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Abstract  

The strength of the metal in a shaped charge jet influences its length at breakup, its 
penetration rate into a target, and its ability to resist aerodynamic forces in flight. The response 
of a jet to an imposed centrifugal force can be used to estimate its yield strength. Copper was 
the first metal studied by this technique, and the strength determined by Karpp using a hoop 
model was approximately 100 MPa. We have studied molybdenum using the same experimental 
technique and analyzed the data using a hoop, a disk, and a cylinder model of the jet. The yield 
strength and its associated uncertainty were estimated from the observed kinematics of the 
portion of the jet fragmented by the centrifugal force and the computed jet spin rate. 
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1. Introduction 

The strength of the metal in a shaped charge jet influences the length of the jet at breakup (Walsh 

1984), its penetration rate into a target (Eichelberger 1956), and its response to aerodynamic forces 

in flight It may also be of interest to those devising constitutive equations for metals experiencing 

large, rapid deformations. 

In the early 1970s, Karpp and Simon (1976) devised a method to estimate the strength of a jet 

from the angular velocity at which it was observed to burst radially. In their experiments, a copper- 

lined shaped charge was detonated while spinning about its axis of symmetry, creating a jet with a 

range of spin rates. Due to the conservation of angular momentum, the jet spin rates are much higher 

than the spin rate of the shaped charge. Using sequential flash radiographs of these spinning copper 

jets, the width of the pattern formed by the radially expanding jet fragments, D, was measured at the 

various flash times. From this information and the assumption that the cross section of the jet 

resembles a tube, the angular velocity of the pellet when it was intact, w, was approximated by the 

relation 

co = ^ = ±iP-, (i) 
r      2r dt 

where r is the average radius to the centroid of the fragmented pellet, V is the tangential velocity at 

the centroid, and — is the diametrical expansion rate of the fragment pattern. If the jet pellet next 

to one that burst remains intact and is assumed to have the critical value of angular velocity that just 

causes yielding, o)f, then o)f is approximately equal to the measured w and the yield strength, oo, 

is given by 

o0 = pr2(of
2, (2) 



where p is the density of the jet In this stress equation, the jet is modeled as a hoop. A yield strength 

of 100 MPa was determined for copper using this technique. 

hi this report, a molybdenum jet is studied using the same experimental technique. The charge 

configuration used differed from the one used in the Karpp-Simon experiments. This shaped charge 

produced a jet with a different shape and it was not possible to determine whether the jet was solid 

or hollow, so the effect of using different geometric models of the jet to evaluate the yield strength 

was investigated. The stress formulas corresponding to these geometries are given in section 2. 

Sections 3 and 4 describe the experimental hardware and the measurements taken from the 

radiographs. 

In section 5, attempts are made to infer the geometry of the jet from the dimensions of the burst 

fragments. Yield strengths corresponding to the experimental measurements and the possible 

geometries are computed, and an estimate is made of the uncertainty. Since the experiments only 

provide an estimate of angular velocity for a jet element that bursts, the actual stress required to 

cause bursting must be less than the stress calculated from the experimental data. 

The Karpp-Simon equation for estimating <o from radiographic data will underestimate the 

angular velocity in cases in which the jet bursts into only a few fragments, because the sparsely 

defined diameter of the pattern will be underestimated. However, the angular velocity may also be 

estimated from a jet-formation calculation, and this method is used to cross-check w. The calculation 

can also provide the spin rate for the neighboring jet element that does not burst and, hence, a lower 

limit for the yield strength. The procedure for obtaining the yield strength from the calculations and 

the radiographic measurements is discussed in section 6. 

The yield strengths determined in sections 5 and 6 are discussed in section 7 of the report. 

Section 8 gives the conclusions. 



2. The Models 

After the jet has formed, attention is focused on the element spinning at the critical spin rate that 

just causes yielding. For analytic tractability, the jet segment is assumed to decouple from its 

neighbors (i.e., break axially) before it can fail under the centrifugal force. Thus, the spinning jet 

is modeled in the same manner as used to determine the maximum rate of rotation a flywheel can 

withstand without bursting radially. The material is assumed to be homogeneous, isotropic, and 

perfectly plastic. In addition, bursting is assumed to occur when the spin rate reaches a level that 

causes the entire jet cross section to reach the Tresca yield criterion. For a given critical spin rate, 

the value inferred for the strength depends on the geometry used to represent the jet. The state of 

stress can be computed by treating the segment as a thin disk (plane stress), using a formula derived 

in Appendix A (equation A-50), or as a long cylinder (plane strain), using formulas derived in 

Appendix B. For an annular disk, the yield strength in simple tension, o0, is related to the angular 

velocity at failure, of, by the relation 

where p is the mass density, ^ is the inner radius, and r0 is the outer radius. In the limit in which 

rj approaches r0, the hoop form used by Karpp, equation 2, is obtained. If rj - 0 in equation 3, one 

gets the result for a solid disk (Nadai 1950): 

Pr0
2&)f2 i 

In the case of a solid cylinder, the yield strength is given by 

Pro2&)f2        T 
°o = -T1 " —I ' (5) 

4 :ir0
2 



where T is the net axial force acting on the cylinder. Since o0 is a constant, for a given angular 

velocity the cylinder may be in equilibrium while under a positive axial force (tension) and fail when 

the tension is relieved. The case of the hollow cylinder must be solved numerically (Davis and 

Connelly 1959); however, the results for the freely rotating annular cylinder (with no axial force) are 

similar to those of the analytic annular disk under most conditions. 

In order to compute the spin rate of the jet at burst using equation 1, the average radius to the 

centroid of the fragments, r, or its equivalent, must be estimated, hi this study, it is assumed that the 

jet bursts symmetrically, and so the radial distance to the center of mass of the fragment, rc, replaces 

r. If the jet is solid with an outer radius r0 and breaks symmetrically into n fragments, then 

rc - kr0, (6) 

where, since each fragment subtends an angle 2u/n, 

k = 2 sin(7t/n) ^ 
3     rc/n 

If the jet is hollow, then 

(r3-r.3) 
rc = kiiJ-ii . (8) 

fro2-^2) 

In order to represent an annular disk (or cylinder) using the hoop model, Karpp took the radius of 

gyration (rg) as the radius of the hoop. Thus, 

o   -Jp-I^l    • (9) o 4rH dtj 

Similarly, substituting equations 1 and 6 into equations 4 and 5 yields 

°o " 12k 
(10) 



for the solid disk, and 

°o = 
16k2 

f^)2 (11) 

for the solid cylinder under no net axial force. Thus, if the jet is solid, the strength estimate is only 

a function of the measured diametrical expansion rate and the number of fragments it produces. 

3. Experiments 

The molybdenum liners used in this test series were manufactured by Northwest Industries, Lie, 

Albany, OR. The starting material was 99.95% pure and had a grain size between 5 and 10 pm. 

From previous experience (Lampson, Harrison, and Krause 1992), the grain size in the finished liner 

is expected to be about the same, on average, as the starting material, although the grains in the liner 

are not equiaxed. The Vickers microhardness (100-g load) of a liner of this type was 203 kg/mm2 

(1,990 MPa), corresponding to an ultimate strength of about 645 MPa using the steel table 

(American Society for Metals 1983). Typical yield strengths for molybdenum vary from 500 to 

700 MPa (Gulyaev 1980). The liner had a uniform wall thickness of 1.45 mm and an apex angle of 

30°. It was truncated at the apex at an outside diameter of 20.2 mm and faired into a spherical cap 

and truncated at the base at an outside diameter of 90.4 mm. 

The liner was installed in an aluminum body that was filled with 75/25 octol explosive (75% by 

weight HMX, QHgNgOg and 25% TNT, C^NjC^). An RP-80 detonator and a PBXN-5 booster 

were used to initiate the explosive. A typical shaped charge device is shown schematically in 

Figure 1. All of the shaped charges used in this series were nominally identical except for the 

detonator/booster holder, which was modified for spinning to allow the device to be coupled to a 

spin motor. The spin apparatus is described in Summers et al. (1994). Four devices were tested. 

Two devices were fired statically, and the other two were detonated while the shaped charge was 

spinning about its axis of symmetry. The shape and position of the jet produced by detonating the 

device was recorded by sequential flash radiography. Since simultaneous, orthogonal radiographs 



Figure 1. Schematic Diagram of a Shaped Charge Device. 

were not available in these experiments, the Kaipp-Simon method of estimating the spin rate was 

used. 

4. Jet Measurements 

Figure 2 shows that the front of the jet from a nonspinning device is composed of a pellet 

terminating in a boattail and followed by a region of initially high-velocity-gradient material, which 

rapidly thins as it stretches. This image was taken 180 us after the firing pulse was sent to the 

detonator. Figure 3 shows the pellet from another nonspinning device, observed at 936 us after 

initiation. This pellet buckled prior to the observation time, and its length at this time is roughly half 

its initial length. When the device was spun at 42 revolutions per second (rps) and detonated, the 

pellet remained intact, but the boattail region and the high-velocity gradient material burst into 

fragments under the influence of the centrifugal force (Figure 4). By 140 us after initiation, the 

pellet has begun to buckle (probably due to the air pressure) and the tip of the pellet is no longer on 

the axis of rotation. The pellet continued to deform, and the tip was pulled farther off axis, as shown 
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Figure 2. Flash Radiograph of Nonrotating Jet Pellet Taken at t = 180 ps. 
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Figure 3. Flash Radiograph of Nonrotating Jet Pellet Taken at t = 936 ps. 
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Figure 4. Flash Radiograph of Pellet From Device Spinning at 42 rps Taken at 140 ps. 

in Figure 5, due to the centrifugal force. When the device was spun at 60 rps, the pellet deformed 

to a radius over 60% larger than that at zero or 42 rps (Figure 6) and failed at the rear as evidenced 

by the large fragment widths. The pellet was not stable and continued to disintegrate and fail in 

"banana-peel" fashion at the rear and to increase in diameter still further at the front (Figure 7). 

It was possible to identify and track individual fragments in the experiment in which the initial 

spin rate was 42 rps; this was not possible in the 60-rps experiment Figures 4 and 5 show the debris 

fragments immediately behind the pellet The three fragments indicated by the box in Figures 4 and 

5 have, at 140 ps, in the plane of the film, lengths of 8.2 mm, 10.0 mm, and 9.1 mm, with 

corresponding widths of 4.6 mm, 4.6 mm, and 1.8 mm. At 220 ps, and viewed from another angle, 

the observed lengths are 9.1 mm, 8.2 mm, and 8.2 mm, with corresponding widths of 2.7 mm, 

4.6 mm, and 2.7 mm (all with an uncertainty of ±0.5 mm). The diametrical expansion rate in the 

vicinity of these three particles was measured to be 180 m/s. 
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Figure 5. Flash Radiograph of Pellet From Device Spinning at 42 rps Taken at 220 ps. 
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Figure 6. Flash Radiograph of Pellet From Device Spinning at 60 rps Taken at 160 ps. 



Figure 7. Flash Radiograph of Pellet From Device Spinning at 60 rps Taken at 200 ps. 

The measurements taken on the jet particles are summarized in Table 1. A cylindrical coordinate 

system was chosen with the z-axis aligned with the axis of symmetry of the liner. The quantities vz 

and Ü refer to the axial velocity and length of the pellet plus boattail (when the boattail exists), while 

d is a representative diameter. The length of the pellet is measured at the first time of observation. 

The quantity —- is a measure of the diametrical expansion rate of the debris immediately behind 
dt 

dD . the pellet. The estimated uncertainty in d is about 7%. The estimated uncertainty in -^ is about 
dt 

15% for shot 4691 and is somewhat larger for shot 4690. 

5. Strength Estimates From Radiographic Measurements 

In order to calculate the yield strength, an approximation to the critical angular velocity, <of, is 

obtained from the value of — measured for the first jet segment that bursts (see Figure 4). A yield 

10 



Table 1. Experimental Data 

Shot No. 0) 

(rps) 

v2 

(m/s) (mm) 

d 

(mm) 

dD 
dt 

(m/s) 

4690 60 10,000 47 12 230 

4691 42 10,300 76 7.3 180 

4692 0 — 59 7.0 — 

4693 0 10,000 80 6.0 — 

strength is then computed from the formula appropriate for the presumed geometry. Since the 

estimate of the critical angular velocity is determined from jet material that has burst, the yield 

strength computed from the experimental data is larger than the actual yield strength, which the 

element can support without bursting. 

The jet fragments have a significant axial dimension, so the cylinder model is deemed the most 

appropriate. Using the data from the 42-rps experiment, if the jet segment is assumed to be a solid 

cylinder that fractures into two symmetrical pieces along a diameter, then the fragment width of 

4.6 ±0.5 mm corresponds to a outer radius of 2.3 ±0.3 mm. Since the jet is assumed to be solid, the 

outer radius does not enter into the calculation for the stress. For two fragments, equation 7 gives 

k = 0.4244, and since — = 180 ±27 m/s using equation 1, the estimated angular velocity is 

92,000 ±26,000 rad/s. If there is no net axial force (T = 0) and the jet density is 10,200 kg/m3, 

equation 11 gives a stress of 115 ±35 MPa. 

The jet fragments seem to form three columns (Figure 4), so another possibility is that the 

segment is a solid cylinder, which fractures into three symmetrical pieces. Then the maximum 

fragment width of 4.6 ±0.5 mm corresponds to the length of a 120° chord and the outer radius is 

2.7 ±0.3 mm. The estimated angular velocity is 60,000 rad/s ±26%. The yield strength 

corresponding to this geometry is less than 68 ±20 MPa. 

11 



The fact that the observed fragment widths include the value 1.8 mm suggests a hollow 

geometry. If it is assumed that the jet segment is hollow, that it burst symmetrically into three 

pieces, and that the minimum fragment width, 1.8 ±0.5 mm, is the wall thickness of the jet, then, 

since the chord is 4.6 ±0.5 mm, the outer radius lies between 3.0 mm and 2.4 mm, and the 

corresponding inner radii are 1.2 ±0.5 mm and 0.6 ±0.5 mm. Taking the extreme values (namely, 

r2 - 3.0 mm with rj - 1.7 mm and r2 - 2.4 mm with rj - 0.1 mm) the center-of-mass radius varies 

between 2.0 mm and 1.3 mm. The corresponding angular velocities are 45,000 rad/s and 

69,000 rad/s, with uncertainties of 15%. The yield strengths corresponding to these geometries are 

less than 120 MPa and less than 76 MPa, with uncertainties of 30%. This variation in jet geometry 

combined with the measurement uncertainties provides a range of upper strength limits from about 

50 MPa to 160 MPa. 

It is observed in the radiographs that the front of the jet pellet deforms easily under the action of 

the aerodynamic forces. For hypersonic flight, the Newtonian approximation for the air pressure, 

p^v/, is appropriate (Vinh et al. 1980). At a sea-level flight speed of 10 km/s, this pressure is 

120 MPa. This lies at about the midpoint of the strength range. 

6. Strength Estimates From Calculations and Radiographic 
Data 

If the radiographic data is combined with the results of a jet-formation calculation, the above 

range of possible geometries and yield strengths can be reduced. In addition, since the rear of the 

pellet did not fail at the lower spin rate (42 rps), but did at the upper spin rate, this information can 

be used to determine the strength if the geometry and the spin rate of the rear of the pellet can be 

estimated. 

The calculation of the jet formation was made using a modified version of the BASC code 

(Harrison 1981), the changes being the inclusion of the acceleration of the liner (Kelley, Curtis, and 

Bremer 1994), the determination of the collapse conditions at an off-axis point and the effect of 

cylindrical symmetry in thickening the liner as it moves toward the axis of symmetry (Lampson 

12 



1987), and the incorporation of a centrifugal force resisting the collapse. The straight portion of the 

liner was divided into 100 independent ring elements, and the motion of the element boundaries was 

computed. For the subcalibered liner used in these devices, the effects of end rarefactions do not 

influence the characteristics of the jet in the region of interest and were accounted for by reducing 

the terminal velocities of the elements near the base of the liner by a factor that depended on the 

distance from the end of the charge. 

The jet velocities predicted for the liner elements are displayed in Figure 8 at the corresponding 

z coordinates and are superimposed on an outline of the charge contour and the liner. The origin of 

the z-axis is at the beginning of the conical portion of the liner. The velocity increases until the 

shoulder of the body is reached; thereafter, it decreases because of the decreasing thickness of 

explosive covering the liner (the first discontinuous step) and dien drops due to the combined effect 

of reduced explosive-layer thickness and rarefactions from the end of the charge. The shape of the 

velocity distribution explains the formation of the pellet because as the collapse proceeds from the 

apex to the shoulder of the body, faster-moving elements, formed at later times, overtake previously 

formed, slower elements. The relatively small decrease in velocity at the shoulder of the body 

formed a boattail at the rear of the pellet. The large drop formed the rapidly stretching part of the 

jet The velocity of the pellet, determined by conservation of linear momentum of its constituents, 

was 10,400 m/s. The as-formed shape of the jet (i.e., the shape calculated at creation assuming no 

interaction between the elements) is shown above the velocity curve. 

The devices were designed to be symmetric about the axis of rotation, so the detonation of the 

explosive is expected to produce no appreciable net external torque on the liner. No asymmetric 

internal stresses are expected in the liner due to the manufacturing process. Although accelerated 

during the collapse and jet-formation processes, the center of mass of each liner element always 

remains on the axis of symmetry; therefore, the angular momentum of each independent liner 

element is conserved. The jet segments are assumed to spin independently of each other because the 

material strength is expected to be sufficiently low that coupling between the spins of neighboring 

elements can be neglected in the time scale of interest, less than 100 us. 

13 
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Figure 8. Calculated Jet Velocity as a Function of Position Along the Liner and 
Computed Pellet Shape. 

The calculations show that the collapse process was not perturbed appreciably at the spin rates 

used in these experiments. The spin rate of each jet element was computed by calculating its 

moment of inertia (I) in its initial position when the inner and outer radii were Rj and Rj (Figure 9) 

and in its "collapse" position when the inner and outer radii were R^ and R^. In the collapse 

configuration, the portion of the liner that entered the jet was separated as a ring element with inner 

and outer radii RQ and R&. The jet was assumed to form on the axis of symmetry as a solid cylinder 

with outer radius r,. 

14 
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Figure 9. Collapse Sequence Computed for Liner Element 5 and Resulting Jet Element 

Given the moment of inertia at each stage of the jet-formation process, the corresponding spin 

rate was computed for each jet element by conserving the angular momentum. Detailed results are 

given in Appendix C. The as-formed spin rates for solid jet elements are shown in Figure 10. For 

both of the initial liner spin rates, the spin rate of the jet elements first increases with axial position 

because the corresponding initial radial coordinates of the liner elements increase, and the fraction 

of the liner material entering the jet is roughly constant. The spin rate peaks at the tail of the pellet 

and drops thereafter because the fraction of liner material entering the jet increases, creating a larger 

disk with a larger moment of inertia. The spin rate rises again because the fraction of liner material 

stabilizes at a constant value on the velocity step shown in Figure 8. Thereafter, the jet-mass fraction 

increases rapidly with a consequent lowering of the spin rate. 

15 



Figure 10. Calculated As-Formed Spin Rate of Jet as a Function of Position Along the 
Liner and Initial Liner Spin Rate. 

The jet pellet is composed of liner elements 1-63. Liner elements 64-71 are associated with the 

boattail since their velocities correspond to the measured axial velocities of the boattail fragments. 

The liner elements at the tail of the pellet and in the boattail have the highest as-formed spin rates. 

The computed values of outer and inner radii and spin rate for liner elements 61-71 at various stages 

in the jet-formation process are listed in Table 2. 

According to the calculation, the boattail is composed of up to eight elements. The length of 

each segment of the liner was 1.31 mm and the maximum observed fragment length immediately 

behind the pellet was 10 mm, so if the jet did not stretch before bursting, a fragment of length 10 mm 

comprises about six segments. The average axial velocity of the six-element boattail is 9.94 km/s, 

while the axial velocity of the center of mass of the three fragments is 10.1 ±0.2 km/s, so this 

correspondence seems reasonable. The average as-formed radius of the six-element boattail is 

3.3 mm, lower than the observed radius at the rear of the pellet in this experiment, 3.65 mm, so, 

according to the calculation, the boattail should be hollow. 

16 



Table 2. Computed Radii and Angular Velocities of Elements 61-71 

N R* Ri <•><, Rc2 Rci <•>! rj o)2 robs v2 
(cm) (cm) (rps) (cm) (cm) Ops) (cm) (rps) (cm) (km/s) 

61 3.15 3.00 42 1.36 0.99 281 0.30 6,260 0.365 10.622 
62 3.19 3.04 42 1.37 0.99 285 0.31 6,320 0.365 10.626 
63 3.22 3.07 42 1.37 1.00 288 0.31 6,320 0.365 10.569 
64 3.26 3.11 42 1.38 1.01 291 0.33 5,700 — 10.012 
65 3.29 3.14 42 1.39 1.01 294 0.33 5,780 — 9.996 
66 3.33 3.18 42 1.40 1.02 298 0.33 5,860 — 9.981 
67 3.36 3.21 42 1.40 1.02 301 0.33 5,890 -— 9.917 
68 3.40 3.25 42 1.41 1.03 304 0.34 5,970 — 9.900 
69 3.43 3.28 42 1.42 1.03 307 0.34 6,000 — 9.843 
70 3.47 3.32 42 1.43 1.04 311 0.34 6,080 — 9.825 
71 3.50 3.35 42 1.43 1.04 314 0.35 5,990 — 9.673 

The diameter of the cylinder containing the estimated centers of mass of the three fragments is 

roughly 13 ±1 mm at 140 ps, and about 27 ±1 mm at 220 ps. If the average tangential velocity of 

the fragments is 90 m/s (0.090 ±0.015 mm/ps), and the initial location of the centers of mass was 

at a radius of gyration of 2.35 mm (corresponding to an initial solid radius of 3.32 mm), then the 

transit time to a radius of 6.5 ±0.5 mm is 47 ±14 ps and 124 ±26 ps to 13.5 ±0.5 mm. Subtracting 

these transit times from the times of observation (flash times), a burst time for the jet element of 

about 95 ps after the device was initiated is representative. From its position at these flash times, 

the boattail was formed at about 35 ps, so the jet elements stretched for about 60 ps before bursting. 

For an extending jet of uniform radius with a linear velocity gradient in the axial direction, the 

length L at time t after formation is (Curtis 1987) 

where 

L-L0(l+Tit), 

n-Av/L0, 

(12) 

17 



Av being the velocity difference between the ends of the jet and L0, the initial length. If a six- 

element boattail (elements 64-69) stretched for 60 us, its length would be about 2.3 times its initial 

length of 7.86 mm, or 18 mm. This exceeds the maximum observed fragment length, so the 

fragments must represent a smaller fraction of the boattail. 

If the first four elements of the boattail, elements 64-67, are used to represent the fragments, the 

average axial velocity is 9.98 km/s and the length at burst is about 2.0 times the initial length, or 

about 10.5 mm. This length is consistent with the maximum fragment length, 10.0 ±0.5 mm, and 

the average velocity is consistent with the measured average axial velocity of the center of mass of 

the fragments, 10.1 ±0.2 km/s. 

From Table C-l, the average as-formed radius of jet elements 64-67 is 3.32 mm and the average 

as-formed spin rate is 5,810 rps (36,500 rad/s), when the liner is initially spinning at 42 rps. 

Assuming incompressible extension of the solid, as-formed jet to twice its initial length, the radius 

at burst is 2.35 mm. Since the moment of inertia of a solid cylinder is proportional to the square of 

the radius, the spin rate at burst is 72,900 rad/s, from conservation of angular momentum. If the 

boattail is assumed to be composed of these solid elements and it fails with an outer radius of 

2.35 mm (consistent with the minimum experimentally inferred radius), then the spin rate at failure 

is 72,900 rad/s and the yield strength (from equation 5 with T = 0) is less than 75 MPa. Assuming 

that this solid boattail breaks into 120° segments, rc = 1.29 mm (equation 6) and the "fly-off" 

velocity, rc&)f, is 94 m/s. 

The boattail is formed with a mass that corresponds to an average radius of 2.35 mm and a spin 

rate of 72,900 rad/s at failure, if it is solid. If the boattail is assumed to be hollow when it fails, with 

an outer radius of 2.70 mm (see the discussion in section 5), then conservation of mass requires that 

its inner radius be 1.33 mm. The resulting wall thickness of 1.4 mm is within the range of the wall 

thickness inferred from the radiographic measurements, 1.8 ±0.5 mm. 

The moment of inertia for a hollow cylinder is proportional to the sum of the squares of the inner 

and outer radii. Conservation of angular momentum gives the spin rate at failure, 44,400 rad/s. 
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Using the tangential velocity of the center of mass of a 120° segment, equations 8 and 5, the fly-off 

velocity is 77 m/s, consistent with the measured value of 90 ±14 m/s. Numerical solution of the 

equations for the stress in an annular cylinder (see Appendix B) shows that the yield stress is less 

than 86 MPa. 

An annular cylinder with an outer radius larger than 2.7 mm produces 120° fragments with a 

fly-off velocity below the lower limit of the measurements. Thus, the calculation selects a fairly 

narrow range of jet geometries consistent with the observed fly-off velocity. 

At an initial device spin rate of 42 rps, the rear of the pellet remained intact over the period of 

observation, while when the initial spin rate was 60 rps, it failed. With this in mind, we can reduce 

the range of the strength value by considering the behavior of the rear of the pellet. According to 

the calculation, the as-formed solid radius of the rear of the pellet is 3.09 mm (element 63 in 

Table C-l). The observed diameter given in Table 1 for shot 4691 is 7.3 mm ±7%. The observed 

radius lay in the range 3.39 mm to 3.91 mm. Conservation of mass and incompressibility indicate 

that the rear of the pellet is hollow with corresponding inner radii of 1.39 mm and 2.40 mm. The 

calculated as-formed radius of gyration (equation C-16) and spin rate (element 63 in Table C-l) were 

2.18 mm and 39,700 rad/s for a solid jet segment when the initial liner spin rate was 42 rps. If the 

segment is hollow with a radius of gyration of 2.59 mm (corresponding to an outer radius of 

3.39 mm), the spin rate is 28,100 rad/s, while if the radius of gyration is 3.24 mm, the spin rate is 

18,000 rad/s. The strength lies in the range of 33-48 MPa. Therefore, the strength must be greater 

than about 30 MPa. 

When the initial liner spin rate was 60 rps, the as-formed angular velocity of the rear of the pellet 

was 56,700 rad/s (Table C-l). Assuming the same geometries at failure as in the 42 rps case (i.e., 

an outer radius of 3.39 mm), for the smaller radius of gyration, the spin rate is 40,200 rad/s, while 

for the larger radius of gyration, it is 25,700 rad/s. This puts the material strength at less than 

68 MPa, or less than 98 MPa, depending on the geometry. The strength must be less than about 

100 MPa. Thus, the strength limits obtained from a combination of the jet-formation calculations 

and the radiographic data are 
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30 MPa < o0 < 100 MPa. 

7. Discussion 

The reliability of the yield strength estimated from the formulas depends on the accuracy of the 

geometry assumed for the jet and the measurement of the jet spin rate. The cylinder model seems 

to be the most appropriate model for assessing the strength because the fragments and the pellet have 

appreciable length and radial extent The existence of hollowness is important because the strength 

required to support a solid jet against spin forces is less than that required to support an annular jet. 

Both solid and annular geometries were considered. The hollow geometry seems more consistent 

with the observed fragment widths than the solid. 

In Section 5, the jet spin rate is inferred from the diametrical expansion rate. Using the 

diametrical expansion rate for this purpose when there are only three fragments results in a 

systematic error tending to underestimate the angular velocity. The magnitude of this error is 

difficult to quantify but would tend to increase the jet strength, since the spin rates would increase 

somewhat. 

Only the boattail burst when the initial liner spin rate was 42 rps. Using the radiographic data 

alone to calculate the yield strength gives a range of values from zero to less than 160 MPa. This 

range of values is compatible with the observed deformation of the pellet under the action of 

aerodynamic forces of magnitude, roughly 120 MPa. 

The first case considered in section 5 was a solid cylindrical segment with a radius of 

2.3 ±0.3 mm and a spin rate of 92,000 ±26,000 rad/s. Equation 11 then gave a strength of less than 

115 ±35 MPa. The calculation gives, for a solid jet segment in the boattail, a radius at burst of 

2.35 mm and a spin rate of 72,900 rad/s. Using the calculated values in equation 11 gives a stress 

of about 75 MPa at the low end of radiographic strength range. 
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The second case examined in section 5 was a solid cylindrical segment with a radius of 

2.7 ±0.3 mm and a spin rate of 60,000 ±16,000 rad/s. The estimated yield strength was less than 

68 ±20 MPa. The stress based on the jet-formation calculation fits comfortably within this range. 

The third case considered in section 5 was an annular cylindrical segment. The extreme values 

of outer/inner radii were 3.0 mm/1.7 mm and 2.4 mm/0.1 mm and the corresponding average spin 

rates were 45,000 rad/s and 69,000 rad/s. The yield strengths were less than 120 MPa and less than 

76 MPa, respectively. 

Using the radiographic measurements and the jet-formation calculations, the range of the yield 

strength can be reduced, as shown in section 6. The calculation indicated a hollow boattail segment 

with an outer radius no larger than 2.70 mm, in order to be consistent with the observed fly-off 

velocity. The corresponding inner radius was 1.33 mm and the spin rate at burst was 44,400 rad/s. 

The calculation gives a yield stress of less than 86 MPa. 

A solid boattail was also considered in section 6. In this case, the yield strength was less than 

75 MPa and the fly-off velocity was 94 m/s. However, such a geometry is not consistent with the 

observed widths of the fragments. 

Finally, the rear of the pellet was examined. The rear of the pellet remained intact when the 

initial liner spin rate was 42 rps. The minimum strength required to keep the pellet intact, using the 

calculated geometry and spin rate, is 30 MPa. The rear of the pellet yielded at 60 rps. According 

to the calculations, the strength must be less than 100 MPa. 

The range of stresses from 30 to 100 MPa encompasses nearly all of the values obtained from 

the radiographic measurements. A yield strength much above 100 MPa seems unlikely from the 

calculations and from the observed aerodynamic behavior. 
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8. Conclusion 

The combination of calculated and observed burst conditions indicates (hat the yield strength of 

the jet must be greater than 30 MPa and less than 100 MPa. Taking the midpoint value as 

representative, the yield strength of this molybdenum jet, evaluated near the tail of the pellet, appears 

to be about 65 MPa, with a probable uncertainty of about 60%. 
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Appendix A: 

Stresses in Solid and Annular Disks 
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In this appendix, the equations relating the yield strength of a material to the angular velocity that 

causes a thin disk rotating about its axis to become partially or totally plastic are derived. The elastic 

and elastic perfectly plastic stress distributions in the disk are examined to the point where the disk 

becomes fully plastic. Elastic solutions of the stress distributions in both solid and annular disks are 

well known and may be found in several texts (Nadai,1 Johnson and Mellor,2 and den Hartog3). In 

addition, the elastic-plastic solution for the solid disk is also given by both Nadai1 and Johnson and 

Mellor.2 The annular rotating disk was also treated by both Nadai1 and Johnson and Mellor,2 

however, both texts contained errors in their final expressions for the position of the elastic-plastic 

boundary. 

1. Elastic Stress Distribution in Rotating Disks 

The stress distribution in the rotating shaped charge jet may be calculated if a segment of the 

rotating jet at the time of burst is represented as a rotating disk. Only two components of stress need 

to be considered: (1) the tangential stress (o,) and (2) the radial stress (or). The equilibrium equation 

in this case is 

■|-(ror) - ot + pw2r2 = 0, (A-l) 

where p is the mass density, o> is the angular velocity, and r is the radial coordinate. If the radial 

displacement is sufficiently small, then the radial displacement (u) is related to the radial and 

tangential strains by 

du 

1 Nadai, A. Theory of Flow and Fracture ofSolids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 

Johnson, W., and P. B. Mellor. Engineering Plasticity. New York: Van Nostrand Reinhold Company, 1973. 

Den Hartog, J. P. Advanced Strength of Materials. New York: Dover Publications, Inc., 1952. 
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and 

u 
8< = 7' (A-3) 

respectively. Hooke's law then gives 

du = qr - vot 

dr E 
(A-4) 

and 

r 

ot - var 
(A-5) 

where E is Young's modulus and v is Poisson's ratio. Equations A-l, A-4, and A-5 are solved for 

or, since the boundary conditions involve or. Differentiating equation A-5 gives 

J_ du _ _u_ = 1 
r dr      r

2     E 

dot        dor 

^ dr dr; 
(A-6) 

Substituting for — from equation A-4, one obtains 
dr 

jj or - vo, u 
.2 ^ dr dr 

(A-7) 

Substituting for — from equation A-5 and rearranging yields 
r 

do.        do.      (i + v\ 

-d7-Vlr£+V2(O^^)=0 (A-8) 
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Solving equation A-l for ot and differentiating the result with respect to r gives 

^1 = i.2 

dr      dr2 
_i = -2-(ror) + 2po)2r. (A-9) 

Substitution of this into equation A-8 eliminates dat/dr from the equation, and using equation A-l 

to define ot, one obtains 

ii(ror) + 2pco2r - v^ + <LL*>(j.(r0f) + pco2r2 - a) = 0.     (A-10) 
dr2 dr r      ^ dr ) 

Noting that 

dT   r'       r       dr 

d do, 
_<ror) = or + r-I (A-ll) 

gives 

% ° Hi(i°-} - °l (A-i2) 

Substituting this into equation A-10 and multiplying by r2 gives 

r —(ror) + r—(ror) - ro. + (3 + v)pw2r3 = 0. (A-13) 
dr2 dr 

It can be readily verified that the solution of equation A-13 is then 

C„ CX   +  v1r»<v»2r3 „        u2      (3 + v)p&rr3 

ro, = C.r + —- - ^- '* 1        r 8 
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with the two integration constants determined by the boundary conditions. Solving equation A-l for 

ot gives 

d ,__^  . ..^2 

so 

°t-T<r°.> + Pwr • (A"15) 
dr 

ot = Cl-^- (l+3v)pa)2r2
> (A.J6) 

r2 8 

while 

= c   + £2 _ (3 + v)po)2r2 

°r ■ Ct + -± - ^     'g""»     . (A-17) 

From equation A-5, 

r u = — 
E 

1 C M   -  v2W.*2r2 

(, - v)C, - (1 ♦ v)il - C'-^P«*'   . (A-18) 
r* 8 

1.1 Elastic Stress Distribution in Solid Disks 

The boundary conditions for a solid disk are that the stresses remain finite at r = 0 and that or = 0 

at r = r0, the outside radius. The solution becomes3 

(3 + v)po)2(r 2 - r2) 
a = * ^_L2 i, (A-19) 

3 Den Hartog, J. P. Advanced Strength of Materials. New York: Dover Publications, Inc., 1952. 

30 



(3+v)po>2
( 2_  1^3vr2 

1 8 3 + v 
(A-20) 

and 

(1   -  V)r06)2
//- x    2     /i \   2\ u = -^ ' K

    ((3 + v)r0
2- (1 + v)r2) 

oh 
(A-21) 

At the center of the disk, the stresses are the largest, and or = o, at that point There is a state of two- 

dimensional hydrostatic tension with the stress 

cater 
(3 + v)p(roco); 

8 
(A-22) 

where r0d) is the peripheral speed of the disk. 

1.2 Elastic Stress Distribution in Annular Disks 

The boundary conditions for an annular disk are that or = 0 at r = iit the inside radius, and or = 0 

at r = r0. In this case, 

= (3 + v)po)2 

r 8 

r   r. 
0 1 f (A-23) 

°t = 
_ (3 + v)po)2 

8 

2,2 

r2 +r
2 + -2A - (1 + 3v>r

2 

r2 (3 + v)     j O 1 (A-24) 

and 

u = - (3 + v)(l - v)po)2r 
8E 

r2 + r.2 + i-^ 0       l       1 - v 

r2r.2 
O      1 

V    l     / 

(1   +  V)r2 

(3 + v)    ) 
(A-25) 
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These equations are also well known.3 

2. Stress Distribution in Elastic Perfectly Plastic Disks 

2.1 Solid Disks 

Plastic flow is assumed to occur when the Tresca yield criterion is satisfied for this case of plane 

stress. According to Tresca, the material yields if the maximum shear stress, T^, exceeds one-half 

the yield strength, o0. The maximum shear stress is equal to one-half the difference between the 

largest and smallest of the principal stresses. The axial stress is zero by definition. The maximum 

values of the radial and tangential stresses occur at the center of the solid disk, so, at this point, the 

maximum shear stress is equal to half the stress at the center. Therefore, the solid disk first yields 

at the center when acam = o0, and, from equation A-22, the square of the peripheral speed is 

(r0coc)
2 = 8a0/((3 + v)p). (A-26) 

Defining the ratio of o0 to p as the square of a reference velocity (v0) and defining the above 

peripheral speed as a critical velocity for the onset of plastic yielding (Vj), the relation between these 

two speeds is 

vc = v0(8/(3 + v))*. (A-27) 

If v = 1/3, then vc = 1.55 v0.! The stresses, scaled by the factor 8/(p (3 + v) r0
2wc

2), and the radial 

displacement, scaled by the factor 8E/(p (1 - v) (3 + v) r0
3(Oc

2), are shown in Figure A-l, where wc 

is the angular velocity corresponding to the critical peripheral speed vc. 

1 Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 
3 Den Hartog, J. P. Advanced Strength of Materials. New York: Dover Publications, Inc., 1952. 
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In most texts, the yield strength is known and the angular velocity at which the disk yields is 

unknown. However, in this report, it is assumed that the angular velocity that causes the disk to 

rupture can be measured and the yield strength is calculated. If the point of initial yielding is taken 

to be indicative of the rupture of the disk, then the yield strength for a solid disk is given by: 

(3 + v)p(r wj2 

= v ^o  *'  . (A-28) 
O g 

The actual rupture of the disk will occur at some point after the entire disk has yielded. As the 

angular velocity is increased, the boundary between the plastic inner region and the elastic outer 

region will move toward the outer radius of the disk. As shown in Figure A-1, the tangential stress 

is never smaller than the radial stress. Thus, the difference between the tangential and the axial stress 

reaches the yield strength before the difference between the radial and the axial stress does, and the 

yield criterion is always 

at = a0. (A-29) 

In the plastic region, the equilibrium equation takes the form 

-£(r°r) - oo + pu2r2 = 0. (A-30) 

The solution for the radial plastic stress is then 

3 °r = -  + 0o  " SL~r~ • (A-31) 

The radial stress must remain finite at r = 0 in the solid disk, so C = 0 and 
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Figure A-l. Scaled Stresses and Displacements of the Spinning Solid Disk at the Critical 
Velocity. 

a  = a   - I o 
pco2r2 

(A-32) 

In the elastic region, extending from the plastic boundary, r = rp to r = rp, the stresses are given by 

equations A-16 and A-17, subject to new boundary conditions. Applying the condition that or = 0 

at r = r0 gives, from equation A-17, 

(3 + v)      22 
8 ° 

(A-33) 
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Applying the condition that ot = ao - °—— at r = rp gives, from equations A-17 and A-33, 

C, =     °  p 
2
        i       i 

o        p 

'o0-ptf(il^(r0»-V) + i)). (A-34) 

Applying the condition that ot = o0 at r = rp gives, from equation A-16, 

pco2 = 
24onrn

2 
O   0 

(3(3 + v)r0
4 - 2(1 + 3v)r0

2rp
2 + (1 + 3v)rp

4)' 
(A-35) 

hi terms of the peripheral speed (v2 = w2 r0
2) and the reference velocity (v0

2), 

v2 = 
24v2r4 

o   o 

(3(3 + v)r0
4 - 2(1 + 3v)r0

2rp
2 + (1 + 3v)rp

4)' 
(A-36) 

The entire disk yields when rp = r0, the terms in v drop out in equation A-36, and the peripheral speed 

equals, 

or 

v = 1.73v„ 

v = 1.12v,. 

(A-37) 

(A-38) 

This result was also obtained by Nadai.1 Figure A-2 shows the stress distribution in the fully plastic 

solid disk, scaled by the same factor used in Figure A-l. The tangential stress equals the yield 

1 Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 
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r/r. 

Figure A-2. Scaled Stresses in the Fully Plastic Spinning Solid Disk. 

strength everywhere and the radial stress is determined from equation A-32. Thus, in terms of the 

angular velocity at which the entire disk has yielded, <of, the yield strength is given by: 

Pro2w? 
(A-39) 
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2.2 Annular Disks 

In the case of the annular rotating disk, as long as the stresses are below the yield point, they are 

given by equations A-23 and A-24. The annular disk first yields at the inner radius, r = T{, at a 

peripheral speed v^ that is determined by equating the tangential stress to o0 at rj. From 

equation A-24 

°o  = 
(3 ^h'-'l1-^))- 

so, 

2   2 4°oro 

(3 + v)r0
2 + (1 - v)rj2 

In terms of the reference peripheral velocity, v0
2 = ajp, v^ is 

o 4v 2r 2 
v       = o    o 

ca 
(3 + v)r0

2 + (1 - v)r.2 (A-42) 

which differs from Nadai's result1 in which t? appears in the numerator rather than r0
2, apparently 

due to a typographical error. Note, that as rj approaches zero, v^ approaches one half of vc, the 

critical peripheral speed for the onset of yielding for a solid disk (equation A-27). This is true 

because the tangential stress at the center of a solid disk (equation A-22) is half as large as the 

tangential stress on the inner radius of a disk with a central pinhole (equation A-24 with r = r- ~ 0). 

The stresses for an annular disk with a ratio of xj r0 = 1/5 , spinning at its critical speed for the onset 

of yielding, are shown in Figure A-3. The scaling factor is the same factor used previously but 

replacing wc
2 with 

1 Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 

37 



r/r„ 

figure A-3. Scaled Stresses in the Spinning Annular Disk at the Critical Velocity. 

co. 2   _ 
ca 

'I 3 + v , 

CO. 

obtained by setting equal the two expressions for o0, equations A-28 and A-40. 

As the peripheral speed is increased, the boundary between the plastic inner region and the elastic 

outer region will move toward the outer radius of the disk. As in the case of the solid disk, the 

tangential stress is always larger than the radial stress, so the yield criterion gives 
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°t = °o (A-43) 

in the plastic region extending from r = rj to r = rp. The radial stress is given by equation A-31, with 

the constant determined by the condition that at r = i-, or = 0. Thus, 

a  = a r o r 
par li. -r2 (A-44) 

In the elastic region, extending from r = rp to r = r0, the stresses are given by equations A-16 and 

A-17 subject to the boundary conditions that at r = r0, or = 0, and at r = rp, or is given by 

equation A-44. Applying the condition that or = 0 at r = r0 gives, from equation A-17, 

1 8 °        r2 (A-45) 

Applying the condition that or is given by equation A-44 when r = r. gives, from equation A-17, 

2      I 
C = —2-E 

ro       rp 
°o(rp-ri) + 

po)2(ri
3-rp

3) _ (3 H-v)po)2(r0
2rp - rp

3) _2_E E_ 
8 

(A-46) 

Applying the condition that ot = o0at r = r. gives, from equation A-16, 

o)2r 2 = o 

12(oo/p)(2r0
4rp - r.r0

2(r0
2 + r 2)) 

(3(3 + v)rpr0
4 - (1 + 3v)(2r0

2 - rp
2)rp

3 - 4(r0
2 + x^xf) 

(A-47) 
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This result differs from Nadai's1 by a factor of (r2/r0
2), which appears erroneously in his numerator. 

Johnson and Mellor2 found that yielding first occurs when equation A-41 is satisfied, and they also 

found equation A-44 for the radial stress. Their equation for the elastic plastic boundary is incorrect, 

however, apparently because of a typographical error. The entire disk yields when rp = r0; 

equation A-47 then gives 

3(o0/p)(ro - ri)r,2 

f    ° 3   _ ,3 »fV ■        °    I   °      '   ° . (A-48) 
v - rr 

or, in terms of reference velocity v0, the peripheral speed for the fully plastic annular disk is 

v 23r 2 

v2=    .    °    °        . (A-49) 
ri   + riro + V 

This result also differs from Nadai's.1 He has r^ in the numerator instead of r0
2. hi terms of v0, 

v = 1.56 v0, the peripheral speed at which the solid disk begins to yield at the center. Figure A-4 

shows the tangential and radial stresses for the fully plastic annular disk, scaled by the same factor 

as used previously. The yield strength may be found by solving equation A-48 for o0, 

o0 = pw2 (ri
2 + r, r0 + r0

2)/3. (A-50) 

This result can also be obtained by substituting r = r0 in equation A-44 and setting the radial stress 

to zero. An expression equivalent to equation A-50 was also obtained by Robinson4 by defining the 

average bursting stress to be equal to the total centrifugal bursting force divided by the total 

1 Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 

Johnson, W., and P. B. Mellor. Engineering Plasticity. New York: Van Nostrand Reinhold Company, 1973. 
4 Robinson, E. L. "Bursting Tests of Steam-Turbine Disk Wheels." Transactions of the ASME, vol. 66, pp. 373-386, 

July 1944. 
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r/r. 

Figure A-4. Scaled Stresses in the Fully Plastic Spinning Annular Disk. 

cross-sectional area. An experimental study, discussed in Johnson and Mellor,2 showed that 

Robinson's criterion,4 when used to estimate the burst speed of a disk, was accurate to roughly ±5%. 

In the limit as ij approaches r0, equation A-50 reduces to the result for a hoop, 

o0 = po2r0
2. (A-51) 

' Johnson, W., and P. B. Mellor. Engineering Plasticity. New York: Van Nostrand Reinhold Company, 1973. 
1 Robinson, E. L. "Bursting Tests of Steam-Turbine Disk Wheels." Transactions of the ASME, vol. 66, pp. 373-386 
July 1944. 
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Appendix B: 

Stresses in Solid and Annular Cylinders 
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In this appendix, the equations relating the yield strength of a material to the angular velocity that 

causes a long right-circular cylinder rotating about its axis to completely yield are derived. The 

plastic stress distributions in the cylinder are examined at the point where the cylinder becomes fully 

plastic. The stress distribution in a perfectly plastic, solid, rotating cylinder was examined by Nadai 

assuming small plastic strain and ignoring the elastic strain. Davis and Connelly1 examined both the 

solid and annular cylinder and included the effect of strain hardening. Both Nadai2 and Davis and 

Connelly1 assumed the cylinder was rotating freely with no net axial force. Hodge and Balabarf also 

analyzed the elastic plastic stress distributions in a solid rotating cylinder and examined the effect 

of elastic strains, compressibility, linear strain hardening, and finite plastic strains on the accuracy 

of the solution. The results of Hodge and Balaban3 indicated that the point at which the cylinder 

becomes fully plastic can be closely approximated using the approach outlined by Nadai.2 The 

solution presented in this appendix follows the derivations of Davis and Connelly1 and Nadai2 with 

a perfectly plastic material model. In addition, the effect of a nonzero net axial force is also 

considered. 

1. Stress Distribution in Perfectly Plastic Cylinders 

1.1 Solid Cylinders 

The stress distribution can be calculated for a segment of the rotating jet that is represented as 

a rotating cylinder. The solution derived in this appendix treats only a fully plastic cylinder rotating 

at equilibrium (with no radial acceleration). The strain in the axial direction (e^ is assumed to be 

a constant (-e0). For an incompressible material, the sum of the strains must be zero. 

er + et + ez = 0, (B-l) 

1 Davis, E. A., and F. M. Connelly. "Stress Distribution and Plastic Deformation in Rotating Cylinders of Strain- 
Hardening Material." Trans. ASME, Journal of Applied Mechanics, vol. 26, Series E, no. 1, pp. 25-30, March 1959. 

2 Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 
3 Hodge, P. G., Jr., and M. Balaban. "Elastic-Plastic Analysis of a Rotating Cylinder." Int. J. Mech. Sei., vol. 4, 

pp. 465-476,1962. 
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and, assuming small strains, 

du      u n — + e„ = 0, 
dr      r       ° 

(B-2) 

where u is the radial displacement, and er and et are the radial and tangential strains, respectively. 

Integrating equation B-2 gives for the radial displacement 

V      C u = -2- + —, 
2        r 

(B-3) 

where C is a constant of integration. In a solid cylinder, C must be zero and, from the strain- 

displacement relations, 

E  - 
du -  8° r""d7"7' (B-4) 

1     r       2 
(B-5) 

Under the assumptions of steady, slow plastic flow and small strains, the strains may be related to 

the stresses by the equations:2 

-i °r" 
°t  + °z (B-6) 

Nadai,A. Theory of Flow and Fracture ofSolids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 
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*-i °t- 
°r + 0z 

2       J 
(B-7) 

-i °z " °r  + 0t (B-8) 

where <J) is a variable to be determined. Since er = et, from equations B-6 and B-7 the radial and 

tangential stresses must also be equal. Therefore, the Tresca yield criterion is simply, 

o, - az = ±o0 = constant, (B-9) 

and the positive sign is assumed noting that if oz > ot then o0 will be negative. 

The condition of equilibrium is 

do       o-oT 
—!■ - -J '- + pw2r = 0. 
dr r 

(B-10) 

Substituting ot = or and integrating gives 

o^-^+C,, (B-ll) 

and the condition that or = 0 at r = r0, the outside radius of the cylinder, requires that 

C, = 
pw2r0

2 

(B-12) 
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Therefore, 

pw2(r2 - r2) 
or = iL-li -. (B-13) 

or 

The axial stress is given by 

oz = ot-o0, (B-14) 

pco2(r2 - r2) 
oz = ^—iJL i-o0. (B-15) 

In a freely rotating cylinder, which can contract freely in the axial direction, the resultant of the 

axial stresses oz is zero, 

f 27iozrdr = 0, (B-16) 
o 

and the result of the integration is 

o0 = pwV/4. (B-17) 

In terms of the peripheral speed at which the entire cylinder will yield, 

v2 = (r0G))2 = 4 (ojp) = 4v0
2, (B-18) 

or 

v = 2v0. (B-19) 

The result for the solid disk was v = 1.73 v0. For the same value of v, the estimated yield strength 

is larger, pW3 (equation A-39), for the solid disk in plane stress than for the solid cylinder in plane 

strain, pv2^. 
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When the entire rotating solid cylinder becomes fully plastic, the stress distributions are 

°r = °. = 

i  if 
r2 

1 - — 
o   / 

2<T 
f 

1   - 
r21 0 

^ <.2J 
(B-20) 

and 

o=ot-on = an Z t O 0 
1 - 2- 

o   / 

(B-21) 

hi the axial direction, the stress is tensile from r = 0 to nearly r = 0.707ro and compressive from there 

to the periphery. The action of the compressive and tensile forces is balanced so that the resultant 

force is zero. All of the above results were obtained by Nadai.2 

When there is a net axial force T acting on the cylinder 

f 27iozrdr = T, (B-22) 

the expression for the yield strength becomes 

o. = 
pw2r0

2        T 

rcr. 
(B-23) 

and 

2        2   2      4f T 

' Nadai, A. Theory of Flow and Fracture of Solids. Vol. 1, New York: McGraw-Hill Book Company, Inc., 1950. 
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If T is positive, the tension increases the peripheral speed necessary to cause the entire cylinder to 

yield. Therefore, at a given value of peripheral speed, v, the material may not yield until the tension 

is released by "breaking" the cylinder. Conversely, if T is negative, the compression reduces the 

peripheral speed necessary to cause yielding. In this report, the yield strength is unknown and is 

determined based upon measurement of the critical spin rate or peripheral speed at which the jet 

material accelerates radially (bursts). Thus, a cylinder under a net axial tension will appear to have 

a higher yield strength than a cylinder under no net axial force or under compression. 

12 Annular Cylinders 

In the case of the annular cylinder, the constant C in equation B-3 is not required to vanish, and 

the strains become 

e«      C 
*r = y--V (B-24) 

and 

*--j+£. (B-25) 

£, = -£<,. (B-26) 

The stresses and strains are related by equations B-6, B-7, and B-8, so, from the previous equations, 

the principal stress differences are 

4Cd>      2(j)e0k
2 

3r2 r2 
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r z       «H    o        3T2} 

<|)e0(r2 - k2) 
(B-28) 

and 

Ai 2C 
t .       H»|    o        3f2; 

K<r   + k2) (B-29) 

where 

k2 = 2C/3e0. (B-30) 

The equation of equilibrium is 

dor      at- aT 
—- = —  - parr. 
dr r 

(B-31) 

Examination of equations B-27, B-28, and B-29 reveals that the Tresca yield criterion results in 

two regions in the annular cylinder. For r < k, o0 = ±(ot - or). For r > k, o0 = ±(ot - o^. In the case 

of a freely rotating cylinder, the tangential stress is positive and is always greater than both the axial 

and radial stresses. At r = rj, the inner radius of the cylinder, the axial stress is also tensile and the 

radial stress is zero; therefore, the magnitudes of the stresses are ot > oz > or. The yield condition is 

then at- at = o0, and integration of equation B-31 yields 

x2„2 
,r = o0ln(r)-i^+C2. (B-32) 

This equation has a single constant, which is used to satisfy the condition that or = 0 at r = r^ The 

constant C2 is 

po)2r.2 

(B-33) 
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When the net axial force is zero, o2 is in tension near the center of the cylinder and in 

compression (negative) near the outside of the cylinder, so it will drop below or in the outer region 

of the cylinder. In the inner region, r < k, the yielding is governed by the difference between the 

tangential and radial stresses, while in the outer region, it is governed by the difference between the 

tangential and the axial stresses. Thus, 

a0 = at-at rs s r s k, (B-34) 

and 

o0 = ot - az k * r * r0. (B-35) 

From equations B-27 and B-34, 

$ = -2_- (B-36) 
2e0k

2 

in the inner region, and from equations B-29 and B-35, 

or2 

<t> =  (B-37) 
e0(r

2
+k2) 

f or k s r £ r0. 

In the outer region, 

KCrj-k2) 
r 

= °o " —^—2 • (B-38) 

The equilibrium equation in the outer region becomes 
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d°r °o *eo(r     " k   ) 2 — = —- - — porr. 
dr       r r3 (B-39) 

Substituting for (J> gives 

do       o r   _      o 

dr       r 
1 - (r2 - k2) 

(r2
+k2),/ 

- pci)2r. (B-40) 

On integration by partial fractions (or integral tables), 

or = o0ln 
^r2 + kM 

_ po)2r2     r 

~~T~       3' (B-41) 

where C3 is the constant of integration and k is the (unknown) transition point 

The solutions for or must match at r = k, so from equations B-32 and B-41, 

C3-C2 = o0ln(2k) (B-42) 

Thus, 

C3 - °0
to 

2„2 
2k        pw fi 1  + * 

v ri 
(B-43) 

But ar must vanish at r = r0, so 

pw2r 2 

C3 = - 2_ - o hi 
3 /* O 

t 2       \ 

i r2 + k2 
(B-44) 
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Setting these two expressions for C3 equal gives an equation for k, namely, 

In 
2kr 

l^o2 + k2)J 

2/„2  _ „2- _ p(o2(y - y) 
2a 

(B-45) 

or 

(r0
2 + k2)      2r 

exp 
'pG>2(r0

2-ri
2)X 

2o. 

If one defines 

r. 
A = —— exp 

2r2 

p(D2(r0
2 - rs

2) 

2o. 
(B-46) 

then 

k_  1J/1-4AV 

2A 
(B-47) 

From equation B-47, k can be found in terms of o0. From the condition on the net axial force 

F = =    f 27tozrdr, (B-48) 

another equation linking k and o0 is generated. Equations B-47 and B-48 are solved iteratively for 

o0 and k. 

Summarizing the stress equations in the inner region 
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*2,2 
,   , ,     po2r2      P" rf        .   , x jr = o0ln (r) - *-—. + —j-i. - o0ln (r.), (B-49) 

°t = °r + °o» 

and 

2  _ 1,2> 

0=0- z r 
o,(r' - kz) 

2k2 

(B-50) 

(B-51) 

while in the outer region 

,   (     r2     )      p<o2r2      P"V a. = o_ln        - K + 2_ - a In 
U2+k2J 2 2 

/     r2    \ 
 o  

1 r2 + k2 
(B-52) 

°t  = °z  + °o  = °r  + 
2q0k

2 

r2 +k2 
(B-53) 

and 

o_ = 0  - o_ r2 -k2 

r2 + k2J 
(B-54) 

The stresses for the fully plastic annular cylinder, scaled by the yield strength, for the ratio of 

ij/r0 = 1/5 are shown in Figure B-l. 
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r/r. 

Figure B-l. Scaled Stresses in the Fully Plastic Spinning Annular Cylinder. 
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Appendix C: 

Computed Jet Characteristics 
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In this appendix, the calculation of the spin rate of a jet element is described. This method 

differs from the one used by Karpp and Simon,1 who separated the portion of the liner that becomes 

the jet from the rest of the liner at the start of the collapse process. In the method described here, the 

jet is divided from the rest of the liner at the start of the jet-formation process (see Figure 9). 

The spin rate of the jet elements was computed from the initial spin rate of the liner in the 

following manner. The conical portion of the liner, beginning immediately after the spherical nose 

cap, was divided into 100-ring segments. The moment of inertia of segment i (Ioi) having inner 

radius Ru and outer radius R2i is given by 

Ioi = Mi(Rli
2 + R2i

2y2, (CM) 

where the mass Mj is 

Mi = Tip (R2i
2 - RH

2) Az , (C-2) 

and the length of the ring is Az. 

As shown in the collapse sequence diagram (Figure 9), the liner segment collapses to a certain 

position at which it begins to divide into a jet and a slug portion. The radii of the ring (R1Ci and R2Ci) 

are evaluated at this point, and a new moment of inertia (IQ) is calculated from equation C-3: 

Ia = Mi(R1Ci
2 + R2C1

2)/2. (C-3) 

A new spin rate for the ring at the collapse position (wCi) is computed from equation C-4: 

(oCi = (0, = ^ o)0/ Id , (C-4) 

1 Kaipp, R. R., and J. Simon. "An Estimate of the Strength of a Copper Shaped Charge Jet and the Effect of Strength 
on the Breakup of a Stretching Jet." BRL-TR-1893, U.S. Army Ballistic Research Laboratory, Aberdeen Proving 
Ground, MD, June 1976. 

59 



where Q0 is the initial spin rate of the liner. The assumption is made that the effect of torques 

transmitted by neighboring rings can be neglected. 

The division of the ring mass into a jet mass (m;) and a slug mass (M; - m) is governed by the 

collapse angle (ß) according to equation C-5:2 

nii = Mj sin2 (ß/2), (C-5) 

where ß is the angle made by the line connecting the outer radii of the rings labeled i and i + 1, and 

the z axis. Since the masses are proportional to the lateral areas of the rings, once ni; is known, the 

radius to the upper surface of the jet ring can be found, namely, 

R3Ci = (R2Ci
2 sin2 (ß/2) + R1Ci

2 cos2 (ß/2))*. (C-6) 

The moment of inertia of the jet element at this time (Iq;) is given by 

ICj-mi(R1Ci
2 + R3C

2)/2. (C-7) 

The jet element continues to collapse onto the axis of symmetry. This as-formed jet is assumed to 

be solid, with a radius determined by its mass, namely, 

^(nii/rcpAz)1'2, 

= ((R2ci2-Rici2)sin2(ß/2))1/2, (C-8) 

where p is the mass density of the liner. The moment of inertia of the jet is then 

^ = m1rjl
2/2, (C-9) 

2 Harrison, J. T. "Improved Analytical Shaped Charge Code: BASC." BRL-TR-02300, U.S. Army Ballistic Research 
Laboratory, Aberdeen Proving Ground, MD, March 1981. 
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and the as-formed spin rate follows from equation C-10: 

The as-formed jet segments have smaller radii than the jet segments observed in the radiographs. 

After formation, the jet segments at the front of the pellet are compressed by the strong "inverse" 

velocity gradient and, consequently, change their shapes. At the rear of the pellet, the compressive 

stresses are lower and the discrepancy between the as-formed and the observed segment radius is 

much less. Consequently, after formation, the jet segments are assumed to "relax" to a ring whose 

outer radius is mat measured from the radiographs. The moment of inertia of this ring (1^) is given 

by 

^ri = mi(rli
2+r2

2)/2, (C-ll) 

where r2 is the outer (observed) jet radius and rH is determined by the mass of the jet ring. The spin 

rate in the relaxed state (o)j) is computed from equation C-12: 

ü>i = 0)3=^0)0/1^. (C-12) 

The jet pellet reaches an equilibrium value of velocity. This velocity, v, is determined by 

conservation of linear momentum as given by equation C-13: 

v   =S(mivi)/Smi      v, >   v, (C-13) 

where the sums are taken over all those jet segments that can overtake one another. Elements 1-63 

comprise the pellet; its velocity is 10,433 m/s. 

Table C-l gives some computed jet properties obtained from the modified BASC code. For a 

given liner segment number (N), beginning near the apex, these are the segment jet velocity (Vj), the 

mass of the jet segment (m), the radius of the as-formed jet segment öj), the collapse velocity (V0) 
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Table C-l. Computed Jet Properties 

[N Vj m rj v„ P <•><> (02 

(km/s) (kg) (mm) (km/s) (deg) (rev/s)     (rev/s) 

1 9.393 9.1 x 10"5 1.47 2.481 31.7 42/60 2586/3694 
2 9.489 9.6 x 10"5 1.51 2.528 32.0 42/60 2634/3762 
3 9.536 1.0 x lO'4 1.56 2.570 32.4 42/60 2662/3803 
4 9.616 1.1 x 10"4 1.60 2.609 32.6 42/60 2715/3878 
5 9.647 1.1 x 10"4 1.64 2.644 33.0 42/60 2747/3925 
6 9.712 1.2 xlO"4 1.67 2.675 33.2 42/60 2805/4007 
7 9.731 1.2 x 10"4 1.72 2.704 33.5 42/60 2842/4059 
8 9.855 1.3 x 10"4 1.73 2.730 33.4 42/60 2946/4208 
9 9.929 1.3 x 10"4 1.76 2.758 33.5 42/60 3016/4309 
10 9.976 1.4 xlO'4 1.80 2.786 33.7 42/60 3067/4381 
11 9.977 1.4 xlO'4 1.84 2.812 34.0 42/60 3091/4416 
12 10.016 1.5 x 10"4 1.88 2.813 34.2 42/60 3144/4492 
13 10.054 1.5 x 10"4 1.91 2.860 34.4 42/60 3196/4566 
14 10.087 1.6 x lO'4 1.94 2.881 34.5 42/60 3250/4643 
15 10.119 1.6 x lO'4 1.97 2.901 34.7 42/60 3305/4722 
16 10.148 1.7 x lO'4 2.00 2.920 34.8 42/60 3361/4801 
17 10.175 1.7 x lO'4 2.04 2.938 34.9 42/60 3417/4881 
18 10.201 1.8 x lO'4 2.07 2.955 35.1 42/60 3473/4962 
19 10.225 1.8 x lO'4 2.10 2.970 35.2 42/60 3530/5043 
20 10.248 1.9 x 10"4 2.12 2.985 35.3 42/60 3588/5126 
21 10.269 1.9 x 10"4 2.15 2.999 35.4 42/60 3646/5209 
22 10.289 2.0 x 10"4 2.18 3.012 35.5 42/60 3704/5291 
23 10.307 2.1 x 10"4 2.21 3.024 35.6 42/60 3763/5376 
24 10.325 2.1 x 10"4 2.24 3.036 35.6 42/60 3822/5461 
25 10.385 2.1 x lO'4 2.25 3.047 35.6 42/60 3919/5598 
26 10.400 2.2 x 10"4 2.28 3.057 35.6 42/60 3980/5685 
27 10.415 2.2 x 10"4 2.30 3.067 35.7 42/60 4041/5772 
28 10.428 2.3 x 10"4 2.33 3.076 35.8 42/60 4102/5860 
29 10.440 2.3 x 10"4 2.36 3.084 35.8 42/60 4165/5950 
30 10.453 2.4 xlO"4 2.38 3.092 35.9 42/60 4228/6040 
31 10.464 2.4 xlO"4 2.40 3.100 35.9 42/60 4290/6129 
32 10.474 2.5 x 10"4 2.43 3.107 36.0 42/60 4353/6218 
33 10.484 2.5 x 10"4 2.45 3.114 36.0 42/60 4415/6308 
34 10.494 2.6 x lO'4 2.48 3.121 36.1 42/60 4479/6398 
35 10.502 2.6 x 10"4 2.50 3.127 36.1 42/60 4544/6492 
36 10.510 2.7 x 10"4 2.52 3.132 36.2 42/60 4608/6583 
37 10.519 2.7 x 10"4 2.55 3.138 36.2 42/60 4672/6675 
38 10.526 2.8 x 10"4 2.57 3.143 36.3 42/60 4736/6766 
39 10.534 2.8 x 10'4 2.59 3.148 36.3 42/60 4802/6859 
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Table C-l. Computed Jet Properties (continued) 

N Vj m rj v0 P <•>„ G>2 

(km/s) (kg) (mm) (km/s) (deg) (rev/s) (rev/s) 

40 10.540 2.9 x 10"4 2.61 3.153 36.3 42/60 4866/6952 
41 10.545 2.9 x 10"4 2.63 3.157 36.4 42/60 4930/7043 
42 10.552 3.0 x 10'4 2.66 3.161 36.4 42/60 4996/7137 
43 10.558 3.0 x 10"4 2.68 3.165 36.4 42/60 5062/7231 
44 10.563 3.1 x 10"4 2.70 3.169 36.4 42/60 5127/7325 
45 10.568 3.1 x 10"4 2.72 3.173 36.5 42/60 5193/7418 
46 10.573 3.2 x 10"4 2.74 3.176 36.5 42/60 5259/7512 
47 10.578 3.2 x 10"4 2.76 3.180 36.5 42/60 5325/7608 
48 10.581 3.3 x 10"4 2.78 3.183 36.6 42/60 5390/7700 
49 10.585 3.3 x 10"4 2.80 3.186 36.6 42/60 5457/7795 
50 10.589 3.3 x 10"4 2.82 3.189 36.6 42/60 5523/7890 
51 10.589 3.3 x 10"4 2.84 3.192 36.6 42/60 5589/7985 
52 10.597 3.4 xlO"4 2.86 3.194 36.6 42/60 5656/8081 
53 10.600 3.5 x 10"4 2.88 3.197 36.7 42/60 5723/8175 
54 10.602 3.5 x 10"4 2.90 3.199 36.7 42/60 5788/8269 
55 10.605 3.6 x 10"4 2.92 3.202 36.7 42/60 5855/8365 
56 10.609 3.6 x 10"4 2.94 3.204 36.7 42/60 5920/8458 
57 10.613 3.7 x 10"4 2.96 3.206 36.7 42/60 5989/8555 
58 10.616 3.7 x lO*4 2.98 3.208 36.7 .42/60 6057/8653 
59 10.615 3.8 x 10'4 3.00 3.210 36.8 42/60 6120/8743 
60 10.619 3.8 x 10"4 3.01 3.212 36.8 42/60 6188/8841 
61 10.622 3.9 x 10"4 3.03 3.214 36.8 42/60 6257/8938 
62 10.626 3.9 x 10"4 3.05 3.216 36.8 42/60 6322/9032 
63 10.569 4.0 x 10"4 3.09 3.218 37.0 42/60 6316/9023 
64 10.012 4.6 x 10"4 3.30 3.219 39.4 42/60 5698/8140 
65 9.996 4.6 x 10"4 3.31 3.208 39.4 42/60 5779/8256 
66 9.981 4.6 x lO'4 3.32 3.198 39.3 42/60 5861/8373 
67 9.917 4.7 x 10"4 3.35 3.187 39.4 42/60 5887/8410 
68 9.900 4.8 x 10"4 3.36 3.176 39.3 42/60 5966/8523 
69 9.843 4.8 x 10"4 3.39 3.165 39.4 42/60 5999/8569 
70 9.825 4.9 x 10"4 3.40 3.154 39.4 42/60 6083/8691 
71 9.673 5.0 x 10"4 3.46 3.142 39.9 42/60 5994/8563 
72 8.252 7.1 x 10"4 4.12 3.129 47.6 42/60 4407/6295 
73 8.037 7.4 xlO"4 4.19 3.084 48.3 42/60 4343/6205 
74 7.820 7.7 x 10"4 4.27 3.038 49.0 42/60 4280/6115 
75 7.595 7.9 x 10"4 4.35 2.988 49.7 42/60 4212/6018 
76 7.360 8.3 x 10"4 4.43 2.936 50.5 42/60 4135/5908 
77 7.111 8.6 x 10"4 4.53 2.882 51.4 42/60 4048/5782 
78 6.789 9.2 x 10"4 4.68 2.825 52.9 42/60 3882/5547 
79 6.572 9.5 x 10"4 4.75 2.765 53.5 42/60 3837/5481 
80 6.228 1.0 xlO"3 4.93 2.702    55.4 1 42/60 3653/5219 
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of the liner segment, the collapse angle (ß) of the liner segment, the initial spin rate (co0) of the liner 

segment, either 42 rps or 60 rps, and the corresponding as-formed jet spin rate, o)2. 

If the hoop model, used by Karpp and Simon1 is used to calculate the spin rate of the jet element 

formed from a liner element initially located at r0l, the result will differ from that computed by the 

procedure outlined above. If rg is the radius of gyration of the jet, the jet spin rate computed from 

(«VflO-Oii/r.P (C-14) 

is higher because the jet mass is split off from the rest of the liner mass in the initial state before the 

collapse begins, and the initial moment of inertia about the z axis (Ioi
hoop) is 

e^rn^2, (C-15) 

where mj is the mass of the jet element and roi is its initial location on the inside surface of the liner. 

The jet-formation code, using the ring model (Figure 9), evaluates an intermediate state between the 

initial and final states and uses the moment of inertia of the entire liner segment at the initial and 

intermediate points. The final states of the jet element can be compared if the radius of the hoop is 

set equal to the radius of gyration (rg) of the solid disk representing the solid jet, given by 

r«=ff' 
(C-16) 

where r is the radius of the jet The radius of gyration of a hollow jet, with outer radius ^ and inner 

radius r2 is 

r*=< 

2      2 rl+r2 

1 Karpp, R. R, and J. Simon. "An Estimate of the Strength of a Copper Shaped Charge Jet and the Effect of Strength 
on the Breakup of a Stretching Jet" BRL-TR-1893, U.S. Army Ballistic Research Laboratory, Aberdeen Proving 
Ground, MD, June 1976. 
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For example, using liner element 64 and the data in Table 2, the values for the quantities are: 

r0 = Rj = 31.1 mm, R2 = 32.6 mm, R^ = 10.1 mm, R^ = 13.8 mm, R& = 10.6 mm, and T} = 

3.3 mm. For o)0 = 42 rps, the as-formed jet spin rate is 5,700 rps and the as-formed radius of 

gyration is 2.3 mm. Taking the outer radius to be 2.7 mm and the inner radius to be 1.3 mm, the 

radius of gyration at burst is 2.1 mm, smaller due to the subsequent stretch (see the discussion in 

section 6). This increases the as-formed spin rate from 5,700 to 6,800 rps so that rg
2 a) remains 

constant For a)0 = 60 rps, the as-formed spin rate and radius of gyration are 8,100 rps and 2.3 mm. 

The radius of gyration at burst is 2.8 mm because the jet is assumed to expand before failing to an 

outer radius of 3.65 mm and an inner radius of 1.49 mm, equal to the observed outer radius at this 

part of the jet in the experiment at 42 rps. This reduces the spin rate from 8,100 to 5,500 rps. Using 

the hoop equation (C-14), the corresponding jet spin rates at burst are 9,200 and 7,400 rps. The fly- 

off velocity (vfp) is the tangential velocity at the radius of gyration. The results of the two models 

are given in Table C-2. The jet-formation calculations using the disk model are expected to be more 

accurate than those using the hoop model, as the table shows, if the tangential velocity is given 

accurately by half the diametrical expansion rate. 

Table C-2. Comparison of the Models for Liner Element 64 

1    (rps) 
rg 

(mm) 
<Dj

hoop 

(rps) (rps) 
v hooP 

(m/s) (m/s) 
V4dD/dt 

(m/s) 

1     42 
1     60 

2.0 
2.8 

9,200 
7,400 

6,800 
5,500 

121 
130 

90 
97 

90 ±14 
115 ±17 
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