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Abstract 

In this paper, we present a neural network-based face detection system. Unlike similar systems 
which are limited to detecting upright, frontal faces, this system detects faces at any degree of 
rotation in the image plane. The system employs multiple networks; the first is a "router" network 
which processes each input window to determine its orientation and then uses this information 
to prepare the window for one or more "detector" networks. We present the training methods 
for both types of networks. We also perform sensitivity analysis on the networks, and present 
empirical results on a large test set. Finally, we present prehminary results for detecting faces 
which are rotated out of the image plane, such as profiles and semi-profiles. 
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1   Introduction 

In our observations of face detector demonstrations, we have found that users expect faces to be 
detected at any angle, as shown in Figure 1. In this paper, we present a neural network-based 
algorithm to detect faces in gray-scale images. Unlike similar previous systems which could only 
detect upright, frontal faces [Sung, 1996, Rowley et al, 1998, Moghaddam and Pentland, 1995, 
Pentland et al, 1994, Burel and Carel, 1994, Colmenarez and Huang, 1997, Osuna et al, 1997, 
Lin etal, 1997, Vaillant etal, 1994, Yang and Huang, 1994, Yow and Cipolla, 1996], this system 
efficiently detects frontal faces which can be arbitrarily rotated within the image plane. We also 
present prehminary results on detecting upright faces which are rotated out of the image plane, 
such as profiles and semi-profiles. 

Many face detection systems are template-based; they encode facial images directly in terms 
of pixel intensities. These images can be characterized by probabilistic models of the set of face 
images [Colmenarez and Huang, 1997, Moghaddam and Pentland, 1995, Pentland et al, 1994], 
or implicitly by neural networks or other mechanisms [Burel and Carel, 1994, Osuna et al, 1997, 
Rowley et al, 1998, Sung, 1996, Vaillant et al, 1994, Yang and Huang, 1994]. Other researchers 
have taken the approach of extracting features and applying either manually or automatically gener- 
ated rules for evaluating these features. By using a graph-matching algorithm on detected features, 
[Leung et al, 1995] can also achieve rotation invariance. Our paper presents a general method to 
make template-based face detectors rotation invariant. 

Our system directly analyzes image intensities using neural networks, whose parameters are 
learned automatically from training examples. There are many ways to use neural networks for 
rotated-face detection. The simplest would be to employ one of the existing frontal, upright, face 
detection systems. Systems such as [Rowley et al, 1998] use a neural-network based filter that 
receives as input a small, constant-sized window of the image, and generates an output signifying 
the presence or absence of a face. To detect faces anywhere in the input, the filter is applied 
at every location in the image. To detect faces larger than the window size, the input image is 
repeatedly subsampled to reduce its size, and the filter is applied at each scale. To extend this 
framework to capture faces which are rotated, the entire image can be repeatedly rotated by small 
increments and the detection system can be applied to each rotated image. However, this would be 
an extremely computationally expensive procedure. For example, the system reported in [Rowley 
et al, 1998] was invariant to approximately 10° of rotation from upright (both clockwise and 

Figure 1: People expect face detection systems to be able to detect rotated faces. Here we show the output 
of our new system. 
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Figure 2: Overview of the algorithm. 

counterclockwise). Therefore, the entire detection procedure would need to be applied at least 18 
times to each image, with the image rotated in increments of 20°. 

An alternate, significantly faster procedure is described in this paper, extending some early 
results in [Baluja, 1997]. This procedure uses a separate neural network, termed a "router", to 
analyze the input window before it is processed by the face detector. The router's input is the same 
region that the detector network will receive as input. If the input contains a face, the router returns 
the angle of the face. The window can then be "derotated" to make the face upright. Note that the 
router network does not require a face as input. If a non-face image is encountered, the router will 
return a meaningless rotation. However, since a rotation of a non-face image will yield another 
non-face image, the detector network will still not detect a face. On the other hand, a rotated face, 
which would not have been detected by the detector network alone, will be rotated to an upright 
position, and subsequently detected as a face. Because the detector network is only applied once at 
each image location, this approach is significantly faster than exhaustively trying all orientations. 

Detailed descriptions of the example collection and training methods, network architectures, 
and arbitration methods are given in Section 2. We then analyze the performance of each part of 
the system separately in Section 3, and test the complete system on two large test sets in Section 4. 
We find that the system is able to detect 86.3% of the faces over a total of 115 complex images, 
with a very small number of false positives. Conclusions and directions for future research are 
presented in Section 5. 

2   Algorithm 

The overall algorithm for the detector is given in Figure 2. Initially, a pyramid of images is gener- 
ated from the original image, using scaling steps of 1.2. Each 20x20 pixel window of each level of 
the pyramid then goes through several processing steps. First, the window is preprocessed using 
histogram equalization, and given to a router network. The rotation angle returned by the router is 
then used to rotate the window with the potential face to an upright position. Finally, the derotated 
window is preprocessed and passed to one or more detector networks [Rowley et al, 1998], which 
decide whether or not the window contains a face. 

The system as presented so far could easily signal that there are two faces of very different 
orientations located at adjacent pixel locations in the image. To counter such anomalies, and to 



reinforce correct detections, some arbitration heuristics are employed. The design of the router 
and detector networks and the arbitration scheme are presented in the following subsections. 

2.1   The Router Network 

The first step in processing a window of the input image is to apply the router network. This 
network assumes that its input window contains a face, and is trained to estimate its orientation. 
The inputs to the network are the intensity values in a 20x20 pixel window of the image (which have 
been preprocessed by a standard histogram equalization algorithm). The output angle of rotation 
is represented by an array of 36 output units, in which each unit i represents an angle of i * 10°. 
To signal that a face is at an angle of 6, each output is trained to have a value of cos(9 — i * 10°). 
This approach is closely related to the Gaussian weighted outputs used in the autonomous driving 
domain [Pomerleau, 1992]. Examples of the training data are given in Figure 3. 

Figure 3: Example inputs and outputs for training the router network. 

Previous algorithms using Gaussian weighted outputs inferred a single value from them by 
computing an average of the positions of the outputs, weighted by their activations. For angles, 
which have a periodic domain, a weighted sum of angles is insufficient. Instead, we interpret each 
output as a weight for a vector in the direction indicated by the output number i, and compute a 
weighted sum as follows: 
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The direction of this average vector is interpreted as the angle of the face. 
The training examples are generated from a set of manually labelled example images contain- 

ing 1048 faces. In each face, the eyes, tip of the nose, and the corners and center of the mouth 
are labelled. The set of labelled faces are then aligned to one another using an iterative proce- 
dure [Rowley et al., 1998]. We first compute the average location for each of the labelled features 
over the entire training set. Then, each face is aligned with the average feature locations, by com- 
puting the rotation, translation, and scaling that minimizes the distances between the corresponding 
features. Because such transformations can be written as linear functions of their parameters, we 
can solve for the best alignment using an over-constrained linear system. After iterating these steps 
a small number of times, the alignments converge. 



Figure 4: Left: Average of upright face examples. Right: Positions of average facial feature locations (white 
circles), and the distribution of the actual feature locations from all the examples (black dots). 

The averages and distributions of the feature locations are shown in Figure 4. Once the faces 
are aligned to have a known size, position, and orientation, we can control the amount of variation 
introduced into the training set. To generate the training set, the faces are rotated to a random 
(known) orientation, which will be used as the target output for the router network. The faces are 
also scaled randomly (in the range from 1 to 1.2) and translated by up to half a pixel. For each of 
1048 faces, we generate 15 training examples, yielding a total of 15720 examples. 

The architecture for the router network consists of three layers, an input layer of 400 units, 
a hidden layer of 15 units, and an output layer of 36 units. Each layer is fully connected to the 
next. Each unit uses a hyperbolic tangent activation function, and the network is trained using the 
standard error backpropogation algorithm. 

2.2   The Detector Network 

After the router network has been applied to a window of the input, the window is derotated to 
make any face that may be present upright. 

The remaining task is to decide whether or not the window contains an upright face. The algo- 
rithm used for detection is identical to the one presented in [Rowley et ah, 1998]. The resampled 
image, which is also 20x20 pixels, is preprocessed in two steps [Sung, 1996]. First, we fit a func- 
tion which varies linearly across the window to the intensity values in an oval region inside the 
window. The linear function approximates the overall brightness of each part of the window, and 
can be subtracted to compensate for a variety of lighting conditions. Second, histogram equaliza- 
tion is performed, which expands the range of intensities in the window. The preprocessed window 
is then given to one or more detector networks. The detector networks are trained to produce an 
output of +1.0 if a face is present, and —1.0 otherwise. 

The detectors have two sets of training examples: images which are faces, and images which 
are not. The positive examples are generated in a manner similar to that of the router; however, as 
suggested in [Rowley et al, 1998], the amount of rotation of the training images is limited to the 
range -10° to 10°. 

Training a neural network for the face detection task is challenging because of the difficulty in 
characterizing prototypical "non-face" images. Unlike face recognition, in which the classes to be 



discriminated are different faces, the two classes to be discriminated in face detection are "images 
containing faces" and "images not containing faces". It is easy to get a representative sample of 
images which contain faces, but much harder to get a representative sample of those which do not. 
Instead of collecting the images before training is started, the images are collected during training 
in the following "bootstrap" manner, adapted from [Sung, 1996]: 

1. Create an initial set of non-face images by generating 1000 random images. 

2. Train the neural network to produce an output of +1.0 for the face examples, and -1.0 for the non- 
face examples. In the first iteration, the network's weights are initialized random. After the first 
iteration, we use the weights computed by training in the previous iteration as the starting point. 

3. Run the system on an image of scenery which contains no faces. Collect subimages in which the 
network incorrectly identifies a face (an output activation > 0.0). 

4. Select up to 250 of these subimages at random, and add them into the training set as negative exam- 
ples. Go to step 2. 

Some examples of non-faces that are collected during training are shown in Figure 5. At runtime, 
the detector network will be applied to images which have been derotated, so it may be advanta- 
geous to collect negative training examples from the set of derotated non-face images, rather than 
only non-face images in their original orientations. In Section 4, both possibilities are explored. 

Figure 5: Left: The partially-trained system is applied to images of scenery which do not contain faces. 
Right: Any regions in the image detected as faces are errors, which can be added into the set of negative 
training examples. 

2.3    The Arbitration Scheme 

As mentioned earlier, it is possible for the system described so far to signal faces of very different 
orientations at adjacent pixel locations. A simple postprocessing heuristic is employed to rectify 
such inconsistencies. Each detection is placed in a 4-dimensional space, where the dimensions are 
the x and y positions of the center of the face, the level in the image pyramid at which the face was 
detected, and the angle of the face, quantized to increments of 10°. For each detection, we count 
the number of detections within 4 units along each dimension (4 pixels, 4 pyramid levels, or 40°). 
This number can be interpreted as a confidence measure, and a threshold is applied. Once a face 
passes the threshold, any other detections in the 4-dimensional space which would overlap it are 
discarded. 



Although this postprocessing heuristic was found to be quite effective at eliminating false de- 
tections, we have found that a single detection network still yields an unacceptably high false 
detection rate. To further reduce the number of false detections, and reinforce correct detections, 
we arbitrate between two independently trained detector networks, as in [Rowley et al, 1998]. 
Each network is given the same set of positive examples, but starts with different randomly set 
initial weights. Therefore, each network learns different features, and make different mistakes. To 
use the outputs of these two networks, the postprocessing heuristics of the previous paragraph are 
applied to the outputs of each individual network, and then the detections from the two networks 
are ANDed. The specific preprocessing thresholds used in the experiments will be given in Sec- 
tions 4. These arbitration heuristics are very similar to, but computationally less expensive than, 
those presented in [Rowley et al, 1998]. 

3   Analysis of the Networks 
In order for the system described above to be accurate, the router and detector must perform ro- 
bustly and compatibly. Because the output of the router network is used to derotate the input for 
the detector, the angular accuracy of the router must be compatible with the angular invariance of 
the detector. To measure the accuracy of the router, we generated test example images based on 
the training images, with angles between —30° and 30° at 1° increments. These images were given 
to the router, and the resulting histogram of angular errors is given in Figure 6 (left). As can be 
seen, 92% of the errors are within ±10°. 

Angular Error Angle from Upright 

Figure 6: Left: Frequency of errors in the router network with respect to the angular error (in degrees). 
Right: Fraction of faces that are detected by the detector networks, as a function of the angle of the face 
from upright. 

The detector network was trained with example images having orientations between —10° and 
10°. It is important to determine whether the detector is in fact invariant to rotations within this 
range. We applied the detector to the same set of test images as the router, and measured the frac- 
tion of faces which were correctly classified as a function of the angle of the face. Figure 6 (right) 
shows that the detector detects over 90% of the faces that are within 10° of upright, but the ac- 
curacy falls with larger angles. In summary, since the router's angular errors are usually within 
10°, and since the detector can detect most faces which are rotated up to 10°, the two networks are 
compatible. 



4   Empirical Results 

In this section, we integrate the pieces of the system, and test it on two sets of images. The first 
set, which we will call the upright test set, is Test Set 1 from [Rowley et al, 1998]. It contains 
many images with faces against complex backgrounds and many images without any faces. There 
are a total of 130 images, with 511 faces (of which 469 are within 10° of upright), and 83,099,211 
windows to be processed. The second test set, referred to as the rotated test set, consists of 50 
images (with 34,064,635 windows) containing 223 faces, of which 210 are at angles of more than 
10° from upright.1 

The upright test set is used as a baseline for comparison with an existing upright face detection 
system [Rowley et al, 1998]. This will ensure that the modifications for rotated faces do not 
hamper the ability to detect upright faces. The rotated test set will demonstrate the new capabilities 
of our system. 

4.1   Router Network with Standard Upright Face Detectors 

The first system we test employs the router network to determine the orientation of any potential 
face, and then applies two standard upright face detection networks from [Rowley et al, 1998]. 
Table 1 shows the number of faces detected and the number of false alarms generated on the two 
test sets. We first give the results from the individual detection networks, and then give the results 
of the post-processing heuristics (using a threshold of one detection). The last row of the table 
reports the result of arbitrating the outputs of the two networks, using an AND heuristic. This is 
implemented by first post-processing the outputs of each individual network, followed by requiring 
that both networks signal a detection at the same location, scale, and orientation. As can be seen 
in the table, the post-processing heuristics significantly reduce the number of false detections, and 
arbitration helps further. Note that the detection rate for the rotated test set is higher than that for 
the upright test set, due to differences in the overall difficulty of the two test sets. 

Table 1: Results of first applying the router network, then applying the standard detector networks [Rowley 
et al, 1998] at the appropriate orientation. 

System 
Upright Test Set 

Detect %    # False 
Rotated Test Set 

Detect %    # False 

Network 1 89.6% 4835 91.5% 2174 
Network 2 87.5% 4111 90.6% 1842 
Net 1 —>■ Postproc 85.7% 2024 89.2% 854 
Net 2 -» Postproc 84.1% 1728 87.0% 745 
Postproc -> AND 81.6% 293 85.7% 119 

4.2   Proposed System 

Table 1 shows a significant number of false detections. This is in part because the detector networks 
were applied to a different distribution of images than they were trained on.   In particular, at 

1 These test sets are available over the World Wide Web at the URL 
http://www.es.cmu.edu/~har/faces.html. 



runtime, the networks only saw images that were derotated by the router. We would like to match 
this distribution as closely as possible during training. The positive examples used in training are 
already in upright positions. During training, we can also run the scenery images from which 
negative examples are collected through the router. We trained two new detector networks using 
this scheme, and their performance is summarized in Table 2. As can be seen, the use of these new 
networks reduces the number of false detections by at least a factor of 4. Of the systems presented 
here, this one has the best trade-off between the detection rate and the number of false detections. 
Images with the detections resulting from arbitrating between the networks are given in Figure I2. 

Table 2: Results of our system, which first applies the router network, then applies detector networks trained 
with derotated negative examples. 

System 
Upright Test Set 

Detect %    # False 
Rotated Test Set 

Detect %    # False 

Network 1 81.0% 1012 90.1% 303 
Network 2 83.2% 1093 89.2% 386 
Net 1 —>■ Postproc 80.2% 710 89.2% 221 
Net 2 -» Postproc 82.4% 747 88.8% 252 
Postproc -> AND 76.9% 34 85.7% 15 

4.3   Exhaustive Search of Orientations 

To demonstrate the effectiveness of the router for rotation invariant detection, we applied the two 
sets of detector networks described above without the router. The detectors were instead applied at 
18 different orientations (in increments of 20°) for each image location. Table 3 shows the results 
using the standard upright face detection networks of [Rowley et ah, 1998], and Table 4 shows the 
results using the detection networks trained with derotated negative examples. 

Table 3: Results of applying the standard detector networks [Rowley et al, 1998] at 18 different image 
orientations. 

System 
Upright Test Set 

Detect %    # False 
Rotated Test Set 

Detect %    # False 

Network 1 93.7% 17848 96.9% 7872 
Network 2 94.7% 15828 95.1% 7328 
Net 1 —»■ Postproc 87.5% 4828 94.6% 1928 
Net 2 -> Postproc 89.8% 4207 91.5% 1719 
Postproc -> AND 85.5% 559 90.6% 259 

Recall that Table 1 showed a larger number of false positives compared with Table 2, due 
to differences in the training and testing distributions. In Table 1, the detection networks were 
trained only with false-positives in their original orientations, but were tested on images that were 

2After painstakingly trying to arrange these images compactly by hand, we decided to use a more systematic 
approach. These images were laid out automatically by the PBIL optimization algorithm [Baluja, 1994]. The objective 
function tries to pack images as closely as possible, by maximizing the amount of space left over at the bottom of each 
page. 
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Figure 7: Result of arbitrating between two networks trained with derotated negative examples. The label 
in the upper left corner of each image (D/T/F) gives the number of faces detected (D), the total number of 
faces in the image (T), and the number of false detections (F). The label in the lower right corner of each 
image gives its size in pixels. 



Table 4: Networks trained with derotated examples, but applied at all 18 orientations. 

System 
Upright Test Set 

Detect %    # False 
Rotated Test Set 

Detect %    # False 

Network 1 90.6% 9140 97.3% 3252 
Network 2 93.7% 7186 95.1% 2348 
Net 1 ->■ Postproc 86.9% 3998 96.0% 1345 
Net 2 ->■ Postproc 91.8% 3480 94.2% 1147 
Postproc -> AND 85.3% 195 92.4% 67 

rotated from their original orientations. Similarly, if we apply detector networks to images at all 
18 orientations, we should expect a similar increase in the number of false positives because of 
the differences in the training and testing distributions (see Tables 3 and 4). The detection rates 
are higher than for systems using the router network. This is because any error by the router will 
lead to a face being missed, whereas an exhaustive search of all orientations may find it. Thus, the 
differences in accuracy can be viewed as a tradeoff between the detection and false detection rates, 
in which better detection rates come at the expense of much more computation. 

4.4   Upright Detection Accuracy 

Finally, to check that adding the capability of detecting rotated faces has not come at the expense 
of accuracy in detecting upright faces, in Table 5 we present the result of applying the original 
detector networks and arbitration method from [Rowley et al, 1998] to the two test sets used in 
this paper.3 As expected, this system does well on the upright test set, but has a poor detection rate 
on the rotated test set. 

Table 5: Results of applying the original algorithm and arbitration method from [Rowley et al., 1998] to the 
two test sets. 

System 
Upright Test Set 

Detect %    # False 
Rotated Test Set 

Detect %    # False 
Network 1 90.6% 928 20.6% 380 
Network 2 92.0% 853 19.3% 316 
Net 1 —► Postproc 89.4% 516 20.2% 259 
Net 2 -> Postproc 90.6% 453 17.9% 202 
Threshold ->• AND 85.3% 31 13.0% 11 

Table 6 shows a breakdown of the detection rates of the above systems on faces that are rotated 
less or more than 10° from upright. As expected, the original upright face detector trained exclu- 
sively on upright faces and negative examples in their original orientations gives the high detection 
rate on upright faces. Our new system has a slightly lower detection rate on upright faces for two 

3The results for the upright test set are slightly different from those presented in [Rowley et al, 1998] because we 
now check for the detection of 4 upside-down faces, which were present, but ignored, in the original test set. Also, 
there are slight differences in the way the image pyramid is generated. 
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reasons. First, the detector networks cannot recover from all the errors made by the router net- 
work. Second, the detector networks which are trained with derotated negative examples are more 
conservative in signalling detections; this is because the derotation process makes the negative 
examples look more like faces, which makes the classification problem harder. 

Table 6: Breakdown of detection rates for upright and rotated faces from both test sets. 

System 
New system (Table 2) 
Upright detector [Rowley et al, 1998] 

All 
Faces 
79.6% 
63.4% 

Upright Faces 
(< 10°) 
77.2% 
88.0% 

Rotated Faces 
(> 10°) 
84.1% 
16.3% 

5    Summary and Extensions 

This paper has demonstrated the effectiveness of detecting faces rotated in the image plane by 
using a router network in combination with an upright face detector. The system is able to detect 
79.6% of faces over two large test sets, with a small number of false positives. The technique is 
applicable to other template-based object detection schemes. 

We are investigating the use of the above scheme to handle out-of-plane rotations. There are 
two ways in which this could be approached. The first is directly analogous to handling in-plane 
rotations: using knowledge of the shape and symmetry of the face, it may be possible to convert 
a profile or semi-profile view of a face to a frontal view (for related work, see [Vetter et al, 1997, 
Beymer et al, 1993]). A second approach, and the one we have explored, is to partition the views 
of the face, and to train separate detector networks for each view. We used five views: left profile, 
left semi-profile, frontal, right semi-profile, and right profile. The router is responsible for directing 
the input window to one of these view detectors [Zhang and Fulcher, 1996]. 

Figure 8 shows some prehminary results. As can be seen, there are still a significant number 
of false detections and missed faces. We suspect that one reason for this is that our training data is 
not representative of the variations present in real images. Most of our profile training images are 
taken from the FERET database [Phillips et al., 1996], which has very uniform lighting conditions. 

Figure 8: Detection of faces rotated out-of-plane. 
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There are two immediate directions for future work. First, it would be interesting to merge the 
systems for in-plane and out-of-plane rotations. One approach is to build a single router which 
recognizes all views of the face, then rotates the image in-plane to a canonical orientation, and 
presents the image to the appropriate view detector network. The second area for future work 
is improvement to the speed of the system. Based on the work of [Umezaki, 1995], [Rowley 
et ah, 1998] presented a quick algorithm based on the use of a fast (but somewhat inaccurate) 
candidate detector network, whose results could then be checked by the detector networks. A 
similar technique may be applicable to the present work. 
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