
The Fox Project:
Advanced Language Technology for Extensible Systems

Robert Harper, Peter Lee, and Frank Pfenning

January 1998

CMU-CS-98-107

l^tm^ö^öH^m-MmxMrf'I

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Also published as Fox Memorandum CMU-CS-FOX-98-02

tfSPBöä.

This research was sponsored by the Advanced Research Projects Agency CSTO under
the title "The Fox Project: Advanced Languages for Systems Software", ARPA Order
No. C533, issued by ESC/ENS under Contract No. F19628-95-C-0050.

The views and conclusions contained in this document are those of the author and
should not be interpreted as representing official policies, either expressed or implied, of
the Advanced Research Projects Agency or the U.S. Government.

19980415 010

Keywords: Standard ML, computer networks, modules, type theory,
compilers, programming languages

Abstract

It has been amply demonstrated in recent years that careful attention to the
structure of systems software can lead to greater flexibility, reliability, and
ease of implementation, without incurring an undue penalty in performance.
It is our contention that advanced programming languages—particularly
languages with a mathematically rigorous semantics, and featuring higher-
order functions, polymorphic types, and a strong module system—are ideally
suited to expressing such structure. Indeed, our previous research has shown
that the use of an advanced programming language can have a fundamental
effect on system design, leading naturally to system architectures that are
highly modular, efficient, and allow re-use of code.
We are thus working to demonstrate the viability and benefits of advanced
languages for programming real-world systems, and in particular Active Net-
works. To achieve this, we have organized our research into the areas of
language technology, safety infrastructure, compiler technology, and applica-
tions. This report describes the current plans for this effort, which we refer
to as the Fox project.

Authors' electronic mail addresses:
Robert.HarperScs.emu.edu
Peter.LeeOcs.emu.edu

Frank. Pf enningScs. emu. edu

1 Motivation

In a large heterogeneous environment, it is a significant challenge to support
the use of mobile code without sacrificing safety, reliability, or performance.
Achieving this is fundamentally a question of supporting large-scale modu-
lar construction of software. To ensure predictability and reliability of the
composite system, the possibilities of interaction between components must
be specified and enforced. The forms of interaction include not only fa-
miliar notions of interfaces, or API's, to which components must adhere,
but also encompass more fine-grained properties such as bounds on resource
consumption. These properties must be precisely specified so that they may
be enforced; without specification, enforcement is impossible. Conversely,
specification without enforcement is at best an exercise in documentation,
rather than a means of ensuring integrity. In short, the core enabling tech-
nology for achieving dynamic extensibility of software systems is verified
encapsulation of system components.

The goal of an Active Network is to exploit such dynamic extensibility of
software systems to achieve unprecedented degrees of flexibility, robustness,
and efficiency in modern high-speed networks [25]. The key idea is to use
"active packets", or "capsules", that contain code to be incorporated into a
network router or other active component of a network to modify its behav-
ior in an application-specific manner. Such a capability promises to improve
flexibility and quality-of-service in the network, particularly in multicast ap-
plications, as well as accelerate evolution of the networking infrastructure.
The power of this technique is essentially unlimited: in principle, the active
node could be completely re-programmed by an active packet! Obviously
the behavior of active packets must be limited so that malicious, or other-
wise undesirable behavior is precluded. It is the responsibility of the active
network component to specify the "rules of engagement" for active packets,
and to ensure that these rules are respected in order to protect the integrity
of the network.

How might this be achieved? Current methods rely mainly on dynamic
checking to ensure that the behavior of components is suitably constrained,
for example, through the use of interpreted virtual machines [13, 26]. Com-
ponents are written in an abstract machine code that is inherently safe to
execute on an active node — the code is executed by a trusted interpreter
that executes on behalf of the component. This amounts to an elaborate
set of run-time checks to ensure safety. Of course this raises problems of
efficiency, since the overhead of interpretation and dynamic enforcement is
substantial. Efficiency can be regained, to some extent, by using "just in

time (JIT)" compilers [21] to translate virtual machine code to real hardware
instructions. However, run-time checks to ensure safety are still required,
and, what is worse, the complexity of the trusted code base increases sub-
stantially to include the JIT compiler itself, thereby reducing the reliability
of the network as a whole.

Another approach to run-time encapsulation is Software Fault Isolation
(SFI) [28]. To avoid interpretation overhead, machine binaries are edited at
load time to ensure that memory accesses are limited to a specific allowed
range so that the component at worst self-destructs, rather than destroys
the context in which it executes. SFI is most effective for imposing coarse
restrictions on memory usage; its performance degrades rapidly when more
fine-grained restrictions are imposed.

Besides the performance problems, run-time encapsulation techniques
also suffer from being tied to a specific notion of "safe" execution. The
trusted computing base (for example, the virtual machine) must be con-
structed so as to enforce all of the safety rules, and if new rules are added
later then this computing base must be modified accordingly. This can be a
nontrivial task. Take, for example, the case of extending a Java Virtual Ma-
chine so that it enforces the safety policy that any applet terminates within
a bounded number of machine cycles. Making such a change to the JVM
(or JIT compiler) so that it does not impose an unreasonable performance
penalty may be far from easy.

Rather than attempt to enforce restrictions on the behavior of compo-
nents, some proposals focus on assigning responsibility for any such failures.
This is achieved by requiring that components be signed by the author so
that any malicious or undesirable behavior can be traced to a specific respon-
sible party. Obviously this approach does nothing to ensure the integrity
of the running system. Moreover, the overhead of digital signature schemes
based on public-key cryptography is substantial.

Fundamentally, we are facing a tension among efficiency, reliability, ex-
pressiveness, and enforceability of encapsulation constraints. Dynamic en-
forcement methods impose considerable overhead at execution time. Many
attempts to improve efficiency tend to increase the size of the trusted com-
puting base, limiting reliability and undermining integrity assurances. In-
creasing the expressiveness of encapsulation constraints leads to greater flex-
ibility in writing components, but also increases the difficulty of checking
compliance.

How can these tensions be resolved? It is our contention that these
fundamental issues are most profitably addressed from the standpoint of

•2

programming language technology, especially type systems. To achieve ver-
ified encapsulation of system components requires a formalism for specify-
ing and checking properties of programs. Type systems provide a general
framework for specification and checking that has proved to be remarkably
effective in a wide variety of settings, ranging from type systems for program-
ming languages such as ML [14] to sophisticated formalisms for specifying
and checking the execution behavior of programs, such as Proof-Carrying
Code [17, 16]. Type systems have these desirable properties:

1. Scalability. Types can be used to express a wide range of program
properties, ranging from simple data representations (e.g., int's and
float's) to sophisticated data structure invariants (e.g., coloring in-
variants on red-black trees or restrictions on array accesses).

2. Static checkability. Type constraints are statically checkable, usually
very efficiently in practice, if not in principle. Type checkers are typi-
cally small and easily implemented, reducing significantly the size and
complexity of the trusted computing base.

3. Compatibility. Static type systems generalize dynamic type systems by
admitting both statically- and dynamically-enforced constraints. The
effectiveness of static checking can often be enhanced by judicious use
of dynamic checks; conversely, dynamic checks can often by eliminated
in a sufficiently rich static type discipline.

We propose to exploit these properties of type systems in the develop-
ment and deployment of basic tools and technologies for extensible systems,
and in particular for Active Networks. We will do this by developing the
necessary theoretical foundations for specifying and managing modularity in
large-scale distributed systems, and developing the tools in the form of cer-
tifying compilers and PCC infrastructure so that Active Network developers
can exploit the theory.

2 Approach

Our proposed work goes beyond the application of theory to practice; in-
deed, there is a synergy between language design, systems building, and
compiler technology that benefits both theory and practice together. In our
previous work in the Fox Project, this kind of synergy has sparked a consid-
erable amount of follow-on work, particularly in advanced network design,
for example in the Cornell Ensemble system [27] and the UPenn Switchware

Project [1]. There have also been significant interactions with the Utah
Flux [7] and Washington SPIN Projects [2]. Here, we illustrate this synergy
by briefly reviewing the Project's FoxNet reconfigurable network protocol
suite [3], and seeing how its development was instrumental in leading to the
TIL type-directed compiler [24] and the Proof-Carrying Code [17] approach
to safe mobile code.

The FoxNet system is a collection of network protocol modules. The
modules are designed to be highly composable so that high-performance
network systems can be quickly and reliably constructed and reconfigured.
The key idea behind the FoxNet is to use the type system of Standard ML
(SML) to define interfaces that mediate the interaction amongst the layers
of a network protocol stack. For example, a protocol interface specifies that
every protocol module in the FoxNet must contain, in addition to other
components, an implementation of host addresses and network connections,
as well as a method for establishing a connection on a specified address. This
signature specifies only that these components must exist in each protocol
layer, but it does not specify their implementation.

In fact, the definitions of addresses and connections vary from protocol
to protocol, though the interface itself remains stable. Consequently, when
building up a network protocol stack, the upper layers can know very little
about the implementation of the lower layers. This information hiding makes
it possible, for example, for the FoxNet's IP protocol module to be layered
on top of both the Ethernet and ATM modules without any change to the IP
module. Such highly reliable "mix-and-match" composability of components
is absolutely essential for any secure extensible system, and to make this
work it is critical that stable abstract interfaces be definable and enforced
by the language.

The standard problem with such high degree of composability is how to
get good performance out of the system. The presence of abstract types
can make it extremely difficult to optimize the network code, because basic
knowledge about data representations (e.g., can addresses and connections
be passed in registers?) and calling conventions (e.g., where is the "connect"
function, and what is its calling convention?) are not exposed through the
protocol interface.

The traditional solution, which is taken by Java, Modula-3, Scheme,
Lisp, and previous implementations of ML, is to impose a universal rep-
resentation on values. This technique hinders good performance, however,
because it requires run-time unpackaging of values and imposes general space
and time overheads. It also complicates interoperability with C and Fortran

programs, with operating systems, and with devices.
Our solution is to use natural representations of all data structures, and

then dispatch on type information that is tracked through all phases of the
compiler. This allows the compiler to eliminate the dispatch when type
information can be inferred statically. The result is a dramatic performance
improvement for SML programs, with most benchmarks running 2 to 5 times
faster and requiring less than half the memory of previous compilers.

What does this have to do with mobile code? The types that are propa-
gated throughout the TIL compiler provide internal consistency checks via
type checking. Each phase of the compiler works with a typed intermediate
language (IL) which ensures that the compiler preserves type safety of orig-
inal source program throughout all optimizations. Thus, TIL intermediate
code is "self-certifying". In a mobile code scenario, by shipping typed IL,
the recipient is assured of certain safety properties {e.g., no memory faults)
simply by type checking.

Of course, this is essentially the same approach taken by the Java system.
And by looking at Java, it is clear that there is still a problem: In order for
the IL to have an easily checkable type system, it seems necessary to use
a relatively high level intermediate language (in the case of Java, the Java
Virtual Machine language). But, this requires the recipient of the code to
execute this high level language! If this is done by interpretation, there is
a substantial interpretive overhead. If a just-in-time compiler is used, there
is the increase in latency, as well as the risk that the compiler (which will
be complex) might go wrong. Can we avoid these overheads and just ship
binaries?

By using ideas from type theory, formal semantics, and logic (yet again!),
we can find the answer to this question in Proof-Carrying Code (PCC). The
idea here is to equip the code with a proof that it respects the safety policy.
By using technology developed within the Fox Project, in particular the
Logical Framework (LF) and our implementation of it in the Elf system,
we have been able to develop efficient representations of proofs that can be
transmitted digitally and quickly checked for validity. Once again, types
provide the formal basis for this approach. The proofs are represented in
a type system. Proof checking is then reduced to type checking (which
is decidable). Thus, by making the code producer provide the proof, the
recipient has little work to do. The result is provably safe mobile code,
without the performance overheads of previous approaches.

There is one final problem to solve: How can we find these proofs?
To-date, we have used standard theorem-proving technology, but since this
is only semi-automated, the process can be difficult to carry out. Some

properties (e.g., memory safety) for simple programs (e.g., packet filters)
seem to work well. But in order to scale up, we are currently building a
Certifying Compiler which produces the proofs automatically.

By following this approach, we have been extremely successful in de-
veloping innovative and influential core technologies for building reliable,
configurable, and extensible system components. Such achievements are
made possible by applying programming language theory to the practical
problems of building complex systems. Our developments of type-directed
compilation in TIL, and of Proof-Carrying Code, have been in direct re-
sponse to these advanced system-building needs, and we believe that their
use will become critical in the Active Networks effort.

3 Planned Research

We propose a comprehensive program of research to apply the theoretical
foundations of programming languages—including ideas in type theory, for-
mal semantics, and logic—to the development of tools and techniques for
Active Networks. The main goal is the development of technologies for
achieving modularity, efficiency, and safety in software systems, and then
developing tools to support application of these technologies specifically to
Active Networks. To achieve this, we have organized the proposed work into
four areas:

1. Language Technology. The development of foundations and design
principles for the specification, management, and implementation of
modular software systems. Work in this area includes analysis and
development of type systems, design of advanced programming lan-
guages, and composition of systems in distributed environments.

2. Safety Infrastructure. The development of foundations and soft-
ware support for exploiting Proof-Carrying Code. Work in this area
includes basic research into logical frameworks (for proof representa-
tion and optimization), abstract machine design, and development of
verification-condition generators.

3. Compiler Technology. The development of techniques and tools for
compiling high-level programs into efficient, certifiable code. Work in
this area includes the implementation of type-directed and certifying
compilers, for exploitation of type structure and automatic generation
of Proof-Carrying Code.

4. Applications. Collaboration with other researchers in the Active
Networks program (and related programs) to incorporate and demon-
strate our language-based tools and technologies. Besides Active Net-
works, we believe that there are also relevant applications in DARPA's
Quorum, Information Survivability, and EDCS programs.

More details on the tasks and activities in each of these four areas is given
in the following subsections. It is important to note that these four areas
are far from distinct, however. Indeed, the basic strength of the project
comes from the synergy that arises from taking a "vertically integrated"
view of the software problems posed by Active Networks. For example, the
development of the type theory for modular systems has direct application
in type-directed compilation, which in turn leads to techniques for extending
certifying compilation and thereby improving the utility of proof-carrying
code. Our goal is to approach both the foundational and the practical
problems in Active Networks with equal weight, so that the theory can
be best informed by the practice and that novel practical solutions can be
derived from the application of theoretical principles.

3.1 Language Technology

Our work on language technology is concerned with the foundations of mod-
ular software development. The premise of our work is that fundamental
research on type systems is required to ensure the integrity of dynamically
extensible software systems. As discussed above, type theory provides a
comprehensive framework for the design of mechanisms for expressing and
checking the properties of program components, including constraints on
the interaction between components. Type theory is also fundamental to
our work on proof-carrying code and certified compilation; see the discus-
sion under Compiler Technology and Safety Infrastructure for more details
of the use of types in these contexts.

Our proposed work on language technology may be divided into two
broad categories, each concerned with the development of type systems for
programming lanuages:

1. Enrichment. The goal is to allow more programs to be expressed natu-
rally within a typed language, in particular those using advanced mod-
ular and object-oriented programming techniques, including subtype
polymorphism, classes and objects, higher-order modules, and concur-
rency. The focus of this research thread is the design of ML2000, a
proposed successor language to Standard ML.

2. Refinement. The goal is to allow more program properties to be ex-
pressed naturally within a type system. The focus of this research
thread are refinement types (for recursive data structures) and depen-
dent types (for aggregate data structures), both of which are considered
in the context of Standard ML.

Standard ML [14] (and its close relative, Caml [12]) represent a high-
water mark in the design of flexible, expressive type systems for program-
ming languages. Specific features include polymorphic type inference, a
flexible and expressive module and interface language, and support for func-
tional and imperative programming. These features have been effectively
deployed in the FoxNet implementation of TCP/IP [3] and in the Ensemble
network protocol suite [27]. In the FoxNet a network protocol layer is a
functor that is parameterized on the layer beneath it and that implements
a generic protocol interface. This design supports the flexible composition
of protocol layers and the rapid development of non-standard network pro-
tocols (also exemplified in Ensemble). The FoxNet implementation uses
higher-order functions to implement "upcalls" [5] or "paths" [10] through a
protocol stack, a key to achieving efficient protocol processing in a layered
implementation.

The focus of our work on enriched type systems is ML2000, a proposed
successor language to Standard ML.1 The goal of the ML2000 design is to
integrate the following features into a unified language extending Standard
ML:

1. Subtyping. Subtyping is a very powerful and convenient mechanism
for achieving code re-use — a value of a subtype may be provided
whenever a value of the supertype is required. This is especially im-
portant in the context of object-oriented programming, as exemplified
by Java.

2. Objects. Many programming problems (especially those with intensive
interaction requirements) are naturally structured using objects and
methods. ML provides only rudimentary support for object-oriented
programming.

3. Classes and inheritance. Some systems are naturally constructed by
accretion of additional mechanism or modification of existing mech-

xThe design of ML2000 is a joint undertaking with Andrew Appel (Princeton), Luca
Cardelli (Microsoft), Carl Gunter (UPenn), Xavier Leroy (INRIA), Dave MacQueen (Bell
Labs), John Mitchell (Stanford), John Reppy (Bell Labs), and Jon Riecke (Bell Labs).

anisms through inheritance. ML provides only weak forms of inheri-
tance through the module language.

4. Concurrency. Concurrent programming mechanisms are fundamen-
tal to modern software development. CML, a dialect of Standard
ML supporting concurrency, explored the extension of ML with first-
class events, a convenient notation for managing concurrent interac-
tion. Standard ML lacks such support.

Our work on refinement of type systems is based on the idea that types
may be viewed as machine-checkable program properties. Under this view,
the type system of ML allows only very elementary properties to be ex-
pressed. For example, all functions from integers to integers have the same
type. This means that many properties cannot be verified statically, requir-
ing either trust in the correctness of code or run-time checking, depending
on the application. Thus we have been conducting research to refine the
type system of ML to allow more program properties to be expressed and
checked. We propose to continue this research with a focus on refinement
types and dependent types.

1. Refinement Types. Using initial prototypes developed by the Fox
project [8, 6] we propose to investigate how recursive data structure
invariants can be checked effectively and how compilers can take ad-
vantage of this information to generate more efficient code.

2. Dependent Types. While dependent types in their full generality do
not admit practical type-checking algorithms, some common special
cases such as array bound checking have been shown to be feasible [31]
which allows significantly more efficient proof-carrying code [18]. We
propose to further develop and eventually integrate dependent types
into the Fox project's TIL compiler [24].

3.2 Safety Infrastructure

Our work on safety infrastructure is concerned with both the theoretical
foundations and the software necessary to exploit the concept of Proof-
Carrying Code (PCC) in Active Networks and other extensible systems.
PCC enables a computer system to determine, automatically and with cer-
tainty, that program code provided by another system is safe to install and
execute. The code may be written in virtually any language that can be

given a precise operational semantics. In our previous work, we have de-
veloped PCC for DEC Alpha assembly code and demonstrated its utility in
safe operating system extensions [17, 16].

The key idea behind PCC is that the external system, which we shall
henceforth refer to as the code producer, provides an encoding of a formal
proof that the code adheres to a safety policy defined by the recipient of
the code, which we shall call the code consumer. The proof is encoded in
a form that can be transmitted digitally to the consumer and then quickly
validated using a simple, automatic, and reliable proof-checking process.

Safety policies are promulgated by code consumers in an extensible sys-
tem (e.g., an active network router). The safety policy specifies a sufficient
condition for the code consumer to accept a program as a dynamic exten-
sion (e.g., an active packet). It is the job of the code consumer to formulate
a suitable safety policy to ensure its own integrity. Code producers must
comply with the safety policy for the code to be accepted as a dynamic
extension.

PCC is directly relevant to Active Networks, and is potentially useful in
many other applications as well. It enhances the ability of a collection of
software systems to interact flexibly and efficiently by providing the capabil-
ity to share executable code safely. Besides the nodes in an Active Network,
other typical examples of code consumers might include extensible operat-
ing system kernels and World-Wide Web browsers, both of which must allow
untrusted applications to install and execute code. Indeed, PCC is useful
in any situation where the safety in the presence of newly installed code is
paramount.

PCC has several key characteristics that, in combination, give it an
advantage over previous approaches to safe execution of foreign code:

1. PCC is general. The code consumer defines the safety policy, and this
policy is not limited to a particular notion of "safety." We have already
experimented both with simple safety properties, such as memory and
type safety, and with properties that are normally difficult to verify,
such as time limits on execution [20].

2. PCC is low-risk and automatic. The proof-checking process used by
the code consumer to determine code safety is completely automatic
and can be implemented by a proof-checking program that is relatively
simple and easy to trust. Thus, the safety-critical infrastructure that
the code consumer must rely upon is reduced to a minimum [19].

3. PCC is efficient. In practice, the proof-checking process runs quickly.

10

Furthermore, in contrast to previous approaches, the code consumer
does not modify the code in order to insert costly run-time safety
checks, nor does the consumer perform any other checking or interpre-
tation once the proof itself has been validated and the code installed.

4. PCC does not require trust relationships. The consumer does not need
to trust the producer. In other words, the consumer does not have to
know the identity of the producer, nor does it have to know anything
about the process by which the code was produced. All of the infor-
mation needed for determining the safety of the code is included in
the code and its proof.

5. PCC is flexible. The proof checker does not require that a particular
programming language be used. PCC can, in principle, be used for
a wide range of languages, ranging from high-level languages such as
ML [15], to abstract machine codes, and even to machine languages.

An important design criterion for an implementation of certified code is
that the proof checker be simple, concise, and, preferably, universal. The
reason is obvious: since the checker is the arbiter of compliance with the
safety policy, a faulty checker could accept a non-compliant binary, compro-
mising the integrity of the system as a whole. The checker must therefore
be part of the trusted computing base, and should be as simple and con-
cise as possible to maximize confidence in its correctness. Universality—the
ability to use a single checker for many different safety policies—is desirable,
since then the code for the checker can be re-used, but not essential for this
goal. (Universality might be regarded as a disadvantage, for if the checker is
faulty, then all code consumers based on it are insecure. On the other hand
a universal checker would be scrutinized carefully by each party, thereby
increasing our confidence in its correctness.)

In our previous work on PCC, we have shown that the Edinburgh Log-
ical Framework (LF) [9] can be an effective language for encoding proofs.
There are several advantages to the use of LF for proof encodings. First, LF
is an extremely simple language but still highly expressive. Furthermore,
it can be used to encode proofs in a wide range of logics, and in fact the
logics themselves can be specified in LF and checked for various kinds of
consistency. Second, LF is itself a typed language, and in fact the process
of proof checking in LF can be reduced simply to type checking in LF. In
other words, the proof checker can be simply a type checker for LF. This
connection between proof checking and type checking is critical in proving
the soundness of the entire approach, as well as simplifying the trusted com-

11

puting base. It also opens up many possibilities for further improvements,
as much of the work on language design and type theory becomes directly
applicable to proof encoding, proof optimization, and proof checking.

By exploiting these features of LF, we have already been able to de-
velop a highly robust, universal proof checker that we believe can be readily
incorporated into many Active Network systems. However, there are still
several open research problems to be solved before a truly practical PCC
infrastructure can be realized.

1. The first research problem concerns the size of the encoded proofs.
While we have found that the time required for proof checking is rea-
sonably low, the size of the proofs ranges from one to ten times larger
than the code, with typical sizes on the order two to three times larger.
While these sizes are not necessarily a critical problem for many appli-
cations, they are a clear source of latency if included in every capsule.
To date, we have given relatively little thought to the matter of proof
size, and so we propose to concentrate effort on the problem of proof
optimization. Simple optimizations techniques (such as "common sub-
proof elimination") will be relatively easy to apply. However, more
fundamental restructuring of the proof representations may be needed
in order to bring the proof sizes down to less than the size of the code,
without increasing proof-checking time. To this end, we propose to
develop a suite of proof-optimization techniques, including optimiza-
tions on encoded proofs as well as improved methods for eliding parts
of proofs (and then quickly reconstructing them during proof check-
ing). Especially for complex safety policies which may be required in
some Active Networks, more drastic extension to the framework itself
might be required, such as provided by the linear logical framework
(LLF) [4]. A linear framework has more succinct means for expressing
mutable state and concurrency than traditional frameworks, and we
plan to investigate efficient proof-checking techniques for LLF.

2. A second problem concerns the construction and maintenance of veri-
fication-condition generators, or VCGens. In a PCC system, there are
two components in the trusted computing base, the proof checker and
the VCGen. The VCGen program makes a single scan over the pro-
gram code and extracts a logical predicate whose satisfiability guar-
antees the code's safety. In a sense, the VCGen is a compiler that
translates program code into logic. The proof checker then checks
that the proof attached to the code is indeed a valid proof of the pred-
icate. Since the proof checker can concern itself with proofs written in

12

a pure logic, it is a generic component. On the other hand, a VCGen
must be constructed for each language or machine architecture, as well
as for each definition of safety.

Fortunately, the VCGen is not a complicated program. Still, there is
inherently a greater risk of errors appearing in this component, and
hence the matter of its correctness is of greater concern. We propose
to investigate techniques for proving the correctness of VCGen pro-
grams as well as deriving their implementation from high-level specifi-
cations. We plan to once again exploit the expressive power of logical
frameworks to describe the operational semantics, logical verification
conditions, and their relationship within the same language and apply
automated proof tools [22] to verify critical properties of a VCGen.
This will also require further research into the efficient implementa-
tion of the Twelf meta-theorem prover sketched in [22]. A specific
preliminary task along these lines will be to port our existing VCGen
component to the Intel x86 architecture (the current VCGen is for the
DEC Alpha), both to provide immediate support to other develop-
ers who are using this architecture, as well as to gain valuable initial
experience in modifying the VCGen.

3. Certifying machine code has the great advantage of efficiency, but re-
stricts code mobility since it applies to only one architecture. We
therefore also propose to adapt the idea of PCC to virtual machine
code. Proofs attached to virtual machine code can potentially simplify
bytecode verification [23] and interpretation, enable multiple safety
policies, and allow more efficient just-in-time compilation without sac-
rificing safety or relying on an unreasonably large trusted computing
base.

3.3 Compiler Technology

A critical element of our proposed research is the construction of demon-
stration compilers embodying ideas from our work on language technology
and security infrastructure. The construction of working compilers is crucial
for validating our work on the principles of safe system extension and for
applying these ideas to Active Networks or other extensible systems. It also
provides concrete tools that may be distributed to other researchers and
developers.

Our work on compiler technology is based on the general notion of cer-
tified code, of which Proof-Carrying Code is a specific instance. A certified

13

program is a program (written in some language) equipped with a safety
certificate (in the case of PCC, a formal proof) asserting that the program
complies with a pre-determined safety policy. Crucially, not only must the
code producer comply with the policy, but it must also produce a machine-
checkable representation of the certificate. This certificate is checked by the
code consumer (by using the safety infrastructure described above) as a con-
dition of acceptance of the extension. (In the context of Active Networks,
a capsule, or active packet, would be required to contain a certificate of
compliance with an active router's safety policy.)

One advantage of certified code is that the code consumer need not rely
on any assumptions about the origin of the component — there is no need
for any form of authentication, nor any reliance on the integrity of a given
compiler. This rules out "trojan horse" attacks based on spoofing a com-
piler and avoids the need for complicated authentication protocols. Another
advantage is that there is no fundamental limitation on the efficiency of the
generated code — if a safety certificate can be produced, any code, whether
a machine binary, byte code for an abstract machine, or abstract syntax for
a high-level language, is acceptable. The only limitation is the feasibility
of producing safety certificates for programs of practical interest, and the
checkability of proofs of those certificates.

It is important to emphasize that compliance with a safety policy does
not in itself ensure the integrity of an extensible system for the simple reason
that the policy might not in fact be sufficient to ensure that the system
remains well-behaved under extension. This limitation is fundamental to any
approach to extensibility—the code consumer may enforce limitations that
are not enough to avoid compromise of functionality. We must be satisfied
with the observation that the safety policy is a contractual arrangement
between the code producer and code consumer whose terms are determined
by the consumer itself.

The purpose of a certifying compiler is to generate certified code from a
high-level language relative to a given safety policy. We are experimenting
with two approaches to building a certifying compiler:

1. Typed Intermediate Languages and Type-Directed Compilation. A
type-directed compiler produces abstract machine code in an intrin-
sically safe statically typed language. Type safety of the abstract
machine code is sufficient for a range of safety properties — includ-
ing memory safety and adherence to specified API's — that are often
sufficient for acceptance by a code recipient. The abstract machine
code could be as high level as ML or as low level as the Java Virtual

14

Machine, equipped with a suitable type system (for example, Abadi
and Stata's type system for JVM [23]).

2. Proof-Carrying Code and Certifying Compilers. In the interest of ef-
ficiency the code generated by a compiler need not be intrinsically
safe (i.e., there might be unsafe instruction sequences), so the com-
piler must augment the binary with a safety certificate, in the form
of a proof, asserting that the target program is safe. As explained
in the previous section, the safety proof, if valid, guarantees compli-
ance with a safety policy, and is checkable by the code recipient (given
also the binary to be executed and the safety policy itself). From the
user's point of view, the compiler is a tool for automatic generation of
optimized PCC binaries.

More specifically, we propose the following work on these two approaches
to certifying compilers:

1. The basis for our experiments with Typed Intermediate Languages
and Type-Directed Compilation is the TILT compiler for Standard
ML. TILT is an evolution of the TIL compiler [24] to encompass
the complete Standard ML language, including the module system.
TILT is based on the idea of type-directed translation, a generalization
of syntax-directed translation in which not only is a program trans-
formed during compilation, but so too is it type in such a way that the
translated program has the translated type. Thus the TILT compiler is
based on the idea of typed intermediate languages, which are statically-
typed programming languages that serve as the target languages for
compiler transformations. Type-directed translation ensures that the
compiler is able to track the typing properties of the translated code
through the compiler. At any stage the generated code may be checked
against its type to ensure integrity. Moreover, this code may be used
as a distribution format in an extensible system — the type is a safety
certificate that may be checked by a type checker for that intermediate
language.

We propose to build the TILT compiler for Standard ML to validate
the feasibility of type-directed compilation for a full-scale program-
ming language. This work includes the design of typed intermediate
languages, the development of type checkers for them (a surprisingly
difficult and subtle task), the development of a compiler and run-time
system, and comparison of its performance with other compilers for

15

Standard ML. The TILT compiler will be based on the TIL compiler
developed by the Fox Project for the "core" language of Standard ML
(without modules). We also plan to extend the TILT compiler with
support for refinement types and dependent types, as outlined in the
Language Technology section of this proposal.

For Proof-Carrying Code and Certifying Compilers, we plan to de-
velop an optimizing compiler for a safe C-based programming lan-
guage suitable for some kinds of systems-level (especially Active Net-
work) programming. This compiler development will start from our
current early prototype system called Touchstone. The Touchstone
compiler translates a small type-safe C-based language into highly op-
timized DEC Alpha assembly code. The assembly code is annotated
in such a way that a theorem prover (a prototype of which we have
built as part of the PCC infrastructure) is always able to find a proof
of the type safety of the code. Since our theorem prover generates
checkable encodings of its proofs, it is then straightforward to gener-
ate PCC binaries for the target programs produced by the compiler.
Our early experiments with the Touchstone prototype have been ex-
tremely encouraging, with excellent results shown for several realistic
C programs [18].

We propose to continue the development of Touchstone, with the
goal of eventually making it robust enough to distribute to other re-
searchers. There are several aspects to this task. First, an appropriate
"safe C-like language" has to be designed and formally specified. Our
current prototype implements only a fragment of C, with many impor-
tant features missing, such as structs. Second, although our current
prototype performs a number of code optimizations, it does this with-
out the benefit of any global dataflow analysis and hence is inherently
limited in what it can do. Exactly how dataflow optimizations will
interact with the generation of proofs is uncertain at this point, but
we believe that it should not pose any fundamental difficulties. Third,
there is the matter of the run time system, and in particular, garbage
collection. Our current Touchstone prototype does not have any kind
of support for automatic garbage collection, and hence in this sense
it is not really a practical system. Arranging for the compiled code
to invoke a garbage collector at the appropriate times again should
not pose any serious problems, though as we pointed out in our ear-
lier work on PCC extensions of ML programs [15], some care must
be taken in the case that copying garbage collection is used. Finally,

16

as progress in type systems and safety infrastructure are made, par-
ticularly in the area of specification of resource constraints, we plan
to incorporate these extensions in the certifying compiler, so as to be
able to experiment with them in the context of Active Networks and
other extensible systems.

3.4 Applications

A major part of the success of our research is derived from experiences
gained in the application of principles from language design, safety infras-
tructure, and compiler design. As we explained earlier, the basic strength
of the project comes from the synergy that arises from taking a "vertically
integrated" view of systems problems, such as those posed by Active Net-
works. Our goal is to approach both the foundational and the practical
problems with equal weight, so that the theory can be best informed by the
practice and that novel practical solutions can be derived from the applica-
tion of theoretical principles. Active Networks promise to be an especially
rich source of relevant practical problems, since the requirements for mod-
ularity, safety, and efficiency are so severe. We believe that the language
technologies that we are proposing to investigate will be absolutely critical
for successful development of Active Networks.

Our approach to applications will be to build tools, including new lan-
guage designs, compilers, and basic infrastructure components, that can be
distributed to other researchers for incorporation into their Active Network-
ing systems. We plan the following activities:

1. We plan to develop robust prototypes of the TILT and Touchstone cer-
tifying compilers and make them available to other researchers. The
TILT compiler will provide a high-performance alternative to existing
ML compilers, as well as a valuable platform for further experimenta-
tion in type-directed compilation and typed intermediate languages.
The Touchstone compiler will provide an easy way for users to generate
PCC binaries, for use in their own experiments with PCC.

2. In conjunction with the University of Utah, we propose to develop PCC
components that can be incorporated into the Flux OSKit. This will
involve the integration of the PCC proof checker into the OSKit as an
additional system service, as well as the development of an appropriate
VCGen module. Once integrated, this will provide users of the OSKit
to use native code in capsules, for performance-critical applications,
as well as applications that require more detailed safety policies than

17

can be easily provided by a Java Virtual Machine. It will also allow
Utah's proposed Janos system to be extended with native code, again
for performance-critical and safety-critical applications.

3. In addition to the incorporation of PCC into the OSKit, we also pro-
pose to extend the Kaffe JVM system with PCC. This will provide
users of the Kaffe Java infrastructure with a safe way to extend Java
applications with highly optimized native code. Since several research
groups are using Kaffe (including the Utah group as well as the CMU
Darwin project), this will provide yet another way for other researchers
to experiment with PCC and other advanced language technologies.

The principles and technologies that we will develop in the areas of lan-
guage design, safety infrastructure, and compiler technology will have direct
application in any system that depends on safety, modularity, and efficiency.
This includes Active Network, but also systems being developed under the
DARPA/ITO Quorum, Information Survivability, and EDCS programs.

4 Related Work

Active Networks. The idea of an Active Network was proposed by Wether-
all, Guttag, and Tennenhouse [30, 25, 29] as a means of improving the flex-
ibility and performance of network protocols. The idea of Active Networks
raises significant problems that are addressed in this proposal. As outlined
above, we propose to focus on the fundamental problem of how to achieve
safe, reliable, and efficient integration of "foreign" code into a safety and
performance-critical software system such as a network router. Ongoing
research in Active Networks will draw on and inspire our research on the
underpinnings of safe composition of code from untrusted components.

PLAN. The Switchware Project at the University of Pennsylvania is de-
veloping an Active Network in conjunction with Bellcore [1]. A critical part
of their work is the development of a programming language, called PLAN,
for programming Active Networks [11]. Their work builds on ours in a
number of respects, including the reliance on a typed, functional language
based on ML as the basis for their design, and the use of a variant of our
Proof-Carrying Code technology to provide assurances about the run-time
behavior of active network software. Their efforts are complementary to
ours in that they are working actively with industrial partners to transfer

18

fundamental language technology to the development of a "real world" ac-
tive network system. We expect to interact closely with the UPenn group
in the course of our research.

Joust. John Hartman, Larry Peterson, et. al. [10] at the University of Ari-
zona have coined the term liquid software for a general approach to achieving
flexible and reliable code mobility in a network environment, with appli-
cation to the construction of Active Networks and, more broadly, to the
general problem of dynamic integration of mobile code. Their approach is
philosophically and technically similar to ours in that they emphasize the
importance of modularity, including the critical notion of enforced abstrac-
tion boundaries, for achieving safe integration of components. However, they
rely on dynamic checking techniques, rather than static analysis, to achieve
these ends. In particular they employ a variant of the Java Virtual Ma-
chine [13] (extended with some Joust-specific constructs, and omitting some
of the JVM functionality) to ensure safety of mobile code, and employ a
"just in time" compiler to enhance performance. But, as we discussed ear-
lier, this increases very substantially the trusted code base on which their
approach must rely to guarantee integrity. Moreover, their reliance on C
as an implementation vehicle complicates, or even precludes, the kind of
static analysis that we maintain is essential for achieving efficiency without
sacrificing safety.

Ensemble. Ken Birman and Robbert van Rennesse at Cornell have demon-
strated convincingly that advanced programming languages with strong type
systems, rich modularity mechanisms, and higher-order functions can be de-
ployed to achieve an unprecedented degree of flexibility, reliability, and effi-
ciency in the construction of networking software [27]. Moreover, efficiency
is achieved, in part, by using theorem-proving techniques to carry out the
verified transformation of well-structured programs into more efficient, but
functionally equivalent, versions of these protocols. Their work is inspired
by our earlier work on the Fox Project, in which we demonstrated the use
of ML to achieve efficient, composable implementations of network protocol
stacks.

Flux. We have an ongoing collaboration with Jay Lepreau at the Univer-
sity of Utah who is developing the Flux Operating System Toolkit [7] to
provide the infrastructure for experimentation with advanced system struc-
turing techniques. We are at present engaged in a cooperative effort to

19

extend the Kaffe implementation of the JVM and the Flux Toolkit to in-
clude support for safe extension based on proof-carry code. This ties in with
the work of Peterson, et. al.as well as CMU's own Darwin group on the use
of Kaffe, and provides a further point of contact with the PLAN work at
UPenn.

5 Key Personnel

Robert Harper is an Associate Professor of Computer Science at Carnegie
Mellon University. He is well-known for his work on the design and seman-
tics of Standard ML, for introducing (together with Honsell and Plotkin)
the idea of a logical framework for representing proofs in formal systems,
and for exploring the use of typed intermediate languages in a compiler.

Peter Lee is an Associate Professor of Computer Science at Carnegie
Mellon University. Since 1991, he has been leading the Fox Project with
Robert Harper. He has made significant research contributions in many
areas related to the implementation and use of advanced programming lan-
guages, especially semantics-based analysis and optimization techniques for
languages such as Standard ML. Most recently, he has been involved in
the development of Proof-Carrying Code and its application to extensible
operating systems.

Prank Pfenning is a Senior Research Computer Scientist at Carnegie
Mellon University. His research focus is on the development of advanced
type systems for programming languages and mechanized reasoning about
properties of programming languages in logical frameworks. Among his
accomplishments, he designed and implemented the Elf language which was
used in the first prototype implementation of Proof-Carrying Code as well
as many other logic-based systems.

References

[1] D. Scott Alexander, Marianne Shaw, Scott M. Nettles, and Jonathan M.
Smith. Active bridging. In Proceedings of the ACM SIGCOMM'97
Conference, Cannes, France, September 1997.

[2] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. Becker, M. Fiuczyn-
ski, C. Chambers, and S. Eggers. Extensibility, safety, and performance

20

in the SPIN operating system. In Symposium on Operating System
Principles, pages 267-284, December 1995.

[3] Edoardo Biagioni, Nicholas Haines, Robert Harper, Peter Lee, and
Brian G. Milnes. Standard ML signatures for a protocol stack. Fox
Memorandum CMU-CS-93-170, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, July 1993. (Also published as CMU-
CS-FOX-93-01).

[4] Iliano Cervesato and Frank Pfenning. A linear logical framework. In
E. Clarke, editor, Proceedings of the Eleventh Annual Symposium on
Logic in Computer Science, pages 264-275, New Brunswick, New Jer-
sey, July 1996. IEEE Computer Society Press.

[5] David D. Clark. The structuring of systems using upcalls. In Proceed-
ings of the Tenth ACM Symposium on Operating Systems Principles,
pages 171-180. ACM, December 1985.

[6] Rowan Davies and Frank Pfenning. Practical refinement-type checking.
Draft paper, July 1997.

[7] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin,
and Olin Shivers. The Flux OSKit: A substrate for OS and language
research. In Proceedings of the 16th ACM Symposium on Operating
Systems Principles, Saint-Malo, France, October 1997.

[8] Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie Mellon
University, March 1994. Available as Technical Report CMU-CS-94-
110.

[9] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Second Symposium on Logic in Computer Science,
pages 194-204, Ithaca, New York, June 1987.

[10] John H. Hartman, Larry L. Peterson, Andy Bavier, Peter A. Bigot,
Patrick Bridges, Brady Montz, Rob Piltz, Todd A. Proebsting, and
Oliver Spatscheck. Joust: A platform for communcation-oriented liquid
software. Technical Report TR 97-16, Department of Computer Science,
The University of Arizona, December 1997.

[11] Michael Hicks, Pankaj Kakkar, Jonathan T. Moore, Carl A. Gunter,
and Scott Nettles. PLAN: A programming language for active networks.
Submitted, November 1997.

21

[12] Xavier Leroy. The Objective Caml system: Documentation and user's
guide. Available at http://pauillac.inria.fr/ocaml/htmlman/.,
1996.

[13] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1997.

[14] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[15] George C. Necula. Proof-carrying code. In Proceedings of the ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL'97), Paris, January 1997.

[16] George C. Necula and Peter Lee. Proof-carrying code. Technical Re-
port CMU-CS-96-165, School of Computer Science, Carnegie Mellon
University, September 1996.

[17] George C. Necula and Peter Lee. Safe kernel extensions without run-
time checking. In Proceedings of the Second Symposium on Operating
System Design and Implementation (OSDI'96), Seattle, pages 229-243,
October 1996.

[18] George C. Necula and Peter Lee. The design and implementation of a
certifying compiler. Submitted to the ACM SIGPLAN Conference on
Programming Language Design and Implementation, November 1997.

[19] George C. Necula and Peter Lee. Efficient representation and validation
of proofs. Submitted to the ACM Symposium on Logic in Computer
Science, December 1997.

[20] George C. Necula and Peter Lee. Safe, untrusted agents using proof-
carrying code. Submitted to the Special Volume on Mobile Agents,
Lecture Notes in Computer Science, December 1997.

[21] Michael P. Plezbert and Ron K. Cytron. Is "just in time" = "better late
than never"? In The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 120-131, Paris, January
1997.

[22] Carsten Schürmann and Frank Pfenning. Automated theorem proving
in a simple meta-logic for If. Submitted, January 1998.

22

[23] Raymie Stata and Martin Abadi. A type system for Java bytecode
subroutines. In Proceedings of the 25th Annual SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, CA,
January 1998. To appear.

[24] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert
Harper, and Peter Lee. TIL: A type-directed optimizing compiler for
ML. In ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 181-192, Philadelphia, PA, May 1996.

[25] David L. Tennenhouse and David J. Wetherall. Towards and active
network architecture. Computer Communication Review, 26(2), April
1996.

[26] USENIX Association. The BSD Packet Filter: A New Architecture for
User-Level Packet Capture, January 1993.

[27] Robbert van Renesse, Ken Birman, Mark Hayden, Alexey Vaysburd,
and David Karr. Building adaptive systems using ensemble. Technical
Report TR97-1638, Department of Computer Science, Cornell Univer-
sity, July 1997.

[28] R. Wahbe, S. Lucco, T. .E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In lJ^th ACM Symposium on Operating
System Principles, pages 203-216, December 1993.

[29] David J. Wetherall, John Guttag, and David L. Tennenhouse. ANTS:
A toolkit for building and dynamically deploying network protocols. In
Aurel A. Lazar, editor, Proceedings of the First IEEE Conference on
Open Architectures and Network Programming (OPENARCH'98), San
Francisco, CA, April 1998. To appear.

[30] David J. Wetherall and David L. Tennenhouse. The ACTIVE IP op-
tion. In Proceedings of the 7th ACM SIGOPS European Workshop,
Connemara, Ireland, September 1996.

[31] Hongwei Xi and Frank Pfenning. Eliminating array bound checking
through dependent types. Submitted, November 1997.

23

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

