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I.     Summary 
This report is the final project summary for the contract Adaptive Phased-Array 

Radar Signal Processing using Photorefractive Crystals (Rome Labs, contract number 

F30602-92-C-0011). This report provides a complete technical review of the radar 

signal processing system developed during this contract. 

All contract research statement of work items were successfully completed. 

There were 12 exchange visits between the University of Colorado at Boulder and 

Rome Laboratories. Additionally, collaborations with several companies, including 

Hughes, Rockwell, Optivision, and Martin Marietta, were initiated. For the duration of 

this contract, 40 monthly reports (11 per year), 2 annual reports, and this final report 

were submitted. The research has led to the publishing of 20 papers and the funding of 

2 doctoral and 2 masters students.  All of the former students are now working in 

industry. 

We have successfully demonstrated an entirely new approach to adaptive array 

processing with several technical achievements. First, an adaptive main-beam steering 

system has been developed and demonstrated. Second, a jammer-nulling system has 

been demonstrated and characterized. The jammer-nuller uses optical polarization and 

angle multiplexing to achieve a record 45-dB null depth, while maintaining excellent 

agreement with dynamical analysis undertaken at the University of Colorado. The 

main-beam steering and jammer-nulling system were combined, which is the first such 

demonstration. Third, a wide-angular-aperture, low-time-delay acoustooptic device 

was invented. Finally, a novel and efficient true-time-delay adaptive algorithm was 

developed and implemented to control the experiment. Full details of each of these 

technical accomplishments are found in the body of this report. 
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II.    Site visits and contract reviews 
There were 12 site visits between Rome Laboratories and Professor Kelvin 

Wagner's group at the University of Colorado at Boulder during this contract. A 

synopsis of these meetings with dates and attendees is provided here. 

1) March 2.1992: University of Colorado at Boulder: kickoff meeting; Attendees 

from Rome Laboratories: Brian Hendrickson and Bob Kaminski. 

2) December 11. 1992: visit to Rome Laboratories; Attendees from the University 

of Colorado at Boulder: Kelvin Wagner. 

3) February 8-19.  1993:   University of Colorado at Boulder: review and 

experiments; Attendees from Rome Laboratories: Dave Cordeiro. 

4) June 7-8. 1993: University of Colorado at Boulder: annual site visit; Attendees 

from Rome Laboratories: Brian Hendrickson, Bob Kaminski, and Ernie Walge. 

5) April   11-14.   1994:    University of Colorado at Boulder:    review and 

experiments; Attendees from Rome Laboratories: Ernie Walge. 

6) June 1. 1994:   Rome Laboratories:   contractor review; Attendees from the 

University of Colorado at Boulder: Kelvin Wagner. 

7) September 22.1994: University of Colorado at Boulder; Attendees from Rome 

Laboratories: Paul Repak. 

8) March 9 1995: University of Colorado at Boulder: annual site visit; Attendees 

from Rome Laboratories: Brian Hendrickson, Jim Davis, Joanne Maurice, and Paul 

Repak. 

9) March 29 1995:  University of Colorado at Boulder; Attendees from Rome 

Laboratories: George Brost and Kevin Madge. 

ui 



10) May 12 1995:   University of Colorado at Boulder;   Attendees from Rome 

Laboratories: George Brost. 

11) August 4, 1995: University of Colorado at Boulder: RF photonics 

discussions; Attendees from Rome Laboratories: Brian Hendrickson. 

12) January 11, 1996: University of Colorado at Boulder: final contract review; 

Attendees from Rome Laboratories: Jim Davis, Joanne Maurice, and Paul Repak. 

III.  Statement of Work and Final Progress Report 
Numerous system topologies were invented by the end of the contract (January 

1996): a jammer-nulling processor, a beam-steering processor, a broad-band miller, a 

true-time-delay resonator input, a true-time-delay architecture using bandpass filters, 

and an efficient true-time-delay adaptive algorithm. These systems are described briefly 

here: the statement of work for each item in the original contract, a short synopsis of 

the status of each item, and a brief description of the final progress for each item. 

Within the main body of this document, each aspect of the project is discussed in more 

detail. 

Several spin-off technologies have resulted from this contract. A wide-angular- 

aperture, low-time-delay acoustooptic device was invented and investigated under a 

different Rome Laboratories grant (F30602-94-1-0013). Algorithms were developed 

for self-cohering imaging radar, leading to a publication in an SPIE proceedings. 

Range-angle-Doppler three-dimensional (3-D) imaging has been developed and 

reported in another SPIE proceedings. Finally, the true-time-delay adaptive algorithm 

was developed in the final year and has led to additional possibilities for future 

research. 

IV 



1 Phased array radar optical simulator 

A.       statement of Work: 

A flexible phased-array radar optical simulator will be constructed on a movable 

breadboard that will be used in the subsequent system demonstrations. Two 

acoustooptic devices will be used to enter signal and jammer wavefronts, a beamsplitter 

will combine the wavefronts, a removable diffuser will simulate random fiber delays, 

and a Ronchi ruling will simulate the sampling of the antenna aperture. Electronic 

driving options will include CW jammers, RF sweepers, or a dual channel arbitrary 

waveform generator for flexible hopping jammer and spread spectrum signal 

simulation. 

B. Status 

Done, first reported in 1994 and finished in 1995. 

C. Final Progress Report 

In order to better understand the final system, an optical simulator for a large 

phased-array was developed. This simulation was able to handle 3 far-field sources, of 

which 2 can be moving. The algorithm included random phase behavior from fibers 

and a one dimensional (1-D) sampling aperture. The simulator can be multiply tapped 

for a simulated time-delayed multipath environment. 

2.        Active processor demonstration 

A. Statement of Work 

A prototype of the active processor will be constructed that allows different 

system configurations to be tested and compared. The capability of the system to point 

the simulated main beam towards the desired signal will be demonstrated, and its 

jammer nulling capabilities will be investigated. The results will be published. 



B. Status 

Done, passive processor first reported in 1992 and completed in 1993 but with 

an improvement of jammer suppression from 35 dB to 45 dB in 1995, while the active 

processor was first reported in 1994 and finished by the final site review in early 1996. 

C. Final Progress Report 

We have demonstrated a beam-steering processor that directs a main beam 

towards desired broadband signals while providing the full antenna spatial processing 

gain. We measured the beam width and array pattern to test the system, finding 

excellent agreement with expected results. Finally, photorefractive beam propagation 

has been modeled with extensive and detailed simulations to accurately characterize the 

adaptive weight matrix. 

In order to implement the jammer-nulling processor, interferometric stability 

was required of the optical system. This requirement was realized with an actively 

stabilized feedback system to control the optical path length, resulting in a suppression 

value of 45 dB in the jammer-nulling process. The jammer-nulling processor has been 

fully characterized by considering the possibility of multiple jammers, jammer 

suppression versus loop gain, the capability for moving jammers, blinking jammers, 

the measured time response of the jamming procedure, and the measured antenna null 

pattern. 

3. System analysis 

A.        Statement of Work 

A nonlinear dynamic system analysis of the photorefractive phased-array 

processors will be performed. The effect of the various system parameters, such as 

loop gain, delay, grating phase, erasure rates, and detector gain and noise on stability, 
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response time, null depth, and dynamic range will be investigated. This information 

will be used to improve and optimize the optical phased array radar processor system 

design. 

B. Status 

Done, first reported in 1992 and completed in 1995, but performance was 

improved from 30-dB null depth to 45 dB. 

C. Final Progress Report 

An extensive model of the nonlinear behavior of the system was developed. 

The outcome was a set of nonlinear equations of motion with complex-valued excision 

solutions. This work incorporated multitone analysis for nulling multiple multipath 

jammers. The most important feature of this modeling was excellent agreement with 

our experiments, encouraging us that our understanding of the system was complete. 

For example, the frequency response solutions agree with experiment, which showed 

the importance of acoustic delay in the acoustooptic device (AOD). This effect led to a 

derivation of the relationship between AOD delay and nulling bandwidth. Second, the 

model allowed the inclusion of noise and feedthrough terms within the optical system, 

which in turn enables the choice of optimum beam ratios. 

4.        Improved system demonstration 

A.        Statement of Work 

In the third year an optimized system, using improved components as well as a 

refined architecture will be constructed and tested. 
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B. Status 

Done, reported in 1994 with completion by final site review in 1996, but 

performance was improved from 20-dB null depth to 30 dB. 

C. Final Progress Report 

The final system combined the beam-steering and the jammer-nulling processor 

with the use of 2 photorefractive crystals. In this configuration, the jammer on the first 

main beam sidelobe can be suppressed by 13 dB, while giving additional jammer- 

nulling suppression of 20 dB off the main beam sidelobe. Towards the end of the 

contract period, simulations were undertaken to demonstrate operation that includes 

true-time-delay. 

5.        Zero time-delay acoustooptic Bragg cell 

A. Statement of Work 

A zero time-delay acoustooptic Bragg cell operated in the wide angular aperture, 

parallel group velocity, beam-steering configuration will be designed and fabricated. 

B. Status 

Done, first reported in 1992 but work continued during contract with 

completion by final site review in early 1996. Cracks within the AOD impaired low 

time delay measurement. A spin-off grant was awarded to address this problem. 

C. Final Progress Report 

The system required time-delay characterization or the various components: 

acoustooptic devices (AODs), radio frequency (RF) devices, and lasers. It was found 

that there was only significant delay in AODs. Due to the nulling bandwidth limitations 

arising from time delay in the AODs, we investigated methods to reduce acoustic 
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propagation delay, especially for a wide angle aperture (WAA) device. A WAA, low- 

time-delay AOD was designed, fabricated, and experimentally characterized. Bevels 

and cracks within the AOD resulting from the fabrication process nullified the expected 

low time delay. This problem prompted the development of AODs made from Te02, 

which suffer from fewer material imperfections. The final step was to measure the 

phase noise of commercial Argon-ion and diode-pumped, doubled Nd:YAG lasers. It 

was noted that the solid-state laser, Nd:YAG, had a limited temporal coherence and 9- 

kHz and 50-kHz tones. 

6. Photorefractive polarization switching 

A. Statement of Work 

An experimental demonstration of self aligned polarization switching diffraction 

in a cubic photorefractive sample of BSO will be performed. Later this will be 

duplicated in the near IR in the non-gyrotropic cubic photorefractive GaAs. Coherence 

detection and enhancement will be demonstrated with this technique. 

B. Status 

Done, first reported in 1992 with BSO, but BSO was inappropriate, so in 

1995, 45 degree cut BaTi03 was used instead when operating in the visible wavelength 

regime. 

C. Final Progress Report 

Holographic multiplexing techniques were developed that allow the separation 

of the read and the write beams. Polarization switching of the beams within BSO was 

investigated as one possible method, but this type of switching is inappropriate for our 

application. Bragg degeneracy angle multiplexing was also studied, but the best 

method was polarization-angle multiplexing in 45 degree-cut BaTi03. This technique 
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was incorporated into the processor to improve null depth, with a final jammer 

suppression of 45 dB. 

7. Test of wedged Fabry-Perot filter 

A. Statement of Work 

A high finesse wedged Fabry-Perot will be investigated for the space variant 

spectral filtering required on the feedback detector. The performance will be compared 

with that achievable with an integrated optoelectronic bandpass filter array. 

B. Status 

Done, done in 1995 and reported in the final site review early 1996. Fabry- 

Perot filters were less viable than a TDI electronic approach. 

C. Final Progress Report 

See Section III.9.C, Final Progress Report for time delay resonator 

demonstration. 

8. Detector improvement 

A. Statement of Work 

Large transimpedance gain, large area, wide-band detectors will be fabricated 

and characterized for this application. The possibility of geometry optimized metal- 

semiconductor-metal interdigitated finger broadband detectors for this application will 

be investigated. 

B. Status 

Done, ongoing throughout the contract. 



C.       Final Progress Report 

Various detectors were investigated, but large transimpedance gain, large area, 

wide-band detectors were the best suited for this application 

9. Time delay resonator demonstration 

A. Statement of Work 

A time-delay resonator will be constructed and evaluated. Multichannel time- 

delay behavior will be investigated, and if feasible this system will be incorporated into 

the prototype adaptive phased-array radar processor so that true-time-delay beam- 

forming without beam squint can be demonstrated. 

B. Status 

Done, started in 1995 and completed by the final site review in early 1996. It 

was not necessary to incorporate this resonator into the processor since TDI on output 

was better. 

C. Final Progress Report 

At the end of the contract, several true-time-delay resonators were investigated. 

The first was a input time delay line based on Herriot cells. The demonstration of this 

cell was limited by the short laser coherence length. The second was a wedged Fabry- 

Perot, but this configuration is limited by walkoff and diffraction. By implementing a 

fiber-based wedge with this configuration, ideal performance was obtained, though the 

fabrication was challenging. A third approach used the Fabry-Perot, but this time the 

system was tilted rather than wedged. This resonator is limited by the tradeoff between 

the quadratic frequency and the angle of the tilt. The final system is our invention of a 

true-time delay approach based on TDI detectors. 
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10.       Reports 

A. Statement of Work 

Short monthly reports will be delivered in a timely fashion on the progress and 

problems being addressed during that time frame. Annual reports summarizing 

progress to date and plans for the upcoming year will be delivered towards the end of 

each funding year. Copies of all published papers resulting from this effort will be 

included in the reports. 

B. Status 

Done, throughout the funding of this contract. 

C. Final Progress Report 

40 monthly reports (11 per year), 3 annual reports, and this final report have 

been submitted. 

IV.  Work Schedule 
Work was delayed by about 6 months due to changes in the funding profile, so 

as a comparison between the original and the modified budget: 

Year 1        Year 2        Year 3      Extension       Total 

Original Budget       $244,946   $246,634    $248,652 $740,232 

Modified Budget      $125,000   $250,000   $200,000   $165,232   $740,232 

Therefore, the additional 6 months were at no additional cost to finish the project. 
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Yearl 

During the first half of the first year, the major capital items required to perform 

the required system demonstration experiments will be obtained. The phased-array 

simulator will be constructed and finished by the ninth month of the first year. A zero 

time-delay acoustooptic Bragg cell will be designed and fabricated by the end of the 

first year. The initial system demonstration of the active processor will be carried out 

by the end of the first year. The nonlinear dynamical analysis of the photorefractive 

adaptive phased array processor will be begun immediately, and reported on by the 

sixth month. The improved detectors will be developed and tested before the processor 

is constructed. A final report will be submitted before the end of the first year. 

Experiments on the active processor will continue, and its performance 

capabilities will be investigated in the first half of the second year. During this period, 

some of the improved components will be tested, such as the zero time-delay 

acoustooptic device, the wedged Fabry-Perot detector, and the multichannel time-delay 

resonator, and if successful they will be incorporated in the processor. Other phased- 

array radar processor topologies, such as the broad band null er will also be investigated 

before the end of the second year. The synergetic system analysis will continue and an 

optimized processor topology and component selection will be designed. A final report 

will be submitted before the end of the second year. 

Year 3 

The main task in the third year will be the demonstration of the improved next 

generation processor using improved components such as GaAsrCr photorefractive 

material and diode pumped IR laser, in an optimized processor topology, the 
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components will be acquired in the first 6 months, and the processor will be 

constructed by month 9 and evaluated by years end. 
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ABSTRACT 

A high bandwidth, large degree-of-freedom, adaptive phased-array optical 

processor is described which uses three-dimensional volume holograms in 

photorefractive crystals to time-integrate the adaptive weights to perform beam-steering 

and jammer-cancellation signal processing tasks. The processor calculates the angle-of- 

arrival of a desired signal of interest and steers the antenna pattern in the direction of 

this desired signal, and simultaneously computes the angles-of-arrival of multiple 

interfering narrowband jammers and adaptively steers nulls in the antenna pattern in 

order to extinguish the jammers. 

The adaptive phased-array processor is composed of two subsystems, the 

jammer-nulling processor, and the main-beam steering processor. A theoretical model 

developed for the jammer-nulling processor provides analytical expressions relating 

system parameters such as feedback gain and phase, optical intensities, and system 

noise to jammer suppression depth, convergence time, and processor signal-to- 

interference-plus-noise-ratio. The behavior of single and multiple planewave jammers 

are described, as well as jammers of arbitrary spatial profile. Holographic feedthrough 

is found to be the limit on processor null depth, and an improved holographic read- 

write multiplexing technique is described and incorporated in the processor. 

Experimental verification of the system behavior is presented, showing excellent 

agreement with the theoretical model and experimental jammer suppression as high as 

-45 dB. The adaptive array beam-forming process is described analytically in detail in 

terms of the holographic interaction within the photorefractive crystal. Experimental 

results of main-beam formation and measured array-functions are presented in addition 

to beam-propagation computer simulations demonstrating the spatio-temporal evolution 

of the holographic index grating and the resulting processor output. Experimental 
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results of simultaneous main-beam formation and jammer-nulling are also presented, 

which are the first known results of this type achieved with an optical-based, adaptive 

phased-array antenna processor. 
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1. Introduction 
The adaptive phased-array antenna is recognized for its large aperture and 

corresponding high spatial resolution, and large antenna gain, as well as for the agility 

associated with electronic beam steering and adaptive interference cancellation provided 

by having multiple degrees of freedom (DOF) in the processing domain. These 

attributes are advantages over a single element, mechanically steeerable antenna, the 

trade-off comes with the processing complexity associated with the adaptive phased- 

array. In the simple case of narrowband processing, the output from each antenna 

element of the array is phase and amplitude controlled using an adaptive weight in order 

to form and steer a main-beam and to cancel unwanted interference. As the fractional 

bandwidth increases, true-time delay processing must be employed in order to maintain 

both a narrow beam pattern over the frequency band and low sidelobe levels at all 

frequencies. True-time delay processing uses a tapped delay-line behind each antenna 

element, which for a large phased-array can produce an unweildly number of adaptive 

weights1. 

What is meant here and throughout this thesis by an adaptive array, is an 

antenna and associated processing system which extracts information from the received 

signal environment and then in real-time alters the angular and frequency response of 

the system according to some desired output, optimum performance goal, or constraint. 

For example, using some a-priori information about a desired signal of interest to 

enable the array to locate and track that signal, while simultaneously using 

characteristics extracted from the received signal background to distinguish desired 

signal from interference such as jammers or multi-path signals, and adaptively 

removing these signals from the array response. Future generations of large, wide 

bandwidth adaptive phased-array antennas will consist of thousands of antenna 

elements and have GHz bandwidths, and will need to adaptively form and steer a main- 

beam while simultaneously nulling out interfering sources in a dynamic signal 

1 



environment. This can be an extremely demanding signal processing task because the 

number of adaptive weights (and DOFs) is now equal to TV x M, where TV is the 

number of array elements and M is the the number of tapped delays behind each 

element. For example, an estimate of TV is obtained by considering that the array of 

length L will have an element spacing capable of Nyquist sampling the RF center 

frequency (klf/2), such that N = 2L/?irf. For the endfire case the number of required 

taps M (each with delay of T = 1/5) will be M=BL/c = Bta. Consider the specific 

example of simply reading out the adaptive weights of a 10,000 element array, with 

100 time delay samples at each element, at a GHz rate. This requires 1015 multiplies per 

second, which exceeds the computing capabilities of even the most modern 

supercomputers. Current phased-arrays of modest size, for example less than 100 

elements, can currently be processed using high-speed computers via standard DSP 

approaches. However, it is the processing task for very large phased-arrays which is 

by far the most challenging, and is the focus of the work presented in this thesis. 

One possible representation of a received signal environment is a 3-D space is 

shown in figure 1.1, where two dimensions correspond to angle-of-arrival (AOA) and 

the third to temporal frequency. Nulling out the contribution of an interfering jammer 

can be viewed as having to place a null in this 3-D space corresponding to the AOA and 

frequency of the jammer. The time integrating properties of photorefractive volume 

holograms combined with their three-dimensions (3-D) and large number of accessible 

DOFs provide a unique computational media around which to construct highly parallel 

optical architectures for processing signals in complex signal environments. The beam- 

forming, jammer-nulling phased-array antenna processor presented in this thesis is 

actually one of several processors being developed2'3'4'5'6'7'8 which maps the 3 

dimensions of this signal environment representation into the 3 dimensions of the 

photorefractive media, where the adaptive weights are stored as Bragg selective, 

dynamic volume holograms. 
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Figure 1.1. Received signal environment shown as 3-dimensional space, two 
dimensions of angle-of-arrival and one of temporal frequency. 

The phased-array antenna processor presented in this thesis uses relatively 

simple components, one or two photorefractive crystals, two single-channel high-speed 

detectors, and one or two single channel acoustooptic (AO) Bragg cells. The bandwidth 

capabilities of these components approach 1 GHz, allowing the processing of wide- 

band phased-array signals. The most significant advantage to the architecture presented 

is that the required number of processor components used is independent of the number 

of elements in the phased-array. This attribute allows the processor to scale to 

processing applications for very large arrays. This is in marked contrast to traditional 

electronic or acousto-optic approaches, where the hardware complexity of the processor 

scales in proportion to the size of the array. 

The phased-array processor is made up of two major processing subsystems, 

the beam-forming processor and the jammer-nulling processor. The beam-steering 

subsystem calculates the angle of arrival of a desired signal of interest and steers the 

antenna pattern in the direction of this desired signal by forming a dynamic holographic 

grating proportional to the correlation between the incoming signal of interest from the 

antenna array and the temporal waveform of the desired signal. This grating is formed 



by repetitively applying the temporal waveform of the desired signal to a single 

acoustooptic Bragg cell and allowing the diffracted component from the Bragg cell to 

interfere with an optical mapping of the received phased-array antenna signal at a 

photorefractive crystal. The diffracted component from this grating is the antenna 

output modified by an array function pointed towards the desired signal of interest. 

This beam-steering task is performed with the only a priori information being that of 

the knowledge of a temporal waveform that correlates well with the desired signal and 

that the delay of the desired signal remains within the time aperture of the Bragg cell. 

This specific processing scheme is best suited for a communications scenario, as 

opposed to a radar scenario where quantitative range delay and AOA information is 

desired. The fundamental approach of using a photorefractive crystal to time integrate 

and store the adaptive weights is still applicable for a radar application, although a 

means of extracting the desired radar information would have to be implemented. The 

jammer-nulling subsystem computes the AOAs of multiple interfering narrowband 

jammers and adaptively steers nulls in the antenna pattern in order to extinguish the 

jammers by implementing a modified LMS algorithm in the optical domain. This task is 

performed in a second photorefractive crystal where holographic gratings are formed 

which are proportional to the correlation between the unprocessed antenna output and a 

delayed version of the formed main beam. The diffracted components from these 

gratings are jammer estimates which are subtracted from the formed main-beam signal 

producing a processor output with reduced jammer content. 

1.1 Thesis Outline 

This thesis presents the theory and experimental results of the beam-forming 

and jammer-nulling processors, as well as for the combined beam-forming and jammer- 

nulling processor. The thesis begins with a review of the traditional issues such as 

resolution and bandwidth associated with phased-array antenna processing, presented 



in Chapter 2. The traditional approaches to beam-forming and adaptive interference 

suppression are discussed in Chapter 2, and it concludes with a derivation of the 

modified least-mean-square (LMS), hardware compressive algorithm which is 

implemented in the optical domain for the work performed in this thesis. It is shown 

that the modified algorithm performs the same as the LMS algorithm introduced by 

Widrow1. Chapter 3 presents previous work in LMS adaptive signal processing 

concepts with optical architectures, and work done in extending these architectures to 

adaptive processing of phased-arrays. Chapter 4 is a review of photorefractive 

holographic materials, with a particular emphasis on the dynamic nature of holographic 

grating formation. The dynamic holographic grating model presented in Chapter 4 

serves as a foundation for the adaptive weight formation in both the jammer-nulling and 

beam-forming processors, in particular the performance characteristics of the jammer- 

nulling processor described in Chapter 7. Chapter 5 is dedicated to the discussion of 

two dynamic holographic read/write multiplexing techniques which have been used in 

both processors to simultaneously write and read out holographic gratings in 

photorefractive crystals. The two methods discussed are Bragg-angle degeneracy, and 

orthogonal polarization multiplexing, the latter of which has been demonstrated to 

exhibit extremely large phased-matched angular bandwidth9'10, with possible 

applications to image processing and volume holographic storage. Experimental results 

are presented showing wide, Bragg matched angular bandwidth exceeding 18x9 

degrees internal to the crystal, in agreement with a derived model and simulation 

results. The beam-forming processor is discussed in Chapter 6, where the primary 

emphasis is on demonstrating the analogy and equivalence of adaptive beam-formation 

method employed in this processor, and basic, dynamic volume holography. The 

Chapter begins with a derivation of the beam-forming process in terms of Fresnel 

propagation operators, which allows the process of the holographic beam-forming 

process to be ellucidated while suppressing the cumbersome task of calculating 



multiple, embedded diffraction integrals. This analysis yields an analytical expression 

for the time integrated, 2-dimensional holographic grating formed in the dynamic 

holographic media. Simulations have also been done which demonstrate the beam- 

forming process using a split-step Fourier transform beam-propagation algorithm11, 

coupled with a spatio-temporal model12 for the photorefractive material. The 

photorefractive model takes into account non-linear behavior in the material such as 

angular and spatial-frequency response, two-wave mixing, and fanning. Chapter 7 

presents the theoretical, simulation, and experimental investigations of the jammer- 

nulling processor. The theoretical investigation results in a dynamic model which 

describes the interference suppression performance of the jammer-nulling processor as 

a function of system parameters such as laser beam powers, photodetector 

responsivities, electrical gains, etc. The dynamic model is developed and modeled for 

the case of a single frequency planewave jammer, and extended to the more general 

case of multiple jammers with arbitrary spatial profiles. One of the more significant 

results of Chapter 7 is the distinction and tradeoffs between maximizing jammer 

suppression depth and maximizing the total array signal-to-interference-noise ratio 

(SINR), in terms of processor system parameters and noise. Experimental results of the 

processor are then presented, demonstrating 45 dB of suppression of a single 

narrowband jammer, and multiple jammer suppression results which agree well with 

the derived theory. The Chapter concludes with the first known experimental results of 

simultaneous phased-array beam-formation and jammer-suppression. Chapter 8 

discusses in more detail some of the resonator based structures for optical processing of 

RF signals which are required in both the jammer-nulling and beam-forming processor. 

Finally, Chapter 9 is a summary of the thesis, with suggestions for future work. 
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2. Adaptive Phased-Array Antenna Processing 
This chapter will review the fundamental signal processing methods used for 

adaptive phased-array antennas. The focus will be on main-beam formation and 

inteference cancellation. The chapter begins with a brief discussion of simple phase- 

shift and true-time delay beam formation, in the absence of any adaptive inteference 

suppression. Adaptive interference cancellation is then discussed, including the 

Widrow-Hopf1'2 and Applebaum3 least-mean-square (LMS) based algorithms, in 

addition to an overview of the classic sidelobe canceller4. Due to their applicability to 

large arrays, an emphasis is placed on LMS adaptive algorithms, which iteratively 

converge to the desired solution, taken to be the set of adaptive weights which optimize 

the signal-to-interference-plus-noise ratio; this is in marked contrast to algorithms 

which explicitly calculate the weights with a covariance matrix inversion technique5'6. 

The important performance metrics of signal-to-interference-noise-ratio and 

convergence time are discussed. The chapter concludes with a derivation of the 

optically-implemented delay-line compressive LMS algorithm for implementation in the 

optical phased-array processor discussed in this thesis. 

2.1 Beam formation and steering 

The fundamentals of phased-array beam formation and steering will be 

reviewed in this section, while adaptive algorithms for simultaneous interference 

suppression will be reserved for later sections. Main beam-steering alone represents a 

much simpler task than doing so with simultaneous interference cancellation. For an 

imaging example, the beam is simply scanned by varying the weight vector 

accordingly. A communications scenario requires the beam(s) to be pointed in specific 

directions. In both of these cases the weight vector can be directly calculated and 

implemented in an open-loop fashion. 



2.1.1  Phase shift steering 

A phase-shift steered, linear antenna array of JV elements1'7 is shown in figure 

2.1. As shown in the figure, a far-field signal is received by the array at an angle 6. 

Multiplying the output signal of each antenna element xn is an adaptive weight, denoted 

by wn. The weighted antenna outputs are summed to yield the array output signal, 

which is written as 

y(t) = twnxAtV<a'' = wTMt¥a" 2.1 

The weight and signal vectors in 2.1 are given by 

W = [w„w2,w3...wN] and X{u) = {\,eikd\ei2kdu...eikNdu] 2.2 

where u = sin(0), and the RF signal is r(t) on a carrier a>r. The individual weights 

compensate for the the phase shift between array elements produced by their physical 

separation, and adjust the response of the array to have a maximum at some particular 

angle. The interelement phase shift A<f> between array elements for a narrowband signal 

arriving at angle 8, is given by 

27td .  , ,    2nd 0 -. 
A(f> = sin(0) = u l.i 

where Xrf is the RF signal wavelength, and d is the array element spacing. For phase- 

shift steering, each wn is simply a complex-valued multiplier, applying both an 

amplitude multiplication and a phase-shift of the form 

w„ = a„er" 2.4 

For example, incrementally increasing the phase of each wn would apply a linearly 

increasing phase shift across the array, steering the angle of the antenna response. The 

TV adaptive weights provide iVDOFs. For the single plane wave incident RF signal at 



Array 
Output 

Figure 2.1. A phase-shift steered, linear phased-array antenna for narrowband array 

processing. 

angle 0 shown in figure 2.1, the weight vector which maximizes the antenna response 

in the signal direction is the complex-conjugate of the signal vector X{u), 

(,.\        V*/\,\       d   „-'Mu     -ilkdu -ikNdu] W = £W = [he     ,e       ...e       j 2.5 

It is evident that for this case xnwn = 1 for all n. There is now an array gain of N 

resulting from the sum of the N antenna elements, and a cross-range resolution given 

by the effective size of the array, Icos(ö), where L is the length of the array and 

cos(0) is the steering angle. This linear array geometry provides the most 

straightforward example to further examine these properties of the formed beam. 

Initially assuming that the outputs of all N elements are uniformly weighted, in a 

receive scenario (essentially the same for transmit) the sum of all the element output 

voltages, Ear, for a single frequency sinwave input at frequency co will be8'9 

Ear = sin(otf) + sin(cot + A<f)) + sin(a>t + 2A0) + • • • + sin(ettf + (N- l)A<f>) 

= sm[tt» + (*->)A*/2]--L^L2 
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Figure 2.2. Array antenna pattern as a function of transverse wavevector component 

where the interelement phase shift, A0, is given by equation 2.3. The first factor is just 

a phase shifted sinewave of frequency co, and the second is an aperture weighting 

function, which can be expressed in terms of the tranverse component of the incident 

wavevector, kx = ks'm(6), as 

W(kx) = - 
_ sin[iVA0/2] _ sin[Mrfsin(g)/2] _ sm[Nkxd/2] 

sin[A^/2]       sin[fc/sin(0)/2]       sm[kxd/2] 
2.7 

which is plotted in figure 2.2. As shown in figure 2.2, W{kx) is periodic with a period 

of 2K/d. The heigth of the mainlobe is at W(0), and is equal to N, the number of 

elements in the array, which again demonstrates spatial processing gain. The first zero 

occurs when the argument of the numerator is equal to K, corresponding to 

kx = 2nN/d, and therefore the mainlobe width will be approximately 4K/Nd. This 

demonstrates that increasing the number of array elements reduces the mainlobe width 

and improves the spatial resolution of the array. The secondary maxima shown in 

figure 2.2 would in general produce erronious, or at best confusing signal returns. 

These maxima are referredto as "grating lobes"8' 9 and are produced whenever 

ndsm(6)/X = 0,K,2K..., or correspondingly whenever kx = ±2n/d. For an incident 
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field of given wavelength Xrf, kx = 2^sin(A^)/Ar/-, and because |sin(A0)| < 1, k will 

have real values only between kx = ±2nj\f. This region is often referred to as "the 

visible region", or +90°. The primary means of grating lobe avoidance is to select 

closely spaced elements (d < A/2), so that none of the grating lobes lie in real space9' 

10. Irregular element spacing can also reduce grating lobes as well. 

Normalizing the square of equation 2.7 and setting the element spacing to 

d = A/2, produces the antenna radiation pattern 

sin2[Afosin(6>)/2 

tf2sin[*rsin(0)/2 
2.8 

Approximating the sine function in the denominator of equation 2.8 by its argument 

under the assumption that N is large, results in a radiation pattern of 

_,..    sin2riV^sin(Ö)/2l      .    ,, , w N G(6) * -7-1 / )/'l = sinc2(A^^sin(ö)/2) 
[Nxsm(6)/2]2 K '    . 2.9 

Thus, for large N, the radiation pattern is essentially that of a uniform aperture, where 

the well-known sine2 far-field radiation pattern is related to the aperture via a Fourier 

transform relationship. In like fashion, the first sidelobe will be reduced from the 

power level of the main-lobe by approximately -13.5 dB. This result was based on the 

assumption that all of the elements were equally weighted before summation. Non- 

uniform weighting can be used to apodize the antenna and reduce sidelobe levels. For 

example the Dolphi-Chebyshev11, Taylor12, or cosine squared13 apodization functions 

are well known to reduce sidelobes, but possibly at the expense of main-lobe width 

increase. 

2.1.2 True-time delay beam formation 

The inadequacy of phase-shift steering for broadband signal processing is 

exhibited by equation 2.3. The interelement phase shift A(j> is seen to be frequency 
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dependent; the higher the frequency, the higher the spatial phasor across the array 

which will be needed to control the beam. A different phase-shift is now required for 

each resolvable frequency over the signal bandwidth, however a single phase-shifter 

behind each antenna element provides only one. Thus each resolvable frequency is 

steered to a different angle, a condition known as "beam squint", which reduces the 

cross-range resolution of the array and increases sidelobe energy. An array can be 

considered broadband when the fractional bandwidth F = B/vlf of the array operating 

at center frequency vrf = c/X^ exceeds the center frequency wavelength divided by the 

antenna aperture L. In particular when 

B/vlf > XrfjL or when LB>c, 2.10 

the beam rotates resolvably over the RF frequency bandwidth, and for large broadband 

arrays, when LB » c, beam squint is over many beamwidths. 

For broadband processing, time-delay elements are used to compensate for the 

actual time-of-flight difference of the signal between elements as the signal propagates 

across the array, which is the same for all frequencies. A simple example of true-time 

delay processing is shown in figure 2.3, where following each array element is a 

variable time-delay, and a real, multiplicative weight. 

The approach shown in figure 2.3 is not an architecture traditionally embraced 

by the RF community, but nevertheless multiple implementations of this architecture 

based on optical processing methods have been provided by various researchers. A 

straightforward approach to implementing the architecture shown in figure 2.3 is to 

route a modulated laser beam down various lengths of optical fibers14' 15> 16. Other 

proposed methods include switching between free-space sections of variable 

lengths17'18, exploiting the frequency dependence of highly dispersive optical 

fibers19'20, and segmented mirror devices21. None of these approaches will be 

discussed in any detail here. 
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Figure 2.3. Variable time-delay architecture for broadband array processing. 

The traditional approach to true-time delay processing is done using discretely 

tapped delay lines, also known as a transversal filter1. This approach is shown 

implemented into a linear, 1-D antenna in figure 2.422>7. The true-time delay antenna in 

the figure can be viewed as a 1-D spatial array of transversal filters, each transversal 

filter providing the necessary temporal/frequency processing at each spatial sampling 

point along the aperture of the array. The function of the time-delays can be intuitively 

viewed as compensating for the time-of-flight variations across the array, which is most 

extreme for a signal arriving at endfire to the array. For the endfire case the array must 

be capable of processing signals over a time ta = L/c, corresponding to the time-of- 

flight across the full array aperture, where L is the length of the array. The number of 

resolvable frequencies M, (equal to the number of required taps each with delay of 

T = 1/5) will then be 

M=BL/c = Bta 2.11 

When multipath delays (with a maximum time delay tM) are also to be accounted for, 

Mmay need to be increased to BtM. 
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Figure 2.4. True-time delay implementation of phased-array antenna processes 
broadband signals. 

Depending upon the application, the number of taps can become quite large 

because the number of adaptive weights (and DOFs) is now equal toNxM. For the 

endfire case, an estimate ofN is obtained by considering that the array of length L will 

have an element spacing capable of Nyquist sampling the RF center frequency (Ar//2), 

leading to 

N = 2L/Xrf 
2.12 

As an example, consider a 1-D antenna system operating at a center frequency of 10 

GHz, with a bandwidth of 2 GHz (F = 0.2). For an array aperture of L = 13.5 meters, 

it follows that TV = 1000, and M = 100. Thus this 1-D array would have a total of 

100,000 weights, which is a formidable number to consider for real-time adaptive 

processing. 

2.2 Adaptive Algorithms for Interference Cancellation 

The true processing power of the adaptive phased-array comes from the ability 

to adaptively suppress interference, while simultaneously optimally receiving the 

desired signal with the full antenna gain. The adaptive weights provide the DOFs 
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necessary to move the location of the antenna pattern nulls in the direction of unwanted 

interference. In general, an adaptive array with N degrees of freedom will be capable of 

nulling out N-l narrowband interfering sources, and still receive the desired signal. The 

primary performance metrics of the adaptive array are the signal-to-noise ratio (SNR) or 

the signal-to-interference-plus-noise ratio (SINR), and the convergence time. The 

SINR is often discussed in terms of the "improvement factor"23'24, or IF of the array, 

which is the ratio of the SINR of the adaptively formed output of the antenna to that of 

a single antenna element. In particular, the SINR and IF are defined as 

~JNn Desired Signal Power  

Interference Power + Noise Power 2.13 

and 
SINR 

IF = 
SINRe/emCT/ 2.14 

While there are a multitude of algorithms for controlling the weights of an 

adaptive array, there are fundamentally two distinct approaches which are taken. Direct 

algorithms, based on some criteria or measurement, with a single computation explicitly 

calculate the optimal weights as determined by a Wiener solution2 (i.e. those weights 

which maximize the SINR) and then implement these weights. Closed-loop algorithms 

are implemented recursively so that the system converges to the optimal weights for the 

given scenario. The former approach will be hereafter referred to as direct adaptive 

algorithms, and the latter as simply adaptive algorithms. The direct method is generally 

based on digitally computed signal statistics calculated over some finite temporal 

window and implemented open-loop, while the adaptive approach is generally error- 

driven and implemented closed-loop. As will be shown, the direct calculation of the 

optimal weights requires the calculation or estimation of correlation matrices as well as 

matrix inversions. If the number of weights NxM is small, a direct approach is sensible 

because the weights can be calculated and applied very efficiently in minimal time, 
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(although a finite temporal window is still necessary to estimate the correlation 

matrices). However, the matrix inversion operation is an order (NxMf process, and if 

this number is large, the direct approach can become computationally impractical and an 

adaptive algorithm which converges to the optimum weights is more sensible. This 

chapter will emphasize adaptive, error driven algorithms. An additional advantage to an 

adaptive approach is that because the weights are updated incrementally, the correlation 

matrices and inverses are not calculated explicitly, but are instead estimated from 

instantaneous values. By not calculating these matrices, there is an enormous advantage 

in terms of reduced computational memory requirements with the adaptive approach. 

The primary tradeoff with the adaptive approach is in terms of convergence time, which 

for certain signal environments may be very slow. 

2.2.1 Adaptive Weight Calculation for Known Signal Environment 

When the properties of the signal environment are known, such as desired 

signal and noise spectra, and the AOAs of incident signals, the array output can be 

optimized by direct calculation of the optimum set of weights, Wopt. As will be shown 

in this section, a direct calculation of Wopt requires the calculation of two correlation 

matrices and a matrix inversion. 

Consider an N element, phase-steered array as shown in figure 2.1. The array 

output y{t) can be written as the sum of the weighted antenna element outputs25, 

j<o=E*.('K=xTm=KTm 2.i5 
A' 

where the weight vector W is composed of the N individual weights, wn, 

W = [W],w2,...wN]T. 2.16 

The signal vector, X{t), is composed of the signals transduced from each array 
element, 

X(t) = [X]{t),x2{t),--^MT 2A1 
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where the individual x„(t) are each composed of a desired signal component Dn{t), 

and an undesired noise component Un(t), which can be made up of both jammers and 

broadband noise such as detector noise. Therefore, 

*.(0 = A(0 + ^.(0 2.18 
and 

X(t) = D(t) + U(t) 2.19 

where again, using vector notation, 

D(t) = [DMD2(t),...DN(t)]T 2.20 

and 

U{t) = [U]{t\U2{t),...UN{t)}T. 2.21 

A common metric used to evaluate the performance of the processor is the 

mean-square error, <r, produced between the processor output, and a reference, or 

target waveform r{t), which must correlate well with the desired signal. Thus, some a 

priori information is needed in order to choose a reference signal. The error, s{t), is 

defined as 

s{t) = r{t)-y(t) 2.22 

and the mean-square error CT, is taken to be the expectation value of s(t), 

a = E[e2(t)] 2.23 

The expectation operator is denoted by £[•]. Squaring equation 2.22 and using matrix 

notation, the expectation of the summed-squared-error is 

E[e\t)] = E[r2(t)]-2WrS+WTOW 2.24 

18 



where O is the received signal correlation matrix, and is defined as 

®=E[xmT(t)]=l 
*i(0*i(0 *i(0*2(0 ■■ 
x2(t)x,(t)   x2(t)x2(t)   -|A 2.25 

with ergodicity hypothesis allowing the expectation to be calculated with a time 

integration, and the cross-correlation vector S between the reference signal and 

received signal vector is defined as 

S^E[X(t)r(t)] 2.26 

It is assumed that both the desired signal and the noise signal are zero-mean, random 

processes, as well as being uncorrelated with each other. Thus, the received signal 

correlation matrix O, and the cross-correlation vector S can be written as the sums of 

the correlation matrices of the individual terms, 

and 
<T) = O   +0 

§. — S.D + Qu 

2.27 

2.28 

The optimum weight values are found by setting the gradient with respect to W of the 

summed-squared error given by equation 2.24 equal to zero. In particular, setting 

Vw{E[e\t)}} = 0 2.29 

Carrying out the gradient operation on equation 2.24 yields 

Vw{E[r\t)]-2WTS+WT®w} = -2S + 2®W 2.30 

Setting equation 2.30 equal to zero yields the optimum weight vector, Wopt, 

E*=*?s 2.31 
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The form of the optimum weight vector given in equation 2.31 is re-occuring26 

and fundamental, and is in fact one form of the Weiner solution2, which yields the 

maximum SINR of the system. More generally, it can be shown that the Weiner 

solution corresponds to the condition when the cross-correlation between the error and 

the input vector X is equal to zero. Equation 2.28 can be simplified using the 

assumption that because the noise signal is not correlated with the desired signal, it will 

not be correlated with the reference signal either. Expanding equation 2.26, using 

equation 2.28 results in 

S = E[X{t)r{t)] = E[D{t)r(t) + U{t)r{t)} = E[D{t)r{t)} = SD 2.32 

which indicates that under the assumptions of equation 2.32, Sv is equal to zero. 

Therefore equation 2.31 becomes 

E* ■=£"'£= *-'£> 2.33 

Thus, in theory, the weights could be calculated directly and applied to the 

array, using no adaptivity. Both the inverse of the received signal correlation matrix 

O"1, and the cross-correlation vector SD could be calculated. However, the simplicity 

of this approach can be somewhat misleading. In particular, in order to construct the 

received signal correlation matrix given in equation 2.25, it is necessary to have full 

knowledge of the signal environment, including knowledge of the AOA of the desired 

source, as well as the AOAs and frequencies of all the interfering sources. If all of this 

information were available, it is likely that the antenna would not be needed. There are a 

multitude of signal estimation methods which could be used to analyze the received 

environment in an attempt to extract such information, such as MUSIC27, ESPRIT28, 

and IQML29. However, all of these methods are statistically based and again require 

signal correlation matrices to be calculated. For a small number of weights such an 

approach is reasonable, however the matrix inversion operation is an order (NxM)3 
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process, and if the number of weights is large, the direct approach can become 

computationally impractical and require large memory. More commonly, there is some, 

albeit limited, a priori information available regarding the signal environment. This 

information is usually of a either temporal or spatial nature, and algorithms based on 

exploiting these two instances are discussed in following sections. The open-loop, 

direct matrix inversion method has additional disadvantages in terms of number of 

interfering sources. For example, if the number of interfering sources is < JV-i, a 

unique inverse to the received signal matrix does not exist, or it may be singular with 

no inverse, although usually any real system with additive noise ensures against this. 

It is important to point out that the mimimum error obtained from the approach 

outlined here will not be zero. Substituting equation 2.31 back into equation 2.24 yields 

this minimum error30 s2
min, 

*L = E[r\t)]-2WlptS+Wlpt%Wopt 2 34 

Noting that from equation 2.33 S = OWopt, it follows that the mimimum square error 

will be 

sL=£[r2(t)]-Wj)ptmoPt- 
2-35 

It is instructive to use equation 2.35 to enable an arbitrary set of weights to be 

expressed in terms of e2
min. Solving equation 2.35 for E[r2(tj\ and substituting the 

result into equation 2.24 yields a general expression for the error as a function of the 

weight values30, 

E[e2(t)] = eL+(W-Wopi)
T0(w-Wopt) 2.36 

This form of the summed squared-error shows that the error surface is quadratic, and 

the fact that the summed squared-error is at a minimum when W = Wopt. The error 

21 



20P'        ^    H7 7 *~W2 

Figure 2.5. Quadratic error surface formed in weight space by two adaptive weights. 

surface for a two weight system is shown in figure 2.5. A larger number of weights 

results in a higher dimensional surface quadratic error determined by O. 

In general, because the off-axis terms of O are non-zero, the principle axes of 

the error surface "bowl" are not parallel to the weight axis. A coordinate transformation 

is used to align the two axes. In particular, letting R be an TV x TV rotation matrix, the 

weight vector can be written as 

W=RV 2.37 

where V is an JV element column vector. If R is chosen such that RT®R is a diagonal 

matrix, then 

RTq>R = 

A, 0 0 

0 A2 0 

0     0    A, 
2.38 

where the A. are the eigenvalues of 0> and the elements of V are the normal 

coordinates of the error surface. The eigenvalues play an important role in the 

convergence behavior of the Widrow-Hopf LMS algorithm discussed below. 
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2.2.2 Error minimization and the Widrow-Hopf LMS algorithm 

The Widrow-Hopf LMS algorithm is a closed-loop, adaptive algorithm which 

converges to the ideal weight values given by equation 2.31. In particular, the 

algorithm makes use of a gradient descent technique to reduce the summed squared 

error in incremental steps, and track the bottom of the error surface bowl. The 

incremental approach allows correlation estimates to be replaced by instantaneous 

measured values, which dramatically reduces both computation and memory 

requirements. 

The gradient descent operation implemented with the Widrow-Hopf LMS 

algorithm incrementally updates the adaptive weights by moving down-hill in the 

steepest direction of the error surface1, 

dW 
dt 

= -kV.{E[e\t)]} 2.39 

where A; is a positive feedback gain constant. The negative sign multiplying the gradient 

in equation 2.39 causes the weights to move in the direction of steepest descent towards 

the bottom of the error surface bowl shown in figure 2.5, and the quadratic form of the 

summed squared-error causes the weights to evolve more quickly when they are farther 

from the error minima. The gradient with respect to the weights of the of the squared- 

error is given by equation 2.30, and is repeated here 

Vw{fy\t)]} = V„{E[r\t)]-2WTS+WT&w} = -2S + 2®W. 2.40 

Substituting this value into the gradient descent rule of 2.39 yields30 

dW 
dt L"   =_J 

= -2k{E[X{t)KT{t)}W-E[X{ty{t)]} 

= 2kE{x(t)[r(t)-XT(t)W]} 

= 2kE[X(t)e(t)] 

2.41 
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The actual implementation of the algorithm instantaneous values for X(t) and e(t) 

instead of the time-averaged values resulting from the expectation operator. Dropping 

the expectation operator yields 

dW 
dt 

2k[X{t)e{t)} 2.42 

The significance of the approximation made in dropping the expectation values as in 

equation 2.42 is that the e1 surface is allowed to fluctuate about its mean, and hence the 

weight values also fluctuate, varying about the mean producing weight "jitter". The 

fluctuations can be caused by the changing signal environment, as well as noise internal 

to the processor. This fluctuation of the weights can be kept small by limiting the 

magnitude of the feedback gain constant k in equations 2.39 and 2.42. The value of k 

greatly affects convergence, and is discussed in more detail below. 

At steady-state, the time derivative in equation 2.42 equals zero, which implies 

that at steady-state X(t) and e{t) are orthogonal. In addition, at steady-state, the 

weights converge to the optimum weight values given by equation 2.31. To show this, 

recall that the error can be written as 

s{t) = r{t)-WTX{t) 2.24 

substituting this result into equation 2.42 yields 

dW    _„,    ,p 

dt 2 A3 

Setting dW/dt = 0, the steady-state weight values Wss are given by31 

E„=£"'£ 2.44 

in agreement with the expression for the optimum weights given by equation 2.31. 
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The effects of dropping the expectation operator in the LMS algorithm means 

that the feedback constant k must be chosen carefully. Too large of k results in the 

weight values possibly overshooting the error surface minima and not converging, and 

too small of k produces an impractically long convergence time. The convergence 

behavior of the LMS algorithm is related to the eigenvalues of the correlation matrix O, 

which depend upon signal power, the number of signals, signal AOAs, and the number 

of adaptive weights. The convergence behavior is most straightforwardly demonstrated 

by examining the temporal evolution of the weight vector as given in equation 2.43. 

The transient solution of equation 2.43 is a sum of decaying exponentials30 which can 

be written in the form of 

lW = ic/^ + r'S 2.45 

where the A. are the eigenvalues of the correlation matrix O, and the jth time constant 

is given by 

T, =■ 
kXj 2.46 

The C are constants, and are determined by the initial weight values. The expression 

for the time constant given in equation 2.46 demonstrates the important result that the 

convergence time of the LMS array is inversely proportional to feedback gain. Because 

of the inevitable spread in eigenvalues, there are many possible choices for k. Widrow 

et al.1 have shown that convergence is assured when k is chosen such that 

1 0<£< 
A„,„ 2.47 max 

where Xmax is the largest eigenvalue of the correlation matrix O. When there is a wide 

range of signal powers incident upon the array, it can be difficult to choose a value for 

the feedback constant k. The possibility of having eigenvalues equal to zero, resulting 
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in a singular covariance matrix, is generally not a concern in any real system because 

thermal noise will be present. 

2.2.3 Narrowband Implementation of the Widrow-Hopf LMS Algorithm 

The expression given by equation 2.42 describing the gradient descent rule can 

be implemented using a feedback loop as shown in figure 2.6, where one such loop is 

required for both quadrature components of each weight. By having a single weight as 

shown in the figure, the loop is by definition narrowband. However, as shown in the 

following section this simple loop forms the building block for the broadband 

implementation. The figure is shown with the unprocessed array output xn(t) for the 

nth array element expressed as the sum of a desired signal Dn{t) and an interference 

term U„(t). The output of the processor is then yn{t) = xn(t)wn. The feedback loop, 

and the evolution of the single weight can be viewed as a single component of the 

weight vector given in equation 2.42. Thus the discrete weight Will evolve according to 

^ = 2kxn{t)e{t) 2.48 

The feedback loop is often referred to as a correlation cancellation loop, because the 

loop effectively takes the product of x and e and integrates the result, while reducing 

the error, i.e. cancelling out the undesired signal component from the processor output. 

The time integrated correlation for the nth, single adaptive weight can be written as the 

integral of equation 2.48, 

wn=2k\xn{ri)£(r))dr 2.49 
-oo 

The steady-state weight can be obtained from equation 2.49 by letting ?->oo. 

Substituting in the expression for the error, the steady-state weight is given by 

CO 

w„„ = 2k\x£ri{r{r\) - wxn(tl)]dr] 2.50 
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xn(t) = Dn(t) + Un(t) 

>        ■ »rx 
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I 
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Signal       

Figure 2.6. Correlation cancellation loop implements the gradient descent algorithm. 

which can by assuming ergodicity, be alternatively be expressed in terms of expectation 

operators as 

wnss = 2*E[*„(0K0]" 2*4*.('K*.(0] 2.51 

Under the assumption that 2k »1 (for convergence), the steady-state weight becomes 

w.   = E\*nmj\ 
4*»('K(0] 

2.52 

which is seen to be identical to equation 2.44, but here there is only one element in O 

and S. 

2.2.4 Broadband Implementation of the Widrow-Hopf LMS Algorithm 

This analysis of the time evolution of a single adaptive weight can be extended 

to the more general, true-time delay array processing architecture shown in figure 2.7, 

and that the processor of figure 2.7 will produce an array output y(t) which is strongly 

correlated with the input reference signal r{t). It will also be shown that the expression 

for the optimum weight values is very similar to that derived in Section 2.2.1. 
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Figure 2.7. Tapped-delay line phased-array implementation of LMS architecture. 

Referring to figure 2.7, each of the TV array elements, has an M element tapped 

delay line behind it, where each delay is separated by a temporal delay of x and 

x = l/B, for a signal bandwidth of B. As shown in figure 2.7, each weight is 

proportional to the time integration between the feedback error term, and a delayed 

version of the input signal. Deriving the optimum weights begins by proceeding as in 

Section 2.2.1, where the weight vector will now be increased from an N element long 

vector to an NxM element long vector25, 

W = [wvw2,...wm]T^ 253 

Similarly the signal vector will also be an NxM element long vector, given by 

X(t) = [X](t),x2{t),...xNM(t)]T 2.54 

where the signal from the nth element contains a desired signal D(t) and an 

interference term U(i) as in equation 2.18, again assumed to be zero-mean, random 

28 



processes which are uncorrelated with each other. The processed antenna output can 

then be written as 

y{t) = XT{t)W=WTX{t). 2.55 

Again choosing the sum-square error between the array and a reference signal r(t) as 

processing performance metric, s(t) = r(t)-y(t), an expression identical in form to 

equation 2.24 is obtained for the squared-error, 

E[s\t)} = E[r\t)] - 2WTS+WT®W. 2.56 

where as in section 2.2.1, 

® = E[X{t)XT{t)] 2.57 

and 

"5=4^X0]- 2.58 

Taking the gradient with respect to W of equation 2.56, yields, 

Vlv{E[r2{t)]-2WTS+WTOW} = -2S + 2OW=0. 2.59 

with the optimum weight vector given by 

jL„=r'£ 2.60 

which is identical in form to result of Section 2.2.1, in equation 2.31. 

Expansion of the expression for the array output y(t), given by equation 2.55 

yields 

y(t) = XT{t)W = [x,{t),x2{t),...xNM(t)]-[w],w2,...wNM]T 
2.61 

which can also be written in terms of partitioned vectors such that 

y(t) = [m\Ut)\---XAt)]iKAK2\---KN]T 2.62 

where the components of the partioned vectors of length M are given by 
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Xn(t) = [x](t-T),x2(t-2r),...xM(t-mz)]T 2.63 

for the received signal vector, and the unique time delay between samples has now been 

indicated. The partitioned weight vectors are given by 

Ei =[w„w2,...ww]r 2.64 

The individual partitions as chosen correspond to signal and weight values for a given 

element n of the array. It follows that the array output can be written as 

y{<) = Kl(m + £(t)Ej + ■■■+KT
N{t)wN 

«=1 

N M 2.65 
nm 

n=\ m=\ 

N    M 

n=] m=l 

which is clearly the sum of all of the delayed and weighted output taps in the array. The 

temporal correlation for the n-mth weight is also a discrete function of delay, mr, 

which allows the nmth weight to be expressed as 

wnm = J xn{n-mz)ß{ri)dr]. 2.66 
-oo 

Substituting this expression for wnm into equation 2.65, yields an expression for the 

total array output given by 

y(t) = HHXn(t-mT)Wnm=Tj
yZXn(t-mT)JXn(rl-rnrHv)dTl 2.67 

This expression ellucidates the adaptive process in terms of sums of products of time- 

integrated correlations and delayed ouputs, which can also be viewed as a convolution 

process between the adaptive weights and the antenna outputs. 
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2.2.5 Constrained Array Processing and the Howells-Applebaum 
Algorithm 

Another method of weight calculation is based on the concept of a constraint. A 

constraint is often introduced in the form of a steering vector corresponding to the AOA 

of the desired signal. Thus, where the Widrow-Hopf algorithm used a priori temporal 

information in the form of a reference signal, the constrained approach makes use of 

spatial information. For example, a steering vector for a narrowband desired signal 

source D{t), in direction 9 can be written as 

UT = [l,e'AV'2A,6---e'(AM)A<1 2-68 

where A0 is the interelement phase shift given by equation 2.3. 

To maximize the response of the antenna in the direction of the signal D(t), the 

system is constrained such that the array output from this signal is unity, while the 

interference power is minimized. For a given steering vector U, the weight vector can 

be constrained according to 

WTU = \ 2.69 

The Lagrange multiplier method can be used to minimize the average output power 

subject to the constraint given by equation 2.69, which allows a direct calculation of the 

optimum weights. The method of Lagrange requires defining a cost function, H{W), 

of the form 

H(W) = P + X(l-WrU) 2.70 

where X is an arbitrary constant, and the average power, P, is defined as the expected 

value of the array output, 

P = E[Yr]=WTOW 2.71 
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Where O is the received signal correlation matrix defined as in equation 2.25. 

Differentiating equation 2.70 with respect to W and equating to zero to find the 

extremum (which is a minimum), yields the following expression for the optimum 

weight vector Wopt, 

W     = —=—=  9 79 
-opt        JJT^IJ* *■"■ 

and corresponding value for the array output power of 

P     —  9 H-l 

The optimum weight vector given by equation 2.72 is seen to be the product of the 

inverse of the signal correlation matrix and the steering vector, normalized by the array 

output power. 

The concept of a constraint forms the basis for the Howells-Applebaum 

adaptive array31'3, and as with the LMS algorithm, the Howells-Applebaum array 

converges to a solution which maximizes the SINR of the array. The SINR for a 

desired narrowband signal D(t) can be written as31 

SINR = E\\D\2]  If'-0! 2 74 

with an optimum weight vector which is given by 

E- = /**™!TD 2.75 

where |m is the correlation matrix of the undesired interference and noise terms only, 

Ud is the steering vector, and fx is an abitrary constant. The derivation of equations 

2.74 and 2.75 is lengthy and will not be included here. A feedback loop for a single 

weight which implements the Howells-Applebaum algorithm is shown in figure 2.8, 

and it differs from the LMS loop of figure 2.6 primarily in the location of the 
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Figure 2.8. The narrowband Howells-Applebaum feedback loop. 

differencing node. As shown in the figure, the error is the difference between the 

product of the element output x*(t) and the processed array output y(t), and the 

desired signal steering vector element \xuD. 

To include all of the adaptive loops of the array, the weight update rule can be 

expressed as 

x dW 

G dt 
■I + ® K=^U: 2.76 

where G is the feedback gain. The steady-state weight values are thus 

W   = 
—SS 

— 7+<D 
G=   =. 

-i 

A*£ 2.77 

which for sufficiently large gain G becomes approximately 

Irr» Ku"H*-lH 2.78 

While this set of steady-state weights differs from equation 2.75 in that the signal 

correlation matrix is O instead of &NN, they are actually related to each other by a 

33 



scalar31, and are approximately the same when the interference is much stronger than 

the desired signal. Comparing equation 2.76 to the previously derived Widrow-Hopf 

LMS relation given by equation 2.43, 

dW 

dt 2.43 

it is clear that these two algorithms are quite similar, and are in fact identical if 

Mlfd = S. The choice between the algorithms is determined by whether the a priori 

information is spatial or temporal. 

2.2.6 The Sidelobe Canceller 

One of the simplest forms of an adaptive array is the sidelobe canceller4, used to 

remove interference incident upon the sidelobes of an antenna. The sidelobe canceller is 

shown in figure 2.9, and is typically composed of a highly directional primary antenna 

element and either one or a group of omni-directional, auxiliary elements whose 

weighted outputs are first summed together, and then subtracted from the primary 

element output. The primary element is configured to form a beam in the direction of 

the desired signal, and the auxiliary elements adaptively construct an antenna pattern in 

the direction of interfering sources. The adaptive scheme is based on minimizing the 

error between the primary and auxiliary outputs, which is actually the same as 

minimizing the total array output power, subject to the constraint of the primary 

antenna. The primary output can be considered as the reference signal, while the 

auxiliary output is that of an adaptive filter, configured as a matched filter for the 

incident interference. Because the primary element is pointed in the direction of the 

desired signal, i.e. constrained, the sidelobe canceller is in fact a simplified 

implementation of the Howells-Applebaum array31. 

The sidelobe canceller reduces the contributions of unwanted interference 

sources which are incident on the primary antenna element pattern's sidelobes by 
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Figure 2.9. Sidelobe canceller removes interference incident on primary antenna 
sidelobes. 

essentially taking the difference between the desired and interference antenna patterns. 

This is shown conceptually in figure 2.10, where the auxiliary beam pattern is pointed 

towards the interference source corresponding to an incident direction of kin„ and has a 

scaled amplitude such that, when subtracted from the primary antenna pattern signal 

pointed at the desired signal in direction kd, the contribution of the inteference signal 

will be reduced in the output. Adaptively minimizing the difference between these two 

antenna patterns is analogous to redistributing the nulls of the antenna pattern in angle- 

space towards the directions of the interfering sources. 

It can be shown that the highest SNR is obtained when the total output power of 

the sidelobe canceller is minimized. As shown in figure 2.9, the auxiliary output y(i) is 

represented as the inner product of the input signal vector, X{t), and the weight vector 

W. The signals making up X(i) are assumed to be inteference sources only, where the 

interference is correlated between array elements (thermal noise is neglected here). This 

assumption of only interference power contained in the array elements is based on the 
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fact that usually the desired signal is much weaker than the interference, and that the 

omnidirectional acceptance pattern of the auxilliary array elements causes very little 

desired signal to be present in the received power from these elements. The signal 

output of the primary element is the sum of the desired signal D(t), and the interference 

source terms designated as U(t). The signals D{t) and U(t) are uncorrelated with each 

other, but U(t) is correlated with the interference sources of y{t) because they are from 

the same source. Note here that the processer output is the difference, or error, between 

the primary and auxiliary antenna components. This error is given by 

e{t) = D{t) + U(t)-y{t) 2.79 

The weights are adjusted so as to minimize the expectation value of the squared error, 

and from equation 2.79, the expectation of the squared error is 

E[s\t)} = E[D\t)} + E[[U(t) - y(t)f] + 2E[D(t)[U(t) - y(t)]] 2.80 

The cross-product term 2D{t)\U(t) - y(t)] goes to zero because D(t) is uncorrelated 

with both U(t) and y(t), resulting in 

E[£\t)] = E[D\t)] + E[[U(t)-y(t)f} 2.81 
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In order to minimize the residual error, it must be that the last term of equation 2.81 

must be minimized, because D(t) is independent of W, and there would be no SNR 

advantage to minimizing D(t). Therefore, 

^min] = F[D\t)} + E[(U(t)-y) 
2 

min 
2.82 

Equation 2.82 yields the intuitive result that the error will be minimized when the 

auxiliary output y(t) is the best possible replica of the interference term U{t). The fact 

that the SNR is at a maximum when the total error is minimized is made evident by 

rewriting equation 2.79 as 

e{t)-D{t) = U{t)-y{t) 2.83 

Thus, minimizing U(t)-y{t) is equivalent to minimizing the difference between the 

error and the desired signal, and therefore the minimum value of the error will be 

4*^(0]=4^(0] 2-84 

The result of equation 2.84 states that the minimum possible error is in fact the desired 

signal, and correspondingly the SNR will be a maximum when this occurs. 

It is important to point out that the implementation of the sidelobe canceller is 

based on two a priori pieces of information; the direction of the desired signal is 

known, and the strength of the desired signal is small compared to the integrated noise 

and interference power. The known signal direction allows the primary antenna to be 

pointed in the direction of the desired signal, and the weak signal assumption insures 

that the desired signal contribution from the auxiliary elements is minimal. If the desired 

signal is strong enough, with a significant contribution to the power received in the 

auxiliary elements, the sidelobe canceller will null this signal as well. 
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2.3 Optically Implemented Phased-Array Processing Algorithm 

The optically implemented phased-array processor developed in this thesis uses 

a modified version of the LMS algorithm to perform simultaneous beam formation and 

jammer cancellation. The intention of the algorithm is to provide a practical means of 

processing signals from very large phased-arrays, and is in part met by dramatically 

decreasing the number of required delay lines from N, where TV is the number of array 

elements, to only 2. Optical implementation of conventional (tapped) delay line 

structures for array processing as shown in figure 2.4 is often done with multichannel 

acousto-optic (AO) devices, one transducer per each antenna element, and therefore the 

number of AO channels required is equal to the number of antenna array elements. As a 

result, the limitations of multichannel AO technology32 typically limits the number of 

elements which can be processed to at most 32. In contrast, the delay line reduced, 

optically implemented LMS algorithm presented in this thesis, uses the inherent delay 

available in optical resonator cavities to achieve the required time delays necessary for 

wideband phased-array processing. This section demonstrates the equivalence between 

the adaptive weights of the optically implemented, modified LMS algorithm, and the 

weights used in the traditional tapped-delay line architecture presented in Section 2.2.4. 

It is important to point out how the modified algorithm closely resembles the Widrow- 

Hopf and Applebaum algorithms; the adaptive weights which are formed and the array 

output are equivalent, and the modified LMS algorithm produces the required number 

of DOFs to perform broadband, spatial-temporal processing for phased-arrays. 

However, there are important differences which are addressed at the end of this section. 

A schematic diagram of the modified LMS algorithm is shown in figure 2.11. 

The set of N tapped delay lines on the antenna elements that is used to produce the 

relative delayed output taps of the Widrow-Hopf algorithm of figure 2.7, have been 

replaced by a single tapped-delay line in the feedback, and distributed to all the elements 

in parallel. As in figure 2.7, the time integrated weights are calculated between the 
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incoming array signals and the relatively delayed feedback error signal. The weight wnm 

corresponds to the weight for the nth antenna element, at the mth delay, where now m 

corresponds to the relative delay of the feedback signal. The delay is implemented with 

a single AO device, and the weights are represented by the diffraction efficiencies of the 

time-integrated holographic gratings in the PRC. The products of the incoming 

unprocessed array signals and the weights at a particular delay are added, and these 

sums are Fourier transformed in space across delay value. Each output of the spatial 

Fourier transform is passed through a bandpass filter, and the outputs of the bandpass 

filters are summed to produce an output which is correlated with the reference signal 

r(t). The center frequency of the bandpass filters varies linearly across the filter array, 

and tuned so as to pass the signal which would have appeared at that position had 

instead the tapped delay line been used as the Fourier transform input. The Fourier 

transform operation is done simply in the optical domain with a lens, and the array of 

bandpass filters is obtained from a tilted or wedged Fabry-Perot resonator structure as 

discussed in more detail in Chapter 8. 

The adaptive network of figure 2.11 is shown being used as a jammer canceller. 

The delay, xe, that the reference signal passes through serves to decorrelate desired 

signals, which are assumed to be of broader bandwidth than the jamming sources. In 

this manner, while the broadband signals are present in the feedback signal, because 

they are delayed with respect to the incoming signals, they are decorrelated with the 

desired signals at the input of the array and do not build up appreciable weights. This 

suggests re should be chosen such that re »l/B, where B is the desired signal 

bandwidth. 

Using an AO cell for the feedback signal delay line results in the discrete 

weights of equation 2.66 becoming a continuous function of delay, where the delay is a 

proportional to the spatial variable <§ along the AO aperture, divided by the acoustic 
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Figure 2.11. Schematic of optically implemented LMS algorithm. 

velocity V of the AO cell. These continuous adaptive weights can be described by the 

time integral33 

<(^)=\xn(t1)e(t1-^V)dt2 2.85 

where it is to be emphasized that the delay is now on the feedback error signal, 

S(T] - E,jV) in contrast to the Widrow-Hopf alogorithm. These weights are multiplied 

by the instantaneous output signals from the array, and summed (vertically in figure 

2.11) over the N antenna elements to give 

X^)=2X('K(£) 2.86 
n=\ 

This sum is Fourier transformed spatially across E, giving 
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y(t,u) = ]ymy^ 2.87 
o 

The total array output is then the integral of the bandpass filtered versions of these 

signals y{t,u) over the output variable u of the spatial Fourier transform, 

2M/L T 

y(t)=   J  \y{t-t„Uy
uVhdt,du 

M/L 0 2.88 

A temporal filter with a linearly increasing center frequency a = uV in space, scaled by 

the acoustic velocity V and a constant bandwidth B = l/T has been implemented, and 

the limits of integration of M/L to 2M/L define an octave bandwidth for this system, 

where the spatial aperture of the Bragg cell is L and M is the time-bandwidth product. 

Substituting equations 2.85 through 2.87 into equation 2.88, and interchanging orders 

of summation and integration, it follows that 

2M/L T L   M '~h 

*') =   I  tiZ^ - '3) J*;('2>('2 - ^/V)dt2e^e!^dt3du 
M/L   0 0"=' -<o 

N   T I-h       L 2M/L 

= Z\dhxn(t- h) \dt]d&{t -t3)s(t, - h - §/V) IdueV* 
n=\ 0 -00        0 M/L 

N 
T. '"'' 2.89 

= E J dtMl - 0 )dt,xn(t -13) x 
n=\ 0 -00 

\d^eK^PM/2L sinr M ^ + VfjU^ _ h _ yy) 

where tx-t3=t2, and the integral over u has been performed. It has also been assumed 

that that the error signal has a finite bandwidth which is contained within the bandwidth 

of the sine function, which is taken to be the same as the input bandwidth of the 

processor. This assumption allows the convolution of ^Vh^Mßle{tx -t3- ^jV) with 
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smc £(«♦*)" to  be treated  as  a  convolution  with the  delta  function 

8(($+Vt3)M/2L), giving 

N   T 

U 
«=' 0 

y{t) = £/*„(' - h)\<{t - hy(t,)dt,dtx 2.90 

This result is equivalent to that of Widrow-Hopf algorithm given by equation 2.67, but 

here the delay is continuous. Recalling that the total delay line interval is T = L/V, and 

allowing the delay line to become a discrete function of position, equation 2.90 

becomes 

;v     M ' 

y(t) = Hllxn(t-mT) j\*(f, -mx)e(t,)dt, 2.91 

which agrees identically with the expression for the true-time delay output given by the 

Widrow-Hopf algorithm in Section 2.2.4. 

The processor shown in figure 2.11 uses a temporal reference signal r(t) to 

correlate with the incoming signals. As discussed in more detail in later chapters, this 

reference signal is actually derived from the output of the beam-forming processor 

which steers the main-beam of the antenna towards the desired signal. The complete 

algorithmic structure is shown in figure 2.12, where the structure at the left performs 

jammer cancellation, and the structure on the right is a similar beam-forming processor. 

The details of the beam-forming and jammer-nulling processors are reserved for 

Chapters 6 and 7 respectively, however it is worthwhile to discuss the overall, 

combined functionality between them here. As shown in figure 2.12, the beam-forming 

processor uses a temporal reference signal, rs(t), to time integrate weights such that the 

main-beam of the antenna is steered towards the desired signal. In this case the 

reference signal rs(t) is well correlated with the desired signal. The summed output 

from the beam-forming processor becomes the reference signal input r{t) to the 
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Figure 2.12. Schematic of combined optically implemented jammer-nulling and beam- 
forming processors. 

jammer-nulling processor. Due to the decorrelation delay re and the assumption that 

desired signals are of broader bandwidth than jammers, the reference signal r(t) in the 

jammer-nulling processor is effectively composed only of interference terms; the 

broadband desired components presumably pass through the jammer-nulling processor 

unaffected, extracted at the feedback error output, which is also the net processor 

output. This is a significant departure from the Widrow-Hopf algorithm where the 

reference signal is the desired signal. Directly coupled with this alternative strategy of 

using the interference as a reference signal is the fact that the final processed array 

output is the feedback error term of the jammer-nulling processor. The adaptive weights 

in the jammer-nulling processor serve to maximize the jammer-nulling processor output 

for the jammer as with traditional LMS, but here the output is the error signal, the 

difference between the beam-forming and jammer-nulling processors. 

It is important to note that the beam-forming processor is open-loop, there is no 

error driven feedback. It is adaptive in the sense that it will find and track the desired 

signal over angle space, and it does provide the spatial processing gain associated with 
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the array. However, it it is not adaptive in the sense of maximizing the SINR of the 

array output. The full adaptive functionality of beam-steering and interference 

cancellation is achieved when the two processors are combined. In this sense the 

optically implemented algorithm is a great deal like a sidelobe canceller; a primary 

antenna is pointed towards the desired signal (by the beam-forming processor) eeven 

though its AOA is unknown,.and a second set of adaptive weights are constructed to 

minimize interference (by the jammer-nulling processor), and the final array output is 

the difference between the two constructed antenna functions. Distinct advantages of 

this modified implementation over traditional sidelobe cancellers is that in addition to 

the dramatic reduction in the number of required delay lines, the main-beam-former is 

adaptive and not just a single element, and also a strong desired signal will not null 

itself out. The details of the processor operations which ellucidate the adavantages of 

this processing method over more traditional processing methods are given in following 

chapters. 
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3. Optical Processing for Adaptive Phased-Arrays 
This Chapter will present a brief overview of previous work done on optical 

processing for adaptive phased-arrays. While much work has been done in this area, 

the emphasis here will be on systems and architectures which attempt to address the 

complex problem of real-time adaptive array processing. In particular, the emphasis 

will be on processors capable of adaptive interference cancellation. This Chapter will 

also elucidate the fact that the vast majority of the published work on optical processing 

of phased-arrays does not scale efficiently to very large arrays, which is a major 

advantage of the work presented in this thesis. In addition, a review of the published 

literature reveals that the work presented in this thesis is the only published work on 

simultaneous, real-time, adaptive beam-steering and jammer-cancellation performed to 

date. 

3.1 Optical Adaptive Filtering Techniques 

Some of the early work in optically implemented, single channel adaptive filters 

provided the fundamental building blocks and structures which would later be 

implemented into higher-dimensional adaptive array processors. Much of this early 

work consisted of adaptive linear prediction algorithms and correlation cancellation loop 

(CCL) implementations using 1-D transversal filters for adaptive interference 

suppression. These processors generally relied on acousto-optic Bragg cells for the 

wideband transversal filters, but implemented correlation and convolution operations 

via a wide range of methods including processing in the temporal and frequency 

domains using either space or time integrating architectures. 

The adaptive filter demonstrated by Rhodes1 consisted of a CCL, temporal 

domain structure for performing linear prediction of RF signals. The processor 

demonstrated linear prediction by adaptively producing an estimate, o(t), of a given 

input RF signal, s(t). Assuming that the input signal s{t) consisted of a broadband 
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desired component and strong narrowband frequency components which are 

uncorrelated with the desired signal, the processing operation was based upon first 

performing a correlation between the difference between the estimated signal o(t) and 

the processor input s(t) to produce the set of adaptive weights, and then convolving 

these weights with the processor input s(t) to produce the adaptive matched filter and 

optimize the processor output for s(t). This is classic linear prediction2, where an 

estimate of a signal is obtained from the weighted sum of past values. However, by 

changing the error term to be the difference between some reference signal r(t) and the 

signal estimate o(t), the 1-D adaptive signal canceller of the previous chapter is 

implemented. 

The time integrated correlation operation was implemented by first using a 

single Bragg cell with electrical input s(t), and illuminated by an optical beam electro- 

optically modulated by the error signal e(t) = s(t) - o{t). This provided the multiple 

delayed products between s(t) and the error signal, given by e(t)s(t -x/V), where x is 

the spatial coordinate along the Bragg cell aperture and Fis the acoustic velocity in the 

cell. An optically addressed liquid crystal light-valve (OASLM) is then used to time 

integrate these products to complete the correlation operation. Thus, the adaptive weight 

vector, w(x), is a continuous function of the spatial coordinate x, 

w(x) = js(t)s(t-x/V)dt 3 i 

The OASLM stores the weights in the form of a spatially varying charge which 

modulates the polarization of the reflected (readout) light off of the OASLM. Reading 

out the light-valve is done with a second optical beam, and the polarization state is 

converted to an intensity variation using a polarizer. This readout beam illuminates a 

second Bragg cell, whose electrical input is s(t). This operation again forms the set of 

multiply delayed products, w(x)s(t - xj V). Using a lens to spatially integrate these 
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multiple products onto a photomultiplier tube is seen to be the required convolution 

operation, and yields the processor output, 

o(t) = f w(x)s(t - x/ V)dx 3 2 

Substituting equation 3.1 into equation 3.2 yields an expression for the processor 

output of 

o{t) = { J s(t)s(t - xj V)s{t - xj V)dtdx 3 3 

The error term is then updated in the electrical domain according to s(t) = s(t) - o(t), 

and the processor output ideally converges to a replica of the input signal s(t), which is 

equivalent to driving the error term e(t) to zero. The results of the processor1 were 

encouraging, but suffered from several equipment and stability related shortcomings. 

Architectural issues which limited performance were primarily caused by the fact that 

because information is carried in the processor by the light intensity, rather than 

amplitude, negative values cannot be represented. To accommodate this, The Bragg 

cells and light valve were operated on top of a DC bias, which generally introduced a 

loss in signal dynamic range3. 

A Fourier domain, adaptive optical processor was proposed by Vander Lugt4, 

which implemented a linear prediction algorithm in the Fourier domain with a space 

integrating architecture using three Bragg cells. Again the basis of the adaptive signal 

estimation was that of a correlation and convolution operation, although the Fourier 

implementation allowed the two operations to be performed non-sequentially, in a 2-D 

folded format as discussed below. 

Proceeding in like fashion to the processor discussed above, and again 

assuming a broadband desired signal in the presence of uncorrelated, strong, 

narrowband interference, the weight vector is determined from the correlation between 

the error signal s(t), and the processor input s(t), which can be represented by4 
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w(z) = G J e(u)s{u - z)du 
"T' 3.4 

where Tx is the integration time of the correlation loop, G is the feedback gain, and 

again the error signal is the difference between the input of the processor and the 

calculated estimate, s(t) = s(t) - o(t). The correlated estimate is then determined from 

the convolutional process given by 

T 

o(t) = jw(z)s(t-z)dz 
0 3.5 

where T is the length of the Bragg cell time delay. Substituting equation 3.4 into 

equation 3.5 yields the processor output expressed in the time domain, 

T    I 

o{t) = G^ J S(U)S(U - z)w(z)s(t - z)dudr 3.6 
Ot-T, 

The Fourier representation of equation 3.6 can easily be obtained4 by the convolution 

theorem, 

oo 

o(t) = G\ET{co,t)\ST{(o,tfeia,dt 3.7 
—00 

where ET(co,t) and ST(co,t) the instantaneous Fourier transforms of e(t) and s(t) 

within the time aperture of the Bragg cell, T. The error signal is then updated, and at 

steady-state the error is driven to zero. The frequency domain representation elucidates 

how the estimate signal o(t) evolves, in particular, the term \ST(co,tf puts a strong 

weighting on the dominant spectral components of the correlated interference, and 

hence acts as a filter which separates the interference form the desired signal. 

A simplified system schematic is shown in figure 3.1, which is essentially an 

interferometer between the two branches, 1 and 2. The three Bragg cells overlap in a 
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Figure 3.2. Region of spatial overlap of the three Bragg cells in (a), and region of 
spectral overlap in (b), showing reduced area of photodetection. 

plane (external to the interferometer) as shown in figure 3.2a, and figure 3.2b shows 

the Fourier plane of the overlap plane, where the Fourier plane corresponds to the plane 

of the photodetector. As shown in the figure, the photodetected area is limited to the 

diagonal slice. The two orthogonal Bragg cells, both which have s(t) as an input, 

produce the term \ST{co,t)\2, which then selects the interference components from the 

spectra of ET(co,t), and uses these as feedback signals in the cancellation loop. This 

implementation where Bragg cells 1 and 2 are given s(t) as an input, and Bragg cell 3 

the error signal s(t), yields the same output as driving Bragg cells 1 with s(t) and 
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Bragg cell 2 with e(t) to perform the correlation given by equation 3.4, and then 

interfering and integrating this signal with the output of Bragg cell 3, driven by s(t), to 

perform the convolution of equation 3.5. 

Architecturally, this system offered several advantages over the time integrated 

processor reported in reference 1; the space-integrating, Fourier domain implementation 

allows full use of the wide bandwidth of the Bragg cells, the use of signal amplitude 

instead of intensity eliminates the need for any bias signals, and there was no time 

integrating device in the system to introduce unwanted bias buildup4' 3. The 2-D, 

folded nature of the processor made this processor difficult to scale to array 

architectures, simply because the second spatial dimension is already used; scaling 

would require that each array element have its own 2-D processing domain. 

An experimental demonstration of the processor5 achieved approximately 32 dB 

of narrowband jammer suppression. The dynamical behavior of the processor was 

derived and particular emphasis placed upon the stability of the system. The stability of 

the processor was then experimentally characterized, and the issues of time delay and 

resulting frequency dependent phase shift around the feedback loop were borne out of 

this investigation. The authors identified that the residual delay in the processor was 

caused by the fact that the beam illuminating the Bragg cells, because of the birefringent 

AO interaction, is a finite distance away from the Bragg cell transducer edge. Hence, 

there is always a time delay at each Bragg cell produced by the distance the acoustics 

must travel before interacting with the illuminating beam. This same issue exists in the 

jammer-nulling processor discussed in this thesis, the characterization is presented in 

Chapter 7. 

In 1984, Psaltis and Hong6 proposed a set of adaptive processors, named the 

"passive" and "active" processors, each of which performed correlation and 

convolution operations, implemented in time domain, space integrating architectures. 

The passive processor performed narrowband jammer suppression, and the active 
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processor was designed to perform adaptive matched filtering for a desired signal of 

interest. The 2-D design of this system allowed its 3-D extension to a space-time 

version intended for phased-array radar processing7. The algorithm implemented by the 

space-time version of the active processor is shown in figure 3.3, where the array look 

direction is determined by the signal s'(-r), which is also the temporal reference signal 

used to detect the desired signal. The filter function for the ith element, h,(t), must be 

adaptively determined, and then applied to each element. 

The matched filtering operation which is performed for each array channel of figure 3.3 

can be seen by examining the error signal s(i), given by the combination of correlation 

and convolutions6 

CD » 

e(t) = Jx(f - ry(-r)dT - GJ \x(t - r)xm(a)s{t + a)dadz 
3.8 

where G is the feedback gain, and the signal into the processor, x(t), is the sum of a 

broadband, desired signal s(t), and uncorrelated, narrowband interference terms n(i). 
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Figure 3.4. Optical implementation of a single channel of the space-time processor 
shown in figure 3.3. 

Assuming that the desired signal component in the array input is weak compared to the 

interference, equation 3.8 can be approximated by 

w CO 

s(t) = jx(t- z)s\-z)dz - G\ \n{t - r)n(a)e(t + a)dadx 
.3.9 

Taking the Fourier transform of equation 3.9 yields the expression for the matched 

filter6' 8> where X(a), S(co), and N(a>) are the spectra of the input, steering, and 

noise signals respectively. 

'    1 + G\N(cof 
3.10 
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Figure 3.5. Optical implementation of 3-D space-time optical processor 

The single channel optical implementation of this processor is shown in figure 

3.4, where the space integrating convolver and correlator are identified. As discussed in 

reference 6, the output of the convolver is compressed in time by a factor of two, and 

therefore the correlator input must be compatible with the temporally scaled input. The 

implementation shown in figure 3.4 provides for the scaling factor, however in general 

the temporal scaling reduces the flexibility of convolver and correlator architectures 

somewhat. Unlike the space integrating processor of reference 4, this system scales 

well for the multi-channel, 3-D, space-time implementation proposed for adaptive array 

processing, primarily by invoking multi-channel Bragg cells, and parallelizing the 

electronics as shown in figure 3.5. The proposed 3-D active processor system nulling 

bandwidth was still limited by the inverse of the feedback loop delay time for the 

acoustics to propagate to the optical window. To avoid this limitation, a time integrating 

correlator was investigated9' 10 that used a photorefractive crystal to integrate the 

weights, and the lack of DC spatial frequency response was used 
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Figure 3.6. PRC based, time-integrating adaptive filter. 

advantageously to avoid bias buildup of the weights. A schematic diagram for a space- 

time adaptive filter based on the photorefractive correlator is shown in figure 3.6. 

Except for the fact that a PRC is used instead of an OASLM and the read beam is a 

different wavelength, this architecture is essentially the same as that reported in 

reference 1. The operation of the processor can be described by the same, very general 

set of equations given by equations 3.2 through 3.3. Architecturally, the only 

significant difference with the implementation using the PRC is that a different 

wavelength (HeNe) is used to read out the weights and perform the final convolution. 

A small crystal thickness relaxes the Bragg selectivity. 

Although the interference suppression results of approximately 15 dB reported 

in reference 10 were somewhat modest, the introduction of a new, bias-free time- 

integrating element, with optical input and output represented a significant contribution 

to the field. The time integration technique offers distinct advantages because while 

Bragg cells can have large bandwidths, their finite time aperture limits the integration 
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period available for space-integrating architectures. The longer integration period of the 

time integrating processors allows a significant improvement of the processing gain11. 

In addition to the lack of bias terms traditionally produced by time integrating elements 

such a light-valves and CCDs, the photorefractive element promised much higher 

spatial resolution, a response time which can be controlled by intensity level, the 

simplicity of being a single component rather than a complex device, and an optical, 

coherent output. It should be noted that bias terms do exist in the sense that the spatially 

DC terms of the illumination at the photorefractive reduce the diffraction efficiency of 

the holographic gratings by the erasure mechanism, however the bias signals are not 

present in the photodetected output. Photorefractive crystals are used as time-integrating 

elements in the adaptive phased-array processor discussed in this thesis, and the time- 

integrating properties are discussed in more detail in Chapter 4. 

In 1988 multi-channel phased-array beam-forming, and simultaneous pulse 

compression was demonstrated based on the space integrating correlation architecture 

presented in references 6 and 7. A schematic of the top-view of the experimental set-up 

is shown in figure 3.7, where the acoustics propagate into the plane of the paper. The 

optical implementation uses the multi-channel Bragg cells to perform the multi-delayed 

multiplication between the array element signals and the time delayed reference signals. 

The lens and detector perform the spatial integration needed to complete the correlation 

process. As shown in the figure, the experimental implementation used a mirror to 

reflect the optical signal back through the same Bragg cell in order to assure good 

matching of acoustic channel widths9. Thus, the signals from the array elements, x,(/), 

are correlated with the time-delayed reference signals, s(t), and coherently summed to 

yield the beam-forming output. 

Experimental results from the processor were obtained for a one, two, three, 

and four channel array, in the presence of narrow and wideband jammers. While not 

truly adaptive, the results of this experiment demonstrated spatial beam-forming gain, 
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Figure 3.7. Top view of experimental set-up for multi-channel beam-forming processor 

and a corresponding robustness in the presence of both narrow and broadband 

jammers. The authors noted that this same architecture can be used to simultaneously 

form multiple beams, and could be made truly adaptive by generating an appropriate 

error signal for use in a closed-loop implementation. 

3.2 Optical Processing for Adaptive Phased-Arrays 

There are few efforts done with adaptive phased-arrays which are directly 

comparable to the work presented in this thesis, and this is because only a few groups 

have approached the true multi-dimensional nature of the phased-array processing 

problem using adaptive, optically based processors. While many architectures have 

been proposed, very few systems have actually been built and experimentally 

demonstrated. As was shown, not all of the architectures of the previous section scaled 

well from a single channel adaptive filter to the space-time architectures needed for 

array processing. In this light, the discussion of this section will be restricted to the 

work presented by three groups, R.M Montgomery, et al.12> 13> 14, at Harris 

Microwave Corp., Penn et al.15>16, at General Electric Corp., and Keefer, et al. at 
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Rome Laboratory17. Both of these groups demonstrated adaptive jammer cancellation, 

but not adaptive beam-forming. 

In 1990, while at Harris Microwave Corp., R. M. Montgomery proposed an 

acousto-optic/photorefractive, adaptive phased-array processor for implementing the 

LMS algorithm12. The processor was based on using a Bragg cell for implementing 

multiple time delays, and a PRC for calculating and storing the time-integrated weights. 

While architecturally similar in principle to the work presented by Hong9'10, in that the 

weights were time integrated in a PRC and read out using a space integrating structure, 

and the writing of the weights was done with one wavelength, and read-out was done 

with another, a significant difference with the Montgomery approach was the concept 

of a single, monolithic device which performed both the acousto-optic and 

photorefractive functions. The proposed monolithic device was to be constructed of 

bulk GaAs (which is both acousto-optic and photorefractive when properly doped), and 

the write and read lasers were to be at 1.2 and 1.3 microns respectively. While elegant 

and compact, the monolithic device was never demonstrated, and the follow-on paper 

where jammer suppression results were presented13 used a discrete, conventional AO 

device and a GaAs photorefractive crystal. A simplified schematic of the experimental 

architecture is shown in figure 3.8. As shown in the figure, the product of the output of 

the modulated write laser and the diffracted component form the Bragg cell interfere at 

the PRC, and the product is time integrated by the PRC. The general expression for the 

weights can thus be described by equation 3.1. The read laser then illuminates the 

Bragg cell, the diffracted and undiffracted components propagate through the crystal, 

probe the holographic weights, and interfere at the photodetector. This performs the 

convolution described by equation 3.2, and the detected signal is then subtracted from 

the incoming signal from the array element to generate the feedback error signal. The 

fact that the write and read wavelengths are reasonably close, and the small crystal 

thickness 
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Figure 3.8. Adaptive phased-array processor (single element shown) of Montgomery, 
etal.13 

relaxes the Bragg selectivity. The beams were separated using polarization isolation and 

a dichroic filter. 

Narrowband suppression results reported for the single antenna element 

architecture of figure 3.8 were approximately 40 dB13, over a nulling bandwidth of 

approximately 10 MHz. Montgomery noted that the nulling bandwidth was limited to 

the inverse of the feedback loop-delay time, a limitation common to the processor 

discussed in this thesis as well. 

In later work by Montgomery, et al.14, the architecture was extended to the true 

phased-array problem of multiple elements. The single Bragg cell was replaced with a 

six element device, which simulated a modest array of six elements. Reduction of the 

feedback loop-delay time to 9 nsec extended the narrowband nulling bandwidth to 

approximately 32 MHz. Scanning over frequency resulted in a periodic jammer nulling 

bandwidth, similar to that reported for the jammer-nulling processor of this thesis. 

In 1990, while at General Electric Corp., Penn, et al.16 presented results for an 

optical adaptive multipath canceller which implemented the LMS algorithm. The first 

reference to this processor was actually in 198215, although the paper was a concept 
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Figure 3.9. Adaptive, optical phased-array radar processor proposed by Penn, et al.16 

paper only. The architecture is shown in figure 3.9, and although the architecture is 

shown with multiple channel Bragg cells, the experimental results were obtained using 

single channel devices. The only difference between this architecture and that proposed 

by Hong10 and Montgomery14 is that now an OASLM is used to time integrate the 

weights. In fact, the single channel acousto-optic device is architecturally identical to 

that of Rhodes1 discussed at the beginning of this chapter, and can be described by the 

same set of equations. 

Using the single channel version of the processor of figure 3.9, approximately 

30 dB of suppression for a narrowband jammer was obtained over a six MHz 

bandwidth, and approximately 15 dB suppression of a 1 MHz wide jammer. This same 

architecture was outfitted with a PRC as the time-integrating element by Keefer, et al.17 

at Rome Laboratory in 1992 (and later again with a CCD device18 and an electronic 

processor that applies the weights). The weights in the PRC were probed by reading 

out the grating from the back side of the crystal. The performance of the system, again 

for a single channel, was improved somewhat to approximately 25 dB of narrowband 
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cancellation over a 2 MHz wide bandwidth, while suppression performance for 

wideband jammers did not improve appreciably. In 1993, researchers at General 

Electric proposed a Brass-board demonstration for an adaptive processor based on a 

very similar architecture19, this time with a HeNe laser used for the readout. This 

concept appears to have never been built. 

It is clear that the architectures discussed in this section are essentially the same; 

they are all based on time integrating the adaptive weights, and then reading out these 

weights using a space integrating structure. Moreover, none of the processors 

described in this chapter scale easily to large phased-arrays. This is due to the use of 

one Bragg cell per antenna channel, which quickly becomes a problem as the number of 

antenna channels increases. Current mulit-channel acousto-optic devices are limited to 

approximately 32 channels20. Aside from the work in this thesis, there seems to have 

been no other demonstrations of either truly adaptive beam-forming, or simultaneous 

beam-forming and jammer-cancellation of a phased-array using an optical processor. 
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4 Photorefractive Volume Holography 

This chapter will review volume holography in photorefractive media. The 

chapter begins with a review of dynamic holograms as signal processing elements. 

Volume holographic readout via the coupled mode equations in static media is then 

presented. Following is a review of the fundamentals of the photorefractive effect and 

volume holography in photorefractive media. A differential equation describing the 

time-evolution of the photorefractive photoinduced space-charge field is derived, and 

transformed into an equation describing the grating diffraction efficiency used in later 

chapters for modeling the phased-array jammer-nulling processor dynamics. 

4.1 Volume Holography for Signal Processing 

The 3-D nature of volume holograms leads to many characteristics and 

applications uniquely different from those possible with 2-D media. The most 

significant difference between 2 and 3-D media is that within volume holographic 

media, due to its thickness, wave propagation is best described by electromagnetic 

propagation in periodic media. The resulting Bragg diffraction phonemena1'2'3 leads to 

high angular and spectral selectivity between holograms as well as the capability for 

extremely high diffraction efficiency. These properties can be exploited for a variety of 

applications such as holographic-optical-elements4'5, (HOEs), data storage1'6, and 

storage of multiple images7'8. 

Dynamic holograms formed in photorefractive crystals (PRCs) have been used 

as processing elements in optical computing architectures for such applications as image 

processing, neural networks, and signal processing. Image processing applications 

have included dynamic correlation and convolution9'10 image amplification11 and 

subtraction12'13 spatial light modulation14'15  incoherent-to-coherent optical 
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conversion16, and optical novelty filters17. These applications often use either energy 

exchange through beam coupling or the phase-conjugation properties of 

photorefractives via four-wave mixing18'19'20. Neural network and signal processing 

applications often use PRCs as processing elements in the form of multipliers and finite 

response-time integrators, where the holographic gratings function as an array of 

complex adaptive weights21'22'23. 

Processors using PRCs addressing radar and communications signal processing 

applications have been used for performing temporal signal correlation24, frequency 

lock-in detection25, conversion of RF signals26, and adaptive filtering for phased- 

array-radar27'28'29'30. The adaptive phased-array applications typically implement a 

modified Least-Mean-Square (LMS)31 algorithm in the optical domain where the PRCs 

are used as arrays of complex, time integrated adaptive weights. The phased-array 

applications are particularly challenging because of the large number of adaptive 

weights required. For example, a two-dimensional (2D) array with 100 elements in 

each dimension, each with a 1000 element tapped delay-line requires 107 adaptive 

weights. This large number of required degrees of freedom can easily exceed the 

computational capabilities of traditional digital signal processing approaches. Using 

appropriate optical architectures these applications can exploit the large number of 

degrees-of-freedom available in 3D dynamic volume holographic media. In the phased- 

array processor presented in this thesis 27>28>32 the adaptive weights are used to 

implement correlation cancellation loops and matched filtering operations to perform 

antenna beam steering and spatio-temporal interference cancellation. The adaptive 

weights are proportional to the crosscorrelation between the unadapted array output, 

and an error term derived from the difference between the processed array output and a 

reference signal. Time-integrating correlation is used to calculate the adaptive weights 

as modulated holographic gratings in the PRC, and the amplitude of each input signal 

diffracted by these modulated gratings is multiplied by the grating strength, thereby 
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implementing the adaptive weight calculation and weight multiplication that forms the 

antenna array function entirely in the optical domain. 

4.2  Diffraction  by Volume  Holographic  Gratings:  the  Coupled-Mode 

Equations in Static Media 

A standard method of solution of electromagnetic propagation in periodic media is by 

means of coupled mode equations2. The coupled-mode equations are appropriate for 

analyzing the reconstruction of volume holograms because the holographically induced 

perturbation is distributed over a volume. The "periodic" nature is derived from the 

index variation resulting from the interference pattern between particular plane wave 

components of a reference and an object field. This solution method yields 

straightforward expressions for diffraction efficiency and Bragg selectivity as a 

function of angle and wavelength. It is important to note that the applicability of the 

coupled-mode equations to the study of volume holographic diffraction is justified 

under the assumption of linearity where a complex interference pattern can be 

considered the result of interference from the linear superposition of angularly diverse 

plane wave components. This further implies small modulation depth such that the total 

material response and resultant coupling remains linear. 

The coupled-mode solution technique treats the variation of the refractive index or 

dielectric tensor of the media as a perturbation which couples the unperturbed normal 

modes of the structure. Material properties determine the physical mechanism which 

produces the index perturbation, i.e. photorefraction33>34, photoabsorption35, 

photoanisotropy36 etc. Consider a rectangular slab of holographic recording media of 

dimensions Lx, Ly, and Lz as shown in figure 4.1 which has an index perturbation in 

it produced by an interference pattern between optical reference and object wavefronts. 

The resulting interference pattern shown in the figure is indicative of a single sinusoidal 

grating as would be produced by two plane waves. Static, or fixed holograms can be 
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Figure 4.1. Three dimensional slab of holographic recording media of dimensions Lx, 
L   and L , with static recorded interference pattern recorded in it. 

formed in such materials as photographic emulsions, photopolymers, dichromated 

gelatin, or specially processed photorefractive materials37'38. In static materials the 

hologram is read out by illuminating it with an incoming reference beam at the proper 

angle which interacts with the recorded dielectric perturbation, and a single diffracted 

object output beam is produced. In contrast, in dynamic materials such as 

photorefractive materials, the writing and reading processes occur simultaneously, 

exhibiting "self-diffracting" effects. The dynamic energy exchange between the writing 

and diffracting beams as they propagate through the material produce more complicated 

diffraction phonomena as discussed in later sections. 

The 1-D coupled mode equations will be solved for the case of static media. 

Although much less rigorous than the true 3-D case, the salient features of Bragg 

selectivity and high diffraction efficiency can still be elludicated when the interaction 

region is reduced from truly volumetric to one that is thick in at least one dimension. 

The volume holographic region of figure 4.1 is reduced to the 2-D planar region as 

shown in figure 4.2, where the dielectric perturbation is now periodic in the x direction, 
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Incident Planewave 

Diffracted Planewave 

Figure 4.2. Two-dimensional holographic interaction region of dimensions Lx,   L., 

and L_, with periodic dielectric perturbation in x direction. Incident readout plane wave 
produces a diffracted output wave. 

and the interacting wavefronts are propagating nominally in the z direction. The 1-D 

coupled-mode approximation arises from assuming small-angle Bragg interaction and a 

semi-infinite x dimension. Thus, the interacting waves are taken to be essentially 

infinite plane waves in x, whose modal amplitudes vary only as a function of the 

propagation direction z. 

The optical illumination which produced the dielectric perturbation can be 

described by an interference pattern of the form 

I(x) = I0[l + mcos(Kgx)\ 4.1 

where the modulation index m = 2A}A2/(A? + A]) for two writing beams Ax and A2. 

The interaction of the electric field E and the dielectric perturbation can be modeled as 

an induced polarization wave P and subsequent driving term in the wave equation, 

82P 
0 dt2 4.2 
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where P = e0AerE, and the static dielectric perturbation in this example consists of a 

single spatial frequency or Fourier component denoted by Kg with modulation 

amplitude s,, 

As *— eiK*x +C.C. 
4.3 

In the above notation both sr, the relative optical dielectric tensor, and As,, the 

perturbation of the dielectric tensor are unitless tensor quantities. Noting that 

d/dt -» ico, equation 4.2 becomes 

V2E + ^reJ = -^rAsrE 
c1^ 2 "2' 4.4 

The electric field is now considered an expansion of the perturbed normal modes of the 

media, in particular 

£ = X^(^to'^(apX+P"z) 4.5 

where e  is a unit vector in the direction of the pth electric field component with z 

varying amplitude Ap(z), and a and ß are the direction cosines of the x and z 

components respectively of the (internally) propagating wavevector of magnitude 

k0=2n/X0. Substituting 4.3 and 4.5 into the wave equation yields the general 

expression for the coupling between the pth and qth electric field modes, 

dz dz c    „ 4.6 

where the assumption of infinite plane waves in the x direction allows the 

approximation that V2 -> d2jdz2. For a weak dielectric perturbation this second 

derivative can be neglected (slowly-varying envelope approximation), resulting in 

-2i*0a„Z dz 
^-Ap{z) ep^'e-<^^) = 4j^(z)^to'^(°^^ 

4.7 
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In the case of Bragg interactions only one phase synchronous interaction occurs, so the 

above sum is reduced to coupling between only two modes, designated as 1 and 2, 

2ik0a, ±-Ax(z)e^e-ik°^^ + 2ik0a2 —A2(z)i2e
iw e~ik^x+^ = ^-AeE 

dz dz c   =£      4_g 

where E can now be considered as the sum between an incident plane wave e,4(z) 

and diffracted plane wave e2A2(z), 

E = kxAx(z)eia>'e-ik°(a>x+^ + e2A2{z)ei,s>l eik°^x^ 4 Q 

The coupled-mode equations are obtained by using the orthogonality of the propagating 

modes. More specifically, multiplying equation 4.8 first by e1*^1(z)e'ü)'e"'i<'(a,jr+ßl^ and 

integrating over all x and t, followed with multiplication by e2A2(z)eiu"e~ik^a2X+^z) and 

integration over all x and / while invoking the definition 

i li. « = oJ 410 

results in the familiar coupled mode equations39 

—A,(z) = -iKnA2(z)eiAk 4.11 

j-zA2{z) = -iK2xA,{z)e-^. 4.12 

The coupling constants are proportional to the magnitude of the dielectric perturbation 

£,. In particular, 

CO 
K'I"Acnlco4p,)e'-^ 4'13 

CO 
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where 0, and 02 are the internal angles of incidence of A] and A2 respectively, and «, 

and «2 are the respective background refractive indices. The momentum mismatch in 

the z direction is given by 

Ak = k0(fr-ß2) = k0[cos(ei)-cos(e2j\ 415 

while it has been assumed that the Bragg condition has been satisfied in the x direction. 

This assumption requires that k0a2 =k0al±Kg, which can also be stated as 

sin(02) = sin(02)±Ao/A 4 16 

where A is the grating wavelength. When illumination is precisely at the Bragg angle, 

the momentum mismatch is zero. In an isotropic medium this will occur when 

0, = -Q2 = 9B. In this case equation 4.16 yields the familar expression for the Bragg 

condition, 

sin(9B) = f^-. 4.17 

More generally there will be some phase mismatch in the z direction as a result of not 

reading out the grating at precisely the Bragg angle. Therefore it is useful to express Ak 

specifically in terms of the readout angle. In this case 9] = -9B + A9 and 92=9B + A9 

where A9 is the deviation from the Bragg angle. Substituting the above perturbed 

expressions for 0, and 62 into equation 4.15 yields 

Ak(A9) = -2kA9sin(9B) = -KgA9. 4.18 

It is precisely this angularly selective behavior which is exploited for angularly 

multiplexed holographic storage applications. 

Alternatively the momentum mismatch can be produced by a change in the 

readout wavelength. Let the wavelength of the illumination beam change from X0 to 
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X0 + AX, where AX « X0. This will produce a corresponding change from the Bragg 

condition given by equation 4.17 to 

2Asm(9B + A6) = X0 + AX. 4.19 

Taking cos(Aö)«1 and sin(AÖ)« AB, it follows that 

^)=Tr^ = f^Vc.)- 2Acos(0s)    ^ A J 
4.20 

This value of the effective angular deviation can be used in equation 4.18 to yield a 

wavelength dependent momentum mismatch of 

Ak{AX) = -Kg(—)tan(eB). 4.21 
\ X ) 

Consider now a simple example where the hologram is illuminated by a single 

plane wave reference beam and thus the diffracted term is initially zero. Using the 

boundary condition A2(0) = 0 for the diffracted beam, the solution of equations 4.11 

and 4.12 is given by 

   T Air 1 
4.22 

where 

A,{z) = ei^ll> C0S(S2 
x    .Ak .  .    ' 
•) — i—sin(sz) 

A2{z) = e<Ak/2^ -i^-4(0)sin(sz) 
5 

S2=K 121 ^21 + 
'MV 

<2 ) . 

4.23 

4.24 

At a given distance L in the media, the intensity diffraction efficiency is 

r\ = 
|K12K21 

K(0)f     |K12K21| + (M/2)
2 

sin2 J|KI2K21| + (A£/2) L 
4.25 

For small momentum mismatch Ak equation 4.25 predicts a sin2 dependence with KL, 

while for small coupling constant K, there is a sine2 dependence with A&. The intensity 
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diffraction efficiency in the small coupling limit is an important parameter which is used 

throughout this thesis, given by 

r\ = L |K]2K21|sinc" 
2TI 4.26 

where sinc(^) = sm(nZ,)/nZ,. Momentum mismatch Ak and corresponding phase 

mismatch produces non-resonant coupling between the incident and diffracted wave 

resulting in reduced amplitude of the diffracted wave. Equation 4.26 shows that 

optimum coupling is achieved when the momentum mismatch Ak = 0. In fact, when 

M = 0 very high diffraction efficiency, theoretically 100%, can be obtained 

(absorption and Fresnel surface reflections have been neglected in this analysis). The 

first zero of the sine2 function will occur at Ak = In IL, and the -4 dB point of the 

diffracted outout power will occur at Ak = ±K/L. The momentum mismatch and its 

angular selectivity as given by equation 4.1.8 play a key role in the evaluation of 

holographic diffraction efficiency in Chapter 5. 

4.3 Photorefractive Volume Holograms 

4.3.1 The Photorefractive Effect 

The photorefractive effect is caused by a change in the dielectric constant due to 

spatial variation of photo-induced electronic charge density within the medium. In 

coherent processing the spatially varying charge density is produced by the interference 

of two or more optical beams. In regions of brightness electrons are photo-generated 

into the conduction band from donor sites formed by dopant or impurity sites within the 

band-gap of the material, leaving behind them positively charged ion centers. These 

electrons migrate to darker regions where they can be subsequently caught by empty 

traps within the band-gap. These traps can be formed either by impurities of the same 

type as the donors but of a different valence state, different impurity species entirely, or 

positively charged photo-ionized centers. The transport of charge carriers occurs by 
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diffusion, and/or drift due to the presence of an electric field. The electric field can be 

applied externally to the crystal or produced internally due to photovoltaic effects. 

Photovoltaic effects will not be included in the discussion presented here. It is 

important to note that while the photo-induced charge carriers are mobile, the ionized 

impurity sites are not. Ignoring beam coupling by assuming the hologram is thin in the 

nominal propagation direction in addition to assuming short carrier transport lengths, 

the steady-state result is a modified space-charge distribution within the material with 

the same spatial modulation as the incident illuminating intensity pattern. This spatially 

modulated charge distribution produces an internal electric space charge field Esc, 

which modulates the dielectric constant via the linear electro-optic effect. This physical 

description of the photorefractive process is known as the band transport model19'20 

and is of course applicable to materials where either holes or electrons are the dominant 

photoinduced charge carrier. An alternative model, the "Hopping model"40, based on 

the statistical behavior of photo-induced charge carriers hopping into vacant capturing 

sites has been shown to produce similar results, but will not be discussed further here. 

The dielectric modulation produced in the material is equivalent to a refractive index 

modulation which for low absorption acts as a holographic phase-only grating. Due to 

the anisotropic nature and tensoral properties of the electro-optic coefficients 

characteristic of most photorefractive materials, there is a significant angular and spatial 

frequency dependence for the strength of the holographic response. In order to analyze 

the physics of holographic grating creation within a PRC, again linearity is assumed, 

that is that a complex interference pattern can be considered as the linear superposition 

of its spatial frequency components. In this light, the basic physical processes 

contributing to the formation of a complex hologram can be studied by analyzing one 

spatial frequency at a time. It should be emphasized that the photorefractive effect is 

inherently nonlinear and a complete analysis must include these nonlinear effects, but 

much can be ascertained from the analysis presented here. In addition, the 
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Figure 4.3. Schematic representation of the photorefractive effect in the diffusion 
dominated regime. Sinusoidal illumination pattern produces spatially varying charge 
density within material and corresponding space-charge electric field. 

photorefractive effect differs significantly from other nonlinear processes in that 

photorefractivity is driven by the spatial variation of the incident intensity, and not the 

absolute intensity. 

The photorefractive effect can be reviewed in the context of the diffusion field 

and drift field dominated cases. The photorefractive diffusion dominated charge 

transport process is shown schematically in figure 4.3. A sinusoidal modulated spatial 

intensity pattern is incident on a slab of photorefractive material as shown in the upper 

portion of figure 4.3. This optical illumination can be described as in equation 4.1 

I(x) = I0[l + mcos(Kgx)\ 4.1 

where the modulation index m = 2A^A2/(A? + A2
2) for two writing beams Ax and A2 

propagating nominally along the z axis. The light intensity is assumed uniform along 

the v axis. It is assumed that there is no external applied (drift) field present. 
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Figure 4.4. Schematic representation of the photorefractive effect in the drift dominated 
regime. In this regime the sinusoidal illumination pattern results in a refractive index 
perturbation approximately in phase with the incident illumination pattern. 

The diffusion process can be thought of as giving rise to three charge gratings; 

the first is a grating of stationary positively charged donor ions, and the second and 

third are gratings of negatively charged traps, one which is due to electrons moving to 

the right, and the other due to an equal number of electrons moving towards the left. 

The photo-excitation of the electrons into the conduction band cause them to effectively 

migrate from regions of brightness and accumulate in regions of darkness, leaving 

behind the stationary positively charged ions. When the diffusion transport length of 

the migrating electrons is shorter than the grating wavelength, after multiple cycles of 

photoexcitation and recombination, the charge distribution will obtain the same spatial 

distribution as the input illumination pattern41. The space-charge field builds up to the 

point that it inhibits charges from being redistributed and the steady-state charge density 

distribution p{x) shown in figure 4.3 results. The important point is that for this 

diffusion dominated case the charge density is nearly in phase with the incident 

illumination. 
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The induced electric field can be calculated from Poisson's equation, 

V-sdcE(x) = p(x), where s^ is the low frequency dielectric tensor. The resulting 

steady-state space charge field will have a sinusoidal dependence, 90 degrees out of 

phase with the incident illumination pattern as shown in figure 4.3. This space-charge 

field then produces a dielectric perturbation via the linear electrooptic effect, also 90 

degrees out of phase with the incident illumination pattern. 

In contrast, in the drift dominated regime produced by an applied electric field E0, both 

the amplitude and phase of the space-charge field is modified. As one would expect the 

photoinduced carriers move in a preferential direction. An electron will move an 

average drift length LE = \LTE0 before becoming trapped, where p. is the electron 

mobility and x is the recombination lifetime. Assuming the same cos[Kgx} dependent 

illumination pattern as for the diffusion case, the preferential drift of the electrons due to 

the applied field will result in a drifted electron distribution proportional to 

cosf-Kgje + <)>) as shown in figure 4.4. For small phase shift <|> (small transport length), 

the net charge distribution produced between the photoinduced electrons and the 

stationary positively charge ions will be approximately sinusoidal. The resulting space- 

charge field from Poisson's equation and the resulting dielectric perturbation will then 

be approximately cosinusoidal, nearly in phase with the incident illumination pattern. 

More generally, the steady-state space-charge field produced by this single 

frequency sinusoidal illumination pattern can be described in terms of a complex 

steady-state space-charge field amplitude E™ and grating phase shift <t> 

Esc(x) = EZ^ + c.c. 4.27 

where E* is given by42 

Fss = F 
E2

0+E2
D 

1/2 

El+(ED + Eq) _ 

11 

4.28 



and the grating phase shift <j) is given by 

tan(«j,) = ^ 1 + 
En 

Eq        EüEq J 
4.29 

The trap density-limited space-charge field is defined as E = qNA/edcK , and 

ED = kBTKg/q is the diffusion field, E0 is the applied field, where kB is Boltzman's 

constant, T is temperature in kelvins, q is the electronic charge, and NA is the crystal 

acceptor dopant density. It is important to note that the saturated space-charge field E™ 

is a complex quantity due to the fact that there is a phase-shift of the field with respect 

to the optical illumination pattern. This is fundamental to energy-coupling 

characteristics between beams in photorefractive materials. 

For the case of pure diffusion, E0 - 0, the phase shift is 90 degrees, and the 

the (linearized) steady-state space-charge field is given by41 

*«(*) = 1+K2,/Kh 
msm in(v) 4.30 

where the Debye wavevector KD is defined as KD = q^NA(ND - NA)/(NDedckBT) and 

ND is the crystal dopant doping density. 

In the case of a large applied field, the drfit dominated (linearized) steady-state 

space-charge field becomes41 

EJx) = E0 

Nl/2 

K
1
 
+

 
E2

O/
E

1; 
mcos K4 4.31 

Equation 4.31 indicates that the phase of the space-charge field can be in phase 

with the incident illumination pattern. Examination of equation 4.28 shows that the 

effects of the externally applied field on the space-charge field amplitude is much more 

significant at larger grating periods than at smaller grating periods. Recall that both 
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equations 4.30 and 4.31 are based on the assumption of short charge carrier transport 

lengths. Long transport lengths can significantly alter the grating phase43'44. 

It is instructive to examine the behavior of the steady-state saturation space- 

charge complex field amplitude £s" with respect to doping density and grating 

wavelength A. Much of the characteristic behavior can be attributed to the fact that Eq 

is directly proportional to dopant density and grating wavelength A, while ED is 

independent of dopant density and inversely proportional to grating wavelength A. For 

the case of no applied field charge transport is dominated by diffusion. Here £;" 

increases linearly as a function of A for small A, reaches a peak at the Debye 

wavelength AD, where AD = 2TC/A:D , and then falls off as 1/A. The peak occurs when 

ED = E . The amplitude of this peak is directly proportional to the acceptor dopant 

density NA. From the definition of Eq and ED it is evident that for large grating 

spacing (small Kg) ED « Eq, and then ££ can be approximated by ££ = iED. The 

presence of the "i" indicates the characteristic n/2 phase shift between the incident 

illumination and the dielectric perturbation for the case of E0 = 0, as evidenced by 

equation 4.30. For the other limiting case of small grating spacing (large Kg) E£ 

becomes £" = iEq, which is directly proportional to dopant density and grating 

spacing. Thus when charge transport is dominated by diffusion, the steady-state space- 

charge field can be either diffusion field limited or saturation field (dopant) limited 

depending on the grating spatial frequency. 

4.3.2 Coupled-Mode Equations in Photorefractive Media 

In dynamic media such as photorefractives, the two beams that write the grating 

are also simultaneously diffracting off of the grating, and thus the grating itself is 

modified as the beams propagate through the media. As expected, the coupled-mode 

solutions for this case exhibit more inter-dependent characteristics because the form of 
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the dielectric perturbation As depends on the modulation depth of the interference 

pattern of the interacting waves. 

An optical illumination pattern of the same form as equation 4.1 will induce a 

space-charge field and resulting dielectric perturbation as described in section 4.3.1, 

and again the electric field E is taken to be the sum of two modes (incident and 

diffracted beams) as given by equation 4.9. The induced dielectric perturbation is 

related to the space-charge field via the linear electrooptic effect. In particular, a unitless 

relative dielectric perturbation can be defined by45 

As = h.kJbMLe-*S + CJCm 4.32 
=    2       I0 

with 

S,=£,fc£)i, 4.33 

where r is the third rank electro-optic tensor, and E"c is the photoinduced steady-state 

space-charge complex field. The DC intensity term in the denominator of equation 4.32 

is given by I0 = \AX |2 + \A2f. 

The expressions for the optical field and the dielectric perturbation (equations 

4.9 and 4.32 respectively) are substituted into the wave equation 4.2 and the slowly 

varying envelope approximation is invoked. Applying the Bragg matching constraint of 

±Kg = k2 - £,, followed by setting similar rapidly time varying components separately 

equal to zero, the coupled-mode equations for photorefractive media are 

|4W.^„4Wpt«-(ii-^)-i4(x) 4.34 

j-zAM - -*,, Äie-£.,,)_ |4(z) 4.35 

where ä is an absorption constant, and the coupling constants are4M0,47 
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K.v 
(£>kBT 

cq2cosQ 
e'g' rK^e. 

B J 

K„ 

k+wy 
4.36 

The sign of K will determine the direction of the two-beam coupling gain, and is 

dependent upon the orientation of the beams with respect to the crystal axis, the 

polarization of the beams, and the material electro-optic coefficients. 

Equations 4.34 and 4.35 can be solved for the intensities of the two signals by 

letting 4 = V^tf'*' and A2 = V^V*2 - This yields the steady-state coupled intensity 

equations48 

.„(e1)i./1(x).-(fi^Öi]i^-ä/1(z) 
dz \     kn0     J      10 

cos(92)—I2(z) = + 
s,7t sin(4>) | Ix (z)I2(z) 

Xn 
-d/2(z) 

o J 

4.37 

4.38 

where <|> is the spatial phase-shift between the dielectric perturbation and the incident 

intensity illumination pattern, typically 90 degrees. The intensity equations solved for 

the transmission grating geometry yield 

I(z)-I (0 v«     ^QHW) 

l2[z)-i2[K)}e /](o)e-rz/cos^+/2(0) 

4.39 

4.40 

where the gain constant T is defined such that T = s,7T:sin((j>)/A,n0. 

The above equations indicate that for positive T, beam 2 undergoes coherent 

gain at the expense of beam 1, limited only by absorption. It is important to note that 

for <|) = 7t/2 energy can be transferred entirely from one beam to the other. This 

asymmetric beam-coupling behavior can be exploited for real-time signal and image 

processing applications. The phases of the two beams are coupled via 
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COS (e.) 
d§} _f8,7lCOs((t))V2(z) 

COSI (02) 

dz 

dz 

Xn„ L o     j   '■o 4 41 

^ TtCOS^V^z) 8,, 

Xn. o J     *0 
4.42 

which indicates that for <|) = n/2 (diffusion dominated case), while there is energy 

exchange via the coupled intensity equations, there is no fringe curvature or phase 

coupling. 

The assymetric beam-coupling behavior is directly related to the phenomena of 

photorefractive fanning49'50. Fanning can be described as directional, amplified optical 

noise that is inherent in all photorefractive crystals, but obviously more significant in 

those crystals with high gain. The fanning process is generally considered to be initially 

induced by scattering centers either internal to the crystal or on the crystal surface. The 

incident beam is scattered off of these centers and the scattered beam components write 

photorefractive gratings with each other and the incident beam. Energy is exchanged 

through (multi) beam coupling, and is enhanced in directions where TL is positive. 

When the crystal is illuminated by a single incident beam, the result is a scattered cone 

or "fan" of light which builds up over time with a preferential orientation, towards the 

c-axis of the crystal. This scattering is generally a source of unwanted noise in most 

experimental situations. However, most experiments involve interaction of at least two 

reasonably strong beams, and when a second strong beam is introduced much of the 

energy is diverted from the fanning gratings, and the fanning pattern can be seen to 

rapidly collapse. Smaller beam profiles help reduce the amount of fanning because there 

is less spatial overlap with the incident beam and the scattered components of the 

incident beam. Working with non-focused beams, which have less spatial frequency 

content than a focused beam also minimzes fanning. 
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4.3.3 Dynamics of Photorefractive Grating Formation 

The band transport model can provide analytic solutions for both the dynamic 

and steady-state behavior of the photo-induced space-charge field. Given the space- 

charge field behavior and coupled-mode equations which describe the optical fields, the 

spatial and temporal behavior of the photorefractive process can be completely 

described by a set of coupled differential equations. Due to the nonlinear behavior of 

the photorefractive effect, obtaining analytic solutions is possible only if certain 

approximations can be made. A very common assumption which is often employed is 

that of a strong undepleted pump beam51'52'53'54. Fourier and Laplace transform 

techniques have been used to derive the transfer function and impulse response for 

two55 and four-wave mixing42 under the undepleted pump approximation. The 

emphasis of this section will be to present an outline for the derivation of the spatio- 

temporal evolution of the space-charge field via the Band-transport model. The 

dynamical expression for the space-charge field is then transformed into an equation 

describing the temporal evolution of the grating strength, useful for modeling the 

phased-array processor jammer suppression dynamics. 

We seek the time evolution of the electric field amplitude Esc in a 

photorefractive crystal under optical illumination. In particular the photorefractive index 

grating will be formed by the interaction of two plane waves Ax and A2 propagating in 

the nominal z direction which produce a simple intensity modulation pattern of the form 

of equation 4.1. Following references [56], [42] and [19], the fundamental material 

equations describing the photorefractive charge transport are 

mf = sl(ND-N+)-yRN+
Dne 4.43 

a 

^k_£^L = Iv-J 4.44 
dt       dt      q 
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where 

J = q^ineEsc + nkBTVne 4.45 

V-SäßK = q{n.+NA-irD) 4.46 

ND = number density of ionized donor ions s = ionization rate 

ND = number density of donor ions q = electronic charge 

ne = number density of photoinduced electrons |i = mobility constant 

NA = number density of acceptor ions k
B = Boltzman constant 

Esc = space-charge field / = optical intensity 

yR    = recombination rate J  = current density 
s. 
=   = low frequency dielectric tensor T  = temperature (Kelvins) 

Equations 4.43 and 4.44 are the continuity equations for the (immobile) ionized 

donors and the photo-induced electron density respectively. Equation 4.45 is the 

current density which is the sum of diffusion and drift current terms, and equation 4.46 

is Poisson's equation. 

Several approximations will be made in order to obtain an analytic solution. The 

first assumption will be that of an undepleted pump beam. The undepleted pump 

approximation is assumed in modeling the phased-array jammer nulling processor 

dynamics, and therefore it is useful to employ it here. A second assumption is a quasi- 

cw approximation, that is that the time scale of the grating formation and erasure is 

much longer than the free carrier lifetime. This allows the time derivative term dnjdt in 

equation 4.44 to be neglected. The ne term in Poisson's equation is also dropped by 

assuming that ne « NA. Also invoked is the assumption of linearity, that is that the 

fundamental spatial frequency component of the intensity pattern formed between the 

two incident plane waves is the only spatial frequency component formed in the 

photorefractive grating. Spectrally rich approaches which maintain the full nonlinear 
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com pling behavior between spatial frequencies have been developed57, but will not be 

implemented here. The assumption of linearity is equivalent in its outcome to assuming 

small modulation depth m between the two incident beams, and allows the spatial 

variation of all quantities to be written as the sum of a constant zeroth order term and a 

small sinusoidal perturbation term. This produces the following set of equations 

N*D(t,z) = NA(t) + Re[N+
m(t)exp(iKgz)] 4 4? 

ne(t,z) = neo(t) + Re[ne,(t)Qxp(iKgZ)} 4.47 

Je(t,Z) = jeo(t) + RQ[je](t)Qxp(iKgZ)] 4.49 

Esc(t,z) = ESCo(t) + Rc[Esc](t)cxp(iKgZ)]. 4.50 

Substituting these equations into the material equations (4.43 - 4.46), and neglecting 

quadratic and higher order products of the perturbation terms yields a linearized 

differential equation for the time evolution of the space-charge field42 

MJlÄ = -iJl£ + El\AAt)Al{r,t)\ 4.51 
dt T r/0

L ,w /J 

where I0 = IX+12 is the spatially D.C. component of the incident intensity, and the 

steady-state saturation space-charge complex field amplitude E% is defined in equation 

4.28. The intensity dependent time constant58 x can be approximated by x »ijlx
dc, 

where x < 1, and x„ is a function of material parameters42. Therefore equation 4.51 

becomes 

&*<?•*) = -i£M*. + K\A(AA;(r,t)\. 4.52 
dt x0 x0 

L 

Recalling that the interacting optical fields are plane waves which propagate nominally 

in the z direction, and that the induced grating is in the x-direction, the modal amplitude 

of the space-charge field will then vary spatially only in the z direction, 
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^_ä+S[4(,KM]. 

A useful form of equation 4.53 which is used extensively in chapter 7 for 

modeling the phased-array jammer miller processor dynamics is in terms of a unitless 

grating perturbation G(t). This quantity is actually the grating amplitude diffraction 

efficiency because in the jammer-nulling processor dynamics analysis the diffracted 

term is modelled as the product G{t)A{t). The transformation from dEjdt to dGjdt is 

obtained by first defining a unitless amplitude diffraction efficiency per unit-length 

g{z,t), proportional to Esc(z,t) by 

g(z,t) = eff xcK    ' 4.54 

where n is the background material refractive index and reff is the effective electrooptic 

coefficient. Substitution of g(z,t) into 4.53 yields 

dg{z,t) 

dt 
= -ag(z,t)Idc + bAx{i)A\{z,i) 4.55 

where 

a = -L 4.56 h=™^. 457 

Recalling that equation (4.25) predicted a sinusoidal holographic diffraction efficiency 

for small coupling and negligible momentum mismatch. Assuming equal coupling 

coefficients, the diffraction efficiency can be written as 

77« sin2(/cL) 458 

Noting that g(z,t) is amplitude diffraction efficiency/length, more generally the 

amplitude diffraction efficiency can be expressed as 
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G{t)~sm(fog{z,t)d2 4.59 

In the Born approximation, g(z,t) is very small and approximately constant along the 

length L of the crystal. Assuming realistic values of I, and approximating the sin 

function by its argument, G{t) can then be expressed as 

G(t) = \L
Qg(z,t)dz*g(t)L 

Using this definition, equation 4.55 can be written as 

4.60 

dG{t) _ 
dt 

-aG(04+ß4(>K(>) 
4.61 

where in the Born approximation it is also assumed that A2(z,t) varies negligibly over 

the crystal length L, and ß is defined as 

nrfr-EZL 
ß = 

'effuse' 4.62 

In the steady-state equation 4.61 yields 

4.63 
ldc 

which when using the definition59 of An = n3reß-Esc/2 and equation 4.27 for the space- 

charge field can be written as 

G = M 
Ldc X 

%AnL 

X 
4.64 

and it is evident that G is the diffraction efficiency in the small-signal limit due to an 

interaction length2 of I. The function G(t) and it's steady-state value will prove useful 

in estimating performance limits of the jammer-nulling processor in subsequent 

chapters. 

87 



The analogy between G(t) and a that of a time-integrated weight is apparent 

when G(t) is expressed in integral form. As discussed further in Chapters 6 and 7, one 

of the hologram writing beams is passed through a continuous delay-line, allowing 

G(t) to be expressed as a temporal correlation between the two writing beams with a 

decay term proportional to grating strength, 

G(t) = -aIdcl
t

oG(t)dt+ßl'oA,(t)A;(t-z)dt. 4.65 

The grating diffraction efficiency builds-up in proportion to the time integrated product 

of the spatially varying portion of the intensity, and suffers from a decay due to the 

D.C. intensity term. 

The speed of the photorefractive grating process is often characterized in terms 

of the intensity dependent photorefractive time constant x. In the phased-array jammer 

nulling processor, one of the two writing beams incident on the PRC is derived from an 

amplified error signal between the desired array response and the actual jammer 

corrupted received array signal. This error signal is highly amplified in the RF domain 

before being shifted up to an optical carrier and incident on the PRC. Due to the fact 

that we are implementing a feedback system with gain, the convergence time to jammer 

suppression can be much faster than the characteristic steady-state grating response time 

characterized by the time constant x. For this reason we are not in general concerned 

with the time constant for writing a grating fully to saturation, but instead more 

interested in the photorefractive sensitivity, a measure of the amount of change in 

refractive index for a given amount of absorbed energy density. The photorefractive 

sensitivity is defined as60 

S = ^- 4.66 
air 
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where / is the incident power density. From equation 4.66 it is apparent that materials 

most desirable for our purposes do indeed have a small time constant, but in addition 

also have a large A«, which is essentially proportional to the dopant density. Increased 

sensitivity can be obtained by using 45 degree-cut BaTiC>3 crystals61'62 which allow 

more efficient access to the large T42 electrooptic coefficient. 
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5. Simultaneous Holographic Write/Read 
Techniques in Photorefractive Crystals 

This chapter will discuss two methods for separating and extracting the 

diffracted term from the writing beams in dynamic volume holographic interactions. In 

conventional dynamic holographic geometries the write beams and diffracted beams are 

co-propagating. In order to extract the diffracted output a method of separating the 

diffracted term from the write beam is necessary. Common methods of reading out the 

weights are by probing the grating from the back side with a different beam from the 

write beams in a phase conjugate geometry1, or by forming a Bragg matched readout 

with another wavelength and using spectral filtering to extract the desired component2. 

These weight values are then available to multiply an RF signal at the appropriate time 

delays, for example by using an acousto-optic Bragg cell implemented as a space- 

integrating transversal filter3'4. The LMS algorithm requires feedback with gain, and 

hence a read-out method which provides a high degree of isolation between the write 

and read components is critical, because write-beam leakage can drive the system into 

oscillation. To avoid oscillation at a given level of isolation, a maximum feedback gain 

will be allowed which limits processor performance by compromising convergence 

time and interference rejection depth. In addition, the angular bandwidth over which 

Bragg matched readout is possible (due to Bragg selectivity) is of interest when 

processing is done with wavefronts containing diverse angular spectra such as images. 

Wide angular bandwidth is especially important with PRCs due to the small crystal 

size, since the product of angular bandwidth and crystal size must exceed the number of 

resolvable degrees-of-freedom. 

Two different write/read, or multiplexing, techniques with high write/read 

isolation for dynamic holographic media will be discussed in this chapter. The two 

methods, angle multiplexing using Bragg degeneracy, and orthogonal polarization 

write/read have both been used extensively in our optical phased-array radar processor. 
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The latter method has potential applications in image processing because of the 

extremely wide angular aperture over which phase-matching can occur. The chapter 

begins with an introduction to momentum space, or Ar-space, followed by a discussion 

of the two multiplexing techniques. 

5.1 Introduction to Momentum Space 

A momentum space, or it-space approach for analyzing the angular dependence 

of the diffracted beams in holograms is valid in the low diffraction efficiency 

regime5'6'7'8. This method of analysis leads to a clear geometric interpretation of the 

interacting beams and a convenient method for rapidly approximating diffraction 

properties. Momentum space is used extensively in this chapter and thus a brief 

introduction to momentum space is warranted. A frequently used parameter used in this 

chapter is the momentum mismatch AK, which was also developed in the previous 

chapter's discussion of the 1-D coupled-mode equations. 

In an anisotropic crystal there are two allowed eigenmodes of propagation with 

distinct polarization phase velocities and polarization orientation for any given 

propagation direction within the crystal9. Associated with each of these eigenmodes is a 

distinct eigenvalue for the magnitude of the momentum vector k . For a uniaxial 

crystal, the k vectors are confined to two surfaces of revolution, a sphere and an 

ellipse, referred to as momentum surfaces. These surfaces are proportional by the 

vacuum momentum k0 = 2K/"K0 to the index surfaces which are characterized by the 

ordinary index n0 and the extraordinary index ne, and are the loci of allowed 

propagation values and directions within the crystal. The momentum surfaces can be 

derived by first assuming a planewave propagating in an anisotropic media, with 

electric and magnetic field components described by 

E = Eei{??-^        5.1 H = Hei^r"ä,\ 5.2 
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Substitution into Maxwell's equation and elimination of the magnetic component yields 

kx(kxE} + G>2\xosE = 0 5.3 

where in the principal coordinate system the dielectric tensor is. 

s = 

en 0 0" 
0 £22 0 
0 0 £33. 

5.4 

Rewriting equation (5.3) as 

[kikj-8uk
2+a^y]EJ = 0 

5.5 

Nontrivial solutions will exist only when the determinant of the matrix in the brackets 

of equation (5.5) is equal to zero, 

detfoj -5..Ä2 + cofis..] = 0. 

Expanding the determinant yields Fresnel's equation 

5.6 

**(*"*? + s^2 + £33*32)-M(e22 +833) + e22Ä2
2(sn +e33) + e33k>(eu + e22)]k2 

+sus22e33k0 — 0. 5.7 

In a uniaxial crystal, equation (5.7) simplifies to 

[k2 - euk2][eu(k2 + k2) + 633^ - s22833^2] = 0 
5.8 

which can be factored into two quadratic equations defining a sphere corresponding to 

the ordinary polarization with radius 

Km = hj&^ = k0n0 5.9 

and an ellipsoid of revolution about the k3 axis corresponding to the extraordinary 

polarized eigenmode, described by 

96 



\{k^kl)lzzi] + kllzu=kl 5.10 

which can be described in the x-z plane as 

UÖ) = *.[sin2(0)/".2 + cos2(9)/n0
2]-    = *A(») 5.11 

where 6 is the angle measured from the z-axis. The two wavevectors described by 

equations (5.9) and (5.11) correspond to the two eigenmodes of propagation within the 

crystal. The 3-D surfaces mapped out by these wavevectors in k-space are thus the loci 

of allowed propagation modes within the crystal. 

Alternatively one can view £-space as a reciprocal space, related to real space by 

a Fourier transform relationship10. In this light, any point in momentum space 

corresponds to an infinite planewave in real space, and thus planewaves are represented 

as delta functions in momentum space, often drawn as a vector propagating at a 

corresponding angle in momentum space usually defined with respect to the C-axis of 

the crystal. Figure 5.1 shows two planewaves kw] and kw2 incident upon a slab of 

isotropic holographic recording media. The center portion of the figure is the 

momentum space representation where a hologram is read out with plane wave kr 

producing diffracted plane wave kd. These two plane waves are represented as vectors 

in momentum space which ideally intersect the A>space surface. Each spectral 

component of the hologram formed in the media is represented as a single grating 

vector, with there only being one shown in the figure. 

In order to read out the grating inside the media, the incident read-out beam 

must satisfy the Bragg condition X = 2Asin(0ß/2), where A is the grating spacing. 

This condition is only precisely true for infinitely thick media. In a holographic media 

of finite dimensions, the Bragg matching constraint can be relaxed. This results in a 
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Figure 5.1. Rectangular holographic interaction region of dimensions LxW creates two- 
dimensional sine2 in Fourier space. The half-width to the first zero in each dimension 
of the sine2 function, corresponding to 2K/L and 2n/W, define the momentum 
uncertainty box in two dimensions. 

finite resolvability in diffraction angles, which is analogous to tolerance with respect to 

incident phase-matching angles. Equation 4.25 of Section 4.1.1 describes the 

diffraction efficiency of a single volume holographic grating as determined from the 

coupled mode theory. When read out at precisely the Bragg angle, i.e. when the 

momentum mismatch AK = 0, 100% diffraction efficiency can theoretically be 

obtained. This is in accordance with the exact Bragg matching condition stated above. 

Deviations away from this ideal incident angle result in a sine2 dependent roll-off in the 

diffraction efficiency with momentum mismatch as derived in section 4.1.1. The 

momentum and phase matching tolerances depend on the physical dimensions of the 

holographic interaction region. Insight into the role played by the crystal dimensions 

can be gained by a momentum space analysis, and the same sine2 result for the 

diffraction efficiency behavior can be obtained as was done using the 1-D coupled- 

mode analysis. 

In general, momentum matching tolerances must be met for all three dimensions 

of a finite media. In particular, the diffraction properties of the diffracted wave will be 

determined by the momentum matching conditions in three dimensional yt-space. The 
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circular region of allowed propagation values for 2-D shown in figure 5.1 must be 

extended to 3-D, corresponding to either the spherical or ellipsoidal &-space surfaces of 

revolution, depending upon the polarization of the eigenmode. In addition, the Fourier 

transform relationship between real space and £-space causes a given dielectric 

perturbation which is confined to finite boundaries in real space to become a smoothed 

function in vt-space. It is this smoothing operation, manifested as a convolutional 

operation between the spatial frequency content of the grating and the Fourier transform 

of the media boundaries which significantly alters the angular selectivity and response 

from that predicted by the classic Bragg condition. 

The diffracted wave can be expressed as a transverse Fourier expansion of its 

plane wave components kx and ky in the unperturbed media, which propagate 

nominally in the z direction, 

where the z component of the propagation vector kd2 for the field is expressed as a 

function of its transverse components, given by *A(*X,*J = 7** "**"*> for 

isotropic media, where kd = 2nnJX0 is the magnitude of the diffracted wave vector. 

This form for the diffracted wave can be substituted into the wave equation given by 

(4.4), where the electric field is the sum of an incident and diffracted term, 

E = Et + Ed. A coupled-mode solution followed by a transverse Fourier transform in x 

andy, results in an expression describing the field of the diffracted wave at a distance L 

in the media containing the dielectric perturbation7, 

where FT is a 3-D Fourier transform defined by 

FT{f}^\j{x,y,z)e<k^k>^)dxdydz^ $M 
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Equation 5.13 shows that the angular spectra of the diffracted wave Ejk , k L) for a 
ay   x*   y$     J 

crystal of length L is proportional to the 3-D Fourier transform of the product of the 

incident read beam amplitude Etf) and the dielectric perturbation Ae(F), evaluated on 

the surface of allowed propagation modes, i.e. on the momentum surface 

corresponding to the eigenmode of the diffracted wave. 

As an example, consider a dielectric perturbation consisting of a single spatial 

frequency and corresponding grating vector denoted by Kg = 2K/A with modulation 

amplitude As^, bounded by the rectangular interaction region with dimensions Lx, 

Ly, and Lz. This dielectric perturbation can be expressed as 

Ae(r ) = rect(x/Zx) vect(y/Ly ) rect(z/Iz )As^ e'(** *). 5.15 

An incident planewave field with constant amplitude expressed as ^'"K'+V+M] js 

now used to read out the hologram. The Fourier transform term of equation (5.13) 

becomes 

FT{te(r)E,(r)} = FT^Ae^ rect(x/Zjrect(v/^)rect(z/4>'t^?))4e'[^-V^^]J.5.16 

This can be expressed as a convolution of the Fourier transforms 

F7{As(r)£,.(r)} = FT{As(r)} * FT{Et{r)} 5 } y 

where the Fourier transform of the dielectric perturbation can also be expressed as a 

convolution between the Fourier transforms of the interaction region and the grating 

vector. 

FT{Ae(r)} = FT^As^ rect^/Zjrect^/zJrectfz/Z.)}*FTU'^)} 
' *■ '.      5.18 

The resulting Fourier transform is then 
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FT{te(r)E,(r)} = 

ASj. A;LxLyLz sine smc K-K-K) 
2n/Ly 

sine 

5.19 

2K/LZ 

Substituting equation (5.19) into equation (5.13) and carrying out the integration over 

dk. results in 

Ed{kx,ky,L) = 

K02As^44Ly4 

2c2kdz(kx,ky) 

5.20 

sine 
K-(Kg-h) 

2K/LX 

sine 
2n/Ly 

sine 
271/4 

where it is re-emphasized that k^ is a function of its transverse coordinates. 

Equation 5.20 predicts maximum diffracted power when for perfect Bragg 

matching when the sine argument is equal to zero, and a sine2 power roll-off with 

increasing momentum mismatch &K. For 1-D, this result is in agreement with the sine2 

response predicted by the 1-D coupled mode theory as in equation 4.26. Evaluating the 

function given by equation (5.20) at a particular incidence angle will yield the relative 

amplitudes of the Fourier spectrum components given by the intersection of the £-space 

surface and the Fourier distribution. While the sidelobes of the sine functions extend to 

infinity, choosing a convenient cutoff point such as the half-width to the first zero of 

the sine2 diffraction pattern in each dimension of the three dimensional sine2 function 

allows one to capture a significant amount of the diffracted angular power spectrum. 

This region bounded by the half power points defines the "momentum uncertainty 

box", as shown for the two dimensional interaction region in figure 5.1. The cutoff 

point corresponds to AKj = kj - K^ -k^ ±n/Lt, for; = x, and y. Note the inverse 

dependence of the volume size on the crystal dimensions. For example, as the 

dimensions get very small, the sine width gets very large, implying adequate readout 

for a wide angular spread of readout angles, as in planar holographic material. 
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Conversely, as the dimensions get infinitely large, the sine functions approach delta 

functions and equation (5.17) can be written 

i(o2A,Ae, 

Equation 5.21 implies no allowable angular deviation from the exact Bragg matching 

angle, indicating that the classical Bragg condition is in fact only truly valid for infinite 

media. Any real sample will have finite dimensions and hence a corresponding 

allowable amount of phase mismatch which translates to a reduction of angular 

resolvability. Angular selectivity is important for the two multiplexing techniques 

described in this section because it determines the number of resolvable holographic 

gratings which can be implemented. 

5.2 Angle Multiplexing using Bragg Degeneracy 
5.2.1  Bragg Degeneracy 

This multiplexing method involves writing two gratings between three beams and 

reading them out in the direction of Bragg degeneracy, producing diffracted output 

beams which are angularly separable from the write beams. Bragg degenerate gratings 

are gratings which can be accessed by more than one input-output pairs of k-vectors. 

Figure 5.2 shows a simple case for two distinct pairs of input-output it-vectors in 3-D 

momentum space. The optical wave vectors £,, k2, £3, and k4 are clearly 

independent, however the two gratings written Kgl2 and KgM are essentially translated 

versions of the same grating, and hence Bragg matched to both input-output pairs of 

writing vectors. There are in fact an infinite number of input-output pairs which satisfy 

the degeneracy condition, forming "cones of Bragg degeneracy"11 as shown in figure 

5.2.Degenerate gratings are typically the bane of optical interconnect researchers. In the 

interconnect scenario a 2D input plane is interconnected to a 2D output plane via a 3D 

volume hologram. Full independent interconnection between the 2-D input and the 2-D 
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Cones of Bragg 
Degeneracy 

Figure 5.2. Momentum-space representation of Bragg degenerate gratings Kgn and 

K 34 formed between two independent sets of input-output £-vectors &, and k2, and 

k3 and k4. Infinite number of possible input-output ^-vector pairs map out "cones of 
Bragg degeneracy". 

output requires a 4D interconnection. However, the actual interconnection matrix 

formed in a volume hologram is restricted to only 3D. The result is that some 

interconnections are not unique because they are related by degenerate holographic 

gratings. Attempts at eliminating these degenerate interconnection pairs involve sparse 

or fractal12 sampling of the input-output arrays. While Bragg degeneracy is undesirable 

from the standpoint of interconnects, it can provide a unique method for real time 

holographic read/write multiplexing because an existing grating can be probed by a 

different (angularly resolvable) read-out beam from those which wrote the grating. 

5.2.2  Implementation 

The angle-multiplexing using Bragg degeneracy technique used here involves 

writing two gratings and reading them out in the direction of Bragg degeneracy. As 

discussed in more detail in following chapters, in the phased-array radar processor the 
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Signal from 
Reference AO! 

Signal from 
Phased-Array 
Simulator 

Write Read 
Figure 5.3. Schematic representation of angle multiplexing in Bragg degeneracy shown 
in real space above, and in momentum space below. 

two gratings are written between the diffracted component from a reference Bragg cell 

and two beams from the phased-array simulator. This technique is represented in figure 

5.3, where the upper figure shows three beams incident on the PRC; one from the 

reference AOD and two from the phased array simulator. The two beams from the 

simulator are replicas of each other, produced by a Rochon prism and polarization 

optics, and are angularly diverging from each other in the direction of Bragg 

degeneracy (vertical here). Each of these beams writes a grating with the reference 

beam. The vertical displacement of the one write beam in the Bragg degeneracy 

direction places the two gratings on the cone of Bragg degeneracy for the other beam. 

Both of the gratings produced can diffract each of the three writing beams to produce a 

total of 5 diffracted output beams. The read and write scenario described is shown in 

momentum space in the lower portion of figure 5.3. As shown in the figure, when each 

of the two angularly diverging beams from the simulator diffract off the grating written 

104 



between the other beam and the reference, two diffracted beams which are angularly 

separated are produced in a vertical plane from the reference beam. The angular 

separation of the diffracted beams allows the desired diffracted signal to be separated 

from the writing beams by spatial filtering in the vertical direction. 

The angle multiplexing in Bragg degeneracy technique has been successively 

implemented in both the phased-array jammer nulling processor and the beam-steering 

processor. From the narrowband jammer results obtained, this read/write technique has 

isolation between the diffracted component and the write beam on the order of 35dB. 

There are several problems with this technique which limit its performance which are 

discussed below. 

5.2.3 Performance Limitations 

The primary problem is corruption of the desired diffraction term due to higher 

order diffractions of the reference write beam. The angle multiplexing scheme is shown 

in figure 5.4, where the write beams B, Ax, and A2 are propagating in the nominal z 

direction (into the page) and writing gratings GX[AXB*) and G2(A*B). The problem 

arises when reference signal B diffracts first off of G1(AlB') and then off of G2(A2B), 

resulting in some reference signal that is co-propagating with the vertically displaced 

diffracted beams, heterodyne detected and added with the wrong phase into the jammer 

estimate signal. 

As shown in figure 5.4, the signal collected at the jammer estimate detector 

consists of the jammer estimate AXG2{AIB), obtained by signal Ax diffracting off of 

grating GJA'B) formed between A\ and B, and the doubly diffracted noise term of 

f2BGx{AxB*)G2(AlB). The coupling coefficient f2 accounts for the fact that there are 

two phased-matched interactions occurring to produce the double diffracted term. This 

noise term can be significant and sets a limit on the amount of isolation between the 

read and write beams. A more detailed treatment of the manner in which this noise term 
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Diffracted Term 1 

A G2(A;B)+f2BGx (AXB*)G2(A;B) 

JL 
o<- 

To Jammer Estimate 
Detector 

X 
Diffracted Term 2 

A2G{(AB*) + f2BG,{AxB")G2(AlB) 

Direction 
of Bragg 
Degeneracy 

Figure 5.4. Planar representation of angle multiplexing using Bragg degeneracy 
technique. Write beams B, A}, and A2 propagate in the nominal z direction (into the 

page) and produce gratings G^Aß*) and G2(A*2B).  AX and A2 diffract off these 
gratings to produce the spatially and angularly separable diffracted beams at the left of 
the figure. 

^ 

y 

affects the SINR is treated in Chapter 6, although it is useful here to derive an estimate 

of the coupling coefficient f2. Consistent with the nomenclature of the previous 

chapter, G is the amplitude diffraction efficiency of the grating. The amplitude 

diffraction efficiency r\a from a thick holographic grating can be approximated by 

5.22 G*smWg(Z)dzUfZ
og(z)dz 

where g(z) is the diffraction efficiency per unit length, and the sin function has been 

approximated by its argument. The double diffracted term can then be modeled as 

f2BGlG2=lL
og2(z)dzjZ

oBgl(z')dz'. 5.23 
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In the Born approximation the function g(z) can be assumed a constant, and 

performing the integral of equation (5.23) yields the diffraction efficiency from a single 

grating as G-gL. Therefore equation 5.23 becomes 

f2BG]G2=jBg]g2=^G,G2 524 

where it is evident that /2 = 1/2. This result is consistent with results derived by Hecht 

[13] describing cross-modulation effects in multi-frequency acousto-optic diffraction in 

the small signal limit. As an example, for a grating diffraction efficiency of 5%, the 

leakage signal is on the order of 32 dB below the desired term and could set the lower 

limit on isolation. 

A second problem is due to photorefractive fanning. All the optical beams used 

are extraordinary polarized and the fanning produced by these beams produces 

unwanted scattering, designated as f0 in later chapters, which can be difficult to spatial 

filter from the desired diffracted term. Lower frequency gratings written between the 

beams in the direction of Bragg degeneracy has also been observed experimentally, 

especially with very high gain photorefractive crystals. The result is that instead of three 

distinct spots being observed along the direction of Bragg degeneracy, there are now 

several. Up to 6 such spots have been observed using a 45 degree cut BaTiC>3 crystal. 

Fundamentally these gratings represent a power loss with respect to the desired 

diffracted term, however they are presumed to be extremely small. Lastly, beam 

coupling effects can affect the temporal and spatial characteristics of the gratings. 

5.3  Polarization-Angle Multiplexing 
5.3.1  Read/write geometry 

This second method uses orthogonally polarized read and write beams, and parallel 

tangent diffraction geometry near the condition of equal curvatures to provide spatially 
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separable orthogonally polarized diffracted output beams with high isolation and wide 

Bragg matched angular bandwidth14 with high Bragg selectivity. The orthogonal 

polarization states assure no interference between the read and write beams. The write 

beams are ordinary polarized to reduce fanning and beam coupling effects, and the read 

beam is extraordinary polarized to achieve strong diffraction efficiency. The ordinary 

write beams and extraordinary diffracted read beams are angularly separated and easily 

isolated with a spatial filter and polarizer. 

The polarization-angle multiplexing technique involves writing gratings with 

ordinary polarization and reading them out with extraordinary polarization. This is 

shown in figure 5.5, where a 2D momentum space diagram for an x-z cross-section of 

a negative uniaxial crystal with reading and writing beams in the wide-angular aperture 

readout geometry is shown. The degree of birefringence between the ordinary and 

extraordinary surfaces has been greatly exaggerated in the figure for clarity. The C-axis 

is along z, which is an axis of rotational symmetry of the momentum surfaces. A set of 

grating vectors are shown written between two ordinary polarized beams; a planewave 

kw] at QwU and a finite angular spectra of k vectors centered at kw2 at angle 9w2. The 

holographic grating Kg = kw] - kw2 formed in the PRC between the ordinary planewave 

and one spatial component of the angular spectra of the input image is emphasized in 

the figure. The spectrum of grating vectors is read out by an extraordinary planewave 

kr at 0r, producing a diffracted output spectra near the parallel tangents condition15 

with central k vector £eat %e, where Qe is the angle of equal curvatures of the two 

momentum surfaces. 

The parallel tangents condition can be achieved in a PRC when an existing 

spectrum of gratings is read out with an orthogonal polarization from that which wrote 

the gratings. In particular, this occurs at an extraordinary diffraction angle where the 

spectrum of gratings is tangent to the ordinary momentum surface. This condition 

provides first-order phase-matching over large angular bandwidth and is related to the 
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of angular spectra 

o-polarized angular 
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o-polarized write 
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e-polarized     _ 
read out beam kr 

Figure 5.5.2D momentum space diagram of a negative uniaxial photorefractive crystal, 
with a write reference planewäve and an angularly diverse object beam. The 
extraordinary polarized read-out beam produces an extraordinary polarized diffracted 
spectra in a parallel tangents condition. 

geometry of noncollinear tunable acousto-optic filters 15(TAOF). However, the 

write/read geometry described here should not be confused with the TAOF condition 

where the input and output surfaces have parallel tangents. Instead the geometry used 

here is more analogous to the acoustooptic geometry of tangential beam steering16'17'18 

where the locus of dielectric perturbations in momentum space is brought into tangency 

with the output momentum surface. 

As described in Chapter 4, the holographic phase grating formed by the 

interference between two planewaves in a PRC is modeled as an index or permittivity 

perturbation in the media induced by the photogeneration of free carriers and 

subsequent charge transport and the linear electro-optic effect. When read out with 

planewave kr, each spectral component Kg gives rise to an induced polarization vector 

field with wave vector k =kr+Kg in direction 0^. Because of the orthogonally 

polarized readout geometry this polarization wave vector does not necessarily intersect 
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A^'=|r,.i(=^.A| 

Figure 5.6. Read/write geometry in both 3 and 2D momentum space showing grating 
vector Kg written between kw] and kw2 and read out by kr. Bragg mismatch results in 
momentum mismatched component AK, shown in figure inset. 

the momentum surface and there will be some momentum mismatch AK between this 

wave vector and the actual diffracted wave vector ke. Momentum mismatch and 

corresponding phase mismatch produces non-resonant coupling between the incident 

and diffracted wave resulting in a reduction of the amplitude of the diffracted wave. 

The induced polarization wave is modeled as a driving vector field in the wave 

equation which is proportional to the product of the dielectric perturbation As formed 

by the interaction of the two ordinary write beams with the extraordinary readout beam 

electric field vector, 
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P(x,z)ocAe(x,z)E(x,z). 5.25 

Figure 5.6 depicts the same write/read geometry as in figure 5.5, but now in 3-D, 

where the diffracted wave is propagating in a direction near to the crystal normal, i.e. 

the Z direction for a 45 degree-cut crystal, and X and Y (Y into the plane of figure) 

are the dimensions orthogonal to Z. We assume that the two orthogonal dimensions of 

the crystal are much larger than that in the Z direction. This implies high 

Bragg selectivity in the X and Y dimensions and an intensity diffraction efficiency 

proportional to a sine2 with momentum mismatch AKZ, consistent with the 1-D 

analysis of Section 4.2. This assumes that the electric field amplitudes vary only along 

the Z direction and the coupling is small. Thus it is assumed that significant 

momentum mismatch exists only in the Z direction. After substituting the induced 

polarization into the wave equation, a coupled mode solution allows the diffraction 

efficiency 77 to be calculated via equation 4.20, where the coupling constant K is 

obtained from equation 4.31. 

5.3.2 Tangents and Curvatures 

The parallel tangents condition can be derived for the x-z plane by equating the slopes 

of the two momentum surfaces expressed as functions of angle 6 from the C-axis, 

where 0w2 and Qe are the angles measured from the C-axis of the crystal for the 

ordinary and extraordinary surfaces respectively. The extraordinary momentum surface 

ellipse ke and the ordinary momentum surface k0 can be expressed in the x-z plane as 

M=WHTM 5-26 

and 
ne     n„ 

5.27 
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respectively, where X is the optical wavelength in vacuum. We transform to a polar 

coordinate system by noting that kx = Äsin(9) and kz = £cos(9). Taking differentials of 

equations (5.26) and (5.27), it follows that the slopes of the momentum surfaces are 

given by 

' = -"f ("o/w<)2 = ~(nolne)2 tan(6.) 5.28 dk 

dk        k. 
= -tan(9w2) 5.29 

for the extraordinary and ordinary surfaces respectively. For a given ordinary angle Qw2 

internal to the crystal, the internal extraordinary angle 0e satisfying parallel tangents 

condition is found by equating equation (5.28) and (5.29), yielding15 

ee = tan-'[(«,/«o)
2tan(0w2)] 5.30 

Note that for every ordinary write beam angle between 0 and 90 degrees from z 

there is a corresponding parallel tangents extraordinary angle, thus allowing a first- 

order momentum matching condition at virtually any angle. A particularly interesting 

case is obtained by choosing a parallel tangents set of ordinary and extraordinary angles 

such that the extraordinary angle corresponds to the angle where the curvatures of the 

ordinary and extraordinary momentum surfaces in the x-z plane are also equal. At this 

extraordinary equal curvature angle, of which there is only one between 0 and 90 

degrees, second-order momentum matching is also obtained19. By simultaneously 

satisfying the parallel tangents and equal curvature condition, holograms with extremely 

large angular bandwidth can be written and read out between orthogonal polarizations. 

To determine the equal curvature condition, the curvature p of a Cartesian 

function y =ßx) is defined as the rate of change of the slope of the tangent to the curve 

with respect to arc length, in general given by 
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o lf"l 531 

where the primes denote differentiation. Taking a similar approach to that for deriving 

the parallel tangents condition, the curvature of the extraordinary momentum ellipse in 

the 0 direction is 

5.32 

where the extraordinary index we(0) is 

».(e)= 
cos2(6)    sin2(9) 

2        + 2 

-1/2 

5.33 

Due to its spherical symmetry, the curvature of the ordinary momentum surface is 

constant with angle 8, thus 
Pord = VK 5"34 

The extraordinary angle satisfying the equal curvature condition is found by setting 

equations (5.32) and (5.34) equal and solving for Qegcurv. After considerable algebra, 

the equal curvature condition is found to be20 

N        „10/3 2/3   8/3 _    10/3 
(na       \    n"    ~   Q    e        e 5 35 COS\ZÜ,?CTrvJ - ^10/3 + M2/3W8/3 + „10/3 • 

For small birefringence An = ne-n0, this equicurvature angle approaches 54.736 

degrees as A« vanishes, and it is always within a few degrees of this angle for typical 

birefringence values. In addition, the equicurvature angles are independent of fractional 

birefringence njn0. 

Our experiments have been done with BaTi03 at 514 nm with estimated 

values21 of ordinary index n<, = 2.469 and the extraordinary index ne = 2.390. 
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A   C-axis 

Figure 5.7. Uniaxial crystal 3D momentum surfaces showing ellipse formed between 

axes ke(Q) and the Y axis. Ellipse is in plane inclined at angle 0 from C-axis, and 

angle § moves vector k along elliptical path. 

Equation 5.35 yields an equal curvature angle of 53.409 degrees from the C-axis for 

this material. For a standard cut crystal with faces parallel and perpendicular to the C- 

axis, it is impossible to externally access this angle from air due to the high refractive 

index of the material. For this reason a 45 degree cut crystal is used to allow external 

access to the internal equal curvature angle which is accessible at approximately 24 

degrees external from the crystal face normal. In BaTi03, operating near the equal 

curvature angle fortuitously allows access to the large 142 electro-optic coefficient and 

corresponding peak diffraction efficiency. The simultaneous operation at maximum 

diffraction efficiency with wide angular aperture can not be achieved in other PRCs 

such as LiNbC>3 or SBN that rely on large r33 coefficients because the equal curvature 

condition (which is always near 55 degrees) does not correspond to a region of peak 

diffraction efficiency. 
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Figure 5.8. Extraordinary curvature as function of 0 and § normalized by constant 
ordinary curvature, shown as a plane at unity, with extraordinary curvature in 9 
direction projected onto front face. The parameters used are those for BaTi03 at 514 
nm, with n0 = 2.469 and ne = 2.390. The hatched-in region between 0 ={45, 63} and 
^={-9,9} degrees corresponds to where the calculations and experiments were done 
with a 45 degree-cut crystal as presented in section 5.3.4. 

Processing two-dimensional information requires examination of phase matching 

behavior in the angular dimension orthogonal to 0. For any angle 0, components in 

the direction orthogonal to 0, defined as the 4 direction, will have a different curvature 

and phase matching behavior. Due to the fact that both the ordinary and extraordinary 

surfaces are surfaces of revolution about the C-axis, the tangent lines in the <|> 

dimension are always parallel. Thus first-order phase-matching is obtained 

automatically. The curvature in the § direction is the curvature of the ellipse in the plane 

formed by a particular ordinary write beam spectral component and the Y axis. This 

ellipse is shown in figure 5.7 where it is evident that the Y axis of the ellipse is 

constant, while the magnitude of the other axis, ke(Q), varies with 0. The curvature of 
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this ellipse, defined as the change in arc length around the ellipse as a function of the 

angle <|), can be described by an equation similar to equation (5.32) 

«-.(♦U-P- fcÄ w 

where ne(Q) is given by equation (5.33). 

A plot of this function using the parameters of BaTiOß normalized by the 

constant ordinary curvature value over the range of 9 = ± n/2, and <|> = ± TC/4 is shown 

in figure 5.8. The surface is intersected with a plane at unity, corresponding to the 

normalized curvature of the ordinary momentum sphere. The figure demonstrates that 

the equal curvature condition in the (f> dimension can be achieved in several regions, but 

not in the region of which our experiments were done. The normalized curvature in the 

9 dimension given by equation (5.32) is shown projected onto the front face where the 

equal curvature condition is achieved at 53.409 degrees. The hatched-in region between 

G = {45, 63} and <j> = {-9,9} degrees corresponds to where the calculations and 

experiments were done with a 45 degree-cut crystal as presented in section 5.3.4. 

The possibilities of writing and reading at or near a wide angular aperture 

configuration with different wavelengths has also been investigated. In the ideal case 

this would allow writing a large angular spectra of gratings using ordinary polarized 

light, and then reading out the gratings non-destructively with extraordinary polarized 

light at a wavelength outside of the absorption band of the photorefractive material. 

Such a capability is very attractive from the standpoint of optical memory storage in 

PRCs22. The equal curvature condition in the 9 direction for different write and read 

wavelengths is given by 

1    eq-'x}~ {nl-n])(nl-^nfnf+nl) 
5.37 
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Figure 5.9. Equal curvature angle plotted versus read out wavelength for different write 
beam wavelengths. 

where the parameter ß is defined as 

ß = " write 

V ^ read J 

5.38 

and ne,  n0 are the extraordinary and ordinary read beam indices, and now is the 

ordinary write beam index. 

The wavelength range that can be accommodated in this curvature matched orthogonally 

polarized non-destructive read out geometry is limited by the material birefringence. For 

example, gratings written with ordinary polarized light at 514 nm in BaTiC>3 can only 

be read out using extraordinary light at a wavelength up to approximately 550 nm, 

while the material sensitivity extends well beyond 600 nm. Results are shown below in 

figure 5.9. The horizontal axis is the read wavelength which is extraordinary polarized 

with index ne, and the vertical axis is the equal curvature angle in degrees. Each of the 

family of curves corresponds to an ordinary polarized write wavelength with index now. 

Dispersion is taken into account by making the indices n0 and ne functions of the write 
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and read wavelengths, for this plot the dispersion was taken to be linear over the range 

of wavelengths used in the calculations. For example, the second curve from the left 

corresponds to a write wavelength of 514 nm, and at a read wavelength of 514 nm the 

curve passes through approximately 53 degrees which agrees with the result from 

monochromatic result given by equation (5.35).To utilize this technique to achieve non- 

destructive read out, materials having both larger birefringence and sharp edges to their 

spectral sensitivity regimes will be required. 

5.3.3 Wide Angular Aperture Diffraction Efficiency 

The diffraction efficiency of the read beam over the two dimensions of angular 

aperture of gratings for any read/write beam angular combinations can be calculated by 

finding the momentum mismatch and grating vector amplitude. The calculations take 

into account Bragg matching, the angularly dependent electro-optic coupling 

coefficient, and the variations of the response of the induced space-charge field in the 

photorefractive material with grating spatial frequency. Calculations are presented for a 

2mm thick, 45 degree cut BaTi03 crystal (n0 = 2.469, ne = 2.390) with a two- 

dimensional angular write spectra spanning 18.3 degrees internal to the crystal, chosen 

to approximate the experimental parameters. The center of the ordinary write spectra is 

at 0w2 = 55.174 degrees from the C-axis which is the parallel tangents angle 

corresponding to the extraordinary equal curvature angle of Qe = 53.409 degrees. 

The two angles Qw2 and Qe corresponding to the central angles of the angular 

spectra are defined by the equal curvature and parallel tangents conditions, in the 

following discussion it is shown how to choose the planewave reference write and read 

beam angles. The angles 0W] and Qr are found by first translating the ordinary 

momentum surface by AR such that the points of parallel tangency coincide. This is 

shown in figure 5.10, where M is given by 

M = Rxi + Hz = [k0 sin(ew2) - *,(9f )sin(ee)]x + [k0 cos(Gw2) - *,(9,)cos(e,)]£    5.39 
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Figure 5.10. Ordinary momentum surface is translated by AR such that points of 
parallel tangency coincide. Point of intersection (or difference of AK «7i/I)between 
translated ordinary surface and extraordinary surface determines extraordinary plane- 
wave read-out angle 0r. Ordinary planewave write beam angle at 9wl is then 
determined by translation back by AR. 

Thus AR = k0(Qw2)- ke(Qe) is just the difference vector between the parallel tangents. 

As shown in figure 5.10, there is a distinct point of intersection between the 

extraordinary and translated momentum surfaces. The angle at which this intersection 

occurs is chosen to be 0r, the extraordinary planewave reference beam angle, with 

associated momentum vector ke{%r). The ordinary planewave reference beam &o(0wl) 

is now found by translating by -AR, i.e. 

ke(Qr)-AR=k0{Qw]). 5.40 

Determination of these four primary angles defines the write/read beam geometry. In 

reality, there is significant latitude in choosing Qr as long as the resulting momentum 

mismatch between the extraordinary and translated ordinary momentum surfaces is less 

than approximately n/L. 
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In order to determine the diffraction angle Qe from each component of the 

grating spectra, it is assumed that the projection of the momentum vectors k and ke in 

the directions orthogonal to Z are equal, i.e. Kx in the X direction, and KY in the Y 

direction. This is consistent with the assumption of AK « AKZ as discussed in section 

5.3.1. Having determined the angle of the diffracted beam, the component of the 

momentum mismatch in the Z direction is then 

AKZ = (K-kp)-Z\. 5.41 

The incident and diffracted momenta are then used to determine the electric field 

polarizations by solving for the known linearly propagating eigenmodes in anisotropic 

media. These polarization directions are then used along with published values for 8, 

and r, and calculated values of Kg (parallel to E) in equation 4.36 to determine a 

normalized coupling constant K for each grating read/write pair over the full 2-D 

angular spectra of gratings. 

Calculation results are shown in figures 5.1 la-c, plotting diffraction efficiency 

as calculated from equations 4.26 and 4.36 in dB of the extraordinary diffracted spectra 

on the vertical axis, versus the two dimensions 0 and § of angular aperture. The 

ordinary planewave write beam angle, which is the same throughout the sequence, is 

64 degrees from the C-axis. 

Figure 5.11b is optimally Bragg matched for extraordinary read-out at the equal 

curvature condition, demonstrating large, uniform diffraction efficiency over a large 

angular range. Figures 5.11a and 5.11c show the results of reading out the same 

spectra of gratings written by the ordinary beams from a slightly different extraordinary 

planewave readout angle Qr, i.e. detuning away from the optimum Bragg angle. The 

set of figures indicate that the Bragg matching constraints are different for the two 

dimensions of angular aperture. Surprisingly, the read-out angular bandwidth is 
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a b c 
Figure 5.11. Three calculation results of normalized diffraction efficiency in dB over 
two dimensions of angular aperture. Figure b, near the exact Bragg matched equal 
curvature condition, shows a broad region of high diffraction efficiency thereby 
achieving large angular aperture. A and c show behavior as read beam is detuned on 
either side of the optimum Bragg matching angle. 

narrower in the § direction (direction of Bragg degeneracy) than the 0 direction when 

the read-out beam is Bragg matched near the optimum equal curvature parallel tangents 

angle. As the read-out beam angle is detuned in the 0 direction away from the 

optimum, as shown in figures 5.1 la and 5.1 lc, it is evident that the Bragg matching 

behavior is also quite different depending upon the direction of detuning. A trade-off 

exists between maximum bandwidth in a given dimension and overall diffraction 

efficiency uniformity, which may be advantageous for certain applications. 

The Bragg matching behavior as the extraordinary read beam is detuned away 

from the optimum Bragg matching angle can be understood by considering the surface 

area of the elliptical extraordinary momentum surface which is subtended by the angular 

spectra of gratings sliding along the inside of the spherical ordinary momentum surface 

as the read beam angle is rotated. The intersection of the two surfaces at a given read 

beam angle forms a locus of points which defines perfect Bragg matching along that 

locus, where the resulting diffraction efficiency is high. At other points, which 

correspond to different spectral components, the extraordinary ellipse either protrudes 

through the ordinary surface as in figure 5.1 lc or is underneath the ordinary surface as 

in figure 5.1 la. Areas where this displacement is large occur where the grating vectors 

are severely Bragg mismatched and the diffraction efficiency has been dramatically 
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reduced. For example, in figure 5.11b where the grating spectra is optimally Bragg 

matched, there is a large area where the two surfaces conform well to each other with 

the extraordinary surface just barely protruding through by |AAT|< K/L in the central 

region. Over this broad region, before the first zero of the sine2 diffraction efficiency, 

the total separation of the two surfaces is such that \&K\ < 2K/L. In figures 5.11a and c 

the momentum mismatch is much larger for a greater portion of the grating spectra, 

where the lobe structure of the diffraction patterns indicate the sine2 function rapidly 

passes through several zeros. This interpretation is complicated by the fact that while 

the extraordinary surface is sliding along the ordinary surface more or less tangentially 

as the read out beam is rotated, the two surfaces have different curvatures in both 

angular dimensions. 

While the read out angular aperture of the hologram is large, there is still high 

Bragg selectivity for the diffraction efficiency of the total integrated intensity of the 

hologram. An approximately 0.2 degree detuning of the read beam angle from the 

optimum Bragg matching angle reduces the overall diffraction efficiency by 

approximately 30dB. It should be noted that the overall diffraction efficiency is 

asymmetric with read-out detuning angle and does not fall off as a sine2 function in 

detuning angle. This is the case because on one side the extraordinary ellipse protrudes 

through the ordinary sphere leaving a locus of high diffraction efficiency, while on the 

other side it pulls away resulting in a rapid drop-off of diffraction efficiency. From 

figure 5.11 it is evident that the angular selectivity of an individual spectral component 

of the hologram is quite high, yielding a -30 dB width of approximately 0.05 degrees 

which is typical for a 2 mm crystal in this writing geometry. The high angular 

selectivity of the overall diffraction efficiency indicates that the ability to angularly 

multiplex multiple holograms has not been seriously compromised. 

5.3.4 Experimental Demonstration of Wide Angular Aperture Readout 
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Experiments have been done in a 2 mm-thick, 45 degree cut BaTiOß crystal, 

reading out gratings written between a planewave and a wavefront with a very large 

angular spectra of approximately 0.42 numerical aperture (N.A.) corresponding to a 

full-angle of approximately 49 degrees. The write beam geometry chosen is shown in 

figure 5.12. The central angle of the write angular bandwidth is at approximately 55 

degrees (internal) from the C-axis. As in the calculations, this angle is near the parallel 

tangents angle corresponding to the equal curvature condition as determined by 

equation (5.35). The 49 degree external angular spectra, designated A0 in the figure, 

produces a refracted internal spectra of approximately 18 degrees full angular width. 

The ordinary planewave write beam is at 64 degrees (internal) to the C-axis. The 

extraordinary read-out angle was then varied about the optimum Bragg matching angle 

as was done in the calculations. 

The experimental set-up is shown in figure 5.13. Two ordinary polarized Argon 

(X = 514 nm) beams are incident upon the 5mm x 5mm x 2mm thick BaTiC«3 crystal. 

One beam is sent through the lens, (f = 4.5mm, N.A.= 0.556) brought to a focus and 

allowed to diverge onto the crystal which is mounted on a calibrated rotation stage with 

a motorized actuator. The reflected component of the first beamsplitter is sent through a 

half-wave plate and the polarizing beamsplitter to produce two orthogonally polarized 

planewaves approximately 7 mm in diameter, each with an adjustable incidence angle. 

First with SI closed and S2 and S3 open, the ordinary polarized planewave interferes 

with the angular spectra diverging from the high N.A. lens to write the spectra of 

gratings, and then with SI open and S2 and S3 closed, the extraordinary planewave is 

used to read out these gratings. The crystal is then rotated on the stage through several 

angles to examine the effects of off-angle Bragg readout on the available angular 

aperture and its angular selectivity. Because of the short focal length and working 

distance of this high N.A. lens, the lens has to be moved back slightly from the crystal 

123 



BaTi03 

Ordinary Polarized'^ 
Planewave Write 
Beam 

Ordinary Polarized 
Write Beam 
Angular Spectra 

Figure 5.12. Write beam geometry, showing crystal and beam orientation between 
angular spectra and planewave write beam. 
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Figure 5.13. Experimental set-up for orthogonal polarization multiplexing experiment. 
The extraordinary beam is blocked during writing, and the ordinary write beams are 
blocked with shutters during extraordinary readout. 

to allow the other write-beam to pass by the lens and reach the crystal unobstructed. 

Moving the lens back effectively reduced the available N.A. to that limited by the 

aperture of the crystal. This reduced N.A. was measured to be approximately 0.42. The 

diffracted spectra propagates a short distance to a diffuser, and is then imaged onto a 

CCD camera and digitized with an 8-bit frame-grabber board. Log-scaled experimental 

diffraction patterns and corresponding calculations are shown side by side in figure 
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Figure 5.14. Experimental diffraction patterns on the left and corresponding 
calculations of holographic readout on the right. 
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5.14. The two axes span the angular aperture of the angularly diverse diffracted beam. 

The sequence begins with the readout angle adjusted slightly off the optimum Bragg 

matching angle. As expected, when the readout beam angle is varied, the readout 

angular bandwidth passes through a maximum and then decreases again on the other 

side of the optimum angle. The experimental results have good qualitative agreement 

with the calculations, with both having very similar two-dimensional structural 

variation and shape as a function of extraordinary read-out angle. The total change in 

read-out angle of approximately 0.1 degrees from high to extremely low overall 

diffraction efficiency is the same for both the theoretical and experimental results. There 

is also good agreement for the rate at which the diffraction efficiency of individual 

spectral components within the angular spectra degrade with varying read-out angle. 

There is a finite offset between the calculated and experimental readout angle values that 

is most likely due to the fact that it is very difficult to measure the beam angles and 

angular spectra to within a fraction of a degree with the current experimental set-up. In 

addition, the refractive index values of the crystal are only approximate as these values 

can vary from boule to boule and with dopant concentration, and the 45 degree cut 

condition is only approximate. 

The 4th figure in the calculation sequence is near the optimum read-out angle, 

demonstrating the wide angular aperture which can be obtained. The experimental result 

shown is not. precisely the optimum condition, but the angular bandwidth is still quite 

large. As shown, nearly the entire 18 degrees of internal angular spectra of written 

gratings have been reconstructed in the G dimension, and approximately 6 degrees have 

been reconstructed in the <}> dimension. The best results observed in the lab exceeded 

18x9 degrees. It is important to note that the 18 degrees of angular aperture in the 0 

dimension was limited by the lens N.A. and working distance, and not by Bragg 

matching constraints. In our calculations shown on the right-hand side of figure 5.14 a 

value of 5x1016 cm"3 has been chosen for the crystal acceptor density for best 
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Figure 5.15. Experimental result for the case of reading out the same wide angular 
spectra of gratings far from both the equal curvature and parallel tangents condition. 
The central angle of the write angular spectra and the planewave write beam angle were 
at approximately 65 and 80 degrees respectively. 

agreement with the experimental results. This acceptor density estimate is widely 

accepted in the literature. 

Figure 5.15 shows an experimental result for the case of writing and reading the 

same wide angular spectra of gratings as above, but now far from both the equal- 

curvature and parallel tangents condition. The central angle of the angular spectra and 

the planewave angle were approximately 65 and 80 degrees (internal) from the crystal 

C-axis respectively. It is evident that only a small portion of the angular spectra is phase 

matched, producing the "arc" shown in the figure which is in marked contrast to the 

results displayed in figure 5.14. 
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6    Adaptive    Phased-Array    Beam-Forming 
Processor. 

The beam-steering phased-array processor calculates the angle of arrival of a 

desired RF signal of interest and steers the main lobe of the antenna array pattern 

towards this signal of interest. The chapter begins with an overview of the beam- 

steering processor operation, followed by a derivation which demonstrates that the 

holographic interaction in the PRC which is implemented is equivalent to adaptive array 

beam-formation. In addition, an analytical expression for the holographic grating 

formed in the PRC is derived. Simulation results of the beam-forming processor using 

an explicit photorefractive model are also presented, followed by experimental results 

of beam-formation on a broadband signal of interest. 

6.1  Beam-Forming Processor 

6.1.1  Holographic Beam-Forming Process 

The photorefractive phased-array antenna beam-forming processor calculates 

the AOA of a desired signal of interest and steers the antenna-array pattern in the 

direction of this desired signal by forming a dynamic holographic grating which is 

proportional to the correlation between the incoming signal of interest from the antenna 

array and the temporal waveform of an estimate of the desired signal. The Bragg 

selectivity of the. photorefractive crystal (approximately 104 beams, estimated by the 

addressable angular aperture of the hologram divided by the holographic angular Bragg 

aperture) is substantially larger than the required array function (103 beams), so the 

grating produced by the correlation process only requires a fraction of the crystal 

volume to achieve the necessary Bragg selectivity to implement the desired beam 

steering operation with the full resolution of the array. This grating is algorithmically 

and functionally equivalent to an array of adaptive weights, and the Bragg matched 
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Figure 6.1. Schematic representation of beam-forming phased-array radar processor 

diffracted component from this grating is the antenna output modified by an array 

function pointed towards the desired signal of interest. The main-beam forming 

processor is shown schematically in figure 6.1. The figure shows a broadband signal 

of interest and a narrowband jammer incident upon an RF phased array antenna. The 

outputs from the antenna elements are converted to the optical domain using electro- 

optic modulators fed by a common distributed laser and coupled to an optical fiber for 

delivery to the processor. The analysis is simplified by assuming single sideband 

electro-optic modulators, but conventional phase modulators or amplitude modulators 

can be used with nearly equivalent results (although reduced diffraction efficiency due 

to the additional bias terms on the PRC and smaller fraction of power in the desired 

sideband). Ideally, each fiber is cut to precisely the same length (e.g. to within A/10), 

preserving in the optical domain the same phase relationship that exists between the 

array elements of the antenna. It will be shown that the processor forms a main beam 

even if the spatial phase profile of the optical topological mapping has been modified by 

fibers cut to unequal lengths or even with a shuffled spatial order, provided that they 
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are the same length to within a fraction of the radar signal bandwidth (c/bandwidth), 

and within a laser coherence length. The diffracted component from the Bragg cell, 

whose input is a repetetive application of an estimate of the desired signal, interferes 

with the optical mapping of the phased-array at the PRC. The estimate of the desired 

signal must be well correlated with the desired signal at a delay within the Bragg cell 

aperture, and for simplicity, here it is taken to be the desired signal itself. When the 

optical mapping of the phased-array and the diffracted component from the Bragg cell 

are interfered in the PRC, this effectively forms a bank of time-integrating correlators 

multiplexed throughout the volume of the crystal. For each antenna element, a strong 

correlation peak will exist between the desired signal and the reference signal 

corresponding to some particular time delay in the Bragg cell and delay at each antenna 

element, and the element to element variation of the correlation peak delay indicates the 

AOA of the signal. A stationary interference pattern will arise at a corresponding 

position in the PRC, and over time a holographic grating will build up in the crystal. 

The spatial-temporal grating strength g{x,z,t) in the PRC is proportional to the time 

integrated correlation between the electric fields of the two optical fields EARr{x,z,t) 

and EBCr(x,z,t). These signals are taken to be from the optical mapping of the phased- 

array and the diffracted component from the Bragg cell respectively. The grating term 

will be given by, 

gix,z,t)azJEAR(x,z,t')ErBC(x,z,t'-x0/V)dt' 6.1 

where Fis the acoustic velocity of the Bragg cell. Equation 6.1 has a correlation peak at 

xJV, and the positions of these gratings will form a 2-D slice in the 3-D volume of the 

crystal as shown in figure 6.1. This is also shown in figure 6.2 for the more intuitive 

case where the inputs are in a 90 degree holographic geometry taht will be analyzed in 

the following section, but this analysis applies to arbitrary geometry through an 

appropriate conformal transform. 
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6.1.2 Holographie Beam-Forming Process for Desired Signal only 

The holographic beam-forming process will first be analyzed for the case of 

only a desired signal incident upon the array. Figure 6.2 shows the two interfering 

fields, EARr(x,z,i) and EBCr(x,z,t), which write the grating in the PRC, as well as the 

fact that the top edge of the crystal is in an image plane of the Bragg cell. The optical 

mapping of the phased-array antenna at the ouput face of the fiber-optic cable bundle 

can be described as the combined field arising from the sum over N antenna elements, 

in which the RF waveform sn at the nth fiber of the desired signal r(t) transduced by 

the nth element can be represented by the product between an envelope term and carrier 

terms delayed by an AOA dependent and linearly increasing delay, resulting in 

sn(t) * r(t - nasm(erf)/c)ei0>'•['-"™"K)A'] + c.c. 62 

where r(t) is the single sideband analytic modultion. 

The simplest optical mapping to consider is that of a linear RF array coherently 

mapped into a linear array of fiber-optic ouputs, as shown in figure 6.1 and in more 

detail in figure 6.3. The incident RF wave with propagation vector krf, will have a 

transverse component, kr[ projected onto the array, given by 

*f = ^sin(^) 6.3 

where 6^ is the angle of incidence of the RF wave with respect to the array normal. 

The mapping of k* from an array with element spacing a, into an optical fiber bundle 

made up of single-mode fibers spaced by D, results in a conserved transverse optical 

propagation vector component k°p' which is equal to k? times the ratio of antenna 

spacing a to fiber spacing D. 

r^z.ag^y 
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Figure 6.2. Beam interaction geometry for holographic beam-forming process, 
showing 2-D grating slice formed in the volume of the PRC. 

Equation 6.4 yields a scaled optical angle 0op! given by 

0OP< = sin-'fsin^öva/o^Z)]. 6.5 

Consider now a single incident desired signal given by f\t-x- nasin(^)/cj, 

at some unknown range delay T and within the AO time aperture. Taking into account 

6.5, the array input field launched by JV fibers of core diameter d, spaced by D, and 

propagating nominally in the x direction into the processor can be expressed as 

6.6 

n 
_ND_ 

comb 
_D_ 

*g V 
-d_ 

+ C.C. 
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Figure 6.3. Optical mapping of incident RF signal onto array results in scaled optical 
angle at fiber array output. 

where the desired signal modulation is now approximated by r(t-x), implying the 

signal is narrowband compared to the time-of-flight time across the array. z0 is the 

transverse coordinate at the fiber input plane at x=xd0, and the light propagates 

nominally in the x direction. The assumption of the plane wave to plane wave mapping, 

which requires fibers cut to the exact same length, has been relaxed here by introducing 

a random phase delay function O(z) along the array aperture. The finite aperture of the 

optical fiber bundle is taken into account by choosing a finite length comb function 

which describes the position of each fiber, and the illumination from each fiber is 

modeled a Gaussian aperture function $z0/d] = exp[-(z0/^)2 j. The array input field 

will interfere at the PRC with the diffracted output from the reference Bragg cell. This 

diffracted term, propagating nominally in the z direction, can be expressed as 

EBCr(x0,z = zd0,t) = e^'U i r{t-x0/Vy^'-x°^+c.c. 6.7 
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The function nfx,,/^] describes the finite, uniformly illuminated aperture of the AO 

device. Analagous to the field from the array, but now propagating in the z direction, 

the field from the Bragg cell is described by the initial field as a function of x0 at the 

plane x0, at the initial propagation position z = zdo. 

The analysis of the holographic write and read process due to the interaction of 

the two diffracting fields in the PRC is aided by introducing the Fresnel operator £ {•}, 

to express the Fresnel propagation of the fields. The Fresnel propagation of the x 

propagating field of the optical mapping of the phased-array field from xdo to xd] is 

given by equation 6.6. In terms of this Fresnel operator this is expressed as 

eikx 

tx{EARr{* = xd0,z0,t)} = EARr(xdvZ],t) = \EARr(x = xd0,z0,t)—eT^-^ dz0   6.8 

where the resulting field, whose amplitude is a function of the coordinate z,, is now at 

the position xdi after propagating a distance x, and A is the material wavelength Xjn. 

Similarly, using the operator notation, after propagating a distance z, the Bragg cell 

field can be expressed as 

ife   ^        , 

^{Escr(x0,z = zd0,t)} = EBCr(xvz = zdx,t) = \EBCr(x0,z = zd0,t)~e^-*°y dx0.6.9 

The Fresnel operator approach allows the propagating fields to be manipulated 

according to the standard rules of linear operators, and provides both a compact 

notation to describe the Fresnel integral equations. The three most important properties 

of these linear operators used in this derivation will be additivity, 

£z\R-2KA) = £zi+z2iA) > Phase conjugate imaging, £z{£_z{A}} = A, and conjugation, 

[£M)] = £-M'}- 
In the operator notation, the spatio-temporal evolution of the grating inside the 

PRC created by the interference of the fields can be expressed as 
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g(x,z,t) = j[ix [EARr(x = xdn,z0,t')}J • i.r {EBCr(x0,z = zdo,t')}dt'        .6.10 
-00 

where it is noted to be the time-integrated correlation between the two writing fields. 

Referring to the geometry of figure 6.2, which was chosen for simplicity, the exit face 

of the crystal is an image plane of the Bragg cell, but any equivalent geometry could be 

similarly analyzed. The entrance face of the crystal is thus some intermediate field 

between the object and the image, and hence complex to describe. However, knowing 

that the exit face is an image plane (assumed to be a one-to-one telescopic 

magnification), at any position in the crystal, propagating the image field backwards 

through the crystal is the same as propagating the object field forward. This simplifies 

the analysis because the field from the Bragg cell which interferes with the array field 

can then be represented as the image of the object field travelling backwards through the 

crystal, as indicated by the iz operator which has a negative sign on the z-subscript. 

The grating formed is then read out with the x  propagating   array   field 

EARr(x = xdo>zo>t)> and produces a diffracted field propagating in the (positive) z 

direction towards the Bragg cell image plane. Integrating this 2-D field in the z 

dimension over the length L of the crystal produces the final field at the x' output plane 

at position z', at the edge of the crystal. The final field should be at an image plane of 

the Bragg cell, temporally modulated by the desired RF signal which has been extracted 

from the input from the phased-array and spatially modulated by the autocorrelation 

function of the reference and array signal. The final diffracted field at the image plane is 

L 

E'D{x',t) = \£\£^EARr(xd0,z0,t)ei^}-g{x,z,t))dz. 6.11 
o 

It is important to note that the array field which reads out the time-integrated grating is 

taken to be instantaneous time, and is designated by the temporal variable t, different 

from t', representing previous time, appearing in the grating evolution integral equation 
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6.10. The additional phasor term of elAßz allows for the readout array field to be slightly 

angularly shifted with respect to the array field which wrote the grating in order to 

characterize the Bragg selectivity of the readout as a manifestation of the angular array 

beam steering response. In the following section, this phasor term will allow the 

anlysis of off boresight interfering jammers. Expanding out equation 6.11 yields 

E'D{x',t)= 

0 -oo 

\[£.\£x{EARr(x = xd0,z0j)e^}px{EARr(x = xdfl,z0,t')}] £.:{EBO.(X0,Z = zdo,t')} 

6.12 

dt'dz 

for the squint-free narrowband case. The array field EARr(xdo,z0,t) given by equation 

6.6 can be written as a separable function in space and time, such that 

EARX* = xd0,z0,t) = Lr(x = xd0,z0)Mr{t - r) 

where the spatial function is given by 

6.13 

Lr(xdo,z„) = e^)e-^»H<>.f)/c°n 

and the temporal function is 

_ND_ 
comb "fa." 

_D_ 
*g ~

Zo~ 

.d. 
6.14 

Mr(t-T) = eico°'r(t-r)e^{'-T). 6.15 

This simplification is not necessary for beam steering but does simplify the analysis 

considerably. The separable nature of the array field allows equation 6.12 to be written 

as 

E'D(x',t)= 

J1 ik-{EBCr{x0,z = zdj)\ix {Lr(x = XdB,zoy*M,{t-r)}[*x {Lr(x = xdo,z0)Mf(t'-r)}]}dfdz 
0  oo 

6.16 

when Aß = 0, a purely real intensity term IARr(x,z) can be defined such that 

IARr(x,z) ^x{Lr{x=xd0,z0)}[£x{Lr{x=xd0,z0)}]= \ix{Lr{x=xdo,z0)}\*constant.6M 

139 



It is important to note that at this point the random phase delay produced by 0(;c), has 

been eliminated due to the complex conjugate multiplication between the array read out 

field and the corresponding random phase delay profile recorded in the holographic 

grating. In addition, the phasor due to the AOA of the incident RF wave has been 

eliminated, and thus the specific interelement phase information from the array is no 

longer used. From Parseval's theorem1, the intensity represented by equation 6.17 will 

be a constant for any z-slice taken along the propagation direction x so that the final z 

integral of equation 6.11 will produce a constant when operating on this term. The slow 

undulations of this intensity term are unimportant for holographic diffraction and will 

be neglected by representing this term as a constant. Further assuming that IARr{x,z) is 

approximately constant in the x direction as well, the intenstity term can be written as 

UM = K W W,)}|VAar+*k) = IARre^^ .6.18 

In the case of the tilted readout beam, the constant intensity is modulated by a phasor 

^(Aax+A/fc). The expression for the diffracted field can now be written as 

0 -oo 

where the additional phasor term e'&ax arises as a result of the propagation of the 

deviated readout beam, and Aa « Aß2/2k0 .and Mr{t- r) and M*r{t' - T) have been 

moved outside of the £,, operator because they have no spatial dependence. At this 

point it is evident that the output is temporally modulated by the desired signal with no 

additional delay. Both of the i. and the i.. operators now operate on 

EBCr(x0,z = zdo,t'}, although the argument of the £_ operator contains the additional 

phasor term e
,(Acoc+A/fe)# From the definition of the t. operator given by equation 6.9, it 

is seen that the integration portion of the operator is over the variable x0, and hence the 

e'Aßz portion of the phasor can be moved outside of the operator, so that a tilted 

140 



wavefront maintains the tilt with propagation. The eiAca portion of the phasor must be 

dealt with more carefully. The paraxial approximation of the beam propagation invoked 

by the Fresnel operators necessitates that Aß is small, and for a small deviation away 

from the wavevector k0, Aa will vary quadratically with Aß according to 

Aa»Aß2/2k0. Because Aa is small, its effect on the Fresnel operator £z can be 

considered just to be a small angular shift in angle of the diffracted wave. This 

assumption allows the eitax phasor term to be moved outside of the operator, and the 

nested operators can be seen to propagate EBCr(x0,zdo,t') backward and then forward 

again, and invoking the linear operator phase conjugate imaging property it follows that 

i-\^,{EBCr(x0,z = zd0,t')}) = EBCr(x0,z = zd0,t'). 6.20 

Substituting in the expression for the Bragg cell field given by equation 6.7, the 

definition of hfr(t' - x) as given from equation 6.15, defining the temporal variable 

t" = t' -x, and cancelling terms yields 

E'^ty^x-xjvili^^^H^)^'^1^ X 
dz .6.21 

The upper limit of the temporal integral has been extended to +co, allowing the time 

integration to be expressed as an exact autocorrelation function of the desired temporal 

waveform r(t), given by 

oo 

R(x-xJV)=\r(t"+x-x0/V)r(t")dt". 6.22 
-00 

The autocorrelation function will have a peak at a delay time within the aperture of the 

Bragg cell of r = x0jV. This autocorrelation term is proportional to the strength of the 

holographic grating, and its exact spatial shape and structure throughout the hologram 

will depend on the waveform r{t) and the illuminating fields. An analytical expression 

for this autocorrelation term will be presented in Section 6.1.4 for a broadband signal 
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with a Gaussian autocorrelation, but simply designated as R{T-X'/V) for the 

remainder of this analysis. Using this definition and substituting in the function 

Mr(t-z) results in 

E'D{x',t) = \r(t- T)ei(0'(l-r)eia"'R(x - x'/V)U — \lARe
iäßzdz 1 * S(x' - Aa2/2k0).6.23 

The tiny shift due to the final convolution can be neglected. Performing the final 

integration over z yields a diffracted field with a reduced intensity due to Bragg 

mismatch of the tilted readout, 

E'D(x',i) = r(t - T)eiaA'-z)ei0,"'R(r - x'/Vp 
x' 

~X 
IARs'mc(Aßz) .6.24 

Equation 6.24 is the fundamental result of this section and demonstrates the 

holographic reconstruction process. The result given by equation 6.24 shows that the 

delayed, desired signal r(f-r) on RF carrier eiB>r(t~T) has been recovered. 

Furthermore, the autocorrelation term R(z - x'/V) appears at the image plane of the 

Bragg cell, with a tiny spatial shift resulting from the Bragg mismatched readout which 

can be ignored because of its 4th order dependence on Aß. Finally, the diffracted field 

is multiplied by sinc(Aßz), which indicates an angularly dependent weighting term due 

to phase-mismatched readout, which for the Bragg matched read out of the desired 

signal becomes unity. 

6.1.3 Holographic Beam-Forming Process for both Desired Signal and 

Interfering Jammers 

The derivation for the holgraphic beam-forming operation done in the previous 

section assumed that only a single desired signal was incident upon the RF array, 

although the capability to incorporate Bragg mismatched readouts from other AOAs 

incident on the array was included in the analysis. More generally, there will be 

142 



additional interference signals incident upon the array, such as jammers or broadband 

noise. The beam-forming derivation can be extended to the case of simultaneous, 

multiple jammers, by modifying the array field signal given by equation 6.6 to include 

the jamming terms. An array signal EAR(x = xdo,z0,t) is defined so as to include a 

desired term EARr{x = xdo,z0,t) (equation 6.6) and a term composed of M, narrowband 

jammers, EARJ(x = xdo,z0,t). The total optical field launched by the fiber array will then 

be 

Ejx = xd0,zo,t) = EARr(x = xd0,z0,t) + EARj(x = xd(),z0,t) 

where the desired term is 

6.25 

"ARr (x = xdo,z0,t) = e"°''e^Mr(t " ry-H^^ln "  
Zo   ' 

.ND. 
comb '

Zo 

_D_ 
*g 

'Zo~ 

-d_ 
6.26 

and the interference terms are 

Ejx = xd0,z0,t) = ^e^'^^^'^^ 
7 = 1 

ND 
comb 

D 
cg 

o 

d 
.6.27 

The A., a., and 0; are the amplitude, frequency, and the incident angle (in the RF 

domian) of the jth jammer. Again, noting the space and time separability of the 

functions given by equations 6.26 and 6.27, the final diffracted field can now be 

written as 

E'D{x',t)= 

tx{Lr(x=xd0,z0)Mr(t - r) + L^x^y^M^t)} ■ L  t 

11" dt'dz 

6.28 

where Lr(x = xdo,z0) and Mr{t-r) for the desired signal are defined by equations 

6.14 and 6.15 respectively, and the corresponding interference terms according to 

Lj(x = xd0,z0) = e^)e-^^)h°n ' 
Zo   ' 

.ND. 
comb V 

D. 
*g 

~Zo~ 

_d_ 
6.29 
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and 
Mj(t) = AJe

i'ä''ei'ä't. 6.30 

The phasor term e'*ßjZ in equation 6.28 indicates the the jth jammer is arriving at a 

different angle than the desired signal, and the desired signal component of the read-out 

beam is undeviated from the write beam component, with 

kßj = -^[ö>r sin(er) - <°j sin(0/)]- Carrying out the multiplication of the operator terms 

of equation 6.28 yields 

E'D(x',t)=\\i: 

0 -oo 

£.z{EBc(Xo>Z = Zdo>t')} 

iARrM;(t'-r)Mr{t-T)+ 

7 = 1 

+EW(^'+^,^0^(''-*) 

+IWK*'+A^^(''K('-r) 
7 = 1 

■dt'dz6.31 

where the following definitions have been made, 

IARr(x,z) = \£x{Lr(x = xd0,z0)}\2 

IAn,(x,z) = \£x{Lj(x = xd0,z0)f 

rARrj{x,z) = [ix{Lr(x = xd0,z0)}J £K{LJ(X = xd0,z0)} 

6.32 

6.33 

6.34 

W*'z) = £ALr(x = xdo^o)}[ix{Lj(x = xd0,z„)}J. 6.35 

As in the previous section, it is assumed that the e'(Aa**'+ÄM phasor term can be 

moved outside of the £x operator. Again assuming that the intensity terms of equations 

6.32 through 6.35 are approximately constant in x and z, and that the angular shift due 

to the phasor term e'&ctjX is small, the four terms in the interior square brackets of 

equation 6.31 can be moved outside of the nested i. operators. The nested i 
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operators can then be collapsed, and the diffracted field E'D(x',t) can then be written as 

the sum of four separate integrals; 

E'D(x',t) = \lARre
i{Aa'x+AßM(* ~ t)fMv = W W " ty'** 

o -°° 

o y'=1 •» 

.6.36 

The four integrals will be evaluated separately. Allowing the upper limit of the temporal 

integrals to go to infinity, the first integral is the holographic reconstruction of the 

desired signal, and yields the same result as given in equation 6.24, 

d(t) = f{t - r)eia>A'-%ia°'R(T - x'IV)lARrTl £. 
x 

6.37 

where the sine function is equal to unity because of perfect Bragg matching. 

Substituting in the expressions for EBCr(x0,zdc,t') and Mj{t), the second integral of 

equation 6.36 becomes, 

L    P 

0 7=1 

C,(0 = f X/^/(aa/JrM/3'z)n — |^|2eto>'e"B'VB'{w'/") \f(t"+z- x0/Vy"(°-°JUt"dz6.3S 

where t" + v = t' . The cross-correlation between the jammer signal and the desired 

signal will be assumed to be small, and hence the contribution of equation 6.38 to the 

total diffracted field will be considered negligible. This assumption is based on the fact 

that the jammer is very narrowband, and the shared frequency content with the 

reference signal spectrum, if any, will become vanishingly small as the integration time 

becomes large. Only if a harmonic component of the desired signal matches the jammer 

will any significant grating be written that the jammer can diffract off of. 
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The third integral can be written as 

0 7 = 1 

The temporal term is the autocorrelation of the desired signal, which as in equation 

6.37, will have a peak at r = xJV. This portion of the diffracted field can then be 

written as 

Q(0 = %A}e^e^R{T - X'/V)u\^-VR. sinc(A/?/) * s(x' - Aa*/2k0).  6.40 

This result is quite similar to the result of equation 6.37, and indicates that the jammer 

signals are also diffracted off of the holographic grating formed by the desired signal, 

but weighted by a sine function with an argument equal to the momentum mismatch 

between the desired signal and each particular jammer. 

The fourth and final integral can be written as 

oy=i 

6.41 

This term represents the diffraction of the desired signal off of the weak gratings 

formed betwen the jammers and the corresponding frequency components of the 

reference in the AOD. This term is usually small and can be neglected, but for very 

large jammers it can produce a significant diffracted component, but since it produces 

the desired signal waveform, it can be safely neglected. In fact, this situation is that of 

"piggy-back" signals discussed in Chapter 7, and these signals which diffract off of 

gratings written by signals at a different frequency are eliminated with a Fabry-Perot 

etalon filter. The total diffracted field will then be the sum of the first and third integral 

terms, 
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E'D(x',t) = R(z-x'/V)U 
x' 

~X 

LARr r(t-t)eiaA'-z)ei'°"'I/ 

^AjeVi:«, sinc(Ajß7X) * S(x' - Aa2/2ke) 
7 = 1 

.6.42 

This result demonstrates the holographic beamforming process leading to the 

reconstruction of not only the desired signal as in the previous section, but the jammers 

which also diffract off of the array sidelobes of the grating formed by the desired 

signal. It is these jammers of course which corrupt the SNR of the desired signal 

return, and provide the motivation for the jammer-nulling processor of the following 

chapter. 

6.1.4   Analytic   Expression   for   the   Adaptively   Formed   Holographic 

Grating 

The results of the prior two sections demonstrate that the holographically 

reconstructed field is proportional to the strength of the temporal autocorrelation of the 

desired signal, which has been represented by R(T-XJV). The operator notation 

allowed the convenient manipulation of the interacting fields, and dramatically 

simplified the spatio-temporal nature of these fields. In this section, an analytic 

expression of the spatio-temporal holographic grating formed in the PRC will be 

derived, based on a simplified model of holographic imprinting. 

The interacting optical fields will consist of the reference signal from the Bragg 

cell, EBC (x0,z = zd0,t'), which is modulated by the desired signal r{t - xJV), and the 

signal from the array, EARr(x = x^z^),which is also modulated by the desired signal, 

at some fixed range delay. These two fields were given by equations 6.7 and 6.6, and 

are shown again below. 

EARr\X=Xtk»Zo>t) 

=eto"'e'°(2^r(r-r-z0asin(^)/cDy^['-r-z°flSin(^Hn 
ND. 

comb 
D *S\^T 

l   6.6 
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EBCr(x0,z = zdo,t) = ei(0°'T[ 5SL 
X 

r(t-x0/V)eico^-x" iv) 6.7 

where the broadband nature of the time delay has been included as a delay term on the 

desired signal envelope. The analysis begins by writing out explicitly the expression for 

the holographic grating given by equation 6.10, 

g(x,z,t)= \[ix{EARXx = xdo,z0,t')}]£.z{EBCXx0,z = zdo,t')}dt'. 6.10 
-oo 

Expanding out the operators in equation 6.10 for the fields 6.6 and 6.7 yields 

-ik(x+z) 

^Z^~^-\\  \E'ARXX = xd0,zj')EBCr(x0,z = zd0,t')dt' 

6.43 

■<*(*-■*„): 

2z 
-l*(*-*.f 

2x dx0dz0 

Substituting in the fields given by equations 6.6 and 6.7, the holographic grating 

becomes, 

g(x,z,t)= 

*?(*.*)// 
\r\t> - T -z0asm{erf)lcD)r(t> - xJV)dt' -i'or(x0/V-T-zl,asm(erf)/cD) 

■e'^TI 
ND 

comb iHtMlK^ 
dx0dz0 

6.44 

The functions P,{x,z) and P2(x0,z0) result from the expansion of the quadratic 

exponential functions in equation 6.43, and are defined as 

e-ik(x+z)     _.. 
i>(x,z) = £__ef(*v.«Vx) 

-A XZ 

P2(x0,z0) = e^e^efttl-^'*). 

6.45 

6.46 

Since the photorefractive integration time is usually many milli-seconds, and the 

reference signal repetition time is on the order of micro-seconds, the evaluation of the 
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temporal integral can be simplified by allowing the upper limit of the integral to be 

extened to +00, and then treating the integral as an autocorrelation of the signal r(f'). 

Instead of choosing a specific waveform for the signal r(f), a Gaussian 

autocorrelation function will be assumed, resulting in 

jr(r-r-zoasin(0^)/cD)r(/'-xo/F)^'= rn exp -^(z-x0/V-z0a$w(Olf)/cDf .6.47 

where r„ is proportional to the product of the amplitude of the reference signal (which 

is fixed) and the desired signal (which can vary), and o = ed4n where ad is the 

desired signal bandwidth. The expression given by equation 6.47 is the tilted 

correlation peak that represents the AOA of the array input by the tilt angle. The grating 

g(x,z,t) can now be expressed as the product of two integrals, 

g(x,z,t)= 

Px{x,z)ru 

fe[ip-(^-^/»'^-0^in(er,)/cO)2]e/<0r(r-x„/K)rI 

comb £2. 
D 

X 

*g 

e-ilal/2zeila°x'zdx0 ■ 

e-lhl/2xefhDz/xdz 0 

d 

6.48 

At this point, a narrowband assumption will be made, which removes the angularly 

dependent delay term zoasin(0^)/c£> from the argument of the Gaussian in equation 

6.48. This allows the grating to be written as a seperable function of the form 

g(x,z,t)= P,{x,z)ru\Q{x0)dx0\s(z0)dz0 6.49 

where each of the integrals can now be evaluated separately. The integral j 0{xo)dxo 

over the variable x0 will be evaluated first. This integral can be written in terms ofthat 

of a complex Gaussian, 
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\0(xo)dxo = et°'T^-"1,2<'1) f eihx'+ax-)eik^x+dx"+gx")dx 
6.50 

where the aperture function n[x0/X] has been neglected since for a large aperture it's 

effect in the far field will only be that of a convolution with a delta function. The 

integral portion of equation 6.50 can be evaluated using the method of stationary 

phase2, with the result that the complex Gaussian integral function f}(x) can be 

approximated by 

/(JC) = j g(fa" +<a° )e'*fc*+&. ^ )dxo 

= \h(x0)eik^dx0*eik^h(X0) 
2m 6-51 

where A(jcJ = e(b»+at'), /i(jc0) = e(ac-x+Ä'+*1'), and 

a = TK/*2V           652 b = -n/2cr2V2                      6.53 

c = l/z                    6.54 d = -co,./kV                      6.55 

^=-!/2z. 6.56 

The term n"(X0) in equation 6.51 is the second derivative of ju(x0) evaluated at the 

stationary point X0, where 

"Mr."» 

and ^'(xj is the first derivative of n(xn), and it is found that X0 = -(cx + d)/2g. 

Using the approximation given in 6.51, and after much algebra, the function f^x) can 

be approximated by 

■f^x) * e*(*+*')2/w'e-*<z+z')2^e"2/2ffV^z/2*2K-"'/*K-x2/z)e/*/4^/2^t.        6.58 

where wx=^2aV, wz=kV2cr/(or, x' = {rkV2 +zcor)/kV, and z' = rkV2/(or. Note 

that the term x' is actually a function of z, and x' and z' contain the range delay z. 
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With these substitutions, JQ(x0)dx0, the integral over x0 given in equation 6.50 

becomes 

\äx0)dx0 *e*(*«0V»'x2
e-^+-0VwV(«?*/2tV-1Br/^-xV0^r^/4^2^     6.59 

The integral over z0 of equation 6.48, §S(z0)dz0, can be solved by assuming 

that the individual fiber apertures of diameter d are very small, and therefore for 

essentially any plane x within the PRC, the field profile due to each aperture will be the 

appropriately scaled Fraunhoffer diffraction pattern3. This assumption is valid under 

the condition4 that x»nd2//L, and for d*5nm, and A«.5jUm, a distance of 

x » 50ym satisfies the Fraunhoffer condition. Because the array is made up of many 

(TV), very small apertures, it is reasonable to express the array field as a discrete sum of 

N small apertures. In addition, the random phase profile across the aperture due to the 

discrete fibers of different lengths given by e*" has been approximated by 

e"*^comb[zJD]. Thus the approach will be to discretize the z0 integral, take the 

Fourier transform of the initial field profile, and take this expression to be the field as a 

function of z, at a propagation distance x throughout the crystal. From equation 6.48, 

the initial field profile is taken to be 

f2(z0) = eic0rZ'asin^cDn 
ND 

comb £2. 
D 'g 

o 

d 
6.60 

Taking the Fourier transform and substituting the result back into equation 6.48 yields 

\s(z0)dz0 «dD^e*" comb 
zD 
Ax 

■z, gd 
zd 

.he 
e-ikn2D1l2xeiknDzlx ggj 

where E,0 =corasin(6r)/27zcD. Finally, the expression for g(x,z,t) given in equation 

6.48 is 
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g(x,z,t)=-< 
dDr\rLT2 lue    comb 1—£» % d -—£, 

-ikn2D2/2x   iknDz/x   ik(a>2
rz/2k2V-iär/kV-z2/2x-3x2/2z-x-z)   iarT   in/4 

x(x+x-f/W] e-4z+:-f/»I 

.6.62 

The result in equation 6.62 is difficult to interpret, in part due to the several 

mixed x and z variable terms. However, there are several features which can be pointed 

out. For example, the upper row of the equation shows that the strength of the grating 

is. directly proportional to the amplitude of the desired signal, ru. An amplitude scaling 

term then multiplies the sum of N Gaussian fiber apertures, each with a unique phase. 

The next term is an x and z variable Gaussian-like amplitude weighting term whose 

width varies inversely with the desired signal bandwidth a. This weighting term is 

then multiplied by a z-varying Gaussian weighting term, whose width also varies 

inversely with desired signal bandwidth. The lower row of equation 6.62 is composed 

of all phasor terms, the last being a fixed term, preceeded by a phasor which is both 

signal frequency and delay dependent. The remaining phase terms indicate a 

complicated family of chirped and curved fringes formed throughout the PRC, which 

are responsible for diffracting the array inputs towards the image plane of the AOD. 

6.2 Beam-Forming Processor Computer Simulation 

The derivation of the Section 6.1 treated the photorefractive material as a strictly 

linear material in that the grating strength was directly proportional to the time- 

integrated intensity of the write beams. As discussed in Chapter 4, photorefractive 

materials are very non-linear, and their holographic response varies with incidence 

angle, and grating spatial frequency. Adding these effects to the analysis of Section 

6.1, in addition to such phonomena as fanning and two-wave-mixing, would have 

made the analysis virtually intractable. Even when assuming the PRC is linear with 

intensity, the analytic result for the holographic grating given by equation 6.62 makes 
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simple interpretation difficult. While the grating profile formed in the main-beam 

processor has been measured experimentally as a function of angle (reported later in 

this chapter), this measurement represents the integrated result of the entire grating 

volume, and information about the actual volumetric grating distribution is lost. In 

order to gain insight into the structure of these gratings, computer simulations of the 

main-beam forming processor were completed to provide not only a spatial mapping of 

the holographic gratings within the PRC, but also a useful tool for investigating various 

experimental configurations. Moreover, these simulations take into account the 

photorefractive responses to spatial frequency, and include grating nonlinearities, 

fanning and two-wave-mixing. 

The simulations begin with a definition the optical mapping of the phased-array 

antenna, and the diffracted output of the acoustooptic Bragg cell. These fields are 

propagated via a split-step Fourier transform beam-propagation algorithm5 and imaged 

onto the PRC in order to write the hologram. The holographic gratings within the PRC 

produced by these fields are calculated using a finite-difference algorithm6' 7. The 

hologram is then read out using the optical phased-array input, and the diffracted field 

is then propagated and focused onto a detector, and the incident RF waveform is 

extracted as the real part of the complex field, simulating single quadrant heterodyne 

detection. The simulation is executed in discrete time steps; for a given RF waveform 

sampled with N time steps, a field corresponding to the nth time step is formed and 

propagated through the optical system and the crystal. After N steps the index grating is 

fully evolved, and it is then read out by the optical phased-array field using the same 

propagation routine. We simulate a continuous, linear antenna array made up of 1500 

sample points (the discrete fibers are ignored), and an AO Bragg cell made up of 500 

discrete delays. 

6.2.1  Split-Step Beam Propagation Algorithm 
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The split-step beam-propagation algorithm propagates the electro-magnetic 

fields in discrete steps by accounting for free-space propagation in the Fourier domain 

and media inhomogeneities and nonlinearities in real space. Consider an electric field 

E(x) propagating in the z direction, in a (2-D) medium with index 

n(x,z) = n0 + An(x,z), where n0 is the background refractive index and An{x,z) is an 

index perturbation. The split-step algorithm can be summarized as: the Fourier 

transform of the field is taken with respect to the transverse dimension of the incident 

field (x direction here), and then multiplied by a free-space propagation transfer 

function to account for free-space diffraction, the inverse Fourier transform is taken, 

and multiplied by a transmittance function which describes the integrated effects of the 

inhomogeneous media between z and z + Az. The media transmittance function is 

proportional to n(x,z), and will be unity in the case of free-space, but more generally it 

can be a lens, a grating structure such as a hologram or perhaps a random index 

perturbation describing turbulent media. The field at the m +1 propagation step can be 

expressed algorithmically as5 

Ex[x,(m + l)Az] = e'M^Az)^-, UfafamAz)}^^ }. 6.63 

where the discretely sampled index perturbation is taken to be 

mAz 

An(x, mAz) =    j An(x, z)dz 
(m-l)Ar 6.64 

This algorithm is then implemented for M discrete spatial steps of length Az, and the 

final field is the field at the plane z = MAz. 

6.2.2 Finite-Difference Photorefractive Grating Model 

The photorefractive gratings formed within the crystal are calculated using a Crank- 

Nicholson8 finite difference algorithm. The simulations presented here used an existing 
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PRC finite-difference program developed by Steve Blair for photorefractive two-beam 

coupling and fanning studies9'10. 

The index calculation used in the finite-difference algorithm is based on an 

analytical expression for the spatio-temporal evolution of photorefractive space-charge 

field6- 7> u, expressed as a function of incident beam geometries and intensities, and 

material parameters. From reference 11, the spatio-temporal evolution of the normalized 

photorefractive space-charge field E'c is described by 

c   d
2tc    di/m 

T—+ 1 
a &      (' + '-) 6.65 

where Esc = E/Eq, and Eq = qNA/(sDCkD) is the trap density limited space-charge field 

with q being the electron charge, NA is the crystal acceptor dopant density, sDC is the 

DC dielectric constant, and kD is the Debye screening vector given by 

KD = q^NA(ND - NA)l(NDzdckBT) for crystal doping density ND and temperture T, 

where kB is the Boltzman constant. In equation 6.65, z is the dielectric relaxation time 

constant given by x « rj[l(x) + Id] where x0 is a function of material parameters12, 

I(x) is the the spatially varying incident optical intensity, and Id is an effective 

background illumination that accounts for the thermal excitation of charge carriers. The 

equation as shown is written in terms of the normalized transverse spatial variable x, 

given by x = kDx. The space-charge field is coupled to the amplitude of the electric 

field according to 

mdA*A+^jfe£l+4kYofr<A(x,z) = o 
dz dx 6.66 

where E(x,z,t) = A{x,z)ei(lc~M\ and the coupling constant is given by y0 = 2con\/c. 

The Crank-Nicholson finite difference algorithm is implemented in the PRC by 

first making discreet approximations to the derivatives in equation 6.65. At each time 

step nAt, the space-charge field is calculated along the transverse direction* in discreet 
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spatial steps iAx, at a given spatial propagation step mAz in the PRC. The optical field 

amplitudes are modified by the interaction with the space-charge field induced index 

perturbation, and then propagated via the beam-propagation algorithm to the next step 

(m + l)Az. This process is continued through the entire crystal, and then repeated for 

the next time step (n +1)At, where At/z = 0.01, and the total number of simulation 

steps is 200, corresponding to 2 photorefractive time constants. The spatial sampling 

parameters used were Az/A = 6 in the propagation dimension, and Ax/X = 0.25 for the 

transverse dimension. 

6.2.3  Simulation Results 

The main-beam forming processor simulation results presented here are based 

on a geometry where both the optical signal from the phased-array and the reference 

Bragg cell are imaged onto the entrance face of the PRC. Plane wave inputs to the array 

have been chosen only for simplicity; curved or more complicated wavefronts could 

also be accomodated. The overall optical phased-array profile is weighted by a gaussian 

to eliminate the high spatial frequency terms which are associated with a rectangular 

aperture. This should yield an array function with reduced sidelobes. 

Figure 6.4a shows the simulation output of the main-beam processor optical 

architecture. The Bragg cell and the phased-array ouputs are imaged with a four-/ 

optical system onto the input face of the PRC, where the input and output faces are 

designated by the dashed vertical lines shown in the figure. Figure 6.4b shows the 

interaction between the two fields in the crystal, and figure 6.4c shows the resulting 

holographic grating formed within the crystal (both images rotated by 90 dgrees). The 

angle between the two fields is approximately 15 degrees, the crystal is 1.2 mm thick, 

and the RF input is on array boresight. The grating structure formed within the crystal 

is much more complex than the simple slice description used in the previous 
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Crystal Entrance Face 
Phased-Array Bragg Cell 

(b) (c) 
Figure 6.4. Optical architecture of main-beam forming processor shown in (a), field 
interaction within the crystal shown in (b), and resulting holographic grating shown in 
(c). Figures (b) and (c) are rotated by 90 degrees. With each time step the diffraction 
from the Bragg cell slides along by one pixel, the array signal evolves, and the grating 
is updated. 

sections,due to the derivative bandpass photorefractive response, photorefractive 

nonlinearities, and fanning. 

After the grating is formed, it is stored and subsequently read out by the 

phased-array optical signal. This is shown in figure 6.5a, where the diffracted field is 

seen to be diverging slightly, and originating from a virtual source location of the 

original AO reference beam write field at the focus behind the crystal corresponding to 

the autocorrelation time delay between the phased-array and AO signals. A cross- 
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Figure 6.5. Readout of holographic grating with phased-array field and resulting 
diffracted field shown in (a). Cross-section of the field at the crystal ouput face in (b). 

section of the field at the crystal output face is shown in figure 6.5b. The outputs 

shown in figure 6.5c represent only one of approximately 200 time samples from the 

readout field; propagating each of these temporal samples through the grating, focusing 

the diffracted field and measuring the peak value for each allows the input RF chirp to 

be recovered. 

The holographic grating has been read out with an umodulated plane wave as a 

function of angle in order to examine the Bragg selectivity of the hologram. The results 

of this simulation are shown in figure 6.6. Figure 6.6 indicates that the angular 

selectivity resembles a sine function response convolved with a Gaussian to some 

extent, although somewhat assymetrical with a subtle lobe structure. This assymetry is 

probably due to the assymetrical fanning gain evident in figure 6.4c. The -3 dB width is 

approximately 0.0075 rad, or 0.43 degrees, which is appropriate for a 1.2 mm crystal. 
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Figure 6.6. Angular selectivity of hologram formed in the PRC. 

This result shows that an angular selective grating is being formed, and that adaptive 

beam-forming has been accomplished. 

The more interesting beam-forming scenario is when there is interference 

present as well. Figure 6.7 shows the interaction within the PRC where in addition to 

the desired signal on array boresight, there is a narrowband jammer present at 

approximately 1.5 (0.025 rad) degrees (optical) from boresight, and also random noise 

across the array. The desired signal, which is a chirp, is shown in figure 6.8a. The 

jammer corrupted chirp is shown in figure 6.8b, where for this example the jammer has 

the same power as the desired signal. The random noise is 20 dB lower than the desired 

and jammer signals. After forming the grating and reading it out with the beam from the 

phased-array, the desired chirp signal is recovered as shown in figure 6.9. Although 

somewhat corrupted by the jammer, which is clearly visible during the off portion of 

the chirp, the SINR of the recovered signal is dramatically improved over the input 
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Figure 6.7. Beam interaction within PRC for beam-forming simulation in the presence 
of a narrowband jammer and random noise across the array. 

signal shown in figure 6.8b. The SINR has been improved by approximately 24 dB (in 

power), which agrees reasonably well with the attenuation expected due to the angular 

selectivity shown in figure 6.6. 

Increasing the power of the jammer much further introduced some difficulties 

with the simulations. In particular, the simulations needed to be run for many more 

cycles in order to write an adequate grating, and thus became very time-intensive. The 

requirements for many more simulation cycles is because there is always a finite 

amount of correlation between the jammer and and the desired signal when calculated 

over a finite temporal window. For example in the lab, the repetitive chirp is being 

presented to the hologram at a pulse repetition frequency of approximately 100 kHz, 
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Figure 6.7. Desired chirp signal shown in (a), and chirp signal corrupted by equal 
strength jammer shown in (b). 

300 

Figure 6.9. Recovered desired chirp signal with residual jammer, demonstrating an 
SINR improvement of approximately 24 dB. 

which corresponds to many chirp presentations over a single time-constant of the PRC 

(1 sec) or the feedback (10 msec). Thus, writing a grating for only a few chirp cycles 

allows for grating terms to be written between the desired signal and the jammer. 

Results of a simulation with the jammer 10 dB greater than that of the desired 

signal are shown in figure 6.10. As shown in figure 6.10a, the desired signal input 

from the array is severly corrupted, although the recovered chirp shown in 6.10b has 

an SINR improvement again of approximately 24 dB. Figure 6.10b suggests that the 

lower frequency components of the recovered chirp have been degraded the most 
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(a) (b) 
Figure 6.10. Corrupted desired chirp input signal shown in (a), and recovered desired 
signal in (b) demonstrating an SINR improvement of approximately 24 dB in the 
presence of a strong jammer. 

severely. This may be due to the fact that the low frequency grating terms written by the 

strong jammer have washed-out the lower frequency grating terms produced by the 

weaker desired signal. 

The simulation results of Section 6.2 demonstrate the adaptive beam-forming 

process in the presence of interference, using a beam-propagation model which 

includes diffraction, and a dynamic holographic grating model which takes into account 

the nonlinear and non-ideal behavior of photorefractive materials. 

6.3 Experimental Demonstration 

6.3.1  Overview of experimental set-up 

The electro-optically upconverted signals from far-field radar sources which are 

incident on a phased-array are simulated in our laboratory experimental system using 

multiple acousto-optic modulators in the back focal plane of a lens as shown in figure 

6.11. Several sources can be input into the processor at three different AOAs 

simultaneously, while two sources can be scanned in angle using motorized translation 

stages. A diffuser can be placed at the front focal plane to simulate the complex phase 

front that would result from fibers of unequal length, as well as a Ronchi ruling to 

simulate the sampled nature of the phased array and fiber bundle. 
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Figure 6.11. The phased-array simulator consists of three AOMS in the back focal 

planeof a collimating lens, which simulate the electrooptically upconverted signal from 

far-field radar returns. 

The optical layout of the beam-forming phased-array radar processor is shown 

in figure 6.12. The 514 nm argon source is spatially filtered, collimated, and incident 

on the first beam-splitter (BS1). Light exiting one port of BS1 is sent to the phased 

array simulator where it is divided into three paths, one for each AOM. As described 

above, the AOMs are in the back focal plane of a lens, thus translation in the back focal 

plane changes the effective AOA of the source at the front focal plane. The front focal 

plane is approximately at the front of the PRC, with the signal at the PRC consisting of 

two vertically diverging replicas of the simulator output necessary for the Bragg 

degeneracy write/read technique described in Chapter 5. The replicas are produced 

using the combination of polarizing elements shown in the figure. The horizontally 

polarized diffracted output of the AOMs is passed through the first 45 degree XIA plate 

which produces circular polarization and then through the Rochon prism to produce 

two linear, orthogonally polarized beams diverging at approximately 0.2 degrees. 
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Figure 6.12. Optical component layout of main-beam forming phased-array radar 
processor. 

These two beams then pass through the second X/4 plate to produce two circularly 

polarized beams, and after passing through the final linear polarizer become two 

horizontally polarized beams, both of which are incident on the PRC as extraordinary 

polarized waves. As described in Chapter 5, this technique allows the diffracted term 

from the hologram to be separated from the incident write beam. Rotating the first X/4 

plate chnages the beam ratio r, between reading and writing beams. The other output of 

BS1 is sent to BS2 where the reflected beam is sent to the main-beam forming Bragg 

cell, a Te02 slow-shear wave polarization-switching Bragg cell. The diffracted 

component from the Bragg cell is rotated back to a horizontal polarization with a X/2 

plate, demagnified with a 2:1 telescope, and incident upon the PRC to write gratings 

with the phased-array simulator output. The transmitted component of BS2 is sent to 

the main-beam photodetector for use as a heterodyne reference, and is usually focused 

to a slit with a cylindrical lens to have good overlap with the 1-D slit image of the Bragg 

cell produced by the diffracted beam from the PRC. The diffracted component from the 

PRC is separated from the write beams using the Bragg degeneracy technique and is 

then incident on the main-beam photodetector which is placed in the Fourier plane of 

the AOD . The Fabry-Perot bandpass filter array is not installed in this system, so this 

system is essentially a narrowband beam former with no time delay. 
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Figure 6.13. Frequency spectrum of processor output demonstrating beam formation in 
the direction of broadband signal of interest as viewed on a spectrum analyzer in (a) (1 
MHz/.div, 10 dB/div). The received radar signal scenario is shown in (b). 

6.3.2 Main-Beam Formation 

Experimental results from the beam forming processor are shown in figure 

6.13. Figure 6.13a shows the frequency spectrum of the output of the processor after 

adaptively steering the main beam towards the desired signal, and figure 6.13b depicts 

the radar scenario of the received signals. As shown in figure 6.13b, there is a 

broadband signal of interest (4 MHz wide sweep) and a strong narrowband jammer 

(76.8 MHz) incident at different AOAs. The AOA-frequency plane can be viewed as a 

slice out of the 3-D RF signal environment for 2-D arrays discussed in chapter 1. The 

beam-forming processor forms an antenna array function centered on the broadband 

signal of interest, while the jammer AOA is adjusted to fall on the first antenna sidelobe 

in this case. After weighting by the array function the processor signals can be 

projected onto the frequency axis as shown in 6.13b, which corresponds qualitatively 

to the spectrum analyzer plot shown in 6.13a. It is important to note that the spatial 

processing achieved by forming an array function pointed toward the desired signal has 

by itself reduced the jammer power due to the fact that it is arriving on an antenna 

sidelobe (a reduction of approximately 13 dB in this case). This jammer power 

reduction before detection reduces the required dynamic range of the detector. 
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(a) (b) 
Figure 6.14. Measured antenna array pattern from beam-forming phased-array radar 
processor in (a), with diffuser in optical phased-array simulator (10 dB/div). 

6.3.3 Measured Antenna Array Function 

The antenna array function formed on the 4 MHz wide sweep signal has been 

experimentally measured by detecting the diffraction efficiency of the holographic 

grating as a function of angle. The results of this measurement are shown in figure 

6.14a, where the horizontal axis corresponds to the AOA. Figure 6.14b shows the 

array function formed on the same signal of interest, where a diffuser has now been 

placed at the output of the phased-array simulator in order to simulate the effects of a 

complex phase front resulting from fibers of unequal length. Note that the scale of 

figure 6.14b is 50% larger than that of 6.14a. It is evident from both 6.14a and 6.14b 

that in general both antenna functions have the expected sine-like structure, with the 

lobe structure being more complex in 6.14b. Non-ideal beam geometries and overlap, 

gaussian wavefronts, and photorefractive fanning and spatial frequency response, and 

processor instabilities during the long mechanical scan-time to make this measurement 

contribute to deviations away from the ideal sine pattern. 
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7. Jammer-Nulling Processor, and Combined 
Main-Beam Forming Jammer-Nulling Processor 

The jammer-nulling processor computes the angles-of-arrival of interfering 

narrowband radar jamming signals and adaptively steers nulls in the antenna angular 

response in the direction of these jammers in order to extinguish them. This chapter 

begins with an overview of the operation of the jammer-nulling processor, followed by 

the development of a theoretical model which provides analytical expressions relating 

system parameters, such as feedback gain and phase, to performance metrics such as 

suppression depth and convergence rate. The model addresses the general jammer 

scenario of multiple narrowband interference sources of arbitrary spatial profile and is 

used to model system behavior for single and multiple jammers. The dynamical model 

which is developed is then used to derive an expression for the signal-to-interference- 

noise-ratio (SINR) of the system in the presence of a desired broadband signal and 

noise sources. The SINR derivation leads to insights for optimizing the processor 

performance based on system parameters such as relative strength between optical 

beams,  electronic gain settings, and the physical  constants of devices. A 

straightforward derivation develops a direct analogy between this dynamical model and 

the traditional, Widrow-Hopf LMS algorithm presented in Chapter 2. The latter portion 

of the chapter presents experimental results of convergence behavior for single and 

multiple jammers, pulsing jammers, and the processor jammer nulling bandwidth. The 

experimental results obtained are compared with the behavior predicted by the 

theoretical model. The final section of the Chapter presents experimental results of the 

combined jammer-nulling and beam-forming processor, which integrates the jammer- 

nulling processor of this Chapter and the beam-forming processor of the previous 

Chapter into a single adaptive processor. 

168 



7.1 Theory of Operation 

The phased-array-radar jammer-nulling processor is depicted in figure 7.1. 

Incident radar signals are coherently converted to the optical domain and imaged onto a 

photorefractive crystal (PRC). The portion of the signal which passes undiffracted 

through the crystal is heterodyne detected, delayed, amplified and passed on to the 

output of the processor to form a staring main beam estimate. In this implementation the 

jammer-nulling processor is a completely independent system from the beam-forming 

processor; the main beam is not steered by this processor. The main beam signal is 

formed along a particular direction of interest, such as along the array boresight. This is 

accomplished by heterodyne detection of the portion of the phased-array simulator 

output which is transmitted directly through the PRC. Steering of the main beam is 

accomplished by varying the angle of the reference beam. This simplified beam- 

forming method is implemented here because the relevant aspects of the jammer-nulling 

processor performance are independent of the beam-forming mechanism, and partly 

because historically, the jammer-nulling processor was implemented in this manner 

initially. 

The processor output is formed as the difference between the main-beam signal 

and the jammer estimate, and is fed back to the acoustooptic Bragg cell in order to 

calculate correlation weights in the form of holographic gratings in the PRC. If the 

received radar signal contains a narrowband jammer as well as a broadband signal of 

interest, the delayed version of the signal diffracted from the Bragg cell will produce 

stationary fringes only with the incident narrowband jammer when interfered with the 

array input in the PRC. Broadband signals are decorrelated after the feedback delay and 

hence produce moving fringe patterns which result in no stationary gratings. For an 

incoming jammer at frequency coy, possibly composed of multiple spatial modes /, 
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Figure 7.1. Schematic of adaptive jammer-nulling processor. 

(denoted as spatio-temporal jammer vector Aj in figure 7.1) a stationary fringe pattern 

will form at the PRC and begin creating the holographic grating Gy. whose fringe 

modulation depth is proportional to the strength of the correlation between the delayed 

jammer signal and the incident signal from the array. This grating is Bragg matched to 

the AOA of the incident jammer and will produce a diffracted beam which propagates in 

the direction corresponding to the same angle of diffraction associated with that 

frequency in the AOD feedback. As the gratings build up, a portion of the incident light 

from the jammer is diffracted off of the gratings, and onto the jammer estimate 

photodetector where it is heterodyne detected and produces the electronic jammer 

estimate signal. This jammer estimate signal is amplified and electronically subtracted 

from the undiffracted signal, thus creating an error signal after the difference node 

shown in the figure. This error signal is the amount of residual jammer contained in the 

processor output signal. At the onset of a jammer, before the holographic gratings are 

formed, this error signal is at its maximum value. As the gratings build up, the 

diffracted component of the jammer signal increases, decreasing the error signal after 

170 



Photodetector 

a,   a? ca3 

•  • *!_ 
Etalon 
Filter 

Piggy-Back 
Jammer Pair 

A, 

Figure 7.2. Jammers A2 and 4 have narrowly separated optical AOAs and hence 
diffract off of each gratings. This piggy-back diffraction of A2 off of the grating written 
by A3, and A3 off of the grating written by A2 produces spurious frequency terms, 
which are consequently blocked by the etalon filter before photodetection. 

the difference node. This reduces the amplitude of the signal applied to the feedback 

Bragg cell, thereby causing the gratings to build up more slowly. The gratings continue 

to build up, reducing the jammer content in the output. At steady state the residual 

jammer content in the output has been reduced by the reciprocal net gain around the 

feedback loop. These Bragg selective time-integrated gratings formed in the PRC are 

the adaptive weights used to modify the array pattern by producing nulls corresponding 

to the AOA of incoming jammers. Angularly resolvable inputs to the phased-array are 

Bragg mismatched to each other's gratings so they are not affected by gratings which 

arise from other input signals. The tilted Fabry-Perot etalon located before the jammer 

estimate detector is in an image plane of the Bragg cell and serves to discriminate 

between signals incident at the same AOA (in either one or two dimensions) but at 

different frequencies. Alternatively, a wedged etalon could be implemented in a Fourier 

plane. More specific design issues associated with these two types of etalon filters are 

discussed in Chapter 8. A possible scenario demonstrating the need for this AOA- 

frequency discrimination is shown in figure 7.2. Figure 7.2 is a momentum space 
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representation showing the two narrowband jammers A] and A2 writing gratings G, 

and G2 respectively between their corresponding frequency upshifted signals from the 

Bragg cell, 2?, and B2. For simplicity, the two jammers are considered to be plane 

waves, and hence represented as delta functions in momentum space. These two 

jammers have distinctly different AOAs and temporal frequencies, and can be assumed 

to have significant Bragg mismatch, therefore negligible mutual diffraction, or cross- 

talk, between them. However, when a third jammer A3 is very close in optical AOA to 

jammer A2, or may even share the same optical AOA as A2. In this situation, jammers 

A2 and A3 can be partially Bragg matched to each others gratings and can thus diffract 

off of each others grating, or "piggy-back" off of each other because the grating will 

diffract beams at either temporal frequency. If there were no etalon filter, all the jammer 

components would be collected by the jammer estimate detector and be nulled by the 

adaptive processor. At first thought this seems favorable enough, but where the 

situation becomes deleterious to operation is when a broadband signal of interest is near 

the same AOA as a jammer, allowing the desired signal to diffract off of the jammer 

grating, and subsequently be nulled. Inserting the etalon filter and calibrating the 

frequency dispersion relationship between the feedback Bragg cell and the etalon, there 

will be a unique passband frequency versus position on the etalon which corresponds 

to the frequency dispersion relationship of the Bragg cell (shown as the angular 

distribution of Bv B2, and B3 in figure 7.2). Thus, as shown in figure 7.2, only those 

signals at both the specific jammer AOA and frequency will pass through the etalon and 

be detected by the jammer estimate detector. In addition, most of the frequency 

components of a broadband signal of interest will not pass through the Fabry-Perot 

filter, while those of a narrowband jammer will pass through and be nulled by the 

processor. This structure implements the optical array processing algorithm discussed 

in Section 2.3 
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7.2 Jammer Dynamics 
7.2.1 Main-Beam and Jammer Estimate Signals 

The analysis of the processor dynamics begins by calculating the electronic 

signal produced by an incident jammer at the main-beam forming detector. In the 

dynamical analysis which follows, it will be assumed that the main-beam has been 

steered towards a desired signal of interest, either adaptively using the beam-forming 

processor of the previous section, or heterodyne detection of the portion of the signal 

from the phased array transmitted directly through the crystal shown in figure 7.1 and 

by adjusting the angle of the heterodyne reference wave at the main-beam 

photodetector. It is important to point out that the latter approach, which is invoked in 

this Chapter, is not truly adaptive, and in contrast to the main-beam forming processor, 

requires a coherent, phase-conserved fiber feed input from the array. To investigate the 

jammer dynamics, having an actual desired signal is not necessary because ideally the 

desired signal has no effect of the jammer dynamics. However, it is important to have a 

formed main-beam, or antenna response pattern to elucidate the directional effect on 

incoming jammers, consistent with the inherent spatial processing gain of the phased- 

array. A desired signal along with electrical and optical noise terms are added later in 

the chapter when the SINR of the processor is discussed. 

The signal transduced from the phased-array and incident on the PRC for the 

jth incoming jammer As at RF frequency ©y , will be considered to be propagating 

nominally in the x direction, with arbitrary spatial profile expressed as a sum over / 

spatial modes each with a particular amplitude and phase. The optical representation of 

such a single frequency RF jammer which consists of multiple plane wave components 

(due to such effects as multipath reflections, near field curvature, random phase delays, 

or topological transformations) in the fiber-feed network (approximated as a smooth 

function here) can be expressed in vectorial form as 
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Aj s Yd,
Ajpik'te~Nk°t~k,lxJaj,j°'t 7.1 

where Afl is the amplitude of the jlth spatio-temporal mode of the jammer with RF 

frequency cop co0 is the optical carrier frequency, and k0 =2n/X, k, is the transverse 

optical wave vector component which is equal to the transverse incident RF wavevector 

times the ratio of antenna spacing to fiber spacing. To simplify the analysis, the optical 

mapping of the phased-array and all of the following grating and diffracted terms are 

confined to the x-z plane. This corresponds to a one-dimensional optical mapping of the 

antenna array, which can be either one or two dimensional. For a coherent fiber feed, 

the planewave components can be associated with corresponding RF planewaves. For 

random phase fiber feeds, this is a more general decomposition, for example with a 

Fourier lens the signals Ajt correspond to the wave from each fiber aperture. Using a 

coherent fiber feed, beam forming can be accomplished by simply heterodyne detecting 

(either with a planewave reference or a large area detector in the fiber feed image plane, 

or using a spot reference on a tiny detector in the Fourier plane). 

For a strong jammer and small diffraction efficiency, the optical signal incident 

on the main-beam photodetector can be approximated by equation 7.1, and heterodyne 

detection in the image plane of this signal with a large Gaussian apodized reference 

beam of amplitude Rm having a tilt represented by transverse momentum kr, and 

phase <pRm produces electrical signal em, given by 

-MB' i Wdz 7.2 

where e n{z'°r) represents the Gaussian apodization of width <j = <jr/-Jn of the 

reference beam, and the integration is over the variable z. 9? is the responsivity of the 

photodetector in units of amps/watt. The function Tl(z/L) represent the finite aperture 
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of the initial wavefront transduced from the array. The analysis has been generalized to 

allow for multiple jammers by introducing the sum over; in equation 7.2. Equation 7.2 

can be evaluated by setting the plane of the photodetector to correspond to x = 0. 

Expanding out the magnitude-squared operation results in 

Rme-^e-^^e-ik^A/^'-^ + c.c. 
eMB -*MT 

\dz 7.3 

where 

T    =V l«J'/4e";i'V<0'V(""'f=y  IYJJ
2 7.4 IfA=2L,jl\rjlAß I £jjt\    J*    J'\ 

is a DC intensity with contributions from all incident jammers (all frequencies), and T/V 

is the array function weighting term to be derived shortly. This DC term, as well as the 

DC term of reference beam, \Rmf, can be neglected based on that they will be below 

the bandwidth of the octave bandwidth photodetector. Carrying out the integration of 

the remaining terms in equation 7.3 yields an electrical signal given by 

em = Rnfi-»*» I, V"' {L^ *Hk<L] * ^^ ) + C'C- 7"5 

This result indicates that the electrical signal output of the main-beam photodetector is 

the sum of the amplitudes of/ jammers, each at RF frequency <oJt and each multiplied 

by the amplitude and phase of the heterodyne reference beam. The more interesting 

term of equation 7.5 is the array function weighting term X¥JI which appears in brackets 

and multiplies each term. This weighting term describes the effects of the jammers 

coming in at different AOAs than the signal of interest, and having their amplitudes 

correspondingly suppressed by the main-beam antenna response. The antenna function 

weighting is seen to be a sine function apodized by a gaussian centered at kr, which 

produces a squinted, main-beam array function with reduced sidelobes compared to an 

unapodized sine antenna response. When the Gaussian width goes to infinity, this 
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degenerates to the conventional sinc[(^ - kr)LJ mainbeam of an unapodized array. As 

equation 7.5 indicates, each of the / components of they jammers will be weighted 

according to their AOA with respect to the AOA of the desired signal. 

For beams that are not on boresight the array function is squinted as becomes 

apparent by examining the terms kr and k,. The term kr is the transverse momentum 

component of the heterodyne reference wave, 

c . 7.6 

This term is seen to be fixed in both frequency and angle, positioned to optimize the 

response of the desired signal at some AOA. When a coherently remoted array is 

implemented, the term k, is given by 

aa>.     ,   . 
k,=—J-sm(B,) 

<*>      K,) 7.7 

which is seen to be a function of both the AOA of the Ith spatial mode, and the 

frequency of the jth jammer, &r The significance of this, and how each jammer is 

ultimately weighted by the array function is better understood with the use of figure 

7.3, which plots the transverse optical momentum verses the frequency parameterized 

by equispaced angles, with an overlay of the beam forming response. As shown in the 

figure, there is an array function formed at a position kr on the transverse momentum 

axis. The straight lines on the figure are lines of constant angle 6, and are seen to 

compress as 6 increases due to the fact that the slope of the sinffy) term in equation 

7.7 decreases with increasing G. Indicated on the figure is the intersection point 

between a desired signal frequency o)mh, and the projection of the array function along 

the line of constant kr, which intersects a line of constant 9 corresponding to its AOA. 

This particular point corresponds to the position a main-beam is formed. Also shown is 
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a Jammer of frequency <o, higher than <omh, at an angle 6>„ where the frequency-angle 

relationship is such that this particular jammer falls on the first sidelobe of the formed 
Aft) 

Figure 7.3. Frequency-momentum space showing weighting function Wß in incident 

jammers. 

main-beam antenna function. The projection of this point onto the array function is the 

weighting function Yß, which affects each spatial mode of each jammer differently. 

Thus, the spatial processing gain produced by the array is seen to initially reduce the 

received jammer strength. 

Also shown in the figure is a second jammer at a>2, at such an angle that it falls 

on the peak of the array function, as though it were at the same angle of the jammer 

even though it is not so in radar space. Because there is no etalon installed in this 

version of the main-beam formation process, this squint is inherent to this processing 

scenario. This shortcoming of the processing technique essentially means that without 

the etalon, the system is appropriate for narrowband processing only. For example, the 

shaded region in figure 7.3, denotes a reduced system bandwidth of Ao>. Over this 
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reduced system bandwidth, squint is negligible and there is a unique relationship 

between k, and 8. This bandwidth issue is consistent with what was shown in Section 

optical mapping of 
main beam antenna 
signal-^ 

Figure 7.4. Interference at photorefractive crystal between the jth single frequency 
jammer A} of arbitrary spatial profile and feedback beam Bj containing frequency 

content of Aj. The real space representation is shown at the left of the figure illustrating 
near field curvature, and the momentum space representation is on the right illustrating 
two distinct jammers. 

2.3, in that the etalon filter effectively provides the necessary time delays to enable 

broadband processing. 

In order to form the jammer estimate, a portion of the jth jammer A ■ is 

diffracted off of the Bragg-matched family of gratings in the photorefractive crystal. 

The optical wavefront corresponding to an incident RF jammer after upconversion to 

the optical domain at the PRC is shown in figure 7.4, both in real space and momentum 

space, along with the resulting holographic gratings G} and feedback signal Bp 

discussed further below. As shown in figure 7.4, the collection of spatial modes of the 

jammer Aj writes a corresponding family of gratings denoted by Gy. This diffraction 

can ideally be considered an inner product of the incident signal in equation 7.1 with the 

appropriate Bragg-matched set of gratings Gy, which are expressed in vectorial form as 
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G/sEAe~ttjrv 7-8 

The Gj, are the grating amplitudes, kf =k,-^k2
0-Kj are the grating wavevector 

components in the z direction, and kf = Kj + ^k2
0-kf are the components in the x 

direction, and |id = coy/F is the acoustic wave vector at the frequency co^ with 

acoustic velocity Fin the feedback Bragg cell. The inner product between G} and Aj is 

defined as 

(4-^.)=2>/v 7-9 
/ 

It is important to note that the weighting function ^ is not included for the 

jammer estimate signals derived from the diffracted beam, which is detected at the 

jammer estimate detector. This is because in contrast to the main-beam array function 

which is steered towards the desired signal, each jammer input diffracts off of its own 

grating and is therefore always on boresight for its own grating. This is a restatement of 

the fact that the jammer-nulling processor builds up and steers array functions in the 

directions of the jammers, in accordance with the fact that the jammer-nulling processor 

is essentially a sidelobe canceller. The process of beam forming towards the jammers is 

essentially identical to the main-beam forming process described in Chapter 6, however 

because the jammers are narrowband, there will be a strong correlation over many time 

delays, and gratings will be formed over a greater volume throughout the PRC than 

with a broadband desired signal. 

The electrical jammer estimate signal, eJE, is generated by the coherent detection 

of this diffracted component using a plane wave heterodyne reference of amplitude RJE 

with phase (f>R , which will be assumed to uniformly illuminate the photodetector area. 

The signal eJE for this single jammer case can be written as an integral over the surface 

area a of the photodetector in terms of this inner product as 

Vidx       7.10 eJE = \Ux){AJ,GJ)^'efa',^xef<k'-^ z + R^e^e^e^ 
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where because of the 1-D analysis, the integration is over* only. The term w(x) is the 

holographic reconstruction of the Fourier plane impulse response of the AO device, 

given by the Fourier transform AO device aperture, and it has an effective width of \/N 

of the detector aperture assuming that the detector aperture is equal to the reference 

beam width. The jammer estimate current then becomes 

N 

= XRJEei**^i(Auei°»'G;!) + c.c. 

" ' 7.11 

where RJE = RjE/N, and the DC terms can be dropped because of the detector 

capacitive coupling (highpass), and the resulting output oscillates with a strength 

proportional to the jammer and gratings. 

More generally there may be multiple jammers present, each at a different 

frequency cOj, and each with a unique set of spatial modes. Due to potential partial 

Bragg matching between gratings written by different jammers (the piggy-back 

jammers of the previous section), the relation for the photocurrent given by equation 

7.10 must be extended to accommodate the multiple jammer scenario. Consider first the 

situation where there are two jammers present, Ax and A2, of frequency to, and a>2 

respectively, and each made up of only one spatial mode (planewave jammers). This 

scenario is shown in figure 7.5, and the four resulting diffracted terms, W, are written 

out in equation 7.12, 

where Ak = £, - k2, Akl
x
2 = Ak-x,andK] and K2 are the propagation vectors for the 

acousto-optically diffracted beams of jammers Ax and A2, in the directions of Ä and 
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Ak=k,-k2        Ak]
x
2=Ak-x 

Figure 7.5. Two planewave jammers, A,  and  A2, of frequency 6),  and  a)2 

respectively, shown in momentum space, write independent gratings G, and G2. Each 
jammer can diffract off of the grating written by the other jammer, with momentum 

mismatch Ak. 

B2 as shown in figure 7.5. As shown in the figure each of the input beams is capable 

of diffracting off the grating written by the other jammer, with resulting momentum 

mismatch Ak. The second two terms of equation 7.13 represents the cross-talk terms 

between the gratings, and the terms r)n and ri2X are weighting terms which account for 

the Bragg mismatched diffraction efficiency resulting from each jammer reading out the 

other jammer's grating. It is important to note that although the Bragg mismatch may be 

large, resulting in small r] weighting terms, if the jammer(s) are very strong, the 

diffracted component may still be large. Equation 7.13 can be written more explicitly as 

W = (4,G,Je*"'* **> + (A2,G2)e^,+K^ + J A<VM~'2 ?dr + JA2Gxe'^ Fdr  7.14 

where the inner product notation has been used in writing the first two diffracted terms, 

even though in this case they have been assumed to be planewaves for which 

ZA G" =A G* &A--G'=U;G.). The integral of momentum mismatch Ak over 
ß  ß       J]   Ji    —J  —J     \—J,—Jl a 

the crystal interaction volume will be assumed to yield a weighting term of the form 

r\« sinc(Mxl), assuming an interaction region with transverse dimensions y and z 
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much greater than the nominal propagation direction x. By symmetry 77,.. = r\.. = 77, and 

the diffracted terms of equation 7.14 can be written as a sum of inner products, the 

latter two appropriately weighted to account for Bragg mismatching on readout, 

W={4 ,G, )ei{o» <+K'xh(A2 ,G2 y
K t+K*x) 

+r,{A, ,G2 )eh <<K> -"" >}+T1(A2 ,GX }eh l+(K> "< H' ?" *5 

As discussed in the previous section, the Fabry-Perot etalon filter functions as a 

position (or angle) dependent frequency bandpass filter, ideally insuring that only those 

frequencies corresponding to the unique frequency-position (or angle) relationship 

between the etalon and the Bragg cell pass through the etalon. Thus, ideally the etalon 

filter would completely filter out and remove the last two terms of equation 7.15. In 

reality however, there will be some leakage due to the fact that the etalon will not have 

infinitely narrow, unique passband functions for each frequency. Again, if the jammer 

is strong enough, significant leakage may occur for a piggy-back jammer pair passing 

through the etalon. The frequency response of the etalon can be represented by another 

weighting function, A12, which is a function of the frequency separation between the 

two jammers. This weighting function is of the form 

A12 = 
l-r2Nem" 

l-rV5|: 

7.16 

The phase factor ön is the phase shift between each of the JV bounces inside the etalon, 

and takes into account the frequency spacing between the first and second jammers, 

upshifted to optical frequencies by co0, 

*„=_(*„+fl>I+-Lr^J. 1A1 

Multiplying the cross-talk terms of equation 7.15 by the etalon weighting factor yields 
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where again by symmetry AJm = AmJ. Equation 7.16 can now be extended to account 

for an arbitrary number of jammers, each denoted byy, 

w=Z faGyw) + ^jMArGMaMK^ki;,)x] 
m,m*j 

7.19 

where the dummy subscript, m, has been introduced to enumerate the cross-talk terms. 

As the number of bounces in the etalon, N, approaches infinity, equation 7.16 

approaches Airy's formula1, 

^12 /V->°° \-r2ei5,2J 7.20 

which describes the bandpass amplitude transmittance function of a plane, parallel 

Fabry-Perot etalon. The tilted or wedged nature of the etalons invoked here may induce 

beam walkoff, and hence provide a smaller number of bounces than a comparable plane 

parallel etalon. For this analysis however, N will be assumed large, as will the cavity 

finesse, and the etalon will be considered to have an appropriately narrow frequency 

response so as to provide adequate resolution and isolation between jammer 

frequencies. In addition, when the Bragg mismatch between jammers is sufficiently 

large (or the array is appropriately apodized with, for example, Gaussian weighting to 

substantially decrease the sidelobes), then the contribution from the piggy-back jammer 

terms in equation 7.19 may be neglected. Thus, the selective capability provided by 

both Bragg matching and the etalon filter can enforce only the inner products with 

common subscripts in equation 7.19. For this case of multiple, planewave jammers, the 

jammer estimate current eJE becomes 
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= KRJEe^Y,j(Aje
i"><G*j) + c.c. 

where the DC terms of equation 7.21 have been dropped due to bandpass filtering by 

the photodetector. Thus the photodetected output consists of a weighted linear 

superposition of each of the jammers, oscillating at the corresponding frequencies. 

Each jammer has its own degree-of-freedom in the corresponding grating diffraction 

efficiencies, Gy. It will be shown in the following analysis how the jammer-nulling 

processor uses correlation cancellation loop feedback to adaptively estimate main-beam 

corruption by each jammer and drive the gratings G; to the appropriate amplitude and 

phase to subtract out and eliminate all of the jammers from the system output. 

Having multiple jammers present on the photodetector raises an interesting 

aspect to this method of processing. Recall that the reference beam uniformly 

illuminates the jammer estimate photodetector. This is necessary because the adaptive 

nature of the processor means that the frequency of the jammers, and hence the position 

in the Fourier plane of the AO which is assumed to be the detector plane, are not known 

a priori. For this reason the reference beam must be available to, and hence spread out, 

linearly across the photodetector to interact with all possible jammer frequencies 

simultaneously. Because the reference beam is spread out to interact with N possible 

jammers, there is a l/N reduction in heterodyne processing gain, where N is the time- 

bandwidth product of the feedback Bragg cell, and the width of the Fourier plane 

impulse response w(x) is l/N of the reference beam width. 

Finally, the most general case is when there are multiple jammers, each with a 

unique set of individual spatial modes denoted by /. The situation is now complicated 

by the fact that there could conceivably be coupling between the different spatial modes 

of different jammers. To simplify the situation dramatically, it will be assumed that each 

jammer has the same group of spatial modes, and that coupling will occur only between 
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corresponding spatial modes. We can analytically represent the corresponding 

diffracted terms of equation 7.19 with vector modes instead of scalars, resulting in 

w=% (4->£>''K"+v) + Z^Aym(4,Gm)e'-h'+(^-^H 
m,m*j 

7.22 

The assumption of minimal Bragg matching and an ideal etalon filter will again 

however be invoked here, and the high-pass filtered jammer estimate current will then 

be the vectorial version of equation 7.21, 

eJe = *RJCe''""'L/"''(d„Qi) + c.c. 
7.23 

= mjEei^y{Ajle^'G;) + c.c. 

The similarity between equations 7.21 and 7.23 should be pointed out, although the 

inner product terms have a vectorial nature and the additional summation over the 

spatial modes, /, the two equations are essentially the same. This similarity is to be 

expected, because any jammer with multiple spatial modes, could alternatively be 

considered as multiple planewave jammers, but all of the same frequency cOj. 

7.2.2  Feedback Analysis 

The RF feedback signal applied to the feedback Bragg cell contains the signal 

spectrum produced by the difference between eJE amplified by gv and a delayed 

version of em. This difference signal is then amplified by g2 and applied to the Bragg 

cell. The DC terms in equations 7.21 are blocked by the transducer bandpass function 

of the feedback acousto-optic Bragg cell and therefore do not contribute to the acoustic 

interaction in the Bragg cell. The resultant single sideband diffraction from the Bragg 

cell with amplitude B incident at the photorefractive crystal is given by 

B = Ä^MIK^S,V"&vK,"V)g",V45"iC;,cl",,[^-&(RJEIRMBW
P
>] 7.24 
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where C is the amplitude strength of the incident illumination at the Bragg cell, and r\ is 

the Bragg cell efficiency in units of %/amp. In addition, phase terms have been 

combined by defining 

Pj S KB ~ K ~ <°JGe Sj = (j>Rm -4>c- (OjGe - <OjOe 7.25 

where aa is the acoustic delay at the Bragg cell transducer, and cse is the electrical 

delay around the feedback loop which serves to decorrelate broadband signals of 

interest. 

The photorefractive material responds to the incident optical intensity by writing 

a grating proportional to the spatially varying component of the intensity which in turn 

suffers a temporal decay due to the spatially constant (DC) component of the intensity. 

As discussed in Chapter 4, the time evolution of the grating G can be written in terms of 

these two intensity components and the material constants a and ß, 

£G = -aIDCG + Veatins 
/.zo 

where a and ß are given by equations 4.50 and 4.55. Calculation of the incident 

intensity from I = \A + B\2 yields the DC and the spatially varying components of the 

intensity, given by 

7.27 

where 

J*s Z v Ajfi-'^e-W-^e1"''^'   = X .Kl 7.28 

is a D.C. component with contributions from all jammers present, and 

W = Z77„V>~'**>■'^'x^M^l(RJE/RM)GjHe^]^BStTig2C    .7.29 
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Figure 7.6. Plot of theoretical jammer nulling bandwidth obtained from a numerical 
solution of equation 7.32 for the plane wave jammer case, where a=l,b= 12.6, and 
t' = 8 seconds. 

Using equations 7.26, 7.27, and 7.29, the expression for the time evolution of the jth 

grating, expressed in vectorial form is then 

ftGrßf>Aj(£j-%-£j •GJgx(RJE/RyBy*)RMrfllg2C 

2„2«,2    2|^|2 

-a 
IA+\RMS\ r\2^g2

2\C\ ^    .7.30 

IM. V;frMR
JE/X»BY?JS

J
 \VjTZlRjElRJFj.e-'» ] 

An intuitive metric for quantifying the jammer nulling performance of the 

processor is in terms of the jammer excision E. The excision is a complex, dynamical, 

dimensionless variable, and is defined to be the residual jammer content in the 

processor output normalized by the initial jammer amplitude. Transforming 7.30 using 

the excision E yields the vectorial expression 

Ej^Vj-g^'GjRjJR, MB 7.31 

Substituting 7.31 into 7.30 results in the dynamical equation for the excision 

\ ■*  A } 1 4 
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Figure 7.7. Plot of single jammer excision in the complex plane, superimposed over a 
vector-velocity-field (time interval of 3 seconds), for a = 1, b= 20. The phase 
difference increases from 0 to n/2 by x/6 for each plot in the sequence. 

where the following unitless definitions have been made: 

^/(KB\2i2*2g2
2\c\2) 

7.33 

7.34 
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time (sec) 

Figure 7.8. Magnitude of the excision versus time for the four plots of figure 7.7, 
again, a = 1, b= 20. 

b=gxRJEß/(a\Rjr]Xg2c) 

and the system center frequency wc is defined according to 

<t>RJF ~ <t>C 

7.35 

co„ = 7.36 

This term represents the phase difference between the two inputs of the summing node. 

It will be shown that for convergence to jammer suppression it is necessary that 

-7i/2 < oa(coc - co ) < 7i/2. When the phase difference is increased by an increment of 

2K, the nulling behavior repeats, i.e. a periodic nature of the nulling behavior is 

evident. This range of allowed phase values for jammer suppression translates directly 

into a frequency nulling bandwidth, as shown in figure 7.6. The figure shows a plot of 

the steady-state jammer excision bandwidth obtained from a numerical solution of 

equation 7.32 for the single plane wave jammer case with parameters estimated from 

the experimental set-up of the following section. A nulling bandwidth of approximately 

1.7 MHz with a null depth of 22 dB repeating every 3 MHz is obtained. Note that 

outside the nulling bandwidth the system oscillates with moderate gain of 5 to 10 dB. 

Alternatively, the behavior of equation 7.32 can be plotted as a dynamical 

variable in the complex excision plane. The excision of a single jammer as a function of 

time is plotted in the complex plane in figure 7.7 a-d (t = 0 to 3 seconds). A net phase 
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Figure 7.9. Plot of single jammer excision in the complex plane, superimposed over a 
vector-velocity-field (time interval of 3 seconds). The phase difference increases from 
n/2 to n by n/6 for each plot in the sequence. The simulation parameters are the same 
as those for figure 7.7. 

difference due to a frequency shift from the processor center frequency increases from 

0 to x/2 by n/6 for each plot in the sequence. Superimposed over each plot is a 

vector-velocity-field plot of the excision. Thus, given any excision value, the motion of 

the excision can be predicted by following the direction indicated by the arrows in the 

figure. In figure 7.7a, the jammer is at the center frequency and the phase shift is zero. 
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i 2 3     time (sec)   4 
Figure 7.10. Magnitude of the excision versus time for the four plots of figure 7.9. The 
simulation parameters are the same as those for figure 7.9 

The excision is reduced from its initial value of 1 to a steady-state value of 

approximately of 0.05, or -26 dB. Because the phase shift is zero, the excision is 

entirely real, and remains real as it travels along the real axis towards the steady-state 

value, as shown in the figure. As the phase difference is increased, the convergence of 

the excision becomes more and more oscillatory. Figure 7.7d is the marginally 

convergent case, where the phase difference is equal to TC/2 . For these convergent 

cases, the magnitude of the steady-state excision value is unchanged, as shown in 

figure 7.8. The four curves in the plot of excision versus time correspond to the four 

plots of figure 7.7. Note that after 3 seconds the marginally convergent case has still 

not converged. 

Increasing the phase difference beyond n/2  results in non-convergent 

behavior, as shown in figure 7.9 a-d. Figure 7.9a is again the marginally convergent 

case, and the remaining three plots correspond to phase differences of 2TT/3, 5TT/6, 

and K respectively. The remaining plots are clearly non-convergent, the last plot, that 

when the phase difference is n, is somewhat difficult to interpret but indicates that the 

excision is driven towards a value of approximately 3.5, or +11 dB. The magnitude of 

these same four cases is shown in figure 7.10, plotted from t = 0 to 4 seconds. As will 
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be shown later in this Chapter, noise sources can also induce oscillatory behavior in the 

jammer suppression. 

7.3 Jammer Scenarios 

An analytical solution for the third order nonlinear equation for the excision has 

not been found, although a solution to the second order can be found. However, under 

the assumption that the excision becomes small (cOj * coc, a « b), a linearized version 

of equation 7.32 is more useful for discussing some simple jammer scenarios. The time 

evolution of the excision for the jth jammer in this linear regime can be approximated 

by 

^te>wfc-^)-f^;-^)- 7.37 
1A 

At the onset of the jth jammer, Gy = 0, and from equation 7.31 we have that 

—vL'=o = — J' This demonstrates that initially the excision is limited to the amount 

provided by the spatial processing gain of the phased-array. After transforming back 

from the change of variables of equations 7.33 - 7.35, equation 7.37 yields a jammer 

decay rate of 

f* r=0 
= -dj{£j ■ EJ)y'e-ia°(c°c-0,>) 7.38 

where a lumped factor has been defined as 

y'=&/g8?7M&C 7.39 

with units of (watt • second)"1 = joules-1. The result of equation 7.38 illustrates that the 

excision is decreasing in the direction of the incident jammer as expected, at a rate 

proportional to both jammer strength and feedback loop gain, in accordance with the 

LMS algorithm discussed in Chapter 2. The steady-state excision can be obtained by 

setting the time derivative in equation 7.37 equal to zero, 
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dj-Ej 
r->oo V II   ^ 7.40 

where Aj indicates a unit vector in the A} direction. The result given by equation 7.40 

demonstrates once again that the excision is in the direction of the interference as 

desired, but in contrast to a true LMS-based algorithm in which the suppression depth 

depends on the jammer strength, the steady-state suppression value of Oa&jth jammer 

depends on the ratio of the power in fo&jth jammer to the total amount of interference 

power IA. As shown below, for a single jammer this ratio is unity, and the suppression 

depth is independent of jammer strength. 

7.3.1  Single Jammer Dynamics 

Consider a single incident jammer at center frequency ac, which yields 

drdi=IA- In the limit of alb<K X ("»Pty^S lar§e feedback §ain) ecluation 7-38 

yields an initial decay rate of 

U-E]     =-U-E\lAf 7.41 
• ^ ' r=0 V 

and for the steady-state suppression equation 7.40 yields 

ArE} = aA,-VJb = £■¥,a/y'. 7.42 

The most simple single jammer scenario to consider is that of a single 

frequency, plane wave jammer. In this case the spatio-temporal jammer vector Ax is 

reduced to a single spatial mode with amplitude A0 at frequency co, given by 

A = Aem& 1.43 
0 

Similarly, %, the suppression due to the main-beam array function evaluated at the 

jammer's transverse wavevector, is collapsed to a scalar value, denoted as %. For this 
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case, equations 7.41 and 7.42 are dramatically simplified. In fact, for this case, 

equation 7.37 can be solved analytically2 yielding 

E(t') = E e-hA^-t + 
a% 

which for a jammer at center frequency coc yields a steady-state excision given by 

7.44 

a¥, m,^avb 
cW, aT, 

giRjefaKgzC     /r' 
7.45 

and decay time constant of 

X = ■ 

IAgxRjeßr\^g2C    IAy'' 
7.46 

Note that in equation 7.45, as in equation 7.42, for a single jammer the steady-state 

suppression depends on the ratio a/b, which is independent of jammer power and the 

total interference power. 

A less intuitive result is obtained from a solution to the second order 

approximation of equation 7.32. The second order approximation is given by 

^fe) = «fc - Ej) + fXjA^Ej» ~ ye-*"l--')dU ■ Ej) 
A A .    1A1 

For a single plane wave jammer this becomes 

^r(E) = a(Y - E) + VE2 - be^^E 
7.48 

with an analytical solution given by3 

EV) = z tan 
t^AaV -K2 

- tan" 
K-2 

-JACW-K
2 

K 
+ — 

2 
7.49 

where K = aW + be~ia^-w'). While an analytic solution to the third order differential 

equation for the time evolution of the excision has not been found, it is interesting to 

note that the second order approximation does have a solution. However, the solution 
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based on the linear approximation has proven adequate for the limiting cases examined, 

and the more complex solution given by equation 7.49 has not been used. 

7.3.2 Dynamics of Multiple Jammers 

7.3.2.1 Two Jammers of Equal Strength 

Consider next the case of two incident jammers of equal strength denoted as i, 

and A2, but having different AOAs and frequencies both near wc. Since both jammers 

have the same power of IJ2, from equation 7.38 it is clear that the excision begins to 

decrease in the appropriate direction for each jammer at a rate proportional to jammer 

strength, 

while from equation 7.40 the steady-state excision values become 

ArE,=2aArYjb = 2Ar%{a/y') 7.52 

and 

A2 -E2 s 2aA2 -V2/b = 2A2-^2{a/Y'). 7.53 

Note the factor of two present in equations 7.52 and 7.53 as compared to equation 

7.42. This result illustrates a simple example of how the steady-state suppression value 

of the jth jammer depends on the ratio of the power of the jth jammer to the total 

amount of interference power IA. In this particular case, a factor of two in amplitude 

between the excision of a single incident jammer and the excision of each of the two 

equal strength jammers. 
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7.3.2.2 Strong and Weak Jammer 

Next consider the case of two jammers of different frequencies and different 

AOAs, where one (jammer A}) is much stronger than the other (jammer A2). In this 

case we can assume that IA=A\-AU For the strong jammer, the initial rate of excision 

given by equation 7.38 becomes 

and the steady-state suppression from equation 7.40 is 

d\-E]^aAr%/b = Ar%a/y'. 7.55 

Thus, for the strong jammer the results correspond approximately to the case of the 

single jammer as considered previously in equations 7.41 and 7.42. The rate of 

excision for the weaker jammer, A2, is slower than that of Ax, and is proportional to 

A\ -A2, as shown in equation 7.56: 

M^-Ei)      =-bU-E2)(A;-A2/lA) 
X ' t'=0 v ' 7.56 

The steady-state suppression of the weaker jammer is now reduced in comparison to 

the stronger jammer, in particular by the ratio of the power in A2 to the total 

interference power IA = Ax A\ + A2 A*2, 

dl-E2= aA2 .V2/(a + b(£ -A2)/lA)_ ? 5y 

7.3.2.3 Two Jammers with the Same Optical Angle-of-Arrival 

A special case to consider is when jammers of differing frequencies share the 

same optical AOA in the adaptive processor, as would occur with the piggy-back 

jammers discussed in previous sections of this Chapter when there is no etalon filter 

installed. This situation arises when two jammers of different frequencies share the 
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Figure 7.11. Momentum space representation of two multiple spatial mode jammers Ax 

and A, of different temporal frequencies which share the same optical angle of arrival. 

same RF transverse momentum vector component, and hence the same transverse 

optical wavevector component. Note that because the jammers have different 

frequencies but the same RF transverse momentum vector component, they have 

different RF AOAs. The optical scenario is depicted in momentum space in figure 7.11. 

The figure depicts a particular case of two different temporal frequency jammers, A, 

and A2, each consisting of three overlapping spatial modes, along with the 

corresponding sets of gratings G, and G2 written between the jammers and their 

corresponding feedback beams, Bx and B2. 

Although gratings will not be written between the different temporal 

frequencies, i.e. between Ax and B2, the gratings can be read out by both frequencies. 

Without the Fabry-Perot etalon installed the excision for the jth frequency jammer can 

be supplemented by diffractions from other gratings which were written by other 

frequencies. The excision for thejth jammer then takes the form 

EJ*Vj-gRJ./Xm>e-*>j:mGm. 7.58 

This result suggests that the jammers will be nulled together, and that they will be 

suppressed by the same amount, regardless of the relative power between them, in 
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contrast to the previous cases examined for jammers with different AOAs. If the ¥. are 

equal, then the jammers will all have the same steady-state suppression level. 

The results from the above jammer scenarios indicate that the jammer nulling 

processor performance is analogous to a processor based on the LMS algorithm in the 

sense that the decay rate of the jammer(s) depends on jammer strength and feedback 

gain. Except for the special case of a mutual AOA, the steady-state suppression results 

indicate a dependence upon the total interference power, in contrast to that predicted by 

traditional LMS based algorithms. These results are compared to those predicted by the 

narrowband, Widrow-Hopf, single adaptive loop in the following section. 

7.4 Comparison to the LMS Adaptive Loop 

The basic operation of the single narrowband Widrow-Hopf LMS adaptive loop 

was presented in Chapter 2. In addition, the equivalence of the optically implemented 

jammer-nulling and beam-forming algorithms to the broadband, Widrow-Hopf, true- 

time-delay algorithm was presented. It is instructive to investigate the similarity of the 

jammer-nulling processor algorithm to the simple Widrow-Hopf LMS adaptive loop 

within the context of the physical system variables introduced in the previous section 

using the standard nomenclature used to describe the Widrow-Hopf LMS loop in 

Chapter 2. The derivation which follows is for single, narrowband LMS feedback 

loops, for forming single adaptive weights. The fact that the loop itself is narrowband 

does not imply that the resulting analogies developed are applicable only to a 

narrowband scenario, one can consider this single loop as one of many which make up 

a broadband system. Specifically, the equivalent feedback gain constant k of the LMS 

algorithm will be derived, as will an expression for the optimal set of weights for the 

processor which minimize the excision. 
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Reference r(t)oz D(t) 
Signal 

Output 

Figure 7.12. Single LMS adaptive loop as discussed in Chapter 2. 

The narrowband, Widrow-Hopf adaptive LMS loop for a single antenna array 

element from chapter 2 is shown in figure 7.12, and the adaptive loop for a single array 

element of the jammer nulling processor is shown in figure 7.13 with no 

photorefractive erasure term present. It is important to note that in figure 7.13, some 

signals are optical, and some are electrical. It has been assumed that the electrooptic 

upconversion of the received array signal has already been implemented at this point of 

the discussion. The signals shown in the standard LMS loop of figure 7.12 are all 

electrical. As discussed in Chapter 2, while algorithmically the two systems are the 

same, there are some significant differences between them. 

In particular, the output of the jammer-nulling processor is after the difference 

node, instead of before as with the standard LMS loop of Chapter 2. Thus the output of 

the jammer-nulling processor is actually the "error" signal, in which the jammer content 

has been reduced and the broadband signal of interest passes through the jammer- 

nulling loop unaffected. It follows that a second difference is that the reference signal 
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Figure 7.13. LMS adaptive loop for a single array element of the adaptive phased-array 
jammer nulling processor. 

input into the difference node is the signal to be nulled, i.e. the interfering jammer. 

This contrasts with the standard loop implementation in which the correlation- 

cancellation-loop is configured to maximize the array output for the desired signal. The 

reference signal r of the standard LMS implementation is a temporal waveform which is 

required to correlate well with the signal of interest, and the output is taken before the 

difference node. In the jammer-nulling processor the reference signal is the output of 

the main-beam estimate photodetector, or the steered main-beam forming processor. 

This main-beam signal contains both the desired signal and the corrupting jammer 

signals. The desired signal is broadband and much weaker than the jammer, therefore 

the reference signal for interference cancellation is essentially the interfering signal 

itself. 
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An additional, more fundamental difference between the jammer-nulling 

processor and the Widrow-Hopf LMS loop is related to the fact that (ideally) no portion 

of the desired signal gets collected by the jammer estimate detector due to the spatially 

selective bandpass filter array. As will be shown, while the jammer-nulling processor 

still follows an LMS minimization rule, this difference has a fundamental impact on the 

expressions for the optimal weights and steady-state weight values as compared to the 

results of Chapter 2. In particular, it is found that when the jammer-nulling processor is 

modeled as an ideal LMS algorithm (i.e. neglecting photorefractive weight erasure), the 

excision of a particular jammer depends on its power ratio to the total interference 

power, and is not related to the power of the broadband signal of interest. However, 

for a single jammer it is found that the excision level is independent of jammer power. 

These results are consistent with the jammer suppression scenarios discussed in the 

previous section in which weight erasure was included, but the desired signal and noise 

were not included. As will be shown in Section 7.5, the effects of noise and the 

broadband desired signal reveal themselves primarily through their impact upon the 

grating erasure terms, and because erasure has been ignored in this analysis, their 

significance is minimal here. 

The fact that because the interference serves as the correlation reference, and 

this makes the jammer-nulling processor analogous to the traditional sidelobe cancellor 

was reviewed in Chapter 2. However, in a sidelobe cancellor the suppression depth of 

a signal is proportional to its incident power, therefore a strong desired signal can 

actually null itself. The Bragg selective gratings and the etalon bandpass filter array in 

the jammer-nulling processor essentially act as an excisor filter for the broadband 

desired signal. This feature makes the jammer-nulling processor even more robust than 

a traditional sidelobe canceller in that suppression does not occur even if the desired 

signal is strong. 
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Consider a single, electro-optically upconverted planewave jammer of 

frequency coA, represented by A(t) = Ae"0jl' and a broadband desired signal 

D{i) = De'^°D'+m\ shown as a phase-modulated signal, both of which are incident on 

an N element array. The total optical signal contributed to the processor by the nth 

element is taken to be xn(t) = Dn(t)e-ik'nd + An(t)e-ik'nd, where kx
D and kx

A are the 

transverse propagation vector components for the desired and jammer signals 

respectively, and d is the fiber core spacing. As shown in figure 7.13, this is multiplied 

by a Bragg-matched "gratinglet" Gn, sent to a summing node, and amplified by an 

effective gain y. This summing node is optically implemented as the jammer estimate 

heterodyne photodetector, and gathers contributions from all the other antenna elements 

as shown in the figure. Due to the feedback delay x, the broadband signal component 

at the element output and that from the difference node are decorrelated, and as 

discussed earlier there is no weight buildup due to this signal. Due to the finite 

integration time over which the adaptive weights are formed, no correlation between 

these signals is only an approximation, and in actuality some partial correlation 

sidelobes between the delayed and undelayed versions of the broadband desired signal 

will exist. However, the correlated component will be considered negligible in this 

analysis. The fact that there are no gratings created due to the desired signal combined 

with the spatially selective etalon frequency filter, ensures that only jammer components 

will be both diffracted and collected at the jammer estimate heterodyne detector. Noise 

at the fiber input is ignored because it can be considered to be broadband, and the 

majority of its power will not be passed by the bandpass filter array. Thermal noise 

generated at the detectors is neglected in this analysis, but will be included in section 

7.5. The summed output signal is then written as 

y{t) = rXA^yikUdG
n 7.59 
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where the time variable t now contains the intrinsic delay of the etalon filter array. Note 

the distinction between the summed output signal for the jammer nulling processor 

given by equation 7.59 which is now assumed to consist only of the product of the 

jammer signal and the grating weights, and the summed weighted output result of the 

Widrow-Hopf LMS loop shown below in equation 7.60. In particular, Widrow-Hopf 

signal consists of all incoming signals contained in the X vector of the unadapted array 

output multiplied by the adaptive weights, 

K0™ = I,\('K- 7.60 

The summed signal of equation 7.59 can be represented by the product of two 

(complex) vectors, 

y(t) = yGTA{t) = yAT(t)G 7.61 

where the complex vectors are given by 

and 
d = [AR-AN„] + i[Ah-ANi] 7.62 

G = [Gh-GNK] + i[Gh-GNi] 7.63 

where the subscripts R and / represent real and imaginary parts respectively. The other 

input into the difference node is the reference signal r(t -t), which is the delayed, 

steered, main-beam signal which contains both the desired signal and the corrupting 

jammer signal, 

r(t) = D{t) + VmA{t) = ZN\D^yik?nd + A^Yik> 
nd 7.64 

where the jammer signal is seen to be weighted by ^m, the main-beam antenna 

function, to account for the fact that the array has formed a beam in the direction of the 

desired signal D(t). The second equality reflects the fact that the reference signal is 

actually formed by summing the output from all of the antenna array elements. The 
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error signal at the output of the difference node is the difference between equations 7.61 

and 7.64. This error signal is also the processor output, and can be written as 

s(t) = Kr(t-r)-y^An(t)Gn=Kr(t-r)-rATGj. 7.65 

The effective gain constant K multiplying the reference signal accounts for 

photodetector responsivities, optical powers, and material parameters. From chapter 2, 

the generic form of the complex LMS algorithm was given as 

d 
a W = -kVfVE[ss'] = 2kE[X's] 7.66 

where £[•] is the expectation operator and Vw is the gradient operator with respect to 

the weight, W. The corresponding steady-state weight values for the Widrow-Hopf 

LMS algorithm were given by W = 50_1, where the reference correlation vector S is 

S = E[x;{t)r{t),-,xN{ty{t)}T 7.67 

and the covariance matrix <D is 

<D = £ 

x,x, xxx2    * X\XN 
* * 

* xNxx 
* 

Xfs/XN 

7.68 

Written in terms of the holographic grating diffraction efficiency G-, corresponding to 

the jth jammer, the LMS algorithm for the jammer-nulling processor can be written as 

d 
dt 

G = -kVG[es'] 7.69 

where k is the feedback gain constant. Note that the expectation operator, £[•], has 

been dropped, because in actuality, as with the Widrow-Hopf implementation, the 

optical implementation discussed here is based on approximating expectation values by 

instantaneous values. By determining the three parameters k, K, and y in terms of the 
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system parameters of the processor, the standard LMS algorithm and its associated 

notation can be directly related to the optically implemented jammer-nulling processor. 

The optimum weights are found by setting the gradient of the sum-squared error 

equal to zero, 

VG[e£*] = 0 7.70 

which is equivalent to 

VG[££*] = VG[4] + VG[£/
2]. 7.71 

Carrying out the gradient operation is done with respect to both the real and imaginary 

parts, which when using equation 7.65 for the error E results in 

VGt[ee-] = [äVGte-] + [eVGte] = ^A--YB'A 7.72 
and 

VG\se'] = [sVG/] + [e-VGie] = iyeA;-iye*A .7.73 

It follows that the sum of the two above equations can be expressed as4 

v4e£1+v4££1=-2^ 7-74 

which allows equation 7.69 to be written as 

— G = -kVG[ee*] = 2kYd'e. 7.75 

Note that the second equality of the above LMS rule and the second equality of 

equation 7.66 differ in the term which multiplies the error. The X vector of equation 

7.66 contains all incident signals, while the A vector in equation 7.75 contains only 

jammer signals. Setting equation 7.74 equal to zero and substituting in equation 7.65 

for the error yields 

[Kr(t-r)-yGT
op!A]A:=0. 7.76 
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Solving for Gopl results in an expression for the optimum weights 

e„=iV£M2 
7 

where the constants K and y will be derived shortly. A vector SA analogous to the 

correlation vector of equation 7.67 is defined as 

SA = A*r(t - T) = d^Dn(t - r)e-^d +An(t- r>f* >d 7.78 

Again, under the assumption that over the finite integration time which the adaptive 

weights are formed, the correlation between the desired signal and the jammer is 

negligible, the reference correlation vector SA simplifies to 

SA=A-[Z!A.(t-T)e-*!« 7.79 

Under the same negligible correlation assumption, the matrix ®A, analogous to the 

covariance matrix of equation 7.68 also contains only jammer signals, 

®A=A*AT. 7.80 

In the single plane wave jammer analysis of the previous section, the grating 

vector G was actually treated as a single, spatially uniform weight throughout the 

holographic crystal. This corresponds to straightforward phase steering with a uniform 

weight value and a linear phase-shift across the array, which is all that is necessary to 

steer an antenna beam in the direction of a single narrowband jammer. For this 

simplified case, the optimum weight value given by equation 7.77 reduces to 

y n,opt  ~ • /.ol 
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The convergence to the optimum weight can also be shown by returning to 

equation 7.75 and computing the time evolution of a single weight, which is described 

by 

a 
| G = -kVG[A(t){Kr(t - r) - yA(t)G)]. 7.82 

Carrying out the gradient operation, and noting that the cross-correlation of the desired 

signal and the jammer is zero, it follows that 

iG = kY^MBK-jG)A2=kf¥MBKA2-kY2A2G. 7.83 
ot 

This differential equation can be solved by standard techniques5 to yield 

G(0 = [G(o)-V/7Kt72A + V/r 7-84 

where G(0) is the initial weight value at t = 0. It is evident that as t approaches infinity, 

the weight does indeed converge to the steady-state optimum value of G„ = ^MBK/y in 

accordance with equation 7.81. 

Expressions for K and y can be determined by noting that the error signal s is 

equivalent to the optical feedback signal B given by equation 7.24. Thus for the case of 

a single plane wave jammer it follows that 

K = RMBV^g2Ceia{a"+a') 7.85 
and 

Y=&RJE*m2Ceia'°°. 7.86 

Substituting these equations into equation 7.81 yields 

Gs,=VMBRme-ip/glRJE 7.87 

where  v = 6.   -<f>„   -<oo . This result is consistent with the desired behavior of the 
" TliMS TKJE " 

excision given by equation 7.31, in that these optimum weight values set the excision to 

zero. Moreover, this result is independent of jammer strength and does not depend on 
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the broadband desired signal. Having determined K and y, the optimum weight vector 

given by equation 7.76 can be written as 

Gopt=
mKf    SAO-J. 7.88 

Finally, the feedback gain constant k can be determined by substituting equation 

7.24 into the LMS algorithm expressed by equation 7.69. This substitution results in 

■   äG = " *U2* V&W Vjp,a -g(RJEIRMB)G]A[¥m -g(RJEIRMB)G).l.%9 

Expanding out the terms and taking the gradient yields 

-G = 2ßgxRJE^r]g2C[As}. 7.90 

Referring to equation 7.75, the feedback gain constant in terms of the system 

parameters of the jammer nulling processor is then 

k = gxRJEßri^g2C=r' 7.91 

where y' is the lumped constant defined in equation 7.39. From equations 7.84, 7.87, 

and 7.91, it is evident that for both rapid and high jammer suppression the system 

parameter to be maximized is y', which has just been shown to be equal to the 

feedback constant k of Chapter 2. The product of terms which make up the constant y' 

appear in both the steady-state excision expressions and the decay-rate expressions of 

the previous section. These equations are shown again below, where the subscript j 

refers to the jth jammer, 

f* = -Aj(A) ■ E^y'e-10^"0') 7.38 

A] ■ Ej = ad] ■ %jb = A] ■ % ajy'. 7.42 

208 



It is evident that the decay-rate given by equation 7.38 of the previous section is directly 

proportional to k and the steady-state excision given by equation 7.42 is inversely 

proportional to k. This performance is consistent with the performance predicted by the 

traditional LMS algorithm. 

7.5 Effects of Additive Noise and Desired Signal 

A realistic dynamical analysis of the jammer-nulling processor requires the 

presence of a broadband desired signal in addition to additive noise, and an 

interpretation of how the excision is affected by these factors. In particular, detector 

noise should be considered, as well as optical noise terms unique to the jammer-nulling 

processor. Moreover, it is important to also examine the behavior of the signal-to- 

interference plus noise ratio (SINR) of the processor output. The SINR is a practical 

figure-of-merit with which to assess and quantify the processor performance. 

7.5.1 Derivation of Steady-State Excision and SINR in the Presence of 

Noise and Desired Signal 

The analysis follows closely to that presented in Section 7.2, where for 

simplicity a single planewave jammer is incident upon the array. The incident jammer 

signal Aj of equation 7.1 is therefore collapsed to single jammer, composed of only 

one spatial propagation mode /, but it has been shown that the results would not change 

for a more complex near-field or multipath jammer. A broadband desired signal D{t) is 

also present. The optical noise terms to be included consist of front-end detector noise 

at the array which has been upconverted to the optical domain, and optical feedthrough 

resulting from the holographic multiplexing scheme. The multiplexing feedthrough can 

consist of both a farming-induced scattering term and the double-diffraction term 

discussed in Section 5.3.2 when the technique of angle multiplexing using Bragg 

degeneracy is used. Use of the orthogonal polarization multiplexing scheme eliminates 
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this troublesome double-diffraction term. The analysis is developed in terms of the 

Bragg degeneracy multiplexing technique, and reduces to the case when the orthogonal 

polarization multiplexing technique is used. It should be noted that although the 

analysis presented here corresponds directly with the single crystal implementation of 

the phased-array radar processor shown in figure 7.1, it is not specific to this 

architecture and is directly applicable to the experimentally demonstrated combined 

processor configuration which uses two separate PRCs. 

The total electrooptically upconverted optical signal incident on the PRC is taken 

tobe 

F-^+D+vft + p?) 2 7.92 
4\ + r 

where Ae'°" is the signal from the incident jammer, and D(t) is the desired signal, and 

U represents the summed front-end array detector noise, which is taken to be a 

uniformly distributed zero-mean random variable. The term (l + re'^e'^^/^l + r2 

accounts for the fact that there are actually two incident beams from the Rochon prism, 

whose relative amplitudes are determined by the factor r, and the spatial phase factor in 

the y direction indicates that these Rochon outputs are displaced in the direction of 

Bragg degeneracy (see figure 5.4). This scenario is more realistic than that presented in 

section 7.2, where it was assumed that there was only one beam present, A, that of the 

jammer only. The second set of beams produced by the Rochon prism will add 

significantly to erasure, add no processing gain, but are merely a necessity of the 

holographic multiplexing technique. Because in this sense there is literally an extra set 

of beams at the crystal, the problem is treated as such. In particular, compared to the 

results of section 7.2, just as there is a desired signal and additive noise in this analysis, 

there is additional erasure due to the multiplexing technique. The signal F is diffracted 

off of holographic grating G2 (see figure 5.4) and passed through the etalon filter 

array. The selectivity of the holographic grating and the etalon array result in only the 
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components of F near the jammer frequency and angle reaching the heterodyne 

detector. Also incident on the detector is the multiplexing feedthrough term discussed 

above, which is modeled as a coefficient / multiplying the feedback beam B. The 

coefficient/is composed of two terms, the scattering term f0 due to fanning, and the 

double diffraction coefficient f2 multiplied by the double diffraction efficiency as 

derived in Section 5.2.3. The two gratings written, G, and G2, can be related by noting 

that each shares the common write beam B. In particular, G, cc AB\ G2 oc ÄB, where 

A and Ae'**" are the two signals produced from the Rochon prism, and the ratio is r, 

leading to an expression for/given by 

f = f0+f2G;G2=f0+f2r\G\2e^ 7.93 

where G, and G2 are the two individual gratings, and the second equality is in terms of 

the factor r. After combining with the jammer estimate heterodyne reference RJe, which 

uniformly fills the photodetector, the current at the output of the jammer estimate 

detector is given by 

eJE = \rAGei(at +JB + RJEe1^ + ürf <R 7.94 

where 5R is the photodetector responsivity, and 3 is proportional to the etalon filter 

finesse. After expanding and bandpass filtering to eliminate the D.C. and higher 

harmonic terms, equation 7.94 becomes 

eJE=rAGRJE'*{J"'-,+** + ßR^e*** +NJE + URJEf!****IJN% + c.c.   .7.95 

The random, uncorrelated front-end detector element noise term adds in proportion to 

l/sfN where JV is the number of detector elements. In the following, the U/3 noise 

term will be neglected because the etalon finesse is assumed to be large, and combined 

with the l/slN reduction, the net result is taken to be small. A thermal noise current 

term NJE has also been added to the detector output. 
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The main beam heterodyne photodetector signal is given by 

*«* = lU{fj(Aei(0' +D + U) + Riae-<ffe» »MS Wdz 7.96 

which results in 

em = VAR^e"0-1^ + DR^e'^ + R^e^ U/^N + Nm + c.c. .7.97 

A thermal noise term Nm has also been added, and ¥ is the normalized array function 

defined in previous sections. The D.C. signals have been dropped, as well as those 

outside of an octave bandwidth. The RF feedback signal sent to the Bragg cell is 

composed of the difference between em and g^eJE, and this difference is then amplified 

by g2. Illuminating the Bragg cell with an optical signal with amplitude C and phase 

shift e'*c, the diffracted optical signal from the Bragg cell propagating towards the PRC 

is then 

'Ae-*e-«<e^'-^-gl(RJEIRm)Gre»\ 

+u/4N(t -<ja-<je- x/vy*«»* 

+D(t -oa-ae- x/vy**»" 

-&ß(t-cJa-xlV)RJEIRme-^ 

+NUB/mMB(t-aa-(Te-x/V) 

-&NJE/KRm{t-oa-xlV) 

B{t-xlV) = Rmv^g2Ce^ 7.98 

where Fis the acoustic velocity of the Bragg cell, r\ is the diffraction efficiency of the 

Bragg cell in units of diffraction efficiency/amp, and aa and oe are the feedback 

acoustic and electrical delays respectively. Due to the multiplexing feedthrough term, 

the signal B occurs on both sides of the equality, with two different temporal 

arguments. In order to solve for B, the Fourier transform of equation 7.98 is taken, and 

using the shift theorem and inverse transforming, the phaseshifts are converted into 

time delays. Thus the feedback signal B becomes 
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B{t-x/V) = RMBr\Wg2Cei*< 

RyBn^2Ce»<£\(^JRJErfä2Cet^))m 

m=0L J 

Ae-ise^e^'-x/v)\^-g](RJE/RMs)Greip] 

NMBI^RMB{t-orxlV-zm) 

-&NJE/nRMB{t-x/V-zm) 

+D(t-ae-x/V-Tm)e-i**»° + 

[+   7.99 

where the substitution of 

7.100 
m=0 

has been made based on the assumption that gxßJEv^g2C < 1. The delay time im 

which appears in the multiplexing feedthrough terms represents the accrual of acoustic 

delays from the mth pass around the loop. In particular, for the mth pass, 

T   =a +/WCT . In accordance with prior definitions (equation 7.25), the time 
ma Q 

evolution of the photorefractive grating amplitude diffraction efficiency evolves 

according to 

ftG = -aID,G + ßlgm!ing = -a(\F\2 + \B\2)0 + ßAB'. 7.101 

Equation 7.101 elucidates the fact that while all the components of F contribute to the 

DC erasure, only the jammer component, A, contribute to the grating writing process. 

Using equations 7.92 and 7.99 for the signals F and B respectively, the average 

intensity, IDC, becomes 

iDC = (\4+\rf+\u\2) 

+WV*2&2iq2 

M|2|[* -glRJR^Gre*]^ +gJRJE^g2Ce-^.e{^ 

7.102 
21 

i-feA^&c) 
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where the {NMB} and (NJE) represent the time averages of these noise terms, and the 

resonance factors y0 and 7,(00) are defined as 

and 
r.si-|fi#j*T,3te2cf 

rM s (i+aiRJETiiR&Ceto'(',-u')). 

7.103 

7.104 

Both of these resonance factors are a result of the multiplexing feedthrough and are 

ideally kept near unity. When the values of these terms are near unity, this implies small 

leakage terms,/ Also note that y,(<o) is frequency dependent. The grating intensity 

pattern is given by 

'Ae-be-»<(V-g,Gr**RJE/RUB)y;\a>) 

_ARmy]<SJg2Cei*<e-iK* 
sr ft       2 VI + r + 

m=0 
(-giJRjE^gzCe^-^y 

NMBL.m+&NJE[ 

+D\     + 

MB 

N 

7.105 

where the notation D\am, NJE, Nm, and U\am indicates the signal contribution at 

frequency co, on the mth pass around the loop. These narrowband noise terms can be 

assumed to write weak gratings with themselves, and with the other signals present in 

the PRC because each individual narrowband frequency component of the noise spectra 

will be assumed to be small. These terms will then be neglected and the grating 

intensity term is simplified to 

sr= ^/T77 ^-S^re-R^/R^fl+g.ßi^^Ce^-^) '7.106 

making the same change of variables using /', a, and b, as in equations 7.33 - 7.35, 

the time evolution of the grating becomes 
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er1 ^ 

^\4MD?+\U?) 

2 

R 
W-g.^^Gre 

R MB 

\rM\~ 

A=0 

\Af\Rj^Yo 

rlco)g,RJE4t+? 
V-g.Gre ,ipJ\JE 

R, 
7.107 

MB J 

where the term containing all signal powers before jammer turn has been defined as 

<=o =((AU2 +S.W.+ \*J*W +KBMU\
2
/X)- 7.108 

The excision is defined as 

E = V-g]GreipRJE/R1 ■MB 7.109 

and substituting this into equation 7.107 and linearizing in E, produces 

8t rE- 

-JL(\A?+\D\2+\U\2) 

+\E\
2
\YM'

2
 + l=°    -i 

2 „ -, / c 
WRMB * 

(¥-£)■ 
rbeia^-^E 

7,(a>)Vl + r2 
7.110 

Here the effects of y0 and /,(«) on the excision become somewhat apparent. Should 

either of these resonant terms be driven towards small values, their reciprocal becomes 

quite large. In particular, the resonant denominators will affect the D.C. erasure term 

and introduce a frequency dependent oscillation term through yx(a>). Setting the 

temporal derivative equal to zero results in the somewhat cumbersome expression for 

the steady-state excision, 
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E.= 
Mi 

^M|2+p|VM2)+r^__ro-' 
\A ZRMB'« 

[w=o 
2C»2 ' o 70~'+- ,(o>wr 7 + r 

(M|2+|D|2+M2) 

7.111 

The analytic expression for the steady-state suppression given by equation 

7.111 is not very intuitive. An enlightening first case to examine is for a single plane 

wave jammer. Setting/equal to zero, neglecting all noise components, and assuming 

that the jammer is much stronger than the desired signal essentially reduces the problem 

to the scenario of section 7.3. Recall, however, that the analysis of this section includes 

the effects of the second jammer signal beam produced by the Rochon prism. The 

steady-state excision then becomes 

aW 

rb 
Vajl + r *¥a 

rfaRjE^C     Y'r 
41 + r 7.112 

where y' was defined in equation 7.39. Assuming that these two beams are equal, or 

setting r equal to 1, results in a steady-state excision of 

E  = 
4lcW    -JVVa 

7.113 

Setting r equal to 1 is what is typically done in the lab, and in addition has been shown 

to be the optimum value for jammer excision6. Equation 7.113 shows for this case, that 

with all noise and feedthrough sources removed, the excision is degraded by an 

additional factor of V2 compared to the results of section 7.3.1 due to the second beam 

produced by the Rochon prism when using the Bragg degeneracy multiplexing 

technique. This degradation arises because of the added erasure the PRC suffers when 

there is an additional optical beam present. The situation is effectively the same for the 
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orthogonal polarization multiplexing scheme, because again there is a second (readout) 

beam present which acts as an erasure mechanism of the photorefractive grating. 

At this point the SINR can be defined as 

SINR = Desired Signal Power 7 {U 

Interference Power + Noise Power 

which for the jammer-nulling processor becomes 

SINR \D\2\RJ*2 7115 
\Ej\4\Rjtf +{NMB)

2 +gt{NJE)
2 +ß\Rj^g2 m2\Rj*2lN ' 

where Ess is the steady-state excision value. In the following section, the excision and 

SINR behavior will be examined as a function of system parameters. 

7.5.2 Excision and SINR in the presence of Noise and Desired Signal 

The excision and SINR behavior will now be examined as a function of system 

parameters, and expressions corresponding to several important limiting cases will be 

derived. In addition to gaining insight into the behavior of the steady-state excision and 

the SINR, an effort towards determining relationships between system parameters 

which optimize performance will be made. As will be shown, and as equation 7.111 

suggests, with the introduction of noise and feedthrough the jammer-nulling processor 

behavior becomes quite complicated. 

As has been shown several times throughout this chapter, minimizing the 

excision requires maximizing the quantity y', given by equation 7.39. The obvious 

way to maximize this term is to increase the electrical gain terms g, and g2, the jammer 

estimate reference beam RJE, and the feedback Bragg cell input optical field amplitude 

C. However, while the dynamical analysis of section 7.2 yields results which suggest 

that these electrical gains can be increased without bound, the addition of a desired 

signal and noise will place limits on the amount of system gain which can be applied. 
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For example, examination of the third and fourth terms in the denominator of equation 

7.115 as well as the definition of the excision in equation 7.31 indicates a trade-off 

between the SINR and the excision with respect to electrical amplification term g,. The 

noise terms in the SINR expression suggest g, should be small. However, the 

definition of the excision suggests that to drive the excision to small values, g, should 

be large when considering realistic values of RJE/RMB and moderate grating diffraction 

efficiencies G. The steady-state excision given by equations 7.113 and 7.112 also 

indicates that g, should be large. 

Plots of the excision and SINR given by equations 7.111 and 7.115 

respectively are shown in figures 7.14 (a) and (b). The plot in figure 7.14 shows the 

excision plotted versus the gain term g,, parameterized in the quantity g2C. The gain 

parameter g2C, is the product of electrical post-summing-node gain and the feedback 

Bragg cell input optical field amplitude. This parameter was chosen because except for 

g,, all the other quantities in equation 7.112 are bounded by material or device limits. 

Material and device parameters were set to a = 0.5, ß = 5, both with units of joules"1, 

5R = 0.5 with units of amps/watt, and r\ = 0.9 with units of %/amp, for all simulations 

in this section. The remaining simulation parameters are listed in the figure caption. The 

important point to note from figure 7.14 is that for the range of system variables 

chosen, the quantity gxg2C is approximately conserved. This implies that the excision 

can be minimized by increasing either g, or g2 in the presence of a desired signal and 

noise (feedthrough is omitted at this point of the analysis) as predicted, and as 

demonstrated in figure 7.14(a). In contrast, the plot of the SINR shown in figure 7.14 

(b), also plotted versus the gain term g, and parameterized in the quantity g2C, shows 

that SINR improves for smaller values g, and larger values of g2C. In previous works 

discussing jammer suppression and dynamics7'2, it had been proposed that g, should 

be large in order to maximize the excision. While a large value of g, does indeed 
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Figure 7.14. Excision versus g, parameterized in g2C, with units of volts/meter 

(g2C = 10',102,103,104) in (a), and SINR versus g, parameterized in g2C 

(g2C = 102,1025,103,1035) in (b). The simulation Parameters were: ,4 = 0.1, 

RJE = 0.1, RMB = 0.005, D = 10"3, U = \0~\ all with units of volts/meter and r = 1, 

JV/£ = 7VWB = 10"5 with units of amps, and / = 0, which is unitless. 

increase excision, it correspondingly degrades the SINR. Thus it follows that the factor 

to be increased is g2C, and it is satisfactory to set g] equal to unity for this analysis. 

The quantity g2C cannot be increased without bound however. The amount of 

gain which can be applied is limited by the amount of electrical detector noise, and to a 

much lesser extent by the amplitude of the desired signal. A plot of the excision, E, 

versus electrical detector noise terms in the jammer estimate and main-beam detectors 

NJE and Nm (both assumed to be equal here), parameterized in g2C is shown in 

figure 7.15(a), where r has been set equal to 1. It is clear that for a given g2C value the 

excision is compromised as the detector noise increases. As the gain is further 

increased, the point at which the excision is compromised occurs at smaller values of 

noise, and the excision is also seen to pass through a minimum near g2C = 10 . 

Ultimately, all of the curves saturate at the value of one, corresponding to no excision at 

all. The same saturation behavior is seen to occur in the excision versus desired signal 

amplitude plot shown in figure 7.15 (b). The primary difference between this and the 

detector noise case is that the effects do not occur until g2C has reached much larger 

values. The front-end array noise terms were held at constant, small values for both of 
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Figure 7.15. Excision versus detector noise NJE parameterized in gain g2C 

(g2C=10',102,103,104,105,106 and desired signal £> = 10~3) in (a), and excision 

versus desired signal D parameterized in g2C  (g2C = 103,104,105,106,107 and 

NJE = Nm = 10-8) in (b). The simulation Parameters were: .4 = 0.1,   RJE = 0.\, 

Rm = 0.005, U = 10"7, all with units of volts/meter and r = 1, / = 0, and g, = 1, both 
unitless. 

these plots. According to equation 7.111, the excision behavior for U is the same as 

for the desired signal, but further reduced by the number of array elements N, 

demonstrating spatial processing gain. 

For the detector electrical noise term limited case (neglecting array element 

noise) the steady-state excision given in equation 7.111 becomes 

1 

E  = 
fl^^Z^}f|-4^(<^>2^K)^r«W) 

\*J* 

\IL 

+a 

U(^v^>^fcf«w)+i*^ 
(\4+\D\2) 

7.116 

The corresponding expression for the SINR becomes 

\D\2Kh\2*2 
SINR = 

£BMW»2+(^r+^ 
7.117 
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7.5.3 Excision in the Presence of Noise, Desired Signal, and Optical 

Feedthrough due to Multiple Diffraction. 

The most volatile parameter of all to be considered is the optical feedthrough 

term/ Recall the resonance factors y0 and y,((ö) defined in equations 7.103 and 

7.104. Both of these definitions introduce a constraint that 1 > /2g,2|#J i129?2g2|Cf in 

order for these terms to remain bounded. This inequality effectively defines a constraint 

upon the maximum gain g2C, determined by the feedthrough parameter/, from the 

standpoint that the amount of feedthrough will determine how much the system gain 

can be increased before the resonance terms cause the system to go into oscillation or 

saturation. Plots of the excision, E, versus gain term g2C, parameterized in 

feedthrough,/ are shown in figure 7.16. Note that the first (bottom) two curves of the 

figure have an excision that is reasonably behaved. There is a general tendency for the 

excision to be compromised as the feedthrough is increased, however the most 

significant effect is that excision becomes unstable, in this case for the third and fourth 

curves of the family. This unstable behavior is caused by the resonant denominator 

terms y0 and y,((ö), even though the jammer frequency has not been varied here. 

The feedthrough parameter / was initially defined by equation 7.93, and is 

repeated below 

f = fo+fAtfe-»' 7.118 

where f2 was shown in Chapter 5 to be equal to 1/2. One first limiting case to consider 

is when the scattering term f0 «1, and therefore / * ^|G|V*'. Noting that at steady- 

state the excision goes to zero, therefore from equation 7.109, for a single jammer 

|<5£ _> ^J^/gj2/-2/?£. Substituting this steady-state expression for G into equation 

7.118, it follows that the constraint introduced above requires that 

1 > g^K^^HlgfRje). Thus the product g2C is limited by 
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Figure 7.16. Plot of excision versus g2C, parameterized in optical feedthrough /, 
which is unitless, where /= 10~3,10~25,10~2,10"15,10"1. The simulation parameters 
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g2c< 
2&rR je 

V2R2
mhr\K 

7.119 

The condition given by 7.119 imposes a severe constraint on jammer suppression. 

Substituting the value for g2C given in equation 7.119, it follows that the steady-state 

excision of Ess = VI + r^cNJb will be limited by 

Ea > Vl + r aV/b > r-r—- 
3n2 

■mb 

mUk 7.120 

Common experimental conditions result in the two signals from the Rochon prism 

being equal (r= 1), as well as RJE « Rm. Under these simplified conditions that r = \, 

g, = 1, RJE « Rm, and assuming that the AOA of the jammer is near that of the desired 

signal so that *P «1 , equation 7.120 further simplifies to 

a 
ß-n 

7.121 
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Where a and ß are the photorefractive material parameters derived in Section 4.3.3. At 

unity modulation depth the ratio ß/a is approximately 1/2TT times the number of 

Kogelnik orders that a PRC can provide, which is typically less than 5. Therefore, for 

this case where the multiplexing feedthrough is significant, the suppression depth 

appears to be limited to unacceptably poor performance by material parameters. The 

limit of 5 Kogelnik orders results in a limit of approximately 30dB of jammer 

suppression. Choosing a more favorable ratio of RJE/Rm may optimize the excision 

somewhat, although practically RJE cannot be increased past the point where the 

photodetector saturates. The optimum value of r has in fact been shown to be equal to 

1. 

7.5.4 Excision in the Presence of Noise, Desired Signal, and Optical 

Feedthrough due to Scattering. 

As discussed in Chapter 5, one of the primary motivations for implementing the 

orthogonal polarization multiplexing scheme was to eliminate the multiple diffraction 

feedthrough term f2. When f2 is eliminated, the feedthrough term/is limited to the 

scattering term f0, and the restriction on g2C now leads to g2C » 1/2TI9U^ . The 

resulting steady-state excision for this f0 limited case is then 

VJTrVT      2V2a¥/0 7 m 
5S>        b ß 

where the last expression corresponds to the case when r = 1. Because f0 is small, this 

case represents a significant improvement in suppression depth compared to the case 

limited by f2. For example, if the scattering term is considered to be dominated by 

photorefractive fanning, the fanning can be considered to go uniformly into a number 
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of modes, Nmodes, typically given by Nmoda * (Area/X^Cl/ln) * 106. If it is assumed 

that only one mode is matched to the detection system, then f0 «10"6. 

7.5.5 Excision and SINR with Desired Signal and Jammer only. 

The last case to consider is when all noise terms, as well as the feedthrough are 

negligible. The signals present are then only a strong jammer signal and a desired signal 

of interest. The steady-state excision can then be approximated by 

aV(\A\2
+\D\2)+\D\ 

rb\A\ 
Ess = —* rn*— 7.123 

w+ 
Vl + r' .2 

which clearly demonstrates that the excision of the jammer is reduced due to the 

presence of the desired signal. The SINR for this case can be approximated by 

■ _    m2       _       'Wl + r SINR = -^—   = Wl + r     ) 7124 

KM a^\\A\2
+\D\2)\4 ' 

7.5.6 System Parameter Tradeoffs 

A useful set of parameter tradeoffs to investigate is the heterodyne reference 

signal levels. While in actuality the heterodyne reference signal levels RJE and RMB will 

be limited by photodetector saturation levels, it is instructive to investigate the relative 

importance of these signals on the excision and SINR levels. Consistent with the fact 

that minimizing the excision requires maximizing y', inspection of equation 7.112 for 

the steady-state excision suggests that for small values of excision, E, RJE should be 

maximized. This is demonstrated in figure 7.17a, where the excision is driven to 

smaller values as RJe is increased, while it is independent of the signal Rm, as 

predicted by equation 7.112 when there is no desired signal D. The addition of a 
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Figure 7.17. Excision versus main-beam heterodyne reference signal Rm, 
parameterized in jammer estimate heterodyne reference signal RJE, where 

R _ iQ-4,10~3,10~2, 10"1. There is no desired signal in (a), and there is a desired 

signal of amplitude £> = 10"3 in (b). The simulation parameters were: ,4 = 0.1, 
U= 10"7, with units of volts/meter, and r = 1. NJE = Nm = 10"7 in units of amps, 

g2C = 4x104, with units of volts/meter, and / = 0, which is unitless. 

desired signal introduces a significant change a shown in figure 7.17(b). Beyond a 

critical value of Rm, the excision is compromised. This behavior is first indicated in 

equation 7.123, where the a/b term is seen to affect the jammer and desired signals 

differently, but more explicit when equation 7.123 is expanded out, 

V{\4+\D\2) 
2„2o52 

■E„=- 
gwvuw* ■+|0T 

|Z)|2 + 
rgAeßW 

ag2C\Rmh\\*-il + ? 7.125 

The SINR demonstrates a similar trend, decreasing after approximately the same value 

of Rmh, as shown in figure 7.18. 

It is useful to conclude this section by reviewing several other trade-offs for 

minimizing the excision and maximizing the SINR. There are the obvious issues such 

as reducing the noise terms and optical feedthrough, as well as optimizing 

photorefractive material parameters a and ß. Improved device performance such as 

acousto-optic diffraction efficiency rj and photodetector responsivity 9? is always 
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Figure 7.18. SINR versus main-beam heterodyne reference signal Rm, parameterized 

in jammer estimate heterodyne reference signal RJE, where RJE = 10"4,10~3,1(T2, 10"'. 

The simulation parameters were: A = 0.1, U=\0~\ with units of volts/meter, 
N

JE = NMB = 10~?> with units of amps, g2C = 4x104 with units of volts/meter, and 
/ = 0, which is unitless. 

advantageous. Nevertheless, in general these parameters are either practically or 

fundamentally limited. In a practical sense, in order to simultaneously minimize the 

excision and maximize the SINR, it is advantageous to maximize the gain term y', but 

moreover to maximize the term g2C, keep the gain term g, near unity, and to make the 

amplitude of the jammer estimate detector heterodyne reference signal RJE large. As 

discussed in the following section, the experimental setup enabled the ratios of the 

optical beams to be varied using variable beamsplitters. There is of course a fixed 

amount of laser power introduced into the system, in particular 

I=\C\2
+\RJE\2+\RMB\2+\F\2 

7.126 

As mentioned, the reference beams cannot be increased beyond the point of detector 

saturation, and the main-beam reference signal Rm actually has little impact. 

Experimentally, C and F were kept as large as possible, and set to be approximately 

equal at the turn on time of a jammer. 
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7.6 Experimental Results 

Experimental results are presented for each of the jammer scenarios discussed 

above. In particular, results are obtained for the steady-state suppression values and 

convergence rates for single plane-wave jammers, a pulsing single planewave jammer, 

and two jammers of different frequencies at both different and identical AOAs. In 

addition, a straightforward experimental demonstration of the linear relationship of 

jammer suppression with system feedback gain as predicted in section 7.3 is presented. 

The jammer nulling bandwidth predicted by equation 7.44 is also experimentally 

verified. 

7.6.1  Experimental Set-up 

The initial experimental configuration of the jammer-nulling processor is shown 

in figure 7.19. This configuration uses the Bragg degeneracy write/read beam 

multiplexing technique described in Chapter 5, and has been used to acquire the 

majority of the experimental results presented here. The argon laser illumination is split 

at beamsplitter (BS-1) to form the feed forward and feedback beams. The feedback 

beam is applied to the feedback Bragg cell, and spatial filtering allows only the +1 order 

to be incident at the PRC. The feed forward beam illuminates a phased array input 

simulator. This subsystem of the processor is intended to simulate the superposition of 

the electro-optically modulated, fiber remoted signals of the antenna array elements8. At 

present the simulator consists of three acousto-optic modulators (AOMs) at the back 

focal plane of a lens. The +1 diffracted signal from each AOM is passed through the 

lens and they overlap at the PRC, which is placed approximately one focal length away 

from the lens. Two of the AOMs and input beams can be translated linearly in the 

direction perpendicular to the axis of the lens and in the plane of the table using a 

motorized stage. This changes the angle of the beam with respect to the PRC, which 

simulates a signal in the far field at a variable AOA. The output of the simulator is 
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Figure 7.19. Optical component layout of jammer nulling processor using Bragg 
degeneracy for write/read separation. 

passed through a 1/4 wave plate, a 0.1° Rochon prism, a second 1/4 wave plate, and 

finally a linear polarizer to produce two degenerate, vertically diverging beams (of the 

same polarization) incident at the PRC, implementing the Bragg degeneracy write/read 

beam separation technique. Rotating the waveplate allowed the ratio of the two write 

beams incident on the crystal to be varied, corresponding to changing the parameter r. 

The beam ratio was set to unity for all of the experiments reported here. BS-2 is used to 

produce the heterodyne reference beams for the jammer estimate and signal detectors 

shown in the lower right of the figure. The phase critical feedback path of the processor 

is actively stabilized using a HeNe laser interferometer with a phase tracking 

piezoelectric actuated mirror to eliminate long-term drift. Phase drifts at the other 

interferometric paths in the processor, such as at the photorefractive crystal and the 

main beam signal detector are adaptively compensated for by the processor. In this 

configuration the jammer estimated detector is used to also detect the HeNe optical 

stabilization signal. At present, the Fabry-Perot bandpass filter array is not installed in 

the system. 

The associated RF schematic with two phased-array signal sources is shown in 

figure 7.20. As shown in the figure, one of the sources drives an AOM, loops through 
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Figure 7.20. RF schematic of phased-array radar jammer-nulling processor. 

channel 2 of an oscilloscope to provide a trigger source, and then serves as an in-phase 

and quadrature mix-down reference for measuring the complex dynamics of the output 

signal. The amplified output from the jammer estimate detector is subtracted from the 

amplified main-beam detector signal at the difference node, which forms both the 

processor output and the RF input to the feedback AOM. The processor output is also 

split off for complex dynamics analysis into both an oscilloscope and a spectrum 

analyzer. 

At the upper right of figure 7.20 is the RF portion of the active path length 

stabilization system. As shown in the figure, the 100 MHz signal is extracted from the 

jammer estimate detector and mixed down against the 100 MHz reference source. As 

the optical path length between the feedback path and the detector heterodyne reference 

beam varies, the output at the jammer estimate detector varies in amplitude. This 

amplitude actually varies cosinusoidally but the stabilization circuit gain is set-up so as 

to remain biased in the linear regime of this response. As shown in figure 7.21, after 
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Figure 7.21. Schematic of first piezo actuator driver circuit. 

mixing this signal down against the 100 MHz reference signal, the varying DC voltage 

is sent into an integrator, followed by an inverter and amplifier, and finally fed back to 

the piezo driven mirror. The frequency response of the feedback circuit was designed to 

compensate for slowly varying path length drift only. A shortcoming of this system is 

that the feedback signal to the integrator is not strictly phase information, but also 

depends upon the magnitude of the product of the signals because of the mix-down 

process. In general this is not a problem; however, given that the HeNe beam is going 

through the AOM, it can be Bragg matched, and therefore some energy can be coupled 

out of this beam, and even worse, couple the jammer dynamics into the stabilization 

system, which is highly undesirable. A second stabilization system was later 

implemented using a commercial (Stanford Research Systems SRS 850) lock-in 

amplifier. Internal DSP capabilities of the lock-in amplifier allowed generation of a 

strictly phase dependent voltage which was fed to the piezo driver circuit. This second 

stabilization system is shown in figure 7.23. An 80 kHz reference signal for the lock-in 

amplifier was generated by taking the difference frequency from the mix-down process 

of the two phase locked oscillators shown in the figure. The 70.000 MHz oscillator 

was also used as the RF input to the stabilization AOM shown in the upper right of 

figure 7.22. The dynamic phase shift of the optical beam exiting from the experiment is 

maintained by heterodyne detection, and the resulting RF signal is sent through a 

bandpass filter to reduce noise and feedthrough from any jammers, amplified, and 
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Figure 7.23. Stabilization system using commercial lock-in amplifier to generate a 
phase dependent error voltage to drive piezo actuator. 

finally mixed-down against the 59.920 MHz oscillator to produce a difference signal at 

80 kHz for comparison to the lock-in reference. The phase-dependent voltage provided 

as an output by the lock-in amplifier was then amplified and applied to piezo actuator 

and mirror. The kilohertz down conversion was necessary in order to match the 

frequency processing capabilities of the SRS-850, which is limited to 100 kHz. Figure 

7.22 shows an improved configuration of the jammer nulling processor which uses the 

orthogonal polarization write/read technique described in chapter 4. The Ä/4 plate and 
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PBS after the phased-array simulator create the two orthogonally polarized write and 

read beams. The transmitted ordinary polarized write beam is blocked by the aperture 

just after the PRC and before the 70 mm lens. It should also be noted that the HeNe 

stabilization laser is now going backwards through the system with its path more 

closely matched to that of the actual processor, as well as now having its own dedicated 

optical detector. 

7.6.2  Single Jammer Results 

Experiments were conducted investigating steady-state suppression values and 

jammer decay rates for a single frequency plane-wave jammer. Spectrum analyzer trace 

photos demonstrating suppression of a single narrowband jammer are shown in Figure 

7.24, and were obtained using the experimental set-up shown in figure 7.19. Figure 

7.24a shows the processor output before suppression (open loop) with an 

incident 70MHz jammer signal shown at screen center. The DC component at left and 

second harmonic component at right are outside of the system bandwidth. Figure 7.24b 

is the processor output after the feedback loop is closed, showing jammer suppression 

of 35dB. The output of the processor is mixed down electrically with both in-phase and 

quadrature components of a reference signal taken from the jammer input. This allows 

measurement of the complex excision, E. Figure 7.25 shows the experimental 

measurements of E from the onset of the jammer. Figure 7.25a shows the motion of E 

in the complex plane superimposed over a fit to a numerical solution of equation 7.32 

for a single plane wave jammer, using fit parameters of a = 0.206, b = 2.09, 

CTa(cac-cü;) = -0.61. Figure 7.25b shows the decay of the log magnitude of E, also 

superimposed on a fit of the magnitude of equation 7.32 using the same fit parameters. 

This experiment used different parameters than that showed in figure 7.24, and 

achieved only -26 dB steady-state excision. Note that because of the log scaling the 

jitter away from the theoretical solution is larger at deeper excision. These experimental 
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dB at right. The spectrum analyzer was used in averaging mode, yielding an accurate 
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harmonic respectively, which are outside of the system bandwidth. 

\ 

1.0 

0.75 

0.5 

0.25 

Re(E) 
1.0    -0.75 -0.5 -0.25 0.25 

-0.25 

-0.5 

-0.75 

-1.0 

0.5 0.75     1.0 

03 
■o 

c 

u 
X 

Figure 7.25. (a) Experimental data of excision plotted in complex plane, superimposed 
over fit of theoretical model, (b) magnitude of excision versus time, also with 
theoretical fit. 

results are in excellent agreement with the theory developed in Section 7.2., in 

particular the numerical results shown in figures 7.7 and 7.8. 

Experimental results are shown in figure 7.26 for a pulsing single narrow-band 

jammer. The figure shows two superimposed traces of processor output versus time: 

one trace is the processor output showing the unsuppressed jammer pulsing at 3.3 Hz 

(feedback off), and the other trace is the output with the jammer suppressed (feedback 

on) by approximately 25 dB. Note the slightly increased noise floor of the processor 

output when the jammer is being suppressed. The result shown in figure 7.26 

demonstrates that the long photorefractive grating decay time constant is advantageous 
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.1 sec/div Figure 
7.26. Two superimposed oscilloscope traces of processor output versus time, one is 
the processor output showing the unsuppressed jammer pulsing at 3.3 Hz (feedback 
off), and the other is the output with the jammer suppressed (feedback on) by 
approximately 25 dB. 

in the pulsing jammer scenario. The processor builds up an initial grating at the onset of 

the jammer, and as long as the pulse repetition rate of the jammer is shorter than the 

inverse decay time constant the grating remains, providing almost instantaneous jammer 

suppression to a blinking jammer as shown in the figure. This is in marked contrast to 

processors that must re-adapt at every turn-on transient of a blinking jammer. 

Significantly higher single planewave jammer suppression results have been 

obtained using the processor illustrated in figure 7.22, employing the orthogonal 

polarization write/read technique. In addition, variable polarizing beamsplitters were 

used to more optimally distribute the optical power as determined by the analysis in 

Section 7.5. These results shown in figure 7.27 demonstrate 45 dB of suppression for 

a 75.8 MHz narrowband jammer. This method of write/read isolation, discussed in 
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Figure 7.27. Photos of spectrum analyzer display showing single narrowband jammer 
of 75.8 MHz (at screen center) before suppression at left, and steady-state suppression 
by 45 dB at right. 

Chapter 5, has allowed a significant increase of the feedback gain, and corresponding 

increased suppression depth and decreased response time. 

7.6.3 Multiple Jammer Results 

7.6.3.1 Two Jammers of Equal Strength 

Experiments were conducted for two equal amplitude plane wave jammers of 

different temporal frequencies and AOAs. The emphasis of the experiments of this 

section was on investigating the relationships between jammers for different scenarios, 

and not on maximizing suppression depth or convergence time. Figure 7.28a shows the 

two jammers, at 75.45 MHz and 76.7 MHz, before suppression. Figure 7.28b shows 

the two jammers after suppression, each suppressed by the same amount 

(approximately 14dB), in agreement with equations 7.50 and 7.51. The decay time 

constants can be estimated from figures 7.28c and 7.28d, which show the decay of the 

jammer strengths on a log-linear scale. From this data the time constants are estimated 

to be .17 sec-1 and .15 sec1 for jammers 1 and 2 respectively. When one of the 

jammers is turned off, an increase of 6 dB in suppression is expected for the remaining 

jammer, in accordance with the factor of two difference between equations 7.50 and 
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Figure 7.28. Spectrum analyzer trace of two equal strength narrowband jammers at 
75.5 and 76.7 MHz: (a) before suppression, and (b) suppressed by 14.3 dB, (.5 
MHz/div, lOdB/div). Figures (c) and (d) show the suppression time dynamics (decay 
rate) of 75.5 and 76.7 MHz jammers respectively (.2 sec/div, 10 dB/div). A single 
75.5 MHz jammer is shown in (e) with increased suppression of 4 dB after turning off 
second jammer, while suppression rate is unaffected as shown in (f). Figures (c), (d), 
and (f) were obtained by using the spectrum analyzer in zero-span mode. 

7.42. However, the time constant should remain the same due to the fact that it depends 

only on individual jammer strength as shown in equation 7.38. Figure 7.28e shows the 
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Figure 7.29. (a)two jammers differing by 10 dB before suppression, and (b) 
asymmetric suppression (.5 MHz/div, 10dB/div). Figures (c) and (d) demonstrate 
power dependent suppression dynamics for the two jammers; in (c) strong jammer, and 
(d) weaker jammer (.2 sec/div, 10 dB/div). 

single jammer at 75.45 MHz, now being suppressed by an additional 4dB, while figure 

7.28f still yields a decay time constant of .15 sec-1. Both of these results are in good 

agreement with the theoretical predictions. 

7.6.3.2 Two Jammers; one Strong, one Weak 

The next case to consider is when one jammer is much stronger than the other. 

Figure 7.29a shows two jammers at 75.45 MHz and 76.7 MHz before suppression, 

but with jammer 1 now 10 dB less than jammer 2. Figure 7.29b shows the two 

jammers being suppressed; the stronger jammer suppressed by 15 dB and the weaker 

by only 5 dB. This asymmetric suppression is in excellent agreement with the scenario 

described above for one strong and one weak jammer (equations 7.54 - 7.57). It is 
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Figure 7.30. Two equal strength jammers with the same AOA (a) before suppression, 
(b) suppressed by 18.7 dB (.5 MHz/div, lOdB/div). (c) the same two jammers as in 
(a), with one reduced in power by 10 dB, (d) suppression of both jammers 18.9 dB. 

expected that the suppression level of the stronger jammer is essentially unchanged, 

while the weaker jammer suppression level is reduced by the ratio of its power to the 

total interference power, in this case approximately 10 dB. The suppression time 

constant behavior for this scenario can be estimated from figures 7.29c and 7.29d. 

Figure 7.29c yields a suppression time constant of 0.67 sec~l for the weaker jammer 

and 7.29d yields 0.23 sec"* for the stronger. These results agree only moderately well 

with the expected results; equations 7.54 and 7.56 predict a ratio of 10 between the two 

time constants for this case, but the time constant is difficult to estimate for figure 

7.29d. 
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7.6.3.3 Two Jammers with the Same Angle-of-Arrival 

Finally, the special case of two plane wave jammers of different temporal 

frequencies sharing the same AOA is investigated. Equation 7.58 predicts the same 

amount of suppression for both jammers, regardless of their relative amplitudes. This 

prediction is confirmed experimentally as shown in figure 7.30. Figures 7.30a and 

7.30b show two equal strength jammers at the same AOA before and after suppression 

by -18.7 dB. Figure 7.30c shows the jammers before feedback, with one jammer 10 

dB lower in power than the other. After turning the feedback on, both jammers are 

equally suppressed, again by more than -18 dB. This is in marked contrast to the 

previous two jammer cases at different AOAs examined earlier. 

7.6.4  Processor Characterization 

7.6.4.1 Jammer Suppression versus Feedback Gain 

The dynamical analysis of Section 7.3 (equation 7.45) predicts a linear increase 

in jammer suppression with increasing feedback gain parameters g} and g2. This linear 

relationship will hold only below a certain gain value, because eventually the response 

of some component in the feedback loop will saturate. A straightforward experiment 

was performed to investigate the linearity of the jammer-nulling processor of figures 

7.19 and 7.20. In particular, the set-up shown in figure 7.31 was used to measure the 

linearity of the output power versus the open-loop gain of the processor, and the 

linearity of jammer suppression versus feedback gain. As shown in the figure, output 

power versus open-loop gain parameter data was acquired by varying the attenuation of 

the RF power applied to the feedback Bragg cell (varying g2) and measuring the output 

power at the difference node. Jammer suppression data was acquired by performing the 

same procedure with the switch closed as shown in the figure. 
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Figure 7.31. Schematic of experimental set-up for measurement of open-loop gain 
(measured at oscilloscope) in adaptive phased-array processor. For jammer suppression 
versus feedback gain measurements, the switches are closed to complete feedback loop. 

The output power versus open-loop gain data is plotted in figure 7.32(a). The 

large upper and lower bounds evident in the measurements indicate that some instability 

was present in the system at the time of measurement. Nevertheless, the data obtained 

exhibits a definite rolloff in output power, indicating that saturation of one or more 

system components is occurring. The jammer suppression versus gain data in figure 

7.32(b), exhibits a similar rolloff near the same gain region. Additional gain would 

likely send the processor into oscillation. At the time this data was taken the Bragg 

degeneracy multiplexing technique was being used, therefore it is likely that significant 

optical feedthrough was present. Evaluation of these data sets demonstrates the 
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encouraging conclusion that if the upper bound of operable open loop gain can be 

extended, increased jammer suppression follows. 

7.6.4.2 Periodic Jammer Nulling Bandwidth 

Equation 7.44 predicts that the jammer suppression level is dependent upon the phase 

difference <rB(a>e-<Oj) around the feedback loop. This was derived in Section 7.2, and 

shown in figure 7.6. Experimental results which demonstrate the periodic nulling 

behavior of the processor were obtained by sweeping a single narrowband jammer over 

a several MHz bandwidth and using the max-hold display feature of the spectrum 

analyzer. Figure 7.33 is a photo of a spectrum analyzer trace of an experimental result 

showing periodic jammer suppression behavior over a 10MHz bandwidth. 

Approximately 25 dB nulls are observed over a 3 MHz bandwidth, suggesting a 

feedback delay of approximately 160 nanoseconds, which is primarily limited by the 

transducer delay in the Bragg cell. The transducer delay is related to the fact that one 

can position the beam which illuminates the Bragg cell only so close to the actual 

transducer. As a result, there is small amount of non-illuminated AO material which the 

acoustic column must propagate through before interacting with the optical beam. The 
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Figure 7.33. Spectrum analyzer trace showing experimental result demonstrating 
periodic nulling behavior over 10 MHz wide frequency sweep. 

time it takes the acoustics to propagate through this non-illuminated region is what is 

referred to as transducer delay. This result agrees well with the results shown in figure 

7.6, which shows periodic jammer nulling bandwidth as calculated from equation 7.32. 

Note that outside the regions of nulling, the system oscillates with moderate gain (the 

signal portion above -20 dBm) in agreement with the numerical simulations. The 

asymmetric relationship between the widths of the nulling and non-nulling regions in 

the experimental results is not fully understood, but suggests the presence of an 

additional nonlinear phenomena in the experimental results. 

7.7 Combined Beam-Forming and Jammer-Nulling Processor 

The final experimental objective of this thesis is to combine the jammer-nulling 

processor described in this chapter with the main-beam forming processor described in 

Chapter 6 into a single processor. This combined processor which performs 

simultaneous main-beam formation and jammer suppression is shown schematically in 

figure 7.34. This processor is the superposition of the two previously described 

processors, each with its own PRC, in which the output of the beam-forming processor 
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Figure 7.34. Schematic representation of beam-forming jammer-nulling phased-array 
radar processor. 

is used as the main-beam input into the jammer-nulling processor. The optical layout of 

the combined processor as built in the lab is shown in figure 7.35. In addition to the 

phased-array simulator and the two, interacting main-beam and jammer-nulling 

processors, there is an active stabilization system included in the processor. The system 

relies on interferometric detection at several places in the processor, in particular at both 

PRCs and at both photodetectors. Phase shifts due to mechanical path length variation 

and thermal effects are compensated for automatically at three of the aforementioned 

locations by adaptively shifting the photorefractive grating; this adaptivity corresponds 

to the processor responding to a changing radar signal environment. Referring to figure 

7.35, the only phase critical path relationship is between the diffracted component of 

the jammer-nulling PRC and the reference beam. This diffracted signal becomes the 
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Figure 7.35. Optical component layout of combined main-beam and jammer -nulling 
phased-array radar processor 

negative input to the difference node, thus its phase with respect to the main beam (the 

positive input at the difference node) must be preserved. The active stabilization system 

in the processor preserves this phase relationship by using the auxiliary HeNe laser to 

monitor path length differences between the reference and jammer-nulling feedback 

paths of the processor, as described in Section 7.6.1. 

Experimental results demonstrating simultaneous beam formation and jammer 

suppression9 are shown in figure 7.36. Figure 7.36a shows the frequency spectrum of 

the output of the processor, which has formed a main beam in the direction of the 

desired broadband signal, with a strong narrowband jammer simultaneously incident on 

the first antenna sidelobe as shown in figure 7.36b. After closing the feedback loop, the 

jammer is suppressed by an additional 20 dB from the 13 dB suppression which occurs 

due to its arrival on the first antenna sidelobe, giving a total jammer suppression of 33 

dB. The final adapted beam pattern for the above scenario is depicted schematically in 

figure 7.37, which shows the main antenna lobe in the direction of the desired signal, a 

jammer nulling beam pointed towards the jammer and adaptively weighted to the 
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(a) Cb) •     ,   f 
Figure 7.36. Frequency spectrum of processor output showing broadband signal of 
interest and strong jammer on antenna sidelobe before implementing jammer nulling 
feedback in (a), after suppression in (b) demonstrating additional 20 dB of suppression 
(1 MHz/div, 10 dB/div). 

corresponding main-beam sidelobe, and the difference beam pattern showing an 

antenna null rotated to correspond to the AOA of the incident jammer. In the presence 

of multiple jammers (as discussed in Section 7.2.1), a similar jammer estimate beam 

will be pointed towards each arriving jammer and adaptively weighted to the correct 

amplitude to produce a deep null towards each jammer. 

The jammer signal was chosen to be out of the frequency band of the desired 

signal simply to allow the jammer suppression behavior to be observed. If it were the 

case that the jammers were always out of the desired signal frequency band, the entire 

jammer-nulling processor could be replaced by a frequency filter. Jammers which fall 

within the desired signal bandwidth are also nulled, but more difficult to observe on a 

spectrum analyzer. As indicated in figure 7.36b, the main-beam signal is slightly 

corrupted when jammer-nulling occurs. It is likely that because there is no Fabry-Perot 

etalon installed in the jammer-nulling processor, there was a small amount of desired 

signal diffracted of the jammer grating which was detected and consequently there was 

a small amount of desired signal suppression. 

The simultaneous main-beam and jammer-nulling results presented in this 

Chapter demonstrate the ability of this adaptive processor to successfully perform in a 
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Figure 7.37. Radar signal environment for simultaneous main-beam formation and 
jammer-nulling experiment. 

complex, multi-dimensional signal environment. Furthermore, these are the first known 

examples of optically processed phased-array radar experimental results demonstrating 

simultaneous main-beam and jammer-cancellation. 

7.8 Chapter Summary 

Many significant aspects of the Jammer-nulling processor have been discussed in this 

Chapter, as well as experimental results of the combined jammer-nulling and beam- 

forming processor, and it is useful to summarize these results here. Section 7.1 

described the basic theory of operation of the jammer-nulling processor. The dynamical 

analysis of the jammer-nulling processor were then derived for the general case of 

multiple jammers with multiple spatial modes in section 7.2, and then simplified to 

several cases involving 1 and 2 planewave jammers in section 7.3. These same 

planewave jammer scenarios, including just a single jammer, two jammers of the same 

powers and different powers, and jammers at the same and different AOAs, were 

experimentally verified in section 7.6. The highest steady-state suppression achieved 

was 45 dB, for a single planewave jammer. Section 7.4, the comparison of the jammer- 
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nulling processor to the simple narrowband LMS loop, is intended to provide some 

insight to the processor operation in the context of the large existing body of work 

pertaining to the Widrow-Hopf LMS algorithm. It allows a direct comparison of the 

processor parameters to the feedback gain parameter defined in the standard literature. 

Section 7.5 consisted of an extended derivation of the jammer-nulling processor 

dynamics, which included a desired signal, optical and electrical noise, optical leakage 

in the feedback loop, both from scattering and multiple diffractions, and the 

photorefractive erasure penalty resulting form the holographic read/write techniques. 

By examining both the jammer excision and the processor SINR, appropriate with the 

addition of a desired signal, it was found that maximizing the feedback gain parameter 

g2C is the most direct method to optimizing both jammer suppression and SINR. 

Simulations of the derived excision and SINR equations under various limiting 

assumptions help to identify desirable experimental operating conditions. Finally, the 

combined jammer-nulling and beam-forming experimental results presented in section 

7.6 are the first known reported results of adaptive, simultaneous beam forming and 

jammer cancellation, and demonstrate the ability of this adaptive processor to 

successfully perform in a complex, multi-dimensional signal environment. 
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8. Resonator Structures for Signal Processing 

Fabry-Perot etalons are well known for their applications in high-resolution 

optical spectrum analysis, and have also been implemented as frequency channelizers 

for electronic signal processing. Such a channelization approach can result in a very 

compact, real-time method of channelization for large bandwidth signals. In addition 

the output of these channelizers are optical, and therefore can be used for further 

processing in the optical domain. The tilted and wedged Fabry-Perot etalons discussed 

in Section 1 of this Chapter also play an important role in the implementation of the 

true-time-delay versions of the adaptive phased-array processor, as discussed in 

Chapter 2. A similar structure to the Fabry-Perot etalon is the Herriott cell, a multiple 

pass optical resonator which functions as a discretely sampled optical delay-line by 

allowing each round-trip pass within the cavity to be individually sampled. This type of 

resonator structure provides another method of achieving true-time-delay in the phased- 

array processor. Section 2 of this chapter briefly presents Herriott cell theory and some 

simple, yet instructive simulations, followed by experimental results obtained from a 

demonstration Herriott cell. 

8.1 Etalon Frequency Channelizers for Phased-Array Processing 

8.1.1 Background and Implementation 

The tilted and wedged Fabry-Perot etalons are methods of implementing the 

linear array of bandpass filters with linearly increasing center frequency required for the 

fully independent spatio-temporal optical implementation of the Widrow algorithm1 as 

shown in Chapter 2. In this context, because of the intrinsic delay induced by the 

etalons, these etalons may be interpreted as providing the multiple time-delayed taps 

required for broadband processing. However, the most straightforward manner in 

which to view their processing role is as RF channelizers. Fabry-Perot etalons have 

been proposed2'3 as a method of RF channelization because of their ability to 
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implement highly resolved multiple RF channels in parallel in a physically compact 

manner. Analogous systems done at RF frequencies would require an extensive amount 

of bulky and often expensive RF hardware. When the processing is done at optical 

frequencies, even bandwidths of many GHz are still only a small fraction of the optical 

carrier frequency. The two approaches discussed in this chapter are the tilted etalon 

which performs channelization by having a different bandpass frequency versus 

incident angle, and the wedged etalon which has a position dependent bandpass 

frequency along the aperture of the etalon. 

The three key elements for optical channelization are a method of modulating the 

optical signal with the RF spectrum to be investigated, a method for dispersing the 

modulated spectrum into resolvable channels, and a method of detecting the amount of 

signal in each channel. For the work discussed in this thesis, an acousto-optic Bragg 

cell has been chosen as the means of modulating the optical carrier, because the same 

Bragg cell implements the continuous tap-in delay line in the adaptive phased-array 

processor. The Bragg cell also provides a frequency dependent diffraction angle with 

frequency, which is utilized in the application of both the tilted and wedged Fabry-Perot 

etalons. An alternative modulation source is an electro-optic (EO) modulator where 

some frequency/angle dependency must be introduced. For example, in [3], an EO 

modulator was used to modulate the optical carrier, the modulated beam was focused 

into a plane-parallel etalon, and detection of each channel was done with a linear array 

of detectors. In [2], an EO modulator was again used for modulation, and a collimated 

output beam was input into a wedged etalon with a movable frequency channel mask 

and a small area detector. In contrast, for the true-time delay applications discussed in 

this thesis, the output of the tilted and wedged etalons in the phased-array processor are 

spatially integrated onto a single photodetector, and the sum of the individual 

channelized frequencies are then used in the calculation of the adaptive weights. 
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One implementation of a tilted etalon as a spatially dependent frequency filter in the 

jammer-nulling processor is shown in figure 8.1. While the details of the jammer- 

nulling processor have been discussed in Chapter 6, the significant function of the 

etalon in the jammer-nulling implementation is to eliminate any broadband desired 

signal components from contributing to the jammer estimate signal, which would result 

in the nulling of the desired signal as well. The jammer-nulling processor steers an 

antenna function in the direction of a jammer by building up a corresponding grating 

Bragg matched to the AOA of the jammer and the frequency dependent angle from the 

feedback Bragg cell. If the desired signal is at or near the same AOA as the jammer, or 

at an angle corresponding to an antenna sidelobe, errant diffraction of the desired signal 

off of the holographic grating could occur, causing some desired signal to be present in 

the jammer estimate signal. As shown in figure 8.1, the Bragg cell is imaged onto the 

PRC, and then re-imaged onto the tilted etalon which is tilted so as to have the same 

frequency versus angle as that of the Bragg cell. The left beam stop in the figure blocks 

the DC component from the Bragg cell, and the beam stop at the right (which is actually 

in the vertical dimension as explained in Chapter 5) blocks the directly transmitted 

portion of the diffracted grating writing beam from the Bragg cell. The combination of 

the frequency dependent diffraction angle from the Bragg cell and the angular 

dependent pass-band characteristic of the tilted etalon defines a unique frequency-angle 

passband relationship for signals diffracting off of the holographic grating. 

Functionally, any signal which has diffracted off of the holographic grating but is not 

of the same frequency which wrote the grating will not pass through the etalon and will 

therefore not contribute to the jammer estimate signal. The wedged etalon would be 

implemented in a similar fashion, where instead a Fourier plane of the Bragg cell would 

be imaged through the PRC and onto the etalon, where the frequency versus position 

relationship of the Bragg cell and that of the etalon would be matched. 
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Figure 8.1. Schematic diagram of a tilted etalon performing as an angularly selective 
frequency filter in the jammer-nulling processor 

In the beam-forming subsystem of the processor, the etalons are implemented in 

essentially the same manner as for the jammer-nulling processor. The significant 

difference in the beam-forming case is that the holographic grating is Bragg matched to 

the desired signal of interest, and the jammer signals constitute the errant diffractions. 

At first glance it may seem that because of the etalon filter the jammers are 

extinguished, and that the jammer-nulling portion of the processor is not necessary. 

However, the jammers are in general much stronger than the desired signal, and 

therefore the formed main-beam signal can still be significantly corrupted. 

8.1.2. Tilted Fabry-Perot Etalon 

In this Section, a set of four equations which couple the frequency dispersion 

function of the Bragg cell and a tilted etalon will be used to obtain an analytical 

relationship between the etalon tilt angle, etalon dimensions, and magnification of the 

imaging system for a given system bandwidth and number of resolvable channels. The 

same set of equations are used to numerically determine a 3dB ripple solution for the 

RF bandwith for a given Bragg cell and tilted etalon combination. 
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The plane parallel Fabry-Perot etalon tilted by angle 6hias away from normal 

incidence has an angularly dependent passband frequency characteristic. Recalling that 

an untilted plane parallel, lossless etalon of cavity spacing d will have a transmitted 

intensity component /, given by the Airy formula4 

h 
47?sin2(5/2) 

(I-*)2 8.1 

/.= 

where I; is the incident intensity, R is the reflectivity of the cavity mirrors, and 

_    4nndcos(Q)    . . . 0 0 5 = — = 2m7i       man integer. 8.2 
A. 

In equation 8.2, n is the refractive index in the cavity, and X is the optical wavelength. 

There will then be a maximum transmission of the etalon at frequency vm whenever 

v„ = m m 2ndcos(Q) 33 

These resonances are separated in frequency by the free-spectral range (FSR) of the 

cavity, given by 
FSR = 

2ndcos(Q) 
FSR = C——r 8.4 

and the cavity will have a frequency resolution of 

2Av   =FSR = C 8 5 Vyi     FR      2ndFRcos{9) 

where the reflectivity finesse, FR, is defined as 

FR=^ 8.6 R    \-R 

and Av1/2 is the frequency half-width at the half-power point of the etalon transmission 

function. 
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By matching the frequency dispersion with incidence angle of the etalon given 

by equation (8.3) to the frequency dispersive property of the diffracted component of 

the Bragg cell, the required angle/frequency filtering operation will be achieved. The 

scan angle of the deflected beam from a Bragg cell, assuming isotropic acousto-optic 

interaction, due to an RF frequency/is given by 

6f = 2 sin (A) 
{2Vj 8.7 

where A. is the optical carrier frequency and V is the acoustic velocity of the 

Bragg cell. For an RF bandwidth of A/, and assuming small angles, the total angular 

scan range A0 can be approximated by5 

A9 = -|A/. 8.8 

The etalon will be arranged such that its increasing frequency passband with angle will 

correspond to the increasing diffraction angle with frequency or the Bragg cell as given 

by equation 8.8. 

Using equations (8.3) and (8.8), a set of four equations can be obtained in order to 

couple the frequency dispersion of the tilted etalon and the Bragg cell over the 

frequency range of interest. From equation (8.3), it is evident that the passband 

frequency of the etalon will vary inverse cosinusoidally with etalon tilt angle. This 

behavior is shown in figure 8.2, where the center curve is the passband frequency vc/ 

of the etalon plotted versus incident angle. The center frequency vc/ is the optical 

carrier frequency v0 plus the RF carrier frequency. The angular scan range of Bmin to 

6max corresponds to the RF bandwidth of A/. The upper and lower curves each 

correspond to Av]/2 away from the passband frequency, useful for determining a 3dB 

ripple bandwidth of a given Bragg cell and etalon combination. From equation (8.3), 
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Figure 8.2. Transfer curve of cavity resonant frequency vc/ versus angle 0 for tilted 
Fabry-Perot etalon. 

the two passband frequencies at the extremes of the RF bandwith A/ can be expressed 

as 

and 

vi = Kr - 4/72 = 

K = vcf + Af/2 = 

ve=o 

cosl (O 
"6=0 

cos(ömax) 

8.9 

8.10 

where ve_0 is the passband frequency of the etalon at an incident angle of zero degrees 

The Bragg cell angular position at the extremes of the RF bandwith can be determined 

from equation (8.8) to be 

c(vc/ - Af/2 - v.) 

and 

Qminß-Qbias ~ 

®maxR      "ftto ~ 

2VMv0 

c(vcf + Af/2-v0) 

2VMv„ 

8.11 

8.12 

where c is the free-space velocity of light, Mis the image magnification of the Bragg 

cell onto the etalon, and 8to is the etalon tilt angle away from normal incidence. The 

angles are illustrated in figure 8.3, where the Bragg cell is shown directly imaged onto 
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fx      M=-£lfi     ^       Tilted Etalon 
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Figure 8.3. Bragg cell shown imaged with magnification M onto etalon tilted by QBiax. 
The two diffracted beams from the Bragg cell incident on the etalon at Qmin and Qmax 

correspond to optical frequencies v, = vRFcf - Af/2 and vu = vRFcf + A//2 respectively. 

the etalon for simplicity. Equations 8.9 - 8.12 can be used to relate the number of 

resolvable spots of the Bragg cell, NBC, to the number of resolvable spots in the tilted 

etalon, NFP. These two quantities are defined as 

FSR 
NBC = Af*BC 8.13 NFP = 

2Av 
8.14 

1/2 

where xBC is the time aperture of the Bragg cell.   NBC is thus equivalent to the time- 

bandwith product of the Bragg cell. Ideally the FSR of the etalon matches the desired 

RF bandwidth A/, and NBC = NFP so that the spectral resolution of the Bragg cell is 

not degraded by the etalon. The angles  0m/„ and Qmax in equations 8.9 and 8.10 are 

assumed to be small, allowing the approximation to be made of       cos(9)«1 - 02/2. 

Using this approximation and substituting the expressions 8.9 and 8.10 into the 

equations 8.11 8.12 and then taking the difference between the resulting expressions 

yields 
2Af    ., 

8.15 ^ = eL-e' max mm 
"6=0 

Squaring equations (8.11) and (8.12) yields expressions for Q2
mln and 9^ respectively, 

which after taking their difference and equating to equation (8.15) yields 
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v, 9=0 

3c2A/    | 2c9, 

(MVv0f + MVvn 

8.16 

where the substitution  vc/ - v0 = /ÄFcawr = 1.5A/ for an octave bandwidth has been 

made. Note that the size of the Bragg cell image, W, (which can be taken to be 

approximately equal to the aperture size of the etalon) is given by  W = xBCV\M\. This 

relation allows equation (8.16) to be expressed as 

NFP       v0MV 
Nar    3c2v9=0A/ 'BC 

f\M\ v»v 
V XBC J 

- ve=o0^c 

8.17 

This result relates the Bragg cell and etalon parameters to the ratio of the number of 

resolvable spots in the Bragg cell and the etalon. For small tilt angles, ve=0 » v0, and 

equation 8.17 can be simplified to 

VMY—^ NFP „ v0MV 

N, BC 3czAf \xBcy 
■0Wa,

c 8.18 

As an example, first a specific operating bandwidth     A/ is specified, along with a 

particular Bragg cell with an aperture time of    rBC and an acoustic velocity of     V. 

Imaging the Bragg cell with magnification     M onto the etalon aperture      W, from 

equation 8.18, the tilt angle Gbjas can be determined. Having determined Ghias, 9min and 

0max can then be determined from equations 8.11 and 8.12. 

A numeric approach for determining a 3dB ripple solution for the etalon 

bandpass characteristic has also been implemented. The same set of four equations are 

simultaneously solved in order to determine Qhias, Qmin, 0max,and  ve=0,basedonan 

initial desired magnification, laser and RF center frequencies, and RF bandwidth. An 

example calculation is plotted in figure 8.4, showing the 3dB ripple solution. This 

particular example required a magnification of-7.3, but has only a 10 MHz bandwidth 

on a 100 MHz center frequency (9m,„ = -0.0878 mrad, %max = -0.205 mrad), and a 
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Figure 8.4. Plot of numeric solution for 3dB ripple solution exhibiting 10MHz 
bandwidth for Bragg cell and tilted etalon combination. 

1 usec Bragg cell aperture time which yields only 10 resolvable spots. Increasing the 

RF bandwidth to 66 MHz in the above example (corresponding to octave bandwidth) 

results in a required magnification of M= -48.3. The magnification of-48 in this 

solution is a potential problem. A time aperture of 1 usec and an acoustic velocity of 

V = 6mm/|isec implies a Bragg cell with a 6mm length, and a magnification of 48 

yields an image size of 288mm which is very large. From equation (8.4), a FSR 

corresponding to the RF bandwidth of 66 MHz yields a cavity length d of 

approximately 2.3 meters. From the standpoint of general compactness, as well as 

maintaining flatness and thermal stability, the above dimensions represent an 

unpractically large etalon. 

The above two examples were chosen because all of the phased-array 

processing experiments presented in this thesis have been done in this frequency range, 

it is more sensible to consider this etalon channelization method for higher frequencies, 

such as in the GHz regime. As an example, for a 1 GHz bandwidth signal on a 5 GHz 

carrier frequency, using a Bragg cell with a time aperture of 100 nsecs, the 
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magnification is 213 (magnification scales with frequency as predicted by equation 

8.18). The etalon aperture is now reduced to 135 mm, while the cavity length is 150 

mm. These dimensions are more realistic in terms of etalon construction and stability. 

The finite number of resolvable channels of the tilted etalon may in addition be 

further limited by optical beam walkoff within the etalon mirror cavity. The walkoff 

condition produces beams which do not completely overlap and results in broadened 

transmission peaks, which limits the finesse to less than that determined by the cavity 

alone. For plane waves incident on an etalon tilted by angle    9, an effective walkoff 

finesse can be defined as3 

F =^- w    2dB 8.19 

where D is the beam diameter and d is the cavity spacing. The walkoff finesse is 

essentially equal to the number of overlapping beams in the etalon. The etalon finesse 

will then be limited either by the walkoff finesse Fw, or the mirror finesse. The above 

equation for the walkoff finesse predicts better performance with decreasing cavity size 

d, further enforcing the advantage of processing at higher frequencies. The mirror 

finesse is fundamentally limited by mirror reflectivity (equation 8.6) or the mirror 

flatness, therefore it is reasonable to attempt a design where the walkoff finesse is 

greater than the mirror finesse. 

8.1.3 Wedged Fabry-Perot Etalon 

A brief analysis of the applicability of the wedged etalon as a frequency 

channelizer is presented. The analysis yields approximate dimensions for the etalon, 

including wedge angle, based on achieving the same frequency resolvability as the 

input Bragg cell. For bandwidths in the tens of MHz range, it is found that as with the 

tilted etalon, the cavity dimensions are quite large, and processing GHz bandwidth 

signals is more sensible. 
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Bragg Cell 

Wedged Etalon 
Figure 8.5. Wedged etalon with position dependent frequency bandpass function is 
placed in the Fourier plane of the Bragg cell. 

The wedged Fabry-Perot etalon frequency channelization system for the 

adaptive phased-array processor functions as an acousto-optic spectrum analyzer 

followed by a spatially dependent frequency filter. The basic arrangement is shown in 

figure 8.5, where two frequencies from the Bragg cell are mapped into positions in the 

Fourier plane which correspond to the correct bandpass frequency position along the 

linear dimension of the etalon. In the adaptive phased-array system, the Bragg cell 

shown in figure 8.5 would be an imaged through the PRC, and then onto the etalon. 

As with the tilted etalon, the wedged etalon suffers from beam-walkoff and 

resulting broadened transmission peaks. However, the situation is somewhat worse 

with the wedged etalon because the wedge angle causes each overlapping wavefront 

within the cavity to interfere at a slightly different angle and phase shift, which both 

broadens the transmission peaks and creates an asymmetric spatial impulse response. 

These two effects in general will reduce the resolution of the etalon to less than that 

predicted by the cavity finesse6. Some additional concerns arise which are specific to 

the proposed implementation shown in figure 8.5 due to multiple beams focusing down 

through the etalon. In order to confine the array of spots to a small aperture size, the 

individual spots should be small. However small spots result in large beam divergence 
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which is sure to effect the resolvability, and depending upon the cavity length and the 

wedge angle, a narrow beam may actually walk-off itself entirely after some finite 

number of bounces less than the number the cavity would normally support based on 

mirror reflectivity and flatness. 

The Bragg cell will scan over a given distance x in the Fourier plane given by 

x = FiXo&f 8.20 
V\M\ 

where F, is the lens focal length, X0 is the mean optical wavelength, A/ is the RF 

bandwidth, V is the acoustic velocity of the Bragg cell, and Mis the total magnification 

of the imaging system from the Bragg cell to the etalon. The distance x can be taken to 

be approximately the length of the etalon aperture. As shown in figure 8.5, d: and d2 

are the cavity spacings at either end of the etalon, and the wedge etalon angle will then 

be 

tan(a) = ^^. 8.21 
x 

The etalon wedge angle will be shown to be very small, and therefore equation 8.21 

will be approximated by 

d2 -dx a w—  
x 8.22 

Assuming a resonance condition, it follows that at any given position along the etalon 

aperture, the cavity spacing corresponds to an integral number of wavelengths, thus it 

follows that d2/X2 = djXl. Using this relationship between dx and d2, and noting that 

A, = c/v, = c/(v, + fx) and l2 = c/v2 = c/(v, + f2), it follows that 

d     v_l±kd 8.23 
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where v, is the laser illumination frequency and the bandwidth Af = fl-f2. 

Substituting equations 8.23 and 8.20 into equation 8.22 yields a wedge angle of 
d2V\M\  .,.     dV\M\ 

F(c + Kfy Ftc + lJ,) 

where d is a mean cavity thickness. For small etalon wedge angles, the FSR of the 

wedged etalon will be assumed to be the same as that for the plane parallel cavity as 

given in equation 8.4. For example, considering a FSR of 66MHz as in the tilted etalon 

example of the previous section with a magnification of 10, and a lens focal length of 

500mm, a value of a = 0.9 mrad is obtained from equation 8.24. 

An estimate for the maximum allowable wedge angle can be obtained by 

examining both the wedge induced phase shift and walk-off. Figure 8.6 shows thepth 

bounce of the ith channel input, of beam width  Wpi incident on a wedged etalon, and 

the resulting first several transmitted beams. As shown in the figure, subsequent 

bounces cause each beam to walk along the wedge length, as well as to emerge from 

the etalon at a slightly different angle on each bounce. The effects of each of these 

emerging beam properties will be investigated separately. Each of these effects will 

place a limit on the wedge angle for a given mean cavity spacing. 

The increasing phase shift with each subsequent bounce is associated with the 

increasing emerging angle with each bounce and has been analyzed in [7]. At near 

normal incidence, neglecting absorption, the phase shift between the first transmitted 

beam and the pth interfering wave at position p along x is given by 

4TT 
Sp = —psin(p - \)a cos(p - \)a 8.25 

An expansion of equation (8.25) in powers of a for a finite number of interfering 

waves p yields a limit on the wedge angle such that the transmitted intensity does not 

differ significantly from the Airy formula given by equation (8.1). In particular, for 
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the finesse will not be degraded from the plane parallel cavity case (a refractive index of 

1 inside the resonator has been assumed). 

The effects of lack of spatial overlap due to walk-off can be analyzed by noting 

that from figure 8.6, as each subsequent interfering beam accumulates an increase in 

angle with each bounce, the lateral translation increases as well, resulting in increased 

beam overlap. In particular, the spot WPi will translate a distance öl~d-m, where d is 

the mean cavity thickness and m is an integer number of the wedge angle a, and m is a 

function of the interfering beam number;?. For example, from figure 8.6, the second 

beam/7 = 2 has acquired a total of 2a of angular deviation, beam/? = 3 has acquired an 

additional 8a, and beam/? = 4 has acquired an additional 14a beyond beam/? = 3. The 

integer number m for the/??/? bounce can be expressed as 

= «IL(6
JP-1°) 8-27 m 
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The total lateral shift of 81« d ■ m is used to estimate the spot size for the ith channel 

such that after a desired number of P interfering waves, the spot has just walked off 

itself, with no more spatial overlap. This spot size is chosen to be 

WL .^aZ'=2(
6^-10) 8-28 

The sum of the spot sizes   WPi yields an estimate for the value of the required etalon 

aperture x. The required number of channels should be set equal to the time-bandwidth 

product NBC of the input Bragg cell, and therefore  x » NBCWP1, where it is assumed 

that all of the WPi can be assumed equal in size. Substituting this expression for x into 

equation (8.20)yields 

~2'VNBCZ
N::2(6P-IO) 

2 ¥ a  < =rrz~, r- 8.29 

An instructive example calculation is the octave bandwidth example presented in 

the previous section for the tilted etalon. Assuming the RF bandwidth A/ is set equal to 

the etalon FSR set by the mean cavity spacing d, the 66MHz RF bandwidth again 

results in a cavity length d of 2.3 meters, which is somewhat large. The time- 

bandwidth product of NBC = 66 leads to bounds of   a « 5.4x10~7 and  a « 3. lxl 0"7 

radians from equations 8.26 and 8.29 respectively. Choosing the smaller of these two 

extremely small angles results in a spot size of 8mm, and a corresponding etalon 

aperture length of 0.528 meters. Again, the motivation for this method of 

channelization at these bandwidths is difficult to justify. Using the parameters from the 

second example of the previous section of A/ = 1 GHz and NBC = 100, now with the 

tilted etalon, yields a «l.lxl0"6 and a « 7.5x10"7 radians from equations 8.26 and 

8.29 respectively. As with the tilted plane-parallel etalon, processing at higher center 

frequencies and associated larger bandwidths is more promising, and demonstrates the 

advantages of choosing an optical approach to RF channelization. 
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8.2 Herriott Optical Time Delay Resonator 

A Herriott time delay resonator is essentially a Fabry-Perot resonator where 

pencil-like beams are launched off-axis into the resonator resulting in a multiple pass 

cavity which produces multiple output spots, each delayed by the cavity round-trip 

time. Spherical resonator mirrors refocus the wavefronts so that diffraction spreading is 

minimized. Because of the multiple, delayed outputs, functionally the Herriott resonator 

is an optical delay-line, and has applications in optical signal processing. In particular, 

such a resonator could be used at the input of the phased-array processor to provide 

tapped, temporally delayed samples of the input signals. The output from each fiber 

(corresponding to an antenna element) would expanded into a set of discreet, temporal 

samples for input into the processor. A Herriott time-delay resonator has been built as a 

proof-of-principle instrument in order to investigate its basic operating characteristics, 

and to experiment with using the time-delayed outputs to write gratings in a PRC. In 

this section a brief theory of the Herriott resonator is presented, followed by 

experimental results. 

8.2.1. Herriott Cell as a Transversal Filter 

In the early 1960s, D. R. Herriott et al. proposed implementing transversal filters by 

using optical resonators as folded optical delay lines8'9. The concept is to illuminate a 

spherical or aspherical optical resonator with an off-axis ray of light, and the repeated 

reflections of the beams between the mirrors where one mirror is a partially reflective 

output coupler, provides a temporal sampling of the optical input. Each temporal 

sample is spaced in time by the resonator cavity round-trip time, and depending upon 

the resonator geometry and input signal launch parameters, each temporal sample can 
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be separated in space and/or angle so as to be detectable in an output plane. The net 

result is a set of discretely spaced temporal samples of an optical signal corresponding 

to an all optical tapped-delay line or transversal filter. As was shown in Chapter 2, the 

tapped-delay line can be viewed as performing a discrete Fourier transform on an input 

signal, providing the multiple degrees of freedom required for processing of broad- 

band signals. 

Figure 8.7 shows three methods for obtaining time-delayed outputs of a broad- 

band signal. At the top of the figure is the traditional, electrically implemented version 

discussed in Chapter 2. The summed output of the network is the sum of the discretely 

sampled outputs, each multiplied by an adaptive weight. Another possible approach is 

the resonator structure shown in the center of figure 8.7, where a portion of the output 

from each fiber is allowed to escape after each round trip through the cavity. The result 

is a 2-D mapping of the antenna array; temporal samples of each fiber output in the 

vertical dimension, and individual fibers spaced horizontally along the resonator 

aperture. However, as configured, this particular resonator structure would compensate 

poorly for diffraction losses. The Herriott resonator approach is shown in the lower 

portion of the figure. A single optical ray is shown as an input to the cavity, and after 

each round-trip a portion of the input signal exits. Because these cavities are generally 

implemented in a stable resonator configuration, diffraction losses are well 

compensated for. A single such resonator could support multiple fiber inputs 

simultaneously. As shown in the figure, adaptive weights are formed in the PRC, and 

multiply each of the sampled outputs of the resonator. 

In contrast to typical Fabry-Perot resonator used for spectral analysis and 

channelization where all reflections are intended to overlap, for the time delay 

configuration it is desirable to have each bounce either spatially or angularly resolvable 

so that each delayed sample can be processed uniquely. A resonator with spherical 

mirrors can be used to generate circular, elliptical, or linear arrays of output samples. 
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Much larger numbers of resolvable output samples can be generated using astigmatic 

resonator mirrors, which generate Lissajous patterns in the output plane. 

8.2.1.1 Herriott Resonator Bandwidth and Frequency Resolution 

The design issues to consider are the operating bandwidth of the cell and the 

available frequency resolution (number of resolvable frequency samples). These are in 

turn related to the resonator geometry and the number of obtainable round trips, N. 

Each time sample is delayed by the round-trip time T, where  T = 2d/c, for a cavity 

length of d. Correspondingly the resonator will have a Nyquist sampled frequency 

bandwidth of 

2T    Ad 

and a frequency resolution of 

AV: 
2N* 8.31 

where N is the number of round-trip cavity trips. The value of N can be quite large, 

on the order of the finesse of the resonator. As given by equation 6.6 high reflectivity 

mirrors can have a finesse on the order of several hundred to a few thousand. In 

practice the finesse is usually limited by mirror flatness to on the order of a few 

hundred or less. This is particularly important for the typical Fabry-Perot interferometer 

application where all the reflected waves must add in phase. For example, a mirror 

flatness of A./200 could produce an out of phase wavefront after only 100 bounces. In 

the time delay application of interest here, each bounce is intended to be spatially or 

angularly separable and hence not overlap, and therefore the flatness issue is of less 

concern here. In addition, in the adaptive holographic scheme for calculating the 

adaptive weights, each individual output spot is used to form a unique hologram, and 

the precise phase-front of the spot is unimportant. 
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The bandwidth of the resonator varies inversely with cavity spacing d, and as 

with the etalons of the prior section, the Herriott resonator approach is more sensible 

for signals with large bandwidth because the cavity length is shorter, making it more 

stable and compact. For example, for a signal with 100 MHz bandwidth, the cavity 

spacing is on the order of 1.5 meters, while a signal with 10 GHz bandwidth reduces 

the cavity spacing to only 1.5 cm. 

8.2.1.2 Theory of Off-Axis Ray Paths in Optical Resonators 

The ray paths in the Herriot spherical mirror resonator can be described by a 

simple set of equations, identical to the set of equations describing ray propagation 

through a series of lenses of focal length/and uniformly spaced by a distance d. As 

shown in figure 8.8, of interest are the two-dimensional Cartesian coordinates 

describing the position (  xn,yn) and slope (   x'n,y'n) of the nth bounce, denoted by 

x x'. v , V for a Cartesian coordinate system. From [8], in a cavity of mirror spacing 

d and focal length^ the x coordinate of the nth bounce is 

xn =^sin(«G + a) 8.32 
where 

cos(e) = l-(rf/2/) 8.33 

tan(a) = J^-l 1 + 2/^- 8.34 
V x„ 

and 
A2=-^(x2

0+dxoK + dfK
2). 8.35 

An analogous set of expressions exists for they coordinate, where 

yn = Bsin(nQ + ß) 8.36 

and B and ß are defined analogously to equations 8.34 and 8.35. As shown in figure 

8.8, the angle 0 is the difference in polar angle between the nth and (n+l)th bounce, 
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Xn'=tan(j) 

Figure 8.8. A series of lenses of focal length/and uniformly spaced by a distance d 
form the basis for the simple theory describing ray-propagation in Herriott resonators. 

and is solely determined by the cavity geometry, independent of the initial launch 

parameters x0,yo,r0, and yo. The offset angles a and     ß depend on both the initial 

launch parameters and the cavity geometry. A and B are the maximum possible 

excursions of the ray in the x and y directions respectively, and determine the maximum 

size of the resonator aperture radius. The projection of xn and yn onto a plane will in 

general map out an ellipse, with special cases being a circle when A = B and 

a = ß ± 7t/2 (when tan(a)tan(ß) = -1), and a straight line when A = B and a = ß . A 

re-entrant condition exists whenever 2m9 = 2K, and the spot pattern will reproduce 

itself after m bounces. 

More generally, and of greater interest for the applications discussed in this 

thesis, the coordinate equations given above can be extended to the case of astigmatic 

resonator mirrors by explicitly defining mirror focal lengths fx and f for the JC and y 

directions respectively. The astigmatic resonator can produce a plethora of complicated 

Lissajous patterns, a few of which will be presented in the following sections. The 

Lissajous patterns can spread the output spots over a large portion of the output plane, 

which can be advantageous because the spots are more easily separable. The cavity 

equations (8.32 to 8.36) have been used to calculate different resonator output patterns 

as a function of cavity and launch parameters. These calculations were done primarily 

to estimate output spot patterns and sizes as an aid towards choosing optical 
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components and resonator configurations for the experimental investigations presented 

in the following section. Diffraction effects were not included in the calculations, and 

the input beam was assumed to be mode matched to the cavity. 

Figure 8.9a shows a typical pattern calculated for spherical mirrors (no 

astigmatism). The pattern is near circular in this example because    A « B, and   a is 

approximately n/2 out of phase with ß. The figure shows the first 15 spots which exit 

the resonator output coupler. Figure 8.9b shows the resonator output where the pattern 

has now collapsed into nearly a straight line, because now    a » ß. The output spots 

walk down the diagonal from the upper right to the lower left and back up again. 

Arrangements of this type are particularly interesting for phased-array processing 

applications because a single resonator could simultaneously provide separable output 

patterns for multiple inputs. For example, appropriate placement of each input signal 

would map out a diagonal at a unique radial angle. 

The astigmatic (fx*fy) cases are of interest here because the resulting output 

patterns make more use of the available resonator aperture. For example, figure 8.10a 
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shows a classic Lissajous pattern produced with a moderate astigmatism of- 0.05. 

Figure 8.10b shows an elliptical pattern composed of 500 output spots which is 

rotating about in its orientation as the spot pattern progresses due to the astigmatism. 
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A grid-like pattern of 650 output spots shown in figure 8.1 la. This 

pattern is essentially the astigmatic version ofthat shown in figure 8.9b, as evidenced 

by the pattern shown figure 8.1 lb, where the first 20 output spots of the grid-like 

pattern walk down the diagonal and back up again as in figure 8.9b, only that due to the 

astigmatism, now the return path is slightly displaced. The line evolves into an ellipse 

with each pass, slowly opening up each time around, while always passing through the 

lower left and upper right corners. This is why these two corners have a much higher 

spot density. Thus, in spite of the intuitive desire to attach a regular numbering 

sequence to the orderly array of output spots, this is not appropriate. For purposes of 

using this type of pattern as an input to the optical phased-array processor, the fact that 

the pattern does not follow an intuitive numbering pattern is immaterial. As explained in 

Chapters 6 and 7, the holographic beam-forming process does not require the topology 

of the fielded phased-array to match that of the input optical mapping. Much more 

important is the fact that the output spots are spread out over the resonator aperture, and 

that the spots are spatially or angularly resolvable so that they may be individually 

accessible. 

8.2.2 Experimental Demonstration of Herriott Resonator 

A Herriott time-delay resonator has been constructed in order to investigate 

performance issues such as number and arrangement of output spots, resonator optical 

throughput, and the ability to write holograms in a photorefractive crystal using the 

output spot pattern. 

8.2.2.1 Experimental Set-up 

The experimental set-up for the Herriott time-delay resonator is shown in figure 

8.12. The doubled Nd:Yag laser (532nm) is spatially filtered, collimated, and focused 

down through the acousto-optic modulator (AOM). A frequency sweep of 
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Figure 8.12. Experimental layout of Herriott time-delay resonator experiment. 

approximately 20 MHz on an 80 MHz carrier was input into the AOM. The undiffracted 

component from the AOM is blocked by the aperture in front of mirror 3 (M3), and the 

diffracted component is split by the beamsplitter into a signal and reference arm. The 

signal arm is sent through an iris which is set so that the intensity of the signal into the 

resonator stays approximately constant as the beam scans about (very little) due to the 

AOM deflection with frequency. This modulated beam is then sent via M4 through the 

output coupler, and into the resonator. The mirrors of the resonator cavity were 2 inch 

diameter, X./200, 99.6% reflectivity laser output coupler mirrors. Astigmatism of the 

mirrors can be induced by tightening the mounting screw which holds the mirrors in 

their mounts. Tightening the screw creates a force on one axis of the mirrors, changing 
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the radius of curvature of the mirror in the dimension of the axial force. The reference 

beam is steered with mirrors M5 and M6, brought to a focus with a 150mm lens and 

allowed to diverge onto the photorefractive crystal (SBN:Cr). When the output of the 

resonator is blocked, and the PRC is read out with the reference beam, the diffracted 

output beam propagates to the diffuser. The resonator had a cavity length of 0.353 

meters, corresponding to a Nyquist sampling interval of approximately 200 MHz. As 

discussed below, the cavity seemed to support on the order of 200 output spots, 

corresponding to a total aperture time of approximately 235 nsec and a frequency 

resolution of approximately 2 MHz. 

8.2.2.2 Experimental Results 

The experimental results presented emphasize the large number of output spots 

and high output spot density available using the Herriott resonator. Figure 8.13 shows 

an experimental output pattern from the astigmatic resonator, analogous to the 

calculated result of figure 8.1 la. Note that as in figure 8.1 la, there are two corners 

with very high spot density, and the intensity is higher along the primary diagonal 

formed by the two corners. The lower intensity in the direction orthogonal to this 

diagonal is consistent with the fact that as in the calculated result, these spots are of a 

much higher bounce number than those along the primary diagonal, and the intensity is 

correspondingly reduced due to the less than unity mirror reflectivity. 

Attempts to write a photorefractive hologram with the grid-like pattern were met 

with limited success; only one or two diffracted spots were seen. This was at first 

attributed to the output intensity of the resonator being extremely low, on the order of 

several microwatts. The low output intensity was due in part to the fact that coupling 

into the resonator was done via one of the partially transmitting output couplers as 

shown in figure 8.12. This low power level prompted an alternate input coupling 
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method using a pick-off mirror to couple directly into the cavity rather than through the 

output coupler. The drawback with this approach is that it limited the available range of 

achievable input launch parameters. Using the pick-off mirror approach produced the 

elliptical resonator output pattern shown in figure 8.14, which agrees well with the 

simulation of figure 8.10b, where the manner in which the intensity decreases confirms 

the spiral-like progression of the output spots. 

Using the pick-off mirror increased the output power to approximately 100 

microwatts, however it was found that only the first ring of 10 output spots would 

write a hologram, corresponding to the first 10 round trips through the cavity. The 

intensity dependent photorefractive time constant suggested that by waiting long 

enough, a hologram could be written between many more spots. This was not the case. 

The question of laser coherence length now arises. The 10 spots recorded in the 

hologram suggest that during the time of the photorefractive time constant, the 
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Figure 8.14. Experimental result of output spot pattern from astigmatic Herriott time- 
delay resonator. 

coherence length of the laser was only as long as 20 cavity lengths, about 14 meters 

instead of the 150m suggested by the manufacturer. To investigate this suspicion, the 

reference beam path for the hologram was increased by a length approximately equal to 

a cavity round-trip distance. The 10 spots formed in the hologram all shifted around the 

ring by one spot, i.e. one round-trip time. By increasing the reference beam path 

length, the reference beam was now coherent with only 9 of the output spots of the 

previous ring, and where the 10th output spot was previously at too large of a delay. 

The suspicion of a dramatically shorter coherence length than assumed was officially 

confirmed by proper interpretation of the manufacturer's specifications. In particular, a 

specification of a 150m coherence length was given, however it is only valid for time 

intervals less than 2\x seconds, which is several orders of magnitude shorter than the 

photorefractive writing time constant. Thus while the laser has a very narrow linewidth 

of only 2MHz, the center frequency ofthat linewidth is moving about at MHz rates, 
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preventing constructive interference for hologram formation over a time interval even 

near that of the photorefractive time constant. A laser with better coherence properties is 

the first step in performing a more useful demonstration of the Herriott time-delay 

resonator. A faster PRC would also be advantageous. As with the Fabry-Perot 

resonators of the previous sections, using GHz bandwidth signal inputs would be a 

better match to the available Nyquist sampling interval and temporal aperture of the 

Herriot resonator as built. 

Despite the shortcoming of a using a laser with an insufficient coherence length, 

the Herriott resonator experiment did demonstrate the important issues that multiple 

time-delayed outputs and useful aperture times can be obtained in a compact, 

straightforward manner, and that these time-sampled signal outputs can be used to form 

holographic weights for adaptive signal processing. 
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9. Conclusion 

This thesis has investigated adaptive phased-array processing using 

photorefractive holograms, both theoretically and experimentally. The demanding, 

spatio-temporal phased-array signal processing problem was addressed using a unique 

architecture which exploited the time integrating properties and the large number of 

accessible degrees-of-freedom available with photorefractive volume holograms. The 

most significant advantage to the architecture presented is that the required number of 

processor components used is independent of the number of elements in the phased- 

array. This attribute allows the processor to scale to processing applications for very 

large arrays. This is in marked contrast to traditional electronic or acousto-optic 

approaches, where the hardware complexity of the processor scales in proportion to the 

size of the array. 

The phased-array processor is actually composed of two major processing 

systems, the main-beam forming processor, and the jammer-nulling processor. The 

dynamic holographic beam-forming process which these processors are based on, 

provides a tremendous amount of flexibility in terms of system architecture. For 

example, as was shown in Chapter 6, the specific mapping of the optical fibers 

transduced from the antenna array onto the photorefractive crystals is irrelevant, since it 

is compensated by the holographic diffraction provided that a crystal with an adequate 

number of degrees-of-freedom is used. When the system architecture uses feedback 

gain, as in the jammer-nulling processor, the convergence time of the system is 

determined by the feedback gain, and can be a tiny fraction of the traditionally slow 

photorefractive time constant. 

The operation of both the main-beam processor and the jammer-nulling 

processor were experimentally investigated, and successfully demonstrated their 

respective tasks in a robust manner. The beam forming processor was used to steer the 

array function towards a desired signal of interest, both with a planewave optical input 
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which simulated a coherent fiber feed, and an input whose phase front was randomized 

by a diffuser which simulated an arbitrary mapping of the input fibers and fibers of 

different lengths. The jammer-nulling processor demonstrated the capability of 

simultaneously suppressing multiple narrowband jammers, and achieved 45 dB of 

suppression for a single jammer. The most significant results are the simultaneous 

beam formation and jammer-nulling data obtained with the combined phased-array 

processor, which demonstrated its capability to process signals received from a 

complex signal environment. These particular results are the first known results of 

simultaneous phased-array beam-formation and jammer-suppression using an optical, 

adaptive phased-array antenna processor. 

The dynamical analysis of the jammer-nulling processor led to the conclusion 

that holographic feed through placed a limit on the amount of jammer suppression. To 

overcome this limitation, an alternative holographic read-write technique based on 

orthogonally polarized read-write beams was implemented, as discussed in Chapter 5. 

The investigation of this multiplexing method was extended to include the wide-angular 

aperture holographic studies also presented in Chapter 5. By choosing a read-write 

geometry near the angle of equal curvature of the ordinary and extraordinary 

momentum surfaces in a 45 degree-cut BaTiC>3 crystal, phase-matched holographic 

readout exceeded 18 degrees in the plane of Bragg selectivity, and 6 degrees in the 

orthogonal dimension. The ability to simultaneous write and read out holograms over 

such a wide angular aperture may have applications in optical signal and image 

processing, as well as in holographic memory. Performing this multiplexing technique 

using two wavelengths such that the read wavelength is outside of the spectral 

absorption band of the material, resulting in non-destructive readout, is a possible area 

of future work with direct applications to holographic memory. 

In terms of future work for the phased-array processor, there are several areas 

which appear worthwhile. The first and most fundamental would be extending the 
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processor capabilities to include squintless processing of broadband signals. The 

implementation of the broadband capability could include the time-domain 

implementations proposed by Wagner et al.1, or the frequency-domain implementation 

using the etalon filters discussed Chapters 2 and 8. As was shown in Chapter 8, due to 

etalon size and stability issues, implementing the frequency-domain approach would be 

impractical at the current frequency band of processor operation (approximately 100 

MHz), although at much higher frequencies it may be feasible. A second issue would 

be extending the jammer-nulling processor bandwidth by reducing the feedback delay 

time. Possible approaches to this may include low time-delay acousto-optic devices2, as 

well as optimizing cable lengths, amplifier delays, etc. Significant work could also be 

done in terms of optimizing the performance of the processor with respect to trade-offs 

between maximizing jammer suppression depth and maximizing the total array signal- 

to-interference-noise ratio (SINR), in terms of processor system parameters and noise 

while optimally using laser power as discussed in Chapter 7. It would also be 

interesting to consider dramatically reducing the size of the processor, while 

simultaneously designing for improved stability, so that the system could perhaps be 

made portable and the active path length control system could be eliminated. 

In summary, the adaptive phased-array antenna architecture presented in this 

thesis has sucessfully demonstrated the capabilities and helped to motivate the use of 

photorefractive, dynamic holographic materials for adaptive signal processing 

applications in demanding and complex signal environments. It is hoped that the 

research presented in this thesis may serve as a foundation for future processing 

architectures for large adaptive phased-arrays, and be recognized as a unique 

advancement in its field. 
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