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Abstract 

The operation regimes and dynamic properties of semiconductor laser diodes are 

significantly affected by external feedback. Investigation of the dynamics of Self- 

Sustained Pulsation (SSP) in semiconductor laser diodes with optoelectronic feedback is 

presented. The laser diode (LD) is assumed to be a noiseless two-sectional Fabry-Perot 

laser diode with linear gain in both sections. The feedback is assumed to consist of a 

photodetector and wide-band band-pass microwave amplifier. For a certain range of the 

laser diode and feedback parameters the system undergoes high-frequency (about 1GHz) 

oscillations resulting from structural instability in system dynamics. Frequency, 

amplitude and other parameters of Self-Sustained Pulsation are electrically tunable. The 

system dynamics are investigated from the standpoint of stability analysis as well as 

direct numerical simulation. The amplitude modulated microwave/millimeter wave 

oscillations can be used in high-speed optical communication networks. 



1. Introduction 

Self-Sustained Pulsation (SSP) is a well known and intensely studied phenomenon 

observed in semiconductor laser diodes (LD). Under certain conditions operation of a 

laser diode becomes unstable and then undergoes SSP. In SSP the optical field intensity 

inside the laser cavity, output power and other dynamic characteristics of the laser exhibit 

periodic changes in time. Usually these changes have the form of a pulse train consisting 

of short sharp peaks [1], [2], [3]. 

Repetition rate, duration and, to a certain extent, shape of these pulses can be 

electrically tuned by an appropriate choice of the operation regime of the laser system [1], 

[2]. These SSP parameters also exhibit strong dependence upon certain parameters of the 

LD itself. LD parameter such as carrier lifetime, cavity loss rate, refraction index of the 

laser medium etc affect the SSP. SSP laser diodes have been considered for several 

promising practical applications. Recently the self-pulsing LDs have been proposed for 

use as sources of subcarriers for lightwave communication networks. Subcarrier 

multiplexing is supposed to be compatible with wavelength-division multiplexing and 

extend the capacity of WDM networks. Both analog (up to 1 GHz) [1] and digital (up to 

800 Mb/s) [5] transmission with SSP subcarriers have been reported. High repetition 

rate pulse trains generated by self-pulsing LDs can also be used in time-division 

multiplexing (TDM) digital communication networks for bit representation. 

The origin of SSP is the presence of certain kind of instability in the dynamics of 

laser diodes. The physical nature of SSP can be understood on the basis of mathematical 

modeling of LD dynamics. SSP is essentially a nonlinear phenomenon and requires 

applying techniques of nonlinear system theory to the basic dynamic equations of 

semiconductor lasers. The standard approach involved in such a modeling is based on use 

of rate equations for the semiconductor LD modified so they account for possible 

instabilities in the laser dynamics. 

One of the models utilized in this approach is presented in [1] and describes SSP 

occurring in spatially inhomogeneous LDs. Spatial variation of parameters of the laser 

medium is taken into account by use of a two-sectional approximation, which assumes 



that the LD consists of two sections filled with the active media with different 

amplification/absorption properties, i. e. different values and/or sign of the medium gain. 

In this paper the theoretical approach developed in [1] is extended and used to 

investigate dynamics for SSP in two-sectional LDs with optoelectronic feedback. The 

two-sectional laser diode (TSLD) is looked at as a nonlinear system characterized by rate 

equations, which can be used as state equations for the analysis of the nonlinear 

dynamics. 

In following we focus first on a theoretical discussion based on linearized rate 

equations for the two-sectional model. Analysis of this kind provides means to determine 

whether or not SSP occurs in the system with a certain given set of parameter values, to 

predict the boundaries of the SSP-region in parameter space, and to give (in certain 

simple cases) estimates for SSP frequency. 

Furthermore, we use the computer simulation of the TSLD with optoelectronic 

feedback with practically achievable parameters to prove the existence of SSP, measure 

its frequency and amplitude, observe the effect of the feedback delay on them and study 

amplitude modulated SSP. 



2. Theory 

2.1 Rate equations and stability analysis 

In order to investigate two-sectional laser diodes with optoelectronic feedback we make 

use of rate equations presented in [1] modified so they account for optoelectronic 

feedback. The schematic of the system is shown in Fig. 1. Each section of TSLD has it's 

own feedback loop consisting of photodetector PD and bandpass feedback amplifiers 

FBA(A) or FBA(B). The output current of the feedback amplifiers is fed back to current 

terminals of the TSLD, contributing to the total injection current. 

Mirror I 

Paf        ^  FBA(A) 

B       A 

TSLD 

light 

PD 

FBA(E ) 

Fig. 1 Schematics of TSLD with optoelectronic feedback. 

The rate equations for the two-sectional system with an optical feedback are as follows: 

dn„ 

dt r=-f-G°MN+p°+p°f (la) 

dna 

dt 
-Gb(nb)N + Pb+Pbf (lb) 



dN 
-^ = [(l-h)Ga(na) + hGb(nh)-T]N 

where 

ns (s = a,b) are the uniform carrier densities in sections A or B, 

N       is photon density in the cavity 

TS are carrier lifetimes, 

Ps        are injection rates, 

T is the cavity loss, 

h is the volume fraction of the absorbing section in the cavity, 

Gs(ns) are the gain values related to corresponding carrier densities, where a 

linear approximation for the gain is used, that is 

Gs(ns) = gÄns - ni0), gs = -r- is the differential gain for section A or B. 
CM 

PaJ =N®ha and Pbf =N®hb are the carrier injection rates due to optoelectronic 

feedback, ha,hb are feedback impulse responses for sections A and B respectively and 

"® " stands for convolution. 

By use of the following substitution [1]: 

x = ga(l-h)(na-na0)/T 

y = gbKnb-nb0)IT 

z = ga*aN 

T = t/Ta 

these equations are reduced to the normalized equations: 

dx \-h~ 
— = -(x-x0)-xz + —ha{r) ®Z(T), (2a) 

dy     y-y0 h ~ 
— = —■^-yyz + y-hb{>c)®z(T), (2b) 



^ = T(x + y-l)z (2c) 

where x0 = ga{\-h)(Paxa -n0a)/T, y0 = gbh(Pbxb -n0b)/T are normalized injection 

rates to sections A and B respectively, x = yT , y = °y    and F is normalized cavity 

loss rate. 

To find the equilibrium state (xe,ye,ze) of the system described by the above 

dx     dy     dz 
equations, one should assume — = — = — = 0, and z = z  = const. The feedback 

dx    dx    dx 

terms reduce to 

ha(x)®z(x) = zejha(x)dx = zeSa, 
—00 

00 

ha(r) ® z(x) = ze \ha(x)dx = zeSb 
-00 

00 00 

( )K(T)dT and  ]hb(x)dx are denoted as Sa and Sb respectively). 
—00 —00 

\-h~ ~ h~ 
After   introduction   of   ha(x) = —— ha(x),    ha(x) = y—hb(x)    equations   for   the 

equilibrium state of the system become 

-(xe-x0)-xeze+Saze =0, 

xe+ye-l = 0 

x0+Saze y0/x+Sbze 
which yields xe = — , ye = -      and a quadratic equation for z,: 

l + ze 
e       l/r+yze 

n M 

?(5fly+ ^4 -y)z) +(Sa +yxx0+xSb +y0 -yx-\)ze +x0 + y0 -1 = 0 

In the problem under investigation ha and hb are the impulse responses of the band-pass 

filter used in the optical feedback. The corresponding transfer functions have zero DC 



gain. The equilibrium state of the system with optoelectronic feedback is the same as that 

of the open-loop system without feedback, and is given by 

2yr 
yt(x0 -1) +y0-l + ^(jr(x0 -1) + y0 -1)2 + 4y(x0 + yQ -1) 

x„ = 

ye 1 + yrze 

(3a) 

(3b) 

(3c) 

To investigate the system dynamics we will make use of linearization of the governing 

equations (2) in the vicinity of the equilibrium state (3), keeping feedback terms in (2 a,b) 

unchanged. The state equations for a system linearized in this way can be written in the 

form [7]: 

where    J = 
ÖS: 

de 

is   the   Jacobian   of   the   system   without   feedback   and 
£=X-Xo=0 

f = [ha(r) ® z(r),hb (r) <S> z(r),of is the feedback vector. 

This gives the linearized governing equations: 

dx 
-jr = {-\-ze)x-xez + ha(T)®z(t), (4a) 

dy \ 
— = (-^-yze)y-Tyez + hb(T)®z(T).. 

dz 
= F(x + y)ze 

(4b) 

(4c) 

10 



where the origin is moved to the equilibrium point   (3) and the new state vector   is 

denoted [x, y, z)   as before. 

Taking the Laplace transform of both sides of each of the equations (4), one 

obtains: 

{-f- s)X(s) - xeZ(s) + Ha (s)Z(s) = 0, 

K-1z-Ve-s]m-WeZ(s) + Hb(s)Z(s) = 0, 

r[X(s) + Y(s)]Ze-sZ(S) = 0 

whereX(s), Y(s), Z(s) are Laplace transforms of x(t), y(t), z(t) respectively and  Ha{s) and 

Hb(s) are transfer functions of the feedback to sections 1 and 2 respectively. 

The system above can be considered as a system of linear algebraic equations with 

respect to X(s), Y(s), Z(s) depending upon parameters s, Ha (s), Hb (s). It has a nontrivial 

solution if and only if the determinant of its matrix is zero, that is 

det 

Xe 

0 

Tz. 

l 
— yzt-s   -yye+Hb(s) 

Tz. -s 

= 0 

which gives the following equation: 

*3+ir^>2+ 
Tzeyye+^[-^ + yze)+Tzexe s + Tz, »•!:+H7+* 

-Tze\^ + s\Hb(s)-rze ~ + yze\+s Ha(s) = 0 

(5) 

11 



20dB/dec 

/ 
 i ^ 

A f2 

Fig. 2 Bode Plot for wide-band bandpass filter transfer function. 

We assume that the transfer functions of the amplifiers Ha(s) and Hb(s) are chosen to 
be wide-band band-pass transfer functions with corner frequencies fx and f2, that is [9] 

Hi(s) = H0i \ 

suA      s2ij 

\   = H0i 
l + ßjS-CXjS 2     ' (6) 

where si = 2rfx, s2 = 2-nf1, a = , ß = 
SVS2i 

— + — /, and 
U1;    s2lJ 

i u   r-\„>T HQi=JT-a
lHmf^e (7) 

The factor esT accounts for delay time T across the feedback loop. With the transfer 

function given in Eq. (7), Eq. (5) yields a nonlinear algebraic equation with respect to 5. If 

we introduce 

A=\, 

™     1 *n 

12 



D=Tz„ yye — + xe\-+yz> 

(5) can be rewritten in the form 

{As3 + Bs2 +Cs + D)(\ + ßs-as2)- Tze 

and after reduction 

0       ,     2 —s + s 
\x„ 

Hüb-Tze 
\T 

+ yze \s + s H0a=0 

5 

I 
;=0 
t,C,s'=0 (8) 

where 

(9) 

C0=D, 

Cx=C + ßD-TzA + Ve)H0a-Tze^Hob, 
T Xe 

C2=B + ßC-aD-rzeH0a-rzeHQb, 

C3 =A + ßB-aC 

C4 =ßA-aB, 

C5 =-aA 

Roots of equation (8)-(9) can be found numerically for different combinations of 

system parameters (x0,y0,y ,T,r) and different feedback parameters (the gain, corner 

frequencies). A MatLab script (LAN.M) has been written for this purpose. Its listing is 

given in the appendix B. 

Depending upon complex values of s the phase trajectories of the linearized 

system (4) can be one of several known types: cycle, saddle node, center etc. ([7] chapter 

I). As certain parameters of the nonlinear system (2) are being changed (e.g. x0), it 

appears to be structurally unstable [8], that is, the shape of the phase trajectories changes 

qualitatively and the system described by (2) may go through one or more bifurcation 

points, giving rise to periodic orbits on the phase diagram of the system. The left-hand 

side of the characteristic equation for the system without feedback is a polynomial with 

real coefficients and, as it is stated in [1], the system undergoes /fop/bifurcation [8], that 

is, exactly two of three eigenvalues of the system change the signs of their real parts from 

13 



minus to plus. In the case of the transfer function given by (6) with a nonzero delay time, 

the left-hand side of (5) is a transcendent complex function of complex argument s, and 

the behavior of the roots and nature of the bifurcation is not so clear as in the case 

presented in [1]. 

It is clear however, that the system can have a periodic solution only if the 

corresponding linearized system has an infinitely growing solution. Indeed, the nonlinear 

terms in (2a,b) are infinitely small of the second order in the vicinity of the equilibrium 

point and have an effect on the system behavior only comparatively far (in the state 

space) from the equilibrium point. A solution of (2) starting from inside a small vicinity 

of the equilibrium point is very close to the solution of system (4) and, if the latter is 

tending to zero, Eq. (2) will also converge to the equilibrium point. That is why one can 

expect the system described by (2) to undergo SSP only if one or more of the eigenvalues 

of (4) have positive real part. 

Fig. 3a Real and imaginary parts of roots of eq. (8)-(9) for the system without feedback. 

Fig.3 represents the plot of real and imaginary parts of roots of equation (8)-(9) 

versus x0 generated by program LAN.M for the case of the system without feedback 

(Fig. 3a) and with feedback (Fig. 3b). The fourth and fifth roots have large negative real 

14 



parts and not shown on Fig.3. As it can be seen from Fig.3, at H0 * 0 there are regions 

on x0 -axis where one or two roots have positive real parts. In the case of the system 

without feedback (8) has two complex-conjugate roots and one negative real root. To 

find out more exactly what is the condition for SSP to exist the numerical simulation has 

been used. 

Fig. 3b Example of real and imaginary parts of roots of eq. (8) for the system with feedback. 

Fig.3 also shows that in the case of nonzero feedback gain, the domain of 

pulsation extends longer along x0 axis than in the case of the system without feedback. 

2.2 Effect of the feedback on SSP frequency. 

In certain situations the imaginary parts of roots of equation (6) can be used as rough 

estimates for the SSP frequency in the vicinity of the bifurcation point. This is because 

(2) can be expected to have solutions close to solution of linearized equation (4), and near 

the bifurcation point the form of the phase trajectories for (4) are cycles [8]. 

15 



In the case of no feedback the system undergoes Hopf bifurcation, and Fig.3 

shows that imaginary parts of the pair of complex conjugate roots increase as x0 

increases [1]. As indicated in [2], it has been found empirically that the frequency of 

oscillations in semiconductor LD is proportional to square root of injection rate. This 

increase in SSP frequency can also be observed qualitatively both on Fig.3 

(ImO) « Q = 2nf) and in the numerical simulation, though quantitative agreement 

between frequencies predicted by Fig.3 and the results of the simulation is only in the 

order of magnitude. 

In the case of the system with feedback behavior of the roots of (6) is rather 

complex and their imaginary parts can hardly be used as more or less accurate estimates 

for the SSP frequency. 

General considerations make it possible, however, to predict certain characteristic 

features of the behavior of the SSP frequency for the system with feedback of nonzero 

delay time. 

FBA 

TSLD 

Ad 'LD 

A^=nr 

Fig. 4 Phase change for the signal in the system with feedback. 

The closed-loop system is schematically shown on Fig.4. If the feedback gain is chosen 

so that the feedback signal is large enough, the oscillation in the TSLD cavity can become 

amplified, attenuated, or completely extinct depending upon the phase shift between the 

pulsation in the cavity and the feedback signal. The condition under which the feedback 

signal supports the oscillations is, as it can be seen from Fig. 4, 

Adw +QT = 2TTN (10) 

where N is an integer. 

16 



SSP is expected to have maximum amplitude at frequencies 

FN=~T~~I^T (11) 

If A<pLD is small enough, SSP will occur only within frequency bands centered at FN 

with gaps between them. The width of these bands will depend upon the rate of change of 

A0W with respect to frequency. This may cause the frequency versus x0 plot to have the 

appearance of frequency "steps" spaced in frequency by —, as it follows from (11). 

These simple considerations make possible to predict only qualitatively the 

discreet, step-like appearance of SSP frequency versus injection rate dependence but do 

not provide any reliable information about the allowed and forbidden band's width, the 

amplitude of SSP etc. 

To obtain this information, either experiment or numerical simulation should be 

used. 

17 



3. Numerical simulation and results 

To prove the existence of SSP and verify certain results predicted by the theory 

presented in the previous section we make use of direct simulation of SSP in the two- 

sectional laser diode with optoelectronic feedback. Program FSP has been written for this 

purpose in Fortran. It integrates a system of nonlinear normalized state equations of the 

TSLD (2) using Runge-Kutta method (routine ODEINT is supplied in the Numerical 

Recipes for MS-FORTRAN, [12]) and outputs the solutions [x(t),y(t),z(t)f into a file. 

To introduce the feedback terms, the impulse response of the feedback has been 

calculated by use of a standard Fast Inverse Fourier Transform routine (FOUR1) supplied 

in the Numerical Recipes for MS-FORTRAN and described in [12]. Numerical 

integration is used to calculate the convolution. Impulse response corresponding to the 

transfer function described by (6) is shown on Fig. 5d and the typical appearance of the 

solution generated by FSP is shown on Fig. 5 a,b,c. Listing of FSP is given in the 

appendix A. 

As a practical example we have chosen the TSLD consisting of an amplifying 

section and an absorbing section. The difference in amplifying properties of the sections 

was achieved by applying injection currents of differing signs: x0 for the amplifying 

section and y0 for the absorbing section. The device parameters have been chosen to be 

consistent with the experimental device used previously [1]: cavity volume 

V = 250x4x02 jum, h=0A0, ra=2 ns, r =0.606, n0a = 1.2 x 1018 crn\ 

«0i=2.4xl018 cm"3, T = 6.25x10" s'1, g0a = 4.5x 10"7 cm'Is, ga01 gb0 = 0.325, 

wavelength of the laser radiation ^ = 1300 nm. 

The feedback loop parameters have been chosen so that (6) represents a wide- 

band band-pass transfer function with a supposed SSP frequency estimated from Fig. 3 

well inside the pass band of the amplifier at all allowable values of x0. We have chosen 

/i = 0-1 fi - 5-0 units of normalized frequency which corresponds to corner frequencies 

of   the feedback amplifier   of   50 MHz and 2.5 GHz respectively. This makes the 

18 



feedback transfer function flat enough in the frequency range in which SSP is anticipated 

to occur. 

Fig. 5a 

3.5 

3 
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J 

Fig. 5b 
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Fig. 5c 
Fig. 5d 
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Fig. 5 Typical dynamics of FSP (5a-c) with impulse response given as in 5d. 

The net feedback Gain H0 (i.e. the ratio between the average photon density N in 

the cavity and injection rate density due to the feedback) can be varied by choice of 

proper amplifier gain G.   In the present case, it has been chosen so that peak values of 

19 



feedback output current are less than or equal to the DC injection current. The 

photodetector sensitivity was assumed R = 0.1 mA/mW, and the group refraction index 

inside the cavity is assumed to be ng = 3.4. Then the normalized net gain is given by 

Ty rr I-/? 1    1 ,     _       1-Ä 

In   the   case   of  Fabry-Perot   LD   «„,,,=—In-^--cavity   loss   rate,       i?, = 1, 

R2 = 

1 .      1 — In—— 
2L    RXR2 

'n-lV 
\n + V are the mirror reflectivities [10], and #a0must satisfy the condition 

H0Npeak=Pa. (12) 

At x0=2.1 the DC injection rate densityPa «2x 1027 J^'CW"
3
 and (12) yields 

H0a s 0.1....0.5 which corresponds to the feedback current amplifier gain 

Gs(1...5)xl03. 

The first issue subjected to verification was the region of existence of SSP. As it 

was anticipated, several (at least one) root of equation (8)-(9) must have a positive real 

part for SSP to exist. To find out more exactly the number of such roots, the numerical 

simulation has been used. Fig.6 presents the simulated value of the boundary point at 

which SSP ceases to exist (i.e. z(t) becomes decaying with time), plotted with respect to 

net feedback gain (curve 1). In this figure the area between the curves 2 and 3 represents 

the region where the linearized system has exactly one eigenvalue with positive real part. 

The area below the curve 3 corresponds to a linearized system with more than one 

"unstable" eigenvalue and the area above the curve 2 corresponds to a stable linear 

system. 

Curves 2 and 3 have been generated with aid of the program LAN. 

20 



Fig. 6 

0.1 0.2 0.3 

Net feedback gain, HO 

Fig. 6 Boundary points at which SSP cease to exist. 

As one can observe from Fig.6, the original nonlinear system (2) grows unstable 

and undergoes SSP at values of x0 very close to those at which the linearized system 

described by (4) becomes unstable. The difference between curves 1 and 2 is attributed 

to the finite width of the frequency "window" used for numerical calculation of the 

impulse response of the feedback loop, which causes curve 1 to shift up with respect to 

what it would be if a nonzero value of the feedback transfer function at large values of 

frequency is taken into account. 
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Fig. 7 SSP frequency as a function of the normalized pumping rate. 
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The effect of the optoelectronic feedback on the SSP frequency has also been 

investigated for the feedback loop with different net gain and delay time. In case of zero 

delay time T in (7) the simulation shows monotonic growth for SSP frequency as x0 

increases (Fig.7), which is in qualitative agreement with the results presented in [2] and 

mentioned above. 

If the delay time across the feedback loop is taken into account, then according to 

(10) SSP must exist within bands centered at the frequencies  fN   given by (10). 

Simulated SSP frequency and amplitude for the net feedback gain   H0 - 0.3   and 

normalized feedback delay time T = 5 are plotted on Fig. 8 and Fig.9 respectively. 
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Fig. 8 SSP frequency as a function of the normalized pumping rate with delayed feedback. 

As it was expected, the frequency dependence on the normalized injection rate x0 

has characteristic appearance of frequency "steps" whereas the pulsation amplitude versus 

x0 plot consists of several bands where SSP exists and its amplitude grows 

monotonically as x0 increases and the character of this growth is close to linear. These 

bands are separated by regions where SSP is suppressed by the effect of feedback as 

described above. 
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Fig.9 
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Fig. 9 Amplitude of the normalized photon density as a function of the normalized injection rate. 

Such a frequency versus injection rate relationship may be used in lightwave 

communication networks with sub-carrier multiplexing (SCM). In systems of this kind 

users are assigned certain subcarrier frequencies [1],[6]. In our case each user can use a 

frequency band coincident with one of the frequency "steps" where the frequency versus 

injection current curve is more or less flat (Fig.8) and the amplitude modulation of the 

subcarrier will cause relatively small frequency chirp of the modulated signal. 

Fig.10 

(A 
C 
0 
•a 
c 
o 

■a 
a 
N 

"5 
E 
o 
z 

T^tOCMCOtOOJTtOtDT^r^MCO 
d»Nui*Nrd«is«i'fN 

0)U>i-;tDfJCO«0>'<tq<Dr^l--COCOTl; 
0)00KU)<tC<iT:oi09Sia<tNr:O)cd 
rMn^ioiosNnaiornnnTf 
rrrrrrrrrrNNNNNN 

Normalized time t 

Fig. 10 Amplitude modulation of the FSP subcarrier. 
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Fig. 10 presents a simulated example of amplitude modulation of the subcarrier by 

a rectangular pulse generated by a slightly modified version of the program FSP. This 

pulse may represent, for example, a bit transmitted through a digital communication 

network. In this example the LD is biased close to the middle of central "step" of Fig. 8- 

9. The normalized injection rate x0 is switched during the modulation from 2.40 to 2.60 

and then back to 2.40, giving rise to a pulse in the light output of the laser (Fig. 10). The 

front and rear edges of the pulse are shown on Fig.l 1 a, b to determine the rise and fall 

times of the pulse. 
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Fig. 11 Rise and fall transients of FSP amplitude modulation. 

As can be concluded from Fig.l 1 a, b, characteristic switching times for the laser light 

output are of the order of 5-10 nanoseconds. This corresponds to possible transmission 

bit rate of the order of hundreds Mb/s. 
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4. Conclusion 

Investigation of Self-Sustained Pulsation in the semiconductor laser diode with 

optoelectronic feedback has been presented. Numerical and analytical techniques have 

been used to investigate stability of the semiconductor LD consisting of amplifying and 

absorbing sections with wide-band band-pass feedback, and to investigate the conditions 

of existence for SSP and study its characteristics. 

The main results can be formulated as follows. First, it has been shown by 

analytical stability analysis that within a certain range of LD and feedback parameters the 

linearized system corresponding to the system of rate equations (2) exhibits structural 

instability. This phenomenon is the origin for the Self-Sustained Pulsation of the LD 

described by (2). The boundary points of the SSP region in the space of the system 

parameters have been found by the stability analysis. Second, the step-like behavior of 

SSP frequency with respect to LD injection rate for the system with nonzero feedback 

delay time has been predicted on the basis of the closed-loop amplifier model and its 

major characteristics have been found. 

In numerical simulation, the system of normalized rate equations (2) has been 

solved numerically and the solution has been investigated at a variety of LD and feedback 

parameters. The boundary values for the instability regime have been found to be in good 

agreement with those predicted by the stability analysis. Second, SSP frequency and 

amplitude dependence upon injection rate have been studied. It has been found for the 

system with nonzero feedback delay time that the instability region consists of several 

allowed frequency bands where the SSP amplitude varies at an almost constant rate 

separated by bands of decaying oscillations, which causes the frequency versus injection 

rate curve to have a characteristic step-like appearance. This makes it possible to 

modulate the SSP amplitude introducing relatively low change into its frequency if the 

LD bias point is chosen within one of such "steps". This performance probably can make 

the two-sectional laser diodes with optoelectronic feedback useful as tunable subcarrier 

sources for high-speed lightwave communication networks with subcarrier multiplexing. 
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Appendix A 

* 
* 
* 

C* * 
C* PROGRAM FSP * 
C* 
C* Dynamics of SSP laser diode With Optoelectronic feedback 
C* RIT,1996 

c 
c 
c 
c 

PARAMETER (NVAR=3,NMAX=50,KMAXX=1000,MSTEP=200000,BRK=4) 
IMPLICIT REAL (A-H,0-Z) 

DIMENSION YSTART(NVAR),xp(KMAXX),yp(NMAX,KMAXX),yt(NVAR,MSTEP), 
* H(MSTEP),TF(MSTEP) 

COMMON /SSPLD/ TAUB 1 ,GAMMA 1 ,TAMMA 1 ,X 10,Y 10,FB 1 ,EICH 
COMMON /ODE/ tl,t2,eps,hl,HMIN,nok,nbad;N 
COMMON /path/ kmax,kount,dxsav,xp,yp 
COMMON /FILDATA/DELTA_F,S 1 ,S2,H0,F 1 ,F2,TETA 
COMPLEX FUNC.Ji 
COMPLEX TRAN_F,SINC 
EXTERNAL derivs,bsstep,FILTERH 
EXTERNAL TF_RE,TF_IM,TRAN_F,SINC 

C    Get parameters (SSP LD and computational) 
C 

EICH=0.1 
Ji=CMPLX(0.0,1.0) 

CALL GETPAR 

kmax=100 
DO 10 I = 1,NVAR 
YSTART(I) =0.0001 

10      CONTINUE 

C 

C 
!     Initialize the SSP Laser Diodes and Feedback. 

C    Integration over the interval (tl ,t2) 
C 

NN=(t2-tl)*(F2-Fl) 
NF=NN*2 
DELTA_t=(t2-tl)/NN 
DELTA_F=l/(2*(t2-tl)) 

! Time-domain mesh 

! Frequency-domain mesh 

C 
C 
C 
C 

xl=0 
x2=0 
dxsav=DELTA t/50 

Calculating the impulse response 
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D0 14J=1,NN 
H(J)=0.0 
TF(2*J-1)=0.0 
TF(2*J)=0.0 

14       CONTINUE 

DO 11 J=0,NF-1 ! Setting up the transfer function array 

FUNC=TRAN_F(J) 
TMP=REAL(FUNC) 
TF(2*J+1)=TMP 
TF(2*J+2)=IMAG (FUNC) 

11       CONTINUE 
C 
C 
C 

C 

CALL FOURl(TF,NF,l) ICalculating Inverse Fourier Transform, subroutine FOUR1 
! from    Numerical Recipes 

DO 13 J=1,NN ! Picking up values of impulse response 
FI=-3.14159*(F2-F1)*DELTA_T*(J-1) ICanceling quickly oscillating factor 
H(J)=TF(2*J-l)*COS(FI)-TF(2*J)*SIN(FI) 

13        CONTINUE 

DO 17 J= 1 ,NN ! Inverse Fourier Transform finally 
H(J)=H(J)*DELTA_F 

17       CONTINUE 
C 
C 

DO20JJ=l,NN 
xl=x2 
x2=xl+DELTA_t 

C 
FBI =0.0 
D0 12N=1,JJ 
FB 1=FB l+yt(3,N)*H(JJ-N) ! Value of convolution for the moment JJ 

12       CONTINUE 
FBl=FBl*DELTA_t 

CALL odeint(YSTART,NVAR,x 1 ,x2,eps,h 1 ,hmin,nok,nbad, 
* derivs,bsstep) ! Produce the solution of LD equations for JJth step 

C ! Subroutine ODEINT from Numerical recipes 
D0 15I=1,NVAR 

yt(I,JJ) = YSTART(I) 
15       CONTINUE 

C 
20      CONTINUE 

C 
C 

OPEN (l,FILE='ssp.out\STATUS='lJNKNOWN')     lOutput the result to a file 
D0 99I=1,(NN/BRK) 

J=I*BRK 
WRITE (1,100) REAL(J)*DELTA_t, yt(l,J), yt(2,J), yt(3,J),H(J) 

99       CONTINUE 

27 



CLOSE (1) 

100      FORMAT (1X,F8.4,2X,3F14.6,2X,F16.8) 

STOP 
END 

SUBROUTINE GETPAR 
C 
C 
C 
C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 
C 

C 
C 

Get laser diode, feedback, and odeint parameters and store them in common blocks SSPLD, F1LDATA 
and ODE respectively. 

IMPLICIT REAL (A-H,0-Z) 
COMMON /SSPLD/ TAU_B 1 ,GAMMA 1 ,TAMMA 1 ,X 10,Y10,FB 1 ,EICH 
COMMON /ODE/ tl,t2,eps,hl,HMIN,nok,nbad)N 
COMMON/FILDATA/DELTA_F)H0,S1,S2)F1,F2,TETA 
OPENO.FILE^ssp.in'.STATUS^OLD') 

TSLD parameters. 

READ(1,*)TAU_B1 
READ(1,*)GAMMA1 
READ(1,*)TAMMA1 
READ(1,*)X10 
READ(1,*)Y10 

ODEINT parameters 

READ(l,*)tl 
READ(l,*)t2 
READ(l,*)eps 
READ (1,*) hi 
READ(1,*)HMIN 

FEEDBACK Parameters 

READ (1,*) HO 
READ (1,*) SI 
READ(1,*)S2 

C 

C 

! Carrier lifetime ratio 
Igain ratio 
INormalized photon lifetime 
INormalized pumping rate in section A 
INormalized pumping rate in section B 

! starting point of integration 
lend point of integration 
! starting point of integration 
! initial step size 

[minimum allowable step size (0.1 ps) 

! Feedback gain 
! Feedback lower frequency 
! Feedback upper frequency 

READ(1,*)N 
READ(1,*)F1 
READ(1,*)F2 
READ(1,*)TETA 

CLOSE (1) 

RETURN 
END 

ITotal integration steps=2**N 
! Frequency region lower frequency 
! Frequency region upper frequency 
! Feedback delay time 
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SUBROUTINE derivs(T,Y,DYDT) 
C     
c 
C     Rate equations for two coupled SSP laser diode with optoelectronic feedback. 
C    For a description of parameters, see subroutine GETPAR. 
C 
C 

IMPLICIT REAL (A-H.O-Z) 
DIMENSION Y(3),DYDT(3) 
COMMON /SSPLD/ TAU_B 1 ,GAMMA1 ,TAMMA1 ,X 10,Y 10,FB 1 ,EICH 
COMMON/FILTDATA/DELTA_T,A,W0,IORDER 

C 
C    Rate equations for the TSLD . 
C 

DYDT(l) = -(Y(1)-X10)-Y(1)*Y(3)+(1-EICH)*FB1 
DYDT(2) = -(Y(2)-Y10)/TAU_B1-GAMMA1*Y(2)*Y(3)+EICH*FB1 
DYDT(3) = TAMMA1*(Y(1)+Y(2)-1.0)*Y(3) 
RETURN 

END 
C 
C 
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Appendix B 

o/0****************************************** 

%* * 
%* LAN.M * 
%*        Stability analysis for SSP laser diodes * 
%* RIT, 1996 * 
%****************************************** 

% 
% 

% 
% 

xOl =2.0 
x02=4.0 

Gaina = 0.3 
Gainb = Gain_a 

fl =0.1 
0 = 5.0 
gamma = 1/0.325 
taubl = 1.65 
tau_ph = IE-12 
tau_e= 1E-09 
Gtilda = 20.0 
h = 0.1 
yO = -l 

sl=fl*2*pi 
s2 = f2*2*pi 

alfa=l/(sl*s2) % 
beta = (l/sl+l/s2)*j 
taur = tau_ph/tau_e 
taub=l/taubl 
HaO=j*(l-h)*Gain_a 
HbO = j*h*Gain_b*gamma 

for i= 1:100, 
x0=x01+((x02-x01)/100)*i; 

Starting and ending values for xO 

Net gain to sections A 
andB 

% Filter, corner frequencies 

% TSLD parameters 

Calculation of feedback parameters 

% Loop for eigenvalues of (8)-(9) 

Di = sqrt((gamma*taub*(x0-l)+y0-l)A2+4*gamma*taub*(x0+y0-l)) 
ze = (l/(2*gamma*taub))*(gamma*taub*(xO-l)+yO-l+Di); 
xe = x0/( 1 +ze); o/o Equilibrium points 
ye = y0/(l+gamma*ze*taub); 

A = +l; 
B = x0/xe+taubl+gamma*ze; 
C = (xO/xe)*(taubl+gamma*ze)+Gtilda*ze*ye*gamma+Gtilda*ze*xe; 
D = Gtilda*ze*(ye*gamma*xO/xe+xe*(taubl+gamma*ze)); 

c5 = -alfa*A; 
c4 = beta*A-alfa*B; 
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c3 = A+beta*B-alfa*C; 
c2 = B+beta*C-alfa*D-Gtilda*ze*HaO-Gtilda*ze*HbO; 
cl =C+beta*D-Gtilda*ze*(taubl+gamma*ze)*HaO-Gtilda*ze*(xO/xe)*HbO; 
cO = D; 

C=[c5,c4,c3,c2,cl,c0]; 
r=roots(c); 
im_korenl(i)= 
im_koren2(i)= 
im_koren3(i)= 
im_koren4(i)= 
im_koren5(i)= 

mag(r(l)) 
mag(r(2)) 
mag(r(3)) 
mag(r(4)) 
mag(r(5)) 

% Roots of the characteristic equation 

end 

re_koren 1 (i)=real(r( 1)); 
re_koren2(i)=real(r(2)); 
re_koren3(i)=real(r(3)); 
re_koren4(i)=real(r(4)); 
re_koren5(i)=real(r(5)); 

y=linspace(x01,x02,100) 

subplot(2,l,l) 
plot(y,im_koren3,y,im_koren4,y,im_koren5) 
ylabel('Im(s)') 
xlabel('xO') 
grid 
subplot(2,l,2) 
plot(y,re_koren3,y,re_koren4,y,re_koren5) 
ylabel('Re(s)') 
xlabel('xO') 
grid 

% Plotting 
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