
PffiTHmunOff CTÄTEMEHT A

Approved for pafeSIss r®l«a®e?

A Nitpick Analysis of Mobile IPv6

Daniel Jackson" Yuchung Ng6 Jeannette M. Wing

March 1998

CMU-CS-98-113

"MIT Lab. for Computer Science, 545 Technology Square, Cambridge, MA 02139
6Computer Science Department, Cornell University, Ithaca, NY 14853

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This paper was submitted to Formal Aspects of Computing, September 1997, and is based on

work done while the first and second authors were at Carnegie Mellon University.

This research is sponsored in part by the Defense Advanced Research Projects Agency and the WnfftM^Jboratory,
Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and Rome Laboratory, Air
Force Materiel Command, USAF, F306602-97-2-0031, and in part by the National Science Foundation under Grant
No. CCR-9523972. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the IWense Advanced Research Projects Agency Rome Laboratory or the U.S. Government.

BSOm 0J3

Keywords: partial specifications, model checking, Nitpick/NP, mobile internetworking proto-
cols, IPv6

Abstract

A lightweight formal method enables partial specification and automatic analysis by sacrificing
breadth of coverage and expressive power. By design, NP is a specification language that is a
subset of Z and Nitpick is a tool that quickly and automatically checks properties of finite models
of systems specified in NP. We used NP to state two critical acyclicity properties of Mobile IPv6,
a new internetworking protocol that allows mobile hosts to communicate with each other. In our
Nitpick analysis of Mobile IPv6 we discovered a flaw in a 1996 version of the design: one of the
acyclicity properties does not hold. It takes only two hosts to exhibit this flaw. This paper gives
self-contained overviews of Mobile IPv6 and of NP and Nitpick to understand the details of our
specification and analysis.

A Nitpick Analysis of Mobile IPv6

Daniel Jackson Yuchung Ng Jeannette Wing
MIT Lab. for Comp.Sci. Computer Science Dept. Computer Science Dept.
545 Technology Square Cornell University Carnegie Mellon University
Cambridge, MA 02139 Ithaca, NY 14853 Pittsburgh, PA 15213

22 September 1997

Keywords: partial specifications, model checking, Nitpick/NP, mobile internetworking protocols

Abstract

A lightweight formal method [JW96] enables partial specification and automatic analysis by sacrificing
breadth of coverage and expressive power. By design, NP is a specification language mat is a subset of Z
and Nitpick is a tool that quickly and automatically checks properties of finite models of systems specified
in NP. We used NP to state two critical acyclicity properties of Mobile IPv6, a new internetworking
protocol that allows mobile hosts to communicate with each other. In our Nitpick analysis of Mobile IPv6
we discovered a flaw in a 1996 version of the design: one of the acyclicity properties does not hold. It
takes only two hosts to exhibit this flaw. This paper gives self-contained overviews of Mobile IPv6 and of
NP and Nitpick to understand the details of our specification and analysis.

1. Introduction

A mobile internetworking protocol (IP) is responsible for routing messages sent from one host to another
where hosts may move around to different points in the network. One of the key desired properties of any
mobile IP is that messages never travel indefinitely in a cycle. As a message hops from one point to the
next in its route, network and site resources are consumed; if there is a cycle in the route then the message
could travel forever and clog the network.

This paper discusses a formal specification of two desired acyclicity properties of the Mobile
Internetworking Protocol version 6 (IPv6) as described in the June 1996 draft standard written by the
Mobile IP Working Group of the Internet Engineering Task Force (IETF). In our analysis of Mobile IPv6
we discovered that it does not satisfy one of the acyclicity properties. Ironically an earlier version, IPv4
[J95], does. We brought this problem to the attention of one of the IPv6 designers (Johnson) who agreed
that indeed the standard's ambiguous and imprecise language admits this design flaw; a subsequent
wording change to the IPv6 documentation (1997 version) suggests a fix to the problem found.

We wrote our formal specification in NP, the input language of Nitpick, a tool for checking properties of
finite binary relations. By design, NP is a subset of Z [S92]; any Z specification expressed in terms of NP is
amenable to Nitpick analysis. Nitpick is one of the few semantic analyzers for Z. Like its successful model
checker counterparts, which greatly inspired Nitpick's design, Nitpick generates counterexamples: when a
property does not hold of a model, it informs the user of a possible state that violates this property. The
counterexample produced by Nitpick uses only two hosts to exhibit the flaw in Mobile IPv6.

In what follows we first present a description of the relevant aspects of Mobile IPv6 and a tutorial overview
of NP and Nitpick. We then present a line by line description of our NP specification and Nitpick analysis
for the acyclicity property that does not hold; we give only a nutshell summary of the specification and
analysis for the one that does, since many of the details are similar. We discuss the lessons learned about
the appropriateness of using NP and Nitpick to reason about protocols and we conclude with some general
remarks about using formalism in the design process.

2. Mobile IP

The increased use of mobile computers has grown with the demand to integrate them seamlessly into the
Internet. Users want the ability to access their personal files or the Web through their laptop whether they

are in the office, at home, or on the road. Internetworking protocols such as IP [P80] used in the Internet
today do not currently support host movement. IPv6, the next generation of IP, addresses the need to
support mobility [JP96]. This new protocol allows transparent routing of packets to mobile nodes
regardless of the mobile node's current point of attachment.

2.1. Terminology

A network is made of one or more subnets (Figure 1). There are two types of network nodes: routers, which
are used to connect subnets and never move, and hosts, which can move.

subnets

networks

Figure 1: Networks, subnets, routers (circles) and hosts (squares)

Each host has a home (subnetwork; when it moves it becomes attached to a foreign network. Associated
with each host is a home agent, a router on the host's home network, and a permanent home address. A
router is responsible for forwarding packets to hosts for which it is the home agent. A care-of address is
assigned to a mobile node only when and each time it visits a foreign network. A mobile node while away
from home has a primary care-of address and possibly other care-of addresses, i.e., those associated with
previously visited foreign networks. A correspondent node, which can be mobile or stationary, is a peer
node with which a mobile node is communicating (Figure 2).

correspondent node mobile node (at primary care-of address)

-o

mobile node (at home address)

-o home acent

foreign networks

Figure 2: Mobile node at foreign network

Each time a mobile node moves from one IPv6 subnet to another, it changes its primary care-of address,
and sends a Binding Update message containing the new care-of address to its home agent. Now when a
packet arrives for the host that just moved, the home agent will forward it to the correct address. Home
agents keep track of bindings between a host's home address and its care-of addresses, as well as a lifetime
for each binding; these bindings are kept in a binding cache. When the lifetime of a binding expires it is
safe to delete that binding from the cache. For efficiency, in Mobile IPv6 (unlike in IPv4), correspondent
hosts can send messages directly to the mobile host when it has moved; this avoids routing the message
through the home agent, only to get rerouted to the host's new location. Thus, each time a mobile node
changes its primary care-of address, it also sends Binding Update messages to each of the correspondent

nodes that may have an out-of-date care-of address for the mobile node in its binding cache. Thus mobile
nodes as well as routers have binding caches (Figure 3).

Binding Update [S -> R4] Binding Update [R3 -> R4]

correspondent node S

K)R3
home asent

Figure 3. Binding Update messages

By analogy, most students have a permanent home address, e.g., where their parents live, say New York.
When a student goes away to school, say at Carnegie Mellon in Pittsburgh, she has mail that is sent to her
home address forwarded to her school address (care-of address).1 Of course she tells her best friends her
school address so mail sent by her friends need not be directed through the New York post office (home
agent) but can go directly through the Pittsburgh post office. When she goes to work during the summer at
yet a third location, say Palo Alto, her summer job address becomes her new primary care-of address, and
again she tells her best friends where she is living for the summer. Recall that each of the bindings has a
lifetime associated with it; in the case of the summer job, for example, the binding at the Palo Alto post
office would be deleted when she starts school in the fall again.

2.2. Acyclidty Properties of Mobile IPv6

With all this moving around, especially since a mobile host can return home and visit the same foreign
network multiple times, it seems that it would be easy for a message to end up travelling in a circle, forever
trying to catch up to a host that is moving around. The crucial question is "Does Mobile IPv6 guarantee that
messages never traverse a circular route?" There are two ways that cycles might be introduced in Mobile
IPv6 since the routing information for messages is contained in the state of the network in two ways: in the
binding caches and in the messages themselves.

From the bindings in the binding caches of the nodes (routers and hosts), we can derive a transitive relation
(e.g., [New York -> Pittsburgh] and [Pittsburgh -> Palo Alto] implies [New York -> Palo Alto]) that
indicates how messages should be routed. We need to ensure that this transitive relation includes no self-
pairs (that is, routes from a host to itself). We call this property cache acyclicity. Figure 4 shows an
example of cyclic caches.

In our example, this situation would arise if at the end of the summer in Palo Alto the student took a short
vacation at home in New York before going back to school in Pittsburgh.

Nodes learn of the new location of a mobile host by information in binding update messages each of which
essentially says "Mobile node N is at host H." Mobile IPv6 should guarantee that the location information
contained in all messages does not form a cycle. We call this property message acyclicity. Figure 5 shows
an example of cyclic messages.

In the US, the yellow stickers that post offices affix to forwarded mail are the physical analog of changing packet headers to include
care-of addresses.

Figure 4: A cache cycle

Figure 5: A message cycle

What distinguishes cyclic caches from cyclic messages is that cyclic caches can be formed without the
presence of cyclic messages. Even though cyclic messages will eventually lead to the formation of cyclic
caches (as in Figure 5), a cyclic cache can form over time with only one message present in the network at
a given time. On the other hand, at least two messages are required to form cyclic messages. Because these
properties are different, we decided to analyze acyclicity of caches and acyclicity of messages separately.
We actually wrote two separate specifications and checked their properties independently. This separation
of concerns allowed us to focus on a smaller specification, and to localize the problem we discovered. The
smaller specification also resulted in a more tractable analysis. Section 4 elaborates on these issues.

3. NP and Nitpick

3.1. NP Specifications

To understand our specification and its analysis, the reader must grasp three fundamental notions - global
abstract states, implicit operations, and inductive invariants. These are common to the style of abstract
specification represented by languages such as Larch, VDM, and Z. The reader must also overcome two
incidental hurdles - the relational operators and the schema notation. These are features of Z, in a slightly
adapted form. To illustrate these ideas, we shall use a simplified version of the specification; the full
specification is given in Section 4. A full grammar and description of the specification language NP is
available as a technical report [JD96a].

Global Abstract States

We view the state of the protocol globally, in terms of sets and relations. Rather than thinking about the
contents of nodes and messages concretely, we think purely in terms of the abstract graph these contents
imply, and its properties. Take a look at Figure 5, for example. We ignore the fact that nodes A and B have
local state in which forwarding pointers are stored, and instead focus on the arcs of the graph. The entire
collection of forwarding pointers stored at nodes is modeled as a single function

caches: HOST -> HOST

with the interpretation that caches(h) denotes the location that h believes the mobile host, N, to be at. (For
simplicity, let's assume there is only one mobile host.) An immediate advantage of this global formulation
is that no special value is needed to denote a missing cache entry. The function caches is a partial function,
so that if host h has no forwarding pointer, it is simply omitted from the function's domain, and caches(h)
is not defined.

More significantly, this formulation allows us to express global properties as simple formulas involving
sets and relations. The function caches denotes paths one step long between a node and the node to which it
forwards messages for the mobile host. Composing it with itself, which we write as caches; caches, we get
a relation that denotes paths two steps long. The transitive closure caches+, defined as

caches+ = caches U (caches; caches) U (caches; caches; caches) U...

associates each host h with all the hosts through which a message originating at h will pass. Note that
caches+, unlike caches itself, does not correspond to any data explicitly stored in the system; in modelling
the protocol this distinction can be ignored.

To express the desired property that the local caches of hosts do not imply a cycle of forwarding pointers,
we just assert that caches+ has an empty intersection with the identity relation

caches+ & Id = {}

The identity relation contains a pair (h, h) for each host h. Our assertion thus says that caches+ contains no
such pair: there is no path, direct or indirect, from any host to itself.

Another easily expressed property is that the host at which the mobile host is currently docked has no cache
entry for it. Using the variable

router: HOST

to represent that host, we assert

router not in dom caches

We take a similarly global view of messages. We posit an abstract set of messages MSG which, like HOST,
has elements that are structureless identifiers, and three functions that define the origin, destination, and
content of messages:

from, to, where: MSG -> HOST

For a message m,from(m) denotes the host that created the message; to(m) denotes its final destination (set
by from(m)); where(m) denotes the believed location of the mobile host conveyed by the message. Note
again how we sidestep the question of how and where data is stored: the name of the originating host
from(m), is treated no differently from the message's content, where(m). Also, the location of the message
in the network is not modeled. This allows us to avoid describing the mechanism by which messages are
shunted around; instead we imagine an amorphous pool of messages, with hosts asynchronously inserting
and extracting messages. To ensure that a host h only extracts a message m when addressed to it, we need
only assert that

to(m) = h

It is convenient to introduce state variables solely to make the specification easier to read. The variable

updates: set MSG

for example, denoting the set of binding update messages in circulation, is the domain of each of the
message functions:

updates = dom from
updates = dom to
updates = dom where

These assertions have two roles; they define the redundant variable updates, and constrain the message
functions to have the same domains.

Relational Operators

We use a set of standard operators familiar to anyone who has studied rudimentary discrete mathematics,
although we use ascii variants so that we can manipulate and communicate our specifications without
special typesetting tools. So we write s & t for the intersection of sets s and t, rather than s nt, and e in s
rather than e e s. NP also includes the very convenient but less widely known operators of the Z
specification language. For example,

s<:r

denotes the restriction of the relation r to the pairs whose first element belongs to the set s. We play fast
and loose with these operators, so that the resulting specifications are terse and sometimes a little
mystifying. The expression

to-; where

for example, denotes the relation that maps a host A to a host B if there is a message whose destination is A
and whose content indicates that the mobile host is at B.

We often find it helpful to draw entity-relationship diagrams. From Figure 6, which shows the sets MSG
and HOST with the two relations to and where between them, we can see that the composition of to-, the
transpose of to, with where, maps a host to a host, by following to backwards for the transpose and then
where forwards.

MSG

to where

HOST

Figure 6: An entity-relationship diagram

Implicit Operations

In line with our global view of the state, state transitions are regarded as instances of operations that update
the global state. The docking of the mobile host at a fixed host, for example, might be modeled as an
operation mh_arrive that is parameterized by h, the name of the fixed host, and m, the binding update
message generated. To specify the operation, we write a constraint that relates the global state before
execution (given by some set of state variables such as caches and where) to the global state after execution
(given by the same set of variables, primed to indicate that they refer to the post-state):

mh_arrive (h: HOST; m: MSG) = [
caches: HOST-> HOST
caches': HOST-> HOST
from, to, where: MSG -> HOST
from', to', where': MSG -> HOST
router: HOST
router': HOST

I
m not in updates
from' = from U {m -> h}
to' = to U {m -> router}
where' = where U {m -> h}
caches' = caches
router' = h

]

In contrast to code, this description of the operation is rather abstract. It asserts that some message, not
currently in circulation, is created and addressed to the previous location of the mobile, that it originates
with the host h at which the mobile host has just arrived, and that its contents convey the information that
the mobile host is at h. Also, the new location of the mobile host is set to be h. The specification says
nothing about how the message is constructed and sent, nor what identifier is chosen; it simply describes
the observable effect - that some message, different from any other in circulation, is constructed and sent.
In this style of specification, there are no implicit frame conditions, so we have to say explicitly that this
operation has no effect on the host caches.

Schema Notation

Explicitly declaring the state variables is tedious and verbose; half of mh_arrive,s text is declarations. The
Z specification language has a kind of macro feature in which declarations and assertions are bundled
together into named Schemas. Subsequent references to the schema by name cause both its declarations and
assertions to be incorporated.

Our specification might then be structured as follows. First we define a schema for the state itself:

net = [
router: HOST
updates: set MSG
from, to, where: MSG -> HOST
caches: HOST -> HOST

I
updates = dom from
updates = dom to
updates = dom where

]

Now our operation can be specified more tersely as:

mh_arrive (h: HOST; m: MSG) = [
net

I
m not in updates
from' = from U {m -> h}
to' = to U {m -> router}
where' = where U {m -> h}

caches' = caches
router' = h

]

where mention of the schema net not only includes the declarations of the before and after state
components (as before), but additionally includes the global state constraints on the before and after states,
such as

dom from = updates

and
dom from' = updates'

It should now be clear why there are no implicit frame conditions. This latter constraint implies that the
variable updates must change in concert mUhfrom; adding the constraint

updates' = updates

would actually result in an operation with no executions, since there is no assignment of values to the
before and after variables for which all the constraints will be true.

Properties of the state space can likewise be written as Schemas. Our cache acyclicity property, for
example, becomes

acyclic_caches = [net I caches+ & Id = {}]

Inductive Invariants
Given a definition of the states (as some collection of variables) and some operations, we have a state
machine. It is not finite, of course, since the primitive types (HOST and MSG) are unbounded, and there are
an infinite number of sets and relations over these types, and thus infinitely many values for state variables
such as caches.

Induction allows us to reason about such an infinite state machine. Although manual reasoning about even
the simplest software design is generally difficult, the underlying principle is straightforward. Suppose the
state machine has a set of states S and a transition relation T: S <-> S, and starts in a state in the set SO. To
prove that every reachable state satisfies some property P, it is enough to show that P holds for every state
in SO, and that for every transition (s, s') in T, if P holds for s, it also holds for s'. P is then said to be an
invariant of the transition relation.

The transition relation, in our specification, is given symbolically by the set of operations. The property P
will be given as a formula. Demonstrating that P is preserved by all transitions amounts to proving
assertions of the form

OPandP=>F

where P' is the formula for P with the state variables primed, for each operation OP. For example, to show
that the caches never form a cycle, we will have to check assertions like

Claim 1 (h: HOST, m: MSG):: mh_arrive (h, m) and acyclic_caches => acyclic_caches'

In NP, this is a special kind of schema called a claim, about which more will be said later. The double
colon distinguishes it from regular Schemas belonging to the specification proper. To do a complete
analysis, it is necessary to check that every operation maintains the invariant, and that the invariant is
established initially. In practice, as here, the analysis is often focused only on a few operations likely to
contain errors.

P need not in fact be an invariant of the transition relation for it to hold in every state. T may include a
transition from a state in which P holds to a state in which P does not hold, but so long as the pre-state is
not reachable, this transition will never be executed. This means that sometimes it is necessary to
strengthen the property so that such pre-states are deemed not to be acceptable; this can always be done,
since we can define a predicate R that characterizes the set of reachable states, and then show that the
conjunction of R and P is preserved. Alternatively, the definition of T itself can be altered to eliminate these
bogus transitions.

It might seem that this difficulty - not shared by model checking techniques - is wholly bad, and that the
user's effort in formulating an invariant is unrewarded. But strengthening the invariant is not an academic
exercise, and leads to a more robust design. If a property P is true in all reachable states but not preserved
by the transition relation, this suggests a fragility in the design. A modification of one operation that
changes which states are reachable may now cause another operation to break. Requiring the strengthening
of the invariant or an explicit restriction of the transition relation (by strengthening the operation's
precondition) is necessary to ensure that the operation will work irrespective of modifications to other
operations. Modularity in reasoning thus corresponds to modularity in design.

3.2. Nitpick

Nitpick is a specification checking tool. At its core lies a model finder for relational formulas. Given a
formula with some variables denoting scalars, sets and relations, Nitpick searches for a model - an
assignment of values to the variables for which the formula is true. For an operation schema, each model is
a transition; Nitpick can therefore simulate execution of the operation. For a claim, Nitpick searches for a
model not of the formula but of its negation; these models are counterexamples that refute the claim.
Presented with the claim

Claim 1 (h: HOST, m: MSG):: mh_arrive (h, m) and acyclic_caches => acyclic_caches'

for example, Nitpick will search for a model of

mh_arrive (h, m) and acyclic_caches and not acyclic_caches'

Such a model is an instance of a transition of the operation mh_arrive from a valid state to an invalid state.
If it exists, then, it demonstrates that the invariant does not hold.

The language of first-order formulas involving binary relations is not decidable, so a search for a model
cannot terminate if no model exists. Nitpick therefore prompts the user to provide a scope that bounds the
number of elements in the primitive types. We might select, for example, a scope that bounds HOST by 2
and MSG by 3; this will result in a search for models that involve at most two hosts and three messages.

The search for models rapidly becomes intractable as the scope is increased. Fortunately, however, many
errors in designs can be exposed by considering only a small scope. In our study of IPv6, there were no
interesting cases that required more than two hosts and two messages. Moreover, by using various
reduction mechanisms, models can often be found even though the space of possible models is huge. These
mechanisms, and the rationale behind Nitpick, are discussed elsewhere [JD96b, JJD97].

4. NP Specifications and Nitpick Analysis of Mobile IPv6

We present in detail the NP specification and Nitpick analysis of the cache acyclicity property since that is
where we found a design flaw. We only briefly discuss the specification of the message acyclicity property,
highlighting how we modeled certain details about messages and why the acyclicity property holds given
our model. Details of both the specification and the analysis for message acyclicity can be found in [Ng97].

to, from, where

cache_exp_time

MSG

updates

sendjime, expjime

Figure 7: The entity-relationship diagram corresponding to the declarations of the schema Net

4.1. Specification for Cache Acyclicity

For cache acyclicity, we focus on how binding caches of the hosts change when the mobile host arrives at a
new (subnetwork and when the correspondent hosts receive a binding update message sent by the mobile
host. Figure 7 gives the entity-relationship diagram for the state space and Figure 8 gives the full
specification for the state space of the network and the two relevant operations, mh_arrive and
update_arrival. As before, we assume for simplicity that there is only one mobile host.

The Network

We build upon the specification presented in Section 3 by adding the notion of time into the model. In
IPv6, as with many network protocols, any message travelling in the network is associated with an
expiration time after which the message is silently discarded when received by hosts. Using expiration
times is necessary to prevent the indefinite circulation of messages in the network which could lead to
unnecessary consumption of network resources. We define a variable clock to represent the current global
time. The send and expiration times of packets sent from different hosts are based on the same clock and
all caches determine the expiration time of a cache entry by consulting this global clock. Lamport's
synchronized clocks would be one way to achieve a close approximation of a global clock [L78].

We now walk through the specification line by line. The first line declares three basic types: HOST, MSG,
and TS (for timestamps).

10

[HOST, MSG, TS]

Time = [
clock: TS
const timeorder: tot seq TS
const before: TS -> TS

I
before = next timeorder
not before = {}]

Hosts = [
caches: HOST-> HOST
caching: set HOST
cache_exp_time: HOST -> TS

I
dom cache_exp_time = dom caches
caches & Id = {}]

Messages = [
updates: set MSG
from,to, where: MSG -> HOST
send_time, expjime: MSG -> TS

I
updates = dom to
updates = dom from
updates = dom where
updates = dom sendjime
updates = dom expjime
(from; from-) & (to; to~) & (sendjime; sendjime-) <= Id
(from-;to)&Id = {}]

Net = [
router: HOST
Time
Hosts
Messages

I
expjime <= sendjime; before+]

mh_arrive (h:HOST; m:MSG; tTS) = [Net I
not router = h
router' = h
not m in updates
t in before+.{clock}
clock' in before+.{ clock}
caching' <= caching
cache_expjime' = caching' <: cache_expjime :> (before+).{clock'}
caches' = dom(cache_expJime') <: caches
updates' = updates U {m}
to' = to U {m -> router}
from' = from U {m -> h}
where' = where U {m -> h}
sendjime' = sendjime U {m -> clock}
expjime' = expjime U {m -> t}

1

11

update_arrival (m:MSG; keeps: set HOST) = [
Net
const Messages

I
clock' in before+.{ clock}
keeps <= caching
caching' = {to.m} U keeps
cache_exp_time' = caching' <: (cache_exp_time (+) {to.m ->exp_time.m}) :> (before+.{clock'})
caches' = dom (cache_exp_time') <: (caches (+) {to.m -> where.m})
router' = router

]

Figure 8: The specification of the network and two operations.

The state space is decomposed into several schemas: Time holds the clock and the orderings on time
stamps; Hosts holds the host caches; and Messages holds the contents and locations of the messages. These
are brought together in the schema Net.

Consider Time first. The variable clock models the current (global) time; timeorder denotes a sequence that
defines a total order on the set of timestamps. (Both tot and seq are Nitpick keywords[JC96].) The function
before denotes a binary relation on timestamps. The constraints of this schema are required, for technical
reasons, to obtain an ordering of time stamps with the expected properties.

The variables of the schema Hosts model the cache entries. Given a host h, caches(h) denotes the location
at which h believes the mobile host to be; and cache_exp_time(h), the expiration time of h's cache entry for
the mobile host. The variable caching models the set of hosts that have a cache entry for the mobile host.
The assertions of the schema say that a cache entry is always associated with an expiration time (after
which the entry becomes invalid and will be deleted) and that there are no cache cycles.

In the Messages schema, updates denotes the set of binding update messages in circulation. Given a
message m,from(m) denotes the host that created m; to(m), m's destination host; where(m), the believed
current location of the mobile host as contained in m; send_time(m), the time at which m is sent; and
exp_time(m), the time at which m will expire. The constraint

(from; from-) & (to; to-) & (send_time; send_time~) <= Id

expresses the uniqueness property of a message sent from one host to another at a given time. The
expression from; from~ denotes the equivalence relation over all messages sent by the same host, and
similarly, for the expressions to; to~ and sendjime; send_time~. The whole constraint thus says that any
two messages ml and ml with the same sender (fronuml = from.m2), the same receiver (to.ml = to.m2)
and the same send time (sendjime.ml = sendjime.nü) are the same {ml = m2). The last constraint in the
schema says that the sender and the receiver of a message cannot be the same.

By including the schemas Time, Hosts and Messages, the schema Net incorporates not only their state
components but also the relevant constraints. It adds a variable of its own - router, which denotes the host
at which the mobile host is currently docked - and an additional constraint: that the expiration time of a
message is always later than its send time. Let's examine this constraint in detail. In the subexpression

send_time; before+

we apply the forward composition operator to sendjime and before+ to obtain a function that maps a
message m in the domain of sendjime to a timestamp which is a successor of m's send time. The full
expression

exp_time <= sendjime; before+

12

then imposes the constraint relating m's expiration time to its send time. (Don't be confused by the ascii
representation of subset: <= is not the "less than or equal" operator on timestamps!).

The Two Operations

The operation mh_arrive models the docking of the mobile host at a new host. It takes three parameters: h,
the host at which the mobile host has just arrived; m, the message being sent to the previous router of the
mobile host to inform it of the mobile host's current location; and t, the timestamp used as the expiration
time of the binding update message. The first two lines

not router = h
router' = h

say that the new location of the mobile host, which is different from its previous location, is h. The third
line

not m in updates

specifies a pre-condition that m is currently not in circulation. The next line

tinbefore+.{clock}

checks that the parameter t is later man the current clock time. The expression before+.fclockj denotes the
set of timestamps consisting of successors of the clock's current time. The parameter t is later used as the
message m's expiration time. Similarly, the expression

clock' inbefore+.{clock}

advances the clock. The assertion

caching' <= caching

together say that the new set of caching messages is a subset of the old, thereby allowing any host to drop
any cache entry according to its own cache replacement policy. This loose specification is an example of
abstracting away from the details of the system: IPv6 actually uses a least recently used cache replacement
policy.

The heart of the behaviour of mh_arrive is expressed in the next two lines

cache_exp_time' = caching' <: cache_exp_time :> (before+).{clock'}
caches' = dom(cache_exp_time') <: caches

which update cache_exp_time and caches. Updating cache_exp_time involves retaining only the set of
cache entries that have neither been selected for dropping by the local cache replacement policy nor
reached the expiration time associated with them. The two conditions are satisfied respectively by
restricting the domain of the pre-state of cachejexpjime to the post-state of caching and its range to the set
of timestamps that are strictly after the clock's updated time. The variable caches is updated to ensure that
its domain and cache_expj\me,% domain are the same. Finally, the expressions

to' = to U {m -> router}
from' = from U {m -> h}
where' = where U {m -> h}
sendjime' = send_time U {m -> clock}
exp_time' = expjime U {m -> t}

13

say that m will be circulating in the network and record the information associated with the message m: m,
which will expire at some future time, t, is sent by h at the current clock's time to the previous router
informing it that the mobile host is currently at h.

The second operation update _arrival, parameterized by a message m and a set of hosts keeps, describes
what happens when a message arrives at its destination. The receiver simply modifies the cache entry for
the mobile host according to the information in the binding update message. We explain only the
significant differences between its set of constraints and mh_arrive's.

First, note that declaring the schema Messages to be constant asserts implicitly that no component of
Messages changes, and thus obviates the need for constraints such as

updates' = updates

The variable caching is updated by the assertions

keeps <= caching
caching' = {to.m} U keeps

As before, the subset relation abstracts from the possibly different local cache replacement policies of the
different hosts. Some arbitrary set of hosts drop the entries from their caches. The union operation,
together with the relation override operation ((+)) used in the following expressions, imply that the
corresponding cache entry for the mobile host is modified unconditionally when the destination host
receives the binding update message. The expressions

cache_exp_time' = caching' <: (cache_exp_time (+) {to.m -> exp_time.m}) :> (before+.{clock'})
caches' = dorn cache_exp_time' <: (caches (+) {to.m -> where.m})

update the variables cache_exp_time and caches in the same way as we did for mh_arrive, except that we
now insert a new entry into the cache (or modify an existing one) based on the information contained in the
message. There are two implications for the unconditional modification of the cache entries. The first is
that we are assuming that a cache has infinite storage capacity. The use of the union and relational override
operators means that we are adding a new entry into the cache regardless of whether there is any space left
in the cache. The second implication is that while it is true that the cache can accommodate the new
binding update message even if it is full (in which case the host can selectively replace an existing cache
entry with a new according to its own cache replacement policy), the use of the relational override operator
in the specification means that the host is deprived of the freedom to choose whether or not to accept the
binding update message and modify the cache entry accordingly. In a real network, of course, the host can
accept the arriving packet at its discretion. As far as our cyclic cache property is concerned, however,
discarding the message would not lead to any change to our model.

4.2. Analysis for Cache Acyclicity

The property we want to check is that the cache entries of the local caches of hosts do not form a cycle of
forwarding pointers. If there were a cycle in the caches then a message could circulate in the network
indefinitely, obviously an undesirable behaviour. Recall that we can state this property as an invariant in
NP

acyclic_caches = [Net I caches+ & Id = { }]

The NP claims that tnh_arrive and update_arrival preserve cache acyclicity are

Claiml (h:HOST; m:MSG; t:TS)::
mh_arrive (h, m, t) and acyclic_caches => acyclic_caches'

14

Claim2 (m:MSG; ks: set HOST)::
update_arrival (m, ks) and acyclic_caches => acyclic_caches'

We execute the claims with the three basic types bounded by the scopes \HOS1\ = 3, \MSG\ = 1 and ITS'! =
3. Here is the justification for our choice: For HOST, although it suffices to model a cyclic cache with just
two hosts, a less trivial case would be if three hosts were involved. For MSG, one message suffices since
each operation requires only one message for it to execute. For TS, at least two timestamps are needed since
two are needed for each operation to proceed (to update the clock during the transition). However, with
only two timestamps, all cache entries will reach their expiration time when the clock is being updated,
which would trivially eliminate the possibility of forming a cycle of forwarding pointers; hence we need at
least three timestamps. In practice, we use Nitpick iteratively by trying different combinations of scopes -
both to validate our understanding of what is necessary and sufficient to establish or disprove a claim and
to keep the turnaround time for Nitpick feedback within reasonable bounds.

The output from the execution of Clatml is shown in Appendix 1. Nitpick fails to find any
counterexamples. We can in fact argue that the claim holds for any scope. In mh_arrive we update
cachejBxpjime by trirnming out the out-of-date cache entries and by not adding any new entries. By
restricting the domain of caches to be the same as that of cache_exp_time, we are in the best case not
removing anything from caches and certainly not adding anything to it Thus, if we know that caches was
acyclic before executing the operation it remains acyclic after.

The output from the execution of Claim2 is shown in Appendix 2. Nitpick produces a counterexample. Let
us use Nitpick's output to help us figure out what the problem is. The only relevant effect of executing
update_arrtval is that the receiver of the binding update message, m, modifies its cache entry for the mobile
host according to the information in m about the current location of the mobile host. The relation before
gives an ordering on the timestamps tO, tl, and tl such that tO<tl < tl, as reflected in the lines

before: TS <-> TS is
{tO -> tl,
tl -> t2 }

The lines

cache_exp_time: HOST -> TS is
{ hi -> t2 }

cache_exp_time': HOST -> TS is
{hO -> t2,
hi -> t2 }

confirm that the cache entries for both hO and hi have not yet expired, since the expiration time for both is
tl, while the lines

clock: TS is tO
clock': TS is tl

indicate that the current time is tl. The lines

caches': HOST -> HOST is
{hO->hl,
hl->hO}

show that the two hosts, hO and hi, are involved in the cyclic set of cache entries; each host thinks that the
mobile host is docked at the other. The lines

router: HOST is hi
router': HOST is hi

15

show that the mobile host is docked at router hO throughout the operation. Before the operation, that is,
before the binding update message is received by hO, the cache entry in hi points to hO, as shown in the
lines

caches: HOST -> HOST is
{hl->hO}

which means that hi thinks that the mobile host resides at hO. During the operation, router hO, as shown in
the lines

to:MSG->HOSTis
{mO->hO}

receives the message mO, given by

m: MSG is mO

from hi informing hO that the mobile host is currently at hi, indicated by the lines

where: MSG -> HOST is
{mO->hl}

and hence requesting hO to create a new cache entry point to hi for the mobile host. It is this modification
of the cache entry for hO that results in a cycle. After the operation, hO contains a cache entry pointing to hi
and hi still contains an unexpired cache entry pointing to hO.

At first glance it may seem strange that hi thinks that the mobile host is at hO even though it is actually at
hO before and after the operation. Here is the key insight to how this scenario can arise for real: hi is a
router that the mobile has visited previously. Before the operation, the mobile host has just returned to the
same location again, that is, hi. It is plausible for hi to contain a cache entry for the mobile host since
when the mobile host left hi in an earlier visit to hO, it sent hi a binding update message saying that it has
moved to hO. This message causes hi to create a cache entry pointing to hO for the mobile host. Some time
later when the mobile host moves back from hO to hi, the mobile host similarly sends a binding update
message to hO requesting hO to create a cache entry pointing to hi, resulting in the formation of a cycle.

The counterexample reflects a subtle flaw in the Mobile IPv6 protocol. Nowhere in the draft standard is it
specified that the mobile host, h, needs to inform router hi that it is revisiting hi and thus to request hi to
remove its cache entry for h. In fact, the draft standard provides no mechanism (e.g., no message type) that
would enable the mobile host to tell the router to stop forwarding messages destined for the mobile host
when it comes back to the same location. Since the mobile host is obliged to send a binding update message
to any previous router, including one it has already visited, that previous router will make a cache entry for
the mobile host. Since there is no means for the mobile host to inform the router that it is revisiting, a cyclic
set of cache entries can be formed. This flaw exists in IPv6 but not in IPv4. So one way to resolve the bug
is to adopt IPv4's solution, which is to require that the mobile host send a message to the router saying that
it has returned so the router can stop forwarding messages for the mobile host. In talking with the IPv6
designers, it seems that they wanted to reduce the number of messages required to support mobility, given
the inevitable increase in the number of messages to be exchanged. Whereas IPv4 requires this additional
message needed to inform hi of the mobile host's return to hi, this message is omitted from IPv6's design.

Finally note that although the cyclic cache counterexample is formed between only two hosts, the scenario
obviously generalizes to the case where any number of hosts (greater than two) are involved in a cycle.

16

4.3. Acyclicity of Messages

Message acyclicity means that location information contained within all circulating messages does not form
a cycle. Determining that message acyclicity holds hinges largely on our abstract model of global time and
correspondingly, our use of lifetimes in messages. At any point in time, if there are two or more binding
update messages for a mobile host circulating in the network, only one is ever considered valid where
validity depends on the message expiration time. Message acyclicity considers only valid messages; and
since there is only at most one valid message per mobile host, no cycle can ever form.

Thus, we need to assume that at any point in time we can always determine which messages are valid or
not. In particular, IPv6 requires that upon receipt of a binding update message a host determines whether
the message is valid by checking that it has not reached its maximum lifetime and that its lifetime is
nonzero; furthermore, all other binding update messages for that same mobile host are considered invalid.
If an invalid binding update message is received by a host then it is silently discarded.

In our specification, since we model the net globally, it is easy to state in one fell swoop that a subset of
messages in the network become invalid: We model a set of valid messages and simply update this
variable appropriately in both the mh_arrive and update_arrival operations. Without explaining the
(admittedly obscure) right hand side of the constraint, here are the relevant lines extracted from the
specification for mh_arrive:

valid: set MSG

valid' = (valid U {m}) \ ((dom (expjime' :> (before-)+.{clock}))
U (dom ((sendjime'; before; before) :> (before~)+.{clock'})))

The point is that global state variable valid gets updated in some way. (Implementing this effect of an
atomic update to a global set of messages relies on the use of sequence numbers in IPv6 message headers
so a host can determine recency and duplication of received messages.)

In our Nitpick analysis of message acyclicity for scopes of three hosts, three messages, and three
timestamps, Nitpick failed to find any counterexamples.

Intuitively, here is why. When the mobile host moves from router hO to hi, it sends a binding update
message m to router hO so that hO will be able to cache its current location. If there are any binding update
messages other than m with destination hO that are currently circulating in the network, these messages will
become invalid since m is a message sent by the mobile host and therefore contains the most updated
information about the mobile host. In our model, when a mobile host sends a binding update message to a
correspondent host, all other (circulating) binding updates currently sent to mis correspondent host become
invalid and hence will subsequently be discarded when received by the host. Thus we eliminate the
possibility of the formation of a message cycle during the execution of either the mh_arrive or
update _arrival operations.

5. Discussion

This case study was done not only to specify properties of Mobile IPv6 formally but also to test the
limitations of NP and Nitpick as a formal method. In this section we also reemphasize, giving specific
examples, the importance of modularity and abstraction in writing formal specifications.

5.1. Expressiveness of NP

NP has no quantifiers. In theory, quantifiers are never necessary: any first-order constraint can be written
with relational operators alone. In practice, the omission of quantifiers can make constraints hard to read
and write. Here is an example taken from our specifications. Suppose we want to say that two messages

17

with the same source, the same destination, and the same send time must be the same. With quantifiers, we
can express the uniqueness property as

Vml,m2:MSG.
from.ml = from.m2 A to.ml = to.m2 A send_time.ml = send_time.m2 => ml = m2

In contrast, NP forces us to write:

(from; from-) & (to; to~) & (send_time; send_time~) <= Id

Some users find this annoying, but others take readily to this style. There are in fact several recurrent
idioms which, once familiar to the specifier, make such constraints easy to handle. The expression (f; f~)
for example, is commonly used to define, for a function/, the equivalence that equates domain elements
mapped to the same range element.

5.2. Effectiveness of Nitpick As a Specification Tool

Because NP is not decidable, automatic checking cannot be sound and complete. Nitpick cannot verify
properties; when no counterexample is found, there is no guarantee that one would not be found by a search
in a larger scope. This limitation only diminishes Nitpick's utility when assurance is the aim of the analysis.
When the aim is to find violations of properties as rapidly and easily as possible, Nitpick works well.

Nitpick currently handles only small specifications, and can only analyze small scopes. Despite the various
reduction mechanisms used by Nitpick to reduce the search space (derived variable analysis, short-circuit
enumeration, and isomorph elimination), for our specifications it takes a thousand minutes to complete the
search (i.e., in the absence of counterexamples) for a scope of \HOST\ = 3, \MSG\ = 3 and \TS\ = 3.

A subtle change in the specification can have a major effect on Nitpick's performance. For example, when
a state variable is declared as a function, Nitpick will only enumerate function values. If, however, one
merely asserts in the body of the specification that the variable is a function, the variable is treated as an
arbitrary relation, and non-functional values are generated and then subsequently eliminated by testing - a
process that can take much longer.

Despite its limitations, Nitpick is easy to use. One of the authors was a relative novice to formal
specification, and found that it was particularly helpful to have Nitpick generate instances of Schemas and
thus demonstrate consistency. Using Nitpick makes specifying a more compelling and enjoyable activity.

5.3. How Nitpick Influenced the Way the Specification is Written

Nitpick cannot generally analyze a specification that was developed without Nitpick in mind. However, by
careful and tailored application of two standard principles - modularity and abstraction - it is possible to
obtain a specification that is both faithful to the problem and analyzable.

Modularity. The modularization of a specification involves breaking the specification that is composed of n
properties of the system, where n >= 2, into n separate specifications, each of which attempts to capture a
single property. Presumably, each of the separate specifications is smaller in size when compared to the
original specification and consequently, modularity makes the specification more readable. The major
benefit that comes with modularity, however, is the reduction in runtime, which is especially desirable in
light of the problem of Nitpick's limitation to handling only small specifications because of the amount of
time required to search through a given state space. Decomposing the specification results in the possibility
of eliminating variables and operations that are irrelevant to the property we are trying to prove of a
decomposed specification. Here is an application of the principle of modularity in our specifications: We
postponed the introduction of the definition of validity until we presented the specification for message

18

acyclicity, since the notion of validity is irrelevant to proving the cache acyclicity property. For the same
reason, the state variables caches and cache_exp_time, which are specific to cache acyclicity, are omitted
from the second specification. The smaller the number of state variables is, the smaller the number of cases
the checker needs to examine and hence the smaller the amount of time the checker takes to search through
the entire space.

Abstraction. The complexity involved in a software system in the real world makes it difficult to manage. A
specification gives us a nice abstraction that hides the details of the system in the model. Here are three
applications of abstraction in our specifications. Although it is natural to think of incorporating these details
into the specifications so as to make them more complete, they are irrelevant with respect to the two
properties we are trying to prove and hence will only be a source of overhead.

• Acknowledgment messages: It is specified in the Mobile IPv6 protocol that the correspondent host
should send back an acknowledgment message upon the receipt of a binding update message to its
sender. The reason we can abstract from modelling these acknowledgment messages is that the sole
function of an acknowledgment message is to acknowledge the receipt of a data message by a receiver
without altering the cache entries of the hosts and hence these messages are irrelevant to the properties
we are trying to prove.

• Encapsulation and tunneling of packets: Encapsulation is the process of wrapping a network header to
the packet which contains the routing information. Tunneling is simply the path followed by a packet
while it is encapsulated. Encapsulation and tunneling occur only when the correspondent node sending
the packet to the mobile host cannot find its binding cache entry for the mobile node's care-of address,
in which case the correspondent node sends that packet to its home agent where the packet will be
intercepted, encapsulated, and then tunneled to the home agent Our ability to abstract from modelling
encapsulation and tunneling arises from the fact that we are concerned only with the possibility of the
formation of a message cycle, regardless of whether the messages are encapsulated/tunneled.
Essentially we take into account every valid message that is sent across the network and do not
distinguish between encapsulated/tunneled packets and non-encapsulated/non-tunneled packets.

• Home agents: A home agent is a router in the home network of the mobile host that encapsulates
packets destined for the mobile host and tunnels them to its current location while it is away from the
home network. Modelling the home agent is likely to introduce a serious amount of complications,
since the home agent performs specific functions for the mobile host and hence has to be treated
differently from our routers in the network. On the other hand, the presence of a home agent does not
play any role in the formation of a cyclic cache, since the correspondent hosts do not cache the location
of the mobile host when it is at home.

6. Conclusions

Our study of IPv6 illustrates, more generally, our attitude to formal methods [JW96]. Formality is not an
end in itself, and indeed we recognize that a formal specification is usually harder to write (and read) than
an informal one. Not many problems can be solved entirely by formal means, or merit complete
formalization. But at the same time, most practical software designs have subtle or critical aspects that can
be effectively treated with formal methods. Using abstraction, it is possible to specify and analyze such
aspects in isolation, expending only as much effort as is needed to understand the design's subtleties and
expose its deficiencies.

Judiciously applied, then, formalism can be of great benefit. Here, it helped in two ways. First, describing
the protocol in terms of abstract, global states made it easier to capture the properties motivating its design.
The designer of the protocol complained that our formulation was at variance with his operational
intuitions, but paradoxically, it seems that it was precisely taking a different viewpoint that exposed the
protocol's flaws. After we walked him through an earlier version of an NP specification of Mobile IPv4
during which we discovered a critical design subtlety, he readily and admittedly added assertional thinking
to his repertoire of "mental tools". Second, casting the description in a formal notation made it amenable to

19

automatic analysis. Whether we would have found the flaws without Nitpick is not clear, but a manual
analysis would certainly have been tedious and error prone.

Acknowledgments

This work was done when the first and second authors were at Carnegie Mellon University. The authors are
grateful to David Johnson, the principal designer of the mobile protocol studied here, for patiently
explaining the operation of the protocol and its intricacies.

This research is sponsored in part by the Defense Advanced Research Projects Agency and the Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Command, USAF, F33615-93-1-1330, and
Rome Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-97-2-0031 and
in part by the National Science Foundation under Grant No. CCR-9523972. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
annotation thereon.

The views and conclusions contained herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency Rome Laboratory or the U.S. Government.

References

[JD96a] Daniel Jackson and Craig A. Damon. Nitpick Reference Manual. CMU-CS-96-109. School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, January 1996.

[JD96b] Daniel Jackson and Craig A. Damon. "Elements of Style: Analyzing a Software Design Feature
with a Counterexample Detector," IEEE Transactions on Software Engineering, Vol. 22, No. 7, July 1996,
pp. 484-495.

[JJD97] Daniel Jackson, Somesh Jha and Craig A. Damon, "Isomorph-free Model Enumeration: A New
Method for Checking Relational Specifications," to appear, ACM Transactions on Programming
Languages and Systems.

[JW96] Daniel Jackson and Jeannette Wing, "Lightweight Formal Methods," IEEE Computer, April 1996,
pp. 21-22.

[JP96] David B. Johnson and C. Perkins, "Mobility Support in IPv6," Mobile IP Working Group
INTERNET-DRAFT, June 1996.

[J95] David B. Johnson, "Scalable Support for Transparent Mobile Host Internetworking," Wireless
Network, Vol. 1, October 1995, pp. 311-321.

[L78] Leslie Lamport, "Time, Clocks, and the Ordering of Events in a Distributed System," CACM,
Volume 21, Number 7, July 1978, pp. 558-565.

[P80] J.B. Postel, "Internetworking Protocol Approaches," IEEE Transactions on Communications, April
1980, Vol. 28, pp. 604-611.

[S92] J.M. Spivey, The Z Notation: A Reference Manual, second edition, Prentice-Hall, 1992.

20

Appendix 1: Nitpick Transcript for Analysis of Claiml

Checking claim "Claiml"
Creating Executable ...
Finished creating executable
Elapsed time 0:00.21

Isomorph elimination on
Derived variable detection on
Short circuiting on
Restricting HOST to 3 elements { hO, hi, h2 }
Restricting MSG to 1 elements { mO }
Restricting TS to 3 elements {tO, tl, t2 }

Completed checking entire case space

Finished checking claim "Claiml"
After checking 122299 cases of 3.91379e+ll possible

220 unlabeled cases examined
10756 unlabeled cases skipped due to short-circuiting

No counter examples were found
Executed 1.16908e+07 instructions checking claim
Elapsed time 0:48.88

Appendix 2: Nitpick Transcript for Analysis of Claim2

Checking claim "Claim2"
Creating Executable...
Finished creating executable
Elapsed time 0:00.66

Isomorph elimination on
Derived variable detection on
Short circuiting on
Restricting HOST to 3 elements { hO, hi, h2 }
Restricting MSG to 1 elements { mO }
Restricting TS to 3 elements {tO, tl, t2 }

Claim "Claim2" is contradicted in case:

cache_exp_time: HOST -> TS is
{hl->t2}

cache_exp_time': HOST -> TS is
{h0->t2,
hl->t2}

caching: Set HOST is { hi }
caching': Set HOST is { hO, hi }
caches: HOST -> HOST is

{hl->h0}
caches': HOST -> HOST is

{ hO -> hi,
hl->h0}

clock: TS is tO
clock': TS is tl
expjime: MSG -> TS is

{ mO -> t2 }
exp_time': MSG -> TS is

21

{mO->t2}
from: MSG-> HOST is

{mO->hl }
from': MSG-> HOST is

{mO->hl }
before: TS <-> TS is

{tO -> tl,
tl -> t2 }

m:MSGismO
router: HOST is hi
router': HOST is hi
sendjime: MSG -> TS is

{mO->tO}
send_time': MSG -> TS is

{ mO -> tO }
ks:SetHOSTis{hl }
timeorder: tot seq TS is < tO, tl, t2 >
to: MSG-> HOST is

{mO->hO}
to': MSG-> HOST is

{mO->hO}
updates: Set MSG is { mO }
updates': Set MSG is { mO }
where: MSG -> HOST is

{mO->hl}
where': MSG-> HOST is

{mO->hl }

Completed checking entire case space

Finished checking claim "Claim2"
After checking 846411 cases of 4.34865e+10 possible

301 unlabeled cases examined
24787 unlabeled cases skipped due to short-circuiting

960 counter examples found
Executed 6.38056e+07 instructions checking claim
Elapsed time 5:01.35

22

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

