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Abstract 

The CN2 model is a semi-empirical algorithm that makes a quantitative 
assessment of atmospheric optical turbulence. The algorithm uses surface 
layer gradient assumptions applied to two levels of discrete vertical 
profile data to calculate the refractive index structure parameter. Model 
results can be obtained for unstable, stable, and near-neutral atmospheric 
conditions. The CN2 model has been benchmarked on data from the 
REBAL '92 field study. The model will shortly be added to the Electro- 
Optics Atmospheric Effects Library (EOSAEL). This report gives technical 
and user's guide information on the CN2 model. 
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1. Introduction 
Atmospheric optical turbulence is a problem for most electro-optical (EO) 
systems. The image distortion it promotes can drastically reduce system 
and sensor performance. A means of assessing the levels of optical turbu- 
lence, relying on calculations that require a minimum of atmospheric 
data, could be an advantage to those in the field of EO system design and 
application. This report introduces the CN2 model, a semi-empirical 
algorithm developed by the Army Research Laboratory (ARL) for inclu- 
sion into the Electro-Optics Atmospheric Effects Library (EOSAEL), 
which addresses the atmospheric optical turbulence problem. 

The propagation of a light beam through the atmosphere is affected by 
random fluctuations in the refractive index of air (Kunkel et al., 1981). 
These fluctuations or discontinuities cause optical turbulence—variations 
in the speed at which the wavefront propagates. The refractive index 
structure parameter (C2) is a quantitative measure of optical turbulence. 

The value of C2 has been generally observed to range from about 10"12 to 
10~16 m"2/3. High values of C2,10-12 m_2/3 or greater, even over nominal 
distances, usually indicate turbulent atmospheres wherein considerable 
visual blurring or image distortion would be present (as if one were 
looking out over a hot paved road, over an airport runway, or, in an 
extreme case, through the exhaust behind a jet engine). At lower values of 
C2,10"16 to 10"15 m~2/3, atmospheric optical turbulence would generally be 
considered negligible. (However, there could be other image-degrading 
effects arising from other factors, such as precipitation, fog, or smoke.) 

Many simulation models have been developed that address optical 
turbulence in the atmospheric surface layer (Kunkel et al, 1981; Andreas, 
1988; Miller and Ricklin, 1990; Tunick and Rachele, 1991; Sadot and 
Kopeika, 1992; Tofsted, 1993; and Rachele and Tunick, 1994); these models 
vary both in mathematical complexity and in the amounts and types of 
inputs and computer capabilities required. The CN2 model reported on 
here is a refractive index structure parameter model that makes a quanti- 
tative assessment of atmospheric optical turbulence given two levels of 
wind, temperature, and humidity profile data as input. It contains a 
surface layer profile structure algorithm derived by Rachele et al (1991, 
1995,1996a) that makes estimates of C2 obtainable for unstable, stable, 
and near-neutral atmospheric conditions. CN2 also computes the surface 
heat and moisture flux. 

This report gives a mathematical outline of the CN2 model, provides 
some user's guide information (sect. 4) on the new module intended for 
the EOSAEL, and provides output examples (sect. 5). 

EOSAEL 95 is available at no cost to U.S. Government agencies, specified 
Allied organizations, and their authorized contractors. U.S. Government 
agencies needing EOSAEL 95 should send a letter of request, signed by a 
branch chief or division director, to the Army Research Laboratory (ARL). 
Contractors should have their Government contract monitors send the 



letter of request. Allied organizations must request EOSAEL 95 through 
their national representatives. The EOSAEL point of contact at ARL is 
Dr. Alan Wetmore: 

ARMY RESEARCH LABORATORY 
2800 POWDER MILL ROAD 
ATTN: AMSRL-IS-EE (DR. A. WETMORE) 
ADELPHI, MD 20783-1157 

Phone: (301) 394-2499 
DSN: 290-2499 
Fax: (301) 394-4797 
Email: awetmore@arl.mil 

Letters of request should include intended uses and the type of nine-track 
tape necessary for computer execution: ASCII, UNIX, tar format in 1600 
or 6250 bpi, or SUN cartridge (EOSAEL 95 cannot be supplied on media 
other than these). Documentation for modules is included. 



2. Mathematical Description of CN2 Model 
The proposal to include CN2 in the EOSAEL was drafted only recently. 
The model itself, however, is based on a combination of concepts and 
algorithms that had been developed and partially validated over a num- 
ber of years, such as those documented in Rachele et al (1991,1995, 
1996ab), Tunick and Rachele (1991), Rachele and Tunick (1992,1994), and 
Tunick et al (1994). The motivation for these studies was principally to 
develop and verify a set of equations for the atmospheric stability portion 
of the calculations needed to evaluate an expression for C^, such as the 
one given in Tatarski (1961), which can be written as 

where b is equal to 3.2 and called the Obukhov-Corrsin constant, KH is the 
turbulent exchange coefficient for heat diffusion, e is the energy dissipa- 
tion rate (Panofsky, 1968), and dn/dz is the vertical gradient of the index of 
refraction, n. A list of symbols and constants is given in table 1. 

For visible and IR wavelengths, the expression for dn/dz, as presented by 
Tunick and Rachele (1991), is based on work reported by Andreas (1988). 
Andreas's formulations, which are expressed in terms of gradients of 
temperature and absolute humidity, were modified to expressions in terms 
of gradients of potential temperature 0 and specific humidity q, as re- 
quired by Tatarski (1961). For the visible region and near-infrared wave- 
lengths from 0.36 to 3 urn (as denoted by the subscript v), Andreas (1988) 
writes 

nv = 1 + fMX(A) ^ + 4.615 (M2 (A) - M^X)) Q) x10"6 , (2) 

where 

and 

M ns _ ?o 7-IQ4 , 6839.397      45.473 ,« Mj(A) - 23.7134 + 130 _ a2 + 3g_9 _ a2 , (3) 

M2(A) = 64.8731 + 0.58058 a1 - 0.007115 a4 + 0.0008851 a6. (4) 

Transforming equation (2) in terms of potential temperature (0) and 
specific humidity (q) yields 

nv = l + M.W är^)+ "w« [M.M) -M. «lärfe 
-6 xl0_o . (5) 



Table 1. List of symbols. 

Symbol Name or description Value or equation Literature reference 

C2 
refractive index C2 = bKli ldn? L"    %i/3 I dzj 
structure parameter 

b Obukhov-Corrsin 
constant 

3.2 Panofsky (1968), Wyngaard 
(1973), Andreas (1988), 
Hill (1989) 

8 gravitational acceleration 9.8 m/s2 — 

k von Karman's constant 0.4 Businger et al (1971) 

KH turbulent exchange 
coefficient for heat 

KH = uJa/hJQ Businger et al (1971) 

L Obukhov scaling length L = ul8/kge. Obukhov (1946) 

Mj(A) constant in eq (6) and (11) — — 

M2(A) constant in eq (6) — — 

"i index of refraction 
(infrared) 

— Andreas (1988) 

"ia; refractivity due to 
water vapor 

— Hill and Lawrence (1986) 

"V index of refraction 
(visible) 

— Andreas (1988) 

"w contribution from dry 
air to instantaneous 
refractivity " 

Owens (1967) 

p atmospheric pressure 
in millibars 

— — 

9 specific humidity 
(kg/kg) 

— — 

Q absolute humidity 
(kg/m3) 

— — 

T air temperature (K) — — 

v wind velocity (m/s) — — 

X scaled wavelength 10 um/A — 

2 height (m) above ground — — 

2r reference height 
above ground 

2m — 

e* potential temperature 
scaling parameter 

kAO 
^jAlnz Rachele et al (1995) 



Table 1. List of symbols (cont'd). 

Symbol Name or description Value or equation Literature reference 

9v* potential temperature 
scaling parameter 

a         kA8v 
v*    foAlnz 

Rachele et al (1995) 

q* specific humidity 
scaling constant 

kAq 
q*~ foAlnz 

Racheleetal(1995) 

w* friction velocity u =    kAV 

*    ^„Alnz Rachele et al (1995) 

z* logarithmic mean 
scaling height 

_*_   Az 
Alnz 

Rachele et al (1995) 

a scaled temperature T/273.15 — 

A difference operator (i.e., A0 =02--0i) — 

e energy dissipation 

rate 

£="*(0m-C)Az Panofsky (1968) 

h dry adiabatic lapse rate -0.00098 °C/m — 

X wavelength (urn) — — 

uo dimensionless 
temperature lapse rate 

0„(O = d-i5O-1/2 

for C, < 0 
0„(O = 1 + 5C 
for£>0 

Dyer (1974), Hicks (1976) 

Webb (1970) 

0m(O dimensionless wind 
shear 

0m(C) = (l-15O"1/4 

for£<0 

forf>0 

Dyer (1974), Hicks (1976) 

Webb (1970) 

% nondimensional 
specific humidity 
lapse 

0q = 0H 

e potential temperature 0= T +0.0098 x(z-zr) Rachele and Tunick (1994) 

8V virtual potential 
temperature 

6V = 0(1 + 0.61?) Busch (1973) 

a 1/wavelength A"1 — 

s scaling ratio z/L Monin and Obukhov (1954) 

de 
dz 

vertical gradient of 
potential temperature dz     kz m 

Busch (1973) 

dz 

vertical gradient of 
virtual potential 
temperature 

Busch (1973) 



Table 1. List of symbols (cont'd). 

Symbol Name or description Value or equation Literature reference 

dq vertical gradient of 
dz    kzm dz specific humidity 

dV 
dz 

vertical gradient of 
wind velocity dz     kzm 

[A],[B] placement variables in 
eq(ll) 

— 

dn/dz vertical gradient 
of mean refractive 
index " 

drij vertical gradient of — 

dz index of refraction 
(infrared) 

dnv vertical gradient of — 
dz index of refraction 

(visible) 

Busch (1973) 

Busch (1973) 

Tunick and Rachele (1991) 

Tunick and Rachele (1991) 

Tunick and Rachele (1991) 

For steady-state, homogeneous conditions, equation (5) yields 

^ = (-MiW^-1.6l(A^W-M1«))^jxl(r6f 

+ 1.61 (M2U)-M1U))f xl0-6-j| • 

For IR wavelengths from 7.8 to 19 urn (as denoted by the subscript i) 
Andreas (1988) (who refers to Hill and Lawrence (1986) and Owens 
(1967)) writes 

where in the range from -40.0 to +40.0 °C, 

(6) 

"HO = Q 
957.-928.q04(X-l) 3.747 x 106 

and 

1.03a0-17 - 19.8X2 + 8.2X4 - 1.7X8    12,499. - X2 

"«* = MX(A)^-4.615 M#)Q 

(7) 

(8) 

(9) 

Substituting Q (kg/nr3) = 0.34875 Pq/T into equations (8) and (9), and 
taking the derivative of equation (7) in terms of öand q gives 



^ = - MIX) 4 -1-6095 MIX) ^ + 0.34875 ^ [A] - 0.34875[B] ||  x 1(T* & 

+ (0.34875[B] -1.6095 M^A)) ^ x 10^ || , 

where 

1.359cr°6(X-l)  0.5949a0-43 (X-l) 

(10) 

V 
1.03a017 _ 19.8X2 + 8.2X4 - 1.7X8    (j 03ao.i7 _ 19.8X2 + 8.2X4 _ L7X8J2 

and 

(11) 

957.-928.ar04 (X-l) ( 3.747xlO6 

1.03a0-17 - 19.8X2 + 8.2X4 - 1.7X8    12499. - X2 (12) 

The surface layer algorithm called MARIAH (Rachele et al, 1991,1995, 
1996a,b) is used to obtain a noniterative solution for the temperature and 
moisture partial derivatives dd/dz and dq/dz. The MARIAH algorithm is 
based on a series of concepts more commonly known as similarity theory 
(as defined by the earlier efforts discussed in Obukhov (1946), Monin and 
Obukhov (1954), Businger et al (1971), and Busch (1973)). 

As similarity theory prescribes, the partial derivatives of wind speed, 
temperature, and moisture with respect to height can be written as 

dV     w* de     0* dq     q* 
-&=ta*»'   Tz^Yz^'   aTta*' (13) 

where V is wind speed (m/s), u* is the friction velocity (m/s), 0* is the 
potential temperature scaling constant (K), q* is the specific humidity 
scaling constant (g/g), z is height above ground, k is Karman's constant 
(0.4), and 0m, <pH, and (j)q are the dimensionless wind shear, dimensionless 
temperature lapse rate, and dimensionless humidity lapse rate, respec- 
tively. The MARIAH algorithm suggests that the partial differential 
equations in equation (13) can be re-expressed as 

u^    kAV        a=    kA6        ^_    kA1 
(pmAh\z'    *   ^fAlnz'    *   ^Alnz ' (14) 

where the A operator refers to the difference in data taken from one tower 
level to another (i.e., V2 - Vi). Here, the dimensionless term for humidity 
is assumed equal to the dimensionless temperature lapse (i.e., <pq = <pH), 
even though field observations have shown that atmospheric gradients of 
temperature do not always or universally behave similarly to those of 
moisture. The relationships in equation (14) can be handled in a straight- 



forward manner, given expressions for the dimensionless shear and lapse 
rate terms. Following Dyer (1974) and Hicks (1976), I use 

<Pm = [1 -15(2/1)]-1/4 and ft, = [1 -15(2/1)]"1/2 (15) 

for unstable atmospheric conditions, and from Webb (1970), I use 

<t>m = <I>H = 1 + 5(z/L) , (16) 

for stable atmospheric conditions. Busch (1973) defines the Monin- 
Obukhov (M-O) scaling ratio as 

L~KevU2z' (17) 

where 6V = 0(1 + OMq) is the virtual potential temperature, and 6V* = 6* + 
0.616q* is the virtual potential temperature scaling constant. (This equa- 
tion for the M-O scaling ratio, which reflects atmospheric stability in 
terms of the scaling constants in eq (14), includes the effects of water 
(vapor) content by considering the dry or virtual atmosphere. The virtual 
temperature is the temperature that dry air must have to equal the den- 
sity of moist air at the same pressure (Stull, 1988).) Therefore, from equa- 
tions (14) and (17), the expression for the Obukhov length L used in 
equations (15) and (16) can be formulated as 

J > (18) 
L_     1     6V (AVQ2fo 

Alnz g [Ae + 0.616Aq](j), 

so that for unstable atmospheric conditions, 

L=     1     0„        (AV)2 

Alnz g A6 + 0.61dAq ' (19) 

For stable atmospheric conditions, it can be expressed as 

LA 1      Oy        (AVf 
9m    Alnz g Ae + 0.616Aq " (20) 

Note that the gradients for each layer should be taken to mean those 
tangent to the indicated profiles at z = z*, where z* = Az/(A In z), instead 
of z* = (zj • z2)1/2, the geometric mean, which is almost always assumed 
(Rachele and Tunick, 1991; Rachele et al, 1991). The relationships for 
profiles of C2, which are generally accepted for z < ILI, can be expressed 
as 

Cliz) = C„V) • (^)"4/3 and Cl = C„V) ■ (^\m , (21) 

for unstable and stable or near-neutral atmospheric conditions, respec- 
tively, where the -4/3 and -2/3 behavior had been indicated by experi- 
mental surface layer data (as discussed in somewhat more detail by 
Wyngaard, 1973, and Wyngaard and LeMone, 1980). 



3. Verification 
The CN2 model was benchmarked using the data collected during the 
field study entitled "Radiation Energy Balance Experiment for Imagery 
and EM Propagation" (REBAL '92). REBAL '92 (Tunick et al, 1994) was 
conducted during May and July 1992 at Bushland, TX (35°N latitude, 
102°W longitude, 1170-m elevation above mean sea level) by the Army 
Research Laboratory and the Conservation and Production Research 
Laboratory (CPRL) of the USD A Agricultural Research Service (ARS). 
(The test site at ARS-CPRL in Bushland, TX, is approximately 16 km due 
west of Amarillo.) Diurnal measurements of sky and emitted radiation, 
soil heat flux, soil temperature and volumetric water content, evapora- 
tion, optical turbulence (from a scintillometer*), near- and far-field infra- 
red imager data, and micrometeorological profile data were collected over 
wet and dry bare soil for clear and cloudy sky conditions. 

The micrometeorological profiles of wind speed, temperature, and rela- 
tive humidity were measured on an 8-m tower centered in the test area (at 
0.5,1., 2., 4., and 8. m above the surface). A 0.94-um scintillometer 
(Lockheed Engineering & Management IV-L) source module was 
mounted 2 m above ground on a tripod at the north end of the test area 
and was aligned and focused down-field (i.e., to the south) over a path of 
approximately 450 m. 

Figure 1 shows time series from CN2 model results compared to time 
series of the observed data. Each plot reflects conditions during the same 
collection interval (i.e., 8 July 1992,1230 local time (LT), to 9 July 1992, 
2100 LT), except that the wind speed, temperature, and relative humidity 
input data (15-min averaged) are taken from different heights above 
ground (that is, 1 and 4 m, 2 and 4 m, and 4 and 8 m above ground, 
respectively). 

Overall, the C„ estimates appear to be in line with the observations. 
However, there are several instances when the CN2 model results are in 
extreme contrast to the scintillometer data. These occur numerically when 
the computed temperature gradients are very, very small: small enough to 
cause singularities in the model calculations. They occur physically 
during periods, however brief, of near-neutral or neutral atmospheric 
stability. Figure 2 is a time series of temperature data, measured at four 
heights above ground level. Segments of the data (indicated on the figure 
by arrows) illustrate where differences in temperature from one level to 
the next (i.e., the gradients) are slight and nearly impossible to distin- 
guish. Apparently, the CN2 model's "local-gradient" approach tends to 
exaggerate the near-zero- and zero-gradient situations. Future studies 
using more complex sets of equations for the atmosphere may help to 
improve upon turbulence assessments at these times. 

*Scintillometers are ground-based, remote-sensing instruments designed to measure optical turbulence intensity 
along a line-of-sight path established between a transmitter and a downrange receiver. Scintillometer operation is 
based on the principle that scintillations or light intensity variations occur as atmospheric density discontinuities 
create refraction effects in light propagating along a path (Clifford et al, 1974). The refractive index structure 
parameter C„2 is related to the intensity of these refraction effects. 



Figure 1. Time series     (a) 
of scintillometer data 
compared to CN2 
model output, 
determined from input 
data at (a) 1 and 4 m 
above ground, (b) 2 
and 4 m above ground, 
and (c) 4 and 8 m 
above ground. 
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Finally, the time series analysis of temperature gradients shown in figure 
3 implies that the most unstable gradients were described by data closer 
to the ground (resulting in higher estimates of optical turbulence during 
daytime hours). However, these data did not describe the greater stable 
gradients. An unexpected result from this study (as indicated in the figure 
by the solid squares) was that the greater stable gradients (and estimates 
of C£) for much of the nighttime hours were described by data from 2 and 
4 m. 

Figure 2. Time series 
of temperature data 
collected during 
REBAL '92 field 
study, 8-9 July 1992. 
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24 

Figure 3. Time series 
of calculated 
temperature 
gradients from data 
collected during 
REBAL '92 field 
study, 8-9 July 1992. 
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4. CN2 Module User's Information 
CN2 is one of several new modules that ARL is developing for inclusion 
into the EOSAEL. This state-of-the-art computer library comprises fast- 
running, theoretical, semi-empirical, and empirical computer programs 
that mathematically describe aspects of electromagnetic propagation in 
battlefield environments. The modules are connected through an execu- 
tive routine, but are often exercised individually (Wetmore et al, 1997). 

There are four input file records (referred to as "input cards") that contain 
the wavelength and meteorological data for the CN2 model calculations. 
Two additional cards (not shown) control program execution. Table 2 
gives descriptions of the CN2 model input cards, along with range restric- 
tions recommended for the parameters that these cards control. 

Table 2. CN2 model input cards and parameter range restrictions. 

Card      Identifier      Variable        Description 

WAVE 

DATM 

LVL1 

WV Wavelength (urn) 

PR Atmospheric pressure (mb) 
(at surface or either 
measurement height) 

HGHT1 Height (m) above ground level, 
level 1 data 

TEMPI Temperature (°C) at HGHT1 

WSPD1 Wind speed (m/s) at HGHT1 

LVL2 

RHUM1 

HGHT2 
TEMP2 
WSPD2 
RHUM2 

Relative humidity (%) at HGHT1 

(parallel to LVL1 variables above) 

Recommended range restrictions 

Visible: 0.36 urn < WV < 3.0 urn 
IR: 7.8 urn < WV < 19.0 urn 

700 mb < PR < 1060 mb 

HGHT1 < HGHT2 < 20 m 
HGHT1#HGHT2 
HGHT1 > 0.5 m 
HGHT2 > 1.0 m 
0.5 m < HGHT2 - HGHT1 < 18.0 m 

TEMPI *TEMP2 
-40.0 °C < (TEMPI, TEMP2) < +40.0 °C 

WSPD1 < WSPD2 
0.0 m/s < WSPD1 < 18.0 m/s 
1.0 m/s < WSPD2 < 18.0 m/s 

0% < (RHUM1, RHUM2) < 100% 

(see above) 

12 



5. Input/Output Examples 
In this section, I present examples of the input cards and formatted 
output produced by the CN2 model for the three general categories of 
atmospheric conditions: unstable, stable, and near-neutral atmospheric 
conditions. The following is the input file required for the three examples: 

DATM 891.6 "Example 1" 
LVL1 1.0 33.44 5.39 30 .2 
LVL2 4.0 31.42 6.35 32 .9 
WAVE .94 
GO 
DATM 893.5 "Example 2" 
LVL1 1.0 18.73 2.77 64 0 
LVL2 4.0 19.06 3.80 64 6 
GO 
DATM 892.8 "Example 3" 
LVL1 1.0 16.25 2.88 74 04 
LVL2 4.0 16.20 3.72 75 05 
DONE 

5.1      Calculation for Unstable Atmospheric Conditions 

Example 1 takes meteorological data from the REBAL '92 field study for 
9 July 1992 at 1330 LT. The input data are representative of typical mid- 
afternoon, clear sky, unstable atmospheric conditions. The surface heat 
and moisture flux calculations reflect intense gradients of surface layer 
temperature and specific humidity. The computed C2 at 2 m is on the 
order of lO"12. 

WAVELENGTH 
ATMOSPHERIC PRESSURE 
LEVEL1 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

LEVEL2 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

SURFACE HEAT FLUX 
SURFACE MOISTURE FLUX 

"UNSTABLE ATMOSPHERE" 
TEMPERATURE GRADIENT 
MOISTURE GRADIENT 

.94 MICRONS 
891.60 MB 

1.00 METERS 
33.44 C 
5.39 M/S 

30.20 % 

4.00 METERS 
31.42 C 
6.35 M/S 

32.90 % 

468.01 W/M~2 
46 W/M^2 

-.6635E+00 DEGK/M 
-.1188E- -03 G/G/M 

13 



REFRACTIVE INDEX STRUCTURE PARAMETER = OST2   MA(-2/3) 

Z=l       Z=2       Z=5      Z=10      Z=15      Z=20 

3.843E-12 1.525E-12 4.495E-13 1.784E-13 1.039E-13 7.079E-14 

5.2      Calculation for Stable Atmospheric Conditions 

Example 2 takes meteorological data from the REBAL '92 field study for 
9 July 1992 at 0200 LT. The input data are representative of typical night- 
time atmospheric conditions under mostly cloudless skies. The calculated 
heat flux reflects a slight surface inversion in temperature within this 
weakly stable layer. The computed Cl at 2 m is on the order of 10-14. 

WAVELENGTH 

ATMOSPHERIC PRESSURE 

LEVEL1 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

LEVEL2 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

SURFACE HEAT FLUX 
SURFACE MOISTURE FLUX 

"STABLE ATMOSPHERE" 
TEMPERATURE GRADIENT 

MOISTURE GRADIENT 

.94 

893.50 

MICRONS 

MB 

1.00 METERS 
18.73 C 
2.77 M/S 

64.00 % 

4.00 METERS 
19.06 C 
3.80 M/S 

64.60 % 

20.07 W/M~2 
42.07 W/M~2 

.1198E+00 DEGK/M 

.1005E- -03 G/G/M 

REFRACTIVE INDEX STRUCTURE PARAMETER = CN~2   M~(-2/3) 

Z=l       Z=2       Z=5       z=10      Z=15      Z=20 

3.619E-14 2.280E-14 1.238E-14 7.798E-15 5.951E-15 4.912E-15 
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5.3      Calculation for Near-Neutral Atmospheric Conditions 

Example 3 takes meteorological data from the REBAL '92 field study for 
9 July 1992 at 0630 LT. The input data are representative of typical atmos- 
pheric conditions that tend to occur daily within an hour after sunrise. 
During this interval of time, there is almost always at least one instance of 
a near-neutral lapse in temperature as the ground warms with increasing 
amounts of incident solar radiation that begins to break up the nighttime 
inversion. The calculated surface fluxes at this time are small. The com- 
puted C£ at 2 m is on the order of 10~17. 

WAVELENGTH 94 MICRONS 

ATMOSPHERIC PRESSURE 

LEVEL1 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

LEVEL2 METEOROLOGY AT 
AIR TEMPERATURE 
WINDSPEED 
RELATIVE HUMIDITY 

SURFACE HEAT FLUX 
SURFACE MOISTURE FLUX 

"NEAR-NEUTRAL ATMOSPHERE" 
TEMPERATURE GRADIENT 
MOISTURE GRADIENT 

893.00 MB 

1.00 METERS 
16.25 C 
2.88 M/S 

74.04 % 

4.00 METERS 
16.20 C 
3.72 M/S 

75.05 % 

1.45 W/M~2 
-17.62 W/M^2 

-.6866E- -02 DEGK/M 
.3327E- -04 G/G/M 

REFRACTIVE INDEX STRUCTURE PARAMETER = CN~2   MA(-2/3) 

Z=l        Z=2       Z=5       Z=10      Z=15      Z=20 

5.856E-17 3.689E-17 2.003E-17 1.262E-17 9.628E-18 7.948E-18 
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6. Summary 
The CN2 model will shortly be added to the Electro-Optics Atmospheric 
Effects Library (EOSAEL). By applying surface layer gradient assump- 
tions for two levels of wind, temperature, and humidity profile data to 
the calculation of the refractive index structure parameter C\, the CN2 
model makes a quantitative assessment of atmospheric optical turbu- 
lence. The model was benchmarked on REBAL '92 field study data. CN2 
will be made available to U.S. Government agencies, specified allied 
organizations, and their authorized contractors through ARL's EOSAEL 
point of contact, Alan Wetmore. 
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