguistic facility for capturing the corre- 
sponding component specifications [13, p. 59]. As a result, 
the mechanisms in the language only support capturing 
information relevant to the implementation, and other de- 
tails such as abstraction relations are not addressed. 

As a result, Eiffel's invariant assertions must serve 
double-duty: 

1) Programmers try to use them to capture the abstract 
invariant [3, p. 92], which defines client-visible con- 
straints on an object's conceptual value. 

2) They should also capture the representation invariant, 
which defines constraints on an object's internal state 
that is invisible to clients. 

Of course, assertions that deal with the hidden state of 
objects are not helpful for client understanding, so it is 
common to see Eiffel invariants phrased in terms of pub- 
licly visible accessor functions [12] rather than private state 
variables. As a result, Eiffel's invariant assertions become 
abstract invariants in practice. 

This tendency is exemplified by Meyer's version of 
TNO_WAY_LIST [12, pp. 154-155, 299-303]. The Eiffel ver- 
sion has its invariant phrased in terms of publicly visible 
accessors, and simply constrains client-visible properties, 
like the relationships between the number of items in the 
list, the position of the fence, and the values of predicates 
similar to At_start {) and At_Finish (). None of the rep- 
resentation-level constraints shown in Fig. 9 are captured. 

In addition, the computational nature of Eiffel's assertion 
mechanism prevents some invariants from being expressed 
because they are not computable, and discourages pro- 
grammers from writing down others that are expensive to 
check. For example, consider a component that implements 
an associative mapping using a hash table with sorted 
buckets. The fact that the buckets are maintained in sorted 
order, and that every key in the mapping is unique, are in- 
variant properties of this implementation. Unfortunately, it 
is expensive to check these properties at run-time, perhaps 
prohibitively so. As a result, facets of the component's rep- 
resentation invariant may be ignored by component de- 
signers when writing Eiffel assertions. 

Finally, the lack of separate specifications in Eiffel en- 
sures that abstraction relations will not be captured. In the 
Two_Way_List example, the assumption that pre_fence 
points to the node before the first item in the right half of the 
conceptual value of the list cannot be captured in an Eiffel 
invariant clause. As a result, subclass methods could vio- 
late this assumption, perhaps by leaving a particular list so 
that the pre_f ence pointed to the node holding the first 
item in the right half of the list. This error could potentially 
cause other methods to fail, or simply have the incorrect 
behavioral result from the client's point of view. Either 
way, however, Eiffel assertions cannot address the issue. 

While Eiffel's inheritance rules attempt to achieve the 
same goal as representation inheritance in spirit, in practice 
none of the assumptions recorded for the Two_Way_List 
example in Fig. 9 would have been captured or checked in a 
typical Eiffel version of the component. Indeed, none are 
for the most similar components in Meyer's library. Eiffel 
fails to provide the safety of representation inheritance for 
this reason. 

7  CONCLUSIONS 

Class designers have a choice between black box and white 
box techniques when they specialize existing classes. While 
it is always best in principle to use black box code inheri- 
tance, there are practical situations where programmers 
really desire more freedom of access to information encap- 
sulated within superclasses. When these situations arise, 
white box code inheritance is appropriate. 

Unrestricted white box code inheritance is clearly un- 
safe, however. By breaking the encapsulation of super- 
classes, it allows subclass implementers to violate as- 
sumptions upon which superclass methods depend. This 
can mean that subclasses actually introduce errors that are 
only observed through execution of inherited methods, 
making it impossible to reason about class correctness 
locally, and seriously complicating the requirements for 
adequate testing of software. 

If the assumptions that classes depend on are described 
in terms of representation invariants and abstraction rela- 
tions, then it is possible to address the shortcomings of 
white box reuse. Representation inheritance is a controlled 
form of white box code inheritance in Which subclasses 
must respect the representation assumptions of their an- 
cestors. By doing so, subclasses ensure that superclass code 
assumptions are protected, while simultaneously enjoying 
the benefits of direct access to superclass state representa- 
tions. This gives desirable freedom to subclass imple- 
menters, while preserving the safety and locality consid- 
erations for which all programmers strive. 
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On the Practical Need for Abstraction Relations 
to Verify Abstract Data Type Representations 

Murali Sitaraman, Member, IEEE Computer Society, Bruce W. Weide, Member, IEEE, 
and William F. Ogden, Member, IEEE Computer Society 

Abstract—The typical correspondence between a concrete representation and an abstract conceptual value of an abstract data 
type (ADT) variable (object) is a many-to-one function. For example, many different pointer aggregates give rise to exactly the same 
binary tree. The theoretical possibility that this correspondence generally should be relational has long been recognized. By using a 
nontrivial ADT for handling an optimization problem, we show why the need for generalizing from functions to relations arises 
naturally in practice. Making this generalization is among the steps essential for enhancing the practical applicability of formal 
reasoning methods to industrial-strength software systems. 

index Terms—Abstract data type, abstraction function, abstraction mapping, abstraction relation, data abstraction, formal 
specification, greedy algorithm, program verification, nondeterminism, optimization problem, relation. 

1   INTRODUCTION 

THE need to separate the specifications and implementa- 
tions of abstract data types is widely recognized. To 

keep a specification purely conceptual and unbiased with 
respect to its many alternative implementations, the be- 
havioral explanation should employ an implementation- 
neutral abstract model rather than any particular represen- 
tation model. The formal verification that a given imple- 
mentation does meet this conceptual specification then in- 
volves a correspondence mapping, traditionally called an 
abstraction function, between the model used in the imple- 
mentation (the concrete or representation model) and the 
model used in the specification (the abstract or conceptual 
model) [10]. 

For some ADT specifications and implementations, the 
natural connection between concrete and abstract models 
turns out to be relational, not functional. That is, in some 
cases a particular concrete value may represent any of sev- 
eral abstract values; see Fig. 1. 

The theoretical importance of abstraction relations has 
long been recognized. Precluding their expression results in 
modular verification systems which are incomplete in the 
technical sense that there are implementations that are cor- 
rect with respect to their specifications, but which cannot be 
proved to be so using only abstraction functions. Moreover, 
insisting upon using an abstraction function even when it is 
technically possible may increase verification complexity to 
the point where it effectively thwarts modular reasoning 
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about correctness. And it is crucial for tractability and reuse 
that the verification of an ADT's implementation code 
should be modular. This means that the proof of correct- 
ness should rely only on the given specification of behavior 
to be implemented and on given specifications of lower- 
level components that are used in the code. The correctness 
argument should be independent of the implementations of 
the lower-level components and independent of other parts 
of the system that use the code being verified [7], [23]. 

Here, we formally establish the requirement for sup- 
porting abstraction relations by exhibiting a nontrivial ADT 
for a practical optimization problem, where not just the 
value of—but the outright need for—an abstraction relation 
naturally arises. The nature of the example argues that for- 
mal reasoning systems must be able to generalize to handle 
abstraction relations if they are to be applied with confi- 
dence to new and nontrivial data abstractions. 

abstract 
(conceptual) 

space 

a2    a3 

concrete 
(representation) 

space 
r1      r2     r3 r1     r2     r3 

Fig. 1. Abstraction function (left) and abstraction relation (right). 

1.1 Prior Work on Abstraction Relations 
Previous work involving modular verification of ADTs 
with model-based specifications leaves the practical role of 
abstraction relations unsettled. Leavens notes the value of 
"simulation relations" (essentially abstraction relations) in 
defining behavioral subtyping [13]. Jones [11, p. 219] and 
Schoett [19] independently observe that, technically, ab- 
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straction relations might be needed in some cases to verify 
implementations of ADTs whose specifications are 
"biased," or "not fully abstract". Schoett's work is based on 
the assumption that nonfully abstract specifications might 
arise in practice. But Jones notes that [11, p. 182], "If differ- 
ent abstract values correspond to one concrete value, it is 
intuitively obvious that such values could have been 
merged in the abstraction. So, in the situation where the 
objects used in the specification were abstract enough, the 
many-to-one situation would not arise." 

There also has been some work on abstraction relations 
in the context of algebraic specifications. For example, to 
show the theoretical need for abstraction relations, Nipkow 
describes a construction involving algebras of nondetermi- 
nistic data types [18]. The relationship between this work 
and the practical need for abstraction relations to verify 
implementations of model-based specifications is unclear, 
however. So while there are subtle differences in the posi- 
tions taken by different authors on the topic, the comments 
of Liskov and Wing in their corrigendum to an earlier pa- 
per [14] probably best characterize the common belief 
among software engineers who use formal methods: Ab- 
straction relations are occasionally helpful and might even 
be technically necessary in some cases; however, [15, p. 4] 
"for most practical purposes, abstraction functions are ade- 
quate (compared to relations)." 

1.2 Contributions 
We show that abstraction relations are practically important 
for software specification and modular verification. Techni- 
cally, abstraction relations are necessary in order to avoid 
incompleteness. Practically, they are necessary in order to 
deal with new and nontrivial ADTs such as those resulting 
from modern software component design techniques. 

We use a sample specification based on the technique of 
"recasting" algorithms as data abstractions [24]. This soft- 
ware component, if it is to lend support to the claim for 
practical significance of abstraction relations, must have 
three properties: 

1) Realism. The specification must not be artificial and 
conceived just for showing the need, i.e., it must be of 
a sort that is actually likely to arise in practical sys- 
tems. Otherwise, the fact that a reasoning system 
based solely on abstraction functions cannot handle it 
would have little practical import. Our sample speci- 
fication captures solutions to a practical optimization 
problem and serves as an exemplar for a larger class 
of similar components. 

2) Quality. The sample specification must be well- 
designed. In particular, it must be fully abstract; i.e., 
every two different conceptual values of the abstract 
data type being defined must be computationally dis- 
tinguishable [11], [12], [25]. Otherwise, the relational 
nature of the correspondence mapping could merely 
arise from the sloppiness of the conceptual specifica- 
tion. Our sample component is a well-designed, fully 
abstract specification. 

3) Provable resistance to verification with abstraction func- 
tions. There must be an actual proof that shows why 
no abstraction function can be found to verify that a 

correct implementation satisfies the sample specifica- 
tion. Our sample component comes with a correct and 
practical realization that we prove cannot be verified 
using any abstraction function (but which can be veri- 
fied using an abstraction relation). 

2  INHERENTLY RELATIONAL BEHAVIOR 
SPECIFICATIONS 

Optimization problems are a general category of problems in 
which relational specifications arise naturally. In many such 
problems, it is easy to find multiple solutions which satisfy 
the constraints yet which all evaluate to the same objective 
function value. The specification for software to solve such a 
problem is inherently relational because it should allow an 
implementation to produce any optimum solution. The natu- 
ral correspondence between such implementations and speci- 
fications tends to be relational (even though a functional cor- 
respondence might exist in some cases). . 

2.1 A Realistic Software Component Example 
As a sample relational problem specification we use the 
Spanning_Forest_Machine_Template from our recent 
paper on "recasting" algorithms as objects [24]. This speci- 
fication exhibits the relational behavior we seek because it 
requires that some minimum spanning forest (MSF) of a 
given graph must be found; there might be ties and any 
best answer is acceptable. For a fully connected graph an 
MSF is also a minimum spanning tree (MST). For a general 
unconnected graph, an MSF is a union of edges of MSTs for 
each of the connected components [4]. 

The concept for Spanning_Forest_Machine_Template 
defines a type Spanning_Forest_Machine (a variable of 
which type we henceforth call a "machine" for brevity) and 
suitable operations. A typical client repeatedly calls opera- 
tion Insert to add the edges of the graph for which an 
MSF is to be found (one at a time) into a machine; calls 
Change_To_Extraction_Phase to change the machine to 
extraction phase, and finally makes multiple calls to Ex- 
tract to remove, one at a time, the edges of one of the 
(possibly many) MSFs of that graph. Operation Insert re- 
quires that the machine be in the insertion phase at the time 
of the call, whereas Change_TcvExtraction_Phase and 
Extract operations require that the machine be in the ex- 
traction phase. Is_In_Insertion_Phase tests whether a 
machine is in insertion phase. Size returns the number of 
MSF edges in the graph and is restricted to be called only 
when in the extraction phase (for purposes of simplicity in 
this paper). 

The concept described informally above, and specified 
formally in Fig. 2, is quite different from one providing a sin- 
gle procedure that finds, an MSF of a'graph. Our component 
prescribes what computation needs to take place, but not 
when. Viewed through its abstract interface, the component 
does not reveal to a user when (i.e., in which operation or 
operations) an MSF is actually being computed. The design 
gives the implementer freedom both in how and in when to 
do computations, and the attendant performance flexibility 
of various kinds of cost amortization, which is part of the 
rationale for the recasting technique illustrated by this inter- 
face [24]. This observation reinforces an important principle 
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concept  Spanning_Forest_Machine_Template 

context 
global context 

facility Standard_Boolean_Facility 
facility Standard_Integer_Faci1 i ty 

parametric context 
constant max_vertex: Integer 

restriction ma-x_vertex > 0 

local context 
math subtype EDGE is ( 

vl: integer 
v2: integer 
w: integer 

) 
exemplar e 
constraint 

1 <= e.vl <= max_vertex and 
1 <= e.v2 <= max_vertex and 
e.w > 0 

math subtype GRAPH is finite set of EDGE 
math operation IS_MSF ( 

msf: GRAPH 
g: GRAPH 

): boolean 
definition 

(* true iff msf is an MSF of g *) 

interface 
type Spanning_Forest_Machine is modeled by ( 

edges: GRAPH 
insertion_phase: boolean 

) 
exemplar m 
constraint IS_MSF (m.edges, m.edges) 
initialization ensures 

m = (empty_set, true) 

operation Change_To_Insertion_Phase ( 
alters    m: Spanning_Forest_Machine 

) 
requires 

not m.insertion_phase 
ensures 

m = (empty_set, true) 

operation Insert ( 
alters     m: Spanning_Forest_Machine 
consumes   vl: Integer 
consumes   v2: Integer 
consumes   w: Integer 

) 
requires 

m.insertion_phase and 
1 <= vl <= max_vertex and 
1 <= v2 <= max_vertex and 
w > 0 

ensures 
IS_MSF (m.edges, #m.edges union {(#vl, #v2, #w)}) and 
m. insertion_phase 

operation Change_To_Extraction_Phase ( 
alters     m: Spanning_Forest_Machine 

I 
requires 
• m.insertion_phase 
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ensures 
m = (#m.edges, false) 

operation Extract ( 
alters 
produces 
produces 
produces 

) 

m: Spanning_Forest_Machine 
vl: Integer 
v2: Integer 
w: Integer 

requires 
m.edges /= empty_set and 
not m.insertion_phase 

ensures 
(vl, v2, w) is in #m.edges and 
m = (#m.edges - {(vl, v2, w)}, false) 

operation Size ( 
preserves  m: Spanning_Forest_Machine 

): Integer 
requires 
not m.insertion_phase 

ensures 
Size = |m.edges| 

operation  Is_In_Insertion_Phase   ( 
preserves    m:   Spanning_Forest_Machine 

):   Boolean 
ensures 

Is_In_Insertion_Phase  = m.insertion_phase 

end Spanning_Forest_Machine_Template 

Fig. 2. Specification of Spanning_Forest_Machine_Template. 

for implementers of model-based specifications: They must 
always distinguish abstract models from concrete representa- 
tions and must not let the abstract view bias how or when to 
manipulate the concrete representation. 

2.2 Recasting and Abstraction Relations 
We might have used any of a number of recasting examples in 
this paper. When optimization algorithms, such as those for 
finding MSFs as well as others such as those for finding single- 
source shortest paths, are recast as data abstractions, abstraction 
relations arise naturally in verifying some of their implementa- 
tions. To see this general need for an entire class of situations 
similar to the one used in our sample, consider the relational 
specification of any graph optimization problem where the out- 
put is specified to be any one of many possible optimum values. 
Assume that the specification delineates two distinct phases.as 
in the case of Spanning_Forest_Machine_Template: an in- 
sertion phase in which edges of a graph can be inserted and an 
extraction phase in which an optimum answer (say, a set of 
edges) can be extracted one at a time. 

A straightforward model of the ADT defined by the above 
specification might be an ordered triple: a boolean phase that 
indicates the phase of machine m, an input set of edges that 
captures the graph edges inserted into m, and an output set 
of edges that defines an optimum solution. Initially, phase 
indicates insertion phase, and input and output are empty 
sets. The specification of the Insert operation changes only 
input as it adds a new edge. The postcondition of change__To_ 
Extraction_Phase is relational and dictates merely that out- 
put should  become  an  optimum  solution  for  input.  The 
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Extract operation is specified to return one of the re- 
maining edges of output. In this specification, then, it 
appears that a solution is computed in "batch" fashion 
when Change_To_Extraction_Phase is called. 

But other implementations might be possible and rea- 
sonable. Consider an amortized cost implementation 
that accumulates graph edges during the insertion phase 
but does no special computation in the Insert or 
Change_To_Extraction_Phase operations; it com- 
putes and returns each edge of an optimum solution 
only incrementally whenever an Extract operation is 
called. For example, this is. how any "greedy" algorithm 
might be naturally amortized. In the extraction phase, 
the natural correspondence between the internal repre- 
sentation and the abstract model is relational. It is of the 
general form: 

IS_AN_OPTIMUM_SOLUTION (m.output, S(m.rep))' 

where S is a function from the specific representation of 
m to the mathematical set of edges not yet processed. 
While there might exist abstraction functions for some 
implementations such as outlined here, since abstraction 
relations introduce no significant additional complexity 
to verification and may actually simplify the condi- 
tions—as argued later in this paper—ä practical formal 
system should facilitate the use of abstraction relations 
in cases like this where they are natural. 

The Spanning_Forest_Machine_Template can be 
specified in ways other than the one outlined above [22]. 
But regardless of how the concept is specified, abstrac- 
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tion relations arise because the specification needs to capture 
and allow only MSFs of the input graphs, whereas some im- 
plementations might not compute an MSF when the specifica- 
tion suggests. Such situations are typical when the recasting 
technique is employed. 

3  THE PRACTICAL NEED FOR ABSTRACTION 

RELATIONS . 
Section 2 addressed the realistic nature of our sample compo- 
nent. Now we introduce its formal specification; demonstrate 
its quality in the sense that this specification is fully abstract 
and, therefore, not defective in the sense discussed in Section 
1.1 [11]; and finally prove that there are practical and correct 
implementations of this component that cannot be verified 
using any abstraction function. 

3.1 A Formal Specification of 
Sparming_Forest_Machine_Template 

Fig. 2 is a reproduction of the Spanning_Forest_Machine_ 
Template specification from [24] as expressed in the model- 
based specification language RESOLVE [21]. The specification 
language does not affect the issues discussed in this paper. Any 
model-based formal specification language [26] would suffice. 

To specify the behavior of the operations described infor- 
mally in Section 2, we model a value of type Span- 
ning_Forest_Machine as an ordered pair: a weighted graph 
edges which is treated as a finite set of positively-weighted 
edges, and a boolean flag insertion_phase which is true iff the 
machine is in the insertion phase. The specification defines 
and uses a mathematical predicate IS_MSF(msf, g) which is 
true iff the graph msf is a minimum spanning forest of the 
graph g. The details of this definition are elided in Fig. 2 but 
they are straightforward. 

From the specification it appears that a machine in insertion 
phase retains only an MSF for the edges inserted so far—not the 
entire set of edges inserted so far—thus giving an external ob- 
server the impression that an MSF is kept incrementally all 
along. But, as noted earlier, because a client of the component 
cannot see the representation, an implementation actually might 
keep all the inserted - edges until Change_To_Extraction_ 
Phase is called and then batch-process them to weed out 
nonMSF edges; or it might use an amortized cost implementa- 
tion. 

The specification in Fig. 2 raises an important question: 
Does it really allow an implementation to produce during the 
extraction phase any MSF of the inserted edges, or does the 
specified incremental nature of the Insert operation rule out 
some possible MSFs? It turns out that the specification is not 
restrictive, a fact that follows directly from a lemma from 
graph theory about MSF properties: 

VGj, G2:GRAPH, e: EDGE 

(7S_MSF(G,, G2u(e))=* 
3G3: GRAPHÜS_MSF(G3, G2) A IS_MSF(.GU G3 U (e)))) 

1. A summary of RESOLVE specificaiton notations essential for understand- 
ing this paper is given in Appendix A. There are a few minor changes in this 
specification from the one in [241 to reflect current RESOLVE syntax. The one 
substantive change is that the Size operation here has a precondition; it can- 
not be called during the insertion phase (but there is no reason to do so in any 
case). This change permits a simplified presentation in Section 3 but does not 
materially affect any of the issues we raise. 

A proof of the lemma involves standard arguments from 
graph theory, where a case analysis based on whether e is 

in Gj yields a construction for G3. The proof of correctness 
of a batch-style implementation of Spanning_Forest_ 
Machine_Template (see Appendix B) explains the rele- 
vance of this lemma and the conclusion that it demon- 
strates why the specification in Fig. 2 is not restrictive. 

We conclude this section by noting that the specifica- 
tion in Fig. 2 is fully abstract, i.e., it is both "observable" 
and "controllable" [25]. To be observable (hence fully 
abstract), the specification must make it possible to dis- 
tinguish every two abstract model values through the 
provided operations [11], [12]. We specify that a machine 
keeps only MSF edges at all times; clearly any two dif- 
ferent MSFs can be distinguished by a sequence of calls 
to Extract operations. To be controllable, the specifica- 
tion must make it possible to construct every abstract 
model value. This also is permitted because any par- 
ticular MSF can be constructed through an appropriate 
sequence of calls to Insert with just that MSF's edges. 

3.2 A Class of Implementations that Need 
Abstraction Relations 

To prove the practical need for abstraction relations, it 
remains to show the existence of a valid and practical im- 
plementation of this specification that cannot be proved 
correct using any abstraction function, but which can be 
verified using an abstraction relation. The argument is 
organized as follows. First we characterize a set of valid 
"nonmonotonic, deterministic, batch-style" implementa- 
tions, any of whose members could serve as this unverifi- 
able implementation. Next we show why these imple- 
mentations cannot be proved correct using any abstraction 
function. In the last subsection, we explain how abstrac- 
tion relations can be used to verify these implementations 
in a modular proof system [7]. 

In this discussion, it is important to note that the 
specificity of the particular class of implementations to 
be considered arises only because we seek to show the 
resistance to verification using abstraction functions, 
with minimal "hand waving." Other than this there is 
nothing special about the class of implementations con- 
sidered. Amortized cost implementations, for example, 
would have served equally well. 

3.2.1 Deterministic Batch-Style Implementations 
Let B be the class of valid deterministic batch-style im- 
plementations of Spanning_Forest_Machine_Template. 
The implementations in B are, first, deterministic: the out- 
puts computed by each operation are entirely determined 
by its inputs. Two abstract operations (insert and Ex- 
tract) have behavioral specifications that are relational, 
but their implementations may have deterministic func- 
tional behavior. In order to be valid, an implementation 
need only exhibit a behavior pattern that is consistent 
with the specified relation; it is not necessary for the im- 
plementation actually or even potentially to give differ- 
ent results when run multiple times with the same in- 
puts. We restrict our attention to deterministic imple- 
mentations both because deterministic behavior for an 
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implementation is a typical situation in practice, and because 
this determinism simplifies the proof that abstraction relations 
are required for verification. 

The implementations in B also are batch-style. This means 
they just store all the inserted graph edges while a machine 
is in insertion phase, deferring computation of a minimum 
spanning forest to the start of the extraction phase. So ini- 
tially, the edge collection representing a machine state is 
empty. The Insert operation adds a new edge to it. Change_ 
To_Extraction_Phase computes a minimum spanning for- 
est of the edge collection (e.g., using Kruskal's algorithm) and 
stores only the resulting MSF edges back into the edge collec- 
tion. The Extract operation simply removes and returns 
any edge from the edge collection. The Size operation re- 
turns the number of edges in that collection, and 
Change_To_Insertion_Phase empties it. 

Why are such batch-style implementations correct, i.e., why 
should we consider them to behave as specified? This question 
about correctness has to do with the timing of events: Is it pos- 
sible for a client of Spanning_Forest_Machine_Template to 
detect that a batch-style implementation is being used, as op- 
posed to an "eager beaver" implementation that seems natural 
from the specification? The behavior of any implementation of 
any abstraction can be detected only through the "observer" 
operations provided in its interface, in this case Extract and 
Size. It is clear that the Size operation as described above 
produces the specified result because its precondition limits it 
to being called during extraction phase, where the representa- 
tion used in a batch-style implementation contains precisely 
the same edges as in the conceptual view. Extract as de- 
scribed above also works as advertised because, before it can 
be called, Change_To_Extraction_Phase has computed an 
MSF of the graph that was input during the insertion phase. 
The apparent discrepancy between the specification and a 
batch-style implementation with respect to when computation 
of an MSF occurs (seemingly incrementally during the inser- 
tion phase according to the specification, but actually in 
Change_To_Extraction_Phase in the implementation) sim- 
ply cannot be detected by a client from functional behavior 
alone. So a batch-style implementation is as good as any other 
from this perspective. 

3.2.2 Monotonie Deterministic Batch-Style Implementations 
A deterministic batch-style implementation I that can be veri- 
fied with an abstraction function exhibits an interesting prop- 
erty we term monotonicity, denoted Mono(I). Consider the cli- 
ent code labeled Find_MSF which takes, as input, a sequence 
of edges E„ = <e,, e2, ..., e„> and produces as output a set of 
edges F„ = {/,, f2, ..., fk}. (The output order is irrelevant, so we 
view the output edges simply as a set, not a sequence.) 

Find_MSF: 
if not  Is_In_Insertion_Priase   (m)   then 

Change_To_Irrsertion_Phase   (m) 
end if 
for i  in 1..n  loop 

let   (vl,   v2,   w)   =  eL 

Insert   (m,   vl,   v2,   w) 
end loop 

Change_To_Exträction_Phase   (m) 
k  =  Size   (m) 
for i  in 'l.-.k loop 

Extract   (m,   vl,   v2,   w) 
let   f. ■=   (vl,   v2,   w) 

end loop 

Given any I e B as the underlying implementation of 
Spanning_Forest_Machine_Template, suppose we 
run Find_MSF on En = <ev e2,..., en>, producing output F„; 
and we run it on E„+1 = <ev e2 en, e„+1>, producing out- 
put Fn+1 Then we define: 

MonoU) o VE„+]US_MSF(F„+I, F„ «J |?„+]})) 

That is, a deterministic batch-style implementation I is 
monotonic iff the output of Find_MSF using I, on any 
extension of any original input sequence En, is an MSF of 
the same extension of the original sequence's MSF F . 

Using this property, we define the set of monotonic 
batch-style implementations: 

M = U\leBAMono(I)} 

3.2.3 Sample Execution of a Nonmonotonic 
Deterministic Batch-Style Implementation 

In Section 3.3, we will see that deterministic batch-style 
implementations which can be verified using abstraction 
functions are monotonic, so the implementations in B - 
M interest us. The obvious question is whether there are 
any such implementations and, if so, whether they have 
practical significance. Fig. 3 helps us answer both ques- 
tions affirmatively by showing the behavior of 
Find_MSF on an example for an implementation Ie B- 
M. In the figure, heavy lines depict possible minimum 
spanning forests of graphs; thin lines depict other edges 
inserted so far ("redundant" edges); and program states 
are identified by letters on the left. 

1 

IO^VIO 

F2 
Insert (m, 2, 3, 10) 
(i.e., e3 = (2,3,10)) 

1 1 1 

B       10^\° io/^io io^yo 

3       10      2 3       10      2 3       10 10 

■ Insert (m, 1,4,15) 
(i.e., e4= (1,4,15)) 

2. The representation also includes a flag indicating the machine's phase, 
which is handled in the obvious way and therefore is not discussed further. 

Fig. 3. Sample execution of Find_MSF for an implementation I e B 
-m. 
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Starting with an empty machine m in insertion phase, we 
first insert edges (1, 2,10) and (1, 3,10), in either order (i.e., E2 

= <(1, 2, 10), (1, 3, 10)> or E2 = <(1, 3,10), (1, 2, 10)>). At this 
point, state A, there is only one possible minimum spanning 
forest of the edges inserted so far. Calling 

•Change_To_Extraction_Phase and then Extract until the 
machine is empty produces F2 = ((1, 2, 10), (1, 3, 10)). That is, 
Find_MSF on input E2 outputs F2. 

Instead of calling Change_To_Extraction_Phase after 
state A, suppose we insert edge e3 = (2, 3,10). If the insertion 
phase ends at state B, Find_MSF returns one of three possible 
MSFs. Suppose (without loss of generality) it is the leftmost 
one in state B, so Find_MSF on input E3 produces F3 = ((1, 2, 
10), (1, 3,10)). The input sequence so far is not a witness to the 
nonmonotonicity of I because F3 is an MSF of F2 u |e3). 

However, suppose we continue in state B to insert one more 
edge e4 = (1, 4, 15). If the insertion phase ends at state C, 
Find_MSF again returns one of three possible MSFs. But now 
suppose it is the middle one in state C, so Find_MSF on input 
E4 produces F4 = {(1, 2,10), (2, 3,10), (1, 4,15)). This input se- 
quence is a witness to the nonmonotonicity of I because F4 is 
not an MSF of F3 u |e4). (In the figure, note that F3 and F4 in- 
clude only the heavy edges.) 

Are there really valid batch-style implementations of Span- 
ning_Forest_Machine_Template that behave as in Fig. 3? 
While the answer to this question would be true even if there 
were only pathological programs that behave this way, the 
notable feature of the present example is that there is a large 
and natural class of implementations that serve as exemplars. 
For instance, implementations that do not keep the edges in 
input order during the insertion phase, and those that use 
typical published code for Kruskal's algorithm [4] and are 
based on sorting algorithms which are not necessarily stable 
(e.g., quicksort or heapsort), are all examples of actual imple- 
mentations in B - M. 

3.3 Inadequacy of Abstraction Functions 
We wish to prove that if I e B (call this proposition p) and I <£. 
M (proposition q), then I cannot be verified using an abstrac- 
tion function (proposition r). Notice that: 

(p A q) => r = —<r => —ip A q) 

= ->r => (-.p A -,q) 

=  (p A -if) => -I*/ 

So, we begin by assuming I e B (i.e., proposition p) and that I 
can be verified using an abstraction function (i.e., —>r). We 
show this implies I e M (i.e., —*q). 

Let A be the abstraction function used in the assumed proof 
of I. It maps a representation of a Spanning_Forest_ 
Machine (call it m.rep) to the corresponding conceptual value 
m.edges. Now observe the detailed operation of Find_MSF by 
considering the trajectory of m.rep as Find_MSF executes with 
arbitrary input sequence En = <ev e2, ..., en>, as illustrated in 
Fig. 4 (top trajectory). There, m.repj denotes the representation 
state immediately after the call that inserts ej into m; m.rep; the 
representation state immediately after the call that extracts / 

3. We ignore the remainder of the correspondence, which trivally maps a flag 
indicating the machine's phase to the other component of the conceptual value, 
m.insertion_phase. 

from m; and m.rep0 (m.rep0') the state immediately before 
the first Insert (Extract) operation. 

m.rep 0   m.rep 1 

F 
n 

i i 

" m.rep 0, m.rep m.rep R, 

m.rep0, m.rep,.       m.repk 

m-rePn+1 

^j Insertion phase state 

^ Extraction phase state 

te   Abstraction function 

n+1 

Insert 

Change_To_Extraction_Phase 

Extract 

Fig. 4. Behavior of Find_MSF for En_1 and En. 

After all edges are inserted, there is a call to Change_ 
To_Extraction_Phase. Because I is a batch-style im- 
plementation we expect that m.rep0, # m.repn. However, 
by the assumption that J can be verified we know from 
the postcondition of Change_To_Extraction_Phase 
that m.edges does not change; thus: 

A(m.rep0.) = A(m.repn) (la) 

By the same assumption, we know that each subse- 
quent call to Extract removes one edge from 
A(m.rep0'). This means the loop in Find_MSF produces 
Fn as its output; so: 

F„ =A(m.rep0.) (lb) 
The trajectory of m.rep as Find_MSF executes with in- 

put sequence En+1 = <ev e2,..., en, e„+1> is similar. Because 
I is deterministic, the representation state follows pre- 
cisely the same trajectory as before through insertion of 
edge en. But this time we continue by inserting en+], 
changing the new representation state to m.repn+l 

(bottom trajectory). Subsequent representation states 
may be different than for the first input sequence, so we 
mark them with double primes (") in place of single 
primes (')• But by the same arguments as above we con- 
clude: 

A(m.rep0„) = A{m.repn+X) (2a) 

Fn+1 = A(m.rep0„) (2b) 

By assumption, the Insert operation also can be 
verified, so it,works correctly when we insert the edge 
en+] (the diagonal arrow in Fig. 4). From the postcondi- 
tion of Insert with appropriate substitutions for that 
invocation, we therefore know: 

IS_ MSF(A(m.repn+l), A(m.repn) u {en+1}) (3) 
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Now substituting in (3) from (la), (lb) and (2a), (2b), we de- 
duce: 

IS_MSF(Fn+1, Fn ut,|) (4) 

But if (4) holds then I e M. We conclude, then, that every 
valid deterministic batch-style implementation of Span- 
ning_Forest_Machine that can be proved using an abstrac- 
tion function is monotonic. Yet we know there are valid and 
practical deterministic batch-style implementations that are 
nonmonotonic. A proof system that relies solely on abstraction 
functions, therefore, cannot be used to verify the correctness of 
any member of this entire class of correct and practical imple- 
mentations of Spanning_Forest_Machine_Template. 

3.4 Verification Using Abstraction Relations 
The implementations discussed above have a natural and 
simple abstraction relation—the abstract value m.edges is any 
one of the MSFs of the graph stored in the internal representa- 
tion m.rep. This relation, stated below formally using the 
predicate 1SJASF, is sufficient to prove the correctness of the 
implementations: 

IS_MSF(m.edges, Sim.rep)) 

where S is a function from the specific representation of ma- 
chine m to the mathematical set of edges it contains. Details of 
the correctness proof are provided in Appendix B. 

The MSF example shows that abstraction relations are es- 
sential for proving correctness of some implementations of 
nontrivial relational specifications. Such situations should be 
expected to arise in industrial-strength software systems. It is 
also possible that abstraction relations might be used—even 
though with effort they could be avoided in some cases— 
where they can simplify verification conditions and can be 
easier to understand than abstraction functions. 

We note that a relational programming language semantics 
ultimately cannot be avoided if specifications are allowed to 
be relational—which they must be in order to permit specifi- 
cation of behavior such as that desired for Span- 
ning_Forest_Machine_Template [7], [17]. Given that a 
relational semantics is essential, abstraction relations between 
concrete and abstract values do not increase verification com- 
plexity. For example, it is much easier to define the relation 
ISJASF than the specific function computed by any given im- 
plementation, which depends on intricate algorithmic details 
involved in finding a particular MSF and which are inessential 
in the proof. Using an abstraction relation considerably simplifies 
the verification conditions for each of the Spanning_Forest_ 
Machine_Template operations because the correspondence 
mapping is used separately in the verification of each opera- 
tion [6], [7]. 

4  DISCUSSION 

The literature on verifying ADTs includes at least two conjec- 
tures that abstraction relations, even if technically required in 
some circumstances, are probably unnecessary in practice—at 
least where specifications are well-designed. When optimization 
problems are specified as procedures (for example, a simple 
operation for finding an MSF), this conjecture might be true. 
That situation demands relational specification of behavior and 
relational semantics, but not necessarily abstraction relations. 

The abstraction relation problem arises here because an 
optimization problem with possible ties has been captured 
not as a single procedure, but by recasting it as an ADT. In 
light of the advantages of the recasting approach [24], the 
abstraction relation issue assumes additional practical 
significance. 

Formal systems that handle abstraction relations have 
been discussed (e.g., [9]) and some formal methods tool 
kits support them (e.g., Cogito [2]). But historically, ab- 
straction functions have been so important and they.are 
so entrenched that the generalization to abstraction rela- 
tions tends to be resisted in some quarters: So we now 
examine (not necessarily published) attempts we have 
seen to avoid abstraction relations, and their ramifica- 
tions. 

The first approach is to prohibit the specification of 
relational behavior of operations. This would be unde- 
sirable when, as in this case, the natural intended be- 
havior is inherently relational. Refusing to admit this 
possibility would leave a class of useful abstractions that 
could not be specified or that could not be easily reused 
in building other component implementations [7], [11], 
[13]. Moreover, specifying functional behavior for the 
MSF problem would rule out interesting classes of im- 
plementations and would make the specification much 
harder to understand—that specification would have to 
single out precisely which MSF must be produced, even 
in case of ties. 

A second approach is to augment m.rep with an adjunct 
(auxiliary) variable, say rn.rep.abs, which simply mirrors 
the abstract value. This would give a trivial abstraction 
function: m = m.rep.abs, and it would introduce a repre- 
sentation convention (invariant) relating m.rep.abs to the 
rest of m.rep (i.e., the original concrete representation). 
Notice that the availability of this approach does not re- 
fute our proof in Section 3 because the adjunct code re- 
quired to update m.rep.abs would be nondeterministic, 
and any implementation written like this would not be in 
B. Nonetheless it might be argued that any implementa-. 
tion in B could be transformed in this way in order to 
avoid abstraction relations. 

Even if valid, this suggestion would have little practi- 
cal import because following it would just move the ex- 
pression of the required relation from the correspon- 
dence to the representation convention. Correctness 
proofs would not be simplified at all. But the bigger 
problem is that a batch implementation of Span- 
ning_Forest_Machihe_Template that employed this 
device would be incorrect. The adjunct code to update 
m.rep.abs in Insert would have to select a particular MSF 
prematurely (albeit nondeterministically), and subse- 
quent Extract operations could not be proved to return 
precisely the edges of the selected MSF. 

A third approach involves changing the specifica- 
tions. This has been considered both in the ADT frame- 
work [11] and in related work [5] on concurrent proc- 
esses involving I/O automata and sequences of actions. 
Lynch documents the practical utility of "multivalued 
possibilities mappings" (the I/O automata counterpart 
of abstraction relations) [16]. However, Abadi and Lam- 
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port show that specifications can be transformed to avoid 
multivalued mappings, under certain conditions; "refinement 
mappings" (the counterpart of abstraction functions) always 
exist [1]. Abadi and Lamport introduce techniques to avoid 
abstraction relations which, when adapted to the ADT frame- 

. work, require changing the specifications of some of the com- 
ponents involved in the proof. Changes to these specifications 
are ruled out by the modularity requirements we place on 
ADT correctness proofs. • 

The issue of changing specifications of components does 
raise the question of whether the Spanning_Forest_ Ma- 
chine_Template specification could be designed differently 
to avoid the need for abstraction relations. For example, sup- 
pose that the specification is changed to be along the lines dis- 
cussed in Section 3.4, i.e., conceptually all the edges are kept 
during the insertion phase, and an MSF is chosen only in 
Change_To_Extraction_Phase. Then for an implementation 
that mirrors this specification temporally, i.e., for a batch-style 
one that computes an MSF in Change_To_ Extrac- 
tion_Phase, an abstraction function is sufficient for a proof of 
correctness. However, the amortized-cost implementation in 
[24], and implementations that defer computation of an MSF 
to the Extract operation such as the one discussed in Section 
2.2, still require an abstraction relation. Furthermore, if one 
must change specifications for the sake of avoiding abstraction 
relations in correctness proofs—without regard for the impact 
on understandability to potential component clients [20], 
[26]—then some of the most important practical benefits of 
formal specification for software engineering may be lost. 

Even if a specification of Spanning_Forest_Machine_ 
Template is devised that avoids the need for abstraction re- 
lations for that example [22], the completeness and naturalness 
needs raised in this paper remain. The practical requirement 
for abstraction relations to handle specifications that are not 
fully abstract will also continue to exist, because software de- 
velopers are likely to continue to design and use such con- 
cepts. Fully embracing abstraction relations is therefore an 
essential practical step in broadening the applicability of for- 
mal methods beyond simplistic data abstractions. 

APPENDIX A - RESOLVE NOTATION 

The specifications in this paper are written in RESOLVE, a 
detailed description of which is available elsewhere [21]. Here 
we give a brief overview of RESOLVE notation that (along 
with a general understanding of issues in specification and 
implementation of abstract data types) should be sufficient to 
enable a reader to understand the examples in this paper. 

A.1 Specification Notation 
A RESOLVE concept specifies an "abstract template" (generic 
abstract module) by listing its context, which explicitly defines 
all coupling to the environment and makes all local declara- 
tions used in the rest of the specification; and its exported in- 
terface. The global context section identifies fixed coupling of 
this module to others in a shared component library. The 
parametric context section defines the ways in which a client 
can provide context, through parameters, when instantiating 
the generic module. The local context section typically intro- 
duces . special-purpose mathematical notation used in the in- 

terface specification. For example, in Fig. 2, IS_MSF is a 
mathematical operation (function). Its definition should 
say formally that IS_MSF(msf,g) is true iff msf is a mini- 
mum spanning forest of g. We have elided this to focus 
on the more important features of the specification, but 
IS_MSF can be formally defined in a few lines. 

The interface section explains the concept's exported 
types and operations. Each program type (family) is ex- 
plained by referring to its mathematical model. For ex- 
ample, the type Spanning_Fqrest_Machine in Fig. 2 is 
modeled as an ordered pair consisting of a set of EDGEs 
and a boolean value. The constraint clause for a mathe- 
matical model (e.g., EDGE or the model for Span- 
ning_Forest_Machine) says that, of all possible values 
of the underlying mathematical space, only those satis- 
fying that clause are part of the model space. 

Every program type has three implicit operations: 

1) The initialize operation is invoked only at the be- 
ginning of the scope where its argument is de- 
clared. It gives the variable an initial value, which 
is specified in the initialization ensures clause of 
the type specification. 

2) The finalize operation is invoked only at the end of 
the scope where its argument is declared, so usually 
there is no need to specify its abstract effect— 
because there is none. This operation is generally a 
hook for the type's implementer to release resources 
(e.g., memory) used by the representation. 

3) The swap operation (invoked using the infix :=: 
operator) exchanges the values of its two argu- 
ments [8]. 

RESOLVE specifications never include preconditions like 
"x has been initialized" because client programs always 
initialize and finalize variables at the beginning and end of 
scope, respectively. In RESOLVE initialize and finalize 
work like C++ constructor and destructor operations, with 
appropriate calls generated by the compiler. 

The effect of each operation is specified using a re- 
quires clause (precondition) and an ensures clause 
(postcondition). Each of these is an assertion about the 
values of the mathematical models of the operation's 
parameters. A missing clause means the assertion is the 
constant true. Mathematically, an operation defines a 
partial relation on the space of input and output values 
of the parameters: The requires clause tells where the 
relation is defined, and the ensures clause defines it 
there. Operationally, the contract between operation cli- 
ent and implementer is as follows: If a client calls an op- 
eration in a state in which the requires clause holds for 
the actual parameters, then the implementer guarantees 
that the operation will return in a state in which the en- 
sures clause holds; but if the requires clause does not 
hold when the call occurs, then the implementer makes 
no guarantees whatsoever. 

In a requires clause a variable stands for its value at 
the beginning of a call. In an ensures clause a variable 
stands for its value at the end of the call, while a variable 
with a prefixed # (pronounced "old") stands for the 
value of that variable at the beginning of the call. Other 
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mathematical notations depend on the mathematical theories 
involved in the explanation of behavior. The specification of 
Spanning_Forest_Machine_Template uses finite sets, tu- 
ples, integers, and booleans. 

Operation specifications are considerably simplified by us- 
ing abstract parameter modes alters, produces, consumes, and 
preserves. An alters-mode parameter potentially is changed 
by executing the operation; the ensures clause says how A 
produces-mode parameter gets a new value that is defined by. 
the ensures clause, which may not involve the parameter's old 
value because it is irrelevant to the operation's effect. A con- 
sumes-mode parameter gets a new value that is an initial 
value for its type, but its old value is relevant to the opera- 
tion's effect. A preserves-mode parameter suffers no net 
change in value between the beginning of the operation and its 
return, although its value might be changed temporarily while 
the operation is executing. 

A.2 Realization Notation 
A RESOLVE realization describes a "concrete template" 
(generic implementation module). A facility is an instance of a 
concept with an associated instance of a realization which im- 
plements it, so its declaration involves choosing and fixing the 
parameters of both a concept and one of that concept's reali- 
zations. In operation bodies, the representation of a variable 
(e.g., m) of an exported type is designated as m.rep so it is clear 
that this is the representation model's value and not the con- 
ceptual model's value. 

RESOLVE realization code contains three kinds of asser- 
tions. For every loop there is a loop invariant or loop specifi- 
cation; and for every type there is a convention assertion that 
characterizes the subspace of representation configurations 
that might arise (the representation invariant), and a corre- 
spondence assertion that explains how to associate such rep- 
resentation configurations with conceptual model values (the 
abstraction relation). 

The convention clause of Fig. 5 uses the built-in RESOLVE 
mathematical function elements, which denotes the set of 
entries in the string of items which is its argument. So, if str = 
<a, b, c, b>, then elements (str) = (a, b, c). 

APPENDIX B - VERIFICATION OF A BATCH-STYLE 
IMPLEMENTATION 

In this appendix we prove the correctness of the batch-style im- 
plementation of Sparming_Forest_Machine_Template shown 
m Fig. 5. Its global context section refers to Queue_Template, 
which is shown in Fig. 6 for completeness. 

A proof of correctness [7] of the realization of Fig. 5 starts 
by factoring out two lemmas that arise during the verification 
of each individual operation: 

Cl. For every representation state for which the convention 
clause holds, there is a conceptual state to which the corre- 
spondence clause relates it. 

C2. For every representation state for which the convention 
clause holds, and for every conceptual state related to it by 
the correspondence clause, the constraint clause (see Fig. 
2) holds for the conceptual state. 

In this case, to prove Cl we must prove that there is at 
least one conceptual Spanriing_Forest_Machine value 
for every Machine_Rep value that can arise. This follows 
from the definition of MSF in graph theory (which we 
assume is encoded formally in the predicate 7S_MSF)- 
i.e., every graph has an MSF. To prove C2 we must 
prove that any MSF of any graph is its own MSF; and 
again this is a simple lemma in graph theory. 

The verification is completed by showing that for 
each operation body, the code implements the associated 
abstract operation specification. For each operation and 
for each fixed assignment of values to all the other ar- 
guments, we consider four sets of values for each Span- 
mng_Forest_Machine argument: initial and final con- 
ceptual states, C,. and C   respectively; and initial and 
final representation states, R. and Rf, respectively   R 
contains those representation states lor which- 1) the 
convention clause holds, 2) there exists a conceptual 
state satisfying the correspondence clause and this par- 
ticular operation's abstract precondition, and 3) every 
such corresponding conceptual state satisfies this opera- 
tion s precondition. Rf contains the representation states 
that can be reached from some representation state in R 
by correct execution of the operation's body  C and C 
contain the conceptual states for which the correspon- 
dence clause holds for some representation state in R 
and Rf, respectively. ' 

Informally stated, we have three kinds of proof obli- 
gations; i.e., the verification conditions are of these three 
forms: 

VI. For every r e R. and for every trajectory leading 
from r through the operation body, all internal as- 
sertions (e.g., loop invariants) hold at the appropri- 
ate times, and the preconditions of all called opera- 
tions hold at the points they are called. (This obliga- 
tion arises from the need to define R. since only if a 
called operation's precondition holds may we as- 
sume that its effect is what we expect from its speci- 
fied postcondition.) 

V2. For every r e Rf the convention clause holds. (This 
obligation arises from the need to define C   since 
only in this case is it certain that there is some con- 
ceptual state to which the correspondence clause 
relates every r e Rf.) 

V3. For every #r e R, r e Rf, and c s C, for which r is 
reachable from #r by some correct execution of the 
operation  body  and  where  the  correspondence 
clause relates c and r, there exists some #c e C- for 
which the correspondence clause relates #c and #r 

" lnt W<herf the °Peration's abstract postcondition 
holds for #c and c. (This obligation arises from the 
need to complete the "commutativity diagram" 
[7, pp. 303-305].) y       S 

There also is a specialized version of such a proof for the 
initialize operation, where we may neither assume that 
the convention clause holds for the initial representation 
state nor, consequently, that there is any initial concep- 
tual state corresponding to it. 

In this case, it is easy to discharge the obligations of 
the forms VI and V2 for each operation. There is only 
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realization body Batch for  Spanning_Forest_Machine_Template 

context 

global context 
concept Record3_Template 
concept Queue_Template 
concept Record2_Template 
facility Standard_Boolean_Facility 

local context 

type Edge is record 
vl: Integer 
v2 : Integer 
e: Integer 

end record 

facility Edge_Queue_Facility is Queue_Template(Edge) 
realized by Queue_Realization_l 

operation Produce_MSF ( 
alters q: Edge_Queue_Facility.Queue 

) 
ensures 

IS_MSF (elements (g), elements (#q)) and 
|q| = |elements (q)| 

begin 
— code that batch computes an arbitrary MSF of q 

end Produce_MSF 

interface 
type Spanning_Forest_Machine is represented by record 

graph_edges: Edge_Queue_Facility.Queue 
insertion_flag.: Boolean 

end record 
convention 

if not m.rep.insertion_flag 
then IS_MSF (elements (m.rep.graph_edges), 

elements (m.rep.graph_edges)) 
correspondence 

IS_MSF (m.edges, elements (m.rep.graph_edges)) and 
m.insertion_phase = m.rep.insertion_flag 

operation initialize 
begin . 

m.rep.insertion_flag := true 
end initialize 

operation Change_To_Insertion_Phase ( 
alters     m: Spanning_Forest_Machine 

) 
local context 

variables 
new_rep: Spanning_Forest_Machine 

begin 
m.rep :=: new_rep 
m.rep.insertion_flag := true 

end Change_To_Insertion_Phase 

operation Insert ( 
alters     m:,Spanning_Forest_Machine 
consumes   vl: Integer 
consumes   v2: Integer 
consumes   w: Integer 

). 
begin 

. Enqueue (m.rep.graph_edges, (vl, v2, w)) 
end Insert 
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operation Change_To_Extraction_Phase ( 
alters       m: Spanning_Forest_Machine 

) 
begin 

Produce_MSF (m.rep.graph_edges) 
m.rep.insertion_flag := false 

end Change_To_Extraction_Phase 

operation Extract ( 

alters m: Spanning_Forest_Machine 
produces vl: Integer 
produces v2: Integer 
produces w: Integer 

) 
begin 

Dequeue (m.rep.graph_edges, (vl, v2, w)) 
end Extract 

operation Size ( 

preserves    m: Spanning_Forest_Machine 
): Integer 

begin 
return Length (m.rep.graph_edges) 

end Size 

operation Is_In_Insertion_Phase ( 
preserves m: Spanning_Forest_Machine 

): Boolean 
begin 

return m.rep.insertion_flag 
end Is_In_Insertion_Phase 

end Batch 

Fig. 5. Realization body for a batch-style implementation. 

concept Queue_Template 

context 

global context 
facility Standard_Integer_Facility 

parametric context 
type Item 

interface 

type Queue is modeled by string of math[Item] 
exemplar g 
initialization ensures 

g = empty_string 

operation Enqueue ( 
alters     q:. Queue 
consumes    x: Item 

) 
ensures 

q = #q * <#x> 

operation Dequeue ( 
alters     q: Queue 
produces   x: Item 

) 
ensures 

#q = <x> * q 

operation Length ( 
preserves   q: Queue 
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): Integer 
ensures 

Length = |q| 

end Queue_Template 

Fig. 6. Specification of Queue JTemplate. 

one called operation (Dequeue in the body of Extract) 
that has a nontrivial precondition, and in this case the 
precondition of Extract implies that Rj contains only 
representation states where m.rep.graph_edges is not 
empty. Showing that the convention clause holds at the 
end of each operation body is more tedious because it in- 
volves m.rep.insertion Jiag as well as m.rep.graph_edges, 
but the details are straightforward. 

All the proof obligations of the form V3 are similarly 
trivial, except for the insert operation. Here, the proof of 
the only troublesome part of the applicable verification 
condition follows directly from the graph theory lemma 
stated in Section 3. 

We observe that the verification of this batch imple- 
mentation answers the question posed in Section 3.1.1: Can 
the edges obtained from a series of Extract operations be 
any MSF of the edges that were inserted into.a Span- 
ning_Forest_Machine? The body of procedure Pro- 
duce_MSF in Fig. 5 may produce any MSF of the edges it is 
given. The realization in Fig. 5 is correct with no further 
assumptions about which MSF that must be. So the specifi- 
cation of Spanning_Forest_Machine_Template truly 
places no restriction on which MSF of the inserted edges 
might be produced. 
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Abstract 

Large complex software systems are composed of many software components. Construction 
and maintenance of component-based systems require a clear understanding of the dependen- 
cies between these components. To support reuse, components should be designed to minimize 
such dependencies. When component coupling is necessary, however, dependencies need to be 
expressed clearly and precisely. Most software analysis and design methodologies rely on re- 
lationships such as passes-data-to, calls, is-a-part-of, and inherits-from for this purpose. Our 
position is that component relationships such as these are not an effective way to convey impor- 
tant dependency information to implementors arid maintainers working with reusable software 
components. Precisely-defined conceptual relationships are better suited to this task. 

Keywords: Software components, component relationships, software engineering, software 
reuse, behavioral substitutability 

Workshop Goals: Learning, feedback, networking 

Working Groups: (1) Rigorous Behavioral Specification as an Aid to Reuse, (2) Component 
Certification Tools, Frameworks and Processes, and (3) Object Technology, Architectures, and 
Domain Analysis: What's the Connection? Is There a Connection? 
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1    Background 

As members of the Reusable Software Research Group (RSRG) at The Ohio State University, 
we have been exploring various aspects of software component engineering for over ten years. 
One recent focus of our research has been on the identification, formalization, and expression of 
dependency relationships between software components. Many of our ideas on software component 
relationships are based on the results of RSRG research which has been incorporated into the 
RESOLVE framework, language, and discipline for software component engineering [1]. Newer 
ideas and terminology for expressing these relationships are based on a formal model of software 
subsystems called ACTI, for "Abstract and Concrete Templates and Instances[2]. 

To demonstrate the application of our ideas on software component relationships, we have developed 
the RESOLVE/C++ and RESOLVE/Ada95 disciplines for software component engineering. Steve 
Edwards, Bruce Weide, and Sergey Zhupanov developed the RESOLVE/C++ discipline. David 
Gibson developed the RESOLVE/Ada95 discipline. These disciplines use the language mechanisms 
of C++ and Ada (as revised in 1995) to encode language-independent software component relation- 
ships. Bruce Weide is currently using the RESOLVE/C++ discipline in the introductory Computer 
Science course sequence at Ohio State. 

2    Position 

Building software systems from reusable software components has long been a goal of software 
engineers. While other engineering disciplines successfully apply the reusable component approach 
to build physical systems, it has proven more difficult to apply in software engineering. A primary 
reason for this difficulty is that distinct software components tend to be more tightly coupled with 
each other than most physical components. Furthermore, components are often designed with 
extremely subtle dependencies on other components are which are not explicitly described. These 
dependencies may significantly complicate reasoning about program behavior[3]. 

Clearly some dependencies between software components are necessary and desirable. These depen- 
dencies need to be clearly expressed by component designers and well-understood by implementors 
and maintainers. The role of software component relationships is to express dependencies between 
components and, in doing so, to provide information about how components may and should be used 
in conjunction with other components. Our position is that the software component relationships 
used by most analysis and design methodologies are not well-suited for building and maintaining 
large complex systems and that there are more suitable alternatives. 

Commonly used component relationships suffer from one or more of the following problems: 

• they only describe particular component compositions, not what compositions are possible, 

• they express vague meanings, which are of limited use, and 

• they reflect language-specific views of component composition rather than a conceptual view. 

Traditional techniques based on functional decomposition of systems have software "part" relation- 
ships depicted in notations such as data flow diagrams and structure charts. Relationships such 
as passes-data-to, calls, and is-a-part-of are common to these notations. These relationships may 
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be useful for understanding how components of a particular system are related. However, they do 
not directly address how one might reuse individual components to build a new system or modify 
an existing system. That is, these notations do not describe the dependencies of a component 
independent of a particular use of that component. 

Object-oriented analysis, design, and programming methodologies usually rely heavily on the 
inherits-from component (class) relationship. Unlike those described above, this relationship can 
describe component dependencies independent of a specific component (class instance) usage. How- 
ever, inherits-from typically fails to convey precise useful information about component dependen- 
cies. Even if the vague and varied meanings of inherits-from play a useful role during analysis 
and design, this relationship is much less useful when working with specific components during 
implementation and maintenance. Inheritance is a programming language mechanism that can be 
used to encode conceptual relationships between software components. Inheritance is not itself a 
conceptual relationship. 

Some people in the object-oriented community argue that inheritance should only be used to express 
the is-a relationship between two components. Unlike inherits-from, is-a is a conceptual relation- 
ship between components. However, the is-a relationship does not have a single precisely-defined 
meaning. Furthermore, even when formally defined in terms of behavioral substitutability, the is-a 
relationship generally does not convey specific design intent. For example, stating that component 
X is-a Y does not suggest any information about why X was designed to be substitutable for Y 
and thus how X might be used. 

To address the problems described above, component relationships should: 

• concisely express dependencies describing possible component compositions, 

• have precise meanings useful to clients, implementors, and maintainers, and 

• reflect a clear conceptual view of component-based software engineering. 

We have defined a small set of language-independent component relationships which satisfy these 
three criteria. Our relationships describe the dependencies between components at a conceptual 
level. The relationships provide implementers and maintainers precise information about how com- 
ponents may and should be used. Furthermore, they may be used to express specific design intent. 
In the remainder of this section, we briefly introduce the component relationships: implements, 
uses, and extends. While we have defined several other useful component relationships, these are 
the most general and easiest to understand. 

The software component relationships we have defined relate components which may either be ab- 
stract (specifications) or concrete (implementations)1. An abstract component describes functional 
Jehavior—what services a subsystem provides. A concrete component describes an implementa- 
tion— how a subsystem's services are provided. Having separate abstract and concrete components 
supports data abstraction, information hiding, multiple implementations, and self-contained de- 
scriptions of component behavior. 

*e most fundamental component relationship upon which all others rely for meaning and utility 
l^J™plemertis. Implements describes the key relationship between an implementation, a concrete 

~] 'AA-   ■  " :  
iwo n h t° the abstract versus concrete dimension, components are either templates or instances.   These 
iem T     g0nal dimensi°ns give rise to four kinds of components:   abstract templates, abstract instances, concrete 
-on P ateS'.and concrete instances. While the relationships introduced in this paper only deal with the abstract versus 

crete dimension, we have identified template-specific relationships. 
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component, and a specification, an abstract component.   The implements relationship may k 
defined informally as follows: " 

Concrete component X implements abstract component Y if and only if X exhibits the 
behavior specified by Y. 

This is a fairly intuitive relationship between a specification and an implementation. However 
fully formal and general definition of the implements relationship is very intricate and has been 
the subject of much research. Implements expresses a dependency between two components in the 
following sense. If component X implements component Y, then X depends on Y to provide an 
abstract, client-level description of its behavior - a "cover story" hiding all implementation details. 

While justifying a claim that X implements Y may require significant effort, especially if done 
formally, considerable leverage is gained from doing so. If two different concrete components both 
implement the same abstract component, then either of them may be used in a context requiring 
the functional behavior described by the abstract component. In this case, the two implementations 
are behaviorally substitutable with respect to the specification they both implement. The two imple- 
mentations may differ in non-functional characteristics such as execution time, space requirements, 
cost, warranty, legal use restrictions, level of trust in correctness, and so forth. 

The implements relationship describes a dependency between an implementation and a specifica- 
tion. The uses relationship may describe a dependency that exists between two different abstrac- 
tions. The relation name uses actually applies to three different yet closely related component 
relationships. Uses may describe a dependency between two implementations, between two speci- 
fications, or between an implementation and an specification. The last of these three relationships 
is defined as follows: 

Concrete component X uses abstract component Y if and only if X depends on the 
behavior specified by Y. 

This form of the uses relationship expresses a polymorphic relationship between implementations. 
Any component that implements abstract component Y may serve as the actual concrete component 
used by instances of component X. Thus, this form of uses reduces unnecessary dependencies 
between components. Note that none of the three uses relationships is equivalent to the is-a-part- 
of relationship. If implementation X uses implementation Y, Y may or may not be a part of the 
data representation of X. The client wishing to use component X does not need to know V's 
specific role in X, just that component Y is required in order to use component X. 

A third component relationship is extends. The name extends applies to two different, yet closely 
related, component relationships. One extends expresses a dependency between two abstract com- 
ponents. The other expresses a dependency between two concrete components. Both extend» 
relationships may be defined informally as follows: 

Component X extends component Y if and only if all of the interface and behavior 
described by Y is included in the interface and behavior described by X. 

This definition conveys the intuitive meaning of extends, that is, component X extends the interface 
and behavior of component Y. It implies the essential property of behavioral substitutability- # 
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abstract component X emends abstract component Y, concrete component XI implements X, and 
concrete component Yl implements Y, then XI is behaviorally substitutable for VI with respect 
to Y. Note that Yl is not behaviorally substitutable for XI with respect to X in this case. Thus 
behavioral substitutability is a ternary relationship, not a binary equivalence relation. 

To some readers, the extends relationship may sound very much like an inheritance relationship. 
It is important to understand that extends is not an inheritance relationship. Extends describes 
a behavioral relationship between two components. Inherits-from does not. Furthermore, while 
inheritance may be a convenient programming language mechanism for expressing structural aspects 
of the extends relationship, extends may be encoded in programming languages without any use of 
inheritance. 

3    Comparison 

Perhaps the most widely known work which includes definitions of software component relationships 
is that by Grady Booch, Ivar Jacobson, and James Rumbaugh on the Unified Modeling Language 
(UML). The UML includes software component relationships in the form of class relationships de- 
fined in Booch's method for object-oriented analysis and design [4]. Booch identifies three basic 
kinds of class relationships: those expressing is-a relationships, those expressing is-a-part-of rela- 
tionships, and association relationships which denote some semantic dependency between otherwise 
unrelated classes. The specific class relationships used by Booch include association, inheritance, 
aggregation, and using. The meanings of these relationships are largely influenced by available 
programming language mechanisms (in particular, those of C++). 

Booch's association relationship is primarily useful for design and analysis of a particular appli- 
cation or composition of components. It does not convey information about what compositions 
are possible for a reusable component. Booch's use of the inheritance relationship is limited to 
expressing is-a relationships. However, his definition of is-a is not strict enough to imply behav- 
ioral substitutability with respect to some specification (as does implements). Thus the component 
relationships expressed as class relationships in the UML appear to suffer from all of the problems 
described in the last section. 

Some object-oriented programming advocates such as Bertrand Meyer do not insist that inheritance 
only be used to express the conceptual is-a relationship. Meyer has described twelve different 
component relationships that may be expressed using inheritance, only one of which expresses the 
is-a relationship [5]. As with the UML's use of inheritance, Meyer's is-a use of inheritance is not 
defined precisely enough to imply behavioral substitutability. 

Some researchers have studied precisely defined class relationships which do imply behavioral sub- 
stitutability of components [6, 7]. This research largely focuses on how the inheritance language 
mechanism can and should be used in a manner that supports reasoning about program behav- 
ior. Unlike our research, this work does not address conceptual component relationships from a 
language-independent perspective. 
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Abstract — Reverse engineering of large legacy software 
systems generally cannot meet its objectives because it 
cannot be cost-effective. There are two main reasons for 
this. First, it is very costly to "understand" legacy code 
sufficiently well to permit changes to be made safely, 
because reverse engineering of legacy code is intractable in 
the usual computational complexity sense. Second, even if 
legacy code could be cost-effectively reverse engineered, 
the ultimate objective — re-engineering code to create a 
system that will not need to be reverse engineered again in 
the future — is presently unattainable. Not just crusty old 
systems, but even ones engineered today, from scratch, 
cannot escape the clutches of intractability until software 
engineers learn to design systems that support modular 
reasoning about their behavior. We hope these observa- 
tions serve as a wake-up call to those who dream of 
developing high-quality software systems by transforming 
them from defective raw materials. 

1. Introduction 

Most large software systems, even if apparently well-engi - 
neered on a component-by-component basis, have proved 
to be incoherent as a whole due to unanticipated long-range 
"weird interactions" among supposedly independent parts. 
The best anecdotal evidence for this conclusion comes 
from reported experience dealing with legacy code, i.e., 
programs2 in which too much has been invested just to 
throw away but which have proved to be obscure, 
mysterious, and brittle in the face of maintenance. 

What should we do when we require a new system whose 
behavior is intended to be similar to that of an old system 
we already have? One option is to build the new one from 
scratch, relying perhaps on experience obtained through 

This position paper is adapted from [0,19]. 

2     We do not consider legacy systems that consist primarily of 
data (e.g., databases). 
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design or use of the old one, but not relying substantially 
on the old code. Another option is to try to understand the 
old code well enough to keep much of it, modifying it to 
meet the new needs. The latter approach — re-engineering 
— necessarily involves reverse engineering: 

Reverse engineering encompasses a wide array of 
tasks related to understanding and modifying software 
systems. Central to these tasks is identifying the 
components of an existing software system and the 
relationships among them. Also central is creating 
high-level descriptions of various aspects of existing 
systems. [15, p. 23] 

We consider reverse engineering in its role as an integral 
part of the re-engineering approach to new system devel- 
opment. The objective of reverse engineering is not (just) 
to create documents that chronicle a path from the original 
requirements to the present legacy system as, say, a substi- 
tute for the documentation that probably was not created 
while that journey was in progress. The goal is to achieve 
a sufficient understanding of the whats, hows, and whys of 
the legacy system as a whole that its code can be re-engi - 
neered to meet new requirements on behavior, perfor- 
mance, structure, system dependencies, etc. 

1.1. Reverse Engineering of Legacy Code is Intractable 

There seems to be general agreement that, in practice, 
reverse engineering of legacy code is at least quite 
laborious [14]. Even if many aspects of large systems are 
easy to understand, inevitably there is important behavior 
whose explanation is latent in the code yet which resolutely 
resists discovery. The basic reason is that software engi- 
neers seek modularity — and they generally achieve it well 
enough create a very compact representation of system 
behavior in the source code, but not well enough to support 
modular reasoning about that behavior. In Sections 3-4 we 
summarize how this implies that reverse engineering of 
legacy code is intractable in the usual computational com- 
plexity sense [19]. This fundamental conclusion and the 
supporting argument follow up on a suggestion by Hopkins 
and Sitaraman [9] that the effort required to reverse 
engineer a system is related to the effort required to 
formally verify its functional correctness. In fact, if we 
argued that program verification of legacy code is 
intractable, there probably would be little debate (at least 
with those from whom the current position is likely to draw 
fire). Yet these are technically equivalent. 

with permission. 
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1.2. Forward Engineering is Not a Solved Problem 

Of course intractable does not mean impossible. One even 
hears occasional stories about "successful" reverse and re- 
engineering projects [1]. These should be taken with a 
grain of salt, if only because the real problem — successful 
re-engineering — cannot be known to have been solved for 
years, after there is a long history of maintenance tasks to 
sort through or the system has to be re-engineered again. 
Even then, without a controlled study, there is no way to 
know that building from scratch would not have been more 
cost-effective. And even if the reverse engineering battle 
can be won once, the re-engineering war ultimately will be 
lost without subsequent use of forward engineering 
techniques that effectively prevent software "rot". 

Unfortunately, almost without exception software 
engineers do not know how to design and build truly 
modular systems when starting from scratch, let alone 
when starting from legacy code [17, 18]. Except for 
egregiously poor design practices, they cannot distinguish 
fair-to-good software designs from excellent ones. The 
reason is that beyond "structured programming" aphorisms 
there are almost no accepted community standards for what 
software systems should be like at the detail level. By the 
intractability argument, some key quality criteria would 
seem to be understand ability in general, and susceptibility 
to modular reasoning about behavior in particular. Yet this 
degree of modularity is almost universally not achieved by 
designs in computer science textbooks, technical papers, 
and commercial software. 

2. Observations and Implications 

Reverse engineering of legacy code has proved to be such a 
difficult practical problem — experience which lends 
credence to the thesis that it is intractable — that serious 
attention ought to be devoted to the subject. This is 
particularly true because the alternative is also costly. But 
we need to have realistic expectations about the ultimate 
role of reverse engineering in a comprehensive vision of 
software engineering. We are disturbed with the emphasis 
on building tools to solve problems whose inherent 
complexity suggests that those tools cannot be expected to 
scale up to realistically large systems. And we are frankly 
alarmed by the following sentiments, which seem typical 
among reverse engineering advocates: 

... while many of us may dream that the central busi- 
ness of software engineering is creating clearly under- 
stood new systems, the central business is really 
upgrading poorly understood old systems. [15, p. 23] 

[The problem of having to deal with] legacy software 
is basically the result of management inaction rather 
than technology deficiency... [1, p. 23] 

Quite the contrary! Most software hasn't been written yet, 
and widely taught and practiced "modern" approaches to 
the nuts-and-bolts of software engineering still do not lead 
to well-designed modular systems. So, if we as a commu- 
nity act as though we believe that "the central business [of 

software engineering] is really upgrading poorly 
understood old systems," then we will squanders fortune 
yet continue to face the Sisyphean task of upgrading poorly 
understood old systems into slightly less poorly understood 
new systems. We might have spent our efforts developing 
and exploring truly productive techniques for forward 
engineering of well-understood modular systems — and 
this progress would help even those who insist that re- 
engineering is ultimately where the action will be. 

We mentioned above that reverse engineering is as hard as 
program verification, and this leads to a common misunder- 
standing about the claim of intractability. General program 
verification is in principle unsolvable, because the verifica- 
tion conditions generated from code and specifications 
might include arbitrary mathematical assertions. The prac- 
tical consequences of this observation, however, are 
minimal. It can be used to show that there exist esoteric 
systems for which program verification (hence reverse 
engineering) is impossible; but it does not mean that 
program verification/reverse engineering cannot succeed 
on code that arises in practical situations. Our claim is 
about such practical situations. Specifically, for all large 
legacy systems, program verification/reverse engineering is 
prohibitively expensive; not impossible in principle but 
manifestly not cost-effective — and this bears directly on 
the business decision regarding whether to re-engineer or to 
build anew. The obvious rejoinder to this claim from 
reverse engineering advocates is, "People do reverse 
engineering all the time; how can it be prohibitively 
expensive?" We address this question in Section 3.1. 

The news is not all bad; we offer some assistance to reverse 
engineering advocates. Specifically, by identifying threats 
to modular reasoning from common design and coding 
practices as a key technical factor that thwarts cost-effec- 
tive reverse engineering, we implicitly suggest an area 
where new reverse engineering tools might be helpful 
— namely, finding such trouble spots. The ability to do 
this will not change the underlying intractability but might 
incrementally help those stuck with reverse engineering. 

3. The Nature of the Reverse Engineering Task 

At first glance, the conclusion that reverse engineering of 
legacy code is doomed to fail strikes most people as either 
ridiculous and wrong (the "reverse engineering advocates" 
camp), or obvious and trivial (the "reverse engineering 
skeptics" camp). Some hedge, claiming it could be either 
depending on the definition of reverse engineering. 

By the putative definition quoted in Section 1, reverse 
engineering involves achieving an "understanding" [3, 12, 
14] of a system, including "identifying the components of 
an existing software system and the relationships among 
them" and "creating high-level descriptions". What does 
this mean? We argue that successful reverse engineering of 
a legacy system entails at least the following two subtasks: 

(1) Identifying the functional components of the system 
and the roles they play in producing the behavior of 
the higher-level system that employs them. 
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(2) Creating a valid explanation of how and why the be- 
havior of the higher-level system arises from these 
functional components and their roles. 

We use "functional" here in the sense of contributing to 
functional run-time behavior. This means that the relevant 
components of a system, from the standpoint of under- 
standing system behavior, are not necessarily the structural 
components of its source code (e.g.,. modules, subroutines, 
loop bodies, statements). Some functional components 
might correspond to easily-identified structural compo- 
nents, but others might span several of them — especially 
where interesting behavior arises from poor design or from 
unanticipated interactions between structural components. 

By "valid explanation" we mean, effectively, a proof that 
the claimed higher-level behavior results from the identi- 
fied functional components and roles. The challenges in 
achieving understanding of a poorly understood system are 
to generate a hypothesis, which is in fact correct, and to 
establish why it is correct. 

3.1. Testing vs. Proving 

We now consider the claim, "People do reverse 
engineering all the time; how can it be prohibitively 
expensive?" Certainly one can define reverse engineering 
so this is true. But what people really do all the time is to 
make plausible hypotheses. They do not check the validity 
of those hypotheses in any decisive way. They might, for 
instance, make some changes to the code that should not 
cause problems according to the hypothesis, then test to see 
whether those changes cause obvious problems. 

Such an approach can only hope to show that a hypothesis 
is invalid, not that it is valid — a conclusion similar to the 
well-known aphorism that program testing can only hope to 
demonstrate the presence of bugs, not their absence. We 
do not trick ourselves into believing we have built correct 
software by defining the problem of building correct soft- 
ware in such a way that testing alone is sufficient to decide 
whether we have succeeded. Yet defining reverse 
engineering to consist of hypothesize-and-fesr, not 
hypothesize-and-prove, amounts to the same thing. 

Advocates of the weaker definition might contend that all 
they are hoping for is to obtain "approximate" understand- 
ing of a system. But an approximation is not sufficient to 
achieve the ultimate objective of reverse engineering. 
Furthermore, we can find no reasonable technical definition 
of "approximate" reverse engineering. In any event there 
must be an absolute standard by which to judge the quality 
of an approximation. We therefore define successful 
reverse engineering to entail decisive checking of the 
validity of hypotheses, not merely guessing. 

3.2. Substantive Hypotheses 

The reverse engineering hypothesis should contribute 
enough to the understanding of a system to suggest and/or 
rule out potential modifications that are intended to achieve 

the objective of the project.   Biggerstaff, et al., seem to 
summarize nicely: 

A person understands a program when able to explain 
the program, its structure, its behavior, its effects on its 
operational context, and its relationships to its applica- 
tion domain in terms that are qualitatively different 
from the tokens used to construct the source code for 
the program. [2, p. 72] 

We therefore stipulate that reverse engineering hypothesis 
H for system S should be substantive in that it is: 

• Effective — it provides the ability to predict relevant 
behavior of S (e.g., relevant input-output behavior) and 
to answer questions about what-if situations (e.g., the 
effects of various changes to the source code of S). 

• Comprehensive — its validity cannot be decided by a 
small set of test cases. 

• Concise — it is at worst not much bigger than the 
source code of S. 

• Independent — it is not a paraphrase of the code of S. 

• Systemic —judging its validity requires examining 
essentially all the code of S. 

The first property is basic to utility. All the others are 
technically necessary to rule out trivial hypotheses that 
might otherwise be seen as counterexamples to intractabil- 
ity, but which in practice contribute nothing to the under- 
standing of S. These conditions are not really very strong. 
For example, nearly every non-trivial hypothesis is 
systemic because there are many ways to get S to exhibit 
unhypothesized behavior via long-range weird interactions 
among its components. Whether a particular system actu- 
ally has such interactions does not even matter; they might 
exist because they are not ruled out by static (e.g., 
programming language) constraints. An instruction that 
influences whether and why H holds might be lurking 
anywhere in the code of S, and there is simply no way to 
know whether it is there without looking for it. 

4. The Intractability Result 

The particular computational problem that we claim to be 
intractable is the second reverse engineering subtask: 

EXPLAIN — Given as input (S, H) — source code 
for a system S and hypothesis H about that system's 
behavior — decide whether, and explain why, H does 
or does not hold for S. 

We do not need to account for the extra time it takes to 
generate a hypothesis to be explained. There is every rea- 
son to suspect that generating substantive hypotheses is 
hard, too, but we do not need to or try to demonstrate this. 

We claim there is a lower bound for EXPLAIN for valid 
hypotheses which implies that reverse engineering of 
legacy code (as defined in Section 3) is intractable: 
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EXPLAIN is Intractable — There is a constant c>\ 
such that, for every legacy system S and every valid 
substantive hypothesis H, EXPLAIN(S,H) takes time 
at least cISI, where ISI is the size of S's source code. 

This result follows from two premises, which we outline 
here because they are empirical statements which, in prin- 
ciple, are falsifiable and therefore debatable. The main 
argument is completed elsewhere [19]. 

4.1. Source Code is a Compact Representation of Behavior 

It has long been accepted by software and other engineers 
that the key to dealing with large systems is to design and 
construct them by composing some smaller units that are 
independent except at their interfaces — the objective of 
modularity. One intended result of modularity is the ability 
to reason modularly about program behavior. Liskov and 
Guttag clearly state this objective in their description of 
how we should like to reason about total correctness, but 
the conclusion applies equally to reasoning about any 
substantive hypothesis about system behavior: 

We reason separately about the correctness of a proce- 
dure's implementation and about parts of the program 
that call the procedure. To prove the correctness of a 
procedure definition, we show that the procedure's 
body satisfies its specification. When reasoning about 
invocations of a procedure, we use only the specifica- 
tion. [11, p. 227-228] 

This observation is based on something routinely taught to 
first-year programmers: It is hopeless to reason about 
execution of non-trivial programs by tracing instruction 
execution sequences, either for particular values or by 
symbolic execution, because even a small program can 
describe arbitrarily long execution sequences through 
recursive calls and looping. (Effective reasoning about 
program behavior also requires loop bodies to be replaced 
by specifications, e.g., loop invariants or loop functions.) 
In short, it must be possible to reason about the effect of 
any repeatedly-executed piece of code by using a specifi- 
cation of that piece, without tracing the code for each 
dynamically-occurring use of it. We take as a premise that 
software engineers strive to achieve, and succeed in 
achieving, part of what they have been taught — to encode 
long execution sequences in a concise way by identifying 
commonalities in source code and by factoring them out 
into separate pieces that are used repeatedly. 

Consider any instruction execution sequence E of system S, 
and define IEI as the length of a record of the steps (say, in- 
structions) taken in E. We claim: 

Compact Source Code Premise —There is a con- 
stant c > 1 such that, for every legacy system S and for 
every substantive hypothesis H, there is some instruc- 
tion execution sequence E which H purports to explain 
and for which IEI >clsl. 

This premise is really quite a weak statement about legacy 
systems because most real code describes potential execu- 

tion sequences that are not bounded a priori by any func- 
tion of ISI, but only by the inputs to S. Consider that if E 
were achieved by straight-line code, for example, then we 
would need to have ISI > IEI. How could this hold for any 
realistic system? Rephrased in these terms, the premise 
says the source code for a real legacy system is substan- 
tially smaller than the length of the longest behavior history 
it can effect, i.e., its size is at most logcIEI. Clearly this 
always holds where there is no a priori bound on the 
longest execution sequence of S. 

4.2. Problems Result From Failed Attempts at Modularity 

We should hope that software engineers always succeed in 
separating specification from implementation in a way that 
achieves modularity. However, designing and imple- 
menting code that supports modular reasoning about behav- 
ior is more subtle than it appears at first [13, 20]. Problems 
arise from coupling through side-effects and aliased 
variables [4, 7], arrays, pointers, and dynamic storage 
management [6, 8], generics [5], inheritance [10, 16], and 
from many other sources. Potentially troublesome tech- 
niques are permitted by the programming languages used 
for real legacy systems because, in the interest of 
performance and other essential considerations, these 
techniques can be useful when applied carefully. 

However, history gives no evidence that software engineers 
in practice do — or that they even know how to — exercise 
adequate care in the use of such powerful language 
constructs. We therefore claim: 

Non-Modularity Premise — Every legacy system is 
hard to maintain because, in some crucial places, it has 
been designed or coded so that modularity is not 
achieved. 

We need make no assumption about how the legacy system 
got into this state. Perhaps the system was poorly under- 
stood from day one, or perhaps became poorly understood 
through the cumulative toll of patches, upgrades, and adap- 
tations. Whatever the cause, when an "existing" system 
graduates to the status of "legacy" system it has already 
been observed to be difficult to maintain. Non-modularity 
of reasoning about its behavior is a major reason for this. 

5. Conclusion 

Reverse engineering of large legacy systems is intractable 
in the following sense: Given real legacy code, the time 
required to show the validity of a proposed explanation for 
why it exhibits any significant system-level behavior is at 
least exponential in the size of the source code. This does 
not mean that the task is impossible. It means that it is 
prohibitively costly for large legacy systems. 

One lesson from this should be that we need to put more 
emphasis, not less, on careful engineering of new systems 
[13]; and that this emphasis needs to focus (at least) on 
creating systems that admit modular reasoning. There are 
many good reasons to continue to work on reverse engi- 
neering of legacy code — it is an exciting intellectual 
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challenge and a problem that sometimes has to be faced in 
practice. But at the same time we need to be realistic about 
what outcomes to expect. Researchers and developers, and 
especially their sponsors and the customers buying their 
wares, should not be disappointed that nothing seems to 
work very well for large legacy systems. 
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Abstract 
People form internal mental models of the things 

they interact with in order to understand those in- 
teractions. This psychological insight has been used 
by the human-computer interaction (HCI) community 
to build software systems that are more intuitive for 
end users, but it has only been informally applied to 
the problems of software designers, programmers, and 
maintainers. Conventional programming languages 
still do little to help client programmers develop good 
mental models of software subsystems. 

To address this problem, we have developed 
the Abstract and Concrete Templates and Instances 
(ACTI) model of modular, parameterized software sub- 
systems. This model of software structure addresses 
the needs of human software engineers who must rea- 
son about collections of interacting software parts dur- 
ing design, maintenance, and evolution. 

ACTI is different from other module systems and 
models of software in several ways. In ACTI, a subsys- 
tem never has any implicit dependencies, and never 
depends directly on any external definitions—all ex- 
ternal dependencies are described through an explicit 
interface. In addition, a subsystem specification is 
meaningful by itself, even without respect to any im- 
plementation. Finally, a subsystem is more than just a 
collection of types and operations; it also includes: an 
explicit model of behavior, an explicit model of all ex- 
ternal dependencies, a collection of definitions used to 
construct and describe these models, and (potentially 
complex) substructure. There are strong parallels be- 
tween ACTI and other research on the understanding 
of modularly structured physical devices, particularly 
Functional Representation. 

Keywords: Mental model, model-based specification, 
interfaces, bindings, generics 

1    Introduction 
Modern programming languages have evolved 

from their predecessors with the primary purpose of 
describing instructions to computers. Generally, these 
languages were not designed to help explain to peo- 
ple the meaning of the software that they can de- 
scribe. This has led to two significant problems with 
programming languages today: modules are consid- 
ered to be purely syntactic constructs with no inde- 
pendent meaning, and those parts of programs that 
are deemed meaningful (usually procedures, in im- 
perative languages) have "hierarchically constructed" 
meanings. 

To address these deficiencies, here we outline a 
new model of component-based software that pro- 
vides concrete support for recording critical informa- 
tion about each software structure, information that 
can form the basis for a programmer's own mental 
model of that structure. This new model, termed the 
ACTI model (for "Abstract and Concrete Templates 
and Instances") is both mathematically formal and 
programming language-independent. It captures and 
formalizes the underlying conceptual view of software 
architecture embedded in modern module-structured 
languages while simultaneously providing support for 
forming mental models. As a result, it can serve as 
a general-purpose theory of the nature of software 
building-blocks and their compositions. 

1.1    Why Conventional Languages Fail 
Most modern programming languages have some 

construct that is intended to be the primary "building- 
block" of complex programs. This building-block may 
be called a "module," a "package," a "structure," or 
a "class." Unfortunately, these constructs are rarely 
given meaningful semantic denotations. Conventional 
wisdom in the computer science field is that these 
constructs are primarily for grouping related defini- 
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tions, controlling visibility, and enforcing informa- 
tion hiding. For example, when considering module- 
structured languages like Ada or Modula-2, Bertrand 
Meyer writes: 

In such languages, the module is purely a 
syntactic construct, used to group logically 
related program elements; but it is not it- 
self a meaningful program element, such as a 
type, a variable or a procedure, with its own 
semantic denotation. [1, p. 61] 

In this view, there is no way for one to make such 
building-blocks contribute directly to the understand- 
ability of the software comprising them. While object- 
oriented languages usually give a stronger intuitive 
meaning to the notion of a "class," they also fail to 
provide any vision of how the meaning of individual 
classes can contribute to a broader understanding of 
the software systems in which they are embedded. 

In addition, those program elements that are 
given a semantic denotation are often given a meaning 
that is "hierarchically constructed," or synthesized. In 
other words, the meaning of a particular program con- 
struct, say a procedure, is defined directly in terms of 
its implementation—a procedure "means" what the 
sequence of statements implementing it "means." The 
meaning of its implementation is defined in terms of 
the meanings of the lower-level procedures that it calls. 
Thus, a procedure's meaning is constructed from the 
meanings of the lower-level program units it depends 
on, and the meanings of those lower-level units in turn 
depend on how they are implemented, and so on. 

This simple synthesis notion of how meaning is de- 
fined bottom-up is adequate from a purely technical 
perspective. It is also very effective when it comes to 
describing the semantics of layered programming con- 
structs. Unfortunately, it is at odds with the way hu- 
man beings form mental representations of the mean- 
ings of software parts [2]. 

The result of these two features of existing pro- 
gramming languages is that they are inadequate for 
effectively communicating the meaning of a software 
building-block to people (programmers, in particular). 
The semantic denotations of programming constructs 
in current languages only relate to how a program op- 
erates. They fail to capture what a program is in- 
tended to do at an abstract level, or why the given im- 
plementation exhibits that particular abstract behav- 
ior. In order to address these concerns, it is necessary 
to assign meaning to software building-blocks, to sep- 
arate the abstract description of a software part's in- 
tended behavior from its implementation, and to pro- 
vide a mechanism for explaining why the implementa- 

tion of the part achieves behavior consistent with that 
abstract description. 

1.2     Toward Understandable Software 
The ACTI model directly addresses these deficien- 

cies of current programming languages by giving a 
software subsystem a well-defined meaning of its own, 
independent of how it may be implemented. This 
meaning includes an explicit model of behavior, which 
can serve as a reference to help a client programmer 
understand the subsystem—form an effective mental 
model of it. Further, the constant presence of such a 
behavioral description acts as a continual cue to aid 
the programmer in maintaining the consistency and 
correctness of her own understanding. 

Because a person's internal mental representa- 
tions are so critical for comprehension, supporting the 
formation and maintenance of effective mental models 
is important if one wishes to support complex software 
structures that are understandable by humans. Un- 
derstandable software is vital for software designers, 
who must design in the context of reusable software 
parts; for testing and maintenance personnel, who of- 
ten must understand software written by others; and 
for reverse engineers or re-engineers, who want to gain 
as much value from previous work as possible. 

Although a full treatment of ACTI's formal defini- 
tion is beyond the scope of this article because of space 
considerations, the following sections provide a general 
overview of the model at an intuitive level. Section 2 
introduces the main entities in ACTI. Next, Section 3 
highlights the unique and novel features of the model. 
Section 4 then outlines how ACTI provides support 
for software understanding. Relationships to previous 
work, particularly AI-based work on the understand- 
ing of physical devices, is discussed in Section 5. 

2    An Overview of ACTI 
The ACTI model [2] is centered around the no- 

tion of a "software subsystem," a generalization of the 
idea of a module or a class that serves as the building- 
block from which software is constructed. A subsys- 
tem can vary in grain size from a single module up 
to a large scale generic architecture. ACTI is designed 
specifically to capture the larger meaning of a software 
subsystem in a way that contributes to human under- 
standing, not just the information necessary to create 
a computer-based implementation of its behavior. 

The ACTI model is based on four different kinds 
of subsystems: 

Abstract Instance—A     disembodied     subsystem 
specification or interface description. There is no 
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Table 1: The Four Kinds of Subsystems 

Template 

Instance 

Subsystem Varieties 

Abstract 
(Specification) 

RESOLVE concept 
SML functor signature 

Ada package spec. 
SML signature 

Eiffel class interface 

Concrete 
(Implementation) 

RESOLVE realization 
SML functor 

Ada package body 
SML structure 

Eiffel class impl. 

implementation associated with anything defined 
in the specification. 

Concrete Instance—A subsystem that provides im- 
plementations for its types and operations. All of 
the defined types and operations in the subsystem 
are represented and/or implemented. 

Abstract Template—A subsystem-to-subsystem 
function that, when applied to its argument, 
which is some abstract instance, will generate 
another abstract instance. Effectively, an ab- 
stract template is a form of generic subsystem 
specification. 

Concrete Template—A subsystem-to-subsystem 
function that, when applied to its argument, 
which is some concrete instance, will generate 
another concrete instance. Thus, a concrete 
template is a form of generic subsystem imple- 
mentation. 

The terms used for this classification are all based on 
the work of Weide et al. [3, p. 23], and the same ideas 
appear in the 3C model [4]. The name "ACTI" is an 
acronym derived from these four terms: "Abstract and 
Concrete Templates and Instances." 

This view of the world allows software subsystems 
to be partitioned along two orthogonal dimensions, as 
shown in Table 1. The distinction between "abstract" 
and "concrete" embodies the separation between a 
specification or interface, and an implementation or 
representation. The distinction between "template" 
and "instance" allows one to talk about both generic 
subsystems, and the product of fixing (binding) the 
parameters of such a generic subsystem: an instance 
subsystem. 

Formally, ACTI is a collection of mathematical 
spaces, together with relations and functions on those 
spaces, that can be used in explaining (or defining) 
the denotational semantics of program constructs. In 

spirit, the model was developed in accordance with the 
denotational philosophy, as described by E. Robinson: 

In the denotational philosophy inspired by 
Strachey the program, or program fragment, 
is first given a semantics as an element of 
some abstract mathematical object, gener- 
ally a partially ordered set, the semantics of 
the program being a function of the seman- 
tics of its constituent parts; properties of the 
program are then deduced from a study of 
the mathematical object in which the seman- 
tics lives. [5, p. 238] 

ACTI is not a programming language, however. 
Instead, it is a mathematical model that is useful 
for programming language designers, or researchers 
studying the semantics of programming languages. It 
is a formal, theoretical model of the structure and 
meaning of software subsystems. It is rich enough to 
be used as the denotational semantic modeling space 
when designing new languages, and has been shown 
to subsume the run-time semantic spaces of several 
existing languages chosen to be representative of the 
modern imperative, 00, and functional philosophies 

[2]. 
ACTI has two features that specifically address 

the inadequacies described in the introduction: 

1. In ACTI, a software subsystem (building-block) 
has an intrinsic meaning; it is not just a syntactic 
construct used for grouping declarations and con- 
trolling visibility. This meaning encompasses an 
abstract behavioral description of all the visible 
entities within a subsystem. 

2. The meaning of a software subsystem is not, in 
general, hierarchically constructed. In fact, it is 
completely independent of all the alternative im- 
plementations of the subsystem. 
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Thus, ACTI provides a mechanism for describ- 
ing what a subsystem does, not just how it is imple- 
mented. The meaning provided for a subsystem is 
a true abstraction—a "cover story" that describes be- 
havior at a level appropriate for human understanding 
without explaining how the subsystem is implemented. 
Further, ACTI provides a formally defined mechanism, 
called an interpretation mapping, that captures the 
explanation of why an implementation of a subsys- 
tem will give rise to the more abstractly described be- 
havior that comprises the meaning attributed to the 
subsystem—in short, an explanation for why the cover 
story works. 

2.1    Abstract Instances 
Table 1 gives examples of some programming lan- 

guage structures that might typify each of the four 
kinds of subsystems. We begin with abstract in- 
stances. 

An abstract instance is a subsystem specification 
or interface description. There is no implementation 
associated with anything defined in the abstract in- 
stance. Further, like all other ACTI subsystems, an 
abstract instance cannot directly refer to any entities 
outside of itself—it is completely self-contained. If a 
given abstract instance relies on external definitions, 
they must be imported through an explicit interface 
that expresses exactly what expectations the instance 
places on its environment—an explicit "context" in- 
terface. 

To briefly give the flavor of the mathematical 
spaces in ACTI, Figure 1 schematically depicts an ab- 
stract instance object. The abstract instance is di- 
vided into three parts, the most familiar of which is the 
Exported Behavior. The exported behavior portion 
of the abstract instance defines all of the services pro- 
vided by the instance: 

• All types that it provides, including a mathemat- 
ical model space for each; 

• All variables, including their types; 

• All     operations,      including     a     pre-     and 
postcondition-oriented model of their behaviors; 

• An invariant over the entire instance; 

• Nested abstract instances; 

• (Specifications of) nested concrete instances; 

• Nested interpretation mappings (interpretation 
mappings are described below); and 

• Nested templates (templates are described be- 
low). 

Figure 2: An Abstract Instance Is A "Face Plate" 

All of these components have values taken from some 
complete partial order (CPO) space defined in the 
ACTI model. 

In addition to providing a behavioral model of all 
exported features, ACTI includes complete behavioral 
descriptions of all imported features [2]. The Con- 
text section shown in Figure 1 is actually one (nested, 
possibly empty) abstract instance that is used to com- 
pletely define all of the external dependencies of the 
main instance shown in the figure. 

The remaining section of the abstract instance, 
the Specification Adornment section, is rarely 
manifested in programming languages. It is an area 
where purely mathematical definitions of types, oper- 
ations, or other entities can be made, purely for use as 
tools in creating more understandable behavioral de- 
scriptions. While the Exported Behavior describes 
what we would normally consider to be programming- 
level properties of a subsystem, and while Context 
describes programming-level external dependencies, 
Specification Adornment describes mathematical 
specification tools. 

Intuitively, we can think of an abstract instance 
as a "face plate" that describes an explicit interface 
at both the syntactic and behavioral levels, as shown 
in Figure 2. Here, the "sockets" on the upper half of 
the face plate symbolize the explicit interface to exter- 
nal dependencies, while the "plugs" on the lower half 
symbolize the features provided by this subsystem. 

In     ACTI,     abstract     instances     can     have 
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Figure 3: A Concrete Instance Is An "Open Box" 

substructure—that is, abstract instances can be 
nested within other abstract instances. This provides 
a mechanism for describing cohesive groups of related 
features within one "face plate" as a unit, as well as 
for modularizing complex specifications. 

2.2    Concrete Instances 
A concrete instance is a subsystem that pro- 

vides implementations for all of its exported features— 
types, operations, etc. This is much closer to the usual 
programming language notion of a "module." Just 
as with abstract instances, a concrete instance has a 
meaning in isolation, and cannot implicitly depend on 
any external entities—all external dependencies must 
be explicitly described in its context interface. The 
behavior of all features is also included in the mean- 
ing of the concrete instance. Just as with abstract 
instances, concrete instances can have substructure, 
or be nested within other concrete instances. 

Unlike most programming languages, ACTI im- 
poses no predetermined relationships between ab- 
stract and concrete instances. Implementations are 
meaningful in their own right (and in isolation), even 
without respect to any particular specification to 
which they may conform. While an abstract instance 
is in essence an "implementation-free" subsystem 
specification, a concrete instance is a "specification- 
free" implementation. The traditional notion of "con- 
formance" between an implementation and a specifi- 
cation is thus many-to-many in this model. 

In Figure 3, a concrete instance is shown as an 
electrical junction box without a face plate. Just like 

Figure 4: A Template Is A "Generator" 

the abstract instance, the concrete instance has ex- 
ported features (loose wires) and an explicit interface 
to its environment (a terminal block). Of course, one 
might expect the behavior of these features to be de- 
scribed in terms at a different level of abstraction from 
those used in the specification(s) to which this con- 
crete instance conforms. 

2.3    Templates 
Templates in ACTI are subsystem generators. One 

can think of a template as a "function" that takes a 
subsystem as a parameter and produces a new subsys- 
tem as its result. An abstract template is a subsystem- 
to-subsystem function that can be applied to an ab- 
stract instance to generate another abstract instance. 
Effectively, an abstract template is a generic subsys- 
tem specification. A concrete template is a subsystem- 
to-subsystem function that can be applied to a con- 
crete instance to generate another concrete instance. 
Thus, a concrete template is a generic subsystem im- 
plementation. 

Figure 4 gives an intuitive impression of an ab- 
stract template. One or more abstract instances are 
provided as actual parameters, and the template is 
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applied to them (by turning the crank) to generate a 
new abstract instance. 

2.4    Interpretation Mappings:    Relation- 
ships Between Subsystems 

In ACTI, the relationships between different sub- 
systems are expressed explicitly via interpretation 
mappings. Intuitively, one can think of an interpre- 
tation mapping as being an "impedance matcher" be- 
tween different abstract models of behavior. An in- 
terpretation mapping explains how one set of features 
can be "interpreted as" or "mapped into" another set 
of features in a behaviorally consistent way. This is 
shown in Figure 5 as a cable with differently shaped 
plugs. As with the other ACTI entities, there are also 
interpretation mapping templates for describing pa- 
rameterized families of mappings between families of 
subsystems. 

Interpretation mappings are used for several pur- 

poses: 

• To explain how one abstract instance conforms to 
another (how one specification is a generalization 

of another). 

• To explain how a concrete instance conforms to an 
abstract instance (how an implementation fulfills 
a specification). 

• To explain how one or more external subsystems 
conform to the explicit context interface of an ab- 
stract or concrete instance. 

Interpretation mappings are at heart explicit rep- 
resentations of bindings between subsystems. Because 
an ACTI subsystem intentionally includes a detailed 
description of its behavior, however, such a binding 
necessarily involves more than just a name-to-name 
correspondence—it must also include the equivalent 
of an abstraction function (or, more generally, abstrac- 
tion relation) in order to bridge the gap between de- 
scriptions presented in completely different abstract 

terms. . 
While this paper can only give an overview ot the 

concepts involved in ACTI, a strong intuitive grasp of 
the abstract versus concrete and template versus in- 
stance distinctions gives one an effective understand- 
ing of the heart of ACTI. 

3    What Is Different Here? 
All of the varieties of subsystems modeled in ACTI 

have already appeared in modern programming lan- 
guages in one form or another—although rarely do all 
four appear together, and there is much disagreement 
about their details. The contributions of ACTI and its 

Figure 5: Interpretation Mappings Are 
Connectors 

crucial differences are in the details of subsystems and 
how they fit together. 

In ACTI, subsystems are meaningful by them- 
selves. In particular, a specification has a well-defined 
meaning, including a complete picture of the behav- 
ior of the features it describes, even without respect 
to any implementation. An implementation also has 
meaning, without reference to any specification to 
which it might conform. 

As a result, subsystems never depend directly on 
anything outside of themselves. All external depen- 
dencies are described through an explicit context in- 
terface, and there is no notion of "implicit" dependen- 
cies or hidden coupling between subsystems. 

The "meaning" of a subsystem (a specification or 
implementation) is more than just a collection of types 
and operations. This is critically different than the 
notion of "module" in most programming languages. 
Instead, the meaning of a subsystem includes: 

• An explicit model of behavior (independent of im- 
plementation details). 

• An explicit model of all external dependencies 
(the context interface). 

• A collection of definitions used to construct and 
describe behavioral models. 

• Substructure (which is potentially complex). 

In addition to the emphasis on subsystems, ACTI 
also includes explicit representation of correspondence 
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relationships between subsystems. In ACTI, all bind- 
ings are explicitly represented through these interpre- 
tation mappings: 

• Binding an external unit to a subsystem's explicit 
context interface. 

• Mapping a concrete instance to the abstract in- 
stance^) it conforms to. 

• Mapping an abstract instance to another abstract 
instance it conforms to. 

Finally, in ACTI all entities can be parameterized. 
Implementations can be parameterized independently 
of specifications, and interpretation mappings can be 
parameterized independently of the subsystems they 
relate. Examples of the utility of this flexibility are 
surprisingly plentiful [2]. 

4    Support For Software Understand- 
ing 
It is well-accepted that people form mental mod- 

els—internal representations of external artifacts—for 
devices and other bits of technology with which they 
interact [6, p. 241]. From psychology, we understand 
that people do this naturally, and that such models 
help individuals in two ways [6, p. 241]: 

1. A mental model allows one to predict the behavior 
of the person or thing with which the interaction 
takes place. 

2. A mental model allows one to explain why the 
behavior arises. 

Both of these benefits are important for a person to 
understand how to interact effectively with another 
person, a physical device, or a piece of complex soft- 
ware. Hence, a mental model that is effective is 
one that provides sufficient predictive and explanatory 
power, and which a person can reasonably internalize 
and use to understand an interaction. 

Here, we are concerned with a "programmer- 
user's" interactions with a software subsystem, rather 
than with an end-user's interactions with a complete 
application. Following Norman's terminology [6], tar- 
get system will be used to refer to the component 
subsystem with which a person is interacting. The 
system image is the entire visible "programmer in- 
terface" to the software component seen by a(nother) 
software professional. It may include a system spec- 
ification, complete source code, manuals and instruc- 
tions accompanying the software, and even the way 
the software behaves and responds under operating 
conditions. 

Mental models evolve naturally through interac- 
tion with the target system [6, p. 241]. Over time, 
people reformulate, modify, and adapt their mental 
models whenever these models fail to provide reason- 
able predictive or explanatory power. For most pur- 
poses, the models need not be completely accurate, 
and usually they are not, but they must be functional. 
Norman documents the following general observations 
about mental models [6, p. 241]: 

1. Mental models are incomplete. 

2. People's abilities to simulate or men- 
tally execute their models are severely 
limited. 

3. Mental models are unstable: People for- 
get the details of the system they are 
using, especially when those details (or 
the whole system) have not been used 
for some period. 

4. Mental models do not have firm bound- 
aries: similar devices and operations get 
confused with one another. 

5. Mental models are "unscientific": Peo- 
ple maintain "superstitious" behavior 
patterns even when they know they are 
unneeded because they cost little in 
physical effort and save mental effort. 

6. Mental models are parsimonious: Of- 
ten people do extra physical operations 
rather than the mental planning that 
would allow them to avoid those ac- 
tions. 

These observations indicate that mental models 
are inherently limited. These limitations stem from 
human cognitive limitations, a person's previous ex- 
periences with similar systems, and even misleading 
system images [6, p. 241]. As Norman points out: 

In making things visible [in the system im- 
age], it is important to make the correct 
things visible. Otherwise people form expla- 
nations for the things they can see, explana- 
tions that are likely to be false. ... People are 
very good at forming explanations, at creat- 
ing mental models. It is the designer's task 
to make sure that they form the correct in- 
terpretations, the correct mental models: the 
system image plays the key role. [7, p. 198] 

Given this information, how can one support the 
formation and maintenance of effective mental mod- 
els for complex software systems? Norman points out 
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that the designer of a software subsystem already has 
a conceptual model of the system that is (presum- 
ably) accurate, consistent, and complete [6, p. 241][7, 
pp. 189-190]. The goal, in the best of all possible 
worlds, is to ensure that the system image is com- 
pletely consistent with the conceptual model of the 
designer, and that from this system image the user 
forms a mental model consistent with the designer's 
conceptual model. Further, the system image should 
help alleviate the inherent human limitations of men- 
tal models. A well-designed system image can help 
to make the user's mental model more complete, to 
record details so the user's model has firm boundaries, 
and to present those details in such a way that the 
user's model is more stable. 

ACTI was designed with these issues in mind, and 
as a result, explicitly incorporates model-based expla- 
nations of behavior in the meaning of each software 
subsystem. This behavioral description captures what 
the component designer wishes to impart about the 
conceptual model he intends for the client software en- 
gineer to acquire—it is a semantic (rather than purely 
syntactic) system image. 

Because an ACTI subsystem has a meaning that 
contains the designer's conceptual model, it can serve 
as a cue to help the programmer form and maintain a 
mental model of the subsystem. By serving as a point 
of reference, it also helps to address the natural limita- 
tions of the programmer's internal model. This is the 
basis for supporting software that is understandable 
by humans, not just executable by machines. 

5    Relation to Previous Work 
In the realm of computer languages, Section 3 de- 

lineates the primary ways in which ACTI is unique 
with respect to previous work. For a discussion of pre- 
vious efforts to effectively capture modular structuring 
techniques, Edwards [2] presents a thorough compar- 
ison of several programming languages that are rep- 
resentative of best current practices: RESOLVE [8, 9], 
OBJ [10], Standard ML [11], and Eiffel [1]. As typi- 
cal of current efforts, most of these languages inade- 
quately support the formation or maintenance of ef- 
fective mental models of software parts. The complete 
analysis, including a detailed check list of software 
structuring and composition properties supported by 
these languages, is available electronically [2]. Other 
efforts to provide better support for mental models 
have concentrated primarily on adding (possibly struc- 
tured) comments to component specifications, the in- 
adequacy of which is explained in [12]. 

Interestingly, there are other areas of computer 
science where similar work has been and is being car- 

ried out. Current work on Functional Representation 
[13, 14, 15, 16] (FR) is closely related. FR grew out 
of artificial intelligence work on reasoning about phys- 
ical systems, partly motivated by diagnostic and de- 
sign problem solving. As with other AI work on these 
problems, FR originally focused on the functions of 
devices—that is, the effects objects have on their envi- 
ronment. More recently, B. Chandrasekaran has doc- 
umented an ontological framework within which the 
notion of "function" can be explained, and which pro- 
vides a unified technical vision underlying the various 
approaches to device understanding [17]. 

This more general framework has allowed Chan- 
drasekaran to present FR as a general theory of com- 
prehension, along with a specific language that serves 
as a corresponding representation mechanism [17]. He 
defines comprehension to be the task of producing one 
or more of the following descriptions of a given arti- 
fact: 

• The intended function of the artifact, i.e., its 
behavior. 

• The structure of the artifact, i.e., a specification 
of its components and how they are put together. 

• A causal account of how the artifact achieves its 
function, and the roles played by the components 
in achieving it. 

The result is that FR can be considered to be a 
domain-independent theory for understanding how 
system-level behaviors emerge from a system's struc- 
ture. 

ACTI is aimed at exactly the same goal within 
the domain of software systems. As a result, it is not 
surprising that ACTI and FR share a number of critical 
features: 

• Support for human understanding is a primary 
goal. 

• Behavior is described independently of structure 
and implementation. In particular, behavioral de- 
scriptions are meaningful in isolation, without re- 
spect to any particular device that may provide 
such behavior. 

• There is the potential for multiple realizations of 
the same behavior. 

• An explicit bridge must be constructed between 
the (more abstract) vocabulary of a system-level 
behavioral description and the (lower level) func- 
tions achieved by the system's component parts. 
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• Similarly, when devices are composed to form 
larger structures, one must explicitly describe the 
bridge between them. 

• The "context interface" through which external 
forces can act on a given artifact is explicitly de- 
fined. 

Earlier- FR work has even been applied to software for 
diagnostic and explanation purposes [18, 19]. To date, 
this has been at the "programming-in-the-small" level 
of individual statements and their interactions, while 
ACTI addresses "programming-in-the-large" issues of 
subsystem meaning and composition. 

The similarities between ACTI and FR, two efforts 
that were arrived at independently, strengthen the 
claim that they both make progress toward support- 
ing human understanding effectively. Further, there 
are areas where the two complement each other. FR, 
for example, provides for explicit representation of 
a "causal account" of how aggregate behavior arises 
from the functions of individual parts, which can con- 
tribute to human understanding for modification or 
diagnostic purposes. Similarly, ACTI provides explicit 
support for specification adornments—a place for de- 
signers to capture model-building tools and useful sub- 
parts of behavioral descriptions. The complementary 
nature of these parallel efforts provides fruitful ground 
for future work on integrating the two frameworks. 

6    Conclusions 
ACTI addresses the problem of understandable 

software composition across module- and class-based 
languages. To achieve this, it gives a real semantic 
denotation to subsystems (modules) that includes a 
simple (i.e., not "bottom-up") model of behavior. It 
allows one to clearly describe why abstractions (sim- 
ple models) correctly capture the behavior of complex 
combinations of lower-level parts, using interpretation 
mappings. 

Because each ACTI subsystem has a meaning that 
reflects its designer's conceptual model, it supports 
the formation of mental models by client program- 
mers, and also addresses their limitations. This is a 
critical missing link in the support of understandable 
software that has been ignored by previous efforts in 
programming language design. 

ACTI is universal, in that it is not tied to any 
particular programming language. It unifies module- 
structured and object-oriented notions of software, 
and can serve as a general theory of software struc- 
ture and meaning. 
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Abstract 
Various recent representations for device function 
capture somewhat different intuitions and are 
restricted in their ranges of applicability. Though each 
representation solves some set of problems, it is hard 
to see how to build on them. In this paper, we 
describe a formal framework and definition of device 
function that attempts to unify and generalize these 
intuitions. We have sought the smallest ontological 
framework that is sufficient for developing an idea of 
function that will support design problem solving 
through the use of functionally indexed device 
libraries. As characterized in this ontology, objects are 
embedded in an environment and represented in a 
view. Objects interact causally with their 
environments. Functions are defined in terms of the 
effects of objects on their environments. This 
definition of function allows for functions to be 
specified as requirements during the design process, 
and prior to choosing objects to achieve those 
functions. An object represented in a device library is 
associated with generic environmental properties that 
are bound to specifics when the object is deployed. In 
this way potential functions are associated with library 
objects. In the universe of engineered objects, causal 
dependencies can usually be expressed as relations 
between the properties of objects and property 
relations can usually be expressed as mathematical 
functions. However, a formalism based on property 
relations appears not to be sufficient to capture all 
types of causality relevant to functional reasoning. 
This paper presents a definition of function that is 
sufficiently general to express static and dynamic 
functions, intended and natural functions, and 
functions of abstract and physical objects. 

Desiderata for a Framework for Functions 
The last two decades have seen a flowering of work on 
reasoning about physical systems.  Recently, motivated by 

problems in diagnosis and design, a stream of work has 
emerged in which the notion of device function has been 
central. This stream of work uses many of the ideas that 
have been developed in qualitative reasoning and 
qualitative simulation. For example, [1] uses qualitative 
simulation to verify design functions. 

The various investigations of device function have 
mostly lacked a unified technical vision. Different 
intuitions about functions are pursued in different contexts 
and application domains. Even though each approach 
clearly solves some set of problems, it is hard to see how 
unify or to build on them. What we need is a minimalist 
effort, something that looks for what is common among all 
the intuitions about function and seeks to build the smallest 
ontological framework within which an adequate notion of 
function can be explicated. Of course, for work in 
particular domains and applications, additional constructs 
and content theories will be needed, but, if the effort is 
successful, the minimalist ontology will be usable by all. 
This paper is an attempt to provide such an ontology. 

A framework for functions should, in our opinion, 
satisfy the following desiderata. 

• 1. It should apply to intended functions of human- 
designed devices, and to functions or roles in natural 
systems. 

• 2. It should apply to functions of both static and dynamic 
objects. Almost all of the work on reasoning about objects 
and their functions has focused on functions that are 
defined in terms of state changes of objects, e.g., electronic 
circuits, buzzers, gears, and so on. However, the notion of 
function applies just as well to static objects, e.g., support 
beams and windows. 
• 3. It should apply to functions of both abstract and 
physical objects. Even though most work has been done for 
physical objects, one can speak of functions of modules in 
software, and of steps in plans, just as naturally as speaking 
of functions of physical objects. 
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The Design Task 
Let E be an environment and let G be a predicate defined 
for E. Let a cognitive agent have a goal to have G be true 
in E. This sets up a design task: to specify an object O, and 
specify a way to embed O in E, such that when O is so 
embedded, G is caused to be true. 

Traditional definitions of the design task focus on the 
need to specify the object, e.g., to provide a list of 
components from some component library and a way of 
composing them. Our definition additionally requires that 
a way of embedding O in E be specified; the design task is 
not complete until the designer specifies a mode of 
deployment of O. The mode of deployment makes the 
connection between the properties and structure of O and 
the achievement of G in E. Specifying the mode of 
deployment becomes necessary if G is defined without any 
commitment to the properties or structure of O. 

The definition of a function should not make any 
reference to the structure of the object that has the function. 
Consider the example of a buzzer. In the literature, the 
function is typically stated as "when the switch is pressed, 
a sound is made," which makes reference to the switch, a 
part of the structure of the device. It would be better to 
give the buzzer function to the designer simply as: 

no sound in the environment 
 > buzzing sound in the environment 

It is useful to think of the definition of buzzing as 
potentially existing independently of, and prior to, the 
design of the buzzer. By isolating the function definition 
from any reference to the structure, we are leaving it open 
for the designer to come up with a very different object to 
achieve the function. Perhaps one design would achieve the 
function when it is twisted, another when it is blown on, 
and so on. 

Ontology: an object, in an environment, 
viewed from a perspective 

The world is composed of objects in causal interaction with 
each other. The primitive representational notion for us is 
that of an object, in an environment, viewed from a 
perspective.  Representationally, the basic elements are: 

<object> in <view> 
<object properties> 
<generic environmental properties in 

potential causal relation with object> 
<property relations> 

An object in the real world has an open-ended number of 
properties: science can discover new properties or 
relationships between existing properties, and one can 
define new properties from old properties. A view is a 
specific modeling stance; it selects certain properties of the 
object  for  representation.     The   view   also  implicitly 

specifies the classes of external objects with which an 
object can be in causal interaction. 

Figure 1. An object O in a generic environment E. 
Object properties pj and pj are in causal interaction 
with generic environmental properties p'i and p'j. 
When the object is embedded in a specific 
environment, its mode of deployment is specified by 
property relations. 

The central idea is illustrated in Figure 1. An object 
interacts with its environment because some of its 
properties either affect or are affected by the properties of 
objects in the environment. When two people are in a 
room, what one person says affects the mood of the other 
person. When an electrical wire comes in contact with an 
electrical terminal of an object in its environment, 
depending upon which of the voltages is the independent 
variable, the voltage of one of the terminals causes the 
voltage of the other terminal to have the same value. The 
terminals are simply special cases where the property is 
localized to a physical location, but a more general way of 
talking about causal interaction between objects is by 
means of the properties that causally interact. When we 
wish to describe the object's potential interactions in some 
generality, the environment is specified in general terms. 
That is, the environmental properties that the object can 
interact with are described by their types. 

Finally, a set of property relations is given that 
represent the modeler's causal understanding of the object. 
The relations state all the causal relations between the 
properties, both the object's and environmental ones, 
believed by the modeler to be relevant. The property 
relations can be in any form: continuous, discrete, 
qualitative, etc. 

Defining Functions 
The central idea we propose for defining functions is that 
function of an object is the effect it has on its environment. 
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Definition. Function. Let G be a formula defined over 
properties of interest in an environment E. Let us consider 
the environment plus an object O. If O (by virtue of 
certain of its properties) causes G to be true in E, we say 
that D performs, has, or achieves the function (or role) G. 

A description of how O is used to achieve the function 
(or serve the role, etc.) G has three parts: 

1. Functional formula expressing G: what predicate of the 
environment will be true, under what conditions. 

2. Description of properties: what properties of O are used 
in achieving G. 

3. Mode of deployment: what property relations (using 
what properties of the environment) determine the causal 
interactions between the object and its environment. This 
is commonly given by specifying the types of connections 
between an object and objects in its environment. 

Example. Pump: The properties of interest in the 
environment are the quantities of water, Qi(t) and Q_2(t), at 
time t, in locations Li and L2 respectively. Let G be the 

formula corresponding to Ql(to) - Ql(tf) = 
Q2(tf) - Q2(t0) = K > 0. That is, a positive quantity of 
water is moved from Li to L2 from the initial instant to 
final instant. For simplicity let us call this formula 
Pump(K,Li,L2). 

Note that while G is described as a function of object O, 
both preconditions and effects in the specification of G are 
defined exclusively in terms of properties outside of O. 
The function of an object is the effect it has on its 
environment, not its behavior in isolation. In the Pump 
example, the formula Pump(K, Li, L2) describes an effect 
on the environment. If an object is introduced that causes 
the formula to be true, we will say that the object "plays 
the role of a Pump" or "has a Pump function." A 
particular pump, P, say a reciprocating pump that uses a 
piston to repeatedly move equal units of water, has relevant 
properties of having an inlet port Porti and an outlet port 
Port2, and is deployed by having Porti connected to L] 
and Port2 connected to L2 so that (water at Porti) = (water 
at Li) and (water at Port2) = (water at L2) 

This definition of function applies to both intended 
functions and natural functions. For example, if we have a 
goal of making the formula Pump(K, Li, L2) true, and we 
design a device which, when embedded in the 
environment, causes the formula to be true, then we say 
that the device has the intended function Pump. Applying 
the definition with appropriate locations Li and L2, we can 
also say that the heart has a Pump function in the body. 
The definition of function is neutral with respect to 
whether the cause-effect description is intended or is 
described after the fact. 

This definition of function applies to both to static and 
dynamic objects.   For static objects, the object that has 

function F causes F to be true of the environment E when it 
is appropriately embedded in E. The flower-arrangement, 
when placed in the room, causes the predicate Pleasant to 
be true of the room. The chair, when it is in a certain 
relation to the person sitting in it, causes the sitter's bottom 
to be supported comfortably. For dynamic objects, 
describing the role or function of an object will typically 
require giving a sequence of states of the environment. Let 
us consider an example: The Automated Teller Machine is 
an example that has been much used in the object-oriented 
design community. The description of the function 
Customer-Withdraw-cash (k) can be given as: 

{Customer-cash =x, balance-in-customer-account 
= y, y > k }  > 

{Customer-cash = x + k, balance-in-customer- 
account = y - k } 

The intended interpretation is that the antecedent is true at 
to and the consequent at tf. 

Note that in this example both the antecedent and the 
consequent in the functional description are external to the 
object. No mention is made of any aspect of the structure 
of the object, such as "If User_action = Push at location 
switch-button,..." While User_action = Push is an entirely 
environmental property, and as such satisfies the 
requirements to participate in the function description, this 
is only meaningfully in interaction with a specific location 
of the object, switch-button. Not mentioning any structural 
feature of the functional object allows the desired function 
to be expressed prior to choosing or designing an object to 
fulfill the function. 

Composing Objects 
It is attractive to imagine design activity that uses a library 
of stored designs and proceeds by specializing and 
composing items from the library. When we connect two 
objects, we are making it possible for selected properties of 
the two objects to be in causal interaction of the type 
determined by the type of connection. Thus, 
representationally, connecting two objects involves 
declaring which properties of the two objects are in causal 
interaction. We can identify types of connections and 
associate with each type the properties whose causal 
interactions are enabled. For example, being in physical 
proximity is one type of connection which enables 
magnetic and thermal properties to interact. Being in 
physical contact is another type which enable properties 
associated with force, motion, etc. to interact. Our basic 
ontology for an object is not one of the object in isolation, 
but in some environment, in contact with other objects. 
Composing objects is describing how each becomes part of 
the other's environment. They can be conceived as causally 
connected only if they are compatible. 
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Figure 2. Composition of two objects. If qi is of the 
type p'i, and pi is of the type q'j, then Oi and O2 have 
a compatible connection for properties pi and qj. 

Example. Composing two resistors. Consider 
a resistor with a representation as follows. 

Object: resistor 
Intrinsic Properties: 

vi, v2, type voltage, at terminals pi and p2 
I, type current 
R, type resistance 

Environmental Properties: 
v'l , type voltage, in causal interaction with vi 
v'2, type voltage, in causal interaction with v2 

Property Relations: 
v'l =vi,v'2 = v2 
I - (vi - v2)/R 

v'at V 
location location 

P'K ih 

\          R           / 
Vlat_A A/\         v2at 
location   v   v   v       location 

P.                                 P2 
1       <  

I 

Figure 3. Resistor, vi and V2 are voltages at terminal 
locations pi and p2 respectively, in causal interaction 
with voltage properties v'l and v'2 of terminals in the 
environment. I is current; R is resistance. 

There are four ways that two such objects can be 
connected (within the compatibility requirements), two of 
them serial and two parallel. Below, we give one instance 
for each type. (To represent two different resisters we use 
an additional subscript, replacing variables R, vi, V2, pi, 

P2,1, v'l and v'2 by Rj, vn, VJ2, Pil, Pi2>Ii> v'ii and v'i2, 
for i = 1,2.) 

Serial, vj2 in causal interaction with v2l- This calls 
for setting v'12 = V21, and v'21 = vi2- 

Parallel. v\\ in causal interaction with V21 and vi2 
in causal interaction with V22- This requires setting 
v'll = V21, v'21 =vn, v'i2 = v22. v'22 = v21- 

Composite object in a new view 
Our minimalist ontology gives quite a bit of support for 
generating a description of a composite object from 
descriptions of individual objects and their connections. 
The details are somewhat complicated, however, and not 
directly relevant to the main points of this paper. 

After deriving a representation of the composite object, 
we might wish to re-represent the composite object in a 
new view, by suppressing some of the component-level 
properties, introducing new property abstractions, and by 
restricting our representation of its causal interaction with 
the external world. In the case of the serial resistors, the 
modeler might wish to suppress the identity of the 
individual resistors and make only VJI and V22 available 
for external interactions. In this case, the composed object 
will be represented in a new view, where the object 
properties are simply R, vi, v2, and I, and the external 
properties are simply the two voltages of objects connected 
to the two terminals of the composed resistor. Generating 
this sort of reduced representations for certain kinds of 
composite objects has been discussed in the literature on 
Consolidation [2]. 

For another example, consider an electronic Adder 
circuit. Composing its components, we can generate a 
description of it in terms of voltages and currents and 
generate a set of property relations involving both object 
and external properties. It can also be represented in the 
Adder view: instead of voltages and currents, new property 
abstractions of addends and sum and their interrelations 
would describe the composed object. This would typically 
be the user view of the Adder object. 

An example that is especially interesting occurs when a 
new state variable is created from a behavior trajectory. 
Let s be a numerical state variable. A Boolean state 
variable oscillating can be defined based on whether the 
behavior trajectory of s is of the form {0, 1, 0, -1, 0, ...}, 
with oscillating being true when the trajectory of s 
satisfies the form. 

Let us consider the composite object formed from the 
series composition of an electrical switch, a battery, and a 
heater-resistor. We give two representations, one which 
retains all the properties of the components (except that 
further external electrical connections are not included), 
and one in a new view that we call the "user view." The 
user view suppresses the electrical properties. 
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user_action({close-switch, open-switch}) 

; 

o 
switch_state({closed,open}) 

Figure 4. Electrical circuit, with objects 
electrical_switch, battery and heater-resistor 
composed in series. We show three electrical 
terminals pi, p2, and p3, with voltages vi, V2, and V3 
as voltage properties. The device has a physical 
terminal in interaction with the environmental 
property, user_action, and one thermal terminal, with 
property Ts, the surface temperature, in interaction 
with an external fluid layer with property T'e, its 
surface temperature. 

Composed-Object: Resistor circuit (in a view that retains 
the components' properties). 

Intrinsic properties: 
voltages vl, v2, and v3 at terminals pi, p2 and p3 
I, current through the circuit 
R, B, b, k, Ts (resistance, battery voltage, internal 

resistance of the battery, conversion constant from 
electrical to thermal energy, and the surface 

temperature of the heater-resistor, respectively) 
Environmental properties: 

User_action ({close-switch, open-switch}) 
T'e, temperature of fluid layer in contact with resistor 

surface 
Ta, ambient temperature beyond the 
immediate layer in contact with resistor surface 

Property relations: 
If User_action = close-switch, then 

Switch_state = closed 

I = B / (R+b), vi - v2 = R • I 

Ts = Ta + k-(l2), T'e = Ts(>Ta) 
If User_action = open-switch, then 

Switch_state = open 
I = 0,T'e = Ts( = Ta) 

user_action({push-button, pull-button}) 1 
-O 

button_state({pushed, pulled}) 

Figure 5. Heater. This is a user view that suppresses 
electrical properties. There are only three object 
properties, button_state, heater temperature rating Tr, 
which is presumed to be greater than the ambient 
temperature Ta, and heater-surface temperature Ts. 
Button_state describes the physical state as opposed to 
switch_state, which describes the electrical state. Causal 
interactions take place through the environmental 
properties, User_action and T'e the temperature of the 
fluid layer in contact with the heater surface. 

Object: Heater (user view) 
Intrinsic properties: 

button-state 
Tr, heater temperature rating 
Ts, heater surface temperature 

Environmental properties: 
User_action ({push-button, pull-button }) 
T'e 

Property relations: 
T'e = Ts 

If User_action = push-button, then 
button-state = pushed 
Ts = Tr (Tr > Ta the ambient temperature) 

If User_action = pull-button, then 
button-state = pulled 
Ts=Ta 

Functions of the heater and its components 
For each of the objects, selected functions are given below. 
Each function is named and has a functional formula 
specification, a description of properties, and a mode of 
deployment. 

Electrical switch 
Functions: close_connection (p'i, p'2) 

open_connection (p' 1, p'2) 
Functional Formulae: 
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close_connection (p' i, p'2): 

v' i = v'2 (where v'i is the voltage at p'i) 

open_connection (p'i, p'2): 
I (fromp'ltop'2) = 0 

Properties: 
Intrinsic: vi, \2 voltages at terminals pi and p2; 
switch_state{Closed, Open }) 
Environmental: 

v' i ,v'2 voltages at terminals p' l and p'2; 
user_action{ close-switch, open-switch } 

Mode of Deployment: 
pi electrically connected to p' i; 
P2 electrically connected to p'2; 
switch_state in causal interaction with user_action so 

that switch_state = Closed    iff    user_action = 
close-switch 

Battery , 
Function: Apply_voltage(B) across p'i andp2 

Functional Formulae: v' l - v'2 = B 
Properties: 

Intrinsic: vi and v2 voltages at terminals pi and p2 
Environmental: v' i and v'2, at terminals p' l and p'2 

Mode of Deployment: 
pi electrically connected to p' 1; 
P2 electrically connected to p'2 

Heater-resistor 
Function: Heat_Fluid_Surface (T'e > T'e0>) 

Functional Formulae: 
Whenv'i- v'2 = 0, 

T'e = T'eo (initial fluid-surface temperature) 
When v'i- v'2 = va>0, 

T'e = k-(va/R)2 + T'e0 
Properties: 

Intrinsic: vi and V2 voltages at terminals pi and p2; 
Ts temperature of surface; 
k constant for resistor's transformation of electrical 

to heat energy 
Environmental: 

v* l and v'2, voltages at terminals p' l and p'2; 
T'e, fluid-surface temperature 

Mode of Deployment: 
pi electrically connected to p' i; 
P2 electrically connected to p'2; 
Ts = T'e (fluid surface in thermal contact with 
resistor surface) 

Heater (user view) 
Functions: 

Heat_FMd_Surface (Tr) 

Notjiea t_Fluid_Surface 
Functional Formulae: 

Heat_FMd_Surface (Tr): T'e = Tr > T'e0 
Not_Heat_FMd_Surface: T'e = T'e0 

Properties: 
Intrinsic: button-state {pushed, pulled}; 

temperature rating Tr; surface temperature Ts 

Environmental: fluid surface temperature T'e, 
ambient temperature Ta; 
user_action {Push-button, Pull -button} 

Mode of deployment: 
Ts = T'e; 
button_state in causal interaction with user_action so 

that button_state = pushed iff user_action = 
Push-button 

Explaining How a Function is Achieved 
An important requirement for a functional framework is 
that it should support reasoning about the relationships 
between the properties of an object and those of its 
components. This is essential for both diagnostic and 
design problem solving. 

The stream of work on functions called Functional 
Representation (FR) Language (summarized in [3]) focuses 
on the relationships between the functions of a device and 
its structure. In particular, it proposes a representation 
called a causal process description (CPD) to explain how 
the device achieves the function. In the CPD, the causal 
transitions are associated with formally interpretable 
explanatory annotations. The annotation that links the 
device level to the component level is one that explains a 
transition by appealing to some function of a component. 
This way of explaining has intuitive appeal. 

However, in the FR work, function is defined as a sort of 
abstraction of an object's own behavior. Thus, in its 
definition of function, it does not make the distinction 
between the object's behavior and the object's effects on 
its environment that we make here. It will be useful to 
show that the intuition of explaining a device level function 
in terms of component functions can be supported when we 
adopt the definition of function proposed here. However, 
we do not show it in this short paper. 

Related Work and Discussion 

There has been an explosion of work on functions in recent 
years, so we will only discuss, and that briefly, work 
directly relevant to the issues central to the current paper. 
A substantial body of work can be thought of as content- 
theory that can fit comfortably with the notions developed 
here. A set of basic roles in mechanical interactions is 
provided in [6] and, in a somewhat different subdomain, in 
Goel [19], roles that components of loops play in 
algorithms are given in [7], roles that seem to be common 
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to different domains sharing the ontology of flows is given 
in [8] et al... The focus on functional roles common to flow 
systems is shared by [9] and [10]. There has been a 
substantial body of work in visual understanding (see, e.g., 
[11]) wherein recognitional algorithms use a functional 
rather than a structural definition of objects to be 
recognized. Thus a recognizer for chair would see if the 
object can in fact support the sitting of a person rather than 
look for specific subparts. 

In the pioneering work on function in diagnosis [12], the 
function was closely tied to the object. The work in the FR 
tradition (summarized in [3]) and on CFRL [1, 13] [14] 
treats function as an abstraction of the behavior of a device, 
as does [15]. This is entirely adequate for many purposes, 
but the separation of function from the object's properties 
will help those investigations to reach wider applicability. 
Recently, [16] and [17] share some essential intuitions with 
the present paper in that they make an effort to separate the 
behavior of an object from its function as the role played in 
the achievement of a designer's goal. The present paper 
proposes what appears to be the simplest ontology in which 
this notion can be explicated, and also makes various kinds 
of unifications, such as between static and dynamic objects 
and between intended functions and functions observed in 
natural systems. Research on function types of [18] is 
orthogonal to the work here, and can be restated to be 
consistent with the definition of function proposed here. 

Locating the function in the effects on the environment, 
rather than in the object, clarifies the notion of multiple 
realizability of functions. When the function is defined 
without any reference to the structure of an object, different 
realizations of the function become possible. 

This multiple realizability also suggests criteria by 
which one could decide at what level of organization the 
effects of an object should be described. For example, we 
may describe the role of the thermostat as "When the room 
temperature is below Tset, the furnace is on." Note that 
both predicates are of objects in the environment. 
However, an effect of the thermostat so configured is also 
eventually to make a person in the room warm. Does this 
mean that it is equally plausible to attribute to the 
thermostat the function, "make a person warm"? Suppose 
that "make a person warm" can be multiply realized, for 
example, one, by covering the person with a woolen 
blanket and two, by using a thermostat-controlled furnace. 
The thermostat's effect is actually on the furnace and the 
thermostat-furnace configuration as a whole has the effect 
of keeping the person warm. Thus, in the given modeling 
context, the thermostat's function is best stated as its role 
in linking the temperature of the room to the starting of the 
furnace. 

Need to generalize causality beyond property 
relations 

It is attractive to represent properties as simply variables 
associated with objects that enable them to interact causally 
with other objects and properties of their environments. 
Then causality can be represent as property relations, 
which establish dependencies between variables. This sets 
up an attractive formalization for causal relationships as 
mathematical functions expressing relations of properties. 

Yet it is difficult to see how to represent all causal 
relations as property relations and all property relations as 
mathematical functions. For one thing, objects can be 
created and destroyed; examples include antibodies, 
casting molds, and action plans. Further, a configuration 
might change, e.g., an object gets out of alignment. In any 
case, the object ontology we have described seems not to 
be sufficient to handle descriptions like, "heat applied to 
water causes boiling." "Water" is not quite an object in the 
sense of the simple object-property-environment-view 
ontology, and "boiling" is a process, which is unclear how 
to represent. The notion of "property relations" needs to be 
generalized to include causal relations of all sorts. Perhaps 
a better term would be "causal relations" whereby any 
proposition standing for a state of affairs (SOA) can be 
causally dependent on another SOA, where a SOA can 
include properties, configurations, the existence of objects, 
the occurrence and properties of processes, and whatever 
other entities there are that participate in relationships of 
causal dependence. 
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Abstract 

Government and industry spend over $100 billion 
a year to preserve and extend existing software. Ex- 
isting tools have shallow analysis and limited impact. 
Improved tools with deeper, human-like program un- 
derstanding will reduce the huge cost of activities 
involving existing software. 

We describe our automatic program understand- 
ing theory and technology. Our approach has two 
parts: understanding and representation. The UN- 
PROG system uses programming plan knowledge 
to recognize deep programming concepts in existing 
programs. Functional Representation (FR) is a the- 
ory and language for representing understanding of 
devices, including programs. We use FR to capture 
program understanding to give the explanations re- 
quired by applications. 

Automatic reverse engineering and reengineering 
tools can use this understanding to produce more 
useful program descriptions and reengineered code. 
We describe what has been accomplished so far, and 
discuss how this strategic dual-use technology can be 
further developed and applied. 

1    Introduction 

Perhaps $5 trillion is invested in existing "legacy" 
software. Government and industry spend over 
$100 billion annually to preserve and extend exist- 
ing software.1 Although much of this work is con- 
ducted in-house, the current maintenance service and 
tools market is estimated to be $15 billion, and rapid 
growth is expected. 

Much of maintenance (and programming) involves 
understanding programs. Current tools for existing 
programs have limited effectiveness and impact be- 
cause their analysis is shallow. Improved tools with 
deeper, human-like program understanding will have 
greater acceptance and value, reducing the huge cost 
of activities involving existing software. 

This paper describes how automatic program un- 
derstanding (APU) will improve software tools. Our 
theory and technology has two parts: understand- 
ing and representation. Automatic program un- 
derstanders recognize abstract concepts like "read- 
process" and "hash table" in existing programs. 
Functional Representation (FR) represents the pro- 
gram's function in terms of component functions 
found by APU. This gives explanations and expla- 
nation structure which can be exploited by many 
applications. 

In this paper we will briefly: 1) describe automatic 
program understanding and the UNPROG program 
understander, 2) introduce Functional Representa- 
tion, and show how it produces explanations using 
concepts recognized by UNPROG, and 3) demon- 
strate and discuss how this enabling tool technology 
can be applied, developed and commercialized. 

°This work was supported by ARPA, Order No. A714 
monitored by USAF Materiel Command Rome Laboratories- 
Contract F30602-93-C-0243. 

^ost of the $20 billion annual Federal expenditure is by 
the Department of Defense. 

2    Automatic Program 
Understanding 

Automatic program understanders use programming 
knowledge to recognize abstract concepts in pro- 
grams. First we briefly review plan-based program 
understanding. Then we describe the UNPROG pro- 
gram understander. 
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2.1    Plan-Based Understanding 

Plans are units of programming knowledge connect- 
ing concepts and their implementations.[6]2 Recog- 
nizing plans used by the programmer can recover his 
abstract concepts and intentions. 

Suppose a programmer needs to read and process 
employee data in his payroll program. He doesn't 
have to reinvent "read-process" because this concept 
is part of his programming knowledge, along with 
plans used to implement the concept under differ- 
ent constraints. The PAYDAY program is the result 
of implementing "read-process" with a "read-process 
loop" plan consisting of a particular loop form ter- 
minated by a signal to a control variable: 

processing data, including some of same plans as 
the programmer. She forms a program model and 
searches it for instances of implementation plans. 
Here she finds one and says, "Aha! A 'read-process 
loop with control variable' plan!! This must be 'read- 
process'!!!" She recovered an abstract concept that 
was in the mind of the programmer, but not explicit 
in his source code. 

Automatic program understanders recognize ab- 
stract concepts like "read-process", "hash table" and 
"sorting" in source programs. APU's exploit the 
knowledge and reasoning processes human program- 
mers use to understand programs, especially plans. 
Most existing APU's are impractical research sys- 
tems built to study difficult recognition tasks.3 

N 
loop 

ZERO; 

GET(SSN); GET(JOB); GET(PAY); 
PUT(SSN); PUT(JOB); PUT(PAY); 
N := N + 1; 
exit when SSN < ZERO; 
if job < 5 then 

if job < 2 then 
goto PRINT.PAY 

else 
goto DED2; 

end if; 
end if; 
DEDUCT := PAY * .2; 
goto PRINT.DED; 

«DED2»     DEDUCT := PAY * P1B; 
«PRINT.DED» PUT (DEDUCT); 
«PRINT-PAY» PUT (PAY); 
end loop; 
N := N - 1; 
PUT(N); 

Figure 1: PAYDAY Source Program 

In Figure 2, an automatic or human understander 
is trying to understand PAYDAY. The understander 

Figure 2: Understanding With A Plan 

also has programming knowledge about reading and 

2The authors' papers are available from the www address 
in the title. 

2.2    UNPROG Understander 

In contrast, the UNPROG automatic program un- 
derstander is designed to investigate program un- 
derstanding and its applications with real-world 
programs.[4] UNPROG uses plan knowledge to effi- 
ciently recognize control concepts. Control concepts 
are abstract notions about the interaction of control 
flow, data flow and computation, eg. "read-process", 
"bounded-linear search" and "do loop". 

fpr^amWog 
Knowledge   _ 
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Progimm 

Representation 

Modeling 

irt» A. 
PrOffTeU)] 

Part» 

Projfrun— 
Concept 
Binding! 
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5S 
Y   Pro« 

Source 
program 

Figure 3: UNPROG Program Understander 

As shown in Figure 3, UNPROG recognizes con- 
cepts by comparing program parts with standard 
programming plans from a library of programming 
knowledge. Source programs are analyzed to form an 
abstract language-independent program representa- 
tion. The representation is decomposed into a tree 
of small program parts by proper decomposition. 

Figure 4 shows how UNPROG compares PAY- 
DAY'S loop part with a plan for implementing "read- 
process" using a middle exit loop and input termi- 
nation signal. The program part is represented with 
abstract control and data flow (top). The plan is rep- 
resented by control and data flow schemas, and ad- 
ditional qualifications (bottom). Here the program 
part and plan can be uniquely bound. Therefore, 
UNPROG recognizes "read-process", its implemen- 
tation, and associated concepts. Its output is bind- 

3APU surveys are in [5] and [7]. 
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Figure 4: Recognizing "Read-Process" 

ings and correspondences between the program, plan 
and concepts. 

UNPROG is a powerful technology for identify- 
ing deep programming concepts, regardless of how 
they are implemented. However, UNPROG is neu- 
tral about how such understanding is represented 
and used. 

3    Functional Representation 
of Programs 

Functional Representation is a general theory about 
representing understanding. In this section we will 
briefly review Functional Representation and func- 
tional representation of program understanding. We 
will show how we are applying it to capture and use 
the understanding created by UNPROG to support 
particular explanations and applications. 

Causal Process Descriptions Processes in de- 
vices are described as transitions between spec- 
ified states. 

Abstraction Levels Function and transitions 
("what") are described in terms of behavior 
and other explanations at lower levels ("how"). 

Components and Structure Function is shown 
to emerge from structure consisting of a par- 
ticular composition of components. 

3.2    Representing Understanding 

Allemang showed how Functional Representation 
can capture particular reasonings or explanations 
about a program.[1] In his work, an FR is a proof 
or argument structure that applies to a large class 
of programs. Therefore it can be reused for pro- 
grams that are found to be members of the class. 
The same is true for parts of FR's which apply to 
parts of programs. Therefore FR can be used to 
represent plans and concepts, their semantics, and 
their consequences. Allemang formalized this use of 
Functional Representation as program functional se- 
mantics. He demonstrated its advantages over tra- 
ditional programming language semantics for certain 
kinds of reasoning about programs. 

We are now addressing practical understanding 
and applications using UNPROG and FR. UNPROG 
gives the technology to efficiently recognize plan and 
concept instances in real-world programs. FR gives 
the representation for this understanding and its use, 
formally grounded by functional semantics. 

In the example above UNPROG recognized "read- 
process" and associated concepts in PAYDAY. With 
UNPROG output represented in FR, many expla- 
nations and applications are possible. For example, 
given data dictionary information, the documenta- 
tion in Figure 5 can be generated automatically. 

3.1    Functional Representation 

Functional Representation is a theory and language 
for reasoning about functionality and causal pro- 
cesses in devices. It has been successfully applied 
to a large variety of tasks and devices, eg. explaining 
failures in a chemical plant, medical diagnosis, and 
engineering design verification. [2] 

The main ideas of FR, as they relate to software, 
are: 

Formal Specification The functions of devices 
and their parts are given by formal specifica- 
tions describing possible states. 

A read-process loop terminated by a negative signal value 

in SSN reads and processes employee data. For each employee: 

The READ block: 

(1) reads and echoes SSN, JOB and PAY, 

(2) counts the number of employees processed (N). 

The PROCESS block: 

(1) determines and prints the deductions 

(DEDUCT), if any, using a logic network, 

(2) prints PAY. 

The number of employees processed (N) is printed. 

Figure 5: Automatic PAYDAY Documentation 

Automatic question answering is another applica- 
tion, which requires a different kind of explanation. 
We'll use it to illustrate the functional representation 
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of PAYDAY. The complete FR is large and contains 
various abstractions, eg. code to plan, plan to con- 
cept, concept to explanation. These abstractions in- 
volve various abstraction principles, eg. recognition, 
selection, proof, and involve various languages, eg. 
programming language semantics, predicate calcu- 
lus, and English. We've simplified here. 

Q> What does PAYDAY do? 

A: Its functions include HISTORY, OUTPUT, 

and PAYROLL-CALCULATION 

FR represents PAYDAY as a device with various 
functions, eg. giving different views or decomposi- 
tions. 

Q> What does PAYDAY/HISTORY do? 

A: Makes History(employees-processed, 

»employees-printed) 

Functions have ToMake: slots giving their post- 
conditions in some state language. The state descrip- 
tion in the answer means that the function produces 
a temporal history where state employees-processed 
was reached and then state »employees-printed was 
reached. 

Q> How did PAYDAY/HISTORY make 
History(employees-processed,»employees-printed)? 

FR expresses functions' behaviors with causal pro- 
cess descriptions (CPD's). CPD's are state transi- 
tion diagrams connecting preconditions and postcon- 
ditions. Their links are annotated with justifications 
for the transitions, eg. functions, sub-CPD's, or non- 
causal links such as definitions. The CPD giving 
PAYDAY/HISTORY'S behavior is: 

■ employees-processed 
Fen: 

process-employees 

-*• #employees-printed 
Fen: 

print-#employees 

This shows that employees-processed is caused by 
the PROCESS-EMPLOYEE function. 

PROCESS-EMPLOYEE'S behavior is given by its 
CPD: 

[RP1-SPEC] ■ employees-processed 
Fen: Def 

rp1-plan(read,process,termination) 

The first transition is justified by a function of a par- 
ticular read-process plan, eg. the read-process loop 
plan used by UNPROG above. The state reached, 
[RP1-SPEC] is a formal specification of a read-process 
concept.4   It is provable with the plan instantiated 

4The specification says that a history is produced in the 
form: R{h),P(R(h)) ■ ■ ■ R(In) with -iT(/i),l < i < n - 1 
and T(In)- R and T are functions performed on input items 
Ii, and P is a function performed on the results of R. 

with PAYDAY program parts in its READ, PROCESS 
and TERMINATION slots. The second transition is 
a non-causal definition link connecting the string 
"employees-processed" in the informal discourse lan- 
guage with the formal specification. 

In summary, Functional Representation provides 
a formal representation of program understanding 
based on causal description, useful abstractions, and 
component structure. Representing UNPROG out- 
put in FR allows many applications to exploit un- 
derstanding using these principles. 

4    Application 

Our approach to developing and applying UNPROG, 
FR, and APU assumes that organizations have par- 
ticular needs involving their existing software. For 
example, imagine a DoD organization mandated to 
translate old systems to Ada, or an insurance com- 
pany converting to C++. The organization will in- 
vestigate how this costly task can be automated.5 

The contribution of existing reverse engineering 
and reengineering tools is limited because their anal- 
ysis is shallow. For example, language translators 
may produce syntactically correct code, but it will 
have poor human and performance quality because 
underlying concepts are not recognized and pre- 
served. 

Organizations and tool developers should ask, 

What concepts would improve the task if 
they could be automatically recognized? 

Automatic program understanding can provide ben- 
efits for many tasks, tools, and concepts. It is an 
economically important dual-use technology for in- 
ternal use and for commercial products that work on 
existing software. In this section we briefly describe 
the application and commercialization of automatic 
program understanding. 

4.1    Reverse Engineering and Reengi- 
neering Tools 

Reverse engineering consists of understanding soft- 
ware to form program descriptions needed for par- 
ticular tasks. Important classes of reverse engineer- 
ing tools are analyzers, browsers, and inspectors. 
Reengineering consists of creating new programs to 
meet new needs. It combines reverse engineering and 
reimplementation. Important classes of automatic 
reengineering tools are reformatters, restructurers, 
converters, and translators. Existing tools use only 

5A typical out-source conversion price is $10/line. 
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syntactic information and weak general methods. 
They produce shallow descriptions and poor code 
with degraded human factors and performance. Rec- 
ognizing deeper concepts will increase tool perfor- 
mance and value. 

Automatic program understanding can be devel- 
oped and applied, and benefits can be quantified, 
using the tool improvement paradigm shown in Fig- 
ure 6. 

I'ii'rogra filming* 
;: Knowledge 

Plans-ei 

Automatic « 
Program ' 

Understander 

concepts... concepts... concepts..., 1 
maintenance 
programmer 

Enhanced 
Revers« «net 

Re-engineering 
;:;.'

?;sTbolsi;.:-':S 

adapted code 

deeper descriptions 

Figure 6: Tool Improvement 

In this paradigm an organization identifies a tool's 
limitations for a task. Concepts are found which 
overcome those limitations when recognized. An au- 
tomatic program understander and needed knowl- 
edge are developed to recognize instances of these 
concepts in the program population. Recognized 
concepts by themselves help the programmer per- 
form the task. More importantly, the tool is mod- 
ified to produce improved output using recognized 
concepts. 

For example, translation to Ada can be tailored 
to concepts such as "read-process". The resulting 
concept-specific translation is clearly an improve- 
ment over syntactic translation. Recognized con- 
cepts will be preserved and highlighted instead of 
being destroyed and obscured. Code style and per- 
formance can be more closely tailored to the language 
and task. Additional possible benefits include docu- 
mentation, reuse, formal specification, and entry into 
CASE. 

We demonstrated this paradigm for an important 
reengineering task and tool. Restructuring translates 
programs with unstructured control flow graphs to 
structured graphs, eg. for improved maintenance or 
translation to structured languages. Commercial re- 
structurers produce code which, though technically 
structured, is larger, stilted, obscure, and less effi- 
cient. 

RESTRUC uses concepts recognized by UNPROG 
to produce restructured code that has quality which 
cannot be produced with existing syntactic methods. 
RESTRUC uses concepts recognized by UNPROG 

to: 1) perform strong, concept-specific structuring 
transformations, 2) generate insightful code at the 
program, statement, and format levels, and 3) add 
documentation, annotation, and other benefits. Here 
is part of RESTRUC's PAYDAY output: 

  Read-Process Loop   

— Terminated by signal variable: SSN, 

stop-constant: ZERO 

— Transformed from middle-exit loop by: 

signal loop-once initialization (RP1-8) 

SSN := L00P.0NCE; 

while not (SSN < ZERO) loop 

 Read  

GET(SSN); GET(JOB); GET(PAY); 

PUT(SSN); PUT(JOB); PUT(PAY); 

N := N + 1; 

if not (SSN < ZERO) then 

  Process   

P2.3.1; 

PUT(PAY); 

end if; 

end loop; 

Figure 7: Improved Restructuring 

The original middle-exit loop must be transformed 
to a WHILE loop. Existing restructurers do this 
with general algorithms which necessarily introduce 
degradations such as new variables and tests, in- 
creased complexity, reordered code, and replicated 
code. In contrast, UNPROG recognized the termi- 
nation condition in SSN. This was used to produce 
a WHILE loop preserving and displaying the original 
role of SSN and its test. This cannot be done without 
recognizing the concepts of the read-process loop. 

4.2    Commercialization 

The tool improvement paradigm is a model for APU 
development and commercialization, as well as for 
application. Academic and industrial researchers 
will develop the technology ("push") in cooperation 
with organizations who wish to reduce the cost of 
tasks involving existing code ("pull"), and tool de- 
velopers/vendors. (This model generalizes for many 
dual-use technology transfer and commercialization 
domains.) 

Technical issues for APU development and com- 
mercialization include: 1) understander develop- 
ment, 2) understanding representation, 3) knowledge 
acquisition, and 4) empirical characterization. These 
issues can be addressed together in prototype en- 
hanced tool projects. 

Understander development problems such as ef- 
ficiency, representation, decomposition, reasoning, 
and hierarchical recognition are addressed in the aca- 
demic literature, but in unrealistic contexts. Prac- 
tical projects will develop these areas for particu- 
lar concepts and program populations.    Practical 
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projects will also provide data and constraints for 
basic research. 

Understanding representation communicates un- 
derstanding to applications. Representations must 
be designed which are effective (and sufficiently for- 
mal) for particular concepts and applications, but 
also general for other applications. Functional Rep- 
resentation provides a suitable framework. As dis- 
cussed above, FR provides an explanation structure 
which connects code to concepts needed for partic- 
ular applications. A given application's knowledge 
and control echoes parts of the structure. Since FR 
provides multiple functional explanations or views, 
other applications can use shared and distinct parts 
of the representation. 

Plan libraries containing hundreds or thousands 
of plans are needed to produce the concept recogni- 
tion rates needed for applications. Acquiring such 
knowledge is currently difficult and expensive. Tools 
are needed to create, visualize, edit, debug, organize, 
and test plans. We have proposed understander- 
assisted knowledge acquisition for concurrently per- 
forming these tasks during application development, 
using an APU and other tools. 

Finally, empirical studies are needed to charac- 
terize recognition performance and benefit for par- 
ticular program populations, concepts, applications 
and tasks. We have developed an APU performance 
model and measures. An important measure is plan- 
fulness, which describes the recognition rate-cost 
tradeoff for a program population with various sized 
plan libraries. Empirical studies using this and other 
measures are needed to evaluate and predict under- 
stander performance. Similarly, empirical studies are 
needed to quantify the ultimate value of APU ap- 
plications. In the tool improvement paradigm, the 
value added to a software task and process can be 
measured relative to a baseline tool and process. 

5    Current Research 

As discussed above, we are currently developing 
Functional Representation of programs and plans. 
The result will be a system, FR-UNPROG, show- 
ing how a specific application benefits from concepts 
recognized by UNPROG and represented in FR. 

We are also applying FR to other software engi- 
neering problems. FR can be used to represent and 
explain software architectures as well as programs. 
We are investigating architecture with David Luck- 
ham's Rapide executable architecture definition lan- 
guage from Stanford. [3] FR-Rapide is a tool to aid 
architecture prototyping with Rapide. It represents 
an understanding of an architecture using FR, and 

generates useful explanations. 
We're beginning to investigate design capture and 

verification. This will involve the executable archi- 
tecture domain, where designs can be captured in FR 
and verified against prototype executions and other 
constraints. It also allows us to extend FR and UN- 
PROG for requirements and domain concepts. Fi- 
nally, we are working on reuse with Bruce Weide 
and the Reusable Software Research Group at Ohio 
State. Their RESOLVE is a framework for formal 
reusable objects. UNPROG and FR have reuse ap- 
plications, and RESOLVE, FR and UNPROG share 
many representation issues, eg. for plans and con- 
cepts. 

Acknowledgments 

This work benefits from Frank Gutowski, The Ana- 
lytix Group. He drew most of the figures for Ana- 
lytix proposals. This work also benefits from Bruce 
Weide, the OSU AI and Reusable Software Research 
Groups, and those acknowledged in previous publi- 
cations which provided included material. 

References 

[1] Dean Allemang and B. Chandrasekaran. Func- 
tional representation and program debugging. In 
6TH ANNUAL KNOWLEDGE-BASED SOFT- 
WARE ENGINEERING CONFERENCE, 1991. 

[2] B. Chandrasekaran. Functional representation 
and causal processes. In M. Yovits, ADVANCES 
in COMPUTERS. Academic Press, 1994. 

[3] David C. Luckham et al. Specification and anal- 
ysis of system architecture using Rapide. Forth- 
coming: IEEE Trans, on Software Engineering. 

[4] John Hartman. Understanding natural pro- 
grams using proper decomposition. 13th 
INTL.  CONF. SOFTWARE ENGINRG. , 1991. 

[5] John Hartman. Technical introduction. AI and 
AUTOMATED PROGRAM UNDERSTAND- 
ING WORKSHOP, Tenth National Conference 
On Artificial Intelligence, 1992. 

[6] John Hartman. Plans in software engineering - 
An overview. OSU Lab. For AI Research, 1994. 

[7] Linda Mary Wills. Automated program recogni- 
tion by graph parsing. Technical Report AI-TR- 
1358, MIT AI Lab., 1992. Ph.D. Thesis. 

119 



Representing Functional Requirements and 
User-System Interactions 

B. Chandrasekaran 
Laboratory for AI Research 
The Ohio State University 
591 Dreese Laboratories 

Columbus, OH 43210 
Email: chandra@cis.ohio-state.edu 

Hermann Kaindl 
Siemens AG Osterreich, PSE 

Geusaugasse 17, A - 1030 Vienna Austria 
Email: kaih@Siemens.co.at 

Abstract 
Specifying the requirements for a new system to be 
built is a sufficiently important issue in systems 
engineering that it has become a research area of its 
own called Requirements Engineering. Related to 
this issue, designing and specifying the interactions 
of potential users with a system is an important 
problem in Human-Computer Interaction. In this 
paper, we apply Functional Representation (FR) to 
model functional requirements and user-system 
interaction, in the process clarifying their mutual 
relationship. 

1. Introduction 

It is widely accepted that a clear set of requirements 
facilitates system design — whether it is a software, 
hardware or a hybrid system. Requirements specification 
includes precise description of needed functionalities and 
required interactions between the user and the system, as 
well as so-called non-functional requirements 
(constraining the development process and the developed 
system). The more precisely and unambiguously these 
requirements are specified, the better off is everyone 
involved in the whole process: the customer, the system 
designers and implementers, and users. The required 
precision and lack of ambiguity can only be achieved if 
we have a clear understanding of the kind of things that 
need to be stated as part of the requirements — a clear 
identification of what has been called the ontology of the 
situation — and support the ontology by means of a 
formal representation vocabulary. 

In this paper we focus on functional requirements and 
specification of needed interactions between the user and 
the system. Such interactions have been a subject of 
discussion in the literature on software engineering and 
the design of interactive systems (see for example, [1-4]). 
We will adapt a representation from a body of work 
known as Functional Representation (FR) (for a review of 
this work, see [5]) for specifying such interactions. We 
build on the work on requirements specification and task 
modeling using functional ideas reported in [6]. In a 
recent paper on applying functional representation to 
software reuse and design [7], requirements of some 
specified functional prototype from other functional 
prototypes are specified in its implementation. In contrast, 
we describe requirements of some user for a complete 
system to be built. 

The outline of our argument in this paper is as follows. 
We discuss some desiderata for a representational 
framework for requirements. We discuss a definition of 
function and its relation to the purposes of a user. 
Together, these give us some terms for representing 
functions. The definition that we provide introduces the 
need for specifying how an artifact is to be used — the 
way a user is to interact with the device — as an intrinsic 
part of the task of design. We term this part of design 
interaction design. As interaction design proceeds, the 
interactions needed can be articulated to varying degrees 
of concreteness. A particularly common representation of 
such interactions is through scenarios, which capture the 
series of interactions between the user and the system 
needed for the function to be achieved. We show that 
such scenarios can be represented in a manner similar to 

120 



the so-called causal process representations in the FR 
literature. We motivate our discussion by using as a 
concrete example the Automated Teller Machine (ATM). 

2. Desiderata for a Framework for Functional 
Requirements 

We use the shorthand FTRQ to stand for functional and 
interaction requirements. We believe that an FIRQ 
framework should deal with the following issues to some 
degree. 

1. Specifying functions. FIRQ should of course allow the 
specification of desired functions. In case where it is 
appropriate, it should also allow situations to be 
avoided, prevented, etc. 

2. Specifying interactions. In the design of interactive 
systems, the customer would like to specify, at the 
design stage, that the intended functions are to come 
about as a result of certain interactions between the 
device or system and its user. FIRQ should support 
the specification of such interactions. 

3. Should not demand information not likely to be 
available at design time, but should allow 
representation of information that is available. FIRQ 
are typically given before the design of internal 
structures and their connections (though a certain 
amount of it might evolve as a result of interaction 
between design and requirements modification). This 
means that FIRQ should not demand knowledge of the 
system — say its structure — that is not available at 
the time of requirements specification. 

4. Should allow elaboration and refinement of 
requirements as interaction design proceeds. By the 
same token, FIRQ should allow specification of 
changing requirements as design proceeds and 
commitments are being made. As interaction design is 
performed, a more detailed set of requirements 
emerges. Thus a framework for FIRQ should ideally 
support requirements evolution during interaction 
design. 

3. What is a Function? 

In much of the work on representing functions, 
including in the work on FR, function is treated as a 
property of the object or device, often as some abstraction 
of a selected behavior of the device. As an example, the 
function buzz of the device buzzer  might be defined 

as follows: "When the switch is pressed by a user, a 
sound is produced in its clapper." Note that, in this 
description, the switch and the clapper are parts of the 
buzzer, and the behavior of interest is described in terms 
of the states of these components or ports of the device. 
This definition certainly captures certain things we want 
from the definition of a function: that it expresses an 
intention of a designer or a user, that it is an abstraction of 
behavior and so on. However, the function cannot be 
defined if we do not have the device in the first place. 
Imagine that the buzzer has not been designed yet and a 
customer is looking for a device to do what the buzzer 
helps to accomplish. The customer — we will imagine 
her to be the user of the device — has a purpose in mind 
which she would like the device to accomplish or help her 
accomplish. How is this purpose to be represented? 

Clearly, it cannot use aspects of the device not yet 
designed. One of us has argued, in a recent proposal on 
the definition of function [8], that & function or role of an 
object is an effect it has on its environment. The function 
defined in this way is a dual to the purpose of a user. The 
user intends — has the purpose to cause — a certain 
effect in her world, and if an object or a device can create 
the effect, then she may attribute the effect as a function 
of the object. 

Let us assume an environment consisting of some 
objects. The objects may be specified abstractly and 
incompletely, as long the state variables of interest to us 
in modeling are available. (We only consider dynamic 
functions here, i.e., functions defined in terms of state 
variables. There are also what one might call static 
functions, such as the seating function of a chair or the 
light-passing function of a window, that are defined in 
terms of objects' static properties. Such functions are 
discussed in [8], but we do not consider them further 
here.) 

Functions and Purposes. A distinguished function or 
role is the occurrence of certain events or effects of 
interest in the environment. Let us say F stands for such 
an identified function or role. Intentional agents often 
have purposes to cause certain events or effects in the 
environment. If agents have a purpose to cause effect F 
in the environment, and, in order to achieve this purpose, 
if they use a certain object that causes F, then they may 
say that the object has the function F. Suppose a theorist 
wishes to explain a certain effect F in some domain. If 
she believes that some object O causes the effect F, she 
may say that O has the role F in the domain. All of these 
concepts use as their central element the idea of a 
distinguished effect of interest. 

Distinguished Effects (or Functional Predicates) of 
Interest.  The most general version of these is given by a 
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set of {conditions, effects} where both conditions and 
effects are specified as predicates or temporal sequences 
of predicates defined over environmental state variables. 
The functional predicates or effects are defined purely in 
terms of environmental variables. They make no 
reference to the properties of any object that might be 
introduced into the environment to cause the effects. 

Examples. The buzz functional predicate. A selected 
part of the environment has a buzzing sound in it. 

The sawtooth functional predicate. The 
voltage between two given terminals in the environment 
to rise over interval T from 0 to V, then instantaneously 
drop to zero, and this pattern to be repeated. 

Function of an Object. Given a functional effect, how 
do we relate it to the function of an object? Since the 
functional predicates and conditions may not make any 
reference to any part of the structure of the object, we 
need to describe a mode of deployment of the object to 
make the link between an object and defined effect of 
interest. 

Mode of Deployment. Given an object O, a mode of 
deployment specifies: 

1. How O is to be connected to its environment, 
i.e., how it is to be configured such that the environment 
can effect certain selected properties of O and O can 
effect selected properties of the environment. A typical 
way to specify this is to define ports of different types for 
O as well as the objects in the environment and describe 
which ports of O are connected to which ports of the 
environment. 

2. Required external causes on the object, or, 
more generally, required sequences of interactions 
between O and external objects. In the case of a device 
that is to be used by an external user (as opposed to a 
device to be connected to other devices to make a 
composite device), the external causes are specified in 
terms of actions by a user on O. 

Scenarios. The sequence of interactions between the user 
and a system has been called a scenario in the literature 
on interactive systems and Software Engineering [1-4]. 
Kaindl [6] emphasized that these are required 
interactions, and so scenarios can be viewed as behavioral 
requirements. We call them interaction requirements in 
this paper, and in order to make the notion of a scenario 
less ambiguous we call it an interaction scenario. 

Ascribing a function to an object. Given a function F 
and an object O, and a mode of deployment, M, we can 
say that F is a function of O, if there is a mode of 
deployment M such that O under M causes the effects 
specified in F under associated conditions. 

Intended Function and User Purpose. Function as 
defined above is neutral with respect to whether the effect 
on the environment is intended, as in the domain of 
devices, something undesired, as in the effect that a 
malfunctioning device might have on the environment, or 
simply a description of a fact, as in scientific descriptions 
where talk of intentions of nature are to be avoided. The 
more neutral term such as "role" is used to describe the 
latter. We elaborate here our earlier discussion on the 
relation between agents' purposes, roles of objects and 
functions of devices. 

User purpose: a user intends or desires a certain 
effect in the world under certain conditions. These effects 
are described using the {conditions, effects} formalism 
described earlier. Let us say that the user intends the 
effect F. 

Designer task: The task of the designer is as follows. 
He is given F as part of the requirements and has to: 

1. describe an object, i.e., a set of components 
from some agreed on repertoire of objects and 
their configuration, and 

2. a mode of deployment of the object 
such that under the described mode of deployment, the 
object causes the effects in F. Then a function, defined 
by F, can be attributed to the object. 

A main point here is that what unites the user's 
purpose, the designer's task and the function of the object 
is the effect on the environment. The object causes those 
effects and thus has a function defined in terms of the 
effects. The user wants those effects, and hence looks for 
an object which has a function of causing those effects. 
The designer is tasked with making an object which has 
the function. 

4. FIRQ Specification for ATM 

Now we are ready to discuss requirement specification 
using the ATM example. Kaindl [6] links scenarios (in the 
sense of behavioral/interaction requirements) with 
functional requirements, and uses earlier FR work to 
define the underlying semantics. In this section, we 
develop this more precisely and elaborate on it. 
Interaction scenarios are one aspect of the "mode of 
deployment" that we talked about earlier. 

The Environment. Consider an environment composed 
of a bank with customer account records, and (unspecified 

122 



number of) persons some of whom are bank customers 
(that is, they have bank accounts). We will denote a 
generic user by U, a generic customer by C, a customer's 
account by #(C), the balance in the account by B(#(C)), 
and the cash that a user U has by c(U). 

Effect or Functional Predicates for the ATM's 
withdraw-cash($w, $L) Function. Let us say the 
bank officials would like a device one of whose functions 
is to let legitimate customers withdraw cash, up to a limit 
$L, from their accounts. We define the functional 
predicates as in the following figure. 

N,     NF 
We define the effects of interest by defining an initial 

state N, and a final state NF, each with certain properties. 
We would like the device to cause the transition from N, 
to NF. Using the {conditions, effects} formulation, N, 
defines the initial predicates and NF the final predicates. 

Functional (Effects) Predicates 

N, is defined by the predicates: 
c(U) = $x, B(#(U)) = $y 
NFis defined by the predicates 
c(U) = $x + $w, B((#U)) = $y - $w 

One purpose of the bank officials for the ATM can be 
called Withdraw_cash(C,$w,$L), i.e., they would 
like their customers to withdraw cash (within the 
withdrawal limit $L set per withdrawal). The purpose is 
to cause the above predicates to be true under the 
following conditions:  

Conditions 

U's purpose is (c(U) = $x + $w) 
UisaC 
$w < $y, $L  

They would like a device which can cause NF to be 
true, given N, as the initial state and under the conditions 
above. 

The function of the device ATM can also be called 
Withdraw_Cash(C, $w, $L) and defined as the 
causing of the effects described under above conditions. 

The purpose of a user C regarding an ATM can be 
described at several levels of description. 

1. Get_cash($w), where $x is his cash reserve at the 
initial state and $x + $w is the cash at the final state. 

2. Withdraw_cash($w), where the cash reserves at 
the initial and final states are as in 1 above, but, 
additionally, imposes conditions on the balance in his 
account. 

Withdraw_cash($w) is a special case of 
Get_cash ($w). When the issue is to get some cash 
(Get_cash ($w) ), a bank customer may choose 
Withdraw_cash($w) and might look for a device 
which will cause the corresponding NF to become true1. 
In that case, the ATM might be a possible device, since 
its functional definition suggests that the ATM can cause 
NF to become true. Since there are many other ways to 
realize Get_cash($w) — borrow from someone, steal 
it, and so on — it is much more appropriate for the user to 
ascribe the Withdraw_cash(C, $w) function to the 
ATM than the more general function of 
Get_cash($w). 

The main point of the above discussion is to illustrate 
the central role played by the functional predicates in 
defining the function abstractly and in relating the 
function to purposes of agents, users and designers alike. 
There are small differences in the way we defined the 
purposes of the bank officials and a user, e.g. — the 
officials might be more naturally interested than a user in 
limiting the amount of withdrawal to $L. There are also 
differences in the way the function of the ATM and the 
purpose of a user are defined — the function is defined as 
allowing any customer to withdraw cash, while for a 
given customer C, his purpose is defined in terms of his 
being able to withdraw cash. These minor differences 
aside, the functional predicates described in the table are 
at the heart of descriptions of the purposes of the various 
intentional agents and the function of the ATM. 

Interaction Design Refinement 

The function as specified above can be given to the 
designer as part of the requirements. Let us imagine that 
either the designer and/or the bank officials engage in 
some additional interaction design.   The product of this 

1 How one matches a goal (in this case Get_cash ($w)) 
to a device function (Withdraw_cash ($w)) is an issue 
that recurs in the literature on reasoning about function. 
For example, Umeda, et al [9] discuss search for a 
component that can fulfill a given function. Liver [10] 
describes an algorithm for incrementally backing off of 
requirements until a matching function can be found. The 
issues related to matching are important, but not central to 
our main points, so we do not discuss this issue further in 
this paper. 
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design is going to be certain commitments about the way 
the device is to achieve its function. In particular, we 
wish to focus on specifying the required interactions 
between a user and the device. 

Scenarios Emerge from Design by Function 
Decomposition. As mentioned earlier, the designer's task 
is to come up with a device and instructions for deploying 
it so that the function is achieved. Deploying a device 
involves specifying input and output ports and any user 
interactions needed at the ports to achieve the function. 
The function is defined as a set of predicates to be true at 
a final state (given another set of predicates is true at the 
initial state). These predicates can often suggest a top- 
level decomposition of the design task into subtasks. The 
point of interest to us here is that some of the subtasks 
may have a solution involving user interaction. Thus, as 
we move from a function definition which only focuses 
abstractly on the predicates intended to be true, to a series 
of refinements and decompositions into subtasks, an 
interaction scenario starts emerging as well. 

In the ATM example, by looking at the function 
definition, we can identify a number of subtasks that the 
device has to perform: 

1. Give U a means of expressing purpose, 
"Withdraw $w." 

2. Verify U is a C. 
3. Verify $w < $L and < B(#(C)). 
4. Update B(#(C)) by subtracting $w from it. 
5. Dispense $w if 2 and 3 above are satisfied. 

We can get some information regarding  subtask 
ordering by examining the preconditions of the subtasks: 
clearly subtask 1 has to precede subtask 3, and subtasks 2 
and 3 have to precede subtasks 4 and 5. 

Let us just focus on the user-device interaction. 
Subtasks 3 and 4 do not require any interaction with the 
user — they call for interaction with the bank accounts 
database. Subtasks 1, 2 and 5 together determine the 
basis for the interaction scenario. 

The scenario itself can be abstract [3] — making 
little commitment to the details of the device structure — 
or it can be concrete, involving commitments about ports, 
the places where user-device interaction takes place. 

The design task decomposition above immediately 
suggests an abstract scenario of interaction: 

1. The user initiates a withdrawal transaction 
2. The ATM requests identification 
3. The user provides identification 
4. The ATM asks for the amount needed 
5. The user communicates the amount needed 
6. The ATM dispenses cash 
7. The user takes the cash. 

Each of the items in the sequence above is an action, 
either of the user or of the system. In this representation, 
we treat actions as the user being in certain states. 
Actions have effects on things acted upon just like any 
state of an entity that causally affects a state of another 
entity. Thus, the abstract scenario is a kind of causal 
process description. The transitions are one of two types: 
it either involves a device (ATM) function or a user 
function. Following the CPD representation, we can 
annotate the transitions corresponding to the ATM 
functions as follows. 
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1 o -►O 2 

By-Functions  recognize-initiate-transaction and 
communicate   'input  identity  information' 

3 O- -O 4 

By-Functions verify-identity and 
communicate   'input  amount  needed' 

5 O- O 6 

By-Functions  verify amount under  limit  and 
under balance and 
dispense_cash 

The transitions 2 to 3, 4 to 5 and 6 to 7 involve user 
actions. We can, if we like, annotate them using By- 
"Function o of User," but we have not done so in the 
above diagram because our focus is on the functional 
requirements of the ATM. If the ATM is embedded as a 
component in a larger system, where the user functions 
are performed by some other component of the larger 
system, then of course, it would be quite natural to encode 
the transitions using the By-Function annotation. In fact, 
this uniform way of treating user functions and 
component functions is one of the attractions of the CPD 
approach to encoding user interactions — users perform 
certain functions which then enable the device to go into 
certain states where they then perform other functions. 

Each of the functions above can be defined using the 
functional definition framework described earlier. Some 
of the functions in the annotations of the transitions can 
be thought of functions of the components (yet to be 
designed) of the ATM while others can be attributed to 
the ATM as a whole. In the course of Requirements 
Engineering, it is not yet to be defined which components 
the ATM consists of. However, the ports can be defined 
where the effect of a function is to be achieved. 

For example, consider dispense_cash($w). Let 
P be a specified port of the ATM. The functional 
predicate that defines the function is: 

Condition: Given $0 at port P 
Effect: (ToMake) $w at P 

The above abstract scenario, along with the functions 
that account for the transitions, can serve as part of the 

requirements specification. The scenario can be much 
more concrete as well — if, as part of initial interaction 
design, additional commitments are made, and thus 
become part of the charge to the designers. 

More Concrete Scenarios. Suppose it is decided that 
users will have a card with their account numbers, they 
will be assigned a password, and that (overall) the 
following ports will be available for interaction. 

P„ for user placing the card 
P2, for user to input password and desired 
amount 
P3, for the ATM to inform user of actions 
needed 
P4, for delivery of cash 

The scenario can now be written as: 

1. The user places card at P, 
2. The ATM displays message at P3: "Input password" 
3. The user inputs password at P2 

4. The ATM displays message at P3 : "Input the amount 
needed" 

5. The user inputs the amount needed at P2 

6. The ATM deposits cash at P4 

7. The user takes the cash from P4. 

The transitions can be annotated as before, except 
that the functions can be much more specific about the 
ports at which certain functional predicates have to apply. 
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Why the CPD Works for Representing the Interaction 
Scenario. Why does the process description formalism 
developed for explaining how a device works prove useful 
for specifying user-system interactions? One can view 
the user plus the device as yet another "device" in which 
the user herself is a component causally interacting with 
another component. Thus, user's action states are like the 
states of any other component. The interaction scenario 
simply becomes the causal process description for this 
larger device. While for the presentation above we had 
attributed the function Withdraw_Cash (C, $w) to the 
ATM device alone, actually the ATM and the user have to 
cooperate in order to achieve it. Also the user, as a 
component, has a certain number of functions to achieve, 
just like any other component such as the ATM. The 
interaction scenario then becomes a causal process 
description of how the user-ATM combination works. So, 
Withdraw_cash(C, $w)is really the function of the 
ATM plus the user. That is why, as we refine the design, 
the interaction scenario emerges from functional 
decomposition, by making explicit also the functions 
required from the user. 

How Such a Representation Can Be Used. In earlier 
work of one of us (see Kaindl [6]), the primary use of 
functional representation was to define the underlying 
semantics of the new approach of linking interaction 
scenarios with functional requirements and purposes. The 
cleaner and elaborated representation described above 
should be even more useful in this respect. 

When making use of one of the systems available for 
functional reasoning, our approach may also be useful for 
automated analysis of requirements. Requirements 
models represented in this way can be simulated in order 
to identify problems or validate the requirements. 

5. Concluding Remarks 

The contributions of this paper can be viewed from 
several perspectives. At the simplest level, it shows the 
use of a definition of function and the causal process 
description formalism of the FR framework to represent 
functional requirements for system design. The approach 
is as useful for software systems as it is for hardware or 
hybrid systems, since the terms used to describe functions 
equally apply to all types of systems. The function 
framework used here helps to see in a unified way how 
user purposes in using a device, designer intentions and 
functions of the device are related and arise from certain 
basic functional predicates defined in terms of 
environmental variables. 

At another level, the work presented can be viewed as 
a formalism for representing user-system interactions, a 

topic of substantial interest to the community concerned 
with the design of interactive systems. Again, there are a 
number of unifications: the same representational 
framework that is used for causal process representations 
in FR is used to represent user-system interactions. The 
functional annotations for transitions in CPD set a number 
of design subtasks for the designer. 

Still another dimension of interest is the relation 
between interaction design commitments and refinement 
of functional requirements. In summary, this paper shows 
how modeling in the sense of functional representation 
and reasoning can be usefully applied to Requirements 
Engineering and Human-Computer Interaction. 

Acknowledgments 

B. Chandrasekaran's research was supported by ARPA, 
order no. A714, and monitored by USAF Rome 
Laboratories, contract F30602-93-C-0243. The authors 
acknowledge with thanks comments by Dean Allemang 
that helped improve the paper. 

References 

[1] Carroll, J. M. ed. Scenario-Based Design. New 
York, NY: John Wiley & Sons, 1995. 
[2] Carroll, J. M.; Mack, R. L.; Robertson, S. P;. and 
Rosson, M. B. "Bindings scenarios to objects of use," 
International Journal of Human-Computer Studies, vol. 
41, pp. 243-276, 1994. 
[3] Constantine, L. "Essential Modeling: Use Cases 
for User Interfaces," ACM Interactions, vol. 2, pp. 34-46, 
1995. 
[4] Potts,  C;  Takahashi,  K.;  and  Anton,  A.  I. 
"Inquiry-based requirements analysis," IEEE Software, 
vol. 11, pp. 21-32, 1994. 
[5] Chandrasekaran, B.  "Functional representation 
and causal processes," in Advances in Computers, vol. 38, 
M. C. Yovits, Ed.: Academic Press, 1994, pp. 73-143. 
[6] Kaindl, H. "An integration of scenarios with their 
purposes   in   task   modeling,"   in   Proceedings  of the 
Symposium on Designing Interactive Systems: Processes, 
Practices, Methods & Techniques (DIS '95), pp. 227-235, 
Ann Arbor, MI, 1995, ACM. 
[7] Liver, B., and Allemang, D. T. "A Functional 
Representation    for    Software    Reuse    and    Design, 
International   Journal   of  Software   Engineering   and 
Knowledge Engineering, vol. 5, pp. 227-269, 1995. 
[8] Chandrasekaran, B. "An explication of function," 
The Ohio State University, Laboratory for AI Research, 
Columbus, OH, Draft, 1996. 
[9] Umeda, Y.; Tomiyama, T; and Yoshikawa, H. A 
design  methodology  for  a  self-maintenance  machine 

126 



based on functional redundancy, in Design Theory and [10]       Liver, B. Work^^™%^££% 
Methodology    DTM 92, D. L. Taylor and L. A. Stauffer, procedures using functional models, in Working Notes on 
Ed   AmeSn Society of Mechanical Engineers, 1992, the AAAI-93 Workshop on Reasoning about Function, 
pp."317-324. 1993.pp.95.101. 

127 



Functional Representation 
of Executable Software Architectures x 

John Hartman 

B. Chandrasekaran 

Laboratory for Artificial Intelligence Research 
Dept. of Computer and Information Science 

The Ohio State University 
hartman or chandra@cis.ohio-state.edu 

December 1, 1995 

lrrhis work was supported by ARPA, Order No. A714, monitored by USAF Materiel 
Command Rome Laboratories, Contract F30602-93-C-0243. 

128 



Abstract 

Software architectures specify how high-level system components interact 
and behave. Architecture evolution tasks require knowing an architecture's de- 
sign intentions. Existing architecture description languages (ADL's), however 
specify architectures without reference to intentions. We describe the use of 
Functional Representation to capture understanding of design intentions and 
their implementation in an architecture. This approach will reduce the cost of 
designing, evolving, and implementing architectures by improving human com- 
munication, and by providing more useful tools and environments. Applications 
include prototyping, dynamic documentation, design verification, simulation, 
execution analysis, and other architecture activities. 

Chandrasekaran's Functional Representation is used to connect design inten- 
tions to an architecture's ADL specifications. The result is a rich, hierarchical 
explanatory structure which is useful for many purposes. Functional Represen- 
tation is a theory and language for reasoning about functionality and causal 
processes in devices. It has been successfully applied to a large variety of tasks 
and devices, including software. Luckham's Rapide is an executable ADL based 
on a rule-event execution model. FR-Rapide applies Functional Representation 
to aid architecture prototyping with Rapide. 

An example functional representation captures understanding of how part 
of the Two-Phase Commit protocol is implemented in a Rapide prototype. Its 
explanation incorporates understanding in domains such as transaction process- 
ing, the X/Open standard, concurrent computing, and distributed computing. 
The FR is a formal representation which helps humans understand and com- 
municate about the architecture. It also allows understanding to be delivered 
and exploited by tools and environments. 

The value of this approach is demonstrated with an explanation tool which 
supports Rapide prototyping and other architecture activities which can benefit 
from captured understanding. Applications and tools include browsing, docu- 
mentation, debugging, simulation, design verification, and rationale capture. 
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Chapter 1 

Functional Representation 
of Architecture 

Software architectures specify how high-level system components interact and 
behave. Architecture evolution tasks require knowing an architecture's design 
intentions. Existing architecture description languages, however, specify archi- 
tectures without reference to intentions. We describe the use of Functional 
Representation to capture understanding of design intentions and their imple- 
mentation in an architecture. 

1.1    Understanding for Architecture Evolution 

Architecture is the high-level design of complex software systems. It addresses 
how large-scale system components interact, independent of implementation and 
non-architectural details. There is a large movement to study and manipulate 
systems at the architecture level.[3, 9] Architecture-based methods design and 
evolve systems at this level, with reference to specifications of high-level compo- 
nents and their interactions. These specifications are expressed in architecture 
description languages (ADL's). 

Working at the architectural level has many advantages. For example, start- 
ing system design at the architectural level allows important design commit- 
ments to be worked out early, independent of less important details. The 
architecture description then guides detailed implementation, and serves as 
a specification for analysis, debugging, and documentation. More generally, 
architecture-based methods use the architecture description to control architec- 
ture and system evolution. (Figure 1.1). Even original design can be seen as 
evolution - understanding and modifying the architecture under construction. 
Subsequent evolution may involve understanding and modifying an unfamiliar 
architecture and system. For example, in considering implementations of, or 
changes to, communications channels, it is necessary to understand the purpose 
of the channels for achieving top-level system goals. In a distributed transaction 
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Figure 1.1: Architecture-Based Evolution Processes 

processing architecture, transactions may be communicated between applica- 
tions and resources with particular constraints. To implement or change the 
system, it is necessary to understand the role of these constraints in relation to 
top-level design goals. 

What is the nature of the understanding needed for architecture evolution 
tasks?   Intuitively, architecture understanding is open-ended and exceedingly 

Intentions 
and Explanation 

Figure 1.2: Architecture Understanding 

complex. It includes assertions about the architecture needed to perform arbi- 
trary architecture tasks. These assertions may be at many abstraction levels, 
in many descriptive frameworks, and may incorporate knowledge and inference 
from many domains, including computer science and engineering, mathemat- 
ics, and the computational problem and its domain. Furthermore, assertions 
about the architecture are connected together in a complex web of deductions, 
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hypotheses, dependencies, justifications, definitions etc. (Figure 1.2) 
Intentions are assertions about the architecture that designers (and main- 

tamers) may reasonably have. Requirements are intentions about the role of the 
system in achieving its purpose in the computational problem domain. There are 
many ancillary and subsidiary intentions, e.g. non-functional requirements, anal- 
yses, design commitments, rationales, specifications, refinements, implementa- 
tions, behavior descriptions etc. 

Explanations are assertions and inference links which connect intentions to 
each other, and which connect intentions to the architecture. Explanations can 
be seen as the logical structure which answers questions about how intentions 
are achieved by means of other intentions and the architecture. In practice, 
intentions and explanations may be mental and/or written, and may have any 
temporal extent, e.g. fleeting, as needed, or permanent. 

1.2    Goal - Capture Causal Understanding 

All this says that capturing architecture understanding is akin to capturing full 
human understanding, which is beyond the scope of this report. We narrow our 
representation objectives in several ways. First, we start with an architecture 
specified with an ADL. Our goal is to capture intentions that are relatively 
close to the architecture, and which do not involve large amounts of problem 
domain or other information or knowledge. That is, we don't want to go too 
high in abstraction levels, being content with computational requirements like, 
"Preserve system consistency regardless of transaction order," rather than do- 
main requirements like, "Retrieve patient data." Similarly, we needn't go lower 
than the ADL, both because we are supporting architecture-based evolution, 
and because a more detailed implementation may not exist. Thus the domain 
of discourse is constrained by the relatively simple kinds of concepts that are 
present in ADL's. 

Secondly, we are only interested in capturing understanding that can be 
practically and usefully fixed and recorded. This imposes limits on size and 
complexity. Rather than hopelessly attempting to capture the vast fabric of 
potential human understanding, we want to record a small subset that is pow- 
erfully useful for communication, standardization, and automated assistance. 
The subset is only useful if it is small enough to be comprehended and applied. 
Therefore we envision information volume roughly like existing documentation, 
limited by reading/browsing ability (whether in paper or electronic media), by 
creation cost, and by other pragmatic considerations. 

Finally, we narrow our focus to a particular class of intentions and expla- 
nations. We address intentions regarding causal processes in the architecture. 
Temporal quality is an essential characteristic of causal processes. Roughly, 
therefore, we are concerned with intentions regarding temporal sequences of 
events and states in the architecture. We are not concerned with intentions 
and aspects of the architecture that do not have temporal, behavioral quality 
and consequences.   This eliminates much traditional ADL content, e.g. for- 
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mal relationships such as modularity, interface types, integrity constraints and 
non-functional properties. This focus requires an architecture which specifies 
temporal behavior, an executable architecture. 

Our goal, then, is to capture human causal understanding of architectures 
in a way which will help people who design, implement, modify and otherwise 
evolve architectures. Specifically, we will add a layer of explanation connecting 
intentions to existing ADL's, to assist activities performed with ADL's. The 
understanding will recorded by a human, using the process, framework, and 
language to be described. This captured understanding will be useful for further 
human understanding and communication. It can also be exploited by a large 
range of tools and environments. 

For more motivation, imagine a specific architecture evolution task, e.g. mod- 
ifying a transaction manager component's behavioral specification. For each 
such task, it is necessary to know certain intentions, e.g. "The component de- 
termines whether transactions should be made permanent," and how and where 
these intentions are expressed in the architecture. Providing such understanding 
can save the arbitrarily high effort and expense that the evolver must otherwise 
expend recreating it. Functional Representation is a well-established means to 
capture such understanding. 

1.3    Functional Representation 

Functional Representation (FR) is a theory about understanding devices. It 
addresses how functional, causal device understanding is represented and used. 
It has been successfully applied to a large variety of tasks and devices, e.g. 
explaining failures in a chemical plant, medical diagnosis, and engineering design 
verification.[2] FR provides a framework, process, and language for capturing 
understanding of many kinds of devices. 

Allemang showed how Functional Representation can capture particular ex- 
planations of a program. [1] In his work, an FR is an argument structure which 
gives a program correctness proof. Allemang formalized this use of Functional 
Representation as program functional semantics, and demonstrated its advan- 
tages over traditional programming language semantics for certain kinds of rea- 
soning. 

We extend this approach to architectures. Architectures pose additional 
problems like distribution, concurrency, and weak procedural specification. Fur- 
thermore, these and other aspects require more heterogeneous explanation styles 
and representations. Therefore the need and benefit for representing architec- 
ture understanding is at least as great as for simple programs. Furthermore, 
architectures provide a challenging testbed for Functional Representation, where 
explanations entail complex and varied description styles, viewpoints, and ap- 
plications. 

Functional Representation is organized around definitions and representa- 
tions for structure, behavior, and function. Structure is the assumed bottom- 
level description of a device. Behavior is temporal, causal change in the device, 
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particularly changes in its states ("how"). Function is an interpretation of the 
device and its behavior as serving a role in a more abstract context ("what"). 
There are many-many relationships among possible device structures, behaviors 
and functions. For example, given functions may have multiple realizations by 
different possible behaviors and structures. 

These definitions are relative to an assumed bottom, structural level. This 
level is arbitrary. Therefore it is possible for functions to serve as another 
structural level, providing (abstract) behavior for still more abstract functional 
description. 

The details of the FR representation will be described when we present an ar- 
chitecture FR in Chapter 3. The features which make FR especially suitable for 
representing intentional, causal architecture understanding, as described above, 
are: 

Functions Formal specifications give functionalities in terms of possible states. 
They describe abstract intentions or views. 

Abstraction Hierarchy Functions are proven abstractions for behavior and 
explanations at lower levels. Explanation is organized by the hierarchy. 

Causal Process Descriptions Behavior is described by state transitions. 
Transitions are annotated by links giving realization, justification etc. 

Components Function is shown to emerge from structure consisting of a par- 
ticular composition of components. Components are abstract sub-devices 
which modularize the explanation. 

The FR language consists of syntax and semantics for representing understand- 
ing in terms of these features. 

Applying FR involves: 1) authoring a functional representation which rep- 
resents a particular human understanding of a particular device, and 2) appli- 
cations, in which the functional representation is used to help perform needed 
tasks. Applications may be manual, where the functional representation is a 
formalized notation for human communication. Applications may also be au- 
tomatic, where tools usefully deliver the understanding formalized in the func- 
tional representation. For example, FR-based architecture tools can answer 
questions, guide browsing, generate dynamic, structured documentation, and 
perform inferences forward or backward in causal chains. 

1.4    Functional   Representation   of  Executable 
Architectures - FR-Rapide 

This report describes the use of Functional Representation in architecture evo- 
lution. FR represents architectural understanding based on causal description, 
functional abstractions, and component structure.  Representing architectures 
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in FR allows many applications to exploit understanding using these princi- 
ples. We are investigating these topics by applying FR to executable archi- 
tectures specified by David Luckham's Rapide architecture definition language 

from Stanford. 
Rapide is a language for rapidly prototyping, testing, and analyzing ex- 

ecutable architectures.[ll, 12] The architecture designer specifies the compo- 
nents, connections and constraints of an architecture using Rapide. Compo- 
nents have interfaces by which they can interact with other components when 
connected by specific connections. Constraints include invariant properties and 
abstract behaviors that must be satisfied by implementations. Rapide archi- 
tectures may be executed using abstract behaviors and/or implemented compo- 
nents. The result is a trace, consisting of a partial ordering of dependent events, 
which summarizes many possible ultimate executions by final implementations. 

Rapide is a good representative of ADL's and executable architecture design. 
It has has been shown to be useful in many architecture evolution tasks. A 
variety of architectures have been specified, and there is a large body of Rapide 
code. It has a well-developed specification, environment, and community. 

We are therefore investigating application of FR to executable architecture 
using Rapide. Our approach is tested and demonstrated in FR-Rapide. FR- 
Rapide is a method for capturing and exploiting understanding of Rapide ar- 
chitecture. A Rapide architecture is given. An FR author writes a functional 
representation expressing his or her understanding of the architecture. The 
Rapide user uses the FR for subsequent architecture design and evolution, per- 
haps through assistant tools. Therefore the application of FR to architecture is 
demonstrated in a method for assisting architecture design and evolution with 
Rapide. 

1.4.1    Authoring 
The FR author uses the FR language to represent understanding of the Rapide 
architecture prototype. A Rapide prototype and an FR for it are illustrated in 
Figure 1.3. 

An FR: 
Intentions 

and Explanation 

Two-Phase Commit Protocol 

Poll-Decide 

Abstract 
Devices, A» 
Views 

Functional 
Abstraction 

Architecture - ADL 
(RAPIDE Prototype) 

Figure 1.3: An FR Connects Intentions and Architecture 
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The FR will be constructed for a purpose, e.g. general documentation or 
supporting a task like protocol evolution. In light of the goal, representing un- 
derstanding in an FR requires the activities given in Table 1.1. These activities 

1. Having or acquiring needed understanding of the architecture, 

2. Choosing top-level and intermediate intentions and views to repre- 
sent, 

3. Choosing state languages, formalisms and predicate vocabulary, 

4. Writing functional specifications for states at various levels, 

5. Forming causal sequences among states at each level 

6. Finding functions to form an explanation hierarchy, 

7. Modularizing the explanation into abstract devices or components, 

8. Validating the explanation. 

Table 1.1: FR Authoring 

can occur in various orders and iterations. We conservatively called them "rep- 
resenting understanding". In fact they create understanding by formalizing in- 
tuitions and developing new views, connections, arguments, decompositions etc. 
Therefore the process has the complex, individualistic, open-ended character of 
other human comprehension and creative activities. FR authoring activities 
are described and illustrated in Chapter 3. Here we elaborate each activity to 
introduce FR and FR-Rapide authoring: 

1. Understanding the Architecture Having or acquiring needed under- 
standing of the architecture means the FR author has goals for the FR, and 
is able to understand the architecture and represent that understanding so the 
goals can be achieved. If the FR author is the architecture designer, presumably 
he or she remembers or can recreate his or her design intentions. At the other 
extreme, an FR author unfamiliar with the architecture may have to recreate 
(or create) putative intentions by referring to design information sources and/or 
reverse engineering. 

2. Choosing Intentions This understanding is focused around the chosen 
top-level and intermediate intentions and views to represent. Top-level inten- 
tions are the highest needed to satisfy the goals of the FR. For example, sup- 
pose the FR is intended to capture understanding of protocols in a transaction 
processing architecture. Understanding resource access protocols includes un- 
derstanding how they satisfy requirements such as transaction atomicity and 
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indivisibility. A particular architecture may be understood to achieve such re- 
quirements using a design incorporating the well-known Two-Phase Commit 
protocol. Two-Phase Commit may then be chosen as a top-level design require- 
ment and intention which is consistent with the goals for the FR. Top-level and 
intermediate intentions may be essential to all implementations of Two-Phase 
Commit, e.g. a Poll-Decide procedure which polls Resource Managers and de- 
cides when to commit transactions. Intentions may also be architecture-specific, 
e.g. the design of Poll-Decide in a particular architecture committed to partic- 
ular components and connections. The top-level and supporting intentions, or 
views, form the outline of a hierarchical explanation. 

3. and 4. Specifying States These intentions must be expressed in appropri- 
ate languages. The choice of language depends on FR goals and the intentions' 
domains of discourse. The languages for top-level intentions will chosen in re- 
lation to the goals of the FR. The languages for lower level intentions may be 
chosen in relation to both both top-level considerations and the kind of expla- 
nation desired. In all cases, the languages embody appropriate formalisms and 
vocabulary. 

Functional Representation is based on states. Therefore languages are 
needed which capture possible concrete and abstract states of the architecture. 
Concrete states are sets of values of observable, time-varying architecture prop- 
erties. Abstract states are sets of values of derived or interpreted properties 
not explicitly present in the architecture. States may be complete, completely 
characterizing the complete architecture, or partial, characterizing only some 
aspects of the architecture. A vocabulary of predicates describes sets of states 
useful in each domain of discourse. Intentions are then written as functional 
specifications in a language of states and predicates appropriate for the abstrac- 
tion level and goals of the intentions. 

For example, at the architecture level the ADL provides a language for ar- 
chitecture states such as variable values and events, and for intentions, such as 
the ADL sub-language used to write temporal architectural constraints. Lan- 
guages for abstraction domains chosen by the FR author may derive from ADL 
language or may be unrelated. For example, predicates such as "alLok" or 
"some_error" can be used to describe abstract states based on semantics of "er- 
ror" given by an interpretation of concrete architecture states. Other predicates 
and specifications can convey meaning still further from the ADL and closer to 
the top-level intentions. For example, "implementS-Two-Phase_Commit" is de- 
scriptive in the transaction processing domain, and imports complex semantics 
about what is meant by the Two-Phase Commit protocol, and how its presence 
can be shown. 

5. Forming Causal Sequences Within each level, states are connected in 
causal sequences to capture the designer's intentions. Besides states, Functional 
Representation is based on causal transitions between states. An executable 
architecture undergoes undergoes state changes as it executes.   Therefore, it 
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must be understood as a dynamic device, where design intentions are causal 
sequences of states. FR represents such concrete and abstract behavior and 
intentions with causal process descriptions. Causal process descriptions (CPD's) 
are state transition diagrams with annotations which describe the transitions. 
We will focus on the transitions here and on annotations in the following activity. 

Forming causal sequences means identifying causal relationships among 
states and representing them in a state transition diagram. For example, sup- 
pose three abstract states were identified in a certain view of the transaction 
processing architecture: "check-resources", "resourcel(ok) and resource2(ok)", 
and "alLok". Suppose also they are understood to always occur in a temporal, 
causal sequence in the order given. Then the following causal process description 
is written: 

resourcel(ok) 
check-resources         =>-        and  *-    all_ok 

<■■■> resource2(ok) <••■> 

The annotations on the causal links are empty or incomplete. The causal rela- 
tionship has been identified, but the function represented by the links has not 
been fully specified. 

Here is another causal process description in a more abstract domain of 
discourse: 

check-resources         =»- POLLING-OK 

The state language of this abstraction level shares the "check-resources" pred- 
icate with the previous example. It also introduces the new state specification 
"POLLING-OK". 

6. Functions and the Explanation Functions are used to create a hierar- 
chical explanation incorporating and justifying the causal process descriptions. 
As a result of the previous activities the FR author has created causal process 
descriptions describing the architecture with various levels of abstraction and 
views. The CPD's show causal relationships, but lack annotations describing 
and justifying these relationships. 

In FR, functions describe abstract functionality. They relate behavior to its 
role in a more abstract description. Viewed bottom-up, a function abstracts be- 
havior, e.g. a sequence of state transitions, as a single state transition in a more 
abstract domain. Viewed top-down from the abstract domain, a function justifi- 
cation explains how its role is achieved in terms of more concrete understanding 
and other justification such as domain knowledge. 

Functions also connect the abstraction levels and CPD's into a complete hi- 
erarchical explanation of the architecture. The explanation is a hierarchy where 
top-level intentions can be traced through intermediate intentions to base-level 
implementing structure in the architecture. We say that functions create func- 
tional abstraction which induces the explanation hierarchy. 
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check-resources     ► POLUNG-OK Protocol Domain 
ByFcn: Poll-Decide-ok 

Calling Convention 
resourcel(ok) __ o|| ^       Domain 

and 
resource2(ok) 

check-resources     *-     and ** all-0k 

ByFcn: User-calU ByFcn: B2_ret 

Figure 1.4: Functional Abstraction Creates a Hierarchical Explanation 

Figure 1 4 shows part of an explanation where functions complete and con- 
nect the CPD's given above. First note that the figure shows the Protocol 
Domain above the Calling Convention Domain. Each of these abstraction levels 
or domains of discourse contains particular views or models of the architecture, 
expressed in particular formalisms and languages. The complete explanation is 
a hierarchy in which each level is justified and explained only in terms of lower 

levels. 
Next note that function names have been added in "ByFcn" annotations 

of the CPD links. Functions create the abstraction hierarchy and justify state 
transitions. Specifically, functions are defined which show how a transition in a 
higher domain is achieved by behavior in a lower domain. Other kinds of justi- 
fications can also be captured by the function, including domain knowledge and 
definitions. Here the function "Poll-Decide-ok" expresses functionality in the 
Protocol Domain whereby the state "POLLING-OK" follows the state "check- 
resources". This transition is explained by the indicated transitions in the lower 
domain, and by a definition relating the "alLok" state in the lower domain to 
"POLLING-OK". These semantics are captured in the justification of the "Poll- 
Decide-ok" function. Similarly, the functions "User-calll" and "B2_ret" capture 
functionality creating the indicated state transitions in the Calling Convention 
Domain. These functions are described in terms of lower views, behaviors and 
domain principles. 

7. Forming FR Components The FR author may also decompose the ex- 
planation into abstract devices or components. The activities above combine all 
of the essential elements of the FR into an explanation of the architecture. Such 
explanations, however, may be unmanageable because of their size and complex- 
ity. Furthermore, they may have lost information about modular groupings in 

the architecture. 
FR contains a mechanism for dividing the explanation into comfortable 

pieces, and for modeling the architecture as interacting components, at all lev- 
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els of abstraction. FR components, or abstract sub-devices, modularize CPD's 
within an abstraction level. They can be viewed as named boxes encompassing 
sets of states.   The FR author can define components as desired, eg  to cor 
respond with domain concepts, understood relationships, or base architecture 
structure (Figure 1.5). They are primarily grouping constructs. They can how- 

FR: 

Architecture - ADL 
(RAPIDE Prototype) 

FR 
Components 

Architecture 
Components 

Figure 1.5: FR Components - Abstract Sub-Devices 

ever, serve as attachment points for additional semantics.   Components allow 
explanation in terms of interacting components as well as states 

For example, consider the base architecture components, e.g. Resource Man- 
agers in a distributed transaction processing architecture. These may or may 
not be captured as FR components. The FR author is free to create additional 
FR components, and/or project the architecture components upwards as com- 
ponents in higher abstraction levels. This is possible because the ADL specifies 
components as units subject to connection, whereas FR components are state- 
based. Therefore FR components can form abstract sub-devices at all levels of 
abstraction Close to the base level, they can divide architecture components 
based on understanding sub-processes within the components 

Components can also unite material from separate architectural components 
thereby representing understanding in a view that recognizes functional related- 
ness in separate architecture components. This is analogous to logical compo- 
nents in mechanical domains. A manufacturer, for example, may describe a car 
as containing frame and body components. If we are representing understanding 
of the car s crash behavior, we may split and lump the base components, e g 
to give a front impact absorption component consisting of the frame and body 
components which absorb energy in a front collision. 

8; ,yaläati0n   Finally' the FR auth0r and others must ens»re the validity 
of the FR for its intended purpose.   This can be done with various methods 
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for various degrees of required rigor. Our approach is independent of the rigor 
desired, and does not guarantee correctness by any objective measure. That is to 
say, FR captures a person's understanding. The understanding may be formal 
or informal, correct or incorrect. FR enforces neither formality nor correctness. 
FR does, however, formalize the explanation structure. This can be checked for 
syntactic correctness and consistency. 

At one extreme, the architecture may be understood as a formal correct- 
ness proof. FR then provides the skeleton syntax in which the proof is written 
and organized. Validation consists of checking the proof like any other pro- 
gram correctness or mathematical proof, under appropriate domain models and 

semantics. 
At the other extreme, the architecture may be understood as informal, nat- 

ural language description, like written and/or unwritten documentation and 
description. In this case, FR can be seen as structuring the description with 
the formalized concepts and relationships of causality, functional abstraction, 
states, components etc. Validation then consists of inspecting the FR both for 
understanding content and usage of the FR language and ontology. 

1.4.2    Applications 

Suppose we have an FR, capturing an understanding of an architecture, created 
as described above. What is it good for? 

First, it already has been good for creating and systematizing understanding. 
The extant FR is a notation which records and recalls this understanding for the 
author. Similarly, the FR is a notation for communication between the author 
and others. It serves the role of documentation, but with added formalized 
structure and conventions. Finally, the FR allows captured understanding to 
be manipulated, delivered, and exploited by automated tools and environments. 

In all cases, we answer the question, "What is the FR good for?", with the 

principle: 

Understanding is as understanding does. 

Captured understanding has value and application where it makes it easier to 
perform a specific architecture evolution task. Many tasks require understand- 
ing that can obviously be captured in FR's. The value of a particular FR for a 
task or tasks is an empirical question. Some forms of captured understanding 
are clearly useful for a wide range of tasks, e.g. documentation. 

In assessing the value of FR for architecture evolution tasks we distinguish 
between, 1) the value of FR content that could exist independent of the FR 
framework, e.g. isolated architecture models and intentions, 2) the value added 
by the FR framework, and 3) the possible synergistic value of combining 1) and 
2). We claim there is value from 2) and 3) that more than justifies the cost of FR 
creation, and that this benefit/cost can be demonstrated empirically. However, 
such empirical studies are beyond the scope of this report. Here we describe 
how manual and automatic applications benefit from 2), the value added by the 

FR framework. 
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Answers to Questions 

The FR framework creates certain kinds of explanations, and makes explicit 
certain states and relationships. For example, it encourages a hierarchically 
structured explanation in successively more abstract alternative views or do- 
mains. States and causal sequences among states are made explicit. Functional 
abstraction is made explicit. Abstract components control complexity and en- 
capsulate domain concepts. Therefore the FR framework benefits tasks that 
require knowing such states and relationships. 

More specifically, 

The FR makes it easy to answer certain important kinds of questions. 

For example, "What?" questions can be easily answered by following func- 
tional abstractions upwards, and "How?" questions can be answered by tracing 
CPD's, following function annotations downward when more detail is desired 
For example, here is a dialog produced from the explicit relationships in an FR 
for an architecture containing the Two-Phase Commit Protocol. X/Open-PD6 
is a CPD abstractly describing the Poll-Decide procedure in the Two-Phase 
Commit Protocol Domain. 

Q> What does X/0pen-PD6 do? 

A:   Poll-Decide  for Two-Phase  Commit protocol... 

Q> How is Poll-Decide  implemented? 

A:  Poll-Decide-ok is followed by Commit, 
or Poll-Decide-error  is followed by Rollback. 

Q> How does B3_Pattern cause B3-some_error? 

A:  Pattern semantics  of Rapide behavior rule B3. 

In Chapter 4 we catalog the questions that may easily answered by material 
made explicit by FR, and describe procedures and semantics for answering such 
questions from the FR. Note well that the ability to answer certain questions 
easily is a benefit regardless of whether the FR is being read as a notation or 
being interpreted by an automatic tool, e.g. a question answerer or browser. 

Answers Useful for Architecture Evolution 

The ability to easily answer certain questions benefits many specific architecture 
evolution tasks, and tools for those tasks. Furthermore, it is a capability which 
enables more complex forms of manual and automatic inference. For example, 
consider the architecture evolution task of algorithm/component replacement.' 
Suppose, for example, it is desired to replace architecture pieces performing a 
particular function. The FR can be used to: 1) identify the function by name 
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or description, 2) locate architecture parts implementing the functions, and 3) 
locate architectural and logical dependencies that must be respected by the 
replacement. 

As another example, consider Rapide debugging or design verification from 
execution traces. Such debugging requires: 1) identifying an execution anomaly, 
2) finding the architecture part creating the incorrect behavior, and 3) correcting 
the architecture. Because FR is state based, an FR for an architecture's intended 
design provides state descriptions which may be compared to states reached in 
execution and recorded in the Rapide trace. Execution anomalies may therefore 
be identified. FR goes beyond Rapide's existing constraint checking mechanism 
because it captures specifications, and can interpret traces, in terms of abstract 
states and behavior as well as the bare events and constraints used by Rapide. 
Similarly, because the FR captures the architecture at various levels and views, 
it is possible that one or more of them will provide an appropriate domain for 
understanding and correcting the bug. 

1.5    Plan of Report 
The remainder of this report describes writing and using functional representa- 
tions of executable architectures. Particularly, we describe and illustrate FR- 
Rapide, and discuss its applications and limitations. 

Chapter 2 introduces Rapide and the X/Open reference architecture used 
as our example. In Chapter 3 we describe creating a functional representation 
for part of X/Open. The example is used to introduce elements of FR-Rapide 
including state modeling, architecture and FR components, causal process de- 
scriptions, functional abstraction, and domain/view hierarchies. 

Chapter 4 describes the value and applications of architecture FR's to easily 
answer certain questions. We give a catalog of question types which may be 
answered, procedures for answering them, and discuss the design of a practi- 
cal question answering explanation tool. Question answering is related to FR 
semantics. An explanation tool is described which can support Rapide proto- 
typing and other architecture activities. 

Chapter 5 evaluates and discusses the limitations, generality, benefits, and 
prospects for applying FR to architecture-based software engineering. We first 
introduce issues and a basis for evaluation. Then we evaluate FR-Rapide with 
respect these criteria at various levels of generality. Applications and tools such 
as debugging, simulation and rationale capture are discussed. We conclude by 
reviewing our contributions and suggesting further work and implications. 
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Chapter 2 

Rapide Executable 
Architecture 

This chapter introduces Rapide and the X/Open architecture used as our exam- 
ple. It concludes by discussing Rapide and X/Open architecture understanding 
needs and representations. 

2.1    Rapide - Rapid Architecture Prototyping 

Rapide is an architecture description language designed for prototyping archi- 
tectures of distributed systems.[11, 12] Such systems are complex assemblies 
of many components. The distributed components operate and interact con- 
currently. They exchange information across specific communications channels. 
There are complex timing requirements and constraints. 

Rapide provides a language and environment for constructing prototype ar- 
chitectures. Rapide views the architecture as the plan which drives system 
design, prototyping, development, and validation. Specific emphases of Rapide 
include: 1) architecture definition that is executable, for early simulation and 
testing; 2) an execution model that summarizes distributed, concurrent behav- 
ior and timing; 3) formal constraints and mappings for architecture definition 
and comparison; 4) scalability for large industrial systems. 

Rapide and its architectures provide a framework for architecture and sys- 
tem design and evolution. Architectures are constructed using the Rapide 
object-oriented language. The language supports architecture construction with 
features for describing architecture components (interfaces) and connections. 
There are also features for specifying behaviors and constraints. The language 
provides a type system which is used to create the objects which form the ar- 
chitecture prototype. 

Once constructed, Rapide architectures are used to test, simulate, validate 
and otherwise analyze the architecture. Architectures are executed to study 
their behavior. They are executed by an interpreter, according to the Rapide 
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execution model, which creates architectural events. Events and their depen- 
dencies are recorded in partially ordered set of events called posets. Each poset 
summarizes many possible system executions of the kind that are recorded in 
traditional event simulation linear traces. Posets are used to compare architec- 
ture behavior to desired behavior, including the behavior of other architectures. 
The architecture can also be analyzed by runtime checks against formal con- 
straints, and by static formal analysis and verification. 

In summary, Rapide architectures are formal, dynamic devices with parts 
executing concurrently. Functional Representation is designed to capture un- 
derstanding of such devices. 

2.2    Rapide Overview 

A Rapide architecture consists of interfaces of modules, connections which de- 
scribe communications between the modules, and constraints which specify cor- 
rectness conditions. Interfaces and connections comprise the architecture in the 

Connections 

Architecture 

More 
Detailed 
Instantiation 

Figure 2.1: Rapide Architecture Terminology 

top of Figure 2.1. Possible implementing modules are not part of the architec- 
ture, as shown in the lower part of the figure. 

Interfaces are the basic architecture components.1 Interfaces define the fea- 
tures provided to other parts of the architecture, and which must be imple- 
mented by modules. Modules are implementations of the interface. The archi- 
tecture is instantiated when particular modules are assigned to the interfaces. 
Modules may be executable modules forming an implemented system. Modules 
may also be other architectures, creating a hierarchical architecture definition. 

An interface may contain an abstract behavior specifying the behavior re- 
quired by every implementing module. Many possible modules and kinds of 
modules can implement a given interface.   When no module is present, the 

1 Rapide uses "component" for an interface-module pair, and "interface" for what is usu- 
ally called a component in the architecture literature. We will continue to use the traditional 
architecture terminology, where "component" or "architectural component" is the basic ar- 
chitectural unit. We will sometimes use the Rapide terminology in Rapide-specific contexts. 
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abstract behavior is used in simulation to give the module's effects. Abstract 
behaviors are given by executable reactive rules. These rules recognize situations 
in the execution and create new events in response. 

Connections specify communication between interfaces. They are also de- 
fined using executable reactive rules. Connection rules create communication by 
recognizing output events at interfaces and creating corresponding input events 
at the connected interfaces. This communication may be asynchronous, or it 
may be synchronized by a clock. Using rules for connections is an important 
difference between Rapide and most ADL's, which specify connections with sim- 
ple static syntax. Using rules for connections allows information passing across 
connections to treated and recorded by the interpreter in the same manner as 
other behavior. 

The rule-event-poset execution model supports simulation and tracing of 
distributed, concurrent architectures with dynamic structure. Events are the 
indivisible primitives in Rapide executions. They correspond to things that hap- 
pen in the architecture at run-time, e.g. calling a function, passing a message, 
changing a memory, or executing a program step. Posets are partially ordered 
sets of events which give the causal history of events and their timing. A poset 
contains a partial ordering of events connected by their causal dependencies on 
other events. Causal dependencies are necessary conditions that must precede 
an event, e.g. an event precondition of the rule generating the new event. 

Rapide processes are the primitive threads of control. Processes observe 
the architecture events and the growing poset. When a triggering pattern is 
recognized, a process generates new events. The new events and their causal 
dependencies are added to the poset history. Rapide processes may be abstract 
interface behaviors, connections, or processes in instantiated modules. 

The interpreter controls execution in indivisible steps. Within a step, pro- 
cesses observe the current events. They may then create new events. After 
all rules have observed current events and posted new events, the process re- 
peats. If an event is used by a process to trigger event creation, it may never 
be used again by that process. Note that the execution steps are based on the 
cycle of rule interpretation, not fixed periods of time. Thus Rapide execution 
is dependency-based rather than time-based. This is an important difference 
between Rapide and most event simulators, which are time-based. Rapide can 
introduce time as needed with clocks which simulate time by creating events 
corresponding to specific time intervals. 

Formal constraints specify correctness conditions, e.g. communication or- 
dering or data integrity relations. They are attached to interfaces and connec- 
tions. These constraints are checked at run-time. Constraints can be seen as 
secondary to the primary functional specification given by abstract interface 
behaviors and connections. In other words, the behavior and connection rules 
completely describe the computation. Constraints are specifications for parts 
of the computation, and have a more abstract, declarative character than the 
rules. 

Note that abstract interface behaviors can have either role. When no module 
is present, the abstract interface behavior is executed to create the simulation. 
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When a module is supplied for the interface, the module's processes are used for 
execution instead of the interface's abstract behavior. The interface's abstract 
behavior then becomes a constraint. Module generated behavior is checked 
against this constraint. 

2.3    X/Open Architecture 

We investigated FR-Rapide using the X/Open Reference Architecture. Kenney 
developed a Rapide prototype for this architecture[8], and it is the main example 
in [11]. 

X/Open is a standard for distributed transaction processing (DTP). The 
standard defines system component interfaces and sequences of interactions be- 
tween system components. System components may be applications programs, 
e.g. a billing system; resource managers for resources, e.g. databases; and trans- 
action managers, which mediate between applications programs and resource 
managers. The purpose of the standard is to create a standard reference ar- 
chitecture for developing and interchanging various distributed transaction pro- 
cessing systems and sub-systems. The reference architecture defines a family of 
local instance architectures which are specialized in aspects like the number and 
nature of resources and managers. Each local instance architecture, in turn, 
defines a family of implemented systems. 

The X/Open standard consists of over 900 pages of informal English text, 
with system component interfaces given in C. It describes 1) the interfaces, 2) 
ways of connecting components which satisfy the standard, and 3) protocols or 
calling sequences for using the interfaces. 

Besides promoting open systems, the standard is intended to ensure certain 
kinds of correctness in conforming systems. The standard particularly empha- 
sizes protocols which guarantee transaction atomicity. Atomicity means that a 
transaction either executes completely or has no effect. It is ensured by calling 
sequences which implement the well-known Two-Phase Commit Protocol. 

Figure 2.2 shows the X/Open local instance architecture we will use. The 
boxes are interfaces defined for an application program (AP), a transaction 
manager (TM) and two resource managers (RM1 and RM2). The arrows are 
bundles of connections between interfaces called services. Each service contains 
connections between specific functions of the interfaces. 

Imagine that the architecture is implemented in a bank. The application 
program runs on automatic teller machines. It performs transactions involv- 
ing the bank's checking account and savings account databases, each accessed 
through a resource manager. The transaction manager mediates between the 
application program and resource managers as follows: The AP tells the TM 
it wants to perform a transaction. The TM initializes the RM's and returns a 
transaction identifier (xid) to the AP. The AP then makes requests and receives 
results directly from the RM's. When the transaction is completed the AP asks 
the TM to finalize it. To do this, the TM polls both of the RM's for their 
approval. If both RM's approve, the TM decides to commit the transaction and 
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Figure 2.2: An X/Open Architecture 

tells the RM's to do so. If they signal success, the TM tells the AP that the 
transaction is final and usable. If the transaction cannot be committed, e.g. 
because an RM says it would place a database in an inconsistent state, the TM 
tells the RM's and the AP to rollback the transaction and start over. Each 
of these operations is described by particular functions in the interfaces. The 
functions each have defined connections, which are contained in the services 
shown. 

This scenario and the architecture protocols incorporate the Two-Phase 
Commit Protocol. Two-Phase Commit assures that transactions will be atomic, 
i.e. they will be completed and committed correctly, or they will be aborted and 
rolled back. The complete proof that the architecture implements Two-Phase 
Commit and guarantees atomicity is complex, involving many aspects of the 
architecture and standard. For example, one necessary property is coordina- 
tion, where the resource manager must get approval from all of the resource 
managers. 

We will focus on Poll-Decide, which is a necessary part of Two-Phase Com- 
mit and the atomicity guarantee. Poll-Decide is the procedure by which the 
TM polls the RM's for their approval or disapproval of the transaction {Polling 
Phase), decides to commit or rollback the transaction {Decision Phase), and 
causes the necessary actions. We will further narrow our focus to the connec- 
tions and abstract behaviors involved in Poll-Decide. See [11] and [8] for more 
discussion of the interface definitions, services, constraints, and posets. 

2.4    Poll-Decide Definition and Behavior 

Recall Kenney created an architecture for a version of the X/Open Reference ar- 
chitecture, just as every Rapide author describes an architecture in the Rapide 
language.   We will use it to further describe Rapide, and as the FR-Rapide 
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example in subsequent chapters. Figure 2.3 summarizes the part of the archi- 
tecture which describes the connections and abstract behaviors of Poll-Decide. 

XA Connection Rules 

C1.1: tm.xa 1 .prepare_call 
=> rm 1 .xa.prepare_call 

C2.1: rm 1 .xa.prepare_ret(code) 
=> tm.xal.prepare_ret(code) 

Resource 

Manager 1 

(RM1) 

User 

XA1 

Transaction 

Manager 

(TM) 

XA2 
TM Abstract Behavior Rules 

Bl:~ Polling Phase 

TX.commit_call 
=> (!i in L.NumRMS ll)XAs(!i).prepare_call 

B2: — Decision phase, commit case 

((?i in L.NumRMs ~) XAs(?i).prepare_ret(ok)) 
=> (!j in L.NumRMs II) XAs(!j).commit_call 

B3: -- Decision phase, rollback case 

((?i in L.NumRMs) XAs(?i).prepare_ret(error)) 
=> (!i in L.NumRMs II) XAs(!).rollback_call 

Resource 

Manager2 

(RM2) 

User 

Figure 2.3: X/Open Poll-Decide 

In the figure we see the XA connection rules which define connections in 
the XA1 service between TM and RM1. There are similar rules defining con- 
nections in the XA2 service between TM and RM2, but they are not shown. 
The figure also shows abstract behavior rules defining the Poll-Decide behavior 
in the Transaction Manager (TM) interface. Since this particular architecture 
was created with two resource managers, Rapide variable NumRMs used in the 
rules has the value 2. Other Rapide rule syntax should be more or less obvious 
from our description below. 

The actual Rapide code is more complicated and obscure than Figure 2.3. 
We do not include the complete Rapide code in this report because it is volumi- 
nous and difficult to interpret without detailed knowledge of Rapide. Figure 2.4 
shows part of the X/Open Rapide code to give a feel for its syntax and other 
characteristics. 

In the Rapide code there are various levels of type definitions and instan- 
tiations for all of the objects involved. Connections are described in detail at 
both ends. Services are defined at both ends for each communicating pair of 
components, with reference to all of the bundled connections. Components are 
defined with reference to services. Constraints and abstract behaviors are at- 
tached at various places. Finally, the entire architecture is instantiated from an 
architecture generator type. Much of the language syntax is designed for rapid 
architecture configuration and change within families. The resulting complexity 
makes it especially hard to understand the architecture from the Rapide code. 
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type XA_Service is interface 

public 

type return_code is enum 

ax_ok, xa_error 

end; 

action prepare_call(x : xid); 

action commit_call(x : xid); 

action rollback_call(x : xid); 

extern 

action prepare_ret(x : xid, re : return_code); 

action commit_ret(x : xid, re : return_code); 

action rollback_ret(x : xid, re : return_code); 

end XA_Service; 

type Transaction_Hanager(NumRHs : Integer) is interface 

public TX : service TX_Service; 

extern XAs : serviced. .NumRHs) XA_Service; 
behavior 

TX.commit_call 

=> (!i in 1..NumRHs II) XAs(!i).prepare_call; 

((?i in 1..NumRHs ") XAs(?i).prepare.ret(ok)) 

=> (!j in 1..NumRHs II) XAs(!j).commit_call; 
((?i in 1..NumRHs) XAs(?i).prepare_ret(error)) 

=> (!i in 1..NumRHs ||) XAs(!).rollback_call; 

end Transaction_Manager; 

architecture X/Open_Architecture(NumRHs:Integer) 

return X/Open is 

AP : Application_Program(NumRHs); 

TH : Transaction_Hanager(NumRHs); 

RHs: array(Integer) of Resource_Hanager; 

connect 

AP.TX to TH.TX; 

for i:integer in 1..NumRHs generate 

TH.XAs(i) to RHs[i].XA; 

AP.AR(i)  to RHs[i].AR; 

end architecture X/Open_Architecture; 

Figure 2.4: Sample X/Open Rapide Code 
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2.4.1    Simulation 

The architecture is analyzed by simulation. Simulation means the architecture 
is made to execute in a way that simulates the execution of a final implemented 
system. Of course the architecture only describes certain high-level aspects of 
the final implemented system, so the simulation will only capture behavior at 
the architecture level, e.g. message passing and gross behavior such as initiating 
and completing generalized transactions. Furthermore, the user will design and 
direct the simulation in order to investigate certain aspects of the architecture, 
e.g. message timing or protocol correctness. 

Events are the primitive elements in Rapide executions. Events are are 
represented by character strings. For example, tm.tx.commit_call(xid) is an 
event which models the TM receiving a procedure call from the AP which was 
communicated across the TX service, xid is the transaction identifier which is 
present in most events, but which we will subsequently omit for brevity. 

When the architecture is created, it starts executing using initialization be- 
haviors designed to simulate the transaction processing that is being tested. 
Suppose the user is investigating the architecture's behavior for a single trans- 
action. Let us assume that the simulation has run to the point where the AP has 
initialized a transaction and transferred all needed data with the RM's. The AP 
then requests transaction completion, and TM receives the tm.tx. commit_call 
event. 

This event matches Rule Bl in TM, initiating the Polling Phase. Rule 
Bl generates events tm.xal.prepare_call and tm.xa2.prepare_call, corre- 
sponding to TM issuing calls to the RM's. tm.xal.prepare_call is recog- 
nized by Rule Cl.l defining a connection in XA1. This rule creates the event 
rml.xa.prepare_call, corresponding to the call from TM being received at 
RM1 across a connection in XA1. A similar rule causes a similar event corre- 
sponding to another call from TM being received at RM2. Calling and subse- 
quent execution in RM1 and RM2 is modeled as proceeding concurrently and 
asynchronously. 

The RM's do not have detailed behavior descriptions. Furthermore, for 
testing the architecture we don't care about detailed database operation. We 
merely want to test the architecture's response to transaction approval or 
disapproval from the RM's. Therefore, in the current architecture the user 
tells each RM whether to signal approval or disapproval. Let us suppose 
the user wants to simulate approval by both resource managers. The events 
rail. xa. prepare jret (ok) and rm2.xa.preparejret(ok) are therefore gener- 
ated, corresponding to the RM's returning from the above calls. In the case of 
RM1 and XA1, Connection Rule C2.1 responds to this event and generates the 
event tm.xal. prepare jret (ok), corresponding to the return being received at 
the TM. Similarly, the event tm.xa2. prepare jret (ok) is generated, recording 
TM receiving an approval return from RM2. 

The forking into concurrent communication and execution in the RM's now 
ends. The only abstract behavior that can next execute is B2, and it must 
wait for both prepare jret (ok) events to be posted.   When this occurs, the 
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concurrent forks are merged into a single control thread in TM. Satisfaction 
of B2's preconditions causes TM to enter the Decision Phase. Since both 
RM's approve, TM decides to commit the transaction. This is described by 
the consequent of rule B2, which creates the events rm.xal.commit_call and 
rm. xa2. commit_call. These events then cause the actions needed to finalize the 
transaction with the RM's and the AP. Rules for this behavior are not shown. 

If either of the RM's had disapproved, a preparejret (error) return event 
would be present instead of two prepare_ret (ok) events. Then the concur- 
rent fork would be merged by TM behavior rule B3, also initiating the De- 
cision Phase in TM. In this case, TM would decide to rollback the transac- 
tion, and B3's consequents would create the events rm.xal .rollback_call and 
rm. xa2. rollback_call. 

2.4.2    Causal History Poset 

Figure 2.5 is the poset created by the interpreter which records the execution 
described above. The ovals contain the events described. Following the initiating 

TM<->RM1 TM<->RM2 

Poll 

Decide 

Figure 2.5: Poll-Decide Causal History Poset 

event at the top, events involving RM1 are on the left and events involving RM2 
are on the right. 

Arrows show the dependency partial ordering relationship in the poset. An 
event at the head of an arrow is immediately dependent on an event at the tail 
of an arrow. In other words, events at the tails of arrows occur before events at 
heads of arrows, and potentially cause them. In this example, the dependencies 
are from the connection rules, behavior rules, and interactions shown. The 
interpreter recorded the dependencies in the poset when it executed the rules. 
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This simulation and poset reveal three important characteristics of Rapide 
and Rapide execution. First, note that the execution is concrete and precise at 
the architecture level. It describes the behavior of the architecture as well as 
possible, using all of the description present in the architecture definition. Fur- 
thermore, the execution is a particular behavior of the architecture, responding 
to particular input and direction. Execution is not "symbolic" or abstract at 
the architecture level. 

Second, the execution is abstract in comparison to more detailed possible 
instantiations, especially ultimate implemented systems. Adding more imple- 
mentation makes more details possible and necessary in concrete executions. 
However, this added detail is non-architectural. The execution at the architec- 
tural level provides an abstract behavior and specification which corresponding 
detailed executions must conform to. Every implementation must have steps 
corresponding the architectural events and dependencies. For example, the 
commit decision must be made based on previous approval responses from the 
resource managers, regardless of how the resource managers and decision phase 
are implemented. 

Third, the execution is abstract with respect to possible detailed his- 
tories, even at the architecture level. The execution model is based 
on explicit dependencies rather than time. Since execution is concur- 
rent, different actual histories could occur under the same dependen- 
cies. The poset summarizes all possible event histories that could oc- 
cur in linear time. For example, the events in the dependent se- 
quence involving RM1, tm.xal.prepare_call -> rml.xa.prepare_call -> 
rml.xa. prepare jret (ok) -> tm.xal.preparejret(ok), on the left side of 
Figure 2.5 must occur in the order given. However, they can be in any re- 
lation to the similar concurrent events involving RM2 on the right side of the 
figure. That is, the RM1 events can occur before, after, or in arbitrary temporal 
interleaving with the RM2 events. 

An important feature of Rapide is the poset's ability to capture the necessary 
dependencies and ignore unnecessary temporal detail. In contrast, other event- 
based simulators create a linear history trace or total temporal ordering. Such 
a linear trace captures scheduling artifacts as well a necessary dependencies. 
A Rapide poset subsumes all of the linear histories and traces which could be 
produced by time-based execution and simulation. 

2.5    Understanding the Rapide X/Open Archi- 
tecture 

Using this background, we now consider Rapide and X/Open architecture un- 
derstanding under the goals given in Chapter 1. First we discuss the kinds of 
things that must be understood about Rapide architectures using the X/Open 
example. Then we describe how this understanding can be represented in rela- 
tion to Rapide. 
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2.5.1    Design Intentions 

Our goal is to capture human causal understanding of architectures in a way 
which will help people work with architectures. Specifically, we seek to add 
a layer of explanation connecting design intentions to Rapide architectures, to 
assist activities performed with Rapide architectures. 

Some of the intentions which are realized in the Rapide X/Open Poll-Decide 
architecture above are listed in Table 2.1. 

1. Perform transactions 

2. Ensure atomicity 

3. Implement Two-Phase Commit 

4. Implement Polling 

5. Poll RM's concurrently 

6. Define distributed TM and RM components 

7. Define connections between distributed TM and RM components 

8. Pass specific messages between the TM and the RM's, e.g. TM requests 
approval or disapproval from RM1 

9. Control Poll-Decide in the TM component 

10. Interpret specific Rapide events, e.g. interpret xa.prepare_ret(<code>) 
events to determine if all RM's approve 

11. Fork into concurrent processes in each RM 

12. Get all results from concurrent polling before deciding 

13. Define specific calling interfaces, e.g. parameter passing in the polling call 
from TM to RM1 

14. Generate  specific  Rapide  events  and  dependencies,   e.g.   generate  the 
tm.xal.prepare.call event dependent on the tm.tx.commit_call event 

Table 2.1: X/Open Poll-Decide Intentions 

2.5.2    Representation Issues 

Here are some observations about these needed understandings and intentions: 

1. None of these intentions is explicitly present in the Rapide code. Each re- 
quires interpretation of the Rapide code in domains beyond Rapide syntax 
and semantics. 

2. Intentions are achieved with various amounts of Rapide code. Some of the 
first intentions involve the entire architecture, whereas some of the other 
intentions involve involve small elements like single rules. 
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3. Intentions do not necessarily correspond to single Rapide syntactic cate- 

gories. 

4. Intentions involve different domains of discourse. Domains used include 
distributed transaction processing, transaction atomicity and correctness, 
the X/Open standard, C calls, Two-Phase Commit, distributed comput- 
ing, concurrent computing, the particular instance architecture with two 
RM's, and the goals of simulation testing. 

5. Different domains must be described with different languages, formalisms, 
models of computing etc. These languages involve abstract states of the 
architecture. 

6. Domains may be seen as views of the architecture which emphasize certain 
aspects and ignore others. 

7. Intentions have varying temporal extent. They may refer to everything 
that happens, or to just things that happen during a particular time pe- 

riod. 

8. Intentions have varying temporal quality. They may describe temporal 
sequences ("procedural") or temporal invariants ("declarative"). 

9. Intentions need not be temporal or causal. They may refer to time- 
invariant, non-temporal characteristics of the architecture, e.g. "Is callable 
by the AP and the TM." 

10. For given abstraction levels and temporal quality, intentions vary in how 
completely they describe the architecture. They may involve the entire 
functionality at that level of description, or they may refer to some aspect 
or property of the architecture's functionality. 

11. The domains and intentions may be roughly ordered based on distance 
from Rapide and closeness to requirements. The given list follows such 
an ordering. However, the domains and intentions also have orthogonal 
dimensions. 

12. Given intentions involve complex combinations of domains. 

13. Intentions can often be best understood in terms of other abstract do- 
mains, not the base Rapide architecture. 

14. It may be possible to order intentions so they are explained in terms of 
lower intentions, even if there is no monotonic ordering of domains. 

15. The realization of intentions can be seen in the poset history as well as in 
the static architecture description. 
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16. Poll-Decide intentions directly pertain to single transactions. Our under- 
standing, and the simulation, use single transaction abstraction, a view 
where the architecture is analyzed by considering a single transaction in- 
dependent of other transactions that might be taking place concurrently. 
This is supported by understanding that each transaction has a unique 
transaction identifier. 

17. There is a mapping between the poset history and the Rapide syntax 
which produces it. The also reflects other factors such as data and user 
interaction. 

18. Intentions can be explained using logical groupings which differ from the 
architectural groupings of connections and components. 

19. Rapide constraints capture intentions, at an abstraction level close to 
Rapide. However, the constraints may not be consistent with the ex- 
ecutable part of the architecture or possible executions. This may be 
because the architecture is incorrect with respect to the constraints, or 
because the execution has unanticipated input or interactions. 

20. The Rapide architecture also reflects non-functional intentions such as 
clarity and execution efficiency. 

These complex needs and issues must be addressed by every approach to 
representing understanding of Rapide architectures and X/Open. 

2.6    Summary 

Rapide specifies an architecture at a level that is appropriate for definition 
and execution. The architecture, like a program, can be executed to produce 
a trace. Unlike programs, the architecture may contain constraints specifying 
certain required behaviors. 

Tasks involving Rapide architectures require understanding that is not 
present in the Rapide code. We described such understanding by giving in- 
tentions present in the X/Open architecture. Issues, dimensions and criteria for 
representing these intentions were given. Representing understanding of Rapide 
architectures differs from representing understanding of simple programs be- 
cause of Rapide characteristics including the rule-event-poset execution model, 
distribution, concurrency, and the presence of constraints. The remainder of the 
report describes the use of Functional Representation to represent and exploit 
such understanding. 
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Chapter 3 

Functional Representation 
of the X/Open Architecture 

In this chapter we describe a functional representation for the X/ Open Poll- 
Decide architecture. We discuss authoring decisions, the complete hierarchy, the 
top level, and the bottom level. Then we describe the functional abstractions 
of the complete hierarchy bottom-up. 

3.1    X/Open FR Authoring 

We constructed a functional representation for X/Open Poll-Decide (PD). This 
experiment explored some of the intentions and issues discussed in Section 2.5. 
The functional description was constructed using the activities in Table 1.1. 
Here is a brief account of the process and some authoring decisions: 

Understanding the Architecture The architecture was understood from 
the descriptions in [11], reasonable inference, and background reading about 
distributed transaction processing protocols. This is the understanding pre- 
sented in Section 2.4. 

Intentions Example intentions were given in Table 2.1. Design intentions 
were chosen from the understanding to explore representation of general, multi- 
level explanation involving the problems presented by architecture understand- 
ing beyond simple program understanding, e.g. distribution, concurrency, weak 
execution model, and components. These choices emphasize understanding the 
algorithmic implementation of the Poll-Decide procedure. Rapide constraints 
were not used as intentions because they seemed unnecessary and low-level com- 
pared to the intentions from understanding. 
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Languages and Vocabulary At the bottom level, X/Open events and 
Rapide semantics suggested language, formalism, and vocabulary. These were 
blended into terminology from successively more abstract domains, terminating 
with the top-level vocabulary used to discuss Two-Phase Commit in the dis- 
tributed processing protocol domain. It was possible to completely describe the 
architecture at each abstraction level with a state machine formalism. The state 
machines are finite and contain states corresponding to complete states of the 
architecture at each abstraction level. 

Specifications for States The bottom-level states are sets of Rapide events 
As appropriate under functional abstraction, lower-level states and causal pro- 
cesses are replaced with abstract states. Abstract states are denoted with evoca- 
tive names. They are given formal or informal semantics consistent with by the 
functional abstractions which justify them. 

Causal Sequences The bottom-level causal process description captures all 
possible Rapide behavior. It is a finite state machine which incorporates under- 
standing of the architecture's distributed, concurrent execution. Causal process 
descriptions at higher levels are generally simplifications of this state machine 
produced by functional abstraction and abstract states. 

Functional Hierarchy The seven level functional hierarchy is described in 
the following section. For the most part, each level results from a single kind of 
functional abstraction from the level below. This design is influenced by being 
an exploratory example, and by desire to make the process and FR simple and 
pedagogically useful. In other words, we only wanted to change one thing at each 
step to avoid complexity and to clearly display what was happening. As a result 
the functional hierarchy corresponds more to particular functional abstractions 
than to distinct domains. Particularly, multiple domains are present at each 
level, and vocabulary and material from lower domains is gradually supplanted 
by more abstract material. 

Abstract Devices The use of abstract devices to modularize the explanation 
is orthogonal to the preceding issues and activities. The example was simple 
enough that abstract devices were not needed to control complexity Further- 
more, we they found that heavy use of them would confound the exploratory 
and pedagogical clarity of the example. In the FR presented, abstract devices 
are introduced only at the first level of the hierarchy. We discuss further and 
alternative modularizations and uses of abstract devices in Chapter 5 below. 

Validation We will discuss validation when we describe use and application 
of the FR in Chapter 5. 
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3.2    The Functional Hierarchy 

The Poll-Decide functional representation explains how Two-Phase Commit 
Poll-Decide is implemented in the Rapide X/Open architecture. Figure 3.1 
gives an overview of the FR. The FR can be visualized as seven layers on top of 
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Figure 3.1: Poll-Decide FR Hierarchy 

the Rapide prototype architecture. The bottom level, PDO, is a state machine 
causal process description capturing the architecture's complete behavior. Suc- 
cessively higher levels are successively simpler state machine CPD's. Each one 
is formed by a particular kind of functional abstraction, shown to the right of 
each box. The top level, PD6, is a specification of the Poll-Decide part of the 
Two-Phase Commit protocol. The functional abstractions can each be seen as 
introducing a more abstract domain of discourse. 

The right side of the figure roughly shows some of the domains reflected in the 
CPD's. Going bottom-up, the FR successively uses abstractions and terminol- 
ogy involving architecture components, Rapide semantics, architecture distribu- 
tion, architecture concurrency, the X/Open standard and Two-Phase Commit. 
As observed above, the hierarchy is based on single abstractions rather than 

163 



domains, so material from lower domains is gradually supplanted with material 
from more abstract domains. Furthermore, domains themselves are fuzzy and 
overlapping. For example, distributed transaction processing intersects some of 
the domains mentioned previously. 

In the remainder of this section we give an overview of the FR by sum- 
marizing each level, going bottom-up. We will emphasize the CPD's and the 
functional abstractions which produce them, without dwelling on the functions. 
The following sections discuss the representation in detail at each level, including 
the functions. 

PDO - Architecture Behavior State Machine The bottom level, PDO, 
completely captures the architecture's single transaction behavior with a model 
which is a finite state machine (fsm). This model is based on understanding 
the semantics of the Rapide rule execution model, and on understanding the 
Poll-Decide algorithm and its implementation in the Rapide abstract behavior 
and connection rules. Fsm states were constructed from sets of architecture 
events which occur together. Sequential and concurrent Rapide threads were 
distinguished. They are modeled with sequential and concurrent sections in the 
fsm, and corresponding fsm semantics. The PDO fsm is execution equivalent to 
the architecture in the sense that an architecture execution and an fsm execution 
have the same states and state transitions (concurrency non-determinism aside). 

Note that PDO, like the architecture, specifies all possible executions or be- 
haviors. Therefore it is a stronger behavior description than a single transaction 
poset trace, which records a particular execution with particular input. An given 
execution of PDO corresponds to a poset trace which would be produced by the 
architecture. 

The PDO finite state machine is recorded with FR causal process description 
syntax. States are connected by transitions. The transitions' justifications are 
given by ByRapide annotations which point to Rapide rules. 

PD1 - Abstract Sub-Devices PDO can be divided into sub-devices cor- 
responding to the architecture components - TM, RM1, and RM2. However, 
this produces disjoint regions for the polling and decision behaviors in TM. To 
distinguish these computations, PD1 is created with separate abstract devices 
or sub-devices for the polling and decision phases. The result is four connected 
causal process descriptions. 

PD2 — Rule Logical States In Rapide a rule precondition can be satisfied by 
various sets of events. There is no event for acceptance by the interpreter. There 
is corresponding behavior in the PDO and PD1 CPD's, where states correspond- 
ing to precondition events are immediately followed by states corresponding to 
postcondition events in the architecture. In PD2 we introduce abstract states 
corresponding to acceptance in rules B2 and B3. This uses and captures under- 
standing of Rapide rule semantics, and captures anticipation that the new states 
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will be useful for representing the Poll-Decide algorithm. The result consists of 
a new CPD with added intermediate states. 

PD3 - Distribution Removal Rapide produces events for connection 
traversal which have the same status as events from other aspects of archi- 
tecture behavior. For algorithmic understanding, we wish to abstract away 
these artifacts of architecture component distribution. PD3 eliminates states 
and transitions due to connections. This uses and captures understanding of 
distribution in the architecture, and of its representation in connection rules 
and their events. The result is a simpler CPD for an equivalent non-distributed 
device. 

PD4 - Concurrency Removal Similarly, the Poll-Decide algorithm is ob- 
scured by the mechanisms for concurrent polling in the architecture. PD4 ab- 
stracts away concurrent polling. This uses and captures understanding of con- 
currency in the Rapide execution model and in the Poll-Decide implementation 
The result is a simpler CPD for an equivalent serial device. 

PD5 - X/Open Standard Call Removal The architecture was based on 
the X/Open standard, in which C calling conventions are used to specify the 
interfaces between components. In the prototype architecture, rules were writ- 
ten to create events for both calls and returns. In a certain sense, these are 
nonessential artifacts of the standard. To focus on the protocol implementation 
independent of the calling mechanism, we created a CPD without the states 
caused by calling and returning. This uses and captures understanding of the 
roles of calls in the standard and the architecture, and of how they were imple- 
mented in architecture rules. The resulting simpler CPD, PD5, gives a view of 
the algorithm as if it were contained in a single program unit. 

PD6 - Poll Decide As a result of these abstractions, PD5 displays condi- 
tions leading to alternative logical states and actions. With an understanding 
of Two-Phase Commit and its realization in the architecture, this can be inter- 
preted and abstracted to concisely give a CPD, PD6, which captures the essence 
of Two-Phase Commit Poll-Decide. The states and transitions in PD6 are spec- 
ifications of Two-Phase Commit polling leading to approval and commitment, 
or to disapproval and rollback. PD6, therefore, uses and captures this top-level 
understanding, and comprises a specification of Poll-Decide. It is also the top 
level of an explanation showing how Poll-Decide is implemented in the original 
Rapide architecture. 

We describe this top level and its representation more in the following sec- 
tion. Subsequent sections then discuss the detailed representations of the the 
bottom level, and of the remaining levels going bottom-up. 
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3.3    Top Level - PD6 Poll-Decide 

Here is a statement of the X/Open Poll-Decide architecture's top-level algorith- 
mic intention: 

Poll resource managers and decide to commit or rollback the resource 
operations. 

This understanding is necessary for architecture evolution involving Two-Phase 
Commit DTP functionality. 

This is a succinct statement of the architecture's function because it uses 
vocabulary with specific technical meaning in the Two-Phase Commit DTP do- 
main. For example, "Poll resource managers" is understood to refer to asking 
all resource managers for their final approval of transactions which were previ- 
ously requested by the application program. Furthermore, the whole statement 
is known to describe the Poll-Decide procedure of Two-Phase Commit, which 
ensures transaction atomicity. It implicitly contains the definitions, necessary 
conditions, and proof of atomicity. For example, it is assumed that each resource 
manager will only give final approval when it can guarantee that the transaction 
is consistent and atomic with its other transactions and operations.1 

Figure 3.2 shows PD6, the functional representation of this understanding. 
PD6 is a causal process description involving the abstract states and functions 

commit 
ByFcn: Poll-Decide-ok      ^^^^      ByFcn: Poll-Decide-error 

POLLING-OK POLLING-ERROR 

ByFcn: Commit ByFcn: Rollback 

rm1-commit rm1-rollback 

rm2-commit rm2-rollback 

Figure 3.2: PD6 - Poll-Decide Top-Level 

at the top of the functional hierarchy of the complete FR (Figure 3.1). It could 
be paraphrased in English as: 

Following the architecture's commit state, the Two-Phase Com- 
mit implementation polls the resource managers and decides 
whether to commit (entering POLLING-OK state) or rollback (entering 

Note that some of the necessary functionality may not be implemented in the architec- 
ture. In this case the FR captures designer intentions which must be realized in the final 
implementation. The FR's "proof" of atomicity therefore contains assumptions and specifi- 
cations for the final implementation. For example, here the FR displays the unimplemented 
intention that the resource managers vote in a way which ensures atomicity. This assumption 
is a specification which can be verified in the final implementation. 
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POLLING-ERROR state) the resource operations. Depending on which 
of these states is reached, the system next enters a state initiating 
commit or rollback. 

PD6 and this paraphrase both connect the general statement of Poll-Decide 
at the beginning of this section to this specific architecture. PD6 relates the 
algorithm to the abstract intentions of Poll-Decide and transaction atomicity. 
Furthermore, the abstract algorithm in PD6 is traceable to its implementation 
in the architecture. 

Contrast PD6 with the Rapide ADL in Figures 2.3 and 2.4. The Rapide 
ADL description contains no information about the architecture's intentions, 
is computationally obscure because of the rule-event-poset computation model, 
and contains many confusing architectural details. The actual Rapide code is 
far more obscure because of complex syntax, as discussed in Section 2.4. In 
contrast, PD6: 

• States top-level intentions, 

• Uses a simple, procedural, local model of computation, 

• Gives only essential information. 

PD6 is a simple and useful view in the DTP domain. Furthermore, it points 
to a rich explanation of how the architecture implements Poll-Decide, including 
the reasoning leading to the top-level specification. This reasoning and imple- 
mentation is explained in the complete hierarchical FR leading from PD6 to 
the Rapide code. Since the FR is added on top of the Rapide code, it adds 
information and value without losing anything which is initially present. 

The connection to lower levels is given by the functions in PD6. The func- 
tions are not included in the paraphrase above. States and realized transitions 
are sufficient for a top-level description. More detail can be obtained by referring 
to the functions which cause the state transitions. For example, the transition 
from the architecture's abstract commit state to the abstract state POLLING-OK 
is caused by the Poll-Decide-ok function. This is shown by the ByFcn annota- 
tion in the CPD. The definition of Poll-Decide-ok then shows how committing 
the transaction is justified and realized in terms of more concrete views and 
Rapide architectural implementation. 

Tracing all the functions downwards through the hierarchy give a complete 
explanation, presenting all of our understanding of the architecture. This ex- 
planation contains captured views, abstractions, and intentions, and suggests 
simple inferences such as: 

1. Concurrent polling computations merge. 

2. The prepare_call and preparejreturn states are paired, and could cor- 
respond to procedure calling in the X/Open specification domain. 

3. The prepare_call states produce a Two-Phase Commit "polling" com- 
putation. 
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4. Polling's sole effect is a decision branch in the Two-Phase Commit proto- 
col. 

The nature of the explanation will become more concrete as we present the 
FR hierarchy bottom-up in the following two sections. 

3.4    Bottom Level - PDO State Machine 

The bottom level of every functional representation gives the device's primitive, 
uninterpreted structure and/or behavior. This bottom level must be in FR 
syntax and conform to FR theory and ontology for describing devices. FR 
bottom levels typically describe behavior with a CPD. 

The architecture we wish to represent is given by Rapide code like that in 
Figure 2.4. The structure creating behavior consists of the connection and ab- 
stract behavior rules extracted in Figure 2.3. These rules describe behavior with 
semantics given by the Rapide interpreter. Like other kinds of programs, they 
describe a range of potential behaviors. Actual behavior depends on particular 
run-time input. An example of run-time behavior is given by the poset trace in 
Figure 2.5, which is another kind of behavior description. 

How can we capture Rapide X/Open behavior in a CPD? There are various 
possible CPD's which can be chosen according to goals. Writing each possible 
CPD requires determining states and transitions. For example, the poset can 
be seen as a CPD where the events are CPD states and the transitions are 
satisfied dependencies. However, this is a weak description because states are 
partial, because it covers only a single execution, and because it covers only a 
single transaction. An alternative CPD, which could also be constructed au- 
tomatically from a Rapide representation, consists of disjoint segments where 
rule preconditions and postconditions are states connected by a transition cor- 
responding to a rule firing. This essentially reformats the rules as a CPD, and 
makes the Rapide execution model implicit in the transition justifications. It 
has the advantage of generality, being equivalent to the Rapide code for all ex- 
ecutions, including multiple transactions. It has the disadvantages of partial 
states and obscurity due to the disconnectedness of the rules and the implicit 
computation model. 

For algorithmic understanding, we chose another representation that displays 
important behavioral relationships using total states, for all possible executions 
of a single transaction. This is stronger that the alternatives in the sense that 
a CPD total state completely describes the state of the architecture, capturing 
and facilitating important understanding. It more general than the poset in 
the sense of capturing all possible executions for a single transaction. It is 
less general than the Rapide code of its CPD equivalent because it covers only 
a single transaction. This restriction is necessary to have a fixed number of 
complete states. 

More positively, the single transaction assumption captures an important, 
essential way of viewing and understanding architecture and DTP behavior. For 
algorithmic understanding, DTP systems and protocols are typically discussed 
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with respect to single transactions. This is the case in the X/Open and Rapide 
literature, much of the DTP literature, and in our descriptions of natural under- 
standing of X/Open earlier in this report. Furthermore, the simulation example 
in [11], given in Section 2.4, uses a single transaction for analysis. 

Figure 3.3 presents PDO, our CPD capturing this Poll-Decide behavior of the 
Rapide X/Open architecture. PDO is a state transition diagram for a finite state 
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Figure 3.3: PDO - Poll-Decide Finite State Machine 

machine showing all possible executions and internal states involving a given 
transaction. It is a complete bottom-level description of how the prototype and 
the architecture can behave. 

The states of PDO are the complete, mutually exclusive states that can 
occur during prototype execution, subject to concurrency. Each state is a set of 
architecture events. In the figure, for clarity we show only new events, when in 
fact the CPD states consist of all architecture events that have occurred.2 For 
example, the state [tm.xal.preparejret(ok) tm.xa2.prepare.ret(error)] 
means that those two events have occurred. Other events which have occurred, 

2Events can be removed if they are no longer significant. For example, an event can only 
trigger a rule in a process once, so it can be removed after all possible triggerings. 
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such as tm.tx.commit_call, may also be in the state but are not shown in the 
figure. 

The links of the CPD show the transitions in the fsm. CPD links have 
annotations justifying the transitions. In PDO all of the transitions are due 
to connection or abstract behavior specification rules, or to concurrency in the 
architecture, as described below. 

PDO is divided according to the architecture components. The states above 
the top heavy dashed line and below the bottom heavy dashed line involve the 
transaction manager, TM. The states in the heavy dashed boxes involve the 
resource managers, RM1 and RM2. 

Now we will further explain PDO and its treatment of concurrency by nar- 
rating its transitions for the architecture execution described in Section 2.4 and 
recorded in the poset in Figure 2.5. PDO covers the architecture beginning with 
its tm.tx.commit_call event. PDO begins in its [tm.tx.commit_call] state. 
PDO can then change to the [tm.xal.prepare_call tm.xa2.prepare_call] 
state. This state corresponds to the architecture after those two new events 
have occurred. The link in PDO has the annotation: ByRapide: Bl; Polling 
phase. This represents the transition being caused by Rapide rule Bl. "Polling 
phase" is a comment from the rule in the architecture which is added as a 
comment in the annotation. 

The lightly dashed boxes in Figure 3.3 are sub-fsm's that execute 
concurrently. From state [tm. xal. prepare_call tm. xa2. prepare.call] , 
PDO enters state [tm.xal.prepare_call] in the left sub-fsm and state 
[tm.xa2.prepare_call] in the right sub-fsm. This represents forking into 
concurrent execution in the architecture, shown by branching arrows with the 
annotation ByRapide:    Fork. 

The left fsm captures an execution thread involving resource manager RM1. 
Within the left sub-fsm there are transitions corresponding to a call passing 
across the connection from TM to RM1, user interaction requesting an "ok" or 
"error" return, and either return passing across the connection from RM1 to 
TM. Each is annotated with a Rapide rule or user interaction as a cause. The 
right fsm is similar, capturing a concurrent execution thread involving resource 
manager RM2. Each sub-fsm can finish in one of two states. 

Following completion of concurrent execution in both sub-fsm's, PDO 
enters a state corresponding to one of the possible pairs of finish- 
ing states of the sub-fsm's, e.g. PDO state [tm.xal.preparejret(ok) 
tm.xa2.preparejret(error)]. The states signify that both events have oc- 
curred in the architecture. These transitions correspond to concurrent execution 
ending and becoming a single thread in the architecture. Each of the possible 
PDO states is at the heads of two joining arrows, one from each sub-fsm, with 
annotations ByRapide:Merge. 

Finally, the state with both "ok" returns has a transition to a state corre- 
sponding to commit_call events for both RM's, with an annotation giving the 
cause as Rapide rule B2. The other three states after merging each have at least 
one "error" return. They are all followed by transitions to the state correspond- 
ing to rollback-call events for both RM's, with an annotation giving the cause 
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as Rapide rule B3. 
In summary, PDO is an FR causal process description for the behavior of 

the X/Open architecture. It is behaviorally equivalent to the architecture for 
all possible executions of a single transaction, in the sense that its states and 
transitions completely capture the possible states (sets of events) and transitions 
in the architecture. The causal process description is a finite state machine. PDO 
has many conceptual and representational advantages over the original Rapide 
code. In the following section, we will see how it provides the basis for functional 
abstraction as we present the remainder of the FR bottom up. 

3.5    Intermediate Levels 

The rest of the FR is a hierarchy of CPD's. The CPD at each level is a finite 
state machine similar to PDO. However, higher level machines are successively 
simpler, and introduce abstract states that may not be sets of architecture events 
as in PDO. Furthermore, functions in higher level machines may point to lower 
machines and/or other justifications rather than Rapide rules and interactions. 

3.5.1    PD1 - Abstract Sub-Devices 

PDO can be divided into sub-devices corresponding to the architecture compo- 
nents - TM, RM1, and RM2. These components are based on distribution in 
the architecture and the X/Open standard. Other components may be better 
for creating and representing understanding. FR allows the creation of such 
new components, called abstract sub-devices. 

In the PDO state machine above we see there are disjoint regions for the 
polling and decision behaviors in TM. To distinguish these computations, PD1 
is created by dividing PDO with separate abstract sub-devices for the polling 
and decision phases, as shown in Figure 3.4. Syntactically, PD1 is a causal 
process description consisting of four sub-CPD's connected at common states 
(boldface). Each sub-CPD is given a name expressing an understanding of its 
function appropriate for this level of the hierarchy. 

PD1 introduces a functional decomposition in place of the original archi- 
tectural decomposition. This decomposition is suggested by the causal process 
description representation of PDO. It is not apparent in the architecture code 
(although it is suggested by comments). This functional decomposition will be 
useful in forming and representing functional understanding in the higher levels 
of the FR described below. 

3.5.2    PD2 - Rule Logical States 

Functional understanding involves "reading between the lines" to see intentions 
that are not explicit in the architecture. This includes reading between the ex- 
plicit states of the architecture to see logical states corresponding to intentions. 
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Figure 3.4: PD1 - Functional Abstract Sub-Devices 
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PDO makes two such states explicit in a CPD that represents understanding of 
intentions that are implemented using Rapide rule semantics. 

In PDO and TM:Choose in PD1 we see transitions to the final states caused 
by rules B2 and B3. Semantics of Rapide rules and their interpretation are 
implicit in these transitions. The interpreter first checks rule preconditions, 
leading to an "accept" or "don't-accept" state in the interpreter. When accept 
occurs, postcondition events are generated. Furthermore, triggering depends on 
satisfying the rule's precondition pattern, which is given in the fairly elaborate 
Rapide pattern language. For example, any of the three states ui.PDO and 
TM-Choose which contain at least one "error" return will trigger B3. Reading 
between the lines here means understanding that acceptance captures a useful 
logical property, "some.error", shared by three different states. 

Such understanding is represented in the TM:Choose sub-device of PD2, 
shown in Figure 3.5.   Boldface shows the changes from PDO and PD1.   me 
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Figure 3.5: PD2 - Rule Semantics Abstractions 

additional states B2-all_ok and B3-some.error have been added as abstract 
intermediate states. Therefore implicit states and intentions are represented 
explicitly PD2 is equivalent to the architecture and PDO in the sense that it 
reproduces the original behavior (but also added new states and transitions). 

This requires understanding Rapide rule pattern semantics. For ex- 
ample, the precondition of rule B3, (?x in xid) (?i in 1. .NumRMs) 
XAsCi) preparejret(?x, error), must be understood as matching sets ot 
tm xa<i>. preparejret(?x, error) events, where some event has an error 
return 3 This understanding is represented by the functions B3_Pattern and 
B2_Pattem which annotate the transitions to the new states. The functions 
are followed by appropriate comments. 

3This is the original rule with a transaction identifier parameter x of type xid. Recall that 
the transaction identifier is implicit on our usual event notation for brevity. 
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Similarly, links are added connecting the new abstract states to the original 
states which are consequents of the rules. These links are annotated with func- 
tions B2_Action and B3_Action to represent that the new logical states cause 
the original events, again capturing understanding of Rapide rule semantics. 

We will see the usefulness of the new states higher in the FR. For exam- 
ple, the "some-error" logical property will be given Two-Phase Commit domain 
interpretation as the intention of recognizing when some resource manager dis- 
approves finalizing the transaction. 

3.5.3    PD3 - Distribution Removal 

The X/Open standard and Rapide architecture emphasize that TM, RM1, and 
RM2 are geographically distributed components. Connections between them 
are denned in the architecture by connection rules. Rapide produces events for 
connection traversal which have the same status as events from other aspects of 
architecture behavior. Distribution and intermingled connection and behavior 
events complicate architecture understanding. For algorithmic understanding, 
we wish to abstract away distribution and its connection machinery. 

PD3 is a CPD for a non-distributed version of the Rapide X/Open archi- 
tecture, shown in Figure 3.6. In PD3 all of the connection machinery and its 
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Figure 3.6: PD3 - Connection Elimination 

consequences have been removed, producing a simpler representation.   States 
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and transitions due to connections have been eliminated. Most remaining states 
have new names, where connection terminology has been removed from event 
names. There are also new functions throughout. 

The PD3 fsm is functionally equivalent to PD2 and the architecture in the 
sense the same function is being computed. Particularly, the final states of 
PD3 correspond to the final states of PD2 and the architecture for all input. It 
is not strictly execution equivalent because it does not pass through the same 
states and transitions. Actually, PD3 passes through states and transitions that 
correspond to a subset of the states and transitions in PD2 and the architecture, 
and through added abstract states. 

This simplification captures understanding of distribution in the architec- 
ture and of its implementation with connection rules. This functional abstrac- 
tion'is represented by the new functions. The most important new functions, 
shown in regular boldface, show how connections are eliminated. For example, 

in PDO, PD1, and PD2 we have: 
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Function Fork_Connectl represents understanding of the connection in the 
architecture, and of how it may be eliminated. The transitions and states in- 
volving the connection above are replaced in PD3 with: 

ByFcn: Fork_Connectl 
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i rm1-prepare_call j 

Note that that states based or original Rapide events are replaced with 
states with new names which eliminate connection terminology, e.g. the "xa" 
service designation. While indications of distribution are eliminated, "rml" is 
still present to distinguish the two RM's in the non-distributed view. Note also 
that the finite state machine still has concurrent sections, as indicated by the 
dotted box. Other similar functions are shown in regular boldface. 

Because all state names were changed to non-distributed conventions, all 
states now have new names, and are abstract states. This means all functions 
must be changed to explain the new names. This is included in the functions 
above. The remaining functions do not directly eliminate connections, but are 
changed for new names, and are shown in italicized boldface in Figure 3.6. 
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3.5.4    PD4 - Concurrency Removal 

After distribution is removed, PD3 still contains concurrent processes that ob- 
scure the essential Two-Phase Commit Poll-Decide algorithm. In the archi- 
tecture, the transaction manager polls both resource managers concurrently. 
This is not an essential aspect of Poll-Decide.4 Concurrent polling complicates 
representation and understanding. 

PD4 abstracts away concurrent polling, as shown in Figure 3.7.   Compare 
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Figure 3.7: PD4 - Serial Effect From RM's 

PD4 with PD3 in Figure 3.6. PD4 eliminates the concurrent regions and the 
states and transitions involving concurrent polling. The result is a CPD which 
is a conventional finite state machine, with no concurrent sub-fsm's. PD4 is 
functionally equivalent to PD3. It is execution equivalent to the subset of PD3 
which is preserved. 

PD4 uses and represents understanding of concurrency in the architecture 
and the algorithm. This is captured by four functions like User-Serial 1 which 
replace the concurrent regions. These functions' justifications contain under- 
standing of concurrency in the Rapide execution model, and of its role in this 
specific calculation. For example, function User-Serial 1 causes a transition to 

4Of course Two-Phase Commit and Poll-Decide are motivated by concurrent resource op- 
erations, involving both multiple transactions and multiple resource operations for the same 
transaction. However, in the single transaction view, Poll-Decide takes place after these con- 
current operations are finished. Polling doesn't have to be concurrent. The architecture 
presumably used concurrent polling either because of 1) an architectural decision to use con- 
current polling for efficiency, or 2) to avoid specifying irrelevant detail, because Rapide rule 
code is concurrent by default, requiring extra coding effort to make it serial. 
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State [rml-prepare^ret(ok) rm2-preparejret(ok)] when the result of con- 
current polling is approval from both resource managers. This is justified by 
understandings such as: 1) polling forks from and merges into a single sequential 
thread 2) the time orderings of the concurrent processes don't affect results, 
i.e. they are serializable, and 3) the user interactions in both RM's determine 
the state after concurrent polling. 

Once again, functional abstraction created a representation that is simpler 
and closer to to top-level intentions regarding Poll-Decide. Implementation de- 
tails which are irrelevant at this abstraction level were removed using knowledge 
and understanding of the architecture, Rapide, and the concurrency domain. 
The understanding which permitted abstraction is recorded in the function jus- 
tifications. They capture subsidiary intentions, which have implementations 
that can be traced down the hierarchy. 

3.5.5    PD5 - X/Open Standard Call Removal 

For the purpose of understanding Poll-Decide, concurrent polling is an unneces- 
sary and distracting artifact of how Poll-Decide was implemented in the architec- 
ture We removed it and recorded understanding of its role and implementation. 
PD4 contains one remaining artifact of the architecture - C calling conventions. 

Because the X/Open standard described interfaces using C calls and returns, 
Kenney used them to define the interfaces between operations of the architec- 
ture This causes an call event to be generated at the beginning of an operation, 
and a corresponding return event to be generated at its conclusion. For example, 
in PD4 states contain paired <rm>prepare_call and <rm>preparejret<code> 
events from the polling call to and returns from resource managers RM1 and 
RM2 Poll-Decide can be implemented without the equivalent of subroutine 
calls and returns, so the calling machinery can be seen as an unnecessary and 

distracting artifact. . 
As in the preceding sections, we use functional abstraction to simplify and 

clarify the representation. PD5 abstracts away calls and returns, as shown m 
Figure 3.8. Treatment is similar to the functional abstraction which produced 
PD3. PD5, in comparison with PD4 (and lower levels), has eliminated the 
calling machinery and its consequences. States and connections due to calling 
have been eliminated. Most remaining states have new names, where calling 
terminology has been removed from event names. There are also new functions 

throughout. 

3.5.6    PD6 - X/Open Poll-Decide 
In our bottom-up narration, the FR hierarchy culminates in the top level, PD6, 
which is a specification of Poll-Decide in the Two-Phase Commit and distributed 
transaction processing domains. PD6 is presented and described in Section 3.3 
above. It is reproduced below for comparison with PD5. 

The representation is organized by functions, each of which relates function- 
ality in higher levels to behavior and other justifications from lower levels and 
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domains. Note that functions can be replaced with alternative realizations and 
justifications without affecting the higher level. This is part of what "functional" 
and "abstract" mean. Note also that functions are useful for non-function un- 
derstanding and reasoning. For example, they provide an attachment point for 
rationales. With the functions creating PD5, for example, the author could 
record the rationale for concurrent polling. 

Now that the complete hierarchy has been presented, we can appreciate the 
explanation that extends downward from PD6. All of the understandings, sub- 
sidiary intentions, implementations etc. discussed in the preceding sections are 
preserved and accessible in the FR. This material constitutes a rich explanation 
of the architecture in terms of intentions and domains at various level. The 
next chapter describes how the explanation can be automatically accessed, fol- 
lowing formalized relationships in the FR, in response to particular questions 
and needs. The semantics of FR can be described using these relationships. 

3.6    Summary 
This chapter described a functional representation for the X/Open Rapide ar- 
chitecture which captures understanding of Two-Phase Commit Poll-Decide. 
The FR is a hierarchy produced by various functional abstractions in various 
domains. Each level is a causal process description that is a finite state ma- 
chine for complete states of the architecture. The bottom level completely 
captures architecture behavior for single transactions. Successively higher lev- 
els simplify, refine, and focus the description towards the top-level specification 
of Poll-Decide. Abstraction between levels is given by functions, which identify 
functionality and intentions in various domains. Function justifications capture 
the understanding that enable the architecture to be understand bottom-up. 
The also reproduce the understanding needed to implement the architecture 
top-down. The complete FR captures many kinds of an understanding in a rich 
explanation. It can be exploited in various tools and tasks that require such 
understanding. 

179 



Chapter 4 

Rapide Explanation Tool 

A functional representation captures understanding of a device. This under- 
standing is in the form of an explanation of how abstract functionality is real- 
ized in the device. As discussed in Chapter 1, writing an FR for an architecture 
creates and systematizes understanding for documentation and communication. 
Beyond this, the FR has specific benefits at two levels: 

1. The FR provides explicit answers to certain questions. 

2. These answers are necessary or useful for architecture evolution tasks. 

This chapter discusses important question classes, and procedures for easily 
obtaining answers from the FR. These answers are the primitive elements of 
the FR's complete explanation. Answering such questions is a general quality 
of FR's and architecture FR's, independent of ultimate application. Chapter 5 
describes how answers delivered for architecture questions can be applied to 
improve architecture evolution. 

More specifically, here we describe how the explanation can be automatically 
accessed in response to particular questions and needs. Answers are delivered 
based on the relationships in the FR. We first give a generalized model of FR's, 
identifying the major entities and relationships. We then give a catalog of 
question types which may be answered and procedures for answering them. A 
practical explanation tool is described. We discuss its use for navigating the FR 
and providing needed answers and explanations on demand. 

4.1    Delivering Explanations From FR's 

Explanations are assertions and inference links which connect intentions to each 
other, and which connect intentions to the architecture. There are many possible 
explanations for an architecture.1   An FR for an architecture makes explicit 

1 There are infinite possible explanations for the architecture because there are infinite valid 
assertions and inferences that can be made about it. More practically, there are many useful 
views, models, theorems etc. for the architecture. 
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one of the possible explanations. Given a particular FR, we say that it is a 
complete explanation in the sense that it contains everything the author wanted 
to include. The author deemed it sufficient for his or her purposes, and stopped 
adding new material. We consider this FR to be the entire explanation universe 
for the purposes of this chapter. 

Still, FR's for even simple devices and architectures can be large and com- 
plex. For example, the X/Open FR in the preceding chapter has many states, 
functions, and components in seven layers. In textual functional representation 
syntax, the FR is voluminous and the relationships are obscure. Therefore, in 
the previous chapter we used drawings for individual CPD's. To be clear, we 
could only display a single, greatly simplified CPD at a time. It is not practical 
to present the complete FR graphically on normal-sized paper. Size aside, the 
relationships, including function definitions and CPD transitions, can include 
multiply diverging and converging branching. For these and other reasons, the 
complete FR and explanation cannot be presented or comprehended at one time. 

Rather, the FR user must focus on parts of the FR, as dictated by his or 
her current needs. Parts of the complete FR or explanation are themselves 
explanations. At a certain size and complexity they become comprehensible 
and useful nuggets of assertions and inferences. The smallest explanations are 
the primitive relationships of FR. The FR primitive relationships can be seen 
as answering important questions. In this chapter we will describe delivering 
explanations in terms of these primitives. 

Figure 4.1 summarizes this. A large and complex complete FR or explana- 

Two-Phase Commit Protocol 

Poll-Decide 

Question 

Answer: 

FR: 
Complete 

Explanation 

Architecture - ADL 
(RAPIDE Prototype) 

Figure 4.1: Delivering a Primitive Explanation From an FR 

tion is shown with a simplified depiction.  Delivering a primitive explanation 
involving the indicated state transition requires answering the question, "How 
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does the transition occur?" The state change is achieved by a particular abstract 
function. The function's justification describes how the transition is achieved 
by lower level behavior, principles etc. Therefore the question is answered by 
presenting the function definition and its connections in a lower CPD. The func- 
tion and function justification are "How" and "How Implemented" relationships 
between the questioned transition and its realization. 

In general, explanations can be delivered by extracting primitive relation- 
ships in the FR based on their semantics. This provides answers to simple 
questions. More complex questions may cause larger explanations to be con- 
structed and delivered by combining primitive answers. In this chapter we will 
mostly describe the primitive relationships of FR and the questions they answer. 

4.2    FR Entities and Relationships 

The FR language is described in [2], [7] and elsewhere. We will give a simplified 
FR-Rapide description based on [7] and FR-Rapide extensions. 

To illustrate this description, we will use the generalized example functional 
representation in Figure 4.2. The figure includes the elements of the X/Open 

CPD2 ByFcn: Fcnl 

CPD1      stateM 

Figure 4.2: Generalized Functional Representation 

FR in the preceding chapter. 
The primitive boxes are states, with state names or predicates like "state2- 

1". States are connected with directed links or transitions. Sets of connected 
states and transitions form state transition diagrams called causal process de- 
scriptions or CPD's. 

There are various grouping constructs involving CPD's. A named CPD, 
e.g. "CPD2", may comprise a complete level in the FR's explanation hierar- 
chy. CPD's contain named sub-CPD's called components, e.g. "Componentl". 
Logically, components, levels, and larger aggregations in the FR, and the com- 
plete FR are all devices. 
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Transitions have various annotations. The most important annotation is 
ByFcn which gives a function name with a corresponding function justifi- 
cation or definition, e.g. "Fcnl" and "Fcnl Def". Function definitions have 
various forms which we won't describe here. Typical elements in the definitions 
are preconditions and postconditions (If and ToMake), and definition elements 
describing a realization of the function in terms of CPD's, components, func- 
tions, definitions, inferences, domain principles etc. 

Other annotations are specific to Rapide and architectures. ByRapide 
connects a transition to a Rapide rule by which it is realized. InPoset connects 
states, transitions, and CPD's to parts of Rapide posets which record instances 
of those FR elements in a particular Rapide execution. 

4.3    Questions and Answers 

The FR syntactic description above included relationships that are specified 
explicitly in FR's, e.g. transition(<state>, <state>). There are also implicit 
relationships which can be easily inferred from the syntactically explicit rela- 

tionships. 
Questions are partly specified relationships. Answers are bindings to the 

missing elements, which are provided by the FR. For example, the question: 

Q> What state makes  a transition to state2-2? 

is a natural language form of the partly specified relationship: transition(?, 
state2-2). It is answered: 

A:   state2-l makes  a transition to  state2-2. 

by finding in the FR that "state2-l" has a causal link to state2-2 and can be 
bound to "?". Similarly, the question: 

Q> What is the relationship between state2-l and state2-2? 

is a natural language form of ?(state2-l, state2-2). It is answered by binding 
"transition" to "?". 

There are many syntactic relationships in FR's. Such questions correspond 
to the explicit and implicit relationships in the FR, along with possible missing 
elements. Therefore there are many such questions that can be answered by the 
FR. It would be possible to construct a general facility to answer meaningful 
questions, e.g. like a relational database query language. 

However, there is a relatively small set of relationships and questions that are 
especially important for architecture evolution tasks. Some important question 
classes are shown in Table 4.1. 

First we will consider questions involving standard FR elements. Then we 
will discuss questions involving extensions for FR-Rapide. In both cases, simple 
answering procedures will be given for each question type. 
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1. Where is statel-2? 

2. When does statel-3 occur? 

3. What does Fcnl do? 

4. How is state2-2 achieved (starting with state2-l)? 

5. How is Fcnl implemented? 

6. Why is state-1 used? 

7. Why is Rapide rule Bl used? 

8. Where is poset event explained? 

Table 4.1: Important FR and FR-Rapide Questions and Relationships 

4.3.1    FR Question Classes 

FR question classes involve FR elements that are used in FR's for all kinds 
of devices, not just architectures. Therefore the following discussion applies 
to architectures, and to other kinds of devices as well. An explanation tool 
delivering answers to these questions can be used for both architectures and 
other kinds of devices represented by FR's. 

Where Questions — Syntactic Context 

Where questions refer to objects' locations and contexts in the FR. An entity 
may be located in various, possibly nested contexts. 

A simple Where question is answered by finding the object and giving an 
immediately enclosing context: 

Q> Where is  statel-2? 

A:   statel-2  is  in component Componentl. 

Nested contexts can be retrieved by subsequent questions: 

Q> Where is Componentl? 

A:   Componentl  is  in CPD CPD1. 

Q> Where is CPD1? 

A:   CPD1  is the bottom level of the FR. 

More complex question forms and answering procedures can be used to re- 
trieve nested and/or multiple contexts with a single question. 

184 



Where explanations are based on Is-In relationships in the FR. There are 
corresponding questions based of the inverse relationship, Contains. 

When Questions - Causation 

When questions retrieve immediate causal relationships. Recall that FR and 
Rapide are based on causation rather than time. Therefore, asking "When does 
<state> occur?" is asking about what causes the state. "When" refers to 
sufficient cause rather than a particular moment in time. It entails logical and 
temporal order. Furthermore, FR considers states to be the causes of subsequent 
states. 

A simple When question is answered by finding the questioned state and 
returning state or states that have a transition to it: 

Q>When does  statel-3 occur? 

A:   statel-3 depends  on statel-2. 

More complex question forms and answering procedures can be used to re- 
trieve causal sequences and branching within a CPD. 

When explanations are based on the May-Cause relationships in the FR. 
There are corresponding questions based on the inverse relationship, May- 
Depend-On. 

What Questions - Function Effect 

What questions retrieve functionality represented in the FR. Simple function- 
ality is a state change from a function's precondition state to its postcondition 
state. The states describe the net effect of the function - what it does. 

A simple What question is answered by giving the precondition and post- 
condition states of a function: 

Q> What does Fcnl do? 

A:   Given state  state2-l,  function Fcnl  achieves  state state2-2. 

Note the difference between What questions and When questions. When 
questions refer to arbitrary state transitions, which may be of various types. In 
contrast, What questions refer only to transitions caused by functions, where 
transition links have the ByFcn annotation. 

What explanations are based on the Function-Achieves relationship between 
a function and its state change effect. The inverse Achieved-By-Function rela- 
tionship is important enough to distinguish in the following question type. 

How Questions - Function Name 

How questions retrieve the names of functions which realize state change func- 
tionality. They are an inverse of What questions. 

The simplest How question gives the name of a function which achieves a 
given state change effect: 
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Q> How is state2-2 achieved   (starting with state2-l)? 

A:   Given state  state2-l,   function Fcnl  achieves  state state2-2. 

Th function name is obtained from the ByFcn annotation on the transition. 
For many purposes, the function name may be evocative enough to be a useful 
explanation. 

How Implemented Questions - Function Realization 

How Implemented questions retrieve descriptions of functions' realizations: 

Q> How is Fcnl  implemented? 

The question is answered by giving the function's definition or justification. 
The form of the answer depends on the form of the function justification 

and the detail sought. Recall that function justifications can use CPD's, com- 
ponents, functions, definitions, inferences, domain principles etc. 

The simplest answer can be given when a function is implemented by a 
named CPD: 

A:   Fcnl  is  implemented by CPD CPD1. 

More general and detailed answers can be given by describing the imple- 
menting CPD in various ways. For example: 

A:   Fcnl  is implemented by a CPD with the  causal  sequence: 
statel-2 ->  statel-2    ->  statel-3 

Giving all the states is general, but may be confusing when there are many 
states and/or the states are obscure. Alternatives depend on the particular 
function definition. For example, it may be possible to say that the function is 
implemented by a component. 

On the other hand, there is more to the justification than just the states. It 
may be useful to also convey the annotations, componentization, level, context, 
domain connections etc. 

Depending again on the function definition and its nature, the diagrammatic 
form of the CPD may be the preferred answer. This requires departing from 
natural language explanation and the question answering model of explanation. 
We discuss alternative explanation modalities in Section 4.4 below. 

How Implemented explanations are based on the relationship between func- 
tion names and definitions. The inverse relationship is important enough to 
distinguish as the following question type. 

Why Questions — Abstract Intentions 

Why questions recover intentions that are realized by abstract implementations. 
Elements in a function justification are associated with the whole function and 
functional abstraction: 
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Q> Why is state-1 used? 

A:   state-1  is used to implement function Fcnl. 

The question is answered by giving the function's justification or definition. 
The form of the answer depends on the form of the function definition and 

the detail sought. Recall that function definitions can use CPD's, components, 
functions, definitions, inferences, domain principles etc. 

More detailed answers are possible. For example, more about the query el- 
ement's role can be shown by giving the function definition. More about the 
function can be shown by giving its functionality (as with What questions). 
However, the simplest answer may be preferable first, especially when the func- 
tion name evokes functionality and other questions can be asked for more details. 

Stronger answers may or not be possible. For example, Why questions may 
be seen as seeking explanation of the way the querying element interacts with 
other elements in the function definition. Or they may be seen as seeking 
design rationale. Such interpretations of why questions depend on the function 
justification, and on the kind of explanation sought. 

4.3.2    FR-Rapide Question Classes 

The question types above apply all FR's, for all kinds of devices. Fr-Rapide 
extends FR with bits of Rapide-specific syntax designed to specialize certain 
explanations to Rapide. They create FR-Rapide specific question classes. Here 
are some examples: 

How Questions — Rapide Implementation 

At the bottom level of the FR, transitions are caused by Rapide structure, not 
abstract functions. We give a distinctive answer form for How questions in this 
case: 

Q> How is  statel-2  achieved  (starting with statel-1)? 

A:  By Rapide rule Bl   [- <rule>] 

The form of the question is the same as the general How question above. 
However, at the bottom level states are Rapide events, and transitions are anno- 
tated with ByRapide and a pointer to an element of the Rapide code, typically 
an abstract behavior rule or a connection rule. The presence on a ByRapide 
annotation instead of a ByFcn annotation triggers the Rapide implementation 
answer form. The answer form is similar combined answers to a How and a How 
Implemented question above. 

How questions with Rapide implementations are based on the relationship 
between bottom-level FR transitions and implementing Rapide code. The in- 
verse relationship is important enough to distinguish as the following question 
type. 
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Why Questions - Intentions for Rapide Code 

Why questions should be answered for Rapide implementations as well as for 
abstract implementations. Given a Rapide element, intentions which the Rapide 
code implements are recovered from the FR. 

Q> Why is Rapide rule Bl used? 

A:  Rapide rule Bl  is used to achieve statel-2   (starting with statel-1) 

The question is answered by giving parts of the FR that use the Rapide element. 
In this case the Rapide element is a rule which implements a single transi- 

tion. There are more complicated cases. Given Rapide rules may be involved 
in various transitions in the FR. Rapide elements besides rules can be queried, 
e.g. "Why is Rapide jevent£ used?" The general answering strategy identifies 
all places in the FR that directly depend on the Rapide element. These rela- 
tionships are more restricted than the relationships involved in the general Why 
questions above. 

Rapide Behavior Questions — Intention Poset Mappings 

Unlike most other FR domains, Rapide provides an explicit, standardized rep- 
resentation of behavior - posets. For this behavior record to be useful, it must 
be mapped to both Rapide code and abstract intentions, e.g. during analysis 
or debugging. Presumably the Rapide environment records pointers to causing 
code in posets, and provides tools for relating traces to code. The user is then 
left to figure out the code's intentions and relate them to correct or incorrect 
behavior in the poset. 

With FR we have a record of intentions. Therefore it should be possible to 
give some intentions for given behavior in the poset. This could be valuable for 
many Rapide activities involving interpreting posets. 

Questions involving poset elements could be answered using Rapide methods 
to map from poset behavior to Rapide code, and then using the Why question 
above to find parts of the FR which depend on that code element. However, 
this is circuitous and crude. For example, since there may typically be a many- 
to-relationship between events and code, the Why question could return FR 
elements for all the events related to a rule, not just the FR elements related to 
the single query event. 

Therefore we suggest a question type that returns FR elements related to 
poset behavior elements. For example: 

Q> Where  is <poset event> explained? 

A:   <poset event>  is  in statel-1 

There are various cases, but the answering procedure can be similar to that 
for Where questions above. In Where questions a given FR element is located, 
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perhaps anywhere in the FR. In Rapide Behavior questions, the query item is 
a behavior element, not an FR element. So it is necessary to look within FR 
elements, and the behavior element may be found in multiple places in the FR. 
However, the behavior element will only be found low in the FR, in concrete 
states or transitions. For example, assume a query is made using a poset event. 
The event may be found as part of one or more FR concrete states. 

Rapide Behavior questions relate behavior to concrete parts of the FR con- 
taining Rapide events and transitions. Other question types can then be used 
to expand the explanation with abstract intentions, including functions and 
abstract states. 

There is obviously an inverse form of this question type. Given an intention 
in the form of a concrete FR element, we can see where it is manifested in a 
poset behavior description. 

Rapide Behavior questions provide the explanation primitives for many 
Rapide activities involving simulation and poset behavior traces. Tasks like 
architecture debugging, reverse engineering, analysis, and design verification 
can benefit from captured understanding that relates behavior to intentions. 
This is analogous to uses of FR with simulated behavior in physical devices, 
e.g. as described for simulation and design verification in [10] and [5]. 

4.4    FR-Rapide-Explain Tool Design 

We now consider the design of a practical tool for delivering explanations. Recall 
that we are emphasizing explanation primitives, as shown by the question types 
above. Larger explanations can be constructed from these primitives. 

We suggest a tool design that combines two interface paradigms: 

1. Question Answering 

2. Graphical Hypertext Navigation. 

4.4.1    Question Answering 

Question answering was described above. That discussion was partly intended 
to describe FR explanation semantics in terms of primitive elements of under- 
standing and explanation. The discussion was also intended to give a model of 
FR content and explanation delivery. 

Still, question answering has attractive qualities for practical tools. For 
example, the interface itself is easy to implement. Furthermore, interaction 
and output is self-documenting, so little training is required. This is because 
we already know meanings of the language involved. Only a small, structured 
subset of English is used. Therefore it is possible to quickly learn precise FR- 
Rapide semantics as specialization of initial intuitive semantics. 

Some of the advantages for simple novice use become disadvantages for more 
complex explanations and expert use.  For example, typing questions is slow, 
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and natural sounding answers seem verbose with familiarity. Similarly, question 
answering has narrow bandwidth and single, textual modality. 

4.4.2 Graphical Hypertext Navigation 

Graphical hypertext navigation offers complementary qualities. It is an alter- 
native paradigm for viewing an FR. Navigation is like a human reading a large, 
graphical depiction of the FR hierarchy. We can move freely over the FR, ex- 
panding or contracting context as needed. Multiple relationships and complex 
CPD's are visualized from diagrams. Complexity of the presentation can be con- 
trolled, e.g. by clicking to expand of contract the amount of detail presented. 
All this contrasts markedly with interaction though a narrow, local question 
answerer gate keeper. 

Lewis Johnson's I-Doc is an example of delivering explanations of programs 
by hypertext browsing, using the World-wide Web. [6] Instead of producing large 
documents with general information about a system, I-Doc generates specific 
descriptions, sensitive to the user's work context and level of familiarity with 
the system. Explanation technology is used to guide the generation process. 

I-Doc handles full natural language documentation, with arbitrary hypertext 
links. Navigating FR's, in contrast to documentation text, only requires a small 
set of link types, e.g. for FR primitives. On the other hand, FR should be more 
graphic, using diagrams instead of text, e.g. for CPD's, function definitions, 
and hierarchy visualization 

4.4.3 Tool Design 

We propose a tool that combines features of question answering, graphical hy- 
pertext navigation, and I-Doc. 

The user sees the FR primarily as a hierarchy of CPD's, with controllable 
detail. This is like the presentation of the X/Open FR in the figures in Chap- 
ter 3. An initial view could give an overview of the FR, like Figure 3.1. Clicking 
on a box gives a diagram for the corresponding CPD, e.g. like the CPD figures 
in Chapter 3 such as Figure 3.2. Clicking on a function name gives its justi- 
fication, as in Figure 1.4. Displaying such a justifications gives paths between 
CPD's, e.g. between PD6 and PD5 in that figure. Point and click interactions 
can be equivalent to asking questions (Figure 4.1). 

Where it's meaningful, question answering semantics and interface is pro- 
vided in parallel with point and click navigation. For example, a menu of 
relevant questions is displayed beside the graphical browser. When the cursor 
is on graphical elements, e.g. a function name, questions light up giving the 
meaning of possible mouse clicks, e.g. What and How questions based on the 
function name. Alternatively, navigation can be done by clicking on, or typing, 
a question instead of clicking in the diagram. Similarly, when the answer to 
a question is displayed graphically, the natural language answer can often be 
given in an answer box under the question. This immediately and constantly 
provides natural language explanation explicating the graphical explanation. 

190 



Such a tool could be implemented gradually, starting with the simplest ca- 
pabilities and existing interfaces. For example, the CPD figures in Chapter 3 
could be combined and browsed in a WWW demonstration. 

4.5    Summary 

This chapter discussed how explanations can be usefully obtained from FR- 
Rapide architecture FR's. Primitive explanation (and FR semantics) were de- 
scribed using the question answering paradigm. We gave a catalog of question 
types which may be answered and procedures for answering them. There were 
question types for all FR's and special question types for FR-Rapide. Asking and 
answering questions is similar to certain navigations in the FR. We contrasted 
the question answering and graphical navigation paradigms of explanation de- 
livery. A practical explanation tool was described for for navigating the FR 
and providing needed answers and explanations on demand. It provides con- 
nected question answering and graphical hypertext navigation interfaces which 
complement each other. 
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Chapter 5 

Evaluation and Discussion 

This chapter evaluates and discusses the limitations, generality, benefits, and 
prospects for applying FR to architecture-based software engineering. We first 
introduce issues and a basis for evaluation. Then we discuss FR-Rapide with 
respect these criteria at three levels of generality: 1) the Rapide X/Open archi- 
tecture, 2) other Rapide architectures and processes, and 3) general application 
to architecture-based methods. We conclude by reviewing our contributions and 
suggesting further work. 

5.1    Evaluation Basis 

We will take a top-down, benefit-based approach to evaluation. This means 
empirically considering the potential benefits of FR applications to architecture- 
based methods, and balancing them with costs and limitations. The resulting 
cost-benefit can be compared with alternative approaches for particular FR's, 
applications, and tasks. 

5.1.1    FR Benefits 

The general benefits of creating and using FR's for architectures were discussed 
in Introduction Section 1.4.2. Writing an FR creates and systematizes under- 
standing. The extant FR is a notation which records and recalls this under- 
standing for the author. Similarly, the FR is a notation for communication 
between the author and others. It serves the role of documentation, but with 
added formalized structure and conventions. Finally, the FR allows captured 
understanding to be manipulated, delivered, and exploited by automated tools 
and environments. 

In all these roles, the captured understanding is beneficial if it makes it easier 
to perform architecture evolution tasks. This is described more precisely and 
operationally by the question answering paradigm. Question answering shows 
exactly what information can be provided to a human or automatic user from 
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an FR This information is beneficial if it is necessary or useful for performing 
specific architecture evolution tasks. Chapter 4 gave types of questions that can 
be easily answered by an FR. For example, questions of the type "What does 
function do?" are answered by giving the state change caused by the function. 
The state change is described by precondition and postcondition states in a 

state language. 
Therefore, beneficial answers and information can be delivered if the b H has 

useful content. We evaluate potential benefit by considering the content which 
can be represented in FR's, e.g. specific functions and state descriptions. FR is 
highly general for representing architecture understanding. We believe FR, in 
principle, can capture any useful architecture and software engineering causal 
content. There are no known theoretical counter-arguments. This working 
hypothesis of FR representational completeness and generality can be stated: 

FR can represent any human causal understanding used in software 

engineering. 

Practical benefit depends on empirical issues, especially scalability, language, 
and validity. Scalability means that useful sized FR's can be created without 
practical problems of storage or access. Language issues involve the existence 
and semantics of adequate languages for FR state and function descriptions 
and justifications. Languages may range from informal to formally verifiable, 
depending on needs. Validity means that the FR is sufficiently correct for its 
intended purpose, within the constraints of its languages. These issues interact. 
For example, for given content, an FR with more detailed, formally verifiable 
state language requires more storage and access effort than natural language 
state descriptions, and is harder to create correctly. 

Some beneficial FR's can obviously be created. Consider an architecture 
evolution task which depends on one page of documentation, e.g. documenta- 
tion describing how architecture components change states in the requirements 
domain This documentation can be represented in FR. The FR constitutes 
semi-formalized structured documentation. The FR increases the size of the 
documentation, perhaps to five pages, but it will still have practical scale. The 
FR state language will be natural language, and can have the same semantics 
and validity as the original. The FR can answer the same questions, and provide 
the same benefits to the task as the original documentation. 

Example FR's are existence proofs for benefits. Practical benefits have been 
shown for example FR's in non-software domains. An FR for X/Open Rapide 
architecture is described in this report. This FR clearly has scale, language, 
and validity that is practically useful for tasks involving X/Open Poll-Decide, 
as discussed above and below. Practical benefits can be empirically investigated 
by creating more architecture FR's of varying size, language, and purpose. 

5.1.2    FR Costs 
Capturing understanding in FR can clearly be beneficial. However, the benefits 
must be worth the cost of creating and using the FR. 
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The obvious, seemingly unavoidable, cost is FR creation. As described in 
Chapter 1 and summarized in Table 1.1, creating an FR is a creative, laborious, 
expensive, and error-prone process. This cost can be seen as consisting of two 
components: 1) the cost of creating needed functional causal understanding, 
and 2) the cost of formatting this understanding in FR syntax. In many cases, 
1) the cost of creating needed understanding can be fully or partially discounted. 
For example, the needed understanding may already exist, and it may also be in 
a form close to FR, e.g. related formal specifications. Or, if the understanding 
must be created, it is likely to be necessary or useful regardless of whether it is 
in FR or some other notation. In this case, the cost of creation can be reduced 
by the value of other uses of the created understanding. 

The creation costs unique to FR include the costs of creating functional 
understanding of a form that would not be used otherwise, writing it in the FR 
language, and validating the FR. These costs vary widely, and depend on many 
situational and empirical factors. Note that creation is only performed once for 
a given FR, and therefore is a one-time overhead cost. 

The cost of accessing the FR is also situational and empirical. Access may 
produce a net benefit. Free access is provided when the FR is read manually, 
like documentation. Other forms of interactive and automatic access, such as 
question answering and browsing, as discussed in Chapter 4, cost more but may 
offer additional benefits. Particularly, because FR formalizes key understanding 
primitives, it enables understanding to be accessed, manipulated, and exploited 
by a wide range of tools and environments. Automatic access can therefore 
be a net benefit instead of a cost. More broadly, appropriate access enabled 
by FR can create valuable synergies. For example, we said that the cost of 
creating understanding should not be charged against FR if the understanding 
would have been created otherwise, and/or has other uses. Having automatic 
access provided by FR may enhance those other uses, and provide additional 
applications beyond those which initially motivated FR creation. 

5.1.3    Relative Cost-Benefit and Empirical Evaluation 

Cost-benefit therefore depends on the value of benefits over time, versus the 
overhead of creating and using the FR. It depends on particular FR's, archi- 
tectures, goals, tasks, applications, tools, environments, processes, people etc. 
Cost-benefit can only be determined empirically, in increasingly realistic appli- 
cations and environments. 

For both thought experiments, examples, and empirical evaluation, cost- 
benefit should be evaluated relative to alternative approaches. Presumably 
needed architecture evolution tasks will be performed in a particular environ- 
ment, with particular people, process etc., with or without an architecture FR. 
FR cost-benefits should be compared with alternative existing or proposed ap- 
proaches. The task fixes the scale, language, and validity needed, independent 
of FR. For example, above we said that an FR roughly equivalent to given 
short documentation can answer the same questions and provide at least the 
same benefits.   A relative cost-benefit comparison would consider the cost of 
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reformatting the documentation in FR, and the cost and benefit of particular 
forms of access for the original documentation and the FR representation. In 
certain tasks, the FR gives easier, more useful access than the the documen- 
tation, e.g. hypertext browsing by function or isolating functional hierarchies 
under particular views. 

So far we have one exploratory example of an architecture FR. Examples 
explore issues, show feasibility of construction and application, and give an 
upper bound data point for costs. The X/Open Poll-Decide example FR gives 
particular views, abstractions and languages. We evaluate this FR below. Then 
we generalize from our experience to other FR's for X/Open, FR's for other 
Rapide architectures and applications, and FR's for architecture-based software 
engineering with non-Rapide architectures and ADL's. 

5.2    FR's for Rapide X/Open Architecture 

5.2.1    Example X/Open Poll-Decide FR 

The X/Open Poll-Decide FR and its authoring decisions are described in Chap- 
ter 3. Understanding X/Open and its design intentions is discussed at the end 
of Chapter 2. Writing this FR was an exploratory exercise, and this influenced 
the design designs. Because it was an exploratory exercise, many aspects were 
probably not typical, so we won't over-interpret the exercise. Here are some 
experiences and observations: 

1. Authoring effort was high, in part because of the need to understand the 
architecture and its domains. 

2. It was possible to understand and model the architecture with a finite 
state machine in the bottom level of the FR. This led to complete, simple 
descriptions with total states at other levels of the FR. 

3. Abstract devices and components were not needed to control complexity. 

4. The abstraction hierarchy reflected abstraction towards the chosen top- 
level of algorithmic intentions. Particular abstractions, e.g. distribution 
and concurrency removal, were somewhat independent of each other and 
abstraction order. 

5. Intentions were complex, but they were organized into simple, local inten- 
tions, domains and languages by the chosen functional abstractions. 

6. Given an understanding or view, it was relatively easy to form the FR. 
The understanding suggested the functions and state descriptions. 

7. Other views and hierarchies could have been constructed to coexist in the 
same FR, as discussed below. 
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5.2.2    Other X/Open FR's 

The X/Open FR was constructed with a general bias towards algorithmic under- 
standing, e.g. for verifying and/or modifying the Two-Phase Commit implemen- 
tation. Other tasks require views and abstractions not present or emphasized 
in the example FR. From our experience it seems possible to create FR's for 
other useful views and functions. Such FR's could exist independently. They 
could also be combined, in an FR which shared lower levels, and then branched 
upward at various levels to different "top-level" descriptions. 

Similar Views and FR's 

Here are some alternative views and FR's which seem to be constructible in a 
manner similar to the X/Open Poll-Decide FR: 

1. Procedure Call Program - The FR displays procedure calling, and ab- 
stracts away concurrency and computed function. This could be used to 
visualize or modularize the calling structure. 

2. Correctness Proof - The FR is a formal correctness proof of Poll-Decide's 
correct functioning in a larger atomicity proof. The state language and 
function justifications are formal specifications and proof steps. The FR 
hierarchy is the proof tree, and displays independent components to the 
extent that the implementation and proof are modular. 

3. Poset Trace Interpretation - Chapter 4 described how questions can be 
answered about how the FR's intentions correspond to the poset behav- 
ior trace for a particular execution. Such correspondences could be per- 
manently build into an FR, for one or more simulated executions. The 
correspondences could be given by a new annotation type or by functions 
with justifications specific for each execution. 

4. X/Open Patient Billing System - In [11] Luckham and Kenney give an- 
other Rapide architecture, Patient Billing System, which incorporates the 
X/Open architecture. FR's can be constructed for this combined architec- 
ture, and other architectures embedding X/Open. They show the interface 
and functionality of X/Open in the larger architectures. 

Problematic Views 

On the other hand, we identified some views and understandings that could not 
be readily captured by FR. Some of these involved limits of static understanding, 
rather than FR alone. 

Our FR and the others above are nominally based on understanding based on 
the single transaction assumption. Views involving multiple transactions were 
not attempted, in part because they are not necessary for algorithmic under- 
standing of Poll-Decide. Presumably FR's could be created for reasoning about 
multiple transactions. They could involve interpretation of poset behaviors with 
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multiple transactions. They could also introduce states justified by the kinds of 
multiple transaction variants used in the transaction processing literature. 

As one example, the X/Open architecture is parameterized so it describes a 
family of architectures. The family consists of architectures with an arbitrary 
number of Resource Managers. The parameter NumRMs specifies the number 
of Resource Managers at architecture generation time. Our X/Open FR was 
for an architecture with two Resource Managers. For a substantial number of 
RM's, the FR would explode in complexity. No way is now known to simply 
parameterize the FR for NumRMs, like the Rapide code is. 

Similarly, Rapide is claimed to support dynamic architectures in the sense 
that architecture components can be created and destroyed at simulation time. 
It is challenging to represent understanding of such dynamism in FR (and other 
representations). 

5.3    Rapide Architectures and Applications 

5.3.1 Other Rapide Architectures 
Here are some issues not encountered in the X/Open example FR which could 
affect the construction of FR's for other Rapide architectures. 

1. Constructibility with finite number of states 

2. Complete states vs. partial states and delocalization, complexity... 

3. Use of Rapide constraints. 

5.3.2 Rapide Applications 
As discussed in Section 1.4.2, and above and below in this chapter, FR's are 
applicable to a wide variety of architecture tasks and tools. Tasks require un- 
derstanding. When an FR captures and delivers that understanding it can be 
useful in an application. Furthermore, FR's can capture a wide range of human 
causal understanding. 

The general architecture applications below mostly apply to Rapide tasks 
and tools. Here we will mention several specific Rapide applications. These are 
from the Rapide literature. [11] They would be good examples for studying the 
relative cost-benefit of FR-Rapide and possible tools. 

The X/Open Patient Billing System shows how Rapide posets reveal a bug 
- failure of the Transaction Manager to poll all resource managers. FR's can 
be constructed to 1) reveal this bug statically, and 2) explain the bug revealed 
in the poset, using connections between the poset and intentions in an FR, 
including the failed coordination intention. 

An FR can be used to plan simulations and record the rationale for particular 
simulation runs and analyses. For example, we can record understanding of 
why particular input may reveal a bug or correct function, in terms of abstract 
intentions. 
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The X/Open Patient Billing System was both a debugging example and 
an example of comparing two architectures, e.g. a local instance architecture 
against a reference architecture. FR's can be constructed to 1) compare archi- 
tectures statically, based on differences in their FR's, and 2) explain comparison 
using Kenney's method of comparing mapped posets. 

5.4    Architecture-Based Software Engineering 

What are the generality and limitations of FR for architecture-based software 
engineering using ADL's and environments other than Rapide? 

As we have repeatedly said, FR is broadly applicable, because many archi- 
tecture tasks require causal understanding and explanation. FR applicability 
for an application to a given task or tool can be assessed by asking potential 
users: 

"What explanation does your application need?" 

If the needed explanation involves causal reasoning, FR could support it, 
in principle. We say this because we believe that FR can capture any causal 
understanding used in software engineering. 

Specific applications could be need driven. They can involve various archi- 
tecture processes, tasks, and users. These can each involve process types like 
design, maintenance, evolution, testing, analysis, verification, validation, and 
system implementation. For each of these, there are many specific tools and 
uses. Commonly mentioned categories include debugging, documentation (e.g. 
dynamic, structured, natural language, automatic...), explanation, simulation, 
rationale capture, question answering, trace interpretation and explanation, de- 
sign verification, various kinds of inferences involving causal chains, and task- 
specific tools, e.g. an intention-based configurer for a domain-specific family of 
architectures and system products. 

Perhaps it's easier to discuss what FR does not apply to. It certainly cannot 
create understanding that is otherwise impossible. FR, and any other repre- 
sentation of understanding, can only represent what can be known from the 
information available. One example of this above was the impossibility of rep- 
resenting behavior that depends on unavailable dynamic information. 

More practically, FR is limited to causal processes. Temporal processes 
are usually causal processes. There are causal processes that are not acutely 
temporal. Chandrasekaran is refining these limitations of FR in forthcoming 
work on the foundations of FR. 

Roughly, we say that architectures and ADL's are subject to causal under- 
standing and FR representation if they are executable architectures. Architec- 
tures that consist only of static, structural relationships, e.g. module-connection 
descriptions, have no causal content, and FR is not relevant to them. 

On the other hand, architectures that have temporal behavior are causal. 
This temporal behavior must be specified by some form of program. There- 
fore architecture understanding overlaps program understanding. Architectures 
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may have programming aspects less common in routine imperative, sequential 
programming, e.g. rules, distribution, and concurrency. But these aspects are 
also present in non-architectural programs. Conversely, imperative, sequential 
programming may be used to give architecture behavior, e.g. in implemented 

Rapide modules. , 
The point is, there is no clear division between work in program understand- 

ing and work in architecture understanding. We are exploring the use of FR to 
capture and exploit understanding in both program understanding and archi- 
tecture understanding. The use of FR in program understanding is described 
in [4] and elsewhere. Insights from FR-Rapide architecture understanding have 
helped program understanding work, and vice versa. 

5.5    Contributions and Future Work 

The contributions of this work include: 

1. A framework for discussing architecture understanding, its representation, 

and its applications. 

2. FR-Rapide, a method of capturing and exploiting understanding of Rapide 

architectures. 

3. An example FR representing hierarchical understanding of the X/Open 

architecture. 

4 A model and semantics for FR explanation delivery based on the question 
answering paradigm, including important question types and answering 

procedures. 

5. Design of a tool which delivers explanations from FR's, which combines 
question answering and graphic hypertext navigation. 

6   Evaluation of with the example FR, and evaluation of the limitations 
generality, benefits and prospects for applying FR to architecture-based 

software engineering. 

Future work may include: 

1 Development Examples - Constructing more architecture FR's to explore 
scalability, language and validity issues, and specific technical problems 
such as partial states and views, function justification syntax, and the use 
of abstract sub-devices. 

2 Demonstrate Application Benefit - Start relative cost-benefit empirical 
studies, perhaps using existing Rapide examples and tools, as described 

above. 

3. Tool Development - Start developing and testing an explanation tool, 
perhaps using some of of the design given above. 
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