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PREFACE 

This final technical report describes the results of one and a half years of effort on the 
Integrated Optical Transceiver program to develop 100GHz operation in electro-optic 
transceivers. The program resulted in the development of new concepts in device 
operation and fabrication and growth for a unified set of components in the Inversion 
Channel Technology. The designs analyses, fabrication sequence design and photomask 
design are described in detail. 



1. SUMMARY 

The integrated Optical transceiver program was initiated on Sept. 16, 1995 and 
was concluded on March 31, 1997. This phase I effort was concerned with establishing 
the feasibility of implementing an electro-optic data link with a digital data capability of 
100Gb/s or an analog transmission rate of 100GHz . To achieve this goal, three new 
concepts were introduced which included a grating coupled vertical cavity laser and 
detector, a traveling wave electro-optic device design that builds upon the existing 
inversion channel technology, and an implementation of the inversion channel bipolar 
transistor that can achieve very low parasitic resistance by virtue of its inverted structure. 
The effort in this program established a technology plan to achieve 100GHz operation in 
traveling wave operation. The principles of diffraction in second order corrugated 
waveguides were established and tools were developed to design the grating coupled 
laser. The principles of velocity matching in electro-optic devices was developed through 
the analysis of the grating coupled detector for high speed operation. The fabrication 
sequence of the Inversion Channel Technology was completely revised to enable 
waveguides and traveling wave operation. Growth and fabrication of these concepts is 
the next step. 



2. BACKGROUND 

The integrated optical transceiver program was designed to determine the 
feasibility of a high bandwidth, frequency-modulated transceiver for optical data 
communications to and from an electronic source. The E/O and O/E signal conversions 
need to be suitable for digital transmission at 100 Gb/s with a bit error rate of 10"12 or 
analog transmission with a 3 dB cut-off frequency of 100 GHz. Our interpretation of the 
program requirements was that a single channel operating at 100 GHz was desired and 
therefore the goal was operation of electronic amplifying devices with cut-off frequencies 
of 150 GHz-200 GHz and optoelectronic devices with cut-off frequencies of 100 GHz. 
The higher frequency operation of transistors is needed to build circuits with this 
performance. Multiple channels could be considered to reduce the bandwidth requirement 
on the emitters and detectors but it would still require the same speed of electronics. 

An analysis of these requirements indicates that the problems of interconnection 
of the electronic and optoelectronic components are major obstacles to these goals and 
that a monolithic approach that integrates all of these components on the same substrate is 
the only practical way to approach this performance. Above 20 GHz the problems of wire 
or even bump bonding of transistor circuits to opto devices becomes very difficult. The 
metal traces on the chips must be matched to 50 ohms and the solder bump impedance 
must appear as 50ohms. If wire bonding and MM wave connectors are used these must 
also be matched to the metal traces. To achieve a manufacturable (affordable) result 
monolithic integration is the only solution. 

Our proposal to achieve these goals was based upon a monolithic integrated 
technology approach which was developed by WPAFB through funding to AT&T over 
the period from 1987-1994. This technology has been designated as the Inversion 
Channel Technology (ICT) because it utilizes the inversion channel formed at a 
modulation doped interface as the active element in transistor, laser, detector, and 
modulator devices. It also produces all of these devices with a single unified fabrication 
sequence which uses the same set of processing steps to realize all components 
simultaneously. The starting wafer is grown by MBE and a single layer sequence is used 
for all devices without the requirement for any regrowth steps. This technology is actually 
an optoelectronic version of the very successful PHEMT technology because it employs 
essentially the same growth structure. Both wafer growths utilize a modulation doped III- 
V interface in which a multiple quantum well of strained InGaAs forms a channel at a 
heterostructure interface. Both growths start from a SI GaAs substrate and place 
moderately p-doped AlGaAs below the quantum wells. In these respects they are 
essentially identical. Where they differ is above the quantum well(s). Whereas the 
PHEMT grows only a thin layer of undoped AlGaAs upon which a schottky gate is 
formed, the opto PHEMT grows layers of p doped AlGaAs which are terminated in p+ 
doping to form an ohmic contact. It is this innovation which allows the formation of the 
laser, the detector and the transistor simultaneously. 

The ICT technology was developed at AT&T, first with edge emitting optical 
devices and then with vertical cavity optical devices. The vertical cavity technology 
version was barely to the point of full demonstration when this program was interrupted 
by AT&T and the PI moved to the University of Connecticut. What had been 



demonstrated was the operation of the transistor, the switching laser and the detector all 
from the same epitaxial wafer. In terms of performance at that point in time, the transistor 
operated at 14 GHz using Be for p doping for a 1 um device gate length but when Carbon 
was used for the p doping in the growth and e-beam lithography was used to generate 0.5 
urn gates, we obtained 40 GHz cut-off frequencies. The vertical cavity laser 3dB 
frequency was 3.8 GHz. The resonant cavity detector from this epi growth was 
demonstrated with near unity quantum efficiency but speed measurements were not 
obtained. These component demonstrations were made from the same epitaxy and using 
the same fabrication sequence. Due to the success of the individual experiments, 
photomasks were designed to produce functional opto IC's. Initial fabrication had begun 
and a couple of chips made it almost to the end of the sequence. These chips however did 
not qualify for deposition of dielectric stacks to demonstrate the opto devices and so final 
testing of full IC's had only just begun. Testing was restricted to the FET electronic 
devices where divide by two circuits and flip flops were demonstrated and to individual 
laser devices where a threshold of 2 mA for the DOES laser with proton implant isolation 
was achieved. 

We have proposed for the integrated optical transceiver program to use the ICT as 
a starting point to realize monolithically integrated components. However, to have a hope 
of achieving the very high bandwidth operation, several device innovations were required 
because there are no known device structures either within the ICT or elsewhere, that 
could achieve 100GHz operation in the laser. There are also no known detector structures 
that could achieve these bandwidths within the constraints of a monolithic integrated 
circuit. In addition, although the laser and detector were not required to be part of the 
same chip, our concept was to produce one integrated circuit which would perform the 
transceiver function at either end of an optical link so the integration would include the 
laser, detector and FET electronics . There were therefore, several challenges to be met in 
our program and these are listed 

•Devise a laser structure within the ICT to achieve 100 GHz operation. This 
means reworking the DOES laser or HFET laser concept to circumvent the conventional 
limits 

•Devise a detector within the ICT to achieve 100 GHz operation. The HFET 
detector concept must also be reworked to address the high speed requirement. 

•The new concepts required on-chip waveguides. Therefore the processing flow 
sequence to build the ICT had to be totally redesigned. As it turned out, the photomask 
sequence and usage were altered substantially from the final AT&T version in order to 
accommodate the new concepts. Therefore a major mask redesign had to be implemented 

•The new laser and detector designs required CAD design tools for gratings that 
did not exist and thus a major effort was needed to analyze and understand the 
performance parameters of second order gratings. 

•To build these complex structures requires a state-of-the-art fabrication and 
growth facility. A major burden on the PI since arriving at UConn was to put this 
capability in place. The task was finished only as the program drew to a close and was the 
major reason why so little progress was made within the one year on the reduction to 
practice of these concepts. 



In the next sections we describe the innovations , simulations, analyses and 
designs that were implemented resulting in the final photomasks that were made for the 
demonstration. We will also describe our efforts to reach a demonstration and how 
funding limitations have curtailed our attempts to move forward. Our present efforts to 
acquire these funds through other channels and the current status and plans will be 
mentioned briefly. 



3. LASER DESIGN REQUIREMENTS FOR lOOGHz OPERATION 

The laser structure to achieve 100 GHz operation must be a vertical cavity device 
because it is only the vertical cavity in which 
(1) the separate confinement heterostructure (SCH) region can be made very short 

because optical confinement by the SCH region is not required (the optical 
confinement in the vertical cavity is the ratio of the quantum wells to the cavity 
length). When the SCH region is very short (a few hundred angstroms), the low 
frequency roll-off effects are minimized so that low frequency roll-off can be 
extended to beyond lOOGHz. 

(2) The photon lifetime of the cavity can be made very short. Since the stimulated 
lifetime tracks the photon lifetime to within 1/Q (Q is the quality factor of the laser) 
then this determines the ultimate laser speed. In calculations of the response the 
parameter of interest is the differential stimulated lifetime. In conventional laser 
jargon this is proportional to the differential gain. 

When both these effects have been addressed for high speed operation then the 
remaining limitations on the laser response are the time constants presented by resistance 
and capacitance. First there is the time constant determined by the resistance and 
capacitance internal to the laser diode. In the vertical cavity laser, the resistance is 
primarily the contact resistance of the p type contact and its associated current crowding 
and the capacitance is that of the i region of the pin structure. The capacitance is fixed by 
design but the resistance can be minimized by innovations in the metallurgy and the 
geometry of the contact areas. Reducing this resistance becomes the ultimate limitation in 
increasing the bandwidth of the laser. The second time constant is the one determined by 
the laser capacitance and the load impedance driven by the laser. For discrete laser 
devices this is always 50 ohms. In order to address this issue, a traveling wave type of 
operation is required. A concept was therefore introduced by which the virtues of the 
vertical cavity laser could be maintained within the context of a traveling wave device. 
The physical implementation of the concept was within the ICT and the device is shown 
in cross-section along the direction of the traveling wave in Fig.l and in a perspective 
view from the input port in Fig.2. 
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4. THE GRATING COUPLED VERTICAL CAVITY LASER 

The innovation is to introduce a diffraction grating within the vertical cavity as shown in 
Fig. 1. The grating is formed in the first layer of the mirror stack. It is a blazed grating 
which diffracts light preferentially in one direction. The DBR mirrors of the vertical 
cavity device are deposited on top of the mirror and of course the bottom mirror is formed 
under the device during the growth. We call this device the Grating Coupled Vertical 
Cavity Surface Emitting Laser (GC VCSEL). To understand the operation of the GC 
VCSEL consider the VCSEL operation at the back end of the device (x = 0 in Fig.l). The 
front end at x = L is the output port where light is to be emitted. The current is to be 
applied uniformly along the length of the device. When current is applied, light is 
generated vertically in the VCSEL at x = 0. Consider the optical wave in the cavity as it 
passes through the grating. A small fraction is diffracted to the left. Due to the asymmetry 
of the blaze a much smaller fraction is diffracted to the right (this is illustrated by the 
relative sizes of the arrows in Fig.l). Now if the grating were of zero thickness, then the 
remainder of the light, which is most of the energy, would pass through the grating, be 
reflected back and pass through the grating in the reverse direction. Due to the 
reversibility of the diffraction process, the majority of this light would be diffracted in the 
reverse direction with the net result that the light would be coupled fairly equally in both 
directions. However, the grating has a finite thickness and in addition the penetration of 
the light into the mirror is small for a high reflectivity mirror. Thus the intensity of the 
light traveling downward into the laser after reflection from the mirror decreases 
dramatically with penetration into the mirror. It follows then that the amplitude of the 
light incident on the grating from within the cavity is substantially greater than the 
amplitude of the light incident on the grating by reflection from the mirror. Therefore the 
fraction of light diffracted to the right is substantially less than the fraction of light 
diffracted to the left. 

The design criterion that is followed is that the thickness of the diffraction grating 
should be approximately equal to the penetration depth of the mirror (this is also 
determined by the standing wave effects in the grating which are found from the 
diffraction analysis). This situation is the one that will be implemented in practice 
because for a high reflectivity mirror, the decay of intensity to about 10% occurs within 
the first VA wavelength of the mirror stack and additionally, it is most practical to form 
the grating by etching through approximately the first layer of the mirror stack. In the 
fabrication sequence, the dielectrics chosen to form the mirrors are Si02 and undoped 
sputtered GaAs. This choice is dictated by the very large index difference which reduces 
the number of required pairs and the fact that our mirror must be deposited during the 
device processing. Given these layer components we have two choices to implement the 
grating l)deposit a layer of GaAs and then pattern and etch this layer followed by a lA 
wave of SiÜ2 and then GaAs etc. 2)deposit a VA wave layer of SiCh, pattern and etch this 
layer and then deposit a VA wave of GaAs and then SiC>2 and then GaAs etc. The second of 
these is the one we will start with in the fabrication. The choice of VA wave thickness is 
also supported by the grating efficiency and its dependence on the index difference 
between the layers of the stack as discussed in the next section on grating efficiencies. In 



Fig.l, the relative sizes of the arrows indicate that the majority of light is diffracted to the 
right. 

5. DETERMINATION OF DIFFRACTION EFFICIENCIES IN THE GRATING 
COUPLED VERTICAL CAVITY LASER 

The quantitative prediction of diffracted power has been a subject of much study 
over the years primarily because of its importance to the operation of the DFB laser. In 
these cases the gratings are usually designed to be first order since it is the first order 
forward and backward traveling waves which form the basis of coupled mode theory. 
There are some instances where second order has been used in the DFB to produce an 
optical loss mechanism in an effort to stabilize the mode position as described by 
Kazarinov and Henry [6](however, the laser output is still via the first order wave). More 
generally the second order grating has been used as the output reflector for DBR lasers in 
order to obtain vertical emission. Since the second order grating when implemented as a 
waveguide corrugation produces both first order diffraction in the guide and second order 
diffraction normal to the guide then it can be used in the DBR to provide both reflection 
for the guided wave and output coupling of the laser light. 

At the beginning of this work, the best available description of waveguide 
diffraction was the work of Streifer [5] and Kazarinov [6]. All of the existing work 
describes the diffraction in a general way which includes all possible diffraction orders. 
The results are complicated, difficult to understand and require a full numerical analysis 
to implement to obtain the quantitative predictions required for this work. We needed a 
simpler design tool with the same level of accuracy. Therefore it was undertaken to solve 
this problem in a more direct manner to produce more useable results. We are only 
interested in ideal second order diffraction so this was used as a starting point. It turns out 
that for this case the equations can be simplified and only one differential equation needs 
to be solved for a symmetrical grating. With this approach a simple predictor for 
diffraction efficiency was produced for both exact or approximate second order gratings, 
i.e. the approximate second order grating is one in which the grating pitch is either 
slightly smaller or larger than the exact value. This solver runs on a 200 MHz PC in about 
150 sees to produce a complete calculation of efficiency versus grating depth for 
example. The basis for the model was a three layer waveguide characterized by indices 
ni, n2, and n3 in the regions above the guide, in the guide and below the guide. This 
analysis was performed for diffraction from the guide to the direction normal to the guide. 
This work was published and a copy of the publication "Determination of Diffraction 
Efficiency for a Second-Order Corrugated Waveguide" is included in appendix A. 

All of the published work on waveguide diffraction has been for the process of 
diffraction of the guided wave into an unguided (leaky) wave propagating away from the 
guide. Of most interest from the point of view of the grating coupled VCSEL, is the 
diffraction of light from a normally propagating wave into a guided wave (here the wave 
is generated within the vertical cavity and propagates into the grating as shown in Fig.3 ). 
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Fig.3 Topologies for the diffraction of light normal to a corrugated waveguide: 
left, light incident externally upon a corrugated waveguide 
right, light incident upon corrugation from within guide (w or w/o grating) 

This is the reverse to the process described in the above paper but the efficiency of the 
process is not necessarily the same in spite of the fact that optical propagation of energy 
through a passive structure should be reversible. This is because of the transmission of 
energy straight through the guide which is not present in the out-of-guide case. Therefore 
this mechanism was also characterized using the same basic mathematical approach. This 
calculation was also performed for the generic three layer waveguide with a blazed 
grating. This work is summarized in the paper "Diffraction Into a Corrugated Waveguide 
From Normally Incident Radiation" which has been submitted for publication and forms 
appendix B. One further piece of necessary work was the determination of the optimum 
blaze angle to maximize the diffraction in one direction and to minimize it in the reverse. 
This design tool has also been developed and the results will be submitted for publication 
soon. Some typical results are shown in Fig.4 where we plot the diffraction efficiency into 
the guide for a corrugated waveguide as the blaze angle is varied. It shows the optimum 
angle for typical index parameters( ni=n3=3.4 and n2=3.6) is about 41° and the ratio of the 
diffraction in the two directions is about 135. 
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Fig. 4 Diffraction efficiency versus grating angle in a three-layer dielectric guide 



The above two articles have produced the tools needed for the design of the 
GCVSEL. However, in the GCVSEL the waveguide cladding is formed by the Bragg 
mirrors and thus the structure forms a multilayer waveguide with very complicated 
propagation coefficients. In order to apply the diffraction model, it is necessary to 
represent the VCSEL waveguide by an equivalent three-layer guide. To do this it is 
necessary to represent the top(bottom) stack and its interface to air (substrate) by an 
infinite region with a single index. Since the material between the mirrors can be 
represented by a single index determined as the average over its layers, then the result 
will be a three-layer waveguide. The wave propagating in a vertical cavity laser is 
characterized by a penetration depth . This is normally used to determine the effective 
cavity length of the VCSEL as 

Leff = Lc + Lpb + Lpt 

where Lpb and Lpt are the penetration depths of the bottom and top mirrors respectively 
which have been derived as 

tanh2(\K\.LMth) 
Lptb" 2|K| 

where LMt,bis the total front and back mirror thicknesses, and K is the coupling constant 
which is given by approximately 

Ks2iW?i 
Here, An is the index difference between the two layers in a pair of the mirror. In the 
standard description of the three-layer waveguide, the TE mode is normally described by 
a function within the guide (asymmetric or symmetric) and by evanescent decay into the 
cladding on either side of the guide. The evanescent decay away from the guide is 
determined by the refractive index in the region. To predict the behavior of the vertical 
cavity guide we assume that the penetration depth(s) of the vertical cavity mirror(s) 
correspond to the evanescent decay of a wave if it were propagating in the waveguide 
formed by the vertical cavity as the core of the guide, and the top and bottom mirrors as 
the claddings. Therefore, by using Lpt,b we can determine the effective index of the top 
and bottom mirror regions from the point of view of a three-layer waveguide. The 
formula given for Lpt,b corresponds to a vertically traveling wave which is a very high 
order mode in our vertical cavity (VC) waveguide, i.e. it is the maximum possible 
penetration. However in the fundamental mode the VC guide will propagate at some 
bounce angle and the penetration will be less. This penetration (and thus the more 
accurate indices) will be determined in general numerically by a TMM (transmission 
matrix method) solution of the multi-layer guide. Using these indices we can then use the 
model developed for the waveguide diffraction into a three layer waveguide to determine 
the efficiency of the second order diffraction from the vertically propagating light to the 
guided wave. 

For the Vertical Cavity device we have designed, the mirror pairs on the top are 
Si02 and GaAs corresponding to indices of 1.5 and 3.6. The bottom mirror is comprised 
of AlxOy and GaAs corresponding to indices of 1.6 and 3.6. The typical design will be 7 
pairs on the bottom and 4-7 pairs on the top. Using these parameters we determine 

Lpt = 0.16 jum 

and therefore an effective index above the core of 

10 



lUff = 2.96 

Similar calculations for the lower mirror yield n3eff= 3.05. Then the diffraction efficiency 
is determined from our grating simulation by a three-layer waveguide with indices of 
«7=2.96, n2 =3.48 and «3= 3.05. The index of the core region (n2) which is the vertical 
cavity itself, is determined by using a transmission matrix calculation for a slab 
waveguide. In Fig.5 we plot the efficiency of the diffraction process for a parallelogramic 
grating in the VCSEL waveguide such as the one portrayed in Fig. 1. The results show that 
we can expect an efficiency of 0.0025 for a blaze angle of 38° and a grating etch depth of 
about 0.2 urn. The simulation shows an efficiency of 0.0033 at an angle of 46°. Such 
large blaze angles may be difficult to achieve with ion beam etching and also, for a depth 
of 0.2 urn the bottom of the parallelogram may penetrate back to undercut the top of the 
parallelogram which is not desirable. We thus choose an angle of about 35° which 
provides a value of diffraction efficiency of about 0.00178. For this calculation we 
determine that the ratio of the forward and backward diffracted waves is 600 or 28dB. 
This is an important consideration for rejection of reflected waves as discussed later. 

0.0035 

-40        -20 0 20 40 

Tilt angle of grating, (degrees) 

Fig. 5 Diffraction efficiency versus the grating angle in the vertical cavity waveguide. 

It is noted that a sharp minimum exists in the efficiency curve at a certain blaze angle of 
about 41° . This effect is believed to result when the angle of the grating coincides with 
the Brewster angle for light incident normally upon the waveguide. It is currently under 
investigation. The above efficiencies are for electric fields. Corresponding power 
efficiencies will be a factor of 2 larger 
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6. DETAILED DC OPERATION OF THE GCVCSEL 

From the above description one can see that the light generated in the vertical 
cavity at z=0 will be diffracted to the right continuously. The diffracted light propagates 
in the form of a guided wave. The guided wave will itself be diffracted back into the 
cavity at each position z and will be amplified. The amplification will continue until the 
gain is saturated. From that point onwards, the saturated vertical cavity output will 
continue to add to the waveguide power resulting in a maximum waveguide output power 
at the end of the device , z = L . 

Consider the photon density at any position z in the cavity of thickness dz where 
the laser is above threshold. We have 

where Lx is the quantum well width, rje is the electrical confinement factor, J and JTH are 

the current and current density and rp is the effective photon lifetime for the vertical 

cavity device given by 

(2) 
va ri   A r'-1    g_ 

-In - +    &vr p r [L    \R) 
where  avc is the vertical cavity loss due to the diffraction grating. There will also be 
components of avc which are due to free carrier absorption and parasitic diffraction but 
these will be ignored for the moment to focus on the desired effect. In the final formula 
we may simply replace ln(l/R) by Lcav *apar to determine its effect since in all likelihood 
this term will dominate ln(l/R). 

The power output from the laser is comprised of two components which are 
written as 

P   =hvWdzv tfF (3) out g  f    cav v   ' 

where tf is the power transmissivity of the output port. For the conventional transmission 

through the mirror (1) is substituted into (3) with tf Hn(l/R) to give the power increment 

dP^ = T       La    [J-JTH>dz (4) 

ln(l/2?) 
There is another power component which is the power diffracted into the guide. The 
transmissivity for this mechanism is the diffraction efficiency tf =77^ so we have 

^--f-r-50—(•'-•'»>* (5) 
q
 L'-—\n(\IR) + a^ 

^cav 

To determine avc we note that the primary optical loss in the vertical cavity by design will 
be the second order diffraction by the grating of the vertically propagating wave. In the 
development of diffraction into the guide in this program [10] from a normally 
propagating wave we have determined the diffraction efficiency r\diff as 
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fci«    =   ^eff f 77^ (6) 

where v\\ and r|2 are the impedances of the guide and the incident medium (which in this 
case are the same), Ay is the field intensity at the edge of the guide of the z propagating 
wave and C0 is the field intensity of the incident wave. Also, ag is the growth of the 
guided wave due to diffraction and deff is the effective width of the guide which includes 
evanescent cladding penetration. Thus we can say that the power diffracted into the guide 
from the incident wave is r|diffCoCo* . However we can also regard the grating as a loss in 
the x direction for the wave C0 and we can define a loss parameter otx by the statement 

C0C
t

0(\-e-">*) = rld!jfC0C: (7) 

so that for a grating thickness of x=t we have (for ax x«l 

a* = Idijf !t (8) 

Since this loss occurs only over the grating thickness then we multiply by the 
confinement factor T = t I Lcav to obtain an effective value for the total cavity of 

«vc = Vd.ff I 4ov (9) 

for use in (5) and (2). Therefore the waveguide power component (5) becomes 

^--hi—km(J-J™)Wdz m 
i + ——- 

Since the concept of the GC VCSEL is to maximize the waveguide power then the design 
of the laser should be such that avc is the dominant loss in the cavity and that negligible 
power escapes through the two mirrors which may be stated, by using (9) in (4), as 

rjdiff))]xiHR) (11) 
From (5) it is seen that the incremental power output into the guide is just the total 

output of the vertical cavity device with the efficiency of the diffraction as opposed to 
mirror transmission as in (4). According to (10) the power in the guide will be 
proportional to the guide length. As the wave propagates in the guide, there is also 
diffraction of power into the guide. Basically this power diffracts from the wave into the 
cavity and then back into the guide with the same efficiency as the cavity flux. However, 
this photon flux can amplify the cavity flux through an adjustment of Fcav and therefore of 
(10). In general, the amplification of waveguide power depends on the relative size of the 
mirror and diffractive loss. If the diffractive loss is very large, then the light realizes 
single pass gain, i.e. it passes through the cavity essentially once before it is diffracted 
back into the wave. This is equivalent to the linear optical amplifier with very low 
reflectivity in which case the majority of the light passes through the amplifier only once 
as a traveling wave. In these cases the amplifier always works below the threshold of the 
laser. If the diffractive losses are not too high, then the light may make many oscillations 
in the cavity before diffraction back into the guide and this situation is referred to as the 
multipass gain case. In this case, the laser is above threshold along most, if not all of the 
length of the laser. To obtain maximum laser output, this is the situation we are interested 
in here. For this kind of operation (as we describe elsewhere) the threshold current of the 
laser is modified . We can therefore write an equation for the guide power which is 
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dR wg 

dz 
-cc„ 1- 

ln(l / R) 
1 + 

P«+- 
hv Va 

Vdiff ) 

q  u tijl/R) 

Vdiff 

J-J. TH 

U
g
F

8 W (12) 

where in this case (6) is modified to 

F    = cav qL2 

ccF, 
J- JJT^) (13) 

and the threshold current has now become a function of the flux injected into the cavity. 
Here Fg is the waveguide photon density given by Fg = Pwg/Avghv. In (12) the second 
term is essentially (10) and the first term is the net diffraction of power into the cavity. It 
is comprised of two parts which are first the diffraction of power into the cavity with 
efficiency ccg per unit length and second the diffraction of those same photons back into 
the guide with the efficiency we derived in arriving at (10). The determination of the 

function Jth(aFg/Fcav) requires a modification of the photon rate equation from 

+ 'cavT to + 'cavT aF
g
V9 (14) 

The equation on the right is the conventional photon loss equation where the right hand 
side represents photon loss from the system. The equation on the right is the photon loss 
equation when an optical input is fed to the device. It is clear that the input photon term 
reduces the loss and therefore reduces the condition for threshold and therefore the 
threshold current. Specifically, the K parameter [9] which is used to determine threshold, 
contains T\ and from (14), the photon lifetime is modified to 

'peff = Cxa «gFgvg*P, ) (15) 

i.e., the effective photon lifetime in the cavity increases with the input signal but 
decreases with the cavity flux itself. 

The power output of the laser is determined by integration of (12) and is shown as 
a function of laser length L in Fig.6. If the effect of optical gain in the cavity were absent 
so that JTH in (12) is a constant then the solution to (12) is 

Pwg(L) = P=^   ^-JJ-JTH] wgV ; q ccg//?(!/R)L        THJ l-exp(-ac 
/»(I/R) 

Idiff + /«(l/R) 
L; (16) 

which is equivalent to the output of a vertical cavity device with a width of W, a length 
of L= 1/ocg and an efficiency of T|= r|diff r\e /{ln(l/R)+LCav*aPar). Equivalently, we could 
say the efficiency was r|e and the effective length was rjaiff /ccg {ln(l/R)+LCav*ctPar)- In the 
figure, the parameters are taken from a typical grating efficiency analysis and the 
parameters of ridiff =0.001 and ocg=50 are used with a cavity designed for R=0.9999. 
Then the effective length is 0.7 cm . This may be stated alternatively by saying the device 
has an efficiency of 63% for a length of L = 0.7 cm. Desirable parameters are therefore 
r|=0.001 and ag=50 which can be achieved with the dielectric combination SiCVGaAs 
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and a grating etch depth (thickness) of 1000 angstrom. From our calculations for an 
asymmetrical grating the optimum blaze angle is about 30°. With these numbers , the 
laser output power for J-Jth = 834A/cm2 and a waveguide width of lOum is about 0.24W. 
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Fig. 6 Waveguide photon density versus device length 

Also shown on the plot is the output power versus z when the dependence of Jth 
on input power is included in (12). It is evident that the gain internal to the device 
increases the output power by a factor of.   The overall efficiency of the laser is a function 
of z and therefore of the actual device length and from (16) we obtain 

/«(I/R) 
r| = Tldiff1! 

agL/n(l/R) 
1-exp -a. 

*1 diff r + /«(l/R)   J 
One interesting feature is the tradeoff between length and overall efficiency. For small 

z=L, the efficiency is close to 100%. As the length is increased the efficiency drops so 
that at L«0.7cmthe efficiency has dropped to about 45%. Note however that we cannot 
use the prefactor of J-Jth in (16) as the efficiency since this result implies that the power is 
independent of z (i.e. as the length is reduced to zero, the exponential term reduces the 
output power to zero). This is clearly a design tradeoff in which the total power and 
efficiency must be traded off by the appropriate choice of length. 

The operation of the device as an optical amplifier will not be considered in detail 
here because the laser is our main objective. However, it is interesting to note that as long 
as the r/äff is large enough to prevent lasing it may still be quite small, i.e. it may easily 
be around 10"3. The gain is obtained because for every increment of propagation distance 
in the z direction the wave traverses the vertical cavity Q times where Q is the quality 
factor. Since Q= (VQ/VF)3 where 3 is the finesse given by approximately 3=7t/at= 7i/r|diff 
and v0 and vF are the resonator frequency and free spectral range respectively then the 
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light may traverse a distance of QLcav vertically in a propagation distance of dz in the 
guide. Estimating that 1-1/e of the wave is diffracted into the cavity in the distance l/ag 

then the effective distance traveled by the wave is about (V0/VF) 7t/r)diff-LCav -«gLguide 
during which it receives optical gain. Using typical numbers this is a distance of 15cm.. 
This indicates the feasibility of implementing an optical amplifier on a chip with 
monolithic integration which has all the benefits of the fiber amplifier. This points to the 
direction of implementing an integrated transmission system. 

There are other benefits to be realized from this grating coupled arrangement 
which are: 

1) the polarization of the vertical cavity wave is forced to coincide with that of 
the waveguide. The locking of the polarization occurs because the waveguide mode is 
injected into the cavity at each point and creates some level of stimulated emission. The 
emission in the cavity reproduces the same polarization. The random nature of the 
polarization of the vertical cavity laser output has now been eliminated. The output of the 
waveguide will be TEo normally because it is most easily excited in the guide. Earlier 
simulations of Lee and Streifer [11] have shown in general that the diffraction efficiency 
of the TMo mode is at least 10 times smaller than the TEo mode, which thus becomes the 
principle supported mode. Because of the diffraction of the light from the guide into the 
cavity there will be a stabilizing effect and an extended range of single mode output 
power. For a conventional VCSEL, the output is single mode until a certain level of 
power is achieved and then multimode behavior is observed. In the grating coupled laser 
the onset of higher order VCSEL modes will require a much higher level of laser power 
to occur because of the stabilizing effect of the waveguide injected energy. In fact, the 
GCVCSEL will remain single mode until a higher order mode in the waveguide matches 
to a higher order mode in the VCSEL. 

2) The mode supression ratio will be characteristic of the vertical cavity laser. 
Because of the single mode nature of the VCSEL, the tendency for mode partition noise 
will be much reduced. The RIN noise should be typical of the VCSEL 

3) One of the problems of edge emitting and vertical cavity lasers is the effect of 
back reflections into the laser when coupling to a fiber. In the grating coupled VCSEL, 
this problem is addressed in a unique way as shown in Fig.2. Light is coupled from the 
laser to the waveguide and is transported to the chip edge. Reflections travel back to the 
laser and a standing wave will be set up which may be at a different frequency. Normally 
this energy will re-enter the cavity and may destabilize the laser. In the grating coupled 
laser, which we have modeled as an equivalent three-level waveguide, the asymmetry of 
the grating causes a dominant fraction of the power to be diffracted into the guide for 
light traveling towards the chip edge (direction of laser emission) and it also causes a 
dominant fraction of the light to be diffracted out of the waveguide for light approaching 
the laser from the edge of the chip. In essence then, the grating asymmetry acts to reject 
the light re-entering the laser with a ratio of diffraction up to diffraction down which can 
be up to 28dB according to the simulation. The grating thus acts as an optical isolator. 

4) The GCVCSEL output is into a waveguide on the chip. The waveguide 
transports the light to the chip edge. Output coupling of the laser light to a fiber occurs 
from the waveguide to the fiber. One of the major problems in manufacturing involves 
attaching fiber to the chip and much effort has gone into the development of spot size 
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transformers which are ways to match the waveguide mode size to the fiber aperture. The 
waveguide output is easily tapered in the lateral dimension to achieve this matching. In 
the vertical dimension the mode size can be enlarged considerably by the use of the ion 
implant to disorder the waveguide. As we point out in the process flow sequence (section 
8) the waveguide core is implanted with Si during the formation of the source-drain 
regions. This implant after RTA serves to disorder the bandgap of the quantum well 
layers which reduces the index. The net effect is to move the core index closer to the 
effective index of the upper and lower quantum well regions which causes the expansion 
of the mode into these regions. Judicious use of this implant and anneal step can be used 
to optimize the mode shape to increase the tolerances for the mode to fiber coupling 
problem. 

Another way to widen the mode shape vertically is to remove layers of cladding 
from the waveguide as the chip edge is approached. In the device area there are many 
dielectric pairs to eliminate emission through the upper mirror. This maintains tight mode 
confinement. Along the waveguide these layers can be selectively removed to widen the 
mode shape. 
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7. HIGH SPEED OPERATION OF THE GCVSEL 

A primary motivation for this design of laser is to achieve very high speed 
performance. Within the inversion channel technology the HFET laser is ideally suited to 
achieve the necessary bandwidths. The HFET laser is a laterally injected laser in which 
the gate/emitter and source injecting terminals lay next to each other along the surface 
and are therefore configured as adjacent electrodes as illustrated in Fig.2. Also, in the 
vertical cavity arrangement as illustrated in Fig. lor 2, the distance from the quantum 
wells to the semiconductor surface can be XA wavelength as in most VCSEL designs and 
since the source drain implant is performed from approximately 1000 Ä above the 
quantum well to achieve minimum channel access resistance, then the positive and 
negative electrodes form an almost perfect coplanar transmission line. The vertical cavity 
of the HFET laser structure is formed by the deposition of the dielectric stack over the 
electrode structure. These dielectric layers form the top dielectric cover for the coplanar 
line and are therefore important in determining Z0. When implemented in this form the 
HFET laser implements almost perfectly a traveling wave laser. This traveling wave 
property extends the bandwidth of the laser to the limit imposed by the internal parasitic 
resistance and time constant because the coplanar electrical transmission line can be 
terminated on the chip by a transistor adjusted in impedance to match the Z0 of the line. 
Then if the transmission line phase velocity and the waveguide group velocity are 
matched, one could introduce a signal on the coplanar line which would propagate at the 
same speed as the photon pulse which was being produced by the continuous injection of 
charge into the channel from the pulse propagating on the line. Suppose there was no 
dispersion of the electrical pulse and no dispersion of the optical pulse. If there was 
negligible delay in producing the photon (i.e. negligible transit time into the channel) and 
negligible delay in converting the electron to a photon (very fast laser internal response) 
then the laser would have an infinite bandwidth since then a delta function of charge 
introduced to the line would produce (after the transit time of the waveguide) a delta 
function of photons. The extent to which these conditions are not met determines the 
maximum laser speed and generally it is the internal parasitic RC constant which 
becomes the limiting factor(as we show in the detector section 7 this parasitic bandwidth 
is about 100GHz). 

To determine further the dynamic operation consider a pulse introduced on to the 
coplanar line at x=0. Because of the almost identical structure of the optical waveguide 
and the transmission line in terms of the materials both above and below the 
semiconductor surface, the optical group velocity and the electrical phase velocity will be 
almost matched. As the pulse propagates on the line, it will continuously decrease in 
value as charge is injected laterally at each position x into the laser active section. Now 
the effect of the injected charge will be a maximum if the charge is injected at precisely 
the point of the maximum photon density. Also the charge impulse initially begins to 
create a photon impulse starting at x=0. Then if the photon pulse and the charge pulse 
move at the same velocity (i.e. the matched condition), it follows that as the charge 
impulse travels on the transmission line it will always be injecting its incremental charge 
into the laser at the position which corresponds to the maximum photon density in the 
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waveguide. If this is the case, the photon pulse will grow the most efficiently because the 
number of photons produced by the injecting charge is proportional to the injected charge 
and the photon density, i.e. the product of the electron and photon densities. This 
behavior is illustrated schematically in Fig.7 which shows the case at some position x 
along the waveguide the situations when the electrical pulse travels slower, faster and at 
exactly the same speed as the optical pulse. 
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Fig. 7 Effective velocity matching on the optical output response 

Ideally when they travel at the same speed, the photon pulse is a maximum height 
because the injected charge x photon density product has been a maximum at all points 
during the propagation. Also, the pulse width will be the narrowest because , assuming 
that the internal laser dynamics are sufficiently fast, the pulse width of the photons will 
be as narrow as the charge pulse. If there is negligible dispersion on the transmission line 
then the charge pulse and thus the photon pulse will retain its original delta function form, 
i.e. the photon pulse will remain essentially as fast as the input electrical pulse. 

A complete analysis of the laser dynamic performance is exceedingly complicated 
if one attempts to illustrate the effects of the velocity matching or lack thereof. This is 
because of several properties unique to the lasing mechanism which are 

•the photon response is proportional to the product of the injected carriers and the 
injected photons. Therefore in the laser cavity, at any position along the guide we need to 
consider a mixture of the dispersed pulse traveling on the transmission line and the 
dispersed pulse traveling in the waveguide and to represent their individual time 
dependencies. 

•in the laser there is an amplifier effect which means photons produce additional 
photons without the need for additional electrons. This may be considered an optical to 
optical effect as opposed to the electrical to optical effect of the carriers injected from the 
transmission line. Therefore we need to consider the dynamics of the optical amplifier 
effect in the waveguide itself so that the photon pulse is growing not only due to the 
injection from the line but also due to the internal optical gain. And as we mentioned 
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earlier, this optical gain can be in one of two forms depending upon how far above or 
below threshold the laser is biased. This situation is to be contrasted with the detector in 
which electrons are produced (i.e. the reverse process) only by the conversion of the pulse 
photons. 

•proper analysis requires use of the actual differential equations representing the 
electron and photon populations but represented in the form of traveling waves. These 
equations have not yet been solved self-consistently in the literature for the conventional 
diode laser without any traveling wave effects. 

Therefore more work is needed to obtain a clear analysis. However , the physical 
picture described above is clear which is that if the waveguide and transmission 
dispersions can be minimized and the internal parasitic RC constant can be reduced to 5- 
lOps, then velocity matching of the HFET transmission line and the vertical cavity 
waveguide can enable speeds in excess of 100GHz. 

The analysis of the traveling wave detector is much easier and reinforces all of the 
conclusions made here for the laser. It is presented in the next section. 
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8. THE HFET VERTICAL CAVITY TRAVELING WAVE DETECTOR 

8.1 General Design 
To meet the transmission requirements for detection requires innovation also in 

the detector. Traditional detector geometries available to the designer include the 
classical vertically illuminated PIN structure or the waveguide structure which is edge 
illuminated . The inherent bandwidth-efficiency trade-off in the vertical device between 
absorption efficiency in the active layer and carrier transit time through it have been 
addressed significantly by the implementation of resonant cavity enhanced (RCE) 
structures wherein multiple optical passes are used to obtain almost total absorption in a 
very narrow active layer, i.e. in a quantum well. The drawback of the RCE is the narrow 
optical bandwidth which results from the high finesse of the cavity. Nevertheless, for 
many of the emerging practical system architectures in which wavelength division 
multiplexing is employed, the wavelength selectivity offered by the cavity is exactly what 
is required to perform optical to electronic demultiplexing. The difficulty of course is to 
devise a means to inject the light into the cavity since the high reflectivity of the cavity 
will reject the optical input unless it is exactly positioned within the narrow bandwidth 
corresponding to the position of the cavity optical mode. 

In the waveguide configuration, it is typical to use a double heterostructure 
semiconductor structure with a quantum well active region. The thickness of the active 
layer can also be minimal since the absorption occurs along the length of the guide which 
can be designed for complete absorption. The transit time limitation and the RC 
limitation can be essentially the same as that of the vertically illuminated RCE device. 
The efficiency of the device does suffer, however, from the problem of poor input 
coupling since the numerical aperture of the typical semiconductor waveguide is small 
and the mode is not well matched to the typical mode of the optical fiber. These devices 
have been reported with 50 GHZ bandwidth and 40% external quantum efficiency and 
also 68% external quantum efficiency with >50GHZ bandwidth. 

Both of the above approaches behave as lumped element devices electrically and 
consequently, the reported bandwidths are approximately limited by the load resistance 
and the device capacitance. To alleviate the lumped element limitation and thereby 
improve bandwidth, traveling wave structures have been proposed. These devices 
basically combine the optical waveguide configuration with an electrical transmission 
line. This approach, which was introduced initially to enhance the speed of lithium 
niobate waveguide modulators has the potential to substantially reduce the effect of the 
RC time constants imposed by external circuits. The advantage is obtained because the 
load impedance presented to the detector does not combine with the internal impedance 
of the detector to establish a time constant if the load is matched to the characteristic 
impedance of the line. The temporal response is further improved if the transmission line 
energy velocity and the waveguide optical group velocity are matched, i.e. the condition 
of zero velocity dispersion. 

In practice, impedance matching and velocity matching are very difficult. 
Furthermore, the TWPD still suffers from the problem of poor input coupling since the 

21 



basic semiconductor waveguide structure has remained unchanged. In fact the waveguide 
must be lum or less in width to realize reasonable transmission line parameters and this 
exacerbates the coupling problem. 

Another limitation with the existing traveling wave, waveguide or RCE designs is 
the problem of integration with electronic devices. A traveling wave device intended for 
100 GHz operation must feed photocurrent to an FET or bipolar front end in a matched 
configuration to avoid reflections. It is not practical or cost effective to do this with 
hybrid 
connections except for specialized applications and it thus becomes essential to have an 
integrated approach. Ideally, the integration should encompass the detector, the laser, and 
the electronic amplifier. 

Since we intend to use the Inversion channel technology approach we then 
propose the HFET resonant cavity enhanced detector as a novel means to address these 
problems since it combines the virtues of the vertical cavity RCE structure and the TW 
concept into a single device. This approach has several advantages which include 1) 
optimized mode matching to an optical fiber to achieve improved input coupling, 2) 
optimized impedance matching to reduce reflections, 3) optimized velocity matching to 
reduce pulse dispersion, and 4) integrated circuit compatibility to achieve a low cost high 
performance package. 

In the ICT the laser and detector are physically the same structure. Therefore the 
Figs. 1 and 2 also apply here. These figures show the traveling wave version of the 
HFET laser or detector since physically these are the same structure. To differentiate 
between the laser and the detector operation requires the device cross-section in Fig. 8. 
which shows the appropriate current flows. 
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Fig. 8 Current flow diagram for laser and detector 
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This figure indicates that the collection of carriers in the devices is lateral for the 
electrons and vertical for the holes. If the collector is contacted with a negative bias then 
the holes are removed downward to the collector. On the other hand if the gate is 
contacted with a negative bias, the hole current flows upward to the gate electrode. It is 
noted that the collector operation can be achieved with zero collector to source bias since 
the barrier at zero bias is low whereas the gate operation requires a bias to lower the 
channel to gate barrier for holes preferentially relative to the collector. The electrons flow 
within the inversion channel and are collected at the source nodes. The electrons flow to 
both source nodes so that the worst case transit time corresponds to 1/2 of the channel 
length and the average effective delay corresponds to a transit distance of L/4. Note that 
the vertical cavity geometry in Fig.2 will typically admit light through an opening in the 
gate electrode so that the conduction of holes to the gate is by the 2D tunneling 
mechanism which is typically used in the VCSEL structure to provide current injection 
into the same region as the optical emission. No conduction is required through the mirror 
structure however since the mirror is applied in the form of a dielectric stack at the end of 
the fabrication sequence.. For the case of the waveguide configuration in Fig.2, the gate 
electrode is continuous since the wave is guided under the top contact and sufficiently 
removed to avoid excessive loss. 

The description of the technology changes to accommodate the detector are 
essentially the same as those of the laser above. The metal contact is opened, as in the 
conventional vertical cavity device , to allow the passage of the light in the vertical 
direction. However here the light is propagating both horizontally and vertically. The 
dielectric mirror of the vertical cavity device is used here in a multi-functional role. First, 
the semiconductor growth between the quantum well active region and the dielectric 
stack is very thin, i.e. approximately A,/2n, where n is the average material index, in order 
to move the gate contact as close as possible to the inversion channel. This is necessary to 
form a high frequency transistor structure . However the optical mode is still efficiently 
guided because the dielectric stack provides efficient guiding of the mode. The mode is 
centered in the quantum wells but extends well above the gate metal contact. Second, the 
dielectric stack also forms a high finesse cavity in the vertical direction. Therefore the 
number of pairs in the stack and the index difference are selected to achieve the desired 
finesse for the resonant cavity. Third, the multiple layer structure of the cavity mirror 
allows a large optical mode to be supported for propagation in the horizontal direction. 
The enlarged mode size increases the mode near-field pattern and decreases the far-field 
angles which facilitates easier coupling to a fiber. The input light is edge coupled to a 
waveguide at the chip edge with a cross-section designed for optimum coupling. The 
waveguide guides the light to the detector where it propagates along the device 
waveguide as shown in Fig.l. 

As for the laser the key element to enable the combined waveguide, vertical cavity 
operation is a grating which is created in the first layer of the dielectric stack. This is a 
second order grating which diffracts a portion of the input wave into the vertical cavity at 
each position along the guide. Since the light propagating vertically in the cavity is 
absorbed essentially completely due to the resonant enhancement effect then the 
limitation on the detector efficiency, i.e. the length of detector required, is determined by 
the grating parameter ag . Because the grating index change can be made fairly large by 
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suitable design of the dielectric stack then ag can be large and the waveguide length can 
be optimized for high speed operation. 

One of the obvious features of this design is that since the light is transferred to 
the resonant enhanced structure via the grating which passes below the dielectric stack 
then the problem of injecting light into the cavity through a dielectric mirror with a very 
narrow modal bandwidth has been eliminated. Clearly, the light will not be absorbed if its 
frequency does not align with that of the mode. However, this is a desirable property, 
since it allows the cavity to select any particular frequency as would be required in a 
WDM application, i.e. the light is always coupled into the cavity with the cavity mode 
providing the filtering or demultiplexing operation. Those frequencies which are not 
selected are simply coupled back into the waveguide by the grating and are propagated 
out of the device. 

The HFET TW detector illustrated in Fig.2 uses the gate contact to collect the 
hole current in order that it may form the signal line for the transmission line. The other 
side of the line, i.e. the ground line, is formed by the metal electrodes on the source 
junctions. Due to the aspect ratio as indicated in Fig.3, which shows the two metal 
electrodes at approximately the same elevation, (within 1500-2000 A), the source and gate 
electrodes behave as a coplanar transmission line. Therefore, as photo-charge is injected 
into the source and gate electrodes, these perturbations form a traveling wave on the 
coplanar line which propagates to the far end of the device(x = L in Fig.3).If the group 
velocity of the transmission line wave and the group velocity of the optical wave are 
matched then the photo-charge is added synchronously to the electrical wave and there 
will be no distortion of the pulse due to velocity mismatch. If the transit time of holes to 
the gate from the channel and of electrons to the source contact from the channel are 
equal and if there is no dispersion on the transmission line or the waveguide then the 
input pulse shape will be preserved. Finally if the transmission line is exactly matched in 
its characteristic impedance, there will be no reflection and the pulse will be perfectly 
replicated, i.e. the impulse response of the detector would be infinite. These conditions 
can never be realized perfectly and it is the deviation of these criteria from the ideal 
which determines the actual detector bandwidth. 

The virtue of the traveling wave concept is that the impedance of the circuit 
following the detector does not combine with the detector impedance to produce delay if 
ideal line matching is achieved. However parasitic RC delays which are intrinsic to the 
device are still an issue. These are (Fig.2) the time constant associated with transferring 
the electron and hole from the absorption region to the source metal and gate metal 
respectively. To minimize these parasitic effects, the transmission line metal to metal 
spacing should be reduced and the channel doping increased as much as possible by 
aggressive technology scaling. The other fundamental delay is the transit time of electrons 
in the absorbing FET channel. For a channel length of L =1 urn, this time corresponds to 
an average of L/4vs For a vs «2* 107 cm/sec at low fields, this corresponds to a delay of 
about 0.15 ps. From the point of view of efficiency, the attenuation of the transmission 
line ae must now be added to the losses in the resonant cavity enhanced detection process. 
This attenuation increases with frequency with dependencies on the source and gate metal 
skin effect depths and the frequency dependent propagation constant. In this respect, the 
bandwidth limitation of the lumped element configuration has been exchanged for a 
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conversion efficiency limitation resulting from the attenuation or loss of the traveling 
photo-induced current. 

8.2 Dynamic Response 

The electrical model of the transmission line within the detector is shown in Fig.9. 

Rs 

-^H^Hm^r-rNN^M^ 
RP        ^~>   -T- 

Rp 

Fig. 9 Circuit model of transmission line for traveling wave optoelectronic devices 

The electrical losses in the transmission are represented by R and G. The series R 
of the transmission line is determined by the combined skin effect resistance of the source 
and gate conductors which may be expressed 

R = RS+Rg = 2Ps 
a. G>s \crsws     \<Jgwg (17) 

where a = lirf is the frequency, ws and wg are the source and gate widths, |i is the 

permittivity and as , ag are the metal conductivities. The parallel conductance represents 

essentially dielectric loss mechanisms in addition to dark current leakage. These 
parasitics combine to give a total loss parameter a such that the wave on the transmission 
line propagates as 

E{x) = E0e-axe-Jßx (18) 

where both a and ß are frequency dependent, as outlined in standard textbooks. The loss 
may be written as the sum of the series and parallel contributions as 

(19) ae = ac + ad 

and for the unbalanced coplanar line, these are expressed [12] as 

a„ = 
S.6SxRs(f)JseJ € 

c    480x-K(k'y(\-k2)j 

1 

a 
;r + log 

8an(l - k) 

t{\ + k) 

1 + - 
b 

^r + log 
Snb(l-k) 

/(l + k) 
(20) 
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and 

tan«? *(*iM*') a. = 27.83 x —--  •     , ■     , , x 4,    2^   *(*,)•*(*) 

where i^Är,),^'),^ ),K(k')aie the complete elliptic integrals of the first kind, and 

£j =^l\-k2 . The effective index is also frequency dependent and is expressed [12] as 

where 

yl = exp- 0.54-0.64 log 
2a f 

(1*\ AC 0.86 log — +0.54 
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The impulse response of the TW detector has been stated as 

,    s    TIM      \Ta   v0v 

/zv 2   vn-v. 
r« 

vove z1-- 
v0-veV     vey 

— -t (22) 

which represents both forward and backward traveling waves, where E0 is the delta 

function input impulse of energy, a is the absorption coefficient of the active layer, T is 
the optical confinement factor, v0 is the optical velocity, veis the electrical energy (or 
group) velocity, / is the detector length, and t is the time as measured from the time of 
incidence of energy to the detector, 7, is the internal quantum efficiency, q is the 
electronic charge, h v is the photon energy. In this section we will extend this result to 
demonstrate the importance of the electrical loss on both the detector efficiency and 
velocity mismatch which then establishes the bandwidth limit. We then utilize the result 
to determine the frequency dependent response to a realistic pulse input. 

8.2.1 Impulse Response and Small Signal Transfer Function 

The optical pulse enters the waveguide as shown in Fig. 10 at x = 0 and continuously 
transfers electrons to the transmission line as it propagates. 
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Fig. 10 Effective velocity matching on the optical input response 

At any x, the photon density (per unit area) remaining in the light wave is 

F(x) = F0-e-ra* (23) 

where 

F = — 
hv 

and is moving with velocity v0. Then the total charge per unit area on the transmission 

line is 
Q(x) = Q0{l-e-rax) (24) 

where 
So = WFo 

and is moving with velocity ve. The current produced by the moving charge 

is 

l(x) = ^-e-^\ (25) 
ax 

where ae represents the attenuation of the electrical wave on the transmission line. From 

the relationship 
x     I — x 

(26) 

we obtain 

and then the current is 

— + — 
v„      v„ 

V V o   e 

■ = t 

-f_ — 
v„ - v„       v - v„ 

(27) 
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(ra-oe -2-M i— 
— <t< — l(x) = Q0Ta-e       '^  '•'-v. , -<'<~ (28) 

o e 

By using the Fourier transform, we can convert time domain into frequency domain, then 
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We can assume the input current is 
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Then, the modulation transfer function is expressed 
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so that wt= (ra-e-"-')2 

(Ta-aef 
V„V,   J 

f..  \ 
l + e -2(ra-a,)/ (32) 

\vj 

It is noted that x is introduced as a measure of velocity mismatch and if there is no 

mismatch (v0 = vej, then x is undefined . In that case (16) is no longer applicable and the 

current can no longer be defined, i.e. if an ideal delta function of shape is introduced and 
there is no pulse spreading, the current response is infinite which is the limit approached 
by (17). Equation (18) defines the impulse response of the system as 

„v       I{t) fa-«.) 
Ut) = -44 = e 

/ / 
,— <r< — 
v„ v.. 

It is noted that ae and ve are frequency dependent and therefore the pulse response will 
degrade as inputs with higher and higher frequency content are considered. To show these 
effects more clearly, it is more appropriate to consider the transfer function 

and obtain 

«(/)= J. 
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Therefore the bandwidth of the detector is determined by the amplitude and phase of 

H(f) given by 
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The frequency dependence of H[f) is established through that of ae which is decided by 

(4), (5), and (6), using (7) and (8). The frequency dependence of the group velocity (or 
energy velocity) ve is given by 
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v„ = 
^fI-Seff{(ü) 

with seff {a) as determined by (6) 

V^-AMö) 
V eff    " eff l + A{f/fTE) 

The detector transfer function is plotted in Fig.l 1. the 3 dB frequency of the detector is 
given by 

1     f^..        ../..       \\\        VoVe(G)3dB) 
®3dB = 

In 
(Ta - aela>3dBn r (33) 

and is clearly reduced by the frequency dependence of both ae and a0. It is interesting to 

note that the bandwidth is independent of the length of the detector which results because 
of the matched load configuration. 

TRAVELING WAVE DETECTOR DYNAMIC RESPONSE 

intrinsic only 

FREQUENCY 
Log10f(GH2) 

IRANSMISSION UNEV 

Fig.l 1 Traveling Wave Detector Dynamic Response 

8.2.2 Parasitic Time Constant 

In the TW HFET detector, the resistance from the absorbing channel to the 
contact (which includes the doped channel resistance, the n+ channel resistance and the 
metal contact resistance) combine with the capacitance of the doped channel to gate 
contact to produce a parasitic RC time constant. This time constant constitutes delay in 
adding charge to the transmission line which results in an effective velocity mismatch 
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imposed before the onset of transmission line propagation. The 3 dB response which is 
also shown in Fig. 10 would be modified to 

1 1 1  _ +  

<°idB        VVM        VRC 

where a>m is given by (33) and 

a>ar = RC    2xRpCp 
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9. FABRICATION AND PHOTOMASK DESIGN AND GENERATION 

The fabrication sequence was redesigned to implement traveling wave devices. 
Several changes were made as follows 

• The Si implant will be used for the laser and detector current steering 
function. 

It will also be used to create the proper threshold voltage for depletion transistors. This is 
a light field mask. 

• Waveguides must be formed and the waveguide core must be disordered to 
shift its bandgap to higher energy to produce low loss. To achieve this, the Si implant that 
forms the source and drain regions is now performed as a blanket implant over the entire 
wafer. Where the Si is required in the waveguide for disorder, it remains and where it is 
required as the source and drain of active devices it remains. Everywhere else it is 
removed after the RTA step. The RTA step is performed both to activate source/drain 
regions and to disorder the waveguide. The implant is performed everywhere except 
where blocked by W or resist. 

• AlxOy is used for isolation, passivation and to form the lower bragg reflector 
for the optical devices. However it is not used to form the current funneling layer as in 
most approaches today. Placing AlAs that close to the interface would compromise the 
operation of the FET. We see no possibility to use the oxide to form a high performance 
FET. The HFET or PHEMT is already the ideal FET. Further, the concept of oxidizing 
large lateral distances to produce a small aperture is not manufacturable. That is why the 
Si implant step is chosen above. Since we are using oxidation of the bottom mirror, then 
an etch step referred to as trench etch is added which etches through the back mirror prior 
to oxidation. Thus all devices are isolated by the trench etch and after oxidation all the 
etched vertical surfaces are passivated by oxide. 

It is noted that the oxide is used primarily to produce the lower mirror. Since the 
oxide rate is quite sensitive to the Al concentration then the Al0.7 layers will oxidize much 
more slowly than the Al layers. Therefore when 20-30 urn of AlAs is oxidized in the 
bragg mirror, there may be only 2 urn of oxidation of AI0.7. Since this oxidation occurs 
under the source and drain regions and along the waveguide walls then it serves 
additional purposes which are 1) it reduces the capacitances of the sources and drain 
regions to produce higher speed FETs 2) it provides a low index lateral cladding on the 
waveguide to allow very tight waveguide bends. Just how far we can push this concept of 
lateral oxidation remains to be determined experimentally. 

We have devised a unique approach to use the selective oxidation of Al 
containing compounds over GaAs to produce our structures which follows the same 
principles as the Si LOCOS technology. The oxidation is done with GaAs as a mask, with 
W as a mask and with Si02 as a mask. 

With these modifications the process flow and masking steps are as follows: 

1.Pattern mask 1 to etch alignment marks. Deposit protective oxide over apertures 
2.Pattern mask 2 for first Si implant and perform implant 
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3.Pattern for lift off of W. Etch Si02. Sputter W and lift-off 
4.Pattern W gates, etch in SFö 

5.Blanket ion implant. RTA for disorder and activation. 
ö.Pattern Source/Drain implants to protect N+junctions and waveguides. Etch to top of 
AI0.7 layers. 
7.Pattern for trench etch. Etch trench and then oxidize 
8.Pattern to protect waveguide, etch to etch stop in S/D areas 
9.Pattern for subcollector etch, etch oxide and semiconductor with RIE 
lO.Pattern for N lift-off, evaporate and lift-off 
11.Pattern for collector etch, etch oxide and semiconductor with RIE 
12.Pattern for P lift-off, evaporate and lift-off 
13. Apply polyimide isolation 
14.Pattern for polyimide holes 
15.Lift-off of final Au bond pads 
16.Deposit first stack layer. Pattern grating, and RIE etch grating pattern. Finish stack 
deposition 
17.Etch stack for final Au bond pads 

The total mask count is 15 or 14 if we choose to delete the pattern in step 8. This 
becomes a question of how the waveguide losses are affected by forcing the mode close 
to the top mirror. It probably can be deleted. 

The mask set was designed for maximum debugging capability. Several chip sites 
were developed. One of these was shortened to 7 levels to produce only FET devices. 
Another chip site was shortened to only 8 levels to produce only VCSELs. These are top 
emitting rectangular devices of various sizes and aspect ratios. Another chip site was 
devoted to process diagnostics including mirror testing areas and also etch depth testers 
for all of the various etches involved in the process. The purpose of the shortened 
fabrication chip sites was to provide a means to obtain feedback on laser or FET devices 
independently with fewer man hours than required for the grating laser. These modules 
need to work first to verify the integrity of the approach. When these have proven 
themselves we will implement the full process to make the grating laser. 

The laser/detector requires the grating level which is a non-standard item. We 
have chosen the phase mask approach to achieve this. The phase mask can be made by 
holography or by e-beam printing of each desired feature and then transferring these 
patterns to a quartz plate. The plate is used as a photomask and exposed with 248 nm 
light. We worked with two companies to make the phase mask, one using e-beam charged 
$10.5K and the other using holography (Denmark) charged $5.5K. It seems the 
holography approach is correct for initial testing because the grating pitches on all devices 
are the same and the devices have been arranged to be in parallel. 

A major activity was invested in the development of the photomask set involving 
more than 12 man months of effort. We were bridging the gap between the earlier vertical 
cavity process flow that only begun to yield results at AT&T. Completely reworking this 
procedure to incorporate waveguides, traveling wave structures, a new oxidation 
technique, disorder etc. turned out to be an enormous task. The masks were produced 
with the best simulation support we could provide. These masks contain a very wide 
variety of circuits and devices. The list of circuits and devices includes among others 
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ring oscillators to determine transistor speed 
ring oscillators to determine switch laser speed 
12 traveling wave detectors (geometry and output variations) 
12 traveling wave lasers (geometry and output variations) 
a traveling wave DOES detector receiver 
temperature tuned lasers and detectors using FET control 
waveguide combined lasers with temp, tuning to produce 100GHz optical RF 
a directional coupler using the HFET modulator with dual waveguide I/O 
optical waveguide amplifiers 
HFET CCD arrays with optical outputs 
numerous test devices for the DOES, HFET laser and HFET transistors 
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10. GROWTH AND TESTING 

The program required that no more than 20% of the effort be devoted to 
simulation but in our case this turned out to be impossible. In April 1994 the PI launched 
an effort at UConn to install a state of the art clean room and growth facility which 
included acquisition of space and funds and the design and implementation. Due to the 
bidding process and uncountable unforeseen delays, construction did not finally get 
under way until June 1996 and the facility was occupied in Nov. 1996. With the 
equipment installation and required qualification procedures we ran out of time to 
produce working devices. Another major problem was the supply of MBE material. A 
Varian GEN II system has been installed in the new growth facility at UConn but it was 
not on line at that time to produce the wafers for this program. Thus an arrangement was 
made with Perm State (PSU) to supply wafers. The PI had been awarded an SBIR (Rome 
Labs) contract with a company in MD to implement neurodes for an optoelectronic 
processor and PSU was to receive $28K per year for wafers. The PI was also trying to 
raise venture capital to continue this work. At the time of the Phase II award (Sept 1996), 
a conflict arose as to the ownership of IP between the small company and the venture 
people. Due to an unfortunate turn of events the small company took the money 
elsewhere and this source of funding disappeared. Thus PSU was unwilling to supply 
wafers without funds. By the end of the contract (March 1997) we were still trying to 
obtain wafers. The MBE reactor at UConn is still being qualified but will require an 
infusion of funds before serious MBE growth can begin. In order to perform the testing 
the PI acquired an HP design and test station at a total cost of $250K that will perform on 
wafer measurements up to 50GHz. About $25K of contract money was used to start the 
lease for this equipment and the PI is now trying to raise the funds to continue this lease 
within the university and by finding new funding sources. Therefore during this one year 
program, the PI did all of the fundamental design work to support this new concept, and 
he assembled all of the necessary tools and laboratories to continue this work. 

At the present time , funding is a major problem. A new SBIR has been started 
(Phase I) to demonstrate true time delay circuits for phased array systems. This contract is 
with the NavAir department of the DoD. Any results arising from this SBIR will be made 
available to the airforce electro-optics directorate on a continuous and timely basis. The 
Phase I work will result in a small fabrication activity to build a directional coupler. 
Hopefully the Phase II will enable a substantial effort. Also recently an STTR was 
awarded to demonstrate a CCD with infra red detection using the QWIP from the 
BMDO. This may provide another source if it can go to a Phase II. 

The attempt to raise venture capital was not really successful. They agreed to 
supply $360K but they wanted another investor. We could not find another investor. An 
ATP was applied for but the outcome is unknown. NSF proposals have been submitted. 
More SBIR proposals will be submitted. Visits have been made to DARPA to seek 
support but requests for funding have not been successful. There is some potential interest 
from Celeritek, a small company in Ca. which manufactures GaAs circuits for wireless 
and DBS systems (this company was founded with help from Sutter Hill Ventures and 
were briefed on the ICT). They have determined that an optical link from the satellite 
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receiver to the set top would be an exciting product and may be interested in funding 
(such a link would allow an IF frequency of 4GHz instead of 70MHz currently and could 
dramatically increase data flow). Only a monolithic chip could achieve a low enough cost 
to make this concept viable. There is a possibility that Celeritek may provide the funds 
for a prototype if they can accept the risk. Their decision should be known within two 
months. 
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ACRONYMS 

E/O, O/E 

BER 

ATM 

ICT 

MBE 

PHEMT 

III-V 

SIGaAs 

IC's 

FET 

DOES 

HFET 

CAD 

UConn 

SCH 

Q factor 

GC VCSEL 

VCSEL 

DFB 

DBR 

PC 

VC 

Optical to Electrical, Electrical to Optical 

Bit Error Rate 

Asynchronous Transfer Mode 

Inversion Channel Technology 

Molecule Beam Epitaxy 

Pseudomorphic High Electron Mobility Transistor 

Semiconductor compounds using group III and Group V elements 

Semi-Insulting GaAs 

Integrated Circuits 

Field Effect Transistor 

Double Heterostructure Optoelectronic Switch 

Heterostructure Field Effect Transistor 

Computer Aid Design 

University of Connecticut 

Separate Confinement Heterostructure 

Quality factor 

Grating Coupled Vertical Cavity Surface Emitting Laser 

Vertical Cavity Surface Emitting Laser 

Distributed Feedback 

Distributed Bragg Reflection 

Personal Computer 

Vertical Cavity 
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TMM Transmission Matrix Method 

DC/AC Direct Current/Alternating Current 

RIN Relative Intensity Noise 

RTA Rapid Thermal Anneal 

RC Resistance Capacity 

RCE Resonant Cavity Enhanced 

TWPD Traveling Wave Photon Detector 

WDM Wavelength Division Multiplexing 

TW Traveling Wave 

R series Resistance per unit length 

G shunt conductance per unit length 

LOCOS Local Oxidation of Silicon 

S/D Source/Drain 

RIE Reactive Ion Etching 

PSU Perm State University 

SBIR Small Business Innovation Research 

CCD Charge Coupled Device 

QWIP Quantum Well Infrared Detector 

DBS Direct Broadcast System 

IF Intermediate Frequency 
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LIST OF SYMBOLS 

Gb/s Giga bit per second 

ni, 113 the index of the cladding region 

ri2 the index of the core region 

LPb, Lpt the penetration depths of the bottom and top mirrors 

An the index difference between the two layers in a pair of the mirror 

LMt,b is the total front and back mirror thicknesses 

K the coupling constant 

Lx the quantum well width 

T]e the electrical confinement factor 

J, JTH the current and theoreld current density 

rp the effective photon lifetime for the vertical cavity device 

avc the vertical cavity loss due to the diffraction grating 

Pout power output from the laser 

tf the power transmissivity of the output port 

avc the primary optical loss in the vertical cavity 

rjdiff the diffraction efficiency due to grating 

r)i, r|2 the impedances of the guide and the incident medium 

Ay the field intensity at the edge of the guide of the z propagating wave 

C0 the field intensity of the incident wave 

ocg the growth of the guided wave due to diffraction 

deff the effective width of the guide which includes evanescent cladding penetration. 

ax the loss of wave propagating along x direction (vertical) 

r the confinement factor 

Fg the waveguide photon density 

i\ the effective photon lifetime in the cavity 

W the width of waveguide, 

L the length of waveguide 
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"He       the electrical efficiency of laser 

Z0.      the characteristic impedance 

X        the wavelength 

co       the frequency 

ws , wg the source and gate widths, 

fx       the permittivity 

as , ag the metal conductivities 

K[k}),K[k[),ldk ),K(JC)     the complete elliptic integrals of the first kind 

7^eff tne effective index 

E0       the delta function input impulse of energy 

a        the absorption coefficient of the active layer 

T        the optical confinement factor 

v0       the optical velocity 

ve       the electrical energy (or group) velocity, 

/ the detector length 

t the time as measured from the time of incidence of energy to the detector 

77, the internal quantum efficiency 

q the electronic charge 

h v      the photon energy 

ae       the attenuation of the electrical wave on the transmission line. 

H[f) the transfer function 
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12. Appendices 

Appendix A. Determination of Diffraction Efficiency for a second order Corrugated 
Waveguide 

Determination of Diffraction Efficiency for a Second 
Order Corrugated Waveguide 

G. W. Taylor and C. Kwan 
Electrical and Systems Engineering 

University of Connecticut 
Storrs, CT 06269 

Abstract 

The diffraction from a second order corrugated waveguide is analyzed to 
determine its efficiency as an element to redirect a guided wave. Using a rect- 
angular grating, the efficiency is evaluated in an approximate closed form. The 
dependence upon grating thickness, waveguide thickness and wavelength are in- 
vestigated and the results indicate usefulness as a simulation tool for photonic 
integrated circuits. 
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1    Introduction 

Gratings combined with waveguides have been important structures for realizing 
many useful components for integrated optics [1] [2]. These include co-directional 
and contra-directional waveguide couplers for optical switches [3] and DFB (Dis- 
tributed feedback) or DBR (Distributed Bragg Reflector) laser structures [4]. In the 
application to lasers, first and third order gratings are normally applied to make clas- 
sic DFB or DBR devices since these gratings produce diffracted components only in 
the plane of the guide. However second order gratings have been considered as a 
means to discriminate between the two symmetrical modes produced by a DFB laser, 
i.e. the second order grating produces components in forward, backward and surface 
normal directions and the lasing action will naturally select the mode which favors 
the least surface normal radiation loss [5] [6]. Thus the wavelength is selected and 
stabilized. In the past few years, second order gratings have been used as the output 
coupling device for DBR lasers to produce surface-emitting devices either individually 
(as a broad area laser) or as arrays to generate significant power [7] [8]. Another use 
of the second order grating [9] is to couple from a passive waveguide into an active 
optoelectronic component such as a detector or a modulator or of coupling the light 
into a passive waveguide from a laser. The most significant parameter characterizing 
such grating structures is the loss parameter a which describes the fraction of power 
propagating in the guide which can be coupled to the surface normal direction. In 
general, this parameter has been determined from numerical simulations. It is the 
purpose of this paper to investigate the calculation of a and its dependence on the 
waveguide and grating parameters using quasi-analytical techniques. 

2    Second order grating calculation 

The original calculations which formalized Maxwell's equations to address this prob- 
lem were published by Streifer et al. [10]. The approach was generalized to any order 
and to any shape of grating. A significant result of their work was a numerical al- 
gorithm which could be used to determine the behavior of the grating. Subsequent 
calculations by Streifer [11] and others [5] have focussed on the analysis of the second 
order grating in the context of the DFB laser in which coupled mode analysis was 
employed to determine the behavior of the grating in the presence of symmetrical for- 
ward and backward travelling coupled modes. Here also the analysis yields numerical 
solutions. Our interest here is to re-examine the basic diffraction for a wave inci- 
dent upon a second order grating and to determine an analytic form for the grating 
coupling coefficient in terms of the structural parameters. By representing, the first 
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order backward travelling wave as a reduced version of the forward wave, we are able 
to consider both weak and strong coupling situations. This enables a simplification 
and thus an analytic result is possible. The result we obtain will be useful in evalu- 
ating and designing waveguide couplers as inputs or outputs for lasers and detectors 
into waveguides without resorting to extensive numerical methods. These simulated 
results are ideally suited as the basis of CAD tools for integrated optic design. 

The problem we address is illustrated in Fig. 1. A slab waveguide of 
thickness d is corrugated with a grating of thickness t. The grating begins at z = 0 
and extends continuously in the positive z direction. The x direction is taken as 
positive downwards. The slab waveguide is characterized by the indices nx above, n2 

within, and n3 below the waveguide respectively. The grating section has a refractive 
index with a periodic variation and is described by the Fourier series 

n2
g(x,z) = n2(x) +        J2        Bq{xy2"«^ (1) 

<j=—oo & q^O 

where n is the average index over one grating period, Bq are the Fourier coefficients, 
and A is the grating period as illustrated in Fig. 1. 

The TE modes in the waveguide are described by the two dimensional 
wave equation 

|f + ^+*oV(*,z)£v = 0 (2) 

where k0 = 2TT/XQ is the wave number, and A0 is the free space wavelength. The index 
is expressed by region as 

n2(x,z) = < 

n2 x <0 
n2(x, z) 0 < x < t 

A t <x <d 
n\ d < x 

(3) 

In the standard approach to this problem the mode field Ey is represented as shown 
by Streifer [10], by an infinite sum of partial waves in the form 

oo 

Ey(x,z)=   ^jT   Em(x,z)exp(ißmz) (4) 

where the propagation constants ßm are expressed 

27T772, ,_> 
ßm = ß0-— (5) 

and we note that (5) implies (as shown later) that m takes positive values for diffracted 
waves. If no grating were present then all Em(x,z) with m ^ 0 would be zero, and 
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we would have EQ{X) and ßo as the mode pattern and propagation constant of the 
unperturbed waveguide. Therefore in our analysis we assume that a wave Ein 

Ein = A0{x)e-iß°-~ (6) 

is propagating in the waveguide for z < 0 where AQ(X) is an arbitrary amplitude. We 
assume a TE mode in the guide and therefore A0(x) is determined by 

where 

(7) 
f AyeSx                                           x<0 

AQ(x) = < Ay cos KX + By sin KX                  0 < x < d 
(Ay cos K,d + By sin KcQe""7^-^    d < x 

K = n^ko sin 6b, 

6 = 

7 = 

(ra2, - n2) kl - rt^k\ sin2 8b 

(n% - n\) kl - n|fcg sin2 9b 

1/2 

1/2 

Ay is the value of AQ(0), 

and Ö;, is the bounce angle. 

From continuity of Hz at x = 0, we also obtain 

B~~l (8) 

For the TE1 mode, the graphical solution of the eigenvalue equation, tan nd = ^"J, 
yields the eigenvalue K. From the eigenvalues we also obtain the bounce angles for 
TE modes as 

#6 = sin      (9) 
K 

and from basic waveguide theory we know that the propagation constant /3o is related 
to the bounce angle Qb by 

ß0 = n2k0cos9b (10) 

Our analysis will be confined to the problem of the second order grating 
imposed on the waveguide. This grating is of particular importance to applications 
which require the redirection of optical waves through 90° such as in coupling from 
a waveguide to a detector. Second order grating diffraction principles are outlined in 
many texts (e.g. [12]) and, as illustrated in Fig. 2a, the light is diffracted by an angle 
ip according to the Bragg relation 

—cosip = sinö = m — 1 (11) 
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where iß = 8 + n/2 is the angle of propagation of the diffracted wave with respect 
to the direction of propagation of the incoming wave. For real 6, only the values of 
m = 0, 1, and 2 are allowed corresponding to components in the forward direction 
(rn — 0), the reverse direction (m = 2) and the direction approximately normal to 
the waveguide (m = 1). For 6 = 0, the wave propagates normal to the guide and 
for small positive or negative values it propagates to the right or left of the normal 
respectively of the guide in Fig. 2a. The component approximately normal to the 
waveguide is comprised of upward and downward travelling waves since both will be 
allowed by the Bragg relation. Their relative magnitudes will be determined by the 
indices involved in a particular case as illustrated by example later. Therefore in 
consideration of (4) only three terms in the summation need to be considered. The 
diffraction orders can be shown with the vector diagram as illustrated in Fig. 2b. 

We first consider the rectangular grating because of its mathematical sim- 
plicity. In the appendix, the sinusoidal grating is considered 

3    Rectangular grating 

The rectangular grating has been discussed in detail by Streifer [10].  For this case 
the coefficients in (1) are expressed 

rt-^^m.) 0<x<t (12) Bq= < 7rq 
0 x <0,   t<x,   qj^O 

where w is the grating tooth width (see Fig. 4). The index in the grating region 
corresponding to (3) is expressed 

2/ N        -2        (rl2_nl)    •    ,KqW      1222 n2Jx, z, q) = n2- ^ ^sin(-^—)e A (13) y qn A 

where the average n is given by 

n2 = {wn\ + (A - w)r%}/A , 0 < x < t (14) 

The remaining indices are as in (3). The first step in the solution is to determine 
Ey(x, z) in the region of the grating itself. However, we first note that the coefficients 
q = -1 and +1 determine the coefficients for the waves with m = 0 and 2 respectively. 
Separate wave equations are obtained for each value of m by substituting (4) into (2) 
and collecting the coefficients for each value of elßmZ. We obtain 

^° - ß2E0 + k2n2E0 + 2ißo^ + k2 {Bx E, + B2 E2) =0, m = 0 (15) 
oxz oz 
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rfi P ßPi ~ 
^ - ßlEx + klrfEi + 2ißi^ + kl (B-i E0 + BlE2) = 0,m = l        (16) 

rfi T? rlE ~ 
^ - ß\E2 + k2

0n
2E2 + 2iß2^- + kl (5-i Er + B.2 E0)=0,m = 2       (17) 

where we represent B_i = Bi = B = -^^5in(j) as determined by (13) and, 
as is normally done, the terms in |tf are neglected. It is noted that these equations 
more closely resemble those of Kazarinov and Henry [5] rather than Streifer [10] since 
Em(x, z) in (4) has been given an explicit z dependence which results in the extra 
term of dEi/dz in (16). This term will be important in considering diffraction at 
angles of ip other than 7r/2 (i. e. for non-zero values of 9). 

These are three coupled equations in the unknowns EQ, E\ and E2 and 
it has been shown previously by Streifer and others that the only way of obtaining 
solutions is through a numerical perturbation. For the perturbation, the term in B 
in each equation is initially neglected to obtain a first attempt solution. These results 
are then used to determine the B terms and the procedure repeated until convergence 
is obtained. Boundary conditions are also applied . For each of the solutions Eo, E\ 
and E2, the continuity of E and dE/dx must be applied at the interfaces x = 0, x = t 
and x = d. It is thus required to obtain the solution of 18 equations in 18 unknowns 
with one extra relation for input power conservation. 

3.1    Ideal Second Order Grating 

To circumvent this lengthy numerical procedure, a closed form result may be obtained 
with some reasonable approximations. In Fig. 3 we sketch the nature of the solution. 
The wave Ein enters the grating from the left and decays with the constant a as it 
travels through the grating, giving rise to the two guided waves E0e~a= and E2e

az 

and a radiating wave E\. It is clear that the wave E\ arises from the losses that are 
incurred by E0 as it propagates through the grating. Although Ei represents a wave 
propagating in the positive and negative x directions it will also , in general, have a z 
dependence resulting in a finite dEi/dz in (16). However for the second order grating 
it is true in general that ßo = —ß2 and then it can be shown from (5) that 

/?1=0 with /?0 = 2TT/A (18) 

Therefore the terms ß\Ex and 2ißidEi/dx disappear in (16). Equations (10) and (18) 
state that for a perfect second order grating the grating pitch is fairly close to the 
wavelength and is dependent on the bounce angle 8b and therefore on the thickness of 
the guide d, through (9). For a two dimensional or rib waveguide ßo will also depend 
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on the lateral geometries. Therefore it is necessary to know the exact waveguide 
shape before designing the grating for second order diffraction. 

The grating produces a first order reflected wave E2e
jßo~ travelling in the 

—z direction, as Figure 3 shows, which is a diminished version of EQ in amplitude. 
Since it is only the amplitude is required in (16), then E2 can be represented from 
transmission matrix theory as 

E2 = Eonrrieff,    (rg = rxrneff) 

where r± is the reflectivity of one grating period, rg is the total reflectivity of the 

grating, and rae// = t^h"^ is the effective number of mirror periods seen by the 
incident field. For a strictly first order grating it can be shown that rg is a real 
number and approaches unity for an infinite grating, i.e. 

r„ = 
1 - {ni/n2) 

2m 

1 + (n1/7?/2)
2m 

where rh is the number of grating periods. Due to the existence of the second order 
component, rg will be less than unity but we can still express the z propagating 
grating field as 

EQ(X, z) = E0e~az + rgE0e-az = £0(1 + rg) e~az (19a) 

An important approximation we make regards EQ and E2. Since EQ is a 
continuation of Ein and E2 is a reflection of E0, then instead of finding E0 and E2 

in the grating and matching it to the remainder of the guide (i.e. finding E0 and E2 

solutions in all sections of the guide), we represent E0+ E2 as one solution for the 
entire guide in the form of EQ as given by (19a). These two waves are assumed to 
continue to propagate in the grating with the constants /50 and — ß0, where ß0 is the 
propagation constant of the input wave. Obviously, the actual propagation constant 
will be somewhere between that for a waveguide of thickness d and thickness d — t 
and as the depth of the grating t increases and begins to approach the waveguide 
thickness d, this assumption no longer becomes tenable. This issue is discussed in the 
context of the results. The x dependence of the E0 wave given by (19a) is contained 
in the waveguide mode profile given by (7). It will be noted therefore that AQ(X) 

and thus Ay as it is used below represents the net amplitude of a wave travelling 
in the corrugated section of the guide which allows us to calculate the diffraction 
efficiency accurately without specifying the relative magnitude of E0 and £2.Thus 
(19a) becomes 

E0(x,z) = A0(x)e-az (19b) 
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With these assumptions we need to solve only (16) rewritten as 

cßE ~ 
-jr± + k2

Qn
2El + k2

QB E0(x, z)=0 (20) 

together with (19). Prom the solution of (20) it is then possible to determine a, which 
is a real constant and can be found from the application of boundary conditions. This 
is a major distinction from previous work in which a was evaluated from numerical 
solutions of Ei and -Eo- Since Ei(x, z) is the solution of interest we refer to it hence- 
forth as E and determine its solutions E\x, Eg, E2x, E3x in the various regions of the 
guide. This approximation may be summarized by stating that outside the grating, 
the waveguide is a three layer waveguide and that within the grating we maintain a 
three-layer description. Equation (20) then yields the complementary solution 

Egc{x) = C2e
ik<>x + C3e~ik°x , kg = k0n (21) 

and the particular solution (see Appendix A), 

k2 6 6 
Eav =   o  ° ,o B Aue-a=(cosKX + — sinKX) = b(z)(cosKX + — sinKX) (22) 

yF      K2 - k2
g K K 

,2   

which defines b(z) = K2°k2 B Aye-0* = b. Then the total solution for Eg is 

c 

Eg (x,z) = C2e
ik*x + Cze~ik°x + b(cos KX + - sin KX) (23) 

AC 

The solutions in the non-grating sections of the waveguide are determined from (16) 
and (3) to be (note that ßi = 0) 

Elx(x, z) = Cie
ik>x , h = (k2n2 - ß2)1'2 = Mi (24) 

E2x(x, z) = C4e
ik^d-X^ + C5e-ifc^-z) ? h = (^ _ ^1/2 = ^        (25) 

E3x(x, z) = C6e-£fc3(*-d> , k3 = (k2n2 - ß2)1'2 = k0n3 (26) 

The arbitrary constants in (23)-(26) are determined by the continuity of E(x) and 
dE/dx (continuity of HS) at the boundaries x = 0, x = t and x = d. Then the 
following relations are obtained 

Ci = C2 + C3 + b, x = 0 (27) 

ikiCi = ikgC2 - ikgC3 + 6-b , x = 0 (28) 

C2e
ikst + C3e-ik^ + b(cos Kt + - sin nt) = Qe*^' + Cse"^2^ , x = t     (29) 

K 
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ikJ C2e
ik^-C3e-ik^)-b(K sin Kt-6 cos Kt) = -ih2(C4e

ih2{d-t) - Cse^^^) ,x = t 
(30) 

C4 + C5 = C6 , x = d (31) 

—ik2C4 + ik2C5 = -ik3C6 , x = d (32) 

This set of linear equations is solved in a straight-forward way and some 

of the important results are 

ft-\(1+ki)c>-h1+i)b>c>-5(1 -ki)C>~5(1"&  (33) 

Cl = 26§+§ -2br{ki)' (34) 

and 
C6 = 26(^1^+ y2} (35) 

where 
e c 

A   =   cos(kgt) + — sm(kgt) - [cos(Act) + - sin(«t)] 
kg K 

-.Lh±h)(l + ^{cosfrhid -t) + kgt] + £ sm[2k2{d -t) + kgt]} 
2 k2 — k3 k2 Kg 

-J(^±r)(l " h{cos[2k2{d -1) - kgt] - I sin[2fc2(d -1) - kgt}} 
2   k2 — K3 K2 Kg 

+(cos nt+ - sin /ct)(- —) cos[2fc2(d - t)] 
K k2 — k2 

+(— cosKt - — sin ret) (7^ r^) sin[2k2(d - t)] 
«2 k2 k2 — k2 

Jc 8 S K 
B   =   --S. sm(kgt) + — cos(kgt) - [— cos(Act) - — sin(«*)] 

k2 kg k2 K2 

_i(-^±-^)(l   +   ^){SlXl[2k2(d  ~t)+   kgt]   -   £   COS[2AC2(d  -   t)   +   kgt}} 
2   k2 — k2 AC2 Kg 

_±(h±h)(i - ^){sm[2k2(d -t)- kgt] + I cos[2k2(d -t)- kgt}} 
2 k2 — k2 k2 Kg 

+(cos Kt + - sin«t)(-^-^) sin[2A;2(rf - t)} 
K k2 — «3 

_(I cos Kt - f sinKt)(^-^) cos[2k2(d - i)] 
k2 k2 k2 — k2 
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C   =   2(l-^)cos(k9t)-(l + ^)(l + ^)(J^^)cos[kgt + 2k2(d-t)} 
K2 Kg k2     K2 — &Z 

-(1 " |)(1 " |)(^|) C0S[M " 2h{d ~ t)] 

D   =   2(^-|)sin(V)-(l + |)(l + |)(^|)sin[M + 2Mrf-t)] 

k 
Y\   =   {[cos{kgt) cos k2(d — i) — -^ sin(&ff£) sin /^(d — £) 

+z[— cos(kgt) smk2(d — t) + — sin(kgt) cosk2(d — t)]} 
k2 kg 

=    Yl Re + iYi lm 

Ik 6 5 K 
Y2   =   -{[-r(sin A;pt — — cos kgt) + — (cos K£— - sin «£)] sink2(d - i) 

2   k2 kg k2 o 
c c 

+[(cos Kt H— sin «£) — (cos fcs£ + — sin kgt)] cos k2(d — t)} 

Thus the field solution (23) within the grating may be expressed 

EgM        -        &(,){Kl   +   ^)l±f   _l(1   +  i-)KM 

+[(1 ~ Tg
]W^5 " 5(1" ^)]e_iM + (c0SK* + ^sinra)} {36) 

=   b(z)X(x) 

where 

*<*> - «i+&^f -5<i+i^ (37) 

One additional relation is required to relate the decrease in energy in the 
wave E0 given by (19b) to the energy radiated from the guide by the components 
Eix(z) and Ezx(z). Using the Poynting vector notation 

i0,.Cs+iOl.cr.|(^e-*.(0 (38) 
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where A0m is the value of field related to the value A at x = 0 as A0m = A^J(K
2
 + 82

)/2K
2
. 

Also, ?7i is the characteristic impedance of the medium 1 (771 oc u/n{), 77/ is the char- 
acteristic impedance of the waveguide (77/ oc U/ITQ cos db) and d! is the effective width 
of the guide from which the power in the input wave Eo can be extracted. This re- 
lation states that the gradient of the total guide power in z is equal to the vertically 
directed power. The effective width of the guide is 

d' = (d+l + -) (39) 
0     7 

where the terms d, <5, 7 are due to the mode shape which comes from the conventional 
calculation of power inside and outside of the guide using (7). Equations (34), (35), 
(38), (39) are solved to give 

9„   - fc0
4 *      B\VfA* + B* 

~   k2(K2 - k2) K2
 + S2 d' VC2 + £>2J l   ' 

Vf A* + B>    2 2 2    2(AYllm + BYlKe) 
+
^3

[
C

2
TD

2
'
{
 

1Re    1Im)    2   —C^TD
2
       

2j) 

where the definitions of 7,5, K are given by (7). Power loss is defined as 2a. It is 
evident from (38) that due to the exponential decay of input power with z then 2a 
also defines the diffraction efficiency as 2a = aT = ^ (including all radiation from 
the guide). ActuallyaT is proportional to the efficiency, since efficiency as a unitless 
quantity would be a^d! but we will refer to ax in general as the efficiency. 

In general, one would be interested in the diffraction efficiency for power in 
either the upward (Pu) or downward direction (Pd). These are expressed respectively 

k* K2     (7^-n2)2sin2(fQ r,f,A* + B 
OLu = u     k2(K2 - k2) K2 + 82 n2d' m  C2 + D2 (^4) (41) 

which is -£*- and 

ad   = 
kj J     (nj-^sin2^) 77, A2 + B2     2 2 

k2
g{K2-k2

g)K
2 + 62 n2d' m

[C2 + D2[ 1Re_h   lW   l    ' 

2     2(AYllm + BY1Re) 
+r2 + c2 + D2 2J 

which is -§lL. Thus ar = otu + ad. 

3.2    Results and Discussion 

In Fig. 4a we plot the dependence of a upon t, the grating depth for both the TE0 

and the TE\ mode. In Fig. 4b the TE0 result is shown for two different waveguide 
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thicknesses. The wavelength is chosen to be equal to the grating pitch (i.e. \/n2 = A) 
so that ideal second order diffraction is obtained. The indices and other parameters 
used (indicated in the figure) are chosen to coincide with the calculations of Streifer 
and some of his data points are also shown in the Fig 4a for the TE0 calculation. 
(These indices are typical of a semiconductor laser waveguide in which the index 
differences r^ — rii and rv^ — n3 are small for a weakly guided wave). It is noted 
that the calculation agrees fairly well with Streifer's although his is slightly smaller 
because as he points out, he has not included the contribution of the E2 wave in his 
perturbation analysis. The main feature of the result is the resonance that occurs 
with t. At t — 0.14 //m, constructive interference occurs for the x directed wave in the 
grating and as t = 0.24 pm the interface is destructive. Therefore grating thickness 
is a key concern when optimizing the diffraction efficiency. 

In Fig. 5 the variation with the tooth width, w, is shown and as expected 
a maximum is found for a slightly asymmetric tooth shape of w/A = 0.52. As shown 
this behavior also agrees fairly well with Streifer's. Streifer notes that the maximum 
occurs for w/A slightly less than 0.5 whereas we find the w/A slightly greater than 
0.5. Inspection of (40) indicates that w/A > 0.5 for the maximum. 

In Fig. 6, the grating thickness is fixed and the waveguide thickness is 
varied. It is noted that the total diffraction efficiency is reduced for increasing thick- 
ness and Streifer's calculation is also indicated. The approximate region of validity 
is limited to a ratio of t/d = 0.7 as discussed later. The undulations in the curve are 
due to the same resonance as observed in Fig. 4. 

In Fig. 7 the index n3 is varied and the variation of diffracted power in 
the upward and downward direction is shown together with the total radiated power. 
Here also the result agrees well with Streifer's exact numerical procedure. 

In Fig. 8 the variation of a versus t shown in Fig. 4 cannot be valid as t 
approaches d as mentioned previously. To address this issue it is useful to define the 
effective index neff for the propagation of the wave EQ in the guide in the presence 
of the grating. We use the relations 

ß0 = neffk0cosd'b (43) 

ßQ = n2hcos6b (44) 

ß0 = nk0 cos 0&1 (45) 

to ensure a constant propagation constant in the all regions of the guide. This is 
illustrated in terms of a ray diagram shown in Fig. 8a which shows the ray AB for 
the guide without a grating, the ray AFC for a composite guide consisting of both n2 

and n regions and the ray AC showing the final ray after the effects of propagation 
in the grating are included. To appreciate the effect of the grating in this diagram, 
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the vector ß0 is indicated in the vector diagram of Fig. 8b. The grating vector 
subtracts from ßQ to give a net vector of length ßi according to (5) as shown. From 
the diagram 6b, db\ can be found from geometrical relations in order to obtain the 
lateral displacements. Using (43)-(45) together with Fig. 8a, the effective index may 
be found as, 

U2 cos 9b rvz cos 6b TVJ cos 6b        ,    . 
Ueff = "col^ ~ cosftaii-1!^ t)coJ+tcote  ]} "    , ^-*)c°^+*c°t9» [    ' 

b \ L(d-t)cot06+icot061JJ y/d?+[{d-t) cot 9b+tcotebl)
2 

where cot 6b =   , f°2 a2 and cot 0W =    ,f*       are determined from Fig. 8a. 

In Fig. 9 we plot the variation of rce// versus the grating thickness with 
different ßx values. The value of neff starts from n^ at t = 0 and slowly increases with 
increasing t. The result shows the perturbation technique is still reasonable until the 
grating thickness is greater than about 0.7 of the waveguide thickness (±4% errors). 
This justifies in general the approximation using ne// — ^2 as discussed earlier. 

3.3    Approximate Second Order 

Suppose the input wavelength does not coincide with the grating period, so that the 
diffraction is either somewhat greater or somewhat less than second order (non-zero 
values of 6). Then the differential equation is given by (compare with (16) and (20)) 

^ + {kin2 - ßDE, + 2ißx^ + kl B E0(z) = 0 (47) 

where now 
ßl = 2J^C0Seb-?l (48) 

which now includes two additional terms by comparison with (20). To solve this 
equation, we will assume that Ei has a form similar to the ideal second order result 
given by (36), i.e. we assume 

Et = b'(z)X'(x) (49) 

where b{z) is an exponential function of z which is expected to be similar but not 
necessarily the same as b(z) as given by (22). Since we expect the same decay rate in 
the z direction, then (47) becomes 

^ + (A£) EX + kl B E0(x, z) = 0 (50) 

where 
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and the components k'gr, k'gi axe found by splitting k'g = \Jkln2 - ß\ - 2iaßi into real 
and imaginary parts to give 

^fM.  + y{kW-ßlf + Wßl]1/2 ~ (kin* - ßl)1/2        (52) k'   = Kgr 

and 

k'   — 

2 2 

2aßl V2aßi 

kin2 -ßl + ^(k2
0n

2-ß2)2+Aa2ß2 
1/2
 "     ^ 

(53) 

since a < /?i, fc0n. The solution procedure now follows that for the ideal second order 
and equations (27)-(32) are reproduced with the modification that kg is replaced 
wherever it appears by k'g and that bf(z) now has real and imaginary parts given by 

b'(z)   =   br-ibt (54) 
.    k2n2(K2 - k2n2 + ßl) . 2aßl 
1 (K2

 - kin2 + ßl)2 + 4a2/?2       (K2
 - kin2 + ß2)2 + 4a2/?2 

The results are similar to (34) and (35) with 

]B Aye 

It will be appreciated that the solution of the linear equations (22)-(32) with these 
changes is tedious by hand but that a simple matrix solution is possible and readily 
solved by conventional programs to obtain relatively quick results. On the other hand, 
closed form solutions for A', B', C, D', b', Y[ and Y{ can be found straightforwardly 
and then results can be plotted in about 3 seconds on a PC platform. Some of these 
results are given in the appendix C. 

In order to express the diffraction efficiency in a similar way to the ideal 
second order case, it is assumed that a can be used for a0 in (52)-(53). This expedient 
is justified as we show later. Then the expressions for au and ad as given by (41) and 
(42) can be used with A, B, C, D, Yx and Y2 replaced by their primed counterparts. 

These results are illustrated in Fig. 10 which shows the variation in the 
diffraction efficiencies a (total), au (upwards) and ad (downwards) as a function of A. 
Also shown on this plot using the points is a comparison of a calculated by using ao 
for a in (52)-(53) versus a totally self-consistent calculation and there is no difference 
in these results. The value of a is seen to go to a minimum at A = 27r//?0 which 
is the ideal second order condition and to rise for a smaller or larger values. This 
implies power escaping from the guide and propagating in both x and z directions 
with the z component increasing as we move away from the second order condition. 
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This is also explained by the presence of k'gi which implies an x dependent decay in 
the wave CieiklX. The decay in energy is accounted for by the z travelling wave with 
propagation constant ßx. 

Now for the case that the diffraction is not perfectly second order, there is 
a component of diffracted power flow both in the x direction and in the z direction. 
If A < A, the m = 1 component of the field has z diffracted power primarily in the 
same direction as the incident wave and if A > A, the component is primarily in 
the opposite direction to the incident wave. Therefore the direction of the m = 1 
diffracted wave makes an angle with the vertical direction of Bx where 

tanö1 = ^ = ^cosöft--^ (56) 
fei      rii niA 

Consequently the x axis in Fig. 10 also represents the angular deviations of the total 
emitted energy with respect to the vertical direction (ideal second order) and this is 
indicated. The discussion here is limited to values of 6X which are actually limited 
by (24) or (26) since kx and k3 must be real in order to propagate power out of the 
waveguide. Therefore using (24), (26) and (56) the limitations on dx are given by 

elu < tan"1 ^ , 6ld < tan"1 ^ (57) 
nx rii 

These limiting values are about ±45° using the parameters in Fig. 10a. 

Since these values depend on the index difference in the grating then for 
weak gratings it may be the case that 6lu > 93rd (see Fig. 2b). For these situations 
there is no distinct regime of grating pitch without diffraction. Rather there is a con- 
tinuous coexistence and overlap of the approximate second and third order diffraction 
components. 

4    Analogy to coupled mode theory 

Coupled mode equations are used to determine the guided wave solutions to the first 
order waveguide diffraction which would be the E0 and E2 solutions in this paper. The 
coupled mode approach is to represent the grating diffracted waves as conventional TE 
or TM waves and then substitute into the perturbed Maxwell equation to determine 
the wave envelope shape (i.e. the growth or decay). The present approach to second 
order diffraction is analogous to the coupled mode approach in that the first order 
waves are represented in the same way in order to predict the radiating wave. 
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5    Summary 

The diffraction efficiency of a second order grating has been calculated by considering 
first the ideal second order situation of emission at 90° to the guide and then arbitrary 
angles of emission as separate cases. A closed form result has been found based on 
the approximation of a single value of propagation constant (ßo) for the guided wave. 
The approach maintains accuracy by including both forward and reverse first order 
diffracted waves as perturbation terms. The magnitude of the composite wave is not 
important since it cancels out in the determination of a.The calculations are compared 
with the numerical results of earlier work and it is shown that the analytical or quasi- 
numerical simplified approach is a useful tool for iterative device design. An important 
aspect of this work is that the solutions are valid for strong or weak gratings because 
no approximations have been made which depend on a small index change. 
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Appendix A 

Particular Solution of Wave Equation 

The x dependent differential wave equation in the grating is obtained from 
(19b) and (20) as 

^ + k% = -kl B A0(x)e-°> (Al) 

The complementary solution (RHS=0) is 

Egc{x) = C2e
ik°x + Cze~ik°x (A2) 

the particular solution is 

7 2 £ 

=   ( o  °,,) B Aye~az(cosKX + -sinKX) (A3) KK2~kj ^ K 

where -2ikg is the Wronskian and A0(x) in (7) has been used for the grating region 
to represent TE modes. Then the total solution is 

Egc(x) = C2e
ik°x + C3e~ik°x + -r^r B Aye~az(cos KX + - sin KX) (A4) 

y  v   ' KT — K* K 
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Appendix B 

Sinusoidal Grating 

For the sinusoidal grating, the coefficients in (1) are expressed 

-^~ ^hinlqcos-1^ - I)}   0<x<t 
' ixq 

0 x <0,   x >t,   q^=0 

Then equation (13) is modified to 

Bq= { (Bl) 

5| - ß\Ex + klT?Ex - kl^-^sin(qcos-\2^ - l))E0(x) = 0 (B2) 
ox2 nq t 

Then the solution for Eg in the grating is written as 

Eg(x, z) = C2e
ik°x + C3e-ik°x + Egp (B3) 

and the particular solution can be obtained by following the procedure in Appendix 
A, 2 

Egp^b=^(r4- nl)M^) sin[kg(x - |)] AQge—~ (B4) 

where Jx is the Bessel function of the first kind. 

The remaining procedure and results are similar to those of the rectangular 
grating. 
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Appendix C 

Solution of the linear equations (22)-(32) for the approximate second order diffraction 
condition yield the following results for the parameter A',B',C',D'. 

A'   =   (f2 + 7 
3) cos2k2{d - t)[(l - 8) cosnt + (- + K) sinKt] 

K2~kz K 
c 

— [(1 + 8) cos Kt + ( K) sinnt] 
Hi 

1 fih'1 f)W 

*[1 + ^ - (r^Kl-?)<=» 2fc2(<* -1) + (^i|5)^ sin2fe(rf - *)] 
k2 «2 — «3 «2 «2 - «3   «2 

1 <•>&" 8k! 
+2[{l ~ kfTkf] sin^ - -kJTk? cosk°t] exp("W 

S + (^)(l-kl)sm2k2(d-t) + (^)kfcos2k2(d-t)) 
k2       k2 — kz k2 k2 — «3 k2 

i 8k" 8k' 

k2       k2 — k3 k2 k2 — kz k2 

1 8k" 8k' 

fc2       «2 — kz k2 k2 — kz k2 

B>   =   (f2 + f3) sin2fc2(d - t)[(l - 8) cos«£+(- + «) sin/rt] 
k2 — k3 « 

i .et," xt.' 

-5[(1-^V)cosS:'i+¥:^sin*:'f,exp("^) 

A;2       k2-k2 k2 k2 - k3 k2 
i £j." xt' 

«[i4-(rjrK1-r)C0S*(,i-t) + (rT^sin*(<,-'l] fc2 «2 — fc3 fc2 «2 - «3   «2 

1 />£•" <*)&' 
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k2       k2 — k3 k2 k2 — k3 k2 

6*Z 
k2 k2-k3 k2 

8k! 
sin *£* ~ fc^+V/2 cos k'$ exp(^*) "2[(1 + ^Tfcf)sin^     k'^ + kf 

*[l-kf-(^)(l + ^)cos2k2(d-t)-(^)kfsm2k2(d-t)] 
k2       k2-k3 k2 k2- k3 k2 

c - ^^^^^hh^^^-^ g    •   -"9 -* ■'<■        ""        "9    '     9 

kxK      k''       .     tK    h      hk" 

^l-w^-i)C0S^+ii-k2
+wT^ )smk't]exp(k"t) 

■( 

k2 + k3 w,  ,     ***£_ _ A^ cQs[2k2{d _t) + ^ exp(_^i) 

k2-k3 
)(1 + rf + kp     hi' 

+( Afc + fcsw**   ,   h ÄlÄf 
k2-k3^k2 

+ k2     k? + k>» 
) sin[2k2(d -t) + k't] exp(-k"t) 

-£±£)(i 
"5    '     P 

'fe A^ + fcf  '  &2 
+ -^) cos[2/c2(d -1) - *£*] exp(kgt) 

"( 
fe2+fe3    fcg      fei 

k?-kJ[k2     *■ &2    Af + fcf 
^—) sin[2A;2(d - t) - *£*] exp(^'t) 

o = tt^Ä + Sj^-^ + s-^0-^^-^ "S    '   '"9 

;)cosk't]exp(<t) 

"9"       vk    '    k    '    W2j.t"2; 9 J      ^v       9 

fciA;' k" 

+%-VlA;2     fc2     *£ + Af 
) cos[2k2(d -t) + kfgt] exp(-kgt) 

-( 

(k2 + k3      _     fc^ 

k2 + k3..k'      la 

k'L 
kf + kf     k2 

-g     ^ kxk"g 

k2-k3^k~2~k~2~ kf + k1!2 

+ -?■) sin[2k2(d -t)- k'gt] exp(fcjt) 

) cos[2k2(d-t)- k't) exp{kgt) 
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Fig 1 A slab waveguide with a grating of thickness t 
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Ray1  \   Ray 2 

ni 

Fig. 2a Bragg diffraction scheme 
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-«-4ü <«—«■ 

(A) FIRST ORDER (B) SECOND ORDER 

•«-«■ *-> •«-«■ 

(C) THIRD ORDER (D) FOURTH ORDER 

Fig. 2b Vector diagrams for Bragg gratings (03rdcan be 
calculated from the standard formula[12] to yield 19.47°) 
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Fig. 3 Schematic of the incident wave producing transmitted wave, 
reflected wave and diffracted wave due to the grating 
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0.2 0.3 0.4 0.5 

GRATING THICKNESS, t (urn) 

Fig. 4a Diffraction efficiency versus grating thickness for a rectangular grating. 
Discrete points are data of Streifer[10]. • TE0 mode    ■  TE, mode 
Note that the individual points (from Streifer's paper) are not for the 
ideal second order case. Therefore, even though these should be 
larger than our ideal second order calculation, it is not because 
Streifer omits E2 from his perturbation (see text). 
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Fig. 4b Diffraction efficiency versus grating thickness for a rectangular grating 
with different waveguide thicknesses. 
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0.4 0.6 

TOOTH WIDTH, w/A 

Fig. 5. Diffraction efficiency versus tooth width for a rectangular grating. 
Discrete points are calculations of Streifer[10]. 
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WAVEGUIDE THICKNESS, d (|im) 

Fig 6 Diffraction efficiency versus waveguide thickness for a rectangular grating. 
Discrete points are calculations of Streifer[10] for the TE0mode. 
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Fig. 7 TEQ mode diffraction efficiency versus n3 for a rectangular grating. 
Discrete points are calculations of Streifer[10]. 
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(a) 

Fig. 8a, 8b Schematic of total internal reflection for a composite waveguide 
and wave vector. 
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GRATING THICKNESS, t (urn) 

Fig. 9 Normalized effective index (with respect to n2) versus 
grating thickness with ßi as parameter. 
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Fig. 10a Diffraction efficiency versus grating pitch for approximate second-order 
rectangular grating. Discrete points are solutions obtained with % to 
represent a in /fydEi/dz (=/ß1aE1) in (47). 
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Fig. 10b Diffraction efficiency in the upward and downward directions versus 
grating pitch for the approximate second-order rectangular grating. 
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Appendix B. Diffraction Into Corrugated Waveguide From Normally Incident 
Radiation 

Diffraction Into a Corrugated Waveguide From 

Normally Incident Radiation 

G. W. Taylor and C. Kwan 

Electrical and Systems Engineering 

University of Connecticut 

Storrs, CT 06269 

Abstract 

The diffraction of a plane wave normally incident upon a corrugated waveg- 

uide with a second order grating pitch is examined. Using a rectangular grating 

the efficiency of diffraction into the first order components in the form of guided 

waves is determined. Using simple approximations, closed form expressions are 

found from which the dependence of efficiency upon grating thickness, waveg- 

uide thickness, grating pitch and indices are predicted. The approach provides 

a useful simulation tool to predict the efficiency of coupling into a waveguide 

from an external or internal orthogonal source. 
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I    Introduction 

Coupling into or out of a waveguide by the use of a grating has been studied by many 

researchers [1] [2] [3] [4] as a simple method to transfer free space signals to waveguides 

in optical integrated circuits. In most cases [2] [4] the input light is propagated at 

an angle to the guide to optimize the coupling since the tangential input component 

is launched more easily into the guide. However propagation normal to the guide 

is also important as a means to couple from a vertically emitting structure into a 

waveguide. With the emergence of the vertical cavity laser as a preferred embodi- 

ment to an integrated light source, the use of a normally incident diffraction grating 

becomes an interesting mechanism to create an optical source with high right angle 

mode output power[5][?]. Another new important application for diffraction from 

normally incident light to laterally propagating light is the detection of infrared light 

using intersubband transition [6]. It is therefore of considerable interest to develop 

predictions of the efficiency of the diffraction process in terms of the waveguide and 

grating parameters. The existing mathematical descriptions [1][3][4][7], which in gen- 

eral describe off normal incidence situations, are numerical, while our objective here 

is to obtain an analytical prediction. 

Previously [8] we have reported an approach for describing diffraction from 

the guide into the superstrate or the substrate which enables a closed form solution. 

The same techniques will be applied here to characterize the diffraction in the reverse 

direction. For this derivation a symmetrical grating will be assumed. 
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II    Diffraction into guide 

In the previous paper [8] Streifer's method [1] was used to describe the problem 

of ideal second order diffraction of a guided wave into a wave radiating at right 

angles to the guide. Here we adapt the same approach to the diffraction of a wave 

normally incident upon a corrugated guide, into a guided mode as illustrated in 

Fig. 1. The slab waveguide is corrugated to a thickness t, an arbitrary point in the 

corrugation is chosen for the origin of the z axis, the x axis origin is chosen at the top 

of the corrugation and x increases positively downwards. As previously, the periodic 

variation of the index within the grating is represented by the Fourier series 

oo 

n2(x,z) = n2(x) +        £        Bq(x)ei2^A (1) 

where n is the average index over one grating period, Bq are the Fourier coefficients, 

and A is the grating period as illustrated in Fig. 1. For the rectangular grating, which 

is our main interest here, these coefficients have been evaluated as (see Streifer [1]) 

_(nj-n?)       ^     Q<x<t 

nq v  A (2) 
0 x<0,   t<x,   q^O 

Bq = < 

where w is the grating tooth width (see Fig. 1). By restricting the discussion to 

include only the first and second diffraction orders, the index in the grating region 

corresponding to (1) is 

2/ x        -2        (n2_nl)     •    r7r1W\   ^z _LI /o\ n2Jx, z, q) = n2- ±-* 1-^s%n{-^—)e A \ q = ±1 (3) 

where the average n is given by 

n2 = {wn\ + (A - w)nl}/A , 0 < x < t (4) 
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Overall, the index variation is summarized by region as 

n2(x,z) 

n\ x < 0 

nl(x.z)   0 < x < t aK      ' (5) 
n2 t < x < d 

n\ d < x 

III    Second order grating calculation 

Because we are restricting our discussion to the case of second order diffraction, then 

it was shown [8] [9] that the problem is simplified because we need to consider only 

the first and second order diffracted waves. In Fig. 1 the normally incident radiation 

(Q = 0) corresponds to ideal second order diffraction and other waves for 9 =4 0, 

represent approximate second order diffraction. By representing the total E field as 

the sum of the diffracted waves in the forward, the reverse and the surface normal 

directions and substituting into the two dimensional wave equation, it was shown 

that the diffraction is represented by three differential equations (D.E.'s) which are 

rfi P BF1 ~ 
°-fl- - ß2E0 + k2n2E0 + 2iß0^ + kl (B1 E, + B2 E2) = 0, m = 0       (6) 
ox1 oz 

^£l _ ß2El + kffiEi + 2iA^j + fc0
2 (5-i Eo + B1E2) = 0,m=l      (7) 

°-ß- - ß2
2E2 + k2

0n
2E2 + 2iß2^ + k2 (B_i E, + B.2 E0) = 0,m = 2     (8) 

It is noted that the coefficients q = -1 and +1 in (2) determine the coefficients for 

the waves with m = 0 and 2 (i.e. waves EQ and E2) respectively. These will be 

represented by B.1 = B1 = B = -^ilsm(^). 

These three diffracted waves are indicated in Fig. 1 and the variation of 

the EQ and E2 components in the z direction is indicated. These components are the 

first order diffracted waves and are growing in the +z and —z directions respectively 
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due to diffraction into the guide from the normally incident wave. It is interesting to 

note however (and specified later) that second order diffraction is required to produce 

EQ and E2, i.e. they would not exist with surface normal radiation for a first order 

diffraction grating. 

The generalised Bragg condition which relates the propagation constants 

of the various diffraction orders m is ßm = ß0 - 2jfk. For the ideal second order case 

of ßi = 0, it was shown that 

ßo = -Ä (9) 

and since m = 1 for this case, then we have A) = x- Then the El D-E- (c-f-(7)) 

becomes 

+ kln2Ex + kl B{ E0 + E2) = 0 (10) 
dx2 

and we also note that for the symmetrical grating, we have E0 = E2 (the case of 

asymmetry will be considered elsewhere). The Ex wave exists in the grating region and 

results from the wave Coe~iklX incident on the waveguide. Due to multiple reflections 

at the interfaces 0, t and d, there will be several other normally propagating waves 

within the structure which are shown in Fig. 1. 

In regard to the waves EQ and E2, we utilize the model of the previous 

paper for diffraction out of the guide. Thus E0 and E2 are assumed to be guided 

waves traveling in the ±z directions in the guide and represented by 

E0 = A0(x)eaze-ißoz, E2 = A0(x)e-azeißoZ (11) 

where ß0 is the propagation constant of the waveguide and a is the growth constant 

of the wave. These waves are assumed to consist of TE modes in the guide with 

,4o (z) determined by 

' Aye
6x x < 0 

A0(x) = {   Ay cos KX + By sin KX 0 < x < d (12a) 

(Ay cos Kd + By sin Kd)e"l{x~(£}    d<x 
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1/2 (12b) 

'l/2 

where 
Ay is the value of ^o(O), 

K = n2ko sin 6b, 

(n2 —n\)kl — n\kl sin2 6 b 

7 = \in2
2 - nl) k2 - n2

2kl sin2 6b 

and 9b is the bounce angle. As mentioned earlier these waves are assumed to grow 

in the ±z directions due to the diffracted energy from the input wave and a, the 

rate of growth will be determined from the solutions. The presence of the EQ and E2 

waves represent an energy loss mechanism for the wave E\ in the grating region and 

(11) provides a representation for the perturbation terms in (10). Solving (10) using 

(11) with EQ, E2 = 0 to find the complementary solution, using (12a, b) to find a 

particular solution and then combining the two, a general solution (see Appendix A) 

is found to be 

Egx(x, z) = C2e
ik9X + C3e~ik3X + b(cos KX + - sin KX) (13) 

K 

where 
9k2 

w=-e^ B Ave+az (i4) 
This solution introduces a factor of 2 in (10) because EQ = E2 for the symmetrical 

situation. It is noted in this case that the presence of EQ and E2 in (10) represents a 

small loss term in the general E\ equation rather than a driving force in the out of 

the guide case, and it is therefore expected that EQ, E2 ^ E\. Thus E\ exists even if 

Eo, E2 = 0, But for the EQ and E2 equations (6) and (7), the perturbation term Ex 

is a driving force and the waves EQ and E2 would not exist without it. It noted that 

both Ay and a have been introduced as unknowns which depend on the input wave 

It is noted that Egx(x,z) represents the E\ wave solution in the grating 

region. In the work that follows we continue to use Egc for the x directed wave in 

the grating and use Eix, E2x, and Egx for the x directed waves in the other parts of 
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the guide which represent collectively the E1 wave. They are described by region as 

shown in Fig. 1 and in total the waves may then be written 

Elx(x, z) = C0e-ik>x + de** , h = (k2n2 - ß2)1'2 = fcom (15) 

Egx(x, z) = C2e
ik°x + C3e-ik°x + Egp , kg = (k2n2 - ßl)1'2 = k0n (16) 

E2x(x, z) = Cie**«-*) + C5e-
ik^d~^ , k2 = (k2n2 - ß2)1'2 = k0n2 (17) 

E3x(x, z) = Cee-ik^-V , kz = (k2nj - ß2)1'2 = kQn3 (18) 

in which Egp is the grating dependent contribution as described by (13) and ßx = 0 

as given by (9). 

We then perform the matching of these equations in both magnitude and 

derivative (continuity of Hz) at the interfaces x = 0, x = t and x = d. In line with 

the previous derivations, the matching produces the equations 

C0 + d = C2 + C3 + b , x = 0 (19) 

-ifciCo + ihCi = ikgC2 - ikgCz + S-b , x = 0 (20) 

C2e*M + C3e-*V + 6(cos Kt + - sin Kt) = C4e
ik^d^ + Cge"**2^ ,x = t     (21) 

ikg(C2e
ik^ - Cze-ik^) - b(KsinKt -8cos Kt) = -ik^C^^ - C^e'^^) ,x = t 

(22) 

C4 + C5 = C6, x = d (23) 

-ik2Ci + ik2C5 = -ik3C6 , x = d (24) 

When these equations are solved we obtain the following results for Ci, C2, C3, Ce, 

_       (l-fcK + (l + fc)"2 (1-£)■>■ + (! +£)<* + '* 
1 _ -(i + £K + (i-i>Go+    (i + fc)«. + (i-fc)«»        l  J 

=   riC0 + r2b, 

°2   =   ^1-|) + (1 + rH^ + J[(l + ^2-(l + 7f)]6 (26) 
=   r3C0 + r4b 

2i fCq fog ^ *^g 9 
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Cs   =   hl + h + (l-hn]Co + \[{l-£)r2-(l-±)]b (27) 

=   r5C0 + r6b 

C6   =   (r3 • en-k2(d-t)+kgt] + n . ei[k2(d-t)+kgt}jCo + (28) 

rüin - !^l\ei[-k2(d-t)+kgt} + ^6^ + Kjei[k2(d-t)+kgt] + 

2 ki 2 fc2 
c -i 

(cos Kt + — sin/ct) cosh[/c2(d — t)] — —(K sinKt — 6cos Kt) sinhf^d — t)]}b 
K rC2 

=   r7C0 + rsb 

where the following functions have been defined 

ai = [(i + h)s _ (i _ ti)e-2ik2(d-t)]eikgt (29) 

K2 «2 

a2 = [(1 - ^)x - (1 + ^)e-»*2(rf-0]e-«st (30) 
«2 «2 

a3 = -2(cosKt+-sinKt)(^+e-2iA:2(d-i))+^(/csinKt-(5cos«t)(-x+e-2ifc2(d-t)) (31) 
/C »2 

i + V^ (32) 
x - i - Vk (  j 

In order to determine a we apply the conservation of power, which de- 

mands that the difference between power input normal to the guide and the power 

output normal to the guide should equal the gradient in z of the guided wave power 

which is stated 

2i^Le+2°V)=w°° ■ c° - kCi ■c; - kc* ■c;    (33) 

Here 2 in the left hand side of (33) indicates the outputs in both + x and - x directions 

and A0m is the maximum value of field of the guided wave, given by 

A0m = Ay^   2^2 (34) 

where d! is the effective guide thickness d! = d + | + ^ and Ay was defined by (12a), 

(12b). As in the previous work [8] we assume that the index of the propagating wave 
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in the corrugated waveguide is n2 which was shown to be a good approximation until 

the grating thickness t becomes a substantial fraction of the guide thickness d. 

To proceed further with the solution we need to express Aom (or equiv- 

alently b as per (14)) as terms proportional to Co, the input. Then all terms in b 

on both sides of (33), (i.e. in Aom, C\ and C$ ) can be cancelled out. This can be 

accomplished by solving (6), the D.E. for £0 corresponding to (11) and using the so- 

lution (13) with C2 and C3 given by (26) and (27) to represent Ex in the region of the 

grating. After matching this solution at all boundaries, the relation EQ(0) = Ay can 

be used to determine b in terms of C0.This procedure will be implemented shortly. 

However, in order to determine a alone this procedure is not initially 

required if we note that in the absence of the grating, we would have b = 0 and then 

(33) reduces to 
111 

—Co • CQ = — C\ ■ C* + —C6 • C6* (35) 
2771 zrji 2% 

It is therefore evident by inspection of (33) and (35), that only the terms in b on the 

right side of (25), (28) are required and so using (14), (25) and (28) in (33) we obtain 

1(41^)(4^)^/ = ~r* • ^ + ~r* ■ '* (36) 772     2/c2 k2B Vi Vs 

where r2 and r8 are defined by (25) and (28). It is noted in performing the complex 

conjugations to obtain (36) from (35) and (33), the terms in C0 and b in (25) and 

(28) represent waves travelling in orthogonal directions and therefore cross products 

are not required. The solution for the wave growth constant a is obtained from (36) 

as 
.   2K

2
   W   klB   ,, 1 r%        * , ?72        *i /OT\ 

°=(^i^)(^)V*r,-'s+5r*-rJ        (37) 

Performing the complex conjugations a positive real value for a is obtained and is 

expressed in terms of the constants A —> H where 

A + iB E + iF ,   > 
C + iD G + iH 
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The expressions for A, B, C, D, E, F, G, H are determined in the Appendix B. 

Comparison of the solution of A —> H with the solutions for diffraction 

out of the guide [8] reveals that the result obtained for a is identical for the two cases. 

This may also be seen by inspection of (19) (24) since, if Co is reduced to 0, this set 

becomes identical to that for diffraction out of the guide. In some sense, this result 

is expected as the natural reversibility of light propagating through a passive system 

since the decay in one direction becomes the growth in the opposite direction of 

propagation. However, this reversibility does not apply to the efficiency as described 

below. 

In the previous derivation of diffraction out of the guide, the decay con- 

stant of the input wave times the effective guide width was the diffraction efficiency. 

For diffraction into the guide, this is no longer true due to the significant transmission 

through the guide. Furthermore, since the input normal to the guide is constant with 

position and yet the wave diffracted into the guide is growing with distance then the 

overall efficiency would appear to increase with increasing z. This is erroneous of 

course because the mode growing in the guide would also diffract back out of the 

guide to a radiating wave. Therefore to determine the efficiency of diffraction into 

the guide as an independent mechanism on a per unit length basis at an arbitrary 

position one should consider z = 0, since by definition this result could not be affected 

by any diffracted waves for z < 0. 

V = -gpr (39) 

where 6PTW is the TW power generated in an increment dz and 8Pin is the power 

incident in the corrugation in an increment dz. From the power components in (33), 

this is determined as 

•J-KTT^ (40) 
T}2 O0O0 

A expression similar to (40) can also been found in another publication[10]. 
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An issue of importance is how to use the two independent results of diffrac- 

tion into the guide and diffraction out of the guide in a practical application such as 

determining the length of guide. In general one must write a differential equation in- 

corporating both effects separately in addition to other losses or sources in the guide. 

In the absence of these, the two results can be readily combined to find a length 

dependent efficiency TJ(L). 

To determine r\ we require Ay and this means a solution of (6) is required 

in all regions of the guide. We therefore write the equations for the top cladding and 

the grating as 

En = D^' , k[ = (k2n\ - ß2)1'2 (41) 

and 

E0g{x,z) = D2e a  + v3e    >  + —~2—-j- +       2       2 (42] 
Kg ~ Kg Kg     Kg 

Noting that the constants can be rewritten as 

ß2 = k\n\ cos2 6b, kf = kin2 - ß2 + 2iaß0, k
2

g - fcj» * ß2 

and if we ignore the term 2iaß0 since a < ß0 then (42) becomes 

E0g(x, z) = D2e
ik9x + D3e-

ik9x + B'{C2e
ik°x + C3e~iksx) (43) 

where B' =   2 
B

20 . For the waveguide core and lower cladding, the equations are 
Tiiy COS      Vfo 

E02(x, z) = D/i^ + D5e-ik'^ , k'2 = (k2n2 - ß2)1'2 (44) 

E03(x, z) = Dee-««*-* , k'3 = (k2n2 - ß2)1'2 (45) 

Equations (41)-(45) are matched at each interface in both magnitude and 

derivation as implemented for the Eiwave. Then it is possible to express £>i in terms 

of C2 and C3 

Dl = y^-C2 + y2-c3 

yo 
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where 

yo     =     1(1 + *I)(1 + ^^(d-t^ik't + 1 (1 _ ^i)(l _ ^)a./e^(d-t)-^t (47) 

-5(1 + l)(1-|)eit;'-5(1-^)(1 + f)e"il'' 

yi   =   ß'Kl-^e^-ll + ^e^Ve^^ (48) 
K2 ^2 

+\(i + l)e^[(1 + v^'2^ - ^ ~ h Z Kg /eg K2 

+W - b^m - hx'jw-» - (i+h} 
A Kg ft-2 K2 

y2   =   5'{(l + ^)e-'V_(i_^)e-^Ve^(d-t) (49) 
fc2 Ki 

Z rC-, fto run 

+5(1 + T7)^4[(l " h^*-» - (1 + ^)]} 
Z Kg fi/2 ft-2 

, _     2k0B , _ 1 + k'3/k'2 

From the solutions of the E\ equation, as described by (25) through (28), 

we have determined that Ci and C% are functions of the input Co and the perturbation 

term b, (c.f. (14)) so (46) is expressed 

yo yo 

We now make the observation that since Di is the value of EQ{X,Z) at a; = 0 and 

since we are representing the total wave propagating in the waveguide by (11), then 

we have 

£>i = Ay (52) 
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However, we already have expressed b in terms of Ay and a through (14) and since a 

has been found independently by (37) then we may substitute these results into (51) 

and (52) to determine an expression for Ay in terms of the input Co as 

A=—(* •-+»•'»>'* (53) 
Vo - (yi -r4 + y3- r6)-^^eaz 

Note that if we ignore the b terms in (26) and (27) since these will be much smaller 

than the input wave, then we obtain 

= (yi-m + ift-n,) (54) 

Then the efficiency is found from (31) and (45) as 

v = 2ad'^^ = 2ad,rh(yi-rs + y2-r5)(yi-r3 + y2.r5y 

772 CcA* V2 yoyo 

IV    Illustration of Results and Interpretation 

First we plot the variation of both a and 77 as a function of thickness t for a given 

thickness d for both small and large index variation in Fig. 2a, 2b and 2c respectively 

For all these plots a gives the growth of the field (the growth of the power would 

be 2a). It is noted that the efficiency and the diffraction do not track each other 

as was the case for diffraction out of the guide [8]. This results from the matching 

procedure and the presence of standing waves in the structure. The result for 77 

shows twice as many peaks as the result for a because two matching procedures are 

involved. The peaks in a occur for t = A/2 and the peaks in 77 occur for t = A/4. In 

Fig. 2b the values of 77 increase dramatically with the increase of index change as one 

would expect. As the index difference increases the range of validity of the calculation 

decreases and in Fig. 2b it is indicated to be tCT ~ 0.07 pm. The determination of 

to- is shown in Fig.   2c where we plot the variation of the effective bounce angle. 
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As explained previously [8], the calculation is based upon the constancy of ßo the 

propagation constant in the waveguide both with and without the grating. When the 

effective bounce angle goes to zero, it implies that the loss has become so great that 

no effective propagation can occur. Therefore in the case of a large index change of 

1.6 the grating should be etched to no more than 0.07 \im for a 1.0 fim guide. In Fig. 

3, the efficiency is compared for the TEQ and TE\ modes for the weak grating case 

with a significant apparent increase for the higher order mode because of stronger 

grating interaction. 

It is interesting to note that the energy is being diffracted into the first 

order wave EQ and E2 (see Fig. 1). As shown by (41)-(45) the second order wave E\ 

in the grating must first be excited to provide the perturbative driving force for the 

EQ and Ei waves and the wave Ei, being the solution of (10), is excited only by a 

grating with a second order pitch. This means that EQ and E2 would not be produced 

if the grating pitch was the first order. 

In Fig. 4, the 77 and a are shown as a function of the tooth width. There 

is a broad maximum for both parameters with the result for a showing symmetry but 

the result for rj showing a slight displacement to values of w/A < 0.5. 

In Fig. 5, 77 and a are shown versus guide thickness d and the same 

behavior is noted as for diffraction out of the guide. However, the efficiency shows 

more oscillatory behavior, which evidence of additional standing wave effects resulting 

from the second matching procedure for rj. 
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V    Approximate Second Order Grating Pitch 

For diffraction into the guide, we need to consider both the angle 9 and the grating 

pitch A. For any combination of parameters, the phase matching condition 

A>-T = A (56) 

must be satisfied where ß\ is the component of the input wave vector in the z direction, 

i.e. 

ßi = koni sin 9 

Clearly, for non-zero 9, then ß ^ 0 and if (56) is satisfied, then A ^ As.0. where A5.0. 

is the second order value for the chosen wavelength. Stated alternately, for A = As.0., 

the incident wave must be normal to the guide for a diffracted wave to build up in 

the guide. Also for each value of A (^ As.0.), there is an unique value of 9 for which 

diffraction into the guide will occur, which increases continuously as A is made larger 

or smaller than As,0_. Fig. 6 shows the situation for an oblique angle 9 and a grating 

pitch A ^ As.0.. Then if A < As.0. the phase matching condition (56) indicates that 

the diffracted wave propagates in the opposite direction to the z component of the 

input and if A > As.0., the propagation is in the same direction as the z component of 

the input wave (symmetrical propagation in both directions can only occur for normal 

incidence). These comments apply to approximate second order grating pitches, and 

approximate solutions are found as below. For third and higher order approximate 

grating pitches, there will be more than one value of 9 to satisfy the phase match 

condition. 

Therefore for diffraction into the guide we need the solution to 

^ + {kin2 - 0})Eh. + mj£ + k2
0 BE0(z) = 0 

This equation is solved as in the out-of-the-guide case in which the propagation con- 
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stant in the grating layer 

kg — kgr + ikgi 

and the parameter b in the particular solution (given by (14) for ideal second order) 

b = bT — ibi 

now have real and imaginary parts. However to the extent that a.\ -C ß\ we can 

ignore the imaginary part so that 

k'g = (fc2f>2 - ft2)"2 

The remainder of the solution follows the calculations of (15) through (32) to produce 

modified values of C\, C2, C3 and CQ. These modified values are used to predict 

modified values of r2, r8 and a by comparison with (37). 

The calculation of the nonideal second order grating is performed in the 

same way, with the alteration in (41) -(45) that modified values of Ci and C% are 

used. The results are shown in Fig. 6 for the weak grating case and here, for the 

chosen t =0.2 //m, r\ and a essentially track each other. 

VI    Summary 

A model has been presented to describe diffraction into a waveguide from a normally 

incident beam. A closed form method to obtain the diffraction efficiency of the grating 

from the beam to the guided wave has been described that can be implemented 

easily on a PC Platform. The calculation shows reversible behavior in terms of 

the diffraction constant when compared to diffraction out of the guide. This is a 

result of the conservation of energy in both situations. However, the efficiencies are 

91 



dramatically different due to the significant energy passing through the guide in the 

present situation. 

In the context of simple phase matching, there is no deviation of the input 

angle allowed to obtain diffraction i.e. the phase matching condition states that if 

the grating pitch and incident angle are not matched for a given wavelength then 

no diffraction into the guide would occur. This is an idealization and would not be 

expected experimentally because of parameter variations, specifically the refractive 

indices which are generally temperature and background dependent. It is noted in 

our discussion that the particular solution for the wave in the grating region, Egx, 

corresponds to the calculation of the coupling coefficient in the coupled mode theory. 
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List of figures 

Fig. 1 Schematic of the incident wave producing transmitted wave, reflected wave 

and diffracted wave due to periodic grating. 

Fig. 2a Diffraction efficiency 77 (dash line) and diffraction constant a (solid line) 

versus grating thickness for a rectangular grating (An = 0.2). 

Fig. 2b Diffraction efficiency 77 (dash line) and diffraction constant a (solid line) 

versus grating thickness for a rectangular grating (An = 1.6). In the shaded 

region t > £cr and the calculation is not valid. 

Fig. 2c Diffraction efficiency versus grating thickness for a rectangular grating. Solid 

line present TEQ mode and dash line is TE\ mode. 

Fig. 3 Effective bounce angle 6eff and effective waveguide index neff versus normal- 

ized grating depth, t/d. 

Fig. 4 Diffraction constant and diffraction efficiency versus tooth width for a rect- 

angular grating. Solid line represents diffraction constant a and dash line is 

diffraction efficiency 77. 

Fig. 5 Diffraction constant and diffraction efficiency versus waveguide thickness for 

a rectangular grating. Solid line is diffraction constant a and dash line is diffrac- 

tion efficiency 77. 

Fig. 6 Diffraction constant and diffraction efficiency versus grating pitch for the 

approximate second-order rectangular grating. Solid line is diffraction constant 

a and dash line is diffraction efficiency 77. 
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Appendix A 

Particular Solution of Wave Equation 

The x dependent differential wave equation in the grating is obtained from 

(12) and (13) as 

+ k2
gEg = -kl B A0(x)e~az (Al) 

dx2       g 

The complementary solution (RHS=0) is 

Egc(x) = C2e
ik°x + C3e-

ik°x (A2) 

the particular solution is 

Ao(x)e-™e-ik** ^     7, ~     ,kaX r A0(x)e—e*-* 
Egp   =   kl B eik°xJ        _2ik

e~ ' dx - kl B e~ik°* J 
■g J —2ikg 

dx 

j 2 c 

=   (  o  °,J B Ave~az(cosKX + -sin/cz) (A3) KK2-ky        y K 

where —2ikg is the Wronskian and AQ(X) in (7) has been used for the grating region 

to represent TE modes. Then the total solution is 

Egcix) = C2e
ik°x + C3e-

ik°x +   ,k° 79 B Aye-az(cosKX + -sinKX) (A4) 
* Kz — klg K 
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Appendix B 

Solution of the linear equations (15)-(24) for the ideal second order diffraction condi- 

tion yield the following results for the parameters A,B,C,D. 

A   =   cos(kgt) + — sin(A;st) — [cos(ret) + - sin(«;t)] 

-^F^-rX1 + T){™s[2k2(d -t) + kgt] + A sm[2k2(d -t) + kgt]} 
A     ft2       K3 K2 kg 

~\{]0h){1 - T2
){cos[2k2{d ~t]~ k*t] - Tg 

sin[2k2{d ~t]~ M]} 

8 A*o -I- k? 
+(cos«t -\— sinKt)(- —) cos[2fc2(d — t)] 

K k2 — «3 
.0 K, . . K2 T K3.    .    r . .. 

+(— cos Kt — — sm«i)(- —) sm\2k2(d — t)\ 
k2 k2 k2 — K3 

A* n OK 
B   =   — r~ sm(kgt) + — cos(kgt) — [— cos(Kt) — — sin(«t)] 

k2 kg k2 k2 

-^(r^r)(1 + T){sm[2fc2(rf ~t) + kgt] - A cos[2A;2(d -t) + kgt}} 
A k2 — k% k2 kg 

~12{Jk~Jh){1 - |){sin^(<* - *) - M + y ™l2k2(d -1) - ***]} 
A ]r0 4- i*o 

+(cos /et H— sin«;t)(- —) sin[2fc2(d — t)] 
K k2 — k3 

—(— cos Kt — — sin«;t)(- —)cos[2W(i — t)] 
k2 k2 k2 — k3 

C   =   2(l-^)cos(V)-(l + ^1)(l + :r)(^-r)cos[V + 2fc2(d-t)] 
k2 kg k2    k2 — /C3 

-{l-Tg){l-k){,^S)COS[k9t~2k2{d~t)] 

D   =   2(|-|)sin(M)-(l + |)(l + |)(|^)sin[M + 2M^-t)] 

+(1 " ^)(1 " |)(|^) Sln[M ~ 2k2{d ~ t)] 
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