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Stochastic Modeling and Simulation of 
Multiphase Reacting Turbulent Flows with 

Complex Chemistry 

Peyman Givi, Cyrus K. Madnia and Dale B. Taulbee 
Department of Mechanical and Aerospace Engineering 

State University of New York at Buffalo 
Buffalo, NY 14260-4400 

Abstract 

Two physical phenomena have been the primary subject of investigation: (1) multi- 

phase transport in turbulence, (2) realistic chemistry in large scale numerical simulation 

of turbulent combustion. In addition, two other phenomena have also been considered: 

(3) scalar mixing in turbulence, and (4) magnetoghydrodynamic turbulence. This Final 

Report provides a summary of our accomplishments in research on each of the above 

four problems. This work is sponsored by the Office of Naval Research (ONR), Grant 

N00014-94-1-0667. Dr. Gabriel D. Roy is the Technical Monitor. 

1     Summary of Achievements 

This work deals with statistical-stochastic modeling and numerical simulation of complex 

turbulent flows. The terminology "complex" refers to issues which, if resolved, extend the 

boundaries of applicability of current modeling and simulation schemes for analytical analy- 

sis of turbulent flows. Two phenomena have been the primary subjects of investigation: (1) 

multiphase transport in turbulent flows, and (2) inclusion of realistic chemistry in turbulent 

combustion simulations. In addition, two other phenomena have also been considered: (3) 

scalar mixing in turbulence, and (4) magnetoghydrodynamic turbulence. We do not im- 

ply these are the only unresolved issues in turbulence research; there are numerous other 

physical phenomena requiring further investigations. Neither do we suggest that the extent 

of progress on the issues considered here is insufficient.   On the contrary, within the past 



decade significant contributions have been made in each of the constituting elements of this 

research. 

In the course of this research, we have been fortunate to make significant progress in each of 

the problems considered. Appendix I through Appendix X provide a very detailed description 

of our achievements in each of the constituents of our research. These achievements are 

summarized below: 

Dispersion and polydispersity of droplets in stationary isotropic turbulence: In 

this part of our work, a rather detailed parametric study is conducted of dispersion and poly- 

dispersity of liquid drops in stationary isotropic turbulence via direct numerical simulation 

(DNS). Both non-evaporating and evaporating drops are simulated; in the latter both con- 

stant and variable rates of evaporation are considered. The simulations of non-evaporating 

drops are used to validate the numerical methodology and to assess the effects of the parti- 

cle time constant and the drift velocity on the particle velocity autocorrelation, turbulence 

intensity and diffusivity. The simulated results are also used to appraise the performance 

of some of the available theoretical models for particle dispersion in stationary isotropic 

turbulence. The effects of the initial drop time constant, the initial evaporation rate, and 

the drop Schmidt number on the probability density function (PDF) of the drop size are 

studied. It is found that, after an initial transient period the PDF of the drop size becomes 

nearly Gaussian. However, the PDF deviates from Gaussian as the mean drop time constant 

becomes very small. The extent of this deviation depends on the evaporation rate. The effect 

of the initial spray size on the PDF is also studied and it is shown that as the spray size 

increases, the interaction between the spray and large scale turbulence structures influences 

the PDF. The effect of the initial size distribution on the PDF is also investigated by varying 

the initial standard deviation. Both Gaussian and double-delta initial drop size PDFs are 

considered. In the latter it is shown that a transition to Gaussian is possible provided that 

the initial mean drop time constant is large and/or the initial standard deviation of the drop 

diameter is small. Please see Appendix I for a complete description of this work. 

Stochastic simulations of particle-laden isotropic turbulent flows: In this part of 

our work, stochastic simulations are performed of dispersion and polydispersity of particles 

in isotropic incompressible turbulence. The mass loading of the particles is assumed to 

be small; thus the effects of particles on the turbulence is neglected (one-way coupling). 

A stochastic model, based on the idea of "time series analysis," is used to generate the 

fluid velocity at the particle location.   The results of the simulations are used to assess 



the performance of the stochastic model via comparisons made with analytical and DNS 

results. The model captures most of the trends reported in theory and DNS. However, the 

continuity effect associated with the crossing trajectories effect is not captured. Also, the 

peaking in the variation of the particle asymptotic diffusivity coefficient with the particle 

time constant is not observed in the stochastic simulations. For evaporating particles, the 

stochastic model predicts thinner PDFs for the particle diameter as compared to those 

generated by DNS. The stochastic model is then implemented to investigate the effects of 

the gravity on the evaporation. Several important features are observed in the results. The 

depletion rate increases with the increase of the drift velocity at short and intermediate 

times, and shows the opposite trend at long times. The standard deviation and skewness 

of the PDF of the particle diameter indicate peak values in their variations with the drift 

velocity. The dispersion of the evaporating particles is decreased with respect to that of the 

non-evaporating particles at small drift velocities. An opposite trend is observed at large 

drift velocities. The effects of the initial evaporation rate and the particle Schmidt number 

on the evaporation of particles in the gravity environment are also studied with the stochastic 

model. Please see Appendix II for a complete description of this work. 

Algebraic Reynolds-stress and void-fraction flux models for two-phase turbulent 

flows: In this work, general "algebraic" closures are derived for the Reynolds stresses and 

the fluxes of the void fraction in the Reynolds averaged transport equations of two-phase 

turbulent flows. These closures are obtained from the hierarchy of second-order moment 

closures and are favored over conventional models based on the "BoUssinesq" type approx- 

imations and linear gradient diffusion models. With a liberal use of the Cayley-Hamilton 

theorem, "explicit" solutions of the algebraic equations are obtained for the Reynolds stresses 

of both the carrier and the dispersed phases, and the turbulent fluxes of the void fraction. 

The solutions for the Reynolds stresses compare well with available DNS data of particle- 

laden homogeneous turbulent shear flows. By manipulating the explicit algebraic solutions, 

relations are provided for the "effective" turbulent diffusivities of the Reynolds stresses and 

the void fraction flux. These relations are utilized in the parabolic (thin layer) formulation 

of two-phase turbulent shear flows. The predicted results for a particle-laden axisymmetric 

jet show encouraging agreements with available laboratory data. Please see Appendices III, 

IV for a complete description of this work. 

Large and direct numerical simulation of a methane jet flame: In this work, we 

make use of the "filtered mass density function" (FMDF) for large eddy simulation of a jet 

flame involving methane fuel. The flame chemistry is modeled via several "realistic" kinetics 



models. The FMDF represents the single point joint probability density function of the 

subgrid scale (SGS) scalar quantities and is obtained by solution of its modeled transport 

equation. In this equation, the chemical reactions appear in closed form but the influences 

of scalar mixing and convection within the subgrid are modeled. The stochastic differential 

equations (SDEs) which yield statistically equivalent results to that of the FMDF transport 

equation are derived and are solved via a Lagrangian Monte Carlo scheme. The consistency, 

convergence, and accuracy of FMDF and the Monte Carlo solution of its equivalent SDEs are 

assessed via comparison with data generated by DNS and with experimental data. Please 

see Appendix V for a complete description of this work. 

Structure of homogeneous non-helical magnetohydrodynamic turbulence: Results 

are obtained from three dimensional DNS of non-helical magnetohydrodynamic (MHD) tur- 

bulence for both stationary isotropic and homogeneous shear flow configurations with zero 

mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed 

in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown 

to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value 

of Re\ « 30. The presence of the magnetic field has the effect of decreasing the kinetic 

energy of the flow, while simultaneously increasing the Taylor microscale Reynolds number 

due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity 

and the magnetic fields become increasingly anisotropic with increasing initial magnetic field 

strength. The kinetic energy spectra show a relative increase in high wavenumber energy in 

the presence of a magnetic field. The magnetic field is found to portray an intermittent be- 

havior, with peak values of the flatness near the critical Reynolds number. The magnetic field 

of both flows is organized in the form of "flux tubes" and magnetic "sheets." These regions 

of large magnetic field strength show a small correlation with moderate vorticity regions, 

while the electric current structures are correlated with large amplitude strain regions of the 

turbulence. Some of the characteristics of small scale MHD turbulence are explained via the 

"structural" description of turbulence. Please see Appendix VI for a complete description of 

this work. 

Non-Gaussian scalar statistics in homogeneous turbulence: Results are obtained 

from numerical simulations of passive scalar mixing in homogeneous, incompressible tur- 

bulent flows. These results are generated via the Linear Eddy Model (LEM) and DNS of 

turbulent flows under a variety of mixing conditions. The nature of mixing and its response 

to the turbulence field is examined and the single-point PDF of the scalar amplitude and the 

PDFs of the scalar spatial-derivatives are constructed. It is shown that both Gaussian and 



exponential scalar PDFs emerge depending on the parameters of the simulations and the 

initial conditions of the scalar field. Aided by the analyses of data, several reasons are iden- 

tified for the non-Gaussian behavior of the scalar amplitude. In particular, two mechanisms 

are identified for causing exponential PDF: (1) A non-uniform action of advection on the 

large and the small scalar scales, (2) the nonlinear interaction of the scalar and the velocity 

fluctuations at small scales. In the absence of a constant nonzero mean scalar gradient, the 

behavior of the scalar PDF is very sensitive to the initial conditions. In the presence of this 

gradient, an exponential PDF is not sustained regardless of initial conditions. The numeri- 

cal results pertaining to the small scale intermittency (non-Gaussian scalar derivatives) are 

in accord with laboratory experimental results. The statistics of the scalar derivatives and 

those of the velocity-scalar fluctuations are also in accord with laboratory measured results. 

Please see Appendix VII for a complete description of this work. 

Conditional expected dissipation &z diffusion in turbulent scalar mixing and re- 

action: Analytical expressions are obtained for the conditional expected dissipation and 

the conditional expected diffusion of a passive scalar contaminant in homogeneous turbulent 

flows by means of several turbulence closures. It is shown that if the single-point PDF of 

the scalar is represented by the family of Exponential distributions, the conditional expected 

dissipation varies significantly depending on the exponent of the PDF. However, the con- 

ditional expected diffusion remains identical. For those members with tails broader than 

Gaussian, the conditional expected dissipation is concave up and for tails narrower than 

Gaussian it is concave down. This is proved mathematically without resorting to asymptotic 

analysis (of the final stages of mixing) as conducted previously. For all cases, the conditional 

expected diffusion adopts a linear profile consistent with the linear mean square estimation 

(LMSE) theory. The similarity of the conditional diffusion field is explained in the context 

of the "lamellar" theory of turbulent mixing. The mathematical results are in accord with 

previous results generated by DNS and are further validated here by comparison with data 

obtained via the LEM. It is suggested that the behavior of the conditional expected diffu- 

sion at the scalar bound has a significant influence on the evolution of the PDF. Please see 

Appendices VIII and IX for a complete description of this work. 

Inter-layer diffusion model of scalar mixing in homogeneous turbulence: A field- 

parameterized model termed the Inter-Layer Diffusion Model (ILDM) is developed and is 

implemented for the probabilistic description of scalar mixing in homogeneous turbulent 

flows. The essential element of the model is based on the lamellar theory of mixing in the 

context developed by Kerstein and proposes that there are two coupled mechanisms by which 



the mixing process is described. These mechanisms are due to: (1) local events and (2) in- 

tegrated global events. The mathematical formalities by which the closure is invoked are 

described and it is shown that the conditional expected diffusion of the scalar field depicted 

by the model depends more directly on the local events. With the manipulation of each of 

these two mechanisms, several families of scalar probability density functions (PDFs) are 

generated. These families include some of the distributions generated by other mixing clo- 

sures. The similarity of local events imply the similarity of the conditional expected diffusion 

as generated via these models. The global events manifest themselves by the evolution of 

the conditional expected dissipation, and also the boundedness of the composition domain. 

While the PDFs generated in this way are very different, their applications for modeling of 

mixing limited reactions do not yield significantly different results. Please see Appendix IX 

and for a complete description of this work. 
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Abstract—A detailed parametric study is conducted of dispersion and polydispersity of liquid drops in 
stationary isotropic turbulence via direct numerical simulation. It is assumed that the flow is very dilute 
so that the effect of particles on the carrier fluid is negligible (one-way coupling). Both non-evaporating 
and evaporating drops are simulated; in the latter both constant and variable rates of evaporation are 
considered. The simulations of non-evaporating drops are used to validate the numerical methodology 
and to assess the effects of the particle time constant and the drift velocity on the particle velocity 
autocorrelation, turbulence intensity and diffusivity. The simulated results are also used to appraise the 
performance of some of the available theoretical models for particle dispersion in stationary isotropic 
turbulence. The effects of the initial drop time constant, the initial evaporation rate, and the drop Schmidt 
number on the probability density function (pdf) of the drop size are studied. It is found that, after an 
initial transient period the pdf of the drop size becomes nearly Gaussian. However, the pdf deviates from 
Gaussian as the mean drop time constant becomes very small. The extent of this deviation depends on 
the evaporation rate. The effect of the initial spray size on the pdf is also studied and it is shown that 
as the spray size increases, the interaction between the spray and large scale turbulence structures 
influences the pdf. The effect of the initial size distribution on the pdf is also investigated by varying the 
initial standard deviation. Both Gaussian and double-delta initial drop size pdfs are considered. In the 
latter it is shown that a transition to Gaussian is possible provided that the initial mean drop time constant 
is large and/or the initial standard deviation of the drop diameter is small. £ 1997 Elsevier Science Ltd. 
All rights reserved. 

Kev Words: direct numerical simulation, isotropic turbulence, particle dispersion, polydispersity. 
evaporating drops, drop size distribution 

1.  INTRODUCTION 

Dispersion of heavy particles in turbulent flows has been the subject of numerous investigations 
in recent years due to its applications in various aspects of technology (Eaton and Fessler 1994; 
McLauglin 1994). One of the early theoretical studies of particle dispersion in turbulence is due 
to Tchen (1947) who derives relations for the particle diffusion coefficient under the assumption 
that the particle's neighbouring fluid does not change in the course of its motion. Yudine (1959) 
clarifies the consequences of this assumption by analyzing the motion of heavy particles in the 
presence of gravity and shows that as the heavy particle is transported under the influence of the 
external body force, its trajectory crosses that of the neighbouring .fluid particle which is not 
affected by the gravity. This is referred to as the "crossing trajectories effect". Csanady (1963) 
points out the "continuity effect" which is associated with the crossing trajectories effect in the 
presence of gravity, and results in the reduction of the velocity autocorrelation in directions normal 
to the gravity direction in comparison to that in the gravity direction. Further relations for the 
velocity autocorrelation, the diffusion coefficient and the turbulence intensity of particle loaded 
turbulent flows are obtained by assuming either the fluid velocity autocorrelation along the particle 
trajectory (Reeks 1971; Pismen and Nir 1978) or the fluid spectral density function (Mei et al. 1991). 

Experimental studies of particle dispersion in turbulent flow are pioneered by Snyder and Lumley 
(1971) who investigate dispersion characteristics of solid particles. They find that the particle inertia 
decreases its turbulence intensity in comparison to the fluid turbulence intensity. Wells and Stock 
(1983) study the effects of crossing trajectories in a homogeneous decaying turbulent flow. Using 
an electric field, they succeed to eliminate or enhance the effects of gravity, and indicate that the 
long time asymptotic particle diffusion coefficient is primarily affected by the drift velocity and that 
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the particle time constant is mostly effective in modifying the particle turbulence intensity. The 
experimental and numerical results of Wen et al. (1992) in shear flows show that particles with 
large response times are centrifuged toward the outer edges of the vortex structures resulting in 
higher particle diffusivity coefficients. 

Experimental studies of evaporating drops are somewhat limited in comparison to those of solid 
particle dispersion. Previous studies have been mostly directed to assess the performance of 
turbulence models in multiphase flows. Shearer et al. (1979) conduct experiments on axisymmetric 
particle-laden jet flows to appraise the performance of a locally homogeneous flow model for 
evaporating sprays. A somewhat similar experiment is conducted by Solomon et al. (1984) with 
different loading ratios. Further laboratory and numerical experiments are conducted by Nguyen 
et al. (1991) who investigate the effects of the interactions among the drops on the drag force and 
the evaporation rate. 

The important role of the small scales of the carrier phase in the dynamics of heavy particles 
has motivated the use of direct numerical simulation (DNS). The implementation of DNS in 
two-phase flows is pioneered by Riley and Patterson (1974) to investigate particle dispersion in 
decaying isotropic turbulence. Using a low resolution simulation (323 grid points) and a relatively 
small number of particles (432), they find that an increase of the particle inertia increases the 
velocity autocorrelation. McLaughlin (1989) simulates particle deposition in a channel flow and 
shows the tendency of particles to accumulate in the viscous sublayer. Squires and Eaton (1990. 
1991a. 1991b) simulate both stationary and decaying turbulence fields with one- and two-way 
coupling. The results show the increase of the eddy diffusivity of heavy particles over that of the 
fluid particle for cases with one-way coupling. In the cases with two-way coupling they find that 
the fraction of energy at high wavenumbers of the spatial energy spectrum of turbulence increases 
relative to that at low wavenumbers as the mass loading ratio is increased. They also find that large 
particles tend to collect preferentially in regions of low vorticity and high strain. This is also true 
for the cases with one-way coupling. Elghobashi and Truesdell (1992, 1993); Truesdell and 
Elghobashi (1994) conduct similar studies. They consider the full equation for the particle motion 
and show that the Stokes drag is of primary importance for large density ratios. In the presence 
of both gravity and two-way coupling they show that energy is transferred from the gravity 
direction to other directions by the pressure-strain correlation. The settling velocity of heavy 
particles in isotropic turbulence is studied by Wang and Maxey (1993) for different particle time 
constants and drift velocities. The results show an increase of the settling velocity for all cases. The 
maximum increase in settling velocity is obtained when both the particle time constant and the drift 
velocity are comparable to the Kolmogorov scales. 

This paper deals with the problem of dispersion and polydispersity of evaporating drops in an 
isotropic turbulent flow via DNS. The DNS generated data are statistically analyzed to extract 
important physical information pertaining to turbulent dispersion of evaporating drops. While the 
polydispersity phenomenon caused by evaporation is the primary subject of this study, some issues 
pertaining to dispersion of nonevaporating drops (solid particles) are also considered. In this 
consideration, a detailed parametric study is conducted and the results are comparatively assessed 
via existing analytical, experimental and. if applicable. DNS results. This assessment is very useful 
for validations of our computational methodology and for the parameterization in the evaporating 
drops simulations. In section 2 the problem formulation and numerical technique are described, 
in section 3 the DNS results are analyzed: the summary along with concluding remarks are 
furnished in section 4. 

2.  PROBLEM FORMULATION AND NUMERICAL TECHNIQUE 

Since this is the first attempt in DNS of the evaporating drop dispersion in turbulent flows, the 
problem is formulated based on models and correlations which are well established. The 
implementation of these models requires several simplifying assumptions: these are discussed in this 
section within the framework of the mathematical formulation. We consider motion of spherical 
particles in an incompressible and isotropic turbulent flow. It is assumed that the dispersed phase 
is very dilute, thus the effect of particles on the carrier fluid is negligible. The momentum equation 
for each particle is considered in the Lagrangian frame of reference. In general, this equation 
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contains the Stokes drag, the Basset force, the force due to fluid pressure gradient, the inertia force 
of added mass and gravity (Maxey and Riley 1983). However, the results of several previous 
studfes e g Bghobashi and Truesddl (1992), indicate that if the ratio of the density of the particle 
oth density of the earner fluid is large, the Stokes drag and the gravity forces are dommanand 

the other forces can be assumed negligible. With this assumption the momentum equation for a 

single particle is expressed as: 

dv     18/i.        , . „„ m — = —-£(ii - v) + ge, i'J 
at    ppflp 

at      ' 

where u and v (boldface indicates vector) denote the fluid velocity at the particle location and the 
Irt cle velocit , respectively; t is time, X is the center position of the particle, e ,s the unit vector 
fn he gravity direction, g is the gravity constant; p, and d, denote the particle density and diameter 
respectively; and „ is the fluid viscosity. All of the variables are normalized by reference seal s of 
ength L„ velocity, U0, and density, p, The length scale is conveniently chosen such that the 
normalized size of ie simulation box is In and the velocity scale is found from the box Reynolds 
number Re„ = (poUoUlu). The fluid density is used as the scale for density. 
Tthe emulation; of non-evaporating (solid sphere) particles, the particle diameter^ remains 
constant. For the evaporating particles, the rate of diameter reduction is modeled by the rf-law 

(Strehlow 1985): 
di = dl-Kt. W r 

given   bv where d« is the initial diameter of the particle and the depletion rate 
r= 8T InO + 2?M)GU, where r is the mass diffusivity coefficient and *„ >s the transfer number 
Raiding 1953). The parameter CRe is a correction factor to account for the coi.vcct.ve effects (Ranz 

and Marshall 1952): 
CRc = 1 + 0.3Rer

!Scu
p"-\ M 

with ReP and ScP representing the part.cle Reynolds and Schmidt numbers, respectively. It is 
I Led that the flow is isothermal and that evaporation is due to a constant temperature difference 
bSwTen he drop and the fluid. This model is in accord with that of several laboratory experiment 
(eg Shearer et al. 1979). In a dilute flow, the ratio of the mass of the part.cle to the mass of the 
arrier flu d is verv small and it is assumed that all the particles are in contact with the earner fluid 

during evaporation. Therefore, the variation of K is only due to C*. The "particle time constant 

(TP) is defined by: 

where tp0 = (pP4,/18/x) denotes the initial particle time constant, and: 

Te = C„ie„,   Te„ = ^fln(l+fM. M 

By introducing a drift velocity, i-„, = x^g, [1] is expressed as: 

d£ = I(u_v) + _Li,re. PI 
at       TP

V TpO 

The particle Reynolds number is defined as: Rer = (pfdr\u - v|) H with pr denoting the carrier fluid 
density. Following Wang and Maxey (1993) the Reynolds number is related to the Kolmogorov 
time (tk) and velocity (rk) scales w.th v = tkl-j. where v = „p, is the fluid kinematic viscos.tv. 

_l    i"M^ |    |„ _ „| _ A 7A^I -^ 1    I — I . [°J 
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The density ratio is kept constant (p(/pp = 10-3) in all the simulations. 
With the assumption of dilute particles, the Eulerian equations governing the carrier gas 

transport are solved independently to determine the u-field. With the assumptions of 
incompressible, isothermal flows this field influences dispersion, but not the other way around (i.e. 
one-way coupling). Also, the possible corrections to the convective effects in the drop evaporation 
due to flow unsteadiness, and the modifications of the drag force due to drop evaporation are not 
considered. The DNS of the carrier fluid is based on a spectral collocation scheme involving Fourier 
basis functions (Givi and Madnia 1993). The turbulent flow is assumed isotropic with triply 
periodic boundary conditions, and is forced at low wavenumbers to maintain a stationary 
(non-decaying) turbulent field (Givi 1989). Equations fl] and [2] are integrated in time using a 
second order accurate Runge-Kutta numerical scheme. The fluid velocity at the particle location 
is evaluated by a fourth order accurate Lagrange four point interpolation scheme. 

3. RESULTS 

Table 1 provides a listing of the flow parameters considered in the simulations. In this table. Re; 

is the flow Reynolds number based on the Taylor length scale (/.) and the root mean square of 
the flow velocity («'), kmax denotes the highest resolved wavenumber after deailiasing, r] represents 
the Kolmogorov length scale, u is the root mean square of fluctuating velocity, and / is the integral 
length scale determined from the energy spectrum E(k): 

2u ■ 
"mtk. 

The parameters listed in table 1 are used in the simulations of both non-evaporating and 
evaporating drops. All the simulations are performed on 64? collocation points. In order to 
determine the appropriate number of particles, some preliminary simulations are conducted with 
16-. 21\ and 253 particles. In agreement with the results of similar tests performed by Elghobashi 
and Truesdell (1992) it is found that 2V particles provide sufficient accuracy. In the simulations 
of the non-evaporating and constant rate evaporating particles. 21- particles are tracked. In the 
simulations of variable rate evaporating particles 25' particles are considered. In the discussion 
below «■» and <•> denote the Lagrangian and Eulerian average values, respectively. The time 
averaged quantity is denoted by an overbar. In the presentation of the results, time is normalized 
with the eddy turn over time. / «'. 

3.1. Dispersion of non-evaporating particles 

The purpose of simulations considered in this subsection is threefold: (1) to validate our present 
computational methodology by comparison with previous DNS results. (2) to appraise the 
performance of some of the recent models via comparative assessment with present DNS results, 
and (3) to identify the range of parameters in the evaporating drop simulations (discussed below) 
and to compare present results with those in the presence of evaporation. 

In the simulations here, the particles are initially distributed uniformly within the box and are 
released with the same velocity as that of the local fluid particle. In order to obtain stationary 
conditions, the particles are allowed to interact with the flow for more than three eddy turnover 
times before data are extracted for statistical analysis. A measure of stationarity is the temporal 
variation of «ReP» as shown in figure 1 for four different x? values with zero gravity. This figure 
shows that a nearly stationary level is reached after an initial steep increase with a noticeable 
overshoot for cases with TP > r,. The magnitude of «Rer» at the stationary condition increases 
with the increase of rP due to the larger slip velocity experienced by heavier particles. 

Table 1 . Flow parameters used in the simu lalions 

Re. /;*«. n i'i it' / 
41 1.41 8.229 5.72 x 10 0.019 1.068 
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Figure 1. Temporal variation of «ReP» for different values of the particle time constant. 

It is useful to consider the Fourier transform of [7] (Chao 1964). This transform in time for 
w = v - fdre yields: 

1 
1 + x;co2 [9] 

where the spectra density function of the fluid velocity evaluated on the particle trajectory is 
e„(co) = (u,(w)ur (co)» ( indicates the variable in the Fourier space. * denotes complex conjugate 
and aus the frequency), and Ef, (co) = «H;(CO)^(C)» is the spectral density function of the particle 
velocity. The decrease of the ratio of £*(„) to 4(c) with the increase of TP indicates thai heavy 
particles have a less tendency to adjust to the flow fluctuations. Equations [9] also shows that B(J) 
deviates more from £j(o>) as to increases. Therefore, the ability of the heavy particle to follow the 
fluid fluctuations decreases at high frequencies. 

Mei et al. (1991) obtain a solution for the particle turbulence intensity «>=», and the particle 
diffusion coefficient. £P. by assuming the form of the spectral density function as proposed by 
Kraichnan (1970) They consider contributions of all the forces acting on the particle but suggest 
that only the Stokes drag and the Basset forces need to be retained. Their final results for cases 
in which the Basset force is neglected, are compared with our DNS data as will be presented below 
However, it should be mentioned that although Mei et al. (1991) consider a wide range of T„ and 
v, values our DNS results indicate (not shown) that for rp > 5rk and rdr > 5rk the particle Reynolds 
number becomes considerably larger than unity and is beyond the range of validitv of the Stokes 
drag. Therefore, we limit our parameter range to TP < 5tk and rdr < 5rk 

Figure 2 shows the particle velocity autocorrelation for four particle time constants at different 
drift velocities. The autocorrelation of the fluid particle (Tp = 0) is also shown for comparison The 
velocity autocorrelation is defined as: 

"()"     «'Vi(O)» 
1 2 3 [10] 

where a refers to the coordinate direction (with no summation over repeated Greek indices) In 
order to reduce the effect of anisotropy, the autocorrelations are calculated by averaging over'the 
three directions. These averaged autocorrelations are denoted by /?" (no subscripts). In cases with 

leZ^lZlU Ä""! differem simulations are Perfonned for each case (using the same 
velocity field for the fluid) with the grav.ty direction changing for each simulation. Therefore the 
velocity autocorrelation in the gravity direction is evaluated by averagins over the three gravity 
directions, and those in no-gravity directions are averaged over six other directions considered in 
three simulations Inspection of figure 2 reveals that variations of the particle velocity 
autocorrelation with the particle time constant and the drift velocity are in accord with previous 
observations (e.g. Csanady 1963: Wells and Stock 1983) previous 
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The variations of the particle turbulence intensity «tr» (normalized by the fluid turbulence 
intensity <«:» due to the particle time constant and the drift velocity are shown in figure 3 and 
are compared with theoretical results of Mei et al. (1991). The temporal averages are evaluated 
by data sampling over more than three eddy turnover times. This figure indicates that, as the 
particle time constant is increased the particle turbulence intensity is reduced. In other words, the 
increase of the particle time constant decreases the drop tendency to follow the fluid motion. As 
TP is decreased, «>v:>/<ir> approaches unity. This is expected since w,- = w, for TP = 0. Although 
we have not performed simulations with TP < 0.4tk, the results suggest the existence of a plateau 
for i-dr = 0 near TP = 0. This is also observed in the results of Mei et al. (1991). 

Comparing the values of «ir:»/<H2> in the no-gravity direction for vdr = i'k and rdr = 5t\ with 
those obtained for rdr = 0 indicates the decrease of the particle turbulence intensity with the increase 
of gravity. Particles moving in the presence of a gravity field have a shorter time to interact with 
the instantaneous surrounding fluid particles in comparison with the particles moving in the zero 

Figure 2. Particle velocity autocorrelations in the direction normal to the gravity direction, (a) IM, = 0. 
(b) IM, = i\. and (c) IM, = 5i\. 
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Figure 3. Variation of the particle turbulence intensity normalized with the fluid turbulence intensity with 
particle time constant. 

gravity environment. However, as the particle time constant approaches zero, «u:»'<»:> 
approaches unity for all the vir values. This is due to the increase of particles" tendency to follow 
the fluid particle motion as the particle time constant is decreased. Figure 3 also shows that at a 
given particle time constant the turbulence intensity of the particle in the gravity direction is larger 
than that in the direction normal to the gravity direction. 

Of central importance in the study of turbulent particle dispersion is the particle diffusion 
coefficient defined as (Hinze 1975): 

1 d 
^(/)=5^«A;(r)» a= 1.2.3. 

For stationary particles, this coefficient is related to the velocity autocorrelation by: 

eUt) = «n',;(0)>>    fl,p,(?)dT = «U'J(0)u-5(T)»dT. 

[11] 

[12] 

The fluid particle diffusion coefficient e;3, is defined similarly by replacing ir, with u, in [12]. Figure 4 
shows the variations of the "asymptotic diffusion coefficient". cp (x) with the particle time constant 
and the drift velocity. Equation [12] is used for the determination of £r and the results are averaged 
in the three directions. Several observations are made from this figure: (i) in the absence of gravity 
(t'dr = 0) a peak is observed near TP = tk. The DNS results of Squires and Eaton (1991a) in 
stationary turbulence also show a similar behavior. However, this is in contrast to the analytical 
results of Pismen and Nir (1978) and Mei et al. (1991) which show a monotonic variation for fp(x) 
with i>. Squires and Eaton (1991a) attribute the difference between the analytical and DNS results 
to the sensitivity of the numerical results to the sample of large scale motions in forced turbulence: 
(ii) the increase of the drift velocity decreases the particle diffusion coefficient in both parallel and 
normal directions to the gravity direction. This behavior is also predicted by the models of Csanady 
(1963) and Mei et al. (1991): (hi) the diffusion coefficients are larger in the gravity direction than 
those in the direction normal to the gravity direction; however, the difference decreases with the 
increase of TP; (iv) in agreement with the experimental results of Wells and Stock (1983) the 
asymptotic diffusion coefficients are more sensitive to the drift velocity than to the particle time 
constant. 

Figure 4 also indicates that as the particle time constant approaches zero, for a constant drift 
velocity, the particle diffusion coefficient does not equate that of the massless fluid particle. This 
is in contrast to the behavior of the particle turbulence intensity which approaches the fluid 
turbulence intensity as rp —* 0 (cf. figure 3). A decrease of the particle time constant, while the 
magnitude of the drift velocity is kept fixed, corresponds to an increase of the gravity coefficient. 
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Very small particles have small relative velocities and are capable of responding to local fluid 
fluctuations instantaneously. This results in the adjustment of the particle turbulence intensity to 
that of the fluid. However, since the effect of gravity on the carrier phase is neglected, by having 
a finite drift velocity the particles move quickly through the vortical structures. This decreases the 
particle velocity autocorrelation and therefore the diffusion coefficient. 

3.2. Polydispersity of evaporating particles 
One of the major differences between non-evaporating and evaporating particle dispersion 

phenomena is the lack of a stationary condition in the latter. When evaporating, the magnitude 
of Tp continuously decreases with time; thus the momentum transfer between the particle and the 
surrounding fluid is in a transient condition. At a constant gravity level, the problem of evaporating 
particle dispersion is parametrized by: the initial particle time constant (T„O), the initial rate of 
evaporation (x*), and the particle Schmidt number (Scp). In addition, due to the intrinsic 
non-stationary nature of the problem, the effects of initial conditions should also be considered. 
In the following simulations, the largest evaporation rate is chosen such that the velocity 
autocorrelation becomes close to zero by the time TP = 0.1T„O (about 3.1 eddy turnover times). Very 
low TP values are not considered to avoid excessive computational requirements for particle 
tracking. Therefore, we set teo = 0.9TK/3.1 = 0.29tec where T^ is introduced to relate the evaporation 
rate to the initial particle time constant. 

First, we consider cases with constant rate of evaporation in which the decay of rP is the same 
for all particles. These cases are exemplified by neglecting the nonlinear term in [4], i.e. CRc = 1. 
Figure 5 shows the velocity autocorrelation for evaporating particles. The autocorrelation of 
non-evaporating particles (xK = 0) is also presented for comparison. The initial position and 
velocity of the particles are taken from the simulations of nonevaporating particles at the same 
particle time constant. Therefore, the particles are stationary at time t = 0 before the onset of 
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Figure 4. Variation of the diffusion coefficient tor the heavy particle (hollow symbols) and the surrounding 
tluid particle (solid symbols) with the particle time constant: (a) in the direction normal to the gravity 

direction, (b) in the gravity direction. 
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Figure 5. The velocity autocorrelation for the heavy particle at various evaporation rates for Tp0 = 5rk. 

evaporation. The initial particle time constant is Tpo = 5ik, and with a rate of evaporation of 
TK = 5tk the magnitude of TP is reduced to 0.5tk by the end of the simulation. As expected, a decrease 
of the particle time constant results in the decrease of its velocity autocorrelation; the larger the 
evaporation rate the smaller the velocity autocorrelation at all times. 

An important issue to address at this point is the speed of adjustment of the velocity of the 
evaporating particle to that of its surrounding fluid. As indicated in figure 1 when particles are 
released with a zero velocity relative to the fluid, there is a time delay before the average particle 
Reynolds number reaches a stationary value. Therefore, a comparison of the magnitude of «Rep» 
of the evaporating particle with those of the stationary non-evaporating particle at the same TP 

provides a reasonable indication of the speed of momentum adjustment. For the highest 
evaporation rate (tK = 5rk) shown in figure 5, «Rep» (TP = 3tk) = 0.585 and «Rep» 
(Tp - Tk) - 0.173. These values are very close to those for stationary non-evaporating particles at 
the same particle time constant (0.589 and 0.172, respectively). This suegests that evaporating 
particles adjust quickly to their new conditions. 

For a constant particle Schmidt number, the rate of evaporation becomes dependent on the 
magnitude of the particle Reynolds number and is different for each particle. Therefore, even with 
an identical initial TP value, the evaporation process results in polydispersitv of drops. The 
remainder of this section is devoted to the study of the properties of the drop size distributions 
for different values of the particle time constant, the evaporation rate, and various initial 
conditions. 

^ Figure 6 shows the temporal evolutions of the probability density function (pdf) of the variable 
rp- (proportional to the particle diameter). In this simulation, T^ = 5rk, TK = 5rk. and Scp = 1.0. 

0.15 

0 12 3 4 5 6 7 

V 
Figure 6. Pdfs of T^ = at different times for Tp,, = 5T„, T« = 5n, and Sc„ = I. 
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Figure 7. Temporal variations of «ip/rpo» and «(tp/Tpo)1:» for different initial particle time constants and 
evaporation rates. 

The particles start to evaporate from a stationary condition at time t = 0, when the pdf is a delta 
function. At longer times the mean shifts towards smaller TP

:
 values due to reduction of the particle 

size. The variations of «(Tp/Tpo)':» and «Tp/Tpo» are shown in figure 7 for simulations in which three 
different groups of particles are considered; T^ = 5tk, 2ik, and 0.5tk with corresponding initial 
evaporation rates of TK = 5tk, 2rk, and 0.5tk, respectively. Equation [5] indicates that for a constant 
rate of evaporation. tp decreases linearly with time. When the evaporation rate is variable, a 
deviation from the linear behavior is expected. However, figure 7 shows that for the cases 
considered here the deviation is relatively small. This is mainly due to the one-way coupling 
assumption. Obviously, larger particles show a more nonlinear behavior than the smaller ones due 
to their larger ReP values. The magnitude of the particle diameter decreases nonlinearly from the 
beginning and the rate of nonlinearity increases with time. This is easily explained by comparing 
the rate of change of TP and TP

:
. For a constant rate of change of TP (which is a reasonable 

assumption for the cases considered here), d(tp
:)/d/ ~ constant/tp

:. Therefore, the rate of the 
diameter decrease becomes larger as the size of the particle is reduced. Notice that although the 
initial evaporation rate for each group has been chosen proportional to its initial particle time 
constant, the curves of <<(TP TP„)' 

:» and «TP TP„» for different groups of particles are not identical. 
This is due to the nonlinear variation of ReP with TP as observed in figure 1. When TP is increased 
by a factor of 10. the corresponding «Rer» is increased by a factor of about 15. 

Shortly after the onset of evaporation, a wide range of droplet sizes is observed. In figure 8 the 
pdfs of TP

:
 are considered at an intermediate time (t - 1) and are shown to be close to Gaussian 

for all the cases. In figure 9 the temporal variations of the skewness and the kurtosis of the pdfs 
for the three cases are considered. At short times the pdfs are skewed towards the smaller sizes 
while at intermediate times they become more symmetric. Although the differences in Rep for the 
particles is responsible for the generation of size distribution at each time, the mechanism which 
results in variation of ReP is different at short and at long times. At short times, the diameters of 
all the particles are approximately the same and the changes in ReP are due to the differences in 
the spatial locations of the particles. At long times, the differences in ReP are also dependent on 
the size variations. In general, at intermediate times the pdf of the particle size is approximately 
Gaussian. However, the larger the initial particle time constant, the closer the pdf is to Gaussian. 
This is evident from figure 9 that shows larger deviations from Gaussian skewness and kurtosis 
values as the initial size of the particles is decreased. Larger particles with T,„, = 5rk and 2rk attain 
pdfs with slightly positive skewness after about one eddy turnover time. The skewness of the 
particles with rP„ = 0.5rk remains negative for the entire simulation. In general, for large particles. 
after an initial transient time which depends on the particle size the pdfs become very close to 
Gaussian. But near the end of the simulations again the pdfs start to deviate from Gaussian. In 
fact, when the skewness and the kurtosis of different cases are plotted versus the instantaneous 
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:
 for different particle time constants and evaporation rates at t = 1. 

mean particle time constant, the pdfs become more non-Gaussian as «tp» becomes smaller than 
tk. This is due to nonlinearity of the rate of decrease of TP

:
 at small particle time constants. As 

indicated above, as the size of the drop decreases, the rate of change of its diameter increases and 
figure 7 shows that this effect is more pronounced when the drop time constant is small. Therefore. 
the diameters of the smaller drops decrease faster than the diameters of the larger drops and the 
pdf becomes skewed towards smaller diameter values. 

We now consider the pdfs of particles with different initial evaporation rates. In figure 10 the 
temporal variations of the skewness and kurtosis for particles with rr0 = 5rk and initial evaporation 
rates of rK = 5tk, 2.5rk. :K. and 0.4rk are presented. The initial condition for these particles is 
different than those considered earlier. At t = 0 the particles are released with a zero velocity 
relative to the local fluid particle. An initial transient time is needed before the particles attain 
momentum equilibrium with the flow. Figure 10 indicates that this initial transient time appears 
independent of the rate of evaporation and is about the same as that required by the 
non-evaporating particles with rr = 5zk to reach the stationary condition (cf. figure 1). After the 
momentum equilibrium is reached, the pdfs of T^

:
 tend to become Gaussian. Towards the end of 

the simulation, the pdfs for cases with higher evaporation rates (rc, = 5rk and T(C = 2.5rk) become 
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Figure 10. Temporal variation of the kurtosis and skewness of z'r- for an initial particle time constant 
Tpo = 5rk at different evaporation rates. 

strongly non-Gaussian. However, as the evaporation rate decreases the pdfs tend to remain 
Gaussian. This is due to the smaller TP

:
 variances for cases with smaller evaporation rates. 

Therefore, as the evaporation rate is decreased a "narrower" pdf is obtained and the difference 
between the diameters of different drops is decreased. This, in turn, diminishes the effect of the 
nonlinearity of the rate of change of diameter which tends to skew the pdfs. 

Effect of particle Schmidt number. The magnitude of the particle Schmidt number influences the 
rate of evaporation as indicated by [4]. Figure 11 shows the temporal variation of the Lagrangian 
average of the nonlinear part of [4] for two different particle time constants and three Scp values. 
Two different initial conditions are considered: stationary (solid symbols) and non-stationary 
(hollow symbols). In non-stationary cases, the initial particle velocity is zero relative to the local 
fluid: therefore, the initial value of «CRe - 1» is zero. After an initial' increase, this value starts to 
decrease due to the decrease of the particle size and consequently the decrease of the particle 
Reynolds number. The comparison of the results in the stationary and the non-stationarv cases 
at the same ScP = 1 reveals that for large particles, the value of «CRe - 1» in the non-stationary 
case overshoots that in the stationary case. This is due to the variation of Rer in time which 
experiences an overshoot before it reaches a stationary value (figure 1). For small particles Rep does 
not overshoot, and neither does «CRe - 1». In general, the increase of ScP enhances the 
contribution of the nonlinear part of [4]: however, for the cases considered here with ScP as large 
as 5 this contribution is always less than 50% of the constant evaporation rate («CRe - 1» < 0.5). 
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Figure 12. Temporal variations of the variance of TJ

:
. ipo = 5rk, T« = TI. 

In figure 12 the temporal evolution of the variance of TP
:
 is shown for three different particle 

Schmidt numbers. The initial particle time constant is Tp0 = 5rk for all cases. As the particle Schmidt 
number increases the variance also increases. This means that at larger Scp, a wider range of particle 
sizes are present. At Scp = 5Tk the difference between the maximum and the minimum values at 
the end of the simulation is about 0.41 while the corresponding difference for Scp = 0.1 is about 
0.24. Therefore, while the minimum value of (Tp/Tpo)'2 at the end of the simulation is the same for 
both cases, the case with the higher Scp value contains a higher number of larger particles. This 
is due to the fact that the increase of Scp enhances the effect of Rep on evaporation. The skewness 
of the particle distribution towards smaller particles is also evident by comparing the distance from 
the mean value to the minimum and the maximum value at all times. Examination of the temporal 
variations of the skewness of TP 

2 revealed that, in all the cases, the skewness takes negative values 
at small times and then increases with time. For large TP0 values, the skewness reaches small positive 
values for intermediate times. But it decreases and takes negative values close to the end of the 
simulation when TP values for most of the particles become small. Particles with smaller T> values, 
have negative skewness during the entire simulation. In general, the effect of the particle time 
constant is more significant than the particle Schmidt number on the skewness of the particle 
sizes. 

Effect of spray size. In many practical applications the size of the spray is smaller than the 
characteristic size of the flow. As the spray evolves with flow, dispersion of the particles is strongly 
affected by the interactions between the spray and the carrier fluid. It is expected that the size of 
the spray relative to the characteristic length scale of turbulence plays an important role on 
dispersion. In the case of evaporating particles this becomes even more important since the size 
distribution is also directly affected by the interaction between the droplets and the flow at different 
scales. In this subsection we investigate the effect of the relative size of the spray on the particle 
size distribution. We initialize the problem by randomly distributing the particles inside a cubic 
box which is located at the center of the computational box. All particles have the same size and 
a zero velocity relative to the local fluid element at t = 0. The length of one side of the 
particle-containing box is denoted by S and indicates the spray size. 

First we consider a case with initial spray size f>„,7 = 0.28. In figure 13 the variations of the 
kurtosis and skewness of TP

:
 are shown for two different initial particle time constants. On the same 

figures the temporal variations of the spray size are also shown. This size is determined by the 
dimension of the smallest box containing all of the particles at any time. Figure 13 reveals that 
the kurtosis and skewness of the particle size are very different from those corresponding to 
Gaussian. In contrast to the cases discussed earlier, the skewness is positive throughout the 
simulation. For both of the particle time constants considered, the growth of the spray size is nearly 
linear in time. This can be interpreted as a constant diffusion velocity which is about the same in 
both cases. The normalized spray size increases from its initial value to a final value corresponding 
to the ratio of the computational box to the integral length scale. 
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Next, we consider cases with different S„ / values. Examination of the temporal variations of the 
kurtosis and skewness of i\: for ctiNes with different S« and rpü values revealed that as the initial 
spray size is increased, the oscillations in the skewness and the kurtosis diminish and the values 

0.04 

Figure 14. Temporal variation of the variance of x\} for different initial spray sizes, T,*, = 5rk. T„ = 5rk 

and ScP = I. 
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Figure 15. Temporal variation of the kurtosis of ^ for different values of the initial standard deviation 
rr = i-,. -„ = 5U and S„ I = 0.28. 

approach those corresponding to the Gaussian distribution. Figure 14 shows the time variation 
of the yanance of TJ- for several values of 5.7. The initial particle time constant and the 
evaporation rate are zp0 = 3lk and T« = 5r, respectively. As the initial sprav size is increased the 
Sntaneous rate of variance increase approaches an asymptotic value correspondingTtle c 

2Ä" t'     J     7Z h£ mitiaI Spra>' Size iS larger than about twice the intesral 

0 < °<Til ITT        ? m figUr£ 14- The firSt regi0n corresPonds to initial times 
0 < t < 0 3 durmg which the rate of variance growth is very small. Since particles are released with 

cZS« ^T^' har- the,same inr'Rep vaiues and conse^enti>'the «^ 
RP?no.H K    

Theref0re- at initial times the variance remains close to zero. As the particle 
Reynolds number increases, the particles experience different evaporation rates and the varmn 
starts to increase. Figure 11 shows that the time interval 0 < , < 0.3 corresponds to th   period 
during which «CR » adopts large values. At large particle Reynolds numbers, m the econd re  o 
of the curves of figure 14 (0.3 < , < 2). the variance grows with a larger rate. The third rel on 

whfi  h       ,1  bVhe 'arfSt rat£ °f VananCe gr0Wth- This is exPlained by considering 
7 which shows that the rate of reduction of t- increases at large times when the size of the partfcles 

Effect of the initial particle size distribution. The observed deviations of the particle s.ze pdfs from 
the Gauss,an for small S„ /values motivate the analysis of cases with initial Gaussian diamet pdfT 
These cases are characterized by the initial standard deviation of ^ denoted bv au The cases 
considered in previous subsections refer to <,, = 0. The velocity and'the position of he oruc 
are initialized randomly similar to previous cases. The size of each particle is selected random v 
from a Gaussian seed with specified values for the mean and the standadd vilt7\«order to 

reTrelyTmr   "* ^ ^ *"** «"* ^^ ^ *M «™™ <*££?£ 
Thettia! rnlh0WS ^ t™™* ^ ^ ^ ^ ^ S£Veral Va,UeS of the initial «andart deviation 
Is I, - 0*T ? , T I0"513"/ ,S <<V>> = ^ The Case with the smaIIes< MitiaI spray size 
dfetTof h inS H aSJhe PdfS f°r thlS CaS£ d6Viate m°re from Gaussian^ therefore, the 
fStion t nd Lr . Utl°n T ampIifi£d- AS eXpeCt6d- by inCreasing the initial ^andard 
her    ä nearlv 2r Tr ^T™' F°r the ra"ge °f «T->> and &>" values considered 
The eLr   f 7 f ^ ^ " ^'^ When the initial standard deviation is a„ = 0 07 
The effect of the imtial standard deviation is more pronounced at early times. An interesting feature 
observed m figure 15 is the similarity of the oscillations of the kurtosis curves for Sm^sT 
Th,s verifies our prev.ous observation in that these oscillations are due to interatt^Sc?^; 
particles and the large structures of the flow. Since the initial spray siz  t S a   ^™  a 
oscillation pattern is experienced in all the cases identical, a similar 

Next, we consider the effect of the initial spray size for a constant initial standard deviation of 
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Fieure 16. Temporal variation of the kurtosis of T^
:
 for different initial spray sizes. z& = 5tk. TK = 5tk and 

(To = 0.02. 

(To = 0.02. Figure 16 shows the temporal variation of the kurtosis of TP
:
. Similarly to the cases with 

do = 0. the pdf becomes more Gaussian as the initial spray size increases. Contrary to the cases 
with the same So//, the kurtosis curves of figure 16 are not similar. The time of the occurrence of 
the first peak is decreased as the initial spray size is increased. This again is due to the interaction 
of the spray with the larger scales of the flow as the spray size increases. The examination of the 
variance of TP

:
 (not shown) for different cases indicated that the variance curves collapse for 

Soil S* 1.4 when a0 = 0.02 in contrast to So / > 1.96 when <x0 = 0. 
Finally, for completion, several cases are considered with initially non-Gaussian drop size 

distributions. For these cases, the initial distribution consists of two distinct uniform-size groups 
of drops (the initial pdf of TP 

: is a double delta). The drops are initially injected into the flow with 
zero velocity relative to the local fluid and ScP = 1. Figure 17 shows the temporal evolution of the 
pdf of TJ 

: for a case with «T^» = 5tk and er0 = 0.128. As indicated in the figure, by the time t = 0.52 
the two initially segregated branches of the pdf start to merge resulting in the increase of the TP 

: 

kurtosis (figure' 18)! At / = 2.35 the double-hump pdf evolves into a single peak one: at the final 
time (f = 2?62). the pdf is close to Gaussian. However, it is also possible that with a large initial 
separation between the drop time constants (large <T„) a single-hump pdf is not attained during the 
evaporation period. Figure 18 shows that as «TP„» is increased, for the same an, the kurtosis of 
TP
:
 deviates less from that of Gaussian. Inspection of the pdf evolution for the case with «TP0» = 1 

0.08 

0.06 

i0.04 

0.02 

0.00 

Figure 17. Pdfs of z\,1 at different times. The initial pdf is double delta with drop time constants at 4.8TI 

and 5.2ik. T„ = 5ti and ScP = 1. 
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Figure 18. Temporal variation of the kurtosis of r;: for different initial mean drop time constants and 
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(not shown) indicates the persistence of the double-hump pdf throughout the simulation. The effect 
of the variation of the initial standard deviation on the kurtosis is also shown in figure 18 for pdfs 
with «Tpo» = 5rk. As expected, the evolution from a double-hump pdf into one with a single-hump 
is expedited with the decrease of a0- 

Based on these results, it is concluded that the evolution of the pdf is very sensitive to several 
parameters, especially «rp0», Tec, <r0, and Soil. Based on the magnitudes of these parameters and 
the initial form of the pdf. several asymptotic («rp» — 0) forms of the pdf are produced. It would 
be instructive to suggest a dynamic (or Langevin) equation governing the evolution of the dispersed 
phase pdfs in a carrier gas with a Gaussian velocity field. This equation must include the parameters 
identified here as model input. Construction of such a stochastic model is currently underway; the 
DNS results produced here are very useful in appraising the performance of such models. ' 

4.  SUMMARY AND CONCLUDING REMARKS 

Results obtained by direct numerical simulation (DNS) are used to investigate dispersion of both 
non-evaporating and evaporating particles in dilute stationary isotropic incompressible turbulent 
flow. The evaporating case is considered with both constant and variable rates of evaporation. In 
the simulations of non-evaporating particles, the effects of the particle time constant and the drift 
velocity on the particle autocorrelation, turbulence intensity and diffusivity are investigated. In 
agreement with the results of previous studies, it is found that the increase of the panicle time 
constant results in the increase of the particle velocity autocorrelation and the decrease of its 
turbulence intensity. There is good agreement between the DNS results and the model of Mei et al. 
(1991) for the ratio of the particle turbulence intensity to the carrier fluid turbulence intensity in 
the absence of gravity. But the agreement diminishes as the value of the drift velocity is increased. 
The particle turbulent diffusivity is rather insensitive to the changes in the particle "time constant 
in accord with the experiment of Wells and Stock (1983). However, the present results exhibit a 
peak value in the variation of the particle turbulence diffusivitv with the particle time constant 
In the absence of gravity, the peak value occurs for particle time constants comparable to the 
Kolmogorov time scale. In the presence of gravity, the peak value for the particle diffusivity is 
observed in the direction normal to the gravity direction. The value of the particle time constant 
at which the peak value occurs depends on the magnitude of the drift velocitv. No apparent peak 
value is observed for the particle diffusivity in the gravity direction. In general, the particle 
diffusivity is very sensitive to the drift velocity. 

The effects of the constant rate evaporation on the particle velocitv autocorrelation are studied 
for different initial particle time constants. The results show a decrease of the particle velocity 
autocorrelation with the increase of the evaporation rate for all the values of the initial particle 
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time constant. Variable rate evaporation results in polydispersity of drops. The effects of the initial 
drop time constant, the initial evaporation rate, and the drop Schmidt number on the probability 
density function (pdf) of the drop size are studied. Both cases with initially stationary and 
non-stationary particle velocities are considered. For cases with initially identical particle sizes it 
is found that after an initial transient period, the pdf of the particle size becomes Gaussian. The 
behavior of the pdf at long times depends on the particle size and the evaporation rate. In general, 
when the mean particle time constant becomes smaller than the Kolmogorov time scale, the pdf 
of the particle size starts to deviate from Gaussian. The extent of this deviation decreases with the 
decrease of the evaporation rate. The simulated results with different particle Schmidt numbers 
indicate an increase of the variance of TJ

2
 with the increase of the Schmidt number. Also, the results 

show that the particle time constant is* more influential than the particle Schmidt number in 
affecting the skewness of the particle sizes. 

The effects of the initial spray size on the distribution of the particle size are also studied. The 
results indicate significant deviations from Gaussian when the initial spray size is smaller than the 
flow integral length scale. The spray size displays a linear temporal growth which is indicative of 
a constant rate of diffusion. This rate appears to be approximately the same for all the cases 
considered here. In addition to the initially identical particle sizes, several cases are considered in 
which the initial sizes of the particles are selected from a Gaussian seed. For an initial constant 
spray size (0.28 times the flow integral scale) it is shown that a nearly perfect Gaussian behavior 
is achieved when the standard deviation of the initial particle size distribution is 0.07. This value 
changes with the initial mean particle time constant and the initial spray size. For an initial 
double-delta pdf of the drop size it is shown that a transition to Gaussian pdf is possible provided 
that the initial mean drop time constant is large and/or the initial standard deviation is small. 

At this point it is emphasized that the results presented here are based on simulations with several 
assumptions and simplifications as stated in section 2. These were necessary to make the problem 
computationally tractable with available resources. Some of these assumptions can be relaxed with 
improved computational capabilities. Future work is recommended in DNS of evaporating drop 
dispersion with two-way coupling, inclusion of compressibility effects, and modification of some 
of the coupling relations. It is also recommended to perform simulations with larger 
resolutions/realizations with data analysis coupled with consideration of preferential distribution 
of particles. The results generated thus far elucidate many important issues in regard to complex 
physics of drop dispersion in turbulent flows. These results motivate further extensions and 
utilizations of DNS for the analysis of more complex multiphase turbulent reacting flow systems. 
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Abstract 

Numerical simulations are performed of dispersion and polydispersity of particles in 
Isotropie incompressible turbulence. The mass loading of the particles is assumed to be 
small; thus the effects of particles on turbulence is neglected (one-way coupling). The 
stochastic model of Lu (1995) is employed to simulate the carrier phase. The results of 
the simulations are compared with direct numerical simulation (DNS) data of Mashayek 
et al (1997) and theoretical results of Mei et al. (1991). The stochastic model predicts 
most of the trends as portrayed by DNS and theory. However, the continuity effect 
associated with the crossing trajectories effect is not captured. Also, the peaking m 
the variation of the particle asymptotic diffusivity coefficient with the particle time 
constant is not observed. For evaporating particles, the stochastic model predicts 
thinner probability density functions (pdfs) for the particle diameter as compared to 
DNS generated pdfs. The model is implemented to investigate the effects of gravity 
on evaporation. It is shown that the depletion rate increases with increase of the drift 
velocity at short and intermediate times, but an opposite trend is observed at long 
times. The standard deviation and skewness of the particle diameter indicate peak 
values in their variations with the drift velocity. Dispersion of evaporating particles 
decreases with respect to that of non-evaporating particles at small drift velocities; an 
opposite trend is observed at large drift velocities. The effects of the initial evaporation 
rate and the particle Schmidt number on the evaporation in the gravity environment 

are also studied. 

1    Introduction 

In stochastic modeling of particle-laden flows, an ensemble of physical particles is considered 

in conjunction with some assumptions pertaining to the turbulent flow field. The particles 



can be considered as "Monte Carlo" computational elements which are expected to portray 

the physics of turbulent dispersion in a statistical manner. In this way, the flow field is 

not exactly calculated; rather its stochastic "realizations" are attempted. One of the early 

stochastic models of turbulent dispersion is due to Gosman and Ioannides (1981). In this 

model, the turbulence is assumed to be isotropic and to have a Gaussian pdf with the variance 

of 2Jb/3, where k is the turbulence kinetic energy. The fluctuating fluid velocity along the 

particle trajectory is randomly sampled from the Gaussian pdf and the particle is allowed 

to interact with an eddy over a time interval which is the minimum of two time scales: the 

turbulent eddy life-time, and the residence time of the particle within the eddy. This model 

was also implemented by Shuen et al. (1983); Solomon et al. (1984); Shuen et al. (1985) to 

predict particle-laden jets, and by Graham and James (1996) who discuss the effects of the 

model parameters and the initial conditions. 

The model of Gosman and Ioannides (1981) does not account for the temporal correlations 

and directional anisotropies associated with turbulent flows. This could result in some inac- 

curacies in capturing some of the well-established features of dispersion, such as the crossing 

trajectories effect. An improved model is proposed by Ormancey and Martinon (1984) which 

accommodates for both the temporal and the spatial structures of turbulence. In this model, 

the trajectories of massless fluid particles are constructed by integrating their Lagrangian 

equations. Associated with each fluid particle is a "fluid domain" centered at the fluid par- 

ticle location. A heavy particle can follow a fluid domain or can move from one fluid domain 

to another, accounting for the effect of crossing trajectories. Within the fluid domain, the 

fluid velocity fluctuation at the particle location is taken from a random sample with spec- 

ified one- and two-point correlations. A particle remains within one fluid domain as long 

as its distance from the fluid particle is smaller than some pre-defined length, or until the 

turbulent structure around the fluid particle is vanished by exceeding the random life-time 

of the fluid domain. The sizes and life-times of fluid domains are determined by length 

and time scales of turbulence. Similar models are proposed by Berlemont et al. (1990); 

Berlemont et al. (1991); Zhou and Leschziner (1991). Parthasarathy and Faeth (1990) use 

a stochastic model to predict dispersion of particles in self-generated homogeneous turbu- 

lence. This model is based on the idea of time series analysis of Box and Jenkins (1976) to 

satisfy the mean and fluctuating velocities and Lagrangian time correlations of the velocity 

fluctuations.   Parthasarathy and Faeth (1990) report good agreement between the model 



predictions and experimental data. 

In this work, we consider the stochastic model proposed by Lu (1995). This model, similarly 

to that of Ormancey and Martinon (1984), accounts for the temporal and spatial correlations. 

However, instead of constructing the trajectories of fluid particles through the correlations at 

several time steps, only the correlation between two successive time steps is considered. As 

a result, the implementation of the model is somewhat easier and requires less bookkeeping 

efforts. Also, by using the Eulerian (as opposed to the Lagrangian) autocorrelation, the 

model is capable of producing the same trend for the variation of the particle diffusivity 

coefficient as those predicted by theory (e.g. Pismen and Nir (1978)). Lu (1995) reports 

good agreements between the model predictions and experimental data of Snyder and Lumley 

(1971). Here, we assess the performance of the model via comparisons with DNS data of 

Mashayek et al. (1997) and theoretical results of Mei et al. (1991) in isotropic incompressible 

particle-laden turbulent flows. The model is also implemented to investigate the effects of 

gravity on polydispersity of evaporating particles. The stochastic model is briefly described in 

§2, following the problem formulation. The model predictions are compared with the results 

of DNS and theory in §§3 and 4, respectively. In §5 the effects of gravity on evaporation is 

analyzed followed by the summary and concluding remarks in §6. 

2    Formulation 

We consider the motion of spherical particles in an incompressible and isotropic turbulent 

flow. It is assumed that the dispersed phase is very dilute, thus the effect of particles on 

the carrier fluid is negligible. The momentum equation for each particle is considered in 

the Lagrangian frame of reference. In general, this equation contains the Stokes drag, the 

Basset force, the force due to fluid pressure gradient, the inertia force of added mass, and 

the gravity (Maxey and Riley, 1983). However, if the ratio of the density of the particle to 

the density of the carrier fluid is large, the inertia, the Stokes drag, and the gravity forces 

are dominant and the other forces can be assumed negligible.   With this assumption the 



governing equations for a single particle are expressed as 

*     J&(.-v)+,.. (1) 
dt      ppcPp 

^ = v, (2) 
dt 

where u and v (boldface indicates vector) denote the fluid velocity at the particle location 

and the particle velocity, respectively; t is time, X is the center position of the particle, e 

is the unit vector in the gravity direction, g is the gravity constant; pp and dp denote the 

particle density and diameter, respectively; and p is the fluid viscosity. All the variables are 

normalized by reference scales of length, L0, velocity, U0, and density, p0. 

In the simulations of non-evaporating (solid) particles, the particle diameter remains con- 

stant. For evaporating particles, the rate of diameter reduction is modeled by the dMaw 

(Strehlow. 1985) 

d\ = 4o " **, (3) 

where d^ is the initial diameter of the particle and the depletion rate is given by: k = 

8rin(l + BM)CRe, where T is the mass diffusivity coefficient and BM is the transfer number 

(Spalding, 1953). The parameter CRe = 1 + O.ZRe^Sc0™ is a correction factor to account 

for the convective effects (Ranz and Marshall. 1952) with Rep and Scp representing the 

particle Reynolds and Schmidt numbers, respectively. The flow is assumed isothermal and 

evaporation is due to a constant temperature difference between the drop and the fluid. This 

model is in accord with that of several laboratory experiments (e.g. Shearer et al. (1979)). In 

a dilute flow, the ratio of the mass of the particle to the mass of the carrier fluid is very small 

and it is assumed that the particles are in contact with the carrier fluid during evaporation. 

Therefore, the transfer number BM is the same for all the particles, and the variation of k is 

only due to the parameter CRe. A relation for the "particle time constant" (rp) is obtained 

from Eq. (3) 

*«)-$-*-*, (4) 



where Tpo = ^rf2- denotes the initial particle time constant, and 

re = T^Cte,     reQ = ^- ln(l + BM). (5) 

For convenience, the largest evaporation rate is chosen such that the particle velocity au- 

tocorrelation approaches zero by the time TP = O.lTpo (about 3.1 eddy turnover times). 

Therefore: T^ = ^fj" = 0.29rec where rec is introduced to relate the evaporation rate to the 

initial particle time constant. By introducing a drift velocity, V& = Tpog, Eq. (1) is expressed 

as 
dv      1 . .       1 ,„>. 

_ _(u - v) + —vdre. (6) 
at        Tp Tpo 

The particle Reynolds number is defined as: Rep = 
p^p}i

u~"v| with pf denoting the carrier 

fluid density. Following Wang and Maxey (1993) the Reynolds number is related to the flow 

Kolmogorov time scale (rk) and velocity scale (vk) with v = Tkv\, where v = fi/pf is the 

fluid kinematic viscosity 

A£p = AV'Vvi=4.243(^Hi)1/2^i (7) P        ^upvlp}
J VP

y       KrkJ Vk 

For large particle Reynolds numbers a "modified" Stokes drag relation must be used. The 

modification is in the form of an empirical correction factor which is multiplied by the Stokes 

drag relation. The empirical correction factor is described as a function of the particle 

Reynolds number (f(Rep)) and can be easily implemented in Eq. (6) by replacing TP with 

a modified particle time constant, r* = /(^e ,. A variety of relations for f(Rep) is available 

(Clift et a/., 1978), here we use 

/(Äep) = l + 0.15Äe;-687. (8) 

The particles can be tracked in the Lagrangian frame by integrating Eqs. (6 j and (2) provided 

that the fluid velocity at the particle location is known. Here, we use the stochastic model 

proposed by Lu (1995) to simulate the fluid velocity. The rudiments of the model are taken 

from the methodology of time series analysis (Box and Jenkins, 1976). Let the coordinate 

system move with the mean velocity; thus, only the fluctuating velocities are considered. 



The particle position, X,(0), i = 1,2,3, and velocity, u,(Xt(0),0), are given at the starting 

time t = 0. The initial fluid velocity, wt(X,(0),0), at the particle location is obtained from 

a random Gaussian seed with the standard deviation u' (assumed to be known a priori). 

Then, the particles are moved to their new positions, Xi{At) (At is the time increment), 

using a second order Runge-Kutta method. In order to advance the calculations for the next 

time step, the fluid velocity, u,(X,(Ai), At), at the new particle location must be found. By 

the time particles arrive at their new locations, the fluid velocity at the old particle location 

changes to u,(X,(0), At). To relate the old and the new fluid velocities at X,-(0), the Eulerian 

velocity autocorrelation 

F   (>■)     <^(*«(0);0K(*«(°)^)>      a = 1,2,3 (9) 
taa^t)-   <Wa{xa(0),0)wa(XQ(0),0)>, 

(with no summation over repeated Greek indices) is used, where w; = u,/u' is the normalized 

velocity and < > indicates the ensemble average. It is also necessary to account for the spatial 

separation between the fluid particle and the heavy particle locations through the Eulerian 

spatial correlation 

< wa(Xa(Q),At)wQ(Xa(At),At) >      a = 193 (10) 
Uaa{As)-  <Wa(Xa(0),At)wa{Xa(0),At)>' 

where As = |X(Ai) - X(0)| is the distance between the old and the new particle locations. 

To use Eq. (10), it is necessary to re-orient the coordinate system such that one of the axis 

coincides with X(A£) — X(0). 

By defining autoregressive processes (Box and Jenkins, 1976) (in time) for u>,(X,(0),0) and 

Wi(Xi(0),At), and (in space) for to,-(X,-(0), At) and to,-(X,-(A<), At), with some algebraic 

manipulations, Lu (1995) obtains: 

wa(Xa{At),At) = aabawa{Xa(0),0)+fc    « = 1,2,3 (11) 

where aa = Faa(At), ba = Gaa{At), and 7a is a Wiener process which is determined 

by it's variance, aya = ^/l - affi. Once the fluid velocity at the new particle location is 

determined using Eq. (11), the steps described above are repeated and the particle trajectory 

is constructed. 



The following relations are used for the Eulerian temporal and spatial correlations (Lu, 1995): 

Faa(At) = exp(-At/TE), GH(AJ) = exp(-As/Ai), G22(As) = G^As) = exp(-As/A2), 

where TE is the Eulerian integral time scale and Ai and A2 are the Eulerian integral length 

scale in the longitudinal and transverse directions, respectively. In isotropic incompressible 

flows, these are estimated by: 

TL = CX^-,    TE = £,    Ax = 2A2 = C3TLU', 
6 G2 

where TL is the Lagrangian integral time scale, e is the dissipation rate, and C\ = 0.212, 

C2 = 0.73, C3 = 2.778. The values used for Cx and C3 are the same as those suggested by Lu 

(1995). The value of C2 is larger than that used by Lu (1995), and is the upper limit found 

in the literature (Hinze, 1975), but provides better agreements with the results of theory and 

DNS. With this formulation, the values of the fluid turbulence intensity and dissipation rate 

of the turbulent kinetic energy are model inputs. The values vl = 0.0185 and e = 3.987 x 10-6 

are taken from DNS of Mashayek et al. (1997). In the presentation of results, the particle 

variables are normalized by fluid variables. The optimized computational time step for each 

case depends on the parameter values as considered. In all cases, 253 particles are tracked. 

3    Model assessment via comparison with DNS 

Recently, Mashayek et al. (1997) have performed extensive DNS to investigate dispersion 

(and polydispersity) of solid (and evaporating) particles in stationary isotropic incompress- 

ible turbulence. This configuration provides an ideal setting for the assessment of the stochas- 

tic model. In this section, the DNS results of Mashayek et al. (1997) are used for this 

assessment. In doing so, the primary consideration is to re-scale.the DNS generated time 

and velocity scales to those of stochastic simulations via (Elghobashi and Truesdell, 1992): 

Is.) = JE.) an<i Ja.) = la.) where r0 = dv/vdr is the drift timescale. The rea- 
T£/DNS       TEJSTB TE'DNS       T£/STH 

soning for considering the fluid eddy turnover time for scaling is discussed by Elghobashi 

and Truesdell (1992). This adjustment is necessary as the stochastic model, by nature, is 

designed for Reynolds numbers higher than those attainable by DNS. 



3.1    Dispersion of solid particles 

First,weconsiderdisperSion<)fSo.id(nonevapotating)partic1e,InFig.lthepaIticleve1ocity 

autocorrelation coefficients, 

^)=^?Sw^. °=1'2'3- (12) 

„ generated by DNS are compared with these by stochastic "°^" £ 

m for various particle time constants. For direct compansons w,th DNS results, the 

partid  time constant and the drift ve.ocity are expressed in terms of the Kolmogorov «me 

LTlcity scales, respective,, m the absence of gravity, Fi, U shows that the agreeme. 

Leen the particle velocity autocorrelations is very good for large part.cles. Howeve^ 

tfc. partide time constant is decreased, the results of stochastic s.mularions dev ate from 

DNS results  At very small particle time constant (r, = 0M>) the stochastic model underes- 

ZTS results at short time, and overestimates them at !onger time*. The agreement 

tal in the presence of gravity (Fig. lb for ., = W and significant dev.at.ons are 

observed for all partide time constants. It appears that the stochastic model does not pr. 

aict the negative «oops in the particle velocity autocorrelation curve. Th«,^«- 

the continuity effect (Csanady, 1963) assodated with the crossmg trajecones: eff^Tto 

fore, while the effects of crossing trajectories are portrayed (as w,nessed by  he decrease o 

the particle velocity autocorrelation coefficient with the increase of the dnft velocty), the 

continuity effects are not captured by the model. 

The particle turbulence intensities calculated from the stochastic model are compared against 

DNS Tata for a variety of particle time constants and drift velodties in Fi, 2. These ,uan- 

tities are time averted (indicated by an overbar) over more than thre. eddy turnover rimes 

in both simulations.  As expected, with the increase of the particle, mert.a, .ts .ndency 

to follow turbulent fluctuations is diminished and the particle turbulence mtens, y , de- 

creased.  Also, the increase of the drift velocity results in the decrease of the 

Wence intensity due to the crossing trajectories effect. The genera, trends shown m F., 

have ben observed by others (see «., Snyder and Lumley (197!); Wells and Stoc   (1983^ 

Mei et al  (1991)). Figure 2 indicates that the agreement between the model pred.ct.ons and 

Z l     s     od in both of the directions parallel and normal to the gravity direct.on. 



No apparent preference towards either small or large particles is observed. This is interesting 

as the scaling between the two simulations is based on the large scale eddy turnover time 

and the smaller particle time constants are of the order of the Kolmogorov time scale. Also, 

the good agreement observed in the presence of gravity indicates that the incapability of the 

stochastic model to account for the continuity effects does not affect the calculation of the 

particle turbulence intensity. 

Figure 3 presents the asymptotic particle turbulence diffusivity coefficient, e* = D'(t -> oo), 

in both the presence and the absence of gravity. In accord with DNS, the particle diffusivity 

coefficient, D>(t) = \[Dp
n(t) + D>22(t) + 0g,(t)], is determined by (Hinze, 1975) 

D$a(t) =< vl(0) > £B>J?)*T = jf < M0K(T) >dT    <* = i'2'3- 
(13) 

The results (not shown) for the diffusivity coefficients of the fluid particle surrounding the 

heavy particle exhibit similar trends as those observed in Fig. 3.   The asymptotic values 

are calculated based on a "finite" time (about 3.5 eddy turnover times) in both DNS and 

stochastic simulations. The results in Fig. 3 show that, contrary to the particle turbulence 

intensity, the asymptotic particle diffusivity coefficients are predicted with some deviations 

from those calculated by DNS. The extent of deviation is increased as the particle time 

constant is decreased. This is not an artifact of using a finite time to calculate the asymp- 

totic values, as with the decrease of the particle time constant the velocity autocorrelation 

approaches zero in a shorter time. Therefore, the asymptotic values are reached in a shorter 

time and smaller deviations are expected at smaller particle time constants. Figure 3 shows 

that the general trends in the variations of the particle diffusivity coefficient with the drift 

velocity are captured by the stochastic model. However, the model does not predict the peak 

value in the variation of the particle diffusivity coefficient with the particle time constant. 

The peak value in DNS occurs for particle time constants of the order of the Kolmogorov 

time scale and is due to the increase of the effects of the preferential collection of particles 

in high strain regions of the flow at these small particle time constants. This suggests that 

this model can be more safely used for particle time constants of the order of the larger time 

scales of the flow. 



3.2    Polydispersity of evaporating particles 

When the particles evaporate, their interaction with the carrier fluid results in a distribution 

of particle sizes. This is the case even if initially all the particles are of the same size. Since 

the evaporation rate is strongly controlled by the instantaneous particle Reynolds number, 

it is instructive to first consider the temporal variations of the particle Reynolds number for 

nonevaporating particles at different particle time constants. Figure 4 provides a comparison 

between the particle Reynolds number calculated using the stochastic model with those from 

DNS. By examining this figure it is realized that: (i) the initial time required by the particles 

to reach the stationary condition is much shorter in the stochastic simulations,   (ii) For 

large particles, an overshoot is observed in the temporal variations of the particle Reynolds 

number, the extent of which is increased with the increase of the particle time constant. The 

stochastic model predicts a much smaller overshoot at the same particle time constant, (iii) 

The stationary values of the particle Reynolds number predicted by the stochastic model are 

larger than those via DNS. More importantly, the deviation observed between the stationary 

values depends on the particle time constant; the smaller the particle time constant the 

larger the deviation. 

The influences of physics as itemized by (i)-(iii) are discussed by considering the temporal 

variations of the mean and higher order moments of r)l\ This parameter is chosen since it 

is proportional to the particle diameter.  First, we consider the temporal variations of the 

mean, the minimum, and the maximum values of (r./r^2 for a case with r^ = 5rfc, rec = 

5rfc, and Sc, = 5.   The particles are initially injected into the flow with identical sizes 

and with the same velocity as that of their surrounding fluid elements. The particles are 

allowed to evaporate until the diameter of the smallest particle reaches 5% of its initial 

value at which time the simulation is terminated.  Very small sizes are not considered to 

avoid the excessive computational requirements for particle tracking.  Figure 5 shows that 

the stochastic model predicts the mean diameter value very closely to DNS, specially during 

short and intermediate times. However, the minimum and maximum particle sizes predicted 

by the model deviate from those calculated by DNS. This can be explained by considering 

the variation of the particle Reynolds number with the particle time constant in Fig. 4. 

When the particle time constant varies from 0.4rfc to 5T* the stationary values of the particle 

Reynolds number is increased by a factor of ~ 19 in DNS and ~ 8.3 in the stochastic 

10 



simulations. Therefore, for the same size distribution, DNS predicts a much wider variation 

of the particle Reynolds number. Consequently, the variations of the evaporation rate is 

larger in DNS and a broader size distribution is resulted. This also explains the sharper 

decrease of the minimum particle diameter at long times in DNS. It is noted that for a 

constant rate of change of rp (which is a reasonable assumption for the case considered 

here), ^(r1'2) ~ ""ffi"*. Therefore, the rate of the diameter decrease becomes larger as the 

size of the particle is reduced. 

Based on the discussion above, it is expected that the stochastic model predicts a narrower 

(thinner) size distribution than does DNS. This is evident in Fig. 6 which portrays the tem- 

poral variations of the standard deviation (a) of r^2 for several Scy values. This figure shows 

that the stochastic model significantly underpredicts the standard deviation at intermediate 

and long times, although it is capable of predicting the right trend of variation with the 

particle Schmidt number. Three different regions are distinguished for each of the curves. 

The first region, for short times (t/rE < 0.2), corresponds to the interval that the particle ve- 

locity is nonstationary. This period is characterized by small rates of growth of the standard 

deviations of r^2 as the particles are initially released with the same velocity as that of the 

surrounding fluid and the particle Reynolds number takes small values. Since the stochastic 

model predicts a larger variation of Rep with the particle time constant in this nonstationary 

period (cf. Fig. 4), the standard deviations are higher in stochastic simulations during the 

initial short times - this is verified by considering the values near t = 0.   In the second 

region (0.2 < t/rE < 2), the particle Reynolds number adopts large values and the standard 

deviation increases more rapidly. In this region, the stochastic model underpredicts the DNS 

results as the model yields a smaller variation for the particle Reynolds number with the 

particle time constant. The third region (t/rE > 2) is specified by the largest growth rates 

for the standard deviation. It is clearly seen in Fig. 6 that the model does not predict growth 

rates as large as those in DNS. This can be explained by the same argument provided earlier 

to explain the variations of the particle diameter at final times. 

Figure 7 shows the temporal variations of the skewness and kurtosis of r^2 for particles 

with Tpo = 5rfc and Sc? = 1 at two initial evaporation rates rec = 5rfc and rec = rfc. The 

particles have initially zero velocity relative to the surrounding fluid: therefore, there is an 

initial time for the skewness and the kurtosis to reach stationary levels. In DNS, this time 

11 



is about 2.5rE which is about the same time required by nonevaporating particles to reach 

a stationary state (Fig. 4). The corresponding initial time in the stochastic simulates ,s 

about one eddy turnover time. As a result, the short time variations of both the skewness 

and the kurtosis are very different in DNS and stochastic simulations. At long tunes, for the 

case with smaller evaporation rate, the prediction of the stochastic model for the kurtosts 

is in good agreement with DNS results. However, the stochastic model underestimates the 

skewness values; it predicts a negative skewness throughout the duration of evaporator. 

In general, the stochastic model predicts a narrower pdf of the droplet size than that obtained 

by DNS. This has a major impact on the evolution of the pdf when there is an mrfal s,ze 

separation between the particles.  In order to elaborate on this issue, we consider cases m 

which the initial particle size distribution consists of two distinct uniform-size groups of 

particles (i.e. the pdf of r* is double delta). In all of the cases, the particles are .mfally 

injected into the flow with a zero velocity relative to the local fluid, < i* >- on, and 

So, = 1    Figure 8 shows the temporal evolution of the kurtosis of r}" for cases wrth 

different initial standard deviations.  After the onset of evaporation, there is a time delay 

before the two initially segregated branches of the pdf merge, resulting in the mcrease of 

the kurtosis. Figure 8 indicates that this initial time delay depends on the initial separaten 

between the two groups of particle sizes. As expected, the increase of this separatum (the 

increase of <r„) delavs the merging. The stochastic model predicts a slower mergmg for all 

„f the cases. This is due to the fact that the pdfs of each group of particles are predicted to 

be narrower (at any instant of time) in comparison to DNS. 

4    Comparison with theory 

Mei et al (1991) obtain a solution for the particle turbulence intensity and diffusion co- 

efficient by assuming the form of the spectral density function as proposed by Kramhnan 

(1970) They consider contributions of all the forces acting on the particle but show that 

onlv the Stokes drag and the Basset forces need to be retained. In this section, thetr flnal 

results for cases in which the Basset force is neglected, are compared with those predated 

by the stochastic model. 
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The variations of the particle turbulence intensity with the particle time constant and the 

drift velocity are shown in Fig. 9. This figure indicates that the predictions via the stochastic 

model are in good agreements with those based on the theory for wide ranges of the par- 

ticle time constant and the drift velocity. The stochastic model underestimates the results 

via the theory slightly in the absence of gravity while overpredicting these results at large 

drift velocity. The agreement between the two results diminishes with the decrease of the 

particle time constant. These trends are observed in both of the directions normal (Fig. 9a) 

and parallel (Fig. 9b) to the gravity direction. However, it must be emphasized that the 

predictions of the stochastic model is very sensitive to the magnitude of C2; values smaller 

than 0.73 were found to produce larger deviations from the theory. 

In Fig. 10, comparisons are made between the predictions via the model and the theory 

for the asymptotic particle diffusivity coefficient at different drift velocities. The particle 

diffusivity coefficient is evaluated from (Hinze, 1975) 

Dla(t) = \jt<Xl(t)>      a = 1,2,3. (14) 

The overall agreement is good. The stochastic model is capable of predicting the variations of 

the particle diffusivity coefficient with the drift velocity and with the particle time constant. 

In both the gravitv and no-gravity directions. <* increases with the increase of the particle 

time constant when the drift velocity is small. The increase of the drift velocity tends to 

diminish the variations of * with the particle time constant; an effect observed more strongly 

in the direction normal to the gravity direction. 

As pointed out by Lu (1995), some of the earlier stochastic models do not correctly predict 

the increase of the long time particle diffusivity coefficient with the increase of the particle 

time constant. This is, mainly, due to the use of the "Lagrangian" autocorrelation. In order 

to show this, we also consider a Lagrangian stochastic model proposed by Lu et al. (1993). 

The results of the simulations are presented in Fig. 11 and indicate a decreasing trend for 

the long time particle diffusivity coefficient at zero gravity. The variations of e» at higher 

drift velocity values are. however, predicted correctly. In both the gravity and no-gravxty 

directions the particle diffusivity coefficient becomes rather insensitive to the vanatians of 

the particle time constant. It must be added here that the parameter C2 does not appear m 
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IE. **■    <Rev>     <"">-<t'""> x 100    <tm>-<e»m> x 100 
»' P <*lm> <'Sm> 

0.1 0 0.22 0.8 0.0 
0.4 0 0.69 4.4 0.7 
1.6 0 1.86 16.0 1.4 
8.0 0 4.83 42.0 2.0 

0.1 2 0.72 2.6 2.3 

0.4 2 1.40 10.4 4.9 

1.6 2 2.83 30.7 6.0 

8.0 2 6.21 76.5 13.5 

0.1 5 1.62 6.3 7.8 

0.4 5 2.90 24.0 11.0 

1.6 5 5.24 67.7 19.4 

8.0 5 10.19 153.2 32.8 

Table 1: Effects of the modified Stokes drag on the particle turbulence intensity and dif- 
fusivity. Subscripts "m" and "um" refer to the calculations based on the modified and 
unmodified (Stokes) drag, respectively. The particle intensity and diffusivity coefficient in 
cases with non-zero drift velocity belong to the gravity direction. 

the Lagrangian model. However, the values of the particle diffusivity coefficient are indirectly 

dependent on C2 as it relates rp to the "variable /?" as used by Mei et al. (1991). Of course, 

C2 only affects the magnitude of the particle diffusivity coefficient and does not change the 

decreasing trend observed at zero gravity. 

The results presented in Figs. 9-11 are based on the assumption of Stokes drag with no mod- 

ification for large particle Reynolds numbers. This assumption is necessary for comparison 

with the theoretical results of Mei et al. (1991) which are also based on the same assump- 

tion. However, in several of the cases the particle Reynolds number significantly exceeds 

unity. This will affect the particle intensity and diffusivity coefficient. In order to quantify 

these effects, in table 1 the percentage relative differences between the results obtained with 

a modified drag relation (Eq. (8)) and those presented earlier based on the Stokes drag are 

provided. As expected, the particle Reynolds number increases with the increase of the 

particle time constant and/or the drift velocity, resulting in larger deviations for the particle 

intensity and diffusivity coefficient at larger rp and vdr values. It is noted that the particle 

diffusivity coefficient is predicted with a much smaller error than that associated with the 

particle intensity. This behavior is mostly due to the higher sensitivity of the particle in- 

tensity to the particle time constant. Regardless of the magnitude of the drift velocity, the 
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particle intensity and diffusivity are predicted with comparable errors when the value of the 

particle time constant is small (r„ = 0.1r£). 

5    Effects of gravity on evaporation 

We now consider the effects of gravity on polydispersity of evaporating particles. In all the 

simulations considered in this section, the initial value of the particle time constant is fixed 

at TpQ = 10rfc, and a modified drag coefficient (Eq. (8)) is used. 

Figure 12 portrays the effects of gravity and evaporation on the velocity autocorrelation 

coefficient of both the heavy particle and its surrounding fluid particle (indicated by super- 

script "fp"). In Fig. 12a the velocity autocorrelations are given for nonevaporating particles 

at different drift velocities. As has been shown in previous studies (Wells and Stock, 1983; 

Mashayek et a/., 1997) the increase of the drift velocity decreases the velocity autocorrelation 

of both the particle an its surrounding fluid due to the effect of crossing trajectories. Figure 

12b indicates that evaporation also results in a decrease of the particle velocity autocorrela- 

tion: the higher the evaporation rate, the smaller the particle velocity autocorrelation. This 

is due to the decrease of the particle size with evaporation. However, evaporation has virtu- 

ally no effect on the velocity autocorrelation of the fluid. Therefore, the evaporating particle 

does not change its surrounding fluid as frequently as does the nonevaporating particle in a 

gravity environment. 

The effects of gravity on the rate of evaporation are realized from Fig. 13 by considering 

the temporal variations of -d-&^ which is proportional to the depletion rate (*, Eq. 

(3)) When the nonlinear term in CRe is zero (the case with Sc, = 0 in Fig. 13), the 

evaporation rate is constant as expected. The inclusion of the nonlinear term increases the 

rate of evaporation. However, for all of the drift velocities, the rate of evaporation decreases 

nonlinearly in time due to the decrease of the particle size and, consequently, the particle 

Revnolds number. For short and intermediate times, the evaporation rate increases with 

the drift velocity as the particle Reynolds number is increased with the increase of the drift 

velocity The larger evaporation rate at higher drift velocity results in a faster decrease of the 

particle size. As a result, a decreasing trend is observed for the variation of the evaporation 
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rate with the drift velocity at long times. 

An interesting behavior is observed in the variations of the standard deviation of r^2 with 

the increase of the drift velocity. Figure 14a shows that by increasing the drift velocity from 

zero to 2vk, the standard deviation increases at all times. However, further increase of the 

drift velocity results in an opposite trend. At large drift velocities the particle Reynolds 

number takes large values. This has the effect of diminishing the relative differences in the 

Reynolds number of different particles and results in a narrower r^2 pdf. A similar behavior 

is observed for the skewness of r^2 in Fig. 14b which shows that skewness is largest at 

vdr = 5vk. Also, the increase of the drift velocity results in skewness of r^2 towards larger 

particles. Therefore, with the increase of the drift velocity, first the pdfs become wider and 

more skewed towards large particles. Further increase of the drift velocity results in an 

opposite trend. 

When the rate of evaporation is decreased to rec = 1, Fig. 15 shows that the variations of the 

standard deviation and skewness of r^2 with the drift velocity change significantly. A mono- 

tonic decrease of the standard deviation with the increase of the drift velocity is observed at 

intermediate times. The skewness approaches near zero values for all drift velocities, before 

it sharply decreases (Fig. 15b). An examination of the standard deviation and skewness of 

r1/2 for cases with Scp = 5 revealed no significant difference in their variations with the drift 

velocity when compared to those with Scp = 1. 

Figure 16 shows the temporal variation of the dispersion < [Xa(t) - Xa{t = 0)] >. This 

figure indicates that dispersion decreases with the increase of the drift velocity in both of 

the directions parallel and normal to the gravity direction. Comparisons with the results 

of nonevaporating particles in Fig. 16 reveal that evaporation tends to decrease dispersion 

in low gravity environment and to increase it at higher drift velocities. This behavior is 

observed in both directions. It is also noted that the difference between the results under 

evaporating and nonevaporating conditions increases with time for all the drift velocities 

except vdT = 2vk for which dispersion shows no apparent sensitivity to evaporation. 

The temporal variations of dispersion for a case with S^ = 5 are shown in Fig. 17. Other 

parameters are the same as those considered for cases in Fig. 16. A comparison of these two 

figures reveals that the increase of the particle Schmidt number does not affect dispersion 
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in the direction normal to the gravity direction. However, significant changes are observed 

in the gravity direction. The effects of the particle Schmidt number on dispersion in the 

gravity direction is enhanced by increasing the drift velocity. It is also noted that similarly 

to the cases with Sc, = 1, the case with vdr = 2vk remains unaffected by evaporation. 

6    Summary and concluding remarks 

Results are presented of stochastic simulations of dispersion and polydispersity of particles 

in isotropic turbulent flows via the stochastic model proposed by Lu (1995). All of the 

empirical relations and the model's constant values are set the same as those suggested by 

Lu (1995). However, a value larger than that suggested for the ratio of the Lagrangian and 

Eulerian integral time scales was necessary. 

The predicted results via the model are compared with the results based on DNS (Mashayek 

et ai, 1997) and theory (Mei et a/., 1991).   The stochastic model based on the Eulerian 

autocorrelation correctly predicts most of the trends observed by theory and DNS. When the 

model is constructed with a Lagrangian autocorrelation, the particle asymptotic diffusivity 

coefficient decreases with the increase of the particle time constant, in the absence of gravity. 

This trend is opposite of that predicted by the theory. A comparison of the particle velocity 

autocorrelation coefficients simulated by the Eulerian stochastic model with those by DNS 

indicates that the continuity effect (associated with the crossing trajectories effect) is not 

captured. Also, the peaking for the variation of the particle asymptotic diffusivity coefficient 

with the particle time constant as observed in DNS is not predicted.   When compared 

with DNS results, the model predictions exhibit better agreements for large particle time 

constants. The stochastic model is also used to quantify the effects of a modified drag relation 

on the particle turbulence intensity and the asymptotic diffusivity coefficient. The results 

suggest that the particle turbulence intensity is more sensitive to the drag calculations than 

is the particle diffusivity coefficient. 

For evaporating particles, the stochastic model predicts thinner particle diameter pdfs than 

does DNS. This is mainly due to differences in the magnitudes of the particle Reynolds 

number in the two simulations. The higher order statistics of the particle size are calculated 
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by the stochastic model and reasonable agreements are fonnd with DNS. The model is also 

used to investigate the effects of gravity on evaporation. The depletion rate indicates an 

increasing trend with the increase of the drift velocity at small and intermediate evaporation 

times; an opposite trend is observed at long times. Furthermore, the variations of the 

standard deviation and the skewness of r^ with the drift velocity is not monotone. For 

small drift velocities, the standard deviation and the skewness increase with the increase of 

the drift velocity; an opposite trend is observed for large drift velocities. 

At this point, it is important to note that the configuration of isotropic turbulence as con- 

sidered here is much simpler than that in practical flow configurations. Therefore, weaker 

agreements between stochastic and DNS/experimental results are expected when the model 

is implemented in inhomogeneous flows especially those with large strain rates. Also, with 

extension and implementation of stochastic models to complex flows the problem associated 

with the (non)universality of the empirical constants must be resolved. Another important 

issue pertains to the number of particles for statistical sampling. Based on our experience, 

typically as many as 15,000 particles are necessary for reliable statistics. This could be a 

major restriction as in most of the reported applications of stochastic models to spatially 

inhomogeneous flows the total number of particles is significantly lower. 
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Figure Captions 

Figure 1.  Temporal variations of the particle velocity autocorrelation coefficient from the 
stochastic and direct numerical simulations,  (a) In the absence of gravity, H> - 5^11 + 

Ü& + ^33)- (b) For Vdr = 5üfc'in the direction normaI t0 the graVlty directl0n- 

Figure 2. Particle turbulence intensity from stochastic simulations and DNS, in the direction 

(a) normal and (b) parallel to the gravity direction. 

Figure 3. Particle asymptotic diffusivity coefficient from stochastic simulations and DNS in 
the direction (a) normal and (b) parallel to the gravity direction. 

Figure 4   Temporal variations of the mean particle Reynolds number for nonevaporating 
particles as calculated by stochastic and direct numerical simulations, in the absence of 

gravity. 

Figure 5.   Temporal variations of the minimum, the mean, and the maximum values of 
(Tp/rpo)1'2 as calculated by stochastic and direct numerical simulations, r^ - 5rfc, rec - 5rfc, 

and Scp = 5. 

Figure 6   Temporal variations of the standard deviation of r^2 as calculated by stochastic 
and direct numerical simulations at different particle Schmidt numbers,   r^ - 5rfc and 

Tec = OTk. 

Figure 7 Effects of the initial evaporation rate on the temporal variations of the skewness 
and kurtosis of r^2 as calculated by stochastic and direct numerical simulations, T^ - 5rfc 

and Scp = 1. 

Figure 8. Temporal variation of the kurtosis of r^ for different initial standard deviations 
as calculated by stochastic and direct numerical simulations. <rp0>- 5rfc and rec - 5rfc. 

Figure 9 Particle turbulence intensity from stochastic simulations and theory (Mei et a/, 
1991) in the direction (a) normal and (b) parallel to the gravity direction. 

Fisrure 10 Particle asymptotic diffusivity coefficient from stochastic simulations and theory 
(Mei et a/., 1991) in the direction (a) normal and (b) parallel to the gravity direction. 

Figure 11. Comparison of the results of the Lagrangian stochastic model and theory (Mei et 
al, 1991) f°r tQe Particle asymptotic diffusivity coefficient. 

Figure 12. Velocity autocorrelation coefficients of the heavy particle and its surrounding 
fluid particle, (a) Nonevaporating particles; effect of gravity. rp =: l(h*. 0>) Evaporating 
particles in zero gravity; effect of evaporation rate. Tpo = 10rfc and Sc, - 0. 

Figure 13.  Effects of the variations of the drift velocity on the depletion rate,  r^ = 10rfc 

and rec = lOrfc. 

Figure 14.   Effects of the variations of the drift velocity on the standard deviation and 
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skewness of rp
1/2. Tpo = 10i*, rec = 10rfc, and Scp = 1. 

Figure 15. Effects of the variations of the drift velocity on the standard deviation and 

skewness of rp
1/2. Tpo = I0rk, rec = rfc, and Scp = 1. 

Figure 16. Effects of the drift velocity on the dispersion of both nonevaporating and evaporat- 
ing particles in the direction (a) normal and (b) parallel to the gravity direction. T& = 10rfc, 

rec = 107*, So,, = 1. 

Figure 17. Effects of the drift velocity on the dispersion of both nonevaporating and evaporat- 
ing particles in the direction (a) normal and (b) parallel to the gravity direction, r^ = 10rfc, 

rec = lOrjt, Scj, = 5. 
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Abstract 

This work deals with direct numerical simulation (DNS), and development of a 
new Reynolds stress model (RSM) for description of two-phase turbulent flows. DNS 
is conducted of a homogeneous turbulent shear flow laden with monosize particles. 
The dispersed phase is simulated in the Lagrangian frame and the carrier phase is 
considered in the Eulerian context. The coupling between the two phases is "two-way" 
which allows investigation of the effects of "the mass loading ratio" and "the particle 
time constant" on both phases. The RSM is based on a "two-fluid" methodology in 
which both the carrier phase and the dispersed phase are considered in the Eulerian 
frame. Closures are suggested for the unclosed terms (including the pressure-velocity 
gradient) which manifest the effects of two-way coupling. The DNS generated results 
are used to study some of the intricate physics of particle dispersion. These results are 
also used to determine the magnitudes of some of the empirical constants appearing in 
the RSM. The final model predictions for all the components of the fluid, the particle, 
and fluid-particle Reynolds stresses are assessed via detailed comparisons against DNS 

data. 

1     Introduction 

A variety of statistical models are available for prediction of multiphase turbulent flows 

(Faeth, 19S7; Crowe et «/., 1996). A large number of "application oriented" investigations 

are based on the Eulerian description utilizing turbulence closures for both the dispersed 

and the carrier phases.   The closure schemes for the carrier phase are mostly limited to 
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"Boussinesq" type approximations in conjunction with modified forms of the conventional 

k-e model (Launder and Spalding, 1972). Examples are the contributions of Elghobashi and 

Abou-Arab (1983); Mostafa and Elghobashi (1985); Yokomine et al. (1994). The models 

for the dispersed phase are typically via the "Hinze-Tchen" algebraic relation (Chen and 

Wood, 1986; Zhou, 1993; Zhao, 1993) which relates the eddy viscosity of the dispersed phase 

to that of the carrier phase. While the simplicity of this model has promoted its use, its 

nonuniversality has been widely recognized (Chen and Wood, 1986; Mostafa and Elghobashi, 

1986; Sargianos et a/., 1990; Zhou, 1993). 

The literature of turbulence modeling in single-phase flows is very rich with predictive 

schemes based on Reynolds Averaged Navier Stokes (RANS) equations coupled with single- 

point statistical closures for higher order moments (Launder and Spalding, 1972; Laun- 

der and Spalding, 1974; Reynolds. 1976; Lumley, 1978; Taulbee, 1989; Launder, 1991; 

Wilcox, 1993). Referred to as Reynolds stress models, these schemes typically provide trans- 

port equations for various statistical moments up to the "second-order." This methodology 

offers extensive advantages over the Boussinesq type approximations based on the "isotropic" 

eddy diffusivities (such as the k-e model). However, the modeling is understandably more 

difficult as the number of unclosed terms in RANS is more than that in isotropic closures. 

The level of complexity is naturally escalated in two-phase flows. Due to enormous challenge 

in providing closures for statistical description of such flows, there is a need for experimental 

data. Because of the flow complexity, the extent of laboratory data is somewhat limited. 

However, direct numerical simulation (DNS) can provide a viable alternative. In the past, 

DNS has proven extremely effective in appraising the performance of turbulence closures in 

single phase flows (Givi. 1994), in addition to its value in elucidating many of the physical 

features of turbulence in such flows. 

One of the first implementation of DNS in two-phase flows is due to Riley and Patterson 

(1974) who investigate particle dispersion in isotropic turbulence. McLaughlin (19S9) sim- 

ulates particle deposition in a channel, and Squires and Eaton (1990); Squires and Eaton 

(1991b); Squires and Eaton (1991a) have conducted extensive DNS of stationary and de- 

caying turbulence fields with one- and two-way coupling. Squires and Eaton (1994) use 

DNS data to investigate some issues of relevance to turbulence modifications by parti- 

cles.    Elghobashi and Truesdell (1992); Elghobashi and Truesdell (1993); Truesdell and 



Elghobashi (1994) report the results of related studies. The settling velocity of heavy 

particles in isotropic turbulence is studied by Wang and Maxey (1993), and Mashayek 

et al. (1997a) report results of a parametric study on dispersion and polydispersity of 

evaporating particles in stationary isotropic turbulence. While there are no reported DNS 

results on particle-laden homogeneous turbulent shear flows, several large eddy simula- 

tion (LES) results of such flows are available (Yeh and Lei, 1991; Simonin et al., 1995). 

These studies are very useful for understanding the physics of particle-laden shear flows 

and for assessment of some of the recent theories pertaining to such flows (Reeks, 1993; 

Liljegren, 1993). However, the uncertainties associated with the subgrid scale closures as 

used in LES, does not allow for a complete assessment of turbulence closures. This assess- 

ment is better furnished via DNS. 

The objective of this work is twofold: (1) conduct DNS of particle-laden turbulent shear 

flows, (2) provide a new second-order Reynolds stress model for statistical predictions of 

two-phase flows. While the DNS results are used to investigate some physical issues per- 

taining to the structure of such flows, their primary use is to aid the development of RSM. 

The model is associated with the Reynolds stresses in both phases and the cross-correlation 

between the velocities of the two phases. The extent of previous contributions in such 

modeling is somewhat limited (Shih and Lumley, 19S6; Zhou, 1993; Zhou et al., 1994; 

Simonin et al., 1995). Therefore, DNS data are used rather extensively for both model pa- 

rameterization (determination of some of the empirical constants appearing in the model), 

and model assessments. The RSM as proposed here is in the form of full second order 

transport equations. In the extension of this work in Part II (Mashayek et al., 1997b), the 

corresponding "algebraic" form of the RSM is presented, and solutions are obtained for "ex- 

plicit" representations of the Reynolds stresses and the fluxes of the void fractions. The 

results via this algebraic Reynolds stress model (ARSM) in Part II are also validated by the 

present DNS data. 

It is stated here at the outset that the mathematical derivations leading to the final RSM 

here (and ARSM in Part II) are based on several assumptions and simplifications. Many 

of these assumptions are not related to "two-phase turbulent transport" and are required 

even if the flow is laminar and/or single phase. No attempt will be made to (re)justify these 

assumptions here. All the assumptions pertaining to two-phase transport will be elaborated 



upon in detail. Section 2 deals with DNS in which the numerical methodology is described in 

§2.1 followed by presentation of results in §2.2. The development of the proposed RSM and 

its comparative assessment with DNS data are discussed in §3. The summary and concluding 

remarks are furnished in §4. 

2    Simulations 

Direct numerical simulation is conducted of particle dispersion in a three-dimensional ho- 

mogeneous turbulent shear flow. This flow represents an ideal environment for the analysis 

of dispersion in that a natural forcing is present due to the mean shear, while the rela- 

tive simplicity of full spatial homogeneity is maintained. In addition, the flow is inherently 

anisotropic, and thus offers a more desirable configuration (for model assessment) than that 

attainable by isotropic flows. 

2.1     Problem formulation and computational methodology 

The governing equations considered here are the continuity and Navier-Stokes equations for 

the continuous fluid phase, coupled with the Lagrangian equations for discrete particles. The 

particles are assumed to be spherical with diameter smaller than the smallest length scale 

of the turbulence and to obey an empirically corrected Stokesian drag relation. The particle 

density is much larger than the fluid density such that only the drag force and inertia are 

significant to the particle dynamics. In addition, the particle volume fraction is assumed to 

be relatively small and particle-particle interactions are neglected. The fluid velocity and 

pressure are denoted by [/,- and P, and the particle position and velocity are denoted as 

Xi and Vi, respectively, where the hat ~ indicates the instantaneous quantity. With this 

nomenclature, the continuity and momentum equations for the fluid, and the Lagrangian 

equations of motion for a single particle are given by (Crowe et a/., 1977): 

^=0, (2.1) 
dx3 



^+»(ft&,)__±§!+     ™L+Ä, (2.2) 
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^ = -w-% (2.4) 
at rp 

where xt- and f are the spatial and temporal coordinates, respectively, and pj and v are the 

fluid density and kinematic viscosity, respectively. The particle time constant for Stokesian 

drag of a spherical particle is rp = ^-, where pp and dp are the particle density and di- 

ameter, respectively, and fi is the fluid viscosity. The function / = 1 + 0.15i?e°-687 in (2.4) 

represents an empirical correction to Stokesian drag for large particle Reynolds numbers 

(flCp = '/W-"'!) and is vaiid for Rep < 1000 (Clift et a/., 1978). The superscript (*) indi- 

cates the values of the fluid variables at the particle location. In the simulations conducted 

here, the particle Reynolds number is of order unity and hence, the correction factor remains 

relatively small. The term Si on the right-hand-side (RHS) of (2.2) represents the effects 

of the particle drag on the fluid. The procedure for calculating this Eulerian term from the 

discrete particle field is described below. 

To configure a homogeneous shear flow, a linear mean velocity profile is applied to an initial 

zero mean random velocity field. Therefore, the carrier phase instantaneous velocity is 

expressed as £/,■ = Sx2Sn + Ui, where 8{j is the Kroenecker delta function, and ii{ is the 

carrier phase fluctuating velocity. The magnitude of the imposed shear is given by the 

amplitude of the mean velocity gradient, S = dUi/dx2 = const., where £/,• indicates the 

mean fluid velocity. The primary effect of the mean shear is to provide a natural (albeit 

idealistic) homogeneous forcing. In contrast to the isotropic case, no stationary state is 

achieved, and the Reynolds number grows until the turbulence structures outgrow the box 

size, at which time the simulation is stopped. To employ the Fourier spectral method, 

periodic boundary conditions must be imposed. This is accomplished by solving the Navier- 

Stokes equations for the fluctuating quantities on a grid which deforms with the mean flow. 

This transformation has been discussed in detail by Rogallo (19S1) and is only summarized 

here.   A computational coordinate system (xj) is related to the stationary system through 



x' = QijXj where the transformation tensor is defined as: 

Qa = 

/ 1   -St  0 ^ 

0     1     0 (2.5) 

for the present conditions. Performing the transformation on the Navier-Stokes equations 

and dropping the superscript / on the coordinates, the governing equations in the transformed 

coordinates are described as: 

0*g-0, (2.6) 

_ + Qfcj_(«,-tti) = --^- - Su2Sa + -y-Q^; + *• (2.0 

In the absence of gravity or other external body forces and by assuming that the particles 

start from the same initial velocities as those of their surrounding fluid elements, the particle 

instantaneous velocity is described as Vj = Sa^ii + t>i, with u,- denoting the particle fluctu- 

ating velocity. Therefore, the droplet position and momentum equations in the transformed 

coordinates are expressed as: 

f = i-,-5Mii, (2-8) 

*ji = l(u-i-vi)-Sv26il. (2.9) 
(It Tp 

Simulations are conducted within the domain 0 < x,- < L, (xi = x, x2 = y, x3 = z). A Fourier 

pseudospectral (Givi and Madnia, 1993) method with triply periodic boundary conditions is 

employed for the spatial representation of the fluid velocity and pressure. All calculations are 

performed in Fourier space with the exception of the non-linear terms. Aliasing errors are 

treated by truncating energies outside of a spherical wavenumber shell having radius y/2N/3, 

(where N is the number of grid points in any direction) and time advancement is performed 

using an explicit second order accurate Adams-Bashforth method. Temporal advancement of 

the Lagrangian particle equations is also done by the Adams-Bashforth method. In order to 

evaluate fluid variables at the particle locations a fourth order accurate Lagrange polynomial 

interpolation scheme is employed. The particle drag source term appearing in the momentum 

equations (<S,-) is numerically calculated in the Eulerian frame by volume averaging the 
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contributions from all of the individual particles residing within the cell volume (AV = Ax3, 

where Ax is the grid spacing) centered around each grid point: 

where mp = 7T/9pd
3/6 is the mass of a single particle and np is the number of particles within 

the cell volume. 

The mean shear imposed by the grid transformation skews the grid in time. In order to allow 

the simulation to progress for a substantial time, it is necessary to remesh the grid at regular 

time intervals. The remeshing procedure is similar to that used by Rogallo (1981). The grid 

begins in an initial orthogonal state and proceeds to skew in the Xi — x2 plane. At a time of 

St = 0.5 the grid is then remeshed back to a hypothetical St = -0.5 grid. The fluid variables 

are then re-calculated onto the new mesh by use of the periodic boundary condition. The 

choice of time for the remesh process is optimal for the initially cubic domain in that no 

interpolation is required. After the remeshing, the variables are truncated in Fourier space 

outside of the spherical wavenumber shell of magnitude y/2N/3. This results in a slight 

loss of kinetic energy; however, if the simulation is well resolved (i.e. only relatively small 

energies are present in the highest wavenumber bands) this truncation is considered to be 

negligible. The simulation is then allowed to proceed until the next remesh time is reached, 

or until the length scales of turbulence become too large to be accurately resolved, at which 

time the simulation is terminated. 

The magnitude of the mean shear and all of the initial gas-phase conditions are held constant 

in all the simulations. We consider the initial hydrodynamic field with the highest possible 

Reynolds number without jeopardizing the small scale resolution. Detailed studies of the 

effects of initial conditions and the magnitude of the mean shear in single-phase flows are 

provided by Rogers et al. (1986). The velocity field is initialized as a random Gaussian, 

isotropic and solenoidal field in Fourier space. The initial energy spectrum is of the form 

E(K) ~ /c4exp(-2(/c/Ks)
2), where K is the wave number and KS specifies the wave number 

location for the peak of the energy spectrum and is chosen to be KS = 7. The initial 

turbulence energy is q2 =< u,-u,- >= 3 m2/s2 (where the single brackets <> indicate an 

ensemble average over the number of grid points). The value of the initial mean dissipation is 



e =< 2i/SijSij >= 29.15 m2/s3, where the symmetric rate of strain tensor is s.-j = (u,j+Ujit)/2 

(mj = dui/dxj). For all of the simulations 1/ = 1.59 x 10"4 m2/s, />/ = 1 kg/m3, 5 = 62.8 s-1 

and L = 0.2 m. The particle density is specified as pp = 721.8 kg/m3, a value chosen to yield 

a reasonable number of particles for the ranges of parameters under consideration. All the 

simulations are performed on 963 grid points, with a constant time step of At = 8 x 10-5 s, and 

are terminated at a non-dimensional time of St = 12. The particles are initially distributed 

randomly throughout the domain, and are specified to have zero velocity difference with the 

local fluid (i.e. v{(t = 0) = u'{(t = 0)). 

The computational requirement for the Navier Stokes solver (on a Cray-YMP) is approxi- 

mately 4.30 seconds per time-step for simulations with a resolution of 963 collocation points. 

Numerical integration of 6.67 x 105 particles with only one-way coupling (Si = 0) requires 

an additional 4.2 seconds per time-step, while the additional computational time for a full 

two-way coupling simulation is S.7 seconds per iteration. Thus, greater than 50% of the 

particle simulation time is devoted to the calculation of the source term in the momentum 

equations. The reason for this high computational cost is that only a partial vectorization of 

these loops is possible. The time required for integrating the particles scales approximately 

linearly with the number of particles. 

2.2     Results 

There are two main parameters which influence the flow behavior: the particle time constant 

(rp) and the mass loading ratio ($m). Table 1 provides a listing of the cases considered to 

study the effects of these parameters. In this table Np indicates the total number of particles 

tracked in each simulation. The case with $m = 0 is performed to investigate the effects 

of the turbulence on the particle in one-way coupling (<S,- = 0). All the other cases are 

considered with two-way coupling. 

In order to establish the accuracy of the single phase flow simulation, in table 2 compar- 

isons are provided of some of the results obtained by one-way coupled DNS with previ- 

ous numerical and experimental data in turbulent shear flows. The comparisons are made 

with DNS results of Rogers ct al.   (1986) (RMR), and the experiments of Tavoularis and 



Corrsin (1981) (TC), Harris et al. (1977) (HGC), and Champagne et al. (1970) (CHC). 

The Reynolds number, Re\, is based on the Taylor microscale (Ai) in the xi direction 

(Aj =< u\> I < (dui/dxx)2 >) and the turbulence velocity scale (q); and the turbulence 

Reynolds number is Rej = q4/ < t> v. Additional information is provided pertaining to 

the non-dimensional shear number (Sq2/ < e >), the relative energy ratios (< uf > /q2), 

and the non-zero off-diagonal Reynolds stress correlation coefficient. 

The ensemble average value (denoted by << >>) of particle Reynolds number provides a 

measure of the dynamic equilibrium between the particles and the flow. This is particularly 

of interest for model assessments as most turbulence closures are based on the assumption 

of dynamic equilibrium. In the present simulations, initially all of the particles have a zero 

velocity relative to their surrounding fluid. Furthermore, the initial flow field is isotropic, 

and before reaching equilibrium it evolves in a relatively fast rate. As a result, the particle 

velocity deviates from the local fluid velocity more rapidly and the mean particle Reynolds 

number increases to large values during a relatively short initial time. After peaking near 

St cz 1 the particle Reynolds number decreases. Finally << Rep » increases due to the 

growth of turbulence. Based on the results in Fig. 1, the particle Reynolds number decreases 

with the increase of the mass loading ratio. This is mainly due to turbulence modification 

by the particles in two-way coupling. An increase in the particle time constant results in an 

increase of the particle Reynolds number due to increased particle inertia. 

Figure 2 illustrates the temporal variations of the normalized energy components for both 

the fluid and the particles for the case with one-way coupling. Here, q2 =<< u,-u,- >>, and 

no summation is assumed over the Greek indices. Due to initial isotropic conditions, all 

of the components have the same value at St = 0. In time, the production of the energy 

by the mean velocity gradient increases the energy component in the streamwise (a = 1) 

direction. In the absence of a production mechanism, the other two components tend to 

decay. However, the fluid pressure redistributes the energy among the components, and 

after some initial time (St < 6) equilibrium values are reached in all three directions. A 

similar behavior is also observed for the particle energy components. However, it is clearly 

observed that the anisotropy of the particle energy components is substantially larger than 

that of the fluid. This is mainly due to lack of a mechanism similar to the pressure in the 

fluid phase by which energy may be exchanged among different components in the dispersed 



phase. The extent of the particle energy anisotropy is, however, bounded at long times by 

the action of the drag force. An inspection of other cases (not shown), indicate the increase 

of the anisotropy in both the fluid and the particle phases with the increase of the particle 

time constant or the mass loading ratio. 

The modification of turbulence by the particles is illustrated in Fig. 3 by considering the 

temporal variations of the fluid turbulent kinetic energy (k = \ < u,ut- >) and its dissipation 

rate (e). Both variables are normalized with their corresponding initial values denoted by 

subscript (0). For all of the cases, initially the fluid turbulent kinetic energy decays due to 

the absence of the off-diagonal (shear) Reynolds stress term. This term, along with the mean 

velocity gradient, are responsible for the production of energy in the streamwise direction. 

After the shear Reynolds stress component is produced by the action of the mean velocity 

gradient, the kinetic energy starts to increase (St > 4). The primary effect of the particles 

on the fluid is to decrease the turbulent kinetic energy with respect to its single phase value. 

This is also the case for the dissipation rate as shown in Fig. 3b. The decrease of the kinetic 

energy and its rate of dissipation in the presence of particles, suggests the existence of an 

extra dissipation which originates from the drag force. 

The equation governing the particle turbulent kinetic energy (kp = \ « u,-u,- >>) is ob- 

tained by multiplying (2.9) by ut- and then ensemble averaging over the number of particles, 

—L = -<< VlV2 >> s + 1 (« u'vi » -2kp). (2.11) 

In deriving (2.11), the triple correlations between / and velocity .components have been 

neglected after analyzing the DNS data. The first term on the RHS of (2.11) represents a 

production by the mean velocity gradient while the second term is due to drag. The temporal 

evolution of these terms in Fig. 4 indicates that for all of the cases the term due to drag 

always behaves as a dissipation and tends to balance the production. Obviously, during the 

initial times (St < 4), the dissipation overcomes the production and the particle turbulent 

kinetic energy experiences a rapid decay, similar to those for the fluid. This is in agreement 

with the results for the particle Reynolds number in Fig. 1. At longer times, Fig. 4 shows that 

the increase of the mass loading ratio results in the decrease of the magnitude of both the 

production and dissipation. However, the decrease of the production with the mass loading 
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ratio occurs with a faster rate than that of the dissipation. As a result, the growth rate of 

the particle turbulent kinetic energy is decreased with the increase of the mass loading ratio. 

A comparison of cases with different particle time constant values (at the same mass loading 

ratio) indicates that the initial evolutions of the production and the dissipation terms are 

more sensitive to the variations of the particle time constant, than are to the variations of 

the mass loading ratio. During the initial times, the increase of the particle time constant 

decreases the decay rate of the particle turbulence energy while at long times it results in 

the decrease of the growth rate of the kinetic energy. 

The variations of the Reynolds stress of the fluid and particles are shown in Fig. 5. The 

Reynolds stress in x3 direction exhibits a behavior similar to that in x2 direction and is not 

shown. An interesting feature observed in Fig. 5 is the increase of the particle Reynolds 

stress in xx direction over that of the fluid. This is in agreement with the theoretical results 

of Reeks (1993), Liljegren (1993), LES results of Simonin et al. (1995), and is due to the 

lack of small scale dissipation in the dispersed phase as opposed to the fluid phase. In x2 

direction a crossing point is observed at St ~ 0.5. The reason is that during the initial 

times the dispersed phase Reynolds stress decreases more slowly than that of the fluid due 

to the particle inertia. At longer times (St > 0.5) the fluid pressure transfers energy from 

the streamwise direction to other directions and causes the increase of the fluid Reynolds 

stress in x2 direction over that of the particles. The initial larger values of << v2v2 » 

results in larger production of the shear component for the dispersed phase and increases 

the magnitude of this component to values larger than those of the fluid. The effect of mass 

loading ratio is realized by comparison of Figs. 5a and 5b. The trends are similar; however, 

the difference between the normal components of the Reynolds stress of the dispersed phase 

is smaller in the two-way coupling due to the indirect effects of the fluid pressure. Figure 

5c indicates that the increase of the particle time constant has more sensible effects on the 

particle Reynolds stress components. A comparison of this case with the case having the same 

4>m but smaller TP (not shown) indicated that, in agreement with the results of Reeks (1993); 

Liljegren (1993) and Simonin et al. (1995), the increase of the particle time constant results 

in the increase of the particle Reynolds stress in the streamwise direction. This is in contrast 

to the decrease of the particle turbulence intensity with the increase of the particle time 

constant in isotropic flows. 
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Figure 6 shows the temporal variations of the particle velocity autocorrelation coefficient, 

RP{i)= «vdtoMto + t)» (212) 

^V '     ^/«t;|(<o)»«t;?(<o + 0» 

The autocorrelations are calculated with the normalized time Sto = 2. It is observed in the 

figure that the increase of the mass loading ratio results in the increase of the particle velocity 

autocorrelation in all directions and at all times. This is similar to the trend observed in 

decaying and stationary isotropic turbulence and is due to the modification of the velocity of 

the neighboring fluid elements by the particle. The variation of the autocorrelation with the 

increase of the particle time constant in X3 direction is also in agreement with previous results 

for decaying and stationary turbulence - an increase of rp results in an increase of /?33 at all 

times. However, an interesting feature is observed in the streamwise (xi) and cross-stream 

(X2) directions. A crossing is observed for the autocorrelation curves at different particle 

time constant values. The crossing occurs sooner in the X2 direction but at long times the 

two curves overlap. In X\ direction, the autocorrelation remains smaller for larger particle 

time constant for all times after the crossing. 

Since the fluid turbulent kinetic energy decreases with the increase of the mass loading ratio, 

it may be expected that the flow Reynolds number shows a decreasing trend with the mass 

loading ratio. However, Fig. 7 indicates that this is not the case in xx direction and, except 

for a short initial time, the Taylor microscale Reynolds number increases with the increase of 

the mass loading ratio. This is due to the increase of the length scale as $m is increased. An 

opposite behavior, i.e. the decrease of both Reynolds number and the flow length scale, was 

observed (not shown) in other flow directions. Also, an inspection of the temporal variations 

of Re\\ for different rp values (not shown) indicated no specific trends. 

The normalized fluid velocity energy spectra are shown in Fig. 8 for different cases at the 

nondimensional time St = 10. The anisotropic nature of homogeneous shear turbulence 

greatly increases the complexity of a complete study of the turbulence energy spectrum. In 

order to simplify the analysis the variation of spectra with the wavenumber magnitude only 

are considered. The primary effect of the increase of the mass loading ratio is to increase the 

energy at high wavenumbers while decreasing it at low wavenumbers. The energy spectra are 

observed to be rather insensitive to the variations of the particle time constant. The trends 
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observed here are in qualitative agreement with those in decaying turbulence (Elghobashi 

and Truesdell, 1993). 

3    Reynolds stress closures 

In this section a second-order moment Reynolds stress model is proposed for particle-laden 

flows that includes the effects of two-way coupling between the two phases. The final form 

of the model is presented in the context of homogeneous shear flows and its predictions are 

compared with the DNS generated data. The model is based on the two-fluid treatment of 

two-phase flows. Similarly to DNS, we consider the transport of an incompressible fluid (the 

carrier gas) laden with monosize particles (the dispersed phase). The Stokes drag relation 

is used for phase interactions and there is no mass transfer between the two phases. The 

particle-particle interactions are neglected and the dispersed phase viscosity and pressure do 

not appear in the particle momentum equation (Zaichik et a/., 1993; Zhou, 1993). The effect 

of the carrier phase pressure on the particles is assumed negligible as the pressure change 

across each particle is very small. The governing equations for both phases are expressed in 

the Eulerian frame by performing volume averaging which results in a continuum dispersed 

phase (Sha and Soo, 197S; Drew, 19S3: Jackson and Davidson, 1983; Mostafa and Elghobashi, 

1985). With the assumptions as stated, the equations indicating conservations of mass and 

momentum are: 

|[Mi-^)] + ^-[p/(i-W,] = o, (3.1) 

d 
dxj 

for the carrier phase, and 

^(i+s; - ^*{Ui - Vi), (3.2) 
rv 

|(^) + ^^) = 0, (3.3) 

|(/V$t>) + £-(Pp*VjVi) = ^m - K) + (pp - pjftg«. (3.4) 
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for the dispersed phase. In these equations, $ denotes the void (or volume) fraction, g is the 

gravity constant, and e,- is the unit vector in the gravity direction. 

For a dilute dispersed phase, typically $ ~ O(10~4). This simplifies the transport equations 

of the carrier phase significantly. For a constant pj the continuity equation (3.1) and the 

viscous term in the momentum equation (3.2) simplify to the forms for an incompressible 

flow. Using the dispersed phase continuity equation, the void fraction is eliminated from the 

dispersed phase momentum equation and the instantaneous equations reduce to: 

dO^ 9(0,0.) =    idP    .d'Oj     A$ -    - 
dt dxj pj dxj      dxjdxj     TP 

9$     9(vS)     „ ,     , 

^wrk10'-^^9"' 
dVi , KW      1 ,~ 
dt 

(3.8) 

where A = ^ is the density ratio. Following the standard Reynolds decomposition procedure, 

all the transport parameters are decomposed into the "ensemble-mean" and fluctuations 

about the mean: 

Ui = Ut + Ui,     V{ = Vi + Vi,     $ = $ + <j>,     P = P + p. 

The equations governing the transport of the mean variables are obtained by ensemble av- 

eraging (3.5)-(3.8): 
du, 
&j = °- <3-9> 

dUi     d{UjUi) 1 dP Ö2Ui       dünq     A A        

d$    d(Vj*) _   d^4> mn 

dt +   dxj   ~   dxj' ^Uj 

where the overbar indicates the ensemble-averaged value. 
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The averaging procedure leading to the equations for the mean variables ((3.9)-(3.12)) in- 

volves two steps; a volume averaging followed by an ensemble averaging. As pointed out 

by Crowe et al. (1996), the volume averaging results in Reynolds stresses due to small 

deviations of the particle velocity from its volume averaged value. However, these volume 

averaged stresses are usually small in comparison to those resulting from the time averaging. 

The reason is that particles, due to their large inertia, interact with larger scales of the flow 

(Hinze, 1972) while the volume averaging is performed over volumes which are normally 

much smaller than the large scales of the flow in order to satisfy the conditions required in 

volume averaging. Nevertheless, it is noted that if the flow is very dilute such that a large 

volume (comparable to the particle-interacting scales of the flow) must be used to obtain 

homogeneous volume averaged quantities, then this assumption is not well justified. 

There is also an extra (also referred to as secondary) viscosity for the carrier phase due to 

the presence of a suspension of particles in the flow. This viscosity is generated by the flow 

modification around the particles as well as local shearing effects on the particles. This issue 

has been extensively addressed in the literature (e.g. see Einstein (1906); Happel (1957); 

Frankel and Acrivos (1967)) where it has been shown that the extra viscosity varies as a 

function of the volume fraction. Based on these studies, the secondary viscosity is negligible 

for small volume fractions, especially when Reynolds stresses are present. In wall-bounded 

flows and in the region close to the wall this viscosity becomes important (Choi and Chung 

(19S3); Chung et al. (1986)). Since we are not concerned with wall-bounded flows and are 

dealing with small volume fractions, the extra viscosity is not included. 

The closure problem in (3.10)-(3.12) is exhibited by the Reynolds stress tensors pertaining 

to the two phases (u,-itj and üiüj), and the void fraction flux vectors (üi<ß and vi4>). In 

homogeneous flows the void fraction fluxes are zero (v~4> = 0 and vrf = 0), therefore the 

modeling of these terms is not pursued here. The transport differential equations for other 

second-order moments (in homogeneous flows) are obtained by standard methods (Taulbee, 

19S9; Wilcox, 1993). These are expressed as: 

DuTüü] _     dUj      dUi A$ 

Dt 
= ~UiU'~fci " UjUld7, + ^ ~ tij ~ —\<u* ~ vi) + ui(u- - v«)] + TOC,  (3.13) 
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for the carrier phase Reynolds stress, 

Dvv&] dVj      dVi      1,„           .,        dv, 
 UL = -tw^ - VjVi- (2vjv- - UiVj - UjVi) + ViVj — , (3.14) 

Dt axi oxi     TP ax\ 

for the dispersed phase Reynolds stress, and 

 —LI = -üfüj-z-1 ~ utVj— + Xij + —[UiUj - UiVj) (UiVj - ViVj) 
Dt OXl OXl Tp Tp 

d2Ui dvj dui        duivj        dujVi . 
+ I/v._ + UlUi-J. + VlVj— + «,— + v3— + TOC, (3.15) 

u v 
for fluid-particle velocity covariance. In these equations, -^ = ^ + Ui^, -pT = ä; + ^ä^> 

and C" = * + W + ^Ä rePresent the total derivatives. In (3.13), &,- = j(|g + g) is 

the pressure-strain correlation, and e.y = 2i/|jj|^j- indicates the dissipation rate. In (3.15), 

Y.. = JL^JLL is the pressure-dispersed phase velocity gradient correlation. The terms denoted 
AU pj dxi l 

by TOC indicate the third order correlations involving both the velocity and the void fraction 

fluctuations. It is noted that the gravity appears only in the mean equations so there is no 

need for modeling of the terms involving gravity. 

3.1     Modeling of the unclosed terms 

The starting point in deriving a model for the fluid pressure-strain correlation is the "Pois- 

son's equation" (Rotta. 1951) which for the two-phase flow is obtained from the carrier phase 

momentum equation: 

1 d2v     d2(uiui)     _dUk dui     A  d . .       . .     ...     ,, ^      /o 1R\ 
 -J: =     v + 2-5—3— + —a- ^(«/ - vi) + t{Ui -V,) + $(uj - vi)\.     (3.16) 

pj Oxf OXiOXi OXl OXk       Tp OXl 

This equation shows that the proposed model for the correlations involving the pressure 

must exhibit the effects of the dispersed phase as manifested by the third term on the 

RHS in addition to the influence of carrier gas as portrayed by the first two terms on 

the RHS. The actual procedure involved in the development of the model is very lengthy 

and is outlined here very briefly. For details, we refer to Lumley (1978); Taulbee (1989); 

Wilcox (1993). The dissipation rate tensor (e,j) is expressed as the sum of an isotropic part 
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(-e8i ■) and a deviatoric part (e-y). The latter is combined with the pressure-strain correlation, 

and the resulting tensor (ITtj = V'tj - tfj) is modeled. In doing so, first the Poisson's equation 

(3.16) is transformed to an equation expressing the pressure-strain term explicitly in terms 

of various correlations of the velocity and void fraction fields. Assuming that the length 

scale of the mean flow gradients is larger than that of turbulence in homogeneous flows, it 

is straightforward to show (Taulbee, 1989; Wilcox, 1993): 

+kjui(x)um(x + r)un(x + r)}e~jk-r dv dk 

+ 4^fr //|fe^"'^(xK(X + r) + ^(xK(x + r)}e-*'r dr dk 

+ 8^7 // jkp{fcfUJ'(xMx + r)[u,(x + r) " U,(X + r)] 

+-kjUi(x)<f>(x + r)[u/(x + r) - u/(x + r)]}e~jk'r dr dk 

+^7 // Tg?{fc*[^ - ty«;(xMx + r) + $[ui(x)u/(x + r) - u,(x)V/(x + r)f 

+ jfcj [(£/, - VJ)«,-(x)^(x + r) + $[u,-(x)«,(x + r) - u,(x)u,(x + r)]] }e-jkT dr dk,      (3.17) 

where k denotes the Fourier wavenumber and j = y/—T. The integrations on the RHS are 

performed over three-dimensional physical and wave number space. To model (3.17), values 

of the two-point correlations are assumed to be related to the single-point (r = 0) correlation 

values. 

The first and the second integrals on the RHS of (3.17) include the interactions among the 

fluid quantities only. These are modeled here similarly to the widely utilized Launder-Reece- 

Rodi (LRR) (Launder et a/., 1975) closure. The third integral cannot be expressed in a form 

which contains only the fluctuating quantities and is consistent with the order of the tensor 

on the left hand side (LHS). It is possible to express this integral in the form of the product 

of the mean and fluctuating quantities. However, all the possible combinations also appear 

in the last integral. Therefore, the third integral is combined with the last one. The resulting 

integral carries different correlations as integrands which can be grouped in form of second, 

third, and fourth order tensor functions of the Reynolds stresses and void fraction fluxes. 
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These tensors are then expanded in terms of linear polynomials of the stresses and fluxes. 

The coefficients of these polynomials are found by applying the constraints of symmetry, 

incompressibility, and normalization (Lumley, 1978). The final result is expressed as: 

n„. = -C/ieaJ + e^.-eC^^ 

+CJs—[2ka{j-*tt{l#+l%)]+^^^ (3-18) 

where C/i, Cj2 and C/3 are empirical constants to be determined, 

af      m - h,  and  b{j = JH - \S„ (3.19) 13        k       3   J J      umvm     3 

are the normalized form of the fluid-fluid and the fluid-particle Reynolds stresses, respec- 

tively; and 
1 i(W     ^}   ^  4 _ M _ *&) (3.20) 

are the strain rate and the rotation tensors of the carrier phase, respectively. 

Following a similar procedure, a model is derived for the pressure-dispersed phase velocity 

gradient correlation: 

x.. = _c/pl^z + cfp2üiu]^ + cfp3-m - v&$+nmv] - m)]>     (3-21) 

where r = - is the carrier phase turbulent time scale, and C/Pi, C/p2, and C/p3 are empirical 

constants. The procedure of determining the values of these constants is described later in 

this subsection. It is noted that for homogeneous flows the fluxes of void fraction are zero 

and (3.18) and (3.21) are simplified. 

The term vv^ in (3.15) may be expressed in terms of an isotropic dissipation {vj£-gfi\ 

even though this term is not necessarily always positive. Determination of this dissipation 

requires the solution of a transport equation, which in turn contains additional unclosed 

terms. Due to excessive complexities and approximations involved in modeling of these 

unclosed terms, development of such a transport equation is not pursued. Note that this 

dissipation is due to the fluid-particle interaction the effects of which are also included in 

the drag. Therefore, the contribution of this term to the dissipation is considered indirectly 
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bv adjusting the constants appearing in the model for the pressure-dispersed phase velocity 

gradient correlation in (3.21). Similar argument is applied to the TOC terms that involve 

both velocity and void fraction. These higher order terms are usually small and their effects 

may be absorbed in the pressure terms. The other correlations, u,-|g, Vjj£, v,-v;-f-jj, Ui^-, 

and u,%i^, are either zero or very small in homogeneous and thin shear layer flows which 

are considered for model validations in this work. Therefore, these terms are neglected. In 

more complex flows, these terms may be modeled by implementing the gradient-diffusion 

hypothesis. 

Equations (3.18) and (3.21) indicate that the proposed closures involve six empirical con- 

stants which must be determined. The terms involving C/i or Cj2 in (3.IS) are the equivalent 

of those in LRR. Thus, the magnitudes of these constants are set to be the same (C/i = 1.75, 

Cj2 = —0.159) to ensure that in the limit of one-way coupling (3.IS) reduces to the equivalent 

LRR model for single phase flows. The magnitudes of the other four constants are deter- 

mined by balancing the transport equations for all of the components of the fluid Reynolds 

stress tensor (equation 3.13) and the fluid-particle covariance tensor (equation 3.15). By 

considering all of the components of the stresses in all of the cases a large number of data 

points is provided to determine the optimized values of the remaining four model constants. 

Two sample cases are shown in Fig. 9 for the energy budgets of << u\ » and << u\Vi » 

for $m = 0.25 and rp = 0.032s. In this figure, the production, the dissipation rate, and 

the contribution from drag are calculated from DNS. The values of the pressure-strain and 

the pressure-dispersed phase velocity gradient are based on the models as proposed. The 

term LHS indicates the derivative of the energy component and is obtained from DNS. This 

value is compared with £RHS which is the sum of the production, dissipation rate, and 

drag contribution (from DNS), and the pressure term (from models). It is observed that the 

general agreement between the LHS and the RHS is good, especially for St > 2 when the 

DNS results are considered for model validation. Similar comparisons are performed for all 

the other components in all the cases. The final optimized values of the empirical constants 

are given in table 3. 
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3.2    The dissipation rate of the turbulent kinetic energy 

The final form of the transport equations for all of the components of the Reynolds stress 

tensors (in the context of homogeneous shear flows) is given in Appendix A. It is noted that 

although the mean flow is two-dimensional, the turbulence is three-dimensional. Equations 

(A.1)-(A.4) and (A.9)-(A.17) constitute a set of Reynolds stress models for particle-laden 

homogeneous shear flows. To close, an equation must be provided for the dissipation rate 

of the fluid turbulent kinetic energy. This equation is derived similar to that in single-phase 

flows but also includes a term due to coupling with the dispersed phase. For high Reynolds 

numbers, the transport of the dissipation rate is governed by: 

— - _o S!Ei (dujduk     dujduj\ du{ dui duk 

Dt ~    "Udxk [dxj dxj + dxidx~k) ~   1/dx~kdx~^x~ 

"V    dXjdXkJ dxk\       "dXjdxjJ        "pdxiXdXjdXj 

_^_.-)i/duidui    ^_.lydy±fon_ _ Kv _ v]0 duj d<j> 

TP~ dxjdxj      TP~ dxjdxj     Tp    '       %'~vdxjdxj 

Tp       OXj     OXj Tp       OXj    OXj v ; 

The first two lines of (3.22) are equivalent to the dissipation rate equation for single-phase 

flows and are modeled analogously (e.g. see Hanjalic and Launder (1972)). The last two lines 

in (3.22) are due to coupling with the particles. The correlation in the first term of the third 

line is the dissipation rate and needs no modeling. The correlations in the second and third 

terms of the third line are, respectively, modeled as 2^1^ |^- oc ^^ and 2^1^— oc ^ 
oxj dxj T dxj ox} T   ' 

The third-order correlations appearing in the last line of (3.22) are usually small and can 

be neglected; the effects of these terms are, indirectly, considered in the evaluation of the 

empirical constants. The final form of the modeled transport equation for the dissipation 

rate is expressed as: 

dt 
-LT! ut u   (—7\      n   6 aui      s,   e 
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£ A /2$fc _ Cl3 [$ÜÄ - (Ui - Vi)u^\}, (3.23) 

where e1 = «/fggj. 

is 

For homogeneous flows, (3.23) is simplified: 

^- = -C£lT"i"2^ Cl2j - ^—(2k ~ Cc3Umvm), (3.24) 

where C<\, C£2, and Ct3 are constants.   The values for Ct\ and C£2 are taken from their 

single-phase equivalents; Cei = 1.45 and Ca = 1-85.   The value of constant Ct3 = 0.8 i 

found by comparison with DNS data as discussed below. 

3.3    Model assessment via comparison with DNS 

In this subsection, the data generated by DNS are used to assess the performance of RSM. 

In this assessment the stress and the dissipation rate values at St = 2 are taken from DNS as 

initial values. This time is chosen as the initial time in order to allow the flow and the particles 

to reach a dynamic equilibrium (see Fig. 1). All the cases are considered; however, the results 

of only three cases are presented and discussed here. These cases exhibit the effects of the 

mass loading ratio and the particle time constant. The numerical discretization procedure in 

RSM involves simultaneous integration of 14 coupled equations (13 for the Reynolds stresses 

and 1 for the dissipation rate). The time derivative term is discretized by a backward finite 

difference scheme. The decay term is evaluated by averaging between the two successive 

time levels to expedite convergence. Preliminary calculations indicated that the solution is 

not very sensitive to time increment; the results presented here are based on At = 0.0032s. 

First we consider the case with one-way coupling ($m = 0) for rp = 0.016s. The model pre- 

dictions (lines) are compared with DNS results (symbols) in Fig. 10 for all of the components. 

The overall agreement is very good; however, the particle Reynolds stress components (Fig. 

10b) show the best overall agreements. This is expected as the transport equations for the 

particle Reynolds stresses involve no modelings. Small deviations observed in Fig. 10b is due 

to TZ7ÜJ terms. It is noted that the shear components which are of primary importance are 

predicted very closely to DNS. For this one-way coupling case, Fig. 10a essentially evaluates 
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the performance of the LRR model. Some deviations are observed in the streamwise (tiiiii) 

component but other components are in reasonably good agreements. 

The effects of two-way coupling at $m = 0.25 and rp = 0.016s are portrayed in Fig. 11. Again 

the agreement between the model predictions and DNS results is very promising. Similar 

to the case with one-way coupling, the largest deviations are observed in the streamwise 

direction, especially for the fluid. This is also observed in Fig. 12 for larger particle time 

constant (TP = 0.032s). In this case, the streamwise component of the particle Reynolds 

stress is overpredicted while that of the fluid is underpredicted. However, interestingly, 

the fluid-particle Reynolds stress component in the streamwise direction is in a very good 

agreement with DNS results. Again, the model predictions for the shear components agree 

well with DNS results. Finally, Fig. 13 shows that the dissipation rate is also calculated very 

closely to DNS results for all of the cases. 

4    Summary and concluding remarks 

This work deals with direct numerical simulation of particle laden homogeneous shear flow, 

and proposes a new Reynolds stress model for statistical prediction of two-phase flows. The 

DNS generated data are used to address some issues of importance in regard to the structure 

of two-phase turbulent flows and to assess the performance of the RSM. 

The DNS results indicate the decrease of both the fluid and the particle turbulent kinetic 

energies with the increase of the mass loading ratio. The dissipation rate of the fluid turbulent 

kinetic energy also decreases with the increase of the mass loading ratio. However, there 

is also a dissipation in the carrier phase due to drag which results in the increase of the 

total dissipation when the mass loading is increased. These parameters also show some 

sensitivity to the variations of the particle time constant. The increase of the particle time 

constant results in the increase of both the turbulent kinetic energy and its dissipation rate 

at early times when the turbulence is decaying. An opposite trend is observed in the stage of 

turbulence growth. The dispersed phase shows a higher degree of anisotropy in comparison 

to the carrier phase. This is mainly due to the lack of a mechanism similar to the pressure- 

strain correlation by which the energy could be exchanged among different directions in the 
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dispersed phase. The level of anisotropy of the dispersed phase is, however, bounded at long 

times by the action of the drag term which couples the two phases. The anisotropy of the 

dispersed phase decreases with the increase of the mass loading ratio due to the increase of 

the effects of the flow on the particles. 

In agreement with some of the recent theories, it is observed that the particle rms velocity in 

the streamwise direction increases over that of the fluid. Also, this rms velocity component 

increases with the increase of the particle time constant which is opposite to the trend 

previously observed in isotropic turbulence. The magnitude of the shear component of the 

particle Reynolds stress tensor also exceeds the magnitude of its analogous term in the 

carrier phase. Similar to that in isotropic turbulence, the particle velocity autocorrelation 

increases with the increase of the mass loading ratio in all directions. The variation of 

this autocorrelation with the particle time constant is also similar to isotropic flows in the 

spanwise (x3) direction - the autocorrelation increases with the increase of the particle 

time constant. However, in other directions (xx and x2) a crossing is observed for the 

autocorrelation at different particle time constants. It is shown that the Reynolds number 

based on the Taylor microscale in the streamwise direction increases with the increase of the 

mass loading ratio. This happens in spite of the decrease of the rms fluid velocity, and is due 

to the increase of the Taylor microscale in this direction. Analysis of the normalized fluid 

velocity energy spectra indicates that the energy contents at high wavenumbers increases 

with the increase of the mass loading ratio. This is similar to that observed in decaying 

isotropic turbulence. 

In development of RSM, we consider dilute, mono-dispersed particle-laden homogeneous tur- 

bulent flows. The "differential" transport equations for each of the two phases are developed 

in the Eulerian frame for the Reynolds stresses in both phases and the cross-correlation 

between the velocities of the two phases. There are several terms in these equations which 

are modeled in a fashion analogous to single-phase flows, but introduce empirical constants 

which need to be specified. In total, there are four empirical constants, in addition to those 

in single-phase flows (Launder et a/., 1975). The magnitudes of these constants are deter- 

mined by considering the balance of the transport equations for the Reynolds stresses. The 

final predictions based on the model are then compared with DNS results for all of the com- 

ponents of the fluid, the particle, and the fluid-particle Reynolds stress tensors. Reasonable 
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agreements are observed, especially for the shear (off-diagonal) components which are of 

primary importance. 

A very important feature of model as developed here is that the effects of the two-way 

coupling are captured in every aspect of the formulation. Contrary to most previous models 

which are based on ad hoc modifications of the single-phase turbulence closures, the models 

here clearly indicate how the Reynolds stresses of each phase are modified by the presence 

of the other phase. However, there is a drawback associated with RSM (in either single- or 

multi-phase flows) in that the solution of a relatively large number of coupled differential 

equations is required. This increased computational requirements could become prohibitive 

for practical applications. Also, it may cause numerical instability and stiffness problems. 

An obvious extension of this work would be the development of explicit algebraic models 

based on the Reynolds stress models proposed here. This is the subject of investigation in 

Part II of this work (Mashayek et ai, 1997b). 
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Appendix A     Transport equations for Reynolds stresses 

The final form of the transport equations for Reynolds stresses are expressed as: 

d ,-*. , dUi     2       2A$ -=• 
jt{u{)   =   -2Ulu2— --C-—-K-ÜTÜIJ + Iln, (A.l) 

d ,-*. 2       2A$ ,-y 
^("2)   =   --€-—- (u2

2-ü^) + U22, (A.2) 

^("3)   =   --€-—- (u2
3-ü^) + U33, • (A.3) 

— {U1U2)     =      -^2-Q-X (2u1U2-ÜT^-Ü^7r) + ni2, (A.4) 

UXU3 = V3Ui  = U2U3 = U3U2 = 0, 
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w here 

- 2C/3—(üiür-r^rü^), (A-5) 

/   C/i      „   M\,-2    2
M    4 + 2QC/2 dUi n22  »   ^--ii + 2Cf3- j («i - 5*) 3—^"^ 

-   2C/3—05ü5-TtOT0, (A-6) 
TP 

n33   =   (-^ + 2C/3^)(u3-!*)+4C/aiOT 
ac/a 

9x2 

A$ 1. 
-     2C/3 {U3V3- TUmVm), (A-7) 

_   i+MCE;;!_^)^1_C/3A*(_ + _)| (A.8) 
6 ax2 Tp 

for the fluid, 

^R)   =   -2^f^--(^-WüT), (A.9) 
ai ^2     Tp 

iR) = --R-wr2), (A.10) 
of TP 

|(^I) = --(^!-w^), (A-11) 
at                  TP 

—(tJlüj)   =   -ÜITT-^ (2üTÜ2-üTÜ2 -Ü5ÜT), (A.12) 
ör cb2    TP

V 

Ü1Ü3 = W^T = Ü2Ü3 = ^3^2 = 0, 

for the dispersed phase, and 

d dVi dUi      1 ,-5     x      A$      —. (A\I\ 
— (Ü7Ü7)   =    -"T^^-1- ~ Wh^2- + —K - U1U1) (uiui - vf) + Xn,   (A.13) 
Of Öx2 0x2      Tv TP 

— (Ti^üi)    =    —iul-Wvi) (Ü2Ü2 - u|) + X22, (A-14) 
Öf Tp Tp 

—(üp5)   =   —(ug-üpä) (Ü3Ü3 - u|) + X33, (A.15) 
8t Tp Tp 
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where 

d . x  QVx     1 ,     .     A$ ,    —_. 
— (U1V2)    =    -U2V2-Z— + — [UiU2 - U1V2) {U1V2 ~ V!V2) + xn, (A.16) 
Ot OX2        Tp                                         Tp 

d , N  dVx     1 ,      x     A$,      _N , A     x 
— (u2Vi)    =    -U2V2-Z— + — {U2Ui -U2V1) (u2vi -v2vl) + X2u (A.17) 
Ot OX2        Tp                                         Tp 

H\~v5 = üüü\~ = Wüi = Wut = 0, 

Ctpi             dU\      _    A$.     -*. /k 
Xn   = Miüi +Cfp2u2v1-^— + C/p3—(uivx-vf), (A.18) 

T OX2 Tv 

X22     = —M2Ü2 + C/p3 (Ü2^-Ü2)> (A.19) 

\'33   = —Ü3V3+ Cfp3—(ü5üi-ü|), (A.20) 
r Tp 

Xl2     = —V^V2-rCjp2Ü2V2Ji 1" Cfp3 (Ü1Ü2-ÜTÜ2), (A.21) 
T OX2 Tp 

X21   = —Ü2~vi~ + Cfp3—(U5ÜT-Ü2ÜT), (A.22) 
TP 

for the fluid-particle velocity covariance. 
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Figure Captions 

Figure 1: Temporal variations of the particle Reynolds number. 

Figure 2: Temporal variations of normalized normal stresses of the fluid and particles for 

the case with one-way coupling at rp = 0.016s. 

Figure 3: Temporal variations of the fluid turbulent kinetic energy and its rate of dissipation. 

Both quantities are normalized with their initial values. 

Figure 4: Temporal variations of the production and drag dissipation terms appearing in the 
particle turbulent kinetic energy equation. 

Figure 5:   Comparison of the Reynolds stress components for the fluid and the particles. 
(a) $m = 0, rp = 0.016s, (b) $m = 0.5, rp = 0.016s, and (c) $m = 0.25, rp = 0.032s. 
[wiWj] =< utUj > for the fluid and [wiWj] =« ViVj » for the particles. 

Figure 6: Particle velocity autocorrelations in (a) streamwise, (b) cross-stream, and (c) 

spanwise directions. 

Figure 7: Effects of two-way coupling on the Taylor micro-scale Reynolds number of the 

fluid in streamwise direction. 

Figure 8: Normalized fluid velocity energy spectra for different cases at the nondimensional 

time St = 10. 

Figure 9: Energy budgets for << u\ » and << u^v\ » from the case with <&m = 0.25 
and rp = 0.032s. 

Figure 10: Comparisons of the Reynolds stress model predictions (symbols) with DNS data 
(lines) for components of the fluid, particle, and fluid-particle Reynolds stress tensors in the 
case with one-way coupling at rp = 0.016s. 

Figure 11: Comparisons of the Reynolds stress model predictions (symbols) with DNS data 
(lines) for components of the fluid, particle, and fluid-particle Reynolds stress tensors for 

$m = 0.25 and rp = 0.016s. 

Figure 12: Comparisons of the Reynolds stress model predictions (symbols) with DNS data 
(lines) for components of the fluid, particle, and fluid-particle Reynolds stress tensors for 
$m = 0.25 and rp = 0.032s. 

Figure 13: Comparisons of the Reynolds stress model predictions (symbols) with DNS data 
(lines) for the dissipation rate of the fluid turbulent kinetic energy, (a) $m = 0, rp = 0.016s, 
(b) $m = 0.25, rp = 0.016s, and (c) $m = 0.25, rp = 0.032s. 
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Table 1: Parameter values considered in DNS. 

Case rp(s) Np x 10"5 

1 0 0.016 1.0 
2 0.075 0.016 1.0 
3 0.25 0.016 3.33 
4 0.5 0.016 6.67 
5 0.25 0.032 1.19 

Table 2: Comparison of the present single phase flow results with previous simulations of 
Rogers et. al. (1986) (RMR) and the experiments of Tavoularis and Corrsin (1981) (TC), 
Harris et. al. (1970) (HGC), and Champagne et. al. (1970) (CHC). 

Present results RMR RMR TC TC HGC CHC 
St 8.0 2.0 8.0 8.6 12.7 11.9 3.3 

Rex 96.9 14.2 72.6 284 364 300 180 
ReT 952 26.1 391 9900 15000 13000 3200 

Sq2/ < e > S.70 3.14 S.65 13 12 11 5.8 
< "i > lq2 0.47 0.43 0.53 0.52 0.53 0.50 0.47 
<u\> jq2 0.21 0.26 0.16 0.19 0.19 0.20 0.25 
<u\> lq2 0.32 0.31 0.31 0.29 0.2S 0.30 0.28 

<U\ ll?> -0.53 -0.55 -0.57 -0.45 -0.45 -0.47 -0.50 
v/<uf><U2> 

Table 3: Empirical constants. 

Constant Magnitude Basis for choice 
Cn 1.75 Launder et al. (1975) 
C/2 -0.159 Launder et al. (1975) 
Cf3 0.5 Budget of üiuj 
Cjpi 2.5 Budget of TZTüJ 
CfP2 0.5 Budget of Ttiv] 
CfP3 0.2 Budget of Txiuj 
CCl 1.45 Standard k-e 
Cl2 1.S5 Standard k-e 
Ctz CLS Overall performance of RSM 
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Particle-Laden Turbulent Flows. Part II: 
Explicit Algebraic Closures 

F. Mashayek, D.B. Taulbee, and P. Givi 
Department of Mechanical and Aerospace Engineering 

State University of New York at Buffalo 
Buffalo, NY 14260-4400 

Abstract 

General "algebraic" closures are derived for the Reynolds stresses and the fluxes of 
the void fraction in the Reynolds averaged transport equations of two-phase turbulent 
flows. These closures are obtained from the hierarchy of second-order moment closures 
and are favored over conventional models based on the Boussinesq type (linear gra- 
dient diffusion) approximations. With a liberal use of the Cayley-Hamilton theorem, 
"explicit" solutions of the algebraic equations are obtained for the Reynolds stresses of 
both the carrier and the dispersed phases, and the turbulent fluxes of the void fraction. 
To close the system of equations for the algebraic models, a "four-equation" model is 
proposed based on the transport equations for the turbulent kinetic energy and its dis- 
sipation rate in the carrier phase, the turbulent kinetic energy in the dispersed phase, 
and the trace of the fluid-particle velocity covariance tensor. Explicit algebraic models 
are also derived for the triple order correlations in these equations. The predictions 
of the four-equation model for the Reynolds stresses are shown to compare well with 
direct numerical simulation (DNS) data of particle-laden homogeneous turbulent shear 
flows. By manipulating the explicit algebraic solutions, relations are provided for the 
"effective" turbulent diffusivities of the Reynolds stresses and the void fraction flux. 
These relations are utilized in parabolic (thin layer) formulation of two-phase turbu- 
lent shear flows. The predicted results for a particle-laden axisymmetric jet show good 
agreements with available laboratory data. 

1     Introduction 

In Part I of this work (Mashayek et al. (1997), hereinafter referred to as Part I), we propose a 

second-order Reynolds stress model (RSM) for statistical description of two-phase turbulent 

flows.   The advantages of RSM over the Boussinesq type approximations with "isotropic" 



eddy diffusivities are also demonstrated in Part I. Similar to single-phase flows, the primary 

advantage is that with accurate representation of all the Reynolds stresses, the overall pre- 

dictive capabilities are improved. Despite this advantage, the need for solving additional 

moment "transport equations" makes RSM potentially less attractive for practical applica- 

tions. For example, as recently demonstrated by Höfler (1993) the computational require- 

ments associated with RSM for predictions of three-dimensional incompressible single-phase 

flows is significantly higher than those required to implement the k-t model. The increase is 

naturally expected to be higher in multi-phase flows. 

A remedy to overcome the high computational cost associated with RSM is to utilize "alge- 

braic" closures (Pope, 1975; Rodi, 1976; Launder, 1975; Speziale, 1991; Taulbee, 1992; Gatski 

and Speziale, 1993; Taulbee et a/., 1993). Such closures are either derived directly from 

the RSM transport equations, or other types of representations (Yakhot and Orszag, 1986; 

Horiuti, 1969; Yoshizawa, 1984; Yoshizawa, 1988) which lead to anisotropic eddy diffusivi- 

ties. One of the original contributions in the development of algebraic Reynolds stress models 

(ARSM) is due to Rodi (1976). In this work, all the stresses are determined from a set of "im- 

plicit" equations which must be solved in an iterative manner. Pope (1975) offers an improve- 

ment of the procedure by providing an "explicit" solution for the Reynolds stresses. This 

solution is generated with the use of the Cayley-Hamilton theorem (CHT), but is only appli- 

cable for predictions of two-dimensional (mean) flows. The extension of Pope's formulation 

to three-dimensional flows has been done by Taulbee (1992), Taulbee et al. (1993) and Gatski 

and Speziale (1993). In these efforts, CHT is used to generate explicit algebraic Reynolds 

stress models which are valid in both two- and three-dimensional flows. Adumitroaie (1997); 

Adumitroaie et al. (1997) have extended this methodology for treatment of chemically re- 

acting, single-phase flows under both incompressible and highly compressible (high-speed) 

conditions. 

The objective of this work is to develop explicit algebraic relations for statistical description 

of two-phase turbulent flows. These relations are provided for the Reynolds stresses (in both 

phases), the cross-correlation between the velocities of the two phases, and the turbulent 

fluxes of the void fraction which are appeared as unclosed terms in the transport equations 



for the mean variables (Mashayek et a/., 1997): 

f^=0, (1.1) 
OXj 

dt dxj pjoxi       dxjdxj      oxj      rp rp 

öf <9XJ dxj 

where the overbar indicates the ensemble-averaged value. These equations are based on the 

two-fluid description of the transport of an incompressible fluid (the carrier phase) laden 

with monosize particles (the dispersed phase). The assumptions involved in the derivation 

of these equations are explained in Part I, thus will not be repeated here. In (1.1)-(1.4), 

Ui, P, V{, and $ indicate the mean variables for the carrier phase velocity, the carrier phase 

pressure, the dispersed phase velocity, and the void (or volume) fraction, respectively. The 

respective fluctuating variables are denoted by u,-, p, u,-, and <f>; and v indicates the fluid 

kinematic viscosity. The parameter A is the ratio of the particle material density (pp) to that 

of the fluid (/>/), g is the gravity constant, and et- is the unit vector in the gravity direction. 

The particle time constant is defined as rp = ^rf, where dp is the particle diameter and /t is 

the fluid dynamic viscosity. 

The starting point in this (part II) investigation is the transport equations for the second 

order moments. The primary contribution here is to simplify these equations into algebraic 

forms and to provide explicit solutions of the resulting algebraic equations. The feasibility 

of the final ARSM is demonstrated by construction of "effective" eddy diffusivities. The de- 

termination of the second order moments from the explicit relations, requires the knowledge 

of the turbulent kinetic energy and its dissipation rate in the carrier phase, the turbulent 

kinetic energy in the dispersed phase, and the trace of the fluid-particle velocity covariance 

tensor. We evaluate these variables by considering their transport equations, thus proposing 

a four-equation model. The triple order correlations in these transport equations are also 

expressed in terms of convenient gradient type models which can be directly implemented 

as diffusion terms. The final form of the closure is assessed via direct numerical simulation 



(DNS) results as generated in Part I and with available laboratory data. The relative superi- 

ority of the model over currently available models is also demonstrated by this comparative 

assessment. With the explicit and relatively simple forms of the closures, it is hoped that 

they can be used in routine predictions of two-phase turbulent flows. However, as indicated 

in Part I, the mathematical derivations leading to the final model are somewhat complex and 

are based on several assumptions and simplifications. Again, many of these assumptions are 

not related to "two-phase turbulent transport" and are required even if the flow is laminar 

and/or single phase. No attempt will be made to (re)justify these assumptions here. All the 

assumptions pertaining to two-phase turbulent transport will be elaborated upon in detail. 

In the next section all the steps involved in derivations of algebraic models for second-order 

moments are explained and the final form of the explicit solution is presented. To avoid 

lengthy sections and/or the possibility of losing the content in "a mist" of equations, only 

samples of derivations are given in the main text and other complementary equations are 

provided in Appendix A and Appendix B. In §3, a four-equation model is proposed and 

the procedure leading to algebraic models for third-order velocity correlations is described. 

In §4, the model is applied to a particle-laden homogeneous shear flow and the results are 

assessed via comparison with DNS data as obtained in Part I. Further model assessment is 

made in §5 where the model is presented in a form appropriate for conventional parabolic 

flow solvers. The predicted results based on this solver for a particle-laden axisymmetric jet 

are appraised by comparison against laboratory data. The paper ends in §6 with concluding 

remarks including reiteration on some of the main assumptions made for model developments 

and some suggestion for possible future work. 

2    Explicit algebraic models for second-order moments 

The operational procedure for the model development involves the followings: (1) construc- 

tion of "differential" transport equations for the second-order moments, (2) modeling of 

various terms in the transport equations, specially the pressure-strain and the pressure-void 

fraction gradient correlations, (3) simplification of the transport differential equations to 

implicit "algebraic equations," and (4) the solution of the algebraic equations to generate 



"explicit" algebraic models. These steps are described below in order. 

2.1    Transport equations for the second-order moments 

The transport differential equations for the second-order moments are obtained by standard 

methods (Taulbee, 1989; Wilcox, 1993). These are expressed as: 

—nT- = -^[-»^t1 + M +H + ** ~ «i - Vfj + TOC, Dt dxiL      dxi 

for the carrier phase Reynolds stress, 

(2.1! 

£^._^(WTO + W,^ + PS_BS, (,2) 

for the dispersed phase Reynolds stress, 

D Ui<i>      d .—_    i _..   —rdUi   —jdv,    5$    p d<f> 
———  = - — (utUi4> + —pcpöil) - Ui<p- Ui(p- UiVt— + —— 

Vt OX\ pf OXl OX\ OXi        Pf OXi 

- -[$(u,<? - Vio) + o*(Ui - V,)} + vo^ir - Quip- + (Ui - V^mp- + TOC.       (2.3) 
Tp Oxf OXl OXl 

for the carrier phase void fraction flux, and 

D vi<? d   —_     —dV,    —dVi    _0$      1,—,    —.     _    dvi 
n.      = —~-{VlViQ) - Vi(p- Vl4>-= ViViT— + —{ui<p - Vi4>) - $1;,-=— (2.4) 
Dt dxi dxi dx\ dxi     TP dxi 

U V 

for the dispersed phase void fraction flux. In these equations, ^- = -§-t + Uf^-, ^- = §i + Vf£r 

represent the total derivatives. In the carrier phase, Tiji = Ttjüiü] + —püiSji + —püjSu is the 

turbulent transport, V/j = -v^ül^ - üjüij^ is the rate of production, tßij = f- (f^- + §|0 

is the pressure-strain correlation, e,j = 2i/f^||j- indicates the dissipation rate, and VJj = 

j;[(Ui - Vi)Uj<j> + (t/j - Vj)ui4> + $«,-(uj - Uj) + $Uj(iii - vt)] is the contribution from the 

particle drag. Similarly, in the dispersed phase, Vfj = -Wü/|^ - üjü/f^ is the rate of 

production and £>?■ = 7-(2zp~ - v~v~ - üjüi). The terms denoted by TOC indicate the 

third-order correlations involving both the velocity and the void fraction fluctuations. It is 

noted that the gravity appears only in the mean equations so there is no need for modeling 



of the terms involving gravity. 

Inspection of (2.1)-(2.4) reveals the additional correlations üiüj and §2. These correlations 

are governed by: 

DUVWJ] d , ^ ^ 1 _x ,    _Wi      dUi      p dvj 
Dt dxi 3 J     pf ox{ dxi     pjdxi 

+—(WLJ - üNj) [$(üiüj - vTüj) + Vj<t>(Ui - Vi)] 

+ ^IxJ + ^ + ^ + UiHx7 + v>~dx7 + T0C' (2'5) 

Dt 

where B™ = ± + (Ut + Vi)£, V* = -„of* - ^g, and V* = **Jg - t,,*f± 

The procedure of deriving a model for the pressure-strain correlation in the carrier phase is 

described in Part I. The final result is expressed as: 

n0- = -CV4 + e [|S4 - 6C/2 (a{kS
J

kj + a^SJ
ki - f aLSLfcj) ~ i±f^Zi(4^ + W')] 

+ CiJ^\2ka{i-kjMj+«fi)] + ^-[Wi-v^ (2.7) 

where C/i, C/2, and C/3 are empirical constants to be determined, 

a- = — " 36- and a- =TTp- 36ii (2-s) 

are the anisotropic parts of the fluid-fluid and the fluid-particle Reynolds stresses, respec- 

tively; and 

are the strain rate and the rotation tensors of the carrier phase, respectively. In these 

equations k = ^uiui and e = ^e,-,- are the carrier phase turbulent kinetic energy and its rate 

of dissipation, respectively, and kjp = |tI7U7 is referred to (by analogy) as the fluid-particle 

turbulent kinetic energy. 



Following a similar procedure, models are derived for the fluid pressure-void fraction gradient 

correlation: 

L^ = .c^ + ^^-\^ + C,Aui-ViW+C^^--^,  (2.10) 
pj OXi T 0 UX\       0 OXi Tp Tp 

and the pressure-dispersed phase velocity gradient correlation: 

T) //?? • ?/ 't)' eilJ A 

p 

where r = - is the carrier phase turbulence time scale. Equations (2.7), (2.10), and (2.11) 

indicate that the proposed closures involve nine empirical constants which must be deter- 

mined. The terms involving C/i or C/2 in (2.7) are the equivalent of those in the widely 

utilized Launder et al. (1975) (LRR) model in single phase flows. Thus, the magnitudes of 

these constants are set to be the same (C/i = 1.75, C/2 = —0.159) to ensure that in the limit 

of one-way coupling (2.7) reduces to the equivalent LRR model. The other seven parameters 

are discussed in §§4.1 and 5.2. 

The term i^Vj^p- in (2.5) may be expressed in terms of an isotropic dissipation {v^rjx')', 

even though this term is not necessarily always positive. Determination of this dissipation 

requires the solution of a transport equation which in turn contains additional unclosed 

terms. Due to excessive complexities and approximations involved in modeling of these 

unclosed terms, development of such a transport equation is not pursued. Note that this 

dissipation is due to the fluid-particle interaction the effects of which are also included in 

the drag. Therefore, the contribution of this term to the dissipation is, indirectly, considered 

by adjusting the constants appearing in the model for the pressure-dispersed phase velocity 

gradient correlation in (2.11). Similar argument is applied to the term v<l>^t in (2.3). The 

TOC terms that involve both velocity and void fraction are also treated similarly. These 

higher order terms are usually small and their effects may be absorbed in the pressure terms. 

The other correlations, ^g, ^, ^g, ^g, ^T, ^g, ^T, and ü^jjä. are either 

zero or very small in homogeneous and thin shear layer flows which are considered for model 

validations in this work. Therefore, these terms are neglected. In more complex flows, these 

terms may be modeled by implementing the gradient-diffusion hypothesis. 



2.2    Implicit algebraic equations 

The procedure for driving algebraic equations from the differential equations presented above 

is similar to that in single-phase flows (Taulbee, 1992; Gatski and Speziale, 1993). This 

procedure involves two fundamental assumptions: (I) The flow is in the "equilibrium state." 

This assumption is mathematically expressed as: 

Dt        '      Dt '      Dt        '      Dt        '       Dt v      ' 

with 
Ui<j) v Vi4> v ViVJ        L c u UW v UW (0 1 <i\ 

and kp = \WT{ denoting the dispersed phase kinetic energy. (II) The difference in the 

transport terms is negligible. To demonstrate the operational procedure in implementing 

these two assumptions, consider the Reynolds stress equation (2.1) for the carrier phase. 

First, the Reynolds stress equation is described in terms of the anisotropic stress tensor 

(Taulbee, 1992): fc££ = *gji - HSZfS - *5(7» -t-V) + V{3 + ^ - «0- - Vfj, where 

Ti = ir,-,-/, Vs = \V{i, and Vs = \V{{. Then, implementing assumptions I and II yields: 

Vs Vs NA$ri 8 e 
[C/1 + T-l-T + 2(l-C/s)—]f = --^i 

-(1 + 6C/a)|(3M + S'X - lsLa{k6tl) + Ili^I^. + u;>4) 

+ (l-C/3)^^(4PWH-^[(^-K^ (2-14) 

The procedure for providing algebraic equations for the other correlations is similar and 

is not repeated here. Appendix A provides the final forms of the algebraic equations for 

the dispersed phase Reynolds stress, the void fraction fluxes, and the fluid-particle velocity 

covariance. 



2.3     Explicit algebraic models 

In the form presented above (and in Appendix A), the algebraic moment equations can 

be used for modeling. However, the "implicit" form of these equations makes them very 

inconvenient for actual computational use. This has been the primary factor in motivating 

the development of algebraic closures in single phase flows (Rodi, 1976; Pope, 1975); here 

the explicit forms of the moments are provided as determined by the exact solution to the 

algebraic equation set. 

To generate explicit algebraic models, (2.14) and (A.1)-(A.3) are presented in tensor forms: 

gi _ c{qt - C{(gJ§/+ggf - I^VUs) - ^(gV -fajV) = °' (2-15) 

gp - QV - cp
2(gpgp + gpgp - hgpgp)L) - c3(flV - <££) = o.      (2-16) 

<fj + DfAJ£f + 5 V + 0/ = 0, (2.17) 

<pp + D'A'tp? + Bptpf + Cp = 0, (2. IS) 

where a single underline indicates a vector, a double underline denotes a second order tensor, 

X, is the three-dimensional identity tensor. gs = a-j-, gp = aPj, ipf = u,-ö, and <£p = u,-</>. The 

relations for the newly introduced coefficients and tensors are obtained by the comparison 

of (2.15)-(2.18) with (2.14) and (A.1)-(A.3). These relations are given in Appendix B. 

At this stage, the fluid-particle velocity covariance (üiüj) is assumed known (the solution of 

(A.4) for a{j is discussed later; the updated values of a[p are implemented in the solution 

of (2.15)-(2.18) in a trial-and-error manner.) With the knowledge of a{j, the system of 

equations (2.15)-(2.18) are solved by the following procedure: First, (2.16) is solved for 

the dispersed phase Reynolds stress. Then, (2.17) and (2.18) are solved simultaneously to 

determine the void fraction fluxes. Finally, (2.15) is solved for the fluid Reynolds stress. 

The solution for (2.15)-(2.1S) with a three-dimensional mean flow is possible. However, the 

solution will be too complicated to be of practical use. In the following, the solution is 

presented for two-dimensional mean flow with three-dimensional turbulence. 

The solution for the coupled equations (2.17) and (2.18) is obtained via direct utilization 



of the CHT (Eringen, 1971). Details of the mathematical procedure at this stage are not 

necessary (Adumitroaie (1997) provides a tutorial description of this procedure). Here, we 

present the final results: 

</ = MT\Ev{&g - l2)C! + (D'Af - l2)(D
pAp - Dp{gp}l2 ~ l2)B

fC^       (2.19) 

£
p = MT^iD'A" - Dp{gp)l2 ~ l2)(D

fÄf ~ QBVQ-! + Ef(DpAp - £>P{£P}I2 - l2)C
pl 

(2.20) 

where 

K = E'E% - (D'A? - l2)(D
pAp - Dp{£p}l2 - l2)B

fBp, (2.21) 

and E' = -iD'2{£2} + \{l2), E* = D?{£p} + iD^din2 ~ {£2}) + J^}, I2 is the 

two-dimensional identity vector, and the notation { } indicates the trace of a tensor. 

The solution procedures for gf and gv are identical. Therefore, we consider the general form 

of the tensor g governed by: 

a = Cxg + C2(g £ + g g - ^{g ä}4) + C3(fl y - a fi). (2-22) 

The solution for a is also obtained via CHT. but is a bit more complex. The procedure is 

analogous to (but much more involved than) those in single-phase turbulent flows (Pope, 

1975; Taulbee, 1992; Gatski and Speziale. 1993; Taulbee et a/., 1993; Adumitroaie, 1997). 

The complexity is due to the fact that the tensor g here is a function of "three tensors" 

G£, ^i and q) in contrast to the case of a single-phase flow where g is a function of only 

two tensors (£ and ^). As a result, new integrity basis and irreducible matrix polynomials 

must be specified. The integrity basis and the corresponding matrix polynomials for a two- 

dimensional mean flow with three-dimensional turbulence have been identified by making use 

of various theorems originated from CHT. For that, several important theorems proposed (in 

a somewhat different form) by Rivlin (1955), and more recently reviewed by Spencer (1971) 

are utilized. By making a liberal use of many of these theorems, we are able to express g via 

a "finite" set of polynomials: 

where onlv the finite values A = 1,2,3,4,5 need to be considered, and Txs are the matrix 

1 n 



polynomial functions of £, ^, q, i2, and j^: 

t = -h~-lv    t=^    £3 =££-<£&    £4=£>    t=l^-^l-        (2-24) 

The coefficients Gx of the matrix polynomials are functions of the "invariants" which may 

be obtained either from a "known" integrity basis, or directly via CHT (Eringen, 1971). The 

latter procedure is implemented here and yields the following (finite) set of invariants: 

m = {£2},    *?2 = k2},    7?3 = {l£},    r,4 = {g^g} + {^gg}- (2.25). 

The final step is to determine the coefficients Gx in terms of the invariants r)(, £ = 1,2,3,4. 

Substitution of (2.23) into (2.22) yields: 

T GX
Z

X
 = Ci E 8^t + c* E G'A[lM+älx-li£ £A>Ü + Cs £ G"(^ " ^ £A)- 

* A (2.26) 

Tensors Tx are linearly independent functions of £ and ^, therefore tensors Hx and J* can 

be defined as (Spencer, 1971; Pope, 1975): 

£^+£iA-^{£rx}4 = £#*r> (2-27) 3 7 

rw^r^E^r- (2-28) 
Substitution of (2.27) and (2.2S) in (2.26) yields: 

Gx = C,64X + C2 E G1H" + <?3 E G7 J* • (2-29) 

Once tf£ and J7
X are determined from (2.27)-(2.28), (2.29) provides a 5 x 5 linear system for 

the coefficients Gx. After extensive algebraic manipulations, these coefficients are expressed 

as: 
a _ -QClC2C3rlA + 6C1C2V3        2 = 2C1C2

2C37?4-2C1C2
27?3 

"     2C2
2
7/I+6C3

2
T?2-3    ' (l-2C,32772)(2C2

277l+6C327?2-3)' 

3 _ 2C1C|C|T/4 - 2C1C2
2C37/3 ^4  _ ^1 p5 _ ^1^3 ,9 ^ 

CT
   -(l-2C3

2r?2)(2C2
2r?1+6C|r,2-3)'    U       1 - 2C3V 1 - 2C3V 

By this procedure it is not possible to obtain a practical explicit solution for aj as this 



tensor is a non-symmetric function of four symmetric tensors (gf, g/, 5P, and up) and one 

non-symmetric tensor which includes the coupling between the phases defined similarly to 

qj or £p. The number of matrix polynomials needed to express a{f increases significantly 

and complicates the explicit solution to a level not suitable for practical use. It must be 

mentioned that it is possible to express the implicit equation for a{j in terms of three non- 

symmetric tensors. However, the loss of symmetry condition again results in a large increase 

in the number of matrix polynomials. Therefore, the solution for a{f is limited to the implicit 

level. Note that only the terms Wü], üiüj, and Vi4> must be explicit to provide diffusion terms 

in (1.2)-(1.4) for stable computations. Treating a{j in an implicit manner does not affect 

the stability of the overall computations. 

3    A four-equation model 

An inspection of algebraic models in §2, reveals that the evaluation of the Reynolds stresses 

requires the knowledge of k, e, kp, and kjp. Analogous to the two-equation (k-t) treatment 

of single phase flows, here we consider equations for k, e, kp, and kfp. The transport equa- 

tions for k, kp, and kJp are derived by contracting (2.1), (2.2), and (2.5), respectively. The 

transport equation for the dissipation rate of the fluid turbulent kinetic energy is derived 

similarly to the c-equation of the single-phase flow as described in Part I. The final form of 

the transport equations for k, e, kp, and kjp are expressed as: 

dk dk d   {—7,      dUj 
at dxi dxi \      ' d dxi 

-   -[2$(fc-fc/p) + (£/f--V;-)^], (3.1) 

de de d   ,__v t dUj     n   e2 

dt 

~ {2$k - Cc3 {2$kfp - (Ui - V{)uat>]} , (3.2) 

dk,        dk,   _        d   ,_.      dVj      2 
dt + Vidf,  = -^SVik'^-1J^dxl-7P

{kp~kfph (3-3) 

^o.m. 4.1, A    -    .1^,^      n      n.   ^^™>      W^ 
dt 

+ {U> + ]']^   =   -^(^ + ^/J-(1-^4^S-^S 
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k, \ A$ 
"   C/,i— + - (* - */P) + (1 - ^/P3)— ft, " */,) 

Tp Tv 

(1 - C/p3)-(t/; - ^M, (3-4) 
T

P 

where Jb' = §u,ut-, e' = «/gjgj, ^ = *tw, and typ = |u,-u,-. In (3.2), C£l, C£2) and Ca are 

empirical constants. The values for Ca and Ce2 are taken from their single-phase equivalents; 

Ca = 1.45 and Ca = 1-85. The value of the constant Ct3 = 0.8 is found by comparing the 

values of e from DNS with those obtained from the overall solution of the Reynolds stress 

model (Mashayek et al., 1997). 

3.1     Algebraic models for third-order velocity correlations 

In order to close the four-equation model, the third-order correlations: mk', u,e', Vik'p, Uik'jp, 

and Vjk'j must be modeled. Here we consider modeling of the correlations involving velocity 

fluctuations only; modeling of u,e' will be discussed in §5.1. 

The procedure of closing the third-order correlations is analogous to (but more involved 

than) that in single phase flows (Hanjalic and Launder, 1972). Here, we detail the procedure 

leading to an implicit model for u,-A-' (in high Reynolds number flows) in order to indicate the 

underlying assumptions.  Similar to modeling of the second-order correlations, the starting 

point is the transport equation for U{k'.   This equation is obtained by manipulating the 

transport equation for the fluctuating velocity of the carrier phase: 

dui     TT dui        dUi        dui        du{         1 dp 
+ [/*- h ue- h ue- u*— = -jr- 

dt         axi        oxt        ox(        ox(        pf ox{ 

- — (Ui - Vi) - -[(Ui - Vi)4> + M " ^) -(M- *4)\- (3-5) 
Tp Tp 

Before we proceed, this equation is simplified using the following two assumptions: (I) The 

term uejß- is neglected. In the final form of the transport equation for it;/;', this term 

generates third-order correlations multiplied by' a mean velocity gradient. The resulting 

terms are usually negligible in comparison to other terms in the transport equation of Uik' 

(Hanjalic and Launder. 1972).  (II) The terms inside the brackets in (3.5), result in third- 

1Q 



and fourth-order correlations involving both velocity and void fraction fluctuations. These 

higher order terms are also small and are neglected. For the following discussion, it is more 

convenient to describe the final form of the equation in terms of UiUjUj(= 2uik'): 

Dt V dxe 
J dxe J     dxt 

- (—UjUjs^- + —UiUj-^-) {SuiUjUj - ViUjUj - 2uiujvj). (3.6) 
\Pf       d*i     Pi       dxi)      TP 

Following Hanjalic and Launder (1972), by assuming the quasi-Gaussian distribution for 

triple correlations, the fourth-order correlation in (3.6) is expressed in terms of second-order 

correlations: 

U{UjUjU( =  2Ü7ÜJ • UjUc + UiU(  • UjUj, 

and the pressure terms are modeled as a decay term: 

/ 1 dp       2 dp \        1   UjUjUj ,„ -v 

\pf   3   JdXi       pj        JdxjJ        Csl       T 

Where Cs\ is an empirical constant. Finally, upon neglecting the convective transport, the 

implicit model for xTiuju] reads: 

,1T Tp \ ' IsslT TP 

UiUjUj =   
CsiT lp 

Implicit models for other third-order correlations are derived similarly. In the process of de- 

riving the transport equations, vjüjü] and V~V]VJ emerge as two new third-order correlations. 

The implicit models for these correlations are also derived analogously, leading to a system 

of six equations for six third-order correlations. The coupling between the two phases in 

these equations is explicitly exhibited by employing the nondimensional variables: 

u 



where U0 is a reference velocity. The final normalized form of the models is expressed as: 

(yfu'jU'j + 2uju]vfj = F*uu, 

v-v-v] - \ [u^v] + 2v*{u]vf) = F;vv, 

viu:ui ~   i    |  i+2*„ 
c,2 f     e 

l 

'«' ui ui ~ _L_  i   2+<t>„ 
c,3 ^     e 

l 

bi ai uj        _J_   i    1+2$,, 
C,4 0 

(3.10) 

(3.11) 

(3.12) 

(3.13) (2üfüJüJ + $müfüjüj) = Fu*v„, 

r (^M + $m^M + $m«?u;^)  = F'uuv, (3.14) 

(^J^J + üfSJüj + ^mv-v]v-) = F;uv, (3.15) 

where $m = A$, and 

F" 

F* 

F* VU 

F" 

U:Ut 

.du':U 

0 

+2u^-fl^ 

-ÖufuJ .    , dv":V ■ 

1 
_i i   i+2<j>„ 
c..2 "*"     e 

' du"-u":     „ du'-v* 

_J ,    2+1>n 
C.3 ^       6 

U:U 
.dv"-v3 du'v'j 

c dx'e      " 
J e dx"e 

F*   = - 
.duff -du'v'j du*u'j 

A+i±^ [u™-dzr+u]u'e~^r+ViV7~te 
F* 1 I     2 + t>r 

' du":v'      dvM      dv'iu] 

(3.16) 

(3.17) 

(3.1S) 

(3.19) 

(3.20) 

(3.21) 

While (3.10)-(3.15) can be solved in their general form to generate explicit models for the 

third-order correlations, the final form of the models are too lengthy for practical use. For 

the limit of small mass loading ratio ($m ~ 0), however, (3.10)-(3.15) can be significantly 

simplified. In this limit, the explicit forms of the models are expressed as: 

—;—:   m    r7* 
UiltjUj ~ 1 uuuOi 

(3.22) 
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-rn_p»      i  2     C&     p*     4. IF*     4-_ 
V' VjVJ  ~     vvvO   '    q c\p       1   a    vuuO   '    O     «««0        9 

+3 

U. 

3  w 

C&Cst 

■>sZ '»5 

2C53 + ö + 2Cs5 + 0 

CsiCsS 

F*     4- -F" 
UUVO     '      q       UUfO 

 CS2CS5 C&CS4 Cs4Cs5     p. 

(Cs2 + 0)(2C55 + 0) + (2C,3 + 0)(C« + 0) + (C* + ö)(2Cs5 + 0)J   uuu0' 
  Ü.0   

■ uuuO' 
Cs2       r>» 

IC&CSA pm 2(7,3       ™ 

+ 0)(Cs4 + 0)  uuu0    2Cs3 + 0  uut'0' 

  L/«2 i;   ;   »     rp* 1 " 
':' UjUJ  — rt/uu0 "r  y-t       ,d 

 _ _, 2CszCSA ,-,« 2C53 
u^Ji>J - *ttw0 + (2Cj3 + ö)(Cs4 + ö) 
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\F' 1 uuuO 

_l_ F*     4- F* 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 
CS2 + 6        CS4 + $ 

where the subscript 0 indicates values of F*s for $m = 0. It is noted that the model given 

by (3.22) (for the carrier phase) is the same as that given in Hanjalic and Launder (1972) 

for single-phase flows. 

4     Model implementation in homogeneous shear flow 

In this section, the four-equation model is applied for description of a homogeneous turbulent 

shear flow. The simplicity of this flow configuration provides a suitable framework for model 

implementation. Furthermore, some recent data obtained by DNS are available and can be 

used for model parameterization and validations. In the homogeneous shear flow, the mean 

velocity gradient tensor is given by: 

dWj 

dxj 

0  §fi. ox? 

0     0 
(4.1) 

where, W = U for the carrier and W = V for the dispersed phase. It is emphasized 

again that although the mean flow is two-dimensional, the Reynolds stress tensors are three- 

dimensional. Based on our model results in §2.3, the explicit solutions for the Reynolds 

stresses of the two phases are expressed as: 

2 

Gi ~ÖG3 \~ä^j   +G4<7ii- 2°5(912 + 921,10^ + 3' 6 u (4.2) 
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w\ 

w\ 

WIW2   _ 

W1W3    = 

-G° + G°q%z + -, 

~^~-2G2~di:+G<qi2 + 2°5 {qn ~ q22)~e~' 
W2W3 = W3W1 = W3W2 = 0. 

X2 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

Equations (4.2)-(4.6) yield the carrier phase Reynolds stresses with w = u, a = /, and the 

dispersed phase Reynolds stresses with w = v, a = p. The implicit algebraic model for the 

fluid-particle velocity covariance is of the form: 

u1vl 

VP 

U2V2 

'IP 

dV^ 
uiv2-£— + (1 - ^2)^2^1-5— 

0x2 9x2 
+ (1 - C/p3)— («? - -*P) 

C/P 

"3^3 

^j + (i - c/p3)- (»2
2 - -3kP) 

A 

2   fl 
A/p\3 r^dx2 

 dVi   
UlV2 —+ (1 -Cfp2)u2vi 

+ "2-^-     -(1-C. /p3j 3rD 
(C/x - K)^ + 2(U2 - V2)v2<p\ \ + |, (4.8) 

2   [1 

>./P 

UlU2 

A/p (3 
«1^2 ^ r (1 - C/p2)w2Ui^— 

0x2 <9x2 

A4> 
+ (1  - C/ps) —  (l>3 - -fcp 

1   /-0     2 A 

*7P 

"2^X 

&/p 

+   -{^l-^)-^-CJia)^[-(Ui-V1)vl<i>-{U2-Vi)v24>\> + ^   (4.9) 

2   r    n     r    ^ ^U'M(^     n    ^A$ _L 
!  - (1 - Cfp2)U2V2-Z h (1 - C/p3) ÜXU2 H UxU2 

k/p ÖX2 

A 
-   (l-C/p8)-(^-V,M, (4.10) 

^/p 

 ÖV,     „     „    ,A$      1  
"2^2-^ 1" (1  - C/p3J ViV2 -\ UXU2 

dxo 

A 
-   (l-Cfp3)-(U2-V2)v^}, (4.11) 

where 

dVr dll, 2A$ 
Jp = ~umvi- (\-CjP2)ulvm—^ + — k + (l-Cfp3)

:: kp + (CJp3-l) — {Um-Vm)vm<j) 
OX l OX l        Tp Tv Tv 
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It is noted that in homogeneous flows the turbulent transport terms are zero, therefore, 

there is no need to consider the models for the third-order correlations here. It is also 

straightforward to describe the transport equations for k, e, kp, and kjp in the homogeneous 

flow configuration. These equations are not repeated here for brevity. 

4.1     Comparison with DNS 

The final four-equation model is appraised by comparative assessment via DNS results of Part 

I. A variety of cases have been considered for model validation. Here, we present comparisons 

between the model predictions and DNS results for three cases: Cl (rp = 0.016s, $m = 0; 

one-way coupling), C3 (rp = 0.016s, $m = 0.25), and C5 (rp = 0.032s, $m = 0.25). For all 

of the cases A = 721.8 and S = |g = |^ = 62.8s"1. The Reynolds stress tensors for both 

the carrier and the dispersed phases, as well as the fluid-particle velocity covariance tensor 

are generated from the DNS results and are used to appraise the model's performance. 

The evaluation of the void fraction fluxes, however, is not possible within the framework 

of homogeneous shear flow; this is done in §5.2 with the help of laboratory data. In the 

assessment of the model, the values of k, e, kp, and kjp at St — 3 are taken from DNS as 

initial values. This time is chosen as the initial time for model assessment in order to allow 

the flow and the particles to reach a dynamic equilibrium, while the turbulence becomes 

well-developed and falls in the growth region. The magnitudes of the empirical constants 

C/3» C/pi) C/p2i and C/P3 are determined by analyzing the DNS data. Details of procedure 

for determination of these constants are given in Part I; the final optimized values are listed 

in table 1. 

First, we consider the case with one-way coupling ($m = 0) for rp = 0.016s. The model 

predictions (lines) are compared with DNS results (symbols) in Fig. 1 for all of the Reynolds 

stress components. Some deviations are observed in the streamwise component but other 

components are in reasonably good agreement. The solution of the Reynolds stress equations 

(Mashayek et a/., 1997) has indicated that the deviations in the streamwise component 

originate from the model used for the fluid pressure strain correlation in single-phase flow - for 

single-phase flows, this model is the same as the LRR model. The effects of two-way coupling 

at $m = 0.25 are portrayed in Figs. 2 and 3 for TP = 0.016s and rp = 0.032s, respectively. 
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Again the agreement between the model predictions and DNS results is promising. It is 

worth noting that the shear components which are of primary importance (in calculating 

the mean variables) are predicted very closely to DNS data. It is also important to note 

that the model is capable of predicting the antisymmetry of the shear components of the 

fluid-particle velocity covariance tensor. The model predictions for the dissipation rate of 

the fluid turbulent kinetic energy are compared with DNS results in Fig. 4 for all of the 

cases. The figure shows that the model predictions are in fair agreement with DNS results 

and that the model is capable of capturing the trends of variations of the dissipation rate 

with the particle time constant and the mass loading ratio. 

5     Model implementation for thin shear flows 

With the manipulation of the algebraic models presented in §§2 and 3, the four-equation 

model is simplified for thin shear flows. The model is then assessed via comparison with 

laboratory data of an axisymmetric two-phase turbulent jet. Due to large variations of 

time scales in these flows, a modification of the algebraic models is necessary (Taulbee, 

1992). Equation (2.14). for the fluid Reynolds stress, is valid in the asymptotic limit given 

by (2.12) which requires that the time scales ratio, defined as the turbulent time scale r 

divided by the mean flow time scale (SkiSki)'1^2 is large. However, there are situations 

in the flow field, mostly due to boundary conditions, when this condition is not met. To 

rectify this situation, Taulbee (1992) modified the formulation so that the result is valid 

for very small as well as relatively large values of the time scale parameter. This requires 

that the term f = 4i*Z<2 = £f - ^ to be added to the coefficient on the LHS of (2.14). 

The implementation of this modification is straightforward in single phase flows. However, in 

particle-laden flows it is not clear how to modify the other transport equations since only the 

carrier fluid dissipation is considered. Therefore, this correction is applied to each equation; 

by assuming that the small time scale behavior of that quantity is similar to that of the fluid. 

For the particle Reynolds stress and the fluid-particle covariance, we simply add f to the 

coefficient on the LHS. For the void fraction fluxes, C^T is added where Cj,p is a constant. 

In parabolic flows, the streamwise (axial) gradients of the transport parameters are assumed 



negligible in comparison to their gradients in the cross stream (radial) direction. In the 

computations, the algebraic models in the form given in §2 can be used directly. However, 

it is more convenient to express the final closures via equivalent eddy diffusivities. These 

diffusivities have the additional advantage of exhibiting the coupling between the phases in 

an explicit manner. 

The diffusivity pertaining to the fluid shear stress is determined by recognizing that from 

(4.5): 
Jfe r   , . ,  . .., FHL 

(5.1) WT2 = kG{q{2 + - [G{ + G{ (q{x - q{2)\ 

From (2.30) and (B.2), it is recognized that: 

dUr 
dx2' 

G{ 1 + 
1   fl + UCf2\

2 fdU^ 
\dx2i *f 

9/2 = 'THhT + (1 " C^TT^*11^) - 7ZTT \(Ui ~ Vi)u*t> + (^ - V2)u^\ . (5.2) kr„ 10 kT„ 

Substituting these relations into (4.5) provides: 

uxu2 

(5.3) 

w here 

Cu = 
_4_ 
15 

^+^+^ew(»y - YT N + G* («ii " <&)] ■ (5-4) 

vi _2i + 9(i_C/3)^   portray In this relation, A/i = \ (C/i + ^f - 1 + f) and A/2 = 7 

the contributions from the carrier fluid and the particles, respectively. Equation (5.3) shows 

the coupling effects between the phases and reduces to the algebraic model for a single-phase 

flow when A = 0. Some of previous models, e.g. by Elghobashi and Abou-Arab (1983); 

Chen and Wood (1986); Zhao (1993) consider only the first term in (5.3) with Cß the same 

as in the single-phase k-e model. This implies that the modifications of the carrier phase 

shear stress is modeled only through the changes in k and e. However, our model presented 



by (5.3) indicates that in addition to "direct" modifications through Cß, the carrier phase 

shear stress includes other terms which are due to the presence of particles. 

Following a similar procedure, the dispersed phase shear stress is expressed by: 

Wh = -Clrkp-rl + — (ÜTÜ2 + Wh), (5-5) 
OX2 7p 

where, 

Cl = L—1 - j- [GS + G? (Ä - <&)], (5-6) 

with A„ = 7^ + ^f2 + -■   The relative importance of the terms in (5.5) depends on the 
V Kp TpKp T 

magnitude of the gradient of the mean velocity. For instance, in the experiments of Shuen 

et al. (19S5), the dispersed phase shows a very steep mean velocity profile (especially near 

the jet centerline); and the term \kvG2^ becomes of the same order of magnitude as 

_CPr^p|ii. In the model implementation, the first term on the RHS of (5.3) and the first 

term on the RHS of (5.5) are used for eddy viscosities, and the remaining terms are treated 

as source terms in the axial momentum equations. 

Of significant importance in the solution of the dispersed phase variables are the fluxes of the 

void fraction. In most cases, these fluxes are modeled in a format analogous to modeling of 

scalar fluxes (e.g. Elghobashi and Abou-Arab (1983)). Considering the differences between 

the basic transport equations governing the void fraction and a scalar, it is not expected for 

this analogy to yield accurate predictions. With the explicit models for the void fraction 

fluxes ((2.19)-(2.20)), it is possible to provide relations for the corresponding eddy diffusiv- 

ities. For example, consider the radial flux of the void fraction {v2<j>). With the thin shear 

layer assumption, the algebraic model for this flux is approximated as: 

v2<f> 
1 - BfßP 

v\   d$ +      u2v2     j$ + (1-C,2)A(^ _ v^ 

&4>pdx2     TpApfAfodxi!      rM^/A^p 
(5.7) 

where A,, = i(7» - e - 2») + j.{V* - e*) + °-f + C^ + (1 - C,3)f + £Sg, A*p = 

-L.(VP - Vp) + 4-(P* - e*) + - + Cfoi- + -fSf,, and expressions for Bf and Bp are provided 
2kp  *■ ^2 \ Tp r T Kp 

in Appendix B. Since A<*/ can take large values, the second and the third terms on the RHS 
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of (5.7) are small compared to the first term. Thus: 

*d$ 4> vt — 
1- -(^/3 + l)" A* 

rP^<t>fA*P 

v2<j> ^ -vf ^—,     vt = - 77; — 55—• (5.8) 
0x2 

The results of primary calculations of the axisymmetric jet flow (discussed below) indicates 

that the denominator of the second of (5.8) is very close to unity; thus:  i/f = —L-. This A*p 

should be compared with conventional gradient diffusion closures vt = £- (<x^ = 1.3). 

The complete set of equations describing the four-equation (k-e-kp-kfp) model is presented 

in Appendix C for axisymmetric thin shear flows. To close this set, additional relations 

are needed for <f>2, V* and V*. It is possible to solve a modeled transport equation for 

<t>2. But none of the available experiments (including the one considered here as will be 

discussed below) report the measurements of <p2, and there is no rational way of estimating 

the initial conditions of this variance for subsequent calculations. Due to these uncertainties, 

and also noting that the contribution of this quantity to V2<f> is negligible (based on an order 

of magnitude estimation), the transport equation for <f>2 is not considered. Furthermore, it 

is noted that <?2 is always accompanied by the coefficient 1 — C^l therefore if C^ ~ 1 the 

term <p2 is effectively eliminated. A more detailed investigation on the significance of this 

term requires reliable experimental data. 

The term =(P° - £>*), in (B.11)-(B.12) is modeled by assuming that the time scale of the 
o 

void fraction is proportional to that of the dispersed phase: 

where C^ is another empirical constant. It is also assumed that ^ = ^ which together 

with (5.9) yields: 

2=(p*-T>*) = C*±(pp-T)p). (5.10) 
<f>2 kp 



5.1    Explicit forms of the third-order correlations 

The implicit models for the third-order velocity correlations as derived in §3.1 are manip- 

ulated here to extract convenient gradient type models for parabolic flows. The functions 

F*s in (3.16)-(3.21) are significantly simplified for parabolic flows since only one shear stress 

component and one normal stress component remain in the formulations. Furthermore, the 

contribution from the shear stress component to F*s always involve the product of this stress 

by its derivative. Due to particular profile of the shear stress in the radial direction, these 

products are small; therefore, the contributions from the shear stresses can be neglected. 

The simplifications in F's for parabolic flows, however, do not reduce the level of complexity 

of the explicit solution in its general form. To make the models "practical", a parametric 

study is considered. For that, we use the isotropic relations: ujuj = §fc*, vfä = 5^, and 

U2V2 = \k",   to reduce the number of parameters. Therefore, 

F:.V = -TTJ*. 27    vdx 2 

F' 1       /4   dk-   8   dk-s; 
'"««-    JL + l±l*m^3p^     9     dx'2/ 

F- 1        f4   dk;    S   dk) 

cs 

16,.9fcJp  .  ^.ölf 
_i_ +1+2^ ^9    3J. ' 9 p ax5 

F* l   1 f16/-^p  1 V^N 
'*«« -    _j_ + 2+j^ 1 9 ^ öa;. 1- 9    dx. 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(5.16) 
c55 

Furthermore, we express /:* and kjp in terms of km: k* = nk" and k*fp = Cj-p^k'k*, where 

K is a new parameter and C/p4 = O.S is taken from DNS results. We also use Cs\ = CS2 = 

... = Cs5 = Cs = 0.08 (Hanjalic and Launder, 1972). It must be emphasized that since 

we are only comparing the relative magnitudes of the third-order correlations, the specific 

values used for C/p4 and Cs are not very important. The final set of significant parameters 

includes: the mass loading ratio ($m), the time scale ratio (0), and the kinetic energy ratio 
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Figures 5 and 6 show the variations of all of the third-order velocity correlations with $m 

for different values of 6 at K = 1 and K = 0.1, respectively. It is observed that v$VjVj is the 

most sensitive to the variations of the kinetic energy ratio. On the contrary, this correlation 

appears rather independent of the mass loading ratio. This suggests that the dispersed phase 

third-order velocity correlation can be reasonably described by (3.23). The other correlations 

depend on the mass loading ratio, specially for small values of the time scale ratio. However, 

as the ratio of the kinetic energies is increased, these correlations become more independent 

of the mass loading ratio. Therefore, for large values of the particle turbulent kinetic energy 

(as compared to the fluid turbulent kinetic energy) the third-order correlations comply with 

the explicit forms given in (3.22)-(3.27) for <3>m ~ 0. 

As mentioned earlier, in model implementation, it is very desirable to express the third-order 

velocity correlations in simple gradient forms. A simple way to produce such gradient type 

models for each third-order correlation, is to neglect the contribution from other correlations, 

that is, to express each correlation in terms of its own Fm only, i.e. 

u^u'jU] ~ F^uu,    V'2V~V] ~ FJW,    v^u'ju] ~ F',uu, 

u'2v"v] ~ Fu"wl    u'2u]v~ ~ Fu*uv,    v^u'jv'j ~ F'uv. (5.17) 

In order to find the range of variations of $m, 0, and K within which the above assumption 

results in reasonable approximations for the third order correlations, we consider the relative 

error parameter x- This parameter is defined based on the values of the third-order velocity 

correlations calculated using (5.17) and those calculated from the full solution of (3.10)- 

(3.21): 

correlation value by full solution — correlation value bv (5.17)      , „. 
X = £ . i_i L x 100. 

correlation value by full solution 

The variations of the parameter x f°r wide ranges of $m and 6 values are shown in Figs. 7 and 

8 for K = 1 and K = 0.1, respectively. It is concluded from these figures that for $m < 0.4, 

0 > 1, and K > 1 the relative error is less than 20 percent. Therefore, for $m < 0.4, rp > r, 
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and kp > k, the third-order correlations may be approximated as: 

  1 /  Ok         du2U2\ /c io\ 

«^ = -nrTH^rü2ä^ + U2ü2"^7j' (5-18) 

^ - -f (^^+^ferj- (5-19) 

     ——- 1 / dkfp     1 düjöi     1 0S5üj\ 

C,4 T Tp \ 

1 / Öfc/p        1 ÖÜtfJJ        1 dü^X . 
1 

C.ST 
+ 2^1 ^""öx,   '  2""" 9x2    '  2""" 9x2 

For dilute particle-laden flows, the ratio ^f- is usually small. This is particularly true if the 

particles are large or the density ratio is high. In this case (by using the isotropic relations), 

the third-order velocity correlations may be further simplified to: 

—- 10 ^    , dk ,. nis 
u2k'   =   —-CsTk—, (5.21) 

9 0x2 

^?   =   -0.5C€rfc-2i (5.22) 
0x2 

^ - -5?^^' (5'23) 

S_,     , ,dk(v     2„    (,   dk     ,dL 
«»*}, + »>*!, = -5c-^ + i>»äf -ic-T l^ + iss •      (5-24 

where Cs and Ct are empirical constants with the values given in table 1. Equation (5.22) 

provides a model for the correlation U{(.' appearing in the transport equation for the rate of 

dissipation of the carrier phase turbulent kinetic energy. This model is the same as that used 

in single-phase flows (Hanjalic and Launder, 1972). The use of this model for two-phase flows 

(within the parameter range described above) is expected to provide reasonable accuracy as 

the model (5.21) proposed for the fluid turbulent kinetic energy is also reduced to that in 

single-phase flows. 
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5.2    Comparison with laboratory data 

The proposed four-equation model is now applied for the prediction of the flow configuration 

considered in the experiment of Shuen et al. (1985). In this experiment, comprehensive data 

are available of an axisymmetric turbulent jet flow laden with monosize particles. The jet 

is directed vertically downward with an inside diameter of d = 10.9mm. Air is used as the 

carrier fluid and the velocity at the nozzle exit is 26.1m/s. Sand particles with a Sauter 

mean diameter 79/x and a density of 2620kg/m3 are fed into the jet with a mass loading ratio 

of 0.2 at the nozzle exit. Uncertainties up to 10% for the carrier gas, and 15% for particles 

are reported in the measured profiles of the mean and fluctuating velocities. The measured 

results for cross-stream variations of statistical quantities are reported at streamwise stations 

xi/d■= 20 and xx/d = 40. In the calculations, the data at Xi/d = 20 are used as "initial 

conditions" and the predicted results are compared with the experimental data at xx/d = 

40. The initial dissipation rate of the carrier phase kinetic energy is determined from the 

measured mean axial velocity and shear stress using the shear stress model. The mean void 

fraction is calculated from the dispersed phase mass flux, and the mean velocity distribution. 

The initial values for kIp is obtained from the turbulent kinetic energies of the two phases 

using kjp = Cjp4\/kkp with C/p4 = 0.55. 

The numerical algorithm used in the solution of the model equations is based on a first order 

upwind differencing for the convection terms and a second order accurate central differencing 

scheme for all the other terms. Table 1 provides the values of the empirical constants as 

used in the k-e-kp-kfp model. The values of CiU Cc2, and Ct4 are the same as those used 

in single phase flow predictions. The values of C^i, C^2, C43, Q,P, and C^ are obtained 

through comparisons with the results in this experiment. The other constants are the same 

as those determined in Part I. 

The final model predicted results are compared with data from the experiment of Shuen 

et al. (1985). The profiles of the mean axial velocities and the mean void fraction are 

presented in Fig. 9. While the agreement for the mean velocity of the carrier gas and the 

mean void fraction is reasonable, the dispersed phase axial velocity shows some deviations 

from the experimental results near the jet centerline. However, the streamwise variations 

of the predicted results for the centerline values of the mean axial velocities in both phases 
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and the mean void fraction are in good agreement with data (Fig. 10). Notice that, due 

to gravity, the mean particle axial velocity has nonzero values for large x2. The profiles 

of the kinetic energies (Fig. 11) and the shear stress of the carrier gas (Fig. 12) are in 

accord with laboratory data. However, similar to the behavior portrayed in Fig. 11(a), the 

predicted normal stresses (Fig. 13) deviate from the laboratory results near the centerline. 

This deviation is partly attributed to the neglect of the diagonal terms in the strain rate 

tensor. With this assumption, the model predicts an isotropic Reynolds stress tensor at the 

centerline where f^j- = 0. 

A comment is in order here in regard to the so-called Hinze-Tchen relation (Chen and Wood, 

1986; Zhou, 1993; Zhao, 1993) used for modeling of the dispersed phase turbulent viscosity: 

p / ,    \ 0.5 
xp 

vx      \k 1 + 3 In. 
(5.25) 

Here re is a turbulence time scale which is typically modeled as re = Crjf, with different sug- 

gested values for the empirical constant CT (Chen and Wood, 1986; Mostafa and Elghobashi, 

1986; Sargianos et a/., 1990; Zhou, 1993).  Here, we consider CT = 0.2.  In tables 2 and 3, 

we compare the predictions of the Hinze-Tchen relation (5.25) for the ratio of the kinetic 

energies with those measured in DNS and experiment, respectively.  According to tables 2 

and 3, large deviations are observed between the model predictions and the data; the extent 

of deviation from the laboratory data is much more significant. This deviation is due to the 

fundamental model assumption in that the solid particle does not change its neighboring 

fluid element throughout its course of motion. This assumption would be valid only if the 

particle time constant is small compared to the fluid time scale (i.e. small Stokes numbers) 

so that the particle responds to the flow fluctuations promptly. The ratio ^ is in the range 

0.5 to 1.5 in DNS, and in the range 20 to 30 in the experiment (at xi/d = 20). Obviously, 

particles with such large Stokes numbers are not capable of adjusting to rapid changes in 

shear flows, thus the basic assumptions made in the derivation of the model cannot be jus- 

tified.  Based on these comparative assessments, it is obvious that the use of Hinze-Tchen 

relation, as typically used for modeling of the particle turbulent kinetic energy and/or the 

eddy diffusivity, can lead to significant errors. The explicit algebraic model developed here 

alleviates many of the drawbacks of previous closures including the Hinze-Tchen relation. 
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Finally, the use of the Stokesian drag can, understandably, raise some doubts when the 

algebraic models are used in high Reynolds number two-phase flows. In general, for high 

particle Reynolds numbers (i?ep, defined based on the particle diameter, the fluid viscosity, 

and the particle-fluid relative velocity) an empirical correction factor is multiplied by the 

Stokes' drag relation. The correction factor is described as a function of the particle Reynolds 

number (f(Rep)) (Clift et al., 1978) and in statistical models it is evaluated using a particle 

Reynolds number based on the relative "mean" velocity. This approach results (in essence) 

in a modified particle time constant which is described as r* = JT^-T • The implementation 

of the modified particle time constant in the present model is straightforward. A typical 

calculation with T* based on f(Rep) = 1 + 0.15i?e°-687 in the axisymmetric jet indicated 

small, although noticeable, changes in the results. 

6     Summary and concluding remarks 

The primary objective of this work is to expand upon the capabilities of algebraic turbulence 

models, as previously developed in single-phase flows, for predictive analysis of two-phase 

turbulent transport. More specifically, the essential goal is to provide models which are 

"simple" to use and yet are more "effective" than currently available closures. To achieve 

this goal, several simplifying assumptions are made in regard to both the structure of the 

flow and the equations governing its transport. In this section, a summary is provided of the 

procedures leading to the final results with a critical assessment of the assumptions invoked. 

Some directions for future related work are also suggested. 

We consider dilute, mono-dispersed particle-laden turbulent flows. The "differential" trans- 

port equations for each of the two phases, as developed in Part I (Mashayek et a/., 1997), are 

considered in the Eulerian frame for the ensemble-means and several of the pertinent second- 

order moments of the transport parameters. There are several terms in these equations which 

are modeled in a fashion analogous to single-phase flows, but introduce empirical constants 

which need to be determined. The final differential equations are reduced to "implicit al- 

gebraic" equations by making two assumptions, again analogous to those in single-phase 

flows.   In the context considered, the implicit coupled algebraic relations govern the fol- 
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lowing second-order moments: the Reynolds stresses in both the carrier and the dispersed 

phases, the fluxes of the void fraction due to both the carrier and dispersed phase velocities, 

and the fluid-particle velocity covariance. For flows with two-dimensional mean transport 

(but three-dimensional turbulent motion), the implicit relations are manipulated further via 

a liberal use of the Cayley-Hamilton theorem. This leads to "explicit" algebraic solution 

for all of the above moments except the fluid-particle velocity covariance, the relation for 

which is left in an implicit manner. The final algebraic relations provide useful constitutive 

relations for the Reynolds stresses and the void fraction fluxes which manifest the effects 

of the two-way coupling between the two phases in an explicit manner. These relations 

are presented in the form of eddy diffusivities which are very convenient for application in 

standard computational methodologies. In this form the model is applied to a particle-laden 

homogeneous shear flow for which recent DNS data are available. These data are used for. 

both determining the magnitudes of some of the empirical constants appearing in the clo- 

sures, and for appraising the performance of the model. The algebraic models are further 

manipulated and a four-equation model (k-e-kp-kfp) is proposed for prediction of parabolic 

two-phase turbulent shear flows. This model augmented by algebraic relations for the trace 

of the fluid-particle velocity covariance tensor and the variance of the void fraction is ap- 

plied to an axisymmetric particle laden turbulent jet. The predicted results are compared 

with available laboratory data. While these data are used to determine the magnitudes of 

some of the empirical constants, the overall agreement between the predictions and data is 

encouraging. 

As was the case in Part I, a very important feature of model is that the effects of the two- 

way coupling are captured. Contrary to most previous models which are based on ad hoc 

modifications of the single-phase turbulence closures, the models here clearly indicate how 

the Reynolds stresses and the void fraction fluxes of each phase are modified by the presence 

of the other phase. Therefore, it is not surprising that the overall behavior of the model 

is significantly better than most of the currently available algebraic models, such as the 

Hinze-Tchen relation. 

Similar to all modeling strategies, assumptions are necessary and are made at different 

stages in the process of developing algebraic models and in their applications. Some of 

these assumptions are "essential" without which it would be impossible to develop algebraic 
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closures.  An example is the equilibrium assumption as represented by (4.2). Some of the 

other assumptions made here, however, can be relaxed. These are discussed below. 

The derivation leading to explicit algebraic relations as outlined in §2.4 is possible by treating 

the fluid-particle covariance in an implicit manner. Inclusion of this covariance in the explicit 

formulation is possible. But the form of the solution, even if it can be generated (via CHT or 

other means), is expected to be complicated. The same goes for extending the methodology 

for treating three-dimensional mean flows. Due to the nature of three-dimensional flows, a 

much larger number of matrix polynomials (and a wider integrity basis) is required. For 

instance, in single-phase flows the three-dimensional solution is achieved with 10 matrix 

polynomials as compared to 3 matrix polynomials in the two-dimensional solution (Pope, 

1975). Based on our previous experience, we suggest to extend in the line of Taulbee's 

(1992) approach. In this approach, the implicit algebraic equations are first simplified using 

an order of magnitude analysis. This analysis is based on the values of the empirical constants 

which are rather well-established in single-phase flows. Therefore, before any step is taken 

toward the extension of such analysis to two-phase flows, it would be necessary to build a 

reliable data base for particle-laden flows. This data base must include a variety of flow 

configurations in order to help in evaluating the empirical constants. 

In the implementation of the four-equation model, the variance of the void fraction fluctua- 

tions (o2) is modeled here in a somewhat "naive" manner. It is straightforward to evaluate 

this parameter from its own transport equation; thus suggesting a "five-equation" model. 

This was not followed here because of the lack of proper laboratory data. Such "sophistica- 

tion" is justified in future when proper laboratory data become available. The same is true 

of the TOC terms in (2.1), (2.3), and (2.5). Development of turbulence models for these 

correlation and their laboratory measurements are recommended. With a reliable model, 

the inclusion of these correlations in the algebraic formulation is not expected to be difficult. 

Finally, it is re-emphasized that all the turbulence models presented here are based on basic 

Eulerian transport equations of multi-phase flow augmented with empirical relations for the 

phase interactions. No attempt is made here to consider different scenarios with inclusions 

of a wide variety of interphase transport models. It is expected that the operational means 

of model development as outlined here would remain the same with such considerations. 
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Appendix A 

Implicit algebraic equations for the dispersed phase Reynolds stress, the void fraction fluxes, 

and the fluid-particle covariance are derived in a manner similar to those for the fluid 

Reynolds stress. The final form of these equations are expressed as: 

Dispersed phase Reynolds stress: 

ip   n-p 

-f(-K + -X) + rT£(^ + ^)' Tp   fCp 
(A.I; 

Carrier phase void fraction flux: 

L{V! _ e _ D/) + hp* _ €*) + 9*L + (i _ c,3)— + -L55W 
2k <f> "Tp      kp 

1 e A$ ö$ 
-.iT^W + C1 " ^3)—^ -^ + (C« - l)-(t/t - VS)3* 

■5fc <9x/ 
(A.2) 

Dispersed phase void fraction flux: 

_L(^ - DP) + I(P* - «») + 1 + ^5jJ 
2k •p -vp 

tf 

-f(5s+^+^-^+!*.)£. (A.3) 

Fluid-particle co-variance: 

Dkfp      fC/pi       1 A$- 
D* + (-f + 7 + (1 - ^/P3)—)kjp]a{j = -yk^ajfS^ - -a^Sl^) 
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-(l - CJP»)^kJp(a{fSi - yZSfaa) + (1 - C/p2)£*/p(«W - i«M^-) 

.-(i - c/ia)|^M4 + <4) + T< + (i - C/P3)^<- 
'p 'p 

- (1 - C/p3)- [(£/,■ - K>i?i - ^(üi - Vfatftj], (A.4) 

where Pp = \T>1, Vp = \TfiU <p{ = ürf, and $ = vrf. The rate of strain (S?) and the 

rotation (ufj) tensors for the dispersed phase are defined similarly to those of the carrier 

phase (2.9) by replacing U with V and k with kp. 

Appendix B 

Relations for the coefficients and tensors appearing in (2.15)-(2.1S) are obtained by the 

comparison of these equations with (2.14) and (A.1)-(A.3): 

Carrier phase Reynolds stress (2.15): 

j_   1 j_     l + 6C/2e ,_     1 + 14C/2 £ 

- ^^r [(^ " K)^ + (Uj - VjjZtf - \{Ui - Vi)M6i3], (B.2) 

Dispersed phase Reynolds stress (2.16): 

c*=h c-~iv *-££■ (B-3) 

qf>= ~ti^ ~ ls"6^ + vp^;{a-+ a-}' (B-4) 
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Carrier phase void fraction flux (2.17): 

AS _ c/     Bt - C#-1M     Dj _ J_f (B.5) 

Ci S _ 

HS 
Ü7Ü7^ + (1 - C*)-(tfi - V-)<P 

OXi Tp 

(B.6) 

Dispersed phase void fraction flux (2.18): 

where. 

^ = (5S+«-S),    5p = AADTD 0pTp 

1 2      9$ 1    e 

&<f>p 0 OXl LXfo Kp 

V* 1 r 7" P' A$TI 
A/ = - C/i + 1 + 2(1 - Cf3)  rl e e rD  

J 

7>p      2 Jfe, VP 

vp      'p *-p n^T) 7"n    fCn 

A,/ = ^r(7" - t - V) + 1(7* - e*) + ^ + (1 - CW)— + f 55, 
ZK O

Z T Tp Kp 

(B.7) 

(B.8) 

(B.9) 

(B.10) 

(B.ll) 

(B.12) 

Appendix C 

This appendix presents the transport equations for the mean of the transport parameters as 

well as the three-equation model of §5 in a form appropriate for predictions of axisymmetric 

particle-laden jets. The equations are expressed in the parabolic form by assuming that the 

gradients of the mean quantities in the axial direction are negligible in comparison to the 

mean gradients in the radial directions. The gravity acts in Xi-direction. 

The carrier phase continuity: 
dih | i d(x2u2) ^ o 

dx\      a.-2    dx-i 
(C.l) 
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The carrier phase momentum in x\-direction: 

d(UiUx)      1 d{x2U1U2) 1 dP      1   d   (     dUA      1   d   ,    . 
\      ' + —x  = ^— + —«—   x2v-r— ~— (X2U1U2) 
dxi        x2     ox2 p/oxi     X2OX2 \     0x2)     x2ox2 

-—(Ul-V1)--(^-M), (C.2) 
Tp Tp 

The dispersed phase continuity: 

d(*Vi)  ,   1 d{x&V2) 1   d   ,   —x 
axi        x2     0x2 x2 ax2 

v        ' 

The dispersed phase momentum in X\-direction: 

own) , 1 d(x2vlv3)      id          1 /    1, 
+ ä  = -x— (X2U1U2) + — (t/i - Ki) +    1 - T- )g, (0.4) 

<9x! x2      <9x2 x2 dx2 Tp V       A 

77ie dispersed phase momentum in x2-direction: 

djViVi) + 1 d(x2V2V2) =  l__d_ (X2VfM\ + ]_{U2 _ Va)j (c>5) 

öxi x2       dx2 x2dx2 l öx2/      Tp 

77ie carrier phase turbulent kinetic energy: 

d{U,k)      1 d(x2U2k)        dUi 1   d 
+ ä = -Ui«2 e ^—(^2"2^') 

0x1        x2     ax2 x2 X2 ox2 

- - [(£/i - K W + (C/2 - V2)^ + 2$(* - fc/p)] , (C.6) 

77ie carrier phase dissipation rate of the turbulent kinetic energy: 

d(Uie)  ,   1 d(x2U2e) e dUx     n   e2       10       — 
-5 + -Z  = -Ctl TulU2 Ct2- ^— (x2u2e') 

ox\        x2     ox2 K x2 k      x2 ox2 

-~{2*fc-C€3[2*fc/p-(^-V1)^-(t/a-V2)^]} + ice4^   e(|^)   % 

(C.7) 
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The dispersed phase turbulent kinetic energy: 

flWM ,   1 d(x2V,kr)        dV,     13 2,, 

The fluid-particle turbulent kinetic energy: 

+ (1 - C/p3) (fcp - fc/p) + (C/p3 - l)-[(tfi - Vi W + {U2 - V2)^\. (C.9) 
TP TP 
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Figure Captions 

Figure 1. Comparisons of the four-equation model predictions (lines) with DNS data (sym- 
bols) for components of the fluid, particle, and fluid-particle Reynolds stress tensors in the 
case with one-way coupling at rp = 0.016s. 

Figure 2. Comparisons of the four-equation model predictions (lines) with DNS data (sym- 
bols) for components of the fluid, particle, and fluid-particle Reynolds stress tensors for 
$m = 0.25 and rp = 0.016s. 

Figure 3. Comparisons of the four-equation model predictions (lines) with DNS data (sym- 
bols) for components of the fluid, particle, and fluid-particle Reynolds stress tensors for 
$m = 0.25 and rp = 0.032s. 

Figure 4. Comparisons of the four-equation model predictions (lines) with DNS data (sym- 
bols) for the rate of dissipation of the carrier phase turbulent kinetic energy for all of the 
DNS cases. The dissipation rate is normalized with its initial value e0- 

Figure 5. Variations of the third-order velocity correlations with the mass loading ratio and 
the time scale ratio at K = 1. 

Figure 6. Variations of the third-order velocity correlations with the mass loading ratio and 
the time scale ratio at K = 0.1. 

Figure 7. Variations of the relative error \ with the mass loading ratio and the time scale 
ratio at K = 1. 

Figure S. Variations of the relative error \ wi^h the mass loading ratio and the time scale 
ratio at K = 0.1. 

Figure 9. Comparison of the mean variables with the experimental data of Shuen et al. 
(19S5) at xi/d = 40. (a) Mean fluid axial velocity, (b) mean particle axial velocity, and (c) 
mean axial void fraction. 

Figure 10. Comparisons of the model predictions (solid lines) of the centerline mean variables 
with those of the experiment (symbols) of Shuen et al. (1985). 

Figure 11. Comparison of (a) the fluid and (b) the particle turbulent kinetic energy with 
the experimental data of Shuen et al. (1985) at xi/d = 40. 

Figure 12. Comparison of the fluid shear stress with the experimental data of Shuen et al. 
(19S5) at X!/J = 40. 

Figure 13. Comparison of the fluid normal stress in (a) the axial and (b) the radial direction 
with the experimental data of Shuen et al. (19S5) at x1/d = 40. 
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Table 1: Suggested values of the empirical constants for the four-equation (k-e-kp-kfp) model. 

Constant Magnitude Basis for choice 

C/i 1.75 Launder et al. (1975) 

C/2 -0.159 Launder et al. (1975) 

Cjz 0.5 Part I 

C/pi 2.5 Part I 

Cfp2 0.5 Part I 

Cfp3 0.2 Part I 
C41 1.5 Axisymmetricjet (experiment) 

C<t,i 0.5 Axisymmetric jet (experiment) 

Ci,z 0.5 Axisymmetricjet (experiment) 

C<j,p 3.0 Axisymmetricjet (experiment) 

0^,0 3.0 Axisymmetricjet (experiment) 

Ci 1.45 Standard k-e 

c,2 1.9t Standard k-e 

Ct3 O.S Part I 

Cu 
0.79 Pope (1978) 

cs 0.08 Hanjalic and Launder (1972) 

c( 0.13 Hanjalic and Launder (1972) 

f 1.85 is used in comparison with DNS. 
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Table 2:  Comparison of the values of k/kp calculated from DNS (at St — 12) with those 
predicted by the Hinze-Tchen algebraic relation. 

Case Cl      C3     C5 

k/kp (DNS)       1.21    1.02    1.10 
k/kp (Eg. 5.25)    3.61    3.04    5.71 

Table 3:   Comparison of the values of k/kp from experiment (at X\/d = 20) with those 
predicted by the Hinze-Tchen algebraic relation. 

xj/d Ö      0.013    0.031    0.051    0.071    0.092    0.11 

k/kp (Exp.)      0.91     0.78     1.03     1.11      1.27     1.22     1.30 
k/kp (Eg. 5.25)    930      910      1150      S00       580       610      400 
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Abstract 

We make use of the "filtered mass density function" (FMDF) for large eddy simu- 

lation (LES) of a jet flame involving methane. The FMDF represents the single point 

joint probability density function of the subgrid scale (SGS) scalar quantities and is 

obtained by solution of its modeled transport equation. In this equation, the chemi- 

cal reactions appear in closed form but the influences of scalar mixing and convection 

within the subgrid are modeled. The stochastic differential equations (SDEs) which 

yield statistically equivalent results to that of the FMDF transport equation are derived 

and are solved via a Lagrangian Monte Carlo scheme. The consistency, convergence, 

and accuracy of FMDF and the Monte Carlo solution of its equivalent SDEs are as- 

sessed via comparison with data generated by direct numerical simulation (DNS) and 

with experimental data. 

1    Introduction 

We have previously developed a methodology termed the "filtered density function" (FDF) 

for LES of chemically reacting flows. This methodology is based on the idea originally 

proposed by Pope (1991). The fundamental property of the FDF is to account for the effects 

of subgrid scale (SGS) scalar fluctuations in a probabilistic manner. Colucci et al. (1998) 

developed a transport equation for the FDF in which the effects of unresolved convection and 

subgrid were modeled similarly to those in conventional LES and Reynolds averaging (RA) 

procedures. This transport equation was solved numerically by a Lagrangian Monte Carlo 

procedure and the results were compared with those obtained by direct numerical simulations 

(DNS) and by the conventional LES in different free shear flows. It was shown that in non- 

reacting flows, the first moment of the FDF as obtained by the Monte Carlo solution is the 

0 



same as that obtained by the finite difference solution of the transport equation governing 

the mean scalar value (LES-FD). The advantage of the FDF was demonstrated in reacting 

flows in which its results were shown to deviate significantly from those based on LES-FD. 

Detailed comparison with DNS data indicated clear advantage of FDF over LES-FD. 

The encouraging results generated by FDF warrants its extensions and applications to more 

complex flows. Further assessment of its predictive capability are also in order. The objective 

in this work is to extend the methodology for treatment of reactive flows with variable 

density flows so that exothermic chemical reactions can be simulated. For that, we have 

introduced the "filtered mass density function" (FMDF)(Jaberi et al, 1997) which essentially 

is the density weighted PDF of SGS scalar variables. With the definition of the FMDF, the 

mathematical framework for its implementation in LES of reacting flows is established. 

2    Fundamental Assumptions 

We consider the unsteady evolution of a nonpremixed methane-air jet flame. LES/FMDF 

is conducted of this flow and all the results are validated by comparison with data obtained 

by DNS of the flame with the same parameter values. Here, all our basic assumptions are 
explicitly stated. 

• The primary emphasis in this work is on LES of "reacting flows." Thus, the FMDF 

is employed only for LES of the scalar field. The LES of the hydrodynamic field is 

conducted via the "conventional" LES-FD. The SGS closures in LES-FD are the same 
as those typically used in fluid mechanics. 

• The chemistry of methane-air oxidation is simulated via the "reduced scheme" of Se- 

shadri and Peters (1988) and a 25-step skeletal mechanism (Smooke and Giovangigli, 

1991). These provide a realistic means of simulating combustion in a computationally 

affordable manner. The difference between this (and other) reduced scheme(s) and 

more sophisticated (detailed and/or skeletal) mechanisms is recognized. 

• The problem formulation considers variable density flow in which the exothermicity 

effects are taken into account. However, the flow Mach number is small and the 

compressibility effects as observed in very high speed flows are not included. With this 

formulation and considering assumption (1), the Monte Carlo procedure is employed 

for the FMDF of the scalar field, and the hydrodynamic field is simulated by a finite 

difference scheme (LES-FD). The two simulations are, of course, coupled. 



• Both LES and DNS are conducted of two-dimensional (2D) flows. The obvious issue 

regarding the 3D nature of turbulence, and all the concerns associated with 2D analysis 

of turbulence are well recognized. It is also recognized that for (future) comparisons 

with experimental data 3D simulations are essential. However, based on our previous 

work (Colucci et al., 1998; Jaberi et al, 1997), in the context considered, all the 

conclusions drawn from this work remain the same in 3D. Due to space limitation, no 

further justifications in this regard are provided. 

• While the effects of chemical reaction are taken into account in a closed form in the 

FMDF formulation, the problem with turbulence closure is not fully eliminated. For 

other closures, we make use of currently available methodologies. The magnitudes of 

some of the empirical constants appearing in these closures are obtained via a priori 

analysis of non-reacting flows. These values are subsequently employed, without further 

optimizations, for LES of the methane flame. 

• The Newton's law of viscosity, the Fourier law of heat conduction and the Fick's law 

of mass diffusion are employed in the problem formulation. The caveats in the use of 

these laws in reacting flows are recognized, but no further justifications are made here. 

These assumptions, and all other (secondary) approximations are also made clear in the 

presentation below. 

3    Governing Equations and Closure Models 

Large eddy simulation involves the spatial filtering operation (Aldama, 1990), 

/-fco 
/(x',*)£(x',x)<ix' (1) 

-co 

where Q denotes the filter function, (f(x,t))e represents the filtered value of the transport 

variable f(x,t). In variable density flows it is more convenient to consider the Favre filtered 

quantity, (/(x, £))L =(pf)e/(p)e- We consider spatially & temporally invariant and localized 

filter functions, thus <7(x',x) = G(x'—x) with the properties (Aldama, 1990), G(x) = G(-x), 

and f?°ct0G(x.)dx. — 1.  Moreover, we only consider "positive" filter functions as defined by 

Vreman et al.   (1994) for which all the moments /f^ xmG(x)dx exist for m > 0.   The 

application of the filtering operation to the fundamental transport equations of reacting 

flows (Williams, 1985) yields: 
d(p)t + d(p)t{ui)L = 0 ,2) 

dt dxi 



djpWih + d{p)t(ui)L(uj)L = _d(jh + d(Tij)t _ dT^ 
dt dx( dxj        dxi        dxi 

where, t is the time, x,- is the ith component of the position vector, p is the density, u,- is 

the ith component of the velocity, p is the pressure and Sa is the production rate of species 

a. The scalar field is denoted by <f>a = Ya, a = 1,2, ...,iVs, <f>a = h = ^2a=i^a<l>a, in 

which ha = h°a + $ cPa(T')dT', where, h is the static enthalpy, ha is the heat of formation of 

species a, h°a is the heat of formation for species a at temperature T0 and cVa is the specific 

heat at constant pressure for species a at temperature To. These equations are closed by the 

constitutive relations (Smooke and Giovangigli, 1991; Kee et a/., 1994) 

(p)««(^(r)LE^ (5) 

where, BP is the universal gas constant, Wa is the molecular weight of species a and T is 

the temperature. 

fd(ui)L     d(uj)L     2     9(«*>L\       /  v       D ii i   v /fi\ 

where, // is the coefficient of viscosity, £,j is the Kronecker-Delta, Pr is the Prandtl number, k 

is the thermal conductivity and cp is the mixture averaged specific heat at constant pressure. 

I«-WA^ <^=«^>"   <!>'*258 * 10"5 ßääff    <7> 
where, Z> is the molecular diffusion coefficient and Le is the Lewis number. 

3.1    SGS Closure 

In LES of non-reacting flows the hydrodynamic SGS closure problem is associated with(Ro- 

gallo and Moin, 1984) Ttj = (p)t{{uiUj)L-{ui)L(uj)L) and Mf = (p)e((ui(f)a)L-(ui)L((f)a)L) 

denoting the SGS stresses and the SGS scalar fluxes, respectively. In reacting flows, an ad- 

ditional model is required for (pSa)e = (p)e(Sa)L (a = 1,2,...,Ns) denoting the filtered 

reaction rates for the mass fractions (with the assumption of low Mach number, (pSh)t = 0). 

Modeling of the reaction rates is the subject of main focus in the FMDF formulation as de- 

scribed below. The hydrodynamic SGS closure is based on models which are well-established 



in non-reacting flows (Rogallo and Moin, 1984). The term T,-j is modeled via, 

Tij = -2CR2(p)eAGE^2 ((S0-)L - ±<S**)L*«) + ICnWtESij (8) 

where E = |(M*)L(M*)L---((U*)L).*'((W*)L)*'|, U* = Ui—Ui and£/,- is a reference velocity in the re- 
direction. The subscript £' denotes the filter at the secondary level which has a characteristic 

size (denoted by Ac) larger than that of grid level filter. This model is essentially a modified 

version of that proposed by Bardina et al. (1983), where the grid and secondary filters are 

of equal sizes. We refer to this as the modified kinetic energy viscosity (MKEV) closure. 

The subgrid viscosity in Eq. (8) is vt = CR2&G\J\{U*)L{U*)L - («)LM(
U

*)I<M- A similar 
diffusivity model is used for the closure of the SGS mass fluxes (Eidson, 1985): 

Mf = -{p)iDt^^.  a = l,2,...,<r,    Dt = vt/Sct (9) 

3.2    Filtered Mass Density Function (FMDF) 

Let <£(x, t) denote the scalar array. We define the "filtered mass density function" (FMDF), 

denoted by FL, as: 

/+oo 
p(x',t)C[^(x',*)]G(x'-x)Jx' (10) 

-oo 

c[v,</>(x,t)]=<^-<A(x,*)]=n%a-^(x,*)] (n) 
a=l 

where 8 denotes the delta function and ij> denotes the composition domain of the scalar array. 

The term ([<p, ^(x,*)] is the "fine-grained" density (O'Brien, 1980; Pope, 1985), and Eq. 

(10) implies that the FMDF is the mass weighted spatially filtered value of the fine-grained 

density. The integral property of the FMDF is such that 

/+oo r+oo 
FL{ip, x; t)dtp = /      p(x', t)G(x' - x)cbc' = (/>(x, t))t. (12) 

-oo J—co 

The FMDF is related to the FDF (fL(tp;x,t)) (Colucci et a/., 1998)) by p(tp)fL(tp;x,t) = 

i*i,(^, x; t). Additionally, it is useful to define the Favre-weighted FDF TL{$\ X, t) such that 

(/')^L(V
,
;X,0 = p(V>)/L(^;x,i) = FL(t/j,x;t). For further developments, it is useful to 

define the mass weighted conditional filtered mean of the variable Q(x,t) as: 

FL(ip,-ic;t) 



Equation (13) implies the following properties: 

(0 For Q(x,t) = c, (Q(x,t)\rp)e = c 

(ii)   For Q(x,t) = Q(cp(x,t)),   {Q(x,t)\ip)t = Q(t/>) 
/+oo 

(Q(x, t) | V>)*-PL( tp, x; t)dtp 
-oo 

= (p(x,t))e(Q(x,t))L 

(14) 

(15) 

(16) 

where c is a constant, and Q((p(x,t)) = Q(x,t) denotes the case where the variable Q can 

be completely described by the compositional variable <£(x,<) = [<f>i, fa,..., <j>a]. From these 

properties, it follows that the filtered value of any function of the scalar variables (such as 

p = p[<p(x, t)] and Sa = Sa[<p(x.,t)] ) is obtained by integration over the composition space. 

It is noted that the mass weighted conditional filtered mean reduces to the conditional filtered 

mean (Colucci et al, 1998) when the density can be completely expressed in terms of the 

compositional variables. 

By applying the method developed by Lundgren (1969) and others (Pope, 1976; O'Brien, 

1980) to Eq. (3) it can be shown that the fine-grained density evolves according to: 

3MWM + WMMM __ ac^)g _m^ [ftWflM, (17) 

The transport equation for Fi(^,x;i) is obtained by multiplying Eq. (17) by the filter 

function G(x' — x) and integrating over x' space. The final result after some algebraic 

manipulation is 

dFL{tl>,xjt)  | d[(Ui(x,t)\rp)eFL(iP,x;t)] 
dt dx{ 

d 

L\^fl^^) 

dxßQ 
(18) 

The unclosed nature of SGS convection and mixing is indicated by the conditional filtered 

values in Eq. (18). The convection term is decomposed via 

(uiWtFL = (Ui)LFL + [(ui\tl>)t - (Ui)L)FL. (19) 

The first term on the r.h.s. of Eq. (18) is decomposed as 

d 
pdxi \     dxi I     i 

d 
PD *\- 

d2 

dxi \     dxi 11    dtpadipß 
„D^W) m dxi dxi 

(20) 



Substitutions of Eqs. (19) and (20) in Eq. (18) yield: 

dFL     d(Ui)LFL 

dt dxi 
JL( DK\      Q2 

dxi \     dxi 11    dipadißß pD^\A Hit dxi dxi 

ö[(tt,-|^>/-(tt.-)L]FL        d[Sa(fß)FL] 
dxi d4>a 

(21) 

This is an exact transport equation for the FMDF. The last term on the right hand-side 

of this equation is due to chemical reaction and is in closed form. The first term on the 

right-hand side represents the effects of molecular diffusion of the FMDF in physical space 

and is approximated as: 

_d_/ Dd£\  __d_ 
dxi \     dxi Ie     dxi (P)I(D1 

d{FL/{p)t) 
dxi 

_d_ 
dxi (p)i(Dl ' dxi 

(22) 

where {D)L = D((<P)L). In this approximation, the correlation between the diffusion coeffi- 

cients and the scalars is neglected and only the Favre filtered quantities are considered. This 

is made clear through examination of the first moment: 

PD 
d(j>a 

dxi 
_d_ 
dxi (p)i{Dh 

d{<t>a)i 
dxi 

as typically used. 

The second term on the left-hand side represents convection of the FMDF in physical space 

and is closed if (u,-)i is known. The second and the third terms on the right-hand side 

representing the effects of SGS mixing and convection, respectively. These terms are modeled 

in a manner consistent with conventional LES in non-reacting flows. The SGS convective 
flux is modeled via: 

[<«.■ W< " (^)L]FL = -{p)tDt®^M (23) 

The advantage of the decomposition (Eq. (19)) and the subsequent model (Eq. (23)) is that 

they yield results similar to that in conventional LES (Germano, 1992; Salvetti and Banerjee, 

1995). The first two Favre moments corresponding to Eqs. (19) and (23) are: 

{Ui<j)a)L = (Ui)L{4>Q)L + [{ui<f>a)L - (ui)L(<f>a)L], (24) 

(25) 

The term within brackets in Eq. (24) is the generalized scalar flux.   This makes Eq. (25) 
identical to Eq. (9). 



The closure adopted for the SGS mixing is based on the linear mean square estimation 

(LMSE) model (O'Brien, 1980; Dopazo and O'Brien, 1976), also known as the IEM (inter- 

action by exchange with the mean): (Borghi, 1988): 

d2 

dlpadlßß :"*M*» d 
dtpa 

[SlmWa-{<l>a)L)FL], (26) 

where fim(x,t) is the "frequency of mixing within the subgrid" which is not known a priori. 

This frequency is modeled as 0TO = CQ((D)L + A)/(AQ). The second moment of Eq. (26) 

provides an expression for the SGS scalar dissipation of species a: 

where the subscripts in parenthesis are excluded from the summation convention. 

(27) 

With the closures given by Eqs. (23) and (26) and the approximation in Eq. (22), the modeled 

FMDF transport equation is: 

dFL , d[(Ui)LFL] _   d 
dxi dt dxi (p)t((D)L + Dt) 

dW(p)t) 
dxi dlpa 

9 [nm(i>a-(<f>a)L)FL]- 9[SQFL] 

dlpa 

(28) 
This equation may be integrated to obtain transport equations for the SGS moments. The 

equation for the first subgrid Favre moment, (<f>a)L, and the generalized subgrid variance, 

°"a = (41)L ~ {4>O<)L
2
 are: 

d((pWah)    ,    d((p)t(ui)L(<l>a)L)  _     8 
dt dxi dxi 

(p)e((D)L + Dt) 
d{(j>a)i 

dxi + {p)e(Sa)L       (29) 

diiPtä) + d((p)e(Ui)Lal) 
dt dxi dxi 

(P)i{{D)L + Dt)
da3° 
dxi 

d{<f>(a))Ld(4>(a))L 
dxi        dxi 

+     2(p)t ({<f>(o,)S(a))L ~ {<P(a))L(S{a))L) ■ 

+   2(p)e((D)L+Dt) -2Slm(p)t<rl 

(30) 

These equations are identical to those which can be derived by filtering Eq. (3) directly, and 

adopting Eqs. (25) and (27) for the subgrid flux and the dissipation. In such direct moment 

closure formulation, however, the terms involving (Sa)L remain unclosed. 



Table 1: 25-Step Skeletal Mechanism 

REACTION 

If H + 02^OH + 0 
lb OH + 0-^H + 02 

2f 0 + H2-*OH + H 
2b OH + H-+0 + H2 

3f H2 + OH^ H20 + H 
3b H20 + H-+H2 + OH 
4f OH + OH-+0 + H20 
4b 0 + H2O^OH + OH 
5 H + 02 + Ma^ H02 + Ma 

6 H + H02 ->OH + OH 
7 H + H02 ^H2 + 02 

8 OH + H02 -* H20 + 02 

9f CO + OH -> C02 + H 
9b C02 + H->CO + OH 
lOf CH4{+M)b -► CH3 + H(+M)b 

10b CH3 + H{+M)b -* CH4{+M)b 

llf CH4 + H^ CH3 + H2 

lib CH3 + H2->CH4 + H 
12f CH4 + OH^CH3 + H20 
12b CH3 + H20 -> CH4 + OH 
13 CH3 + 0^ CH20 + H 
14 CH20 + H -> HCO + H2 

15 CH20 + OH -> HCO + H20 
16 HCO + H ^CO + H2 

17 HCO + M^CO + H + M 
18 CH3 + 02-+ CH30 + 0 
19 CH30 + H^ CH20 + H2 

20 CH30 + M -» CH20 + H + M 
21 H02 + H02 -+H202 + 02 

22f H202 + M ^OH + OH + M 
22b OH + OH + M-* H202 + M 
23f H202 + OH -* H20 + H02 

23b H20 + H02 -> H202 + OH 
24 OH + H + Ma -> H20 + Ma 

25 H + H + Ma ->H2 + Ma 

a Third body 
CO: 

b Lindemann form, 

efficie 
= 0.75, 

ncies: CH4 = 6.5, ^0 = 6.5, C02 = 
02 = 0.4, N2 = 0.4. All other species 
o/(l + */«H/[M]) where kfaU = 0.006 

8 

1.5,^2=1 
=1.0. 
3exp(-180 

1.0, 



3.3    Reaction Mechanisms 

The model for the methane oxidation is based on the 25-step skeletal mechanism of Smooke 

and Giovangigli (1991) (Table 1). This mechanism is described by 10 reversible and 15 irre- 

versible reactions. For lean to stoichiometric methane flames, this mechanism is a sufficiently 

good representation of the elementary kinetics. Due to the absence of the C2-chain, it may 

be inadequate for the accurate prediction of rich methane flames. Nevertheless, the primary 

reason for its use here is the relatively few number of species (16) involved in comparison to 

other more complex mechanisms. 

An alternate chemistry model based on the 4-step mechanism of Seshadri and Peters (1988) 

is also considered. This mechanism is reduced from a set of 22 elementary reactions via the 

steady state assumption for 0, OH, H02, CH3, CH20 and CHO and is given by 

CHi + 2H + H20 -> CO + AH2 (I) 

CO + H20 ^ C02 + H2 (II) 

2H + M -> H2 + M (III) 

02 + 3H2 ^ 2H20 + 2H (IV) 

where the reaction rates are given by 

m   =   kn[CH4][H] 

a»///   =   h[02][H][M] 

[M] denote the concentration of species M and the subscripts for k refer to the reactions 

given in Table 1 of Seshadri and Peters (1988). The equilibrium constants are 

K3   =   0.2657r-OO247exp(^^) 

Ku   =   3.828 x 10-5r°-8139exp (^P) (32) 

KIV   =   11.283T—exp(i^). 

The selection of the above 4-step mechanism is based on its ease of implementation and 

reduced number of computational operations.   More sophisticated 4-step mechanisms can 



also be considered, but the results are not expected to be significantly different. 

4    Numerical Simulation Procedure 

The complete numerical solution of the equations governing the resolved field is based on 

a hybrid procedure in which the hydrodynamic Favre-filtered equations (Eqs. (2)-(4)) are 

discretized by a finite difference method and the modeled FMDF transport equation (34) is 

simulated via a Lagrangian Monte Carlo procedure. The finite difference discretization pro- 

cedure is based on the "compact parameter" scheme (Carpenter, 1990) and is not described 

here. All the finite difference operations are performed on fixed and equally sized grid points. 

Thus, the filtered values of the hydrodynamic variables are determined on these points. The 

Monte Carlo procedure is by consideration of "notional particles" whose evolution can be 

computed from the known filtered field to yield a PDF transport equation which is identical to 

that of FMDF transport. This is the basis for the concept of equivalent systems (Pope, 1985; 

Pope, 1994). In this context, the notional particles evolve via a "stochastic process" to simu- 

late motion in physical space by convection and diffusion. The compositional values on each 

particles are changed due to mixing and reaction. These are represented by the stochastic 

differential equations (SDE) (Risken, 1989; Gardiner, 1990): 

dXi(t) = Di(X(t),t)dt + E(X(t),t)dWi(t),   d<f>*a(t) = Da{4>*,t)dt. (33) 

where X{ is the Lagrangian position of the particles, D and E are known as the "drift" 

and "diffusion" coefficients, and W; denotes the Wiener-Levy process (Karlin and Taylor, 

1981). <f)*a denotes the scalar value of the particle with the Lagrangian position vector X{. A 

comparison of the PDF (Fokker Planck) equation corresponding to SDEs (33) with Eq. (28) 

yields 

E = y/2{(D)L + Dt), 
Di = (ui)L+^f[iM{fx

L + Dt)\ Da = -nmfä-(4>e,)L)+§a(<P). 

(34) 

With this analogy, the FMDF is represented by an ensemble of Monte Carlo particles, each 

with a set of scalars <^^(i) = <j>a(X.(n\t),t) and Lagrangian position vector X^. A splitting 

operation is employed in which the transports in physical and compositional domains are 

treated separately. The simplest means of simulating the spatial transport in Eq. (33) is via 

the Euler-Maruyamma approximation (Kloeden and Platen, 1995): 

Xln\tk+1) = Xin)(tk) + D\n)(tk)At + £?W(t*)(A01/adn)(<*) (35) 
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where DJn)(<*) = Di{X^{tk)), E^(tk) = E{X^(tk)) and £|n) is a Gaussian random variable 

with zero mean and unit variance. The compositional values are subject to change due to 

SGS mixing and chemical reaction and are implemented in a split form. This provides an 

analytical expression for the subgrid mixing. Subsequently, the influence of chemical reaction 

is determined by evaluating the fine grain reaction rates Sjf1' and modifying the composition 

of the elements. 

The transfer of information from the fixed finite difference point to the location of the Monte 

Carlo particles is conducted via interpolation. The Favre-filtered statistics are estimated by 

sampling over particles within a volume centered at the point of interest. Effectively, this 

finite volume constitutes an "ensemble domain" characterized by the length scale A# (not 

to be confused with AQ) in which the FMDF is discretely represented. The Monte Carlo 

particles are of non-equal weights to allow a small (or high) number of particles to be imposed 

in regions where a low (or high) degree of variability is expected. 

5    Results and Discussions 

The flow configuration consists of a stream of 20 % CH4 and 80 % N2 discharging from a 

planar jet of width d into a coflowing stream of 50 % 0% and 50 % A^. The temperatures of 

the fuel and oxidizer streams are maintained at 500 K and the Reynolds number based on the 

inner jet width and velocity is 7,000. The ratio of the jet velocity to that of the coflowing 

streams is 2. A double hyperbolic tangent function for the «-velocity and the mixture 

fraction (Z) is assigned at the inlet plane. Based on this Z distribution and the reacting field 

calculated from a laminar counterflow diffusion flame at a strain rate of 100/s, all the other 

scalar values are initialized at the inlet. The flow is forced by a low amplitude perturbation 

at the inlet to promote the formation of large scale structures. The characteristic boundary 

conditions of Poinsot and Lele (1992) are imposed at the inlet, free-slip boundary conditions 

are imposed at the cross stream boundaries, and the pressure boundary condition of Rudy 

and Strikwerda (1980) is imposed at the outflow. 

The computational domain covers the region 0 < x < lOd and — 2.5c? < y < 2.5c?. All 

the simulations are conducted with equal-spaced square grids, i.e., Sx = Sy = A. LES is 

conducted with a resolution of 201 x 101 grid points and DNS is conducted on 801 x 401 

points. In LES, the top-hat filter function (Aldama, 1990) of the form 

G(x'-x) = f[G(x'i-xi) 
i=i 
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is used in which AQ = 2A. The size of the ensemble domain for evaluation of the Favre- 

filtered quantities is A^ = 2A. The total number of Monte Carlo particles in LES is 226125. 

The Monte-Carlo particles are initially distributed within —1.25c? < y < 1.25c?. Based on 

the spatial location of the particles, the magnitudes of the scalars are interpolated from 

the laminar counterflow diffusion flame solution. With the prescription of the filtered fluid 

density, the particles weights are assigned to yield the proper mass flux across the boundary. 

The particles are introduced at the inlet at a rate corresponding to the local particle number 

density and the fluid velocity (with satisfaction of the continuity equation). The reference 

velocity Hi in the MKEV model is set to zero in the cross stream direction and to the average 

of the high and low speed streams in the streamwise direction. The ratio of the filter size at 

the secondary level to that at the grid level is AQ'/AG = 3. 

The magnitudes of the molecular parameters are the same as those in typically suggested 

for methane-air flame with Pr = 0.75, Le = 1 and cPa is specified through polynomial fits 

as functions of the temperature as suggested by the Chemkin thermodynamic database(Kee 

et a/., 1994). The model parameters in LES are C/ = 0.01, CR = 0.021, Sct = 0.7 and 

Co = 10. No attempt is made to evaluate these constant in a "dynamic manner." All the 

LES results are compared with those of DNS. For a consistent comparison, the DNS data 

are filtered and then downsampled to the same resolution as that used in the LES. Typical 

DNS requires about 70 hours and typical LES requires about 17 hours on a CRAY-C90 

for the 4-step reduced chemistry mechanism. The comparison are made between both the 

instantaneous and time (Reynolds) averaged data. For constructing of the timed averaged 

statistics a total of 20000 sample data are considered. These statistics are identified by an 

overbar in the results presented below. 

First for the purposes of flow visualization and a qualitative comparison between the LES and 

DNS results, the contour plots of the temperature and reacting species field are considered. 

Figure 1 shows the instantaneous contours of (T)L in the 4-step mechanism and Fig. 2 shows 

the contours of (YH)L in the 25-step mechanism. The results indicate that the instantaneous 

snapshot from LES are similar to that from the DNS for both chemistry mechanisms. A 

point to be emphasized here is that when the contribution of the SGS scalar fluctuations are 

neglected, the calculations become unstable. The qualitative comparisons for all the other 

species mass fractions and the temperature is the same as that presented in Figs. 1 and 2. 

A more quantitative comparison is made in Figs. 3-6 in which the cross stream variations 

of the Reynolds averaged values of the Favre filtered temperature and mass fractions of 

H20, CO and H are shown at two streamwise locations for the 4-step and the 25-step mech- 
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anisms. These results (and all the other results not shown) indicate a very good agreement 

between LES and DNS for the temperature, and the mass fractions of the major and the 

minor species. 

For further comparisons, the instantaneous "scatter" plots as obtained by LES and DNS 

are presented in Figs. 7-10. In LES, the data points correspond to the stochastic Monte 

Carlo particles and in DNS they correspond to the values at the fine grid points. Also 

shown in the figure are the laminar counterflow results at low and high values of the strain 

rate. The finite-rate chemistry effects as portrayed by the range of the scatter are captured 

equivalently by DNS and LES. For the most part, the DNS and LES results for the CO and 

the temperature are bounded by the corresponding laminar flame values at high and low 

strain rates. For the H and OH radicals, both DNS and LES values are significantly higher 

than those of the laminar flames for both chemistry mechanisms. Such a "superflamelet" 

behavior is observed in the measurements of radical species in turbulent CH±, H2/CO2 

and CH3OH flames (Masri et al, 1992; Masri et al, 1996). The experimental results also 

show superflamelet for CO. PDF calculations in the context of RANS (Chen et al, 1989; 

Sion and Chen, 1992) indicate superflamelet behavior for OH but not for CO. The reasons 

cited for the discrepancy in CO are the possible uncertainties in the measurement of CO 

and also the differential diffusion effects in the turbulent flames (Sion and Chen, 1992). In 

the present computations, it is noted that CO does not exhibit a superflamelet behavior; 

however, both H and OH overshoot the flamelet results and the degree of overshoot is 

significantly higher for H. It should be noted that the laminar flamelet calculations include 

differential diffusion, but the DNS and LES do not. In the flamelet calculations, the Lewis 

number for H, OH and CO are 0.3, 0.73 and 1.1 respectively. Therefore the assumption of 

unity Lewis number in the DNS and LES should result in the highest deviation from the 

flamelet results for H and the least deviation for CO. This is consistent with the results of 

present calculations. 

Another feature of Figs. 7-10 is the widely different scatter in the results via the 4-step 

and 25-step mechanisms. The reduced mechanism is derived and validated for fuel and 

oxidizer stream temperatures of 300 K. The extent of accuracy of this mechanism at higher 

temperatures is not determined; therefore, a comparison between the 4-step and the 25-step 
mechanisms should be dealt with caution. 

13 



6    Summary and Conclusions 

It is demonstrated that the filtered mass density function (FMDF) provides a reliable means 

of conducting LES of turbulent reacting flows. The primary point of this work is to show that 

LES of methane combustion is possible and the results are very close to those of DNS but at a 

fraction of the computational cost. Despite this demonstrated capability of the LES/FMDF, 

there are several issues which require future investigations. These are summarized here: 

• Further assessment of LES is required by comparison with laboratory data. For such 

comparisons the simulations must be 3D and may require the use of more sophisticated 

chemistry models. However, DNS of most laboratory flames are not currently possible. 

• Similar to PDF methods, the closure problems associated with the FDF are the cor- 

relations involving the velocity field (such as SGS stresses and mass fluxes). This may 

be overcome by considering the joint velocity-scalar FDF. 

• The computational requirement for LES/FDF is less than that for DNS. While LES 

is not claimed to replace DNS, it provides a very attractive alternative for cases in 

which DNS is not possible. In this regard the computational overhead associated with 

LES/FDF in comparison to those of "conventional" LES can be tolerated. However, 

it is important to find ways of reducing the computational costs to make the scheme 

attractive for practical simulations. This is particularly important for 3D simulations. 

• The submodels considered here for the closure of the FDF transport equations are the 

same as those used in LES of non-reacting flow and/or the PDF methods. Thus the 

non-universality of the empirical constant appearing in the closure are understandable 

(and were expected). In this regard, the methodology will benefit from ongoing and 

future improvements in PDF schemes from both modeling and computational stand- 

points (Pope, 1994). 

• The "superflamelet" behavior for the radical species may be attributed to the unity 

Lewis number assumption in the calculations. 

• Some of the differences between the results obtained by the 4-step and the 25-step 

mechanisms may be attributed to the high values of the temperature at the fuel and 

oxidizer streams. 
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Structure of homogeneous nonhelical magnetohydrodynamic turbulence 
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Results   are   presented   for   three-dimensional   direct   numerical   simulations   of   nonhelical 

ff Re -30 Se presence of Ihe magnetic field has the effect of decreasing the kmetic energy of the 
ow wh le s?muEly increasing the Taylor microscale Reyno.ds number due to enlarges 

Thehydrodynamic length scales. For shear flows  both the ?~^%Z£££% 
become increasingly anisotropic with increasing initial magnetic field strength. The kinetic energy 

r,how^ relative increase in high wave-number energy in the presence of a magnet.c field. 
Sa   2 fi ^   is fo  S^ay «n intermittent behavior, with peak values of the flatness near 
^S^jSi number. The magnetic field of both flows is organized m the form of   flux 
ZTtdZ^c "sheets." These regions of large magnetic field strength show a smal 

cLionwithmoderate vorticity region, while the electric oirrent ™J^^Z& 
large amplitude strain regions of the turbulence. Some of the charactensücs of^smaJl sealMHD 
turbulence are explained via the "structural" descnption of turbulence.    © 1996 American 

Institute of Physics. [S1070-664X(96)01009-9] 

I. INTRODUCTION 

Fifty years of widespread scientific investigation have 
passed since Kolmoaorov's original theory of incompress- 
ible hydrodynamic (HD) turbulence.1 Yet, due to its chaotic 
nature HD turbulence remains among the most complex un- 
solved problems in classical physics. Even more challenging 
is the problem of turbulence in electrically conducting fluids 
obeying the masnetohydrodynamic (MHD) equations.- Non- 
linear coupling between the velocity and the magnetic induc- 
tion fields produces many additional phenomena. In particu- 
lar, production due to stretching and folding of field lines can 
lead to arowth or sustainment of the magnetic field (the 
"MHD dynamo" effect34). The production effect is a direct 
result of Maxwell's equations, i.e.. an electromotive force is 
produced through Ohm's law when a conductor moves 
across magnetic field lines. Unbounded magnetic growth is 
prevented by the action of the Lorentz force on the velocity 
field resulting in a so-called saturated field condition. 

Some of the earliest theoretical considerations of the dy- 
namo problem suggest that the magnetic Reynolds number is 
one of the primary parameters in determining the strength (or 
lack) of field amplification and sustainment.3 Analytic stud- 
ies of this phenomenon are performed by modeling the non- 
linear terms.56 and by multiple scale analyses.7" These stud- 
ies emphasize the importance of the magnetic helicity m 
amplifvins the dynamo phenomenon. Other early studies en- 
list second order closure techniques to quantify this effect, 
and find that a magnetic steady state is achieved above a 
critical masnetic Reynolds number of order 30.    The dy- 

"Wsent address: Jet Propulsion Laboratory. California Institute of Technol- 
ogy. Pasadena. California 91109-8099. 

namo effect is difficult to observe in the laboratory due to the 
small values of the magnetic Prandtl number of available 
conducting fluids; see, e.g., Roberts and Hensen. However, 
direct numerical simulation (DNS) offers a viable alternative 
to conventional laboratory experiments. Although current su- 
percomputer technology limits DNS to moderate values of 
flow parameters (e.g.. the Reynolds number) many important 
features    of   turbulence    may   be   captured   by    such 

simulations.121- „„_. 
One of the first three-dimensional (3-D) DNS <rt MHD 

turbulence is conducted by Pouquet and Patterson.    They 
propose that larae scale kinetic energy is transferred to high 
wave numbers through the traditional cascade process, where 
it is distributed between the velocity and the magnetic fields 
by Alfven waves. In the presence of magnetic helicity the 
energy then follows an inverse cascade process from the 
small scales of the magnetic field to the large scales. Due to 
the turbulence decay, no validation of field sustainment is 
aiven: however, rapid field growth during early times of the 
simulation is observed. One of the first genuine nonlinear 
simulated dynamo effects is a convection driven dynamo in a 
spherical shell.15 This configuration is chosen to study some 
issues of importance to the solar dynamo. Meneguzzi, Frisch, 
and Pouquet" studv stationary isotropic turbulence and ob- 
serve a small scale dynamo effect in the absence of helicity 
above a critical magnetic Reynolds number (of order 40). 
Several numerical simulations of 3-D MHD turbulence con- 
firm that the magnetic Reynolds number is the primary pa- 
rameter influencing the dynamo effect. 

The scope of research pertaining to turbulence modifica- 
tion, intermittency. and coherent structures in MHD turbu- 
lence is somewhat limited. Most previous numerical simula- 
tions are confined to two-dimensional (2-D) flows. Biskamp, 
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Welter, and Walter18 employ high resolution simulations of 
2-D isotropic turbulence to address issues related to intermit- 
tency. By adapting the ß model19 they conclude that while 
second order correlation functions are relatively unaffected 
by intermittency, the corrections necessary for fourth- and 
higher-order coefficients become significant. In addition, 
they observe departures from lognormality for small values 
of the local energy dissipation, a result in agreement with 
HD studies (e.g., Miller20). Pouquet, Sulem, and 
Meneguzzi,21 incorporating both 2-D and 3-D simulations, 
illustrate how the correlations between the velocity and the 
magnetic fields can damp the energy exchange and reduce 
the amplitude and the intermittency of the derivative fields. 
Orszag and Tang" find that the magnetic field is more inter- 
mittent than the velocity field in 2-D MHD turbulence. This 
observation is verified in 3-D flows for the thermal convec- 
tion problem,17 and also in isotropic turbulence.16 Intermit- 
tent magnetic field regions organize into magnetic "flux 
tube" structures similar to the vorticity tubes of hydrody- 
namic turbulence. These magnetic structures are observed in 
3-D MHD simulations of isotropic turbulence,16 high sym- 
metry turbulence employing hyperviscosity and hypermag- 
netic diffusivity,23 and in compressible stratified convection 
above a stable overshoot layer.24,25 

Although a zero mean magnetic field can be sustained 
through dynamo action, most MHD flows in nature occur 
with a mean field. The mean field is typically "slowly" 
varying with respect to the dynamic fluctuations. Thus, in 
some cases, it is possible to consider the mean field to be 
locally steady and uniform. The most obvious effect of a 
mean magnetic field is to create an anisotropic turbulence 
state for both the velocity and the magnetic fields. The Lor- 
entz force has zero component parallel to the induction field, 
and anisotropic states occur due to less restriction of fluid 
motions parallel to the mean. Shebalin, Matthaeus, and 
Montgomery26 and Oughton. Priest, and Matthaeus27 inves- 
tigate the influence of a mean magnetic field in both 2-D and 
3-D homogeneous flow simulations. Their results indicate 
that an externally applied dc field preferentially transfers en- 
ergy to modes with wave vectors perpendicular to the mean 
field and also inhibits the development of turbulence. These 
observations indicate that traditional "return to isotropy" 
theories may not be applicable to the small scales of natu- 
rally occurring MHD turbulence, and that increased under- 
standing of anisotropic MHD turbulence is warranted. 

In this article, results are presented of DNS of 3-D ho- 
mogeneous magnetohydrodynamic turbulence for both sta- 
tionary isotropic and homogeneous shear flow configura- 
tions. For simplicity, only incompressible nonhelical velocity 
fields and zero mean magnetic fields with magnetic Prandtl 
number equal to unity are considered. However, many im- 
portant features of MHD turbulence are captured, including 
small scale dynamo action, equipartition of energies in the 
small scales, and effects of the Lorentz force on the velocity 
field. All MHD simulations are repeated for the case of HD 
turbulence. The homogeneous shear flow is a relatively 
simple configuration, and is convenient for the study of an- 
isotropic MHD turbulence in the absence of a mean magnetic 
field. The specific objectives of the study are to (1) assess 

modifications to the turbulence due to the magnetic field, (2) 
quantify the dynamo effect in both isotropic and homoge- 
neous shear flows, and (3) investigate some issues of impor- 
tance in relation to coherency and intermittency in MHD 
turbulence. 

II. FORMULATION AND PARAMETRIZATION 

The incompressible form of the MHD equations are em- 
ployed to describe the turbulent transport in both isotropic 
and homogeneous shear "box" flows. The nondimensional 
MHD equations for the fluctuation fields (zero mean) are 
considered in conservative form: 

dUj 

~dx; 
= 0, 

db 

lx 
l = 0. (1) 

du:      <9 dp'       d 1 d-U; 

dt ÖX: 

db: d 

dXj     dX: Re0 dXjdXj +/,-. 

^W+Re0, 

1      d2bj 

dXjdXj 

(2) 

(3) 

Here M, (/' = 1,2,3) denotes the components of the velocity 
vector u (boldface indicates a vector), bt represents the com- 
ponents of the magnetic induction vector b, and p' denotes 
the total pressure. The transport variables are normalized 
with respect to the reference length (L0), velocity (U0), in- 
duction (BQ), and density (p0) scales. The nondimensional 
diffusivity is the inverse of the "box Reynolds number," 
Re0= U0LQIV, where v is the kinematic viscosity. The box 
magnetic Reynolds number is defined as 
Re0m=[/0L0/vm=Prm Re0, where the ratio of kinetic to 
magnetic diffusivities is denoted by the magnetic Prandtl 
number, Prm = iVi>m. In Eq. (2), /,• is a forcing term to be 
discussed below. 

Simulations are conducted of both stationary isotropic 
and homogeneous shear turbulence within the domain 
0*£*,=£L=27r (x:=x, x2=y, x3 = z). A Fourier pseudospec- 
tral method with triply periodic boundary conditions is em- 
ployed for the spatial discretization of all transport variables. 
All calculations are performed in Fourier space with the ex- 
ception of the nonlinear terms, and time advancement is per- 
formed using an explicit second order accurate Adams- 
Bashforth technique. The computational routine is capable of 
simulating both stationary or decaying isotropic, and homo- 
geneous shear flows for either the HD (b=0) or the MHD 
equations. The computational requirement for the solution of 
the Navier-Stokes equations (on a Cray-C90 supercomputer) 
is approximately 0.18, 0.60, 1.25, and 4.80 s per iteration for 
32", 483, 643, and 963 collocation points, respectively. For 
the full MHD equations, 0.40, 1.35, 3.2, and 10.8 s per itera- 
tion are required for the same respective resolution. 

To emulate the stationary isotropic turbulence field, a 
low wave-number forcing scheme is imposed. This is imple- 
mented by adding energy to the large scales of the turbulence 
at a statistically constant rate, whereby an energy cascade is 
developed for sufficiently large Reynolds numbers. The en- 
ergy is then dissipated at high wave numbers at the same rate 
and a statistically stationary state is achieved. Provided that 
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there is sufficient separation between the low and high wave 
numbers, the small scale turbulence is considered to be un- 
affected by the artificial forcing. The forcing algorithm em- 
ployed is based on a scheme developed by Eswaran and 
Pope28 and is described in detail by Miller.20 

In homogeneous shear turbulence simulation, a linear 
mean velocity profile is added to the fluctuating velocity. 
The primary effect of the mean shear is to provide a natural 
(albeit idealistic) homogeneous forcing. In contrast to the 
isotropic case, no stationary state is achieved and the Rey- 
nolds number grows until the turbulence structures outgrow 
the box size. The magnitude of the imposed shear is given 
with the amplitude of the mean gradient, in this case 
Y=dU]/dx2=const (where £/, denotes the mean component 
of the velocity in the i = l direction). In order to use the 
Fourier spectral method, the governing equations are solved 
for their fluctuating quantities on a grid which deforms with 
the mean flow. The transformation is an extension of the 
procedure employed by Rogallo29 for HD turbulence and de- 
tails of its implementation of MHD flows are provided by 
Miller.20 The mean shear imposed by the grid transforma- 
tions skews the grid in time. In order to allow the simulation 
to progress for a substantial time, it is necessary to remesh 
the grid at regular intervals. Aliasing errors introduced by the 
remesh process are removed via a truncation of the variables 
in Fourier space outside of the spherical wave-number shell 
of magnitude V2JV73, where N is the number of collocation 
points in any direction. This results in a slight loss of kinetic 
and magnetic energy; however, if the simulation is well re- 
solved this truncation is considered to be negligible. The 
simulations are performed until the length scales of the tur- 
bulence become too large to be accurately resolved, at which 
time the simulation is terminated. 

Both the velocity and magnetic fields are initialized as 
random Gaussian, isotropic, and solenoidal fields. Non- 
mirror-symmetric b fields with arbitrary magnetic helicities 
are generated by the method described in Pouquet and 
Patterson.14 The relative magnitude of the helicity is speci- 
fied through the correlation coefficient of the b field and its 
vector potential a (b=Vxa): This coefficient is defined as 

C(a.b) = (a^,)/v(ajöj)(M;)-wheretheangularbrackets 

(()) indicate an ensemble average over all grid points. The 
initial energy for the velocity is £[, = (M,-M,-) = 3 in all cases. 
The forcing amplitude iAF= 1.25). forcing radius {KF=2VX), 
and the magnitude of the mean velocity gradient (K = 2) are 
kept fixed for the respective flows. In the isotropic simula- 
tions, an initial kinetic energy spectrum having E'v(k) 
~ k~5,i (the prime indicates the energy spectra as a function 
of the wave-number magnitude) is imposed. This choice is 
somewhat arbitrary since the asymptotic statistical state of 
the turbulence is independent of the initial conditions, and is 
primarily dependent on the forcing parameters and the box 
Reynolds number. For the shear (SHR) flow simulation 
cases, the velocity field and all of the magnetic fields are 
specified with a spectrum ~*4exp[-2(*/A\):]. where the 
parameter ks specifies the wave-number location for the 
maximum amplitude of the energy spectrum. The value 
k,=l is chosen for the initial velocity spectrum in all shear 
simulations, whereas k, is varied for the magnetic fields in 
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TABLE I. Conditions for the ISO simulations. All simulations are repeated 

with £m=0. 

Re„ E»IEV k, C(a.b) .V A/(XI0~' 'final V Vk max 

[RunO 7.00 0.01 1 0 96 2.5 45 1.80 1.65 

IRunl 150 0.01 1 0 64 3.75 56 1.51 1.28 

IRun2 150 1.00 7 0 64 3.75 56 1.50 1.24 

IRun3 150 0.01 2 0 64 3.75 56 1.51 1.29 

IRun4 150 0.01 7 1 64 3.75 56 1.49 1.22 

IRun5 110 0.01 7 0 64 3.75 70 1.41 1.48 

IRun6 60 0.01 7 0 48 5.0 70 1.33 1.43 

IRun7 40 0.01 7 0 48 5.0 120 1.47 1.84 

IRung 20 0.1 7 0 32 7.5 150 1.52 1.98 

IRun9 10 0.1 7 0 32 7.5 150 2.07 3.33 

order to study its influence. Detailed studies of the effects of 
both the initial conditions and the rate of shear have been 
conducted by Rogallo29 for HD flows. 

A listing of all the simulation parameters are provided in 
Table I for the isotropic (ISO) flow simulations and in Table 
II for the SHR flow simulations. The labels in the first col- 
umn of each table are preceded by "I" and "S" for the ISO 
and the SHR flow simulations, respectively. The information 
listed for each simulation includes the box Reynolds number 
(Re0), the ratio of initial magnetic and kinetic energies 
(EJEV, where £m = (fc,fc,)), the wave number of maximal 
initial magnetic energy (*,), the magnetic helicity, the grid 
resolution, the time step, the duration of simulation, the eddy 
turnover time (rf), and the resolution parameter (77Ä:max). The 
eddy turnover time is defined as the ratio of the integral 
length scale to a characteristic velocity: 

A = 
Sir E'v(k) 

dk. (4) 

where the subscript rms denotes the root mean square (ums is 
calculated as the average of the rms of all three velocity 
components) and A is the integral length scale. The resolu- 
tion parameter is the product of the Kolmogorov length scale 
[^(^/(e))1'4, e=2vsijsij, where the symmetric rate of 
strain tensor is su = (»,-., + ujA)l2 and the derivative notation 
is «,- -=<9K,-/<?.*,•] and the maximum resolved wave number 
Umax). The box Reynolds number, the grid resolution, and 
the time step are held constant for the SHR flow simulations 
and take the values Re0=200. /V = 96, and Af = 2.5X10 \ 
For all cases the magnetic Prandtl number is Prm=l, in 
which case 77 represents the smallest length scale of both the 
turbulence and the magnetic field. The values given for both 
Te and r/kmax correspond to time averaged values for the 

TABLE   II.   Conditions   for  the   SHR   simulations.   Re,,= 200.  N-96. 
A/=2.5X10-'. 

E»IEV *, Oa.b) 'final Te ik max 

SRunO 5 1.05 1.16 

SRunl 0.01 7 0 6 1.18 1.26 

SRun2 0.1 7 0 6  . 1.48 1.45 

SRun3 1.00 7 0 6 2.06 1.74 

SRun4 0.01 z 0 6 1.39 1.34 

SRun5 0.01 -t 1 6 1.17 1.25 

Miller et al. 
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FIG. 1. Temporal evolution of the relative component energies for the ho- 
mogeneous shear simulation SRunl: (a) kinetic energy, (b) magnetic energy. 

stationary ISO runs in the presence of the magnetic field. For 
the SHR simulations, these parameters are given at the time 
when the relative energy of the H, velocity component 
reaches its maximal value (discussed below). All of the ISO 
MHD cases corresponding to different Re0 values are re- 
peated with purely HD flow, and SRunO represents a purely 
HD case having the same parameters as cases SRunl - 
SRun5. 

III. RESULTS 

In each of the ISO simulations, the equations governing 
the hydrodynamics are first integrated forward in time for a 
minimum of five eddy turnover times to reach a stationary 
state. At this time, the magnetic field is added to begin the 
simulation or, in the HD cases, the integration is continued 
for more than 10 eddy turnover times to calculate time aver- 
aged statistics. The MHD simulations are conducted for a 
sufficient duration to determine the existence of stationary 
magnetic states. Those simulations which attain stationary 
states are continued for more than 10 additional eddy turn- 
over times so that time averaging can be performed on the 
data. Time is normalized by the HD eddy turnover time 
(t/re) for the ISO flow simulations'. 

For the SHR flow cases, the mean shear is directly ap- 
plied to the initial isotropic fields. No stationary states exist 
in this flow; however, energy component ratios (relative en- 
ergies) are known to attain approximate "asymptotic" val- 
ues as indicated in previous HD simulations (e.g., Rogers 
and Moin30). This is observed to be the case in the MHD 
flow also. Figure 1 portrays an example of this effect for case 

SRunl (time is normalized via the mean shear magnitude for 
the SHR flow simulations). The relative energy of a vector 
component is defined as the ratio of the variance of that 
particular component relative to the total vector energy, i.e.. 
(uj)/Et, and (bj)/E,„. The time at which the ratio {u])IEu 

reaches a maximum value is denoted as the "peak time." 
Note that the relative energies of all components of both the 
u and b fields are initially about \, due to the initial isotropic 
conditions. 

Comprehensive resolution studies have been conducted 
to assess the effects of grid resolution on both the time av- 
eraged ISO simulation statistics and on the temporal evolu- 
tion for the SHR flows. Two of the low Reynolds number 
cases, IRun6 and IRun8. were repeated with 163. 243, 323, 
483, and 643 grid points and case IRunl was repeated with 
323, 483, and 963 grid points. In addition, the SHR flow reso- 
lution was investigated by repeating case SRunl with 48"\ 
643, and 1283 grid points. In all cases, the magnetic field 
moments are more sensitive to resolution than the equivalent 
statistics of either the velocity field or its gradients. An 
evaluation of statistical moments as large as fourth order 
reveals that the parameter 7jkmax is the primary parameter for 
the resolution consideration. Results from the larger Rey- 
nolds number ISO and SHR cases indicate that adequate 
resolution is obtained for T)kma*°>\2 and larger. This is in 
agreement with previous findings in the case of HD station- 
ary turbulence.28 However, for smaller ISO grid sizes (IRun6 
and IRun8) a larger resolution is necessary to yield accurate 
statistics for the magnetic field; #max=» 1.4 and larger. This 
is a result of the relatively small separation between the 
smallest scales of the turbulence and the forcing scales. All 
of the results indicate that the simulations listed in the tables 
are sufficiently resolved, and the results presented hereinafter 
are independent of the grid size. 

A. Effects of initial conditions 

For both the ISO and SHR simulations, a variety of ini- 
tial conditions are considered to study the effects of the ini- 
tial ratio of the magnetic and hydrodynamic energies, the 
initial length scale of the magnetic field, and the initial mag- 
netic helicity on flow evolutions. This is particularly impor- 
tant in the ISO simulations, as it is important to establish that 
stationary states are independent of initial conditions before 
making quantitative comparisons. The SHR flow does not 
relax to a steady state condition; therefore, it is expected that 
the effects of initial conditions will prevail throughout the 
simulated times considered here. 

Simulations IRunl through IRun4 are considered to es- 
tablish the independence of ISO steady state results to initial 
conditions. Figure 2 presents the time evolution of both the 
energy ratio (EJEL.) and the magnetic enstrophy 
(Hm = {jjjj), where j = Vxb is the electric current density) 
for a duration of approximately 37 eddy turnover times. It 
appears that both quantities asymptotically approach the 
steady state condition. Analysis of other quantities (not 
shown here) confirms that this is the case. However, the early 
temporal evolutions are highly dependent on the initial b 
fields. Figure 2 is also useful in assessing :he effects of the 
initial conditions at early times. Simulations IRunl   and 
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FIG. 2. Effect of initial conditions on the stationary isotropic simulations as 
shown by the temporal evolutions of (a) the energy ratio and (b) the mag- 
netic enstrophy. 

IRun3 contain initially relatively small scale (ks=7) and 
large scale (ks=2) magnetic fields, respectively, and other- 
wise have identical parameters [EJEV =0.01 and C(a,b) 
=0]. The early time behavior of both the energy ratio and the 
magnetic enstrophy exhibits substantially larger initial 
growth rates for the large scale b field (IRun3). The expected 
value of the magnetic dissipation is the primary parameter 
affecting the early time evolutions of these fields. The rela- 
tively large energy at high wave numbers in simulation 
IRunl results in a mean dissipation which is more than an 
order of magnitude larger than that of IRun3 with an initially 
large scale field (the respective values are 
(em)=vm(^,v/7,J) = 6.81Xl0-3and6.38X10-4). 

The early time effects of initial magnetic helicity are 
also illustrated in Fig. 2 by the data of simulations IRunl and 
IRun4. The temporal evolutions of both the energy ratio and 
the magnetic helicity are nearly independent of the initial 
magnetic helicity. This is due to the absence of any mecha- 
nism by which the magnetic helicity can be supported. The 
correlation between the b field and its potential in simulation 
IRun4 decreases to less than 10% of its initial value in less 
than two eddy turnover times. Note that case IRun2 with an 
initial unity energy ratio is observed to decay rapidly towards 
the same approximate stationary state as cases IRunl. IRun3. 
and IRun4. The long time fields are thus considered to be 
independent of initial conditions and. of these runs, only the 
time averaged data of simulation IRunl are considered in the 
remainder of the article. 

The above discussion of the early time effects of the 

magnetic field initial conditions is also applicable to the SHR 
configuration. However, in these flows the hydrodynamic 
field also experiences rapid modifications at early times due 
to the action of the applied mean velocity gradient, and no 
stationary state exists. Due to the action of the Lorentz force, 
additional initial condition effects with regard to turbulence 
modification are expected. As such, the effects of initial con- 
ditions are felt throughout the simulations. 

B. Integral flow statistics 

For the ISO cases, the statistical analyses of the data are 
most often conducted in terms of both spatial and temporal 
averaging (when stationary states exist). Statistics gathered 
from several simulations can be used to study the effects of 
the flow parameters. There are a number of choices by which 
to parametrize the problem, including the box size, the inte- 
gral length scale, and the Taylor microscale Reynolds num- 
bers (Rex), etc. Analysis of the data indicates that Rex yields 
the most insight into the problem. For SHR flows Rex is 
based on the~ Taylor microscale (X,) in the xx direction 
(K2

a={u2
a)/((dujdxa)2)) (no summation over repeated 

Greek indices hereinafter) and the turbulent velocity scale 
(y[E~). For ISO flows the Reynolds number is defined as the 
average over all three directions x£ with corresponding 
length and velocity scales Xf and V("|)> respectively. Re- 
sults for the SHR runs are presented as both temporal evo- 
lutions and occasionally in the form of tabular data at the 
peak times of the simulations. 

Leorat, Pouquet, and Frisch10 find a bifurcation to a 
magnetic state in their eddy damped quasinormal Markovian 
(EDQNM) approximation study of nonhelical MHD turbu- 
lence above a critical magnetic Reynolds number of a few 
tens. Figure 3 presents both the Reynolds number (in ISO) 
and temporal (in SHR) dependence of the kinetic, the mag- 
netic and the total (E,= E, + Em) energies. The data in both 
figures are normalized by the kinetic energy of the purely 
HD flow (SRunO for the SHR flow). The ISO results are in 
good qualitative agreement with the EDQNM predictions10 

and show a transition to "magnetic states" occurring at a 
critical Reynolds number of ReXf~30. Above this critical 
value, sustained b fields are observed, and both the kinetic 
and total energies decrease with the Reynolds number. The 
transition is more gradual in the present results than that 
predicted by the EDQNM approximation. The SHR data cor- 
respond to case SRun4 having a large scale initial b field 
with Wc energy ratio. In this simulation, the initial seed mag- 
netic field is rapidly amplified in the early stages of devel- 
opment and then gradually decreases. Note that no conclu- 
sions can be made from this figure in regard to a sustained 
dynamo effect for the SHR simulation. This is because the 
energies are normalized by the kinetic energy of the HD 
simulation. However, these results do illustrate several ef- 
fects of the b field. In both the ISO and the SHR cases the 
presence of the magnetic field acts to damp the turbulence 
energy (also observed in all the other SHR simulations). In 
addition, the normalized kinetic energy for the SHR simula- 
tion reaches a nearly constant value after KA«2. 

Time averaged values of the steady state ISO energy 
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FIG. 3. Development of the kinetic, magnetic, and total energies as normal- 
ized by the purely hydrodynamic kinetic energy £,. (HD), (a) ISO simula- 
tion time averaged results as a function of the Reynolds number for cases 
IRunO. 1. 5. 6. 7. 8. and 9 (right to left) and (b) temporal evolution of SHR 
simulation, case SRun4. 

ratios in MHD turbulence are listed in Table III as a function 
of various Reynolds numbers (the normalization is with the 
MHD £„). The ratios for the higher Reynolds number cases 
(£„/£„ ~0.1 for ReA=100) are in accord with the results of 
Meneguzzi, Frisch, and Pouquet.16 When presented graphi- 
cally (not shown), the energy ratios portray a nearly linear 
dependence on the Taylor microscale Reynolds number for 
the range of parameters considered. A very weak magnetic 
field is sustained for case IRun7 with Rex=30.3 (for more 
than 100 HD eddy turnover times), while the two simulations 
with lower Reynolds numbers do not support a magnetic 
field. The magnetic energy in simulation IRun8 was allowed 
to decay to a value of Em/EL~\0~25 and no evidence of a 
magnetic steady state was observed. Based on these observa- 
tions, the critical value of the Reynolds number for small 
scale dynamo action is concluded to be Rex_t.=30 (or 
ReA,c=55). 

TABLE III. Time averaged values for the ratio of magnetic to kinetic en- 
ergy for the ISO flow simulations. 

Re0 Re, '    ReA 
EJEC 

IRun9 10 9.66 13.8 

!Run8 20 18.4 31.2 

IRun7 40 30.3 55.6 2.0X10"4 

IRun6 60 41.2 79.9 2.3X10"- 

IRun5 110 55.0 118 6.5xl()-: 

IRunl 150 68.5 150 1.2X10"' 

IRunO 200 90.0 205 1.6X10"' 
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FIG. 4. Reynolds number dependence of the kinetic and the magnetic en- 
strophy for the ISO simulations IRunO. 1. 5. 6. .7. 8. and 9 (right to left). 

The transition to magnetic states is characterized by sev- 
eral changes in both the hydrodynamic and the electromag- 
netic structure of the flow field. In particular, the kinetic and 
magnetic enstrophies provide a measure of the respective 
rotational and electric current density energies of the velocity 
and the magnetic fields (the kinetic enstrophy is defined as 
Hv = (ü>jü)i). w is the vorticity vector). Figure 4 depicts these 
quantities as a function of Rex for the steady state values of 
the ISO simulations. This figure indicates a significant drop 
in Hv in the presence of a sustained dynamo effect. The HD 
data show a near linear rise in Hv over the range of Reynolds 
numbers simulated. However, the MHD flow shows an ap- 
parent plateau value of the kinetic enstrophy for Reynolds 
numbers above the critical value. As the ratio of the mag- 
netic to kinetic energy grows, the Lorentz force becomes 
increasingly significant to small scale flow dynamics. As will 
be shown later, this force tends to align perpendicular to the 
vorticity vector and acts to disperse high vorticity regions of 
the turbulence, hence decreasing the kinetic enstrophy. Fig- 
ure 4 also shows that the magnetic enstrophy increases 
steadily for Rex>Rex c and eventually becomes larger than 
Hv. This trend is observed in spite of the fact that the largest 
energy ratio observed in the ISO simulations is "only" 
about 15% (see Table III). The larger magnetic enstrophy in 
comparison to the kinetic enstrophy is due to a more inter- 
mittent behavior of the magnetic field in comparison to the 
velocity field. 

Significant insight into MHD small scale dynamics and 
intermittency is gained by the examination of the higher or- 
der statistics of the field variables and their derivatives. 
These statistics are important in characterizing the transition 
to magnetic states. The skewness and flatness of a zero mean 
random variable v( are defined as fiyivi) = {v])/{v))y- and 
/jL4(ve) = (vp/(v])2, respectively. In agreement with previ- 
ous HD and MHD studies,3132 the velocity field is found to 
be nearly Gaussian for all flow fields considered, while the 
statistics of both the velocity and magnetic fields and their 
longitudinal derivatives are observed to be symmetrically 
distributed about the mean (i.e.. zero skewness). The time 
averaged flatness values of the magnetic field are presented 
in Fig. 5 for the ISO simulations (presented as the average of 
the three coordinate components). Below the critical Rey- 
nolds number (ReXr=30) the dynamo effect is not present, 
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FIG. 5. Reynolds number dependence of the flatness factor for the magnetic 
field for the ISO simulations IRunO, 1, 5, 6, 7, 8, and 9 (right to left). 

but the magnetic field maintains an approximate "self- 
similar" decay and time averaged'flatness values are calcu- 
lated. In these low Reynolds number cases, the flatness fac- 
tors for the b field are observed to be considerably larger 
than that of Gaussian. The flatness for the b field exhibits a 
maximum value at Rex=40 and then decreases. It is sug- 
gested that this can be explained in terms of the energy ratio. 
In the next section it is shown that the crossing point (equi- 
partition) of the kinetic and the magnetic energy spectra 
moves towards lower wave numbers as the Reynolds number 
and the energy ratios are increased. The magnetic stretching 
term in the transport equation for the b field is the inner 
product of a large scale field (b) with a hydrodynamic dissi- 
pation scale gradient term. Therefore, as the relative strength 
of the b field is increased and the corresponding equipartition 
wave number migrates away from the dissipation scales, the 
magnetic field stretching term in Eq. (3) appears more 
"space filling" (less intermittent). For Reynolds numbers 
below the critical value, the primary scales for interactions 
between the magnetic field and the velocity field are the dis- 
sipation scales. In this case, the magnetic field intermittency 
therefore increases with the magnetic field strength. Addi- 
tional larger Reynolds number simulations are needed to in- 
vestigate the fate of the magnetic flatness at large Reynolds 
numbers. 

Some insight into the existence of a dynamo effect for 
SHR simulations is gained by examining the evolutions of 
the energy ratio and the magnetic energy (normalized by its 
initial value), as shown in Fig. 6. All b fields except the unity 
energy ratio case (SRun3) experience an initial rise in energy 
due to the abrupt application of the mean velocity gradient at 
time Yt=0. This causes strong stretching and bending effects 
on the initial random magnetic fields, and hence amplifica- 
tion of the magnetic energy. Simulation SRun3 has a suffi- 
ciently large energy to resist these effects and actually damps 
the u field to a large enough extent to display no initial 
magnetic energy growth [Fig. 6(b)]. The sharpest relative 
increase in magnetic energy occurs for the large scale initial 
field of SRun4 with nearly an order of magnitude increase 
within the first large scale turnover time. The positive growth 
rates of the magnetic energies observed in the latest stages of 
the simulations (except SRun3) in Fig. 6(b) suggest the pres- 
ence of a dynamo effect. The rates of growth of the magnetic 
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FIG. 6. Temporal development of the energies for the SHR simulations: (a) 
the energy ratio, and (b) the magnetic energy normalized by the initial value. 
The legends are the same for both figures. 

fields are slower than those of the velocity field, as evidenced 
by the monotonically decreasing energy ratios at later times 
in Fig. 6(a). 

Some results portraying the anisotropy of the SHR flow 
are presented in Table IV. This table lists various statistics of 
both the HD and MHD flows. Previous DNS data of Rogers 
and Moin30 (RM) are also included for comparison. The cor- 
relation coefficient in the table is defined as C(va,vß) 
= (vaVp)N(vz

a)(v^) for the vector v. The addition of a 
magnetic field delays the turbulence development and results 
in the increased peak times used for comparisons. The table 
suggests that an important parameter influencing the anisot- 
ropy and the Reynolds stress development is the instanta- 
neous  energy  ratio at the  peak times.  Notwithstanding 
SRun4, as the instantaneous energy ratio is increased, the 
primary effects on the turbulence are to increase the anisot- 
ropy of both the velocity and the magnetic fields and also to 
decrease the magnitude of the Reynolds number. The case 
SRun4 is initialled with a relatively large scale ("force- 
free") magnetic field and is able to develop the largest value 
of the Reynolds number despite having a moderate energy 
ratio. The reason for the increase in anisotropy with the en- 
ergy ratio is that the Lorentz force exhibits preferred orien- 
tations in the .rr.v, plane. Therefore, this force causes the 
relatively largest resistance to fluid motions in directions per- 
pendicular to the streamwise direction, thus increasing the 
fluid anisotropy. This preferential orientation of the Lorentz 
force is discussed in Sec. Ill D. Table IV also illustrates that 
the correlation C(u{.u2) decreases as the energy ratio is 

Miller ef a/. 



TABLE IV. Comparisons of instantaneous parameters for the SHR simulations at the peak times. 

RM SRunO SRunl SRun2 SRun3 SRun4 SRun5 

^'pcak 8.0 8.0 8.0 10.0 12.0 10.0 8.0 

Rex 72.6 101 112 107 88.0 132 110 

<«?>/£,. 0.53 0.50 0.53 0.59 0.65 0.58 0.54 

(»D'E, 0.16 0.20 0.18 0.16 0.11 0.17 0.18 

<«;>/£,. 0.31 0.30 0.29 0.25 0.24 0.25 0.28 

C(u,.uO -0.57 -0.54 -0.56 -0.51 -0.36 -0.55 -0.55 

EJEV 0.031 0.128 0.747 0.089 0.030 

(b])IEm 0.48 0.65 0.84 0.58 0.47 

(bl)/Em 0.23 0.15 0.06 0.23 0.23 

{b\)IEm 0.29 0.20 0.10 0.19 0.30 

C(b{.b2) 0.21 0.39 0.47 0.30 0.22 

increased, while the correlation C(bi,b2) displays the oppo- 
site behavior. The production terms in the mean kinetic and 
magnetic energy equations are related to these correlations 
and are proportional to {uxu2) and {bxb2), respectively. 
Hence, as the correlation C(ui,u2) is decreased, the relative 
production of kinetic energy is also decreased and the turbu- 
lence grows at a slower rate. On the other hand, the relative 
increase of the magnetic Reynolds (Maxwell) stress compo- 
nent {b^b^ results in an increased relative production of 
magnetic energy. Note also that the correlations C(u],u2) 
and C(bx,b2) have opposite signs. This is a result of the 
opposite sign of the source terms due to the mean velocity 
gradient in the transport equations of the fluctuating u and b 
fields. 

Based on the previous discussions, it may be expected 
that the magnetic field, by damping the turbulence energy, 
should yield a lower Reynolds number. This, however, is not 
necessarily the case. Figure 7 illustrates this effect for both 
the ISO and the SHR cases. The ISO data show a transition 
at the critical box Reynolds number into distinct HD and 
MHD states. Above the critical value, a larger Rex is ob- 
served for the magnetic turbulence. The difference between 
these states increases as Re0 increases. A similar trend is 
observed in the SHR flows. The Reynolds number is in- 
creased over its HD values (at the same Yt values) for all of 
the three simulations which are initialized with a \% energy 
ratio (SRunl, SRun4, and SRun5). The obvious explanation 
for these trends is that the magnetic field, while decreasing 
the kinetic energy, also causes an increase in the length 
scales of the turbulence. However, if the initial magnetic 
field strength is large (SRun2 and SRun3), the kinetic energy 
can be damped sufficiently to result in a net decrease of the 
Reynolds number. The results for cases SRun5 and SRunl 
again show similar trends; in the discussions below, case 
SRun5 is no longer considered. 

The variation of the Taylor length scale is presented in 
Fig. 8 for both the ISO and the SHR flows. The Taylor scale 
is presented as the average over its value along all three 
directions. This average value is used in the SHR results as a 
representative length scale. In both flows, the length scale is 
observed to increase in the presence of a magnetic field. A 
similar behavior is observed for both the Kolmogorov and 
the integral length scales (not shown). In nonhelical MHD 
turbulence, a steepening of the kinetic energy spectrum in 

the inertial range has been observed in EDQNM 
predictions.10 The integral length scales would be increased 
by this steepening. However, the enlargement of the Taylor 
scale is best explained in a structural sense as discussed be- 
low. The Taylor length scale in the MHD flows remain con- 
sistently larger than the HD case for the SHR flows except 
for the case with a 100% initial energy ratio (SRun3). In this 
case, the magnitude of the Lorentz force is of the same order 
as the pressure gradient. The initial magnetic field is uncor- 
related with the velocity field, so that the Lorentz force acts 
as though it is a random forcing term applied as a step func- 
tion at time Yt=0. This random force has the effect of ini- 
tially increasing the relative amount of high wave-number 
energy, thus decreasing the length scales at early times. 
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C. Energy spectra 

Of primary concern in this section are the modifications 
of the HD spectra as caused by the magnetic field, and the 
relationship of the kinetic and magnetic spectra including 
equipartition. Equipartition refers to the tendency of MHD 
turbulence to develop nearly equal values for both the kinetic 
and magnetic energy at high wave numbers. This occurs due 
to the small scale exchange of energy between the two fields 
through the action of Alfven waves. Figure 9 presents the 
normalized kinetic energy spectra for both the ISO and the 
SHR flows. The time averaged ISO spectra are taken from 
the high Reynolds number case IRunO. The SHR spectra are 
presented for cases SRun0-SRun3. These spectra are actu- 
ally functions of the wave-number vector component for the 
anisotropic flow fields. However, in order to simplify the 
analysis, they are presented versus the wave-number magni- 
tude. The SHR energy spectra are given for instantaneous 
flow conditions corresponding to the peak times. The pri- 
mary effects of the magnetic field on the energy spectrum for 
the ISO data are to steepen the slope in the moderate wave- 
number region and to increase the relative energy in the high 
wave numbers [Fig. 9(a)]. There is no distinct inertial range 
at these Reynolds numbers. However, the steepening is in 
agreement with the EDQNM predictions.10 The Lorentz 
force creates a relative increase in the small scale energy of 
the turbulence. Of course, this is only a relative effect as the 
total energy is decreased. The SHR flows display this in- 
crease most significantly for case SRun3 which displays the 
largest instantaneous energy ratio [Fig. 9(b)]. The dissipation 
spectra (not shown) for both flows display a mild flattening 

in the moderate wave-number regions. The wave-number lo- 
cation of the maximum dissipation does not appear to 
change. The broadening effect implies that the transfer of the 
kinetic energy to the magnetic energy occurs over a rela- 
tively large range of scales and is centered around the scale 
corresponding to maximal viscous dissipation. The maximal 
magnetic and kinetic dissipation scales are approximately the 
same due to the unit magnetic Prandtl number considered 
here. 

Examination of the equipartition effect is facilitated by 
the normalized kinetic and magnetic spectra in Fig. 10. Both 
energies are normalized by the kinetic energy to retain the 
relative crossing points. These results represent both rela- 
tively large and small EJEV ratios for both flows. Parts (a) 
and (b) of Fig. 10 depict results of IRunO and IRun6 with 
time averaged energy ratios of 0.16 and 0.023, respectively. 
The SHR spectra are shown in Figs. 10(c) and 10(d) for the 
instantaneous peak time data of simulations SRun2 and 
SRunI with respective energy ratios of 0.128 and 0.031. The 
forms of both the kinetic and magnetic spectra remain ap- 
proximately self-similar. However, the equipartition wave 
number is observed to migrate towards smaller wave num- 
bers for larger energy ratios (i.e.. from case IRun6 to IRunO 
and from case SRunI to SRun2). This migration also results 
in a magnetic field with a larger length scale. This was 
briefly discussed above in relation to the decreasing trends 
observed for the magnetic field intermittency with increasing 
energy ratios for Re,x>ReXl.. Turbulence fields with larger 
length scales generally portray less intermittent effects. For 
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example, passive scalar fields generally display asymptotic 
Gaussian statistics, but derivatives of the scalar are charac- 
terized by smaller length scales and portray significant de- 
partures from Gaussian.2033 It is unknown whether the mag- 
netic field intermittency will continue to decrease at larger 
Reynolds numbers (Fig. 5), and future simulations and/or 
experiments are needed to address this issue. 

Another feature pertaining to energy spectra is found for 
ISO flows near the critical Reynolds number. The present 
results suggest that sustained dynamo action can occur in the 
absence of equipartition of high wave-number kinetic and 
magnetic energies. This is illustrated in Fig. 11 which depicts 
the normalized kinetic and magnetic energy spectra for the 
case IRun7. This is the lowest Reynolds number ISO simu- 
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FIG. 11. Kinetic and magnetic energy spectra normalized by the mean tur- 
bulence energy for case IRun7. 

lation for which a sustained dynamo action is observed. No- 
tice that there is no equipartition of energy in this case; the 
magnetic energy spectrum appears to be "floating" nearly 
two decades beneath the kinetic spectrum. Any exchange of 
energy must be occurring through only very weak Alfven 
waves. The simulation was conducted for more than 100 HD 
eddy turnover times and confirmed that the b field is sus- 
tained. It may be possible for the equipartition to occur at 
very low energy values (at very high wave numbers). To 
capture the crossing point of the two spectra would require 
simulations with much higher resolution. 

D. Structure and organization 

This section is devoted to physical descriptions of coher- 
ency in 3-D nonhelical MHD turbulence. For this purpose, 
instantaneous fields from each of the cases IRunO and SRun2 
are considered for detailed investigation. The results are con- 
sidered at time f/rf=25 for the ISO data and at time yr=10 
for the SHR data. Other simulated results from each configu- 
ration are confirmed to be in accord with the results pre- 
sented for these two cases. Figure 12 illustrates the small 
scale structure of the ISO turbulence field. In Fig. 12(a) the 
vorticity field is highlighted with vorticity vectors in only the 
regions where the local vorticity magnitude is within 10% of 
its maximum value. As in the HD flow field, the high ampli- 
tude vorticity regions tend to organize into tube structures 
having thickness of the order of the Kolmogorov scale and 
length of the order of the integral scale. Figure 12(b) depicts 
magnetic field vectors in only the regions where the local 
magnetic field amplitude is within 10% of its maximum 
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FIG. 12. Illustration of coherent structures in case IRunO at time r/r, = 25 as 
depicted by vectors located in high amplitude regions: (a) vorticity vectors 
and (b) magnetic induction vectors. 

value. The magnetic field also displays evidence of "tube- 
like" structures, hereinafter referred to as magnetic flux 
tubes. In contrast to the vorticity field, the magnetic field also 
shows a substantial tendency to align in •'sheet-like" struc- 
tures [the high amplitude induction regions at the upper right 
corner of Fig. 12(b) aie confirmed with flow visualization as 
being sections of magnetic sheets]. Flow visualization shows 
that the regions of maximal current density are related more 
to the sheet structures than to the flux tubes. Both the vortic- 
ity and the induction fields are observed to be strongly inter- 
mittent. That is. the fields are concentrated in only a small 
fraction of the volume in physical space. No obvious corre- 
lation is observed between the two types of structures. 

The vortical structure of homogeneous shear flows is 
known to be dominated by vortex tubes (aligned with the 
principal axis of the flow) which fold into the shape of a 
••horseshoe.'" These structures are referred to as "hairpin" 
vortices.10 Figure 13 shows the interaction of a typical hair- 
pin vortex with a magnetic flux tube in the SHR flow. The 
structures are depicted with lines which are everywhere tan- 
gent to the vector of interest and which are concentrated only 

(b) 

FIG. 13. 
for case 

Interaction of a vorticity hairpin vortex and a magnetic flux tube 
SRunl at time Yt=%: (a) spanwise view, and (b) streamwise view. 

in regions of relatively high amplitude vorticity or magnetic 
field, respectively. Flow visualizations provide no evidence 
of magnetic hairpins. The magnetic flux tubes in the SHR 
flow show a tendency to align along directions close to the 
principal axis (45° in the xrx2 plane). Both the vorticity and 
the magnetic tube structures are of approximately the same 
length and width as those observed in the ISO flow. 

The preferential alignment of the vorticity and the mag- 
netic field vectors in the SHR flow is quantified with the 
inclination angle [f?=tan-1(L':/i',) for any vector u,] of 
these vectors in the xrx2 plane. Figure 14 shows the distri- 
bution of this angle (the PDF of d multiplied by 360°) for the 
vorticity field and also for several of the electromagnetic 
fields. The angle 0=0 indicates the direction of positive .r, 
(streamwise). with positive angles representing counter- 
clockwise rotation about the x} axis. The HD vorticity results 
are in agreement with the previous analysis of Rogers and 
Moin.30That is. there is peak alignment of the vorticity with 
the principal axis (45°) with equal relative weights for both 
positive and negative vorticity. The effect of the magnetic 
field is to skew the vorticity alignment towards the .v, axis. 
This is explained by the alignment of the Lorentz force 
which acts perpendicularly to the b field. The magnetic field 
and the Lorentz force show preferred angles approximately 
equal to 20° and -80°. respectively. The net effect is to 
force the vorticity vectors towards the .V| axis. 

The electromagnetic structure of several flux tubes was 
investigated via flow visualization. In general, these tubes 
were observed to have width on the order of the Kolmogorov 
scale and lensth on the order o( the integral scale. The flux 
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tubes tend to repulse the local fluid by exerting a relatively 
strong Lorentz force on the fluid element radially away from 
themselves. This offers a possible explanation for the results 
of Fig. 4 which displays a large reduction in kinetic enstro- 
phy for MHD turbulence, and may also explain the increase 
in turbulence length scales. Flux tubes forming in or near 
regions of large velocity gradients can act to "break up" 
these regions through the repulsive Lorentz action. This 
would have the effect of increasing the Kolmogorov scale 
and also decreasing the total kinetic enstrophy. 

A more elaborate description of the small scale turbu- 
lence dynamics is achieved with the examination of the 
eigenvectors of the symmetric rate of strain tensor. Follow- 
ing the traditional notation, the eigenvalues are labeled as 
assßzzy, and the strain magnitude is denoted by S. In in- 
compressible flows, a+/3+y=0, a is extensive, y is com- 
pressive, and ß has been shown to be typically extensive in 
HD turbulence (i.e., positive (ß) values).34,35 The corre- 
sponding eigenvectors are denoted by e„, e^, and er, respec- 
tively. The typically extensive nature of the second eigen- 
value is confirmed by the present MHD results. Table V lists 
the mean, the skewness, and the flatness for ßlßmi. The 
values correspond to instantaneous- data of ISO simulation 
IRunO, and to the peak time data of SHR simulations SRunO 
and SRun2. The middle eigenvalue of the magnetic field 
strain tensor [s\J' = {bij + bji)l2] is also included, and is 
denoted by ßm . The mean value for ß remains positive; how- 
ever, the magnitude is reduced for both of the MHD flows. 
This indicates a slight change in the small scale hydrody- 
namic structure of the MHD turbulence. In contrast to the 

TABLE V. Statistics of the middle eigenvalue of the rate of strain tensors of 
both the velocity field (/?) and the magnetic field (ß,„). normalized by their 
respective standard deviations. 1HD and SHD correspond, respectively, to 
HD results of IRunO and SRunl) cases. IMHD and SMHD correspond, re- 
spectively, to MHD results of IRunO and SRun2 cases. 

£(IHD)    /3(SHD)    0(IMHD)    /3tSMHD)    fl„(ISC»    A„(SHR) 

Mean      0.750 
M3 1.17 

4.34 

0.547 
0.838 
4.60 

0.685 
1.31 
4.12 

0.443 
1.41 
5.78 

0.013 
0.030 
4.77 

0.001 
0.046 
4.52 

hydrodynamic field, ßm remains symmetrically distributed 
with near zero mean in both flows, and hence shows no 
tendency for either compressive or extensive character. This 
may be related to the lack of skewness for the longitudinal 
derivatives of the magnetic induction mentioned in Sec. 
Ill B, and also provides insight into the existence of both 
magnetic tube and sheet structures. Magnetic tube structures 
display two compressive magnetic strain eigenvectors 
(ßm<0), whereas magnetic sheet structures are characterized 
by two extensive eigenvectors (ßm>0). 

Hereinafter, the analyses are limited to the IRunO results, 
as the SHR results were observed to show similar trends. The 
PDF of the alignment of the vorticity vector with the elec- 
tromagnetic fields is presented in Fig. 15. The magnetic field 
shows a strong tendency to align somewhat parallel to the 
vorticity vector. The vortex/flux tube interaction in Fig. 13 
illustrates this effect, as the tails of the hairpin vortex are in 
the vicinity of the flux tube, where they run parallel to each 
other. The electric current running helically around the flux 
tubes would therefore be expected to show a preferred per- 
pendicular alignment with the vorticity vector. However, 
Fig. 15 shows that no significant preferred alignment exists 
for these vectors. This can be explained in terms of the lo- 
cation of the strongest current magnitude within the flow 
field. As noted above, the strongest current regions are asso- 
ciated with the magnetic sheet structures which are corre- 
lated with the high strain regions of the flow, not the vortic- 
ity regions. This effect can be quantified by examining the 
statistics of the electromagnetic field conditioned on the sec- 
ond invariant of the deformation tensor: 

-1.0     -0.5      0.0      0.5       1.0 
COS0 

FIG. 15. PDF of the angle of alignment between the vorticity vector and the 
electromagnetic vectors. Case IRunO at time t/rr = 25. 
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Therefore, the positive and negative values of //„ correspond 
to regions of high vorticity and high strain, respectively. Fig- 
ure 16 presents the expectations of the squared magnitudes 
of the magnetic field, electric current, and the Lorentz force 
(j xb), conditioned on the magnitude of the second invariant. 
The squared vector magnitudes are normalized by their mean 
values, and the second invariant is normalized by its standard 
deviation. Notice that there is a small tendency for the mag- 
netic high amplitude regions to be located in regions of mod- 
erate to strong vorticity. However, these may only be rela- 
tively strong rotational fluid regions outside of the vortex 
tubes, as the flow visualization here (and that by Meneguzzi. 
Frisch, and Pouquet16) show no indication that these struc- 
tures are correlated. Of more importance is the stronger cor- 
relation of the high amplitude current regions with the high 
strain regions of the flow. The current shows only moderate 
amplitudes in high vorticity regions, and hence no significant 
preferred alignment with the vorticity vector. The maximal 
regions of the Lorentz force are observed to be correlated 
with both high amplitude vorticity and high amplitude strain 
regions. Flow visualization also shows that regions of strong 
Lorentz force are associated with both the magnetic sheet 
structures (large strain) and the magnetic flux tubes (large 
vorticity). 

The effects of the magnetic field on the hydrodynamics 
can be illustrated with the PDF of the alignment angle be- 
tween the Lorentz force and various hydrodynamic vectors 
as presented in Fig. 17. In part (a) of the figure the entire 
field is considered, but in part (b) the angles are conditioned 
on only regions of the flow having a positive second invari- 
ant greater than three times it's standard deviation. In this 
manner, the regions of predominantly vorticity tube struc- 
tures are isolated. Note the change in the heights for the 
probabilities in the high vorticity regions. In agreement with 
the previously described parallel alignment of the b and w, 
vectors, the Lorentz force is typically perpendicular to the 
vorticity and parallel to the kinetic pressure gradient. When 
conditioned on the high vorticity regions, the probability for 
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FIG. 17. PDF of the angle of alignment between the Lorentz force and the 
velocity, vorticity and negative of the kinetic pressure gradient: (a) the entire 
flow volume, (b) conditioned on regions where the second invariant is posi- 
tive and larger than three times its standard deviation. Case IRunO at time 
tlT =25. 

these alignments becomes largely amplified. Also note that 
the PDF of the pressure gradient alignment in Fig. 17(b) is 
skewed towards antiparallel alignment. A phenomenological 
description of the vorticity tube structures can be made in 
which the low pressure vortical tubes are being broken up by 
the outward radial Lorentz force acting against the natural 
pressure gradient. 

IV. SUMMARY AND CONCLUSIONS 

Direct numerical simulations are conducted to study the 
small scale structure and dynamics of homogeneous nonhe- 
lical magnetohydrodynamic turbulence with unity magnetic 
Prandtl number. Both stationary isotropic and homogeneous 
shear flows are considered in both the presence and the ab- 
sence of the magnetic field. The effects of the initial mag- 
netic field conditions are examined and found to be some- 
what insignificant for the stationary states of the isotropic 
flow. However, the homogeneous shear flow is significantly 
dependent on the initial conditions over the entire duration of 
the simulations. In particular, the initial length scale of the 
magnetic field is observed to influence the early time ampli- 
fication of the field. This is due to a larger mean magnetic 
dissipation for initially small scale magnetic fields, and may 
result in an order of magnitude change in the ratio of mag- 
netic to kinetic energy over the entire duration of the simu- 
lations. 

Small scale dynamo action is observed in both flows. For 
the isotropic flow a critical Reynolds number of Rex«*30 is 
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found above which a stationary state is reached with a sus- 
tained magnetic field. For the range of parameters consid- 
ered, the time averaged ratio of magnetic to kinetic energies 
scales nearly linearly with the Reynolds number. The homo- 
geneous shear flow does not attain stationary states. How- 
ever, monotonically increasing magnetic energies at late 
times indicate the presence of a dynamo effect. Although the 
magnetic energy is increasing, its ratio with the kinetic en- 
ergy shows a decreasing trend. This is due to a larger time 
scale for the magnetic field response, as compared with the 
growth rate of the turbulence. 

The simulation results reveal several modifications to the 
turbulence structure due to the presence of the magnetic 
field. In particular, in both flows the turbulence kinetic en- 
ergy is decreased by the Lorentz force. However, except for 
very high amplitude initial magnetic fields in the shear flow 
simulations, the Taylor microscale Reynolds number is in- 
creased by the magnetic field. This occurs due to the enlarge- 
ment of the hydrodynamic length scales. Also due to the 
magnetic field, the turbulence intermittency and the kinetic 
enstrophy are both observed to decrease, but the anisotropy 
is increased in shear flows. The induction is itself highly 
anisotropic in shear flows, and displays an off-diagonal mag- 
netic Reynolds stress of opposite sign to the corresponding 
kinetic Reynolds stress. 

Although the Reynolds numbers considered in the 
present simulations are not sufficiently large to produce dis- 
cernible inertial ranges, many interesting features of the ki- 
netic and magnetic energy spectra are portrayed. The kinetic 
energy spectra are shown to display increased relative high 
wave-number energy when a magnetic field is present. The 
crossing point of the normalized kinetic and magnetic energy 
spectra is observed to migrate towards the low wave num- 
bers as the ratio of the magnetic energy to the kinetic energy 
is increased. Additionally, the wave number of the maximum 
kinetic energy increases with the increase of energy ratio. 

The magnetic field is found to organize into both sheet- 
and tube-like structures. The regions of large magnetic field 
magnitude show a small correlation with the regions of mod- 
erate to large vorticity magnitude, and electric current struc- 
tures are found to be correlated with the regions of large 
strain amplitude. The Lorentz force shows a strong tendency 
to align antiparallel with the pressure gradient force in the 
regions of strong vorticity. This has the effect of "breaking 
up" the turbulence structures and results in a decreased ki- 
netic enstrophy. This structural description provides a physi- 
cal interpretation of some of the above-mentioned phenom- 
ena. 
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Results are presented of numerical simulations of passive scalar mixing in homo- 
geneous, incompressible turbulent flows. These results are generated via the Linear 
Eddy Model (LEM) and Direct Numerical Simulation (DNS) of turbulent flows 
under a variety of different conditions. The nature of mixing and its response to the 
turbulence field is examined and the single-point probability density function (p.d.f.) 
of the scalar amplitude and the p.d.f.s of the scalar spatial-derivatives are constructed. 
It is shown that both Gaussian and exponential scalar p.d.f.s emerge depending on 
the parameters of the simulations and the initial conditions of the scalar field. Aided 
by the analyses of data, several reasons are identified for the non-Gaussian behaviour 
of the scalar amplitude. In particular, two mechanisms are identified for causing 
exponential p.df.s: (i) a non-uniform action of advection on the large and the small 
scalar scales, (ii) the nonlinear interaction of the scalar and the velocity fluctuations 
at small scales. In the absence of a constant non-zero mean scalar gradient, the 
behaviour of the scalar p.d.f. is very sensitive to the initial conditions. In the presence 
of this gradient, an exponential p.d.f. is not sustained regardless of initial conditions. 
The numerical results pertaining to the small-scale intermittency (non-Gaussian scalar 
derivatives) are in accord with laboratory experimental results. The statistics of the 
scalar derivatives and those of the velocity-scalar fluctuations are also in accord with 
laboratory measured results. 

1. Introduction 
It has been more than four decades since Hawthorne, Weddell & Hottel (1949) 

indicated the advantages of the probability density function (p.d.f.) method for sta- 
tistical description of reacting turbulent flows. Since then, p.d.f. methods have been 
used rather extensively as witnessed by many review articles devoted to the topic 
(Toor 1975; Pope 1979; Libby & Williams 1980, 1994; O'Brien 1980: Pope 1985, 
1990); for the latest review, see Dopazo (1994). The systematic means of determining 
the p.d.f. involves the solution of the transport equation governing its evolution. In 
this equation, however, the effects of molecular action do not appear in a closed 
form and can be described only by means of employing an external model. In many 
of the previous applications, this problem has been overcome through the use of 
the Coalescence/Dispersion (C/D) models. Examples are the early C/D prototype 
of Curl (1963), the Linear Mean Square Estimation (LMSE) theory of Dopazo & 
O'Brien (1976), and the closure of Janicka, Kolbe & Kollmann (1979) amongst others. 
While not all of these closures were originally presented in a C/D form, it is now 
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established that the majority of those in current use (including the three mentioned 
above) can be cast in a generalized C/D mould (Pope 1982; McMurtry & Givi 1989). 

None of the C/D closures currently in use are regarded as physically plausible 
- the primary reason being that they are not capable of producing an asymptotic 
'Gaussian' p.d.f. for a scalar field in homogeneous turbulent flows. Such a Gaussian 
asymptotic state has been observed in several laboratory (Miyawaki, Tsujikawa & 
Uraguchi 1974; Tavoularis & Corrsin 1981a) and direct numerical simulation (DNS) 
(Givi & McMurtry 1988; Eswaran & Pope 1988; McMurtry & Givi 1989) results; see 
Givi (1989) for a review. This 'incapability' of the C/D models has been a driving 
force for the development of other mixing closures capable of generating Gaussian 
statistics. Examples are the age-biasing scheme of Pope (1982), the Amplitude Map- 
ping Closure (AMC) of Kraichnan (1989) and Chen, Chen & Kraichnan (1989) and 
the Johnson-Edgeworth Translation (JET) of Miller et al. (1993). These models ex- 
hibit one common feature: They all yield an approximate asymptotic Gaussian scalar 
p.d.f. in homogeneous turbulent flows. 

The results of some of the more recent laboratory and numerical experiments, 
however, indicate the possibility of distributions other than Gaussian. The measure- 
ments of Heslot, Castaing & Libchaber (1987), Castaing et al. (1989) and Sano, 
Wu & Libchaber (1989) (known as the Chicago group) show that the temperature 
fluctuations in the convective core of a Rayleigh-Bernard cell are Gaussian when the 
Rayleigh number (Ra) is less than a critical value, but become 'exponential' when 
the magnitude of Ra exceeds the critical value. The results of numerical simulations 
(Christie & Domaradzki 1993, 1994) and laboratory experiments (Solomon and Gol- 
lub 1991) suggest that in addition to the Rayleigh number, the geometry of the cell 
and the magnitude of the Prandtl number also affect the statistics. Solomon (1990) 
shows that the temperature p.d.f. can be either Gaussian, exponential or a combi- 
nation of the two throughout the convected core. Thoroddsen & Van Atta (1992) 
show that while the scalar derivative exhibits a strong exponential feature in stably 
stratified flows, the temperature fluctuations are governed by Gaussian statistics. The 
experiments of Jayesh & Warhaft (1991, 1992) reveal several characteristics of the 
p.d.f. of a passive temperature field in decaying homogeneous grid turbulence. For 
turbulent Reynolds numbers (based on the integral scale) Ret > 70 they show that 
in the presence of a constant (non-zero) mean scalar gradient the temperature p.d.f. 
is exponential, while for Rei < 70 an approximate Gaussian p.d.f. is formed. These 
results are not in accord with those of earlier measurements of Tavoularis & Corrsin 
(1981a) who report a Gaussian scalar p.d.f. in the presence of a linear mean scalar 
profile in homogeneous shear flows for Reynolds numbers greater than 70. In the ab- 
sence of the mean scalar gradient, Jayesh & Warhaft (1992) report a nearly Gaussian 
temperature p.d.f. regardless of the magnitude of the Reynolds number. Exponential 
scalar p.d.f.s are also reported in the experiments of Gollub et al. (1991) and Lane et 
al. (1993) conducted in a stirred flow with a constant mean scalar gradient and a near 
Gaussian velocity field. It is indicated, however, that by increasing the correlation 
length scale of the velocity field, the scalar statistics become Gaussian even at very 
large Reynolds numbers. 

These recent experimental findings have motivated several analytical and computa- 
tional investigations for the purpose of understanding the reasons for non-Gaussian 
scalar statistics. In an effort to explain the Chicago experiments, Yakhot (1989) modi- 
fied an existing theory of passive scalar p.d.f.s (Sinai & Yakhot 1989) for the problem 
of Rayleigh-Bernard convection. This formulation is based on the argument that 
the large-scale coherent vortex structures influence the hydrodynamic stability of the 
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thermal boundary layer, thus modifying the mechanism of turbulence production. 
Kimura & Kraichnan (1993) show that a nonlinear mean scalar profile and/or an 
'active' scalar field can cause non-Gaussian statistics. The generated results for cases 
with a nonlinear mean scalar profile exhibit trends qualitatively similar to those in 
the Boussinesq convection experiments (Belmonte, Tilgner & Libchaber 1994; Siggia 
1994). Pumir, Shraiman & Siggia (1991) and Hölzer & Pumir (1993) propose a one- 
dimensional 'mean-field' phenomenological model based on which they argue that in 
the presence of a constant mean scalar gradient, non-Gaussian statistics emerge as 
an inherent property of random advection. Kerstein & McMurtry (1994Z?) argue that 
the exponential tails deduced from the mean-field theory are primarily due to the 
functional form of the advection process which is enacted by an 'additivity' assump- 
tion. They show that depending on the statistics of the advection field, a wide variety 
of scalar p.d.f.s (including Gaussian) can be generated. Using a two-dimensional 
model in which the velocity evolves under the Euler equation in a restricted band of 
wavenumbers, Hölzer & Siggia (1994) show that exponential-like scalar p.d.f.s occur 
when the magnitude of the scalar dissipation is non-zero. Ching & Tu (1994) report 
results of two-dimensional simulations of a passive scalar advected by a solenoidal 
velocity field. Depending on the parameterization of the problem, the scalar p.d.f. 
may become non-Gaussian, even without the presence of the mean scalar gradient. 
Similar p.d.f.s are also observed in the large-eddy simulation results of Metais & 
Lesieur (1992). These observations indicate the need for more improved models for 
prediction of the scalar p.d.f. under different mixing scenarios (Jaberi & Givi 1995). 

The phenomenon of small-scale 'intermittency', portrayed by non-Gaussian statis- 
tics of the derivative-field, has been the subject of widespread investigations in turbu- 
lence research since the original theory of Kolmogorov (1941). Although this theory 
remains the basis of nearly all turbulence research, it is an incomplete description of 
realistic turbulent flow in that it does not describe intermittency effects (Landau & 
Lifshitz 1959; Obukhov 1962; Kolmogorov 1962; Gurvich & Yaglom 1967; Monin 
& Yaglom 1975). Early experiments reveal that although the p.d.f. of the velocity 
field is Gaussian, the p.d.f. of velocity derivatives exhibit larger than Gaussian tails 
with departures increasing with the Reynolds number (Batchelor & Townsend 1949; 
Monin & Yaglom 1975; Yamamoto & Kambe 1991). These intermittent p.d.f.s are 
observed even for very low Reynolds number flows (Chen et al. 1993) and may occur 
in both the dissipation range and/or the inertial range of turbulence. The former is 
associated with non-Gaussian velocity derivatives. The latter is identified through the 
statistics of the two-point velocity difference (structure function) for inertial range 
separations and yields corrections to the —5/3 Kolmogorov energy spectrum scaling 
(Van Atta & Antonia 1980; Anseimet et al. 1984; Castalng. Gague & Hopfinger 1990; 
Vincent & Meneguzzi 1991). 

The results of recent DNS experiments suggest that the regions of strongest 
vorticity are organized in elongated thin tubes, with thickness and length on the order 
of the Kolmogorov scale and the integral scale, respectively (Kerr 1985; Hosokawa 
& Yamamoto 1989; Vincent & Meneguzzi 1991; Tanaka & Kida 1993). Jimenez et 
al. (1993) observe that these tubes are a natural feature of turbulence, and do not 
depend on the particular forcing scheme employed. She (1990) and She & Orszag 
(1991) develop a "two-fluid' model of intermittency which incorporates the existence 
of these organized structures. This model is capable of capturing the statistical 
behaviour of both the inertial- and the dissipation-range intermittency (She, Jackson 
& Orszag 1991). Most investigations of turbulent scalar mixing are for flows with 
Schmidt numbers of order unity (Sc ~ 1) for which the scalar spectral regimes 
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are analogous to those of the velocity fieldt. In this case, the application of the 
Kolmogorov (1941) description to the scalar is also inadequate due to an inability to 
account for intermittency. In particular, while the scalar fluctuations typically portray 
Gaussian statistics (Antonia & Van Atta 1978; Givi & McMurtry 1988; Eswaran & 
Pope 1988; McMurtry & Givi 1989), scalar derivatives and differences are known to 
exhibit larger tails with stronger departures than observed in the velocity statistics 
(Van Atta & Chen 1970; Antonia et al. 1984; Castaing et al. 1990; Miller et al. 
1995). As with the hydrodynamics, the scalar field is known to be dominated by 
organized structures characterized by regions of strong scalar-derivative magnitude. 
Ruetsch & Maxey (1991 & 1992) show that regions of large scalar gradients form 
'sheet-like' structures which are found to occur in regions of persistent straining of 
the flow field. It has also been shown (Kerr 1985; Ashurst, Chen & Rogers 1987a; 
Ashurst et al. 1987b; Nomura & Elghobashi 1992; Miller 1995) that the scalar 
gradient vector tends to align parallel to both the pressure gradient and the most 
compressive eigenvector of the strain-rate tensor in these regions. Miller et al. (1995) 
extend the two-fluid description of She (1990) to account for the role of scalar sheets 
in the dissipation-range scalar intermittency. While the results obtained in this way 
portray some features of small-scale scalar intermittency, the phenomenon of the 
non-Gaussian scalar-amplitude p.d.f. remains an unresolved issue. 

1.1. Objective 

The objective of this work is to demonstrate that there are several factors which 
determine the outcome of scalar mixing in homogeneous turbulent flows. The message 
to be conveyed is to confirm that the p.d.f. of the scalar can adopt many different forms 
and that the Gaussian form as indicated by Givi & McMurtry (1988), Eswaran & 
Pope (1988) and McMurtry & Givi (1989) is only one of the many possible outcomes. 
In doing so, the phenomenon of scalar mixing is numerically simulated with the goal 
of identifying some of the means by which non-Gaussian statistics are generated. The 
hope is to provide the reasons for these statistics as observed in recent laboratory 
and numerical experiments. The analysis is based on two computational procedures: 
(i) the mechanistic Linear Eddy Model (LEM) of Kerstein (1988), and (ii) DNS. The 
reasoning for the use of the LEM is its relative low computational cost, allowing a 
large number of simulations. It also provides a means of simulating high Reynolds 
number flows, albeit in a phenomenological manner. In the context considered, as 
will be described in the next section, LEM simulations reveal many features of scalar 
mixing which, in turn, identify several cases to be considered subsequently by DNS. 
In both simulations, only the transport of a passive and conserved scalar variable is 
considered; the analyses pertaining to dynamically active and/or chemically reactive 
scalars are postponed for future work. 

2. Linear eddy model simulation 

Details of the LEM and its application in modelling of turbulent mixing and 
chemical reaction are described in several papers by Kerstein (1988, 1989, 1990, 
1991); for a recent review see McMurtry, Menon & Kerstein (1993b). The prominent 
feature of the model in applications to turbulence simulations is its capacity to 
explicitly differentiate among the different physical processes of turbulent stirring 

t Not including the extensive literature of chemical engineering devoted to liquid scalar mixing 
(Brodkey 1975), since small-scale intermittency is not discussed in this literature. 
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(convection) and molecular diffusion (and chemical reaction). This is achieved by 
a reduced 'one-dimensional' (linear) description of the scalar field which allows 
the resolution of all length scales even for flows with relatively large Reynolds 
numbers. The physical interpretation of the one-dimensional domain is dependent on 
the particular case under consideration (Kerstein 1992). Along the one-dimensional 
domain, the diffusion process is implemented deterministically by the solution of the 
appropriate diffusion equation. The manner by which turbulent convection is treated 
constitutes the primary feature of the model. This process is modelled by random 
'rearrangement' (stirring) events of the scalar field along the domain. The rules by 
which these rearrangement processes occur are established such that the random 
displacements of fluid elements result in a diffusivity that is equal to the 'turbulent 
diffusivity' of the flow. The parameters which govern this process are /„, the frequency 
of stirring, and /(/), the p.d.f. of eddy size (<?) of the segments of the flow which 
are to be rearranged. To determine explicit expressions for the size and frequency of 
rearrangement events, a particular rearrangement mapping must be chosen. Kerstein 
(1991) shows that the triplet map reflects several physical features which suggest its 
choice for high Reynolds number turbulence simulations. The stirring events induced 
by this mapping introduce a random walk of a marker particle on the linear domain. 
Based on high Reynolds number scaling laws, the diffusivity induced by all eddies 
up to some size / is assumed to scale as DT(l) ~ lp. The parameter p takes on the 
value 4/3 for inertial-range turbulence, but can be treated as a variable to study 
other assumed scalings. Based on these scaling arguments, it can be shown that the 
following relations must be satisfied (Kerstein 1991): 

5       /~8/3 

/(<0= 3,-5/3 _L-3/3-      "^L- CD 
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Here, xL is the eddy turnover time. L„ is the integral scale and rj is the Kolmogorov 
length scale. In this representation, the statistics of the velocity field are inputs to 
the model. The required model parameters which describe the turbulent field include 
the turbulent diffusivity (DT), the integral velocity length scale (L„), the Reynolds 
number (Re) and the Schmidt number (Sc). The relation between the model DT and 
turbulent diffusivity is needed to relate the computational time to the physical time. 
The parameter Lu is defined as the largest allowable eddy for a given flow, and / 
represents the size of a 'typical' eddy. The LEM analogue of the Reynolds number 
is defined by Re = (Lu/n)4/\ Equations (1) and (2) are based on scaling relations for 
high Reynolds number flows (Tennekes & Lumley 1972) and therefore the results are 
most applicable under this condition. 

In the implementation of the model for the simulation of a three-dimensional 
homogeneous turbulent flow, the linear dimension is interpreted to be the time- 
varying space curve which is locally aligned with the prominent direction of the 
scalar gradient (Kerstein 1991). In the implementation of the triplet mapping (or any 
other mapping procedures), however, one must be careful about the magnitudes of 
the length scales involved in the simulations. For example, if the size of the whole 
computational domain (LB) is small, the statistics are dependent on the mapping 
procedure. Moreover, the number of grid points employed for numerical discretization 
must be large enough to resolve the Kolmogorov scale sufficiently. Finally, the 
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Re     Sc Case Initial condition for the scalar field 

LEM-1 Square wave, L^ = 1 
LEM-2 Square wave, L$ = 2 
LEM-3 Double square wave, L^ = 1,2 
LEM-4 Square wave, L^ = 1 
LEM-5 Square wave, L^ = 2 
LEM-6 Double square wave, L^ = 1,2 
LEM-7 Gaussian spectrum, Ks = 2 
LEM-8 Gaussian spectrum, Ks = 3 
LEM-9 Gaussian spectrum. Ks = 8 
LEM-10 Gaussian spectrum, Ks = 3 
LEM-11 Top-hat spectrum, K5 = 2 
LEM-12 Top-hat spectrum, Xs = 3 
LEM-13 Top-hat spectrum, Ks = 8 
LEM-14 Double top-hat spectrum, Xsi = 2,KS2 = 
LEM-15 Double top-hat spectrum, Ks[ = 8,Ks2 = 
LEM-16 Double top-hat spectrum. Ksi = 2, Ksi 
LEM-17 Gaussian spectrum. Ks = 20 
LEM-18 Gaussian spectrum, Ks = 30 
LEM-19 Double square wave, L^ = 1, 2 
LEM-20 Double square wave, L4, = 5, 10 
LEM-21 Double square wave, L^ = 1, 2 
LEM-22 Double square wave, L$ = 1, 2 

TABLE 1. Conditions for the LEM simulations. For the cases denoted 'square wave', the initial scalar 
p.d.f. is an approximate double-delta function (equation (3)). For all the other cases, the initial 
p.d.f. is approximately Gaussian. In all the cases, L* = 1 corresponds to 200 grid points. Ks = 1 
corresponds to 1000 grid points. L„ = 1 corresponds to 200 grid points. 

12 
12 

= 12 

1  90 0.7 
1  90 0.7 
1  90 0.7 
3  90 0.7 
3  90 0.7 
3  90 0.7 
1  90 0.7 
1  90 0.7 
1  90 0.7 
2  90 0.7 
1  90 0.7 
1  90 0.7 
1  90 0.7 
1  90 0.7 
1  90 0.7 
2  90 0.7 
1  90 0.7 
1  90 0.7 
1  50 0.7 
5  900 0.7 
1  90 0.05 
3  90 0.05 

accuracy of the flow statistics is dependent on the number of grid points and the 
number of realizations employed for data sampling. 

LEM results 
The resolution requirement for the LEM simulations depends on the magnitudes of 
the model Reynolds number and the Schmidt number. As we shall see in the simulated 
results here, the outcome of mixing is strongly dependent on the length scales of the 
velocity and the scalar field. All the simulations are conducted within relatively large 
box sizes; typically, Nc = LB/LU = O(100), where Nc denotes the number of 'cells' 
within the box. The number of grid points within each cell is determined in such a way 
to resolve the Kolmogorov length scale. McMurtry et al. (1993a) suggest that as 6 grid 
points provide the sufficient resolution. For example, with Lu = 1 and Re = 90, with 
200 grid points within each cell the desired accuracy is achieved. With this, there would 
be a total of N = 200 x Nc grid points within the whole domain. In addition, each sim- 
ulation is repeated Ns times: thus the total number of samples for statistical analysis 
is Ns x N. In most of the simulations. Nc = 200 is used. Simulations with smaller box 
sizes consisting of Nc = 100 cells yield almost identical results. In almost all the cases, 
the simulations are repeated Ns = 100 times. Therefore, the statistical information is 
gathered from 4 x 106 samples. The computer time to gather this many samples for 
Re = 90 simulations is about one hour on the Cray-YMP computer. While this is 
substantially less than that required for typical DNS (Givi 1994), it is not insignificant. 
Therefore, in some cases the magnitude of Ns was decreased but it was never less than 
10. In order to mimic different mixing scenarios, a variety of different initial scalar 
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FIGURE 1. Initial distribution of the scalar for some of the LEM cases within a domain consisting 
of 800 grid points. 

conditions are considered. All the cases considered are listed in table 1 and will be 
described in detail below. In all these cases, a stationary (non-decaying) hydrodynamic 
field is considered and its influence is modelled by the triplet mapping. The scalar 
field in all the cases is decaying. In addition to the initial distributions of the scalar 
field, the difference between the cases is due to the magnitudes of the hydrodynamic 
and the scalar length scales, the Schmidt number and the Reynolds number. 

An objective of these LEM simulations (and also the DNS to be discussed in the 
next section) is to determine the time-evolution of the scalar statistics. There is no 
rigorous mathematical definition of the asymptotic time denoting the 'final' stage(s) 
of mixing (Kerstein & McMurtry 1994a). As mixing proceeds, the p.d.f. of the scalar 
field tends to form a delta function in the composition domain centred at the average 
value of the scalar, i.e. P(cf>) -> 8(<j> - (<£)); (<£) denotes the ensemble-average value 
of the scalar variable tj> with p.d.f. P(<£). At large times, the magnitude of the scalar 
variance a2 is significantly reduced (a2 -* 0 for a decaying scalar field) and the values 
of all constituents of the statistical ensemble are close to the mean scalar value. Here, 
the simulations are continued until the scalar variance decays to at least O(10-3) of 
its initial value. 

In the first set of simulations (LEM-l-LEM-3) the mixing progression from an 
initial condition corresponding to two scalar 'slabs' with alternating values of <f> = +1 
is considered. With this, the initial p.d.f. is composed of two delta functions: 

P(0,t = O) = ^(0-1)+ 1^ + 1). (3) 

In LEM-1 and LEM-2, the initial field is composed of a 'square wave', with wave- 
lengths L^ = 1 and L0 = 2, respectively. In LEM-3, the initial field is composed of a 
'double square wave' with L$ = 1, 2. In all three cases. Lu = 1. Figure 1 shows the 
double square wave distribution within a supercell as produced in LEM-3. The single 
square wave distribution, as used in LEM-1, is the same as that shown within the first 
400 grids on this figure and is repeated throughout the domain. Cases LEM-4-LEM-6 
employ the same scalar initializations as in LEM-l-LEM-3, respectively, but with 
Lu = i. 
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FIGURE 2. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is ini- 
tialized in the physical domain: (a) LEM-l (L„ = l,L6 = 1), LEM-2 (L„ = \,U = 2), 
LEM-3 (L„ = 1,L0 = 1, 2); (b) LEM-4 (Lu = 3,L^ = 1), LEM-5 (L„ = 3,L* = 2), LEM-6 
(1* = 3,1* =1,2). 

The temporal variations of the scalar kurtosis, fi4 (fim = {0"")/(er2)m/2, the prime 
denoting the deviation from the mean), in LEM-l-LEM-6 are shown in figure 2. A 
unit of time in these and all the subsequent figures pertaining to LEM simulations 
corresponds to one eddy turnover time. i.e. tL = t/xL. Figure 2(a) shows that in LEM- 
1 and LEM-2, after tL = 0.6, the p.d.f.s adopt an approximate Gaussian distribution 
whereas in LEM-3 the p.d.f. exhibits tails broader than Gaussian. By increasing the 
hydrodynamic length scale (figure 2b) the behaviour in LEM-4 and LEM-5 show a 
similar trend. However, in LEM-6 the departure from Gaussian is significantly less 
than that in LEM-3. The p.d.f.s at tL = 2 for these six cases are shown in figure 
3, and the temporal variations of the correlation between the scalar and its rate of 
dissipation (e^), defined by 

-1 (4) 

are shown in figure 4. For a Gaussian distribution, <j> and e are statistically independent 
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FIGURE 3. LEM-generated p.d.f.s of scalar at tL = 2. LEM-l-LEM-6 as figure 2. 

(p = 0). Thus, the numerical values of p at large times provide an accurate measure 
of the deviation of the p.d.f. from Gaussian as observed in figure 3. 

Figures 2-4 illustrate one reason for the non-Gaussian behaviour of the scalar p.d.f.. 
In all the cases with a single value for L0 the p.d.f. is Gaussian after tL « 0.6 regardless 
of the magnitude of Lu. In these cases, the influence of the hydrodynamic field as mim- 
icked by the LEM is similar on all scalar blobs. Thus, the larger slabs of the scalar are 
broken as a result of triplet mapping, and mixing is completed by diffusion at small 
scales. The breakage of the scalar blobs is statistically the same in all the slabs even 
though the rate is different depending on the magnitude of L0. In this way, the mixing 
behaviour is similar to that in the laboratory experiments of Miyawaki et al. (1974) 
and Tavoularis & Corrsin (1981a) which do in fact suggest Gaussian p.d.f.s. The 
behaviour in LEM-3 is markedly different, primarily due to a 'non-uniform' influence 
of the hydrodynamic field. In this case with Lu = 1, the effect of stirring is more dom- 
inant in the slabs with L^ = 1 than those with L* = 2. This means that the molecular 
mixing acts at different time levels for different L* values. Thus, the 'local' influence of 
mixing is not the same in square waves with different wavelengths. Consequently, at 
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FIGURE 4. Temporal variation of LEM-generated p. LEM-l-LEM-6 as figure 2. 

intermediate times the scalar fields are composed of 'two fields' whose combined 
weighted effects yield non-Gaussian statistics even if each of the two original fields are 
Gaussian. Although it is expected that a Gaussian p.d.f. would emerge if the compu- 
tations are continued until very long times, the non-Gaussian behaviour does prevail 
for a long time. In this regard, it is important to indicate that at tL = 1 the magnitude 
of the variance in LEM-3 [a1 = 5.74 x 10-4) is smaller than that in LEM-2 (cr2 = 
5.96 x 1CT4). But the p.d.f. in LEM-2 is Gaussian and that in LEM-3 is exponential. 

By increasing the magnitude of the velocity length scale L„ = 3, the departure from 
Gaussian becomes less significant. In this case (LEM-6). the influence of stirring is 
relatively more uniform (as compared with that in LEM-3) in all the scalar blobs. The 
reason is that now large scalar slabs rapidly follow the turbulence cascade (enacted 
by the triplet mapping) and the initial field is stirred uniformly before the molecular 
diffusion can significantly influence the p.d.f.. Thus, after the formation of exponential 
p.d.f.s at intermediate times, the p.d.f. at long times becomes closer to Gaussian. With 
the argument presented above it is plausible to expect the p.d.f. at long times in 
LEM-6 to be somewhere between those in LEM-3 and LEM-1. 
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It would be interesting to examine the evolution of the mixing from an initial 
Gaussian state. This is done in LEM-7-LEM-18. In these cases, the initialization 
procedure is similar to that used in the DNS of Eswaran & Pope (1988). It involves 
the specification of the scalar power spectrum with random magnitudes of the phase 
angles. This spectrum is specified within a subdomain (supercell) composed of 1000 
grid points and the initial scalar field in each of the supercells is similar. For a box 
with 40000 grids, there are 40 supercells each composed of 5 cells. The corresponding 
Fourier wavenumbers within each of the subdomains is between -500 < K ^ 500. 
The energy is distributed at low wavenumbers with the following functional forms: 
(i) a Gaussian spectrum with a peak at Ks: 

(ii) a top-hat spectrum centered at Ks with a width AK = \, 

^••»-{i 'teg«"**-*" <*> 
(iii) a double-hat spectrum with peaks centered at Ksl, Ks2 with a width AK = ±, 

EJK,0) = l1    üKsi-AK^K^K5l+AK or Ks2-AK ^K ^Ks2 +AK     ,~ 
10   elsewhere. *■'' 

The Gaussian spectrum with Ks ^ 3 generates a multi-scale initial scalar field, whereas 
the top-hat spectrum yields an approximate single length scale. Figure 1 provides a 
typical graphical visualization of the initial scalar distribution within a supercell as 
produced in LEM-7-LEM-9. 

With an initial Gaussian scalar field, the combined influences of advection and 
diffusion can yield non-Gaussian scalar p.df.s (Kimura & Kraichnan 1993). This 
issue is considered here where the role of several parameters in causing exponential 
p.d.f.s is discussed. In figure 5 results are presented of the temporal variations of 
the kurtosis for LEM-7-LEM-10 with initial Gaussian scalar fields. In LEM-7 with 
Ks = 2 the scalar field is primarily composed of large uniform size slabs. Therefore all 
the slabs are broken into smaller ones almost simultaneously. As a result, the kurtosis 
increases slowly then returns to the Gaussian value of 3. By distributing the initial 
energy around Ks = 3 (LEM-8), a wider range of the initial scalar length scales are 
produced with some of the scalar slabs larger than L„. The evolution of the scalar 
kurtosis in this case portrays a roughly similar trend as that in LEM-3 (or LEM-6). 
The initial degree of segregation is, however, different. In LEM-8 the p.d.f. becomes 
exponential with tails broader than Gaussian even at very long times. An increase to 
Ks = 8 (LEM-9) does not necessarily enhance the behaviour."Although in this case 
the initial scalar field is composed of blobs with multiple length scales, most of the 
length scales are smaller than L„. Thus the 'flapping' induced by the velocity field is 
dominant only at initial times when the kurtosis is slightly increased before the p.d.f. 
returns to the Gaussian state. A similar behaviour is observed for K< = 3 with L = 2 
(LEM-10). 

A similar qualitative kurtosis evolution is observed for the cases with the initial 
top-hat spectrum (LEM-ll-LEM-13) as shown in figure 6. However, in none of 
these cases do exponential p.d.f.s persist. This is due to the relative uniformity of the 
initial length scale distribution of the scalar. Thus the behaviour in all these cases 
is similar to those with a square wave distribution (e.g. LEM-1, LEM-2). However, 
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FIGUM 5. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized with 
a Gaussian spectrum: LEM-7 (K, = 2, Lu = 1), LEM-8 (K, = 3, L„ = 1), LEM-9 (K, = 8, Lu = 1), 
LEM-10 (Ks = 3, Lu = 2), 

when a double-hat spectrum is employed (LEM-14), a somewhat more profound 
non-Gaussian p.d.f. is observed. In this case, with Ksl = 2,Ks2 = 12 the behaviour 
is similar to that in LEM-3 in which the approximate double length scale in the 
initial scalar field with Lu = 1 causes a persistent exponential p.d.f.. The increase of 
Ksi to 8 (LEM-15) or the increase of Lu to 2 (LEM-16) results in p.d.f.s closer to 
Gaussian. The reason for this behaviour is made clear by realizing that the conditions 
in LEM-15 and LEM-16 are 'effectively' similar to those in LEM-9 and LEM-10, 
respectively. 

Another means of producing non-Gaussian behaviour is through the simultaneous 
interaction of velocity and scalar fluctuations at small scales. This issue will be 
discussed further in the next section where the DNS-generated results are discussed. At 
this point it suffices to present the results for LEM-17 and LEM-18. These correspond 
to mixing with an initial Gaussian spectrum but with Ks = 20,30, respectively. In 
figure 7 the kurtosis evolutions for these cases are compared with that of LEM-9. 
This comparison indicates that by increasing the relative weight of the small scales 
the p.d.f.s develop flatter tails at early times. At long times, the kurtosis in LEM-17 
(Ks = 20) is smaller than that in LEM-9. This is in accord with the trend shown 
in figure 5 for LEM-8 and LEM-9 which suggests that as Ks becomes larger the 
statistical behaviour becomes closer to Gaussian. However, by increasing Ks further 
to the value of 30, an increase in the kurtosis value is observed. Note that in this 
case, the initial length scale of the scalar field is much smaller than Lu. The triplet 
mapping implements velocity scales in the range r\ ^ / ^ L„. The interactions of small 
scalar length scales with the velocity at small / values yield an overall non-Gaussian 
behaviour. It is noted that the departure from Gaussian as generated by the second 
mechanism is not very strong at long times. 

Based on the results presented thus far, two scenarios are identified for causing 
non-Gaussian flat-tail scalar p.d.f.s. (i) When there is a separation of length scales in 
the initial condition of the scalar, and the dominant scale of advection is less than 
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FIGURE 6. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized with 
a top-hat or a double-hat spectrum: LEM-ll (Ks = 2, Lu = 1), LEM-12 {Ks = 3, Lu = 1), LEM-13 
(Ks = 8, L„ = 1), LEM-14 (Ksl = 2, Ks2 = 12, L„ = 1), LEM-15 (Ksi = 8, Ks2 = 12, Lu = 1), 
LEM-16 (Ksi = 2, Ks2 = 12, Lu = 2), 

FIGURE 7. Temporal variation of the LEM-generated scalar kurtosis. The scalar field is initialized 
with a Gaussian spectrum: LEM-9 (Ks = 8, Lu = 1), LEM-17 (Ks = 20, L„ = 1), LEM-18 
(Ks = 30, Lu = 1). 

that of the scalar: in this case, the simultaneous action of advection and molecular 
diffusion causes the scalar to develop a non-Gaussian flat-tail p.d.f.. (ii) When there 
is an increase of the initial weight of small scales: in this case, the decrease in the 
magnitude of the scalar gradient occurs faster by the action of molecular diffusion. 
While the advection tends to drive the scalar-gradient p.d.f. toward a non-Gaussian 
form, molecular diffusion acts to return it to Gaussian. With a combination of these 
two effects, the scalar tends to be correlated with its gradient, thus a non-Gaussian 
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FIGURE 8. Temporal variation of the LEM-generated scalar superskewness. The scalar field is 
initialized in the physical domain as double square waves: LEM-3 (Re = 90, Sc = 0.7), LEM-6 
(Re = 90 Sc = 0.7), LEM-19 (Re = 50, Sc = 0.7), LEM-20 (Re = 900, Sc = 0.7), LEM-21 
(L, = 1, Re = 90, Sc = 0.05), LEM-22 (L„ = 3, Re = 90, Sc = 0.05). 

(usually flatter tail) p.d.f. develops. Note that the mechanism responsible for this 
non-Gaussian behaviour always exists. But when the initial weight of the small scales 
is large, the effects are more pronounced and are more clearly exhibited. In the 
cases considered here, the non-Gaussian behaviour generated by the first mechanism 
appears much stronger than that caused by the second route (compare, for example, 
LEM-18 with LEM-3). 

At this point it is instructive to examine the influence of the model Reynolds 
number and the molecular Schmidt number on the outcome of mixing. While a 
thorough parametric study is not intended, cases LEM-19-LEM-22 provide some 
useful "insight. In figure 8 results are presented of the temporal evolution of the 
scalar superskewness for the field initialized the same as in LEM-3 but with different 
values of the Reynolds and the Schmidt numbers. This figure shows that the overall 
influence of Re is not significant. This is to be expected, as in the context of the LEM 
the primary influence of the Reynolds number is on the variation of the velocity 
leneth scales participating in the rearrangement event. The influence of Sc is more 
intriguing. Figure 8 indicates that for the initial field composed of a double square 
wave with Lu = 1. a decrease in Sc yields a more pronounced exponential p.d.f. at 
long times, but it does not yield a noticeable influence when Lu = 3. The enhanced 
non-Gaussian behaviour at lower Sc values is not in accord with the expectation that 
the intermittency of the scalar derivative and the departure from Gaussian scalar 
p.d.f. increase with increasing Sc (Kerr 1985; McMurtry et al. 1993a). To explain the 
behaviour here, it is important to realize that in the absence of molecular diffusion the 
p.d.f. would not experience any changes. Therefore, as the magnitude of the molecular 
diffusion coefficient is increased, i.e. as Sc is decreased, the influence of molecular 
action on the p.d.f. becomes more pronounced. This influence is more noticeable 
when Lu = 1. In this case, the length scale of the velocity field is smaller than the 
largest scale of the scalar field. This velocity field influences the small scalar scales 
significantly but does not have a pronounced effect on the large scalar scales. As 
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5c decreases, the difference between mixing of small-scale and of large-scale scalars 
becomes more significant. This yields a more exponential p.d.f. as demonstrated by the 
deviation of the results in LEM-21 from those in LEM-3. However, as the magnitude 
of the velocity length scale increases, the relative influence of advection (on the small- 
and the large-scale scalars) is similar and the p.d.f. at long times is not significantly 
modified. This is demonstrated by the similarity of the results in LEM-6 and LEM-22. 

The results presented above can be better understood by considering the following 
physical scenario: consider two scalar blobs, one with a size smaller than the largest 
velocity eddy and the other blob larger than this eddy. As a result of advection, the 
small blob is almost immediately stirred by turbulence and follows the cascade down 
to small scales. The time scale of this process is the same as that of the turbulent 
diffusivity. In the same time period, the larger blob is only dispersed and 'waits' 
until its size becomes the same or smaller than that of the largest eddies. Then it 
experiences a mixing similar to that felt by the smaller blob. Again, remember that 
molecular diffusion is only effective at small scales and the p.d.f. can only be changed 
with the presence of molecular diffusion. Therefore the p.d.f. corresponding to the 
small blob is now changed from an initial double delta to a mixed near-Gaussian 
form. The same would happen for the p.d.f. of the large blob but with a time lag. 
The weighted sum of the two statistics can behave in a variety of different forms 
depending on the weights of the two original blobs. At intermediate times, there will 
always be a combination of small and large scales as figure 8 does indicate strong 
non-Gaussian behaviour at intermediate times in all the cases. For the small blobs 
which are already stirred, molecular diffusion is more active and changes the pdf. 
more rapidly. During this change, the larger blobs wait until turbulence brings their 
sizes near to the active scales of molecular diffusion. Different statistics for different 
blobs imply, as indicated before, that the weighed sum of statistics exhibits stronger 
departure from Gaussian. Now if the size of the velocity eddy is larger than the largest 
of the scalar blobs, both blobs follow the turbulence cascade. During the time that 
molecular diffusion acts to change the p.d.f. from its double-delta form, the blobs are 
uniformly stirred by turbulence. Thus, the decrease of Sc would not have a significant 
influence on mixing at long times. In fact, if Lu is large enough it may even have an 
opposite effect. That is, as Sc decreases, the molecular diffusion can damp the rate 
of kurtosis and superskewness growth. Therefore, it is concluded that the role of Sc 
is very sensitive to both the initial scalar scale distribution and the initial extent of 
mixing. Further numerical simulations with large Schmidt numbers are required for 
a more elaborate investigation of this issue. 

3. Direct numerical simulation 

The results of the LEM simulations provide the guideline in our further, and some- 
what more extensive, analysis of the problem via DNS. One of the early applications 
of DNS in the problem of turbulent scalar mixing and reaction is due to Hill (1979) 
and since then such simulations have provided a very useful and effective means 
of capturing some of the physical aspects of this complex phenomenon (Kerr 1983 
1985, 1990; Givi & McMurtry 1988; Eswaran & Pope 1988; Leonard & Hill 1988' 
1991, 1992; McMurtry & Givi 1989; Metais & Lesieur 1992; Madnia, Frankel & Givi 
1992; Frankel, Madnia & Givi 1993; Miller et al. 1993, 1995; Frankel 1993)- a recent 
review is available (Givi 1994). 

Our objective in the simulations conducted here is to analyse the statistical be- 
haviour of passive scalars in three-dimensional, solenoidal, homogeneous and isotropic 
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velocity fields. All simulations are performed within a triply periodic box flow by 
means of a spectral-collocation numerical scheme employing Fourier basis functions 
(Givi & Madnia 1993). The hydrodynamic field is initialized by a random three- 
dimensional fluctuating velocity with zero mean and with a specified spectral density 
function. A wide-band von Karman spectrum is imposed. The velocity field is then 
allowed to evolve according to the Navier-Stokes equations for more than 10 eddy 
turnover times to reach to a 'self-similar' condition. This is considered as the initial 
condition for the scalar mixing. Simulations are conducted with both 'unforced' and 
'forced' hydrodynamic fields. In the former, the turbulence field is decaying whereas 
in the latter a steady turbulence field is established. The forcing scheme requires the 
energy in the low wavenumbers to remain constant. In this way the magnitudes of 
the turbulent length and velocity scales, and thus the magnitude of the Reynolds 
number, remain approximately constant throughout the evolution. Further details 
can be found in Givi (1989). 

The transport of the scalar field is considered under two conditions: a zero mean 
scalar gradient and a constant (non-zero) mean scalar gradient.f In the former, the 
variance of the scalar field monotonically decreases as mixing proceeds; in the latter 
the mean scalar gradient forces the variance to reach an asymptotic value after a 
transient time. In this case, in order to maintain periodicity in all directions the scalar 
field y> is decomposed into a mean and a fluctuating part as 

\p(x,t) = sty + 4>{x,t). (8) 

Here (p denotes the mean-subtracted scalar value and stf is a constant denoting the 
magnitude of the mean scalar gradient. With this initialization the transport of the 
scalar fluctuation is governed by 

°4- + V • V<£ + stx> = 9»V2tj>, (9) 
et 

where V is the velocity field, v is the _v-component of the velocity vector along which 
the scalar gradient is imposed, and QM is the molecular diffusion coefficient. This 
equation indicates that the mean scalar gradient acts like a 'source' term in the 0 
transport equation. It is the statistics of this field that are of importance. Moreover, 
when s/ ^ 0, the statistics of the normalized variable </>/.s/ are expected to be similar 
at long times. This was verified numerically. All the cases considered are listed in 
tables 2 and 3. The simulations are conducted with the following three initialization 
schemes. 

Scheme 1: The initial scalar field has a Gaussian p.d.f. and is specified in Fourier 
space. The amplitudes of the Fourier modes are selected based on a specified input 
energy spectrum. The weights of the real and the imaginary components of each 
Fourier mode are determined based on a random phase. With this, the initial scalar 
field adopts a Gaussian p.d.f. in the physical domain. The conditions in all the flows 
initialized in this manner are listed in table 2(a). Different forms of the initial scalar 
spectra are considered as indicated in the second column of table 2(a). In the cases 
with a double-hat spectrum, the parameter a is defined as 

£(^=0) 
E(Ks2,t = 0) 

Scheme 2: The initial scalar field yields an approximate double-delta p.d.f.. The 

t Hereinafter, a 'constant' mean scalar gradient implies a 'non-zero' gradient unless otherwise 
stated. 
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Case Initial scalar spectra si Turbulence Re, Sc 

(a) DNS-1 Gaussian Forced 58 0.5 
DNS-2 Gaussian Decaying 58 to 18 0.5 
DNS-3 Gaussian Forced 38 0.5 
DNS-4 Gaussian Decaying 38 to 13 0.5 
DNS-5 Top-hat, K, = 1 Forced 58 0.5 
DNS-6 Top-hat, Ks = 5 Forced 58 0.5 
DNS-7 Double-hat, Ksl = l,Ks2 = = 5,a = 0.2 Forced 58 0.5 
DNS-8 Double-hat, Ksi = l,Ksl = -5,a = 1 Forced 58 0.5 

(b) DNS-9 Top-hat, Ks = 8 0 Forced 58 0.5 
DNS-10 Double-hat, Xsi = 1, KS2 = 8, a = 0.125 0 Forced 58 0.5 
DNS-11 Double-hat, Ksi = 1, Ksi = 8, a = l 0 Forced 58 0.5 
DNS-12 Double-hat, Ks] = 1, Ks2 = 8, a = 0.125 0 Both 58 to 18 0.5 
DNS-13 Double-hat, Ksl = 1, KS2 = 8, a = 1 0.2 Forced 58 0.5 
DNS-14 Top-hat, Ks = 8 0.5 Forced 58 0.5 
DNS-15 Top-hat, Ks = 1 0.5 Forced 58 0.5 

(c)  DNS-16 Square wave 0 Forced 58 0.5 
DNS-17 Double square wave 0 Forced 58 0.5 
DNS-18 Double square wave 0 Forced 58 0.05 

TABLE 2. Conditions for 643 DNS. (a) Scheme 1 (with an initial Gaussian p.d.f.). Each of the simu- 
lations for DNS-l-DNS-4 are conducted under all of the following conditions: (I) Ks = 8, si = 0, 
(II) Ks = 4, sf = 0, (III) Ks = 1, si = 0, (IV) Ks = 8, si = 0.5, (V) Ks = 1, si = 0.5. In all the 
other simulations, si = 0. (b) Scheme 2 (with an initial double-delta p.d.f.). In the case indicated 
'both' in column 4 the flow is forced until tD = 3. After this time, forcing is removed, (c) Scheme 3 
(scalar field initialized in the physical domain). 

scalar field is initialized in a more isotropic manner than that composed of square 
waves (Scheme 3). The procedure is essentially the same as that first proposed by 
Eswaran & Pope (1988). Again, the components of the Fourier scalar modes are 
specified by a random phase. These components are then transformed back into 
the physical space. The scalars with a negative amplitude are set to (j) = — 1 and 
those with a positive value are set to (j) = +1. The numerical simulation of the field 
with this 'exact' double-delta distribution is not possible due to formation of very 
sharp gradients in the physical domain. This problem is overcome by transforming 
the scalar field into the Fourier domain and decreasing the relative weights at high 
wavenumbers. As a result, the physical values are no longer bounded by ±1 (Eswaran 
& Pope 1988). This field is allowed to go through molecular diffusion to reduce the 
amplitude. In the simulations here the initial scalar values are bounded by ±1.01. 
Table 2(b) provides the list of all the parameters employed in DNS of flows initiated 
by this scheme. 

Scheme 3: The scalar field is initialized in the physical domain in such a way as 
to yield a square wave in the v-direction (Givi & McMurtry 1988). The scalar slabs 
with 4> = +1 values are similar to those shown in figure 1 for LEM-1. To avoid 
sharp gradients in DNS, the scalar slab interfaces are prescribed by an error function. 
The scalar values are constant in (x, z)-planes in each of the locations along the 
^-direction. The flow parameters for the simulations with this initialization are listed 
in table 2(c). 

The simulations of the cases listed in table 2 are conducted in a domain discretized 
by 643 Fourier-collocation points. In a few cases, listed in table 3, some simulations 
with 1283 collocation points are also conducted. In some of the cases, the simulations 
are repeated several (up to 10) times to ensure the reliability of the statistics; the 
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Case 
BDNS-1 3 
BDNS-2 2 
BDNS-3 1 

Scheme Initial scalar field si Turbulence Rex Sc 

Double square wave                               0 Forced 80 0.5 
Double-hat, Ksl = l,Ks2 = 8,a = 0.125   0 Forced 80 0.5 
Gaussian, Ks = 8                                  0.5 Forced 80 0.5 

TABLE 3. Conditions for 1283 DNS. For schemes 1 and 2 column 3 specifies the initial shapes of the 
spectral density function of the scalar. For scheme 3 column 3 specifies the initial scalar profile in 
the physical space. 
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FIGURE 9. Temporal variation of the scalar kurtosis generated by DNS-1. Forced turbulence, 
Re; = 58, with an initial Gaussian spectrum and an initial Gaussian p.d.f. (Scheme 1): (I) 
K< = 8, sä = 0, (II) Ks = 4, ssl = 0, (III) K5 = 1, sJ = 0. (IV) Ks = 8, si = 0.5, (V) 
K, = 1, sJ = 0.5. 

trends portrayed by the statistics are shown to remain similar. The definition of the 
other variables listed in tables 2 and 3 is clear. These variables indicate the presence 
{sJ j= 0), or the absence {ss/ = 0) of the mean scalar gradient, the dynamics of the 
velocity field (forced, decaying, or both), and the magnitudes of the Reynolds number 
based on the Taylor length scale (Re;.) and the molecular Schmidt number (Sc). 

DNS results 

The 'time' tD in the figures presented in this section denotes the time as normalized by 
the eddy turnover time of DNS. Since a variety of different conditions are considered, 
the magnitude of the eddy turnover time is not identical in all the simulations. In 
the cases with a decaying turbulence field, the initial eddy turnover time is used. It is 
important to indicate here that xL is an order of magnitude larger than xD (McMurtry 
et al. 1993a). In all of the cases described below, the field of velocity fluctuations 
exhibits a nearly Gaussian p.d.f.. The statistics of this field are not presented here; 
rather, the statistical behaviour of the scalar field is the subject of detailed discussions. 

First, the mixing evolution from an initial Gaussian state (Scheme 1) is considered. 
As indicated in table 2(a), the difference between the cases is associated with the 
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FIGURE 10. Normalized p.d.f.s of the scalar field at several time levels generated by DNS-1 
(a) case I: Ks = 8, JS = 0; (b) case IV: Ks = 8, sS = 0.5. 

magnitudes of Ks and s/. Each of the simulations for an initial Gaussian spectrum 
(DNS-l-DNS-4) is conducted under all of the following conditions- (I) Ks = 8 sf = 
0; (II) Ks = 4, sJ = 0; (III) Ks = 1, ^ = 0; (IV) Ks = 8, ^ = 0.5; (V) 
Xs - 1, s>/ = 0.5. In figure 9 the temporal evolution of the kurtosis for DNS- 
1, cases I-V is presented. To generalize the conclusions drawn from the scalars' 
kurtosis profiles, the variations of higher-order moments, the profiles of the p.d.f.s, 
the 'conditional expected dissipation' of the scalars, and the correlation between the 
scalar and its dissipation (equation (4)) are monitored in all the simulations. These 
statistics are useful for a quantitative description of the departure from Gaussian 
especially at the tails of the p.d.f. (Sinai & Yakhot 1989; Miller et al. 1993; Jaberi, 
Miller & Givi 1995). However, with the exception of the p.d.f.s and some of the higher 
moments in some of the cases, these profiles are not shown. The results in figure 9 
indicate that in I and II the p.d.f.s quickly develop exponential tails, whereas in IV 
and V they remain approximately Gaussian at all times. These are also observed in 
the p.d.f. profiles in figure 10 for cases I and IV In III. the scalar field starts with 
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FIGURE 11. Temporal variation of the parameter 2 generated by DNS-1.1: Ks = 8, sf = 0, III: 
Ks = 1, rf = 0, IV: Ks = 8, sd = 0.5. 

mostly large length scales. Thus, the statistics remain Gaussian for a long time. In the 
presence of a constant mean gradient, the kurtosis varies slightly (IV, V) regardless 
of initial conditions. As expected, after the initial transient time the statistics become 
identical in these two cases. The trends observed in the first three cases can be 
explained in view of the LEM results. The initial field in case I is mostly composed 
of small scalar scales; thus the behaviour is somewhat similar to that in LEM-18. 
That is, the second mechanism for non-Gaussian behaviour, as identified above is 
observed. In III, the initial scalar field is dominated by large scales; thus the tendency 
for non-Gaussian behaviour is very weak for a long time. In case II, the initial 
field is composed of both small and large scalar scales and yields a relatively strong 
non-Gaussian behaviour similar to that observed in LEM-8. 

A useful means of characterizing the influence of mixing is by band-pass filtering of 
the DNS data. Here, the whole band of the scalar spectrum in the range 0 < k < 30 
is divided into regions 0 < k ^ 3, 3 < k < 15. 3 < k ^ 30, and 15 < k < 30. At the 
ranges of the Reynolds numbers considered, the separation of scales in the physical 
domain cannot be represented by a Fourier band-pass cutoff. Nevertheless, we refer 
to these regions as those pertaining to large scales (LS), intermediate scales (IMS), 
retained scales (RS) and small scales (SS), respectively. The temporal variation of the 
'percentage of the scalar energy' is defined as 

Z(t) = 
r JK, 

Ev(K.t)dK 

r Jo 

(11) 
E^(K,t)dK 

where Kf, Ku indicate the lower and the upper cutoff wavenumbers, respectively, and 
the denominator on the right-hand-side denotes the scalar variance. The corresponding 
2t values for some of the representative cases of DNS-1 are shown in figure 11. This 
figure indicates that in all the cases (some not shown for clarity) only a very small 
portion, typically less than 2%. of the total energy is associated with SS. In case I, 
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the magnitude of 2t associated with LS increases and that of RS decreases, until 
the two become very close at tß « 4. A similar trend is observed in II (not shown) 
but the initial difference between the LS and the RS values of 2£ are understandably 
less. Therefore, it takes a shorter time for the two 2£ values to become equivalent. In 
III, the % values for LS are significantly greater than those for RS at initial times. 
Therefore, the statistics are expected to be dictated primarily by LS. In IV, the initial 
evolution of 0£ values is similar to those in I. However, within a very short time LS 
values become larger than those corresponding to RS. The results for V (not shown) 
are in accord with those here: at small times the profiles are similar to those in III and 
after tD » 2 they become almost identical to those in IV. A striking feature portrayed 
by these results is the independence of the results at long time from the variance 
ratios at the initial time. Figure 11 indicates that despite a noticeable difference in the 
initial allocation of variances pertaining to LS and RS, the long-time ratios of the 
variances are very close. In fact, with the two cases with a mean gradient the results 
are almost identical. The kurtosis values of the filtered data are presented in figure 12. 
Part (a) of this figure indicates that the p.d.f.s associated with LS are nearly Gaussian 
at all times in all the cases. The IMS-p.d.f.s (figure 12b) are flatter than Gaussian, but 
the departure from Gaussian is less when a mean gradient is imposed. In all the cases, 
the kurtosis values associated with SS are consistently high (figure 12c), indicating 
exponential p.d.f.s for SS. These results indicate that while non-Gaussian behaviour 
can be developed within the full and the intermediate scales, it is not an inherent 
property of large scales. This observation is very useful in our discussions below. 

Contrary to that of the scalar, the p.d.f. of scalar derivatives exhibits a somewhat 
similar behaviour in all the cases. In figure 13, results are presented of the p.d.f. of 
d(j>/dy where it is shown that in all the cases an intermittent behaviour is prevailed. 
Moreover, the statistics are expected to be different when a mean scalar gradient is 
imposed. The results in figure 13 show symmetric p.d.f.s for cases I—III, but skewed 
p.d.f.s for IV and V. It has been established that a scalar field embedded in a 
locally isotropic velocity field may not be locally isotropic (Budwig, Tavoularis & 
Corrsin 1985; Thoroddsen & Van Atta 1992; Tong & Warhaft 1994). This is typically 
measured by the skewness of the scalar-fluctuation derivatives since, by reflectional 
symmetry they should all vanish if the scalar field is locally isotropic. The asymmetry 
of the p.d.f. in figure 13 is consistent with the experimental measurements (Van Atta 
& Antonia 1980; Tavoularis & Corrsin 1981a: Budwig et al. 1985; Thoroddsen & 
Van Atta 1992) and recent simulated results (Hölzer & Siggia 1994; Pumir 1994; 
Miller et al. 1995). The mechanism responsible for the skewness is due to the mean 
scalar gradient, even though the velocity field is isotropic. The p.d.f.s of the scalar 
dissipation (not shown) exhibit departure from a log-normal distribution with a 
considerable skewness, consistent with the results of previous computational and 
experimental investigations (Eswaran & Pope 1988; Andrews & Shivamoggi 1990: 
Vincent & Meneguzzi 1991; Jayesh & Warhaft 1992; Miller et al. 1995). 

The temporal evolution of the scalar kurtosis in DNS-2 (for cases I-V) with an 
unforced hydrodynamic field is shown in figure 14. A comparison of this figure with 
figure 9 reveals the significance of forcing. In case I, a mild increase in the kurtosis 
suggests that a non-Gaussian p.d.f. for this case is due to the interaction of diffusion 
and advection at small scales which is weaker than that in the stationary field (DNS- 
1). In II. the magnitude of the kurtosis increases (similar to that in DNS-l(II)), but 
the tendency to return toward the Gaussian state is very weak and the field retains 
its non-Gaussian state even at long times. The decay of turbulence energy is the 
primary factor in retaining the non-Gaussian p.d.f.. Again, in the presence of the 
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FIGURE 12. Temporal variation of the partitioned kurtosis generated bv DNS-1.1: K, = 8, ssl = 0, 
II: Ks = 4, sf = 0, III: Ks = 1, sJ = 0, IV: K, = 8. sJ = 0.5, V: Ks = 1, sJ = 0.5. (a) LS 
(0 < K «S 3), (b) IMS (3 < K < 15), (c) SS (15 < K s£ 30). 
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FIGURE 13. Normalized p.d.f.s of the scalar derivatives in the y-direction in DNS-1 at tD = 3. 
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FIGURE 14. Temporal variation of the scalar kurtosis generated by DNS-2. Decaying turbulence, 
Rex = 58 to 18, with an initial Gaussian spectrum and an initial Gaussian p.d.f. (Scheme 1): 
(I) Ks = 8, ssl = 0, (II) Ks = 4, j* = 0, (III) Ks = 1, sit = 0, (IV) Ks = 8, d = 0.5, (V) 
Ks = 1, sJ = 0.5. 

mean gradient (cases IV and V) the statistics at long times are similar. However, it 
is noted that the extent of similarity is not the same as that in cases IV and V of 
DNS-1. This implies that in a decaying field with a mean scalar gradient, the effect 
of initial conditions can be more preserved than in a stationary field. This behaviour 
was consistently observed in all our other simulations and is useful in interpreting 
some of the experimental results, as will be discussed in the next section. The p.d.f.s 
of the v-derivative of the scalar (not shown) portray a trend similar to that in figure 
13 indicating that skewed p.d.f.s are also formed in decaying (lower Re) flows. 
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FIGURE 15. As figure 14 but generated by DNS-3. Forced turbulence, Re,. = 38. 

FIGURE 16. As figure 14 but generated by DNS-4. Decaying turbulence, Rek = 38 to 13. 

A decrease in the magnitude of the Reynolds number is expected to yield a milder 
non-Gaussian behaviour. This is shown in figure 15 where results are presented for 
DNS-3. The Reynolds number in all the cases in DNS-3 is smaller than those in 
DNS-1. A comparison of this figure with figure 9 indicates that the initial growth 
rate of the scalar kurtosis is less when the Reynolds number is decreased. In case I, 
after a mild increase during four eddy turnover times, the kurtosis increases abruptly 
and then relaxes toward the Gaussian value. Again, in all the cases with the mean 
scalar gradient (cases IV and V) the scalar field remains Gaussian at all times. The 
influence of hydrodynamic forcing is more dominant at this lower Reynolds number, 
as the results for DNS-4 in figure 16 show that with a decaying turbulence field, no 
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FIGURE 17. Temporal variation of the DNS-generated scalar kurtosis. Forced turbulence, Rex = 58. 
The scalar field is initialized with a top-hat or double-hat spectrum and an initial Gaussian pdf. 
(Scheme 1). DNS-5 (K, = 1), DNS-6 (K, = 5), DNS-7 (Ksl = 1, Ks2 = 5, a = 0.2), DNS-8 
(Ka = 1, Ks2 = 5, a = 1). 

significant change is observed from the initial Gaussian scalar field (compare with 
figures 14 and 15). 

Based on the results presented for DNS-l-DNS-4 it can be concluded that at 
moderate Reynolds numbers, the statistics of the scalar field with a zero mean scalar 
gradient are strongly dependent on the initial conditions. In the presence of a steady 
(forced) advection field, the scalar p.d.f. can change from an initial Gaussian to 
a highly non-Gaussian distribution depending on the initial weights of small- and 
large-scale scalars. If the turbulence field is allowed to decay, once a non-Gaussian 
p.d.f. develops it lasts longer. As the magnitude of the Reynolds number decreases it 
is still possible to develop non-Gaussian p.d.f.s although at a much later time. Now 
if, in addition, the turbulence field is allowed to decay, departure from the Gaussian 
state is further delayed (in our case it is never developed). 

To further examine the effects of the initial scalar length scale distribution on the 
long-time statistics, the results for DNS-5-DNS-8 are considered in figure 17. In 
DNS-5 and DNS-6, the scalar field is initialized with a Gaussian scalar p.d.f. and 
a top-hat energy spectrum. The results for these two cases indicate that, in accord 
with the LEM results (LEM-9, LEM-18), by increasing the magnitude of Ks the 
kurtosis adopts higher values at intermediate times. By adding a small amount of 
energy at large scales the non-Gaussian behaviour can be significantly enhanced. This 
is witnessed in DNS-7 in which the initial field is similar to DNS-6 (with Ks2 = 5) 
but with a relatively small energy (a = 0.2) at Ksl = 1. In this case, the exponential 
behaviour is preserved throughout mixing. However, for large a values, e.g. DNS-8 in 
which the energy is distributed equally between wavenumbers 5 and 1, the growth of 
the kurtosis is significantly damped. In this case, the field is dominated by large scales 
and does not allow exponential p.d.f.s. The results for a case with Ksi = 1, Ks2 - 8 
show a similar behaviour, and thus are not shown. These observations are in accord 
with our earlier findings based on the LEM in that the presence of initial multi-length 
scalar scales results in departure from Gaussian if the initial energy is distributed 
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FIGURE 18. Temporal variation of the DNS-generated scalar kurtosis. The scalar field is initialized 
with a top-hat or double-hat spectrum and an initial double-delta p.d.f. (Scheme 2). DNS-9 
(Ks = 8), DNS-10 (Ksl = 1, Ks2 = 8, a = 0.125), DNS-11 (Ksi = 1, Ksl = 8, a = 1), DNS-12 
(Ksi = 1, Ks2 = 8, a = 0.125). All cases are with a forced turbulent field. The forcing is removed at 
tD = 3 in DNS-12. The case DNS-12N is the same as DNS-12 but the time axis is normalized by 
the effective eddy turnover time. 

'appropriately' and the field is not dominated by large scales. By 'appropriate' it is 
meant that there is some energy at large scalar scales, but its magnitude is smaller 
than that at other scales. It is not at present possible to predict a priori the response 
to a specific a. value in the range specified without conducting DNS. 

The results for the cases with an initial double-delta p.d.f. (Scheme 2) are discussed 
next. The evolution of the kurtosis in DNS-9-DNS-12 is shown in figure 18. This 
figure shows that in contrast to the case with an initial Gaussian p.d.f., when the 
magnitude of energy in the small scales is relatively large (DNS-9), the kurtosis at 
long times is not significantly larger than 3. This suggests that starting from an 
unmixed scalar field, the increase of small scales does not necessarily yield non- 
Gaussian behaviour. By increasing energy by 12.5% at large scales (DNS-10) the 
kurtosis grows significantly and the p.d.f. develops exponential tails. However, at 
tD « 4.5 the kurtosis starts to decrease rapidly and adopts a near-Gaussian value 
at long times. The reason for this return to the Gaussian state is that in this case 
the dominant scalar length scale is comparable to the hydrodynamic length scale. 
So, the exponential nature of the p.d.f. is rapidly destroyed by the stirring process 
(similar to LEM-6). This is further assessed in DNS-12. The initialization in this 
case is similar to that in DNS-10, but at tD = 3 the forcing of the hydrodynamic 
field is removed. In this case, interestingly, the kurtosis decays very slowly and the 
exponential nature of the p.d.f. is preserved for a longer time. As before, by increasing 
the energy at large scales (DNS-11) the growth of the kurtosis is damped and the 
p.d.f. remains close to Gaussian. A comparison of the results for cases DNS-10 and 
DNS-12 suggests that once an exponential p.d.f. is established it has less tendency 
to relax when the turbulent field is decaying. The difference between DNS-10 and 
DNS-12 can be roughly related to the difference in the magnitudes of the eddy 
turnover times due to the difference in the advection fields in the two simulations. 



Non-Gaussian scalar statistics in homogeneous turbulence 

10° r— 

267 

 1 ■ 1 ' 1 1 r 

-DNS-9 
■ DNS-10 
■ DNS-11 /*\ 

- Gaussian 

P{<j>lo) 10- 

10" 

10° F 

10" 

PW<T) 
10" 

io- 

-6 

10° 

PW<r) 

~1 ' T" 

\ 
-i 1        ' 1 1 ■ 1 1 1 

(*)      \ 
■ 

\ 
■ 

': \ " 

^y 
■ 

V 
V . V : 

I'l \\\ 
• III W ' W 

\V - \ \ --    - : 'it \\ x 
n ft \ \ \ 
l/l 

   ■ \A. 
I        '        I 

-20246 
<j)la 

FIGURE 19. Normalized p.d.f.s of the bandpass-filtered scalar generated by DNS-9, DNS-10, 
and DNS-11 at tD = 4.286. (a) LS: 0 < K < 3, (b) IMS: 3 <K « 15, (c) SS: 15 < K < 30. 
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To show this, the time for DNS-12 is normalized by an 'effective' eddy turnover time 
which is the average of this time during the simulation after forcing is removed. The 
kurtosis results with the time axis scaled in this way are identified by DNS-12N in 
figure 18. Within the time duration of the simulation, the trend in kurtosis values in 
DNS-12N is close to that in DNS-10. However, the values are not identical. This is 
expected as the average of the eddy turnover time, as evaluated here, is not capable 
of reflecting the effects of the modified advection field. Nevertheless, all these results 
confirm that exponential p.d.f.s can be developed by adding an appropriate amount 
of large scales to the initial scalar field. It must be pointed out that the departure 
from Gaussian is not the explicit character of large scales. In figure 19 the p.d.f.s 
of filtered data are presented for cases DNS-9-DNS-11. Figure 19(a) indicates that 
the large scales, although somewhat asymmetric, are close to Gaussian. The IMS 
statistics, figure 19(b), do show long-tailed p.d.f.s with a small degree of asymmetry 
due to the distribution of the initial energy. The p.d.f.s for the scalar field in SS are 
similar and exponential in all the cases (figure 19c). 

The variations of the kurtosis and the skewness values for DNS-13 are compared 
with those of DNS-11 in figure 20(a). In DNS-13 the initial scalar field, similar to 
DNS-11, is composed of a double-delta p.d.f. with significant energy at large scales. 
The results indicate that until tD « 12, the statistics remain Gaussian in both cases. 
After this time, the kurtosis rises sharply in the case without a mean gradient (DNS- 
11), but there are no significant changes in the case with a mean gradient (DNS-13). 
The non-Gaussian behaviour in DNS-11 is the consequence of the presence of large 
initial scalar scales. It must be noted that this presence also results in skewed p.d.f.s 
in the simulations with a limited number of low-wavenumber modes. For the cases 
considered here, this is shown in figure 20(a) which in fact suggests large skewness 
values for DNS-11. Of course, if the calculations are repeated several times and 
statistics are gathered with a large number of realizations, the skewness would vanish 
but the kurtosis would not. However, the large scales do not cause skewed IMS 
p.di.s even those with flat-tail p.d.f.s., This is observed in figure 20(b) which shows 
that in DNS-11 and DNS-13 the p.d.f.s are fairly symmetric. Also, it is important 
to indicate that the behaviour shown in figure 20(a) for DNS-11 is not due to a 
numerical resolution problem. The normalized spectral density functions of the scalar 
(E0) and its dissipation (D^), shown in figure 20(c), are very similar in the two cases 
and are also similar to the corresponding spectra of the velocity field. The behaviour 
portrayed by DNS-11 and DNS-13 are also observed in two additional simulations 
(not shown here) in which the initial spectral density function obeys a power law of 
the form /e-3. For the case with si = 0, the behaviour is similar to that in DNS-11, 
but with a negative skewness at long times. The results for si = 0.2 are identical to 
those in DNS-13. All these results indicate that the presence of large scales is a strong 
source of non-Gaussian behaviour. This observation is very useful in interpreting 
some of the experimental results as discussed in the next section. 

The non-Gaussian behaviour just described is not observed in the presence of a 
mean scalar gradient with the Scheme 2 initialization. The reason is that with such a 

FIGURE 20. (a) Temporal variation of the DNS-generated scalar skewness and kurtosis. (b) p.d.f.s 
of the IMS (3 < K < 15) bandpass-filtered scalar at tD = 15.92. (c) The spectral density functions 
at tD = 15.92 of the velocity field £,.(£), the scalar field E^K), the dissipation of the velocity field 
D,(K) and the dissipation spectra of the scalar field D^K). Forced turbulence, Re>. - 58. The scalar 
field is initialized via Scheme 2 with an initial double-delta p.d.f. and with a double-hat spectrum, 
Ksi = 1. K,2 = 8, a = 1. DNS-11 (si = 0), DNS-13 (si = 0.2). 
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FIGURE 21. (a) Temporal variation of the DNS-generated scalar superskewness. (b) p.d.f s of the 
scalar dissipation at rD = 12. Forced turbulence. Re, = 58. The scalar field is initialized °ia Schemel 
with an initial double-delta p.d.f. DNS-13 (double-hat spectrum. Ksl = 1, K* = 8  a = 1   </ = 0 2) 
DNS-14 (top-hat spectrum, Ks = 8,^ = 0.5). DNS-15 (top-hat spectrum, j£ = 1.^ = 6.5).       ' 

gradient the long-time statistics are fairly independent of initial conditions and also 
independent of the amplitude of the scalar gradient. This is demonstrated by the results 
lor DNS-13-DNS-15 in which both the initial scalar conditions and the magnitude 
or s/ are varied The results are given in figure 21(a) for the superskewness evolution 
and m figure 21(b) for the p.d.f.s of the scalar dissipation (X) at tD = 12. These figures 
demonstrate that the behaviour at long times is similar in all these cases (the spectral 
density functions are also similar, but are not shown). Of course, the independence 
from the initial conditions would be less pronounced in a decaying turbulence field 

In comparing the results generated by DNS with those via LEM one should keep 
in mind that the ratio of the length scale of the velocitv to that of the scalar is 
an important parameter in the characterization of mixing. In DNS, these scales are 
limited by the computational domain (box size) at the upper bound. The same is 
also true in LEM but the scales can be imposed more independently of each other 
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FIGURE 22. Temporal variation of the DNS-generated scalar kurtosis. Forced turbulence, Re,. = 58. 
The scalar field is initialized via Scheme 3. DNS-16 (square wave, Sc = 0.5), DNS-17 (double square 
wave, Sc = 0.5), DNS-18 (double square wave. Sc = 0.05). 

and with a higher degree of freedom in specifying the ranges. Here, it is shown that 
with the initialization of the scalar field in the form of square waves, trends similar 
to those depicted by LEM are observed. The simulations for Sc = 0.5 are labelled 
DNS-16 and DNS-17. For the former, a single square scalar wave (in the _v-direction) 
is imposed. For the latter, a double square wave is imposed. Note that while the initial 
scalar profile in the y-direction is similar to that in the LEM initialization (figure 1), 
the initial scalar fields are not identical owing to the three-dimensionality of the DNS. 
The results in figure 22 show that after an initial transient time, the kurtosis remains 
close to 3 in DNS-16. But it increases in DNS-17 with a higher rate toward a larger 
value before decreasing to the near-Gaussian value at long times. This behaviour is 
similar to that observed in LEM-3: however, here the departure from Gaussian is not 
very significant since the dominant scale of the velocity is of the same order as that 
of the scalar (LEM-6). 

The influence of the Schmidt number on the scalar p.d.f. is difficult to determine 
by DNS, as only a limited range of this parameter Can be considered by direct 
simulations. However, some features are captured by a limited number of simulations 
and are discussed here. In DNS-18. the same initialization as DNS-17 is employed 
but with Sc = 0.05. The results in figure 22 indicate that by decreasing Sc the kurtosis 
grows faster initially, but then decreases and relaxes to a value less than 3. In these 
cases, the dominant scale of the velocity is of the same magnitude as that of the scalar. 
Thus the effect of Sc should be, and is. the same as that presented in figure 8 showing 
the difference between cases LEM-6 and LEM-22. Further extensive simulations with 
broader ranges of the length scales and the Schmidt number are required to generalize 
the influence of Sc on the scalar p.d.f. which (as shown in both the LEM and the DNS 
results) can be very complex. However, it seems that the effect of Sc on the scalar 
spatial-derivatives is somewhat less complex. In all the cases considered here it was 
observed that as Sc decreases, the intermittency of the scalar derivatives is less pro- 
nounced. This observation is consistent with previously established results (Kerr 1985). 
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 BDNS-l 
 BDNS-2 
 BDNS-3 

FIGURE 23. Temporal variation of the DNS-generated scalar kurtosis. Forced turbulence, Re> = 80 
BDNS-l (Scheme 3: double square wave, ss/ = 0), BDNS-2 (Scheme 2: double-hat spectrum 
Ksl = 1, Ks2 = 8, a = 0.125, sJ = 0). BDNS-3 (Scheme 1: Gaussian, K5 = 8, si = 0.5). 

An important characteristic displayed in DNS results is the lack of an exponential 
p.d.f. in all the simulations with an imposed mean scalar gradient. This is consistent 
with the analysis of Kimura & Kraichnan (1993), but is not in accord with that 
suggested by Pumir et al. (1991), Jayesh & Warhaft (1992) and Hölzer & Siggia 
(1994). To confirm this finding, and also to study mixing at larger Reynolds numbers 
here a few additional simulations are performed with a higher resolution (1283 

collocation points). The conditions for these simulations are listed in table 3. Cases 
BDNS-l. BDNf-2, and BDNS-3 are initialized in a manner similar to DNS-17, DNS- 
10 and DNS-l(IV), cspectively. but with a larger magnitude of the Reynolds number. 
Figure 23 indicates that the behaviour of BDNS-l is similar to that of DNS-17, but 
with less deviation from Gaussian at long times. This is expected since in these two 
cases (DNS-17, BDNS-l) the largest scales of the scalar and the velocity fields are 
nearly equal and the initial scalar field is composed of two large slabs. The increase 
in Re provides a better stirring of the unmixed initial scalar field. Thus the p.d.f. at 
long times would be closer to Gaussian. The evolution of the kurtosis for BDNS-2 
does not exhibit the same trend since the long-time p.d.f. is exponential. In this case, 
the separation of initial scalar length scales is more clearly established and the large 
scales have a smaller weight. As indicated before, the presence of rare large scales 
(small a values) in the initial field is sufficient to cause non-Gaussian behaviour as 
shown here by large values of the kurtosis in BDNS-2. The results in BDNS-3 are 
nearly identical to those in DNS-1(IV, V) in which the kurtosis values remain near 
3. This indicates that in the presence of a constant mean gradient, the p.d.f. remains 
close to Gaussian regardless of the value of the Reynolds number. It is useful to note 
that the magnitude of the Reynolds number based on the integral length scale (Re,) 
here is twice the critical Re above which Jayesh & Warhaft (1992) suggest exponential 
p.d.f.s should prevail. 

Finally, some of the present results are compared with available experimental data. 
A quantitative comparison is made here; further qualitative comparisons are made 
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Variable DNS-3(IV) TW94 TV92  BTC85 

-0.09       <0.1    small    small 

1.67 1.8       1.2      1.4 

7.32 8.5      - 

9.21        10.0 

(«</>)/((02){u2»'/-: -0.009      small   small    small 
(v(j>)/((<t>2)(v2))ir- -0.586      -0.7   -0.68   -0.65 

«utf)3)/«*2)*«2»3'2 -0.101 - 
((v<t>f)/((4>2)(v2)f2 -2.398 - -2.1        - 
<(#)4)/«</>2>(«2»2 6.583 - 
<(^)4}/«<W))2 11.61 - 11.0        - 

TABLE 4. Comparison between the present simulated results and experimental measurements for 
some of the variables for cases with a constant mean scalar gradient. In the experiments. Re}. s= 40. 
TW94, TVA92 and BTC85 correspond to Tong & Warhaft (1994), Thoroddsen & Van Atta (1992) 
and Budwig et al. (1985), respectively. 

in the next section. The experimental data considered are those provided by Budwig 
et al. (1985), Thoroddsen & Van Atta (1992) and Tong & Warhaft (1994). It must be 
indicated, however, that not all the conditions and the measured results are identical 
in these experiments. Moreover, some of the measured statistics are not invariable 
in each experiment and they are subject to change depending on the location of the 
measurements. In analysing the simulated results using such experiments, at least in 
the context considered here, it is more appropriate to make qualitative comparisons 
as done in the next section. Nevertheless, it is useful to examine the trends established 
numerically in the light of the laboratory data. 

All our results indicate that intermittency of the scalar derivative in the .v-direction 
(perpendicular to the direction of the mean scalar gradient) is enhanced as the 
Reynolds number increases. The same is true for the derivative in the y-direction 
(parallel to the mean gradient direction), but with higher skewness magnitudes. At 
the range considered the skewness does not seem to be noticeably dependent on Re. 
These results are consistent with recent results based on the experiments of Tong & 
Warhaft (1994) and the numerical results of Pumir (1994). Also, the simulated p.d.f.s 
of the velocity-scalar fluctuations (ucp and vcj)) are exponential with relatively high 
skewness values for vcp. This is in accord with the experiments of Thoroddsen & Van 
Atta (1992). Table 4 provides a quantitative comparison between all the simulated and 
laboratory results. For this comparison, DNS-3(IV) is considered since in this case a 
mean scalar gradient is imposed in accord with the experiments, and the Reynolds 
number is close to that in the experiments of Thoroddsen & Van Atta (1992) and 
Tong & Warhaft (1994). The statistics in this table are generated via time averaging 
over several realizations, in addition to space averaging. This is justifiable since in the 
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presence of the mean scalar gradient, the field can be assumed quasi-stationary (or in 
a sense ergodic) at long times. 

In accord with the experimental measurements, the numerical results show negligible 
skewness values for the scalar derivative and the scalar flux in the x-direction, but 
indicate significant skewness values for the v-derivative and the scalar flux in the 
y-direction. The simulated skewness and kurtosis values of the scalar gradients are 
close to those in the experiments of Tong & Warhaft (1994). With inclusion of data 
for BDNS-3 (with Re, = 80) for the y-derivative skewness (1.59) and kurtosis (10.82), 
the numerical results indicate a relative independence of the skewness and Re;., and 
a scaling of Re021 for the kurtosis. These scalings are in accord with those suggested 
by Tong & Warhaft (1994). The experimental values for the mean flux {v$) are 
underestimated by DNS, but the simulated values of the skewness and the kurtosis 
of this flux compare well with the measurements (Thoroddsen & Van Atta 1992). 

4. Further discussion 
In the light of the numerical results generated, here an interpretation is provided 

of some of the features observed in recent laboratory and numerical experiments on 
scalar mixing in turbulent flows. 

In the mixing experiments of Gollub et al. (1991) and Lane et al. (1993) of a flow 
between heated walls, the transition from a Gaussian to an exponential scalar p.d.f. 
is accompanied by a sharp increase in the effective diffusivity and a decrease in the 
magnitude of the mean scalar gradient within a region far from the boundary layers. 
Most of the temperature drop occurs in the boundary layer, and the interior mean 
temperature varies linearly from one side to the other. However, the magnitude of 
the mean temperature gradient in the interior regions varies nonlinearly with the 
Reynolds number. The steep decline of the magnitude of the mean gradient near 
the critical Re implies a substantial increase in the bulk thermal transport over a 
relatively narrow region near the wall. The sharp growth of the skewness of scalar 
fluctuations for Reynolds numbers greater than a critical value is also an important 
characteristic of this experiment. This skewness is preserved even when considering a 
large sample size and is not a consequence of limited statistical data or measurement 
errors. Lane et al. (1993) explain that the skewness may be generated by a weak 
large-scale flow drift which might be caused by flow instabilities at high Re. They 
also indicate that by increasing the correlation length scale of the velocity from 0.48 
to 1.7 cm the scalar p.d.f. remains Gaussian even up to Re = 8000. The critical Re 
above which sudden changes occur in the bulk properties in this case is 1000. In 
several aspects, these results are in accord with our findings. Before the transition Re 
the statistics are mostly determined by the mean gradient. The unmixed large-scale 
plumes within the boundary layer are stable and do not mix with interior fluids. 
This means that the statistics are dictated by the interior linear (approximately) 
mean scalar profile where the fluids are well mixed. Therefore, the p.d.f. remains 
approximately Gaussian. As Re increases to its critical value, the large scales at the 
boundary become unstable and are engulfed within the interior regions of the flow. 
These are still large-scale structures and their combination with the mixed interior 
fluid results in skewed p.d.f.s with broad tails. This behaviour is observed in our 
LEM (cases LEM-3. LEM-8. LEM-14) and DNS (cases DNS-10. DNS-11, BDNS-2) 
results. The instability of large scales facilitates the transport of the energy-containing 
scales at the boundary into the interior region, resulting in the increase of the heat 
flux and the effective diffusivity. At the same time, the fluid within the interior region 
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is more vigorously mixed yielding a low value of the local mean scalar gradient. The 
fluid in this region is continuously fed by rare large scales, and the unmixed thermal 
plumes are convected from boundary flows and are stirred by the interior flow. If 
the feeding by the large scales is continuous, as it is in the experiments, the p.d.f. 
remains exponential. If there is no influx of large scales, then mixing is transient 
and a Gaussian p.d.f. is eventually observed. These observations are in accord with 
our simulations as we show that the presence of rare large scales yields exponential 
p.d.f.s. However, a linear mean scalar profile is not responsible for this behaviour as 
in all our simulations pertaining to this issue the magnitude of the mean gradient 
is zero. Note that the significant portion of the temperature difference occurs near 
the walls and a substantial amount of heat transfer is due to the bulk motion of 
the fluid. One cannot expect to have significant 'unmixed' regions with exponential 
p.d.f.s, and at the same time expect an increase in the heat transfer and the thermal 
diffusivity. Therefore, it may not necessarily be the mean scalar gradient that is 
causing non-Gaussian intermittency, but it is the bulk fluid motion which introduces 
the large-scale boundary fluids into the central region. Of course the quantitative 
outcome depends on the magnitudes of the length scales. Re and Sc, and also the 
geometry of the flow configuration. 

In the experiments of Gollub et al. (1991) and Lane et al. (1993) it is also shown 
that weak large scales can cause skewed p.d.f.s, the degree of which is enhanced 
as Re increases. This behaviour is more pronounced when the largest length scale 
of the velocity is smaller than that of the scalar, and disappears when the velocity 
length scale increases. Moreover, with an increase of the velocity scale from a size 
smaller than the scalar scale to one larger, the p.d.f. changes from exponential to 
Gaussian. It has been suggested (Lane et al. 1993; Kimura & Kraichnan 1993) that 
this behaviour could be due to non-isotropy or non-homogeneity of the velocity field. 
This does not seem to be the case as the results of previous laboratory (Tavoularis 
& Corrsin 1981a) and numerical (Rogers. Moin & Reynolds 1986; Miller et al. 1995) 
experiments on non-isotropic shear flows show Gaussian scalar p.d.f.s even at large 
Reynolds numbers. In fact, the non-homogeneity in the experiments of Lane et al. 
(1993) is more significant when Re is less than the critical value, i.e. when the p.d.f. is 
Gaussian. In DNS-11 we show that by an increase of the initial scalar energy at low 
wavenumbers, the presence of large scales causes skewed p.d.f.s. But this is not due 
to the presence of the mean scalar gradient. This skewness is expected to vanish if a 
large number of realizations are considered. 

Notwithstanding the 'active' role of scalars. the behaviour discussed above is also 
observed in the convection experiments. In the Rayleigh-Bernard experiments of 
Solomon & Gollub (1991), the temperature p.d.f. is Gaussian or exponential if the 
Rayleigh number is below or above the transition value (Ra,). For Ra < Ra„ the 
presence of thermal plumes is detected. These plumes remain attached to the wall 
from which they erupt, but span the layer all the way to the opposite wall without 
breaking. In the more energetic state, when Ra > Ra, the plumes are broken apart by 
turbulence resulting in a flow dominated by disconnected and freely convecting fluid 
blobs (thermals). In the 'soft turbulence' regime {Ra < Ra,). the influence of thermal 
plumes on the temperature p.d.f. is negligible. They only contribute to the mean 
transport across the cell and do not significantly affect the temperature fluctuations. 
In the hard turbulence regime (Ra > Ra,), the breaking of large scales contributes 
to the scalar fluctuations throughout the cell including the central mixing core. In 
this regime, Zocchi. Moses & Libchaber (1991) indicate that most of the temperature 
drop occurs near the boundary plates and the bulk of the interior fluid is at constant 
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temperature. The experiments of the Chicago group indicate a Gaussian p.d.f. in the 
soft turbulence regime and an exponential p.d.f. in the hard turbulence regime. Our 
results, however, imply that it is not only the magnitude of Rat that determines the 
p.d.f.; the influence of the thermal plumes is also important and should be considered. 
In other words, hard-soft turbulence regions may not necessarily be associated with 
exponential-Gaussian p.d.f.s. Rather, it is the distribution of the scalar length scales 
and their relation to the velocity length scales that are important in determining 
the p.d.f.. Note that the size of the plumes and their eruption are controlled by the 
aspect ratio of the cell and the magnitude of Ra. As the plumes grow and break, they 
interact with the fluid within the core. In the core, therefore, the p.d.f. is governed 
by a weighted sum of the statistics of the incoming unmixed flow with that of the 
well-mixed original core fluid. As we show in DNS-10 and BDNS-2 this can cause 
non-Gaussian behaviour in accord with that observed experimentally. In this regard, 
our results are consistent with those obtained by Christie & Domaradzki (1993,1994) 
as they indicate that at a fixed Ra, both Gaussian and exponential p.d.f.s can be 
generated by varying the cell aspect ratio. Our arguments are also in accord with 
Solomon & Gollub (1991) who indicate that the scalar p.d.f. is chiefly controlled by 
the coherency of thermal plumes. 

The stratified thermal convection experiments of Thoroddsen & Van Atta (1992) 
provide further evidence in support of our physical arguments. The inherent stability 
of the flow in this low-Re experiment is sufficient to keep the p.d.f. Gaussian, even 
with an imposed mean scalar gradient. Gaussian p.d.f.s are observed in all the cases 
considered in this experiment, consistent with all the results portrayed here for DNS- 
1(IV), DNS-13, BDNS-3. Further experiments at large Reynolds numbers would be 
very valuable in generalizing the conclusions drawn from these simulations. 

The experimental results of Jayesh & Warhaft (1992) on passive scalar mixing 
in decaying grid-generated turbulence indicate the presence of both Gaussian and 
exponential scalar p.d.f.s. They suggest that in the presence of a constant mean scalar 
gradient, after a complex initial evolution the p.d.f. adopts an exponential form if 
the Reynolds number based on the integral flow scale {Re,) is larger than a critical 
value {Rec « 70). In the absence of the mean gradient, the p.d.f. is skewed but 
approximately Gaussian. The results of earlier experiments of Tavoularis & Corrsin 
(1981a) in turbulent shear flows with a constant mean scalar gradient suggest Gaussian 
p.d.f.s even for Reynolds numbers much larger than Rec of Jayesh & Warhaft (1992). 
It seems unlikely that the non-isotropic nature of shear turbulence is responsible for 
the deviation from Gaussian as witnessed in the experiments of Lane et al. (1993) and 
the convection experiments of Heslot et al. (1987). In all the cases considered in our 
DNS of flows with a constant mean gradient, the p.d.f. is Gaussian regardless of the 
initial conditions and the magnitude of the Reynolds number. This is consistent with 
the experimental findings of Tavoularis & Corrsin (1981a), DNS results of Rogers, 
Mansour & Reynolds (1989) and recent analyses of Kimura & Kraichnan (1993), but 
not in accord with the numerical results of Hölzer & Siggia (1994). We also show 
that once non-Gaussian statistics are formed they tend to exist longer in a decaying 
turbulent flow than in a forced stationary flow. This is especially true when there are 
large-scale scalar fluctuations that cannot be stirred by small-velocity eddies, even in 
the presence of a constant mean gradient. It appears that this condition is present in 
the experiments of Jayesh & Warhaft (1992). 

One notable difference between the experiments of Jayesh & Warhaft (1992) and 
Tavoularis & Corrsin (1981a) is the ratio of the length scales of the scalar to 
the velocity. In Jayesh & Warhaft (1992) for the case with a mean gradient this 
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ratio is greater than unity, but in Tavoularis & Corrsin (1981a) it is smaller than 
unity. Thus our results in the cases with a mean scalar gradient are expected to be 
consistent with those of Tavoularis & Corrsin (1981b). The analysis of Kimura & 
Kraichnan (1993) shows that a nonlinear or a piecewise linear mean scalar profile 
can cause significant non-Gaussian behaviour. In our DNS, a perfectly linear mean 
scalar profile for the whole domain is imposed; therefore, the length scales of scalar 
fluctuations are determined by the forcing function due to the mean gradient in 
(9). This does not appear to be the case in the experiments since the mean scalar 
profile, even if perfectly linear, does not extend over the entire domain. Thus it is 
possible that the effect of initial (inlet) conditions are preserved in governing the 
consequent statistics. Furthermore, in the presence of the mean gradient in Jayesh 
& Warhaft's (1992) experiments, the large scalar scales evaluated based on the peak 
of the scalar spectrum (lB) remain larger than the velocity integral scale along the 
tunnel. From the measured temperature spectrum it can be deduced that scalar scales 
up to 70 times larger than le are present. For example, it is shown that scalar scales 
larger than lie contribute to 8% of the total scalar variance. In our simulations 
we show that this amount of large scales is sufficient to create significant departure 
from Gaussian especially when /„ < k. Despite their contribution in developing 
exponential-tail p.d.f.s, these large scales do not necessarily portray non-Gaussian 
behaviour themselves. In fact, if these scales are filtered out, the p.d.f. of the retained 
field exhibits a strong exponential behaviour. This is observed in our results presented 
in figure 19(b). 

In the absence of the mean gradient, the reported results in Jayesh & Warhaft 
(1992) correspond to the case where the scalar length scale is smaller than that of 
the velocity. For this case, based on our LEM (cases LEM-6. LEM-10, LEM-16) and 
DNS (cases DNS-5, DNS-16) results, we expect the scalar p.d.f. to be near Gaussian. 
As indicated by Warhaft & Lumley (1978) in grid-generated turbulence experiments 
it is not clear how to change the thermal length scales (by grid heating) without 
affecting the velocity field. This is an important issue awaiting further investigations, 
especially by laboratory experiments. 

5. Concluding remarks 
The results of our numerical experiments reveal the intricate physics of scalar 

mixing and the complex role played by the combined influences of advection and 
molecular diffusion in turbulent flows. The primary observation made here is to verify 
that the long-time p.d.f. of a passive scalar in homogeneous turbulent flows is not 
necessarily Gaussian (or of any other particular form), and the fate of mixing is 
dependent on several factors. The objective of this work is to identify some of the 
causes for non-Gaussian behaviour of the scalar field and to determine the influence 
of several flow parameters in governing the scalar statistics. Aided by the analyses of 
the numerically generated data, an attempt is made to interpret the results provided 
in several recent laboratory experiments. With this interpretation, it is easy to see 
that there are many more possibilities (than those discussed here) for generating 
non-Gaussian p.d.f.s. However, there are several conclusions that can be drawn from 
the simulated results. These conclusions are itemized here, with the caveat that they 
are established in the range of parameters, resolution, and within the time durations 
considered in the present simulations: 

(i) Two mechanisms are identified for causing exponential p.d.f.s of the scalar 
amplitude due to the concurrent actions of advection and diffusion. (1) A non-uniform 
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action of advection on the large and the small scalar scales: for this, the dominant 
scale of advection should be smaller than that of the scalar and the weight of the 
large scalar scales should be 'appropriately' imposed. By 'appropriate' it is meant that 
there is some energy at large scalar scales, but its magnitude is smaller than that at 
other scales. (2) The nonlinear interaction of the scalar and the velocity fluctuations at 
small scales: in this case, the scalar tends to be correlated with the scalar gradient due 
to the smoothing effect of molecular diffusion on the scalar gradient. This correlation 
leads to a weak non-Gaussian behaviour and can be enhanced by increasing the 
weight of small scalar scales. 

(ii) Although the presence of an appropriate amount of large scalar scales is a 
source of non-Gaussian behaviour, the p.d.f.s of the large scales themselves are not 
necessarily exponential. 

(iii) In the absence of a mean scalar gradient, i.e. a decaying scalar field, the p.d.f. 
is very sensitive to the initial conditions. In the presence of this gradient, non-Gaussian 
behaviour is not sustained regardless of initial conditions. 

(iv) The statistical behaviour is different in a stationary turbulence field from that 
in a decaying field. Once non-Gaussian behaviour is developed, it has a tendency to 
survive for a longer time in a decaying field. 

(v) Contrary to its role in the scalar-derivative p.di.s, the Schmidt number 
exhibits a rather complex influence on the p.d.f.s Of the scalar amplitude. In most 
of the cases considered, non-Gaussian behaviour becomes more pronounced as the 
magnitude of the Schmidt number is increased. However, an opposite behaviour can 
be observed under the first criterion (noted above). Further laboratory and numerical 
experiments with large Sc values are required to investigate this issue. 

(vi) It is suggested that the non-Gaussian behaviour observed in recent laboratory 
experiments on passive scalar mixing may not be necessarily due to the presence of 
a linear mean scalar profile. It is argued that the initial/boundary conditions, and/or 
the nonlinearity of the mean scalar profile could be the cause of this behaviour. 

(vii) It is suggested that the non-Gaussian behaviour observed in recent convection 
laboratory experiments may not be necessarily due the presence of a hard-turbulence 
regime. It is the dynamics of the thermal plumes that could be the cause. 

(viii) The simulated results pertaining to small-scale intermittency are in accord 
with laboratory experimental results. The DNS generated statistics of the scalar 
derivatives and the velocity-scalar fluctuations are also in agreement with laboratory 
measurements. 
A challenging next step would be the analysis of mixing for active scalars and/or 
chemically reactive flows (Libby & Williams 1994) in both homogeneous and non- 
homogeneous flows. 
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R&D NOTES 

Conditional Statistics in Turbulent Scalar Mixing 
and Reaction 

F. A. Jaberi, R. S. Miller, and P. Givi 
Dept. of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, NY 14260 

For more than 30 years, the pioneering hypothesis of Toor 
(1962) has been utilized for statistical modeling of turbulent 
reacting flows with nonpremixed reactants. According to this 
hypothesis, in a chemical reaction of the type "Fuel + 
Oxidizer -» Products" in homogeneous isothermal flows with 
stoichiometric and (initially) nonpremixed reactants, the tem- 
poral decay rate of the "unmixedness" (reactants' covariance) 
is independent of chemistry and can be related to the stan- 
dard deviation of the "mixture fraction." This mixture frac- 
tion (also referred to as the Shvab-Zeldovich variable (Libby 
and Williams, 1980)) is a conserved scalar which portrays the 
mixing behavior of the system under nonreacting but other- 
wise identical flow conditions (Brodkey, 1975; Toor, 1975). 
Denoting the concentration of one of the reactants, say fuel 
by 91, and the mixture fraction by <j>, Toor (1962) shows that 
in the limit of infinitelv fast chemistry 

E{9U)) r(r) 

£{ff(f)}     o-(r') 
(1) 

where £{ } denotes the expectation (ensemble-mean value) 
and cr2U) is the variance of the mixture fraction. This mix- 
ture fraction, considered a random variable, is defined within 
the lower and upper bounds: 4>e[<£;,4>J. In a spatially ho- 
mogeneous turbulent flow the statistics are generated by real- 
ization and/or space-sampling, thus the decay of the mixture 
fraction variance and the rate of reactant conversion depend 
only on time (r). 

Determination of the statistics of reacting scalars from 
those of the mixture fraction continues to be a very challeng- 
ing issue. Dutta and Tarbell (1989), Frankel et al. (1993). and 
Frankel (1993) discuss comparative assessments of several 
turbulence closures for this purpose. In Toor's results por- 
trayed by Eq. 1 the primary assumption is that the probability 
density function (pdf) of the mixture fraction is Gaussian, and 
remains Gaussian throughout mixing. In this note we show 
that Eq. 1 is valid under a less restrictive condition, and that 
the Gaussian pdf is one special case which satisfies this gen- 

Current address of R. S. Miller: Applied Technologies Section. Jet Propulsion 
Laboratory. 4800 Oak Grove Drive. Pasadena. CA «1109. 

eral condition. This proof is provided by considering the 
transport equation governing the evolution of the mixture 
fraction pdf. With this equation, several other important fea- 
tures of scalar mixing are also identified. 

The lefthand side of Eq. 1 is determined directly by the 
pdf of the mixture fraction. By defining <f> = 0 as the reaction 
surface (the flame sheet), we have (Libby and Williams, 1980): 
E{J(t)} = i$"<t>P(<t>,t)d<l>, where P denotes the pdf of <f>. 

With the transformation [<l>,t]-*[y = <t>/o-(t),cr(t)], Eq. 1 is 

expressed as 

£{ff(r)} 

cr(r) Jn 

= [<V<r(r)], 
yP[y,(rU)]dy. (2) 

In order for Eq. 1 to be valid, two conditions must be satis- 
fied: (1) the pdf in the integrand of Eq. 2 must be time-in- 
variant, i.e., P[y, <r(t)]= P(y); and (2) the upper limit of the 
integral must be time-invariant. Here we demonstrate that 
both of these conditions are satisfied when the "conditional 
expected diffusion" of the mixture fraction is "linear" in the 
composition space. For this demonstration, we consider the 
transport equation for the pdf of <t> in spatially homogeneous 
turbulent flows (O'Brien, 1980: Pope, 1985; Dopazo, 1994) 

3P      d 
— + — (£Ui<MP) = o. 
dt     d<b 

(3) 

Assuming that the molecular diffusion is governed by the 
Fick'slaw, £ = KV

2
<£, K is the molecular diffusion coefficient. 

The term £{£|<M denotes the expectation of the scalar diffu- 
sion conditioned (denoted by the vertical bar) on the scalar 
value <j). Equation 3 is alternatively expressed as (O'Brien, 
1980; Pope, 1985) 

8P      d1 

dt      d<f>2 
(4) 

with f2 = KV^-V^» and E{£2\(f>) denoting the conditional ex- 
pectation of the scalar dissipation. At the level of single-point 
closure, neither of these conditional expectations are known, 
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nor is the unconditional expectation of scalar dissipation, 
E{£2} = f$"P(.<l>,t)E{g2\<l>}d<l>. Given the pdf it is possible to 
determine these conditional expectations (Miller et al., 1993). 
First, we consider the general family of "exponential pdfs" 
since this family includes the Gaussian distribution as as- 
sumed by Toor, and it also includes other distributions which 
have been observed in more recent laboratory and numerical 
experiments (Castaing et al., 1989; Kerstein. 1991; Gollub et 
al., 1991; Pumir et al., 1991; Jayesh and Warhaft, 1992; Metais 
and Lesieur, 1992; Lane et al, 1993; Kimura and Kraichnan, 
1993) 

\<t>-4>0\q 

we have 

P(<t>,aO)) = C{(TU),qhxp\ - 
K[a(t),q]y 

4>e[4>„<M = [-°°,°°],   (5) 

where q is a constant parameter; q = 2 corresponds to 
Gaussian and q = 1 implies the Laplace (double exponential) 
density. Considering distributions with the mean <j>0 = E{<t>] 
- 0 and the variance cr2 = E{<f>2}, manipulation of Eqs. 3-4 
in the format outlined by Miller et al. (1993) yields 

£{g2W 
EU2) = 1, 

E{£W <b_ 

EU2)  "     cr2 
(6) 

for the Gaussian density, and 

E{t2M     1/      i/2|*|\ EiCW <b       _ 
T772T = " —     (7) 
E{t'} <T~ 

for the Laplace pdf. It is noted that the conditional expecta- 
tions of diffusion as predicted by these two densities are 
identical, and are linear in the compositional domain in ac- 
cord with the least mean-square estimation (LMSE) model 
(Dopazo, 1994; O'Brien, 1980). Based on this observation, we 
propose that for all the other members of the family of expo- 
nential pdfs, the linear profile is applicable. This proposal is 
plausible provided that 

1 dC 

c17 
EU2) 1  8K 

~K~t 

qEU2) 
(8) 

Manipulation of Eq. 5 shows that K(a,q) = M(q)a-q and 
C(a,q)= N(.q)a~\ where M(q) and N(q) are known func- 
tions of q. Thus, it is easily verified that Eq. 8 is indeed valid 
regardless of the magnitude of q. 

The general condition under which the conditional ex- 
pected diffusion is linear for any pdf has been established by 
Valiiio et al. (1994). By considering the characteristic of Eq. 
3, they show that with a linear conditional expected diffusion, 
the pdf of the variable y is time-invariant. Here, we provide a 
direct means of establishing this condition by substituting the 
second of Eq. 6 into Eq. 3. Denoting the Fourier transform 
of the pdf by P 

8P    Q.EU2) BP 
— + '- - = o. 
dt er-       du. 

This differential equation has the trial solution 

P(Q,,t) = f[ilexpih((Tj)t}], 

(10) 

(11) 

where the function /depends on the initial condition />(^>,0). 
With <r(dar/dt)= -£{f2}, this trial solution satisfies Eq. 3 
with /i(o-,r) = (l/r)ln[o-(r)]. Thus the unique solution of Eq. 
10 is 

P(Clj) = f[tl(r(t)]. (12) 

This solution shows that the transformation [4>,t]-*[y, crU)] 
is very convenient in portraying the nature of pdf evolution 
when the conditional expected diffusion is linear. With this 
transformation Eq. 3 yields 

P[y,<rU)]~G(y)   only. (13) 

where the function G is determined by the initial condition 
and remains the same through mixing. Equation 13 means 
that for a linear conditional expected diffusion, the pdf of the 
scalar variable adopts a "self-similar" form in the sense that 
the pdf of the variable normalized by its standard deviation is 
time-invariant. This does not imply a "stationary field" as 
P(<f>,t) can be time-dependent. This self-similarity is, in fact, 
noticed in direct numerical simulation results (Miller et al., 
1993) in which the linearity of the conditional scalar diffusion 
field is also corroborated. It must be noted that in using the 
linear conditional diffusion field in LMSE, O'Brien (1980) 
points to permanency of the initial shape of the pdf when the 
parameter ß = [£{£2X01/t°'2(')] is constant. The mathemat- 
ical procedure adopted here provides a direct means of de- 
termining the functional form of the parameter y, as undis- 
guised by Eq. 12. Valiiio et al. (1994) and Sinai and Yakhot 
(1989) suggest this functional form a priori by the inspection 
of numerical simulation data. 

Now we consider condition (2) pertaining to the limits of 
[yiOXyu(0] = [<l>,MtX<l>uMt)]. For a pdf with an "un- 
bounded support"[yi,yu] = [-a>,a:'] condition (2) is satisfied. 
For the Gaussian pdf, obviously an unbounded support is im- 
plied by Toor. For a pdf within a "bounded domain," mixing 
is accompanied by the migration of the scalar bounds in the 
composition space as shown by Miller et al. (1993). Notwith- 
standing the randomness of the scalar bounds, Miller et al. 
(1993) also show 

d<t>u _    d<t>i 

~dT~~~dt -r = --^ = £{^^}=-£{fl^}. (14) 

With a linear conditional expected diffusion in Eq. 14 we have 

1 
P(4,t)--=(   P(Cl,t)exp(jCl<l>)dSl,   j-J=T   (9) 

V/.TT   J -*. 

4>u(t)        <t>,U) <t>u(0) 
——- = — = Constant = ——- 
a-(t) o-O) <r(0) 

(15) 
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Equations 13 and 15 indicate that the linearity of the condi- 
tional expected diffusion satisfies both conditions (1) and (2); 
and thus imply the validity of Eq. 1. The Gaussian pdf is one 
special case which satisfies these conditions, but there are 
other distributions and/or mixing closures which portray a 
similar behavior (Givi, 1989). Considering the (approximate) 
linearity of the conditional diffusion field in several recent 
numerical and laboratory experiments (Miller et al., 1993; 
Pope and Ching, 1993; Leonard and Hill, 1991; Kailasanath 
et al., 1993) in which the pdf is not necessarily Gaussian, it is 
plausible to assume that Toor's results would be applicable 
for modeling of equivalent reacting systems. Of course, this 
would be true if the conditional diffusion remains linear at 
all times: It is well-established that for initially "segregated" 
reactants with the initial pdf composed of an exact double- 
delta function, the assumption is not generally plausible when 
t' -»0, t # t' (Kosaly, 1987; Givi and McMurtry, 1988; Madnia 
et al., 1992; Frankel et al., 1993) unless the pdf remains dou- 
ble-delta at all times. The transformation of the double-delta 
pdf to Gaussian (or other) distributions is accompanied by a 
nonlinear conditional expected diffusion (Miller et al., 1993). 

At this point, it is instructive to note that with the same 
linear conditional diffusion, the conditional expected dissipa- 
tion can vary depending on the initial form of the pdf. It is 
useful to note that the self-similarity of the pdf also implies 
the self-similarity of the conditional dissipation. With the re- 
quirements (Miller et al., 1993) />(*;, t)E{£2\<t>,} = 
P(*„,f)£{f2|*„}=0, Eq. 4 gives 

EU'M -J!/
P(/W 

E{£2} P(y) 
(16) 

The righthand side of Eq. 16, while time-invariant, does de- 
pend on the pdf. For the exponential family, for example, 
Eqs. 3-4 yield, after significant manipulations (Jaberi, 1996) 

Figure 1. Normalized conditional expected dissipation 
of the scalar for several members of the expo- 
nential pdf. 

(q < 2), the normalized conditional dissipation portrays a 
"basin" shaped curve (concave up) near the mean scalar 
value. For pdfs with tails narrower than Gaussian (q > 2), the 
conditional dissipation is "bell" shaped (concave down). For 
q = 2, the profile is a straight line E{^2\<t>} = £{f2}. Only in 
this case is the conditional scalar dissipation independent of 
the scalar value (Gao, 1991), for which Eq. 1 was derived by 
Toor. The relation between the conditional dissipation and 
broadness (narrowness) of the pdf at its tails was first derived 
by Sinai and Yakhot (1989) based on a speculation on the 
asymptotic behavior of scalar mixing in stationary turbulence. 
Here, Eq. 17 illustrates this relation directly and is very con- 
venient for assessing the results obtained by other closures. 

E{f-\6) _K^j   (2\_   12   1*1* 1*1" , 
exp| —|,   (17) 

where r and y denote the gamma function and the incom- 
plete gamma function, respectively. With the identity 

,* 
r(l + n)--y(l + n,2) = n!exp(-2) £ —,    /i = 0,l, 

k = 0 

(18) 
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Notation 
C= constant 

E{|} = conditional expectation 
/>=PDF 
v= normalized scalar variable: y = <t>/cr(t) 

the corresponding algebraic relations for the Gaussian den- 
sity and the Laplace density, Eqs. 6 and 7 are exactly recov- 
ered for q = 2 and q = l, respectively. For other values of q, 
Eq. 17 can be evaluated only by numerical means (for q = 4 
and q -»x the results can be expressed, respectively, in terms 
of the error function and the exponential integral, both of 
which still require numerical evaluation). Note that for the 
Gaussian member (q = 2) an analytical expression for the 
conditional expected dissipation has been previously ob- 
tained (Gao, 1991). The results based on Eq. 17 in Figure 1 
confirm that if the pdf exhibits tails broader than Gaussian 

Greek letters 

y- incomplete gamma function 
T = gamma function 
(" scalar diffusion 
K = diffusion coefficient 

f2 = scalar dissipation 
<r= standard deviation of the mixture fraction 
<j>= composition domain 

Superscripts 

I = lower limit in the composition space 
u = upper limit in the composition space 
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ABSTRACT—A field-parametrized model termed the Inter-Layer Diffusion Model (ILDM) is developed 
and is implemented for the probabilistic description of scalar mixing in homogeneous turbulent flows. The 
essential element of the model is based on the lamellar theory of mixing in the context developed by Kerstein 
(1991 a), and proposes that there are two coupled mechanisms by which the mixing process is described. These 
mechanisms are due to: (1) local events and (2) integrated global events. The mathematical formalities by 
which the closure is invoked are described and it is shown that the conditional expected diffusion of the scalar 
field depicted by the model depends more directly on the local events. With the manipulation of each of these 
two mechanisms, several families of scalar probability density functions (pdf's) are generated. These families 
include some of the distributions generated by other mixing closures. The similarity of local events imply the 
similarity of the conditional expected diffusion as generated via these models. The global events manifest 
themselves by the evolution of the conditional expected dissipation, and also the boundedness of the 
composition domain. While the pdf's generated in this way are very different, their applications for modeling 
of mixing limited reactions do not yield significantly different results. 

Key Words: Turbulent mixing, lamellar model, homogeneous turbulence, reacting flows 

1    INTRODUCTION 

Description of scalar mixing continues to be a challenging task in mathematical 
modeling of turbulent flows (Brodkey, 1975; Kerstein, 1991b; Ottino, 1989; Dopazo, 
1994). Within this past decade alone, several strategies have been devised and imple- 
mented for a variety of applications. Examples are the approaches based on scalar 
probability density function (pdf) via modeled transport equations (Pope, 1985; Chen 
et ai, 1989; Madnia et al., 1992; Miller et ai. 1993; Givi, 1989; Dopazo, 1994), assumed 
pdf methods (Bockhorn, 1988; Frankel et al., 1993), and other procedures such as the 
Linear Eddy Model (LEM) (Kerstein, 1988; Kerstein, 1991b; Kerstein, 1992), the 
Fokker-Plank equation (Fox, 1992), spectral closures (Larcheveque and Lesieur, 1981; 
Frankel et al.. 1992) and lamellar structures (Ottino, 1989; Kerstein, 1991a), amongst 
others. Due to the complexity of the subject, the extent of success of these closures has 
been appraised only in a limited context. In some cases, the performance of the models 
has been assessed by comparison with data generated by direct numerical simulations 
(DNS) (Givi, 1994). However, because of the limitations of DNS the generality of the 
conclusions drawn by such comparisons cannot be guaranteed without caution. Also, 
the extent of data obtained by laboratory experiments is not very significant; it has been 
only recently that substantiated data, useful for modeling purposes, have been generated 
(Jayesh and Warhaft. 1992; Kailasanath et ai, 1993). However, the challenges associated 
with the problem are well-recognized, warranting continued work on the subject. 

249 
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A standard test case that has proven useful in the contributions cited above, is the 
problem of passive scalar mixing from an initial binary state in homogeneous-isotropic 
turbulence (Givi and McMurtry, 1988; Eswaran and Pope, 1988; McMurtry and Givi, 
1989; Madnia et al, 1992; Miller et al., 1993; Frankel et al, 1993; Frankel et al, 1992; 
Jiang et al, 1992; Metais and Lesieur, 1992; Kimura and Kraichnan, 1993). In this 
setting, the problem of mixing is isolated from other competing physical mechanisms. It 
also provides a relatively simple condition to configure in both laboratory and 
numerical experiments. In this context, turbulent mixing involves two physical mech- 
anisms: turbulent convection and molecular diffusion. The first is a mechanical 
"stirring" process which results in the stretching of intermaterial area of the scalar. 
Mixing induced by such stirring is completed at small scales by the molecular action 
through diffusion of substances across intermaterial surface areas. The results of recent 
laboratory experiments (Southerland and Dahm, 1993) and numerical simulations 
(Ruetsch and Maxey, 1992) suggest that a major part of scalar diffusion occurs in 
a system oUayer-Uke striation, or lamellae. Each of these lamellae have a thickness (2w) 
which in general is a function of space and time, w = w(x, t). The rate of stretching and 
folding of the lamellar structures is governed by turbulent eddies. Development of 
a physical model which can accurately portray the mechanisms of lamellar stretching 
as well as the distribution of these lamellae are the subject of current research (Ottino, 
1989; Muzzio and Ottino, 1989b; Muzzio and Ottino, 1989a; Sokolov and Blumen. 
1991a; Sokolov and Blumen, 1991b). 

The lamellar description has proven useful in depicting the kinematics of turbulent 
mixing and also in reproducing the results obtained by other closures. For example. 
Kerstein (1991a) shows that with particular specifications of the scalar profile within 
each lamellae and the pdf of lamellae thickness, the family of pdf s generated by the 
Amplitude Mapping Closure (AMC) (Kraichnan, 1989; Chen et al., 1989) are obtained. 
Fox (1992) employs the lamellar theory and provides an evolution equation for the 
joint pdf of the scalar and its gradient based on the stochastic Fokker-Planck equation. 
The unknown coefficients of this equation are pre-specified to provide the evolution of 
the pdf. With this method, the statistical behavior at the asymptotic stage must be 
known a priori, since the parameters of the model are adjusted to yield this behavior. 

Our purpose in this work is to further examine the lamellar theory and to investigate 
some of its features for statistical modeling of mixing in turbulent flows. The formalities 
on which the model is based are discussed ina mathematical context with an explicit 
description of the assumptions made in its simplifications for the present applications. 
A feature of the model is its capability in explaining the reasoning for the success (or 
lack thereof) of other recent turbulent mixing closures. This is facilitated by compara- 
tive assessments of the conditional expected dissipation and the conditional expected 
diffusion of the scalar field as predicted by the model. However, as will be shown, a wide 
variety of solutions emerge. In the context considered, a specific selection cannot be 
made. Neither is such a selection recommended without further knowledge of the 
turbulent field, as many of these solutions are justifiable on physical grounds. In fact, in 
a complicated turbulent mixing problem a combination of these cases may exist. The 
behavior of the conditional statistics as predicted by the model is very useful in 
depicting many subtle features of turbulent mixing which are not realized via previous 
closures. 
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2   PROBABILITY MODELING AND THE LAMELLAR DESCRIPTION 

With the assumption of Fickian diffusion, the transport equation for a passive scalar 
variable. 4>(x,t) in a homogeneous incompressible turbulent flow is expressed by: 

at 

where U(x. t) and 9 tl denote the velocity vector and the molecular diffusion coefficient, 
respectively. Using standard methods (Pope. 1985) the evolution equation for the 
single-point pdf, P((j){% t)) of the scalar is expressed by: 

dP    d(DP) . ^.^ n) 

at      o(p 

or alternatively by: 

^ + ^ = 0. (3) 
ot       cq> 2 

In these equations, </>„ </>„ denote the scalar bounds, D represents the expected value of 
the scalar diffusion conditioned on the scalar value, 0, and E denotes the expected value 
of scalar dissipation conditioned on 4>. Neither of these conditional statistics are 
known, nor are the unconditional expected values including the expected scalar 
dissipation e(r) = |^£(^,r)P((/>,t)#. This describes the closure problem inherent in 
a statistical description at the single-point level. 

Equation (1) indicates that mixing evolution is governed by two mechanisms: 
molecular diffusion and turbulent advection. The former occurs primarily at small 
scales whereas the latter is a multi-scale phenomenon. For thin diffusion zones and 
sufficiently steep scalar gradients across the scalar interfaces, the diffusion process takes 
place in a direction approximately normal to the interface and can be treated as 
unidirectional. We represent this direction by y which is bounded by striation thickness, 
w, that is - w < y < w. This thickness is defined as a positive random variable which has 
a frequency defined by the Striation Thickness Distribution (STD) (Muzzio and Ottino, 
1989b: Ottino. 1989) h(w). The pdf of the scalar, conditioned on the lamellae thickness is 
denoted by g(<t>\ w) and is given by its definition: 

0(<£|w) = ' 
)2^v 

oy 

d(j) 
if —w<y<w 

(4) 
0 elsewhere 

The scalar pdf is thus determined by: 

P(<M = f(w)g((p\w)dw. (5) 
in 
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where f(w)dw is the probability of the event that the scalar falls within the domain 
[u\ w + dw~\. Therefore: 

/(w) = - 
wh(w) 

(6) 
wh(w)dw 

With the use of Equations (4),(5),(6) we have (Kerstein, 1991a): 

P(<H>\t)J) = 

where 11 indicates the absolute value, and 

G(y) = 

cv 

C(j) 
G(\y\), 

l-C(y) 
2<w> ' 

(7) 

(8) 

with C(w) denoting the cumulative distribution function (CDF) of w. Embedded in this 
derivation are the assumptions that cy/c4> is independent of the lamellae thickness 
distribution (Kerstein, 1991a; Fox, 1992). This relation which was first obtained by 
Kerstein (1991a) yields a variety of pdf families depending on the STD and the scalar 
profile within the lamellae. The first term on RHS of Equation (7) is governed primarily 
by the molecular diffusion. The second term represents the role of the STD and 
manifest the influences of stirring. It is useful to think of the first term as a representa- 
tion of local events, and consider the second term as the influence of global events. 
These two are not independent and each of them is influenced by the other. 

3   CONDITIONAL STATISTICS 

Given the scalar pdf, Equations (2) and (3) can be used to determine the conditional 
expected diffusion and the conditional expected dissipation of the scalar field. The 
conditional expected diffusion is determined by using Equations (2), (3) and (7). 
Implementation of the mathematical procedure detailed by Miller et al. (1993) yields: 

D(<j)(y.t),t): 

/ (•>■ \ 
d( 

G(\y\)dy 
)« 1 \ 1 cv 

cv dy ct 
oi h •I) 

C(p 

(9) 

where y = y{<p. f), and y, denotes the value of y corresponding to </>,. Now with the 
assumption that the scalar distribution is monotonic within the lamellae and also 
assuming that y, is fixed, the conditional expected diffusion simplifies to the form: 

D(<t>(y,t)J)-- 
cy 

(10) 

This relation exhibits an important feature. It indicates that D is not "directly" 
dependent on the STD and is chiefly governed by the transient scalar evolution within 
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the lamellae. Therefore, if the scalar distribution within the lamellar structures is the 
same-even approximately - the conditional expected diffusion protrays a similar 
behavior. With this view, it is not surprising that the majority of pdf closures and data 
obtained by DNS and laboratory experiments yield similar conditional diffusion fields 
(Miller et al, 1993; Pope and Ching, 1993; Leonard and Hill, 1991; Kailasanath et aL 
1993). The conditional expected dissipation is determined by using Equations (3) 
and (7): 

£(<H)',f),f)= ——■ I  G(\y\) °4r. jtdy. dD 
1 

* G(\y\) 
d(p 
dy dy_ 

G(|y|)J 

4   ILDM 

The specification of a self-similar scalar distribution within the inter-material domain 
alleviates the formulation of the mixing problem in that the "exact" spatial variation of 
the scalar field is not considered. Instead, this variation is governed by the STD. Thus, 
two closure problems are involved: (1) specification of the time-variant domains and 
accounting for their stretching, and (2) determination of the scalar transport in each of 
these domains. Clearly, the first closure is to determine h(w), and the second one deals 
with the specification of scalar distribution within the lamellae. In the absence of 
a velocity field, one expects that the STD retains its initial form and the scalar profile 
evolves according to a pure diffusion equation. Ina turbulent flow, however, the STD is 
influenced by turbulent stirring and the scalar distribution is governed by a convection- 
diffusion transport equation expressed in a frame of reference attached to the moving 
material element. This transport is governedby Equation (1) with the velocity vector 
replaced by a relative velocity vector (U = UTC]) (Ottino, 1989). In the context of the 
lamellar theory, as indicated before, it is assumed that the transport occurs in one 
principal direction. By expressing Equation (1) in 1-D along the direction aligned with 
the local gradient of scalar, we have: 

dA+v 
dA = Q °1± (i2) 

Here, Krcl is time-space dependent and denotes the effects of the relative velocity field 
Urel in the direction of principal scalar transport. Ottino (1989) suggests that in a small 
size material region, the relative velocity can be approximated by a linear profile 
Krel = a(y,f)}', where — a(y. f) is the surface area stretch function and is governed by 
hydrodynamics. Ottino (1989) also suggests that in chaotic flows, x is on average 
constant. Therefore, by a change of variable, Q „ can be set equal to unity. Equa- 
tion (12), together with a striation thickness pdf constitutes the basis of what we term 
the Inter-Layer Diffusion Model (ILDM). With this model, turbulent mixing is modeled 
in terms of two coupled mechanisms: (1) Those associated with local events, and (2) 
those of the global events. The local events are described by the modeled form of the 
transport equation within the inter-layer material (Eq. (12)), and the global influences 
are exhibited through the specification of h(w). In the ILDM, the effect of large eddies is 
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implicitly subtracted from that of all the other eddies. That is, in a frame of reference 
moving with large eddies (those much larger than the scalar size), the remaining eddies 
determine the evolution of the STD and the dispersion of the scalar within the lamellae. 
The (indirect) dependency of the conditional expected diffusion on the striation 
thickness is governed by the transport within the normalized fixed region. For a linear 
velocity distribution the influence of STD is effectively manipulated by adjusting the 
diffusion coefficient. This is well understood since the molecular diffusion is a fluid 
property with a fixed length scale and turbulent diffusion is a flow phenomenon 
involving the whole spectrum of length scales. By normalizing with its thickness, each 
lamellae can be effectively treated with a fixed size and a modified diffusion coefficient. 
In the form presented, a "specific" striation thickness distribution cannot be suggested. 

■ However, it is argued that different physical scenarios observed in either DNS, or 
laboratory measurements, or obtained by means of other mixing closures can be 
expressed in terms of the model. 

5   OTHER CLOSURES 

For clarity of the discussions below, a brief summary is provided of the AMC and the 
LEM mixing closures. The basic element of the AMC involves the mapping of the 
scalar field (<£) into a stationary Gaussian field <t>0, - oc < <£0 < x by the mapping 
(f) = 7((j)0, f). The mapping function is governed by (Chen et aL 1989): 

ct c<p0     Öfä 

Here, t denotes a "normalized time" whose relation with the physical time cannot be 
determined in the context of a single-point description. For an initial binary state with 
the pdf composed of two delta functions at 4> - ±1, the solution of Equation (13) is of 
the form (Pope. 1991; Madnia et aL, 1992): 

</> = X(4>o>0 = erWo + c), (14) 

where <Z = (1A/2T), C= -fV1 + T2
/>/2T, and r(t) = v''exp(20 - U and </>*=- 

v^erf ~ l(<0» is a measure of the initial asymmetry of the pdf. This mapping yields: 

P^,f) = ^expf[erf-1(</>)]2-t2 erf-'(<£) + 
4>yi + T2 

(15) 

D(^,r) = ^7=^f-7=^=erf-1«^»-erf-1(</.))exp[-(erf-1(#2], (16) 
W7t<"f Wl+T2 / 

E(<M=     „2    2^exp(-2[erf-'((/»)]2). (17) 
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Equations (16) and (17) for non-symmetric pdf's were first derived by Frankel (1993). 
An equivalent form of Equation (17) for symmetric pdfs was first derived by Gao 
(1991). 

The primary feature of the LEM is its treatment of the mixing phenomenon in one 
direction. This one-dimensional description allows the resolution of all length scales 
even for flows with relatively large Reynolds and Peclet numbers. This is facilitated by 
differentiating between turbulent stirring (convection) and molecular diffusion (and 
chemical reaction). The physical interpretation of the one-dimensional domain is 
dependent on the particular case under consideration (see McMurtry et aL 1993b, for 
a recent review). Along the one-dimensional domain, the diffusion (and the chemical 
reaction) process is implemented deterministically by the solution of the appropriate 
molecular transport equation (s). The manner by which turbulent convection is treated 
constitutes the primary feature of the LEM. This is modeled by random rearrangement 
(stirring) events of the scalar field along the domain. The rules by which these 
rearrangement processes occur are established in such a way that the random displace- 
ments of fluid elements mimic the effects of a turbulent diffusivity. The application of 
this model in interpreting the results obtained by DNS data and those based on the 
lamellar theory has been useful (McMurtry et aL 1993a; Cremer et aL 1992). This 
warrants further investigation of the model and its capabilities. 

Both of these models can be compared with the ILDM. In the AMC, the evolution 
equation for mapping, Equation (13) is analogous to Equation (12) with </> = *(</>(,, 0, 
(j>0 = a v. Also, for an initial binary state, the initial condition for Equation (12) is similar 
to that of the AMC. Therefore the solutions of these two equations are similar (of 
error-function type (Eq. (14)). For a linear velocity field, the effect of the STD can be 
absorbed into the diffusion coefficient. In the AMC this coefficient is embedded within 
the normalized time. Kerstein (1991a) shows that with the further assumption of 
a Rayleigh density for h(w), the two models become identical. This assumption implies 
a Gaussian pdf for G(|y|) which yields an asymptotic Gaussian-like (but not exactly 
Gaussian) density for the scalar pdf. Note that this asymptotic behavior is not very 
sensitive to the distributions within the lamellae and can be obtained for other 
members of the family of the pdfs generated by the Johnson Edgeworth Translation 
(JET) (Miller et aL 1993). 

It can be argued that the LEM provides a means of mimicking Equation (12) with 
a random stirring mechanism to simulate the influence of advection. Kerstein (1991b) 
suggests that this simulation is to be conducted by means of a random triplet stirring. In 
this way, the effects of all eddies are taken into account by equating the implied 
"effective diffusivity" to the "turbulent diffusivity". This is enacted in a one-dimensional 
representation of the system, regardless of the configuration. In the ILDM, the linear 
effects of the largest eddies are implicitly subtracted from those of the remaining ones. 
These remaining effects are modeled into two parts: (1) the dispersion effects are 
captured by solving the scalar transport equation (Eq. (12)) between two interfaces, and 
(2) the distribution of these interfaces due to stirring are modeled. In other words, the 
LEM considers the whole scalar field in a fixed size domain and simulates its evolution 
in a probabilistic manner. In a homogeneous flow, the whole domain is considered for 
statistical analysis. In the ILDM, the integration is over all lamellae and is dependent 
on the configuration of intermaterial structures. 
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6   PDF GENERATION 

In the context of the ILDM, several families of scalar pdf s are generated. In the format 
considered here, it is not possible to prescribe h(w) a priori; its exact specification 
depends on the evolution of the length scales of the hydrodynamic and the scalar fields. 
Therefore, the contribution of this term is modeled. The other modeling assumption 
involves the behavior of the advection term in Equation (12). In this section, the family 
of pdf s generated by the manipulations of these two terms is presented, together with 
a discussion of their relations with other closures. The conditional expected dissipation 
and the conditional expected diffusion associated with each of these pdf s are calculated 
since these conditional statistics provide significant insight pertaining to mixing 
phenomenon (Miller et al., 1993; Jayesh and Warhaft, 1992; Pope and Ching, 1993; 
Kailasanath et al., 1993; Sinai and Yakhot, 1989). Both symmetric and non-symmetric 
pdf s are considered and all the results are compared with data obtained by DNS. These 
data are taken from homogeneous turbulence simulations of Madnia etal. (1992); 
Miller et al. (1993); Frankel et al. (1993) and are compared with model results at the 
same values of the scalar variance. With this comparison, it is not implied that these 
DNS data provide an absolute standard for model validation, as various other mixing 
conditions have been generated by DNS (Metais and Lesieur, 1992; Kimura and 
Kraichnan, 1993; Jaberi, 1995). Rather, the results here are intended to promote more 
future DNS (or laboratory experiments) with the aim of capturing some of the trends 
predicted here. 

6.1    Error-Function Distribution within the Lamella 

For an initial binary state, one solution of Equation (12) is of the form: 

* = erfH^ + c'' (18) 

where similar to those in AMC (Eq. (14)), x and c are functions of time. Substituting this 
equation into Equations (7), (8), (10) and (11) yields: 

P(<f>(y))=   I-texp 
2T 

■ + c G(\y\), 

D(4>(y)) = 
y   dx      dc' 

x—r- lexp 

E(4>(y)) = - 

rexp 
-v z  

lixKjlxdt       dt 

y 

2x 
■ + c' 

2x 
+ c 

nx~ 

— x 
dc_ 

It 

G(\y\) 

G(|y|)exp 

yG(|y|)exp 
v'2r 

s/2x 
■ + c dy 

(19) 

(20) 

dy 

(21) 
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In these equations, the variable c' is determined implicitly (Jaberi, 1995) by knowing 
the average value of the scalar <$> which is time invariant. An important feature 
of Equation (20) is that the conditional expected diffusion obtained here is similar to 
that generated by the AMC (Eq. (16)). 

Exponential STD: 

The exponential STD is given by: 

h(w) = ß(n + l)wnsxp(-ßwn+1), (22) 

where ß = [v/2/7rr(n + 2/n + 1)]"+1 and T denotes the gamma function. Using this 
STD, the scalar pdf adopts the form: 

P((<t>(y)) = ^xp 
V/2T 

+ c'\ -ß\y\" (23) 

As indicated by Kerstein (1991 a) for the special case of the Rayleigh distribution (n = 1), 
the generated pdf is the same as that obtained by the AMC (Eq. 15) and the conditional 
expected diffusion is expressed by Equation (20). In general, the analytical expressions 
for the conditional expected dissipation are somewhat complex (Jaberi (1995) provides 
the analytical expressions for some of the cases). For the Rayleigh distribution, 
integration of Equation (21) is straightforward: 

E(cj)(y)) = ^^exp(-[(A + D)y2 + 2By + 2c'2l)+  ArA 
7tT"M \7lAx* 

Tt\XÄ + ~dt 
1-erf 

f2Ay + B 

V IJA 

I' B2 

exp -—-(Dy2 + Bv + c'2) 
\4A 

(24) 

Here, A = (1/2)(1/T
2
 + 1), B = y/2c'/x, and D = (1/2)(1/T

2
 - 1). As expected. Equa- 

tion (24) is the same as Equation (17). The family of pdfs generated (Eq. 23) is 
characterized by the counter-balance of the two terms in the exponential term. The 
positive term exhibits the influence of scalar gradient and is minimum around 0 = 0. 
The negative term denotes the STD effect and is maximum near the mean scalar value. 
The influence of the STD on the scalar pdf becomes more dominant as n decreases 
and/or T increases. The statistical results generated for « = 0,1,3 are presented in 
Figures 1-2. These results are for a symmetric pdf within [— 1,1], i.e. <$> =0. As 
anticipated, the parameter n has a strong influence on the pdf and on the conditional 
expected dissipation, as Figure 1(b) is markedly different from the self-similar bell 
shaped for n = 1 for the pdfs shown in Figure 2(a) (Gao, 1991; Jiang et a/., 1992). The 
influence of the parameter on the conditional expected diffusion is not significant and 
all the results resemble that shown in Figure 1(c). For a system composed of randomly 
distributed lamellae thickness, Sokolov and Blumen (1991a); Sokolov and Blumen 
(1991 b) suggest that in the absence of stretching the STD is close to a gamma function. 
This corresponds to n = 0. In this case, the pdfs have non-negligible values at the scalar 
bounds and exhibit the characteristics of an exponential-tail pdf (Fig. 1(a)). This 
indicates that even for an error-function scalar distribution within the lamellae, it is 
possible to have long-tail pdfs. From a physical standpoint this corresponds to a case 
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where there are noticeable slabs of materials with long intermaterial distances. In these 
slabs, the molecular diffusion process with large characteristics time scales is unable to 
mix the scalar sufficiently, thus unmixed regions prevail. This results in a concave up, 
basin-shaped profile for the conditional expected dissipation near the mean scalar 
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1 1                                              ; 

 T=6.5 

/' 
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I      / 

1     // i         AT 

^ /               \ 

-1.0 

FIGURE 1    Statistical results based on an exponential STD. n = 0, <0> =0. (a) PDF. (b) Normalized 
conditional expected dissipation, (c) Normalized conditional expected diffusion. 
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FIGURE 1    (Continued.) 

value (Fig. 1(b)). The existence of two maximum and one minimum in these curves is 
a logical consequence of tendency of the conditional expected dissipation to be zero at 
its bounds (Miller et al., 1993; Jaberi, 1995). Note that the scalar is always bounded 
within the same domain. That is the conditional expected dissipation is anchored at 
cp = + 1. This is due to the unboundedness of the STD. The results for n = 3 suggest 
that the pdf is somewhat uniform near the mean scalar value, but has sharp gradients in 
the composition domain. This is understandable since as the magnitude of n increases, 
the STD approaches a delta function and the pdf portrays a double-delta like 
distribution. This behavior is similar to the pdf evolution corresponding to a uniform 
STD which is presented below. 

Other STD s: 

Here, the model predictions based on the Rayleigh STD are compared with those 
generated by several bounded STD's to capture some of the important phyics as 
discussed by Miller et al. (1993). For the purpose of demonstrations three STD's are 
considered: Uniform striation thickness, constant STD and a linear STD. The exten- 
sion for STD's defined by higher order polynomials is straightforward. The physical 
justifications for choosing these distributions are provided posteriori by the generated 
pdf s and the conditional statistics as shown in Figures 3-4. For all the cases, it is 
possible to express the statistics analytically (Jaberi, 1995). For example for the uniform 
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FIGURE 2   PDF results 
based on an exponential STD. <<*>> =0. (a) n = 1. (b) n - 3. 
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FIGURE 3    Comparison amongst the PDF's generated via various closures and with DNS. <<*> = 0 (a) 
ff2 = 0.3175, (b)CT2 = 0.01346. 
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FIGURE 4   Comparison amongst the conditional expected dissipation generated via various closures and 
with DNS at a1 = 0.01346. 

striation thickness (w = w*), we have h(w) = S(w - w*). This yields: 

G(\y\) = ' 

l_l_    if _w* <y<w*; 
)2w* 

0     elsewhere 

and: 

P(<A(y)) = 

+ c' if -w*<y<w*; 

elsewhere, 

E((j)(y)) = -expy--s' 

(25) 

Here. Dv denote the parabolic cylinder function of order v (Abramowitz and Stegun, 
1972), and s = (y/y/lt) + c' = erf " 1(^>). For a constant STD, h(w) is given by: 

h(w) = 
w„ 

if 0 < w < wu; 
(27) 

0    otherwise. 
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where, wu is a constant. The linear STD is defined by: 

263 

|2w     . 

h(w) = {   " 

if 0< w< wu; 
(28) 

0     otherwise. 

The explicit analytical expressions for the pdf and the conditional statistics as gener- 
ated by Equations (27)-(28) are somewhat complex and are not given here: they are 
available in Jaberi (1995). The final results are shown in Figures 3-4 and show that with 
these bounded STD's, mixing is accompanied by the encroachment of the boundaries 
in the composition domain. The effect of this boundary migration is more pronounced 
in the profiles of the conditional statistics at large times in Figures 4-5 (the profiles at 
initial times are similar and are not shown). This behavior is consistent with the results 
portrayed by the DNS data and does point to the drawbacks of the AMC (Miller et a/., 
1993) and/or other closures with an effective unbounded STD. The pdf s generated by 
the delta STD are composed of two marching peaks and asymptotically form a single 
peak at the mean scalar value. This evolution is somewhat similar to that of the Linear 
Mean Square Estimation (LMSE) (Dopazo and O'Brien, 1976) and is similar to that 
obtained from the solution of for the case of pure diffusion with an initial double delta 
distribution (Fox. 1992). This type of pdf evolution characterizes mixing problems with 
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FIGURE 5   Comparison amongst the conditional expected diffusion generated via various closures and 
with DNS at a2 = 0.01346. 
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FIGU R E 6   Comparison amongst the PDF's generated via various closures and with DNS. < (j> > = 0.25. (a) 
<T: = 0.39.(b)<r-=0.13. 
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small velocity effects and corresponds to the scalar evolution in a flow dominated by 
small scales. The physical reasoning for this behavior is that small velocity length scales 
do not produce a substantial large scale mixing and their influence is exhibited only 
through enhanced diffusion. Similar results have been obtained via the LEM (Cremer 
et al, 1992; Frankel, 1993). With a constant STD and a linear STD, the pdf evolution is 
somewhat more similar to that given by the Rayleigh STD and also by the JET (Miller 
et al, 1993). The trimodal nature of the pdf at early times as produced by the constant 
STD has not been observed in available DNS but has been captured by the LEM 
(McMurtry et al, 1993a) None of the pdfs generated in this way yield an asymptotic 
exact Gaussian state as exhibited by the profiles of the conditional expected dissipation. 

The difference between the closures is better exhibited by the results for the 
non-symmetric case. A comparison of all the closures is made in Figures 6-8 for 
<$> = 0.25. The procedure for producing these results is identical to that for the 
symmetric pdf. However, the numerical means of evaluating the constant c' is some- 
what more involved. Here, the evaluation is made by an iterative procedure but in some 
of the cases it is possible to provide explicit analytical expression for this parameter 
(Jaberi, 1995). The pdfs as produced by all the closure are relatively similar and 
asymptotically tend to be concentrated near the mean scalar value. However, the 
difference between the closures is most obvious in the profiles of the conditional 
statistics at late times. It is noted that the conditional expected dissipation for n = 1 
(AMC) always yields a symmetric profile regardless of the extent of asymmetry in the 

1.6 

ODNS 
  Rayleigh STD 
 Constant STD 
 Linear STD 

FIGURE 7    Comparison amongst the conditional expected dissipation generated via various closures and 
with DNS. < <t> > = 0.25. <r2 = 0.13. 
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FIGURE 8   Comparison amongst the conditional expected diffusion generated via various closures and 
with DNS. <</>> = 0.25. a2 = 0.13. 

pdf (Fig. 7). The rigorous mathematical reasoning for this behavior is given by Frankel 
(1993). The distributions produced by other models do not portray this behavior. As 
indicated in Figure 7, the results for all cases with a finite STD bounds are close to DNS 
data. The conditional diffusion (Fig. 8) for n = 1 does portray the non-symmetric 
nature of mixing, but is still always anchored at the bounds of the composition domain. 
This trend is not observed for the cases with bounded STD's and the results are in 
a better agreement with DNS data. 

6.2   Effects of Scalar Distribution within the Lamellae 

There are other scalar profiles which satisfy Equation (12). The solution of this 
equation depends primarily on the velocity field. Several simple velocity fields are 
considered along with a Rayleigh STD. The scalar profiles are obtained by the 
spectral-collocation solution of Equation (12) within a fixed physical domain (nor- 
malized by w). For a pure diffusion transport within the lamellae, i.e. VTel = 0 the 
generated pdf is Gaussian-like as expected (not shown). For a linear velocity profile 
^VTC1 = ay) the results exhibit similar trends as those governed by the AMC. By varying 
the magnitude of a the counter-balance between the convection and the diffusion in 
Equation (12) changes but the general behavior of the scalar pdf remains the same. 
Therefore, the primary difference is through the time scale of the pdf evolution. For 
a constant velocity profile, the results show a significant departure from those of the 
AMC. This is shown in Figure 9 for the conditional expected dissipation implying an 
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  AMC| 
• LEM! 
 ILDM! 

FIGURE 9   Comparison of ILDM prediction of the normalized conditional dissipation based on 
a Rayleigh STD and a constant inter-layer velocity profile with the results based on the AMC and the LEM. 
<4>> = o. 

exponential type pdf with a significant magnitude of the pdf at the bounds. The results 
for this case are also compared with those based on AMC and LEM. The exponential 
nature of the pdf which cannot be generated by the AMC is captured by the LEM. This 
is shown by the basin shape structure of the conditional dissipation profile. This 
structure is similar to that in Figure 1(b) and imply pdf tails close to a Laplace (double 
exponential) distribution. An increase in the amplitude of the velocity results in a faster 
evolution of the pdf towards the mean value. An asymptotic exponential scalar 
distribution has not been observed in most previous numerical simulations (Eswaran 
and Pope, 1988: Leonard and Hill, 1991; Givi and McMurtry, 1988; McMurtry and 
Givi, 1989; Miller et al., 1993), the exceptions are those in LES results of Metais and 
Lesieur (1992) and in recent DNS results of Kimura and Kraichnan (1993), Jaberi 
(1995). 

The limited results presented here1 reveal the dominant influence of the velocity field 
on the evolution of the pdf. In a turbulent flow field with a wide spectrum of eddy sizes, 
the influence of the turbulent advection is more complex. Motivated by these results, 
the assessment of the role of velocity field by DNS is strongly recommended. However, 
due to the small range of the Reynolds number that can be considered by DNS, such an 
assessment could be very difficult - but is currently under way. In the meantime, other 

Further results with bounded STD's and with different velocity fields are available (Jaberi, 1995). 
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approaches by which the effects of convection in Equation (12) can be examin- 
ed, should be followed. For example, the LEM provides one means of doing 
exactly so. 

7   APPLICATIONS FOR MODELING OF REACTING FLOWS 

One of the most important applications of pdf closure is due their use for modeling of 
turbulent combustion (Pope, 1985). The results generated here can be used directly for 
modeling of mixing controlled homogeneous chemically reacting systems. Namely, in 
determining the limiting rate of reactant conversion in a simple chemistry of the type 
& + (9 -* Products. In this system the statistics of the reacting field can be related to 
those of an appropriately defined mixture fraction (Williams, 1985). This mixture 
fraction is a conserved scalar variable, similar to the variable <j> considered above. The 
ensemble-mean values of the mass fractions of the reacting species are the most 
important physical variables from a practical standpoint. Therefore, it is useful to 
examine the differences between the pdf s in predicting the rate of mean reactants' 
decay. For unity mass fractions for the free stream fuel and oxidizer. the conserved 
scalar variable is defined as <f> = F - 0, where F and 0 denote the mass fractions of the 
fuel and the oxidizer, respectivley. Nonpremixed reactants imply an initial binary state 
for the variable <j>. Therefore, the initial pdf of (f> is composed of two delta functions at 
<j> = ± 1. If the reactants are introduced in stoichiometric proportions. <<£> = 0 and 
non unity equivalence ratios imply non-zero values for the mean mixture fraction. In 
fuel-rich mixtures, <<£>>0. With the AMC, Madnia et al. (1992) have analytically 
integrated the pdf for the evaluation of the mean reactants mass fractions. In non- 
stoichiometric mixture, the final results are in the form of definite integrals of the 
parabolic cylinder functions. In stoichiometric mixtures, the results simplify considerably 
and are directly related to the mixture fraction: 

<F>(t)    <0>(r)    2      . 
<?>(ö) = <ö>(öj=rrcsin| /sin 

2 (29) 

/.denotes the "intensity of segregation" (Brodkey, 1975). For non-stoichiometric 
mixtures and for other probability distributions generated here, analytical solutions 
are not possible and the results can be obtained only by integrating the pdf numerically. 
The final results for some sample cases are presented in Figures 10 and 11; the behavior 
for other cases are similar (Jaberi, 1995). For the stoichiometric case, obviously both 
reactants decay at the same rate (Fig. 10). For the fuel-rich mixture, the oxidizer is 
depleted faster and there is a surplus of fuel left at the final stages of mixing (Is * 0). In all 
the cases considered, the results indicate that there is not a substantial difference 
between the closure prediction. Based on these observations, the analytical relations of 
Madnia er al. (1992) are recommended for predicting the limiting rate of mean reactant 
conversion in both homogeneous and non-homogeneous mixtures, at least until the 
development of more accurate closures. 
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8   SUMMARY 

It is shown that the lamellar theory, provides a simple means of "mimicking" several 
scalar mixing scenarios in homogeneous turbulent flows. The model described here is 
an extension ofthat first proposed by Kerstein (1991a) and suggests that there are two 
mechanisms by which the mixing process is described. These mechanisms are due to: (1) 
local events and (2) global events. The local effects are described by the distribution of 
the scalar within the lamellae, and the global effects are exhibited by the statistical 
distribution of the striation thickness. The properties of the model are assessed with the 
examinations of the conditional statistics of the scalar field. It is shown that the 
difference between the closures is exhibited in the profiles of the Probability Density 
Function (pdf) of the scalar and the conditional expected value of the scalar dissipation. 
However, all the cases yield approximately similar profiles for the conditional expected 
diffusion of the scalar. This behavior is mathematically justified and explains the 
similarity of the conditional diffusion as observed in recent contributions (Miller et al., 
1993; Pope and Ching, 1993; Leonard and Hill, 1991; Kailasanath era/., 1993). The 
primary influence of the conditional diffusion is shown to be through its behavior at the 
bounds in the composition domain. It is also shown that with the manipulations of each 
of the two primary mechanisms, many different pdfs can be generated. Some of these 
pdf's have been observed in previous DNS studies and some have been captured by 
other mixing closures. However, some of the cases considered here are yet to be 
observed (via DNS, experiments, other closures, etc.). It is claimed that this does not 
necessarily imply the non-physical character of the mixing scenario in these cases. 
Rather, it indicates the need for further test cases to be considered in future simulations 
and experiments. In these efforts, one must be careful in identifying the roles of the 
velocity and scalar length scales as these scales may lead to different asymptotic behaviors. 
In this regard an assessment of the model by means of DNS in the format recently 
reported by Kimura and Kraichnan (1993) and by the LEM in the context proposed by 
Cremer et al. (1992) is useful. Also, the flexibility of the model may offer an assistance to 
other closures which are based on a priori knowledge of the statistical evolution. Finally, 
it is shown that while the pdfs generated by the model are different, their application for 
determining the limiting rate of mean reactant conversion in mixing limited non- 
premixed turbulent flows do not yield significantly different results. Thus, the closed 
form expression obtained via one of the models is recommended for all the other cases. 
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