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ABSTRACT 

A "network interdictor" has a limited supply of resource with which to disrupt a 

"network user's" flow of supplies in a capacitated transshipment network. The 

interdictor's problem of minimizing the maximum flow through the network is a difficult- 

to-solve integer programming problem but we show that a heuristic based on Lagrangian 

relaxation is very effective in approximately solving the problem. 

We implement algorithms in C to approximately solve both the static (without 

considering time) and dynamic network interdiction problems. Static test networks range 

in size from 25 nodes and 64 arcs to 400 nodes and 1519 arcs. Using an IBM RS/6000 

Model 590 workstation, we find optimal solutions for seven of 12 test networks and solve 

the largest problem in only 31.0 seconds. We model a dynamic network in time-expanded 

form in order to assign time weights of 0 or 1 to flow, include repair time of interdicted 

arcs, and provide a schedule to the network interdictor that identifies arcs and time 

periods for interdictions. Dynamic networks range in size from 525 nodes and 1,344 arcs 

to 40,400 nodes and 153,419 arcs (in time-expanded form). We find near-optimal 

solutions in 13 of 24 test networks and solve the largest network in 1729.5 seconds. 
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EXECUTIVE SUMMARY 

Opponents face each other in a field of battle. The environment and terrain affect 

both sides equally. To remain ready for battle, both sides need a constant supply of food, 

fuel, and repair parts; disruptions of those flows cause an immediate loss of combat 

power. In this scenario, one side uses a transportation network to provide supplies, 

troops, and ammunition to his forces. The other side, far from home, has the ability to 

identify his opponent's supply points and to temporarily stop movement of supplies over 

segments ofthat opponent's transportation network. 

This thesis develops mathematical programming methods for the effective 

employment of limited interdiction assets to reduce the flow of a single commodity 

through a capacitated transportation (transshipment) network. The network user strives 

to maximize flow of a commodity through the network, while an interdictor, with limited 

assets, attempts to interdict (destroy) arcs or links in the network to minimize the 

maximum flow. We develop a dynamic model that allows the interdictor to assign time 

weights of 0 or 1 to the arrival of war material at battlefield destinations. The interdictor 

allocates his resources appropriately, keeping in mind that interdicted arcs can be repaired 

over time. 

While this thesis is motivated by the possibility of weakening the military force of 

the network user before engagement in battle, other uses may include disrupting the 

escape routes of a fugitive or reducing the flow of illegal drugs and precursor chemicals 

moving through a network of rivers and roads. This problem has been studied before, 

during the Vietnam War and, more recently, in support of the war on illegal drugs. 

Previous studies have not modeled the time aspect of moving logistics through a 

network. By representing the network in time-expanded form, we can define a specific 

time period of interest, include attributes such as a time-weighted value for flows arriving 

at sinks, the repair of arcs after interdiction, and a schedule for the employment of 

interdiction assets. 
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We assign time weights of 0 or 1 to flow arriving at a sink. We give value of 1 to 

flow arriving at a sink before the end of a "cutoff time and 0 otherwise. A more general 

version of the dynamic network model might include arbitrary non-negative time weights 

but is beyond the scope of this thesis. We model repair of arcs by allowing interdictions to 

be effective for limited periods of time. We assume complete interdiction of an arc until 

repair, i.e., an interdicted arc has zero capacity until it is repaired. A repaired arc is 

restored to its nominal capacity. 

The network interdiction problem is difficult to solve due to the interdiction 

budget constraint for the network interdictor. We relax this constraint using a Lagrangian 

relaxation that allows the interdictor to violate the constraint while paying a penalty. For a 

fixed value of a penalty parameter, the relaxation is an easy-to-solve maximum flow 

problem with a solution that provides a lower bound on the optimal solution to the 

network interdiction problem. The solution may or may not be feasible. We maximize the 

lower bound using binary search on the value of the penalty parameter, solving a 

maximum flow problem at each step. The best feasible solution obtained is the heuristic 

solution to the problem. The maximized lower bound and the objective value of the 

solution to the best feasible solution are compared to judge solution quality. 

We implement algorithms to approximately solve both the static (without 

considering time) and dynamic network interdiction problems in C using an IBM RS/6000 

Model 590 workstation. The static test networks range in size from 25 nodes and 64 arcs 

to 400 nodes and 1519 arcs. We find optimal solutions for seven of 12 test networks 

solving the largest problem in only 31.0 seconds. Dynamic networks range in size from 

525 nodes and 1,344 arcs to 40,400 nodes and 153,419 arcs (in time-expanded form). We 

find near-optimal solutions in 13 of 24 test networks and solve the largest network in 

1729.5 seconds. 
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I. INTRODUCTION 

Opponents face each other in a field of battle. The environment and terrain affect 

both sides equally. To remain ready for battle, both sides need a constant supply of food, 

fuel, and repair parts. Disruptions of those flows cause an immediate loss of combat 

power. In this battle, one side uses a transportation network to provide supplies, troops, 

and ammunition to his forces. The other side, far from home, has the ability to identify 

his opponent's supply points and to temporarily stop movement of supplies over 

segments of the opponent's transportation network. 

This thesis develops new mathematical programming methods for the effective 

employment of limited interdiction assets to reduce the time-weighted flow (weights are 

0 or 1) of a single commodity through a capacitated transshipment network. The network 

user strives to maximize flow of a commodity through the network, while an interdictor, 

with limited assets, attempts to interdict (destroy) arcs or links in the network to 

minimize the maximum flow. The interdictor knows that his adversary values the 

commodity differently depending upon its time of arrival. The interdictor therefore gives 

weighted values to the arrival of war material at battlefield destinations and wishes to 

allocate his resources appropriately keeping in mind that broken arcs can be repaired over 

time. While this thesis is motivated by possibility of weakening the military force of the 

network user before engagement in battle, other uses may include disrupting the escape 

routes of a fugitive or reducing the flow of illegal drugs and precursor chemicals moving 

through a network of rivers and roads. 

We introduce the reader to the network interdiction problem and its notation in 

this chapter. We heuristically solve a static model in Chapter II using a Lagrangian 

relaxation heuristic that relaxes the network interdictor's resource budget constraint. 

Although the network interdiction problem is difficult to solve, later, we see that this 

method often produces an optimal solution. In Chapter III we introduce the reader to the 

dynamic model and the time-expanded form of a network. Through the dynamic models 

presented in Chapter HI, we can consider time-weighted flow and the repair of interdicted 



arcs. Our solutions tell the interdictor not only where to strike but also when to strike. A 

Lagrangian heuristic provides reliable solutions for the dynamic network, also. 

A.       BACKGROUND 

Using limited resources, an interdictor attempts to restrict an enemy's use of a 

capacitated transshipment network. For a military interdictor, the immediate objective 

could be to decrease the fighting effectiveness of the enemy by minimizing the amount of 

supplies such as shipments of fuel, repair parts, ammunition, available to the enemy 

commander who is the "network user." Another objective might be to limit the enemy 

commander's ability to maneuver for a specified time period by destroying the bridges and 

roads around him. We model the logistic network as a single-commodity dynamic 

transshipment network with capacities and transit times on its arcs. The network has 

several sources, the supply points, and several sinks, the military units in the field. Arc 

capacities restrict flow rates while transit times determine how long each unit of flow 

spends traversing the network. 

The goal of the network user is to move an appropriate amount of flow, the war 

material, out of each source and into each sink. The interdictor decides which arcs to 

interdict, the "interdiction set," while recognizing the time-weighted value of the logistics. 

In this thesis, the values of the time weights are 0 or 1 for reasons explained later. Each 

interdiction consumes an amount of a limited resource that may depend on the particular 

arc. There is a fixed amount of total resource available to the interdictor. Our models do 

not allow partial interdiction; interdicted arcs have zero capacity until repaired. We 

assume that the network user repairs each interdicted arc, restoring the arc to full capacity 

within a specified number of time units. 

In this chapter, we introduce the notation and models used in solving a simple 

network interdiction problem. We describe the problem from the network user's point of 

view, the maximum flow model.  Building on the maximum flow model, we develop the 



network interdiction model. This model, an integer program, finds an interdiction set that 

minimizes the maximum network flow subject to limited assets. 

In Chapter II, we solve the static network interdiction problem. The integer 

program for this model is hard to solve in practice, so we use a Lagrangian relaxation 

heuristic to solve the problem approximately. By adding small random amounts to arc 

capacities, the heuristic often finds an optimal solution. 

We address the time-expanded network and repair of arcs in Chapter III. We use 

a single commodity dynamic transshipment network in time-expanded form. This form of 

the network allows us introduce a time-weighted aspect to network flow and to model the 

repair and possible re-attack of interdicted arcs during the time periods under 

consideration. We assume complete repair of arcs at the end of a repair interval. Our 

solution identifies a set of arcs to interdict and the time period in which to attack or re- 

attack these arcs. 

B.        NETWORKS AND INTERDICTION 

We first address interdiction in a static network, that is, one without time 

attributes. We present the maximum flow, minimum cut, and a simple network 

interdiction model to help the reader understand the basic problem. Most definitions 

follow Cormican (1995). 

1.        Description of a Static Network 

We define a network with respect to a directed graph G = (N, A) where N is a set 

of« nodes and A is a set of m directed "edges" or "arcs." In a transshipment network, an 

arc (i,j) can be thought of as a length of roadway, river segment, etc., that provides a 

path for the flow of a commodity from /' to j. A node, i, can be thought of as a road 

junction or the endpoint of a road segment. A commodity flowing through the network 

originates at a "source node" a&N'm the network and flows to "sink node" b&N. If there 

is more than one source or sink, we create a "super-source" and/or a "super-sink" and 



artificial arcs with appropriately large capacities linking them to the sources and sinks, 

respectively. This idea is graphically presented in Figure 1. We expand the set of arcs A 

to include the artificial arcs and another artificial "return arc," (b,a), from the sink to the 

source or (b' ,or') from the supersink b' to the supersource a'. 

Sinkl Source 1 Sinkl 

Super-soun 

Sink 2 ^/\ Source 

Super-sink 

(a) Original network (b) Network with artificial arcs 

Figure 1. Network with and without artificial arcs. 

Each arc (ij) has an associated set of parameters that describes its 

characteristics. The finite nominal capacity or maximum allowable flow on an arc is 

denoted utj, where utj > 0.   The capacity of the artificial return arc is large, such as 

^Uy +1. The cost, in units of resource, to interdict an arc (i,j) is designated ry, and 

is typically assumed to be a small integer. It may occur that an arc cannot be interdicted at 

any cost for political, tactical, or other reasons and therefore the interdiction cost is large, 

ri}, = oo. The interdictor has a total of R units of resource available for interdiction. In this 

thesis, we assume a single type of interdiction resource. A natural extension would 

include multiple types of interdiction resources available to the attacker and arcs that 

require specific types of resource to interdict them. 

2. Network Maximum Flow Models 

The task of the network user is to move supplies from the sources to the sinks. 

The standard maximum flow linear programming model (e.g., Ahuja, Magnanti, and Orlin 



1993, p. 168) determines the maximum quantity of a single commodity that can be moved 

through a capacitated network from source node a to sink node b. This maximum flow 

model, denoted MF, is: 

MF 

Indices: 

/, jGN        Nodes of G = (N, A), includes two special nodes: a, the source or super- 

source and b, the sink or super-sink 

(i,j)eA    McsofG = (N,A) 

Data: 

utj Nominal capacity of arc (/,_/) 

Decision variable: 

xtj Amount of flow on arc (;', j) 

The Formulation: 

max JC„ : dual variables 

(1) st    IX" Txß = 0    Vietf :a, 

(2) 0<xv<uv    V(ß,j)eA        :09 

The quantity^ is the flow of the commodity from node /' to nodey on directed arc 

(/,_/) e A, and xba is the flow from sink node b to source node a, on artificial arc (b,d), 

the return arc. The flow on arc (b,a) is the sum of all the flows from the source to the 

sink. Maximizing flow xba is equivalent to maximizing flow through the network.  The 

flow balance constraints (1) require that the flow arriving at a node equal the flow leaving 

the node. The capacity constraints (2) require a non-negative flow on an arc that is not 

greater than the capacity of the arc. 



The dual of the maximum flow problem is the minimum cut problem.   The dual 

variables of the maximum flow model, at and 0tj are shown in MF.  When we find an 

optimal solution to a maximum flow problem, we also find an optimal solution to the 

minimum cut problem. 

A "cut" is a partition of the node set JV into two sets Na and Nb, with a zN 

and b e Nb. Each cut defines a set of arcs that have one endpoint in Na and the other 

endpoint in Nb. With respect to the cut, an arc (i,j) is a "forward" arc if it is directed 

from a node / e Na to a node jeNh. The capacity of the cut is the sum of the capacities 

of all the forward arcs associated with the cut. A minimum cut, then, is a cut of minimum 

capacity among all possible cuts in the network. (The above definitions follow Ahuja et al. 

(1993).) By the maximum flow-minimum cut theorem (Ford and Fulkerson, 1956), the 

maximum flow equals the capacity of a minimum cut. A minimum cut can be found 

directly by solving the dual of the maximum flow problem MFD (e.g., Wood, 1993): 

MFD 

Indices: 

/, JeN        Nodes of G = (N, A), includes two special nodes: a, the source or super- 

source and b, the sink or super-sink 

(i,J)*A    ArcsofG = (N,A) 

Data: 

ufJ Nominal capacity of arc (i,j) 

Decision variables: 

«, at = 1 if i e Nb elsea, = 0 if /' e Na, 

Oy 0tj = 1 if (/',/) is a forward arc of the minimum capacity cut, else 0, = 0 



The Formulation: 

min    2V# 

s.t.   a,-a,+^>0   V(i,j)eA-(b,a) (3) 

«6-afl+^a^l (4) 

^=0 

MFD is totally unimodular and if we arbitrarily set aa =0, then all variables will 

be 0 or 1 in an optimal extreme point solution. The variables in the model have the 

following physical interpretation: a, = 1 indicates / &Nb, a,=0 indicates /' eNa, 

0V = 1 indicates arc (/,jf) i sNa, j eNb, and 0,-, = 0, otherwise. 

3.        The Network Interdiction Model 

The network interdiction problem can be formalized in a min-max flow-based 

model. The network user attempts to maximize the flow across the network, while the 

interdictor simultaneously strives to minimize this maximum flow. The network 

interdictor's activities are limited by a budget constraint. The standard network 

interdiction model is: 

S-NIM 
Indices: 

/, jeN        Nodes of G = (N, A), includes two special nodes: a, the source or super- 

source and b, the sink or super-sink 

(i,j) e A    Arcs of G = (N, A) 

Data: 

utj Nominal capacity of arc (/",_/) 

rv Amount of resource required to interdict arc (i,j) 



R Total amount of resource for interdiction available to the network interdictor 

Network user decision variables: 

Xy Amount of flow on arc (i,j) 

Network interdictor decision variables: 

Yq ytj = 1 indicates arc (ij) is interdicted; else ytj = 0 

The Formulation: 

z*=  mm maxx6a (5) 

st    2X- 2X=0   VieN (6) 
VJ)eA (iJ)eA 

0<x,<«,(l-r,)   V(i,j)eA (7) 

whereT = \r\ Y/^, *R, 7, e{0,1} V(i,y) e A\ (8) 
I   CJH J 

The objective function (5) seeks to rninimize the maximum flow. Constraints (6) 

are just the flow balance constraints from MF. The arc capacity constraints (7) restrict the 

amount of flow on the arc to either the nominal capacity if the arc is not interdicted or 

zero if the arc is interdicted. In this model, ytj = 1 if arc (/',/) is interdicted and y r = 0 if 

the arc is not interdicted.    Interdiction resource constraint (8) limits the interdiction 

decisions. Each interdiction consumes an amount of interdiction resource, rr.  The total 

resource consumed by the interdiction set must be less than the amount of resource 

available R. 

Wood (1993) shows that the inner maximum flow model can be converted to its 

dual and the minimum cut model and the resulting nonlinear integer program linearized. 

This model is a simple minimizing integer program that will be addressed in Chapter n 

together with a solution method using Lagrangian relaxation. 



C.        LITERATURE SEARCH 

There was strong interest in the network interdiction problem during the Vietnam 

War. Works during this time period were either very general, such as Wollmer (1964), to 

the very specific also by Wollmer (1970). More recently, the war on illegal drugs 

generated new interest in network interdiction, Phillips (1992). There are other 

contributors to the topic but almost all these works share the characteristic of being 

specific to the application and not easily generalizable. More recent works by Steinrauf 

(1991), Wood (1993) and Cormican (1995) overcome this limitation by adopting a 

mathematical programming approach. The advantage of this approach is that it readily 

generalizes and is easily adaptable to a variety of network interdiction problems. These 

mathematical models, however, are integer and mixed-integer programs that are difficult 

to solve. Wood (1993) shows that the basic network interdiction problem is NP- 

complete, even when restricted to planar graphs where interdictions require varying 

amounts of resource, or to non-planar graphs requiring only one unit of resource to 

interdict any arc. 

We have found no sources that address the network interdiction problem in time- 

expanded form. Only Wollmer (1970) addresses repair time of arcs. Wollmer allows 

partial interdiction of arcs and finds the best single arc to break, repeating the process for 

multiple interdictions. His algorithm selects an arc for interdiction that maximizes the sum 

of the repair cost plus the product of the repair time and the cost increase of a minimum- 

cost circulation flow. Wollmer's methodology determines an approximately optimal 

interdiction set in exponential time. 

Ratliff, Sicillia, and Lubore (1975) solve the network interdiction problem by 

finding a set of n arcs whose simultaneous removal from a connected single commodity 

network results in the greatest decrease in the throughput capacity of the remaining 

system between the source and the sink. The method applies to planar and non-planar 

networks but addresses neither a dynamic network nor repair of arcs. 



Steinrauf (1991) develops a mathematical programming approach for the network 

interdiction problem using integer programming. It solves small problems but is not very 

useful for large integer problems. A relaxation or decomposition is needed. 

Cormican (1995) develops a deterministic model using Benders decomposition 

with an original "flow-dispersion heuristic." The flow-dispersion heuristic achieves a 

maximum flow while keeping flows on individual arcs as small as possible. This serves to 

decrease solution time by reducing the number of iterations that Benders decomposition 

requires for convergence. Cormican extends the method to include stochastic arc 

capacities. 

Phillips (1992) describes pseudo-polynomial time algorithms that provide the 

interdictor with a strategy that optimally uses exactly the amount of resources he is willing 

to commit to the attack. Phillips proves that for a fixed cut, a greedy attack strategy is 

optimal. A greedy attack strategy is one that removes as much of the cut's fixed capacity 

as possible, expending exactly the entire interdiction budget. A simple algorithm for the 

network interdictor's problem would enumerate all cuts, (an exponential number are 

possible), compute the result of a greedy attack on each, and pick the best one. Phillips' 

method does not solve an integer problem and instead assigns some benefit to partial 

interdictions. Recognizing the need for faster algorithms, Phillips proposes pseudo- 

polynomial-time algorithms for planar graphs and shows how to convert them into fully 

polynomial-time approximation schemes. 

Wood (1993) develops integer programming models for the network interdiction 

problem and its variations. He develops a simple minimization model that is derived from 

the formal min-max network interdiction model. The problem is shown to be NP 

complete. He does not consider the time-expanded dynamic network. 

This thesis continues the work of others to develop mathematical programming 

models for the network interdiction problem. We seek to include aspects associated with 

time in our models by using a time-expanded form. This form allows us to model time 

weights on flow of 0 or 1 and arcs that are repaired a certain amount of time after 

10 



interdiction. We have already introduced the maximum flow model with its dual and the 

standard network interdiction model. In Chapter II, we develop the network interdiction 

problem in its simpler, static form, without time attributes, and present a Lagrangian 

relaxation heuristic to find a good feasible set of arcs to interdict. 

11 
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H. SOLVING THE BASIC MODEL 

In Chapter I, we presented the standard network interdiction problem S-NIM. 

Because S-NIM involves static flows, i.e., does not involve flows over time, we call it a 

"static version" of the network interdiction problem to differentiate it from the "dynamic 

version" covered in Chapter in. Wood (1993) shows that the static network interdiction 

problem is NP-complete, even when restricted to planar graphs where interdictions require 

varying amounts of resource. In this chapter, we seek faster methods to solve the static 

problem (at least approximately) using Lagrangian relaxation. Although not guaranteed to 

find an optimal solution, optimal solutions are consistently obtained by the Lagrangian 

relaxation method described in this chapter when rtj = 1 for all arcs (i,j). 

A.       THE INTEGER PROBLEM 

Recall from Chapter I that the standard network interdiction model, S-NEM, is 

stated as a min-max problem where the network user attempts to maximize flow across 

the network while the interdictor is simultaneously striving to minimize that flow subject 

to the interdiction budget constraint. 

For a fixed interdiction decision, note that the inner maximization of S-NIM is just 

a maximum flow problem. We can take the dual of the inner maximum flow model and 

linearize the resulting model to obtain the simple network interdiction model (Wood, 

1993): 

NIM 

Indices: 

/', jeN        Nodes of G = (N, A), includes two special nodes, a the source or super- 

source, and b, the sink or super-sink 

(iJ)eA    Axes of G = (N, A) 
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Data: 

uv Nominal capacity of arc (i,j) 

rtj Amount of resource required to interdict arc (i,j) ,rv^0 and integer 

R Total resource for interdiction available to the network interdictor, R > 0 and 

integer 

Decision variables: 

a, or,=lif/e#6,a. = 0 if i<=Na, 

ßij ßij = 1 if arc (i,j) is in the cut and not interdicted, otherwise ßtj - 0 

Yij Yy = 1 indicates arc (ij) is interdicted; otherwise yy = 0 

The Formulation: 

z* = min £«# 

s.t   «,.-ay+^+^>0   \/{i,j)zA-{b,a) 

<xb-<xa+rba+ßba^ i 
a, e {0,1} V/eAT 

/?, €  {0,1} V(i,j)e A 

Ä.-0 
T.r,r,*R (9> 

r, €{o,i}V(/,y)G^ 

Note that this model resembles the dual of the maximum flow model, MFD, from 

Chapter I, but with 0^ replaced byyv +ßtj. NIM identifies a cut where the variables ai 

have the same meaning as in MFD.  ytJ and ßtj represent interdiction decisions and have 

the following interpretation: For forward arcs  (i,j)   in the cut,   ai, - a  = -1   so 

Tu +ßij =1 is required.    So, either yv=l, indicating that this arc is interdicted, or 

ß9 =1, indicating that this arc forms part of the minimum capacity cut after interdiction. 
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yi} - ßtj = 0 outside the cut indicating that these arcs are neither interdicted nor do they 

form part of the minimum capacity cut after interdiction. 

B.        LAGRANGIAN RELAXATION FOR THE SIMPLE INTEGER 

PROBLEM 

The basic integer program formulation NIM is known to be hard to solve. 

Without the complicating interdiction budget constraint (9), the problem is an easy-to- 

solve model like MFD. While constraint (9) cannot be ignored, it can be relaxed: We use 

a Lagrangian relaxation of the interdiction resource constraint. The relaxation allows us 

to approximately solve the problem by moving the resource constraint into the objective 

function. The resulting problem is almost as easy to solve as if constraint (9) were 

ignored. NIM, with the Lagrangian relaxation, is: 

LR(A) 

(11) 

z(A) = min   2>,£,+Av,)-fll (10) 

s.t.   a.-aj+r.+ß^O  V(j,j)eA-(b,a) 

at e{0,l}   V/eJV 
aa B 0,ab s 1 

/?, e{0,l}   \/(U)GA 

ßba=0 

r, e{0,l}   V(i,j)zA 

rba = o 

The objective function (10) incorporates the resource constraint and a Lagrangian 

multiplier A. The function z{X) is a concave function in X so that we can find the best 

value for z(A) by iteratively adjusting A using a binary search.  The objective function is 
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derived from min   J^uvßv + X( J^r../V - R) where the reader can more clearly observe 
" OJ)eA (ij)eA 

the interdiction resource constraint (9) in the objective function with multiplier X. 

Because of the relaxation, z{X) < z * but as we adjust X we may find a multiplier 

such that z(X) = z*. In fact when we have found a Lagrangian multiplier such 

that 2Xrö=Ä, then 
OJ)eA 

z(X)= min   ZV?,+A(£/V^-tf)=  min   ?uvßv=z*. <12> 
(ij)zA (,,/)a\ "'^ (,-j)ol 

However, we cannot be assured of an optimal solution if some portion of the interdiction 

resource, R, remains unused.  In this case, X{ YSyYn -R)<0 and there may be some 
C./)GA 

benefit in expending more interdiction resource. Therefore, a solution with   £ W < R 

OJ)eA 

may not be optimal. 

With the interdiction budget constraint in the objective function, LR(;i) is 

unimodular and can be solved as a linear program. Since the extreme point solutions to 

the related dual of the maximum flow problem are binary, we can remove the upper bound 

constraints on a,, and ß0 and ytj in the linear relaxation without changing the solution. 

The relaxation of LR(A) is: 
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LRR(A) 

z{A) = min   ^(u^+Ar^-ÄR 

s.t.   a,-ay+r,+^>0  V(/J)€^-(Ä,a) 

a, >0 Vi eJV 
ßs=0, a4=l 
/?,>0   V(/J)e^ 

A.-0 
r(/>0   VQJ)eA 

LRR(/l) looks similar to the dual to the maximum flow problem MFD which also has 

integer extreme points. As a result, we may solve LR(/L) by solving LRR(/l), or more 

importantly, through its dual. For a fixed A, the AR term is a constant and remains in the 

objective function for the dual. The dual of the relaxed model of the Lagrangian 

relaxation is: 

LRR-D1(A) 

z(A) — max xba - AR 

st-   IX- 2X = °  vizN 
0<X0<K..    V(i,j)eA 

0^x9^Ar9    V(i,y)€i4 

Since the flow must meet both capacity constraints, the capacity constraints can be 

restated as 0< xtj < minfy,,^}.  Model LRR-D2(A) is equivalent to LRR-D1(A) with 

the restated capacity constraint: 
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LRR-D2(A) 

z(Ä) = max xba - AR 

(iJ)eA (j,i)£A 

0<x. <min{»,,^,}    V(i,j)eA 

This is very similar to the maximum flow model, MF, with capacities modified by 

the dual cost of interdicting the arc. Any solution to LRR-D2(/l) finds a minimum 

capacity cut that corresponds to a feasible or infeasible solution to the original problem 

NIM as follows: 

a. a. =1 V/ eNb, a, = 0 V/ e JVa. 

b. ßtj = 1 ifi <=NaJ e Nb and xv = uy, i.e., if (ij) is a forward arc of the 

minimum cut and utj < Xrtj, then (i,j) is not interdicted. 

c. Yij = 1 if i e JVa J e JVj and xff = Art, i.e., if (ij) is a forward arc of the 

minimum cut and utj > Xrtj, then (/,y) is interdicted. 

d- r,y = /?ö = 0 V(/,y) that are not forward arcs in the cut. 

Note that A can always be perturbed so that utj = Ary does not occur. The 

solution is feasible if the interdiction budget constraint (9) holds. 

C.        SOLVING THE RELAXED NETWORK INTERDICTION PROBLEM 

Given a fixed A, we can find a minimum capacity cut by solving LR(A) using an 

easy-to-implement polynomial-time maximum flow algorithm for LRR-D2(/l). Arcs in the 

minimum capacity cut, Ac, are examined to find the corresponding interdiction set, 

Aj cAc, that may or may not be feasible. If A2 is feasible for T, the corresponding 

maximum flow value, z is an upper bound for z*, the solution to the network interdiction 

model. We continue to adjust the Lagrangian multiplier, re-solving LRR-D2(/l) and trying 
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to maximize z(A), the lower bound until the "best" upper bound, the smallest value of z 

found, and lower bound are equal, or the difference is as small as possible. 

We iteratively solve LR(/l) using binary search on A to find a good feasible 

solution. We decrease A if ^rvyv <R encouraging use of more interdiction resource. 

We increase A if  ^X^,-, > R, raising the penalty for exceeding the interdiction budget. 

We have found an optimal solution to NIM if  *Y/Vytj = R since for this solution the 

equality (12) holds. In words, the lower bound z(A) equals the upper bound z* and we 

have found an optimal interdiction set. 

The method may fail to find an optimal solution to NIM when it cannot identify a 

set of arcs to interdict that consumes the entire interdiction resource budget. One such 

failure occurs if the optimal cut found in LRR-D2(/L) is composed of a number of arcs 

with equal capacity. For example, the network in Figure 2 consists of five arcs in parallel 

between the source and sink with rtj - 1 and u{j - u V(i',/).   We have three units of 

interdiction resource, i.e., R = 3. There is only one cut. For any A, the corresponding 

solution to NIM interdicts all arcs (infeasible) or no arcs rather than the R = 3 arcs that are 

optimal. Thus, Lagrangian relaxation will never find an optimal solution for this problem. 

Figure 2. A network without an easy interdiction set 

But, suppose that we add a very small random amount of capacity to each arc. 

The algorithm is able to differentiate between arcs that would otherwise appear identical 
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and the amount added is small enough not to affect the solution substantially. In practice, 

we add a random 1/100,000 to 100/100,000 of capacity to each arc. We accomplish this 

by multiplying all capacities by a scaling factor of 100,000 and then add a random amount 

that varies uniformly from 1 to 100. This small amount causes only negligible changes in 

the maximum flow in the network. This method has the advantage of only increasing 

solution time by extra log (100,000) iterations while enabling the algorithm to solve a 

difficult problem. 

We use a shortest augmenting path algorithm (Edmonds and Karp, 1972) to solve 

LRR-D2(2). (See Appendix A.) We modify the algorithm to find the "shortest 

augmenting path," the augmenting path with as few arcs as possible, with maximum 

capacity. We implement the Lagrangian relaxation and solve the maximum flow problem 

to identify the minimum capacity cut Ac and the set of arcs to interdict A} c Ac. 

We solve this problem for several test cases with the results discussed in Chapter 

IV. The shortest augmenting path algorithm used in this thesis has a worst case 

complexity of 0{nm2) (Ahuja et al., 1993, p. 213). The methods used to discriminate 

between arcs, the random amount and the scaling, add a factor of log(l 00,000) to the 

work of the algorithm. The process of finding the best Lagrangian multiplier using binary 

search requires 0(logC7) solutions of the maximum flow problem where U is the 

maximum capacity of an arc in the network. The complexity of the relaxed network 

interdiction problem is polynomial: 

0(wn2(log£/ + log(l 00,000))) = 0(nm2 logU). 

We have tested the relaxed network interdiction problem with many different 

networks. With rv = iy(i,jJeA, we often find an optimal solution. We find good 

solutions that are sometimes optimal for the more general problem with general integer 

V 

Building on the material presented in this chapter, we next explore the dynamic 

network in time-expanded form. 
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m. THE TIME-EXPANDED PROBLEM 

We have introduced the reader to the static network interdiction problem and will 

now develop a dynamic version ofthat problem. We propose models in which the value 

of the flow is time-weighted and interdicted arcs are repaired. In this thesis the time 

weights are 0 or 1 depending on the time of arrival of flow at sinks. The solution 

identifies arcs and time periods of interdiction. 

We introduce the reader to the dynamic model in Section A by developing the 

time-expanded maximum flow model. In Section B, we develop the time-expanded 

network interdiction model. In Section C, we develop a constrained minimum cut model 

from the network interdiction model. In Section D, we use a Lagrangian relaxation to find 

a feasible solution of the time-expanded network interdiction model. In Section E, we 

present a method that implements the models of Section D to find a feasible interdiction 

set for the time-expanded network interdiction problem. 

A.       DYNAMIC MAXIMUM FLOW MODELS 

Dynamic network problems can be solved as traditional network problems on 

exponentially (pseudo-polynomially) large, time-expanded networks. Our motivation for 

using a dynamic network model is a desire to include additional attributes in the models 

such as time-weighted flow, repair time for interdicted arcs, and a schedule for the 

network interdictor to use in allocating assets. For a given network G = (N, A), we form 

a time-expanded network GT =(NT,AT) as follows: The quantity T represents the 

integer-valued time horizon for the dynamic problem consisting of T+ 1 time periods; we 

make T+ 1 copies i0,il,i2,...,iT of each node /. Node it in the time-expanded network 

represents node /' in the original network at time t. rijt is defined as the time required for 

a commodity to traverse (i,j) from /' toy at time t. Normally, TtJ = rijt for all (i,j) e A 

and all t. We include arc (i,j)t = (jt,jt+T.) with capacity uijt in GT whenever (/',_/) GA 

and 0 < t < T- T„■.   This allows flow to leave * at time t and arrive at /' at time t + r„. 
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The quantity xijt denotes the amount of flow on (i,j)t. In a feasible dynamic flow, at 

most uijt units of flow can be sent on arc (i,j)t although we assume uiJt = utj for all 

(i,j) e A and all t. 

The time-expanded problem requires us to adjust our definition of source and sink. 

For each source and sink in the static network, there are T + 1 sources and sinks in the 

time-expanded network. We add artificial arcs from super-source a' to each source 

at &NT, and artificial arcs from the sinks, bt <=NT to the super-sink b'. Each of these 

artificial arcs is included in AT. We also include an artificial arc "return arc" (b',a') from 

the super-sink at time T to the super-source at time 0 to complete the circulation of flow 

from the sinks to the sources. The capacity of this arc is large and unconstraining, such as 

£«g +1. We define the super-source to exist only at time period 0 and the super-sink 

only at the last time period T. Artificial arcs connecting the super-source to the regular 

source nodes, (a'0 ,at), have r^ =t. Artificial arcs connecting the sinks to the super- 

sink, b\, have r6f6, = T-t. The return arc has r6v, =-Iasa notational convenience. 

In the dynamic maximum flow problem, the task of the network user is to find the 

maximum amount of logistics that can move from the sources to the sinks, subject to arc 

capacity constraints. The time-expanded maximum flow model, TE-MF, represents this 

problem. Note that the objective function value xb,a,T is the return arc representing the 

total flow through the time-expanded network. The arrival of the flow at the sinks is not 

time-weighted in this model. 

TE-MF 

Indices: 

/, jeN Nodes of G = (N, A), including two special nodes, d the super-source, and 

V the super-sink 

t,f Time periods: t,f = 0, 1,2,..., T 
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(j,j)t Arc of G = (N, A) at time period t 

Data: 

ui} Nominal capacity of arc (i,j)t 

Ttj Traverse time of arc (i,j)t; flow leaves /' at time t and arrives aty at time t + 

Network user decision variable: 

xijt Flow on arc (i,j)t 

The Formulation: 

max xbWT : dual variables 

(12) 

O^^    V(i,j)teAT     :0p («) 

s.t.     2>ö, -       ZV  =0    V/reiVr :au 

The time-weighted maximum flow problem attaches different values, w^, to the 

arc flows depending on their time of arrival at the sink. This attribute recognizes that the 

network user does not place equal value to the same shipment of supplies when it arrives 

before a battle as when it arrives after the battle. The time-weighted maximum flow 

model is: 

TW-MF 

maxZ    lLwib;xm 
t=0 (i,f),eAT 

S. 

•i 

0<x„<«,    V(iJ)teA7 

(Uj),zAT        .U,i),-eAT\t'=t-ty 
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A completely general dynamic network problem would allow each wm to be an 

arbitrary nonnegative value. This would significantly increase the difficulty of the 

problem, however, and methods required to solve it are beyond the scope of this thesis. 

(Benders decomposition may work; see Cormican (1995).) We use binary weights only: 

We assign weights so that flow arriving at sink b, on or before the latest allowable time 

period Tb has a value of 1. Flow arriving after this cutoff time Tb has a value of 0. If we 

simply remove the artificial arcs from AT that have a time-weighted value of 0, TW-MF is 

equivalent to TE-MF. 

The dual of the maximum flow problem is the minimum cut problem. The dual 

variables of the dynamic maximum flow model, au and 6ijt are shown in TE-MF. When 

we find an optimal solution to a maximum flow problem, we also find an optimal solution 

to the minimum cut problem. 

We adjust our definitions pertaining to cuts to fit the time-expanded problem. A 

"cut" is a partition of the node set NT into two sets NT
a, and N*, with a' e NT

a, and 

b' e Nb
T,. Each cut defines a set of arcs that have one endpoint in NT

a, and the other 

endpoint in Nb,. The capacity of the cut is the sum of the capacities of the forward arcs in 

the cut. We find a minimum capacity cut by solving TE-MFD: 

TE-MFD 

Indices: 

/, jeN       Nodes of G = (N, A), including two special nodes, a' the super-source, and b 

the super-sink 

t,t Time periods: t,t = 0, 1, 2,..., T 

(i,j)t        AicofG = (N,A) at time period t 

Data: 

uif Nominal capacity of arc (i,j)t 
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Ty Traverse time of arc (i,j)t; flow leaves /' at time t and arrives aty at time t + 

Tv 

Decision variables: 

ccit «rt = 1 if i, e Nl, else ait = 0 if /, e NT
a,, 

6ijt 9ijt = 1 if (i,j)t is a forward arc of the minimum capacity cut, else 6ijt = 0 

The Formulation: 

mm     Jy, 
(iJ)teAT 

s.t.   «,,-a,t+^>0   VQ,j)teA-(P,*)T (14) 

aAT-ora.0+^vr>l (15) 

TE-MFD is totally unimodular and if we arbitrarily set aa,0 = 0, then all variables 

will be 0 or 1 in an optimal extreme point solution. 

B.        THE TIME-EXPANDED INTERDICTION MODEL 

Recall in Chapters I and n, that the network interdiction problem is stated as a 

min-max problem. In the time-expanded network, the network user attempts to maximize 

the time-weighted flow across the network over a specified time interval [0,7]. The 

network interdictor attempts to minimize the time-weighted maximum flow by selecting an 

appropriate interdiction set subject to the interdiction budget constraint. 

We state the time-expanded model in a fundamentally different manner than we 

state S-NIM. The approach that will be taken can best be illustrated with the static model. 

Recall that S-NIM is a min-max model in which interdictions reduce maximum arc 

capacities to zero. An alternative formulation (Cormican, Morton and Wood, 1996) 

subtracts interdicted flow in the objective function. This formulation is: 
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S-NIMl 

z*= mm maxxba- J>^ (5') 
reF " «JXA 

St    Hxv-  Z*/>=0    V/e^ (6) 

0 <*..<*..   V(/J)e^ (T) 

where T = Y\ ZW» SÄ, r, e{0,l} V(/,y) e^ (8) 

We extend this model to a time-expanded dynamic network interdiction model. 

The dynamic network interdiction problem allows each arc to have an additional attribute, 

qtj, an integer number of time periods required to repair arc (ij) to full capacity starting 

the period after the interdiction. Interdicting (ij) at time t' means xijt = 0 for 

t = t',t'+l,f+2,...,t'+qiJ. Nominal capacity uv is restored for arc (i,j)t at time 

t = tt+q9+l. 

The time-expanded, network interdiction, min-max model is: 

TE-NBM 

Indices: 

iJeN Nodes of G = (N,A), including two special nodes, a' the super-source, and 

b' the super-sink 

t,t' Time periods: t,f= 0, 1,2,..., T 

(i,j)t Arc of G = (N, A) at time period t 

Data: 

utj Nominal capacity of arc (i,j)t 

ry Traverse time of arc (i,j)t; flow leaves / at time t, arrives aty at time t + r,. 
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rv Amount of resource required to interdict arc (i,j)t 

qtj Repair time interval for arc (i,j), (begins the period after interdiction) 

R Resource for interdiction available to the network interdictor 

Network user decision variables: 

xiJt Flow on arc (i,j)t 

Interdictor decision variables: 

Tat Yyt = 1 indicates arc (i,j)t is interdicted at time t; otherwise yijt = 0 

The Formulation: 

ZTE* = mm max xbWT -   £   ( 2>r)*# (16) 

5t-   2,**-    Iv =0 V/'<G^r <17> 
0<x.,<u.\/(iJ)teAT (18) 

U,j)teAT <J,i)r^TP=t-rij 

whereT = \yijt \  Jj^^^R (19) 

The form of the objective function (16) reflects the struggle between the network user 

who seeks to maximize flow through the network and the network interdictor who, using 

interdiction resources, seeks to minimize that maximum flow. Flow through the network 

is represented by the flow across the return arc (Z>',a')r. The network interdictor 

removes flow from the network (effectively) by subtracting flow across interdicted arcs. 

Constraints (17) are the flow balance constraints. (A model variant would allow storage 

at node i, by creating "inventory" arcs from /, to iM.) The arc capacity constraints (18) 

limit the maximum amount of flow entering an arc at time period t to the nominal capacity. 

Interdiction resource constraint (19) limits the interdiction effort by the amount of 

resource available R. 
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C.       A CONSTRAINED MINIMUM CUT MODEL 

We convert the inner maximum flow problem of TE-NIM to its dual, the minimum 

cut model to obtain: 

TE-NIM1 

Indices: 

/, jeN      Nodes of G = (N, A), including two special nodes, a' the super-source, and 

b\ the super-sink 

t,f Time periods: t,f= 0,1, 2,..., T 

(j,j)t        Arc of G = (N, A) at time period t 

Data: 

uy Nominal capacity of arc (i,j)t 

Ty Traverse time of arc (i,j)t; flow leaving /' at time t, arrives aty at time t + rv 

rtj Amount of resource required to interdict arc (i,j)t 

qp Repair time interval for arc Q,j)t (begins the period after interdiction) 

R Resource for interdiction available to the network interdictor 

Decision variables: 

«it ait = 1 if /', e Nl, else ait = 0 

Yv Yijt = 1 indicates arc (i,j)t is interdicted at time t; otherwise yijt = 0 
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The Formulation: 
TE* 

<*,r,ß       ^^ r (i,j)tzAT 
YSvßm 

s.t ait- -ajt + 2>r 
+h< 

t'=t-qtJ 

>0V(i,j)tzAT-(b>, a') 

a« -<W ' Yb'a'T ■*" Pb'a'T 

ait 

ßm 

ßb'a'T 

Yiß 

Yb'a'T 

>1 

e{0,l} V/f eiVr 

e{0,\} \/(i,j)tzAT 

= 0 

<R 

e{o,i} v(/,y)t eAT 

= 0 

(20a) 

(20b) 

Because there is no advantage gained by the interdictor interdicting more often 
t 

than necessary, we may assume that   ]£ yiJt,  is 0 or 1 in any optimal solution to TE- 

MM1. Thus, we may interpret a solution of this model as in the static model: The 

solution of this model identifies a cut defined by ait = 1 for all it e Nl and ait = 0 for all 

it e JVj. For arcs (i,j)t not in the cut, ym = ßijt =0. For arc (i,j)t in the cut, either 

ßijt =1, indicating that this arc forms part of the minimum capacity cut after interdiction 

or the arc is part of the interdicted set A\ where 

A] = {(i,j)t eAT\yiJt, = 1 for t - qv < ?< t).   So, the interdicted set identifies arcs and 

time periods in which those arcs are interdicted or are under repair (and thus out of 

commission). 

Note the distinction between "interdiction set" and "interdicted set" for the 

dynamic problem: The interdiction set AT
S c A] comprises those arcs, (i,j)t for which 

Yijt = 1 indicating a "strike" or interdiction resource expenditure occurs.   Arcs in the 
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interdicted set with yijt = 0 have previously been interdicted and are still under repair 

during time period t; they have no capacity, but require no expenditure of interdiction 

resource. 

TE-MM is clearly an NP-complete problem, and even small problems can be 

difficult to solve. However, if we could relax the interdiction budget constraint, TE-NIM1 

would become easy. 

D.       LAGRANGIAN RELAXATION FOR TE-NEM1 

We approach Lagrangian relaxation for TE-NM as we did for S-NEvl: We move 

the budget constraint, with a Lagrangian multiplier, into the objective function. The 

Lagrangian relaxation model provides a lower bound to z™* and when we relax the 

integrality constraints, is a concave function in 2. In the process of finding lower bounds 

we find feasible and infeasible solutions to TE-NIM1. (A feasible solution is a binary 

solution for which constraint (19) holds.) Any feasible solution yields an upper bound on 
JTE* z 

Since z™ (X) is a concave function, we look for the best X using binary search to 

find the greatest lower bound. The Lagrangian multiplier acts as a penalty adding cost to 

the minimization. Large values of X encourage less use of interdiction resources while 

small values encourage use of more resource to minimize the overall cost. As we adjust X, 

we hope to find a solution for which the difference between the upper and lower bounds is 

small. 

Because of the relaxation, zTE(X)<zTE\ but as we adjust X we may find a 

Lagrangian multiplier such that    ^Jvyijt = R. Then, 

z-(2) = min   2X4»+A(  Z%-*) = min   2X/?„ =r»\ <21> 
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and the corresponding set of interdiction decisions is both feasible and optimal. In 

economic terms, at optimality, the value of the Lagrangian multiplier A is the value of an 

additional unit of interdiction resource. 

The Lagrangian relaxation of TE-NIM1 is: 

TE-LR(A) 

zTE(A)= min    1(^+^7»,)-^ (22) 
a'r'ß dj),^ 

s.t ait -aJt + 5X +ß., >0 V(/,y), GA
T
 -(b',a% (23) 

'-t-iij 

ait free V/', e NT 

ßiJt>OV(i,j)teAT 

r,rG{0,l} V(i,j)teAT 

yVa<r = o 

If we restrict yijt to binary values, TE-LR(A) will naturally have binary extreme 

point solutions. We can therefore relax the binary constraints on ait and ßm. We then 

relax the binary constraint on yijt to 0 < y ijt < 1. The relaxation of TE-LR(2) is: 
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TE-LRR(A) 

a,r,ß 
i,j),*AT 

s.t. a,. -afi 

t 

+ 2> 
f=t-qy 

,r+ßiß^O V(I-,A €^ -(*•, «') 

<*b<t -<* a', + Yh<a<T + &vr>0 

a,, >0 

ßiß*o 
Äw=o 

V/, G#r 

avr = 1 

Vfty), e^r 

o<r^<i V(/JX <=AT 

?w=o 

For a fixed A. 

z™ (A) - z'm (A) - AR where z,m (A) = 

Note that 2   (A) will still yield a valid lower bound on z™'.   Instead of solving TE- 

LRR(/t) directly, we can solve its dual: 

TE-LRR-D1(A) 

zTE(A) = maxxb,a,T-AR 

(24) 

0<xm<uv  V(i,j)tzAT (25) 

0<5>.,,<^. V(i,j)teAT (26) 
*'=r 

TE-LRR-Dl(/l) would be a simple maximum flow problem without constraints 

(26).    We replace these constraints with restrictions of the constraints, specifically 
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0 < xiß < —^. The restriction is reasonable since the flow on (j,j)t falls into one of three 

categories: 

1. xyt = 0 because there is no "useful" path from a source node to a sink 

node that includes (i,j)t; therefore constraint (26) is slack (a useful path is 

a path from a source to a sink with flow arriving at a sink before time 

period T+ 1), 

2. arc capacities do not change over time, and thus 

3. the same amount of flow will be pushed along in every time period until 

any path containing (i,j) is no longer useful, and xijt goes to zero. 

Note that a restriction of this model must still lead to a valid lower bound on zTE*. 

As in the static problem, the flow on each arc must meet both of the capacity 

constraints, (25) and (26). We restate model TE-LRR-D1(>1) with the restricted capacity 

constraints (26) as: 

TE-LRR-D2(A) 

zw (A) = max xb,,T - AR 
X 

UJ)teAT UJ)t.eAT\t'=t-cß 

0<xöf<min{«,,^} V(/,A6/ <27> 

This model is much like the maximum flow model TE-MF with capacities modified 

by the value of an interdiction. Any solution to TE-LRR-D2(/l) finds a minimum capacity 

cut {N*,,N£,} that corresponds to a feasible or infeasible solution to the original problem 

TE-NIM1 as follows: 

1.        «,=1 V/, e^,«,, =1 Vi,etf;, 

2-        Yijt = ßijt = 0 V arcs (i,j)t that are not forward arcs in the cut, 
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3. for  t = l,...,T,  it &NT
a.Jt zNT

b,   and  xiJt=^, for each arc in the 

interdicted set, ym is defined recursively as y,,, = 1 -       max       y... 
1 mvL{0,t-qij}<,V<,t-\' 'Jt ' 

4. yijt = 0 Vit eNT
a„jt eN* and x„ <^, and 

5. ßijt = 1 if z, eA^J, e#£ and xijt = w.., i.e., if (i,j)t is a forward arc of 

the minimum cut and ui}. < -^, then (i,j)t is not in the interdicted set. 

Note that X can always be perturbed so that u.. = -£- does not occur.   The solution is 

feasible if the interdiction budget constraint (19) holds. 

E.       A METHOD OF SOLVING THE TIME-EXPANDED NTM 

As in the static problem, we use a polynomial-time maximum flow algorithm to 

solve TE-LRR-D2(A). (See Appendix B.) The algorithm actually runs in pseudo- 

polynomial-time since the network is represented in time-expanded form. As in the static 

network interdiction model, arcs in the minimum cut are examined to find the 

corresponding interdicted set A] that may or may not be feasible. If A] is feasible for T, 

the maximum flow for the time-expanded network after interdiction is an upper bound on 

the solution to the network interdiction model. 

The objective function for model TE-LRR(A) is a concave function in A. We find 

the maximum value of z7E{X) using binary search on X. Given a starting value for X, and 

given an interdiction vector T, we decrease Ä if    £ W < R encouraging use of more 
(U)teAT 

interdiction resource.  We increase X if    Y/i^m >R> raising the penalty for exceeding 
(iJ),£AT 

the interdiction budget.  In equation (21) for NIM, we know that have found an optimal 

solution the static problem if Y/fl v = ^ and we stop our search for the best value of X, 
(i.j)eA 

X*.  For the dynamic problem, we cannot make the same claim nor should we stop our 
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search for A*. Because we use a restricted form of constraint (26) in TE-LRR-D2(A), we 

may find two interdiction sets, both consuming R units of interdiction resource and one set 

may be better than the other. For example, suppose solving TE-LRR-D2(/l) for a value of 

A identifies interdiction set A, which consumes R units of interdiction resource and 

contains (i,j)t and (i,j)M with qtj =1.   We re-solve TE-LRR-D2(A) for a value of 

A + e (s > 0 and small) finding interdiction set B, also consuming R units of interdiction 

resource and containing (i,j)M (and not (i,j)t). If xijXt+2) <j^, then interdiction set B 

is not optimal. It may be that, if we do not restict constraint (26), then any solution that 

uses exactly R units of interdiction resource, is optimal. We are not able to test this theory 

in this thesis. 

In Chapter n, we introduced a method for discriminating between arcs with equal 

capacity. This method is particularly useful in the time-expanded network since each arc 

is represented in multiple time periods. We again add a very small random amount of 

capacity to each arc. We add a random (J+1)/1,000,000 to 2,500(r+l)/l,000,000 of 

capacity to each arc. We accomplish this by multiplying all capacities by a scaling factor 

of 1,000,000 and then add a random amount that varies uniformly from 1 to 2,500 

multiplied by the number of time periods plus one. 

Additionally, the algorithm may need to discriminate between the same arc in 

different time periods. After scaling and randomization, we add one unit of capacity for 

each time period so that each copy of arc (i,j) has an increasing capacity over time. As a 

result, uijt < uij(M) and if (i,j)t is in the interdicted set, then -^ < uijt < uv(M) so that 

(i,j)t+x is also in the interdicted set.   However, since u^^ <uiJt, then we may have 

uv(t-\) < "iir < uijt anc* arc QJ)t-i would not be in the interdicted set. 

Because of these small amounts of additional capacity for each arc, the algorithm is 

able to differentiate between arcs that would otherwise appear identical. These 

perturbations cause only negligible changes in the maximum flow in the network. 
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We use the same modified shortest augmenting-path algorithm (Edmonds and 

Karp, 1972) to solve LRR-D2(^) as we use for solving TE- LRR-D2(A). We implement 

the Lagrangian relaxation and solve a maximum flow problem to identify a minimum cut 

AT
C and a set of interdicted arcs A] c AT

C. An interdicted set may contain the same arc 

in multiple time periods. We therefore screen the interdicted set to find the interdiction set 

by selecting arcs that would not be under repair from an interdiction in a previous time 

period. For example, suppose arc (/',/), with a repair time of two time periods is 

interdicted at time t = 21. If arcs (i,j)22, (i,j)23 and (i,j)24 also appear in the 

interdicted set, then arcs (i,j)22 and (/',/) 23 are not part of the interdiction set since they 

are under repair.  Arcs (i,y)2, and (i,j)24 are in the interdiction set consuming rv +ry 

units of interdiction resource. After finding the interdiction set, the algorithm adds the 

amount of interdiction resource required for the current interdiction set and adjusts the 

Lagrangian multiplier accordingly. Uninterdicted flow is the sum of the flow on arcs in 

the cut that are not in the interdicted set. 
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IV. COMPUTATIONAL RESULTS 

Chapters II and III show how to use Lagrangian relaxation to approximately solve 

static and dynamic network interdiction problems. The algorithms that implement the 

methods are described in Appendices A and B. In this chapter, we provide computational 

results for these algorithms. We describe the networks tested in Section A, present the 

results for the static problem in Section B and the results for the dynamic problem in 

Section C. 

A.        TEST NETWORK DESIGN 

We do not attempt to model an actual transportation network in this thesis since 

our purpose is simply to test the proposed formulations and methods. We generate 

several grid networks of various sizes with random integer arc data rv and utj for the 

static networks and, ry, utJ, Ttj and qtJ for the dynamic networks.  We use single- and 

multiple-source networks and single- and multiple-sink networks.   We include arcs that 

are uninterdictable and some arcs with rv = 0 in the dynamic networks. In general, arcs 

immediately adjacent to the source (or super-source) and sink (or super-sink) are given a 

large capacity and large rfj so that a trivial interdiction set adjacent to these nodes is not 

optimal. 

As stated in the appendices, we employ a maximum flow algorithm that uses a 

breadth-first-search labeling method to find a shortest augmenting path from a source to a 

sink. The test programs implement the Static Network Interdiction Heuristic of Appendix 

A which solves LRR-D2(/l) (the dual of the Lagrangian relaxation of NIM-1), and 

implement the Dynamic Network Interdiction Heuristic of Appendix B which solves TE- 

LRR-D2(A) (the dual of the Lagrangian relaxation of TE-NIM1). 

We study six test networks, called SNET25, DNET25, SNET100, DNET100, 

SNET400, and DNET400. A general description of each test network follows: SNET25 
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has 25 nodes and 64 arcs with artificial arcs from a super-source to five sources and 

artificial arcs from four sinks to a super-sink. We include 11 arcs that are uninterdictable. 

DNET25 is a dynamic network that shares the same arc attributes as the static test 

network, SNET25, plus the time attributes. DNET25, in time expanded form, has 525 

nodes with 1,344 arcs for T= 20, and 1,275 nodes with 3,264 arcs for T= 50. It also has 

artificial arcs from a super-source to five sources and artificial arcs from four sinks to a 

super-sink for each time period. 

SNET100 is based on a 10-node by 10-node grid and has 100 nodes and 359 arcs. 

A super-source is connected to five sources in each network and a super-sink is connected 

to five sinks in each network. Only these artificial arcs are uninterdictable. DNET100 has 

the same structure as SNET100, but in time-expanded form. It has 5,100 nodes with 

17,901 arcs for T= 50, and 8,100 nodes with 28,431 arcs for T= 80 

SNET400 is based on a 20-node by 20-node grid and has 400 nodes and 1519 

arcs. A super-source is connected to eleven sources in each network and a super-sink is 

connected to ten sinks in each network. These artificial arcs are uninterdictable, as are 

several arcs that we arbitrarily selected in the center of the grid; perhaps these arcs are 

uninterdictable for political reasons. DNET400 has the same structure as SNET400, but 

in time-expanded form. It has 32,400 nodes with 123,039 arcs for T = 80, and 40,400 

nodes with 153,419 arcs for T= 100 

B.        STATIC NETWORKS 

The results of testing static networks SNET25, SNET100 and SNET400 are listed 

in Tables 1 and 2. Testing indicates that the Static Network Interdiction Heuristic 

(Appendix A) often finds an optimal or near-optimal solution, but sometimes fails 

dramatically. Data sets with rtj = 1 are usually solved optimally. 

The best upper bound, z *, on a solution to the network interdiction problem is 

the maximum flow in the network after the best (feasible) interdiction set is applied. By 

"best" we mean the smallest observed maximum flow over all feasible solutions obtained 
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by the algorithm. The best lower bound, z(X*), is the value of z(X), computed from 

LRR-D2(/l), maximized over all values of X. (Actually, the lower bound is slightly 

pessimistic because we stop the algorithm when the interval of uncertainty on A* is less 

than or equal to 1.) The optimality gap, both absolute and relative measures the quality of 

the best solution found. The absolute optimality gap is computed as z* -z(X*) and the 

•   100%(Z*-Z(X*))    _ , .       .. ,...,. 
relative optimality gap is ——. The network interdictor would probably be 

z(X*) 

more interested in knowing the quality of the solution in terms of interdicted flow.   The 

percentage of maximally interdicted flow achieved is a percentage of the "worst case" 

100%(z *-z*) 
interdiction divided by the "best case" interdiction - where zn* is the value 

(z0*-z(X*)) 

of the maximum uninterdicted network flow. The "worst case" is the best known feasible 

solution that interdicts (z0*-z*) units of flow.  The "best case" is an unknown solution 

that may interdict as much as (z0* -z(X*)) units of flow. 

It is interesting to see how solution quality varies as a function of the arc 

parameters and the amount of interdiction resource applied.  Table 2 gives the results of 

sensitivity testing using SNET400 as the test network and varying R and the parameters 

r and u . 

For results A, we vary rtj and R such that R is six times the midpoint of the rtj 

interval. Solution quality in terms of either the optimality gap or the percentage of 

maximally interdicted flow shows no relationship with increasing the interval width on rtj. 

While the algorithm seeks the best interdiction set for a given amount of interdiction 

resource, we find that in some cases, generally where the quality of the solution is poor, 

decreasing R slightly and re-solving the problem provides a result that interdicts the same 

amount of flow. For example, comparing SNET400-1 (the first result for SNET400) in 

Table 1, with result A-l in Table 2, we see that the upper bounds are the same. Result A- 

1 is just as effective at interdicting the network flows with R = 6 as the Table 1 result 
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fewer units of interdiction resource. When the relative optimality gap and the percent of 

maximally interdicted flow indicate a poor quality solution, we recommend that the 

network interdictor vary the amount of interdiction resource available and re-solve the 

problem. 

For results B, we vary the interval width on the uniformly distributed capacities 

Uy.   Results B-l and B-2 have the same network structure and interval width.   The 

capacities are scalar multiples of each other and, as expected, the bounds and network 

flows are also scalar multiples. Results B-l through B-6 are optimal for SNET400 with 

six units of interdiction resource allowed. We use the same random number seed to 

generate the random arc capacities for each test network and, as a result, find the same 

interdiction set for each solution. 
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C.       DYNAMIC NETWORKS 

As described in Section A, the dynamic test networks have the same utj and rv as the 

corresponding static test networks in Section B with the additional arc attributes of Ttj and qy. The 

results of testing the dynamic networks are listed in Tables 3 and 4. Testing indicates that the 

Dynamic Network Interdiction Hueristic (Appendix B) finds results with a relative optimality gap of 

less than 15% in 13 of 24 test networks but sometimes fails to find an answer with a relative 

optimality gap of less than 100%. 

The long run times associated with the dynamic networks are due to the exponential (pseudo- 

polynomial) increase in size of the network and a similar increase in the number of paths to the sinks. 

The results show that run times of the time-expanded problems depend strongly on the time horizon, 

T. We are unable to test a network with 10,000 arcs because of excessive run time. 

The best upper bound, zTE*, on a solution to the time-expanded network interdiction 

problem is the maximum flow in the network after the best (feasible) interdiction set is applied. As in 

the static problem, by "best" we mean the smallest observed maximum flow over all feasible 

solutions obtained by the algorithm.   The best lower bound, zTB(A*), is the value of zTE(Ä), 

computed from TE-LRR-D2(/l), maximized over all values of A.. We again use optimality gap, both 

absolute and relative, to measure the quality of the best solution found. 

The results for the dynamic networks show a general decline in solution quality for the larger 

networks.   While static networks with rv = 1 are often solved optimally, dynamic networks with 

rtj = 1 are not usually solved optimally and consistently yield results that are worse than networks 

with rtJ distributed uniformly on [1,10].   While we are unable to find the reason for the declining 

solution quality, sensitivity testing, described next, gives us some insight into possible causes. 
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Table 4 gives the results of sensitivity testing using DNET400 as the test network and 

varying the parameters utj, rtj, TV and qtj. The arc attributes tested are uniformly distributed on the 

interval indicated and the random number seed is the same for each network tested. The results 

show that solution time and the quality of the solution are insensitive to «,.. and xv. 

For results C, we vary rv and R such that R is six times the midpoint of the rv interval. The 

solution quality for each set is very poor in terms of both relative optimality gap and percent of 

maximally interdicted flow. There seems to be a strong relationship between increasing interval 

width on r.. (with increasing R) and decreasing solution quality. 

We observe several interesting interactions for this data set. As R increases, Ä *, which is 

roughly the value of an additional unit of interdiction resource, decreases. Both the upper and lower 

bounds are decreasing for increasing interval width on rtj and increasing R, meaning more flow is 

interdicted. As the optimality gap decreases, the relative optimality gap balloons since the 

denominator, the lower bound gets smaller. We include another measure of the quality of the 

solution for this purpose. The percent of maximally interdicted flow remains around 50% for results 

C-2 through C-5. 

It is interesting to compare Table 4, result C-l, with R = 6, to Table 3, DNET400-1 with R = 

5. The Table 4, C-l result has a solution that removes 546 additional units of capacity from the 

network by expending six units of interdiction resource versus five units for the Table 3, DNET400-1 

result. With R = 6, the lower bound is less than with R = 5; this indicates a potential for an even 

better solution when R = 6. Comparing the large relative optimality gaps of 392.6% for Table 4 C-l 

and 181.8% for Table 3, DNET400-1, we are less sure of the quality of the known result for R = 6. 

The optimality gaps for Table 4 C-3, C-4 and C-5 are extremely large and out of proportion 

to the percent of maximally interdicted flow. The rapidly degrading quality of the solutions leads us 

to investigate better solutions such as adjusting R slightly. Testing the network C-4 with R = 22 

instead of R =24, we find a solution that has the same upper bound. To compare the solutions we 

use the percent of maximally interdicted flow, 52.5% for R = 22 compared to 49.6% for R = 24, a 

small improvement. This leads us to recommend that the network interdictor use the percent of 

maximally interdicted flow as an indicator of whether it would be useful to look for other solutions 
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by varying the amount of interdiction resource available by one or two units and re-solving the 

problem. 

For results D in Table 4, we vary the interval width on the uniformly distributed capacities 

ur.   The first two results have the same structure with arc capacities that are approximate scalar 

multiples. (Recall that we increase the capacity of each arc one unit per time period after scaling.) 

As expected, the interdiction sets are the same and the bounds with for D-2 are approximately 50 

times those of D-l. In the static network sensitivity testing, the interdiction set was consistent across 

the six test networks. The dynamic test networks have interdiction sets that change for each change 

in capacity interval width. 

For results E, we vary the interval width on the uniformly distributed arc traversal time, rtj. 

There is no observable relationship between the interval width and solution quality. As expected, the 

amount of flow through the network decreases as the average traversal times increase. 

For results F, we vary the interval width on the uniformly distributed repair times qtj. There 

is strong relationship between this interval width and the quality of the solution both in terms of the 

relative optimality gap and the percent of maximally interdicted flow: Solution quality declines as we 

increase the interval width. Result F-l assumes repair occurs immediately after interdiction, i.e., 

qtj = 0 and we find an optimal solution. 
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The poor quality of our results for the dynamic networks seems to be caused 

largely by including arc repair time in the model. However, including arc repair time is 

one of the major motivations for exploring dynamic networks in this thesis. There may be 

methods for improving the bounds and the quality of the results that take into account the 

width of the interval for qtj. Due to time constraints, we cannot explore such possibilities 

in this thesis. 

Our testing found several test networks, both static and dynamic, where the 

algorithm never finds a solution that uses all R units of interdiction resource. For 

X = A*-s (s>0 and small) we find an interdiction set that is infeasible while for 

X = X * +s we find an interdiction set that is feasible but does not use all R units of 

interdiction resource. There should be a solution that consumes all R units of resource for 

networks with riS = 1.   However, we have been unable to find this solution using the 

methods proposed in this thesis. 

We use a modified shortest augmenting path maximum flow algorithm by 

Edmonds and Karp (1972) which runs in 0(nm2) time for a network with n nodes and m 

arcs. The run times can probably be improved significantly by using a faster pre-flow push 

maximum flow algorithm such as the excess scaling algorithm which runs in 

0(nm + n2 logU) time (e.g., Ahuja, et al., 1993, p. 239). 
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V. CONCLUSION 

This thesis presents optimization-based heuristic methods to solve two forms of a 

network interdiction problem, a "static network interdiction problem" and a "dynamic 

time-expanded network interdiction problem." While static network interdiction models 

have been studied before, we develop a new heuristic method that provides a good 

feasible solution and upper and lower bounds on the optimal solution value. We also 

develop heuristic methods to find a good feasible solution to a time-expanded dynamic 

network interdiction model with bounds on the optimal solution value. The dynamic 

model allows us to consider arc traversal times, repair of interdicted arcs and time- 

weighted flow — the weight is a 0 or 1 depending on the time that the flow arrives at the 

sink. 

We model network interdiction problems as min-max models where the network 

user maximizes flow through a capacitated network while the network interdictor 

minimizes that maximum flow by interdicting (destroying) arcs using limited assets. 

Both static and dynamic forms of the problem can be formulated as constrained 

minimum cut models that are difficult to solve. An interdiction budget constraint 

complicates the problem. By relaxing this constraint, we are able to use a sequence of 

maximum flow problems to approximately solve the original problem. For both forms of 

the problem, we use Lagrangian relaxation to find a lower bound on the optimal solution 

value. In the process of maximizing the lower bound, we find feasible solutions with 

corresponding upper bounds. The difference between the upper and lower bounds, the 

optimality gap, indicates the quality of the solution. We search for the best lower and 

upper bounds and hope that the difference is small. 

The Lagrangian relaxation procedure for both the static and dynamic problems can 

have difficulty finding an optimal solution when many arcs have the same capacity. In 

particular, the solution methodology may interdict all of the arcs in a cut with the same 

capacity or none of them.   To avoid this, all arc capacities are randomized by small 
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amounts. As a result the algorithm is able to differentiate between arcs in a cut, yet the 

optimal solution value changes only negligibly. Additionally, the dynamic network 

interdiction problem requires that we have a method to differentiate between copies of an 

arc in multiple time periods. We accomplish this by adding a small increment of capacity 

for each time period so that arc capacity uijt < uiJ(M) for all arcs (ij) and time periods t. 

Testing with several grid networks shows that 7 of 12 instances of the static 

network interdiction problem are solved optimally. Four more solutions have relative 

optimality gaps that are less than 30%. The remaining solution has a relative optimality 

gap of 81.5%. The quality of this last solution is poor since only a part of the available 

interdiction resource is used. The result can probably be improved by further perturbing 

the arc capacities so that more of the interdiction resource is expended. 

The dynamic networks in time-expanded form are 20 to 100 times larger than the 

static networks. This results in longer computation time and larger optimality gaps than 

seen for the static networks. Specifically, 13 of 24 solutions have relative optimality gaps 

that are less than 15% and six more are between 15% and 30%. The remaining five 

solutions are of poor quality with relative optimality gaps between 30% and 195%. 

Closing these optimality gaps will require further research. 

We have several suggestions for further work and possible model improvements 

for the dynamic network interdiction problem. 

1. We do not model arbitrary time-weighted flow since the decomposition 

methods that are probably required to solve such a problem are beyond the 

scope of this thesis. However, military engagements often last for long 

periods of time and there may be a need to assign one weight for flows 

arriving before a battle, another weight for replenishing expended wartime 

commodities such as ordnance and fuel during the battle, and another 

weight for flow arriving after the battle.    The Bender's decomposition 
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method described by Cormican (1995) for the static network interdiction 

problem would probably be applicable to this problem. 

2. The restriction step that converts constraints (26) to constraints (27) 

reduces the quality of the lower bounds obtained. It may be possible to 

avoid this by: 

(a) reformulating the resource constraint, 

Zw** (19) 

into multiple constraints: 

JVr5(=0ftr/ = l,..J (19a) 

r (19b) 
Z<M* 

and 

(b) using Lagrangian relaxation on (19a) and (19b) with separate 

Lagrangian multipliers for each relaxed constraint. 

This would entail more computational effort, but the improved solution 

quality might be worth the effort. 

3. There is an assumption that the capacity and traversal time of each arc in a 

network are known and fixed. In fact, environmental effects and congestion 

may add a stochastic element to the arc capacities and traversal times. The 

dynamic network interdiction model could be improved by using stochastic arc 

capacities (Cormican, Morton and Wood, 1996) and stochastic traversal times. 

These extensions would be difficult, however. 

4. It is assumed in our model that the repair time of an arc is fixed and that an 

interdicted arc has no capacity until repair is complete. While the "all or 

nothing" arc capacity may be valid from some arcs such as a bridge 

crossing a ravine, when the interdiction on an arc is in the form of an 

inspection or blockade, the effect of the interdiction will tend to degrade 
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with time. Interdictions could be modeled with a decreasing effectiveness 

as time passes. 
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APPENDIX A. HEURISTIC ALGORITHM FOR THE STATIC NIP 

The heuristic algorithm described here finds a feasible solution and bounds for the 

static network interdiction problem. Essentially, it maximizes the lower bound, z(A), the 

value of the Lagrangian relaxation, LRR-D2(/l) but it also identifies feasible solutions to 

the network interdiction problem and reports the best lower and upper bounds and the 

best set of arcs to interdict (the interdiction set). The upper bound corresponds to the 

maximum flow through the network when a feasible interdiction set is found. 

Static Network Interdiction Heuristic 

This heuristic seeks A*, the best value of the Lagrangian multiplier, by conducting a binary 

search on the interval of uncertainty for A. The heuristic solves a maximum flow problem 

for each value of A using the results to adjust A and the endpoints of the interval. The 

initial left endpoint of the interval of uncertainty is slightly smaller than the smallest arc 

capacity, and the right endpoint is slightly larger than the largest arc capacity. A is initially 

set to the value of the right endpoint. Inside a do-while loop, the heuristic defines arc 

capacities as min{ utj, Artj}. The arc capacities and the network graph are inputs to the 

procedure find_max_flow, which solves the maximum flow problem, identifying a cut Ac, 

arc flows and the maximum flow through the network xba. The cut, arc flows, and 

original arc capacities are passed to the procedure find_interdiction_set. This procedure 

interprets the results from the maximum flow procedure returning the interdiction set, a 

potential upper bound and the amount of interdiction resource consumed by the 

interdiction set. If a feasible solution is found, the heuristic compares the incumbent upper 

and lower bounds with the current bounds keeping the better values. The heuristic also 

stores the best interdiction set. The procedure adjustjambda takes A and the endpoints of 

the interval of uncertainty, the interdiction resource consumed by the current solution, and 
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the amount of interdiction resource available as input, and returns a new value for X with 

adjusted endpoints for the new interval of uncertainty. The heurustic re-starts the 

sequence with a new value of X until either an optimal solution is found (the interdiction 

set expends exactly R units of interdiction resource) or the endpoints of the interval of 

uncertainty for X converge to a value within one unit of X*. The heuristic prints the best 

interdiction set found, the upper and lower bounds, and the amount of interdiction 

resource consumed by the interdiction set. 

procedure BOUND_THE_STATIC_PROBLEM 

Input:   Network G = (N, A) with source or super-source, a(=N and sink or super- 

sink identified, b eN, 

u, integer arc capacities utj > 0 V(z',y) e A, 

r, integer interdiction resource requirements rv > 0 V(z',y') e A, and 

R, total interdiction resource available. 

Output: The best feasible interdiction set found A1, 

UB, an upper bound for the network interdiction problem, 

LB, a lower bound for the network interdiction problem, 

R, the amount of interdiction resource required for At. 

Begin { 

LB+--00; 

UB<r- +00; 

/* find the initial endpoints for the interval of uncertainty for X */ 

^max«-,. .max   utJ+l; 

^min<-    min    w -1; 
(t,j)GA-(b,a)    J 
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Do{ 

£ <- 0; /* reset all network flows */ 

u' <r- min{wi;;, Xry} for all (/', 7) e A;  /* reset the adjusted arc capacities*/ 

( Ac, £, xba) <- find_max_flow( G, a, b, u'); 

(Aj, UB', R) <r- find_interdiction_set( Ac, £, u ); 

if (R<R) { /* a feasible solution has been found*/ 

LB <r- max{ LB, xba - AR}; 

if (UB'<UB){ 

UB<r-UB'; 

> 

} 

(^^min^max) <~ adjustJambda (A,^, A.mdX,R,R); 

} while (Ämax-Ämin>l and R±R) 

print(^7, UB,LB,R); 

}End; 

The procedure find_max_flow finds the standard maximum flow in the directed 

network G with source a, sink b and arc capacities u'. 

procedure find_max_flow( G, a, b, u') 

Input:   Network graph G = (N, A) with source or super-source, a eN and sink or 

super-sink identified, b e JV, 

u', integer arc capacities utj > 0 V(/',y) e A. 

Output: Ac, a minimum capacity cut Ac cz A, 
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£, vector of maximum arc flows xy > 0 V(/,y) e A, 

xba, maximum flow value. 

{  This procedure uses a standard shortest-augmenting path maximum flow algorithm 

(Edmonds and Karp, 1972) that is modified to find the maximum residual capacity 

among all the "shortest paths."   Shortest path means the path with the minimum 

number of arcs. 

return( Ac,x, xba); 

}End; 

The procedure find_interdiction_set takes the cut, network arc flows, and arc 

capacities as input. It identifies and returns an interdiction set, an upper bound, and the 

amount of resource consumed. 

procedure find_interdiction_set ( Ac, £, u ) 

Input:    Ac, minimum capacity cut in G, 

£, vector of maximum arc flows, and 

u, original capacity of each arc in the network. 

Output: Aj, an interdiction set, 

UB , a potential upper bound on the optimal solution of the network 

interdiction problem, 

R, the amount of resource consumed by the interdiction set. 

Begin { 

for (each (/,./)€ 4.){ 

if ( *.. = uv ) 
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/*upper bound is the capacity of the minimum cut after interdiction*/ 

UF<^W+uy; 

else{ 

add (i,j) to Aj-, 

Rt-R + r^.; 

} 

} 

return (A^UB^R); 

}End; 

The procedure adjustlambda returns a new value for A and adjusted endpoints for 

the new interval of uncertainty. We look for A* using binary search until either an optimal 

solution is found or the endpoints for the interval of uncertainty converge. If the 

endpoints converge, A<A*<A + l and we have found the maximum lower bound with 

only negligible error. 

procedure adjustjambda (A, Amin,AmsK,R,R) 

Input:    A, Lagrangian multiplier, 

Amin,Amax, lower and upper endpoints for interval of uncertainty on A, 

R, amount of resource consumed by the interdiction set, and 

R, amount of interdiction resource available. 

Output: A, new value of the Lagrangian multiplier, and 

Amin, /lmax, new lower and upper endpoints for A. 

Begin { 

if (R = R ) /*an optimal solution has been found*/ 
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else if (R > R )      /*solution is infeasible, need a larger value of X */ 

else /*feasible solution has been found, try a smaller value of X *l 

return (X, Xmin,X^); 

}End; 
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APPENDIX B. HEURISTIC ALGORITHM FOR THE DYNAMIC ND? 

This heuristic algorithm finds a feasible solution and bounds for the dynamic 

network interdiction problem.   Essentially, it maximizes the lower bound, zTE(A), the 

value of the Lagrangian relaxation, TE-LRR-D2(/l) but it also identifies feasible solutions 

to the network interdiction problem and reports the best lower and upper bounds and the 

best set of arcs to interdict (the interdiction set). The upper bound corresponds to the 

maximum flow through the dynamic network when a feasible interdiction set is found. 

Dynamic Network Interdiction Heuristic 

This heuristic seeks A*, the best value of the Lagrangian multiplier, by conducting a binary 

search on the interval of uncertainty for A. The heuristic solves a maximum flow problem 

for each value of A using the results to adjust A and the endpoints of the interval. The 

initial left endpoint of the interval of uncertainty is slightly smaller than the smallest arc 

capacity, and the right endpoint is slightly larger than the largest arc capacity. A is initially 

set to the value of the right endpoint. Inside a do-while loop, the heuristic defines arc 

capacities as min{ utj, Atyjiq^ +1) }.   The arc capacities and the time-expanded network 

graph are inputs to the procedure findmax flow, which solves the maximum flow 

problem, identifying a cut AT
C, arc flows and the maximum flow through the network 

xva'T • The cut, arc flows, original arc capacities, and the time horizon are passed to the 

procedure find_interdiction_set. This procedure interprets the results from the maximum 

flow procedure returning the interdiction set, a potential upper bound and the amount of 

interdiction resource consumed by the interdiction set. If a feasible solution is found, the 

heuristic compares the incumbent upper and lower bounds with the current bounds and 

keeps the better values. The heuristic also stores the best interdiction set. The procedure 

adjust_lambda takes A and the endpoints of the interval of uncertainty, the interdiction 
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resource consumed by the current solution, and the amount of interdiction resource 

available as input, and returns a new value for A with adjusted endpoints for the new 

interval of uncertainty. The heuristic then re-starts the sequence with a new value of A 

until the endpoints of the interval of uncertainty for A converge to a value within one unit 

of A*. The heuristic prints the best interdiction set found, the upper and lower bounds, 

and the amount of interdiction resource consumed by the interdiction set. 

procedure BOUND_THE_DYNAMIC_PROBLEM 

Input:   Network  GT=(NT,AT)   with super-source,   ä&NT,  and super-sink, 

b'eNT identified, 

u, integer arc capacities utj >0 V(i,j)t GA
T
, 

r, integer interdiction resource requirements rtj >0 V(i,f)t eAT, 

R, total interdiction resource available, and 

time horizon T. 

Output:   Best interdiction set found Al' 

UB, an upper bound for the network interdiction problem, 

LB, a lower bound, for the network interdiction problem, 

R, amount of interdiction resource required for AT
S . 

Begin { 

LB <- -oo 

CZB4-+00 

i4j<-0; 

/* find the initial endpoints for the interval of uncertainty for A */ 

K<* <~ ( .    max      u +1) * (q  +1); 

^min <-       min      utj-1; 
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^■^^rnax' 

Do{ 

i<-0; 1* reset all network flows */ 

u'<-min{tt,y, ̂ /(^ + 1)} for all (i,j) eA;   /*   reset the adjusted   arc 

capacities */ 

(Ac, x, x6,a,: r) <- find_ max flow ( GT, a', Z>', u'); 

(AT
S, XJB',R)<- find_interdiction_set (Al,£,u,T); 

if(#<i?){ /* a feasible solution has been found*/ 

Z5^max{i5,x6 a'T ~ AR}; 

if(OS'< UB){ 

UB-^UF; 

As <— As ; 

} 

} 

(A, ^min ^max) <" adjustjambda (X, lmin, Amax, R,R); 

} while (Amax-^min>l) 

print (Al,UB,LB,R); 

} End; 

The procedure findmaxflow finds the standard maximum flow in the directed 

network GT with super-source a', super-sink b , and arc capacities u'. 

procedure find_max_flow (GT, a', b', u') 

Input:   Network graph GT = (NT, AT ) with super-source, ä &NT, and super-sink, 

V^NT identified, 

u', integer arc capacities ui} > 0 \/(i,j) e A. 
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Output: AT
C, a minimum capacity cut AT

C czA, 

i, vector of maximum arc flows xijt > 0 V(i,j)t e AT, 

xb,a,T, maximum flow value. 

{     This procedure uses a standard shortest-augmenting path maximum flow 

algorithm (Edmonds and Karp, 1972) that is modified to find the maximum 

residual capacity among all the "shortest paths."   Shortest path means the path 

with the minimum number of arcs. 

return(4, i, xb,a,T); 

}End; 

The procedure find_interdiction_set takes the cut, network arc flows, arc 

capacities, and time horizon as input. It compares arcs in the cut by time period from 

earliest to latest to identify an interdiction set. When an interdictable arc is found, the 

procedure scans the cut marking that arc each time it appears from one to qtj time periods 

after interdiction,.   The procedure returns an interdiction set, an upper bound, and the 

amount of resource consumed. 

procedure find_interdiction_set (A*,x, U, T); 

Input:    AT
C, a minimum capacity cut in GT, 

i, vector of maximum arc flows, and 

u, the original capacity of each arc in the network. 

Output: As , an interdiction set, 

UB , a potential upper bound on the optimal solution of the network 

interdiction problem, 

R, the amount of resource consumed by the interdiction set. 

Begin { 
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4<-0; 
W<-0; 

^ <- unmark(^)',  /*reset an indicator variable*/ 

for(f = 0to7){ 

for(each (ij)t &AT
C){ 

/*upper bound is the capacity of the minimum capacity cut after 

interdiction*/ 

else if ( (i,j)t unmarked) { 

add (i,j)t to AT
S ; 

for ( t'= t+ l;t'< t + q^t'-H-) { 

if((/,7), e4£) 

/*mark arcs under repair from interdicting (/,./), */ 

mark(/,j),,; 

} 

} 

} 

} 

} 

return (ÄT
S,UB\ R); 

}End; 

The procedure adjustlambda returns a new value for X and adjusted endpoints for 

the new interval of uncerainty. We look for X* using binary search until the endpoints of 
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the interval of uncertainty for X converge. When the endpoints converge, X < X* < X +1 

and we have found the maximum lower bound with only negligible error. 

procedure adjustjambda (X, Xmin,Xmax,R,R) 

Input:    X, Lagrangian multiplier, 

^min'^max >l°wer and upper endpoints for interval of uncertainty on X, 

R, amount of resource consumed by the interdiction set, and 

R, amount of interdiction resource available. 

Output: X, new value of the Lagrangian multiplier, and 

Xmin, Amax, new lower and upper endpoints for X. 

Begin { 

if (R > R ) /*solution is infeasible, need a larger value of X */ 

else /*solution is feasible, try a smaller value of X */ 

return (X, ^min,Amax); 

}End; 
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