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Abstract 

It has been amply demonstrated in recent years that careful attention to the 
structure of systems software can lead to greater flexibility, reliability, and 
ease of implementation, without incurring an undue penalty in performance. 
It is our contention that advanced programming languages—particularly 
languages with a mathematically rigorous semantics, and featuring higher- 
order functions, polymorphic types, and a strong module system—are ideally 
suited to expressing such structure. Indeed, our previous research has shown 
that the use of an advanced programming language can have a fundamental 
effect on system design, leading naturally to system architectures that are 
highly modular, efficient, and allow re-use of code. 
We are thus working to demonstrate the viability and benefits of advanced 
languages for programming real-world systems, and in particular Active Net- 
works. To achieve this, we have organized our research into the areas of 
language technology, safety infrastructure, compiler technology, and applica- 
tions. This report describes the current plans for this effort, which we refer 
to as the Fox project. 
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1    Motivation 

In a large heterogeneous environment, it is a significant challenge to support 
the use of mobile code without sacrificing safety, reliability, or performance. 
Achieving this is fundamentally a question of supporting large-scale modu- 
lar construction of software. To ensure predictability and reliability of the 
composite system, the possibilities of interaction between components must 
be specified and enforced. The forms of interaction include not only fa- 
miliar notions of interfaces, or API's, to which components must adhere, 
but also encompass more fine-grained properties such as bounds on resource 
consumption. These properties must be precisely specified so that they may 
be enforced; without specification, enforcement is impossible. Conversely, 
specification without enforcement is at best an exercise in documentation, 
rather than a means of ensuring integrity. In short, the core enabling tech- 
nology for achieving dynamic extensibility of software systems is verified 
encapsulation of system components. 

The goal of an Active Network is to exploit such dynamic extensibility of 
software systems to achieve unprecedented degrees of flexibility, robustness, 
and efficiency in modern high-speed networks [25]. The key idea is to use 
"active packets", or "capsules", that contain code to be incorporated into a 
network router or other active component of a network to modify its behav- 
ior in an application-specific manner. Such a capability promises to improve 
flexibility and quality-of-service in the network, particularly in multicast ap- 
plications, as well as accelerate evolution of the networking infrastructure. 
The power of this technique is essentially unlimited: in principle, the active 
node could be completely re-programmed by an active packet! Obviously 
the behavior of active packets must be limited so that malicious, or other- 
wise undesirable behavior is precluded. It is the responsibility of the active 
network component to specify the "rules of engagement" for active packets, 
and to ensure that these rules are respected in order to protect the integrity 
of the network. 

How might this be achieved? Current methods rely mainly on dynamic 
checking to ensure that the behavior of components is suitably constrained, 
for example, through the use of interpreted virtual machines [13, 26]. Com- 
ponents are written in an abstract machine code that is inherently safe to 
execute on an active node — the code is executed by a trusted interpreter 
that executes on behalf of the component. This amounts to an elaborate 
set of run-time checks to ensure safety. Of course this raises problems of 
efficiency, since the overhead of interpretation and dynamic enforcement is 
substantial.  Efficiency can be regained, to some extent, by using "just in 



time (JIT)" compilers [21] to translate virtual machine code to real hardware 
instructions. However, run-time checks to ensure safety are still required, 
and, what is worse, the complexity of the trusted code base increases sub- 
stantially to include the JIT compiler itself, thereby reducing the reliability 
of the network as a whole. 

Another approach to run-time encapsulation is Software Fault Isolation 
(SFI) [28]. To avoid interpretation overhead, machine binaries are edited at 
load time to ensure that memory accesses are limited to a specific allowed 
range so that the component at worst self-destructs, rather than destroys 
the context in which it executes. SFI is most effective for imposing coarse 
restrictions on memory usage; its performance degrades rapidly when more 
fine-grained restrictions are imposed. 

Besides the performance problems, run-time encapsulation techniques 
also suffer from being tied to a specific notion of "safe" execution. The 
trusted computing base (for example, the virtual machine) must be con- 
structed so as to enforce all of the safety rules, and if new rules are added 
later then this computing base must be modified accordingly. This can be a 
nontrivial task. Take, for example, the case of extending a Java Virtual Ma- 
chine so that it enforces the safety policy that any applet terminates within 
a bounded number of machine cycles. Making such a change to the JVM 
(or JIT compiler) so that it does not impose an unreasonable performance 
penalty may be far from easy. 

Rather than attempt to enforce restrictions on the behavior of compo- 
nents, some proposals focus on assigning responsibility for any such failures. 
This is achieved by requiring that components be signed by the author so 
that any malicious or undesirable behavior can be traced to a specific respon- 
sible party. Obviously this approach does nothing to ensure the integrity 
of the running system. Moreover, the overhead of digital signature schemes 
based on public-key cryptography is substantial. 

Fundamentally, we are facing a tension among efficiency, reliability, ex- 
pressiveness, and enforceability of encapsulation constraints. Dynamic en- 
forcement methods impose considerable overhead at execution time. Many 
attempts to improve efficiency tend to increase the size of the trusted com- 
puting base, limiting reliability and undermining integrity assurances. In- 
creasing the expressiveness of encapsulation constraints leads to greater flex- 
ibility in writing components, but also increases the difficulty of checking 
compliance. 

How can these tensions be resolved? It is our contention that these 
fundamental issues are most profitably addressed from the standpoint of 
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programming language technology, especially type systems. To achieve ver- 
ified encapsulation of system components requires a formalism for specify- 
ing and checking properties of programs. Type systems provide a general 
framework for specification and checking that has proved to be remarkably 
effective in a wide variety of settings, ranging from type systems for program- 
ming languages such as ML [14] to sophisticated formalisms for specifying 
and checking the execution behavior of programs, such as Proof-Carrying 
Code [17, 16]. Type systems have these desirable properties: 

1. Scalability. Types can be used to express a wide range of program 
properties, ranging from simple data representations (e.g., int's and 
float's) to sophisticated data structure invariants (e.g., coloring in- 
variants on red-black trees or restrictions on array accesses). 

2. Static checkability. Type constraints are statically checkable, usually 
very efficiently in practice, if not in principle. Type checkers are typi- 
cally small and easily implemented, reducing significantly the size and 
complexity of the trusted computing base. 

3. Compatibility. Static type systems generalize dynamic type systems by 
admitting both statically- and dynamically-enforced constraints. The 
effectiveness of static checking can often be enhanced by judicious use 
of dynamic checks; conversely, dynamic checks can often by eliminated 
in a sufficiently rich static type discipline. 

We propose to exploit these properties of type systems in the develop- 
ment and deployment of basic tools and technologies for extensible systems, 
and in particular for Active Networks. We will do this by developing the 
necessary theoretical foundations for specifying and managing modularity in 
large-scale distributed systems, and developing the tools in the form of cer- 
tifying compilers and PCC infrastructure so that Active Network developers 
can exploit the theory. 

2    Approach 

Our proposed work goes beyond the application of theory to practice; in- 
deed, there is a synergy between language design, systems building, and 
compiler technology that benefits both theory and practice together. In our 
previous work in the Fox Project, this kind of synergy has sparked a consid- 
erable amount of follow-on work, particularly in advanced network design, 
for example in the Cornell Ensemble system [27] and the UPenn Switchware 



Project [1]. There have also been significant interactions with the Utah 
Flux [7] and Washington SPIN Projects [2]. Here, we illustrate this synergy 
by briefly reviewing the Project's FoxNet reconfigurable network protocol 
suite [3], and seeing how its development was instrumental in leading to the 
TIL type-directed compiler [24] and the Proof-Carrying Code [17] approach 
to safe mobile code. 

The FoxNet system is a collection of network protocol modules. The 
modules are designed to be highly composable so that high-performance 
network systems can be quickly and reliably constructed and reconfigured. 
The key idea behind the FoxNet is to use the type system of Standard ML 
(SML) to define interfaces that mediate the interaction amongst the layers 
of a network protocol stack. For example, a protocol interface specifies that 
every protocol module in the FoxNet must contain, in addition to other 
components, an implementation of host addresses and network connections, 
as well as a method for establishing a connection on a specified address. This 
signature specifies only that these components must exist in each protocol 
layer, but it does not specify their implementation. 

In fact, the definitions of addresses and connections vary from protocol 
to protocol, though the interface itself remains stable. Consequently, when 
building up a network protocol stack, the upper layers can know very little 
about the implementation of the lower layers. This information hiding makes 
it possible, for example, for the FoxNet's IP protocol module to be layered 
on top of both the Ethernet and ATM modules without any change to the IP 
module. Such highly reliable "mix-and-match" composability of components 
is absolutely essential for any secure extensible system, and to make this 
work it is critical that stable abstract interfaces be definable and enforced 
by the language. 

The standard problem with such high degree of composability is how to 
get good performance out of the system. The presence of abstract types 
can make it extremely difficult to optimize the network code, because basic 
knowledge about data representations (e.g., can addresses and connections 
be passed in registers?) and calling conventions (e.g., where is the "connect" 
function, and what is its calling convention?) are not exposed through the 
protocol interface. 

The traditional solution, which is taken by Java, Modula-3, Scheme, 
Lisp, and previous implementations of ML, is to impose a universal rep- 
resentation on values. This technique hinders good performance, however, 
because it requires run-time unpackaging of values and imposes general space 
and time overheads. It also complicates interoperability with C and Fortran 



programs, with operating systems, and with devices. 
Our solution is to use natural representations of all data structures, and 

then dispatch on type information that is tracked through all phases of the 
compiler. This allows the compiler to eliminate the dispatch when type 
information can be inferred statically. The result is a dramatic performance 
improvement for SML programs, with most benchmarks running 2 to 5 times 
faster and requiring less than half the memory of previous compilers. 

What does this have to do with mobile code? The types that are propa- 
gated throughout the TIL compiler provide internal consistency checks via 
type checking. Each phase of the compiler works with a typed intermediate 
language (IL) which ensures that the compiler preserves type safety of orig- 
inal source program throughout all optimizations. Thus, TIL intermediate 
code is "self-certifying". In a mobile code scenario, by shipping typed IL, 
the recipient is assured of certain safety properties {e.g., no memory faults) 
simply by type checking. 

Of course, this is essentially the same approach taken by the Java system. 
And by looking at Java, it is clear that there is still a problem: In order for 
the IL to have an easily checkable type system, it seems necessary to use 
a relatively high level intermediate language (in the case of Java, the Java 
Virtual Machine language). But, this requires the recipient of the code to 
execute this high level language! If this is done by interpretation, there is 
a substantial interpretive overhead. If a just-in-time compiler is used, there 
is the increase in latency, as well as the risk that the compiler (which will 
be complex) might go wrong. Can we avoid these overheads and just ship 
binaries? 

By using ideas from type theory, formal semantics, and logic (yet again!), 
we can find the answer to this question in Proof-Carrying Code (PCC). The 
idea here is to equip the code with a proof that it respects the safety policy. 
By using technology developed within the Fox Project, in particular the 
Logical Framework (LF) and our implementation of it in the Elf system, 
we have been able to develop efficient representations of proofs that can be 
transmitted digitally and quickly checked for validity. Once again, types 
provide the formal basis for this approach. The proofs are represented in 
a type system. Proof checking is then reduced to type checking (which 
is decidable). Thus, by making the code producer provide the proof, the 
recipient has little work to do. The result is provably safe mobile code, 
without the performance overheads of previous approaches. 

There is one final problem to solve: How can we find these proofs? 
To-date, we have used standard theorem-proving technology, but since this 
is only semi-automated, the process can be difficult to carry out.   Some 



properties (e.g., memory safety) for simple programs (e.g., packet filters) 
seem to work well. But in order to scale up, we are currently building a 
Certifying Compiler which produces the proofs automatically. 

By following this approach, we have been extremely successful in de- 
veloping innovative and influential core technologies for building reliable, 
configurable, and extensible system components. Such achievements are 
made possible by applying programming language theory to the practical 
problems of building complex systems. Our developments of type-directed 
compilation in TIL, and of Proof-Carrying Code, have been in direct re- 
sponse to these advanced system-building needs, and we believe that their 
use will become critical in the Active Networks effort. 

3    Planned Research 

We propose a comprehensive program of research to apply the theoretical 
foundations of programming languages—including ideas in type theory, for- 
mal semantics, and logic—to the development of tools and techniques for 
Active Networks. The main goal is the development of technologies for 
achieving modularity, efficiency, and safety in software systems, and then 
developing tools to support application of these technologies specifically to 
Active Networks. To achieve this, we have organized the proposed work into 
four areas: 

1. Language Technology. The development of foundations and design 
principles for the specification, management, and implementation of 
modular software systems. Work in this area includes analysis and 
development of type systems, design of advanced programming lan- 
guages, and composition of systems in distributed environments. 

2. Safety Infrastructure. The development of foundations and soft- 
ware support for exploiting Proof-Carrying Code. Work in this area 
includes basic research into logical frameworks (for proof representa- 
tion and optimization), abstract machine design, and development of 
verification-condition generators. 

3. Compiler Technology. The development of techniques and tools for 
compiling high-level programs into efficient, certifiable code. Work in 
this area includes the implementation of type-directed and certifying 
compilers, for exploitation of type structure and automatic generation 
of Proof-Carrying Code. 



4. Applications. Collaboration with other researchers in the Active 
Networks program (and related programs) to incorporate and demon- 
strate our language-based tools and technologies. Besides Active Net- 
works, we believe that there are also relevant applications in DARPA's 
Quorum, Information Survivability, and EDCS programs. 

More details on the tasks and activities in each of these four areas is given 
in the following subsections. It is important to note that these four areas 
are far from distinct, however. Indeed, the basic strength of the project 
comes from the synergy that arises from taking a "vertically integrated" 
view of the software problems posed by Active Networks. For example, the 
development of the type theory for modular systems has direct application 
in type-directed compilation, which in turn leads to techniques for extending 
certifying compilation and thereby improving the utility of proof-carrying 
code. Our goal is to approach both the foundational and the practical 
problems in Active Networks with equal weight, so that the theory can 
be best informed by the practice and that novel practical solutions can be 
derived from the application of theoretical principles. 

3.1    Language Technology 

Our work on language technology is concerned with the foundations of mod- 
ular software development. The premise of our work is that fundamental 
research on type systems is required to ensure the integrity of dynamically 
extensible software systems. As discussed above, type theory provides a 
comprehensive framework for the design of mechanisms for expressing and 
checking the properties of program components, including constraints on 
the interaction between components. Type theory is also fundamental to 
our work on proof-carrying code and certified compilation; see the discus- 
sion under Compiler Technology and Safety Infrastructure for more details 
of the use of types in these contexts. 

Our proposed work on language technology may be divided into two 
broad categories, each concerned with the development of type systems for 
programming lanuages: 

1. Enrichment. The goal is to allow more programs to be expressed natu- 
rally within a typed language, in particular those using advanced mod- 
ular and object-oriented programming techniques, including subtype 
polymorphism, classes and objects, higher-order modules, and concur- 
rency. The focus of this research thread is the design of ML2000, a 
proposed successor language to Standard ML. 



2. Refinement. The goal is to allow more program properties to be ex- 
pressed naturally within a type system. The focus of this research 
thread are refinement types (for recursive data structures) and depen- 
dent types (for aggregate data structures), both of which are considered 
in the context of Standard ML. 

Standard ML [14] (and its close relative, Caml [12]) represent a high- 
water mark in the design of flexible, expressive type systems for program- 
ming languages. Specific features include polymorphic type inference, a 
flexible and expressive module and interface language, and support for func- 
tional and imperative programming. These features have been effectively 
deployed in the FoxNet implementation of TCP/IP [3] and in the Ensemble 
network protocol suite [27]. In the FoxNet a network protocol layer is a 
functor that is parameterized on the layer beneath it and that implements 
a generic protocol interface. This design supports the flexible composition 
of protocol layers and the rapid development of non-standard network pro- 
tocols (also exemplified in Ensemble). The FoxNet implementation uses 
higher-order functions to implement "upcalls" [5] or "paths" [10] through a 
protocol stack, a key to achieving efficient protocol processing in a layered 
implementation. 

The focus of our work on enriched type systems is ML2000, a proposed 
successor language to Standard ML.1 The goal of the ML2000 design is to 
integrate the following features into a unified language extending Standard 
ML: 

1. Subtyping. Subtyping is a very powerful and convenient mechanism 
for achieving code re-use — a value of a subtype may be provided 
whenever a value of the supertype is required. This is especially im- 
portant in the context of object-oriented programming, as exemplified 
by Java. 

2. Objects. Many programming problems (especially those with intensive 
interaction requirements) are naturally structured using objects and 
methods. ML provides only rudimentary support for object-oriented 
programming. 

3. Classes and inheritance. Some systems are naturally constructed by 
accretion of additional mechanism or modification of existing mech- 

xThe design of ML2000 is a joint undertaking with Andrew Appel (Princeton), Luca 
Cardelli (Microsoft), Carl Gunter (UPenn), Xavier Leroy (INRIA), Dave MacQueen (Bell 
Labs), John Mitchell (Stanford), John Reppy (Bell Labs), and Jon Riecke (Bell Labs). 



anisms through inheritance. ML provides only weak forms of inheri- 
tance through the module language. 

4. Concurrency. Concurrent programming mechanisms are fundamen- 
tal to modern software development. CML, a dialect of Standard 
ML supporting concurrency, explored the extension of ML with first- 
class events, a convenient notation for managing concurrent interac- 
tion. Standard ML lacks such support. 

Our work on refinement of type systems is based on the idea that types 
may be viewed as machine-checkable program properties. Under this view, 
the type system of ML allows only very elementary properties to be ex- 
pressed. For example, all functions from integers to integers have the same 
type. This means that many properties cannot be verified statically, requir- 
ing either trust in the correctness of code or run-time checking, depending 
on the application. Thus we have been conducting research to refine the 
type system of ML to allow more program properties to be expressed and 
checked. We propose to continue this research with a focus on refinement 
types and dependent types. 

1. Refinement Types. Using initial prototypes developed by the Fox 
project [8, 6] we propose to investigate how recursive data structure 
invariants can be checked effectively and how compilers can take ad- 
vantage of this information to generate more efficient code. 

2. Dependent Types. While dependent types in their full generality do 
not admit practical type-checking algorithms, some common special 
cases such as array bound checking have been shown to be feasible [31] 
which allows significantly more efficient proof-carrying code [18]. We 
propose to further develop and eventually integrate dependent types 
into the Fox project's TIL compiler [24]. 

3.2    Safety Infrastructure 

Our work on safety infrastructure is concerned with both the theoretical 
foundations and the software necessary to exploit the concept of Proof- 
Carrying Code (PCC) in Active Networks and other extensible systems. 
PCC enables a computer system to determine, automatically and with cer- 
tainty, that program code provided by another system is safe to install and 
execute.   The code may be written in virtually any language that can be 



given a precise operational semantics. In our previous work, we have de- 
veloped PCC for DEC Alpha assembly code and demonstrated its utility in 
safe operating system extensions [17, 16]. 

The key idea behind PCC is that the external system, which we shall 
henceforth refer to as the code producer, provides an encoding of a formal 
proof that the code adheres to a safety policy defined by the recipient of 
the code, which we shall call the code consumer. The proof is encoded in 
a form that can be transmitted digitally to the consumer and then quickly 
validated using a simple, automatic, and reliable proof-checking process. 

Safety policies are promulgated by code consumers in an extensible sys- 
tem (e.g., an active network router). The safety policy specifies a sufficient 
condition for the code consumer to accept a program as a dynamic exten- 
sion (e.g., an active packet). It is the job of the code consumer to formulate 
a suitable safety policy to ensure its own integrity. Code producers must 
comply with the safety policy for the code to be accepted as a dynamic 
extension. 

PCC is directly relevant to Active Networks, and is potentially useful in 
many other applications as well. It enhances the ability of a collection of 
software systems to interact flexibly and efficiently by providing the capabil- 
ity to share executable code safely. Besides the nodes in an Active Network, 
other typical examples of code consumers might include extensible operat- 
ing system kernels and World-Wide Web browsers, both of which must allow 
untrusted applications to install and execute code. Indeed, PCC is useful 
in any situation where the safety in the presence of newly installed code is 
paramount. 

PCC has several key characteristics that, in combination, give it an 
advantage over previous approaches to safe execution of foreign code: 

1. PCC is general. The code consumer defines the safety policy, and this 
policy is not limited to a particular notion of "safety." We have already 
experimented both with simple safety properties, such as memory and 
type safety, and with properties that are normally difficult to verify, 
such as time limits on execution [20]. 

2. PCC is low-risk and automatic. The proof-checking process used by 
the code consumer to determine code safety is completely automatic 
and can be implemented by a proof-checking program that is relatively 
simple and easy to trust. Thus, the safety-critical infrastructure that 
the code consumer must rely upon is reduced to a minimum [19]. 

3. PCC is efficient. In practice, the proof-checking process runs quickly. 
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Furthermore, in contrast to previous approaches, the code consumer 
does not modify the code in order to insert costly run-time safety 
checks, nor does the consumer perform any other checking or interpre- 
tation once the proof itself has been validated and the code installed. 

4. PCC does not require trust relationships. The consumer does not need 
to trust the producer. In other words, the consumer does not have to 
know the identity of the producer, nor does it have to know anything 
about the process by which the code was produced. All of the infor- 
mation needed for determining the safety of the code is included in 
the code and its proof. 

5. PCC is flexible. The proof checker does not require that a particular 
programming language be used. PCC can, in principle, be used for 
a wide range of languages, ranging from high-level languages such as 
ML [15], to abstract machine codes, and even to machine languages. 

An important design criterion for an implementation of certified code is 
that the proof checker be simple, concise, and, preferably, universal. The 
reason is obvious: since the checker is the arbiter of compliance with the 
safety policy, a faulty checker could accept a non-compliant binary, compro- 
mising the integrity of the system as a whole. The checker must therefore 
be part of the trusted computing base, and should be as simple and con- 
cise as possible to maximize confidence in its correctness. Universality—the 
ability to use a single checker for many different safety policies—is desirable, 
since then the code for the checker can be re-used, but not essential for this 
goal. (Universality might be regarded as a disadvantage, for if the checker is 
faulty, then all code consumers based on it are insecure. On the other hand 
a universal checker would be scrutinized carefully by each party, thereby 
increasing our confidence in its correctness.) 

In our previous work on PCC, we have shown that the Edinburgh Log- 
ical Framework (LF) [9] can be an effective language for encoding proofs. 
There are several advantages to the use of LF for proof encodings. First, LF 
is an extremely simple language but still highly expressive. Furthermore, 
it can be used to encode proofs in a wide range of logics, and in fact the 
logics themselves can be specified in LF and checked for various kinds of 
consistency. Second, LF is itself a typed language, and in fact the process 
of proof checking in LF can be reduced simply to type checking in LF. In 
other words, the proof checker can be simply a type checker for LF. This 
connection between proof checking and type checking is critical in proving 
the soundness of the entire approach, as well as simplifying the trusted com- 
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puting base. It also opens up many possibilities for further improvements, 
as much of the work on language design and type theory becomes directly 
applicable to proof encoding, proof optimization, and proof checking. 

By exploiting these features of LF, we have already been able to de- 
velop a highly robust, universal proof checker that we believe can be readily 
incorporated into many Active Network systems. However, there are still 
several open research problems to be solved before a truly practical PCC 
infrastructure can be realized. 

1. The first research problem concerns the size of the encoded proofs. 
While we have found that the time required for proof checking is rea- 
sonably low, the size of the proofs ranges from one to ten times larger 
than the code, with typical sizes on the order two to three times larger. 
While these sizes are not necessarily a critical problem for many appli- 
cations, they are a clear source of latency if included in every capsule. 
To date, we have given relatively little thought to the matter of proof 
size, and so we propose to concentrate effort on the problem of proof 
optimization. Simple optimizations techniques (such as "common sub- 
proof elimination") will be relatively easy to apply. However, more 
fundamental restructuring of the proof representations may be needed 
in order to bring the proof sizes down to less than the size of the code, 
without increasing proof-checking time. To this end, we propose to 
develop a suite of proof-optimization techniques, including optimiza- 
tions on encoded proofs as well as improved methods for eliding parts 
of proofs (and then quickly reconstructing them during proof check- 
ing). Especially for complex safety policies which may be required in 
some Active Networks, more drastic extension to the framework itself 
might be required, such as provided by the linear logical framework 
(LLF) [4]. A linear framework has more succinct means for expressing 
mutable state and concurrency than traditional frameworks, and we 
plan to investigate efficient proof-checking techniques for LLF. 

2. A second problem concerns the construction and maintenance of veri- 
fication-condition generators, or VCGens. In a PCC system, there are 
two components in the trusted computing base, the proof checker and 
the VCGen. The VCGen program makes a single scan over the pro- 
gram code and extracts a logical predicate whose satisfiability guar- 
antees the code's safety. In a sense, the VCGen is a compiler that 
translates program code into logic. The proof checker then checks 
that the proof attached to the code is indeed a valid proof of the pred- 
icate. Since the proof checker can concern itself with proofs written in 
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a pure logic, it is a generic component. On the other hand, a VCGen 
must be constructed for each language or machine architecture, as well 
as for each definition of safety. 

Fortunately, the VCGen is not a complicated program. Still, there is 
inherently a greater risk of errors appearing in this component, and 
hence the matter of its correctness is of greater concern. We propose 
to investigate techniques for proving the correctness of VCGen pro- 
grams as well as deriving their implementation from high-level specifi- 
cations. We plan to once again exploit the expressive power of logical 
frameworks to describe the operational semantics, logical verification 
conditions, and their relationship within the same language and apply 
automated proof tools [22] to verify critical properties of a VCGen. 
This will also require further research into the efficient implementa- 
tion of the Twelf meta-theorem prover sketched in [22]. A specific 
preliminary task along these lines will be to port our existing VCGen 
component to the Intel x86 architecture (the current VCGen is for the 
DEC Alpha), both to provide immediate support to other develop- 
ers who are using this architecture, as well as to gain valuable initial 
experience in modifying the VCGen. 

3. Certifying machine code has the great advantage of efficiency, but re- 
stricts code mobility since it applies to only one architecture. We 
therefore also propose to adapt the idea of PCC to virtual machine 
code. Proofs attached to virtual machine code can potentially simplify 
bytecode verification [23] and interpretation, enable multiple safety 
policies, and allow more efficient just-in-time compilation without sac- 
rificing safety or relying on an unreasonably large trusted computing 
base. 

3.3    Compiler Technology 

A critical element of our proposed research is the construction of demon- 
stration compilers embodying ideas from our work on language technology 
and security infrastructure. The construction of working compilers is crucial 
for validating our work on the principles of safe system extension and for 
applying these ideas to Active Networks or other extensible systems. It also 
provides concrete tools that may be distributed to other researchers and 
developers. 

Our work on compiler technology is based on the general notion of cer- 
tified code, of which Proof-Carrying Code is a specific instance. A certified 
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program is a program (written in some language) equipped with a safety 
certificate (in the case of PCC, a formal proof) asserting that the program 
complies with a pre-determined safety policy. Crucially, not only must the 
code producer comply with the policy, but it must also produce a machine- 
checkable representation of the certificate. This certificate is checked by the 
code consumer (by using the safety infrastructure described above) as a con- 
dition of acceptance of the extension. (In the context of Active Networks, 
a capsule, or active packet, would be required to contain a certificate of 
compliance with an active router's safety policy.) 

One advantage of certified code is that the code consumer need not rely 
on any assumptions about the origin of the component — there is no need 
for any form of authentication, nor any reliance on the integrity of a given 
compiler. This rules out "trojan horse" attacks based on spoofing a com- 
piler and avoids the need for complicated authentication protocols. Another 
advantage is that there is no fundamental limitation on the efficiency of the 
generated code — if a safety certificate can be produced, any code, whether 
a machine binary, byte code for an abstract machine, or abstract syntax for 
a high-level language, is acceptable. The only limitation is the feasibility 
of producing safety certificates for programs of practical interest, and the 
checkability of proofs of those certificates. 

It is important to emphasize that compliance with a safety policy does 
not in itself ensure the integrity of an extensible system for the simple reason 
that the policy might not in fact be sufficient to ensure that the system 
remains well-behaved under extension. This limitation is fundamental to any 
approach to extensibility—the code consumer may enforce limitations that 
are not enough to avoid compromise of functionality. We must be satisfied 
with the observation that the safety policy is a contractual arrangement 
between the code producer and code consumer whose terms are determined 
by the consumer itself. 

The purpose of a certifying compiler is to generate certified code from a 
high-level language relative to a given safety policy. We are experimenting 
with two approaches to building a certifying compiler: 

1. Typed Intermediate Languages and Type-Directed Compilation. A 
type-directed compiler produces abstract machine code in an intrin- 
sically safe statically typed language. Type safety of the abstract 
machine code is sufficient for a range of safety properties — includ- 
ing memory safety and adherence to specified API's — that are often 
sufficient for acceptance by a code recipient. The abstract machine 
code could be as high level as ML or as low level as the Java Virtual 
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Machine, equipped with a suitable type system (for example, Abadi 
and Stata's type system for JVM [23]). 

2. Proof-Carrying Code and Certifying Compilers. In the interest of ef- 
ficiency the code generated by a compiler need not be intrinsically 
safe (i.e., there might be unsafe instruction sequences), so the com- 
piler must augment the binary with a safety certificate, in the form 
of a proof, asserting that the target program is safe. As explained 
in the previous section, the safety proof, if valid, guarantees compli- 
ance with a safety policy, and is checkable by the code recipient (given 
also the binary to be executed and the safety policy itself). From the 
user's point of view, the compiler is a tool for automatic generation of 
optimized PCC binaries. 

More specifically, we propose the following work on these two approaches 
to certifying compilers: 

1. The basis for our experiments with Typed Intermediate Languages 
and Type-Directed Compilation is the TILT compiler for Standard 
ML. TILT is an evolution of the TIL compiler [24] to encompass 
the complete Standard ML language, including the module system. 
TILT is based on the idea of type-directed translation, a generalization 
of syntax-directed translation in which not only is a program trans- 
formed during compilation, but so too is it type in such a way that the 
translated program has the translated type. Thus the TILT compiler is 
based on the idea of typed intermediate languages, which are statically- 
typed programming languages that serve as the target languages for 
compiler transformations. Type-directed translation ensures that the 
compiler is able to track the typing properties of the translated code 
through the compiler. At any stage the generated code may be checked 
against its type to ensure integrity. Moreover, this code may be used 
as a distribution format in an extensible system — the type is a safety 
certificate that may be checked by a type checker for that intermediate 
language. 

We propose to build the TILT compiler for Standard ML to validate 
the feasibility of type-directed compilation for a full-scale program- 
ming language. This work includes the design of typed intermediate 
languages, the development of type checkers for them (a surprisingly 
difficult and subtle task), the development of a compiler and run-time 
system, and comparison of its performance with other compilers for 
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Standard ML. The TILT compiler will be based on the TIL compiler 
developed by the Fox Project for the "core" language of Standard ML 
(without modules). We also plan to extend the TILT compiler with 
support for refinement types and dependent types, as outlined in the 
Language Technology section of this proposal. 

For Proof-Carrying Code and Certifying Compilers, we plan to de- 
velop an optimizing compiler for a safe C-based programming lan- 
guage suitable for some kinds of systems-level (especially Active Net- 
work) programming. This compiler development will start from our 
current early prototype system called Touchstone. The Touchstone 
compiler translates a small type-safe C-based language into highly op- 
timized DEC Alpha assembly code. The assembly code is annotated 
in such a way that a theorem prover (a prototype of which we have 
built as part of the PCC infrastructure) is always able to find a proof 
of the type safety of the code. Since our theorem prover generates 
checkable encodings of its proofs, it is then straightforward to gener- 
ate PCC binaries for the target programs produced by the compiler. 
Our early experiments with the Touchstone prototype have been ex- 
tremely encouraging, with excellent results shown for several realistic 
C programs [18]. 

We propose to continue the development of Touchstone, with the 
goal of eventually making it robust enough to distribute to other re- 
searchers. There are several aspects to this task. First, an appropriate 
"safe C-like language" has to be designed and formally specified. Our 
current prototype implements only a fragment of C, with many impor- 
tant features missing, such as structs. Second, although our current 
prototype performs a number of code optimizations, it does this with- 
out the benefit of any global dataflow analysis and hence is inherently 
limited in what it can do. Exactly how dataflow optimizations will 
interact with the generation of proofs is uncertain at this point, but 
we believe that it should not pose any fundamental difficulties. Third, 
there is the matter of the run time system, and in particular, garbage 
collection. Our current Touchstone prototype does not have any kind 
of support for automatic garbage collection, and hence in this sense 
it is not really a practical system. Arranging for the compiled code 
to invoke a garbage collector at the appropriate times again should 
not pose any serious problems, though as we pointed out in our ear- 
lier work on PCC extensions of ML programs [15], some care must 
be taken in the case that copying garbage collection is used. Finally, 
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as progress in type systems and safety infrastructure are made, par- 
ticularly in the area of specification of resource constraints, we plan 
to incorporate these extensions in the certifying compiler, so as to be 
able to experiment with them in the context of Active Networks and 
other extensible systems. 

3.4    Applications 

A major part of the success of our research is derived from experiences 
gained in the application of principles from language design, safety infras- 
tructure, and compiler design. As we explained earlier, the basic strength 
of the project comes from the synergy that arises from taking a "vertically 
integrated" view of systems problems, such as those posed by Active Net- 
works. Our goal is to approach both the foundational and the practical 
problems with equal weight, so that the theory can be best informed by the 
practice and that novel practical solutions can be derived from the applica- 
tion of theoretical principles. Active Networks promise to be an especially 
rich source of relevant practical problems, since the requirements for mod- 
ularity, safety, and efficiency are so severe. We believe that the language 
technologies that we are proposing to investigate will be absolutely critical 
for successful development of Active Networks. 

Our approach to applications will be to build tools, including new lan- 
guage designs, compilers, and basic infrastructure components, that can be 
distributed to other researchers for incorporation into their Active Network- 
ing systems. We plan the following activities: 

1. We plan to develop robust prototypes of the TILT and Touchstone cer- 
tifying compilers and make them available to other researchers. The 
TILT compiler will provide a high-performance alternative to existing 
ML compilers, as well as a valuable platform for further experimenta- 
tion in type-directed compilation and typed intermediate languages. 
The Touchstone compiler will provide an easy way for users to generate 
PCC binaries, for use in their own experiments with PCC. 

2. In conjunction with the University of Utah, we propose to develop PCC 
components that can be incorporated into the Flux OSKit. This will 
involve the integration of the PCC proof checker into the OSKit as an 
additional system service, as well as the development of an appropriate 
VCGen module. Once integrated, this will provide users of the OSKit 
to use native code in capsules, for performance-critical applications, 
as well as applications that require more detailed safety policies than 
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can be easily provided by a Java Virtual Machine. It will also allow 
Utah's proposed Janos system to be extended with native code, again 
for performance-critical and safety-critical applications. 

3. In addition to the incorporation of PCC into the OSKit, we also pro- 
pose to extend the Kaffe JVM system with PCC. This will provide 
users of the Kaffe Java infrastructure with a safe way to extend Java 
applications with highly optimized native code. Since several research 
groups are using Kaffe (including the Utah group as well as the CMU 
Darwin project), this will provide yet another way for other researchers 
to experiment with PCC and other advanced language technologies. 

The principles and technologies that we will develop in the areas of lan- 
guage design, safety infrastructure, and compiler technology will have direct 
application in any system that depends on safety, modularity, and efficiency. 
This includes Active Network, but also systems being developed under the 
DARPA/ITO Quorum, Information Survivability, and EDCS programs. 

4    Related Work 

Active Networks. The idea of an Active Network was proposed by Wether- 
all, Guttag, and Tennenhouse [30, 25, 29] as a means of improving the flex- 
ibility and performance of network protocols. The idea of Active Networks 
raises significant problems that are addressed in this proposal. As outlined 
above, we propose to focus on the fundamental problem of how to achieve 
safe, reliable, and efficient integration of "foreign" code into a safety and 
performance-critical software system such as a network router. Ongoing 
research in Active Networks will draw on and inspire our research on the 
underpinnings of safe composition of code from untrusted components. 

PLAN. The Switchware Project at the University of Pennsylvania is de- 
veloping an Active Network in conjunction with Bellcore [1]. A critical part 
of their work is the development of a programming language, called PLAN, 
for programming Active Networks [11]. Their work builds on ours in a 
number of respects, including the reliance on a typed, functional language 
based on ML as the basis for their design, and the use of a variant of our 
Proof-Carrying Code technology to provide assurances about the run-time 
behavior of active network software. Their efforts are complementary to 
ours in that they are working actively with industrial partners to transfer 
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fundamental language technology to the development of a "real world" ac- 
tive network system. We expect to interact closely with the UPenn group 
in the course of our research. 

Joust. John Hartman, Larry Peterson, et. al. [10] at the University of Ari- 
zona have coined the term liquid software for a general approach to achieving 
flexible and reliable code mobility in a network environment, with appli- 
cation to the construction of Active Networks and, more broadly, to the 
general problem of dynamic integration of mobile code. Their approach is 
philosophically and technically similar to ours in that they emphasize the 
importance of modularity, including the critical notion of enforced abstrac- 
tion boundaries, for achieving safe integration of components. However, they 
rely on dynamic checking techniques, rather than static analysis, to achieve 
these ends. In particular they employ a variant of the Java Virtual Ma- 
chine [13] (extended with some Joust-specific constructs, and omitting some 
of the JVM functionality) to ensure safety of mobile code, and employ a 
"just in time" compiler to enhance performance. But, as we discussed ear- 
lier, this increases very substantially the trusted code base on which their 
approach must rely to guarantee integrity. Moreover, their reliance on C 
as an implementation vehicle complicates, or even precludes, the kind of 
static analysis that we maintain is essential for achieving efficiency without 
sacrificing safety. 

Ensemble. Ken Birman and Robbert van Rennesse at Cornell have demon- 
strated convincingly that advanced programming languages with strong type 
systems, rich modularity mechanisms, and higher-order functions can be de- 
ployed to achieve an unprecedented degree of flexibility, reliability, and effi- 
ciency in the construction of networking software [27]. Moreover, efficiency 
is achieved, in part, by using theorem-proving techniques to carry out the 
verified transformation of well-structured programs into more efficient, but 
functionally equivalent, versions of these protocols. Their work is inspired 
by our earlier work on the Fox Project, in which we demonstrated the use 
of ML to achieve efficient, composable implementations of network protocol 
stacks. 

Flux. We have an ongoing collaboration with Jay Lepreau at the Univer- 
sity of Utah who is developing the Flux Operating System Toolkit [7] to 
provide the infrastructure for experimentation with advanced system struc- 
turing techniques.   We are at present engaged in a cooperative effort to 
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extend the Kaffe implementation of the JVM and the Flux Toolkit to in- 
clude support for safe extension based on proof-carry code. This ties in with 
the work of Peterson, et. al.as well as CMU's own Darwin group on the use 
of Kaffe, and provides a further point of contact with the PLAN work at 
UPenn. 

5    Key Personnel 

Robert Harper   is an Associate Professor of Computer Science at Carnegie 
Mellon University. He is well-known for his work on the design and seman- 
tics of Standard ML, for introducing (together with Honsell and Plotkin) 
the idea of a logical framework for representing proofs in formal systems, 
and for exploring the use of typed intermediate languages in a compiler. 

Peter Lee is an Associate Professor of Computer Science at Carnegie 
Mellon University. Since 1991, he has been leading the Fox Project with 
Robert Harper. He has made significant research contributions in many 
areas related to the implementation and use of advanced programming lan- 
guages, especially semantics-based analysis and optimization techniques for 
languages such as Standard ML. Most recently, he has been involved in 
the development of Proof-Carrying Code and its application to extensible 
operating systems. 

Prank Pfenning is a Senior Research Computer Scientist at Carnegie 
Mellon University. His research focus is on the development of advanced 
type systems for programming languages and mechanized reasoning about 
properties of programming languages in logical frameworks. Among his 
accomplishments, he designed and implemented the Elf language which was 
used in the first prototype implementation of Proof-Carrying Code as well 
as many other logic-based systems. 
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