Stochastic Modeling and Simulation of Multiphase Reacting
Turbulent Flows with Complex Chemistry

by

Peyman Givi, Cyrus K. Madnia and Dale B. Taulbee =
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo '
Buffalo, NY 14260-4400 '

Final Report
for Grant _N00014~94-1—0667

March 1998

Prepared for
Dr. Gabriel D. Roy

OFFICE OF NAVAL RESEARCH _
Mechanics and Energy Conversion Division
800 North Quincy Street -
Arlington, VA 22217-5000




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this coliection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources.
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503,

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Blank) March 1998 Final Report April 1994 - May 1998

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Stochastic Modeling and Simulation of Multiphase Reacting
Turbulent Flows with Complex Chemistry G

N00014-94-1-0667

6. AUTHORS
Peyman Givi, Cyrus K. Madnia, Dale B. Taulbee

8. PERFORMING ORGANIZATION REPORT
NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Mechanical & Aerospace Engineering
State University of New York at Buffalo
Buffalo, New York 14260-4400

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217-5000

10. SPONSORING / MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

T PITRRUTION AT B

‘

i Approvea 1 puons weiease

A unon  nlkmaed

13. ABSTRACT (Maximum 200 words) .
Two physical phenomena have been the primary subject of investigation: (1) multiphase
transport in turbulence, (2) realistic chemistry in large scale numerical simulation
of turbulent combustion. In addition, two other phenomena have also been considered:
(3) scalar mising in turbulence, and (4) magnetoghydrodynamic turbulence. This Final
Report provides a summary of our accomplishments in research on each of the above
four problems.

14. SUBJECT TERMS
Multiphase transport, turbulent combustion,

15. NUMBER OF PAGES

turbulence modeling, 302

numerical simulation. 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

18. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-1
298-102




Contents

1

Summary of Achievements

Collaborators -
2.1 Postdoctoral Fellow . . . . . . . . . . . . .
2.2 Graduate Students . . . . . . ... ...

2.3 High School Students . . . . ... ... .. ... .. ... ... ... ... ..

Honors, Awards and Promotions

Publications

4.1 Journal Papers and Book Chapters . . .. ... ... ... ........ . .

42 Books Edited . . . .. ... ...

Public Lectures

-~J



Stochastic Modeling and Simulation of
Multiphase Reacting Turbulent Flows with
Complex Chemistry

Peyman Givi, Cyrus K. Madnia and Dale B. Taulbee
Department of Mechanical and Aerospace Engineering
State University of New York at Buffalo
Buffalo, NY 14260-4400

Abstract

Two physical phenomena have been the primary subject of investigation: (1) multi-
phase transport in turbulence, (2) realistic chemistry in large scale numerical simulation
of turbulent combustion. In addition, two other phenomena have also been considered:
(3) scalar mixing in turbulence, and (4) magnetoghydrodynamic turbulence. This Final
Report provides a summary of our accomplishments in research on each of the above
four problems. This work is sponsored by the Office of Naval Research (ONR), Grant
N00014-94-1-0667. Dr. Gabriel D. Roy is the Technical Monitor.

1 Summary of Achievements

This work deals with statistical-stochastic modeling and numerical simulation of complex
turbulent flows. The terminology “cbmplex” refers to issues which, if resolved, extend the
boundaries of applicability of current modeling and simulation schemes for analytical analy-
sis of turbulent flows. Two phenomena have been the primary subjects of investigation: (1)

multiphase transport in turbulent flows, and (2) inclusion of realistic chemistry in turbulent

combustion simulations. In addition, two other phenomena have also been considered: (3)
scalar mixing in turbulence, and (4) magnetoghydrodynamic turbulence. We do not im-
ply these are the only unresolved issues in turbulence research; there are numerous other
physical phenomena requiring further investigations. Neither do we suggest that the extent

of progress on the issues considered here is insufficient. On the contrary, within the past



decade significant contributions have been made in each of the constituting elements of this

research.

In the course of this research, we have been fortunate to make significant progress in each of
the problems considered. Appendix I through Appendix X provide a very detailed description
of our achievements in each of the constituents of our research. These achievements are

summarized below:

Dispersion and polydispersity of droplets in stationary isotropic turbulence: In
this part of our work, a rather detailed parametric study is conducted of dispersion and poly-
dispersity of liquid drops in stationary isotropic turbulence via direct numerical simulation
(DNS). Both non-evaporating and evaporating drops are simulated; in the latter both con-
stant and variable rates of evaporation are considered. The simulations of non-evaporating
drops are used to validate the numerical methodology and to assess the effects of the parti-
cle time constant and the drift velocity on the particle velocity autocorrelation, turbulence
intensity and diffusivity. The simulated results are also used to appraise the performance
of some of the available theoretical models for particlé dispersion in stationary isotropic
turbulence. The effects of the initial drop time constant, the initial evaporation rate, and
the drop Schmidt number on the probability density function (PDF) of the drop size are
studied. It is found that, after an initial transient period the PDF of the drop size becomes
nearly Gaussian. However, the PDF deviates from Gaussian as the mean drop time constant
becomes very small. The extent of this deviation depends on the evaporation rate. The effect
of the initial spray size on the PDF is also studied and it is shown that as the spray size
increases, the interaction between the spray and large scale turbulence structures influences
the PDF. The effect of the initial size distribution on the PDF is also investigated by varying
the initial standard deviation. Both Gaussian and double-delta initial drop size PDFs are
~considered. In the latter it is shown that a transition to Gaussian is possible provided that
the initial mean drop time constant is large and/or the initial standard deviation of the drop

diameter is small. Please see Appendiz I for a complete description of this work.

Stochastic simulations of particle-laden isotropic turbulent flows: In this part of
our work, stochastic simulations are performed of dispersion and polydispersity of particles
in isotropic incompressible turbulence. The mass loading of the particles is assumed to
be small; thus the effects of particles on the turbulence is neglected (one-way coupling).
. A stochastic model, based on the idea of “time series analysis,” is used to generate the

fluid velocity at the particle location. The results of the simulations are used to assess




the performance of the stochastic model via comparisons made with analytical and DNS
results. The model captures most of the trends reported in theory and DNS. However, the
continuity effect associated with the crossing trajectories effect is not captured. Also, the
peaking in the variation of the particle asymptotic diffusivity coefficient with the particle
time constant is not observed in the stochastic simulations. For evaporating particles, the
stochastic model predicts thinner PDFs for the particle diameter as compared to those
generated by DNS. The stochastic model is then implemented to investigate the effects of
the gravity on the evaporation. Several important features are observed in the results. The
depletion rate increases with the increase of the drift velocity at short and intermediate
times, and shows the opposite trend at long times. The standard deviation and skewness
of the PDF of the particle diameter indicate peak values in their variations with the drift
velocity. The dispersion of the evaporating particles is decreased with respect to that of the
non-evaporating particles at small drift velocities. An opposite trend is observed at large
drift velocities. The effects of the initial evaporation rate and the particle Schmidt number
on the evaporation of particles in the gravity environment are also studied with the stochastic

model. Please see Appendiz II for a complete description of this work.

Algebraic Reynolds-stress and void-fraction flux models for two-phase turbulent
flows: In this work, general “algebraic” closures are derived for the Reynolds stresses and
the fluxes of the void fraction in the Reynolds averaged transport equations of two-phase
turbulent flows. These closures are obtained from the hierarchy of second-order moment
closures and are favored over conventional models based on the “Boussinesq” type approx-
imations and linear gradient diffusion models. With a liberal use of the Cayley-Hamilton
theorem, “explicit” solutions of the algebraic equations are obtained for the Reynolds stresses
of both the carrier and the dispersed phases, and the turbulent fluxes of the void fraction.
The solutions for the Reynolds stresses compare well with available DNS data of particle-
laden homogeneous turbulent shear flows. By manipulating the explicit algebraic solutions,
relations are provided for the “effective” turbulent diffusivities of the Reynolds stresses and
the void fraction flux. These relations are utilized in the parabolic (thin layer) formulation
of two-phase turbulent shear flows. The predicted results for'a particle-laden axisymmetric
jet show encouraging agreements with available laboratory data. Please see Appendices IlI,

IV for a complete description of this work.

Large and direct numerical simulation of a methane jet flame: In this work, we
make use of the “filtered mass density function” (FMDF) for large eddy simulation of a jet

flame involving methane fuel. The flame chemistry is modeled via several “realistic” kinetics



models. The FMDF represents the single point joint probability density function of the
subgrid scale (SGS) scalar quantities and is obtained by solution of its modeled transport
equation. In this equation, the chemical reactions appear in closed form but the influences
of scalar mixing and convection Within the subgrid are modeled. The stochastic differential
equations (SDEs) which yield statistically equivalent results to that of the FMDF transport
equation are derived and are solved via a Lagrangian Monte Carlo scheme. The consistency,
convergence, and accuracy of FMDF and the Monte Carlo solution of its equivalent SDEs are
assessed via comparison with data generated by DNS and with experimental data. Please

see Appendiz V for a complete description of this work.

Structure of homogeneous non-helical magnetohydrodynamic turbulence: Results
are obtained from three dimensional DNS of non-helical magnetohydrodynamic (MHD) tur-
bulence for both stationary isotropic and homogeneous shear flow configurations with zero
mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed
in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown
to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value
of Rey =~ 30. The presence of the magnetic field has the effect of decreasing the kinetic
énergy of the flow, while simultaneously increasing the Taylor microscale Reynolds number
due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity
and the magnetic fields become increasingly anisotropic with increasing initial magnetic field
strength. The kinetic energy spectra show a relative increase in high wavenumber energy in
the presence of a magnetic field. The magnetic field is found to portray an intermittent be-
havior, with peak values of the flatness near the critical Reynolds number. The magnetic field
of both flows is organized in the form of “flux tubes” and magnetic “sheets.” These regions
of large magnetic field strength show a small correlation with moderate vorticity regions,
while the electric current structures are correlated with large amplitude strain regions of the
turbulence. Some of the characteristics of small scale MHD turbulence are explained via the
“structural” description of turbulence. Please see Appendiz VI for a complete description of

this work.

Non-Gaussian scalar statistics in homogeneous turbulence: Results are obtained
from numerical simulations of passive scalar mixing in homogeneous, incompressible tur-
bulent flows. These results are generated via the Linear Eddy Model (LEM) and DNS of
turbulent flows under a variety of mixing conditions. The nature of mixing and its response
to the turbulence field is examined and the single-point PDF of the scalar amplitude and the

PDF's of the scalar spatial-derivatives are constructed. It is shown that both Gaussian and



exponential scalar PDFs emerge depending on the parameters of the simulations and the
initial conditions of the scalar field. Aided by the analyses of data, several reasons are iden-
tified for the non-Gaussian behavior of the scalar amplitude. In particular, two mechanisms
are identified for causing exponential PDF: (1) A non-uniform action of advection on the
large and the small scalar scales, (2) the nonlinear interaction of the scalar and the velocity
fluctuations at small scales. In the absence of a constant nonzero mean scalar gradient, the
behavior of the scalar PDF is very sensitive to the initial conditions. In the presence of this
gradient, an exponential PDF is not sustained regardless of initial conditions. The numeri-
cal results pertaining to the small scale intermittency (non-Gaussian scalar derivatives) are
in accord with laboratory experimental results. The statistics of the scalar derivatives and
those of the velocity-scalar fluctuations are also in accord with laboratory measured results.

Please see Appendiz VII for a complete description of this work.

Conditional expected dissipation & diffusion in turbulent scalar mixing and re-
action: Analytical expressions are obtained for the conditional expected dissipation and
the conditional expected diffusion of a passive scalar contaminant in homogeneous turbulent
flows by means of several turbulence closures. It is shown that if the single-point PDF of
the scalar is represented by the family of Exponential distributions, the conditional expected
dissipation varies significantly depending on the exponent of the PDF. However, the con-
ditional expected diffusion remains identical. For those members with tails broader than
Gaussian, the conditional expected dissipation is concave up and for tails narrower than
Gaussian it is concave down. This is proved mathematically without resorting to asymptotic
analysis (of the final stages of mixing) as conducted previously. For all cases, the conditional
expected diffusion adopts a linear profile consistent with the linear mean square estimation
(LMSE) theory. The similarity of the conditional diffusion field is explained in the context
of the “lamellar” theory of turbulent mixing. The mathematical results are in accord with
previous results generated by DNS and are further validated here by comparison with data
obtained via the LEM. It is suggested that the behavior of the conditional expected diffu-
sion at the scalar bound has a significant influence on the evolution of the PDF. Please see

Appendices VIII and IX for a complete description of this work.

Inter-layer diffusion model of scalar mixing in homogeneous turbulence: A field-
parameterized model termed the Inter-Layer Diffusion Model (ILDM) is developed and is
implemented for the probabilistic description of scalar mixing in homogeneous turbulent
flows. The essential element of the model is based on the lamellar theory of mixing in the

context developed by Kerstein and proposes that there are two coupled mechanisms by which



the mixing process is described. These mechanisms are due to: (1) local events and (2) in-
tegrated global events. The mathematical formalities by which the closure is invoked are
described and it is shown that the conditional expected diffusion of the scalar field depicted
by the model depends more directly on the local events. With the manipulation of each of
these two mechanisms, several families of scalar probability density functions (PDFs) are
generated. These families include some of the distributions generated by other mixing clo-
sures. The similarity of local events imply the similarity of the conditional expected diffusion
as generated via these models. The global events manifest themselves by the evolution of
the conditional expected dissipation, and also the boundedness of the composition domain.
While the PDFs generated in this way are very different, their applications for modeling of
mixing limited reactions do not yield significantly different results. Please see Appendiz IX

and for a complete description of this work.
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Abstract—A detailed parametric study is conducted of dispersion and polydispersity of liquid drops in
stationary isotropic turbulence via direct numerical simulation. It is assumed that the flow is very dilute
so that the effect of particles on the carrier fluid is negligible (one-way coupling). Both non-evaporating
and evaporating drops are simulated: in the latter both constant and variable rates of evaporation are
considered. The simulations of non-evaporating drops are used to validate the numerical methodology’
and to assess the effects of the particle time constant and the drift velocity on the particle velocity
autocorrelation. turbulence intensity and diffusivity. The simulated results are also used to appraise the
performance of some of the available theoretical models for particle dispersion in stationary isotropic
turbulence. The effects of the initial drop time constant. the initial evaporation rate, and the drop Schmidt
number on the probability density function (pdf) of the drop size are studied. It is found that. after an
initial transient period the pdf of the drop size becomes nearly Gaussian. However. the pdf deviates from
Gaussian as the mean drop time constant becomes very small. The extent of this deviation depends on
the evaporation rate. The effect of the initial spray size on the pdf is also studied and it is shown that
as the spray size increases. the interaction between the spray and large scale turbulence structures
influences the pdf. The effect of the initial size distribution on the pdf is also investigated by varying the
initial standard deviation. Both Gaussian and double-delta initial drop size pdfs are considered. In the
latter it is shown that a transition to Gaussian is possible provided that the initial mean drop time constant
is large and or the initial standard deviation of the drop diameter is small. £ 1997 Elsevier Science Lid.
All rights reserved.

Kev Words: direct numerical simulation. isotropic turbulence. particle dispersion, polydispersity.
evaporating drops, drop size distribution

1. INTRODUCTION

Dispersion of heavy particles in turbulent flows has been the subject of numerous investigations
in recent years due to its applications in various aspects of technology (Eaton and Fessler 1994;
McLauglin 1994). One of the early theoretical studies of particle dispersion in turbulence is due
to Tchen (1947) who derives relations for the particle diffusion coefficient under the assumption
that the particle’s neighbouring fluid does not change in the course of its motion. Yudine (1959)
clarifies the consequences of this assumption by analyzing the motion of heavy particles in the
presence of gravity and shows that as the heavy particle is transported under the influence of the
external body force. its trajectory crosses that of the neighbouring. fluid particle which is not
affected by the gravity. This is referred to as the “crossing trajectories effect”. Csanady (1963)
points out the “continuity effect” which is associated with the crossing trajectories effect in the
presence of gravity, and results in the reduction of the velocity autocorrelation in directions normal
to the gravity direction in comparison to that in the gravity direction. Further relations for the
velocity autocorrelation. the diffusion coefficient and the turbulence intensity of particle loaded
turbulent flows are obtained by assuming either the fluid velocity autocorrelation along the particle
trajectory (Reeks 1971; Pismen and Nir 1978) or the fiuid spectral density function (Mei e al. 1991).

Experimental studies of particle dispersion in turbulent flow are pioneered by Snyder and Lumiey
(1971) who investigate dispersion characteristics of solid particles. They find that the particle inertia
decreases its turbulence intensity in comparison to the fluid turbulence intensity. Wells and Stock
(1983) study the effects of crossing trajectories in a homogeneous decaying turbulent flow. Using
an electric field, they succeed to eliminate or enhance the effects of gravity, and indicate that the
long time asymptotic particle diffusion coefficient is primarily affected by the drift velocity and that
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the particle time constant is mostly effective in modifying the particle turbulence intensity. The
experimental and numerical results of Wen ez al. (1992) in shear flows show that particles with
large response times are centrifuged toward the outer edges of the vortex structures resulting in
higher particle diffusivity coefficients.

Experimental studies of evaporating drops are somewhat limited in comparison to those of solid
particle dispersion. Previous studies have been mostly directed to assess the performance of
turbulence models in multiphase flows. Shearer et al. (1979) conduct experiments on axisymmetric
particle-laden jet flows to appraise the performance of a locally homogeneous flow model for
evaporating sprays. A somewhat similar experiment is conducted by Solomon et al. (1984) with
different loading ratios. Further laboratory and numerical experiments are conducted by Nguyen
et al. (1991) who investigate the effects of the interactions among the drops on the drag force and
the evaporation rate.

The important role of the small scales of the carrier phase in the dynamics of heavy particles
has motivated the use of direct numerical simulation (DNS). The implementation of DNS in
two-phase flows is pioneered by Riley and Patterson (1974) to investigate particle dispersion in
decaying isotropic turbulence. Using a low resolution simulation (32° grid points) and a relatively
small number of particles (432), they find that an increase of the particle inertia increases the
velocity autocorrelation. McLaughlin (1989) simulates particle deposition in a channel flow and
shows the tendency of particles to accumulate in the viscous sublayer. Squires and Eaton (1990.
1991a. 1991b) simulate both stationary and decaying turbulence fields with one- and two-way
coupling. The results show the increase of the eddy diffusivity of heavy particles over that of the
fluid particle for cases with one-way coupling. In the cases with two-way coupling they find that
the fraction of energy at high wavenumbers of the spatial energy spectrum of turbulence increases
relative to that at low wavenumbers as the mass loading ratio is increased. They also find that large
particies tend to collect preferentially in regions of low vorticity and high strain. This is also true
for the cases with one-way coupling. Elghobashi and Truesdell (1992, 1993); Truesdell and
Elghobashi (1994) conduct similar studies. They consider the full equation for the particle motion
and show that the Stokes drag is of primary importance for large density ratios. In the presence
of both gravity and two-way coupling they show that energy is transferred from the gravity
direction to other directions by the pressure-strain correlation. The settling velocity of heavy
particles in isotropic turbulence is studied by Wang and Maxey (1993) for different particle time
constants and drift velocities. The results show an increase of the settling velocity for all cases. The
maximum increase in settling velocity is obtained when both the particle time constant and the drift
velocity are comparable to the Kolmogorov scales.

This paper deals with the problem of dispersion and polydispersity of evaporating drops in an
isotropic turbulent flow via DNS. The DNS generated data are statistically analyzed to extract
important physical information pertaining to turbulent dispersion of evaporating drops. While the
polydispersity phenomenon caused by evaporation is the primary subject of this study. some issues
pertaining to dispersion of nonevaporating drops (solid particles) are also considered. In this
consideration. a detailed parametric study is conducted and the results are comparatively assessed
via existing analytical. experimental and. if applicable. DNS results. This assessment is very useful
for validations of our computational methodology and for the parameterization in the evaporating
drops simulations. In section 2 the problem formulation and numerical technique are described.
in section 3 the DNS results are analyzed: the summary along with concluding remarks are
furnished in section 4.

2. PROBLEM FORMULATION AND NUMERICAL TECHNIQUE

Since this is the first attempt in DNS of the evaporating drop dispersion in turbulent flows, the
problem is formulated based on models and correlations which are well established. The
implementation of these models requires several simplifving assumptions: these are discussed in this
section within the framework of the mathematical formulation. We consider motion of spherical
particles in an incompressible and isotropic turbulent flow. It is assumed that the dispersed phase
is very dilute. thus the effect of particles on the carrier fluid is negligible. The momentum equation
for each particle is considered in the Lagrangian frame of reference. In general. this equation
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contains the Stokes drag, the Basset force, the force due to fluid pressure gradient. the inertia force
of added mass, and gravity (Maxey and Riley 1983). However, the results of several previous
studies, e.g. Elghobashi and Truesdell (1992), indicate that if the ratio of the density of the particle
to the density of the carrier fluid is large, the Stokes drag and the gravity forces are dominant and
the other forces can be assumed negligible. With this assumption the momentum equation for a
single particle is expressed as:

dv _ 18y

i _ppdg(“ — V) + ge, v m
dX
=" 12

where u and v (boldface indicates vector) denote the fluid velocity at the particle location and the
particle velocity, respectively; ¢ is time, X is the center position of the particle. e is the unit vector
in the gravity direction, g is the gravity constant; p, and d, denote the particle density and diameter.
respectively; and y is the fluid viscosity. All of the variables are normalized by reference scales of
length, Lo, velocity, Us, and density, po. The length scale is conveniently chosen such that the
normalized size of the simulation box is 2z and the velocity scale is found from the box Reynolds
number, Res = (poUsLo/p). The fluid density is used as the scale for density.

In the simulations of non-evaporating (solid sphere) particles, the particle diameter remains
constant. For the evaporating particles. the rate of diameter reduction is modeled by the d*-law
(Strehlow 1985):

& = d2 — k1. 3]

where dy is the initial diameter of the particle and the depletion rate is given by
x = 8T In(1 + Bu)Chre, where I is the mass diffusivity coefficient and By is the transfer number
(Spalding 1953). The parameter Cr. is a correction factor to account for the convective effects (Ranz
and Marshall 1952):

Cre = 1 + 0.3Rey*Scy™, [4]

with Re, and Sc, representing the particle Reynolds and Schmidt numbers. respectively. It is
assumed that the flow is isothermal and that evaporation is due to a constant temperature difference
between the drop and the fluid. This model is in accord with that of several laboratory experiments
(e.g. Shearer er al. 1979). In a dilute flow. the ratio of the mass of the particle to the mass of the
carrier fluid is very small and it is assumed that all the particles are in contact with the carrier fluid
during evaporation. Therefore. the variation of x is only due to Cr.. The “particle time constant™
(t,) is defined by:

(1) = Pl—'é—(:’f = T — Tel. (5]

where 0 = (ppd/181) denotes the initial particle time constant. and:

Te = CRcTelh Teo = 48:1r ln(l + B\I)- [6]
By introducing a drift velocity, te = Trg, [1] is expressed as:
de 1 1
dt_zp"—v)+§:0‘“'e‘ !

The particle Reynolds number is defined as: Re, = (pidplu — v|) g with p; denoting the carrier fluid
density. Following Wang and Maxey (1993) the Reynolds number is related to the Kolmogorov
time (r,) and velocity (zx) scales with v = 1,5, where v = g/pr is the fluid kinematic viscosity:

12 12 12 ; )
Rep= (o ) ju—vi=4243( &) (2 =¥ (8]
VPp! Pt P o B
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The density ratio is kept constant (p/p, = 10~°) in all the simulations.

With the assumption of dilute particles, the Eulerian equations governing the carrier gas
transport are solved independently to determine the u-field. With the assumptions 'of
incompressible, isothermal flows this field influences dispersion, but not the other way around (i.e.
one-way coupling). Also, the possible corrections to the convective effects in the drop evaporation
due to flow unsteadiness, and the modifications of the drag force due to drop evaporation are not
considered. The DNS of the carrier fluid is based on a spectral collocation scheme involving Fourier
basis functions (Givi and Madnia 1993). The turbulent flow is assumed isotropic with triply
periodic boundary conditions, and is forced at low wavenumbers to maintain a stationary
(non-decaying) turbulent field (Givi 1989). Equations [1] and [2] are integrated in time using a
second order accurate Runge-Kutta numerical scheme. The fluid velocity at the particle location
is evaluated by a fourth order accurate Lagrange four point interpolation scheme.

3. RESULTS

Table 1 provides a listing of the flow parameters considered in the simulations. In this table. Re;
is the flow Reynolds number based on the Taylor length scale () and the root mean square of
the flow velocity (1), knax denotes the highest resolved wavenumber after deailiasing, 1 represents
the Kolmogorov length scale, 4 is the root mean square of fluctuating velocity, and / is the integral
length scale determined from the energy spectrum E(k):

 [*Ek)
Tt X k

dk.

The parameters listed in table 1 are used in the simulations of both non-evaporating and
evaporating drops. All the simulations are performed on 64° collocation points. In order to
determine the appropriate number of particles. some preliminary simulations are conducted with
16°. 21°. and 25’ particles. In agreement with the results of similar tests performed by Elghobashi
and Truesdell (1992) it is found that 21° particles provide sufficient accuracy. In the simulations
of the non-evaporating and constant rate evaporating particles. 21° particles are tracked. In the
simulations of variable rate evaporating particles 25 particles are considered. In the discussion
below -» and (-) denote the Lagrangian and Eulerian average values. respectively. The time
averaged quantity is denoted by an overbar. In the presentation of the results. time is normalized
with the eddy turn over time. / .

3.1. Dispersion of non-evaporating particles

The purpose of simulations considered in this subsection is threefold: (1) to validate our present
computational methodology by comparison with previous DNS results. (2) to appraise the
performance of some of the recent models via comparative assessment with present DNS results.
and (3) to identify the range of parameters in the evaporating drop simulations (discussed below)
and to compare present results with those in the presence of evaporation.

In the simulations here. the particles are initially distributed uniformly within the box and are
released with the same velocity as that of the local fluid particle. In order to obtain stationary.
conditions, the particles are allowed to interact with the flow for more than three eddy turnover
times before data are extracted for statistical analysis. A measure of stationarity is the temporal
variation of {Re,) as shown in figure 1 for four different 7, values with zero gravity. This figure
shows that a nearly stationary level is reached after an initial steep increase with a noticeable
overshoot for cases with 7, > 7,. The magnitude of {Re,» at the stationary condition increases
with the increase of t, due to the larger slip velocity experienced by heavier particles.

Table 1. Flow parameters used in the simulations

Re, Hhowe T ey u !
41 41 8229 572 x 10 ' 0.019 1.068
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Figure 1. Temporal variation of {Re,) for different values of the particle time constant.

It is useful to consider the Fourier transform of [7] (Chao 1964). This transform in time for
W=V — rye yields:

B 1
Ej(w) 1+ tiw®

9

where the spectral density function of the fluid velocity evaluated on the particle trajectory is
Ej(w) = @i(w)i* (@)Y (" indicates the variable in the Fourier space. * denotes complex conjugate,
and w is the frequency), and E? (w) = ii(@)Vi* (w)) is the spectral density function of the particle
velocity. The decrease of the ratio of E%(w) to Ej(w) with the increase of 7, indicates that heavy
particles have a less tendency to adjust to the flow fluctuations. Equations [9] also shows that EX(w)
deviates more from Ef(w) as w increases. Therefore. the ability of the heavy particle to follow the
fluid fluctuations decreases at high frequencies.

Mei et al. (1991) obtain a solution for the particle turbulence intensity ¢w?), and the particle
diffusion coefficient. €*. by assuming the form of the spectral density function as proposed by
Kraichnan (1970). They consider contributions of all the forces acting on the particle but suggest
that only the Stokes drag and the Basset forces need to be retained. Their final results for cases
in which the Basset force is neglected, are compared with our DNS data as will be presented below.
However. it should be mentioned that although Mei et al. (1991) consider a wide range of 7, and
tar values, our DNS results indicate (not shown) that for 7, > 57, and ry, > 5t the particle Reynolds
number becomes considerably larger than unity and is beyond the range of validity of the Stokes
drag. Therefore. we limit our parameter range to 7, < 57 and g, < Suy.

Figure 2 shows the particle velocity autocorrelation for four particle time constants at different
drift velocities. The autocorrelation of the fluid particle (t, = 0) is also shown for comparison. The
velocity autocorrelation is defined as:

p _ Ly O, (1)) _ .
R::(’) = <?*—wi (0)>> xqz = 1.2,3 “0]

where « refers to the coordinate direction (with no summation over repeated Greek indices). In
order to reduce the effect of anisotropy, the autocorrelations are calculated by averaging over the
three directions. These averaged autocorrelations are denoted by R® (no subscripts). In cases with
a non-zero drift velocity. three different simulations are performed for each case (using the same
velocity field for the fluid) with the gravity direction changing for each simulation. Therefore, the
velocity autocorrelation in the gravity direction is evaluated by averaging over the three gravity
directions, and those in no-gravity directions are averaged over six other directions considered in
three simulations. Inspection of figure 2 reveals that variations of the particle velocity
autocorrelation with the particle time constant and the drift velocity are in accord with previous
observations (e.g. Csanady 1963: Wells and Stock 1983).
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The variations of the particle turbulence intensity {w*) (normalized by the fluid turbulence
intensity <u*)) due to the particle time constant and the drift velocity are shown in figure 3 and
are compared with theoretical results of Mei et al. (1991). The temporal averages are evaluated
by data sampling over more than three eddy turnover times. This figure indicates that, as the
particle time constant is increased the particle turbulence intensity is reduced. In other words, the
increase of the particle time constant decreases the drop tendency to follow the fluid motion. As
1, is decreased, {w*/{u*) approaches unity. This is expected since w; = u, for 7, = 0. Although
we have not performed simulations with 7, < 0.47,, the results suggest the existence of a plateau
for vg = 0 near 1, = 0. This_is also observed in the results of Mei et al. (1991).

Comparing the values of ¢u*)/{u*) in the no-gravity direction for vs = vy and v4 = 5ty with
those obtained for 4 = 0 indicates the decrease of the particle turbulence intensity with the increase
of gravity. Particles moving in the presence of a gravity field have a shorter time to interact with
the instantaneous surrounding fluid particles in comparison with the particles moving in the zero
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Figure 2. Particle velocity autocorrelations in the direction normal to the gravity direction. (a) v = 0,
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Figure 3. Variation of the particle turbulence intensity normalized with the fluid turbulence intensity with
particle time constant.

gravity environment. However, as the particle time constant approaches zero, {w=)/{u*)
approaches unity for all the vq, values. This is due to the increase of particles’ tendency to follow
the fluid particle motion as the particle time constant is decreased. Figure 3 also shows that at a
given particle time constant the turbulence intensity of the particle in the gravity direction is larger
than that in the direction normal to the gravity direction.

Of central importance in the study of turbulent particle dispersion is the particle diffusion
coefficient defined as (Hinze 1975):

€.(1) =%%<<X§(t)>> 2=123. i

For stationary particles. this coefficient is related to the velocity autocorrelation by:

. () = ((n'i(O)))f Rb(7)dT = J({n',(O)n',(f))}dr. [12]

0

The fiuid particle diffusion coefficient €., , is defined similarly by replacing w, with «, in [12]. Figure 4
shows the variations of the "asymptotic diffusion coefficient™. ¢* (oc) with the particle time constant
and the drift velocity. Equation [12] is used for the determination of ¢" and the results are averaged
in the three directions. Several observations are made from this figure: (i) in the absence of gravity
(rer = 0) a peak is observed near 7, = 7,. The DNS results of Squires and Eaton (1991a) in
stationary turbulence also show a similar behavior. However, this is in contrast to the analvtical
results of Pismen and Nir (1978) and Mei er al. (1991) which show a monotonic variation for ¢?(=)
with 7,. Squires and Eaton (1991a) attribute the difference between the analytical and DNS results

. to the sensitivity of the numerical results to the sample of large scale motions in torced turbulence:
(i1) the increase of the drift velocity decreases the particle diffusion coefficient in both parallel and
normal directions to the gravity direction. This behavior is also predicted by the models of Csanady
(1963) and Mei er al. (1991): (iii) the diffusion coefficients are larger in the gravity direction than
those in the direction normal to the gravity direction; however. the difference decreases with the
increase of 7,; (iv) in agreement with the experimental results of Wells and Stock (1983) the
asymptotic diffusion coefficients are more sensitive to the drift velocity than to the particle time
constant.

Figure 4 also indicates that as the particle time constant approaches zero. for a constant drift
velocity. the particle diffusion coefficient does not equate that of the massiess fluid particle. This
is in contrast to the behavior of the particle turbulence intensity which approaches the tluid
turbulence intensity as t,— 0 (cf. figure 3). A decrease of the particle time constant, while the
magnitude of the drift velocity is kept fixed. corresponds to an increase of the gravity coefficient.
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Very small particles have small relative velocities and are capable of responding to local fluid
fluctuations instantaneously. This results in the adjustment of the particle turbulence intensity to
that of the fluid. However, since the effect of gravity on the carrier phase is neglected. by having
a finite drift velocity the particles move quickly through the vortical structures. This decreases the
particle velocity autocorrelation and therefore the diffusion coefficient.

3.2. Polvdispersity of evaporating particles

One of the major differences between non-evaporating and evaporating particle dispersion
phenomena is the lack of a stationary condition in the latter. When evaporating, the magnitude
of 7, continuously decreases with time; thus the momentum transfer between the particle and the
surrounding fluid is in a transient condition. At a constant gravity level, the problem of evaporating
particle dispersion is parametrized by: the initial particle time constant (t), the initial rate of
evaporation (t,), and the particle Schmidt number (Sc;). In addition. due to the intrinsic
non-stationary nature of the problem, the effects of initial conditions should also be considered.
In the following simulations, the largest evaporation rate is chosen such that the velocity
autocorrelation becomes close to zero by the time 1, = 0.17, (about 3.1 eddy turnover times). Very
low 1, values are not considered to avoid excessive computational requirements for particle
tracking. Therefore, we set T.o = 0.97./3.1 = 0.297. where . is introduced to relate the evaporation .
rate to the initial particle time constant. _

First, we consider cases with constant rate of evaporation in which the decay of t, is the same
for all particles. These cases are exemplified by neglecting the nonlinear term in (4], i.e. Cre= 1.
Figure 5 shows the velocity autocorrelation for evaporating particles. The autocorrelation of
non-evaporating particles (z.. = 0) is also presented for comparison. The initial position and
velocity of the particles are taken from the simulations of nonevaporating particles at the same
particle time constant. Therefore. the particles are stationary at time 7 =0 before the onset of
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Figure 4. Variation of the diffusion coetlicient for the heavy particle (hollow symbols) and the surrounding
fluid particle (solid symbols) with the particle time constant: (u) in the direction normal to the gravity
direction. (b) in the gravity direction.
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Figure 5. The velocity autocorrelation for the heavy particle at various evaporation rates for To = STh.

evaporation. The initial particle time constant is T = 57, and with a rate of evaporation of
T = 57, the magnitude of 7, is reduced to 0.5, by the end of the simulation. As expected, a decrease
of the particle time constant results in the decrease of its velocity autocorrelation; the larger the
evaporation rate the smaller the velocity autocorrelation at all times.

An important issue to address at this point is the speed of adjustment of the velocity of the
evaporating particle to that of its surrounding fluid. As indicated in figure 1 when particles are
released with a zero velocity relative to the fluid, there is a time delay before the average particle
Reynolds number reaches a stationary value. Therefore, a comparison of the magnitude of ¢Re, )
of the evaporating particle with those of the stationary non-evaporating particle at the same T
provides a reasonable indication of the speed of momentum adjustment. For the highest
evaporation rate (1. = 57,) shown in figure 5, ¢Re,» (1, =31)=0.585 and {Rey)y
(To = ) = 0.173. These values are very close to those for stationary non-evaporating particles at
the same particle time constant (0.589 and 0.172, respectively). This suggests that evaporating
particles adjust quickly to their new conditions.

For a constant particle Schmidt number. the rate of evaporation becomes dependent on the
magnitude of the particle Reynolds number and is different for each particle. Therefore, even with
an identical initial 7, value. the evaporation process results in polydispersity of drops. The
remainder of this section is devoted to the study of the properties of the drop size distributions
for different values of the particle time constant, the evaporation rate, and various initial
conditions.

Figure 6 shows the temporal evolutions of the probability density function (pdf) of the variable
7,” (proportional to the particle diameter). In this simulation, 7, = 57, T« = 57,. and Sc, = 1.0.
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Figure 6. Pdfs of 7} at different times for T = 5Tu, Te = 574, and Sc, = 1.
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Figure 7. Temporal variations of 7,/tw and {(zp/1)' ?y for different initial particle time constants and
evaporation rates.

The particles start to evaporate from a stationary condition at time 7 = 0, when the pdf is a delta
function. At longer times the mean shifts towards smaller 7,* values due to reduction of the particle

~size. The variations of ¢(t,/Tx)' %) and {1,/ are shown in figure 7 for simulations in which three

different groups of particles are considered; 7, = 57y, 27, and 0.5t with corresponding initial
evaporation rates of T = 57, 21, and 0.57,, respectively. Equation [5] indicates that for a constant
rate of evaporation. t, decreases linearly with time. When the evaporation rate is variable. a
deviation from the linear behavior is expected. However. figure 7 shows that for the cases
considered here the deviation is relatively small. This is mainly due to the one-way coupling
assumption. Obviously, larger particles show a more nonlinear behavior than the smaller ones due
to their larger Re, values. The magnitude of the particle diameter decreases nonlinearly from the
beginning and the rate of nonlinearity increases with time. This is easily explained by comparing
the rate of change of 1, and 7.°. For a constant rate of change of 7, (which is a reasonable
assumption for the cases considered here), d(t}%)/ds ~ constant/t,". Therefore. the rate of the
diameter decrease becomes larger as the size of the particle is reduced. Notice that although the
initial evaporation rate for each group has been chosen proportional to its initial particle time
constant, the curves of €(7, Tn)' %) and {7, T for different groups of particles are not identical.
This is due to the nonlinear variation of Re, with t, as observed in figure 1. When 7, is increased
by a factor of 10. the corresponding {Re,) is increased by a factor of about I5.

Shortly after the onset of evaporation. a wide range of droplet sizes is observed. In figure § the
pdfs of 7)* are considered at an intermediate time (1 = 1) and are shown to be close to Gaussian
for all the cases. In figure 9 the temporal variations of the skewness and the kurtosis of the pdfs
for the three cases are considered. At short times the pdfs are skewed towards the smaller sizes
while at intermediate times they become more symmetric. Although the differences in Re, for the
particles is responsible for the generation of size distribution at each time. the mechanism which
resuits in variation of Re, is different at short and at long times. At short times. the diameters of
all the particles are approximately the same and the changes in Re, are due to the differences in
the spatial locations of the particles. At long times. the differences in Re, are also dependent on
the size variations. In general. at intermediate times the pdf of the particle size is approximately
Gaussian. However. the larger the initial particle time constant. the closer the pdf is to Gaussian.
This is evident from figure 9 that shows larger deviations from Gaussian skewness and kurtosis
values as the initial size of the particles is decreased. Larger particles with 7,0 = 37, and 27, attain
pdfs with slightlv positive skewness after about one eddy turnover time. The skewness of the
particles with 7., = 0.57, remains negative for the entire simulation. In general, for large particies,
after an initial transient time which depends on the particle size the pdfs become very close to
Gaussian. But near the end of the simulations again the pdfs start to deviate from Gaussian. In
fact. when the skewness and the kurtosis of different cases are plotted versus the instantaneous




DROPLETS IN STATIONARY ISOTROPIC TURBULENCE 347

100 3 T T T
=1 S
/ N\
107 | 7
/ \
- . / \\
10- L ’ I. .
Rl 2 \
L/ \
L/
10° L/ - =55, 1,251, 4
b ! T T=21,T.E2T 3
/1 — == 1,=0.51, 1,=051,
/! Gaussian
10" 1 n 1 L L A 1 " " 1 i " "
-4 -2 0 2 4

1 1 12
(‘rp "<t . ”>>)/<<’cp >>

Figure 8. Normalized pdfs of t!* for different particle time constants and evaporation rates at 7 = |.

mean particle time constant. the pdfs become more non-Gaussian as €7, becomes smaller than
7. This is due to nonlinearity of the rate of decrease of t!* at small particle time constants. As
indicated above, as the size of the drop decreases. the rate of change of its diameter increases and
figure 7 shows that this effect is more pronounced when the drop time constant is small. Therefore,
the diameters of the smailer drops decrease faster than the diameters of the larger drops and the
pdf becomes skewed towards smaller diameter values.

We now consider the pdfs of particles with different initial evaporation rates. In figure 10 the
temporal variations of the skewness and kurtosis for particles with t,, = 57, and initial evaporation
rates of t. = 57y, 2.5, 7. and 0.47, are presented. The initial condition for these particles is
different than those considered earlier. At r =0 the particles are released with a zero velocity
relative to the local fluid particle. An initial transient time is needed before the particles attain
momentum equilibrium with the flow. Figure 10 indicates that this initial transient time appears
independent of the rate of evaporation and is about the same as that required by the
non-evaporating particles with 7, = 57, to reach the stationary condition (cf. figure 1). After the
momentum equilibrium is reached. the pdfs of 7!* tend to become Gaussian. Towards the end of
the simulation. the pdfs for cases with higher evaporation rates (z. = 51, and t.. = 2.57,) become
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Figure V. Temporal variations of the kurtosis and skewness of 45
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Figure 10. Temporal variation of the kurtosis and skewness of 1,° for an initial particle time constant
Tw = 57, at different evaporation rates.

strongly non-Gaussian. However. as the evaporation rate decreases the pdfs tend to remain
Gaussian. This is due to the smaller 7)* variances for cases with smaller evaporation rates.
Therefore, as the evaporation rate is decreased a “narrower” pdf is obtained and the difference
between the diameters of different drops is decreased. This. in turn, diminishes the effect of the
nonlinearity of the rate of change of diameter which tends to skew the pdfs.

Effect of particle Schmidt number. The magnitude of the particle Schmidt number influences the
rate of evaporation as indicated by [4]. Figure 11 shows the temporal variation of the Lagrangian
average of the nonlinear part of [4] for two different particle time constants and three Sc, values.
Two different initial conditions are considered: stationary  (solid symbols) and non-stationary
(hollow symbols). In non-stationary cases. the initial particle velocity is zero relative to the local
fluid: therefore. the initial value of ¢ Cr. — 1) is zero. After an initial increase, this value starts to
decrease due to the decrease of the particle size and consequently the decrease of the particle
Reynolds number. The comparison of the results in the stationary and the non-stationary cases
at the same Sc; = | reveals that for large particles. the value of {Cre — 1) in the non-stationary
case overshoots that in the stationary case. This is due to the variation of Re, in time which
experiences an overshoot before it reaches a stationary value (figure 1). For small particles Re, does
not overshoot. and neither does ¢Cg. — 1. In general. the increase of Sc, enhances the
contribution of the nonlinear part of [4]: however. for the cases considered here with Sc, as large
as 5 this contribution is always less than 50% of the constant evaporation rate ({ Cr. — 1) < 0.5).
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Figure 11. Variation of ¢Cre — 1) with time. (—) Too = 3Ty Toe = 3043 (- v = ). oo = 0.57,. 1o = 0.57.



DROPLETS IN STATIONARY ISOTROPIC TURBULENCE 349

0.10

0.08

0.06

Variance

T

0.04

0.02

0.00
0
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In figure 12 the temporal evolution of the variance of 7,° is shown for three different particle
Schmidt numbers. The initial particle time constant is 1,0 = 5t, for all cases. As the particle Schmidt
number increases the variance also increases. This means that at larger Sc,, a wider range of particle
sizes are present. At Sc, = 51, the difference between the maximum and the minimum values at
the end of the simulation is about 0.41 while the corresponding difference for Sc, = 0.1 is about
0.24. Therefore, while the minimum value of (z,,7,)' ? at the end of the simulation is the same for
both cases. the case with the higher Sc, value contains a higher number of larger particles. This
is due to the fact that the increase of Sc, enhances the effect of Re, on evaporation. The skewness
of the particle distribution towards smaller particles is also evident by comparing the distance from
the mean value to the minimum and the maximum value at all times. Examination of the temporal
variations of the skewness of 7. revealed that. in all the cases. the skewness takes negative values
at small times and then increases with time. For large 7, values. the skewness reaches small positive
values for intermediate times. But it decreases and takes negative values close to the end of the

_simulation when T, values for most of the particles become smail. Particles with smaller 7, values.

have negative skewness during the entire simulation. In general. the effect of the particle time
constant is more significant than the particle Schmidt number on the skewness of the particle
sizes.

Effect of spray size. In many practical applications the size of the spray is smaller than the
characteristic size of the flow. As the spray evolves with flow. dispersion of the particles is strongly
affected by the interactions between the spray and the carrier fluid. It is expected that the size of
the spray relative to the characteristic length scale of turbulence plays an important role on
dispersion. In the case of evaporating particles this becomes even more important since the size
distribution is also directly affected by the interaction between the droplets and the tlow at different
scales. In this subsection we investigate the effect of the relative size of the spray on the particle
size distribution. We initialize the problem by randomly distributing the particles inside a cubic
box which is located at the center of the computational box. All particles have the same size and

~a zero velocity relative to the local fluid element at r=0. The length of one side of the
particle-containing box is denoted by S and indicates the spray size.

First we consider a case with initial spray size S.// = 0.28. In figure 13 the variations of the
kurtosis and skewness of t!* are shown for two different initial particle time constants. On the same
figures the temporal variations of the spray size are also shown. This size is determined by the
dimension of the smallest box containing all of the particles at any time. Figure [3 reveals that
the kurtosis and skewness of the particle size are very different from those corresponding to
Gaussian. In contrast to the cases discussed earlier. the skewness is positive throughout the
simulation. For both of the particle time constants considercd. the growth of the spray size is nearly
linear in time. This can be interpreted as a constant diffusion velocity which is about the same in
both cases. The normalized spray size increases from its initial value to a final value corresponding
to the ratio of the computational box to the integral length scale. '
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Next. we consider cases with different S../ values. Examination of the temporal variations of the
kurtosis and skewness of 7, for cases with different S, and 7, values revealed that as the initial
spray size is increased. the oscillations in the skewness and the kurtosis diminish and the values

0.04 T .

0.03

0.02

Variance
PR W RS

LN B A S B S (N B

0.01

0.00
0

Figure 14, Temporal variation of the variance of t}* for different initial spray sizes. 1w = 5. T = 51
and Sc, = 1.
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approach those corresponding to the Gaussian distribution. Figure 14 shows the time variation
of the variance of 7!* for several values of Soil. The initial particle time constant and the
evaporation rate are t, = 51, and 1. = 51,. respectively. As the initial spray size is increased. the
instantaneous rate of variance increase approaches an asymptotic value corresponding to the case
with So// = 1.96. This implies that if the initial spray size is larger than about twice the integral
length scale. the effect of the spray size on the variance is negligible. In general. three distinct regions
are observed on the curves shown in figure 14. The first region corresponds to initial times
0 <1 < 0.3 during which the rate of variance growth is very small. Since particles are released with
zero relative velocity. they have the same initial Re, values and consequently the same initial
evaporation rate. Therefore. at initial times the variance remains close to zero. As the particle
Reynolds number increases. the particles experience different evaporation rates and the variance
starts to increase. Figure 11 shows that the time interval 0 << 0.3 corresponds to the period
during which ¢ Cg.) adopts large values. At large particle Reynolds numbers. in the second region
of the curves of figure 14 (0.3 < 1 < 2). the variance grows with a larger rate. The third region
(r > 2) is marked by the largest rate of variance growth. This is explained by considering figure
7 which shows that the rate of reduction of 7,° increases at large times when the size of the particles
is small.

Effect of the initial particle size distribution. The observed deviations of the particle size pdfs from
the Gaussian for small S, / values motivate the analysis of cases with initial Gaussian diameter pdfs.
These cases are characterized by the initial standard deviation of 7,° denoted by o,. The cases
considered in previous subsections refer to 6o = 0. The velocity and the position of the particles
are initialized randomly similar to previous cases. The size of each particle is selected randomly
from a Gaussian seed with specified values for the mean and the standard deviation. In order to
prevent very small and very large particle time constants, the standard deviations considered are
relatively small. '

Figure 15 shows the kurtosis of 7, for cases with several values of the initial standard deviation.
The initial mean particle time constant is €tw) = 51,. The case with the smallest initial spray size
(So/l = 0.28) is considered as the pdfs for this case deviate more from Gaussian; therefore. the
effects of the initial size distribution are amplified. As expected. by increasing the initial standard
deviation. the pdf becomes closer to Gaussian. For the range of €1 and S,/ values considered
here, a nearly perfect Gaussian pdf is achieved when the initial standard deviation is 6, = 0.07.
The effect of the initial standard deviation is more pronounced at early times. An interesting feature
observed in figure 15 is the similarity of the oscillations of the kurtosis curves for different cases.
This verifies our previous observation in that these oscillations are due to interactions between the
particles and the large structures of the flow. Since the initial spray size is identical. a similar
oscillation pattern is experienced in all the cases.

Next, we consider the effect of the initial spray size for a constant initial standard deviation of



352 F. MASHAYEK e al.

Kurtosis

20 ——— : L
0

t

Figure 16. Temporal variation of the kurtosis of 7, for different initial spray sizes. tw = 5tx. Tee = 3% and
Oy = 0.02.

oo = 0.02. Figure 16 shows the temporal variation of the kurtosis of 7! *. Similarly to the cases with
o = 0. the pdf becomes more Gaussian as the initial spray size increases. Contrary to the cases
with the same So//, the kurtosis curves of figure 16 are not similar. The time of the occurrence of
the first peak is decreased as the initial spray size is increased. This again is due to the interaction
of the spray with the larger scales of the flow as the spray size increases. The examination of the
variance of 7.° (not shown) for different cases indicated that the variance curves collapse for
S,/l > 1.4 when g, = 0.02 in contrast to S,/ > 1.96 when g, = 0.

Finally, for completion. several cases are considered with initially non-Gaussian drop size
distributions. For these cases. the initial distribution consists of two distinct uniform-size groups
of drops (the initial pdf of 7}* is a double delta). The drops are initially injected into the flow with
zero velocity relative to the local fluid and Sc, = 1. Figure 17 shows the temporal evolution of the
pdf of 7.* for a case with {7 = 5tcand 6o = 0.128. As indicated in the figure. by the time ¢ = 0.52
the two initially segregated branches of the pdf start to merge resulting in the increase of the 7;°
kurtosis (figure 18). At 1 = 2.35 the double-hump pdf evolves into a single peak one: at the final
time (7 = 2.62). the pdf is close to Gaussian. However. it is also possible that with a large initial
separation between the drop time constants (large gs) a single-hump pdf is not attained during the
evaporation period. Figure 18 shows that as ) is increased. for the same g,, the kurtosis of
1)* deviates less from that of Gaussian. Inspection of the pdf evolution for the case with {tp) = 1
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Figure 17. Pdfs of r}° at different times. The initial pdf is double delta with drop time constants at 4.87«
and 5.27,. 1. = 5t and Sc, = 1.
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Figure 18. Temporal variation of the kurtosis of t,* for different initial mean drop time constants and
initial standard deviations.

(not shown) indicates the persistence of the double-hump pdf throughout the simulation. The effect
of the variation of the initial standard deviation on the kurtosis is also shown in figure 18 for pdfs
with {10 = 57.. As expected, the evolution from a double-hump pdf into one with a single-hump
is expedited with the decrease of a,.

“Based on these results. it is concluded that the evolution of the pdf is very sensitive to several
parameters, especially {70, te, o, and So//. Based on the magnitudes of these parameters and
the initial form of the pdf. several asymptotic (€15 — 0) forms of the pdf are produced. It would
be instructive to suggest a dynamic (or Langevin) equation governing the evolution of the dispersed
phase pdfs in a carrier gas with a Gaussian velocity field. This equation must include the parameters
identified here as model input. Construction of such a stochastic model is currently underway; the
DNS results produced here are very useful in appraising the performance of such models.

4. SUMMARY AND CONCLUDING REMARKS

Results obtained by direct numerical simulation (DNS) are used to investigate dispersion of both
non-evaporating and evaporating particles in dilute stationary isotropic incompressible turbulent
flow. The evaporating case is considered with both constant and variable rates of evaporation. In
the simulations of non-evaporating particles, the effects of the particle time constant and the drift
velocity on the particle autocorrelation. turbulence intensity and diffusivity are investigated. In
agreement with the resuits of previous studies. it is found that the increase of the particle time
constant results in the increase of the particle velocity autocorrelation and the decrease of its
turbulence intensity. There is good agreement between the DNS results and the model of Met et al.
(1991) for the ratio of the particle turbulence intensity to the carrier fluid turbulence intensity, in
the absence of gravity. But the agreement diminishes as the value of the drift velocity is increased.
The particle turbulent diffusivity is rather insensitive to the changes in the particle time constant
in accord with the experiment of Wells and Stock (1983). However. the present results exhibit a
peak value in the variation of the particle turbulence diffusivity with the particle time constant.
In the absence of gravity. the peak value occurs for particle time constants comparable to the
Kolmogorov time scale. In the presence of gravity. the peak value for the particle diffusivity is
observed in the direction normal to the gravity direction. The value of the particle time constant
at which the peak value occurs depends on the magnitude of the drift velocity. No apparent peak
value is observed for the particle diffusivity in the gravity direction. In general. the particle
diffusivity is very sensitive to the drift velocity.

The effects of the constant rate evaporation on the particle velocity autocorrelation are studied
for different initial particle time constants. The results show a decrease of the particle velocity
autocorrelation with the increase of the evaporation rate for all the values of the initial particle
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time constant. Variable rate evaporation results in polydispersity of drops. The effects of the initial
drop time constant. the initial evaporation rate. and the drop Schmidt number on the probability
density function (pdf) of the drop size are studied. Both cases with initially stationary and
non-stationary particie velocities are considered. For cases with initially identical particle sizes it
is found that after an initial transient period. the pdf of the particle size becomes Gaussian. The
behavior of the pdf at long times depends on the particle size and the evaporation rate. In general.
when the mean particle time constant becomes smaller than the Kolmogorov time scale. the pdf
of the particle size starts to deviate from Gaussian. The extent of this deviation decreases with the
decrease of the evaporation rate. The simulated results with different particle Schmidt numbers
indicate an increase of the variance of 7. with the increase of the Schmidt number. Also. the results
show that the particle time constant is more influential than the particle Schmidt number in
affecting the skewness of the particle sizes.

The effects of the initial spray size on the distribution of the particle size are also studied. The
results indicate significant deviations from Gaussian when the initial spray size is smaller than the
flow integral length scale. The spray size displays a linear temporal growth which is indicative of
a constant rate of diffusion. This rate appears to be approximately the same for all the cases
considered here. In addition to the initially identical particle sizes. several cases are considered in
which the initial sizes of the particles are selected from a Gaussian seed. For an initial constant
spray size (0.28 times the flow integral scale) it is shown that a nearly perfect Gaussian behavior
is achieved when the standard deviation of the initial particle size distribution is 0.07. This value
changes with the initial mean particle time constant and the initial spray size. For an initial
‘double-delta pdf of the drop size it is shown that a transition to Gaussian pdf is possible provided
that the initial mean drop time constant is large and/or the initial standard deviation is small.

At this point it is emphasized that the results presented here are based on simulations with several
assumptions and simplifications as stated in section 2. These were necessary to make the problem
computationally tractable with available resources. Some of these assumptions can be relaxed with
improved computational capabilities. Future work is recommended in DNS of evaporating drop
dispersion with two-way coupling. inclusion of compressibility effects. and modification of some
of the coupling relations. It is also recommended to perform simulations with larger
resolutions/realizations with data analysis coupled with consideration of preferential distribution
of particles. The results generated thus far elucidate many important issues in regard to complex
physics of drop dispersion in turbulent flows. These results motivate further extensions and
utilizations of DNS for the analysis of more complex multiphase turbulent reacting flow systems.
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Abstract

Numerical simulations are performed of dispersion and polydispersity of particles in
isotropic incompressible turbulence. The mass loading of the particles is assumed to be
small: thus the effects of particles on turbulence is neglected (one-way coupling). The
stochastic model of Lu (1995) is employed to simulate the carrier phase. The results of
the simulations are compared with direct numerical simulation (DNS) data of Mashayek
et al. (1997) and theoretical results of Mei et al. (1991). The stochastic model predicts
most of the trends as portrayed by DNS and theory. However, the continuity effect
associated with the crossing trajectories effect is not captured. Also, the peaking in
the variation of the particle asymptotic diffusivity coefficient with the particle time
constant is not observed. For evaporating particles, the stochastic model predicts
thinner probability density functions (pdfs) for the particle diameter as compared to
DNS generated pdfs. The model is implemented to investigate the effects of gravity
on evaporation. It is shown that the depletion rate increases with increase of the drift
velocity at short and intermediate times, but an opposite trend is observed at long
times. The standard deviation and skewness of the particle diameter indicate peak
values in their variations with the drift velocity. Dispersion of evaporating particles
decreases with respect to that of non-evaporating particles at small drift velocities; an

" opposite trend is observed at large drift velocities. The effects of the initial evaporation
rate and the particle Schmidt number on the evaporation in the gravity environment
are also studied.

1 Introduction

In stochastic modeling of particle-laden flows, an ensemble of physical particles is considered

in conjunction with some assumptions pertaining to the turbulent flow field. The particles
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can be considered as “Monte Carlo” computational elements which are expected to portray
the physics of turbulent dispersion in a statistical manner. In this way, the flow field is
not exactly calculated; rather its stochastic “realizations” are attempted. One of the early
stochastic models of turbulent dispersion is due to Gosman and Ioannides (1981). In this
model, the turbulence is assumed to be isotropic and to have a Gaussian pdf with the variance
of 2k/3, where k is tﬁe turbulence kinetic energy. The fluctuating fluid velocity along the
particle trajectory is randomly sampled from the Gaussian pdf and the particle is allowed
to interact with an eddy over a time interval which is the minimum of two time scales: the
turbulent eddy life-time, and the residence time of the particle within the eddy. This model
was also implemented by Shuen et al. (1983); Solomon et al. (1984); Shuen et al. (1985) to
predict particle-laden jets, and by Graham and James (1996) who discuss the effects of the

model parameters and the initial conditions.

The model of Gosman and Ioannides (1981) does not account for the temporal correlations
and directional anisotropies associated with turbulent flows. This could result in some inac-
curacies in capturing some of the well-established features of dispersion, such as the crossing
trajectories effect. An improved model is proposed by Ormancey and Martinon (1984) which
accommodates for both the temporal and the spatial structures of turbulence. In this model,
the trajectories of massless fluid particles are constructed by integrating their Lagrangian
equations. Associated with each fluid particle is a “fuid domain” centered at the fluid par-
ticle location. A heavy particle can follow a fluid domain or can move from one fluid domain
to another. accounting for the effect of crossing trajectories. Within the fluid domain, the
fluid velocity fluctuation at the particle location is taken from a random sample with spec-
ified one- and two-point correlations. A particle remains within one fluid domain as long
as its distance from the fluid particle is smaller than some pre-defined length, or until the
turbulent structure around the fluid particle is vanished by exceeding the random life-time
of the fluid domain. The sizes and life-times of fluid domains are determined by length
and time scales of turbulence. Similar models are proposed by Berlemont et al. (1990);
Berlemont et al. (1991); Zhou and Leschziner (1991). Parthasarathy and Faeth (1990) use
a stochastic model to predict dispersion of particles in self-generated homogeneous turbu-
lence. This model is based on the idea of time series analysis of Box and Jenkins (1976) to
satisfy the mean and fluctuating velocities and Lagrangian time correlations of the velocity

fAuctuations. Parthasarathy and Faeth (1990) report good agreement between the model
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predictions and experimental data.

In this work, we consider the stochastic model proposed by Lu (1995). This model, similarly
to that of Ormancey and Martinon (1984), accounts for the temporal and spatial correlations.
However, instead of constructing the trajectories of fluid particles through the correlations at
several time steps, only the correlation between two successive time steps is cdnsidered. As
a result, the implementation of the model is somewhat easier and requires less bookkeeping
efforts. Also, by using the Eulerian (as opposed to the Lagrangian) autocorrelation, the |
model is capable of producing the same trend for the variation of the particle diffusivity
coefficient as those predicted by theory (e.g. Pismen and Nir (1978)). Lu (1995) reports
good agreements between the model predictions and experimental data of Snyder and Lumley
(1971). Here, we assess the performance of the model via comparisons with DNS data of
Mashayek et al. (1997) and theoretical results of Mei et al. (1991) in isotropic incompressible
particle-laden turbulent flows. The model is also implemented to investigate the effects of
gravity on polydispersity of evaporating particles. The stochastic model is briefly described in
§2, following the problem formulation. The model predictions are compared with the results
of DNS and theory in §§3 and 4, respectively. Iﬁ 85 the effects of gravity on evaporation is

analyzed followed by the summary and concluding remarks in §6.

2 Formulation

We consider the motion of spherical particles in an incompressible and isotropic turbulent
flow. It is assumed that the dispersed phase is very dilute, thus the effect of particles on
the carrier fluid is negligible. The momenﬁum equation for each particle is considered in
the Lagrangian frame of reference. In general. this equation contains the Stokes drag, the
Basset force. the force due to fluid pressure gradient, the inertia force of added mass, and
the gravity (Maxey and Riley, 1983). However, if the ratio of the density of the particle to
the density of the carrier fluid is large, the inertia, the Stokes drag, and the gravity forces

are dominant and the other forces can be assumed negligible. With this assumption the



governing equations for a single particle are expressed as

dv 18y

E—ppd:(u—v)-'-ge’ (1)
dX . '
it @)

where u and v (boldface indicates vector) denote the fluid velocity at the particle location
and the particle velocity, respectively; ¢ is time, X is the center position of the particle, e
is the unit vector in the gravity direction, g is the gravity constant; p, and d, denote the
particle density and diameter, respectively; and g is the fluid viscosity. All the variables are

normalized by reference scales of length, Lo, velocity, Uy, and density, po.

" In the simulations of non-evaporating (solid) particles, the particle diameter remains con-
stant. For evaporating particles, the rate of diameter reduction is modeled by the d*-law

(Strehlow. 1985)
df, = dgo — kt, (3)

where dy is the initial diameter of the particle and the depletion rate is given by: k =
8T ln(1 + Basr)Cre, where T is the mass diffusivity coefficient and By is the transfer number
(Spalding, 1953). The parameter Cre =1 + 0.3ReS*Sc3™ is a correction factor to account
for the convective effects (Ranz and Marshall. 1952) with Re, and Sc, representing the
particle Reynolds and Schmidt numbers, respectively. The flow is assumed isothermal and
evaporation is due to a constant temperature difference between the drop and the fluid. This
model is in accord with that of several laboratory experiments (e.g. Shearer et al. (1979)). In
a dilute flow, the ratio of the mass of the particle to the mass of the carrier fluid is very small
and it is assumed that the particles are in contact with the carrier fluid during evaporation.
Therefore. the transfer number By is the same for all the particles, and the variation of k is

only due to the parameter Cre. A relation for the “particle time constant” (7,) is obtained

from Eq. (3) P
pP P __ _
18/1 - TpO Tet’ (4)

m(t) =



d? s . .
where Ty = %‘;ﬁ denotes the initial particle time constant, and

Te = TeoCRey Teo = 4PZF In(1 + Bum). v (5)

For convenience, the largest evaporation rate is chosen such that the particle velocity au-

tocorrelation approaches zero by the time 7, = 0.17,0 (about 3.1 eddy turnover times).
Therefore: 1.0 = %“ = 0.297,, where 7. is introduced to relate the evaporation rate to the

initial particle time constant. By introducing a drift velocity, vs, = g, Eq. (1) is expressed

as

dv 1 1 . 6)

The particle Reynolds number is defined as: Re, = E-Ld"Lix—' with pg denbting the carrier
fluid dénsity. Following Wang and Maxey (1993) the Reynolds number is related to the flow

Kolmogorov time scale (7;) and velocity scale (vx) with v = TevE, where v = p/py is the

fluid kinematic viscosity

Re, = (ypp;;f)m]u —v|= 4.243(2—:')1’2 C—Z)WLUW_VI'_ (7)

For large particle Reynolds numbers a “modified” Stokes drag relation must be used. The
modification is in the form of an empirical correction factor which is multiplied by the Stokes
drag relation. The empirical correction factor is described as a function of the particle
Reynolds number ( f(R.e,,)) and can be easily implemented in Eq. (6) by replacing 7, with
a modified particle time constant, 7, = ?ﬁ!ﬁ' A variety of relations for f(Re,) is available

(Clift et al., 1978), here we use

f(Rey) =14 0.15Rey . ’ (8)

The particles can be tracked in the Lagrangian frame by integrating Eqs. (6) and (2) provided
that the fluid velocity at the particle location is known. Here, we use the stochastic model
proposed by Lu (1995) to simulate the fluid velocity. The rudiments of the model are taken
from the methodology of time series analysis (Box and Jenkins, 1976). Let the coordinate

system move with the mean velocity; thus. only the fluctuating velocities are considered.
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The particle position, X;(0), ¢ = 1,2,3, and velocity, v;(X:(0),0), are given at the starting
time ¢ = 0. The initial fluid velocity, u:(Xi(0),0), at the particle location is obtained from
a random Gaussian seed with the standard deviation u’ (assumed to be known @ priori).
Then, the particles are moved to their new positions, Xi(At) (At is the time increment),
using a second order Runge-Kutta method. In order to advance the calculations for the next
time step, the fluid velocity, ui(Xi(At), At), at the new particle location must be found. By
the time particles arrive at their new locations, the fluid velocity at the old particle location
changes to u;(Xi(0), At). To relate the old and the new fluid velocities at X;(0), the Eulerian

velocity autocorrelation

< wa(Xa(0), 0)wa(Xa(0 )At)>
< Wa(Xa(0), 0)wa( Xa (0),0) >

Foa(At) = =1,2,3 (9)

(with no summation over repeated Greek indices) is used, where w; = u; /u' is the normalized
velocity and < > indicates the ensemble average. It is also necessary to account for the spatial
separation between the fluid particle and the heavy particle locations through the Eulerian
spatial correlation

< Wwa(Xa(0), At)wa(Xa(At), At) >

< wa(X4(0), At)wa(Xa(0), At) > ) =1,2,3 (10)

Goa(As) =

where As = [X(At) — X(0)] is the distance between the old and the new particle locations.
To use Eq. (10), it is necessary to re-orient the coordinate system such that one of the axis
coincides with X(At) — X(0). '

By defining autoregressive processes (Box and Jenkins, 1976) (in time) for w;(X;(0),0) and

wi(X;(0), At), and (in space) for w;(X;(0), At) and w;(X;(At), At), with some algebraic

manipulations, Lu (1995) obtains:
Wa(Xa(AL), At) = aabowa(Xa(0),0) + Yoy, @=1,2,3 (11)

where ay = Faa(At), by = Gaa(At), and 7, is a Wiener process which is determined
by it’s variance, 0yo = \/1 — a2b2. Once the fluid velocity at the new particle location is

determined using Eq. (11), the steps described above are repeated and the particle trajectory

is constructed.



The following relations are used for the Eulerian temporal and spatial correlations (Lu, 1995):
Foo(At) = exp(—At/7g), G11(As) = exp(—As/A;), G22(As) = Gas(As) = exp(—As/Az),
where 7z is the Eulerian integral time scale and A; and A, are the Eulerian integral length

scale in the longitudinal and transverse directions, respectively. In isotropic incompressible

flows, these are estimated by:

= Ch (u;)z, TE = 2'_[;’ Ay = 2A; = Carp/,
where 7, is the Lagrangian integral time scale, € is the dissipation rate, and C; = 0.212,
C, = 0.73, C3 = 2.778. The values used for C; and Cs are the same as those suggested by Lu
(1995). The value of C; is larger than that used by Lu (1995), and is the upper limit found
in the literature (Hinze, 1975), but provides better agreements with the results of theory and
DNS. With this formulation, the values of the fluid turbulence intensity and dissipation rate
of the turbulent kinetic energy are model inputs. The values «’ = 0.0185 and € = 3.987x 10~°
are taken from DNS of Mashayek et al. (1997). In the presentation of results, the particle
variables are normalized by fluid variables. The optimized computational time step for each

case depends on the parameter values as considered. In all cases, 25° particles are tracked.

3 Model assessment via comparison with DNS

Recently, Ma.éha,yek et al. (1997) have performed extensive DNS to investigate dispersion
(and polydispersity) of solid (and evaporating) particles in stationary isotropic incompress-
ible turbulence. This configuration provides an ideal setting for the assessment of the stochas-
tic model. In this section, the DNS results of Mashayek et al. (1997) are used for this
assessment. In doing so, the primary consideration is to re-scale.the DNS generated time
and velocity scales to those of stochastic simulations via (Elghobashi and Truesdell, 1992):
%)DNS = %) . and %)DNS = %)srn’ where 7, = dp/va4, is the drift timescale. The rea-
soning for considering the fluid eddy turnover time for scaling is discussed by Elghobashi

and Truesdell (1992). This adjustment is necessary as the stochastic model, by nature, is

designed for Reynolds numbers higher than those attainable by DNS.
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3.1 Dispersion of solid particles

First, we consider dispersion of solid (noneva.porating) particles. In Fig. 1 the particle velocity
autocorrelation coefficients,

< Va(0)valt) >

Ral) = 250 > a=1,23 | (12)

as generated by DNS are compared with those by stochastic simulations (indicated by
«GTH") for various particle time constants. For direct comparisons with DNS results, the
particle time constant and the drift velocity are expressed in terms of the Kolmogorov, time
and velocity scales, respectively. In the absence of gravity, Fig. 1a shows that the agreement
between the particle velocity autocorrelations is very good for large particles. However, as
the particle time constant is decreased, the results of stochastic simulations deviate from
DNS results. At very small particle time constant (mp = 0.47%) the stochastic model underes-
timates DNS results at short times and overestimates them at longer times. The agreement
is weaker in the presence of gravity (Fig. 1b for vy = Svg) and significant deviations are
observed for all particle time constants. It appears that the stochastic model does not pre-
dict the negative loops in the particle velocity autocorrelation curve. These loops are due to
the continuity effect (Csanady, 1963) associated with the crossing trajectories effect. There-
fore, while the effects of crossing trajectories are portrayed (as witnessed by the decrease of
the particle velocity autocorrelation coefficient with the increase of the drift velocity), the

continuity effects are not captured by the model.

The particle turbulence intensities calculated from the stochastic model are compared against
DNS data for a variety of particle time constants and drift velocities in Fig. 2. These quan-
tities are time averaged (indicated by an overbar) over more than three eddy turnover times
in both simulations. As expected, with the increase of the particle’s inertia, its tendency
to follow turbulent fluctuations is diminished and the particle turbulence intensity is de-
creased. Also, the increase of the drift velocity results in the decrease of the particle tur-
bulence intensity due to the crossing trajectories effect. The general trends shown in Fig. 2
have been observed by others (see e.g. Snyder and Lumley (1971); Wells and Stock (1983);
Mei et al. (1991)). Figure 2 indicates that the agreement between the model predictions and

DNS results is good in both of the directions parallel and normal to the gravity direction.



No apparent preference towards either small or large particles is observed. This is interesting

as the scaling between the two simulations is based on the large scale eddy turnover time
and the smaller particle time constants are of the order of the Kolmogorov time scale. Also,
the good agreement observed in the presence of gravity indicates that the incapability of the

stochastic model to account for the continuity effects does not affect the calculation of the

particle turbulence intensity.

Figure 3 presents the asymptotic particle turbulence diffusivity coefficient, €# = D?(t — ),
in both the presence and the absence of gravity. In accord with DNS, the particle diffusivity
coefficient, D?(t) = 3[Dhi(¢) + D3y(t) + D3s(t)], is determined by (Hinze, 1975)

D2 (t) =< v3(0) > /Dt RP (7)dT = /Ot < va(0)va(r) > dr  a=1,2,3. (13)

The résults (not shown) for the diffusivity coefficients of the fluid particle surrounding the
heavy particle exhibit similar trends as those observed in Fig. 3. The asymptotic values
are calculated based on a “finite” time (about 3.5 eddy turnover times) in both DNS and
stochastic simulations. The results in Fig. 3 show that, contrary to the particle turbulence
intensity, the asymptotic particle diffusivity coefficients are predicted with some deviations
from those calculated by DNS. The extent of deviation is increased as the particle time
constant is decreased. This is not an artifact of using a finite time to calculate the asymp-
totic values, as with the decrease of the particle time constant the velocity autocorrelation
approaches zero in a shorter time. Therefore, the asymptotic values are reached in a shorter
time and smaller deviations are expected at smaller particle time constants. Figure 3 shows
that the general trends in the variations of the particle diffusivity coefficient with the drift
velocity are captured by the stochastic model. However, the model does not predict the peak
value in the variation of the particle diffusivity coefficient with the particle time constant.
The peak value in DNS occurs for particle time constants of the order of the Kolmogorov
time scale and is due to the increase of the effects of the preferential collection of particles
in high strain regions of the flow at these small particle time constants. This suggests that

this model can be more safely used for particle time constants of the order of the larger time

scales of the flow.



3.2 Polydispersity of evaporating particles

When the particles evaporate, their interaction with the carrier fluid results in a distribution
of particle sizes. This is the case even if initially all the particles are of the same size. Since
the evaporation rate is strongly controlled by the instantaneous particle Reynolds number,
it is instructive to first consider the temporal variations of the particle Reynolds number for
nonevaporating particles at different particle time constants. Figuré 4 provides a comparison
between the particle Reynolds numBer calculated using the stochastic model with those from
DNS. By examining this figure it is realized that: (i) the initial time required by the particles
to reach the stationary condition is much shorter in the stochastic simulations. (ii) For
large particles, an overshoot is observed in the temporal variations of the particle Reynolds
number, the extent of which is increased with the increase of the particle time constant. The
stochastic model predicfs a much smaller overshoot at the same particle time constant. (iii)
The stationary values of the particle Reynolds number predicted by the stochastic model are
larger than those via DNS. More importantly, the deviation observed between the stationary

values depends on the particle time constant; the smaller the particle time constant the

larger the deviation.

The influences of physics as itemized by (i)-(iii) are discussed by considering the temporal
variations of the mean and higher order moments of 7}/2. This parameter is chosen since it
is proportional to the particle diameter. First, we consider the temporal variations of the
mean, the minimum, and the maximum values of (7p/Tp0)"/? for a case with Tp0 = 57k, Tec =
57, and Sc, = 5. The particles are initially injected into the flow with identical sizes
and with the same velocity as that of their surrounding fluid elements. The particles are
allowed to evaporate until the diameter of the smallest particle reaches 5% of its initial
value at which time the simulation is terminated. Very small sizes are not considered to
avoid the excessive computational requirements for particle tracking. Figure 5 shows that
the stochastic model predicts the mean diameter value very closely to DNS, specially during
short and intermediate times. However, the minimum and maximum particlé sizes predicted
by the model deviate from those calculated by DNS. This can be explained by considering
the variation of the particle Reynolds number with the particle time constant in Fig. 4.
When the particle time constant varies from 0.47¢ to 57 the stationary values of the particle

Reynolds number is increased by a factor of ~ 19 in DNS and ~ 8.3 in the stochastic
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simulations. Therefore, for the same size distribution, DNS predicts a much wider variation
of the particle Reynolds number. Consequently, the variations of the evaporation rate is
larger in DNS and a broader size distribution is resulted. This also explains the sharper
decreasé of the minimum particle diameter at long times in DNS. It is noted that for a
constant rate of change of 7, (which is a reasonable assumption for the case considered

here), %(7}/%) ~ 2"%:}%”—‘ Therefore, the rate of the diameter decrease becomes larger as the

size of the particle is reduced.

Based on the discussion above, it is expected that the stochastic model predicts a narrower
(thinner) size distribution than does DNS. This is evident in Fig. 6 which portrays the tem-
poral variations of the standard deviation (o) of 7}/2 for several S, values. This figure shows
that the stochastic model significantly underpredicts the standard deviation at intermediate
and long times, although it is capable of predicting the right trend of variation with the
particle Schmidt number. Three different regions are distinguished for each of the curves.
The first region, for short times (? /7E < 0.2), corresponds to the interval that the particle ve-
locity is nonstationary. This period is characterized by small rates of growth of the standard
deviations of 1';/ 2 a5 the particles are initially released with the same velocity as that of the
surrounding fluid and the particle Reynolds number takes small values. Since the stochastic
model predicts a larger variation of Re, with the particle time constant in this nonstationary
period (cf. Fig. 4), the standard deviations are higher in stochastic simulations during the
‘nitial short times — this is verified by considering the values near ¢ = 0. In the second
region (0.2 < t/7g < 2), the particle Reynolds number adopts large values and the standard
deviation increases more rapidly. In this region, the stochastic model underpredicts the DNS
results as the model yields a smaller variation for the particle Reynolds number with the
particle time constant. The third region (t/7g > 2) is specified by the largesf growth rates
for the standard deviation. It is clearly seen in Fig. 6 that the model does not predict growth
rates as large as those in DNS. This can be explaiﬁed by the same argument provided earlier

to explain the variations of the particle diameter at final times.

Figure 7 shows the temporal variations of the skewness and kurtosis of rx}/ 2 for particles
with 7,0 = 57% and Se¢, =1 at two initial evaporation rates 7.. = 357k and T.. = 7. The
particles have initially zero velocity relative to the surrounding fluid: therefore, there is an

initial time for the skewness and the kurtosis to reach stationary levels. In DNS, this time
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is about 2.57g which is about the same time required by nonevaporating particles to reach
a stationary state (Fig. 4). The corresponding initial time in the stochastic simulations is
about one eddy turnover time. As a result, the short time variations of both the skewness
and the kurtosis are very different in DNS and stochastic simulations. At long times, for the
case with smaller evaporation rate, the prediction of the stochastic model for the kurtosis
is in good agreement With DNS results. However, the stochastic model underestimates the

skewness values; it predicts a negative skewness throughout the duration of evaporation.

In general, the stochastic model predicts a narrower pdf of the droplet size than that obtained
by DNS. This has a major impaét on the evolution of the pdf when there is an initial size
separation between the particles. In order to elaborate on this issue, we consider cases in
which the initial particle size distribution consists of two distinct uniform-size groups of
particies (i.e. the pdf of TI}/ 2 is double delta). In all of the cases, the particles are initially
injected into the flow with a zero velocity relative to the local fluid, < 0 >= 57, and
Sc, = 1. Figure 8 shows the temporal evolution of the kurtosis of T}/? for cases with
different initial standard deviations. After the onset of evaporation, there is a time delay
before the two initially segregated branches of the pdf merge, resulting in the increase of
the kurtosis. Figure 8 indicates that this initial time delay depends on the initial separation
between the two groups of particle sizes. As expected, the increase of this separation (the
increase of go) delays the merging. The stochastic model predicts a slower merging for all
of the cases. This is due to the fact that the pdfs of each group of particles are predicted to

be narrower (at any instant of time) in comparison to DNS.

4 Comparison with theory

Mei et al. (1991) obtain a solution for the particle turbulence intensity and diffusion co-
efficient by assuming the form of the spectral density function as proposed by Kraichnan
(1970). They consider contributions of all the forces acting on the particle but show that
only the Stokes drag and the Basset forces need to be retained. In this section, their final

results for cases in which the Basset force is neglected, are compared with those predicted

by the stochastic model.
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The variations of the particle turbulence intensity with the particle time constant and the
drift velocity are shown in Fig. 9. This figure indicates that the predictions via the stochastic
model are in good agreements with those based on the theory for wide ranges of the par-
ticle time constant and the drift velocity. The stochastic model underestimates the results
via the theory slightly in the absence of gravity while overpredicting these results at large
drift velocity. The agreement between the two results diminishes with the decrease of the
particle time constant. These trends are observed in both of the directions normal (Fig. 9a)
and parallel (Fig. 9b) to the gravity direction. However, it must be emphasized that the
predictions of the stochastic model is very sensitive to the magnitude of C,; values smaller

than 0.73 were found to produce larger deviations from the theory.

In Fig. 10, comparisons are made between the predictions via the model and the theory
for the asymptotic particle diffusivity coefficient at different drift velocities. The particle

diﬁusivity coefficient is evaluated from (Hinze, 1975)

DP(t) = % <X}t)> a=1,2,3. (14)

o] =

The overall agreement is good. The stochastic model is capable of predicting the variations of
the particle diffusivity coefficient with the drift velocity and with the particle time constant.
In both the gravity and no-gravity directions. € increases with the increase of the particle
time constant when the drift velocity is small. The increase of the drift velocity tends to
diminish the variations of ¥ with the particle time constant; an effect observed more strongly

in the direction normal to the gravity direction.

As pointed out by Lu (1995), some of the earlier stochastic models do not correctly predict
the increase of the long time particle diffusivity coefficient with the increase of the particle
time constant. This is, mainly, due to the use of the “Lagrangian” autocorrelation. In order
to show this, we also consider a Lagrangian stochastic model proposed by Lu et al. (1993).
The results of the simulations are presented in Fig. 11 and indicate a decreasing trend for
the long time particle diffusivity coefficient at zero gravity. The variations of € at higher
drift velocity values are. however, predicted correctly. In both the gravity and no-gravity
directions the particle diffusivity coefficient becomes rather insensitive to the variations of

the particle time constant. It must be added here that the parameter C2 does not appear in
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2w T Re, > <h2=<m> x 100 Sfa2=<tm2 x 100

TE u! <vi. &m
01 0 0.22 0.8 0.0
04 0 0.69 4.4 0.7
16 0 1.86 16.0 1.4
80 O 4.83 42.0 ' 2.0
0.1 2 0.72 2.6 2.3
04 2 1.40 10.4 4.9
1.6 2 2.83 30.7 6.0
80 2 6.21 76.5 13.5
0.1 35 1.62 6.3 7.8
04 5 2.90 24.0 11.0
16 35 5.24 67.7 19.4
80 5 10.19 153.2 32.8

Table 1: Effects of the modified Stokes drag on the particle turbulence intensity and dif-
fusivity. Subscripts “m” and “um” refer to the calculations based on the modified and
unmodified (Stokes) drag, respectively. The particle intensity and diffusivity coefficient in
cases with non-zero drift velocity belong to the gravity direction.

the Lagrangian model. However, the values of the particle diffusivity coefficient are indirectly
dependent on C as it relates 7, to the “variable 3” as used by Mei et al. (1991). Of course,
C, only affects the magnitude of the particle diffusivity coefficient and does not change the

decreasing trend observed at zero gravity.

The results presented in Figs. 9-11 are based on the assumption of Stokes drag with no mod-
ific