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Preface 

This book contains referred papers presented at the Seventh IEEE Workshop on 
Neural Networks for Signal Processing (NNSP '97) held at the Amelia Island 
Plantation, Amelia Island, Florida on September 24-26, 1997. 

The Neural Networks Technical Committee of the IEEE Signal Processing Society 
sponsored NNSP '97, in cooperation with the IEEE Neural Network Council and 
with co-sponsorship from the Air Force Office of Scientific Research (AFOSR). 
We designed the workshop to serve as a regular forum for researchers in academia 
and industry who are interested in the exciting field of neural networks for signal 
processing. Neural networks offer a fresh view for the important problems faced in 
signal processing because they extend linear models and go beyond the assump- 
tions of stationarity and Gaussianity traditionally imposed in signal processing. 

This year we announced two topics in the call for papers. The goal was to create a 
critical mass of submissions and dedicate a full session to discuss a topic of current 
interest. This year's topics are blind signal processing and biomedical applications. 
Each is important in its own right. Blind signal processing is a difficult but excit- 
ing area of signal processing with many practical applications for which the use of 
nonlinearity is key for acceptable solutions. The biomedical area has long been a 
challenging area due to the imprecise nature of human reasoning and the need for 
more sophisticated quantitative tools. Neural networks and other approximate rea- 
soning methods are key players in this effort. We hope that this approach of elect- 
ing topics will be successful and will make these proceedings a necessary 
reference for the advances reported in each field. 

Our deep appreciation is extended to Drs. Simon Haykin, S.Y. Kung, J.F. Cardoso, 
Yann LeCun and David Brown for their insightful plenary talks. Our sincere 
thanks go to all members of the Technical Committee for the excellent and timely 
reviews, and above all to the authors whose contributions made this workshop 
possible. 

Continuing with the tradition of paperless communication, this year's reviews and 
announcements were all electronic. Thanks to Dong-Wei Chen and Craig Fancourt 
for keeping the NNSP '97 Web page (http://www.cnel.ufl.edu/nnsp97/) current 
and effective. Special thanks go to Ms. Sharon Bosarge for her dedication and hard 
work to coordinate the many details necessary to put together the program and the 
local arrangements. 

Jose C. Principe 
Lee C. Giles 
Bert DeVries 
Nelson H. Morgan 
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Invited Lecture 

Chaos, radar clutter, and neural networks 

Simon Haykin 

McMaster University 
Ontario, Canada 

The lecture will be in three parts dealing in a coordinated way with the issues of 
chaos and neural networks. In the first part of the lecture, I will outline the set of 
criteria for determining if a given experimntal (physical) time series is indeed cha- 
otic. The criteria include: Tests for nonlinearity, reliable estimations of the correla- 
tion dimension, characteristic time delay, embedding dimension, and the Liapunov 
spectrum. 

In the second part of the lecture, I will present a case study based on real life data 
of sea clutter (i.e., radar backscatter from an ocean surface) and demonstrate how 
the above-mentioned criteria are satisfied in a very convincing way. The third part 
of the lecture addresses how a neural network can be used to peform dynamic 
reconstruction on an experimental time series known to be chaotic. The problem is 
usually complicated by the unavoidable presence of additive noise. For this part of 
the study, I will present the results of a detailed study involving the following 
learning algorithms: 

Regularized radial basis function network. 
Support vector machine. 

The results of these evaluations will be checked against the chaos theory described 
in the first part of the lecture. 



NONPARAMETRIC REGRESSION 
MODELING WITH TOPOGRAPHIC MAPS 

AS A BASIS FOR 
LOSSY IMAGE COMPRESSION 

Marc M. Van Hulle 
Laboratorium voor Neuro- en Psychofysiologie 

K.U.Leuven 
Campus Gasthuisberg 

Herestraat 
B-3000 Leuven, BELGIUM 

Tel.: + 32 16 34 59 61     Fax: + 32 16 34 59 93 
E-mail: marc@neuro.kuleuven.ac.be 

Abstract— We introduce a new approach to lossy image com- 
pression with topographic maps based on nonparametric regres- 
sion modeling: the topographic maps are trained to perform non- 
parametric regression using our recently introduced learning rule, 
called the Maximum Entropy learning Rule [9, 10], in combination 
with projection pursuit regression learning [11]. Furthermore, in 
order to better account for the local image statistics, we apply 
a technique similar to subspace classification. Finally, we com- 
pare the performance of our approach to that of the Karhunen- 
Loeve transform and the optimally integrated adaptive learning 
algorithm [7]. 

INTRODUCTION 

Kohonen's Self-Organizing (feature) Map (SOM) algorithm [1] is aimed at 
establishing, in an unsupervised way, a mapping from a higher dimensional 
space of input signals onto an equal or lower dimensional discrete lattice of 
formal neurons. The algorithm was originally conceived for nonparametric 
regression analysis, whereby the converged topographic map was intended to 
capture the main dimensions of the input space ([2], p. 152). Hence, the algo- 
rithm can be used for the regression modeling of multi-variable functions, at 
least in principle since it often yields "nonfunctional" mappings (one input 
can map onto more than one output, see [3, 4]). In addition to nonpara- 
metric regression, there also exists an intimate connection with the classic 
fc-means clustering algorithm [12, 13] and the LBG algorithm [14] for building 
vector quantizers (except for the neighborhood function, see [15]). Hence, 
depending upon the interpretation adopted, the SOM algorithm performs 
regression modeling or vector quantization (VQ). In the VQ case, the SOM 
algorithm can be used as a "lossy" compression technique: the converged 
neuron weights form an optimal set of codewords -optimal with respect to 
the mean squared error (MSE) distortion due to quantization- and the min- 

0-7803-4256-9/97/$ 10.00 ©1997 IEEE 



imum Euclidean distance between an input sample and the neuron weights 
defines the code membership function. Such a VQ-based coding is radically 
different from a (linear) transform coding in which each input sample is pro- 
jected along a limited number of projection directions -limited compared to 
the dimensionality of the input space. The optimal linear transformation 
is the Karhunen-Loeve transform (KLT) since it minimizes the MSE [5] or, 
equivalently for this technique, since it maximizes the norm of the projected 
input vector. 

The assumptions upon which the optimality conditions are based can be 
questioned, specifically the use of global statistics for generating an optimal 
coding scheme may not be appropriate when the input distribution is not 
stationary. In an attempt to remedy this problem, and to account for the 
local statistics as well, several adaptive techniques have been devised, also 
in the neural network field. The SOM algorithm was used as a basis of 
subspace classification [6]; the resulting structure is referred to as the adap- 
tive subspace self-organizing algorithm [2]. More recently, Dony and Haykin 
[7] proposed an adaptive scheme, which favorably combined VQ with KLT, 
called the mixture of principal components (MPC). Specifically, it partitions 
the input distribution into a number of regions or classes as in VQ. Within 
each class, an input vector is represented by a linear combination of a limited 
number of basis vectors which define a subspace in a manner analogous to a 
principal components representation. The principal components are obtained 
with a neural network learning rule, such as Sanger's [8] or Oja's [6], since 
such an iterative approach to KLT requires less storage overhead and can be 
computationally more efficient than the algebraic approaches which operate 
on the sample covariance matrix directly [7]. The learning scheme as a whole 
is called the optimally integrated adaptive learning (OIAL) algorithm. 

In this paper, we will introduce a novel way to perform image compression 
with neural networks: we will use topographic maps, trained for regression 
purposes, which become part of a technique similar to subspace classification. 
The topographic maps are trained with our recently introduced rule, called 
the Maximum Entropy learning Rule (MER) [9, 10], in combination with 
projection pursuit regression learning [11]. 

COMBINING PROJECTION PURSUIT 
REGRESSION WITH MER 

Consider the regression fitting of a scalar function y of d — 1 independent 
variables, denoted by the vector x = [«!, ...,xd_1], from a given set of M 
possibly noisy data points or measurements {(xm,j/m),m = 1, ...,M} in d- 
dimensional space: 

ym=f(xm) + noise, (1) 

with / the unknown function to be estimated, and where the noise contribu- 
tion has zero mean and is independent from the {xm}. In projection pursuit 
regression (PPR) [11], the rf-dimensional data points are interpreted through 
optimally-chosen lower dimensional projections; the "pursuit" part refers to 



optimization with respect to these projection directions. We will limit our- 
selves to the case where the function / is approximated by a sum of scalar 
functions fk: 

/(x) = fX^x7"), (2) 

with / the approximation of/, and a* the projection directions (unit vectors) 
and where T stands for transpose. The fk are piecewise smooth activation 
functions or splines that join continuously at points called "knots." The func- 
tions fk and projections afc are estimated sequentially in order to minimize 
the mean squared error (MSE) of the residuals: 

M   ' 
c^ = Ti £ 

m=l 

Jb-1 

M*k*
mT)- 2/m-£/*'(a*'xmT) 

k'=\ 

(3) 

and where the term between the curly brackets denotes the fcth residual 
of the mth data point, r£\ with r? = ym. In other words, each newly- 
added projection a* and activation function fk are developed in the space 
of the residuals rj? which remain unaccounted for by the sum of the k - 1 
previously-determined activation functions. 

If we consider the knots as neurons of a one-dimensional topographic map, 
then we can determine the position of these knots adaptively by developing 
the map in the two-dimensional space V of the inputs {(afcx

m ), r£*}. As an 
example, consider the one-dimensional lattice shown in Fig. 1A. The neuron 
weights w, = [wn, wi2] will be updated with our previously developed learn- 
ing rule, called the Maximum Entropy learning Rule (MER) [9, 10]. Before 
we introduce our rule, we first consider our definition of quantization region 
which is quite different from the one used in a Voronoi or Dirichlet tessella- 
tion of the input space, as done in the SOM algorithm. By observing that 
rk is the dependent variable, each quantization region can be defined with 
respect to the projection direction ak as the area demarcated by the(a*x )- 
axis (horizontal) coordinates of two successive neurons of the lattice (thin 
dashed, vertical lines in Fig. 1A): e.g. quantization region Hc is bounded by 
the horizontal weight coordinates of neurons i and j. We associate with each 
quantization region a code membership function: 

[ 0        if afcx' £ Hj, 

with nHj, nHj G {1,2}, the number of neurons that bound Hj, and (afcx
T) 

the projected'input. (Note that since the quantization regions are bounded 
by the horizontal weight coordinates, their code membership functions only 
depend on the projected inputs). The Maximum Entropy learning Rule 
(MER) is defined as: 

Aw,- = »; Yl  l»i(a*xT) S»n(v - w«)>   Vi G A, (5) 



with t] the learning rate (a positive constant), w,- = [WJI,W»2] the weight 
vector of neuron i, v = [(ajtx7"),^] € V the current input vector, 5,- the 
two quantization regions that have neuron i as a common bound, and Sgn(.) 
the sign function taken componentwise. The effect of a single MER update 
is shown in Fig. 1A (thick dashed line). It can be formally proven that for 
a one-dimensional lattice, developed in one-dimensional space, MER yields 
an equiprobable quantization at convergence for any N [9], and that in the 
multi-dimensional case, MER yields a quantization which will approximate 
an equiprobable one at convergence for large N [10]. This implies that, e.g. 
for neuron j in Fig. IB, there will be an equal number of data points below 
and above j (i.e. in the light and dark shaded regions). Since this is the case 
for every neuron of the lattice, there will be, roughly speaking, an equal num- 
ber of data points from the set {(afcx

mT, r^)} above and below the piecewise 
smooth activation function ft (thick full line) at convergence. Furthermore, 
the neuron weights will represent the medians of the corresponding quan- 
tization regions: each weight vector will converge to the median, with the 
"median" defined as the vector of the (scalar) medians in each input dimen- 
sion separately. (Note that there exists no unique definition of median for the 
higher-than-one dimensional case.) Finally, since a one-dimensional lattice 
is guaranteed to converge to an unfolded one in one-dimensional space [10], 
the lattice of Fig. 1A is guaranteed to converge to one which will always be 
unfolded with respect to the horizontal axis and, hence, we are assured to 
obtain a functional mapping. 

Finally, the efficiency with which the input statistics is modeled can be 
improved by considering several regression models in parallel and treat them 
as classes. Each model can be trained with the aforementioned MER/PPR 
combination on common or on separate data sets. In case of the former, 
a class membership definition is needed. After training, data compression 
can be performed using the weights and projection directions of the trained 
regression models; model selection occurs according to the class membership 
function definition adopted for this application. 

IMAGE COMPRESSION 

Training of regression models 

Consider a grey scale image I(i, j) sized M x M pixels in which we select an 
mx m region or block (Fig. 2). The selected region is divided in two parts: 
1) the central pixel at row i and column j, and 2) the surrounding pixels 
(shaded area), termed surround(i, j). Consider now the regression fitting of 
the grey level of the central pixel as a function of the vector of grey levels of 
the surround: the pixels in the surround define an m x m — 1 dimensional 
vector of independent variables and the central pixel represents the possibly 
noisy measurement of the unknown function which is to be estimated. 

In order to better capture the local image statistics, we consider a total of 
L classes in parallel. Each class is represented by a regression model eq. (2) 
but with different projection directions and weight vectors. We divide the 
original image into L subimages sized M x M pixels. We assume a toroidal 



Hbi   H, m 

Figure 1: (A) Definition of quantization region in a one-dimensional lattice. 
The weights of the lattice are joined by line segments so as to yield the acti- 
vation function /*. The thick full and thick dashed lines represent /* before 
and after the weights are updated once using MER, respectively. The thin 
dashed, vertical lines represent the borders of the quantization regions prior 
to updating the weights. The shaded region corresponds to the receptive 
field of neuron j and it comprises the quantization regions Hc and Hd- The 
present input is indicated by the black dot in Hc. (B) At convergence, there 
will be an equal number of data points in the dark and light shaded regions, 
below and above neuron j, respectively. The thick full line represents the 
piecewise linear activation function /*. 

J 

Figure 2:  Definition of central pixel at coordinate (i, j) and the vector of 
surrounding pixels (shaded area), termed surround(i,j). 



extension for each subimage and a lateral shift of one pixel between two 
successive image blocks so that, in this way, we dispose of M2 measurements 
per subimage in an m x m dimensional data space. Each regression model 
is trained on a different subimage until convergence.1 The latter greatly 
simplifies the computational complexity of the algorithm, and the overall 
training time, and it alleviates the problem of how to properly initialize the 
regression models (see e.g. [7]). 

Definition of codebook vector and class membership 

Before we can perform image compression, we have to decide on the defini- 
tions of codebook vector and class membership. The latter will be similar 
but not equal to the one used in subspace classifiers. Assume that we use 
L classes of which the corresponding regression models consist of N neurons 
and K projection directions, for simplicity's sake. Each regression model is 
trained on blocks sized m x m pixels as explained in the previous paragraph. 
We now partition the image into nonoverlapping but juxtaposed blocks sized 
mxm pixels and project the mxni-l dimensional surround vector of each 
block (cf. Fig. 2) along the K projection directions of each class. The nearest 
neuron weight vectors (in Euclidean sense), along each of the K projection 
directions, are then used for discretizing the projected surround vector and 
the binary indices of these weight vectors for storing the discretized surround 
vector; the central pixel value need not be discretized (and stored) since it can 
be predicted from the regression model of the selected class. The discretized 
surround vector can be computed from its K discretized projection coordi- 
nates. Hence, for each class, we store the N x K weight vectors from which 
the NK codebook vectors needed for decompression can be determined. 

Finally, for cases in which L > 1, we use the following definition of class 
membership: for each image block, we use the class which produces the 
smallest sum of the following two quantities: 1) the quantization error be- 
tween the projected and the original surround vector, and 2) the regression 
error between the predicted and the original central pixel value. The binary 
code of the selected class is then stored together with the binary code of 
the K discretized projection coordinates. Decompression is achieved when 
the binary codes are substituted for the corresponding codebook vectors; the 
central pixel value is obtained from the corresponding regression model. The 
image obtained in this way is termed the decompressed image. The quality 
of the decompressed image can be improved when, for L = 1, the regression 
model is applied to the decompressed image but now with overlapping image 
blocks. For L > 1, we can take a conservative approach by selecting the 
regression model which yields the smallest discrepancy between the central 
pixel value it produces and the one we had before in the decompressed image. 

Since we do not treat the subimages as preclassified data, we also considered the 
alternative case where a single training set is used and where training of each one 
of the L regression models continues on those training samples for which it yields 
the smallest regression errors until all samples are consistently represented. How- 
ever, since this recursive approach yielded only a minor improvement for the case 
reported in the Simulation Results section, but at the expense of a much increased 
computational complexity and training time, we did not consider it further. 



SIMULATION RESULTS 

In the simulations, we consider 8 bit images and surrounds sized 5x5-1 pixels 
(i.e. m = 5). We use lattices of N neurons, with cubic spline interpolation 
between the neuron weights, K projection directions and L regression models 
in such a way that (N + 1) x K x L = 64 (we use (N + 1) to account for the 
space needed for storing the codebook vectors). The compression ratio can 
be estimated as follows: for the original image we need 8 bits per pixel (6pp) 
and for the compressed image we need (N + 1) x K x L values or 6 bits to 
code for the vector of grey values of each m x m block in which the image is 
partitioned, i.e. 0.24 6pp. 

We run MER in batch mode (i) = 0.02) and determine, after each epoch, 
the MSE between the actual and the desired, equiprobable code membership 
function usage. We run MER until the magnitude of the difference between • 
the present and the previous running-averaged MSE is lower than 1.0 10-7 or 
until 15,000 epochs have elapsed; the present running average equals 10% of 
the present, unaveraged MSE added to 90% of the previous running average. 
In order to optimize C(ai), the procedure is run for the at taken as unit 
vectors; the components of the unit vector with the lowest residual error are 
then further optimized by performing hill descent on C(ajfc) in steps of 0.01; 
after each update, a* is renormalized to unit length. Finally, in order to 
further optimize the K projection directions obtained, we apply backfitting: 
we cyclically minimize C(&K) f°r the residuals of projection direction k, until 
there is little or no change (< 0.1%) or until 10 full cycles have elapsed. We 
also ensure that, after each update, at is renormalized. 

As an example, we consider the LENA image (Fig. 3A), sized 512 x 512 
pixels at 8 bits per pixel. We modify the grey scale of the image from [0,255] 
to [0,10] and select L subimages sized 128 x 128 pixels (Fig. 3B) and use the 
16,384 data vectors corresponding to each subimage for training the lattices 
as explained in the previous section. For the time being, we have considered 
only L = 1, 2 and 4. When L = 1 only subimage 1 is used, when L = 2 
subimages 1 and 2 are used, and so on. In order to quantify the simulation 
results, we compute the MSE (MSEC) and the signal-to-noise-ratio due to 
quantization between the original and the decompressed image: 

SNRC = 10\ogl0—^M^-—,      (dB) (6) 

with I the decompressed image. The results for the LENA image are sum- 
marized in Table 1; the second column lists the actual configuration used, 
abbreviated symbolically as L/N/K; the last two columns list the corre- 
sponding MSEC and SNRC values. We observe that the performance of 
MER/PPR improves when N is lowered from 15 to 7 so that L and K can 
increase. The decompressed image for L/N/K = 2/7/4 is shown in Fig. 3C. 
Using the same standard image, the results obtained with the OIAL and KLT 
algorithms are also shown in Table 1 [16]. The OIAL algorithm uses K = 4 
projections and L = 128 classes and the KLT algorithm uses K = 4 projec- 
tions only, both for 0.25 6pp but for blocks sized 8x8 pixels. We observe 
that MER/PPR performs reasonably well for N = 7, however, we hasten to 
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Figure 3: (A) Original LENA image, (B) subimages used for training, and 
(C) decompressed image obtained with MER/PPR {L/N/K = 2/7/4). 

11 



Table 1: Performances obtained with the MER/PPR, OIAL and KLT algo- 
rithms 

algorithm L/N/K MSEC SNRC 

1/7/8 
2/7/4 
4/7/2 

82.6 
56.7 
69.8 

23.0 
24.6 
23.8 

MER/PPR 1/15/4 
2/15/2 

89.7 
91.1 

22.7 
22.6 

OIAL 128/-/4 54.9 24.8 
KLT 1/-/4 71.0 23.7 

add that much more images should be considered before any judgment can 
be made. 

CONCLUSION 

In this paper, we have introduced a new approach to lossy image compression 
using topographic maps and a technique similar to subspace classification. 
Within each class, a number of topographic, maps were trained so that a non- 
parametric, regression model of the local image statistics is obtained. The 
topographic maps were trained using our recently introduced rule, called the 
Maximum Entropy learning Rule (MER) [9, 10], in combination with projec- 
tion pursuit regression (PPR) learning [11]. The use of PPR in combination 
with MER offers the advantage that we don't need a prohibitive amount of 
neurons for regression modeling in high dimensional spaces and a high num- 
ber of input samples to allocate the neuron weights reliably (cf. the curse of 
dimensionality). Furthermore, and in particular with respect to small data 
sets, since with MER the neuron weights converge to the medians of their 
quantization regions, the regression models obtained will be less sensitive to 
outliers but, on the other hand, they will be more sensitive to biased noise. 
Fortunately, the effect of the latter can be reduced by backfitting. Finally, 
since we have essentially trained our topographic maps for nonparametric 
regression purposes, we could equally'well have considered noise cancelling 
as an application. This will be explored in our future work. 
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Abstract 

We discuss an unsupervised learning method which is driven by an informa- 
tion theoretic based criterion. Information theoretic based learning has been 
examined by several authors Linsker [2, 3], Bell and Sejnowski [5], Deco and 
Obradovic [1], and Viola etal [6]. The method we discuss differs from previous 
work in that it is extensible to a feed-forward multi-layer perceptron with an 
arbitrary number of layers and makes no assumption about the underlying 
PDF of the input space. We show a simple unsupervised method by which 
multi-dimensional signals can be nonlinearly transformed onto a maximum 
entropy feature space resulting in statistically independent features. 

1.0 INTRODUCTION 
Our goal is to develop mappings that yield statistically independent features. We 
present here a nonlinear adaptive method of feature extraction. It is based on con- 
cepts from information theory, namely mutual information and maximum cross- 
entropy. The adaptation is unsupervised in the sense that the mapping is determined 
without assigning an explicit target output, ä priori, to each exemplar. It is driven, 
instead, by a global property of the output: cross entropy. 

There are many mappings by which statistically independent outputs can be 
obtained. At issue is the usefulness of the derived features. Towards this goal we 
apply Linsker's Principle of Information Maximization which seeks to transfer 
maximum information about the input signal to the output features. It is also shown 
that the resulting adaptation rule fits naturally into the back-propagation method for 
training multi-layer perceptrons. 

Previous methods [1] have optimized entropy at the output of the mapping by con- 
sidering the underlying distribution at the input. This represents a complex problem 
for general nonlinear mappings. The method presented here, by contrast, is more 
directly related to the technique of Bell and Sejnowski [5] in which we manipulate 
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entropy through observation at the output of the mapping. Specifically, we exploit a 
property of entropy coupled with a saturating nonlinearity which results in a 
method for entropy manipulation that is extensible to feed-forward multi-layer per- 
ceptrons (MLP). The technique can be used for an MLP with an arbitrary number 
of hidden layers. As mutual information is a function of two entropy terms, the 
method can be applied to the manipulation of mutual information as well. 

In section 2 we discuss the concepts upon which our feature extraction method is 
based. We derive the adaptation method which results in statistically independent 
features in section 3. An example result is presented in section 4, while our conclu- 
sions and observations appear in section 5. 

2.0 BACKGROUND 
The method we describe here combines cross entropy maximization with Parzen 
window probability density function estimation. These concepts are reviewed. 

2.1 Maximum Entropy as a Self-organizing Principle 
Maximum entropy techniques have been applied to a host of problems (e.g. blind 
separation, parameter estimation, coding theory, etc.). Linsker [2] proposed maxi- 
mum entropy as a self-organizing principle for neural systems. The basic premise 
being that any mapping of a signal through a neural network should be accom- 
plished so as to maximize the amount of information preserved. Linsker demon- 
strates this principle of maximum information preservation for several problems 
including a deterministic signal corrupted by gaussian noise. Mathematically Lin- 
sker's principle is stated 

I(x,y) = hY(y)-~hYlx(y\x) (1) 

where I(x,y) is the mutual information of the RVs X and Y, and h(^]) is the 
continuous entropy measure [4]. Given the RV (random vector), Y e W , the con- 
tinuous entropy is defined as 

00 

fly(u)   =   - j   lOg(fy(u))fy(u)du, (2) 
—00 

where fY(u) is the probability density function of the RV, the base of the logarithm 
is arbitrary, and the integral is TV-fold. Several properties of the continuous entropy 
measure are of interest. 

1. If the RV is restricted to a finite range in 5R    the continuous entropy measure is 
maximized for the uniform distribution. 

2. If the covariance matrix is held constant the measure is maximized for the nor- 
mal distribution. 
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N N 
3.  If the RV is transformed by a mapping g: 9?   -»9?    then the entropy of the 

new RV, y = g(x), satisfies the inequality 

hY(y)<hx(x)+E{ln(\JXY\)}, (3) 

with equality if and only if the mapping has a unique inverse, where JXY is the 
Jacobian of the mapping from X to Y. 

Regarding the first two properties we note that for either case each element of the 
RV is statistically independent from the other elements. 

Examination of (3) implies that by transforming a RV we can increase the amount 
of information. This is a consequence of working with continuous RVs. In general 
the continuous entropy measure is used to compare the relative entropies of several 
RVs. We can see from (3), that if two RVs are mapped by the same invertible linear 
transformation their relative entropies (as measured by the difference) remains 
unchanged. However, if the mapping is nonlinear, in which case the second term of 
(3), is a function of the random variable, it is possible to change relative informa- 
tion of two random variables. From the perspective of classification this is an 
important point. If the mapping is topological (in which case it has a unique 
inverse), there is no increase, theoretically, in the ability to separate classes. That is, 
we can always reflect a discriminant function in the transformed space as a warping 
of another discriminant function in the original space. However, finding the dis- 
criminant function is a different problem altogether. By changing the relative infor- 
mation, the form of the discriminant function may be simpler. 

This is not true, however, for a mapping onto a subspace. Our implicit assumption 
here is that we are unable to reliably determine a discriminant function in the full 
input space. As a consequence we seek a subspace mapping that is in some measure 
optimal for classification. We cannot avoid the loss of information (and hence some 
ability to discriminate classes) when using a subspace mapping. However, if the cri- 
terion used for adapting the mapping, is entropy based, we can perhaps minimize 
this loss. It should be mentioned that in all classification problems there is an 
implicit assumption that the classes to be discriminated do indeed lie in a subspace. 

2.2   Nonparametric Pdf Estimation 
One difficulty in applying the continuous entropy measure with continuous RVs is 
that it requires some knowledge of the underlying PDF (probability distribution 
function). Unless assumptions are made about the form of the density function it is 
very difficult to use the measure directly. A nonparametric kernel-based method for 
estimating the PDF is the Parzen window method [7]. The Parzen window estimate 
of the probability distribution, fY(u), of a random vector Y e SJ{ at a point u is 
defined as 

( 1 >! N> 
/r(")=   tr   IKÜT»)- (4> v r / = l 
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The vectors y- e 9? are observations of the random vector and K([ ]) is a kernel 
function which itself satisfies the properties of PDFs (i.e. K(U) > 0 and 
\K.(u)du - 1). Since we wish to make a local estimate of the PDF, the kernel 
function should also be localized (i.e. uni-modal, decaying to zero). In the method 
we describe we will also require that K([ ]) be differentiate everywhere. In the 
multidimensional case the form of the kernel is typically gaussian or uniform. As a 
result of the differentiability requirement, the gaussian kernel is most suitable here. 
The computational complexity of the estimator increases with dimension, however, 
we will be estimating the PDF in the output space of our multi-layer perceptron 
where the dimensionality can be controlled. 

3.0  DERIVATION OF LEARNING ALGORITHM 
As we stated our goal is to find statistically independent features; features that 
jointly posses minimum mutual information or maximum cross entropy. 

Suppose we have a mapping g:5R -> 9? ; M < JV, of a random vector X e 9? , 
which is described by the following equation 

Y = g(a,X) (5) 

How do we adapt the parameters a such that the mapping results in a maximum 
cross-entropy random variable? If we have a desired target distribution then we can 
use the Parzen windows estimate to minimize the "distance" between the observed 
distribution and the desired distribution. If the mapping has a restricted range (as 
does the output of an MLP using sigmoidal nonlinearities), the uniform distribution 
(which has maximum entropy for restricted range) can be used as the target distri- 
bution. If we adapt the parameters, a, of our mapping such that the output distribu- 
tion is uniform, then we will have achieved statistically independent features 
regardless of the underlying input distribution. 

Viola et al [6] has taken a very similar approach to entropy manipulation, although 
that work differs in that it does not address nonlinear mappings directly, the gradi- 
ent method is estimated stochastically, and entropy is worked with explicitly. By 
our choice of topology (MLP) and distance metric we are able to work with entropy 
indirectly and fit the approach naturally into a back-propagation learning paradigm. 

As our minimization criterion we use integrated squared error between our estimate 
and the desired distribution, which we approximate with a summation. 

1 - 2 
J = 5 | i.fy{u)-fY{u,y)) du 

1-2 
(6) 

In (6), Qy indicates the nonzero region (a hypercube for the uniform distribution) 
over which the Af-fold integration is evaluated. The criterion above exploits the 
fact that the MLP with saturating nonlinearities has finite support at the output. This 
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fact coupled with property 1 (i.e. as the integrated squared error between the 
observed output distribution and the uniform distribution is minimized, entropy is 
maximized) makes the criterion suitable for entropy manipulation. 

Assuming the output distribution is sampled adequately, we can approximate this 
integral with a summation in which u ■ e iR are samples in M-space and Aw is 
represents a volume. 

The gradient of the criterion function with respect to the mapping parameters is 
determined via the chain rule as 

3a      \dfA dg Ada 

^)y(fv(u:)-fv(u,v))(Ü-Y^ 

where eY(u.-, y) is the computed distribution error over all observations y. The last 
term in (7), dg/da, is recognized as the sensitivity of our mapping to the parame- 
ters a. Since our mapping is a feed-forward MLP (a represents the weights and 
bias terms of the neural network), this term can be computed using standard back- 
propagation. The remaining partial derivative, df /dg, is 

— MT K'(g(a,x;.)-W/) 

Substituting (8) into (7) yields 

g = ^IM-^WM,.)-^«.,,)) (9) 

The terms in (9), excluding the mapping sensitivities, become the new error term in 
our backpropagation algorithm. This adaptation scheme is depicted in figure 1, 
which shows that this adaptation scheme fits neatly into the backpropagation para- 
digm. 

Examination of the gaussian kernel and its differential in two dimension illustrates 
some of the practical issues of implementing this method of feature extraction as 
well as providing an intuitive understanding of what is happening during the adap- 

18 



tation process. The N-dimensional gaussian kernel evaluated at some u is (simpli- 
fied for two dimensions) 

K(V, — U) = —   .,,-    , ,»- 
(2K)      |Z| 

/?   1/7^-4^-»)^ '(y,-«) 

>vt v. — i 

27ia       ^ 2a ; 
1 = 

a2 0 

Oa2 

(10) 

N = 2 

The partial derivative of the kernel (also simplified for the two-dimensional case) 
with respect to the input y( as observed at the output of the MLP is 

5K 

dyt 

exp(--(y;— n)tZ \y-«)) 

,o   JV/2,„,l/2 

KO,.-W)E   (w-y,) 

expf j^'-"^«-") 
^ 2a 

S   (v.- H) 

(11) 

2?ta 
0-7,) Z = 

0  a 
Af = 2 

These functions are shown in figure 2. The contour of the gaussian kernel is useful 
in that it shows that output samples, y(, greater than two standard deviations from 
the center, u, of the kernel (in the feature space) do not significantly impact the 
estimate of the output PDF at that sample point. Likewise, the gradient term, is not 
significant for output samples exceeding two standard deviations from the kernel 
center. Consequently sample points for the PDF estimate should not exceed a dis- 
tance of two standard deviations from each other, otherwise, samples caught "in 
between" do not contribute significantly to the estimate of the PDF. A large number 
of such samples can cause very slow adaptation. 

Recall that the terms in (9) replace the standard error term in the backpropagation 
algorithm. This term is plotted as a surface in figure 2 minus the PDF error. From 
this plot we see that the kernels act as either local attractors or repellors depending 
on whether the computed PDF error is negative (repellor) or positive (attractor). In 
this way the adaptation procedure operates in the feature space locally from a glo- 
bally derived measure of the output space (PDF estimate). 

4.0 EXPERIMENTAL RESULTS 
We have conducted experiments using this method on millimeter-wave ISAR 
(inverse synthetic aperture radar) images (64 x 64 pixels). The mapping structure 
we use in our experiment is a multi-layer perceptron with a single hidden layer 
(4096 input nodes,4 hidden nodes, 2 output nodes). Using the adaptation method 
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described, we trained the network on two vehicle types with ISAR images from 180 
degrees of aspect. The projection of the training images (and between aspect testing 
images) is shown in figure 3 (where adjacent aspect training images are connected). 
As can be some significant class separation is exhibited (without prior labeling of 
the classes). We also note that the points where the classes overlap correspond to 
the cardinal aspect angles, which are, in general, difficult aspect angles to separate 
on similar vehicles in this type of imagery. 

5.0 CONCLUSIONS 
We have presented what we believe to be a new method of unsupervised learning. 
This method unlike previous methods is not limited to linear topologies [3] nor uni- 
modal PDFs [5]. In effect, we achieve features which are statistically independent 
from each other and yet are still, clearly, structurally related to the input structure as 
exhibited by the results of our example. This property bears similarity to Kohonen's 
discrete SOFM, however our map exists in a continuous output space. We are pur- 
suing in our research more rigorous analysis in the comparison of the resulting fea- 
ture maps to the Kohonen type. We are utilizing this method as a preprocessing for 
classification in our continuing research, although other applications certainly exist 
(e.g. blind separation). 
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Figure 2 The plots above assume that we are using a two- 
dimensional gaussian kernel with a diagonal covariance 
matrix with a2 on the diagonals. Contour of the gaussian 
kernel (top left, normalized by a), surface plots of the 
gradient terms with respect to yx (top right), y2 (bottom 
left), and magnitude (bottom right) all normalized by a . 
These terms are essentially zero at a distance of two 
standard deviations. 
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Figure 3 Example of training on ISAR images of two vehicles 
(aspect varying over 180 degrees). Over most of the aspect 
angles the vehicles are separated in the new feature space. 
Adjacent aspect angles are connected in the training set, 
evidence that topological neighborhoods were maintained. 
The mapping also generalizes to the testing set as well. 
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Abstract. In this paper we present a regularization scheme which 
iteratively adapts the regularization parameters by minimizing the 
validation error. It is suggested to use the adaptive regulariza- 
tion scheme in conjunction with Optimal Brain Damage pruning 
to optimize the architecture and to avoid overfitting. Furthermore, 
we propose an improved neural classification architecture eliminat- 
ing an inherent redundancy in the widely used SoftMax classifica- 
tion network. Numerical results demonstrate the viability of the 
method. 

INTRODUCTION 

Neural networks are flexible tools for pattern recognition and by expanding 
the network architecture any relevant target function can be approximated 
[6]. In this contribution we present an improved version of the neural classi- 
fier architecture based on a feed-forward net with SoftMax [2] normalization 
presented in [7], [8] avoiding an inherent redundant parameterization. The 
outputs of the network estimate the class conditional posterior probabilities 
and the network is trained using a maximum a posteriori (MAP) framework. 

The associated risk of overfitting on noisy data is of major concern in 
neural network design [4]. The objective of architecture optimization is to 
minimize the generalization error. The architecture can be optimized directly 
by e.g., pruning techniques or indirectly by using regularization. One might- 
consider various regularization schemes: from adapting a single regulariza- 
tion parameter to individual regularization of the weights in the net. These 
subjects are further addressed in [9], [10]. We suggest a hybrid approach 
with Optimal Brain Damage [11] for pruning and an adaptive regularization 
scheme. The inevitable problem of adapting the amount of regularization is 
solved by minimizing the generalization error w.r.t. regularization parame- 
ters. Using the validation error calculated from a single validation set as an 
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estimate of the generalization error, it is possible to formulate an iterative 
gradient descent scheme for adapting the regularization parameters [9]. The 
Bayesian way to adapt regularization parameters is to minimize the evidence 
[1, Ch. 10], [14]; however, the evidence does not, in a simple way, relate to 
the generalization error which is our primary object of interest. 

NETWORK ARCHITECTURE 

Suppose that the input (feature) vector is denoted by x with dim(cc) = nj. 
The aim is to model the posterior probabilities p(d\x), i = 1,2, • • •, c where C* 
denotes the i'th class. Then under a simple loss function the Bayes optimal1 

classifier assigns class label C; to x if i = argmaxjp^la;). 
Following [8] (see also [1]), the outputs, fa, of the neural network rep- 

resent estimates of the posterior probabilities, i.e., fat = p(d\x); hence, 
Y2i=i P(Ci\x) = 1- That is, we need merely to estimate c - 1 posterior 
probabilities, say p(d\x), i = 1,2, ■•-,c— 1, then the last is calculated as 
p(Cc\x) = l-^I1

lP(Ci\x). 
Define a 2-layer feed-forward network with nj inputs, UH hidden neurons 

and c — 1 outputs by: 

J2 WjiXe + f/o ) .    4>i (x) = £ wfjhj 0*0 + wjo      (1) 
1=1 / 3=1 

where Wjt, wfj are the input-to-hidden and hidden-to-output weights, respec- 
tively. All weights are assembled in the weight vector w = {w!£,wf!}. 

In order to interpret the network outputs as probabilities a modified nor- 
malized exponential transformation similar to SoftMax [2] is used, 

*- eXP(<W * = l,2,...,c-l,        yc = l-5>     (2) 
ELi exp(^) + 1 

The modification amounts to fixing exp(<f>c) in the standard SoftMax at 1 
eliminating the inherent redundancy of the output weights as also mentioned 
in [18, p. 150]. The redundancy implies that a particular set of outputs, fa, 
i = 1,2, • ■ •, c induces a one-dimensional sub-manifold in weight space. The 
network architecture is shown in Fig. 1. 

TRAINING AND REGULARIZATION 

Assume that we have a training set T of Nt related input-output pairs T = 
{(a:(fc),y(A;))}f=i where 

VlW ~ \ 0    otherwise (3) 

1
That is, each misclassification is equally serious corresponding to minimal probability 

of misclassification. 
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Figure 1: Neural network architecture. 

The likelihood of the network parameters is given by (see e.g., [1], [8]), 

Nt Nt     c 

p(T\w) = ][p(y(k)\x{k),w) = ]Hl(W))Vilk) (4) 
fc=i fc=l i=l 

where y(k) = y(x(k),w) is a function of the input and weight vectors. The 
training error is the normalized negative log-likelihood 

1 1   Nt 

ST(w) = _-i-logp(7» s —£*(y(*;),»(*);to) 
4 * fc=i 

(5) 

with £(■) denoting the loss given by 

c / c-1 \      c-1 

i(y(k),y(k);w) =£«(*) log    l + £exp(^(*(fc))) J-]£i/j(*)&(a:(*)). 

(6) 
The objective of training is minimization of the regularized cost function2 

C(w) = ST(w) + R(w, K) (7) 

where the regularization term R(W,K) is parameterized by a set of reg- 
ularization parameters K. Training provides the estimated weight vector 
w = arg min«, C(w) and is done using a Gauss-Newton scheme, 

wnew = wold _ v . J-l(w,oW)V(«;old) (8) 
2This might be viewed as a maximum a posteriori (MAP) method. 
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where 77 is the step-size (line search parameter). For that purpose we require 
the gradient, V(w) = dC/dw, and the Hessian, J(w) = d2C/wwT of the 
cost function given by, 

dC.   , 1 Ä^i.   ...     ~miflfr(s(fe))  , dR{w,n) 

1 Äri^,.u.      ^(1AM{x{k))d<j>Mk))  , aafl(n>,*) 
JH = ÄTEEEWMP« - WiW] —^ dw^~ +    dwdwT    • 

* fc=l i=l j=l 
(10) 

Here % is the Kronecker delta and we have used the Gauss-Newton approx- 
imation to the Hessian. 

ADAPTING REGULARIZATION PARAMETERS 

The available data set, V, of N examples is split into two disjoint sets: a 
validation set, V, with Nv = \jN] examples for architecture selection and 
estimation of regularization, and a training set, T, with Nt = N - Nv exam- 
ples for estimation of network parameters. 7 is referred to as the split-ratio. 

The validation error of the trained network is given by 

sv(w) = 1trJ2e(yW>y(ky>^ (11) 
JV

" fc=i 

where the sum runs over the Nv validation examples. Sv(w) is thus an 
estimate of the generalization error defined as the expected loss: G(w) = 
Ex,y{£(y, y; w)}, where Ex,y{-} denotes the expectation w.r.t. the joint input- 
output distribution. 

Aiming at adapting the regularization parameters K so that the validation 
error is minimized we can apply the iterative scheme suggested in [9]: 

«new = „old _ ^^(„old)) (12) 

where ß is a step-size and -u>(Kold) is the estimated weight vector using the 
regularization parameter Kold. Suppose the regularization term is linear in 
the regularization parameters, i.e., 

Q 

R(w, K) = KTr{w) = ^2 Kiuiw) (13) 
t=i 

where K* are the regularization parameters and n(w) the associated regular- 
ization functions. The gradient of the validation error then equals [9]: 

-8^W = -d^iw)-J   {w)--d^{w)- (14) 
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Consider the specific case of weight decay regularization with separate weight 
decays for input-to-hidden and hidden-to output layers, i.e., 

R(W,K) = KI-\W
I
\
2
+KH-\W

H
\
2 (15) 

where K = [«;/, KH]
T

 and w — [w1, wH] with dim(tü7) = m/, dim(wH) = mH 

and dim(xw) = m = mj + m#. 
The gradient then yields, 

|^(ä) = -2(fi'r.flmi; g(©) = -2(^r.flmH    (i6) 

where g = [gm/)0mJ = J~l(w) ■ dSv(w)/dw. 
In summary the algorithm for adapting regularization parameters consists 

of the following 8 steps: 

1. Choose the split ratio 7 between training and validation set sizes. 

2. Initialize K and the weights of the network. 

3. Train the network with fixed K to achieve w(n). Calculate the valida- 
tion error Sy. 

4. Calculate the gradient dSy/dn cf. Eq. (14). Initialize the step-size fi. 

5. Update « using Eq. (12). 

6. Retrain the network from the previous weights and calculate the vali- 
dation error 5y. 

7. If no decrease in validation error then perform a bisection of /x and goto 
step 5; otherwise, continue. 

8. Repeat steps 4-7 until the relative change in validation error is below a 
small percentage or, e.g., the 2-norm of the gradient dS^/ÖK is below 
a small number. 

PRUNING 

In order to reduce and optimize the network architecture we suggest to use 
a pruning scheme, e.g., Optimal Brain Damage (OBD) [11]. An alternative- 
method is Optimal Brain Surgeon (OBS) [5]; however, in a series of experi- 
ments we noticed that extreme care is essential in order not to underestimate 
the saliencies [16]. Thus OBS is less robust than OBD. 

OBD ranks the weights according to importance or saliency. Here we use 
the validation error based OBD proposed in [9]. The saliency for weight i is 
given by 

ft = -"WÄ) + 2^W(Ä)' (17) 

By repeatedly removing weights with small saliencies and retraining the 
resulting network, a nested family of network architectures is obtained. The 
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validation error (or an alternative measure of generalization performance3) is 
then used for selecting the optimal architecture. 

EXPERIMENTS 

We test the performance of the adaptive regularization algorithm on a vowel 
classification problem. The data are based on the Peterson and Barney 
database [17]. The classes are vowel sounds characterized by the first four 
formant frequencies. 76 persons (33 male, 28 female and 15 children) have 
pronounced c = 10 different vowels (IY IH EH AE AH AA AO UH UW ER) 
two times. This results in a data base of totally 1520 examples. The database 
is the verified database described in [22] where all data4 are used, including 
examples where utterance failed of unanimous identification in the listening 
test (26 listeners). All examples were included to make the task more difficult. 

The examples were split into a data set, V, consisting of N — 760 ex- 
amples (16 male, 14 female and 8 children) and an independent test set of 
the remaining 760 examples. The regularization was adapted by splitting the 
data set V equally into a validation set of Nv = 380 examples and a training 
set of Nt = 380 examples (8 male, 7 female and 4 children in each set). 

Suppose that the network weights are given by w = [w1, wlias,w
H, w^ias] 

where w1, wH are input-to-hidden and hidden-to-output weights, respec- 
tively, and the bias weights are assembled in wlias and w^ias. In this example, 
we use the following weight decay regularization term: 

R(W, K) = KI- \W*\2 + 4as ' Kiasf + «* • I™"? + «bias • Kasl'-      (18) 

where K. = [K
1

 , nlias, K
H, K^as]- We further define the normalized weight 

decays as a = K • Nt. The simulation set-up was: 

• Network: 4 inputs, 5 hidden neurons, 9 outputs5. 
• The training input data were normalized to zero mean and unit variance 

in order to facilitate training and weight initialization. 
• Weights were initialized uniformly over [—0.5,0.5], regularization pa- 

rameters were initialized at zero. 10 steps in a gradient descent train- 
ing algorithm (see e.g., [12]) was performed and the weight decays, n, 
were re-initialized at Amax/102, where Amax is the max. eigenvalue of 
the Hessian matrix of the cost function. This initialization scheme is 
motivated by the following observations: 

- Weight decays should be so small that they do not reduce the 
approximation capabilities of the network significantly. 

3E.g., the previously suggested algebraic estimate [8], [15]. 
4The database can be retrieved from ftp://eivind.imm.dtu.dk/dist/data/vowel/ 

PetersonBarney.tar.Z 
5We only need 9 outputs since the posterior class probability of the 10th class is given 
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NNet KNN (K = 9) 
Training 0.105 ±0.008 0.150 

Validation 0.115 ±0.005 0.158 
Test 0.122 ±0.005 0.199 

Test after retrain. 0.119 ±0.003 0.153 

Table 1: Probability of misclassification, pmc. For the neural network the averages 
and standard deviations over 6 runs are reported. 

- They should be so large that the algorithm is prevented from being 
trapped in a local optimum and numerical instabilities are elimi- 
nated. 

• Training is now done using a Gauss-Newton algorithm (see e.g., [12]). 
The Hessian is inverted using the Moore-Penrose pseudo inverse (see 
e.g., [19]) ensuring that the eigenvalue spread6 is less than 108. 

• The regularization step-size 77 is initialized at 1. 
• When the adaptive regularization scheme has terminated we prune 3% 

of the weights using a validation set based version of the Optimal Brain 
Damage recipe [9], [11]. 

• We alternate between pruning and adaptive regularization until the 
validation error has reached a minimum. 

• Finally, remaining weights are retrained on all data using the optimized 
weight decay parameters. 

Table 1 reports the average and standard deviations of the probability of 
misclassification (pmc) over 6 runs for pruned networks using the optimal 
regularization parameters. Note that retraining on the full data set decreases 
the test pmc slightly on the average; improvement was found in 4 out of 6 
runs. For comparison we used a .ftT-nearest-neighbor (KNN) classification, see 
e.g., [1] and found that K = 9 was optimal on the validation set. Note that 
the neural network performed significantly better. Contrasting the obtained 
results to other work is difficult. In [20] results on the Peterson-Barney vowel 
problem are reported, but their data are not exactly the same; only the first 
2 formant frequencies were used. Furthermore, different test sets have been 
used for the different methods presented. The best result reported [13] is 
obtained by using KNN and reach pmc = 0.186 which is somewhat higher 
than our results. 

In Fig. 2 the evolution of the adaptive regularization as well as the pruning 
algorithm is demonstrated. 

CONCLUSIONS 

This paper presented a framework for design of neural classifiers which in- 
clude architecture optimization by pruning and adaptation of regularization 

6 Eigenvalue spread should not be larger than the square root of the machine precision 
[3]. 
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Figure 2: Panels (a), (b) and (c) show the evolution of the adaptive regularization 
algorithm in a typical run. Optimal weight decays are found by minimizing the 
validation error in (a). Note that also the test errors decreases. This tendency is 
also evident in (b) displaying pmc even though a small increase is noticed. In (c) the 
normalized weight decays, a = n ■ Nt, are depicted, (d) and (e) show the evolution 
of errors and pmc during pruning. The optimal network having minimal validation 
error is indicated by the vertical line. There is only a marginal effect of pruning. 
Finally, the variation of the optimal normalized weight decays (before pruning) in 
different runs is shown in (f) and is seen to be relatively small. 
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parameters. Moreover, an improved neural net architecture was presented. 
Numerical examples demonstrated the potential of the framework. 
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Abstract 

There has been much interest in learning long-term temporal dependencies 
with neural networks. Adequately learning such long-term information can be 
useful in many problems in signal processing, control and prediction. 

A class of recurrent neural networks (RNNs), NARX neural networks, were 
shown to perform much better than other recurrent neural networks when learn- 
ing simple long-term dependency problems. The intuitive explanation is that 
the output memories of a NARX network can be manifested as jump-ahead 
connections in the time-unfolded network. 

Here we show that similar improvements in learning long-term dependen- 
cies can be achieved with other classes of recurrent neural network architectures 
simply by increasing the order of the embedded memory. Experiments with lo- 
cally recurrent networks, and NARX (output feedback) networks show that all 
of these classes of network architectures can have a significant improvement 
on learning long-term dependencies as the orders of embedded memory are in- 
creased, other things be held constant. These results can be important to a user 
comfortable with a specific recurrent neural network architecture because sim- 
ply increasing the embedding memory order of that architecture will make it 
more robust to the problem of long-term dependency learning. 

1   Introduction 
Recurrent Neural Networks (RNNs), though capable of representing arbitrary non- 
linear dynamical systems [25] and computationally quite powerful [26], can some- 
times have difficulty learning even simple temporal behavior. Part of this difficulty 
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has been attributed to the problem of long-term dependencies [2, 19], i.e. those prob- 
lems for which the desired output of a system at time T depends on inputs presented 
at times t <£ T. 

In particular Bengio et al. [2] showed that if a system is to latch information ro- 
bustly, then the fraction of the gradient in a gradient-based training algorithm due to 
information n time steps in the past approaches zero as n becomes large. This effect 
is called the problem of vanishing gradient. Bengio et al. claimed that the problem 
of a vanishing gradient is the essential reason why gradient-descent methods are not 
sufficiently powerful to learn long-term dependencies. 

Several approaches have been suggested to circumvent the problem of vanishing 
gradients in training RNNs: presetting initial weights by using prior knowledge [6, 
9], alternative optimization methods instead of gradient-based [2], reduced descrip- 
tion of data [19, 23, 24], architectures that operate on multiple time scales [10, 11] 
and architectures with high-order gating units[12]. 

A class of recurrent neural networks called NARX networks can perform much 
better at learning long-term dependencies when using a gradient descent training 
algorithm [17]. The intuitive explanation for this behavior is that the output mem- 
ories of a NARX neural network are manifested as jump-ahead connections in the 
time-unfolded network that is often associated with algorithms as Backpropagation 
Through Time (BPTT). These jump-ahead connections provide shorter paths for 
propagating gradient information, thus reducing the sensitivity of the network to 
long-term dependencies. 

We hypothesize that the similar improvement on learning long-term dependen- 
cies can be achieved in other classes of recurrent neural network architectures by 
increasing the orders of embedded memory. (One of the first uses of embedded 
memory in recurrent network architectures was that of Jordan [14].) In this paper, 
we empirically justify this hypothesis by showing the relationship between mem- 
ory order of a RNN and its sensitivity to long-term dependencies. In Section 2, 
we discuss three classes of conventional recurrent neural networks architectures: 
globally recurrent networks (the architecture, not the training procedure, used by 
Elman) [5]; locally recurrent networks (in particular the Frasconi, Gori and Soda's 
model) [7]; NARX networks [3, 21], and their corresponding models with a high 
order embedded memory. In Section 3, we provide a empirical comparison of these 
architectures by investigating their performance on learning two simple long-term 
dependencies problems: the latching problem and a grammatical inference problem. 
These simulations show that these classes of recurrent neural network architectures 
all demonstrate significant improvement on learning long-term dependencies when 
the embedded memory order is increased and weights remain relatively the same. 
Thus, a user of one of these recurrent architectures can readily improve their robust- 
ness to long-term memory problems simply by increasing the amount of embedded 
memory, all other variables remaining constant. 
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2   Embedding memory order in recurrent neural network archi- 
tectures 

Several recurrent neural network architectures have been proposed; for a collection 
of papers on the variety see [8]. One taxometric classification for these architectures 
can be based on the observability of their states: specifically they can be broadly 
divided into two groups depending on whether or not the states of the network are 
observable or not [13]. For another taxometric approach based on memory types, see 
Mozer [20]. For this study we picked three classes of networks: globally recurrent 
(GR) networks [5], locally recurrent networks (LR) [7], and NARX networks [3, 
21]; and their corresponding architectures with high-order embedded memory. It 
should be pointed out that our embedded memory simply consists of simple tapped 
delayed values to various neurons and not more sophisticated embedded memory 
structures [20, 4]. NARX networks are a typical model of networks with observable 
states. GR networks are a popular class of network with globally connected hidden 
states, and LR networks belong to locally recurrent network architecture class also 
with hidden states. 

2.1    Globally connected RNNs 
These networks (which we will call GR networks) are a class of recurrent networks 
in which the feedback connections come from the state vector to the hidden layer, 
as illustrated in Figure 1 (a). These hidden states are sometimes called context units 
in the literature. Suppose such a network with nu input nodes, n/, hidden nodes of, 
and ny output nodes, the dynamic equation can be described by: 

oi(t) = / J2wij°At-1) + E«»wo + v,bi\. (i) 
«;=i 

w(0 = /I £>&«*(')+ «M. (2) 

where o(t) and y(t) denotes the real valued outputs of the hidden and output neurons 
at time t, and / is the nonlinear function. 

This network with a high order of embedded memory differs from standard glob- 
ally connected recurrent network in that they have more than one state vector per 
feedback loop. Specially, for a GR network with embedded memory of order m, the 
dynamic equations of hidden nodes become: 

OiW = /     £ £ <mM* - fc) + £ w?ku„{t) + ti/M . (3) 
\k=lj=l   _ k=l ) 

Figure 1 (b) illustrates an GR network with embedded memory of order two. 

2.2   Locally recurrent networks 
In this class of networks, the feedback connections are only allowed from neurons to 
themselves, and the nodes are connected together in a feed forward architecture [1, 
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Figure 1: (a) A standard GR network, (b) A GR network with embedded memory 
of order two. 

15, 7, 22, 29]. Specifically, we consider networks proposed by Frasconi etal. [7] 
(we will call LR), as shown in Figure 2 (a). The dynamic neurons of LR networks 
can be described by 

0i(t) = f    w^0i(t - 1) + X>,>j(0 ■ (4) 

where Oi(t) denotes the output of the ith node at time t, and / is the nonlinearity. For 
a network with embedded memory of order m, the output of the dynamic neurons 
becomes 

Oi(t) = / ij2 v>uOi(t - n) + ^uiV.Uj-(t) + w\ (5) 

Figure 2 (b) shows a LR network with embedded memory of order two. Locally 
recurrent models usually differ in where and how much output feedback is permitted; 
see [29] for a discussion of architectural differences. 

2.3   NARX recurrent neural networks 
An important class of discrete-time nonlinear systems is the Nonlinear AutoRegres- 
sive with eXogeneous inputs (NARX) model [3, 18, 27, 28]: 

y(t) = /(u(t-/>„),... ,u(t),y(t-Dy ,y(t- D). (6) 

where u(t) and y(t) represent input and output of the network at time t, Du and Dy 

are the input-memory and output-memory order, and the function / is a nonlinear 
function. When the function / can be approximated by a Multilayer Perceptron, the 
resulting system is called a NARX recurrent neural network [3, 21]. 
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Figure 2: (a) A standard LR network, (b) A LR network with embedded memory of 
order two. 

In this paper, we shall consider NARX networks with zero input order. Thus, the 
operation of the network id defined by 

y(t) = f (u(t),y(t -Dy),...,y(t-1)). (7) 

Figure 3 shows a NARX architecture with output memory of order 3. 

3   Experimental Results 
Simulations were performed to explore the effect of embedded memory on learn- 
ing long-term dependencies in these three different recurrent network architectures. 
The long-term dependency problems investigated were the latching problem and a 
grammatical inference problem. These problems were chosen because they are sim- 
ple and should be easy to learn but exemplify the long-term dependency issue. For 
more complex problems involving long-term dependencies see [12]. 

In order to establish some metric for comparison of the experimental results, we 
gave the recurrent networks sufficient resources (number of weights and training ex- 
amples, adequate training time) to readily solve the problem but held the the number 
of weights approximately invariant across all architectures. Also note that in some 
cases the order of the embedded memory is the same. 

3.1    The latching problem 
This experiment evaluates the performance of different recurrent network architec- 
tures with various order of embedded memory on a problem already used for study- 
ing the difficulty in learning long-term dependencies [2, 11, 17]. 

This problem is a minimal task designed as a test that must necessarily be passed 
in order for a network to robustly latch information [2]. In this two-class problem, 
the class of a sequence depends only on the first 3 time steps, the remaining values 
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Figure 3: A NARX network with output memory of order 3. 

Architecture Network Description # weights 
Memory order # states # hidden neurons In-hid-out 

GR(1) 1 6 6 nodes 3-6-1 85 
GR(2) 2 10 5 nodes 3-5-1 91 

GR(3) 3 12 4 nodes 3-4-1 81 

NARX(2) 2 2 11 nodes 3-11-1 111 
NARX(4) 4 4 8 nodes 3-8-1 97 
NARX(6) 6 6 6 nodes 3-6-1 85 

LR(1) 1 14 14 nodes 3-14-1 109 
LR(2) 2 22 11 nodes 3-11-1 110 

LR(3) 3 27 9 nodes 3-9-1 111 

Table 1: Architecture description of different recurrent networks used for the latch- 
ing problem. We used the hyperbolic tangent function as the nonlinear function for 
each neuron. 
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in the sequence is uniform noise. There are three inputs ui(t), u2(t), and a noise 
input e(t). Both ui(t) and u2{t) are zero for all times t > 1. At time t = 1, 
ux(l) = 1 and u2(l) = 0 for samples from class 1, and ui(l) = 0 and u2(l) = 1 
for samples from class 2. The class information of each strings is contained in m (t) 
and u2(t). We used two delay elements for both ux (t) and u2(t) in order to hold the 
class information until t = 3. The noise input e(t) is given by 

e(t)=l° *-3 (8) [)     \U{-b,b)    3<t<T 

where U{-b,b) are samples drawn uniformly from [-0.155,0.155]. Target infor- 
mation was only provided at the end of each sequence. For comparison, our training 
particulars are identical to those of [2]. For strings from class one, a target value of 
0.8 was chosen, for class two, -0.8 was chosen. The length of the noisy sequence 
could be varied in order to control the span of long-term dependencies. For our ex- 
periment, the input sequences were 1 and 0 and were one-hot encoded into two input 
neurons with trainable weights. 

For each of these three architectures previously discussed, several networks with 
different orders of embedded memory were trained. To compare the effects of dif- 
ferent orders of embedded memory in every class of networks on learning long-term 
dependencies while holding as many other factors as possible constant, particular 
attention was paid to equalize the number of weights. Table 1 gives a detailed de- 
scription of all networks used in the latching problem. The weight connected the 
noisy input was fixed as 1.0. In order to learn the task, the networks have to develop 
two attractors to latch the information and still remain inside the basin of the attrac- 
tors of being resistant to noise when t > 3. The ability of learning this minimal 
problem is a measure of the effectiveness of propagating the gradient for different 
neural network architectures with various memory orders. 

The length of noisy inputs, T, was varied from 10 to 60 in increments of 2. 
For each value of T, we ran 50 simulations. For each simulation, 30 strings were 
generated from each class and the initial weights were randomly distributed in the 
range [-0.5,0.5].     " 

The network was trained with a MSE cost function using simple BPTT algorithm 
with a learning rate of 0.1 for a maximum of 200 epochs. Updates occurred at the 
end of each string and the error was back-propagated the full length of the string. If 
the absolute error between the output of the network and the target value was less 
than 0.6 on all strings, the simulation was terminated and determined successful. If 
the simulation exceeded 200 epochs and did not correctly classify all strings, then 
the simulation was ruled a failure. 

Figures 4 (a) to (c) show plots of the percentage of those runs that were suc- 
cessful for different classes of networks with different orders of embedded memory. 
It is clear from these plots that the network architectures with high order embed- 
ded memory become increasingly less sensitive to long-term dependencies as the 
memory order was increased. 
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Figure 4: Plots of percentage of successful simulations on the latching problem from 
50 runs as a function of T, the length of input strings, for different recurrent network 
architectures with different orders of embedded memory: (a) Globally connected 
RNN (GR), (b) Locally connected RNN (LR), (c) NARX, (d) NARX v.s. GR(1). 

An interesting comparison between the architectures GR(1) and NARX(6) is 
shown in Figure 4 (d). Since the two architectures have the exact same number 
of weights, hidden nodes, and states, the only difference is the amount of memory 
order.NARX networks perform better than the GR networks at learning the latching 
problem. 

3.2    Grammatical Inference (TVee Automata) Problem 
In previous problem, the inputs to the network were followed by a noise term. In 
this experiment, we consider learning to classify strings of boolean values, which 
are labelled according to some prespecified automata. 

In this example, the class of a string is completely determined by its input symbol 
at some prespecified time t. For instance, Figure 5 shows a five-state automaton used 
in the experiments, in which the class of each string is determined by the third input 
symbol. When that symbol is "1", the string is accepted; otherwise, it is rejected. 
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Figure 5: A five-state tree automaton. The unlabeled arrow is the start state and the 
double circled state is the the acceptance state. 

By increasing the length of the strings to be learned, we will be able to control the 
span of long-term dependencies, in which the output will depend on input values far 

in the past. 
Again, we noted the same improvement on learning long-term dependencies ob- 

tained by increasing the order of embedded memory in each class of recurrent neural 
network architectures. For more details regarding the experiment, please see [16]. 

4   Conclusion 
Motivated by the analysis of the problem of learning long-term dependencies and 
the success of NARX networks on problems including grammatical inference and 
nonlinear system identification [13], we explore the ability of other recurrent neural 
networks with a high order of embedded memory on problems that involve long- 
term dependencies. We chose three classes of recurrent neural network architectures 
based on state-observerability: hidden state globally recurrent and locally recurrent 
networks, and observeable state NARX networks. 

We tested this approach of extending memory in conventional recurrent neu- 
ral networks on two simple long-term dependency problems. Our experimental re- 
sults show that each of these classes of recurrent neural networks architectures can 
demonstrate significant improvement on learning long-term dependencies when the 
memory order of the network is increased. 

The intuitive explanation for this behavior is that the embedded memories are 
manifested as jump-ahead connections in the unfolded network that is often used to 
describe algorithms like Backpropagation Through Time. These jump-ahead con- 
nections provide a shorter path for propagating gradient information, thus reducing 
the sensitivity of the network to long-term dependencies. Another explanation is 
that the states do not necessarily need to propagate through nonlinearities at every 
time step, which may avoid a degradation in gradient due to the partial derivative 
of the nonlinearity. We speculate that using increased memory order will also help 
other recurrent network architectures on learning long-term dependency problems. 
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Abstract 

In current practice, tapped delay line models such as the time delay 
neural network (TDNN) are commonly implemented using a direct form 
structure. In this paper, we show that the problem of high parameter 
sensitivity, well known in linear systems, also applies to nonlinear models 
such as the TDNN. To overcome the consequent numerical problems, we 
propose a cascade form TDNN (CTDNN) and show its advantages over 
the commonly used direct form TDNN. 

1    Introduction 

In signal processing and control applications, there is much interest in nonlinear 
adaptive filters based on neural networks. The tapped delay line has been 
employed in [10] to modify the classic multilayer perceptron (MLP) for signal 
processing. It is easily observed1 that the tapped delay line can be considered 
as a finite impulse response (FIR) filter [4,18]: 

v(*) = 5>~*vw (i) 

'Note that we use notation which includes both time and the (/-operator, as is standard 
practice in the literature. 
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where bi are constants and q  lx(t) = x(t - 1).   Eqn (1) can be equivalently 
written as m 

y(t) = H(l-ciq-
1)x(t) (2) 

«=i 

If Cj is a complex number, then it will appear with its complex conjugate for 
real y(t). 

This model has been proven to be capable of universally approximating a 
functional [7,16]. However, for real world applications, there are a number of 
other aspects which also need to be considered when implementing cost effective 
models in hardware. One area normally considered, is the round-off error and 
quantization error due to the finite arithmetic wordlengths. 

It is known in the digital signal processing literature [14,19] that with the 
realization of FIR and IIR (infinite impulse response) filters using devices capa- 
ble of only finite precision arithmetic, (1) is more sensitive to round-off effects 
and coefficient quantization than (2). Eqn (1) is known as a direct form imple- 
mentation, while (2) is known as a cascade form [19]. 

While the sensitivity properties of linear filters are well known, in general, it 
appears that this area has not been considered in neural networks. It appears 
to be quite common that experiments are conducted using time delay neural 
networks with a direct form structure and not to consider potential problems of 
numerical effects such as parameter sensitivity. Hence, in this paper we inves- 
tigate the sensitivity of TDNN networks which are based on (1) and propose a 
new class of TDNN architecture based on the cascade form model. The main 
aim of the paper, is therefore to demonstrate the validity and usefulness of 
using cascade form structures in time delay neural networks. 

2    A Cascade Form Time Delay Neural Network 

As implied in (1), we may equivalently formulate the input layer of the TDNN2 

as FIR filters Goj(q) from the input to the jth unit in the first hidden layer. 
This approach allows us to easily consider various extensions to the basic 

TDNN structure. Hence we may have 

Go(</) = f><r (3) 
1=0 

2 For convenience we consider a single-input single-output model, with a tapped delay line 
occurring only at the input layer, though further extensions could be derived. 
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Eqn (3) may be written equivalently as a cascade form structure as follows 

M 

Go(q)    =    U Boj(q) (4) 

where typically, {B0(q)} is a first or second order section of the form (1-Ciq'1), 
where a may be real or complex; if a is complex, then it must occur in a 
complex conjugate pair for a real output signal. This structure is a specialized 
form of the TDNN, which we term a cascade form time delay neural network 
(CTDNN). Hence we term the model represented by (3) a direct form TDNN 
(DTDNN). The results can be applied equally well to the full TDNN structure, 
but for clarity we consider this simpler model form. 

3    Parameter Sensitivity Analysis of Time Delay 
Neural Networks 

In neural networks, the issue of sensitivity to errors in the weights has typically 
been approached in a probabilistic framework [2,8,9,17]. Here, the approach 
used is to extend the usual method of parameter sensitivity analysis used in 
linear systems based on the model poles and zeros, to nonlinear systems. Al- 
though the use of poles and zeros in nonlinear systems may be thought by some 
to be inappropriate, this is not the case as shown in [5,6] (see also [15]). 

The method presented in [6] is based on approximating a particular class of 
nonlinear system described by 

y(t)    =    F(G(q)x(t)) (5) 

where F(-) is a memoryless nonlinearity and for G(q) = B0{q), (5). In this case, 
(5) is a special case of the TDNN. If G(q) is a SIMO (single-input multiple- 
output) structure, i.e. a parallel filter bank, and F(-) is a MISO nonlinear map, 
then the more general form of TDNN is obtained. For clarity of presentation, 
but without loss of generality, we consider the case where G(q) = B0(q) and 

F(-) is SISO. 
We may approximate F{-) by a power series expansion, giving 

y(t)    =    52ßok+g1{x(t)) + ... + gP(x
p{t)) 

+0 (^{t^it - l)...xin(t - n)) + ... (6) 

where {/?} is the set of parameters obtained from the approximation of F{-) 

and 

9j(x!(t))    =    9j(q)x*(t) (7) 
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*;(?)   =   EM~* (8) 
fc=0 

Hence the TDNN model can be approximated by a summation of subsystems 
which employ linear transfer functions \Pj(g) as shown in (8). The parameter 
sensitivity measure 5,-j normally used for linear systems [12], can be applied to 
the subsystems which form the approximate TDNN model and consequently 
to the TDNN. The parameter sensitivity measure is defined as 

o      _    d\j 
ij    ~    dbj 

\n-j 

IWA.--A*) 
where Sij is the sensitivity of the ith root A;, with respect to the parameter bj of 
the polynomial B(q). A high parameter sensitivity implies that a small change 
in a parameter will lead to a large change in the model behaviour, as determined 
by the roots of the polynomial of the FIR filter [1,3]. Hence problems of round- 
off error and coefficient quantization may become significant. So also, errors 
can be introduced into adaptive models as the weights are updated, but the 
model behaviour differs from that required by the update. 
Therefore the following observations can be made: 

Observation 1. A DTDNN model is subject to possible problems of high 
parameter sensitivity. 

Observation 2. If a method can be given which reduces the sensitivity of a 
linear model, then the same technique will reduce the parameter sensitiv- 
ity of the subsystems within the approximate TDNN model and hence, 
of the TDNN model itself. 

We may define the parameter sensitivity of a DTDNN in terms of the sen- 
sitivities of the subsystems within the approximate TDNN model. 

Definition 1   The sensitivity SN of a DTDNN with M tapped delay inputs and 
No input units is given by 

SN    i    max {Si : t=l,..., Wo) (10) 
i 

Si    i    max(Sii:j = l,...,M) (11) 
3 

Definition 2  The sensitivity SNc of a CTDNN with (M + l)/2 (M odd) or 
(M + 2)/2 (M even) first or second order filter sections going to each of No 
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input units is given by 

SNc    =    max (So* : i = 1,...,N0) (12) 
i 

Sci    =    max (Scij :j = (M + l)/2 (M odd), (M + 2)/2 (M even)) (13) 

Note that Stj is the sensitivity of an Mth order direct form filter, while Scij 
is the sensitivity of a 2nd order filter. Hence we obtain the following theorem. 

Theorem 1  The sensitivity SN of a direct form TDNN is less than or equal 
to the sensitivity SNC of a cascade form, TDNN . 

Proof.    From (9), we have, for j = n, the last stage in an n tap delay line: 

c.      =     1  (14) rw^-A,) 
It is sufficient to consider two cases: 

1. |A,- - Afc| » 0 In this case, Sij will be small, which implies that the dif- 
ference between the sensitivities for cascade form and direct form models 
will be of negligible consequence. 

2. 0 w \\i - \k\ < 1 In this case, for an arbitrarily large tapped delay order 

n, 

max (Sij)    >     lim =— — (15) 

=    oo (16) 

For a CTDNN, n = 2, it is evident that 

SNc    <    SN (17) 

Hence, when it matters most, i.e. for systems exhibiting high sensitivity 
as in case 2, the CTDNN will provide better sensitivity properties than an 
equivalent DTDNN. This effect will in general, be greater as the order of the 
tapped delay line increases. 

4    Examples 

To better elucidate the difference between the networks3, we will give an ex- 
ample to illustrate the possible performance differences between CTDNN and 

3 We would like to point out however, that while the problems considered here are ar- 
tificially constructed, they are meant to serve as an example of possible behaviour.   For 
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DTDNN models. We consider a system identification problem4 where we have 
a system to be identified S and two models Md and Mc which correspond to a 
DTDNN and a CTDNN respectively. In order to illustrate the phenomenon, we 
assume a perfect representation in each case, i.e., no training is involved. We 
consider two models and the effect of coefficient quantization on the accuracy 
of the models in each case. 

We consider the difference between the DTDNN and a CTDNN when sub- 
jected to finite wordlength (FWL) restrictions. In this experiment, we consider 
a TDNN with 10 tap delays and 1 hidden unit The corresponding polynomial 
is given by 

G{q)    =    1.000- 4.200g-1 + 8.280g-2-10.524g-3+10.091g-4-8.090g-5 

+5.629g~6 - 3.212g-7 + 1.329g-8 - 0.338g-9 + 0.039g-10       (18) 

For each of the direct form and cascade form models, wordlengths of 16 and 
8 bits were tested. The method used to round off the weights is 

$    =    2~wround (2W9) (19) 

where 0 is the original weight, 6 is the FWL weight and w is the word length 
in bits. 

The behaviour of the models are compared by examining the shift in the 
position of the zeros (roots) of the FIR filter polynomials at the input of the 
TDNNs and comparing them to the position of the true zeros. These zeros are 
plotted in Fig 1, where it can be observed the conventional direct form TDNN 
indicates significant movement in the zeros. The cascade form model however, 
performs very well and does not appear to suffer significantly from the reduced 
precision in the weights. 

Note that the zeros are not shifted by much in the regions where the sensi- 
tivity is low. The regions of high sensitivity (as expected from the sensitivity 
analysis - see (9) and Theorem 1), are where the zeros have large magnitudes 
and are close together, i.e. for real valued systems, this is near the (1,0) point. 

It has also been observed in other experiments (not shown here due to lack of 
space) that the direct form model sometimes obtains nonminimum phase zeros. 
For system identification and control applications this can cause problems [11]. 

some applications, there may be negligible difference between the architectures, however we 
propose that the choice is up to the user. If one wishes to avoid the potential problems 
indicated in this paper, then we propose that the cascade form or parallel form TDNNs are 
preferable to the direct form TDNN. If one is confident that the application will not present 
a problem for direct form structures, then the direct form may be used. It is noted that 
except in speech synthesis, direct forms are infrequently used other than in second order 
sections [13]. This is possible because in speech synthesis the poles of the system function 
are widely separated [14]. 

Due to lack of space, only one experiment will be shown in this section, however other 
experiments indicate the same type of problem. 
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Clearly, even in simple TDNNs, the accuracy degrades rapidly when using 
a smaller number of bits in the weights. For real-world applications, e.g. au- 
tomotive or other consumer-oriented products, this issue could be of concern 
where longer wordlengths add undesirable cost to the product. On the other 
hand, in areas where a higher precision computing resources are available, the 
problem may be viewed in a slightly different manner. Here, for any given 
wordlength, when modelling low frequency systems, the cascade TDNN offers 
a potentially higher accuracy than the direct form structure. 

It should of course be noted that the use of cascade form filters is wide- 
spread in digital signal processing, and as such, the neural network structure 
proposed here should come as no surprise to those familiar with such methods. 
However, in view of the widespread usage of the classical TDNN (direct form) 
structure, we felt that it may be worth drawing to the attention of the neural 
network community, the potential advantages of some slight modifications to 
the structure of the TDNN. Moreover, the advantages of cascade form struc- 
tures would also carry over to multilayer structures. In related work, we have 
shown that alternative discrete-time operators can be used to produce lower 
sensitivity structures in both feedforward and recurrent networks [5,6]. 

We do not consider the learning problem in this paper, however, based on the 
numerical improvements to the architecture, we would expect that there should 
also be enhanced performance in on-line learning. This would apply particu- 
larly, of course, in FWL modelling of high sensitivity systems. In any training 
algorithms, the advantages would accrue from using the cascade structure di- 
rectly, as opposed to computing the poynomial weights on a highly accurate 
computer, transforming them and then 'downloading' them to the cascade form 
model, although such an approach could be used if required for some special 
purpose. 

5    Conclusions 

Current neural network models which process spatial or temporal data typically 
use direct form substructures. In this paper we have proposed a new class 
of model which generalizes the classical TDNN structure to allow an input 
structure which consists of synapses such as cascade, parallel or cascade-parallel 
filters instead of the conventional direct form structure. 

The advantage of this approach is particularly evident in terms of reducing 
sensitivity to quantization errors in the network weights. The resulting network 
will have a higher accuracy than the conventional direct form network for a 
given finite word length implementation. This is most evident when the system 
being modelled has low frequency characteristics. 
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Figure 1: The zeros for the polynomials are shown for (a) 16 bit direct form, (b) 
8 bit direct form, (c) 16 bit cascade form, (d) 8 bit cascade form models. In each 
case, the true zeros are shown for reference. To distinguish, the true zeros and the 
model zeros, 'x' symbols are used to indicate the model zeros. Here it can be noted 
that the cascade model is almost identical to the true system, while the direct form 
is significantly different. The cascade model gives significant advantages over the 
direct form model. The main differences occur in the low frequency region however, 
indicating problems in modelling low frequency data. 
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Abstract 

Projection Pursuit [7] [10] (PP) techniques are used to search for 
statistically interesting low-dimensional projections of complex, high- 
dimensional data. These projections reveal data structure useful for au- 
tomatic classification applications. We derive a novel class of Projection 
Pursuit algorithms, comparing them with related PP algorithms [7] [8] 
[11] [2] [1]. Texture-based cloud detection in Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) imagery from the Jet Propulsion Lab- 
oratory is provided as a basis for inter-comparison. 

1    Projection Pursuit: Background 

In order to identify potentially meaningful data structures in high-dimensional 
data sets, "Projection Pursuit" [7] (PP) techniques are used to search for 
statistically interesting low-dimensional projections. PP is an iterative search 
technique that converges to extrema of a projection index or cost function, 

•This work was supported in part by a grant of High Performance Computing (HPC) 
time from the following Department of Defense HPC Centers: Army Research Laboratory 
SGI Power Challenge Array, the Maui High Performance Computing Center, and the Naval 
Research Laboratory SGI Origin 2000. 
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that measures the degree of multi-modality or departure from normality of 
the projected data distribution. One of the first PP methods was proposed 
by Friedman and Tukey [7], who coined the term "Projection Pursuit." Their 
cost function was the product of two functions, one that measures the spread 
of the projected data (a trimmed variance to ensure insensitivity to outliers), 
and another that measures compactness within a particular distance scale. 
Historically, the Friedman-Tukey cost function can be seen as an innovative 
step beyond Principal Component Analysis (PCA). As shown in Figure 1, 
using PCA to find maximal data variance of all data samples is not necessarily 
the most informative for classification. This Figure also emphasizes the fact 
that an orthonormal decomposition does not always reveal the most relevant 
information from the perspective of class separation. 

Projection Pursuit vs. Principal Components Non-orthogon«l Projections May 
 „ „,     „, . „   ,. Best Separate Data Hypothetical 2-Class Distribution r 

in a High-Dimensional Space: 

PP Vector      PC Vector 1        PC Vector 2 

Figure 1: (Left) PP vs. PCA: PCA corresponds to a special case of PP in which the 
Projection Index is maximal variance (power), which will not always reveal clusters in 
the data. More sophisticated Projection Indices can be defined to favor the discovery 
of multi-modal projected distributions. (Right) Three classes of data located in distinct 
clusters optimally separated by hyperplanes (dashed lines) perpendicular to the projec- 
tion vectors; hyperplanes correspond to scalar thresholds of projected data; note that 

optimal PP vectors are not orthogonal. 

For a unit projection vector wk, input data sample /*, and projection: 

Ck(i) = u>k ■ fu (1) 

the Friedman and Tukey PP algorithm is: 

Maximize : I(ck) = S{ck)N{ck) (2) 
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where: 

E&^MO-sfaJJ7 (3) 
Np — n 

N(ck)    =    ^E5(^(M))«(iJ-^(y)) (4) 
«=1 3=1 

withrk(i,j)    =    | ck{i)-ck{j) |, (5) 

g(rk(i,j))     :     Monotone Decreasing, k, 6 : a step function   (6) 

Np is the total number of patterns, n is a small fraction of outliers removed at 
both extremes of the projection, E{ck) is the mean projection value, and R is a 
scalar cut-off outside of which pairs of points are excluded in the compactness 
function, N(ck). The resulting search algorithm favors the discovery of multi- 
modal structure in the data. In the absence of the factor, N(ck), the original 
PP index would reduce to S(ck) and would be equivalent to PCA. In [7], the 
search procedure consisted of optimizing ID or 2D projections of the data, 
one at a time. A number of other PP methods were later developed. A 
fundamental concept in these later algorithms is to find projections that are 
least normal [8] [10]. Typically, the projection vectors in these methods are 
optimized serially with each subsequent search vector optimized on a residual 
after subtraction of structure from the previous projection. In this sense, 
they differ from unsupervised neural network learning algorithms that also 
implement a form of PP but do so by jointly optimizing a set of projections 
(see e.g. [11]). No proof exists to suggest whether serial or joint optimization 
is superior. 

2    A Novel Class of Projection Pursuit Indices 

In revisiting the original PP Index designed by Friedman and Tukey, one can 
see a limitation: the factor measuring the degree of data spread, S(ck), does 
not directly focus on the spread between clusters, but rather measures the 
spread of the whole data set. One approach to circumventing this difficulty is 
to define an entirely new projection index that focuses directly on the degree 
of departure from normality (see for e.g. [8]). Alternatively, our approach is 
to replace S(ck) with a function, D(ck), that directly measures the spread 
outside a clustering/nearness scale ak. The symbol ck refers to the nonlinear 
data projection that replace the linear projections ck defined in Equation 1: 

t] = -(£4n)cSn))> (?) 
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where a(x)    =    a tanh(aAx), (a, A constant), (8) 

c. .(")    _    „T?(«-I)   2(n_1) _i_7,(n) 
j 

-.in—XI     -V"   x;   ,   .in) /r»\ tu)       ' -C +6} ;, (9) 

and where vnn_1' is the jth modifiable projection vector, that weights the 

inputs c ™      from layer n — 1, and ^-    is the bias. The coupling/constraint 

matrix L,£' is either fixed or modifiable (see the next Section). The nonlinear 
projections are no longer constrained to be on the unit sphere, and, impor- 
tantly, are expressed as saturating nonlinearities that remove sensitivity to 
extreme outliers in the data. In fact, this latter property allows us to retain 
data points originally ignored by the Friedman-Tukey Index (see (3) and (4)). 

We optimize projections jointly as in PP neural network approaches. Our 
new PP Index is: 

5 = ^EH* = ^Y,NCOnt&)DCOnt&) (10) 
where Ncont- and Dcont- are given by: x 

Ncont(ck)    =   EpairttM\g{fk(p,V))] (11) 

Dcont.{-k)    =    Epairs^v){fl{^u){l-9{h{^)))] (12) 

withr2
k(l,m)    =    {ck{l)-ck(m))2, k g(rk(»,v))=e-C~*^)2   {13) 

We have chosen a particular form for the nearness function g{fk{ix,u)) in 
order to derive specific expressions for a particular case of Equation 10. In 
our novel PP algorithm, each nearness function g{rk{iJ^v)) has a clustering 
scale factor ak associated with it. Each ak is obtained by multiplying an 
initial estimate of the standard deviation of the projected data by a random 
number drawn from a user-determined range. The ak can be modifiable, 
although for the results in this paper, they were static. Selecting a range 
of ak is useful because clusters and other structure may be visible on more 
than one scale in the data depending on how the high-dimensional data is 
viewed, i.e. depending on the orientation of the PP search vector in the 
high-dimensional data space. 

In Dcont(ck), we use the squared distance weighted by the factor (1 - 
g(rk([i,i/)) ), since this product will directly measure inter-point spread of 
projected data, weighting more heavily those distances outside the near- 
ness/clustering scale ak. Thus, it will be maximal for well-separated clusters 
existing within the scale ak. If the projected distribution is multi-modal, 
Dcont(ck) will measure the spread of the modes better than S(ck), which 

1Here i£pairs,(fi,i/) means expected value over sample pairs. 
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simply measures overall data spread by calculating the variance about the 
mean of the projected distribution. 

Minimization of our PP Index in (10) by gradient descent leads to the 

following modification equation for the ith projection vector w"     : 

dNcontjck
n ) DCOni    (W)  . ^ 

where: 

rcont. (%(n) 

dwlj Uk 

(l-gfoM))] (16) 

= (4n)(M)-4n)M)- 
((4n)M)'4"_1V) - (4n)(^))'t_1)(^)^   (17) 

(<f>)'    =    A(a-c<n))(a + cjn)). (18) 

2.1    Implementation Details 
Because of the pairwise calculations inherent in the quantities, D, N, g^j, 

and 9D_ memory and computational requirements in a storage intensive 
version of the algorithm would be potentially quite severe, growing quadrati- 
cally with the number of sample estimates used at each update. This potential 
problem is circumvented by an on-line implementation that uses stochastic 
gradient descent, with estimates of D, N, ■££., and -§£-. computed by a 

running average. For example: 

Ncont(ck)(t) = eNcont(ck)(t - 1) + (1 - e)g(f'k(ck(t),ck(t - 1)))       (19) 
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By choosing a small and decreasing learning rate, 77 (t), and an appropri- 
ate value of e, the distribution of sample pairs can be estimated sufficiently 
to ensure gradient descent. Typically, we let the learning rate decrease as 
77(t) =770/(1 + ^(7-))- A theoretical justification for choosing a logarithmi- 
cally decreasing learning rate can be made using arguments from simulated 
annealing [9]. 

Another detail of the implementation is that the coupling matrix L\j 

may be fixed or modifiable. In the latter case, L\y is modified by gradient 
ascent to maximize the relative entropy of the projections, c: 2 

13 v ' \   -fi, iori^j   ) 
(20) 

and C   =    -4EW^)'   f«M* = ^-(4n)+«). (21) 
ki qk 

=   ^cin)[ (5(n))K1 + l<a + ^ ~ EpWa + 5(n)))) - 

(a-c^E^a + c^)]. (23) 

If the scale of the initial coupling matrix, set by /*, is sufficiently larger than 
the scale used to randomly initialize the weights wy, and the learning rates 
for L and w are chosen appropriately, then the change in the effective projec- 
tion vectors 5weffec = 6{L-w) = L8w + (6L)w = LT7üJV,3S + 77I,(VLC)W, 

wiu 

be dominated by the PP gradient term with adjustments from the second 
term dependent on VLC Our experiments to date suggest that using the 
modifiable coupling matrix rather than the fixed constraint may accelerate 
the maximization of the PP Index S. At present we use both forms in ex- 
periments, although results reported here were obtained with the modifiable 
constraint matrix. 

2.2    Results for a Remote Sensing Application 

To investigate the potential usefulness of PP techniques for the extraction of 
textural features in future Multi-Angle Imaging Spectro-Radiometer (MISR) [6] 
data, we have analyzed 17 high resolution images from the Airborne Visi- 
ble/Infrared Imaging Spectrometer (AVIRIS) [13] operated by the Jet Propul- 
sion Laboratory. We use the four (out of 224) AVIRIS channels centered at 
the MISR wavelengths of 443, 555, 670, and 865 nm [6].   An example of 

2EP() refers to the expected value across projections in the network. 
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IB 

Jc lguX6 Jj\ Two-dimensional histogram of data projected onto a pair of projections in our new PP network 

after training; each axis is the degree of overlap with one of the selected projections. Inputs were gray-level 

difference vector (GLDV) histograms [5] [15] derived from AVIRIS band 5; input windows were 12x12 pixels. 

multi-modal structure found in the AVIRIS data by our new PP algorithm 
is shown in Figure 2. A typical end result for one of the novel AVIRIS test 
images using related PP techniques [1] [2] from our earlier research along 
with standard texture features [14] is illustrated in Figure 3. As Figure 3 
demonstrates, the majority of incorrect identifications are at the edges of the 
clouds where the features are a mixture of cloudy and cloud-free imagery. In 
Figure 4, results obtained with our new PP algorithm combined with cross- 
entropy based backward propagation (BPCE) [12] as a back-end classifier are 
compared against these other approaches. For comparable architecture sizes, 
the new PP algorithm with BPCE appears to be better than the other PP 
algorithms individually combined with BPCE. Also, the new PP algorithm 
with BPCE is statistically closest to the "all" cases that achieved the best 
performance by combining features derived by all of the other PP algorithms 
along with standard statistical features [14]. Mean performance on the novel 
held-out image for the best "all" case is (93.5 ± 6.8) % cloud pixels detected 
with false alarm rate of (10.6 ± 10.0) %. The size of the errors bars in Figure 4 
is somewhat large due to several factors: the limited number of trials (eight 
- ten per paradigm), the fact that there is a high degree of variability within 
even this limited database, and the complexity of the search space, that is 
full of local minima. Also, this database is significantly smaller than is nec- 
essary to completely characterize class variability and adequately represent 
the cloud detection problem domain in the training set. A larger statistical 
sample of experiments and further tuning of the individual PP algorithms is 
needed to obtain a better estimate of the relative merits of the approaches, 
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I: l£flirC öl Cloud detection in a novel AVIRIS test scene. (Upper left) Near infra-red band (865nm) for 

an AVIRIS scene in the test set; band is one of 4 chosen to correspond spectrally to future MISR bands; 

colormap is black (low) to white (high). (Upper right) Human interpretation of cloud pixel location, white 

= cloud, black= no cloud. (Lower left) Cloud detection result from an ensemble network using extracted 

Wavelet Projection Pursuit (WPP) features [2], BCM-PP [4] [11] [1] features from GLDV histograms, BCM- 

PP features from simply normalized pixel intensities [1], and standard standard statistical moments [14] from 

GLDV; features in the ensemble model were extracted from all four spectral channels; white as cloud, black = 

no cloud. (Lower right) difference mask: black = no error, gray = false-alarm, white s= false negative; most 

errors are on cloud/no-cloud boundaries. Cloud detection rate for this novel test image was 94.0 % with false 

alarm rate 4.8 % . 

but these first results are encouraging and suggest that features from the new 
PP algorithm might be more robust than those found by the other PP algo- 
rithms and should be added to the "all" case to look for further improvement 
in future experiments. 
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AVIRIS Cloud Detection: Hold-One-Out Results 
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Figure 4: An inter-comparison of cloud detection results over multiple trials: Fmerit — 

„ HZ '       +e2 , ~    for the novel held out image vs. the cross validation set; 
V   false alarm   '     false negative ° 
£ false alarm is the false alarm rate, tfaUe negative = 1 - Pdetect is the false negative rate, 

and pdetect >s the rate of detection. Fmerit (unbiased error) is the distance of network 

performance from an ideal detector on a receiver operating curve (ROC). Results for the 

novel PP algorithm combined with BPCE as back-end classifier achieve lower error than 

the other PP algorithms with BPCE; the new algorithm is statistically closest to the en- 

semble "all" cases that combine features from all of the other PP algorithms and achieve 

the best performance. "All" paradigms correspond to BPCE networks receiving input 

features from Wavelet Projection Pursuit (WPP)[2] projections of albedos, BCM-PP [4] 

[11] [1] projections of albedos, BCM-PP applied to GLDV histograms [1] , and standard 

statistical features [14] from GLDV. "All" cases showed statistically significant improve- 

ment over any other combination of features with average held-out image performance 
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Abstract 

Feature extraction is an important preliminary step to classification of 
complex signals. By reducing a high-dimensional signal to a lower- 
dimensional feature set which preserves the relevant structure of the signal, 
classification performance is enhanced. A classification system was developed 
to classify sonar signals as to whether the object detected is minelike or non- 
minelike. Results are presented comparing classification performance when 
various feature extraction methods are implemented. 

INTRODUCTION 

Our objective is to extract pertinent features from acoustic signals in order to 
develop an automated classifier for sonar signals. The specific application in this 
case is classification of underwater mines, but this technique could be readily 
applied to other types of sonar signals. We have used sonar images of the sea 
bottom which contain sonar returns generated by mines of various types. The 
purpose of the classifier is to confirm the presence of a mine, and then to 
ultimately determine what type of mine is present. The emphasis in here is not the 
classifier itself, but the process of feature extraction which produces a projection 
of the signal in a lower dimensional feature space, thus improving classifier 
performance. 

The results that will be presented in this paper show successful implementation 
of feature extraction algorithms in a system for sonar signal classification. Results 
are described for a two-class (mine and rocks) and four-class (three mine types 
and rocks), with a comparison of results using several methods of preprocessing. 
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FEATURE EXTRACTION 

In many of the classification systems currently used, the process of feature 
extraction is relatively ignored in comparison to the method of classification itself. 
This is due to the fact that in many classification techniques, neural networks in 
particular, the process of feature extraction is inherently embedded in the 
classification technique rather that being apparent as a separate process. If a 
multi-layer neural network is used to classify unprocessed data, the input layer, 
which learns from examples, will essentially become a feature extractor. Also, the 
increased availability of computational power enables complex data to be 
classified with less preprocessing. 

However, in problems such as machine vision, speech identification or the 
problem posed here of detecting objects in sonar returns, the input dimensionality 
of the problem becomes an impediment to classification. Even neural networks 
are limited by the problem of parameter estimation- as the number of parameters 
increases, the size of the data required to train the network increases faster. For a 
complex problem, obtaining the necessary data may be expensive or even 
impossible. 

Much has been written about this dilemma, known commonly as the curse of 
dimensionality[\\. Because of the inherent sparsity of high-dimensional spaces, an 
inordinate amount of training data is required to obtain reasonably low variance 
estimators. The objective of feature extraction is to reduce the dimensionality of 
the data before performing classification. This is based on the assumption that the 
important structure in the data actually lies in a much lower dimensional space. If 
the transformation from the high dimensional space to the low dimensional space 
is accomplished without losing much relevant information, classification 
performance will be enhanced. 

Thus the optimal method of classification of high dimensional data is a two 
step process: feature extraction which projects the original data to a lower 
dimensional feature space; and then performing classification in the low 
dimensional space. An important consideration is that the features obtained must 
be independent of class membership, because at this point in the process the class 
to which the data belongs is not yet known. 

DESIGN OF THE FEATURE EXTRACTION/CLASSIFICATION SYSTEM 

An overall scheme for preprocessing a given acoustic signal (each sonar return 
consisting of either a minelike object or a non-minelike object such as a rock), 
reducing it to a set of features, and using the feature set as an input to an 
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automated classifier was developed an implemented. Various types of learning 
algorithms and signal processing techniques were used to perform the 
preprocessing. These methods include Bienenstock Cooper and Munro (BCM) 
learning theory, principal components analysis, and several types of transforms 
(Karhunen-Loeve, FFT, and wavelets). Results for some of these techniques are 
described here; other results will be available shortly and will be included in the 
final paper. 

THE BCM ALGORITHM 

Modification of synaptic effectiveness between cortical neurons is widely 
believed to be the physiological basis of learning and memory, and there is 
evidence that similar synaptic plasticity in many areas of mammalian cortex. In 
1982. Bienenstock Cooper and Munro[2] proposed a concrete synaptic 
modification hypothesis in which two regions of modification (Hebbian and anti- 
Hebbian) were stabilized by the addition of a sliding modification threshold. The 
BCM theory was originally created to explain the development of orientation 
selectivity and binocular response in various visual environments in kitten striate 
cortex, one of the most thoroughly studied areas in neuroscience. 

In the BCM model, a change in the weight of a synapse is equal to the product 
of the presynaptic activity and a certain function (</>) of the postsynaptic activity. 
The qualitative consequences of the theory follow from a few properties of the </> 
function: 

-when the postsynaptic activity is above the modification threshold (0m), <p is 
positive (i.e. an active synapse will be potentiated); 
-when postsynaptic activity is below ©ro. (/> is negative (i.e. an active synapse 
will be depressed); 
-there is no activity (<* = 0) when postsynaptic activity is equal either to the 
spontaneous firing rate or to ©m; 
-the value of 0m is not fixed, but rather "slides" as a function of the 
postsynaptic activity. 

It is the selectivity of BCM neurons that makes this approach so suitable to the 
problem of feature extraction. In a BCM network a small number (say, six) of 
BCM neurons are connected, with lateral inhibition introduced into the 
connections. In the architecture used here, the Ath BCM neuron is inhibited by the 
1st through (Jfc-l)th neurons. Thus, a small network of BCM neurons is capable of 
providing a set of distinct features from an input signal. The usual approach is to 
train the neurons on a combined set of samples of each type of data (i.e.. in an n- 
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class classification problem, train on all n classes together). The class separability 
characteristic inherent in BCM neurons yields a set of features which tends to be 
very effective in identification of the distinct classes. 

Previous research presented by the author [3] has demonstrated the capability 
of the BCM learning rule to perform feature extraction from acoustic signals. In 
this study, both single BCM neurons and networks of laterally-inhibited BCM 
neurons were trained on samples of marine mammal sounds. The result of this 
process is a weight vector (or set of vectors in the multiple neuron case) which, 
when convolved with a signal of interest, constitutes "testing". The output of the 
convolution process can then be input into an automated classifier (feed-forward 
neural network, nearest neighbor, etc.). The results obtained by testing on two 
types of marine mammals (porpoise and dolphin) demonstrated the capability of 
BCM neurons to become distinctly selective to one type of signal 

MODEL DESCRIPTION 

The design of the BCM-based classifier is depicted in Figure 1 (the overall 
schematic for classifier systems employing other preprocessing techniques is 
essentially the same). A network of laterally-inhibited BCM neurons is 
constructed; the number varies depending on the problem, but in the work 
described here 6 neurons were used. A parameter that adjusts the degree of 
inhibition between neurons is set; the optimal degree of inhibition is generally 
determined by performing several training runs and observing how well the value 
of ©m converges as this parameter is adjusted. 

Examples of data from each class are used to train the BCM network. As 
discussed previously, this is an unsupervised procedure- the classes of the data 
must be assumed unknown at this point. Training the neurons on only one type of 
data will result in features that are dependent on the class of data used for 
training- thus they will not be effective to achieve separability between classes. 
Thus, if we are attempting to ascertain if a sonar return is of a mine or a rock, we 
must train the BCM network on a combined set of mine and rock data. 
The result of this process is that a set of BCM weight vectors is produced. The 
number of vectors will be the same as the number of BCM neurons in the 
network; the length of the vector is of a predetermined length, as appropriate for 
the type of signal. When using acoustic data, the procedure is to sample each set 
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Figure 1. Schematic of BCM-based classifier system 

of data randomly by running a window over it (typically of length 512 or 1024) 
and obtaining a vector ofthat length. 

Next, the dot product of the signal to be tested and the set of BCM weight 
vectors is computed. The resultant vectors comprise the feature set to be used for 
classification. In all of the experiments described in this paper, a feed-forward 
neural network, using a standard backpropagation algorithm, was used. The 
intention here is not to focus on the classifier itself, but the process of constructing 
the inputs to the classifier. In order to train the classifier, the testing of the BCM 
network is first done with data of known classification: then the procedure is done 
with the trained classifier to determine the classification of an unknown sample. 

EXPERIMENTAL RESULTS 

The above described procedure was performed with various sets of real data 
(obtained from surface ship sonars) and sets of synthetic data. In order to provide 
a benchmark for classifier performance, many of the tests were repeated using 
wavelet or FFT preprocessors as well as BCM feature extraction: all with 
classifiers of comparable architecture. The results in the comparison studies using 
these three techniques were that BCM consistently performed as good as or better 
than wavelet preprocessing; both methods were consistently better than FFT 
preprocessing. 

Figure 2 shows the results of testing on a set of data obtained by using sets of 
sonar returns from minelike and non-minelike objects that were denoised as much 
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as possible; then noise was incrementally introduced to the signals to produce a 
set of sonar returns of varying SNR. The classification results using BCM, 
wavelet, and FFT preprocessing were plotted versus the SNR for the various 
signals. In this example, BCM produced the best results in the mid-range of the 
curve. While the actual SNR values here might not be the same as a "real" mine 
classification problem, it is the middle of the curve that is most significant. When 
the SNR is close to zero, no classifier is going to do much better that a random 
guess. When the SNR is high, any classifier will have a good chance of 
performing well, but real sensors are generally not able to achieve this level of 
SNR, particularly in the shallow water environments of interest to the Navy. 

The technique can also be applied to problems with more that two classes. In 
one experiment, samples of returns were used containing three types of mines 
(two    bottom    mines    and    one    close-moored    mine)    as    well    as 

PCC 

I I I 1 I I [ I I I I 1 I I I 
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Figure 2. Comparison of Percent Correct Classification of Mines vs. SNR for BCM, wavelet 
and FFT preprocessing 
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B1 B2 CM1 ROCK  j 

B1 0.873 0.087 0.016 0.0241 

B2 0.085 0.882 0.018 0.015j 

CNI1 

ROCK 

0.012 0.036 0.942 0.0101 

0.040 0.032 0.017 0.911] 
:        ;      ...; I 
I            :            ; 

B1 B2 CM1 ROCK j 

B1 0.592 0.087 0.154 0.167) 

B2 0.160 0.622 0.142 0.0761 
0.083J CM1 0 144 0.085 0.688 

ROCK 0.104 !      0.206 0 016 0.6741 

Table 1. Comparison of four class problem with BCM (top) and FFT (bottom) 
preprocessing 

rocks. The SNR of the signals is not considered in this problem. The contusion 
matrix of the classification results, comparing BCM with FFT preprocessing, is 
shown in Table 1. The percent of correct classification when BCM was employed 
ranged from 87% to 94% among the classes; when FFTs were used the results 
ranged from 59% to 69% correct. 

CONCLUSIONS AND ONGOING RESEARCH 

We have developed and demonstrated an automated classifier for acoustic 
signals using the BCM learning procedure to perform feature extraction. The 
results obtained in the various classification problems support the contention that 
the BCM algorithm is an effective means of obtaining features for the purposes of 
classification. We will continue to run similar classification problems using the 
various feature extraction methods to determine the optimal method, which might 
depend on the type of signal to be classified. 

Ongoing work is emphasizing the multiple class problem, and comparing the 
approach of using a one or two levels of classification. The multiple mine type 
classifier may be posed as a two level classification problem, as a sonar return 
from a submerged object is first classified as minelike or non-minelike, and then 
minelike objects are identified as a particular type of mine. 
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A particular area of interest at present is determining the characteristics of the 
features that the BCM neurons identify in minelike objects. For example, a trained 
sonar operator determines that an object is minelike by observing several 
characteristics (size, shape, reverberation, shadow, aspect) in the sonar image. We 
are presently attempting to ascertain if the features derived by BCM are 
analogous. 

Another method that promises to achieve good classification performance is 
using genetic algorithms to obtain the best feature set for the classifier. Our work 
with this approach is too preliminary to present results at the moment, and will 
be presented in a follow-on paper. 
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Abstract. An algorithm how to define and initialize nonlinear re- 
current models using linear models is described. From a modeling 
point of view it is natural to try linear models first and then con- 
tinue with nonlinear models. The suggested method gives such an 
algorithm and the nonlinear recurrent model is defined as an ex- 
tension of the linear model. This gives less problems with local 
minima compared to a random initialization. Also, the stability of 
the model and its derivative with respect to the parameters can be 
guaranteed which is a requirement for the prediction-error estima- 
tion method (sometimes called back-propagation through time) to 
be applicable. 

1.  INTRODUCTION 

Parameter estimation of recurrent neural networks is often described as a 
tricky subject. See, e.g., [3]. The problem can be described as an itera- 
tive criterion minimization. Depending on the initial parameter guess the 
solution converges to different local minima. With a good initial parameter 
guess the chances increase to converge to the global minimum, or at least to 
a favorable local minimum. Recurrent models are especially sensitive to the 
initial parameter values and convergence to a good minimum cannot be ex- 
pected unless two filters are stable. The first filter is the predictor model and 
the second one is the derivative of the prediction with respect to the model 
parameters. 

In this contribution we have a slightly different approach than in many 
other works on recurrent networks. We do not have a specific recurrent net- 
work in focus which is investigated and applied to different problems. Instead, 
the approach is more problem oriented in an engineering point of view. Given 
input-output data from a dynamic system (or just output data in case of a 
time series) the goal is to obtain a model which describes the system as good 
as possible and in this search all kind of different models can be considered. 
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In the search for a good model structure (i.e. network) one might want to 
try some recurrent models. Then the topic of this work becomes relevant: 
initialization of nonlinear recurrent models (i.e. recurrent networks). 

Since the parameter estimate has to be computed by an iterative search 
for the minimum of a criterion of fit there will usually be problems with 
local minima. Already with linear recurrent models one has such problems 
and a good initial parameter guess is important to assure convergence of the 
iterative search to the global minimum. For nonlinear models the problems 
with local minima will be even more serious. 
Example 1 In Figure 1 a) the true step response of a linear second order 
system is shown together with the response of a model corresponding to a local 
minimum. The true system is oscillating and its complex poles are close to 
the unit circle, Figure 1 b). The model has a real pole in between the true 
poles and its second pole is just outside the unit circle. This local minimum 
corresponds to a model which has only modelled the mean value of the output 
signal. 

OUTPUT»!  «PUT*! 

OufuH.lr 16 *M7 

■'M«M«ulpul.M»9Mi 

Figure 1: A) Step response of a second order linear system and a model correspond- 
ing to a local minimum, b) The two complex poles (x) of the linear system at the 
unit circle and those of the model on the real axis. 

By starting with a linear model and adding a nonlinearity to it, the linear 
model gives a clue how to choose the parameters in the nonlinear part. It 
has to be decided upon the position of the basis functions and they should 
be placed so that they are activated by the estimation data. Otherwise the 
nonlinearity will not have any influence on the model. To make this decision 
one needs a "preliminary" model. Since there exist well developed algorithms 
and tools for linear models and since linear models perform well, or fairly well, 
on many problems it is natural to choose the preliminary model to be linear. 
There is, however, no problem to apply the algorithm to an existing nonlinear 
model and then obtain a more advanced nonlinear model. In addition to the 
position of the basis function one also has to decide upon the amplitude. 
By choosing it to zero the initial nonlinear model becomes equal to the linear 
model. The advantage of this is that stability of the two filters follows from the 
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stability of the linear model. Also, the parameters are calculated by a gradient 
based minimization starting at a point where the performance equals that of 
the linear model. This means that the performance of the nonlinear model 
cannot become worse than that of the linear model. Hence, the algorithm 
guarantees a nonlinear model which performs better (on estimation data) 
than the linear model. 

The algorithm is quite general and can be used to obtain nonlinear exten- 
sions to any linear model class. Recurrent models are equivalent to state-space 
models, see, e.g., [7], so the algorithm presented here can be seen as a proce- 
dure how to obtain nonlinear black-box state-space models. A subset of the 
recurrent models can also be described as Output Error (OE) and ARMAX 
models. Hence, the algorithm can also be used to construct and estimate 
nonlinear OE and ARMAX models. 

To the authors best knowledge there is very little work done addressing 
the initialization of recurrent models. Typically, the parameters are initialized 
with small random values and the suggested method will be compared to the 
random choice on a small example in Section4. 

The paper is organized as follows. A short background and a problem 
definition is given in Section 2. Then the initialization algorithm and the 
stability of the two nonlinear filters are given in Section 3. The suggested 
method is applied to a small example in Section 4 and the paper is concluded 
in Section 5. 

2.  PROBLEM DESCRIPTION 

Let y(t) be the output of the process to be modeled and u(t) the input signal 
which influences the process. For simplicity it will be assumed that both 
y(t) and u(t) are scalars. It is straight forward to extend the results to the 
multi-input and multi-output case. For time series where no input is used the 
results follows right away by just canceling u(t) in all equations. 

The goal is to find a model which uses past measurements to predict future 
outputs y(i). A common black-box approach is to consider a parameterized 
candidate model 

y(0,t) = g(OMt,0)) W 
where y(t) is the prediction of y(t), 9 is the parameter vector to be tuned, 
and ip(t, 9) is the regressor which contains information available at time t. In 
this way the modeling has been divided into two parts, a choice of regressor <p 
and a choice of mapping g. Depending on the choice of <p(t, 9) and g different 
models, or neural nets, are obtained. A short background on this is given 
here, see [9] for a deeper discussion. 

2.1.  The regressor 

The regressor cp(t, 0) is formed by a mapping from data 

{y*-\ u'-1}—><p(t,9)€H.d, 
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where yt_1 = [y(l), ..., y(t-1)] andut_1 is defined analogous. If tp depends 
on 8 the model is recurrent, i.e., the regressor contains information given by 
the model at earlier time instants. This can be described in several different 
ways, e.g., by using states 

x{t +1) 
m = g(0Mt,O)) (2) 

where 

and x(t) are the states of the model, i.e., all information which has to be 
stored at each time step and then fed into the model at the next time instant. 
The function g is now a function Rd+1 -> Rd+1 where d is the number of 
states. The description (2) includes all recurrent models like, e.g., Elman and 
Jordan networks, see [7] for further explanation. 

Also input-output models can be described like (1) with components of 
the regressor ip chosen in analogy with their linear counterparts. See [9]. 

• FIR (p(t) consisting of u(t — ku), 

• ARX <fi(t) consisting of y(t — ky),u(t — ku), 

• OE (p(t, 8) consisting of y(t - ky), u{t — ku) 

• ARMAX <p(t, 8) consisting of y{t — ky),u(t — ku), e(0, t — ky) 

where e(8,t) = y(t) - y(t, 8), ky = 1,2... and &„ = 0,1.... 
The models where <p(t,8) depends on x(t) or y(t,8), i.e., the state-space 

models, OE, and ARMAX models, are called recurrent. 
Linear models are obtained by choosing g to be a linear mapping. Note 

that if the model is recurrent or not depends only on the choice of regressor, 
<p, and not on the mapping g. Hence, the recurrent regressors mentioned 
above also give recurrent models when g is chosen to be linear. 

In the following the input-output form (1) of the model will be used in 
the discussions. It is straight-forward to modify the method to state-space 
models. 

2.2.  The Mapping 

The mapping g(-, •) in (1) can be any parameterized function. Most black-box 
models can be described as a basis function expansion 

n 

y(t) = g(8, <p(t, 8)) = J2 cigMt, 8),at) (3) 
i=l 

8 = [ci Oi c2 o2 ...Cn an]. 

75 



Depending on the specific choice of the functions gi((p,a,i) we obtain different 
model structures like neural nets, radial basis functions etc. The basis func- 
tion expansion can also be mixed with different types of functions gt(<p, at) 
and here we will consider the case when the first function in the expansion is 
linear. Then(3) can be expressed as 

n 

y(t) = gVM*,*)) = 6T<Pi(t,0) + X>i<fc(v>niM),ai) (4) 
i=l 

where 0f<fi (t, 0) expresses the linear model which will be is used to initialize 
the parameters in the second, nonlinear term. Subscript I denotes linear- and 
nl nonlinear part. This gives us the freedom to use different regressors in the 
different parts. 

2.3.   Calculate the Parameter Estimate 

Given a model structure g and an estimation data set {j/(i),u(f)}^:1 the 
parameter estimate ON is defined as the minimum of a criterion of fit, e.g., 
sum of squared errors 

ON = argmin Vjv(ö) 
8 

where 

and 
e{0,t) = y{t)-y{O,t). (6) 

The criterion (5) is typically minimized by an iterative search based on the 
gradient of the criterion. See, e.g., [1, 10]. From an initial parameter value 
00 the criterion (5) is stepwise decreased by changing the parameter vector 
in a descent direction of the criterion until a minimum is reached. 

The derivative of the criterion (5) becomes 

dVN{0) 2   "        ^dg(0,<p(t,0)) 
-äß-^-N^9'*'—die  (7) 

where the derivative of the model output (1) is 

dg(0,<p(t,O)) _dg(0,<p(t,0))     ^dgjOMtMdviW) 
d0 d0 j^     d<pi(t,0)        dß     '        { ' 

The second term is non-zero only in the case the model is recurrent. Then 
ip(t, 0) contains components of g(0,<p(i)), i < t. This makes (8) a nonlinear 
filtering with input signal 

dg(0,<p(t,0)) 
80 
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Before the filtering (8) can be performed <p(t,0) must be obtained. Hence 
also the filter 

y(t,6)=g(6Mt,0)) (9) 

with input u(t) must be performed. 
The success of the iterative minimization of Vjv(ö) (5) (or learning) de- 

pends on the initial parameter guess 6Q. A better 0O means that the param- 
eter estimate converges to a better local minimum of VN(0). Moreover, as 
described in [4] the nonlinear filters (8) and (9) must be stable for a succesful 
minimization. 

3.  INITIALIZING THE NONLINEAR MODEL 

Here follows a presentation of a "natural" first step from a linear model to 
a nonlinear model. Consider a basis function expansion like (4) and let the 
linear model be the first basis function. If the model is non-recurrent the 
parameters Cj can be fitted by least squares and the nonlinear model will 
be better than the linear model already at the initialization. For recurrent 
models the parameters c* are initially set to zero. This gives an initialization 
of the nonlinear model which is identical to the linear model. It "will be shown 
that the stability of the filters (8) and (9) then follows from the stability of 
the linear model. Of special importance is the fact that the linear model can 
be used to obtain a <pni(t, 0) which is necessary to obtain a good initialization 
of the parameters Oj in (4). 

Proceed the modelling as follows: 

• Start with a linear model as depicted in Figure 2 a) (but with, possibly, 
different regressor) and estimate its parameters. 

• Complement the linear model with nonlinear elements, for example as 
shown in Figure 2 b). Initialize the nonlinear part and calculate 6N by 
minimizing Vjv(ö). 

y(M) 

u(t-rg 

y(M) 

Linear 

yc-"!)-^/ E 
y(  ». 

u(t-1)</ 

u(t-rg ^—_ g<e,-) 

Figure 2: a) Linear model, b) Linear model complemented with a nonlinearity. 

This approach gives us a model structure like the one in (4). In case a 
state-space model (2) is used the added nonlinearity can be chosen to influence 
the model output y(t) or one of the states x(t). 

The nonlinear element can have a regressor <p„j which differ from the linear 
regressors ipi. In this way the nonlinear model can be chosen to be linear with 
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respect to some regressors. Such models will be less nonlinear but have other 
nice features. See [6, 9]. 

When the structure is decided upon it is time to initialize the nonlinear 
model. There are three kinds of parameters in the model (4) which have to 
be initialized: 

0j: Linear part of the model. 

OJ: Parameters denning localization of basis function. The model is non- 
linear in these parameters. 

a: Amplitude of basis functions. Model linear in these parameters. 

The following algorithm specifies how the parameters are initialized. 
Algorithm 1 The parameters are initialized as: 

0i: given by the linear model. 

a{: chosen randomly but with a probability distribution so that basis func- 
tions placed on the support of regressor <pni(t,9). The linear model is 
used to construct <pni(t,0). See [8]. 

a: for non-recurrent models they are calculated by least squares on the 
residuals e = y- 6?ip with gi{<pni(t,6),ai) as regressors1. If the model 
is recurrent then Cj are set to zero. 

The following two theorems reveal the advantage of this initialization. 
Theorem 1  The nonlinear non-recurrent model (4) initialized as described 
in Algorithm 1 gives better fit than the linear model. 
Proof. Let e(0,t) = y(t) - ef(p(t,0) be the residuals of the linear model. 
Sum of squared errors of the initialized nonlinear model then becomes 

X>(M)-£<w«(v*(*,*).o<))a 
t=i «=i 

since c{ are chosen to minimize this sum the following inequality holds 

£>(*,*) " i>ftte(*,*).*))a " Ee2(Ö'f) 
*=i i=i t=i 

with equality if all Cj = 0. 
Theorem 2 The nonlinear recurrent model (4) initialized as described in Al- 
gorithm 1 gives a fit equally good as the linear model. Moreover, the nonlinear 
filters (8) and (9) are stable if the linear model is stable. 

xIt is also possible to fit 0j together with c< 
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Proof. Notice that Ci = 0 => g(9, <p) = 9f<p for all tp, i.e., the nonlinear 
model is reduced to the linear model. From this the stability of the filter (9) 
follows. The stability of filter (8) depends on 

dip 

and using Cj = 0 one obtains from (4) 

dgjQMM) _ affWM) _ e 
d<p{d,t) d<p{9,t)        '■ 

Since this is identical to the linear model the stability follows. □ 
Hence, if the linear model is stable then the initialized nonlinear filters 

also become stable. From this initialization the criterion VN(6) is iteratively 
minimized as described in Section 2.3. 

The suggested method can be modified and extended in a number of 
different ways, for example 

• The same procedure can be used to add new nonlinearities to an existing 
nonlinear model. 

• The idea can be used to initialize Elman networks, [2], and other models 
which are close to linear if the data are properly scaled. The nonlinear 
model can then be initialized approximately equal to the linear model. 

4.  EXAMPLE 

The suggested algorithm will now be applied to a small problem to illustrate 
the advantages compared to random initialization of the model parameters. 

The data are generated in the following way. The input signal u(t) consists 
of 110 samples with unit step at sample 10. Then the output y(t) is obtained 
by filtering the input signal through the filter 

y(t) = /(»(* -1), y(* - 2), u(t - 1)) (10) 

where /(•) is one-hidden-layer sigmoidal neural net with two sigmoids. The 
parameters are chosen so that y(t) becomes oscillating but cannot be models 
satisfactory by a linear model. The output signal is shown in Figure 3 b). 

Two different approaches to model the data are tested. First a neural net 
model of the same type as that one which generated the data is tried 

y(t,9) = g(0,y(t - l),y{t - 2),u(t - 1)) (11) 

where g is the network and 9 its parameters. Several different initial param- 
eters chosen randomly from Gaussian distributions with different variances 
are tried. From the different initial values the criterion of fit (5) is minimized 
with the Levenberg-Marquardt algorithm. The equation (8) is used to ob- 
tain the derivative of the model. For on one of the initial parameters values 
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the criterion decrease as a function of the number of iterations is shown in 
Figure 3 a). The simulation of the obtained model is depicted in Figure 3 
b) together with the true output. Obviously the network has not been able 
to model anything else than just the mean level of the signal. Although a 
larger number of different initial parameter values were tried none of them 
performed any better than the depicted result. 

The second approach starts with a linear model 

ii(t, 0) = fiy(t -1) + f2y(t - 2) + M(* -1). 

To estimate the parameters /i, /2, &i of the linear model one can use standard 
methods which are good to avoid local minima. See, e.g., [4, 5]. The simu- 
lation with this linear model is also depicted in Figure 3 b). Although it is 
not able to described the output very well, it describes the oscillations fairly 
well. The estimated linear model is then complemented with a nonlinear part 
which equals the model (11) and the parameters are estimated according to 
Algorithm 1. Since there is some randomness in the position of the basis 
functions a* the procedure is repeated several times giving a set of different 
initial parameter values. The same numerical minimization algorithm as for 
the randomly initialized network is then used to calculate the minimum of the 
criterion. A typical result is shown in Figure 3. In a) the criterion decrease 
is shown and in b) the simulation. The performance is close to perfect and 
it would be come even better with more iterations of the search algorithm. 
Non of the models obtained with this initialization was stuck in any local 
minimum. 

Figure 3: A) Criterion decrease as a function of the number of iterations. Solid line: 
random initialization. Dashed line: The suggested method, b) Solid line: True step 
response. Dashed: random initialized model. Dashed-dotted: linear model used to 
initialize the nonlinear model. Dotted: nonlinear model obtained with the suggested 
initialization (hardly visible since it is very similar to the solid line.) 

5.  CONCLUSIONS 

It has been shown that 

80 



• There is a "natural" way to define and initialize nonlinear recurrent 
models so that they perform as good as a linear model already at the 
initialization. The performance is then improved further by a numerical 
minimization of the criterion of fit. 

• Problems with local minima are likely to be smaller with the suggested 
method. 

• The suggested scheme guarantees stability of the two nonlinear filters 
which are necessary to minimize the criterion of fit by a gradient search. 
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Abstract - This paper addresses techniques for interpretation and char- 
acterization of trained recurrent nets for time series problems. In parti- 
cular, we focus on assessment of effective memory and suggest an opera- 
tional definition of memory. Further we discuss the evaluation of learning 
curves. Various numerical experiments on time series prediction prob- 
lems are used to illustrate the potential of the suggested methods. 

INTRODUCTION 

It is widely recognized that recurrent neural networks (RNNs) are flexible 
tools for time series processing, system identification and control problems, 
see e.g., [3]. Feed-forward networks can accommodate dynamics by having 
a lag space of past input and target values; however, a fully recurrent net- 
work with internal feedbacks allows for even more sophisticated dynamics. 
While fully RNN architectures are the ultimate tool for modeling dynamic 
relations, the comprehension of the networks is a challenging subject of on- 
going research. Theoretical investigations of modeling capabilities of RNNs 
have been reported, see e.g., [2], [4], [7]. However, to the authors knowledge, 
there is no general theory of the dynamic behavior of a general RNN except 
for very special models like the Hopfield network, see e.g., [3]. This indeed 
indicates that theoretical analysis of RNNs is extremely complicated. On 
the other hand, one might pursue a more computational approach. The gen- 
eral computational tools from non-linear dynamic systems analysis like phase 
portraits, stability analysis, measurement of fractal dimensions or Lyapunov 
exponents (see e.g., [1], [3]) may be applied to the analysis of RNNs. 

The motivation for this paper is evaluation and interpretation of trained 
recurrent networks, and to suggest and discuss simple operational techniques. 
In particular, we focus on the learning curve and present a new method to 
determine the effective memory of a recurrent network which conveys the 
relevant time scale of the dynamics. 

0-7803-4256-9/97/$ 10.00 © 1997 IEEE 82 



NETWORK ARCHITECTURE 

The objective is to model a non-linear dynamic relation among a discrete- 
time input signal x(t) and a discrete time target signal, d(t). The general 
architecture of the RNN considered in this presentation is based on [5] and 
consists of a single hidden layer of fully connected nonlinear units and one 
output unit. In particular, we focus on a network with only one external input, 
viz. the most recent value, x{t). That is, the only information available about 
previous inputs stems from the memory build up internally in the net. The 
advantage using these networks is that the tedious problem of determining 
the optimal lag space of previous inputs is converted into determining the 
optimal network architecture in terms of connections and number of hidden 
neurons. 

The network has a linear output in order to allow for arbitrary dynamic 
range, and at time t the prediction of the target d(t) is given by, 

Nh 

y{t) = '^2'Woi-Si(t) + Wob (1) 
i=l 

where Nh is the number of hidden units, w0% is the weight to the output unit 
from hidden unit i and wob is the output bias weight. The ith state, Sj(t), is 
the output of a hidden unit computed as 

Wi ■ Sj (t-l) + wix -x(t)+ wib (2) 

where w^ is the weight to hidden unit i from hidden unit j, wix is the weight 
from the external input x(t), and wib is the bias weight. /(•) is the nonlinear 
activation function tanh(x). Note that the update of the units is layered [5]: 
at each time step the hidden units are updated before the output unit. 

TRAINING AND GENERALIZATION 

Suppose we have a training set of related values of inputs and targets T = 
{x{t),d(t)}J=1 where T is the number of training samples. Training is done 
by adjusting the weights so as to minimize a cost function. Here we employ 
the sum of squared errors augmented by a simple weight decay regularization 
term 

C(w) = l"£e2(t) + ||w|2  ,   e(t) = d(t) - y(t) (3) 

where w is the concatenated set of weights and a is a small regularization 
parameter. Training aims at minimizing the cost function C(w) and is thor- 
oughly treated for RNNs in [6]. 
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Suppose that training provides the estimated weight vector w. Let it be an 
initial state vector1 of the "true" data generating system leading to the train- 
ing set 7" and define an associated probability distribution2 p{it). Further, 
define x(i) = [x(t),x(t - 1), • • ■ x(T + 1)]T and let p (d(i),x(t) | 7",TT) , t>T, 
be the true joint probability density function of [d(t),x(t)] conditioned on 
the initial state TT and the training set T- The true joint p.d.f. is assumed 
to be time-independent (i.e., stationary). The generalization error of the 
trained net is defined as the expected squared prediction error on future data 
immediately succeeding the training data, i.e., for t > T, 

G(w) = j[d{t) - y(t; w)]2 ■ p (d(t),x(t) IT, TT) • p(ir) dd(t)dx(t)dn      (4) 

Thus the generalization error is the ensemble average of the squared error 
over 1) possible realizations of [d(£),x(£)] due to inherent stochastic processes 
in the data generating system, and 2) over possible initial states leading to 
the particular training set. 

We estimate the generalization error by, 

,    T+V 

t=T+l 

where V is the number of test samples. 

LEARNING CURVE 

The learning curve expresses the average generalization error over all possible 
training sets of a particular size T as a function of T and is an important 
tool for verifying whether enough data is available for proper training of the 
network. Moreover, the shape of the curve provides insight into the nature 
of the problem as demonstrated in the experimental section. 

Practical considerations may lead to more restricted definitions. Here we 
compute the learning curve as the estimated generalization error when grad- 
ually expanding the training set. That is, there is no average over different 
sets of a particular size. 

NETWORK MEMORY 

A characteristic of recurrent neural networks is their ability to build up an 
internal memory representing the "history" of previous inputs on which the 
predictions of future values is based. The significance of this internal memory 
is especially clear when using RNNs having only one external input. Without 
the ability to create internal memory this class of networks would be useless. 

Once a recurrent network is trained, the basic idea here is to define an 
integer variable M which expresses the effective memory of past values of 

^he initial state captures the all information about the time series for t < 0. 
2E.g., that all initial states are equally likely. 
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the input signal x(t). The memory thus provides a partial insight into the 
functionality and dynamics of the network. The experimental section gives 
examples of interpreting the dynamics using this simple concept. Recurrent 
networks with only one external input can not give individual contribution to 
each previous input x(t - m) but must store their own representation. Con- 
sequently, the RNN has a certain memory profile. We are currently pursuing 
the idea of determining the memory profile. 

A feed-forward network does not possess any internal memory, i.e., the 
memory is explicitly determined by the memory contained in the preprocess- 
ing of the input signal. The standard approach is to feed the signals from a 
tapped delay line [x(t), x(t-1), • ■ • x(t-M)\ into the network and the memory 
thus equals M. 

The capacity of the internal memory of a recurrent network increases when 
the number of hidden units (i.e., the dimension of the state vector) increases 
as the state vector contains all information about previous inputs. However, 
to our knowledge, there is no reports on quantizing the notion of memory in 
recurrent networks. In the following we attempt to provide a definition of the 
memory of a specific trained recurrent network. 

The output from the RNN defined in (1), (2) is based on the current and 
- in principle - infinitely many previous inputs3, as shown by, 

y(t) = y (t\w,x(t),x(t - 1),... ,i(-oo)). (6) 

In order to determine the effective average memory of the recurrent network 
we suggest to evaluate an estimate of the generalization error, i.e., prediction 
error on a test set, using predictions based on only a limited number of 
previous inputs. This generalization error is then compared to the error 
obtained using all - in principle infinitely many - previous inputs. 

In particular, when evaluating the generalization error using only the m 
most recent inputs, we compute, 

j   T+v 
Gm(w) = -   J2 [d(t)-y(t\w,x(t),x(t-l),...,x(t-m))}2, m>0   (7) 

t=T+l 

where V is the size of the test set. y (t\w,x(t),x(t - 1),... ,x(t - m)) is 
computed for each t G [T + 1;T + V] by resetting* the states Si(t — m — l), 
i = 1,2, • • •, Nh, to zero and then iterate the network from time t - m until 
time t, using the output y(t) at this time as the prediction of d(t). In the 
first iteration, calculating y (t — m|w, x(t — m)), the network thus functions 
as a feed-forward network since the previous states of the hidden units - 
and thereby all previous external inputs - have no influence on the network 
output. Then, the network gradually builds up a representation of the past in 

3This is also true for a RNN in which previous values of the output is fed back to the 
input. 

4Setting the hidden unit states s;(t — m — 1) to zero is equivalent to erasing the memory 
of the network regarding inputs before time t — m. 
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the hidden units during the next m+1 iterations before it makes its prediction 

at time t. ^ ^ ~     ^ 
The resulting errors G0(w), Gi(w),... are then compared to Goo(w) de- 

noting the error obtained when using all available previous inputs, i.e., no 
resetting of the hidden unit states at any time. The memory M is now de- 

fined as, 

*,       ■   A W     '^ |gm'(w)-Goo(w)| \ () M = inf<m   Vm! >m,  ~    _. <«f \°) 
\ GooCw) J 

where e is a small number. Thus, the memory, M, denotes the minimal 
number of previous inputs beyond which additional inputs are insignificant. 

The memory measure outlined above determines the number of previous 
inputs that the network needs knowledge about in order to obtain good pre- 
dictions on all samples in the test set. Thus the measure can be interpreted 
as the average memory of the network. A recurrent network, however, is a 
dynamic system whose internal characteristics can be highly influenced by 
the nature of the input series. Especially, if the input series exhibits regions 
of non-stationary behavior, the network dynamics including memory must 
clearly be affected. Such changes in dynamics are not captured by the aver- 
age memory measure and we may define a local memory, in accordance with 
(8), using a local generalization error estimate5 

Gm(t;w) = i     £    {d(t')-y(t'\w,x(t'),x(t' -l),...,x(t> -m)))2, (9) 
t'=t-K+l 

where m > 0, t > T, and 1 < K < V is the size of a smaller test set. Choosing 
K too small gives rise to a very noisy measure of the generalization error; 
however, in principle a good resolution of changes in memory requirement. 
On the other hand, increasing K improves generalization accuracy but reduces 
the resolution of changes in memory. 

EXPERIMENTS 

The proposed methods for estimating the learning curves and memory are 
evaluated on two chaotic time series prediction problems, viz. the laser series 
from the Santa Fe time series competition [9] and the artificially generated 
Mackey-Glass series [8]. 

The laser series is illustrated in the left panel of Figure 1. Let z(t) denotes 
the series, then identification is done by training the network to perform a one 
step ahead prediction, i.e., we use x{t) = z{t) and d(t) = z(t+l). All available 
10093 samples are used and scaled to zero mean and unit variance. From 
these data we construct a learning curve. The training series are obtained by 

5 Notice, by defining this measure for all t > T some of the first values are based partly 

on training examples. 
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SANTA FE LASER SERIES 

Figure 1: Left panel: The Santa Fe laser series. Right panel: Learning curve for 
the laser data. Dots denote error for individual nets, the connected circles indicate 
the average. 

extending backwards in time from point 7000 and the last 3093 points in the 
series are used as test series. For instance, a training set of size 1000 involves 
training using z(6000) through z(7000). The employed nets have one external 
input and ten hidden units. For each number of increasing training set sizes, 
we train ten networks using different random initial weights and compute the 
resulting normalized mean squared error (NMSE) on the test set. NMSE is 
denned by 

NMSE = !£!1%^) (10) 
var(a(t)) 

where t runs over the set S in question (i.e., either training or test set), |<S| 
is the size of the set, and var(-) denotes the empirical variance. 

The learning curve is shown in the right panel of Figure 1. Initially the test 
error drops as the size of the training set is increased, but from training set size 
2500 to 5500 the average test error is fairly constant. This can be explained by 
visual inspection of the laser series as the "shape" of many collapses between 
the corresponding points 1500-4500 seems atypical for the test series. We see 
a significant drop in test error when increasing the training set size from 5500 
to 6000 points which might be explained by the fact that the training set now 
incorporates an additional collapse very similar in shape to the ones in the 
test series. These observations suggest that for the laser series, the concept of 
an example should be conceived on several time scales: there are the pointwise 
examples corresponding to each single input presented to the network; but 
more important, there obviously exists "super examples" consisting of a whole 
section of the time series. If additional super examples or sections are not 
similar to the sections encountered in the test series, generalization will not 
improve as seen in the right panel of Figure 1. 

We now examine the memory of selected networks. The left panel of 
Figure 2 depicts the normalized version of Eq. (7) for increasing values of 
lag space m when evaluating one of the networks with low test error trained 
on 7000 examples. The horizontal dotted line indicates the normalized level 
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PREVIOUS # OF SAMPLES. PREVIOUS It OF SAMPLES. 

Figure 2: Left panel: Measuring average memory for one of the networks with low 
generalization error trained on 7000 examples from the laser series. Right panel: 
Measuring average memory for another of the networks trained on 7000 examples. 

Goo(w) using all available previous inputs. It seems that the network has 
a memory somewhere between 120 and 200. The precision e in (8) denotes 
a level below which we consider the two errors as equivalent. The value of 
the memory thus naturally depends on the choice of e as shown in Table 1. 
In the right panel of Figure 2 the normalized test error for increasing lag 

e 0.05 0.025 0.01 
M 150 183 198 

Table 1: The value of the memory dependence on e for curve in the left panel of 
Figure 2. 

space m for another of the nets trained on 7000 points is shown. We note 
that for this network the memory M is less sensitive to e, as it is between 
23-25 for e < 0.18. We also note that the memory is much shorter than for 
the previous network even though the test errors are almost identical. Note, 
since the network complexity6 is restricted, a network with short memory is 
able to allow for more individual contribution of each of the previous inputs 
x(t — n) than a network with long memory. The memory profile of a short 
term memory net is thus more fine grained than that of a long term memory 
net (with the same complexity). One might claim that a compact memory 
model is better tuned to the problem. 

In the left panel of Figure 3 we illustrate the average memory of the 
network with lowest test error when training on only 500 examples. We notice 
that by limiting the memory the error can actually become lower than Goo- 
This effect often occurs for overtrained networks which is also the case here. 
The memory of the network is highly specialized on the training set; limiting 
the memory acts as regularization and actually improves the performance on 
the test set. 

We now illustrate that the memory of a recurrent network indeed is a 
6E.g., measured by the number of hidden neurons. 
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PREVIOUS I OF SAMPLES. 

Figure 3: Left panel: Measuring average memory for best network trained on 500 
examples from the laser series. Right panel: Measuring local memory with threshold 
e = 0.01 using five point average, K — 5. 

dynamic quantity by examining the local memory defined by Eq. (8) and (9) 
for the network whose average memory is shown in the left panel of Figure 2. 
The right panel of Figure 3 and the left panel of Figure 4 illustrate the 
dynamic memory measure using precision e = 0.01 and averaging over K = 5 
and K = 50 examples, respectively. The memory is seen to be very dependent 
upon where in the laser series it is measured; the closer to a collapse, the 
larger. The memory required around the last collapse is significantly larger 
than around the previous collapses. This may be explained by the observation 
that the characteristics of the laser series just before the last collapse is highly 
atypical from the rest of the test series. The memory in the right panel of 
Figure 3 averaging over only K = 5 previous errors is seen to be a very noisy 
quantity. As K is increased the error measure becomes smoother. Recall 
from Table 1 that the average memory for e = 0.01 is M = 198; however, the 
illustrations of the local memory shows that by omitting the last collapse the 
average memory would be measured to 150, approximately. 

The Mackey-Glass series is a standard problem of nonlinear dynamics and 
results from the integration of a differential equation, see e.g., [8]. Standard 

XAäAääAä 

Figure 4: Left panel: Measuring local memory with threshold e = 0.01 using fifty 
point average, K = 50. Right panel: Learning curve for the Mackey-Glass series. 
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Figure 5: Measuring average memory for networks trained on 1500 examples from 
the Mackey-Glass series. Left Panel: Network having short memory. Right panel: 
Network having long memory. 

practice is to implement a six step ahead predictor, i.e., modeling z(t) from a 
lag space vector x(t) = [z(t - 6), z(t - 12),..., z(t - 6n/)] using feed-forward 
networks. Here we implement the six step ahead predictor with target value 
d(t) - z{t) using a recurrent network with only one external input, x(t) = 
z{t-6), and ten hidden units. In the right panel of Figure 4 is shown a learning 
curve for the Mackey-Glass series when training on up to 1500 samples and 
testing on the following 7000 samples. For each training set size ten networks 
were trained. The learning curve indicates that more than 1000 examples are 
needed in order to obtain consistently good results on the test set. We then 
determined the average memory defined by Eq. (7) for the properly trained 
networks with the lowest errors on the test set. Using the threshold e = 0.01 
we found that the networks implemented a memory in the range of 118-263, 
as seen from Figure 5. 

The memories implemented by the recurrent networks are surprisingly 
long. In order to obtain comparable performance using feed-forward networks 
six external inputs are needed, thus spanning a total of only 31 previous sam- 
ples. This is the minimal memory neccessary for good performance provided 
weighting of individual lags is possible, however, a RNN's memory profile is 
more coarse grained reducing the possibilty of individual weighting. Further- 
more, maintaining information about all previous input values seems to bias 
recurrent networks towards the implementation of a long effective memory. 

The long memory implemented by the recurrent networks seems to be 
of prime importance for the robustness of these models. Preliminary experi- 
ments indicate that recurrent networks are far more resilient to noise pertuba- 
tions of the input data than comparable feed-forward networks. Examination 
of the robustness of recurrent networks is a topic of ongoing research. 

CONCLUSION 

In this paper we have focused on determining the effective memory of re- 
current neural networks when used for time series processing, equivalent to 
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the span of the externally provided lag space for feed-forward networks. In 
particular, we have suggested an operational definition which measures the 
memory of a fully trained RNN on a test set. The viability of the method is 
illustrated on two chaotic time series problems. 
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Abstract. In this contribution, we suggest a convenient way to 
use generalisation error to extract the relevant delays from a time- 
varying process, i.e. the delays that lead to the best prediction per- 
formance. We design a generalisation-based algorithm that takes 
its inspiration from traditional variable selection, and more pre- 
cisely stepwise forward selection. The method is compared to other 
forward selection schemes, as well as to a non-parametric tests 
aimed at estimating the embedding dimension of time series. The 
final application extends these results to the efficient estimation of 
FIR filters on some real data. 

OVERVIEW 

In system identification as well as in time series modelling, the choice of the 
inputs to our model plays a crucial role. In order to obtain good performance, 
one shall model future behaviour from a set of relevant past measurements. 
An insufficient amount of inputs will prevent the model from capturing the 
underlying mapping. On the other hand, including irrelevant inputs will lead 
to poor prediction performance, as suggested by the "curse of dimensional- 
ity". 

In this contribution, we consider a method aimed at finding a set of rel- 
evant delays. For that purpose, we use a suboptimal iterative method that 
minimises the estimated generalisation error, and bears resemblance to the 
usual statistical variable selection methods [6]. However, this Extraction of 
Relevant Delays (ERD) method is original in the fact that 1) it assesses the 
relevance of possible inputs on the basis of generalisation, and 2) it is adapted 
to time dependant problems. 

The organisation of this paper is as follows: first we give a short pre- 
sentation of the topic of statistical variable selection, and describe our ERD 
method.  We then introduce briefly a class of methods estimating the em- 
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bedding dimension of time series. The second part of the paper contains 
a number of experiments conducted on the well-known Henon map, on a 
real time series, and finally on a FIR filtering problem. We conclude with a 
discussion of the results. 

INPUT SELECTION 

Let us consider a standard time series modelling problem. A sequence x 
of measurements is collected, and we try to predict xt from a set of past 
values xt-d- Note that in that setting, the length of the basic time delay (i.e. 
difference between t and t + 1) is imposed on us. Extracting the relevant 
delays consists in finding a set of m delays (xt-dt, ■ ■ ■, £t-dm) that, given as 
input to a model, yields the best prediction. 

This is a special case of variable selection, which in turn can be seen as 
part of the more general problem of analysing the structure in the data [6]. 
An important assumption in conventional variable selection is that all neces- 
sary variables are available, i.e. a sufficient subset of inputs actually exists. 
Provided that data are sampled correctly, this assumption is usually satisfied 
in the case of time series1. We will use the terms 'variable', 'input' or 'delay' 
indifferently when addressing our time series modelling problem. 

An exhaustive search through all possible subsets of inputs is usually 
impossible for combinatorial reasons. A number of suboptimal techniques 
have thus been designed, among them stepwise methods: 

• Forward selection methods consists in starting from an empty set of 
inputs, and adding variables one after the other according to a given 
selection criteria, until a chosen stopping condition is fulfilled. 

• On the contrary, backward elimination methods start with the full set of 
inputs, and proceed by deleting one variable at a time according to the 
selection criteria, until the stopping condition is reached. In the field of 
neural computation, variable selection techniques based on pruning [2] 
are a typical example of backward elimination. 

Stepwise regression usually refers to a combination of both (in the linear 
case). For both methods, the crucial parts are the design of the selection 
criteria, and the stop condition. Conventional methods in linear regression 
rely on e.g. correlation coefficients, information content or F-testing. 

EXTRACTION OF RELEVANT DELAYS 

We present here a method of Extraction of Relevant Delays (ERD) that 
relies upon generalisation error. It draws its inspiration from forward selec- 

1It breaks down in the case where a long-term delay is needed, that ranges further than 
the time period spanned by the data. However, the relevance of such long-term prediction 
is questionable, and there would be no data to identify the associated parameter(s) anyway. 
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tion methods, combined with generalisation estimation. Consider a model 
/ providing a mapping from an input vector containing m delays x^ = 
(xt-di)=i m to output xt, and assume Gaussian perturbation on the out- 
put.   We define the generalisation error (or expected risk) for this model 
as: 2 

<?(/) = / (/ (*W) " *«) P (^-xW) d*'dxW (^ 

Obviously, equation (1) can not be used directly as the joint input-output 
probability is unknown. We will thus resort to estimating this error, or rather 
its average over all possible training sets of a given size JV. There are mainly 
two classes of such estimators: methods such as cross-validation [17] resample 
the available data, while algebraic estimators [1] rely on statistical arguments. 

Consider for example the second option. Many estimators have been 
proposed in the literature, e.g. Final Prediction Error (FPE) [1], Generalised 
Prediction Error (GPE) [11], Final Prediction Error for Regularised problems 
(FPER) [7] or Network Information Criterion (NIC) [12]. We will here settle 
for an expression similar to GPE, i.e. a FPE wherejthe number of parameters 
is replaced by the number of efficient parameters P: 

<a> = (^f) w P) 
where (S) is the average training error (over all training sets of size JV). As 
such an average is not available, we plug the measured training error (or 

empirical risk) S(f) instead. For quadratic risk, S (/) = £ (/ (xW) ~ xt) ■ 
The calculation of P depends on the regularisation method used during train- 
ing (see e.g. [7, 3]). 

The proposed ERD method is a forward method taking all delays m their 
natural order (which bypasses the selection criteria), and adds a candidate 
input if and only if it corresponds to a significant decrease in generalisation 
error. The algorithm can be described as follows: 

1. Initialise: d = 0; Gmin = a\\ no input selected. 

2. Model: d = d + 1; add delay t - d to selected inputs; estimate 
generalisation error G for resulting model. 

3. Test: if G is significantly smaller than Gmin, keep delay t - d; 
Gmin = G. Discard otherwise. 

4. Iterate: Go to step 2 until stop condition is reached.  

Significant decrease in error. When a candidate delay yields a decrease 
in (estimated) generalisation error, step 3 requires that we assess the sig- 
nificance of this decrease. We take advantage of the fact that the generali- 
sation estimators mentioned above are based on averaging a statistics, and 
test whether the statistics associated with two different generalisation esti- 
mators have statistically significantly distinct means by performing a paired 
t-test [15, 8]. 
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In our case, the estimated (average) generalisation error given by FPE 
can be expressed as the following average: 

where e$ is the local risk (e.g. squared residuals) for training example k 
and a model parameterised by w. Let us consider two models trained on the 
same set of examples, and Pi and Pi the numbers of efficient parameters for 
the first and second model (respectively). The distribution of the corrected 

residuals (*±£-) e^ (resp. (*±g) e&>) has mean (Gi> (resp. (G2)). We 

thus test whether (G2) is significantly smaller than (Gi) by using a paired 
t-test on the corrected residuals. 

The case of cross-validation is somewhat more straightforward. The leave- 
one-out (LOO) cross-validation score is calculated by averaging the predic- 
tion error on one example for a model trained on the remaining sample: 

<ö> = ^£(/*(*(t))-*02 (4) 

Where ft is the model trained without example (xW,xt). For two different 
models, the residuals are paired according to the example left out, so that 
a (paired) t-test can be used to determine whether these residuals come 
from distribution with different mean, i.e. correspond to different average 
generalisation errror. Extension to m-fold cross-validation is straightforward. 

EMBEDDING DIMENSION 

In the study of non-linear dynamical systems, and time series in particular, 
an important problem lies in finding the embedding dimension [16], which 
is essentially equivalent to finding the set of primary delays in time series. 
In the realm of neural computation, the recently proposed 8-test method[14] 
addresses this issue. In a different field, a method for identifying the order 
of non-linear input-output systems was proposed [5], that relies on the use 
of "Lipschitz quotients" i.e. ratio between output and input distances. A 
similar method applied to time series (called 'geometrical technique') was 
presented last year at this workshop [10]. 

Though different in practice, these methods rely on a common assumption 
on the continuity of the underlying mapping, and use a geometrical approach 
based on the data alone. The continuity argument means that if there is a 
mapping between x(t) and xt, then close inputs x(u) and x^ should corre- 
spond to close outputs xy and xu. Accordingly, as long as the input space 
is insufficient (i.e. missing delays), close inputs can correspond to arbitrarily 
distant outputs. Quantifying this is done either by measuring empirical prob- 
abilities that two outputs are close given that the corresponding inputs are 
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close ((5-test), or by calculating the ratio between output and input distances 
(Lipschitz quotients). 

It should be noted that these methods are non-parametric. They rely on 
the data alone, and need not specify a given model (contrary to the ERD 
method). This can turn out to be a disadvantage since for a given data set, 
they always select the same set of relevant delays, regardless of the ability 
of our model to actually implement the underlying mapping. It could very 
well be that for the model at hand, the estimation would benefit from the 
inclusion of a secondary delay, as shown in the next section and discussed 
further down. Furthermore, these geometrical techniques require extensive 
calculations, as they consider all pairs of data. They are thus computationally 
expensive. 

TIME SERIES EXPERIMENTS 

This section is devoted to two simple experiments. First we use an artificial 
problem (the Henon map), for which a large validation set confirms the re- 
sults obtained by our ERD method. In the second experiment, we discover 
interesting long term dependencies on a real time series. 

The Henon map is implemented by the following mapping: xt = 1 — 
1.4xf_1+0.3xt-2- We generate a training set containing 500 data, and a test 
set of 10000 elements for assessing generalisation abilities. We experiment 
on non-noisy as well as noisy data, with of = 0.1. Two different models 
are used: a linear model (obviously ill-suited to this purpose) and a non- 
parametric kernel smoother. The generalisation estimators are the FPE and 
LOO respectively. 

In order to check whether the delays are wisely chosen, experiments are 
performed comparing the ERD method and other selection methods (table 1): 

1. a forward selection methods using a large validation set (distinct from 
the test set) of 10000 data; 

2. the JFgg-inclusion, a selection scheme based on the F-statistics [6]; 

3. the S-test [14]. 

As shown on table 1, all forward selection methods outperform the S-test 
in the linear case: a linear combination of the first two delays is obviously 
insufficient to model the mapping. The performance is rather homogeneous 
among forward selection methods, though the ERD method tends to favour 
parsimonious models, while keeping good generalisation abilities. 

On the non-noisy data, the kernel smoother captures the underlying map- 
ping in all cases. When the training data is noisy, the F-inclusion scheme 
displays a severe case of curse of dimensionality. The other methods select 
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Henon map: Noi 
Linear 

loise 
Kernel Linear 

Noisy 
Kernel 

Large 
validation 

set 

Delays 1-7 1-2 1-7 1-3 
MSE 0.376 0.000 0.503 0.214 
Generalisation 0.379 0.000 0.389 0.067 

ERD 
Delays 1,3-6 1-2 1,3,4 1-3 
MSE 0.376 0.000 0.523 0.214 
Generalisation 0.378 0.000 0.409 0.067 

Fgg-inclusion 

Delays 1-6 1-2 1-6,10 1-8,11-13, 
16,17,19,20 

MSE 0.376 0.000 0.499 0.032 
Generalisation 0.379 0.000 0.389 0.294 

S-test 
Delays 1-2 1-2 
MSE 0.457 0.000 0.567 0.266 
Gener. 0.455 0.000 0.459 0.097 

Table 1: Results on the noisy and non-noisy Henon map data, for two models: a 
linear model and a non parametric Kernel smoother. MSE is the Mean Squared 
(training) Error, generalisation is estimated on 10000 non-noisy data. 

one additional delay t — 3. As we will discuss later, this theoretically unnec- 
essary input leads to an improved prediction accuracy on both the training 
and generalisation set. 

Fräser river data. As an example of real time series processing, we will use 
a publicly available dataset2 containing the mean monthly flow of the Eraser 
River in Hope, British Columbia, from march 1913 to December 1990 [9]. 
It is a roughly periodic data set containing 946 measurements with maxima 
every 11 to 13 months. We split the data set so that we have half the data 
for training and half for testing the prediction abilities of the model. In the 
following experiments, we use the log values of the data, and estimate the 
parameters by minimising the Mean Squared Error on the transformed data. 

The use of a large validation set is not possible here as is (unfortunately) 
the case with most real life problem. We will compare the result of the ERD 
scheme to the results provided by the non-parametric 5-test. According to 
this test, the embedding space of the time series involves 6 delays. 

Note that the ERD method once again outperforms the method based on 
estimating the embedding dimension. The linear model probes further into 
the past, and spots relevant delays up to t — 48, i.e. four times the time span 
covered by the <5-test. The kernel smoother seems to be experiencing some 
problems coping with the dimensionality of the data—they could probably 
be minimised using a variable metric. The neural networks model selects the 
same amount of delays than the «5-test. However, the selection is targeted 
towards minimisation of generalisation error, which is reflected in the sizeably 
smaller test error. Noticeably, the non-linear neural network model, though 

2available on Statlib at http://lib.stat.cmu.edu/datasets/ 
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Fräser river : Linear Kernel Neural net 

ERD 

Delays 1,2,4-7,10,11, 
23,26,35,48 

1,2,4,7,11,13 1,2,4,7,11,23 

MSE 0.0529 0.0389 0.0425 
Generalisation 0.0439 0.0547 0.488 

(5-test 
[14] 

Delays 1,2,4,7,8,11 
MSE 0.0680 0.0441 0.452 
Generalisation 0.0609 0.0530 0.627 

Table 2: Results for the Eraser river data set, and three different models. MSE is 
the Mean Squared Error. 

using a combination of regularised cost optimisation and OBS pruning [4], 
does not manage to extract longer-term delay, and is outperformed by the 
simpler linear model. 

OPTIMISING FIR FILTERS 

We will now extend the method and apply it to fMRI signal modelling. The 
fMRI signal measures the hemodynamic response to focal neuronal activation. 
The data is collected as a 504 steps time-series containing measurements 
corresponding to the hemodynamic response to a series of periodic baseline 
and activation periods (7 periods in all). The data is corrupted by a very 
high level of noise. 

Modelling this response as a function of the activation signal is the object 
of active current research [13]. We extend the above method to optimise the 
choice of relevant delays when trying to model the response with a FIR filter 
applied on the excitation signal. Current attempts at doing so use a fixed lag 
of 7 delays. 

The ERD method is simply extended by testing sequentially chosen delays 
in the excitation signal rather than the time series itself. We applied the 
method on 5 voxels that were identified as being particularly responsive to 
the excitation. Out of the 504 measurements, we set the last two periods, 
or 144 data, aside for testing the generalisation abilities. The first 5 periods, 
containing 360 points, are used for identifying the relevant delay and the filter 
coefficients. The FPE is used as a generalisation estimate. 

On the 5 fMRI time series studied, we extracted from 1 to 4 delays, 
ranging from t -1 to t - 22. On voxel number 3 for example, our experiments 
surprinsingly select only t - 1, but we can see on figure 1 (left panel) that 
this actually leads to a slight decrease in generalisation error compared to the 
fixed 7 delay filter. Overall, the results displayed on the left panel of figure 1 
suggest that on the extremely noisy data, the method leads to performance 
that is comparable to the fixed FIR filter, while using less parameters. 

On the first voxel, the extraction of relevant delays leads to a noticeable 
decrease in generalisation error. The right panel of figure 1 plots the response 
of voxel 1 together with both FIR estimation. 
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Figure 1: Left: performance comparison. For each voxel the 7 delays FIR filter is on 
the left, while the FIR filter with extracted delays is on the right. Right: behaviour 
of the 7 delay filter and the extracted filter on the fMRI time series measured in 
the first voxel. 

DISCUSSION 

The FIR example above illustrates the fact that using a parcimonious model, 
with delays appropriately chosen, is a good way of obtaining good modelling 
abilities. This can be of great help when facing a problem on which we 
have no—or little—physical insight. In that context, the ERD is a principled 
model-dependent approach that has the ability to select the inputs that lead 
to the best expected prediction error. 

It should also be emphasised that it seeks to optimise the actual criteria 
of interest, i.e. generalisation error. Indeed, at the end of the day we are 
interested in obtaining the best possible predictions. Reconstructing the 
dynamics of a time series, as suggested by the methods aimed at estimating 
the embedding dimension, is only a way of reaching this ultimate goal. On 
the contrary, the ERD method that we present here tries to optimise the 
relevant performance criterion directly. 

This has an interesting effect: by essence, the ERD method takes into 
account the fact that modelling is performed on a limited amount of data. 
On the Henon map example, this leads to the selection of an additional 
delay. It has no link to the actual dynamics of the system, but gives a 
clear decrease in error. Furthermore, when the model is not flexible enough 
to implement the system mapping, we will probe further into the past, and 
possibly discover higher-order dependencies that will ease the modelling. This 
is well illustrated by the two time series examples. 

Another aspect of the delay extraction procedure as proposed here is that 
it relies on the estimation of the generalisation error. It is expected that the 
more accurate the prediction is, the more relevant the delays selected will be. 
It should be noted however that we are only interested in finding minima of 
the generalisation error, so an estimator will be usefull as long as it gives the 
right "trend" in generalisation. 

Lastly, let us recall that this method is inspired from the forward selection 
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methods in statistical variable selection. A natural extension of this is the 
use of backward elimination steps, in a manner similar to stepwise regression. 
Similarly, pruning techniques can be used to remove inputs of the model that 
are potentially harmfull with respect to generalisation error. 

SUMMARY 

We have presented a generalisation-based method for finding the relevant 
delays in time series modelling. It relates to stepwise variable selection pro- 
cedures in classical (linear) regression. This 'Extraction of Relevant De- 
lays' method is straightforward to implement and leads to interesting results. 
When the model is not flexible enough to implement the underlying map- 
ping, it selects additional delays in order to minimise estimated generalisation 
performance. Noticeably, it outperforms some non-parametric methods for 
determining the embedding dimension when applied to insufficiently flexible 
models. 

Directions for future work include refinement of the relevance criterion, 
as well as the extension of this scheme to different problems such as system 
identification, with more than one temporal inputs. 
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Abstract 

We show that the decision function of a radial basis function (RBF) 
classifier is equivalent in form to the Bayes-optimal discriminant as- 
sociated with a special kind of mixture-based statistical model. The 
relevant mixture model is a type of "mixture of experts" model for 
which class labels, like continuous-valued features, are assumed to have 
been generated randomly, conditional on the mixture component of 
origin. The new interpretation shows that RBF classifiers do effec- 
tively assume a probability model which, moreover, is easily determined 
given the designed RBF. This interpretation also suggests a maximum 
likelihood learning objective, as an alternative to standard methods, 
for designing the RBF-equivalent models. This statistical objective is 
especially useful for incorporating unlabelled data within learning to 
enhance performance. While this approach might appear to be lim- 
ited to applications involving a large, label-deficient training set, the 
scope of application is significantly extended with the observation that 
any new data to classify is also unlabelled data, available for learning. 
Thus, we suggest a combined learning and use paradigm, to be invoked 
whenever there is new data to classify. This new approach is tested 
for vowel recognition, given a small archive of examples from differ- 
ent speakers. For this problem, a conventional method is of necessity 
speaker-independent. By contrast, combined learning and use allows 
speaker-dependent adaptation, with resulting gains in performance. 

'This work was supported in part by National Science Foundation Career Award IRI- 
9624870. 
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1    Combined Learning and Use 

In the problem of statistical classification, there is generally a clear division 
between the design phase of the classifier and the phases in which the classi- 
fier is validated on test data, or in which the design is used in an application 
setting to classify new data. Typically, one is given a training set of repre- 
sentative (feature vector, class label) training pairs. This set is all that is 
available for the model design, and once the design is complete, the classifier 
is fixed for subsequent test set validation or for use in an application. 

It is interesting to contrast this picture with learning in other domains, 
e.g. adaptive filtering methods in signal processing, where there is no clear 
division between learning and use since both occur simultaneously. A second 
example with analogies to classification is the problem of image segmentation. 
Here, one has a general model for images, in the form of an energy function 
that depends on both continuous-valued model parameters and on discrete 
segmentation (classification) variables. The energy function is minimized for 
each new image one wishes to segment. Each such minimization determines 
both the continuous model parameters and the segmentation for the image. 
Thus, learning of the model and its use (segmentation of the given image at 
hand) are combined into one operation. 

There are compelling reasons for considering whether this combined learn- 
ing and use analogy can be extended to the classification problem. In par- 
ticular, in principle we would like to modify the classifier for new data (data 
to be classified) if the training data was an inadequate representation of the 
underlying data source, or if the data source is non-stationary. The primary 
difficulty with this objective lies in the fact that nearly all learning approaches 
for statistical classification are pure supervised learning schemes, for which 
a supervising datum, i.e. the class label, is required for each feature vector 
used in the training. This statement is clearly true of neural network learning 
approaches such as back propagation, which minimize the squared distance 
to target class values. It is also true of standard methods for training para- 
metric (e.g. Gaussian mixture) classifiers, wherein the data is first divided 
into classes, with maximum likelihood estimation then applied to separately 
estimate the class-conditional densities. Unfortunately, new data to classify is 
inherently unlabeled, which makes it incompatible with standard supervised 
learning approaches. Moreover, even given the existence of a learning method 
which utilizes unlabeled data, it is not obvious that use of this data would 
be effective, without accompanying labels, in reducing the classification error 
rate. In fact, there are results which suggest otherwise [1]. 

However, recently, several new schemes have been suggested for assimilat- 
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ing unlabeled data within the learning. These methods have been found to 
be effective when the amount of labeled training data is inadequate. In [11], a 
method was proposed for training classifiers based on mixed labeled/unlabeled 
training sets. The authors suggested a statistical model for the data naturally- 
suited to a maximum likelihood learning scheme involving both the labeled 
and unlabeled data subsets. The unlabeled subset essentially allows improved 
estimation of the model parameters, which are then "plugged into" the Bayes 
decision rule. In [8] and [7], we built on the previous work in [11], suggest- 
ing improvements to the classifier structure and to the learning method, and 
also introducing the concept of "combined learning and use" for classification. 
First, we suggested a more powerful probability model than that in [11] with 
an associated classifier structure that, in this paper, we show to be equivalent 
to the radial basis function (RBF) classifier [9]. Unlike standard RBFs, the 
RBF-equivalent probability model is amenable to likelihood-based training, 
which is the key to assimilating mixed labeled/unlabeled training data within 
the learning. Second, in [8] we proposed an alternative learning criterion to 
that in [11], based on the joint data likelihood over both the labeled and un- 
labeled data subsets1, which was found to yield performance gains over the 
method in [11]. Two distinct (Expectation-Maximization) EM [3] learning al- 
gorithms were derived for maximizing this likelihood. These distinct methods 
were obtained by viewing different data elements as "missing data" within 
the EM framework [7]. Finally, we made the observation that test data, or 
in fact any new data to classify, can be viewed as a new unlabeled data set 
to which the mixed training method can be applied, to modify the classifier 
prior to the classifier's use on this data. This is what we called "combined 
learning and use". 

In this work, we first briefly summarize the developments in [7], after which 
we show the equivalence between the probability model introduced there and 
the RBF classifier. Next, we validate the combined learning and use paradigm 
for this classifier structure through an experiment involving vowel recognition 
given an archive of examples from different speakers. In this context, given 
a limited training set, a conventional classification approach is of necessity 
speaker-independent. By contrast, we will show that combined learning and 
use provides a way to achieve speaker-dependent adaptation (and use) of the 
model, with resulting gains in the classifier performance. Finally, we sug- 
gest that the combined learning and use approach may also be applicable to 
regression fitting. 

1A conditional data likelihood measure was suggested in [11]. 
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2    Mixed Training for an RBF-equivalent Mix- 
ture Model 

Although the classifier learning problem has been separately cast as one of 
i) directly estimating a posteriori class probabilities, ii) least squares regres- 
sion to target class values 2, and iii) more directly minimizing an error count 
measure [6], only the first objective appears suitable for incorporating un- 
labeled data within the learning. Moreover, while there are neural network 
models which directly produce the class probability estimates as outputs3, 
the training for such networks is also unsuitable for incorporating unlabeled 
data. Alternatively, in [7], we suggested a somewhat unconventional proba- 
bility model. This model is a generalization of a standard mixture wherein, 
like the feature vectors x £ Tlk, the class labels c € 2, I the label set, are 
also assumed to have been generated randomly, conditional on the mixture 
component of origin. More concretely, the data is assumed to have been 
generated in the following way: 

1. Randomly select one of M mixture components according to the prob- 
ability mass function {a/, / = 1,..., M}. 

2. Given the selected component, k, choose: a) a feature vector x according 
to the component density f(x; A*), where A* is the parameter set of the 
density, and b) a class label c according to the conditional probabilities 
{ßj]k,j = l,...,\I\}. 

Note that usually mixture components are "hard-partitioned" to classes, i.e. 
ßj\k G {0,1}. However, we have found that allowing classes to probabilisti- 
cally "share" components makes the learning less sensitive to initialization 
and the solution less sensitive to the choice of M. This model will also be 
motivated from a different standpoint shortly. 

The corresponding a posteriori class probabilities take the form: 

P[c\x] = Ylß,J^ß^). (1) 

These probabilities have a "mixture of experts" structure [4], where the "gat- 
ing units" are the conditional probabilities of mixture components given fea- 
ture vectors (in parentheses), and with the "expert" for component k just the 

This objective is also related to estimating the a posteriori probabilities [10]. 
SMLP structures with normalization in the output layer can be trained as probability 

estimators by minimizing a cross entropy criterion. 
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conditional probability {j9e|t}.The associated Bayes decision rule is 

5bayes(x) = argmax-^^p (2) 

where Sbayes(-) is a selector function with range in I. 
For the learning problem, we supposed the existence of two data subsets, 

i.e. X = {Xi, Xu}, where Xx = {(*i, <*), (»a, c2),..., (as*, cNl)} is the labelled 
subset, with Xu = {xNl+1,...,xN} the unlabeled one. Unlabeled data was 
introduced into the learning to improve parameter estimates via the joint 
data likelihood criterion: 

It M 

logL=   £ log £>,/(*<; A,) + £ ^gY.^ißc^fi^Ai).       (3) 

A description of two distinct EM learning algorithms for maximizing logi 
can be found in [7]. Finally, it was recognized that any new data set to 
classify can be viewed as a new subset Xu - hence the data to classify can be 
used to update the model (e.g. to specialize the model) prior to the model s 
use in classifying the data - i.e., a combined learning and use operation was 

suggested. 
Note that mixed training and «combined learning and use" only appear to 

be applicable to classifier structures that are based on a probability model for 
the data. However, we now show that this assumption is not very restrictive, 
since the decision rule for the probability model we just described is actually 
equivalent in form to a commonly used neural network classifier that is not 
typically given a probabilistic description. Consider a radial basis function 
network used in a classification setting [9]. For an |I|-class problem, there is 
one RBF output per class, 

M 

s/(s) = £/(z;A*)**i>     i = !-•••. PI-      ' (4) 
Jfe=l 

Here, /(•) is the basis function which, without much restriction, we may take 
to be a density function. Also, Xkj is a scalar weight connecting basis k and 
class output j 4. The associated decision function, S : Tlm -* {1,2,..., |I|}, 
is the winner-take-all rule: 

S(x) = argmaxffj(iB). (5) 
i 

*In [9], an alternative normalized RBF structure was suggested. For convenience we 
consider the un-normalized structure here, though our equivalence result holds for both 
structures because the normalization does not affect the decision rule. 
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We can observe that #(•) looks like a mixture density. However, it is not 
usually thought of in this way, primarily because the weights {Xkj} can be 
positive or negative and are trained for a least squares criterion [9], rather 
than a statistical one such as the data likelihood. Regardless, we can easily 
show that the decision rule (5) is in fact equivalent to the Bayes rule in (2). 
First, define Amin = minA^-. Then, subtracting (Amin £/(z; At)) from each 

*>i * 
class output, we obtain the equivalent rule: 

S(x) = arg max V"/(a;; Akfikj, (6) 
3     k 

where Xkj = Xkj - Ami„. Note that \kj > 0. Next, we divide each output by 

the constant (]F} Amn), to obtain 
m,n 

S(x) = argmax^/(iE; Ak)qkj, (7) 
1     k 

where qkj = V*V    . Now, we have 0 < qkj < 1 and Y,<lkj = 1- Finally, we 

can normalize each transformed class output gj(x) = Y^,f{x'>^k)qkj by the 

m 
sum 2^) 9i(x) to again yield the rule 

S(x) = arg max .—-—r = arg max ^ ,, . A *\/^>„—S      • 

m.n m n 
(8) 

Now, comparing (2) with (8), it is easy to see that they are equivalent. In 
particular, we may identify V?*J'     with ßj\k and X)9tn with ak. There are 

two implications of this result. First, we suggest an alternative probabilistic 
viewpoint on RBF classifiers. In fact, given a standard RBF solution, we 
have shown that one can easily find the equivalent probability model. While 
the parameters of this equivalent model were not obtained via maximum 
likelihood estimation, the equivalent model may still provide some insight 
into the implicit statistical modelling assumptions made by the RBF solution. 
Moreover, in some cases one is interested both in hard classification decisions 
and in a probabilistic assessment of class ownership. The RBF-equivalent 
model directly provides this information via the probabilities {P[c|a;]}. The 
second implication of this equivalence, and the one of more significance for 
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this work, is that it effectively suggests new training possibilities for a widely 
used neural network classifier. In particular, while the standard RBF model 
is not amenable to likelihood-based training (and hence to combined learning 
and use), the RBF-equivalent model is. We next consider one scenario where 
combined learning and use, applied to this RBF-equivalent model, yields 
performance benefits. Other results can be found in [7]. 

3    Experimental Results 

In a basic application of the combined learning and use paradigm, we sim- 
ply use the new unlabeled features associated with the test set to augment 
an existing training set. After training on the combined data set using the 
scheme in [7], the new data set is classified. As one example in [7], we con- 
sidered the 3-class, 40-dimensional, 5000 sample waveform-+noise.data set 
from the UC Irvine machine learning repository. There, it was shown that 
combined learning and use outperformed conventional approaches for train- 
ing RBF classifiers, which are forced either to discard the unlabelled features, 
or to make limited use of them. Here, we apply this new paradigm to the 
classification of a speech archive. The archive includes examples of vowels 
from different speakers, with the speaker identity known. While examples 
of the same vowel may share similar statistics across speakers, examples of 
different vowels from the same speaker may also share a common statistical 
character. This suggests that it may be sensible to separate the data into 
"speaker-dependent" batches. Each such batch to classify can be taken as an 
unlabeled set for combined learning and use, either in concert with a labeled 
training set (derived either from the entire archive, or from an independent 
data set) or to modify a previous design based on such a labeled training set. 
The success of this scheme rests with the potential for adapting the classifier 
to each data batch, based on the unlabeled batch features. 

We have tested this idea on Deterding's vowel.dat set, consisting of LPC- 
derived log area ratios, representing eleven different vowels. In this set, there 
are six examples of each vowel from each of fifteen different speakers (990 
examples in all). We used two examples of each vowel from each speaker as 
the labeled training set (330 samples in all) with the remaining four examples 
from each speaker used as the test set. Note that the data set is too small to 
design separate classifiers for each speaker in a conventional way. We chose to 
compare two different combined learning approaches, along with the method 
from [9] (denoted MD-RBF). In the first scheme (speaker-independent (SI)), 
the test set of 660 samples was viewed collectively as Xu and used in con- 
cert with X\ for combined learning.   We then classified Xu.   In the second 
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method (speaker-dependent (SD)), the forty-four test set samples from each 
speaker were viewed as distinct data batches. We thus performed combined 
learning separately for each speaker, based on X\ and the speaker-specific 
test set. Each batch was then classified based on its speaker-specific model. 
Note the tradeoff between the two designs: the speaker-specific scheme de- 
signs each of the fifteen classifiers using only the 330 labeled samples and 
44 speaker-specific unlabeled samples, while the speaker-independent scheme 
uses the entire data set for its single design. However, this latter classifier 
must perform well for all speakers, rather than just a single one. Results were 
obtained for models of size 11, 22, and 33 mixture components. The perfor- 
mance measure chosen was the average test set error fraction, computed based 
on different choices for the parameter initialization and for the data subset 
realization. We designed classifiers for all possible (fifteen) realizations of the 
training and test sets. For each realization, for each model size, 20 classi- 
fiers were designed based on random parameter initialization, with the test 
set performance averaged over the 300 solutions. As shown in Table 1, the 
speaker-specific scheme provides a consistent performance advantage over the 
speaker-independent one5, with both methods outperforming MD-RBF. 

Model Size Method Train-err/Test-err 

11 components 
SD 0.58/0.58 
SI 0.61/0.61 

MD-RBF 0.63/0.64 

22 components 
SD 0.45/0.46 
SI 0.49/0.50 

MD-RBF 0.50/0.52 

33 components 
SD 0.37/0.38 
SI 0.41/0.42 

MD-RBF 0.44/0.44 

Table 1: Average test set misclassification error fraction for Deterding's 
vowel.iat set. Results for two "combined learning and use approaches" 
(speaker-independent (SI)) and (speaker-dependent (SD)) are shown, along 
with MD-RBF. 

8 The high error rates observed for this experiment are consistent with prior results 
reported for this data set. 
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4    Combined Learning and Regression Mod- 
elling 

There is a natural way to extend the combined learning and use approach de- 
veloped heretofore to address the "other" basic supervised learning problem - 
regression. For this problem, the data pairs now take the form (xit #), where 
Vi G Hm is the regression output with Xi now called the input. Combined 
learning and regression fitting can be accomplished by modifying existing 
learning approaches that are already likelihood-based, to incorporate an ad- 
ditional unlabeled term. Jacobs and Jordan [4] and Jordan et al. [5] suggested 
"mixture of experts" regression structures naturally suited for learning pro- 
cedures based on maximum likelihood estimation. We can pose the learning 
problem as maximizing the conditional likelihood log f(y\X) as in [5], or the 
joint likelihood log f(y,X) as in [12]. For combined learning and use appli- 
cation, we suppose that there is now an "unlabeled" new/test input data set, 
for which we want to estimate the outputs. Using "1" to denote the "labeled" 
subset, we can now alternatively maximize either log /(Jj \Xi) + log f(Xu) or 
log f{yi, Xi) + log/(#«)• We are currently investigating combined learning 
and regression as outlined here. It is important to note that combined learn- 
ing and use may have a smaller range of application for regression than for 
classification. In particular, for certain regression problems such as time se- 
ries prediction, the actual outputs are made available as time unfolds - hence, 
this problem lacks a large, output-deficient set on which to apply combined 
learning and use. One likely application, however, is the problem of restoring 
images observed through a noisy, distorting medium. Cha and Kassam [2] 
used a model and learning approach similar to that in [4] and [5], with the 
learning performed over a training set of distorted images. We believe that 
combined learning and regression may be effective in this setting. 
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Abstract - We address the problem of autonomous decision making in 
classification of radioastronomy transient signals on spectrograms from 
spacecraft. It is known [10] that the assessment of the decision process 
can be divided into acceptation of the classification, instant rejection of 
the current signal classification, or rejection of the entire classifier model. 
We propose to combine prediction and classification with a double archi- 
tecture of Neural Networks to optimize a decision while minimizing the 
false alarm risk. We suggest a method to derive the input and output 
windows for the predictor network. Results on real data from URAP 
experiment aboard Ulysses spacecraft show that this scheme is tractable 
and effective. Keywords: spectrogram classification, radioastronomy, 
neural network classification. 

1    INTRODUCTION 

As transient astronomical signal detection, classification, and tracking from 
space is becoming a classic application for neural networks [4], in the literature 
though, measuring the risk of classification or detection decision is not always 
taken into account as it is for radar or sonar. Classification risk minimization 
has been studied by Bishop [2] and Schurmann [6], they suggest a Bayesian 
analysis of confidence, while Lippmann [7] uses a two networks approach based 
on bootstrapping to predict the risk of classification. However, low frequency 
radio planetary emissions are non stationary, non Gaussian and non linear. 
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For such signals, classification risk assessment is not obvious. 

A solution has recently been suggested by de LASSUS & al. [5] with two 
neural networks working in parallel, thus, only smooth signals were consid- 
ered. We propose here a more general approach enabling false alarm risk 
reduction whatever the signal time frequency distribution, provided that the 
signal is correlated on the time frequency plane to some extent. The solu- 
tion we suggest is based on neural classification of the signal confirmed by a 
neural prediction. With this method, it is possible to punctually reject the 
classifier's choice, or even, if necessary, to decide that the current classifier 
becomes unreliable and has to be changed. The example we show belongs to 
low frequency radio astronomy, but this approach seems applicable in many 
other fields of interest where geophysical signals are under study. 

2    CLASSIFICATION OF SPECTROGRAMS 

Classification of low frequency planetary radio bursts displayed in the time 
frequency plane is a task similar to the well known "cocktail party" problem: 
identify many sources emitting in the same time. The signals under study 
originate from different parts of the solar system, and the distances, as well 
as the observation angles, are heterogeneous and changing fast. This leads 
to moving patterns on the spectrogram while we want to classify the signal. 
Automatic tracking and classification of non Gaussian, nonlinear transient 
radio planetary signal on spectrogram, using a single detector is a difficult 
task. When the omni directional detector is moving fast across the sources 
and when the patterns have an anisotropic distribution along the trajectory 
of the detector, abrupt changes occur on the spectrogram. An accurate classi- 
fication may be cast into more simple subtasks : identify the sources number, 
find the main features of the sources, and classify the signal. If the classifi- 
cation has to be done on spectrogram representation of the signal, the Time 
Delay Neural Network (TDNN) architecture has proved to be a convenient 
choice [4]. A classifier would typically have a 20 x 12 input, a 1 x 3 output, 
and 1240 parameters for 9609 learning samples. On each frequency channel, a 
TDNN classifier is moved from one energy peak of the signal to another. An 
input window is cut on the spectrogram around the peak. The TDNN output 
gives the label (class of signal) of the current energy peak on the spectrogram. 
Typically, the method yields a rate of success of up to 90%, challenging human 
expert visual recognition. Thus, since the number of sources may change, as 
well as their patterns, the classifier may be confronted to situations unseen 
before. In such cases, there is a need to assess the quality of the decision, and 
to evaluate the ability of the classifier to carry on its mission successfully. 

The rejection dilemma. Let d\ be the decision of accepting a classifier's 
suggestion, and do the rejection of this proposal.  Let H\ be the hypothesis 
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that the signal belongs to the label suggested by the classifier, and H0 hy- 
pothesis that it does not belong to this label. Then, we have [10]: choose 
di when Hi (correct classification); choose dx when H0 (false alarm); choose 
d0 when Hi (undue rejection); choose d0 when H0 (justified rejection). If 
the TDNN output number is strictly designed according to the number of 
known classes of signal, the risk of d0H0 and d0Hi is limited to the set of 
outputs of the neural network, and the classifier is forced to decide between 
the available classes [8]. This is a good solution when the number of classes 
is computable by direction finding together with clustering on the cumulant 
domain, or on a wavelet packet base [3]. But even so, we still have to deal 
with diHo ■ In order to reduce the risk of diH0 without loosing too much 
on di Hi, one would intuitively try to use different thresholds on the output 
of the classifier, but this is inappropriate if the probability densities of each 
signal class in the learning data base are equal. The solution that we suggest 
is rejection by prediction: that is to predict the signal outside of the TDNN 
classifier input. If this short term prediction is confirmed by future samples, 
then the postponed decision is confirmed. 

3    REJECTION BY PREDICTION 

Principles. In order to minimize the classification risk diH0, we need a 
measure of quality to motivate our decision. We suggest to use two neural 
networks (NN) in parallel, a classifier and a predictor, for each frequency 
channel. Inputs to these NNs will be subsets of the same window cut on the 
spectrogram. One NN will classify the signal with the information available 
from the window. The other NN will predict the signal expected to come 
just outside the window in the very near future. When the predicted signal 
is there, it is confronted with the prediction. The distance from the predic- 
tion to the real signal yields the measure of quality we needed to confirm 
the decision of the classifier. In order to cover a sufficient area of the time 
frequency plane, we decided to predict the future signal at five different lo- 
cations (time frequency coefficients). This number of five is not fundamental 
and can be modified. We show now how positive autocorrelation lags yield 
the customized architecture for the predictor NN we need. 

Designing a predictor. The problem is to choose the right window and 
the suitable time step for the prediction. It is known [1] that the optimal 
input for our classifier is determined in the ambiguity plane by the first zero 
crossings of the 2D-autocorrelation function of the signal spectrogram. The 
input window of a classifier TDNN (noted Ic in the following) has been opti- 
mized in order to include all types of signal (wide band smooth, wide band 
bursty, and band limited signals respectively noted Si, S2, S3). We want 
for each class Si i = 1 •. .3 to determine a smaller window (Ip) included in 
Ic window, and five points O, i= 1... 5 outside Ip where prediction will be 
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Ulysses/URAP dynamic spectrum 

to 15 
UT hours of day 1991, December 14 

Figure 3: Typical Ulysses Spectrogram with 4 different types of signals overlapping 
Data Analysis. For our experiment with real data, we used eight months 
of data obtained by the URAP experiment aboard Ulysses spacecraft [9] 
(September 1991 - April 1992). In these data, radio bursts from the Sun and 
Jupiter are continuously present. Since Ulysses flew by Jupiter on Feb 8th, 
1992 and changed its trajectory plane by Jupiter gravity assist, the morphol- 
ogy of the highly directive radio emissions from Jupiter changed abruptly. 
Radio spectra were acquired every 144 sec; they are made of 16 frequency 
channels logarithmically spaced from 10 to 1000 kHz. Signal intensities were 
normalized between (-1,+1). From September to February, four kinds of ra- 
dio emissions are present, two smooth signals (Solar Type III, Jovian nKOM) 
and two bursty signals (Jovian hOM and bKOM), then from February the 8th 

1992 until April, the two bursty signals (Jovian hOM and bKOM) disappear 
abruptly and a new bursty signal is present (Kom). The two smooth signals 
are present on the entire data set. 

Experiment. We selected a learning set of 9609 events from September to 
December 1991, and a test set of 486 events collected during these months, 
but not the same days. The test set was used to stop learning early enough 
to keep the generalization properties of the NNs. A validation set of 951 
events was then selected from January to February 8th, 1992. We tried our 
method on the 100kHz frequency channel, which lies at the center of the 
spectrogram, because there, the task was most difficult with four overlapping 
signals. In fact, any other frequency could have been chosen. For the Type 
III signal, the constructive algorithm gave a window 9x2 and five points in 
the neighborhood of the window. So we derived an MLP with 9x2 inputs, 
5 outputs, and 222 parameters. We predicted the signal at the five chosen 
locations where autocorrelation was maximum outside the input window. In 
the last layer of the multi layer perceptron, we omitted the sigmoidal mapping, 
so that garbage detection criteria can easily be derived from observing the 
values of the outputs [6]. A threshold is calculated from statistics (fi and a) 
of the prediction error on the learning data set. A classified sample is rejected 
when its prediction error is higher than the threshold. Similarly we derived 
a predictor MLP for the nKOM signal with an input window 7x2, and 5 
outputs. For the bKOM signal the best window was very small, 2 x 2 so we 
derived an MLP with a 2 x 2 input, 5 outputs and 30 parameters. 
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kepi d1H0 percentage kept dt HO pcrcenloge 

(a) (b) 

Figure 4: Percentage of diH0 risk reduction (X axis) against percentage of diHi 
loss (Y axis), (a) Type III, (b) bKOM. 

Results and Discussion. The two plots in figure 4 show the predictor op- 
erating characteristic curve for two different types of signals, plotting diH0 

risk percentage against d\Hi risk percentage. The nearer the curve ap- 
proaches the upper left corner of the figure, the better the results. Per- 
formance can be computed by integration of this curve. On figure 4 (b) 
the first four curves of the bKOM list are plotted. It is noticeable that the 
constructive algorithm gives us the windows in an ordered list of decreasing 
efficiency. The lower performance on nKOM (not shown on the figures) has 
an explanation. nKOM signal is seldom seen and the training database does 
not contain as many nKOMs as needed to reach the same standard as other 
signals. These results indicate that point wise rejection of dxH0 is possi- 
ble provided that the input window is optimized for the signal under study. 
Moreover it demonstrates that peak correlation is a key factor for prediction. 
We will see now another interesting result: the possibility of model rejection 
when a new signal is received. 

4    MODEL REJECTION 

Principles. The idea is to use the MLP predictors and the TDNN classifier 
jointly, to assess the ability of the classifier to pursue its task. It means 
that if the signals present in the learning set have disappeared, and have 
been replaced by new signals, learning has to be resumed, and the classifier 
changed. A constrained classifier alone gives no information on its ability 
to carry on its task. If the prediction error of the successive current MLP 
predictor is kept in memory, then its standard deviation, calculated on a 
moving window, gives information on the presence of a wave form that was 
not present in the learning data set. A suitable error bar calculated from the 
learning data will tell if the classifier has to be changed. 
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made. Theoretical results [1] imply that the size of Ip has to be different 
for each class S,-, depending upon the stationarity of the signal measured by 
its autocorrelation. Figures l(a)(b) show the different autocorrelations for 
two types of signal: a smooth signal (solar Type III), and a bursty signal 
(Jovian bKOM). Classification and prediction will only be possible where iso- 
lines show positive autocorrelation, i.e. on dark areas, which are varying from 
one signal to another. The classifier's input can be centered on the energy 
peak, the size of the window being adjusted to the mean zero crossing. This 
choice is not possible for the predictor because some room has to be left for 
the predicted output somewhere on the highest part of the autocorrelation 
function. This leads to an iterative optimization process to choose the best 
compromise between input and output settings and sizes. 

ojlocorretation for Bkom : Ti-ne (S) 

(a) (b) 

Figure 1: Time frequency autocorrelation of two signals. Dark areas show strong 
correlation with the signal energy peak, (a) Type III, (b) bKOM. 

Specification for the windows. Considering the type of signals we were 
studying we decided to predict its behavior on five different locations chosen 
outside of the input window where autocorrelation is at its highest level. 
Doing so we can be assured that prediction is done precisely where the signal is 
locally quasi stationary, so that our chance of success is maximum. The input 
window must be rectangular to be suitable for the TDNN classifier. According 
to our experiments, it seems that TDNNs networks are more efficient than 
MLP for classification while the latter is better for prediction. We found also 
that MLP is somewhat more sensible to noise than TDNN, when predicting. 
However, we assigned a multi layer perceptron (MLP) for the prediction task. 
As a specific predictor NN has to be derived for each type of signal, we suggest 
a general method to choose the input and output layers of the predictor NN. 

Derivation of window size and location. The general idea is to adjust 
the input layer as close as possible to the unknown matched filter. Set a 
small candidate input window (Ip) (e.g. of size 2x2) for the predictor over 
the energy peak at a given frequency. Compute Ck (correlation between the 
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window and the peak for signal Sk) ■ 

N    M 

where aIp is the mean standard deviation of Ip windows, N is the number of 
samples in the learning database of the same signal 5*, M is the size of the 
window, XJ is the peak. xip is the mean energy of the window around peak 
x-. Try all possible positions for this window around the peak. Enlarge the 
window and iterate the process as long as Ck is positive. Select the window 
which maximizes Ck computed for the k class over the learning database, 
and then determine the related location of the desired prediction (points 
Oi i = 1...5). Choose these points outside of the input window, where 
correlation is highest. The output of the predictor NN will have to predict 
these points (one output per point to predict). The result can be seen on 
figure 2, for two types of signal. It gives a mapping of autocorrelation of all 
possible windows from size 1 x 1 to size 32 x 16. The areas in grey levels 
show efficient window sizes. The best window is given by the darkest point 
of the figure. Y size is read vertically, x size is read horizontally. For smooth 
wide band signals (Solar Type III), good windows are 2500 seconds long and 
2 frequency channels high. For bursty wide band signals (Jovian bKOM) 
efficient windows can be found in a small area around 300 seconds large 
and two frequency channels high. Whereas for band limited signals (Jovian 
nKOM not represented here), relevant windows can be found along a narrow 
band of two frequency channels of 2000 seconds long. With our data base, 
convergence was almost immediate. 

The next step is to learn the prediction, test the predictor with a test set, 
and choose a rejection error bar according to the performances on the test 
set. Eventually validating the system on a validation set. 

2 304 
Time (S) Type HI oUocor-elalion by w'ndow s 

4601 258 

(a) (b) 

Figure 2: Mapping of Ip window autocorrelation according to its size. Window time 
width on X axis, frequency height on Y axis. Dark areas show strong correlations, 
(a) Type III, (b) bKOM. 
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Experiment. For this experiment we chose the data from September 1991 
to April 1992. On the 8th of February the bKOM/hOM disappears and is 
replaced by Kom, and from this date, the classifier is unable to operate. This 

ot five time steps IQOkHz Sepl 91-April 92 Tor gl IQOktu Sept 91-Aprit 92 

Figure 5: Prediction error Figure 6: Classification error 
is obvious from the peak starting from February on figure 6 which illustrates 
classification error calculated for the period. Figure 5 shows the prediction 
error during the same period. The appearance of the new signal is accurately 
detected within a few minutes. Spurious peaks after February indicate clearly 
that the classifier is obsolete. Detailed analysis of the results show that the 
valleys in the prediction error are correlated with those of the classification 
error. They correspond to the presence of recognized signals (Type III). These 
signals are jammed by a new Kom signal never seen in the learning data base. 

5    CONCLUSION 

We have proposed a method to manage rejection in classification of spec- 
trogram of low frequency radio astronomy signals. We have shown that a 
predictor MLP and a classifier TDNN can be used in parallel to minimize the 
false alarm risk. Moreover, this scheme can be used to decide if the classifier 
has to be changed when the environment has evolved. This capacity is of 
crucial importance for space radioastronomy detectors which have no direc- 
tivity. We have shown how to derive the best input and output windows for 
the predictor neural network. This method gives us a series of windows of 
decreasing efficiency and enhances the fact that ambiguity plane correlation 
is a key factor for transient Bayesian prediction. 
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Abstract 

In this paper, we propose some theories regarding the dynamical system 
representational capabilities of recurrent neural networks with real-valued 
inputs and outputs. It is shown that multiple nonlinear dynamic systems 
can be approximated within a single nonlinear model structure. A relation- 
ship is identified between this class of recurrent network, hybrid models and 
agent based systems. 

1    Introduction 

Recurrent neural networks are very general models and have been proven to of- 
fer significant computational capabilities such as Turing equivalence with linear 
slowdown [18]. There has been some interest in applying recurrent networks to 
dynamical systems and control problems. It has been shown that such models 
possess universal dynamic approximation capabilities [9,19]. 

Recently, it has been shown by Feldkamp and Puskorius [8], that a class of 
recurrent networks can learn to model several dynamical systems and switch be- 
tween them, depending on the characteristics of the input signal. Instead of 
learning to model just <-rie system, the network was able to learn several models 
with very different P jjSfe'es. 

This type of mod ^^^jhenomenon is not unique to the above example how- 
ever. There appear to ue a number of interrelated methods in the literature which 
have been studied mostly independently, see for example: [1,2,4,10-12,16,17]. 

In this paper, we examine this phenomema further, and propose a theory which 
explains how recurrent neural networks can possess the capability of modelling a 
number of dynamical systems simultaneously. Examples are also given. 
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2    Preliminaries 
Function approximation is the task of approximating a mapping given by the 
function Fi : Tlm ->• Kn, where % is the usual Euclidean space. Functional 
approximation is the task of approximating a mapping F2 : C (K) -Tß where 
C (K) is a Banach space of continuous functions on a compact set K, denned 
by the norm \\f\\c{K) = max,e* |/(x)|. The implication here, is that we have a 
mapping F2 which maps the past inputs1 to the current output (i.e. a variable 
C 6 U) [3]. Operator approximation is the task of approxiating a mapping F3 : 
C (K) -»■ C (K). Thus, in this case, we seek to approximate a mapping of an input 
sequence x{t) G C (K) to an output sequence y(t) G C (A'). 

We term C0 (K0) the space of operators on a compact set K0. The mapping 
from one operator space C0 (K0) to another operator space C0 (K0) is called, for 
lack of a better name, an operational map. 

Definition 1 An operational map H is defined by 

H : Co {K0) -»• Co (K0) (1) 

Definition 2 A recurrent network (RNN) is defined by 

x(t + l)    =   f(Ax(t) + Bu(t) + Ey(t)) (2) 

y(f)    =    Cx(<) + Du(t) (3) 

where x(t) = [a:(f)x(<-l)...*(t-n«)]T is an n{nx + l) x 1 vector, u(<) = [u(t)u{t- 

l)...u(t - nu))T, y(< - 1) = Mt ~ !)-»(* - %)]T > f " »("* + X) X/ ^or-vahed 
function with sigmoid elements,  typically defined as {fix)} = tanhja;)      A e 
k»(n. + l)xn(n.+l),  B   g RnK+1)«»,,   C   G  XP"vX"("- + 1),  D  G ftPn*Xm(n" + 1) 

and E G ^n(n-+1)'xPn!'. The bias terms are not explicitly shown, but are included 
within u(t) as a fixed-value input. 

This characterization of a recurrent network gives a general framework from 
which many well known structures can be derived, e.g. [18-20]. 

Definitions A multiple model Mi{Slt$i) with fixed structure Si and parameter 

vector 0i exhibits a set of characteristic properties Vv where 

,      ( -pu    i = 1,2,     discrete multiple model ,^. 
^i = |  >pXv    v ell- continuous multiple model 

3    Multiple Model Representational Using Oper- 
ational Maps 

A multiple model G can be characterized as an operator, which itself, consists 
of multiple operators F.   Consider a multiple model operator A : x -> y, x G 

lA sequence x{t), which we may sample at discrete points t = 0,1,... is given by xs(i) = 

[x (0) ,^(1), • • •]' and is a function in C (K). 
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X C C {K), y £ Y C C {K) describing the input-output functional relationship. 
Additionally, A contains an operator F subject to, for example, H : Fa ->• Fb 
Fa e &, C C„{K„), Fbe$b C £,(/£„). Now, instead of considering A directly, 
we are interested in the existence of, and mechanisms by which there may arise 
mappings of the form if : Fi ->■ Fi+i, where i = 1,2,... is the index of the discrete 
functional in the discrete multiple model case, or H : Fa ->■ Fb corresponding to 
the continuous multiple model case. In each case, H C Cn (K0) where Cn (K0) is 
the space of operational maps. 

Hence, in addressing the issue of multiple models, this implies that we seek 
to answer the following question: 'Is it possible to find a nonlinear model which 
approximates an operational map H : C0 (K0) -> C„ {K0) V We consider this 
question below. 

The existence of a universal general operational map is made clear by the 
following theorem. 

Theorem 1 An operational map H given by 

Fe,x{t)*-HI(F):x{t)->y{t) (5) 

can be obtained by the interconnection of a parameterized operator Fg : C (K) ->■ 
C (K), and functional Mc : C {K) -» Hm according to 

y   =   F9(x;9) (6) 
9   =   Mc{x)       6> = M<0 (7) 

where x(t), y(t) 6 C (K) are continuous, real-valued input and output functions 
respectively ofte Tl+, 9 is the m-dimensional parameter vector of Fe and 90 is 
the initial parameter vector. 

Proof Sketch. Let there exist an operator Fg determined by the parameter 
vector 9 and a functional map Mc capable of universal approximation in the sense 
of , for example, [15]. For the ith parameter within a given model Fg, we have 

st = 9{Zi (8) 

Now, let Mc be a functional. Therefore, for any input sequence x £ X, Mc results 
in any desired set of parameters 9 € $ C Hm, such that 

st    =   Mci(x)zi (9) 

=    hi (10) 

where Mc = [Mcl • • • Mcm]T is a vector function. Thus, the existence of Mc : 
u -» 9 permits any arbitrary Fg to be obtained due to the mapping Mc. The 
operational map H = {Fg,Mc} is general in the sense that it is capable of the 
same approximation as Fg, but can be varied arbitrarily for any sequence x. 
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4    Universal Operational Maps 

From Theorem 1, we can obtain the following result. 

Theorem 2 (Universal Operational Map-I)  There exists a parameterized model 
G{6) : x(t) -> y(t), where x € X C C0 (K0) andy£YCC0 (K0), such that 

\y(t)-y(t)\<e (11) 

where Fe>,x{t) >—> H(F) : x(t) -> y{t) and e > 0. 

Proof Sketch. Let Fgi be a parameterized model capable of universally approx- 
imating any operator (e.g. a Chen network [7]). Let Mc be a time delay neural 
network or other structure having universal functional approximation character- 
istics [6,15]. Then from Theorem 1, there exists a neural network G defined 
collectively by F$i and Mc, which can approximate, arbitrarily closely, some op- 
erational map H = {Fg',Mc}, where H : C0 (K0) —> C0 {K0). 

Remarks 

1. The implication of the theorem is that every weight in F is replaced by an 
additional network Mct. This provides the means of approximating non- 
linear operational maps. As noted earlier, related approaches have been 
considered in the literature (see, for example, [16,17]). 

2. It is possible to introduce any required type of model for Mc. Thus, a hybrid 
model can be elegantly obtained. 

3. The model G is a sigma-pi network, but can also be interpreted as a modular 
structure. 

4. A more general form for Mc is s = Mci(x,u). In this case, the output from 
Mc is not used as a parameter, but receives the previous parameter input u 
and gives the previous output s after the parameter. Hence, we can derive 
the following related theorem. 

Theorem 3 (Universal Operational Map-II) A universal operational map- 
ping Fg,x(t) i—> H(F) : x(t) -*■ y(t) is given by the interconnection of a universal 
operator F : (X, V) —)■ Y and a single-input single-output universal function map 
Mc\ : X —>■ V according to 

V   =    F(x,v;6) (12) 

v    =    Mcl(x) (13) 

where x <E X C C {K), v € V C C {!<), y e Y C C [K), and 6 £ G C Tlm. 

Proof Sketch. The proof follows directly from Theorem 1. The operator F(x, v) 
is a universal approximator as independent as required in each of its inputs. 
Therefore, for every distinct value of v, e.g. v = 1,2,... a distinct universal 
approximation F : C (K) —>■ C(K) may be obtained. Let Mc\ prescribe some 
operator from the input x to the extra input v. Therefore, a distinct universal 
approximation F can be obtained as required for any given input x, hence a 
universal operational model is obtained. 
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Remarks 

1. In the above theorems, for universal operational maps, it may be assumed 
that F is given by a network as described in [7]. 

2. F may also be given by a recurrent neural network, with the universal 
approximation properties in the sense of those shown by Sontag [19]. In this 
case, the resulting recurrent network H, possesses also multiple modelling 
capabilities2. 

These results offer a different viewpoint for modular networks. Previously, 
modular neural networks were used to approximate a mapping by spatial decom- 
position [13]. Here, operational maps perform a temporal decomposition. 

The discrete multiple model can be interpreted as a hybrid system [5]. More- 
over, a neural network may arbitrarily form such hybrid systems, even in the 
course of training, without the user necessarily being aware of this phenomena 
occurring. 

Discrete multiple models are related to agent systems [2,14]. The models F 
and Mc can each be viewed as agents cooperating together to produce a more 
complex mapping than either is capable of acting alone. The framework proposed 
here also includes models such as mixtures of experts [10]. 

5    Synthesis of Multiple Models by Bias Shifting 

Here we present a simple constructive approach to show how multiple models may 
be synthesized in both feedforward and recurrent neural networks. The approach 
we propose is well suited for multiple models which are comprised of a set of 
discrete F models and is applicable to synthesis as well as analysis, though the 
latter case is not discussed here. 

Theorem 4 An MLP model G(x,v) conform multiple unique function mappings 

G(x,v) = mv(x), v = l,...p (14) 

defined by 
N I m \ 

mv (x) = J2 cvig    YJ Zvijx + hi (15) 

where the extra input v indexes the desired mapping mv[x). 

2Though to be precise, one may wish to qualify the sense of the approximation in terms of 
the specific characteristics of universal approximation being performed, i.e. in the sense defined 
by Chen and Chen [7] or Sontag [19]. 
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Proof Sketch. Without loss of generality, let N = np. This specifies p subgroups 
within G, each of n hidden units. Therefore we have 

N 

Ohi    =    hi-rh (17) 

For sufficiently large r, if we consider approximations on the range [a,b] where 
\a,b\ < r, then setting v = {1, ..,p} results in 

N I m \ 

G(at, v)    =    ^ c„,-5 I ^ £„,■,■* + ^ ] (18) 

=    rM*) (19) 

as required. 

Theorem 5 An RNN model G{x, y, v) can form multiple unique mappings 

G(x,y,v) = mv(x,y), v = l,...p (20) 

where the extra input v indexes the desired mapping mv(x,y). 

Proof Sketch. Omitted due to lack of space. The proof follows a similar proce- 
dure to that used for Theorem 4. 

The implication of this theorem is that by appropriate biases offsets in the 
different groups of units, various units in the recurrent network can be "pushed" 
in and out of action. Note that this method can be used as a means of switching 
between different discrete models, or in a continuous sense, by setting r to an 
appropriately small value. 

6    Examples 
In this section, we give a number of examples, which indicate the idea of the 
multiple models discussed in the paper. In order to clarify the results, we use 
simple model structures. 

6.1    General Examples 

Here we consider some general examples to indicate some possible types of mul- 
tiple models which may be synthesized. 

1. Input Amplitude Dependent Model. 
This type of model is derived by using a characteristic function Mc given 

by 
0ox       x2 ^ r0 

Mc{x) = {   0xx       r0 < x2 ^ n (21) 
62x       x2 > r2 
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where {r} are scalar values. The model behaviour is dependent on the 
instantaneous value of the input x(t). In particular, the model will switch 
parameter sets when the amplitude of x2(t) crosses certain thresholds. This 
model can be considered as a multiple bilinear or state-dependent model. 

2. Frequency Dependent Model Selection. 

Mc may be a function of the frequency of the incoming signal. For example, 

Mc(x) = fm (X(u)) (22) 

where fm is a function of X{ui) = FFT[x]. 

3. Sequential Model Selection 
Here, the model is based on some predetermined time-sequence and bears 
a close relationship with hybrid systems considered in robotics [5]. In this 
case, the input a; is a sequence of symbolic binary values. Mc(x) processes 
this symbolic binary input and upon recognition of a particular sequence, 
outputs a 1 and holds it for a specified period of time, otherwise the output 
is a zero. 

6.2    A Recurrent Network Multiple Model 

6.2.1     Network Architecture 

Based on the multiple model framework presented in this paper, a recurrent net- 
work multiple model3 can be proposed as follows. 

qn-m U?=\ (<1 - 9ßri {Ußri)) rijL2l (« ~ 9ßci {Ußci)) (g ~ 9ßci («/?«)) 

^ = n?=l (l - Sari («an')) Il"=l (« - Sari («ari)) (« ~ 9*ari («ari)) 
(23) 

where {g} are the element-wise characteristic functions corresponding to Mc. {«} 
are ancillary inputs. Since the poles and zeros in (23) are the outputs of nonlinear 
functions, they are termed nonlinear poles and zeros respectively and the model 
can also be considered as a nonlinear pole-zero model. The coefficient functions 
{g} and ancillary inputs{«} provide a wide scope for introducing a variety of 
models. 

6.2.2     Example: An Input Amplitude-Dependent Multiple Model 

A nonlinear pole-zero multiple model is synthesized in this example as follows. 
The model is described by 

Hm{q)  =   (l-GxHr^i-GiMr1) (24) 

Gi(u)   =   aiu(t) + a2ü{t)      G; («) = <*;«(<)+<*;«(<) 
3 For convenience and clarity of the example, we have chosen to use linear models as a basis, 

however these may be arbitrary nonlinear models in practice. Since the behaviour of linear 
systems is well known, it is easier to visualize the differences between the two models in this 
case. 
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Output Signal 

Figure 1: The performance of a recurrent neural network multiple model. In this simple 
example, (a) is the input signal, and (b) shows the model output due to the input. 

where G\ (u) and G{(u) provide complex conjugate outputs and Hm(q) switches 
between two underlying linear models Hi{g), H2{q), depending on the binary 
ancillary input signal u (t). 

Hi{q)    =    ; \~, 2 (25) 

(26) 

where, for the purposes of this example, we choose an = 1.6, ai2 = 0.73, a2i = 
-1.9, a22 = 0.925 and a,- are the corresponding first order poles of H{{q). The 
input u(t) can be obtained, for example, by 

u(t) = T{E.[x*(t)]) (27) 

where Es [•] denotes the short term expectation and 

r(0 ■{i 
?>o 
?<o 

(28) 

Therefore, when the magnitude of the short term average of the squared input 
signal reaches a certain threshold, defined by T, the model will change. The 
performance of this model is shown in Fig. 1, where the model characteristics due 
to the change in input can be seen." 

6.2.3     Example: An RNN Modelling a Time-varying Linear System 

This example we synthesize a recurrent neural network model which models a 
time-varying linear system, described by 

Hm(q) i-<1(M)<r1+C2(M)<r2 
(29) 

The model varies as a function of the ancillary input signal u, and the coefficient 
functions £■ (t), i = 1,2 are in this example, simple linear functions, given by 

c-w CiO + CflCi W 
/ _    biou(t) + bnu(t - 1) 

Q[)    ~~    1 + anq-1 + ai2q-2 

(30) 

(31) 
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Output Signal Output Signal Output Signal 

Figure 2: The time-varying recurrent network described in Section 6.2.3 is capable of 

exhibiting a variety of different behaviours as observed here. 

For the purposes of this example, we choose the parameters4 an = 1.6, a\2 = 0.9, 
a2i = -1.9, a22 = 0.925, b10 = 1.0, bn = 0.5, b20 = 0.9, b21 = 0.5, cw = 1.75, 
en = 0.04, c20 = 0.8, C2i = 0.02 and u(t) = x(t). 

The resulting multiple model, which is an extension of the usual bilinear struc- 
ture, can be described by the difference equation form of nonlinear pole-zero model 
given by 

y{t)    =    *(*)+Ci(<)l/(*-l) + C2(*)y(*-2) (32) 

d(t)    =   cil + ci2(box{t)+b1x{t)-ail(i{t-l) + ai2(;i(t-2))      (33) 

where x(t) is the input and y(t) is the output. Examples of the model behav- 
iour are shown in Fig. 2, which indicate some of the 'richness' of the model's 
capabilities. 

7    Conclusions 

In this paper, we have given theories which indicate how nonlinear models, in- 
cluding feedforward and recurrent networks, can approximate systems known as 
multiple models. We have shown that such models can be considered in terms of 
operational maps. It was shown that there exist classes of neural networks which 
can universally approximate operational maps. The results provide an explana- 
tion for the experimental behaviour of some recurrent networks in being able to 
model multiple dynamic systems [8]. 
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ABSTRACT 

Additional inputs to a feed-forward network, derived 
from the output of the hidden layer neurons, allow a 
feed-forward network to deal with temporal pattern recog- 
nition and reproduction tasks. These 'network derived' 
or 'context' inputs augment the 'true' inputs to the net- 
work and allow the network to retain past information 
necessary for temporal sequence processing. The choice 
of 'which hidden neurons to retain to provide the con- 
text inputs is difficult. Use of all the hidden neurons in- 
creases the size of the overall network resulting in poorer 
generalization performance. The problem is complicated 
due to difficulty in choosing the number of hidden layer 
neurons in the first place. In this paper, we propose 
the use of regularization terms in the sum-of-squared er- 
ror cost function. Assuming the hidden layer neurons 
are indexed 1,2,..., m, the regularization terms force the 
differentiation of hidden neurons 1 through mi, and m2 

through m (where 1 < mi < m2 < m). Both mi and m2 

are controllable and allow fringe neurons to be used to 
provide the context inputs if the number of context units 
to use is known. When the number of context neurons 
to use cannot be determined, the regularization terms 
minimize mi, and maximize m2, while hidden neurons mi 
through m2 are penalized for differentiation. An ampli- 
tude detection simulation is used to evaluate the efficacy 
of the proposed paradigm. 

0-7803-4256-9/97/$ 10.00 © 1997 IEEE 131 



I   INTRODUCTION 

Neural network models for temporal sequence processing can be broadly clas- 
sified into [1],[2]: 

1 Tapped delay line models: The network has past inputs explicitly 
available (through a tapped delay line) to determine its response 
at a given point in time (see for example [3]). Thus the temporal 
pattern is converted to a spatial pattern which can then be learned 
through, say, classic back-propagation [5]. 

2. Context models or Partial recurrent models: These models retain the 
past output of neurons instead of retaining the past raw inputs. For 
example, the output of the hidden layer neurons of a feed-forward 
network can be used as inputs to the network along with the true 
inputs [61. These 'network derived' inputs are also called context 
inputs. When the interconnections carrying the context inputs are 
fixed, classic back-propagation can be used for training the network. 
More complex variations of this basic idea include self-feedback in 
the context inputs or deriving the context inputs from other locations 
in the network [3],[7]. 

3. Fully recurrent models: These models employ full feedback and in- 
terconnections between all units [8]-[10]. 

While tapped delay line models are the simplest to use and have been ap- 
plied to such tasks as speech recognition (see for example [11]), one has to 
use a tapped delay line of length equal to the longest possible sequence to 
accommodate all the sequences. This increases the input dimensionality, and 
consequently the size of the network, requiring much more training data [12]. 
Alternatively, a larger network gives poorer generalization performance as 
compared to a smaller sized network when both networks are trained on the 
same amount of data. Fully recurrent models, which lie on the other end of 
the spectrum, are the most flexible but suffer from large time and storage 
requirements [1]. Context models lie somewhere between the simplicity of 
a tapped delay line model and the power of a fully recurrent network. For 
many sequence processing tasks they provide competitive solutions. It has 
also been shown that such context models can approximate the behavior of 
a finite state automaton [13]. 

In the actual implementation of context models, one is faced with the dif- 
ficulty of selecting the hidden layer neurons which will provide the context 
inputs. One can obviously use the entire hidden layer but this results in an 
increase of the dimensionality of the augmented input space, thereby requir- 
ing additional training data. The problem is further complicated since the 
number of hidden layer neurons, are not known in the first place. This paper 
is directed towards obtaining better generalization performance despite these 
difficulties. 

Our approach is based on trying to localize the hidden neurons which dif- 
ferentiate while forcing the non-differentiating hidden layer neurons to have 
minimal activation. The localization of the hidden layer neurons is forced 
to appear at the fringes i.e. assuming the hidden layer neurons are indexed 
1,2,..., m, the regularization terms force the differentiation of hidden neu- 
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rons 1 through m'i, and ni2 through m (where 1 < mi < ni2 < m). Both mi 
and m.2 are controllable and allow fringe neurons to be used to provide the 
context inputs if the number of context units to use is known. When the num- 
ber of context neurons to use cannot be determined, the regularization terms 
minimize mi, and maximize m.2, while hidden neurons mi through m^ are 
penalized for differentiation. We attempt to enure this behavior through the 
use of regularization terms in the familiar sum-of-squared error cost function. 

The rest of this paper is organized as follows. In the next section, we derive 
an algorithm that induces specialization of the fringe hidden layer neurons. 
In section 3, we illustrate the efficacy of the proposed model with simulations. 
In section 4, we present our conclusions. 

II   INDUCED SPECIALIZATION OF CONTEXT UNITS 

We consider a standard feed-forward architecture with n inputs, a single 
hidden layer with m neurons, and an output layer with o neurons. The 
network operates synchronously and in a layered manner — i.e. all neurons 
in a layer are simultaneously updated, and then the next layer is updated 
and so on. The n inputs to the network consist of the 'true' inputs (x), and 
the context inputs which are the immediate past output of the fringe hidden 
layer neurons copied using one-to-one non-modifiable connections (see Figure 
1). Since the contextual feedback is always derived from the fringe hidden 
layer neurons, our approach is to train the network using a cost function 
which includes, besides the sum-of-squared error term, regularization terms 
which force the fringe hidden layer neurons to differentiate. 

We denote the network training data as consisting of p input-desired output 
pairs {(£M, C)}- f is *nus *ne augmented input vector comprising of the 
true inputs and the context inputs. The weight from input k to hidden layer 
neuron j is denoted by Wjk and the weight from hidden neuron j to output 
neuron i is denoted by Wij. 

The output of a hidden layer neuron (ZJ), on input pattern /J,, is a non-linear 
function of its net input [h%) i.e, 

$=f w)=f (ibviktty a) 

Similarly, the output of an output layer neuron (j/f), on input pattern /i, is 
a non-linear (or linear) function of its net input (s^) i.e, 

V? = fW) = f(jt,WijzA (2) 

To induce specialization of the context units we introduce regularization 
terms in the sum-of-squared error formulation of the cost function.   Thus 
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Output Layer 

Hidden Layer 

Figure 1: The architecture of the proposed network. The context inputs are de- 
rivedfrom the fringe hidden layer neurons which are made to specialize through 
a regularkation term added to the traditional sum-of-squared error cost function 
Weights with hollow arrow-heads are fixed (at 1) and serve only to produce a copy 
of the activation from source to destination. 

we define a cost function as: 

'-& p=l i=i 

(3) 

where, A, and A2 are Lagrange multipliers, and 0 is explained shortly. Regu- 
larization is introduced in (3) through the use of two terms which we explain 

below. 

The first of these terms consists of two components. The first component, 

e-^U-T? is a Gaussian which achieves its maximum at m/2 i.e. achieves 
a maximum for hidden layer neurons in the middle and falls of, at a rate 
governed by a, as we approach the fringe hidden layer neurons. The second 

component of this first term, zf is the square of the activation of a hidden 
laver neuron j. The product of-the two components ensures that neurons 
activations in the middle of the hidden layer (i.e. neurons with indices near 
m/2) are penalized. Consequently the fringe hidden layer neurons are made 
to specialize through this term allowing for contextual feedback to be drawn 
from them. 

The second regularization term, e^~e)2, tries to make a approach 6. 0 should 
be chosen such that the Gaussian (in the first regularization term) has de- 
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cayed to a small value as one approaches the fringe hidden layer neurons 
selected for providing the contextual inputs. Consequently, the value of 6 
chosen reflects how many contextual inputs are required. Once the number 
of contextual inputs have been decided, one can simply choose them to be 
the fringe neurons. Alternatively, one can use all the hidden layer neurons to 
provide the context inputs while using $ = m/2. This choice allows a to be 
adapted to be the largest possible, or conversely, as few hidden layer neurons 
as possible to differentiate. The remaining hidden layer neurons which are 
fed back as context inputs do not differentiate (i.e. behave similarly) and 
consequently does not impede generalization performance. 

Thus, the cost function in (3) forces the minimization of the SSE under the 
constraint that: (i) the chosen fringe hidden layer neurons differentiate the 
most, or (ii) when all the hidden layer neurons provide the context inputs, 
then as many of them of them behave similarly as possible. 

We now proceed to derive the update equations. Since the context inputs are 
copied from the output of the hidden layer neurons through non-modifiable 
weights, the update equations are easily obtained from (3) by performing 
gradient descent in the weight space, and adjusting the weights proportional 
to the negative of the gradient. We thus obtain for the output to hidden 
weights: 

AWij    =    -77 
dJ 

dWa 

= v E Ktf - tf)/1 W] = v E [«]       (4) 
11=1 /J=l 

where, 6? — (Cf — 2/f )/'(si*)' and t) is a constant of proportionality referred 
to as the learning rate. 

Similarly, the weight update equations for the hidden to input weights are: 

Awjk   =   -n 

E<W; )W)t£ - 
t=i 

Aie-^(;-f )%£ (/'(^) (5) 

Finally, the update equation for a is: 

Am 

J=l 
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\2el*-">\a-9)] (6) 

where constants have been absorbed into the Lagrange multipliers. The 
training consists of choosing the number of context inputs. If the choice 
can be made, then the context inputs should be derived from the fringes. 
If the choice cannot be made, then one can use 6 = m/2 and use all the 
hidden neurons to provide the context inputs. Patterns are then continually 
presented in sequence, and parameters are updated (in batch or pattern 
mode) according to equations (4)-(6) until the error is within the desired 
tolerance. To prevent large numbers it is best to scale a and 0 such that they 
are less than or equal to 1. In the next section we present a simulation to 
illustrate the efficacy of the proposed approach. 

Ill   SIMULATION 

The simulation we present deals with amplitude detection in a signal formed 
by concatenating sinusoids of fixed frequency but varying amplitude The 
entire data set is shown in Figure 1. A sine wave of four different ampli- 
tudes (1.0, 2.0, 1.6, and 1.2) are used to generate the data with 20 points 
sampled from each amplitude. We use the first 40 points (corresponding to 
an amplitude of 1 and 2) for training and reserve the remaining 40 points 
(corresponding to amplitudes of 1.6 and 1.2) for generalization. Observe that 
it is not possible to estimate the amplitude of the underlying sine wave at a 
given point in time without examining more than one successive sample. 

We considered a network of 1 (true) input, 15 sigmoidal hidden neurons, and 
1 output. We considered two distinct situations. In the first situation, we 
used a total of 4 context inputs (2 drawn from the left and 2 drawn from the 
right fringe). Consequently, 6 was selected so that the Gaussian in equation 
(3) would decay to a near zero value at the 2nd neuron from the left and right. 
This simulation thus simulates the condition where the number of context 
neurons to use has been determined. In the second situation we used all 
the hidden neurons to provide the context inputs simulating the condition 
where the number of context neurons to use are unknown. We refer to a 
context network trained with back-propagation as a Context Network (ON) 
and a context network trained with the proposed Induced Specialization as 
(CNIS) For all cases, we trained the network using the first 40 points to the 
same sum-of-squared error (0.5). Figure 3 shows the results when 4 hidden 
layer neurons (2 each from the left and right fringe) are used for providing 
the context inputs while Figure 4 shows the results when all the hidden layer 
neurons are used to provide the context inputs. It is clear that in both cases 
CNIS performs better. Table I to quantifies the differences. 

^his problem is given as a demonstration of a standard Elman network (called 
CN in this paper) in the neural network toolbox of Matlab. Though the results 
in this paper are generated from our own code, we were inspired to use it since 
the network has to decide on an amplitude that it was never trained with. It thus 
serves as a good test of generalization. 
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50 60 70 80 

Figure 2: The complete data used for the simulations, (a) shows the input while 
(b) shows the desired output. The desired output of the network at a point in time 
is is the amplitude sine wave at that time. The first 40 points are used for training. 
The remaining 40 points are used for obtaining the generalization performance. 

— Desired Output 
.... CN Output 
-■-CNIS Output 

llU.'i/'' ̂ % 

\\*J*$hfo 

Figure 3: Performance comparison of the standard context network, and the pro- 
posed context network with induced specialization. A network of 1 true input, 15 
sigmoidal hidden layer neurons, and 1 linear output is used. For the standard con- 
text network (CN) and the context network with induced specialization (CNIS), 4 
hidden layer neurons (2 each from the left and right fringe) are used to provide the 
context input. Both networks are trained to the same error (0.5) on the first 40 
points. 
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Figure 4: Performance comparison of the standard context network, and the pro- 
posed context network with induced specialization. A network of 1 true input, 15 
sigmoidal hidden layer neurons, and 1 linear output is used. For the standard con- 
text network (CN) and the context network with induced specialization (CNIS), all 
15 hidden layer neurons provide context input. Both networks are trained to the 
same error (0.5) on the first 40 points. 

# CONTEXT INPUTS 

4 
15 

"CN" 
0.9394 
1.6466 

CMS 
0.7227 
1.1512 

Table: I: Sum-of-squared error on generalization. The network used in all cases had 
1 'true' input, 15 sigmoidal hidden layer neurons, and 1 linear output neuron. All 
networks were trained to the same error (0.5) on the first 40 points. 
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IV   CONCLUSION 

We proposed the use of regularization terms in the standard sum-of-squared 
error function to allow for fringe hidden layer neurons to differentiate, while 
penalizing the differentiation of the neurons in the middle of the hidden 
layer This induced specialization allowed contextual feedback to be always 
drawn from the fringe hidden layer neurons allowing for a network with bet- 
ter generalization properties. Initial results indicate improved generalization 
performance with the proposed paradigm. While approaches such as pruning 
(see for example [14]) can be used to obtain better generalization there are 
two points in favor of the proposed paradigm: 

• Pruning approaches typically estimate the sensitivity of the error to 
a weight and discard the weight if the output error does not depend 
on the particular weight. Consequently, composite effects of weight 
removals are not considered. Since the entire network is trained m 
the proposed paradigm, composite effects are included. 

• One often requires retraining after pruning a weight (though meth- 
ods to distribute the role of the weight to be removed have been 
proposed). 

Of course, there appears to be no reason why pruning approaches could not 
be applied after training with the proposed paradigm. 
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Abstract 

This work studies some of the approximating properties of feedforward 
neural networks as a function of the number of nodes. Two cases are 
considered: sigmoidal and radial basis function networks. Bounds for the 
approximation error are given. The methods through which we arrive at 
the bounds are constructive. The error studied is the Loo or sup error. 

1      STATEMENT OF THE PROBLEM 

Let iGl". Feed-forward sigmoidal neural networks compute 

N 

J2ciF(9i(x)), (1) 
i=l 

where F : E -* E is sigmoidal and 

n 

9i(x) = Yl9iixi ~ai' 
i=i 

The approximation properties of these neural networks as a function of N are 
of theoretical and practical interest. 

Another interesting type of network is the so-called radial basis function 
neural network, in which case (1) is replaced with 

N 

^aGihiix)), 
i=l 

where 
hi(x) = \\x - Xi\\2    fa GH"). 

In this case, the set of possible choices for G includes the Gaussian function 

1      _(«-i")2 

, e ^^. 
V27T<7 

"This work was partially upported by JNTCT. 
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but also   j x 

The purpose of this paper is to study the following nonlinear approximation 

problems. 

Problem 1 Consider the function 

N 

where F is sigmoidal and </j : Rn -+ K is 

it 

9i(x) = ^,9ijxj -°«- 
3=1 

The function clearly depends on a number of parameters (the coefficients Ci, gy 
and at). Given the function f : D CW1 -+R, the problem is to select N and 
then the coefficients in such a way that the Loo error 

e= sup|/(x)-a(x)| 
x€D 

is small.  We wish to study the dependence of e upon N. 

Problem 2  Consider the function 

N 
a(x) = ^2ciG(hi(x)), 

where G is Gaussian and hi : Rn ->• R is 

hi(x) = \\x-Xi\\2. 

The function clearly depends on a number of parameters (the coefficients Ci, the 
parameters of the Gaussian G, the vectors Xi). Given the function f : D C 
M" ->■ 18, the problem is to select N and then the parameters in such a way that 
the Loo error 

e=sup\f(x)-a(x)\ 
xeD 

is small.  We wish to study the dependence of e upon N. 

The equivalent one-dimensional problems, although considerably simpler, are 
also of interest (primarily because they suggest methods that might work for 
the general case). 

Problem 3 Given f : [0,1] ->■ K, study the L^ error associated with the ap- 
proximation 

N 

fix)« YlCi F(9iX ~ °*)' 
i=l 

where F is sigmoidal. 142 



Problem 4 Given f : [0,1] -> R, study i/ie Loo error associated with the ap- 

N 
proximation 

where G is the Gaussian 

2      RELATED WORK 

t=i 

1 
=e  »»•*. 

A recent overview of neural networks and their relevance to signal processing 
applications can be found in [7].  For a study of radial basis neural networks 

see [9]. 
The approximation properties of superpositions of sigmoidal functions were 

studied by Cybenko [2]. Park and Sandberg [10] studied the approximation 
properties of radial basis function neural networks. Barron [1] gave striking 
bounds for the approximation error committed when approximating a given 
function / : Rn -> R by superpositions of a sigmoidal function. The bounds, 
surprisingly, do not depend on the dimension n of the space considered. 

Barron considers the mean square error (the error in the norm of L2), 
whereas we consider uniform approximation and consequently the sup norm 
(or the Loo norm). Mean square and uniform convergence are distinct concepts: 
a sequence of functions may converge in the norm of L2 but not in the sup 
norm. Two given functions / and g may differ by very little in the L2 norm, 
while differing by arbitrarily large numbers in the Loo norm. On the other 
hand, if the domain of the functions is a compact interval, convergence in Loo 
does imply mean square convergence. Thus, the Loo error, despite the challeng- 
ing analytical difficulties that it often poses, may help in understanding these 
approximation problems. 

The approximation problem discussed here was studied in [6] for the Gaus- 
sian, one-dimensional case. The approach that we use, in contrast to others, is 
constructive (it yields the values of the parameters, as well as the bounds). It 
also relates to some recently obtained results concerning nonunifbrm sampling 
approximations [3-5]. 

Recently, we came across [11], which also addresses the uniform approxi- 
mation problem1 and presents an interesting treatment of the approximating 
power of a network. The bounds given are distinct from ours. Asymptotically, 
they are weaker (a brief comparison is outlined below). 

3      THE ONE-DIMENSIONAL PROBLEMS 

The notation / e BV means that the function / is of bounded variation. The 
value of the variation itself is V{f). The support of a function / is denoted by 

supp(f).   

il am grateful to Prof. Bock (Aachen, Germany) for bringing this work to my attention 
and kindly supplying a copy. 
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3.1    Gaussian-based radial basis functions 

It follows readily from the work of Norbert Wiener [12] on the closure of trans- 
lations that superpositions of Gaussians are dense in the L\ and Li spaces. 

Take L\, for example, and let ip £ L\. Wiener showed that any L\ function 
can be approximated in the L\ norm by 

N 

^2citp(t-ti), 

iff the Fourier transform z/> has no zeros. The Fourier transform of the Gaussian 
certainly has no zeros, a fact that immediately implies the universal approxi- 
mation properties of sets of translated Gaussians. 

However, Wiener's proof is not constructive. We will show, with the help of 
a constructive procedure, how to pick c« and U and to obtain a bound for the 
LQO approximation error. 

The idea is to consider the convolution 
/+oo 

-00 

f(r)G(t-T,a)dr, 

where G(x, a) is Gaussian with standard deviation a, f is the function to ap- 
proximate, and fa denotes the result of the convolution (which depends upon 
a through the convolution kernel). Next, we approximate / by /„-, and f„ by 
a finite sum. Since the approximation of / by fa is well-known it remains to 
study the error that arises when approximating the convolution by the finite 
sum. This is the purpose of the following theorem, in which the support of / is 
assumed to be the interval [0,1]. 

Theorem 1 Let f : 
N reals such that 

for 1 <i < N, and let 

be BV, with supp(f) C [0,1]. Denote by {U} any 

i-\ 
N    <U<N' (2) 

Mt)= f f(r)G(t-r,a)dr. 
Jo 

Then, 
1    N 

Mt)--fi52f(tk)G(t-tk,<r) 
fc=i 

< 
1   V(f) + 

o-N        y/2ir 
(3) 

Proof:     By the mean-value theorem, there exists in the intervals denned by 
(2) points {&}I<»<JV such that 

1   N 

i=l 

This shows that 
N 

k=\ 

<V[f{x)G{t-x,a)]. 



The result follows after evaluating the variation of the product. I 

As a grows, fa -> / in the pointwise sense, provided that /.has some regularity. 
For any fixed cr, it always possible to select N such that (3) becomes less than 
any specified positive number. Hence, it is always possible to obtain arbitrarily 
good approximations to /: 

||/-^ll<ll/-MI + ll/.-^|| 
in any norm. 

We now turn to approximation by superposition of sigmoidal functions. 

3.2     SIGMOIDAL FUNCTIONS 

Definition 1 A bounded function F : 1 -)■ K is sigmoidal if 

lim   F(x) = l,      lim   F(x) = 0. 
x—>+oo X—¥—oo 

In the following, the dilation %j){wx) of any function ip is denoted by ipw(x), 
and the function u is the unit step function. It is assumed without loss of 
generality that the functions / to approximate satisfy /(0) = 0. 

Lemma 1 If F is sigmoidal, f £ BV, and supp(f) C [0,1], 

/(*)- / f'(x)Fw(t-x)dx 
Jo 

< eV(f), 

uniformly in t, for all w such that \u(x) — Fw(x)\ < e. 

Proof:   Assume that /(0) = 0. The fact that / G BV justifies the identity 

f(t)   =    [ f'(t-x)u(x)dx 
Jo 

=     /   f'(x)u(t — x)dx, 
Jo 

and so 

/(*)- f f'(x)Fw(t-x)dx= f f'(t-x)[u(x)-Fw(x)]dx. 
Jo Jo 

If x ^ 0, given any e > 0 there is a ft > 0 such that 

\u(x)-Fw{x)\ <e 

if w > ft. Thus, 

f{t) - f f'(x)Fw(t - x) dx\ < e [ \f(t - x)\ dx < eV(f). 
Jo I       Jo 
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Lemma 2  Take any N reals {tk}i<k<N satisfying 

N    ~  K ~ N 

and consider the functions 

k     1 <tk<^,    k=l,2,...,N, 

/«,(*)    =     / f'(x)Fw(t-x)dx 
Jo 

=     [ f'(t-x)Fw(x)dx, 
Jo 

1   N 

k=\ 

Then 

\fw(t) ~ SN(t)\ <  jj 

assuming f € BV, <f> £ BV. 

Proof: Similar to the proof of theorem 1: use the mean-value theorem, then 
bound the variation V[f'(x)Fw(t - x)]. ■ 

Theorem 2 For any e > 0 there is w such that 

\f(t)-SN(t)\=o(jYiy 

for any {tk}\<k<N satisfying 

^<tk<±     k = l,2,...,N. 

Proof:    We have 

||/-«Jv||<||/-/»ll + ll/»-«Jv||- 

The first term converges to zero as w -> oo, and the second term is bounded 
by a term inversely proportional.to N (lemma 2). The first term can be made 
smaller than e/2 by picking w sufficiently large. Once w is fixed, take N so large 
that||/u,-sjv||<e/2. ■ 

It is not necessary to have /' of bounded variation. The restriction may be 
removed by approximating it by an absolutely continuous function h' such that 

\f'(t)-ti(t)\<e,     f  \f'(t)-h'(t)\dt<t). 
Jo 
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4      THE MULTIDIMENSIONAL PROBLEM 

In this section we sketch the solution to the multidimensional problem for radial 
basis neural networks. The statement and proofs of the results depend on 
certain number theoretic results concerning uniform distribution, discrepancy, 
and numerical integration [8]. We start with the following inequality 

/ 

1   N 

F(z)eir--£>(**) 
Nl^i 

< DNV(F), 

where DN denotes the discrepancy of the sequence xi, x2,. ■ - xN and V(F) is 
the total variation of the function F € BV (which is assumed to be of bounded 
variation in the sense of Hardy and Krause [8]). Note that x £ En, as well as 
each Xi. Standard results in the estimation of the discrepancy DN show that 

log""1 N 

if the sequence x{ is a good lattice set. It is possible to show that the variation in 
the sense of Hardy and Krause of a product of two functions V (fg) is bounded 
by an expression of the form 

V(fg) = ||/||ooVfo) + \\g\\coV(J) + 0(||/||oolMloo). 

Letting F{x) = f(x)g(t - x, a) leads to a bound of the form 

1   N 

i=l 

\fA*)-**(*)\ = o(^ü^) 

The constant hidden by the O notation depends on a, but not on N. The total 
error satisfies 

||/-«Af||<ll/-MI + ll/«r-™||. 
The first term is a function of a but not of N, and can be studied by well known 
methods (the precise bound depends on the regularity of /). The second term 
is 0(logn_1 N/N), and predicts a degradation of performance as the dimension 
n of the space increases. The bound given in the interesting work of Ritter [11] 
is 0(1/ y/fi) (for sigmoidal networks). This is is weaker for sufficiently large N, 
but better for smaller N. 
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Invited Lecture 

Neural Networks for Medical Image Processing 

David G. Brown, PhD 

Division of Electronics and Computer Science 
Center for Devices and Radiological Health 

Rockville, MD 

The past two decades have witnessed an explosion of medical imaging 
technologies. The invention of computed tomography served as a vital bridge 
between our analog, plain-film past and our increasingly digital present, 
endowed with a multiplicity of sophisticated new imaging modalities. These 
new systems are exemplified by the complex world of magnetic resonance 
imaging, but include many other types of systems as well. In addition to use as 
components for the functioning of these imaging systems, neural networks are 
increasingly being used for image processing tasks such as segmentation and 
identification of anatomic or functional structures. Computer-aided diagnosis 
(CADx) is becoming increasingly important as data becomes available in 
digital form~and becoming available in overwhelming quantities now, 
frequently from three and four (time) dimensional imaging data sets. Neural 
networks are being used in commercially available as well as research CADx 
systems. In addition, they are being applied to such problems as image 
registration for multiple single-modality or multiple modality images. Neural 
networks have demonstrated a growing importance in this dynamic field of 
modern medicine. 
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Mixture of Discriminative Learning Experts of 
Constant Sensitivity for Automated Cytology 

Screening 

Jenq-Neng Hwang,     Eugene Lin 
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Abstract 

One practical objective in an automated cytology screening 
task is to obtain as high as possible specificity (the percentage of 
normal slides being classified as normal) while attaining accept- 
able (predefined) constant sensitivity. In this paper, we propose 
a new learning algorithm which continuously improves the speci- 
ficity while maintaining constant sensitivity for pattern classifi- 
cation problems. We further propose to integrate the pre-trained 
networks with constant sensitivities into the mixture of experts 
(MOE) network configuration. This enables each trained expert 
to be responsive to specific subregions of the input spaces with 
minimum ambiguity and thus produces better performance. 

1    Introduction 

Thanks to recent advances in image processing technologies and clas- 
sification algorithms, the automated cytology screening system has 
gained commercial interest [5]. In an automated cytology screener, 
the object classification module classifies the Pap smeared object as a 
"normal" or an "abnormal" slide. Sensitivity, which is defined as the 
percentage of abnormal slides being correctly classified as abnormal, 
is a very important factor to most automated biomedical applications. 
One practical objective in training a neural network for these appli- 
cations is to obtain as high as possible specificity (the percentage of 
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normal slides being classified as normal) while attaining acceptable 
(predefined) sensitivity. 

The traditional mechanism to achieve this objective is to train the 
classifiers first and then generate the Receiver Operating Characteris- 
tics (ROC) curve based on different thresholds. By fixing a constant 
sensitivity, the corresponding threshold and specificity can thus be de- 
termined. If the specificity is not acceptable, then the whole training 
process, which might involve a new classifier structure, needs to be 
reinitiated until the acceptable specificity is attained under the prede- 
fined sensitivity level. In reality, the inherent tradeoff between sensi- 
tivity and specificity prevents high specificity in case of high sensitivity. 
Therefore, we would like to explore a neural network learning proce- 
dure that can overcome this problem directly in the learning phase 
without the need of varying the thresholds after training or reinitiat- 
ing the learning. In this paper, we adopt the discriminative learning 
neural network techniques [4, 3] for automated cytology screening and 
propose a new learning procedure which can obtain high specificity 
while maintaining an acceptable constant sensitivity. 

The discriminative learning of a feedforward network distinguishes 
itself from the traditional backpropagation learning by having a dif- 
ferent cost function. The presence of the discriminative cost function 
has a profound impact on the learning capability and performance of 
the network, and usually results in better performance. Built upon the 
discriminative learning algorithm, we propose the constant sensitivity 
learning procedure which continuously improves the specificity while 
maintaining constant sensitivity for pattern classification problems. 

Mixture of experts (MOE) learning [2] has been shown to pro- 
vide better performance due to its ability to effectively solve a large 
complicated task by smaller and modularized trainable networks (i.e., 
experts), whose solutions are dynamically integrated into a coherent 
one using the trainable gating network. One of the major concern 
in using the MOE is the lack of a meaningful interpretation of each 
trained expert when all the expert networks and the gating network 
are trained simultaneously. This concern is further amplified when 
using the MOE for medical diagnosis applications, where each reason- 
ing step leading toward the final decision needs to be self-explanatory. 
It is highly desired to have each trained expert to be responsive to 
specific (non-overlapping) subregions of the input space so that the 
gating network can unambiguously identify and integrate the correct 
solution. In this paper, we thus propose to pre-train each expert net- 
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work which operates in a fixed sensitivity accomplished by the modified 
discriminative learning strategy. This enables the MOE network to sys- 
tematically identify a good operating point in the Receiver Operating 
Characteristics (ROC) curve and thus produces better performance. 
This approach is based on the principle of divide-and-conquer such 
that each expert network can represent some distinct subregions of the 
input space with the minimum amount of overlap so that the gating 
network's output probabilities associated with those subregions can be 
quite distinct, i.e., a clear winner can be easily identified. 

We applied the proposed constant sensitivity procedure to auto- 
mated cytology screening tasks. The proposed discriminative training 
with constant sensitivity outperforms the traditional backpropagation 
learning and the discriminative learning without enforcing the con- 
stant sensitivity. Furthermore, the proposed mixture of discriminative 
learning experts of constant sensitivity (MDLECS) architecture fur- 
ther improves the performance and outperforms the standard MOE 
techniques. 

2    Discriminative Learning 

The discriminative learning [4, 3] was proposed specifically for pattern 
recognition problems, aiming at achieving a minimum classification 
error rate. Based on a given set of training samples, the objective 
criterion is defined by the classification rule in a functional form and 
is optimized by numerical search algorithms. Under the backpropa- 
gation learning framework, the discriminant functions, {/i(x;W),i = 
1,2,..., M}, which are the neural network outputs and indicate the clas- 
sification posterior probabilities P(i|x) [6], are first calculated, where 
W denotes the parameter set of the classifier (i.e., the feedforward 
network weights {wij(l)} in the Z-th layer) and the training sample x 
is known to belong to one of M classes. For each input x, the classifier 
makes its decision by choosing the largest of the discriminants evalu- 
ated on x. A misclassification measure for this data is then defined as 

follows: 

4(x) = -/i(x;W) + 

where 77 is a positive number. 

1       M 

- ^ffawy 
M     . . ... 

(1) 
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Finally, the minimum error objective is formulated and is expressed 
as a differentiable function of the misclassificatiqn measure. More 
specifically, the error objective function Ek of the &-th class is defined 
as 

Ek(x;W) = Ek(dk(x))=i + e_rdk,   r>0. (2) 

Note that a positive dk(x) leads to a penalty which is a count of clas- 
sification error, while a negative 4(x) implies a correct classification. 

3    Constant Sensitivity Discriminative Learn- 
ing 

To achieve high specificity while maintaining constant sensitivity, we 
propose a new procedure built upon the discriminative learning algo- 
rithm on a feedforward neural network [7], i.e., a 2-layer perceptron. 
The training sample x is known to belong to one of 2 classes: the abnor- 
mal slides as Class 1 and the normal slides as Class 2. We also define a 
constant Ao which is the sensitivity value to be maintained during the 
optimization process. In this 2-class application, with 77 approaches 00 
in Eq. (1), it results in the simple misclassincation measure dk(x): 

«*i(x) = -/i + /2,       d2(x) = -/2 + /i. (3) 

Instead of using the (sigmoid) error objective function Ek of Eq. 
(2), we also tried another error objective function: 

Ek(x; W) = £fc(4(x)) = c1*dT
k + c2*dT

k'\ (4) 

where c\ > 0, c2 > 0, and r > 0. In our simulation, c\ = 1, c2 = 2, 
and T = 2 are used, that is, 

Ek{x; W) = JEfc(dfc(x)) = 4 + 2*4- (5) 

The optimization process, which increases the specificity over all 
the normal training data while maintaining constant sensitivity Ao 
over all the abnormal training data, uses the simple iterative gradi- 
ent descent search algorithm by separately dealing with E\ and E2. 
A "batch" training procedure is used, i.e., the weights won't be up- 
dated until the accumulation of weight changes of all training samples 
in one iteration. The calculation of sensitivity is always based on the 
threshold of 0.5. 
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1. For each training input {x(n)} in Class 1 (abnormal): 

ß T? 

Wij(l)     <=     Wij(l) + OLi ^2 ,        if Xabnormal > Ao (6) 

wij(l)     <=    Wij(l) ~ al ^2 a 7n>        */ ^abnormal < ^0 (7) 
n   0wi3V') 

where ^abnormal denotes the sensitivity value evaluated over all 
abnormal training samples at the previous iteration. 

2. For each training input {x(n)} in Class 2 (normal): 

*iiV)<=^(l)-"*E-^y (8) 

In case of oscillation of ^abnormal around Ao, the updating steps, a.\ 
and CK2, are gradually decreased. 

4    Mixture of Experts 

To achieve the goal of a meaningful interpretation of experts in a mix- 
ture of experts (MOE) network and also to have each trained expert 
to be responsive to non-overlapping subregions of the input spaces, we 
further integrate the proposed constant sensitivity learning algorithm 
into a mixture of experts architecture [2], where each expert network 
is pre-trained with different constant sensitivity. 

For a given input x, the total probability of generating class y from 
x based on a ÜT-expert MOE is computed by: 

P(y|x,fl = £>i>(yMO (9) 
i=i 

where y is a binary vector, e.g., y is either [1,0] or [0,1] for a 2-class 
problem. (j> is the set of parameters associated with the gating and the 
expert networks. {#} are the gating probabilities for weighting the 
expert outputs, {P(y|x, {&{})}, and {0{} are the parameters for the 
i-th expert network {i = 1,..., K). 

The gating network can be a nonlinear neural network or a lin- 
ear combiner. To obtain the gating network probabilistic outputs, the 
softmax function is adopted [1]. The learning algorithm for the MOE 
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is based on the maximum likelihood principle to estimate the param- 
eters, the synaptic weights associated with the gating and the expert 
networks. In this training procedure, the resulting threshold is always 
set as 0.5. The gradient ascent algorithm can be used to estimate the 
parameters. Since the expert networks have been pre-trained by the 
constant sensitivity discriminative learning algorithm, therefore the pa- 
rameters for the expert networks remain unchanged during the training 
processing of the MOE. Note that, in this mixture of discriminative 
learning experts of constant sensitivity (MDLECS) configuration, the 
overall sensitivity value can not be prefixed (it is within the range of 
our minimum and maximum sensitivities provided by the expert net- 
works). An obvious advantage of this architecture is that the training 
won't be over-generalized, which is always the case when much fewer 
abnormal training data are used and the trained network normally get 
pushed to very high specificity with very low sensitivity when standard 
network training algorithms are used. 

5    Comparative Simulation Results 

To verify the feasibility and superiority of the proposed constant sensi- 
tivity discriminative learning procedure and its integration with MOE, 
we utilized the real world cytology data provided by NeoPath Inc., who 
developed and manufactured the world's first automated Pap Smear 
screening system - the AutoPap 300. There are 32 features extracted 
from the Pap Smear images obtained from a single slide. All these fea- 
tures were normalized to have zero mean and unit standard deviation 
before input to the classifiers. Among these data, 5000 slide samples 
(2880 "abnormal", 2120 "normal") are used as the training set, and 
another 5000 slide samples (2880 "abnormal", 2120 "normal") are used 
as the independent testing set. 

The overall accuracy, i.e., classification rate over the testing data, is 
used to evaluate the performance of classifiers. Table 1 shows the over- 
all accuracy of the 5000 testing data under different sensitivity values 
i.e., A is equal to 0.75, 0.8, 0.85, 0.9, and 0.95. Three learning proce- 
dures are carefully experimented and compared: the backpropagation 
learning, the discriminative learning, and the constant sensitivity dis- 
criminative learning. It appears that the performance of the constant 
sensitivity discriminative learning outperforms the other two learning 
methods.   Also note that for the constant sensitivity discriminative 
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learning, the use of the error objective function in Eq. (4) provides 
better accuracy than that in Eq. (2). All these simulations use one- 
hidden layer feedforward neural network with the same size of hidden 
units. 

Based on the five networks pre-trained by the constant sensitivity 
discriminative learning, we further built the mixture of experts with 
a linear gating network. Each expert network is a one-hidden layer 
feedforward neural network with 10 hidden units, and the gating net- 
work is a single-layered feedforward neural network with the softmax 
outputs. The overall accuracy of the mixture of experts is 78.54 % 
with an overall sensitivity of 0.82. The performance was further im- 
proved to 79.04 % (with a sensitivity of 0.81) when a nonlinear gating 
network was used (i.e., 2-layer feedforward perceptron with 20 hid- 
den units). These performance are favorably compared with that of 
a 2-layer feedforward perceptron trained at constant sensitivity (fixed 
at 0.80) discriminative learning with 50 hidden units (77.56% with 
testing sensitivity 0.77), which has similar size of parameters as the 
proposed MDLECS (we also tried the 70-unit 2-layer perceptron, the 
performance is almost the same as 50-unit one). Note specifically a 
higher sensitivity is consistently achieved by the proposed mixture of 
discriminative learning experts of constant sensitivity (MDLECS). To 
have a fair comparison, we also trained a standard MOE network with- 
out pre-trained constant sensitivity experts. Each of the five expert 
networks has 10 hidden neurons and the nonlinear gating network con- 
tains 20 hidden neurons, both expert and gating networks are trained 
by gradient ascent algorithm simultaneously. The resulting accuracy 
is 78.18 % (with a sensitivity of 0.79). 

By observing the gating network output probabilities associated 
with 5 experts, we are able to find some clues to explain the better per- 
formance of the proposed MDLECS. Table 3 shows 12 representative 
output probabilities of the gating network trained with the standard 
MOE procedure. Note that the MOE did a good job in separating 
the input space into subregions, therefore only one dominating prob- 
ability exists in most cases. The proposed MDLECS did a even more 
clear-cut partition of input subregions, therefore the one-dominating 
probability situation is even more obvious for the same set of testing 
data, as evidenced by the bold face numbers in Table 3. 
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Sensitivity Ao 0.75 0.8 0.85 0.9 0.95 

B ackpropagation 75.70 75.88 73.32 70.38 65.56 
Discriminative 76.68 76.62 74.82 71.88 66.46 

Constant Sensitivity 
with Eq. (2) 

76.92 77.16 76.26 74.68 69.50 

Constant Sensitivity 
with Eq. (4) 

77.40 78.16 77.78 75.50 71.28 

Table 1: The comparative testing accuracy (% correct) for the com- 
parative simulations among three learning procedures. 

Methods Testing Accuracy Sensitivity 

Fixed Constant Sensitivity BP 
(32-50-2) 

77.56% 0.80 

Standard MOE 78.18% 0.79 
MDLECS (Linear Gating) 78.54% 0.82 

MDLECS (Nonlinear Gating) 79.04% 0.81 

Table 2: The comparative testing accuracy (% correct) and the result- 
ing sensitivity for various mixture of experts configurations. 
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MOE 9x 92 93 9A 95 

Data 1 0.23463 0.00089 0.75585 0.00420 0.00441 
Data 2 0.56412 0.06864 0.35065 0.01592 0.00064 
Data 3 0.91152 0.01505 0.06893 0.00423 0.00023 
Data 4 0.06379 0.01670 0.04422 0.84404 0,03123 
Data 5 0.64777 0.02383 0.08398 0.20182 0.04258 
Data 6 0.78372 0.00229 0.20898 0.00474 0.00024 
Data 7 0.56004 0.00370 0.42796 0.00713 0.00115 
Data 8 0.05941 0.07737 0.15883 0.63616 0.06820 
Data 9 0.41742 j 0.00432 0.57676 0.00120 0.00027 
Data 10 0.53426 0.00380 0.46015 0.00164 0.00012 
Data 11 0.15195 0.30548 0.05661 0.48406 0.00188 
Data 12 0.87367 0.00080 0.12464 0.00082 0.00004 

MDLECS 9\ 92 93 9A 95 

Data 1 0.94406 0.00002 0.00017 0.00008 0.05564 
Data 2 0.02298 0.00167 0.04568 0.00610 0.92354 
Data 3 0.01396 0.00158 0.04408 0.00779 0.93257 
Data 4 0.37157 0.61927 0.00115 0.00529 0.00269 
Data 5 0.96350 0.02500 0.00029 0.00840 0.00278 
Data 6 0.72072 0.00299 0.00796 0.00046 0.26785 
Data 7 0.88323 0.00381 0.00403 0.00120 0.10770 
Data 8 0.05907 0.00004 0.00001 0.94084 0.00002 
Data 9 0.99580 0.00332 0.00007 0.00008 0.00071 
Data 10 0.95901 0.04066 0.00001 0.00000 0.00030 
Data 11 0.77697 0.04275 0.15508 0.00580 0.01938 
Data 12 0.86628 0.00741 0.00025 0.00000 0.12604 

Table 3: The output probabilities of the gating network for 12 repre- 
sentative testing data trained with the standard MOE and MDLECS 
procedures. 
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6    Conclusion 

In this paper, we present a new learning procedure built upon the dis- 
criminative learning algorithm to achieve high accuracy while main- 
taining constant sensitivity. We further integrate these trained con- 
stant sensitivity networks into the mixture of experts (MOE) config- 
uration, which results in very encouraging simulation performance in 
automated cytology screening applications. 
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Abstract 

Two different measurement modalities, one related to blood 
flow, the other related to brain metabolism are monitored in 
a head injury patient and analyzed by using the method of 
surrogate data. That is applied against a hierarchy of two- 
dimensional Markov processes, designed to model a possible 
deterministic behaviour of the system and correlations be- 
tween the two observed variables. Two-layered feed-forward 
neural networks are trained to estimate the two-dimensional 
conditional densities of the proposed Markov models. A cu- 
mulant based information flow is here used for testing the ob- 
served dynamics against the hierarchy of null hypotheses. A 
deterministic dynamics corresponding to a low order Markov 
process was found in both time series. In addition some cor- 
relation was detected indicating a coupling of the blood flow 
and the metabolism related parameters depending on patient 
condition. The proposed method could be an useful tool for 
detecting malfunction in the regulation of the human basic 
metabolism and predicting its evolution inside a reasonable 
window time. 

1.    MONITORING OXYGEN METABOLISM IN THE BRAIN 

The measurement of the brain metabolism and related parameters is becom- 
ing a more and more helpful tool to assess the follow up of people with serious 

trauma of the central nervous system. 
In a head injury, first the space occupying lesions is removed surgically, 

whenever necessary. Then the brain edema is treated not surgically by hy- 
perventilation, sedation, arid osmotic agents. Specifically the conservative 
treatment is guided by various parameters which are recorded on line in the 
Intensive Care Unit and give hints of the metabolic state of the brain. How- 
ever treatment guided by these parameters is reactive. That means that 
whenever the parameters give an indication of a deterioration, treatment is 
adjusted. It is highly desirable to know those episodes of deterioration in ad- 
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vance, since the treatment could be more appropriate and avoid crisis. Quite 
often very similar changes in the parameter trends can lead to very different 
consequences. It would be useful to evaluate whether the time course of such 
variables in head injured patients shows any deterministic structure and then 
whether it is possible to characterize those clinical situations. 

In this work we analyze time series of data coming from two devices 
during different coma conditions of the same patient. One parameter is the 
local partial oxygen pressure of frontal white matter of the brain (tip02). 
This parameter is more related to blood flow and diffusion dependent oxygen 
delivery. The second parameter defines the oxygen loading of hemoglobin in 
venous and arterial blood, and is more related to metabolism (HgB02). 

We want to analyse two issues in this study. First of all the Markovian 
character of the underlying process is investigated, in order to model the 
system structure and to perform some prediction on the future values. Then 
a possible correlation of the two signals is studied. A strong correlation would 
indicate an intact regulation of the brain metabolism, whereas no correlation 
would indicate a serious disruption of this regulatory mechanism. 

A statistical approach for detecting the Markovian character of dynamical 
systems by analyzing their information flow is here applied to the two signals 
(tiP02 and HgB02) alone or in combination, in order to detect deterministic 
behaviour and/or correlation. 

A measure based on higher order cumulants depending on the past values 
of both time series is calculated. That quantifies the statistical dependences of 
a point r steps ahead in one of the two time series on their past values. These 
cumulant based information flows, expressed as a function of the lookahead 
r, are here used as a discriminating statistics in testing the observed dynam- 
ics against a hierarchy of null hypotheses, corresponding to two-dimensional 
nonlinear Markov processes of increasing order [1]. The process can be reit- 
erated generating higher and higher order Markov models, corresponding to 
better approximations of the underlying two-dimensional process in terms of 
information flow. 

Two-layered feed-forward neural networks are trained to estimate the con- 
ditional densities of each Markov process. 

Not too many studies have been performed in this area yet, since the 
technological development only recently made available sophisticated mea- 
surement systems. Previous studies were oriented to analyze the case under 
a strictly medical point of view [6] or to check for chaotic behaviour [5]. 

Some deterministic dynamics, corresponding to a low order Markov pro- 
cess, was detected in both time series. A strong correlation was also detected 
in normal conditions of the patient, while one-dimensional Markov models 
were sufficient to describe both information flows when the patient was in 
worse clinical conditions. 
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2.    TESTING NONLINEAR MARKOVIAN BIVARIATE HYPOTH- 
ESIS 

Four cumulant based measures of the statistical dependences of the points 
r steps ahead in the time series xt and yt are derived based on nx and ny 

succeeding observations of the two time series. They indirectly describe the 
loss of information in the underlying dynamical system. Such measures are 
here used as a discriminating statistics to accept or reject a null hypothesis 
consisting of a Markov model supposed to be adequate to explain the system. 

Let us define the nx + ny + 1-dimensional vector 

Vrf = {xt-nx, ...,Xt-i, yt-ny, ■ ■ •, yt-1, dt+r) (1) 

where dt+r represents alternatively xt+r and yt+r, then the general equa- 
tion of those measures can be defined as: 

™d{d] (r) = Yl       X)       Kdiu...,ihnx+ny + \ (2) 
j = l ii...ij=Ld 

where the Kdil...i- represent the cumulant of order j calculated on the 
vector \d and d refers to the time series xt or yt. The dependency of xt+r 

from the past nx values of xt is measured by mxx(r), calculated by using 
the vector \d=x with La = 1, and Ud = nx. Extending the calculation to 
the following ny values in the vector vx a measure mx (r) of the dependency 
of xt+r itself from the past of both time series is obtained. In this case 
Ud = nx + ny. Similar measures can be defined for the time series yt. A 
measure myy (r) of the dependency of yt+r on its past is produced by using 
dt+r = yt+r in vector Vd=y with Ld = nx and Ud = nx + ny in the eq. 2. 
Extending the sum to the previous nx values in the vector vy, that means 
setting Ld = 1, a measure my(r) of dependency of t/t+r on the past of both 
time series is obtained. 

These four measures, mx(r), my(r),mxx(r), and myy(r), are a cumulant 
based characterization of the information flow of the two-dimensional under- 
lying system and measure the dependences of Xt+r and yt+r respectively from 
their nx and ny past values or from both. They can also be seen as measures 
of the dependence of xt on yt and viceversa. The first sum in 2 is approxi- 
mated with a finite number of terms, and the cumulants are calculated up to 
the fourth order [1]. 

The method of surrogate data [2] is separately applied to the two time 
series. We define a null hypothesis as a two-dimensional Markov model sup- 
posed to be an adequate explanation of the underlying system. A discriminat- 
ing statistics involving the cumulant based measures, mx(r), my(r), mxx(r), 
and iriyy(r), allows us to quantify the consistency of our null hypothesis with 
the property of the original system. The two-sample Student t test [1] is 
adopted as a discriminating statistics, expressed by the following variable 
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(3), which has a t student distribution with M ■ 
the number of used surrogate data sets: 

1 freedom degrees, M being 

U(r) = 
M     pj(r) - md(r) 

M + l <rAr) 

1   M 

\ 
M 

1      M 

(3) 

(4) 

where d represents the process xt or yt, d; indicates the corresponding ith 

surrogate time series, and r the lookahead. The null hypothesis is accepted 
if the absolute value \t(r)\ is smaller than i corresponding to a p-value, which 
depends on M [1], for lookahed 1 < r < 6 for all the four cumulant based 
measures. In this case our assumption about the original time series is ade- 
quate. A hierarchy of null hypothesis is defined increasing the order of the 
Markov model, whenever the null hypothesis is rejected. 

Before beginning the analysis, the time series data are independently 
gaussianized to avoid possible static nonlinearities due to the measurement 
process [2]. For that purpose, Gaussian random numbers are computed 
and re-ordered so that the ranks of both sequences - the original and the 
gaussianized one - agree. The next step is to determine the order {nx,ny} 
of the two-dimensional nonlinear Markov process which is supposed to ap- 
proximate the information flow of the transformed sequences. If we do not 
have detailed knowledge about the observed dynamical system we start with 
nx = 1, ny = 0. We do not deal with the case nx — 0, ny = 0 (white noise in 
both signals, since physicians already find some information in those signals). 

Two-layered feed-forward neural networks are trained to perform an es- 
timation of the conditional densities p (xt+r \xt, •■••, %t-nx, yt,---, yt-ny) and 
p (yt+r \xt, ■■-, xt-nt,yt, -■-, yt-ny) of the proposed Markov model. 

In order to provide to the networks the minimum number of significant 
inputs, a time delay is applied to the original time series. The first minimum 
of the mutual information, calculated as in [7], is adopted as the best available 
systematic criterion for choosing time delays. 

Since it has been shown that nonlinear neural networks are very suitable 
for this purpose [4] we decided to approximate all the density functions with: 

p (xt+r\xt, - - -, xt-„x,yt, - - - ,yt-ny) = ]T) 
Uh 

^V^l 
exp 

(" 2*2 
I 

Uh 

!=1 j = l 

Z = l 

= Vh0 + ^2 Vhi tanh     Whi0 + XI Whijxt-j + Yl whi(nx+z)yt-z      ,     (6) 

t*h = vh0 + Y^ Vhi tanh    whi0 + ^ whijxt-j + ^ Whi(nx+z)yt-z ) ,    (7) 
Z = l \ J=l 
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( 
Oh = vh0 + ^2 Vhi tanh    whio + E v>hijXt-j + E ™hi(nx+z)yt-z I       (8) 

i=l \ 3 = 1 *=1 / 

where A; denotes the number of Gaussians, / is the number of hidden 
neurons and the uh,Vhi,whij,vhi,whij,Vhi, and whij are the parameters of 
the networks. Additionally, the constraint £*=1 uh = 1 holds to ensure that 
the sum (5) is really a density function. 

Each conditional probability density is therefore represented by a weighted 
sum of normal distributions, the weights, means, and variances of which are 
the outputs of different neural networks (multi-layer perceptrons, (6) - (8)) 
for the (nx + ny)-dimensional input. The training is performed following the 
maximum likelihood principle [3] in the sense that the parameters of the net- 
works are updated according to the gradient descent on the log-likelihood 
function: 

£ \ogp(dt+r;«i,(ii,<rl, ...,uk,ßk,cr2k). (9) 

After the training the networks can build new sequences using the Marko- 
vian approximation of the information flow of the time series xt and yt start- 
ing from the first nx values of xt and the first ny values of yt. The new 
sequences ii and yit (a surrogate data set), are gaussianized to have the 
same marginal distribution as the original ones. An arbitrary number M of 
surrogate data sets are generated and the measures mx(r), mg(r), mix(r), 
and m.yy(r), are independently calculated for each one. If the hypothesis that 
the nonlinear Markov process of order {nx, ny} is appropriate to explain the 
data, is rejected, the order is increased to nx +1 or ny +1, and the procedure 
is repeated starting with the training of the neural networks. The hypothesis 
is finally accepted if both tests are accepted for lookaheads 1 < r < 6. 

Starting with nx = 1 and ny = 0 and gradually increasing the order of the 
Markov process makes the detection of the appropriate Markov model with 
minimum order possible. Correlations between the two time series are also 
detected, if the Markov model with minimum order requires both nx and ny 

different from 0. The complete method is resumed in figure 1. 

3.    RESULTS 

Two time series of oxygen and metabolism related parameters of the brain are 
here analyzed in a comatous patient after head injury. They are recorded at 
two different times, corresponding to two different patient conditions. During 
time A a clinically relatively stationary condition was recorded, while during 
time B the patient was in critical conditions. 

The first measure trend (tip02) invasively measures the local tissue oxy- 
gen tension in the white matter of the brain. The second technique locally 
measures the oxygen loading of hemoglobine (HgB02) in arterial and venous 
blood of the brain. Both techniques adopt a 4s/m sample frequency. 
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Figure 1: Block diagram for the minimum order model selection. 

The method of surrogate data is applied to the two time series against 
a hierarchy of two-dimensional Markov processes, looking for correlations 
between the two signals and for deterministic behaviour. 

In the figures 2 and 3, the cumulant based discriminating measures of the 
original data, - mx(r), mxx(r), my(r), myy(r) (2) - and the corresponding 
averaged ones of the surrogate data - pair), /i*(r), fiyy{r), Hy{r) (4) - for 
different Markov models are displayed as functions of the lookahead r. The 
order of the Markov models is indicated in parentheses. In both cases, it is 
easy to observe the progressive approaching of the averaged discriminating 
measures of the surrogate data to the original one with the increasing of the 
Markov order. 

Even though the experiments are still in progress to extend the analysis 
to more patients, some deterministic dynamics, corresponding to a low order 
two-dimensional Markov process, was detected in both time series at both 
times A and B. 

The order {1,1} is the lowest order of the Markov processes being not 
refused by the discriminating analysis of the two time series at time A (Fig. 
2). It is easy to see in figure 2 that the statistical properties of the surrogate 
data, represented by the variables pf(r), fiy{r), /i£x(r), and pyy{r), fit the 
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ones of the original time series. In addition, while the tip02 is well modelled 
by a one-dimensional Markov model of order {1,0} (Fig. 2.a), the minimum 
order of the Markov model needs some past values of the tip02, in order 
to represent the HgB02 too. That shows a strong correlation between the 
two time series, due to coupling of the two paramters indicating an intact 
regulation. 

For the time series referring to the time B, two different one-dimensional 
Markov models are detected, respectively of order {2,0} for the tip02 and 
{0,1} for the HgB02 (Fig. 3). That describes two statistically independent 
processes. In this case coupling of blood flow and metabolism is disrupted 
indicating a serious disturbance of regulatory mechanisms. 

We can see that the combined model of order {2,1} approximates the 
statistical behaviour of the two time series even better. That proves the 
efficiency of the proposed algorithm, since Markov processes with limited 
higher orders are still able to model the original process. 

Both cases, A and B, show a system characterized by a low order dy- 
namics, but the high amount of noise in the measurement process could hide 
higher order dynamics. We can not retrieve any information from the biologi- 
cal knowledge about the modelling of the oxygen metabolism in patients with 
serious head injury, since the problem involves too many variables and often 
the biological processes of interest are not completely known. In this sense, 
the method here proposed represents a good tool to investigate and to model 
the dynamics of the brain circulation, without a priori biological knowledge. 
Finally the proposed algorithm should allow to distinguish apparently similar 
conditions of the patient and possible pathologies in the brain metabolism. 
The knowledge in advance of the regulation of the basic metabolism of the 
patient would allow appropriate therapies, avoiding the ineffective ones. 

4.    CONCLUSIONS 

The measurement of the oxygen and metabolism related parameters in the 
brain is a very helpful tool in assessing the follow up of patients with serious 
trauma of the central nervous system. Several variables related with oxy- 
gen delivery and metabolism in the brain can be monitored with different 
techniques. In addition, the forecasting and the modelling of such variables 
would be really important to undertake an appropriate therapy. 

In this work, two different measurement trends related with oxygen metabolism 
in the brain are examined in two different clinical situations of the same pa- 
tient. 

The method of surrogate data is applied to the two time series against 
a hierarchy of two-dimensional Markovian processes, looking for correlation 
between the two signals and deterministic behaviour. It might be possible in 
that way to characterize similar clinical situations with different follow up by 
means of different dynamics. 

Two-layered feed-forward neural networks are trained to perform the es- 
timation of the two-dimensional conditional densities of the Markov models. 
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A deterministic dynamics, corresponding to a low order two-dimensional 
Markov process, was found in both time series for both clinical conditions. 
A correlation between the two time series was detected due to the control 
action of the autonomic nervous system on the human basic metabolism only 
when the patient was in better clinical conditions. 

The proposed method could be an useful tool for modelling and detecting 
malfunctions in the regulation of the basic metabolism and to predict inside 
a reasonable time window its evolution. This in advance knowledge would 
allow appropriate therapies, avoiding the ineffective ones. 
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Figure 2: Modelling of HgB02 and tiP02 at the time A. 
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ABSTRACT 

In this paper, we investigate the use of modular architecture of 
multiple clustering based pattern classifiers for ECG beat 
classification using the MIT/BIH arrhythmia database. The feature 
space is divided into several regions and individual classifiers are 
developed for each region separately. Then the outputs of these 
classifiers are combined using two competing combination rules: a 
winner decides all method and a distance-based combination 
method. Experiment results indicated that multiple classifier 
approach yields better sensitivity and classification rate. 

I. INTRODUCTION 

ECG beat classification [1, 2, 4, 7, 8, 11, 13, 16, 21, 22, 25, 29] 
is a difficult pattern classification problem which, despite numerous 
previous attempts, have not been solved satisfactorily. The 
difficulties stem from many factors, including large dimension of the 
feature space, large amounts of training samples, significant overlap 
between class boundaries and the ever changing morphology (beat 
shape) with time, just to name a few. 

In this study, we report empirical results of performing ECG 
beat classification to distinguish normal heart beats to those of 
premature ventricular contraction (PVC) beats using a multi- 
classifier pattern classification architecture [3, 5, 6, 9, 10, 12, 15, 19, 
23, 24, 26, 27, 28]. In this architecture, multiple, separately 
developed pattern classifiers are combined using a mixture of experts 
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approach. The motivations for studying such an architecture are two 
folded: 

(a) Performance: A modular architecture has the potential to 
yield better performance than a monolithic classifier architecture. 
This is a well known fact, and has motivated the study of committee 
classifiers, as well as mixture-of-expert approaches. 

(b) Speed: The modular classifier approach allows parallel 
development of all component classifiers. Moreover, we choose to 
divide the training data samples into disjoint data subsets, and 
therefore further reduces the training time required for individual 
classifiers. 

The component classifier experimented in this study is the Self 
Organizing Maps (SOM) [14] followed by the Learning Vector 
Quantization (LVQ) [14] approach. Two types of combination 
methods are compared: a winner-decides-all method and a distance 
based weighted average method. 

II. COMBINING MULTIPLE PATTERN CLASSIFIERS 

In this study, multiple pattern classifiers of the same type are 
developed independently on different regions of the feature space. 
This is a divide-and-conquer approach to deal with the large number 
of training samples. The heuristic is by restricting the training 
samples of each classifier to a smaller region in the feature space, the 
classifier can "zoom-in" that region to achieve a better classification 
result when testing samples fall within that region. This "modular 
learning" approach potentially offers both performance and speed 
advantages as stated above. To facilitate the division of the feature 
space, in this study, initially, the entire training data set is clustered 
into five clusters with clustering centers {C(i); 1 < i < 5} using the 
SOM algorithm. The number of clusters (5 in our experiment) is 
selected empirically. 

Then five LVQ classifiers are developed on each cluster. The 
LVQ-PAK software (v3.0) is used in this study. Parameters are 
selected according to the default setting. We denote the output of 
these classifiers as y(i,x), with respect to an input feature vector x for 
1 < i < 5.  y(i,x) = 1 if x is a normal ECG beat, and = -1 if x is 
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deemed to be a PVC beat. The output of these five classifiers will 
then combined together using two different combination methods: 

(a) Winner decides all method 

For each testing feature vector x, compute the distance from x 
to the clustering center C(i) of the training samples assigned to the i- 
th classifier: d(x,i) = llx - C(i)ll2. Find i* such that 

d(x,i*) < d(x,i)   for alii. (1) 

Then the i*-th classifier is designated as the winner, and it's output is 
assigned to the output of the combined classifier for x. That is, 

y(x) = y(x, i*) (2) 

The winner decides all method is a direct result of partitioning the 
feature space into disjointed regions and training independent 
classifiers on each region. Consequently, if x falls within that 
region, the corresponding classifier must give the most accurate 
result. 

(b) Distance Based Classifier Output Weighting 

In the distance based classifier output weighting method, we 
compute the combined output as a linear combination of all outputs 
of the five modular classifiers, and then threshold the output. That 
is, 

5 5 

y(x) = T[J>(i)y(x,i)];   J>(i) = l (3) 
"   i=l i=l 

where T[x] = 1 if x > 0, and -1 if x < 0 is a threshold operator. In 
order words, since y(x,i) = 1 or -1, eq. (3) states that the combined 
output is obtained by a weighted voting of the component classifiers. 
The question is how to determine the weighting w(i). 

To find an exact solution to such a problem is extremely 
complicated. Instead, we opt for an approximated solution as 
follows: We assume that each y(x, i) is an independent estimate of 
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the target value t(x), with a variance c?(x) = a d(x, i) where a > 0 is 
a constant. Denote 

5 
z(x) = £w(i)y(x,i) (4) 

i=! 

Our goal in choosing {w(i)} is to minimize the variance of z(x). 
This constrained optimization problem can be solved using Lagrange 
multiplier method which leads to the solution 

5 

=1 

which yields a variance of z(x) 

K v-    1 
w® = d(x4)'  whereK=§dÖÜ) (5) 

VarfzCx)}^^!^ (6) 

This solution leads to the second distanced based weighted voting 
method to combine classifier outputs. 

Ill ECG BEAT CLASSIFICATION 

ECG signals are measured from electrical leads (electrodes) 
attach to human body at specific locations. Depending on 
applications, there are 12-lead system for short duration (30 seconds) 
monitoring, or 3-lead system used for the same purpose. There are 
also longer term monitoring conducted using fewer electrodes. An 
ECG recording consists of a sequence of spiky ECG "beats" each 
represents one contraction of the heart. The entire episode of one 
heart beat is characterized by a sequence of 5 "complexes", named as 
P, Q, R, S, and T. Based on the relative position (timing) of these 
complexes, the shape (height and width), an ECG beat can be 
categorized into one of many "labels", and a segment of ECG beats 
may also demonstrate certain rhythm. By analyzing the type of 
ECG beats, and accompany rhythms, a trained electro-cardiologist is 
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able to diagnose probable causes of anomalies in patient's heart, so 
that appropriate treatment can be administered. 

ECG beat classification is a difficult task because there is no 
such thing as a standard ECG beat template. Every healthy person 
has a slightly different shape of "normal" ECG beats. The rhythm 
and shape of the beat also vary with respect to time. Sometimes it is 
not only the shape of an individual beat, but its relative location of 
appearance in a stream of ECG beat determines what type of this 
beat might be. 

The annotated ECG records available from the MIT/BIH 
(Massachusetts Institute of Technology and Beth Israel Hospital) 
arrhythmia database [17] have been used in this study. This database 
has 48 records, each 30 minutes in length. The data were recorded in 
two channels (modified limb lead II and modified lead VI) of surface 
ECGs from long-term Holter recorders. They represent a variety of 
waveforms, artifacts, complex ventricular, junctional, and 
supraventricular arrhythmias, and conduction abnormalities. Data 
from 33 of the 48 records which contain normal beats and PVCs 
were used for this study. Classifiers were developed and evaluated 
using subsets of data from channel 1 of these 33 records sampled at 
360 Hz. 

Accompanying each record in the database is an annotation file 
in which each ECG beat has been identified by expert cardiologists. 
These labels are referred to as 'truth' annotations and are used in 
developing the classifiers and also to evaluate the performance of the 
classifiers in the testing phase. Data are extracted as one feature 
vector for each of the beats in all the selected records. Each vector 
includes one of the two possible labels according to the AAMI 
recommended practice. Each feature vector for has 9 elements. The 
first four feature elements are temporal parameters. Temporal 
parameters such as the R-R intervals are calculated as the time 
difference between the two consecutive QRS peaks. Temporal 
features are the R-R interval between the current beat and the 
previous beat (RR1), between the previous beat and the one before it 
(RRO), between the current beat and the next beat (RR2), and the 
ratio of RR1 and RR2. These features are extracted for each 
individual beat in the database. A ratio of RR1 to RRO provides an 
indication of an abnormal timing sequence and helps in identifying 
an abnormal beat. The next 5 feature elements are extracted based on 
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morphology. Detailed descriptions of these features can be found in 
[20]. 

IV. EXPERIMENTS AND RESULTS 

For ECG processing, four basic statistics are calculated 
according to AAMI (American Association of Medical 
Instrumentation) recommendation [18]: true positives (TP), false 
positives (FP), true negatives (TN) and false negatives (FN). This 
follows a detection scenario. True positive (TP) means a true event 
of PVC has been successfully detected. False positive (FP) gives 
number of false alarms, and false negative is the count of missed 
PVC beats. TN and FN can be similarly defined. Based on these 
statistics, three performance criteria, sensitivity (Sens), Specificity 
(Spec) and Positive Predictivity (PP) are computed for each method. 
Sensitivity: (Sens = TP/ (TP + FN)) is the fraction of real events that 
are correctly detected; Specificity: (Spec = TN/ (TN + FP)) is the 
fraction of false events detected as false events; and Positive 
Predictivity: (PP = TP/(TP + FP)) is the fraction of detection that are 
true events. Generally, one would want all three criteria approach 
unity. But often trade-offs must be made. Among these three, 
sensitivity is considered most critical, with specificity and positive 
predictivity with decreasing importance. This is because missing a 
life-threatening ECG beat is considered more serious than a few false 
alarms which can later be screened out manually. We also compute 
classification rate C_rate = (FP+FN) / (TP + FP + FN +TN). 

In order to improve the reliability of the results, while coping 
with the large volume of data samples, we use the three-way cross 
validation method to create three different data sets from the same 
population: We partition the original ECG data randomly into three 
approximately equal sized subsets. (Note that this is NOT the 
clustering partitioning mentioned in section II). Then we combine 
two of the three subset to make a training data set, and use the 
remaining one as the testing set. This is rotated among these three 
subsets so that each subset becomes the testing set exactly ones. All 
the experiments are repeated three times (trials) with each time 
applied to one of these three different partitions. 

To compare the performance of the multiple classifier 
approach, we also conducted a baseline experiment using a single 
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SOM+LVQ classifier to classify the entire ECG data set. The results 
are summarized below: 

Trials TP FP FN TN Sens Spec PP C_ 
rate 

1 1944 130 218 22436 89.92 99.42 93.73 98.59 

2 1824 82 387 22434 82.50 99.64 95.70 98.10 

3 1874 69 365 22419 83.70 99.69 96.45 98.24 

Avg 5642 281 970 67289 85.33 99.58 95.26 98.31 

Table 1. The results of the classifiers developed using 
clustering algorithms SOM and LVQ and evaluated 
using the nearest neighbor approach. 

Next, we use the multiple classifier approach, with the winner 
decides all combination rule. The results are summarized below: 

Trials TP FP FN TN Sens Spec PP C_ 
rate 

1 1978 207 183 22358 91.53 99.08 90.53 98.42 

2 2054 163 156 22353 92.94 99.28 92.65 98.71 

3 2083 267 156 22220 93.03 98.81 88.64 98.29 

Avg 6115 637 495 66931 92.51 99.06 90.57 98.47 

Table 2. The results of 'winner decides all' approach in 
evaluating the modular networks developed by 
dividing the input space into 5 regions. 

Finally, we use the distanced based weighted voting combination 
method and the results are summarized in Table 3. 

Trials TP FP FN ■TN Sens Spec PP C_ 
rate 

1 2018 218 143 22347 93.38 99.03 90.25 98.54 

2 2104 204 106 22312 95.20 99.09 91.16 98.75 
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3 2109 251 130 22236 94.19 98.88 89.36 98.46 

Avg 6231 673 379 66895 94.27 99.00 90.25 98.58 

Table 3. The performance of the classifiers evaluated using 
the distance based approach. 

From above table, we observed that compared to a single classifier 
approach, both multi-classifier combination methods yield higher 
sensitivity (94%, 93% vs. 86%), while sacrifice somewhat on the 
positive predictivity. The overall classification rate is also improved 
from 98.31% to 98.47% and 98.58%. 
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Abstract. Programming appropriate insulin-dose levels is a com- 
mon diabetic pump-user problem. We developed a neural-network 
advisory system that suggests the appropriate next-time insulin 
dose based on short historical discontinuous blood-glucose mea- 
surements and insulin doses settings. Diabetologists' high level 
decision taking process have been succesfully learned. Our data 
base consists of 25000 recorded data from 747 insulin-pump 
users under medical supervision. The efficient data concept is in- 
troduced. Training with efficient learning data allowed to achieve 
very good generalization. A portable neural-network controlled 
insulin-pump device is beeing designed. A complete insulin ad- 
visory system including our algorithm is currently under clinical 
test. Preliminary results demonstrate that the performances of 
the neural-networks are equivalent to those of the physician. 

1    INTRODUCTION 

An insulin pump is a miniature pump which delivers a continuous supply of 
insulin (Basal rate), with extra insulin administered for meals (Prandial or 
Bolus rate) to an insulin-dependant diabetic (IDD). This is the best known 
system that can closely mimics the-body's pancreas normal release of insulin. 
Unfortunately, blood-glucose (BG) levels have to be monitored before one 
could make good adjustments in insulin, food, and exercises in response to 
those glucose test results. BG variations depend on several factors and vary 
with time. Deciding the amount of injection is a difficult task because mor- 
phology, future physical activity, time of meal, meal content, present glucose 
concentration and results of the previous day have to be taken in account. 
Moreover, injected insulin acts with delay and its efficiency reduces as BG 

level gets higher. 
Our paper deals with the specific problem of how to predict accurately the 

insulin dosage of an insulin-pump . Diabetologists' knowledge are generally 
in heuristic form. The medical staff at Strasbourg's Hospital applies a typical 
two phases scheme in order to control the BG level of an IDD patient under 
pump treatment: (1) at the beginning of each day, the diabetologist prescribes 
an injection rate profile for the next 24 hours, taking into account the present 
BG concentration and the results of previous day injections; (2) during the 
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Fig. 1. A pump-user glycemia responses to insulin doses (pump settings ßow rates). 
Note that pump settings are constant between successive adjustments and the dis- 
continuous measurements are not taken at fixed intervals. Given historical data of 
a specific patient, the problem is to find appropriate doses D(t) that would induce 
"normal" next-time glycemia levels G(t + 1). "Efficient facts" are selected based 
on the quality index \G(t + 1) — 1|. 

next 24 hours, the paramedical staff monitors and fine tunes the insulin levels 
so as to stay into the ideal BG target (i.e.lg/l). Ten measurements and tuning 
per 24 hours are then performed. 

A preliminary inspection of the data shows a strong correlation between 
the profiles of insulin advisories for two consecutive days. We propose to use 
a neural model to predict the next-time insulin level based on short history 
(previous hours) and same-time of the previous-day data. Our aim was to 
extrapolate from physician's experiences hidden in the available clinical data. 

Neural-network approach has been successfully applied to various areas 
of medicine, such as diagnostic aides, biochemical analysis, image analysis, 
and drug development. But, no known results have been announced on the 
use of backpropagation networks to drive an insulin-pump [1] especially for 
the discontinuous measurements and infusion. Lakatos et dl. tried to simulate 
the specialists' reasoning by predicting first the BG with a neural network; 
they had to built another network using one-hour time resolution to ensure 
continuous data consideration and cubic spline interpolation to generate BG 
profile [2]. 

Intravenous glucose controlled insulin infusion was achieved until now by 
using continuous BG measurements [3] [4], which does not make possible 
a routine use in the treatment of diabetic patients. Meanwhile, numerous 
studies have been conducted on closely related fields. Much of the efforts 
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were aimed at the prediction the BG level and the identification of the glucose 
metabolism [5], [6]. Blumenfeld[7] for example described networks that when 
presented with the serum glucose and pump settings at time steps t and t + 1, 
are capable of predicting the serum glucose, and suggesting the pump setting 
at time t + 2. Unfortunately, many theoretical and practical obstacles remain 
since ideally the network used should interpret all data as a continuous stream 
and all measurements must be taken at fixed intervals. Most of these works 
rely upon classical signal processing techniques. 

The problem of insulin-advisory-strategy modelling seems to be less hard 
to tackle than the glucose metabolism identification one. Insulin flow pattern 
and human blood-glucose response are highly time-dependent. In our case, 
measurements are not taken at fixed intervals (called here "periods") even 
though they were performed at fixed time. We suggest using a multi-network 
architecture system, where each neural network is dedicated to one period 
of time. The multi-networks architecture provides an elegant way to resolve 
the time-dependency problem since, training a neural network under these 
conditions amounts to finding a static function of its inputs. 

On these assumptions, it is the belief of the authors that standard back- 
propagation neural networks are sufficiently powerful tools for the problem of 
predicting the insulin doses levels, provided enough complexity of the neural 
model, i.e. enough number of neurons are used in the hidden layer of each 
neural network. The "efficient data learning" concept was applyed to enforce 
the fact that only the best physicians' decisions according to a given quality 
index, are taken in account. One must bear in mind, that the proposed sys- 
tem requires a good initialization scheme at the very first time of operation 
when no previous data are available. 

2    NEURAL-NETWORK ARCHITECTURE 

The goal of this study is to build a neural network model of the empirical 
rules devised by health care teams for choosing the right insulin dosage, with 
neural networks system. The objective is to maintain the BG level at the 
constant value of lg/l. Our database come from unpublished data from 747 
patients under medical pump-treatment. Daily records of the patients BG 
and the insulin level infusion have been collected. There are 10 records per 
24 hours corresponding to 10 fixed measurements times: [hi,..., hw] = [l/i30, 
4/J.OO, 7/i30, 9h00, 12M)0, 13/i30, 16M)0, 19M)0, 20^30, 23MX)]. We suppose 
that 11 records are already available, that is, the patient have been monitored 
for at least 24 hours. The case of the 11 first predictions will be treated in 
detail within a next publication. 

The meal time hours {h3, h5, h8} are distinguished from the 7 remaining 
basal hours. The entire raw data set consists of 25,000 facts. In addition to 
the current and next time BG and insulin dosage, each record includes the 
time of day, the age, the weight(W), the meal contents and the Bmi factor. 
The Bmi factor is defined as Bmi = W/H2 where H is the patient's height. 
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Throughout this paper, if t is the current time (t = hi G {hi,..., hw}), then 
(t + 1) refers to the next canonical time, hi+i with /iio+i = h±. 

Symbol Range Input features 

Gt [-1.+1] The current blood-glucose level 
Gt-i [-1.+1] The (t — 1) blood-glucose level 
Gt-2 [-1.+1] The (t — 2) blood-glucose level 
S [0,+l] Extra sugar (during hypoglycemia) 
I [0,+l] Extra (flash) injection (during hyperglycemias) 
Gt-io [-1.+1] The previous day blood-glucose level 
Gt-g [-1.+1] The resulted previous day blood-glucose level 
Dnt-xo [-1.+1] The previous-day pre-normalized dose 
Dt-io [-1.+1] The previous day non-normalized dose 
Dm [-1.+1] The mean of Basal injection since t = 1 
Dt-i [-1.+1] The previous time (t — 1) injection 
Dt-2 t-1,+1] The injection at time (t — 2) 

Table 1. Input features. 

The model has been decomposed into 10 backpropagation neural networks 
[8] parts, named nn^. Each neural networks have been trained separately 
using data associated to each canonical hours. Only cases in which insulin 
prescriptions were efficient were included into each training set. Efficient 
learning data regroups the subset of the learning facts that have induced a 
normal BG level, i.e. 0.9g/l < BG < 1.3g/l. Only the 10-th and above facts 
for each patient are taken into account because the model need the previous 
day values. The number of features (12) sets the size of the networks input 
layer (see Tab lei) 

Let a(t) (called the a-factor), be the linear regression coefficient between 
the basal rate vector [D(l), ... , D(t)] and the corresponding standard basal- 
rates vector [£>std(l), ..., Dstd(t)}. The Z?8td(ftj) (i G {1, 2, 4, 6, 7, 9, 
10}), are standard b«sal-rates on time t i.e. Ds^(t) = Ds^(hi = t). In this 
paper £>std(fy) = [0,8, 0.8, 1.2, 1.6, 1.6, 1.3, 1.3]. These are provided by 
diabetologists. The following formula was used to evaluate the a-factor, 

"(*) =    E (Dstd(i)D(i))   I    E (Dstd(*))2 

i=l, ... ,t *=1, ... ,t 

The injection dose D{t) was normalized using the coefficient a(t) yielding 
Dn(t.) = D(t) — a(t) .Ds^(t). This pre-normalization was only applied to 
the previous-day injections D(t — 10). 

The output is the current insulin injection rate Do, normalized to the 
range [—1,+1]. The most successful backpropagation network architecture 
had 12 inputs, 4 cells in the hidden layer and one element in the output layer 
(12 : 4 : 1). Then the entire system is composed of 10 X (12 : 4 : 1) networks. 
The trained networks have been tested using unseen patterns consisting of 
about one-half of the entire data set. 
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Neural        Canonical Mean Errors 
Network hours selected data raw data 

nnfti 01ft30 0.1540 0.1594 
nnfe2 04/i00 0.1152 0.1219 
nn/,3 07/i30 0.1085 0.1046 
nnM 09M)0 0.0892 0.1066 
nnh5 12/i00 0.0945 0.1273 
nnft,6 13ft30 0.0713 0.0886 
nnhr I6/1OO 0.0641 0.0841 
nn/18 19/i00 0.0966 0.1158 
nnM 20/i30 0.0896 0.1005 
nnM0 23/i00 0.0616 0.0674 

Table 2. Each row exhibits the performance of neural networks nnhi, i = 1,..., 10 
associated to canonical hours hi. Relatively small errors in the third column show 
that the networks generalize well on unseen data. The fourth column displays rel- 
ative-errors when the system is tested against non-Hltered data. Error rates are 
similar to those of the previous case. Larger error rates during the early hours of 
the day suggests using neural networks with larger hidden layer for these periods 
in order to handle the increased complexity of the model. 

3 RESULTS 

Results on the test set are expressed in terms of mean of relative error 

e-rn. = Ylk \(Do - Do) / -^ol) where DQ is the network's output for the 
input pattern k and DQ is the desired output. The training were stopped af- 
ter 10000 presentations (learning rate = 0.0002) and good performances 
were obtained as observed in Table 2. 

Each row of the table corresponds to a neural network specialized in the 
prescription of insulin dose at a specific canonical hour. The second column 
shows networks' performances in generalization when only efficient facts were 
selected. The errors in the third column were obtained using raw unfiltered 
data. As could be expected, the test conducted with the efficient facts were, 
better than those with the raw data. The relatively small differences between 
these two tests clearly shows that the trained networks have successfully 
extracted the actual rules devised by the diabetologists. 

4 CONCLUSIONS 

Pump therapy is for people who have insulin-dependent diabetes, who are 
able to monitor their blood glucose values and operate the pump themselves. 
But, deciding the amount for insulin injection is very difficult. We proposed a 
neural network-based system that predicts the appropriate next insulin doses 
level for an insulin-pump, given short historical discontinuous-measurements 
of BG levels and insulin doses. 
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Fig. 2. Typical DEBNET predictions (dashed lines) vs actual insulin injected (solid 
lines.) Outputs from the second day only have been plotted. 

Our approach allowed us to model the empirical rules devised by health- 
care teams when computing the insulin level infusion of an insulin-pump 
device. Neural networks trained with efficient data provided good accuracy 
in predicting appropriate insulin levels. The behavior learned from these facts 
extrapolates very well for unseen data. 

Results suggest that: 

• finding a viable control strategy in the particular case of blood-glucose 
level control is feasible even if the available observed data is discontinuous 
in nature and sampled irregularly over time; in the past, intravenous 
glucose controlled insulin infusion was only achieved by using continuous 
BG measurements; 

• standard back-propagation neural networks are powerful enough to model 
the heuristic rules devised by experienced health-care team when to de- 
cide the amount of insulin doses applied at each specific circumstances; 

• the normal body insulin release seems to be a strongly time-dependant 
process, with a varying time-constant depending on the period of the 
clay; this time-constant roughly ranges from 10 to 15 minutes around 
meal-time and more than 3 hours during the sleeping period of the night; 

• the multi-networks approach appears to be the most natural way to 
handle the variable time-constant problem since the number of different 
processes to be modelled remains low; 

• training back-propagation neural networks with efficient-data seems to 
enhance generalization performances. 
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A software prototype called DEBNET was put under clinical test. Pre- 
liminary reports are very encouraging [9] since the health-care team almost 
never had to intervene during its operation (see Figure 2). In this version 
DEBNET used a simple algorithm to initialize the system Due to the lack of 
space we will enter in the details of the implemented initialization scheme 
within a next publication. A portable pump controlled by DEBNET is also 
being designed. Such device (insulin-pump + DEBNET ) would help hospi- 
tals cut costs by providing faster and accurate prescriptions with fewer costly 

specialists. 
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Abstract 

In this paper we propose a multimodal perceptron tree 
(MMPT) neural network to segment magnetic resonance (MR) im- 
ages. The architecture consists of simple networks - neurons, 
hierarchically connected in a tree structure. The latter is built up 
during training by the adopted depth-first searching technique aug- 
mented with choosing the best hyperplane split of the feature sub- 
space at each tree node. This neural network effectively partitions 
the feature space into subregions and each terminal subregion is 
assigned to a class label depending on the data routed to it. As the 
tree grows, the number of training data for each node decreases, 
which results in less weight update epochs and decreases the time 
consumption. 

The MMPT performance is compared to that of a multilayered 
perceptron (MLP). The networks are applied to brain MR image 
segmentation into gray matter/white matter regions. 

1.  INTRODUCTION 

If the analysis of brain MR images could be automated, it would provide ac- 
curate and reproducible results as well as relief human experts from time consum- 
ing tasks [1]. MRI has been exploited for noninvasive diagnosis as well as for tis- 
sue identification for surgical planing and for interpreting other images such as 
positron emission tomography. In order to apply MR, we often have to introduce 
a reasonable segmentation technique. Neural networks may provide us with superi- 
or solutions for the pattern classification of medical images, than the conventional 
methods. Neural-network-based segmentation of MR images according to the tis- 
sue characteristics has significant meaning for neoplasms diagnosis, 3D display of 
human organs during surgery simulation and MR - based deconvolution of PET 
images [2, 3]. 

In this paper we combine the concept of decision tree classifiers, presented 
in [4, 5] with the popular network structure of MLP. The basic idea behind the tree 
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classifiers is to organize the class assignment into a tree search, which is guided by 
properly chosen questions based on the feature vector. In the conventional systems 
the node questions are represented as internal nodes of the tree and the class labels - 
as leaves. In case of many feature vectors, a decision tree will check one attribute 
at a time which means restricted orientation of hyperplanes. This can also cause 
the growth of unreasonably large trees [6]. The proposed neurons consider a com- 
bination of feature attributes thus greatly simplifying the tree structure. 

The MLP has been successfully applied in many image processing tasks. 
However, it still has drawbacks which make the construction of MLP more of an 
art than science. The MMPT attempts to eliminate some of the MLP's shortcom- 
ings, e.g. the need to specify the architecture in beforehand, choice of activation 
function in order to speed up the convergence and to avoid the notorious local min- 
ima [7, 8]. 

Other related method exists in the field of speech processing [9, 10]. That 
method is discussed in Section 4 of this paper in comparison to the proposed meth- 

od. 

2. MMPT LEARNING ALGORITHM 

The MMPT is grown through training and therefore the number of units 
need not be specified in beforehand. At every tree node, a combination of feature 
vectors is used to form a splitting hyperplane. 

input 

neuron 

input 

output 

input 

output 

a) b) 
Fig.l  Multimodal Perceptron Tree neural network architecture: a) architecture of a neu- 

ron as a part of MWPT network; b) example of a full grown 3-way MWPT 

The tree architecture is shown in Fig.l. A neuron consists of a simple net- 
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work with no hidden units as illustrated in Fig.la. A matured tree for 3-way clas- 
sification is shown in Fig.lb. The squares are leaves, i.e. classes to which the data 
belong after the training is completed. 

The growing procedure starts with training the root node - the #1 in Fig.lb, 
over all training data. The classes are labeled using binary vectors and the data are 
classified according to a winner-take-all rule: 

sample 6   class i if f(wj.x) > f(wj.x), Vj*i ^ 

where w is the weight vector, x represents the input vector and f is the activation 
function. After training the nodal neural network, the winner-take-all divides the 
feature space into three convex regions. The training data in each region is as- 
signed to a different child node. If the data represent only one class, then the node 
turns into a leaf signifying this particular class. In case of handling misclassified 
data, the training/splitting procedure takes place at the particular child node thus de- 
creasing the number of training exemplars for the next layer of child nodes. In this 
way the training data set is divided and subdivided in recursive fashion until the leaf 
nodes representing the actual classes are reached. Therefore the number of training 
examples decreases with increasing of the tree depth. This leads to reduced time 
consumption compared to MLP because of the MLP's moving target problem, i.e. 
the weights are changing at once and each hidden unit sees a continuously changing 
environment. Instead of moving quickly to assume useful roles in the problem so- 
lution, the hidden units engage in many wasted motions. 

The neurons apply a sigmoid activation function as, 

f = _      1 
1 + e"x (2) 

with the output range (0, 1 ) and are trained independently of each other by a gradi- 
ent decent method with respect to the least mean square error (L2 norm) 

Ei = (tj - yi )
2, (3) 

where tj is the required output for pattern i and yj is the actual neuron output. The 

weights are adjusted according to: 

wf+1 = w? -n yi ( 1 - yi) (ti - yi) xj + oc ( w? - wf"1 ) (4) 

0 < T) < 1 and 0 < oc < 1, 

where wn is the weight from the i - th input xj to the neuron at iteration n, r) is 

the training coefficient and a is so called momentum coefficient. The weight up- 
date procedure will be stopped when the average error does not decrease beyond a 
small threshold level over some time span. 
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The momentum term ( a ( wi " wi )) is added to speed up the conver- 
gence. The training procedure stops if no further splitting is necessary. During 
testing the data are fed into the root neuron and directed according to (1) to the re- 
spective child-neurons. The ideal response of the perceptrons will be 0 and 1, how- 
ever, in practice, we set the reaction registration thresholds to 0.1 and 0.9. 

This is a description of a general tree growing algorithm. The characteris- 
tics which set off the proposed algorithm are the depth-first searching technique and 
the estimation of the bets fit neuron to split the feature subspace for each particular 
node. The chosen searching technique is guaranteed to find deep solutions, as it 
searches every branch to the final classifying split in vertical fashion, which is im- 
portant in case of binary or small-class (three- to four-way branching) trees and also 
in cases of highly non-linear separable problems as the intertwined spirals [11]. 
However, regardless of the type of searching technique, a randomly chosen percep- 
tron may offer poor division of the feature space, thus providing its child-nodes 
with input information, which is inseparable or which will prolong and make the 
solution finding complicated [12]. This is the reason why we introduce a measure 
for estimating the most proper neuron for every decision making node in the tree. 

The examination procedure includes the training of the node until receiving 
its output. The input data set includes one or more input values per sample 
(Fig.2a), which are the outputs of the parent-nodes for this particular sample. This 
is valid only for child-nodes, as the root node is taken at random. We then form 
the function 

m-1 n-1 

5-E X (ys - y) (E0,s - E0) 
o=0 s=0 (5), 

where ys is the output for particular input, v is averaged value over all samples, 

E0 s is the error for sample s at output o, Eo is the averaged value over all sam- 

ples, m is the number of outputs, and n is the total number of training samples. 
The purpose is to obtain a node with maximum £, which will mean maximum 
magnitude of correlation between a unit's value and the residual error E0, estimated 

at output o. Instead of creating and examining node by node we set a pool of can- 
didates with different initial weights and examine the whole pool for the best fit 
candidate according to the described criterion. When such neuron is found, it is 
adopted in the network architecture. With deepening of the tree, each node takes 
one more input, i.e. the input space dimensions are increased, which makes the 
task of classification easier [13]. A flowchart of the algorithm is shown in 
Fig.2b. In Table 1 we have shown the results for the intertwined spirals task for 
the proposed method and the one presented in [9, 10]. No pruning was applied in 
both cases. With this result it can be concluded that the proposed method demon- 
strates better classification abilities and therefore the introduced measure and the ap- 
plied searching technique present better fit method for the purposes of image clas- 
sification. 
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initializing the 
root node 

splitting the fea- 
ture space 

choosing child-node according to 
(4.11) among predetermined number of 

candidates 

splitting the feature 
subspace 

end yes 

a) b) 

Fig. 2 The tree growing algorithm: a) scheme for applying the measure for 
choosing best fit neuron; b) flowchart of the method 

TABLE 1 PERFORMANCE COMPARISON BETWEEN MMPT AND 
STATE-OF-ART METHOD ON INTERTWINED SPIRALS TASK 

MMPT Zrida, Mammone [9, 10] 

correct classification 88% 63% 

3.  SEGMENTATION  RESULTS 

The brain MR image to be segmented is shown in Fig.3a. It is 160 x 160 
pixels, 256 shades of gray scale image. The information contained in this image 
can be divided basically into three classes - the cerebro-spinal fluid (CSF), muscles, 
gray/white matter.  The aim is to recognize the white matter and gray matter re- 
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gions, thus the result can be used as a priori knowledge in the processing of posi- 
tron emission tomography (PET) images [3]. 

a) b) 
Fig.3 MR image to be segmented: a) MRI gray scale 160x160 pixel; b) parti- 

tioned image into 20x20 blocks 

The procedure for classification is divided into two steps - in Step 1, we sin- 
gle out the muscles and CSF portion as unimportant information. In order to 
proceed with Step 1 we partition the image as shown in Fig.3b, which leaves us 
with 400 blocks to classify as non-brain tissue, border blocks, i.e. containing brain 
tissue as well as non-brain tissue, and gray/white blocks. We divide the brain tis- 
sue in this way, since the data require different input feature vectors to be classified 

correctly by the neural network. 
Step 2 is responsible for the pixel-by-pixel classification into the white 

matter/gray matter regions. This step is also applied to MMPT network. 
The drawback of having two steps is the requirement for more than 97% 

correct classification at least in Step 1. On the other hand such division of the pro- 
cess allows precise classification of the meaningful information - the brain tissue. 

The described process is summarized in Fig.4, where the ellipsoids signify 
the data subject to further processing, and the rectangles contain the final result to 

be achieved. . . 
MMPT network with 5 inputs and 3 outputs was implemented in Mep i. 

The input feature vectors were determined as follows: 
-averaged pixel value over a block { avrg = Zb b p(b), p(b) is the probability 

density of pixel value b }; 
-variance of a block { vrnc = Xb (b - avrg)2 p(b)}; 

-skewness of a block { skew = [Eb (b - avrg)3] / vrnc3/2 }; 
-Laplacian operator of a block { calculated in 8-neighbourhood according to 

3x3 mask }; 
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-maximum pixel value for the block. 
The results for MMPT and MLP are given in Table 2 and the resultant image is 
shown in Fig.5a. 

gray 
matter 

muscles, 
CSV, back- 

ground 

(gray/white "N 
groups    J 

CSF, back- 
ground 

white 
matter 

gray 
matter 

white 
matter 

Fig.4 Structure of the segmentation process 

a) b) 

Fig.5 Results of the two step segmentation procedure: a) Stepl - classification of the 
groups; b) Step 2 - classification according to the pixel attributes 

In Step 2 we implement two MMPTs - one with 4-inputs-3-outputs for the 
processing of the border blocks and 3-inputs-2-outputs for the gray/white blocks. 
The inputs for the border blocks are: 

-pixel value; 
-difference from the highest pixel in the block; 
-difference from the highest neighbor within distance 1; 
-difference from the next to the highest pixel in the block. 

Three outputs for the unimportant information, gray matter pixels and white matter 
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ones. In case of gray/white blocks we have: 
-pixel value; 
-difference from the highest pixel in the block; 
-difference from the highest neighbor within distance 1; 

as input feature vectors as well as 2 outputs for gray matter and white matter class- 
es. 

TABLE 2 PERFORMANCE COMPARISON BETWEEN MMPT AND MLP 

% of correct 
classification 

computational complexity 
(weight updates) 

Classification MMPT MLP MMPT MLP 

Step 1 98.9% 98.5% 511 455 1512 235 

Step 2 - 
border 
blocks 

90.5% 88% 812 500 2 050 345 

Step 2 - 
gray/white 

blocks 
89% 85.5% 857 140 1 523 010 

The results are given in Table 2 and the final segmented image is shown in 
Fig.5b. The same steps were applied to MLP. The results of MLP segmentation 
are also presented in Table 2. Obviously the performance of the MLP is slightly 
worse than that of MMPT. But the practical advantage of MMPT network to MLP 
is in the dramatically decreased computational cost, which we measure as weight 
updates required for training. The data is shown in Table 2 and the difference is 
evaluated in terms of times. 

4.   DISCUSSION 

Although based on decision trees, MMPT does not inherit the major short- 
comings ofthat approach. The proposed architecture offers elegant way of splitting 
the feature space by hyperplanes not necessarily orthogonal to the axes. A basic 
feature of the decision trees is that they work with symbolic representation of the 
input information, which is not suitable for many applications. By applying neu- 
ral networks, grown as decision tree we allow the decision tree to deal with numeri- 
cally expressed information and we incorporate the ability of the decision tree to in- 
terpret if-then rules into the network. The latter is trained based on simple delta- 
rule, rather than exhaustive search throughout the whole feature set based on calcu- 
lation of an information criterion. 

The presented in [9, 10] method is based on breadth-first searching tech- 
nique, which builds the tree in horizontal fashion, i.e. level after level; one short- 
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coming that, it is not guaranteed to find solutions deep into the tree hierarchy and 
therefore is unsuitable for application in binary or small-class tree cases. The tech- 
nique also does not perform any estimation of the neuron fitness prior to adopting 
this node into the tree hierarchy. The authors rely on post-building hyperplane per- 
turbance strategy and tree pruning. The proposed method - MMPT - incorporates 
depth-first search, i.e. every branch is searched to the final classifying split in verti- 
cal fashion. With this approach we also propose an estimation measure for the 
best neuron to split the feature subspace. The depth-first search, combined with the 
introduced measure ensures high correct classification rates even for difficult tasks, 
like the intertwined spiral problem. 

The proposed method has been developed for binary trees initially [14]. In 
this case the procedure takes four processing steps. The MMPT adopts the natural 
hierarchy of the process (Fig.4) as it allows for three-class segmentation. This re- 
duces the value of the total error, made by the hierarchical processing steps. Here 
we also introduce more effective measure for estimation of the best fit neuron. 

A question that might arise concerns the way to choose the proper input fea- 
ture vectors for the training. For the discussed examples they were chosen as best 
combinations out of a set of combinations - combinations of 9 candidates per clas- 
sification were checked. This was done by cut and try technique. However, if this 
procedure is done in the light of class-entropy criterion, the process will be more 
accurate, systematic and speedy [15]. Another option for improving the algorithm 
is to include not only sigmoid but also Gaussian units. From experiments with 
artificial patterns we have concluded that Gaussian activation function could de- 
crease the computational cost and better the performance. 

5.     CONCLUSION 

In this work we apply the MMPT neural network for image segmentation 
problems. The proposed network training algorithm combines depth-first search 
with the introduced best fit measure, which ensures high correct classification re- 
sults even when the problem is highly is non-linearly separable. Although it is 
based on decision tree growing, the MMPT does not resort to the exhaustive search 
techniques as used in decision trees and offers elegant way of splitting the input 
feature space due to the freedom in choosing the hyperplane orientation. 

The obtained classification rate is comparable to the performance of MLP, 
but the proposed MMPT has some additional advantages: 

- building through training; 
- lower computational and structural complexity; 
- easier hardware implementation due to smaller number of connections. 
However the following remarks should be noted: 
- implementing different activation functions in order to reduce the computa- 

tional complexity and cost; 
- implementation of more reliable method for choosing the proper input fea- 

ture vectors. 

197 



REFERENCES 

[I] Sammouda R., Niki N., Nishitani H., "Segmentation of Brain MR Im- 
ages Based on Neural Networks", IEICE Trans, on Inf.&Syst, vol. E79-D, 
No.4, April, 1996. 

[2] Sase M., Kinoshita N, Kosugi Y., "A Neural Network for Fusing the 
MR Information into PET Images to Improve Spatial Resolution", Proc. IEEE 
Int. Conf. on Image Processing, pp 908-911, 1994. 

[3] Kosugi Y., Sase M., Suganami Y. et al., "Dissolution of Particular Vo- 
lume Effect in PET by an Inversion Technique with the MR-embedded Neural Net- 
work Model", Proc. Brain'95, S35, 1995. 

[4] Quinlan J.R., "Learning efficient classification procedures and their ap- 
plication to chess-end games, in ( eds. R.S. Michalski et al.), Machine Learn- 
ing, Morgan Kaufmann, 1983. 

[5] Pao Y.H., Adaptive Pattern Recognition and Neural Net- 
works, Addison-Wesley Publishing Company, 1989. 

[6] Forsyth R., Rada R., Machine Learning Applications in Ex- 
pert Systems and Information Retrieval, Ellis Horwood Ltd., 1986. 

[7] Fausett L., Fundamentals of Neural Networks - Architec- 
tures, Algorithms, and Applications, Prentice Hall, 1994. 

[8] Böse N.K., Liang P., Neural Network Fundamentals with 
Graphs, Algorithms, and Applications, McGraw Hill Inc., 1996. 

[9] J. E. Stromberg, J. Zrida, A. Isaksson, "Neural Trees: Usin Neural Trees 
in a Tree Classifier Structure", IEEE ICASSP - 91, Toronto, Canada 1991, pp 
137-140 

[10] A. Sankar, R. Mammone, "Growing and pruning neural tree networks", 
IEEE Trans, on Computers, vol. 42, No 3, March 1993, pp 291-299 

[II] K. Lang, M. Witbrock, "Learning to tell two spirals apart", Proc. 
Connectionist Models Summer School, 1988, pp 52-59 

[12] R. Mammone (ed), Artificial NNs for speech and vision, 
Chapman & Hall, 1994 

[13] N. Nilsson, The mathematical foundations of learning machines, CA: 
Morgan Kanfmann, 1990 

[14] I. Valova, Y. Kosugi, "Brain MR Image Segmentation Implemented on 
Neural Dichotomizer", Collection of Papers of the First International 
Workshop on Advanced Signal Processing for Medical MRI-MRS 
(ASPM/MRI-MRS), Xanthi, Greece, part 3, pp 1-4, 1997 

[15] Kosugi Y., Suganami Y. et al, "CCE-Based Index Selection for Neuro 
Assisted MR-Image Segmentation," IEEE International Conference on 
Image Processing, vol.11, pp 249-252, September 1996, Lausanne, Switzer- 
land. 

198 



TEXTURE ANALYSIS AND ARTIFICIAL 
NEURAL NETWORK FOR DETECTION OF 
CLUSTERED MICROCALCIFICATIONS ON 

MAMMOGRAMS 

Jong Kook Kim, Jeong Mi Park,* Koun Sik Song,* and Hyun Wook Park 
Department of Information and Communication Engineering, 

Korea Advanced Institute of Science and Technology, 
207-43, Cheongryangri, Dongdaemungu, Seoul 130-012, Korea 

♦Department of Diagnostic Radiology, 
Asan Medical Center, University of Ulsan College of Medicine, 

388-1, Poongnap-Dong, Songpagu, Seoul 138-040, Korea 

Abstract 

Clustered microcalcifications on X-ray mammograms are an 
important sign in the detection of breast cancer. This paper quantitatively 
describes the usefulness of texture analysis methods for the detection of 
clustered microcalcifications on digitized mammograms. Comparative 
studies of texture analysis methods are performed for the proposed 
texture analysis method, called the surrounding region dependence 
method (SRDM), and the conventional texture analysis methods such as 
the spatial gray-level dependence method (SGLDM), the gray-level run 
length method (GLRLM), and the gray-level difference method (GLDM). 
These methods are applied to classify region of interests (ROIs) into 
positive ROIs containing clustered microcalcifications and negative ROIs 
of normal tissues. The database is composed of 72 positive and 100 
negative ROI images, which are selected from digitized mammograms 
with a pixel size of 100 x 100 urn2 and 12 bits per pixel. An ROI is selected 
as an area of 128 x 128 pixels on the digitized mammograms. A three- 
layer backpropagation neural network is employed as a classifier. The 
results of the neural network for texture analysis methods are evaluated 
by the receiver operating-characteristics (ROC) analysis. From the 
viewpoint of the classification accuracy and computational complexity, the 
SRDM is superior to the conventional methods. 
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1. INTRODUCTION 

The early detection of breast cancer is the most important factor for 
reducing breast cancer mortality. It has been empirically recognized that the 
presence of clustered microcalcifications on X-ray mammograms has been 
associated with an important sign in the detection of breast cancer, where 
individual microcalcifications is up to about 0.7 mm in diameter and with an 
average diameter of 0.3 mm [1]. Computer-aided diagnosis (CAD) has been of 
interest to many researchers for the detection of clustered microcalcifications 
on mammograms [2]-[4]. 

In this paper, the usefulness of texture analysis methods is quantitatively 
analyzed for the detection of clustered microcalcifications. The texture 
analysis methods are the surrounding region dependence method (SRDM) 
proposed by authors [5], the spatial gray-level dependence method (SGLDM) 
[6], the gray-level run length method (GLRLM) [7], and the gray-level 
difference method (GLDM) [8]. The three-layer backpropagation neural 
network is employed as a classifier. The results of the neural network for these 
texture analysis methods are evaluated by the receiver-operating 
characteristics (ROC) analysis [9]. The area under the ROC curve, A2, is used 
as a measure of the classification performance. 

2. THE SURROUNDING REGION DEPENDENCE METHOD (SRDM) 

The SRDM is based on the second-order histogram in two surrounding 
regions. Let us consider three rectangular windows centered on a current pixel 
(x,y), as shown in Fig. 1. In Fig. 1, Rj and R2 are the inner surrounding region 
and the outer surrounding region, respectively, and w}, w7, and w3 denote the 
size of each square region. In this study, Wj, w2, and w3 have the values of 3, 5, 
and 7, respectively. A region of interest (RÖI) image is transformed into a 
surrounding region dependence matrix, which is defined as 

M{q) = [a(i,j)],    0 <i <m, 0 <j <n (1) 

where q is a given threshold value, and the values of m and n are the total 
numbers of pixels of regions R{ and R7, respectively. In eq. (1), the element 

a(i,j) is given as 

a(i, j) =# {(x, y)\ cRi (x, y) = / and cRi (x, y)=j, (x, y) e Lx x Ly} (2) 

where # denotes the number of elements in the set, and Lx x Ly is the 2-D 
image space. In eq. (2), the inner count cR (x,y) and the outer count c^ (x,y) 

on the current pixel (x,y) are defined as follows: 
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cR(x,y)=#{(k,l)\(k,l)eRl and[S(x,y)-S(k,l)]> q} (3) 

cR(x,y)=#{(k,l)\(k,l)eR2 and [S(x,y)~ S(k,l)]> q} (4) 

where S(x,y) is the image intensity on the current pixel (x,y). In general, the 
larger the threshold value q is, the more microcalcifications can be missed, 
whereas the smaller the value q is, the more sensitive the random noise effect 
is, so that negative ROIs can be classified as positive. The optimal selection of 
the q value is very important for the classification performance. 

It is evident that the surrounding region dependence matrix M{q) 
contains the textural information of an image. The texture coarseness or 
fineness of an image can be interpreted as the distribution of the element in the 
matrix M(q). Especially, the distribution of elements tends to spread near the 
right and/or the right-lower corner of the matrix for positive ROIs containing 
clustered microcalcifications. From the spread characteristics of the elements 
in the surrounding region dependence matrix, we defined four textural features, 
which were the horizontal weighted sum (HWS), the vertical weighted sum 
(VWS), the diagonal weighted sum (DWS), and the grid weighted sum (GWS) 

[5]. 

W 

«; 

WSSBB 

Kr) 

Fig. 1. Configuration of the surrounding regions on the current pixel {x,y). 

3. EXPERIMENTAL RESULTS 

3.1. ROI Selection 

For comparison study of the texture analysis methods, 172 ROIs, with 
each ROI having 128 x 128 pixels, were selected from our database of 
digitized mammograms, which were digitized with a Lumisys laser film 
scanner with a pixel size of 100 x 100 /urn2 and 12 bits per pixel. Among the 
selected 172 ROIs, 72 ROIs were positive, containing the clustered 
microcalcifications, and 100 ROIs were negative, containing only normal 
tissues. Positive ROIs included clustered microcalcifications in dense regions 
and/or in glandular tissues. All of the clustered microcalcifications in positive 
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ROIs were verified by an expert mammographer based on visual criteria and 
biopsy results. The clustered microcalcifications are defined as containing 
three or more microcalcifications within an ROI (i.e., 1.28 x 1.28 cm2). 
Negative ROIs include various breast areas involving ducts, breast boundaries, 
Cooper's ligaments, blood vessels, film artifacts, a single large calcification 
with benign characteristics, and/or glandular tissues. 

3.2. Conventional Texture Analysis Methods 

Three conventional texture analysis methods were evaluated with the 
same database, and all the textural features were obtained from 12 bits gray- 
level images. 

3.2.1. Spatial Gray-Level Dependence Method (SGLDM) 

The SGLDM [6] is based on the probability, p(i,j\d, 9), that two pixels, 
which are located with intersample spacing distance d and angleö, have gray 
level /' and gray level j. The thirteen textural features [6][10] are measured 
from the probability matrix, which are energy, entropy, correlation, local 
homogeneity, inertia, sum average, sum variance, sum entropy, difference 
average, difference variance, difference entropy, and information measure of 
correlation!,2. In this study, we computed four spatial gray-level dependence 
matrices according to four different directions (# = 0°, 45°, 90°, and 135°) 
with a given distance d, and calculated textural features for each matrix. 

3.2.2. Gray-Level Run Length Method (GLRLM) 

The GLRLM [7] is based on the number of times, g(i,j\0), that the 
picture contains run lengthy of gray level /' in the given direction 9. Four gray 
level run length matrices are computed according to four different directions 
(6> = 0°, 45°, 90°, and 135°). The five textural features [7] are measured from 
each matrix, which are short runs emphasis, long runs emphasis, gray level 
nonuniformity, run length nonuniformity, and run percentage. 

3.2.3. Gray-Level Difference Method (GLDM) 

The GLDM [8] is based on the probability of occurrence that two pixels 
separated by a specific displacement vector Jhave a given difference. In this 
analysis, four kinds of displacement vectors are considered, such as (0, d), (-d, 
d), (d, 0), (-d, -d), where d is intersample spacing distance. The five textural 
features [8] used in the experiments are contrast, angular second moment, 
entropy, mean, and inverse difference moment. In this study, we computed the 
probability density functions according to four kinds of displacement vectors 
and calculated textural features for each probability density function. 
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3.3. Classifier 

The classification algorithm used in this paper is a three-layer 
backpropagation neural network [11]. A nonlinear sigmoid function with "0" 
and "1" saturation values is used as the activation function for each neuron. In 
the training process, the weights between the neurons are adjusted iteratively 
so that the difference between the output values and the target values is 
minimized. The weight values are updated by iteration as follows: 

Wj, (/ + 1) = Wji (/) + TlSjOi + f\wß (/) - wß (/ - 1)] (5) 

where w.. is the weight value from the z'th toy'th neurons, o. is the /th element 

of the actual output pattern produced by an input pattern, TJ is the learning rate, 
/ is the number of epochs, S. is the error signal, and ju is a momentum 

parameter. In this study, the learning rate TJ and the momentum /j are 0.08 and 
0.7, respectively. To evaluate the network performance during the learning 
process, a global error measure is given as 

(6) 

where o and t are the output value and the target value of neural network for 

the gth input pattern, respectively, and G is the number of training patterns. In 
this study, the learning process is stopped when the RMS error, £RM<^ is less 

than 0.1. 

3.4. Classification Results 

To study on the efficacies of pattern classification by the jack-knife 
method, the 172 ROIs were partitioned arbitrarily into training and test sets, 
i.e., each set consists of 86 ROIs containing 50 negative ROIs and 36 positive 
ROIs. All the textural features were normalized by sample mean and standard 
deviation of training set. The LABROC1 algorithm developed by Metz et al. 
[12] was used to fit the outputs of the neural network obtained by the test set. 
The area under the ROC curve, Az, is used as a measure of the classification 
performance. Optimum number of hidden neurons was analyzed for better Az. 
Also, optimum distance d for the SGLDM and the GLDM, and optimum 
threshold q for the SRDM are analyzed. Figure 2 denotes comparisons of the 
classification performances for texture analysis methods by means of the ROC 
analysis. Figure 3(a) shows the comparison of four ROC curves at the optimal 
performance of each method performed by the jack-knife method. 
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We also studied the classification performance of texture analysis 
methods by using the round-robin method. When there are D sample patterns, 
this procedure trains the classifier with D-l samples, then uses the one 
remaining sample as a test sample. Classification is continued in this manner 
until all D samples have been used once as a test sample. Figure 3(b) shows 
the comparative result of the classification performances by the round-robin 
method in terms of the ROC analysis. 

TABLE 1 shows the computation time required to extract features from 
an ROI, with a 128 x 128 pixels and 12 bits per pixel. All programs were 
written in C language and executed on a HP workstation (715, 100 MHz). The 
SGLDM was very time-consuming on 12-bit processing. From the viewpoint 
of classification accuracy and computational complexity, it is apparent that the 
SRDM is superior to the other methods. 

0 3 6 9 12 
Number of hidden neurons 

(a)SRDM 

0    3    6    9    12 
Number of hidden neurons 

(b)SGLDM 

0   3   6   9   12 
Number of hidden neurons 

(c)GLDM 

3    6    9    12 
Number of hidden neurons 

(d)GLRLM 

Fig. 2. Comparisons of the classification performances for texture analysis methods. 
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Fig. 3. (a) The comparison of ROC curves at the optimal performance of each method 
performed by the jack-knife method, (b) The comparison of ROC curves of each 
method performed by the round-robin method. Here TPF and FPF are the true-positive 
fraction and false-positive fraction, respectively, and HN denotes the number of hidden 
neurons. 

TABLE 1. The comparisons of time required to extract features from an ROI, 
with a 128 x 128 pixels and 12 bits per pixel in HP workstation (715, 100 
MHz). 

Texture Analysis Methods Time (seconds) 

SRDM 0.65 
SGLDM 681.6 
GLRLM 8.75 
GLDM 0.3 

4. CONCLUSIONS 

The goal of this work was to find the most useful texture analysis 
method performed in the spatial domain for the detection of clustered 
microcalcifications on mammograms. We performed comparative studies of 
the performances between the SRDM and the three conventional texture 
analysis methods. To evaluate the classification performances, the ROC 
analysis was performed. In spite of the limited number of cases, the 
performances of the SRDM are very promising. Further investigation of the 
effectiveness of the SRDM will be conducted with a large database in order to 
evaluate the SRDM for real clinical use in detecting the clustered 
microcalcifications on mammograms. 
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Abstract 

Our focus is to use neural networks to interactively assist in the ini- 
tial segmentation of medical imagery, through learning the characteris- 
tics of a contour being traced and projecting ahead a trace whose ini- 
tial few pixels were specified. To date, much of this work is done manu- 
ally, since automatic techniques have yielded less than satisfactory results 
due to prerequisite background knowledge and noise in the data. In our 
framework, the expert interacts with the network to provide the context, 
and the network learns the characteristics of the (potentially noisy) local- 
ity and continues the task until further guidance is needed. We present 
here an initial application of this approach to brain MRI's, and we dis- 
cuss our initial evaluation of neurologically-inspired preprocessing on the 
input pixel space. Our research directions are discussed. 

1   INTRODUCTION 

We are focusing on providing real-time learning and trace-ahead capabilities for 
region definition in image analysis tasks. In current medical image analysis, the 
reference standard for region delineation is an expert's manual outlining of the re- 
gion. In certain domains, such as tumor identification, automatic delineation has 
made some modest success (for example [7]). However, as Johnson, et.al. [4], 
note: "Although image segmentation and contour/edge detections have been in- 
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vestigatedfor quite a long time, there is still no algorithm that can automatically 
find region boundaries perfectly from clinically obtained medical images. There 
are two reasons for this. One is that most of the image segmentation algorithms 
are still noise sensitive. The second reason is that most segmentation tasks require 
certain background knowledge about the region(s) of interest." 

Our model here is that a human expert sets down the initial several pixels of 
an image boundary, and a neural network continues the task by learning the local 
landscape and continuing through similar image territory as originally identified. 
One characteristic of neural nets is an adaptability to noise, and thus if the initial 
image territory is noisy, the network could learn to navigate through it, addressing 
the first concern above. In addressing the second concern, we note that hole-scene 
analysis, a straightforward task for a human expert, has proved exceedingly diffi- 
cult to automate. The expert/network combination we set forward capitalizes on 
what each does best: the expert to provide global perspective and context, and the 
network to quickly analyze and work through similar local neighborhoods. 

We have focused on neural networks as the learning mechanism due to their 
very general abilities. In earlier studies, we demonstrated their facility in learning 
non-linear region discriminations!!]. 

2   An MRI Application 

Figures 1 and 2 show sagittal sections of MRI data from the National Institute for 
Mental Health (NIMH). This data is from an ongoing morphometric analyses at 
NIMH of the brains in monozygotic twin pairs[2]. Figure 1 shows the raw MRI 
image. Their initial image processing task is to subtract off the non-cerebral ma- 
terial in this image, resulting in Figure 2. They currently do this manually with a 
simple pixel eraser tool. 

*- "„%   '     { 

Figure 1: Raw data: sagittal MRI section 
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Figure 2: Cerebrum only, cleaned manually. (Orientation and contrast levels have 
been standardized, so this will not match exactly to the raw original.) 

3   Neural Networks for Boundary Tracing 

A model of our interaction scenario is illustrated on an enlarged set of pixels, shown 
in Figure 3. The darkest pixels represent a trace of 120 pixels. The first few pixels 
on the left were traced manually with a cursor over the image; that pixel segment 
became the neural nets exemplar to learn its contour, and then project the trace 
along the contour learned. 

Figure 3: Enlargement: Network-traced path through the grey-scale landscape. 

The contour is learned and followed by tracking characteristics of pixels to the 
left, to the right, and on the directed path, as in Figure 4. The neural net evaluates 
possible next pixels on the contour, based on what it has been trained on in the past. 

3.1    Neural Net Design Issues - Output Representations 

Our initial neural network design had one output unit, providing a single value on 
the range [0,1]: a low evaluation indicates a pixel is off to the left of the contour, a 
high evaluation indicates off to the right, and a value near 0.5 indicates the pixel is 
on the desired contour. The network learns an evaluation function that produces a 
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\ "U-m 
Figure 4: A path and its neighbors 

smoothly changing value as a pixel and its neighbors change from left-of-contour 
values, to on-contour values, and then to right-of-contour values. 

An alternative network design we studied also has one output unit, but this unit 
produces a low value for pixels centered on the contour, and a high value for off- 
contour pixels. This style of output is a feature-detector unit, where the output unit 
goes low on recognizing the contour, and stays high in non-contour regions. 

3.2 Neural Net Design Issues - Training 
Our initial experiments demonstrated the smooth-evaluation-function output unit 
works well when following a gradient, or ramp edge (for example, see Figures 3 
and 5) Unfortunately, this is unworkable if the network is trying to learn to follow 
a thin line rather than a gradient. When following a line, the local neighborhoods 
off to the left and right side of the line are similar, and since they are expected 
to produce different outputs, this is no longer a functional form and thus can't be 

learned. 
Exemplars of the contour for training are easy to derive, given an established 

contour in the image. Over the training set, the true extension of the curve for 
several pixels ahead is known, and can be added to the training set. A key issue, 
though, is the generation and spacing of negative exemplars. The set of possible 
extensions considered for each point needs to be looked at in the known training 
set, and appropriate non-contour training values established. 

3.3 Neural Net Design Issues - Input Representations 

There are a variety of options for representing the input pixel space: 

• raw pixel values 

• filtered inputs (Laplacian, Sobel,...) 
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• masks based on neurologically-inspired models (center-surround, directed 
gradient,...) 

Since neural nets can automatically extract high-order moments from the data, it 
may seem best to just feed raw neighborhood pixel data into the network, and let it 
automatically learn its best model. This is the strategy used by the path-following 
system ALVINN [3]. 

However, in our application, efficient learning is also an issue, since one goal 
of our systems is to keep pace with human operators. Appropriate preprocessing 
of inputs should be able to accelerate the contour learning. 

4    Early Results 

Figure 5 illustrates several network-generated traces separating the cerebrum from 
its surrounding tissue. Each was generated in a clockwise direction. The network 
used for this result had a smooth-evaluation-function output and normalized pixel 
value inputs. 

Figure 5: Net traced segments. (Note: this has been contrast enhanced and light- 
ened to better show the traces; the original is a color trace on a full-range grey-scale 
image). 

The initial 25 pixels of trace 3 were used as the training set. The network con- 
tinued tracing ahead until it ran into trouble, in areas of the contour unrepresented 

211 



by the training set. The other traces represent restarts of the network-generated 
tracing (without further training) in new areas of the image. The end of trace 5 
shows an area where the brain boundary is indistinct, and confounded by possi- 
ble ghost structures from the MRI; the network performance is degraded by the 
region's similarity. 

5    Experimental Evaluation of Input Representations 

We performed some initial experiments aimed at verifying the hypothesis that pre- 
processing of inputs speeds learning. The experimental design used 3 inputs spaces 
x 2 outputs x 2 tasks. The speed of learning was quantified by the time taken to 
reach an RMS error of 0.1 from the target values 

The three input representations consisted of the raw pixel values and two neu- 
rologically inspired models, illustrated here in Figure 6. The center-surround filter 

raw 
pixel 

values 

center-surround 

oriented 
gradient 

+1 

-1 -1 -1 

-1 +9 -1 

-1 -1 -1 

■> 

Figure 6: Input filters. 

is based on early retinal processing, while the oriented gradient represents an ori- 
ented filter, such as those in the complex cells. These three filters evaluate to +1 
when over a constant area. 

The two output spaces were those discussed above: the SEV (smooth-evaluation- 
function), and the FD (feature-detector). 

The two tasks were 1) edge following and 2) line following. A basic graphic 
was generated to minimize confounding influences of noise and texture in real im- 
ages, shown here in Figure 7. 

Figure 7: Line and Gradient test figures. 
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The neural network topology consisted of one input layer with five inputs, pre- 
processed as discussed above; there were 10 hidden units and one output unit (ei- 
ther SEV or FD). Other parameters held constant across the runs were: the initial 
training segment used; the pseudo-random network initialization; and the learning 
and momentum rates. 

5.1    Basic Results 

The following table summarizes the full set if initial results: 

SEV- 
Edge Task 

SEV- 
Line Task 

FD- 
Edge Task 

FD- 
Line Task 

Raw Pixels traces well; 
learns very fast 

X traces well traces ok 

Center- 
Surround 

traces well; 
learns fast 

X traces well; 
learns fast 

traces well 

Oriented 
Gradient 

traces well X traces well; 
learns fast 

traces well; 
learns fastest 

Tab7e 1: Summary of Initial Results 

In one specific case, the SEV output with raw pixel inputs on the edge-following 
task was the fastest learning system, reaching its learning objective in 200 epochs. 
With the other two input representations, several thousand training epochs were 
required. The drawback of the SEV output model is that it works only on edges, 
however, and fails miserably when learning to follow a line. 

With the FD output model, both tasks could be learned well. For the edge- 
following task, the center-surround and oriented-gradient filters both reached their 
learning criteria in 100 epochs vs. 800 epochs for raw pixel inputs. Equivalent 
improvements were evident for the line-following task. 

It is interesting to note that the SEV outputs with raw pixel inputs was the 
fastest learning, but most specific combination tested. In a way, they are custom 
fit for each other. On an edge, the pixels on one side will all have low values and 
high values on the other; it should be easy to learn a smooth mapping onto [0,1] in 
this case. 

Using the FD output model, the network could learn both tasks, and in this case 
the preprocessed inputs yielded faster learning. This neurologically-inspiredcom- 
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bination was a more general learning mechanism, even though somewhat slower 
in learning overall. 

6   Research Directions 

We are continuing to study various architectures appropriate for the task. An addi- 
tional benefit from the feature-detector style output is a quantification of a "confu- 
sion" measure (i.e. output neither high nor low), for when the network needs to fall 
back to the human expert for intervention. The ability to know when the network 
is outside of its domain of expertise is a key implementation detail when adding 
such automated assistance onto existing tracing tools. 

The traces of Figure 5 were generated using a very local 5-pixel neighborhood 
in searching ahead. This works better in a relatively noise-free domain, such as 
the high-resolution photography. However, when noise can interrupt a contour, 
the network must have a larger perspective to continue past the noise. Some other 
filters we plan to try are line-extension fields, analogous to those recently identified 
in complex cells. 

Additionally, there are many basic engineering decisions in selecting and/or 
appropriately weighting training data, when many neighborhoods along the con- 
tour are redundant, and a few key cases capture the essence of the contour in its 
overall environment. 

This tracing model shows promise. On straightforward contours, with 20 ini- 
tial pixels of training data, contours can be followed continuously for hundreds of 
pixels. What remains to be measured is how well this squares with a ground-truth 
of an expert's delineation, and over how complex a landscape a network can be 
adequately trained. 

A further extension of this work is into contour identification across the 3D vol- 
ume composed of many parallel slices. We plan to explore contour extension on 
adjacent layers, without further training. And when slices are sufficiently well reg- 
istered, several traced layers could analogously be used to propagate the contour 
identification to succeeding layers. 
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ABSTRACT 

This paper explores the potential for the application of neurocomputing tech- 
nology to the domain of post-operative liver transplant monitoring. The in- 
vestigation compares a neural network model with two classical statistical 
techniques using biochemical information obtained from a set of liver trans- 
plant patients. Each approach combines the results of a number of liver 
function tests to predict the presence of allograft rejection. Each system is 
assessed, relative to the clinical gold standard, in terms of its overall accu- 
racy and degree of advance warning offered. Applying non-linear methods 
does offer an advantage over the traditional linear techniques. The underly- 
ing structure of the data set has also been determined using k-means cluster 
analysis. This analysis suggests important directions for future investigation 
including the use of temporal information. Preliminary results of incorporat- 
ing this temporal information are also presented. 

INTRODUCTION 

Transplantation of the human liver is currently the only viable therapeutic 
technique that can be applied to patients suffering from end stage liver failure. 
This procedure, while having advanced a great deal since its inception in the 
early 1980s, still has a great many risks associated with it. 

Liver transplant patients must be maintained on immunosuppressive drug 
therapy. This deliberately inhibits their immune system from detecting and 
destroying their new liver. 

Substantial advances in the transplantation arena, to date, have involved 
the improved understanding of the graft rejection process and the develop- 
ment of more specific immunosuppressive drugs. While the improvements 
in the available drugs have allowed better control of rejection, the drugs are 
still far from perfect. In particular these drugs are still among the most toxic 
prescribed to any population of patients. 

Liver transplant patients are especially difficult to manage since their 
absorption / metabolism of the immunosuppressive drugs is affected by vari- 
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ations in the function of their new liver [1, 2]. This unpredictability leads 
to difficulties in selecting the optimum dose of drug required to protect the 
patient from rejection and minimise the risk from adverse side effects associ- 
ated with over immunosuppression. This requires the clinical staff to monitor 
the patient frequently and make adjustments to their drug regime based on 
information gleaned from a number of biochemical and haematological tests. 
These tests include liver function tests (LFTs) and blood cell type/count 
analyses designed to indicate whether the patients immune system is invok- 
ing some response (either fighting infection or rejecting the new liver). More 
subjective, clinical, indicators include the general condition of the patient 
and their speed of recovery from surgery. 

Many of the modifications to the drug therapy are made in response to 
suspected or confirmed rejection of the liver. The presence of a rejection 
process may not be obvious from the available biochemical data until the 
rejection episode is relatively well advanced. Thus, dose changes may be 
relatively late and considerable cellular damage may already have occurred. 

The risk of rejection is at its greatest in the initial period following trans- 
plantation. At this early stage, the clinical staff are concerned primarily with 
preventing graft rejection and they maintain the patient on a higher level of 
immunosuppression. Consequently, adverse side effects are most common 
at this time. This initial concern with the avoidance of rejection has moti- 
vated our research to focus on predicting impending rejection at an earlier 
stage. This task forms an integral part of the final goal of assisting with the 
determination, day to day, of the appropriate dose of immunosuppression. 

The primary objective of this study has been to explore the feasibility 
of using neurocomputing to assist with post-operative monitoring of liver 
transplant patients. Applications include categorising the types of risk that 
can affect these patients and using dynamically acquired and historical data 
to assess the impact that such risks will have on their short and long term 
management. 

Other researchers [3] have explored the use of connectionist techniques in 
this domain but have used the technology in a static mode which predicts 
long term graft survival based on pre-operative and early post-operative data. 
In our application, post-operative, on-line, data is analysed as and when it 
becomes available. This research explores the niche for increasing the degree 
of advance warning of impending rejection available to the clinical staff so 
that pre-emptive modifications to the immunosuppressive drug therapy may 
be made. 

In this paper we compare three different classification systems in the per- 
formance of this type of task: logistic regression (LR), linear discriminant 
analysis (LDA) and multi layer perceptrons (MLP). The objective has been 
to determine the degree of advantage, relative to the well known statistical 
techniques, offered by the neurocomputing approach. 

Each of these systems were designed to take the LFT results as input and 
yield, as output, a measure of the risk of rejection. The performance of each 
system was evaluated in terms of two criteria: 
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Biochemical Test Information 

Test 
Name Class 

Ref. 
Range Units 

Half 
Life 

GST 
ALP 
ALT 
BILI 

Liver Enzyme 
Liver Enzyme 
Liver Enzyme 
Liver Excretion 

<10 
30-135 
0-50 
0-17 

ßgL'* 
UL-1- 
UL-1 

\imolL~ 

< 1 hour 
40 hours 
47 hours 
Variable 

Table 1: Selected Biochemical Test Information. 

• Predictive accuracy for rejection. 

• Ability to offer earlier warning. 

The techniques used to perform these evaluations on the systems are de- 
scribed in the later sections of this paper. 

AVAILABLE DATA SOURCES 

A database was constructed using information collected by following the test 
results of 95 liver transplants in a total of 80 patients (15 re-transplants 
occurred). Their biochemical and haematological status was collected for up 
to 100 days following transplantation. 

This paper focuses on a specific subset of this database. A more detailed 
account of the full database structure and content together with the results 
of a number of other analysis techniques is available in [4]. 

The database was refined to focus on a few, frequently used, LFTs specif- 
ically GST1, ALP1, ALT1, BILI2. The numeric values for each of these tests 
were extracted to form a number of 4 dimensional feature vectors (or frames) 
corresponding to the measurements on a patients on a given day. Each frame 
was augmented with a tag which indicated if the data originated from a pa- 
tient who was undergoing a rejection3 or not. This refinement process yielded 
3206 data frames (56 reject, 3150 non-reject). Figure 1 shows an example 
of the profile followed by these four LFTs over the course of a single pa- 
tients post-operative period. Tables 1 and 2 outline the general biochemical 
characteristics of these four tests. A detailed description of the mode of op- 
eration of these tests is available in [4]. In summary, these tests detect liver 
damage by measuring the amount of enzyme released from damaged cells 
(liver enzyme) and the degree of blockage of the liver bile drainage system 
(liver excretion). The range of values, exhibited by a population of healthy 
volunteers, is shown in Table 1 as the reference range. The range exhibited 
by our liver transplant patients is shown in Table 2. The distribution of the 

i Serum concentration of a-Glutathione S-transferase (GST). Serum Alkaline Phos- 
phatase (ALP) and Alanine Transiminase (ALT) activities. 

2Serum bilirubin concentration (BILI). 
3In line with current clinical practice, only biopsy confirmed rejections were used to 

identify rejection. 
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Biochemical Test Statistics 
ALP ALT GST BILI 

Reject 
max 
min 
median 

1720 
63 
282 

1940 
44 
249.5 

1140 
3.9 
25.5 

479 
17 
144.5 

Non-Reject 
max 
min 
median 

3890 
23 
224 

9440 
4 
112 

47250 
0.1 
10 

993 
2 
48 

Table 2: Selected Statistics of the Biochemical Tests. 

Example of Liver Function Test Values vs. Time 

Day Post Transplant 

Figure 1: Example profile of LFTs over time. Two rejections occur in this 
example denoted by the dots (at y=1000). 

test values is also known to be log-normal [4] and consequently the data has 
been transformed logarithmically to account for this. 

The frame set, described above, was segmented by a random selection 
process. This procedure chose a number of frames from each of the two classes 
(reject/non-reject) to create a training set. A random 25% portion of the data 
was excluded for use in testing. This procedure was repeated to yield a 100 
pseudo-random training and test data sets for use in constructing/evaluating 
the performance of each of the classification systems. 

MODEL DESCRIPTIONS 

The task of interest here can be viewed as a multivariate two class prediction 
problem. The independent variables being the selected liver function tests 
(as provided by the data frames described above) and the dependent variable 
the risk of rejection in the immediate future. All of the models documented 
here apply this as the high level strategy with the individual solutions varying 
only in their implementation approach. 

The sensitivity of each model, to the data used in its construction, has 
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been assessed by computing the distribution of the results obtained from the 
model over the 100 training/test data sets. 

The regression parameters for the logistic regression model were com- 
puted on the training segments of the 100 data sets and analysed using the 
corresponding test segments. 

The linear discriminant analysis model was based around a Fisher trans- 
formation [5, 6] of the 4D data space into a single discriminant dimension. 
Using this discriminant projection it was possible compute a single value for 
any 4D data vector. Defining a threshold value for this parameter allows 
a classifier to be constructed which reports rejection if the fixed decision 
threshold is exceeded. 

The architecture used for the multi-layer perceptron approach was a fully 
connected feed forward network with four input units, five hidden units and a 
single output unit. The hidden and output units have a logistic transfer func- 
tion. A small number of hidden nodes were chosen to mediate over-fitting of 
the relatively small data set. The network was trained on a balanced version 
of the data set having the "reject" class artificially expanded by duplication 
of the existing members of this class. The data was pre-processed to give 
the data zero mean and unit variance. The parameters used to perform this 
preprocessing were calculated on the training data but were stored to allow 
transformation of unseen/test data. 

RESULTS AND ANALYSIS 

Analysis Techniques 

This section makes considerable use of the ROC [7, 8] analysis technique. 
This technique is frequently used to compare the performance of two class 
decision systems. In particular this paper makes use of the technique to 
directly compare the capabilities of the various classifiers applied to the liver 
transplant data. More specifically both the shape and area [9] under the ROC 
curve are used to show the differences in performance of the liver transplant 
classification systems. The ROC curves show both the strength of the system 
at detecting the rejections (sensitivity) as well as the degree to which the 
system is specific to rejection and tolerant of other phenomena (specificity). 
Each point on an ROC curve denotes these two quantities (expressed as a 
rate) for a chosen threshold value for the output of the classifier. Specifically 
the ROC curve is formed by selecting a series of threshold values for the 
output of the system (e.g. (output > 0.5) ->■ rejection) and evaluating how 
sensitive and specific the system is for a test data set. An optimal ROC curve 
is one where the test is highly specific (1 - specificity) = 0 and highly sensitive 
(sensitivity = 1) and leads to a "square" ROC curve which runs from (0,0) 
to (0,1) to (1,1). The line shown on the ROC curves, denoted "Reference", 
represents the result of a system which is random. 

The area under the ROC curve can be used as direct comparison measure. 
It can be interpreted as the probability of correctly ordering a pair of examples 
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(one rejecting and one non-rejecting). Thus the closer the area under the 
ROC curve is to 1.0 the better the classification system is at performing its 
task. 

The ROC curve and area for each of the models is given below. Specifically 
example ROC curves are supplied which show the performance of the model 
for a single data set. Alongside this, histograms of the area under the ROC 
are supplied. These show the distribution of the areas observed over the 100 
training/test data sets. A similar histogram is supplied which depicts the 
area as a function of advance warning level. 

Logistic Regression Models 

Figure 2a depicts the general performance of the logistic regression based 
classifier. It can be seen that the classifier is noticeably better than random 
but that it is still far from optimal. 

Figure 3a summarises the performance of this model over the available 
data sets and confirms that, in general, there is a approximately 75% chance 
of correctly ordering a random reject/non-reject pair (i.e. the classifier pro- 
duces a larger output value for the reject example). 

Figure 3b shows the performance decay, towards random, of the model 
as greater advance warning is expected. Specifically this shows the result 
of assessing the model on data obtained on days preceding the actual biopsy 
confirmed rejection. Figure 2b summarises this advance warning performance 
over the available random data sets. 

The wide variation in the zero warning histogram can be attributed to the 
limited number of data points available in the testing set. Thus for a small 
change in the threshold value used in the classifier large changes can occur 
in the sensitivity and specificity rates. This phenomena combines with the 
variations induced by the different training sets to produce a considerably 
larger spread of areas under the ROC curve. 

Discriminant Analysis Models 

The result of sweeping the decision threshold through a range of values and 
computing an ROC for an example LDA model is shown in figure 2c. It can 
be seen that this system is also significantly better than a random classifier 
but less than optimal. 

Figure 2d depicts the distribution of areas for the different data sets. It 
can be seen that there is a marginal improvement in performance obtained 
from the LDA model (relative to the LR model) with a slightly heavier right 
tail. This marginal improvement is also reflected in the advance warning 
performance. It can however be seen that there is a rapid degradation in the 
performance of the classifier as the degree of warning is increased (i.e. the 
area under the curve tends rapidly to 0.5). The speed with which it degrades 
is of considerable importance in terms of developing a system which can yield 
an acceptable level of advance warning. 

221 



Exampte ROC curve lor a logisHc regression model 

(a) Example logistic regression (LR) 
classifier ROC. 

Distribution of ROC areas tor advance warning (LR) 
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(b)  Histograms of area under the 
ROC (LR mode!). 

Example ROC curve for a LDA based model Distribution ot ROC ar as lor advance warning (LDA) 
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(c)    Example   linear   discriminant 
analysis (LDA) classifier ROC. 

(d) Histograms of area under the 
ROC (LDA model). 

Exarrple ROC curve lor a MLP based model 
Distribution ol ROC areas lor advance warning (MLP) 

(e) Example multilayer perceptron 

(MLP) classifier ROC. 

(f)  Histograms of area under the 

ROC (MLP model). 

Figure 2: Classifier performance expressed both as Receiver Operating Char- 
acteristic (ROC) curves and histograms of the area under the curve computed 
for the different cross validation sets. The histograms also depict the advance 
warning performance of each system. 
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Distribution o! ROC areas Advance warning ROC'S 

(a) Distribution of the area under 
the ROC curve for different cross 
validation data sets (both test and 
training). 

(b) Logistic regression model perfor- 
mance in terms of providing advance 
warning. 

Figure 3: Generalisation and advance warning performance for the logistic 
regression model. 

Multi-Layer Perceptron Models 

The performance of a MLP system is shown in figure 2e. It can be seen that 
there is an enhanced performance relative to the more traditional LR and 
LDA models. However none of the systems investigated, including the MLP, 
show optimal performance. It can also be seen that the MLP model performs 
marginally better on the training set than on the test set. This implies that, 
at least with the example shown in figure 2e, there is a.small degree of over 
fitting of the the data in the MLP model. Conversely figure 2f shows that the 
MLP still performs better when assessed with the cross validation approach. 

CONCLUSION AND FUTURE DIRECTIONS 

This paper presented some preliminary results of applying neurocomputing 
technology to predicting allograft rejection in liver transplant recipients. Pos- 
ing the problem as a classification task, it provided a comparison of classifica- 
tion performance (in terms of overall accuracy and degree of advance warn- 
ing) of a MLP based system relative to traditional statistical approaches. 
The liver function tests, taken in combination, do seem to carry useful extra 
information capable of predicting rejection two or three days ahead in time. 
The non-linear neural network classifiers outperform the classical linear ap- 
proaches for this task. 

The non-optimal behaviour of these preliminary models can be partly at- 
tributed to the overlap in the distributions of the data. Considerable overlap 
between the reject and non-reject distributions can be observed when visualis- 
ing the data in 1 or 2 dimensions (see Figure 4a). This overlap is attributable 
to variation in severity of rejection, to some degree of mis-labelling of the data 
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Scatter of Data on Decrlmlnanl Plane 
Trajectories on Discriminant Plane 
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Firsl Discriminant Direction 

(a) Scatter Plot of the reject/non-reject 
data on the 2D Fisher plane. 

First Discriminant Direction 

(b) Trajectories across the Fisher plane. 

Figure 4:   Distribution of reject/non-reject data on the Fisher plane and the 
trajectory followed by data prior to rejection episodes. 

Cluster Centres 
Cluster GST ALT ALP BILIRUBIN Nr Nnr 

1 
2 

6.4 
25.9 

69.7 
234.5 

144.0 
392.3 

28.6 
132.4 

6 
60 

1705 
1758 

Table 3: Cluster centres for k=2 in original units. Nr and Nnr columns 
show the number of vectors in each cluster that are marked as rejecting and 
non-rejecting in the original labelling. 

forming the non-reject class and inter-patient variability. K-means [10] clus- 
tering has been applied to this database in an effort to identify structure in 
the data and any potential mis-labelling. Table 3 shows the result of splitting 
the data into two clusters. The clinical reference ranges listed in Table 1 com- 
pare well with the values selected by the k-means algorithm for class 1. This 
class contains very few examples of measurements associated with rejection. 
Class 2, conversely, shows elevated values for the LFTs and is responsible 
for the majority of vectors associated with rejection. However this class 
also contains a substantial number of members which were originally labelled 
as non-rejecting. A sizeable proportion of these samples occur in the early 
post-operative period and are not associated with rejection but with damage 
caused during the transplant procedure. Including trend information allows 
these early measurements to be interpreted more appropriately since initially 
there is a decline in the test values consistent with normal clearance. 

Figure 4b shows the trajectory followed by a number of the patients as 
they approach a rejection episode (only patients having 5 consecutive mea- 
surements leading up to rejection are displayed). The solid lines identify those 
examples where the patient followed a consistent trend towards the rejecting 
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population centre. The dotted lines show the small number of example where 
they did not. 

Principled techniques for the inclusion of this trajectory information are 
currently under investigation together with techniques for estimating values 
for missing data. 

REFERENCES 

[1] G.J. Burckart et.al., "Cyclosporine absorbtion following orthotopic liver 
transplantation.," Journal of Clinical Pharmacology, vol. 26, pp. 647, 
1986. 

[2] W.E. Evans, J.J. Schentag, and W.J. Jusko, Eds., Applied Pharmacoki- 
netics, Principals of Therapeutic Drug Monitoring, pp. 28-1 - 28-40, 
Edwards Brothers, Ann Arbor, MI, U.S.A., 1992. 

[3] H.R. Doyle et.al, "Predicting outcomes after liver transplantation, a 
connectionist approach," Annals of Surgery, vol. 219, no. 4, pp. 408- 
415, 1994. 

[4] D.G. Melvin, "A comparison of statistical and connectionist tech- 
niques for liver transplant monitoring.," Tech. Rep. CUED/F- 
INFENG/TR.282, University of Cambridge, Department of Engineering, 
Dec. 1996. 

[5] R.A. Fisher, "The use of multiple measurements in taxonomic prob- 
lems.," Annals of Eugenics, vol. 7, pp. 179 - 188, 1936. 

[6] CM. Bishop, Neural Networks for Pattern Recognition, Clarendon 
Press, Oxford, 1995. 

[7] J.R. Beck and E.K. Shultz, "The use of relative operating characteristic 
(ROC) curves in test performance evaluation," Arch. Pathol. Lab. Med., 
vol. 110, pp. 13-20, 1986. 

[8] M.H. Zweig and G. Campbell, "Receiver-operating characteristics 
(ROC) plots: A fundamental evaluation," Clinical Chemistry, vol. 39, 
pp. 561-577, 1993. 

[9] J.A. Hanley and B.J. McNeil, "The meaning and use of the area under 
a receiver operating characteristic (ROC) curve.," Radiology, vol. 143, 
pp. 29-36, 1982. 

[10] J.A. Hartigan and M.A. Wong, "A k-means clustering algorithim," Ap- 
plied Statistics, vol. 28, pp. 100-108, 1979. 

225 



CLASSIFICATION AND COMPRESSION 
OF ICEGS USING GAUSSIAN MIXTURE 

MODELS 

Richard Coggins and Marwan Jabri 
Systems Engineering and Design Automation Laboratory 

Department of Electrical Engineering J03, 
University of Sydney, 2006, Australia. 

Email: richardc@sedal.usyd.edu.au, Fax: +61 2 9351 7209 

Abstract 

Implantable cardioverter defibrillators (ICD) admin- 
ister high voltage shock therapies to terminate dan- 
gerous cardiac arrhythmias. Improving the func- 
tionality of these devices to include on-line diagnosis 
based on Intracardiac Electrogram (ICEG) morphol- 
ogy and to log dangerous signals is important for 
their more widespread use. It is essential that the 
ICD implement a signal compression scheme due to 
the limited memory in the device. We have fitted 
gaussian mixture models to the ICEG signals in or- 
der to investigate to what extent, non-linear data 
models are advantageous in this application com- 
pared to the traditional linear approaches used in the 
field and to explore the common features between 
classification and compression. Results of fitting the 
mixture models show that typically a single gaussian 
per class for classifiers and single gaussian predic- 
tion models for data compression are adequate data 
representations provided the data is preprocessed to 
remove non-stationary behaviour. 

1    INTRODUCTION 

This paper develops a framework for establishing performance bounds for 
ICEG classification and compression systems.   The requirements for com- 
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pression and classification are different in emphasis but share some common 
features. For the case of arrhythmia classification via morphology analysis 
(which improves diagnosis for some arrhythmia over systems which rely on 
heart rate alone), the states of the heart are being distinguished by trying to 
determine which type of signal the heart is producing given some previous 
knowledge about what types of signals are produced under both normal and 
abnormal conditions. For the case of ICEG data compression, a concise rep- 
resentation of the signal is sought, given knowledge of the signal in the past, 
but so as to retain a great deal of the detail in the signal. Thus, morphology 
classification is an extreme form of compression that retains only a labelling of 
the signal, whereas compression seeks to retain the diagnostically significant 
part of the local structure. In this paper we demonstrate the advantage of 
common scale and shift invariant preprocessing for these two applications and 
then using this representation, model the transformed signals with mixtures 
of gaussians. Gaussians are a good choice for real valued data as they render a 
model which may be interpreted in terms of well known parameters and may 
be easily manipulated to obtain relationships between variables. The fitting 
of a mixture of gaussians is described in [McLachlan and Basford, 1987]. 

Section 2 introduces the modelling steps and discusses in detail those steps 
common to both classification and compression. Section 3 describes the esti- 
mation procedure and bounds for ICEG morphology classifiers. The classifier 
bounds include both the case of separating NSR (normal heart rhythm) from 
VT 1:1 (dangerous rhythm) with examples of both available and the blind 
separation of NSR from VT given only examples of NSR. Section 4 describes 
the estimation procedure and bounds for ICEG data compression. 

2    SOURCE MODELLING OF THE ICEG 

The modelling procedure adopted is described by the following steps: 

• Segmentation: The ICEG time series is segmented into "QRS com- 
plexes" , which are 30 samples wide and contain the diagnostic infor- 
mation (see Figure 1). 

• Identification: The non-stationary behaviour of the signal is removed 
and an initial model is selected. 

• Estimation: The model is fitted using the Expectation Maximisation 
(EM) algorithm [Dempster et. al., 1977]. 

The model identification steps will now be described as these form the com- 
mon preprocessing steps for both classification and compression. The de- 
scription of the estimation steps is deferred to the respective sections on 
classification and compression. 

The ICEG is a periodic non-stationary signal. There are several mechanisms 
for its non-stationary behaviour: the ICEG is a measure of the heart pump- 
ing blood in a normally synchronous manner which leads to periodic (sea- 
sonal) non-stationarity; the ICEG is subject to longer term influences such 
as daily cycles in metabolism, exercise, tissue growth, disease and aging. For 
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100 120 
t(ms) 

Figure 1: The morphology of NSR and VT retrograde 1:1. The letters QRS are 
conventional notation to label segments of the signal which correspond to those 
times when the heart is actually pumping blood. Hence, this period is often referred 
to as the QRS complex. 

recordings1 lasting from minutes to hours only the short term non-stationary 
behaviour is relevant. Due to segmentation, the variance in the period is 
reduced to that of the QRS complex detector which is about 3 sample inter- 
vals. The effect of variation in the R point detection (detection of the signal 
peak) can be removed by calculating the correlation of the current complex 
with the previous. The non-stationarity in the mean of the signal may be 
removed by the standard method of periodic differencing. Stationarity in the 
mean is indicated when the auto-correlation function quickly decays to small 
values after a few lags. The dashed line in Figure 2(c) shows the effect of 
periodic differencing on the ICEG. Figure 2(c) (solid line) shows evidence of 
a residual signal with a randomly varying amplitude. The origin of this resid- 
ual non-stationarity is the A/D converter sampling the ICEG asynchronously 
resulting in "sample jitter". This jitter process can be described by the subse- 
quent QRS complex segment y(t) being identical to a complex x(t) but with 
a random phase shift <j>. Expressing y(t) as a Taylor expansion of x(t) to the 
first derivative term around t, 

y(t) = x(t) + (j>x'(t) + 0 (1) 

Thus, the residual non-stationary component in Figure 2(c) is identified as 
x'(t) modulated by the random phase variable <f>. The Taylor expansion 
to the first derivative term is an adequate approximation because x(t) is 

*Data in this paper is recorded in hospitals. Arrhythmia are induced artificially. 
Long recordings and natural arrhythmia are hard to get due to lack of field recording 
capability. 
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Figure 2: The effect of amplitude and phase locking to the previous beat, (a) The 
original segmented ICEG and (b) the autocorrelation function, (c) The residual 
ICEG after amplitude and phase locking (solid line) compared to the periodic dif- 
ferenced ICEG (dashed line) and (d) the resulting autocorrelation function. The 
horizontal lines are 95% bounds for a white noise sequence. 

sampled well within the Nyquist criterion to avoid aliasing. The random phase 
<j> is estimated by calculating the correlation of the periodically differenced 
sequence with the derivative of the previous beat. Hence, the jitter free 
seasonally differenced sequence is given by, 

A2/(j) = y(j) - x(j) - <l>(x(j + 1) - x(j - l))/2 (2) 

This procedure may be enhanced by doing scaled periodic differencing instead 
of just periodic differencing in order to remove amplitude variations between 
cycles. This can be achieved by calculating a scaling factor A, from which 
the jitter free scaled seasonal difference, 

Aj/ä(j) = y(j) - Ax(j) - <l>A(x(j + 1) - x(j - l))/2 (3) 

is obtained. Figure 2(d) shows the effect of Equation 3 on the autocorrelation 
function and is used for compression. Similarly, Equation 2 can be used to 
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Error 

Figure 3: Learning curves for a classifier. E is the expectation of the classifier 
error over all possible training and test sets. / is the size of the data sample. As 
/ becomes large the training and testing errors converge to a common value E<x,. 
Above a certain training set size /c the training and testing curves can be modelled 
with power-law decays. 

phase lock complexes for jitter free classification. 

The remaining identification step is to determine the model order. For clas- 
sification purposes the 30 dimensional phase locked complexes comprise the 
classifier inputs. For compression purposes, a choice about the size of the 
memory in the model needs to be made. The autocorrelation function af- 
ter amplitude and phase locking to the previous complex shows that there 
is significant correlation in the first 4 lags. This suggests an autoregressive 
model for the time series with 4 AR coefficients corresponding to the 4 lags. 
A preliminary study on a small number of patients showed that a long term 
component in the model did not contribute significantly to a lower entropy 
estimate. Hence, short term model orders in the range 1 to 4 only were 
considered. This determines the vector for which the distribution is to be 
estimated as 

X — \XnXn — \...Xn-.m) (4) 
where x slides over the time series and m is the short term model order and 
M is the model capacity (number of basis functions used). 

3    CLASSIFIER PERFORMANCE BOUNDS 

3.1    Model Estimation for -Classifiers 

A classifier is determined by both its structure and the number of free param- 
eters. Learning curves are defined as the expectation of the classifier error 
over all equally sized training and testing sets that may be randomly selected 
from the data sample of size /. In [Cortes et. al., 1994] it was shown that 
these learning curves can often be modelled by power-law decays to obtain 
an estimate of the asymptotic performance of the classifier. An illustration 
of these learning curves is depicted in Figure 3. In [Cortes et. al., 1995] it is 
demonstrated that these asymptotic estimates may then be used to bound 
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Asymtotic 
Error 

Error Bound 

Capacity 

Figure 4: Example of how the asymptotic classifier error behaves as a function 
of classifier capacity. Eventually, a capacity is reached beyond which negligible 
improvement in classifier performance is achieved. 

the performance of any classifier on that data by considering the asymtotic 
classifier error as the capacity is increased. An illustration of an asymptotic 
classifier error curve is shown in Figure 4. 

3.2    Bounds for NSR and VT 1:1 Classification 

The efficacy of a single decision classifier may be expressed in terms of the 
expected fraction of false negative and false positive detections. Here we 
use a classifier which derives the classification from the probability density 
model of the data. This more general representation provides a natural ex- 
tension to a blind classification scheme which detects the presence or absence 
of NSR. A mixture of gaussians density model and the EM algorithm may 
be used to model labelled data using a procedure similar to that described 
in [Ghahramani and Jordan, 1994]. In order to fit the best possible model an 
evaluation of the appropriate number and form the of gaussians (capacity) 
per class is required. These issues could be evaluated using learning curves or 
other statistical tests [McLachlan and Basford, 1987]. As a starting point, a 
simple model was chosen, consisting of one spherically symmetric gaussian per 
class. Such a simple model will provide an upper bound for the classification 
error rate. 

Table 1 summarises the misclassification bounds computed using the simple 
spherical gaussian per class. The % correct columns are averages over 10 
different training and testing sets constructed by randomly splitting the sam- 
ple sets in two and then refitting the density model. The sample complexes 
are sequentially phase locked to each other prior to fitting the models. The 
table shows that all patients indicate a misclassification rate of less than 1%. 
Since, the misclassification rates for the test sets are already very low, no 
attempt was made to obtain a tighter bound by considering the convergence 
properties of the training and testing error rates. 
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Patient No. of % Correct % Correct % Correct 
Complexes training testing blind testing 
ST VT ST VT ST VT ST VT 

1 440 61 99.6 100 99.6 100 98.9 100 
2 107 71 100 100 100 100 99.4 100 
3 177 75 100 99.5 100 99.7 97.7 100 
4 110 71 100 100 100 100 99.3 100 
5 38 90 100 100 100 100 98.9 100 

Table 1: Estimate of misclassification bounds for 5 patients with VT 1:1 retrograde 
conduction for both classification with training on the VT data and without training 
on VT (blind). 

Bounds for a classifier which only has a measure of the NSR probability 
density may be computed by considering only the density estimation of the 
NSR data and assigning an arbitrary probability threshold for considering a 
data point to be a member of the NSR class. In this case the training set 
misclassification error is predetermined by the acceptable level of false positive 
detections. Testing the model on NSR only, then indicates the adequacy of 
the model as an estimate of the NSR complexes probability density at that 
error rate. By requiring the training error rate to be zero, the least probable 
training vector determines a probability threshold for NSR membership. The 
NSR testing set then gives an upper bound on the resultant false positive 
error rate. By then testing the model against VT with the same threshold 
the sensitivity to VT is determined. Table 1 shows that high classification 
performance is predicted with a single spherical gaussian modelling the NSR 
density. With a maximum of 2% false positive error rate the simple density 
model appears adequate and hence more complex models were not considered. 

4    DATA COMPRESSION BOUNDS 

This section describes the bounds calculated for the data compression of the 
QRS complex of the ICEG. Firstly, a generalisation of the model estima- 
tion procedure used for the classifier bounds is described which uses learning 
curves based on the estimated entropy of the data. The method is then ap- 
plied to the ICEG data base and yields bounds for lossless data compression. 

4.1    Model Estimation for Compression 

The goal of estimation is to determine a probability distribution of the form, 
P(x) = ^2j-i 7TjGj(x) where x is given by Equation 4 and Gj is the gaussian 
probability distribution function given by, 

r M - exP{~Kx ~ wK^C* ~ N)T) ,-V 
GjW ~ (2x)W2|Q|i/a W 

Figure 5 shows the procedure used to determine P(x). When EM is used 
to fit the model it maximises the log probability that the model generated 
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Select a data sample and Identify an initial model; 
Initialise sample-size; 
For sample-size < max-samples; sample-size * = 2; { 

For n-splits = 0; n-splits < total-splits; n-splits++; { 
randomly split the sample in half 
into training and test sets; 
Use EH to fit model; 
Determine Htrain(M),  Hte>t{M); 

} 
} 
Estimate Hoo(M)  and Increase M; 
Continue until M  determined; 

Figure 5: Procedure for determining M and P(x). The value of total-splits used 
was 10. The sample size was varied over a range of 8. 

the training data, given by L = jj Yli l°&2 ^(x«) where N is the size of the 
training set. Notice that L is closely related to the average- information of 
the training data with respect to the model. In fact L = —H(M, N) where 
H is an estimate of the entropy of the data source based on a sample size N 
and a model of capacity M. Hence, given a model and training and test sets 
both of size N, Hirai„(M, N) and Hte,t{M, N) can be calculated. Analogous 
to the procedure of [Cortes et. al., 1994] the behaviour of Hte$t and Htrain is 
considered as AT is increased2. In the limit as N —► oo, Htest = Htrain = #oo- 
Haa is then the source entropy estimate for the vector x as measured by the 
model H(M). If both Htest and Htrain approach this limit at equal rates 
then an unbiased estimate of Hoc is obtained via 

„-       Htrain(M,N) + Hte,t(M,N) 
-"oo = 2  W 

If the rates of convergence are unequal the procedure of [Cortes et. al., 1994] 
can be used which involves fitting power laws to the learning curves for H 
over a range of N to deduce the unbiased estimate. Having obtained an 
estimate of Hoo, more complex models can be fitted by increasing M until 
no significant reduction in H^ is obtained. By this means, the capacity of 
the model from a finite sample is obtained, while also determining an upper 
bound on the entropy of the source. 

4.2    Results for the ICEG 

In this section mixture of gaussian models are fitted to the ICEGs of sev- 
eral patients who are candidates for ICD implantation using the procedures 
described in Section 2. Single patients and a single rhythm type for that pa- 
tient are considered. Table 2 shows the variety of models required for various 

2 Actually E[H] is calculated where the expectation is over all possible choices 
of training and testing sets. In practice only the expectation using a small number 
(10) of random choices is estimated. 
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Patient Rhythm M N #00 H\in 
S000418 NSR 3 688 8.6 9.3 
S000418 VT 4 703 9.4 10.6 
045.vts NSR 3 719 7.3 9.0 
045.vts VTR 3 719 8.0 9.5 
55.vts NSR 3 719 6.9 7.9 
55.vts VTR 2 719 8.4 9.4 

s000518 VF 4 719 10.1 10.3 
s000533 NSR 2 719 5.6 5.9 
s000533 VF 3 719 8.1 8.5 
s000513 NSR 3 719 5.6 6.5 
s000513 VT 2 719 6.1 6.5 
S000513 VF 3 719 6.6 7.5 

Table 2: ICEG probability model capacity and H0 
mates are in units of bits per (4ms) sample. 

estimates.  The entropy esti- 

patients and various rhythms. The H& shown is obtained using the simple 
estimate of Equation 6. The conditioned probability model P(x\xs) can be 
easily derived from the fitted model to give the time series entropy estimate 
#oo(z|xj). The column Hn„ is included to compare the result with the fitting 
of a single gaussian. The model capacity M was determined conservatively 
by only taking higher values of M when there is no evidence for Hoo in- 
creasing as determined by the bounding standard deviation curves. Having 
obtained the distribution of the data, the conditional entropy H(x\xs) can 
be determined, where xs are the previous short and long term outputs of 
the source. H(x\xa) represents an upper bound on the true source entropy. 
The true source entropy will only be reached if the source is finite memory 
and autoregressive and it is stationary and ergodic. Of these conditions the 
ICEG is most likely to fail on stationarity, as it is difficult to guarantee that 
all higher order moments are stationary. Therefore, in practice only upper 
bounds on the source entropy of the ICEG data can be achieved. 

The three heart rhythms NSR, VT and VF correspond to three therapeutic 
groupings of the ICD, being no therapy, pacing and defibrillation. The mor- 
phologies are usually noticeably different for the three rhythms. NSR and 
VT are quite periodic where as VF is quite variable in both period and am- 
plitude. Table 2 shows that between 2 and 4 gaussians are sufficient to model 
the data. The reduction in #«, is both patient and rhythm dependent with 
between 2% and 20% reduction compared to the fit of a single gaussian. Over 
the entire data base of 146 patients a 15% reduction in the entropy estimate 
for the NSR class was obtained by fitting a mixture model, 11% for the VT 
class and 8.5% for the VF class. 
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5    CONCLUSION 

Mixtures of gaussians models were chosen due to their clear interpretation 
and their utility for analysing both data compression and classification prob- 
lems. Amplitude and phase locking was identified as an important common 
preprocessing step for both tasks. Classifiers were modelled using single gaus- 
sians per class and learning curves were used to determine misclassification 
bounds. Both the separation of NSR from VT 1:1 with training sets of both 
and blind separation were considered for 5 patients. Bounds close to 100% 
correct classification were indicated for both classification tasks. Data com- 
pression bounds were obtained using mixture of gaussians models fitted using 
the EM algorithm. The capacity of the models was determined by using a 
generalisation of the learning curve procedure using the entropy estimates. 
Experiments on the ICEG data showed that less than 5 gaussians were re- 
quired for the modelling of the data and that the resulting reduction in en- 
tropy estimate over the single gaussian case was 8% to 15% averaged over a 
data base of approximately 150 patients depending on the rhythm class. This 
is to be contrasted with the previous simpler Gauss-Markov modelling of the 
ECG, however indicates the adequacy of the use of linear coding approaches. 
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Abstract. Automation of anaesthesia is a complex task but impor- 
tant with respect to patient health, improved quality of narcosis and 
cost reduction. Furthermore it will enhance our understanding of the 
complex mechanism underlying anaesthesia. 
Classical model based control concepts have been evaluated in the 
past. Those approaches were limited to univariate process control. 
As the objective of our studies we want to establish the feasibility of 
different real-valued reinforcement learning approaches for the task 
of multivariate adaptive control in anaesthesia. 
As a first step we present a series of experiments with a naive applica- 
tion of reinforcement learning. The appropriateness is demonstrated 
in the univariate case. Results are compared to a model based ana- 
lytical controller. 

1    Introduction 

Automatic control in anaesthesia is a powerful tool to improve narcosis with 
respect to: 

1. patient specific supply of anaesthetic agents decreases necessary concen- 
tration levels to a minimum, 

2. support for the anaesthesist in case of temporally delayed effects or non- 
linear combination of effects, 

3. development of a theoretical foundation of anaesthesia 
4. cost reduction 

Automatic model based control of volatile anaesthetics exploiting the me- 
dian EEG-frequency (MEF) was successfully applied in clinical trials [Sch95]. 
This particular approach was univariate, i.e. the median EEG frequency, 
MEF was used as input to the controller (state characterization) to ad- 
just the vaporizer setting (CVap) as effector3. An explicit invertible model 

3 The vaporizer setting influences the concentration of the anaesthetic agent in the 
inhaled gas, thus controlling the patients anaesthetic depth. Usually EEG median 
frequency(M.E.F') is monitored as an indicator for anaesthetic depth. A value of 
10Hz MiJFcharacterizes a person which is awake while a narcotized person has 
a MEFof less than 3-4Hz. 
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is required capturing the dependence of control parameters and effects. Due 
to mathematical restrictions this approach can not be generalized to more 
than one narcotic agent. Also multiple parameters of the patient can not be 
included. 
Reinforcement based learning [Sut88, Tes92, KLM96] has recently matured 
towards a technique applicable to multidimensional real world tasks. In a 
project we explore the appropriateness of reinforcement learning systems for 
automation in anaesthesia. 

2    Methods 

2.1    Analytic model based closed loop control 

Every approach to design a controller requires knowledge about the system 
to be controlled. Usually this knowledge is represented by an explicit model 
of the plant. By restricting the number of parameters to one input and one 
output variable a narcotized patient can approximately be modelled by the 
CVap/MEF relation. 

The applicability of a model of five first order compartments was demon- 
strated in [Sch95]. It was inverted using the Laplace-transform, thus a con- 
troller for the system could be derived. 

To fit the patients characteristics the models parameters must be adapted 
during control. Quality of control relies on these prameter settings. The con- 
trol scheme is depicted in Fig. 1(a). 

median EEG PatienV 

frequency 

.nn 

(CVap->MEF) 

QL-Controller | 

vaporizer Action- 
Selection setting 

Q-function 1   S   1 

■l_ H_l 

Fig. 1. A schematic overview of the applied controllers, (a) Model based controller 
with analytically derived invers model, (b) Q learning controller for heuristic adap- 
tive direct control. S denotes sensor evaluation and R reward determination. 

Even if this procedure leads to acceptable results in the univariate case it 
has substantial restrictions. The use of an explicit invertible model hinders 
the application of more complex and particularly multivariate models. 
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A control scheme that does not rely on explicit modelling might overcome 
these limitations. 

2.2    Reinforcement learning 

Reinforcement learning is a method for heuristic adaptive direct control 
[Sut88]. Fig. 1(b) illustrates Q-learning [Wat89] an instance of reinforcement 
learning. During learning an evaluation function (Q-function) is approxi- 
mated that represents the quality of a state action pair with respect to the 
task. For training the system interacts with it's environment which can either 
be a real patient or a model of any complexity. Actions (vaporizer settings) 
to be applied in a certain state are selected probabilistically according to the 
Boltzmann distribution based on their Q-values. 

Thus control does not depend on an invertible model, or even any explicit 
model at all. It therefore has the potential of controlling multivariate systems 
which are difficult to model or impossible to invert. In principle reinforcement 
learning may overcome the limitations of the analytic approach. 

A major drawback of reinforecment learning which has to be mentioned 
here are certain strong requirements in the controlled system. The conver- 
gence of Q-learning to an optimal control policy [WD92] is proven if: 

1. Q-values are stored by table lookup 
2. the controlled system is a Marcov decision process 
3. every state-action pair is evaluated arbitrarily often 
4. appropriate learning parameters are selected 

While 3) and 4) are usually satisfiable 1) and 2) are often violated by real 
world tasks. If a task is real valued the Q-funtion cannot be stored by lookup 
tables. Discretization can be used to solve this problem provided that appro- 
priate intervals are chosen. Function approximators such as artificial neural 
networks can also be used to circumvent the difficulty of choosing a good 
discretization and to speed up learning by generalization. Both approaches 
will be used in our experiments. 

The problem of non-marcovian processes is eased by using a finite history 
of state-action information. Unfortunately every increase in dimensionality 
of the state augments time to convergence by a multiplicative factor if table 
lookup is used. Additional information for the decision problem has to be 
traded off against time affordable to explore the exponentially growing state 
space [TM92]. If the extended state space is of uniform structure function 
approximators may advantageously be applied. 

Despite of the obvious use of function approximation in value function 
representation, convergence of the learning process can longer be guaranteed. 
The convergence properties of Q-learning [Ast95] strongly depends on the 
representation of the Q-function and policy and even if learning converges 
the final policy might not be optimal [Heg96]. 
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3    Experimental setup 

The objective of our learning studies is to develop and to optimize a control 
policy that stabilizes the MEF at a value of 2.5Hz. For training a num- 
ber of narcosis sessions are simulated on the basis of the five compartment 
model, described by [Sch95]. Each of the sessions consistes of 240 minutes of 
simulated narcosis time. 

Uniform noise is added to the MEFto keep the problem as realistic as 
possible. In addition artefacts are simulated to approximate the clinical sit- 
uation. 

As a reference point in our evaluation the analytic controller (i.e. the 
invers of the model) was used to control the model. In the following figure 
(Fig.2) an example of an optimal control is shown. Please not that no adap- 
tation of model parameters is necessary and best actions can be determined 
analytically. In contrast to later experiments regulation is performed every 5 
minutes (0.0033 Hz). 

10 

u. w 
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Fig. 2. The control behavior of the model based controller. Control is considered 
successfull if the MEF stays between 2.1 and 2.9. Parameters were selected in a 
way that no adjustments in the controller-inherent model were necessary. 

The reinforcement controller is trained online, i.e. while controlling the 
model knowledge is acquired in the Q-approximation and a control policy 
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develops. Regulation is performed every minute (l/60Hz). As long as a sig- 
nificant improvement is observed training is continued. 

Both, the model with and without noise are investigated for training. 
Unfortunately the actual MEF alone does not include enough state in- 

formation to enable proper learning. Therefore a finite history of these values 
is provided to the system. Because of the exponentially growing state space 
history size is limited to just a single, the last MEF value. In the next section 
it will be shown, that this is sufficient to acquire reasonable control policies. 

In first experiments table lookup is used to represent the Q-function. The 
neccesary discretization of the MEF and the CVap settings are realized by 
50/20 intervals respectively. Despite this coarse grained discretization reason- 
able control strategies can be developed. A higher resolution may even lead 
to better results. In current experiments different function approximators are 
evaluated. 

4    Results 

After some training sessions the current policy is evaluated deterministically 
i.e. by selecting vaporizer settings with maximal estimated utility (Q-value). 
A sample run is plotted in Fig.3. It shows a similar behavior as the optimal 
analytic controller although in table (Tab.l) still some differences become 
apparent. 

JWWWJLi \>W«WW-UA tft,.j!l.J*    .A       rtl.A.    .....   1   JU.i.-Jti   ^       tt.lM..   M.^.M*. j^yLftrVrV^ 

Fig. 3. The control behavior of a reinforcement learning system, with a history of 
one state, (a) using table look-up (b) using a real valued approximator. 

To visualize a learned control policy noise as well as artifact simulation 
are turned off (cf. Fig.4(a)). Now a deterministic system has to be controlled 
and the pure control strategy can be examined. 

Obviously the learned policy is not able to keep the MEF at a stable 
level. This is not a principle weakness of the method but is caused by the 
discretization of the input and output signals. Adjustment of the vaporizer 
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can not be done precisely because the desired settings usually fall into dis- 
cretization intervalls. Real valued Q-learning algorithms as shown in Fig. 3(b) 
overcomes this problem. 

Policies however do not converge toward a unique stable strategy. Inter- 
estingly during learning a variety of strategies can be observed such as an 
oscillating one depicted in figure 4(b). 

Pmwri* MCr — 

5=Sv= ^^-^^ 

imwmwiWmwvrHi 

Fig. 4. (a) The same control policy as depicted in figure 3(a) but without noise and 
artifacts added to the model, (b) The learned oscillating control policy. 

To evaluate learned policies four different features are considered: a) the 
time until a MEF of 2.5 was reached (inital phase of anaesthesia), b) the 
actual mean value of the median during anaesthesia (steady state), c) the 
standard deviation of MEF i.e. smoothness of control and d) the average 
dosis of the anaesthesic applied to the patient. Those values were compared 
to the corresponding optimal values of the analytic controller and a random 
controller. 

The comparison of mean-value, standard deviation, time to 2.5 and the 
dosis shows that the reinforcement learning controller based on table look up 
was not able to reach the peek performance of the analytic controller, but 
that it's performance is by far better than a reinforcement learning controller 
without history or even random control methods. A first experiment with a 
real valued approach shows promising results, that are summarized in the 
following table. 

5    Conclusions and future work 

Control of the Q-learning system is -even when using table look-up as repre- 
sentational formalism - within few iterations acceptably close to the analytic 
solution. In the current experimental setting the performance of the analytic 
controller represents an upper limit. Optimality though relies on the appro- 
priatness of the invertible model. It has to capture the characteristics of the 
specific patient to be narcotized. As soon as the model structure does not fit 
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Method Time to 2.5 Mean Value Std. Deviat. 0 Dosis 

Model based 5 min 36 sec 2.49 0.40 0.724 
RL real val. 7 min 40 sec 2.51 0.40 0.738 
RL w. hist. 1 9 min 40 sec 2.34 0.54 0.742 

RL wo. hist. 22 min 1.67 1.07 0.809 
Random - 0.77 1.88 1.224 

Table 1. A comparision of some control techniques: i) analytical model based con- 
trol, ii) reinforcement learning with a real valued representation, iii) reinforcement 
learning with a one step history using table look-up, iv) reinforcement learning 
without history, v) a random controller 

the real characteristics, e.g. in case of a real patient, learning controllers may 
perform better, because they are not limited by the model structure. 

In this paper it could be demonstrated, that even plain Q-learning is 
capable of performing near optimal control of univariate anaesthesia. Noise 
and artifact simulation does not prevent Q-learning from converging. Training 
is slightly less efficient than with a pure deterministic model but convergence 
is more robust and resulting strategies are produced more stable. 

Still a number of problems are encountered that have to be solved before 
moving to the more challenging multivariate case. 

1. Real valued approaches need to be explored more intensively. Currently a 
variety of approximators are under investigation including artificial neu- 
ral network approaches (backprobagation, radial basis function networks, 
feature maps and extensions to those), memory based techniques and 
mathematical interpolation methods. 

2. The applied state description does not fully capture the models state. 
The process to be controlled does not possess the desired marcov pro- 
perty. A problem of instability of the solution arises. First results with 
the integration of more MEF values and of a past vaporizer setting are 
promising. 

3. Finally a more sophisticated reward function has to be used that e.g. pena- 
lizes consumption of anaesthetics. It should as well consider aspects, such 
as the smoothness of vaporizer settings. 
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WAVELET CHARACTERISTICS OF EARLY VISION 

Geoffrey Brooks 
WL/MNGA, Eglin AFB FL 32542 

ABSTRACT 

Recent advances in wavelet theory are affording great opportunities for 
signal processing applications. Natural neuronal networks exhibit wavelet 
behavior from which structural and functional paradigms could be exploited 
for machine-vision applications. Provided here is a summary of the ways 
vertebrate vision systems naturally exhibit wavelet characteristics. 

INTRODUCTION 

Wavelets can be generally defined as little waves that start and stop and originate 
from a single basic function [18]. The Wavelet Transform decomposes signals 
into their wavelet components as the Fourier Transform decomposes signals into 
their frequency components. Fourier time-frequency representations are 
presented here as an introduction to the more general wavelet representations. 

Early vision can be defined as the processes that recover the properties 
of object surfaces from 2D intensity arrays [6]. The structure and function of 
natura' vision systems exhibit wavelet characteristics in many ways. The focus 
here ir- oa vertebrate vision information pathways that begin in the retina and 
terminate in cortical processing stages. Many of these concepts are also common 
in insect vision. 

CONVENTIONAL TIME-FREQUENCY REPRESENTATIONS 

Fourier developed a series of weighted sine and cosine terms to represent a 
periodi; waveform fit), with period T = 2n/o)o, where coo is the fundamental 
radian frequency. The Fourier Series is an infinite sum of components, weighted 
by coefficients an, at integer, n, multiples of (Oo [15,20]: 

fit) = I ane^nt (1) 

As T in ;roases, Wo decreases along with the frequency spacing between Fourier 
Series components (or terms). As T -> oo, the frequency distance between 
components becomes infinitesimal so that co0 ->a> , a continuous variable. The 
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solution for coefficients, when integrated over one sample period, becomes the 
Fourier Transform: 

(Ff)(W)=  idtf(t)e-Ja' = <f(t),eial>, (2) 

where <> denotes the inner product. 

For real applications, functions of time are analyzed in finite intervals. 
To transform fit) into its frequency components, the signal is assumed periodic in 
the sampling interval. The duration of this interval becomes the fundamental 
period 7, which also defines the frequency resolution Aco = (Oo. For long 
sampln g intervals (large 7), frequency details are well resolved (small Aco), but 
the loca.ion in time of specific events within T is not known. Compensating for 
this by reducing T around a specific time t0 results in large Aw, hence an 
uncertainty of specific frequency components. This tradeoff between time and 
frequency resolution is known as the time-frequency uncertainty. 

An alternative to a specified duration of fit) is to window/<7j with a 
Gaussian-I ike function, g(t), centered at time t0. This windowing operator, Vin, 
serves to veight the signal closest to time t0 more heavily than the signal farther 
away in lime while maintaining a reasonably large T for adequate frequency 
resolution. In addition, the decay of Tin reduces the undesirable effects of Gibb's 
phenomenon at the edges [15]. The result is a Fourier transform that is a 
functii n of t0, called the Windowed Fourier Transform: 

<rnf)((ü,to)= l dtfmt-hk*1 = <f(t),g(t-to)(r
t>       p> 

The Discrete Windowed Fourier Transform results in integer m sampled 
spectra, components (mcoo) derived from integer n sampled time intervals (jit) of 
a signal. It is given as [7] 

rin
m.nf = jdtf(t)8(t-nto)eJm^ = <f(t),GmJt)>, (4) 

where GmJt) = g{i-nt0)e
}m^. 

WAVELET TIME-FREQUENCY REPRESENTATIONS 

Given an appropriate function space, the set of functions generated by recursive 
applications of the scaling function to the mother wavelet constitutes a set of 
basis functions called a wavelet series [4]. The Continuous Wavelet Transform 
(CWn is similar to the Fourier Transform (or Windowed Fourier Transform) in 
that both, involve an inner product of an input function with a scaling function. 
The CWT is given as [7] 
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(r™f)(a,b) = \a\-mldtf(t)V(.(.t-b)/a) 
= \a\-m<f(t)MO-b)/a)>, (5) 

Variable a, the dilation parameter, controls the interval of compact support, or 
duration, for the wavelet y0* = y((f-fc)/a). Variable b, the translation 
parameter, determines where in time the wavelet exists. The Discrete Wavelet 
Transform (DWT) is a collection of samples of the CWT, sampled at m 
incremental dilations and n incremental translations, given as [7] 

l™\.n(j) =lflorm/2J^(OV*(«o"mr-"öo) 

= \a0Ymf2<f(t)M<tomt-nbo)> (6) 

F>r a given application, the optimal basis functions, or wavelet series 
components, must be chosen as well as the optimal scaling and translation 
parameters. These selections make the application of wavelet transforms more 
complicated than that of Fourier transforms. 

Consider a DWT implemented with unity dilation, ao = 1, and a mother 
waveht mat is a windowed complex exponential, \f,b° = g(t-nt0)e~im'°of\ in this 
case ihe DWT becomes the DFT. Using unity dilation defeats the utility of 
allowing for a better balance between frequency resolution at lower frequency 
components and time resolution at higher frequency components. However, this 
demonstrates that the Fourier Transform can be thought of as a special case of 
the Wavelet Transform. 

STRUCTURE AND FUNCTION OF EARLY VISION 

Natural vision filtering begins with photonic refraction through the cornea and 
lens. The incoming light then passes through the vitreous humor and retinal cell 
tissue, and is focused onto a photoreceptor mosaic surface. Photonic energy is 
convertsd to electronic charge in the photopigment discs of the photoreceptors 
(rods and tones). The photoreceptors, with the help of a layer of horizontal cells, 
spread the charge in space and time within a local neighborhood of other 
receptor j. The spread charge and photoreceptor charge are both available at the 
root of die photoreceptor, at the triad synapse. The bipolar cells connect to triad 
synapsss and presumably activate signals proportional to the difference between 
the pholcreceptor input and the horizontal cell input. Both polarities exist, called 
ow-bipolars or ojff-bipolars, which respond to light and darkness respectively 
[11,14,2?]. 

The photoreceptor charge is influenced by gap junctions between 
adjacent photoreceptors.   The response from a photoreceptor aggregate can be 
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modeled as a spatial-temporal Gaussian with a small variance. The input from 
the neighboring aggregate of horizontal cells can be modeled with a similar 
Gaussian with a larger variance. The differencing function results in the 
difference-of-Gaussian (DOG) filter operation, resulting in a center-surround 
antagonistic receptive field profile. DOG and Laplacian-of-Gaussian (LOG) 
functions have been used to model the bipolar cell output [14]. 

The analog charge information in the retina is tunneled into information 
pathways as it is channeled from the mosaic plane to the optic nerve [3]. The 
channels that exist there are the rod channel, initiated by rod bipolare, the 
parvocelMar pathway (PP) and the magnocellular pathway (MP), the latter two 
initiated by cone bipolare [10]. Both the PP and the MP exhibit center-surround 
antagonistic receptive fields. PP cones are tightly connected, responding to small 
receptive fields, while the MP cones are more loosely connected (together with 
rod inputs), responding to large receptive fields. 

The MP and PP perform separate spatial band-pass filtering, provide 
color and intensity information, and also provide temporal response channels, as 
illustrated in Figure 1. A relatively high degree of acuity is achieved in each 
domain from these few filters. The MP is sensitive to low spatial frequencies and 
broad a k r intensities, which provide basic information of the objects in the 
image. The PP is known to be sensitive to higher spatial frequencies and 
chromatic differences, which add detail and resolution [17]. In the color domain, 
the PP provides color opponency and thus spectral specificity, and the MP 
provides color non-opponency and thus overall intensity [9,12]. In the time 
domain, the PP provides slowly varying dynamics, while the MP provides 
transient responses to image dynamics. 

Input ^ Parvocellular 
Pathway (PP) 

w 
Imagery w w 

—► Magnocellular 
Pathway (MP) 

fc, w 

Local Spatial Detail 
Local Slow Dynamics 
Local Color 

Local Spatial Average 
Local Temporal Transients 
Local Intensity 

Figure 1. Natural Vision Information Channels. 
The color opponent PP responds to spatial detail, slowly-varying image 
dynamics, and chromatic detail. The color non-opponent MP responds to 
sp.iti'il averages, rapid transients, and intensity variations. 
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WAVELET FEATURES INHERENT IN VISION PROCESSING 

Wavelet bases can be subdivided into orthogonal or nonorthogonal and 
complete or noncomplete categories [21]. A set of basis functions is orthogonal if 
the inner product of any two different basis functions is zero, and complete if no 
non-zen function in the space is orthogonal to every basis vector [4,22]. 
Orthogonality and completeness ensure a unique transformed representation of 
each function within the given space. These are the general requirements for the 
selection of wavelet bases in compression applications. 

However, biological systems are not concerned with information storage 
for perfect reconstruction. Any machine-vision application requiring some action 
to be taken based on an understanding of the image content will also fit this 
general de rcription. In fact, many biological processing functions are considered 
to be Aon-orthogonal [8]. The task is processing information in order to take 
some action, not processing information for later reconstruction. The 
redundancy of vision filters is balanced by the need for efficiency, simplicity, and 
robustness. Information redundancy results in unnecessary hardware and 
interconnections, but often redundancy may be required to sufficiently span the 
information space inherent in the environment. The cost of supporting the 
redundancy may be less significant than the benefit of using simpler processing 
elements that degrade gracefully. 

Wavelet Filter Banks and Vision Pathways 

The MP and PP decompose the natural input image into local average 
and local detail components, respectively. Images can also be decomposed into 
wavelet components using quadrature mirror filtering (QMF), resulting in a 
series of averaging components and another series of detailing components 
[7.19J. QMF is a special case of subband coding, where filtered components 
represent üie lower and upper frequency halves of the original signal bandwidth. 
If the ;nialyzing filter coefficients are symmetric, then the synthesizing 
compont n s are mirrored with respect to the half-band value, thus the term 
quadrature mirror. A variety of applications have emerged from the remarkable 
QMF reconstruction capabilities [13,16,18]. 

Vision pathways (MP and PP) and QMF filter banks both therefore' 
break up the input image signal into high and low frequency components. 
Recent spxtral analysis of Gaussian-derived vision models indicate a remarkable 
retention of information in spite of the nonorthogonal nature of vision filters 
[2,3]. 

Exam pies of Waveform Translation and Dilation in Vision Systems 

As dcsu ibed previously, a wavelet basis is generated by recursively applying a 
scaling .'unction to a mother wavelet [4,7].  The essential characteristics of the 
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wavelet scaling function are the translation and dilation parameters of (5) and 
(6). Structural and functional subunits of vision systems also tend to replicate a 
mother function with scaling and translational variations. These variations are 
functions of other parameters such as time, gaze direction, and eccentricity, the 
distance from the center of the retina. 

Photonic spreading is a function of the finite aperture, optical 
imperfections, and photonic wavelength [10]. A Gaussian mother wavelet of a 
carefully chosen variance can be chosen to model the point spread function at the 
retina "enter (zero eccentricity) at a selected visible frequency. The complete 
point spread function can be modeled as a two-dimensional scaling of this mother 
function with respect to both eccentricity and photonic frequency. 

The photoreceptor mosaic includes rods and three cone types, called L, 
M, and S for "long", "medium", and "short" visible wavelength peaks in their 
spectral absorption curves. Sampling in the center of the retina is limited to L 
and M ce!)s, providing a significantly higher spatial resolution as compared to 
the periphery [10,11]. For a given viewing position, a mental model of an 
environment is built from a set of high resolution samples from different 
directions. These translations of the mosaic function are the result of eye 
movements [5]. 

Due to scaling with frequency, higher frequency wavelet components 
typically have smaller regions of support. The sampling density of M and L cone 
cells is greatly reduced as a function of increasing eccentricity. This is due to 
increasing cell sizes and also by the introduction of rod cells and S cells in the 
outer regions. A cellular receptive field function representing the envelope of 
available photonic energy stimulating either M or L cones will thus include an 
increasing scale factor with eccentricity. 

The initial electronic processing stages of early vision are characterized 
by DOG filtering operations of the MP and PP. The spatial extent of both the MP 
and PP receptive fields increase significantly with eccentricity [10]. A DOG 
mother function can be scaled with respect to eccentricity to properly model 
vision pathways at different parts of the retina. 

Efficient Use of Basis Functions 

A common theme among space, time, and color domains is the minimal 
use of bi si 3 functions. There are essentially four chromatic detector types, three 
temporal channels, and three spatial channels. Therefore, natural neuronal 
systems lend to use efficient combinations of only a few filters to accomplish a 
high degree of acuity in each domain. QMF signal reconstruction capability is a 
practical demonstration of extracting spectral detail from only two filters. The 
behavior of such synthetic applications may lead to a deeper understanding of 
natural phenomena. 
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Neural Networks and Gradient-Based Learning in OCR 
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A large proportion of today's commercial Optical Character Recognition systems 
(OCR) and Handwriting Recognition Systems (HWR) use neural networks at the 
core of the recognition engine. Comparisons on standard databases show that Neu- 
ral Networks, particularly multi-layer networks, offer a good combination of speed, 
generality, simplicity, and flexibility. They are also particularly well-suited for the 
large input dimension required for shape recognition tasks such as character recog- 
nition. 

Neural Networks and Machine Learning have become indispensable ingredient in 
the design of OCR/HWR systems. Those systems are generally built as a cascade of 
independent modules including: line and word locators, character segmenters, fea- 
ture extractors, character recognizers, and language models. However, in most 
cases, only the character recognizer is trainable. We describe a new learning para- 
digm called Graph Transformer Networks that allows all the modules in such a sys- 
tem to be trained simultaneously so as to maximize a global performance measure. 
Each module, called a Graph Transformer, takes graphs as input and produces 
graphs as output. The arcs on the graphs carry numerical information (scalars or 
vectors) such as images, scores, and class labels. A gradient-based learning proce- 
dure can be used to train the parameters of the modules so as to maximize a global 
objective function. 

Graph Transformer modules offer much increased flexibility over traditional gradi- 
ent-based learning systems such as multilayer neural networks that communicate 
their states and gradients via fixed-size vectors. A complete system based on this 
concept for reading handwritten and printed bank checks is described. It contains 
hundreds of thousands of trainable parameters and combines convolutional neural 
network character recognizers with graph-based stochastic models trained coopera- 
tively at the document level. It is deployed commercially and reads million of busi- 
ness and personal checks per month with record accuracy. 
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Abstract 

We have previously introduced the Gamma MLP which is defined as an 
MLP with the usual synaptic weights replaced by gamma filters and associated 
gain terms throughout all layers. In this paper we apply the Gamma MLP to a 
larger scale speech phoneme recognition problem, analyze the operation of the 
network, and investigate why the Gamma MLP can perform better than alterna- 
tives. The Gamma MLP is capable of employing multiple temporal resolutions 
(the temporal resolution is defined here, as per de Vries and Principe, as the 
number of parameters of freedom (i.e. the number of tap variables) per unit of 
time in the gamma memory - this is equal to the gamma memory /J, parameter as 
detailed in the paper). Multiple temporal resolutions may be advantageous for 
certain problems, e.g. different resolutions may be optimal for extracting dif- 
ferent features from the input data. For the problem in this paper, the Gamma 
MLP is observed to use a large range of temporal resolutions. In comparison, 
TDNN networks typically use only a single temporal resolution. Further moti- 
vation for the Gamma MLP is related to the "curse of dimensionality" and the 
ability of the Gamma MLP to trade off temporal resolution for memory depth, 
and therefore increase memory depth without increasing the dimensionality of 
the network. The IIR MLP is a more general version of the Gamma MLP - 
however the IIR MLP performs poorly for the problem in this paper. Investi- 
gation suggests that the error surface of the Gamma MLP is more suitable for 
gradient descent training than the error surface of the IIR MLR 
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1   Introduction 

Machine learning models used for speech recognition are required to account for a 
high degree of variability in the data (e.g. acoustic variability, within-speaker vari- 
ability, across-speaker variability, and phonetic variability). For phoneme recogni- 
tion, methods of addressing these variabilities include using larger datasets and us- 
ing models which take into account greater context of the acoustic signal. However, 
taking into account greater context typically leads to larger models. The amount of 
training data required for accurate estimation of class distributions can increase sig- 
nificantly when the input dimensionality increases (cf. the "curse of dimensionality" 
[6])1. As the complexity of the desired target function for a given problem increases 
while the amount of data remains constant, it becomes increasingly problematic to 
estimate the target function from finite data due to the ill-posed nature of the prob- 
lem - many of the models which fit the training data closely do not generalize well 
to unseen data. In order to reduce the difficulty with trying to approximate a func- 
tion which is too complex for the available data, we often consider looking for a 
hierarchical solution where initial layers extract features which identify higher level 
attributes of the data which enhance generalization. These features can be extracted 
manually, or automatically. The Gamma MLP considers a transformation for the 
inputs to each node and aims to optimize the transformation for each node individ- 
ually in order to improve performance. The process can be thought of as automatic 
feature extraction (if the optimal transformations were known beforehand then those 
transformations could be used to extract new features from the data). 

2   The Gamma Filter 

Infinite Impulse Response (IIR) filters have a significant advantage over Finite Im- 
pulse Response (FIR) filters in signal processing: the length of the impulse response 
is uncoupled from the number of filter parameters. The length of the impulse re- 
sponse is related to the memory depth2 of a system, and hence IIR filters allow a 
greater memory depth than FIR filters of the same order. However, IIR filters are 
not widely used in adaptive signal processing [9]. This may be attributed to the 
fact that a) there may be instability during training and b) the gradient descent 
training procedures are not guaranteed to locate the global optimum in the possibly 
non-convex error surface [11]. 

'Additionally, increases in the "complexity" of the desired target function may make gradient descent 
optimization more difficult - training algorithms may take longer to converge or become "stuck" in local 
minima or "plateaus" which are increasingly poor compared to the global optimum. 

2 A greater memory depth implies that the model can retain past information for a longer time. 
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The use of gamma filters as a memory structure at the input of an otherwise stan- 
dard MLP network was proposed by de Vries and Principe [5]. The gamma filter, a 
special case of an IIR filter, is designed to retain the uncoupling of memory depth to 
the number of parameters provided by IIR filters, but to have simple stability con- 
ditions. The output of a neuron in a multilayer perceptron is computed using3 yl

k = 

/ fei^ö1 HiS/i-1)- The addition of short term memory with delays was consid- 

ered by de Vries and Principe [5]: y[ = f (S^1 EJLO fliy(* ~ i)l/'_1(* ~ J)) 

where gl
kij(t) =    ^    V'1 e^', j = 1,2,..., K. The depth of the memory is 

controlled by fj,, and K is the order of the filter. For the discrete time case, de Vries 
and Principe [5] obtain the following recurrence relation: 

m-J   *W» 3 = 0 (l) 
ziW~\    (1 - #«)*>(* - 1) + M«J-i(* ~ 1).   J = l,2,...,if 

where x(t) is the filter input and Zj(t) are the filter outputs. For fi < 1 the gamma 
filter may be considered as a low pass filter. For /x = 1. the memory is a tapped 
delay line corresponding to the memory structure in an FIR MLP (An MLP where 
the weights are replaced by FIR filters and optional gain terms [2]) or a TDNN. 
For fj, < 1 the gamma memory structure implements a tapped dispersive delay line 
where the degree of dispersion is controlled by fi. 

de Vries and Principe [9] define the temporal resolution, R, of a gamma memory 
structure as the number of parameters of freedom (i.e. the number of tap variables) 
per unit of time in the filter memory: R = K/D = y, where D is the memory 
depth of the structure (the temporal mean value of the impulse response of the last 
tap) [10]: D = K/p. When \i = 1, the memory depth is equal to the order of the 
memory, K. The memory depth increases when /i < 1, and the temporal resolution 
decreases, i.e. the gamma memory can trade resolution for memory depth. There- 
fore the gamma memory can be used to create models which can take into account 
greater context with fewer parameters (without resorting to the use of a single low 
temporal resolution) in comparison to TDNN or FIR MLP models. 

3where yl
k is the output of neuron k in layer I, Nt is the number of neurons in layer I, w'ki is the 

weight connecting neuron k in layer I to neuron i in layer I - 1, y'0 = 1 (bias), and / is commonly a 
sigmoid function. 
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3   The Gamma MLP 

3.1   Motivation 

The focused gamma network which uses the gamma memory as a preprocessing 
layer for a standard MLP has been proposed by de Vries and Principe [5]. This net- 
work allows for the use of only one temporal resolution per input. However, it may 
be desirable to use multiple temporal resolutions (e.g. different resolutions may be 
optimal for extracting different features or for classifying different phonemes). The 
Gamma MLP is similar to a standard MLP except every synapse contains a gamma 
memory structure and a gain factor. The temporal resolution of the memory in each 
synapse is adjusted separately. Therefore, in contrast with the focused gamma net- 
work, the Gamma MLP is able to use multiple temporal resolutions. Additionally, 
the Gamma MLP can contain gamma memory structures in all layers of the network. 

Other motivation for the Gamma MLP can be seen with comparison to TDNN, FIR 
MLP and IIR MLP (An MLP where the weights are replaced by IIR filters and 
optional gain terms [1]) models. In comparison to the TDNN and FIR MLP models, 
the Gamma MLP may provide improved performance because it allows temporal 
resolution to be traded for memory depth, i.e. for a system of given dimensionality, 
the Gamma MLP can employ filters with a greater memory depth. Additionally, in 
comparison with the IIR MLP, the Gamma MLP may be significantly easier to train, 
which is discussed further in section 5. 

3.2   Definition 

Definition 1 A Gamma MLP with L layers excluding the input layer (0,1,..., L), gamma 
filters of order K,andN0,Ni,...,NL neurons per layer, is defined as: 

x'k(t) = £ 4(t) £ w'kij (t)z'kij(t) (3) 

Zkij(t) =      S      i-i 
I   Vi 

ß'ki(t))ziij(t - 1) + /4(*)4i0-i)(* - 1),    1 < 3 < K 

(*), 3 = 0 

where yl
k (t) is the output of neuron k in layer I at time t, c'ki = synaptic gain, f(a) = 

tanh(a) = (eQ/2 - e-
Q/2)/(eQ/2 + e~a/2), k = l,2,...,N, (neuron index), I = 0,1,.... L 

(layer), and 4yl»=o = 1. wLj|x=o,j;*o = 0, c'fcij-|i=o = 1 (bias). 

a 
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A Gamma MLP is defined as a multilayer perceptron where every synapse contains 
a gamma filter and a gain term (introduced in [7]), as shown in the definition above. 
The Gamma MLP is therefore a special case of the IIR MLP [ 1 ]. The motivation be- 
hind the inclusion of the gain term is discussed in section 5. A separate \i parameter 
is used for each filter. Gradient descent update equations for the Gamma MLP are 
given in [7]. In practice, it is often desirable to restrict the Gamma MLP structure 
by using Gamma filter only in the first layer and/or not using the synaptic gain terms 
(4;), as is also the case for FIR and IIR MLP networks. 

4   Phoneme Recognition 

4.1   Task Details 

Our data consists of the "sa" sentences spoken by male members of demographic 
region 3 in the TIMIT database. There are 79 speakers. The problem is therefore 
speaker independent phoneme prediction. The speakers in the training and test sets 
do not overlap. 

The raw speech data was preprocessed into a sequence of frames using PLP. The 
analysis window (frame) was 20 ms. Each succeeding frame overlapped with the 
preceding frame by 10 ms. 9 PLP coefficients plus the signal power were extracted 
and used as features describing each frame of data. The difference between the 
current and previous frames was added to the input vectors, as is commonly done 
[4]. Periods of silence before and after the sentences were reduced to two frames 
in order to limit any skew of the results caused by a disproportionate percentage of 
silence frames. 

The models had 40 outputs corresponding to the 40 phonemes4. The FIR and gamma 
filter orders were 4 (5 taps), and the TDNN model had an input window of 5 steps 
in time. The training set contained 10,000 frames, the test set and validation sets 
contained 5,000 frames, and the networks had 40 hidden nodes. The networks were 
trained for 200,000 updates. We used standard backpropagation with stochastic 
update. The tanh activation function was used. A "search then converge" learning 
rate schedule was used with an initial learning rate of 0.1 for the fi parameters and 
0.2 for all other parameters. 

4The TIMIT allophones were converted to the standard 40 phoneme set [8]. 
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4.2   Results 

Results are presented for frame level phoneme recognition, i.e. for each frame the 
recognizer predicts the current phoneme. A few observations regarding the expected 
results: guessing would result in 97.5% error, coarticulation5 makes the task diffi- 
cult, and the possibility of zero error would not be expected due to inevitable diffi- 
culty and errors in the phoneme labelling. 

The frequencies of the forty classes varies significantly, and it was found that all 
models had a tendency to "ignore" the rarer phonemes [3] due to biases inherent 
in the neural network architecture and training algorithm. We therefore employed 
a scaling technique whereby weight updates are scaled on a class by class basis. 
The amount of scaling is varied using a control parameter, cs, from none (cs = 0) to 
scaling according to the prior probabilities of the classes (cs = 1). Yaeger et al. have 
recently introduced a very similar technique which they call "frequency balancing" 

[12]. 

Reporting results in terms of the percentage of correct classifications can be mis- 
leading when the frequency of the individual classes varies significantly (e.g. a 
relatively low error rate may be achieved by a network which ignores low frequency 
classes). For this reason, results are reported here in terms of the MSSE which is 
defined as: MSSE = ± Eil°i i1 ~ si)2 where N<= = the number of classes and St 
= the sensitivity of class i. The sensitivity of a class is defined as the proportion of 
events labelled as that class which are correctly detected. This criterion was chosen 
because each class is given equal importance and the square causes lower individual 
sensitivities to be penalized more (e.g. for a two class problem, class sensitivities of 
100% and 0% produce a higher MSSE than sensitivities of 50% and 50%). 

Figure 1 shows the results for the Gamma MLP, FIR MLP, and TDNN networks. 
The degree of scaling, cs, was varied from 0 to 1. Five trials were performed in each 
case. The FIR MLP and Gamma MLP networks contained filters in both layers. 
The Gamma MLP contained synaptic gains, however the FIR MLP was found to 
perform significantly better without the synaptic gains for this problem. Scaling with 
cg = 0.75 resulted in the best performance for each of the networks and, therefore, 
scaling with cs = 0.75 was used for the later results. 

Results for the IIR MLP are not shown because it was not possible to obtain signif- 
icant convergence. Theoretically, the IIR MLP model is the most powerful model 
used here (in the sense that it can represent a greater variety of computational struc- 
tures than the other networks with the same number of hidden nodes). In particular, 
the Gamma MLP is a special case of the IIR MLR Although the IIR MLP is prone 

5Coarticulation refers to changes in the way a speech segment is articulated depending on previous 
(backward coarticulation) and following segments (forward coarticulation). 
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to stability problems, the stability of the model can and was controlled in the sim- 
ulations performed here (by reflecting poles that move outside the unit circle back 
inside). The most obvious hypothesis for the difficulty in training the model is re- 
lated to the error surface and the nature of gradient descent. It is expected that the 
error surface of the IIR MLP presents greater difficulty to gradient descent optimiza- 
tion. This is discussed further in the next section. 
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Figure 1. Test MSSE results as the degree of scaling is modified. The best error 
corresponds to a scaling degree of 0.75 for each network type. At each point, box- 
whiskers plots are shown on the left and the mean plus and minus one standard 
deviation is shown on the right. Five trials were performed in each case. 

5   Discussion 

The Gamma MLP may perform better than the standard TDNN and the FIR MLP 
for speech recognition because the gamma filtering operation allows processing the 
input data using multiple temporal resolutions. The Gamma MLP can therefore 
account for more past history of the signal for a system of a given order (without 
resorting to the use of a single low temporal resolution). Figure 2 shows the distribu- 
tion of the gamma/i parameters in a typical trained Gamma MLR It can be seen that 
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a range of ß parameters, and therefore a range of temporal resolutions, is employed 
by the network. 

Figure 2. The final distribution of the gamma \i parameters for a sample Gamma 
MLP. 

The Gamma MLP often performs better when using the synaptic gain terms. This 
improvement may be considered non-intuitive to many - the synaptic gains add 
degrees of freedom, but no additional representational power. However, the error 
surface will be different in each case, and results indicate that the surface for the 
synaptic gains case can often be more amenable to gradient descent. 

For the problem considered here, the Gamma MLP performs significantly better 
than the IIR MLP although the Gamma MLP is a special case of the IIR MLR It 
is reasonable to believe that the IIR MLP could perform as well as, or possibly 
better than, the Gamma MLP, but in practice it is difficult to make it do so for 
the problem considered here. Figure 3 shows sample plots of the error surface for 
Gamma and IIR MLP networks. In order to reduce computational expense and 
use networks with fewer parameters to aid visualization, a simpler task has been 
chosen. The task is Mackey-Glass prediction using networks that contain only 
five hidden nodes (the order of the filters was 4, the initial learning rate was 0.1, 
the training, test, and validation sets contained 500 points, and 100,000 stochastic 
updates were performed in each case). Even with such small networks, the error 
surface has many dimensions making visualization difficult. Each plot in the figures 
is with respect to two randomly chosen dimensions. In each case, the center of the 
plot corresponds to the values of the parameters after training and the range of each 
parameter on the plot is 8. The NMSE was evaluated at 225 points equally spaced 
in a grid. For the IIR MLP, a greater percentage of "flat spots" and complex surfaces 
can be observed. On average, the error surface for the IIR MLP appears to be less 
suitable for gradient descent optimization, reinforcing the conclusion that the poorer 
performance of the IIR MLP is due to optimization being more difficult. Hence, in 
using the Gamma MLP instead of the IIR MLP, we are trading off computational 
capacity for easier training. The test NMSE results for 20 simulations each using 
these networks show that the best performing IIR MLP was only slightly worse than 
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the best performing Gamma MLR However, the Gamma MLP was significantly 
better on average (NMSE of 0.0341 versus 0.185 for the IIR MLP). 

Figure 3. Error surface plots for a sample Gamma MLP (left two columns) and a 
sample IIR MLP (right two columns). Each plot is with respect to two randomly 
chosen dimensions. In each case, the center of the plot corresponds to the values 
of the parameters after training. The z-axis scale varies from plot to plot in order 
to show the qualitative aspects of the surface (the plots only cover variation in two 
dimensions and are only plotted around one point in weight space, therefore quan- 
titative conclusions should be drawn from the final NMSE results). From many of 
these plots we have observed that there is a greater percentage of "flat spots" and 
complex surfaces for the IIR MLR 

6   Conclusions 

We have applied the Gamma MLP to a speech phoneme recognition problem, an- 
alyzed the operation of the network, and investigated why the Gamma MLP can 
perform better than alternatives. The Gamma MLP is capable of employing mul- 
tiple temporal resolutions, which may be advantageous for certain problems, e.g. 
different resolutions may be optimal for extracting different features from the input 
data. For the problem in this paper, the Gamma MLP is observed to use a large range 
of temporal resolutions. In comparison, TDNN networks typically use only a single 
temporal resolution. The Gamma MLP is able to trade off temporal resolution for 
memory depth, and therefore increase memory depth without increasing the dimen- 
sionality of the network (or using a single low temporal resolution). The IIR MLP 
is a more general version of the Gamma MLP - however the IIR MLP performed 
poorly for the problem in this paper. Investigation suggested that the error surface of 
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the Gamma MLP is more suitable for gradient descent training than the error surface 

ofthellRMLP. 
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Abstract 

We present the problem of designing a classifier system 
based on hidden Markov models (HMMs) from a labeled 
training set with the objective of minimizing the rate of mis- 
classification. The traditional design approach divides the 
training set into subsets of identically labeled training vectors 
and independently designs the HMM corresponding to each 
subset of the training data using a maximum likelihood crite- 
rion. However, this approach does not achieve the minimum 
mis-classification objective. To design the globally optimal 
recognizer, all the HMMs must be jointly optimized to mini- 
mize the number of mis-classified training patterns. This is a 
difficult design problem which we attack using the technique 
of deterministic annealing (DA). In the DA approach, we in- 
troduce randomness in the classification rule and minimize the 
expected mis-classification rate of the random classifier while 
controlling the level of randomness in its decision via a con- 
straint on the Shannon entropy. The effective cost function 
is smooth and converges to the mis-classification cost at the 
limit of zero entropy (non-random classification rule). The 
DA approach can be implemented via an efficient forward- 
backward algorithm for recomputing the model parameters. 
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This algorithm significantly outperforms the standard maxi- 
mum likelihood algorithm for a moderate increase in design 
complexity. 

1    Introduction 

The hidden Markov model (HMM) is commonly used as a stochastic model for 
time sequences. HMMs were originally applied within main-stream statistics, 
but the discovery of their applicability to modeling speech utterances [3, 6] 
has led to extensive research activity in HMMs over the last three decades. An 
overwhelming number of conventional speech recognition systems are based 
on the use of the HMM to model various speech utterances within the context 
of traditional discriminant-based pattern classification. 

In this paper, we address the problem of recognition of time sequences 
modeled by HMMs. It is formally defined as the design of a recognizer based 
on a labeled training set (i.e., supervised learning). This problem has been 
extensively treated in the speech recognition literature. The most commonly 
used approach is to divide the training set into subsets of identically labeled 
training vectors and independently design HMMs for each subset of training 
data via maximum likelihood estimation of model parameters. After design, 
the system is used for recognizing new sequences through competition between 
the designed HMMs. The input sequence is declared to belong to the winner 
(the most likely model). 

The starting point of our work is the realization that the above recog- 
nition problem is fundamentally a pattern classification problem. Further, 
the quality of the recognizer is most appropriately measured by its rate of 
classification error. This leads to two major observations: First, the glob- 
ally optimal recognizer must be designed through joint optimization of all 
models. It is important to emphasize that the ultimate objective is not to 
model the sequences belonging to each class as accurately as possible, but 
rather, to distinguish between the classes while making as few errors as possi- 
ble. As classification is performed by competition between models, it is clear 
that we must optimize all the model parameters simultaneously to minimize 
classification errors. 

This also connects to the second observation, namely, that maximum like- 
lihood is a mismatched cost for optimizing the classifier. The direct measure 
of success is simply the empirical rate of correct classification. It should be 
noted in passing that the Bayesian classifier which is optimal in the sense 
of minimum classification error, is a close relative of the maximum likeli- 
hood approach above. However its success depends on the availability of the 
precise probability distributions, including the assumption that the model 
structure is in complete agreement with the source. If one has only access 
to a reasonably short training set, the performance of maximum likelihood 
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may differ significantly from that of minimum classification error, as will be 
demonstrated in this work. We note that the shortcomings of the maximum 
likelihood method have been previously recognized (e.g. [1, 2, 4, 7]) and joint 
optimization approaches have been suggested. 

There are several important difficulties in approaching the design problem 
directly, that is, by joint optimization of all model parameters so as to min- 
imize the rate of classification error. One difficulty is that unlike maximum 
likelihood, this cost function is piecewise constant and all gradients with re- 
spect to parameters vanish almost everywhere (an infinitesimal change in pa- 
rameter values will not change the classification of any sequence in the training 
set). Thus, one cannot simply use a gradient based optimization method. An 
important approach to address this problem appeared in [7] where the cost 
surface was smoothed to allow the application of gradient methods (A few 
weeks ago, a paper appeared [5], where this method was extended to HMM 
classification.). Another important difficulty is that even if the cost surface 
is smoothed, the optimization process tends to suffer from numerous shallow 
local minima that riddle this complex cost surface. Finally, one must keep 
in mind the difficulties associated with the computational complexity of such 
joint optimization. 

The main contribution of this paper is a novel method for designing HMM- 
based recognizers. The new method is based on the deterministic annealing 
approach to clustering [14, 13] and in particular to its recent extension to 
classification [8]. By introducing randomness that is controlled by impos- 
ing the level of Shannon entropy, we obtain an effective cost function that 
is smooth and converges to the original classification error cost at the limit 
of zero entropy. Further, this process is analogous to physical annealing and 
hence has the capability to avoid many shallow minima that trap standard 
local optimization methods. It is also important to note that unlike the 
stochastic procedure of simulated annealing, the process here is determin- 
istic and all randomization is taken into account by taking the expectation 
of the various quantities. Another important result is the development of 
a forward-backward algorithm (similar to Baum-Welch re-optimization) for 
recomputing the parameters of all models in our joint optimization frame- 
work. (Note that here we do not use maximum likelihood as our ultimate 
objective). This algorithm is instrumental in keeping the computational com- 
plexity manageable. The approach is shown to substantially outperform the 
standard maximum likelihood method at the cost of moderate increase in 
design complexity with respect to separate design of HMM per class. 

2    The HMM classifier and its design 

We address the supervised learning problem of designing a recognition system 
from a labeled training set, T = {(yi, Ci), (y2, c2), ..(yw, cN)}.   Each train- 
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ing pattern, yj, is a vector of U observations, yj = (yi(l),y«(2), ■ • -yj(/j)). 
Further, each observation, y,(i), is a discrete quantity, i.e. yi(t) G A = 
{1, 2, • ■ •, K}. Despite this restriction to the case of discrete observations, we 
note that the design methods can be easily be extended to handle continuous 
valued observations also. The training pattern, yj, belongs to class, c;, which 
may be one of M classes, i.e. c,- 6 C = {1, 2, • • -M}. 

The HMM recognition system consists of a set of hidden Markov models, 
{Hj, j = 1,2, • • •, M}, one per class index. The model, Hj has Sj states and 
is fully specified by the parameter set Aj = (Aj, Bj, Uj), where following the 
usual convention, Aj is the (Sj x Sj) state transition probability matrix, Bj 
is the (Sj x K) emission probability matrix and TLj is the (length Sj) initial 
state probability vector. 

The classifier works as follows : Given a training pattern, y,-, for each 
HMM, Hj, and for each sequence (length /,■) of states, s = (s(l), s(2), • • ■, s(li)) 
in the trellis of Hj, we determine the log likelihood, l(yi,s, Hj), that the ob- 
servation yj is generated via the state sequence, s. Hence, 

l(yt,s, Hj) = logn^l)) + £ log^-(«(t), s(t + 1)) + J2logBj(s(t),yi(t)). 

(1) 
Here, Aj(m, n) is the (m,n) element of the matrix, Aj. Similarly, Bj(m, k) 
is the (m, k) element of matrix, Bj, and Hj(m) is the mth component of the 
vector, n^. 

Next, we maximize the log likelihood over all state sequences in the trellis 
of HMM, Hj, and determine 

dj(yi) =     max    l(y{, s, Hj). (2) 
S£Sti{Hj) 

Here, Si(Hj) is the set of all state sequences of length I in the trellis of 
HMM, Hj. The quantity, dj(yi) thus represents the log likelihood of the 
state sequence in model Hj, that most likely generated y;. Interpreting dj(-) 
as the discriminant for class j, we adopt the traditional discriminant-based 
classification approach to define the classifier operation as : 

C(yi) = argma,xdj(yi). (3) 

We refer to this definition as the "best path" discriminant J. This classifica- 
tion system can be viewed as a competition between paths. The observation 
is ultimately labeled by the class index of the HMM to which the winning 
path belongs. One advantage of the "best path" discriminant classifier is 
that the search for the most likely path (choosing a state sequence, s, that 
maximizes (2)) can be reduced to a sequential optimization problem that can 
be solved via an efficient dynamic programming algorithm (Viterbi search). 

1 Our design method can be easily modified to the case where the discriminant is obtained 
by appropriate averaging of the likelihood over all paths in the class model. 
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2.1    HMM classifier design 

The problem of HMM classifier design can be stated as the joint optimiza- 
tion of the HMM parameters, {Aj}, to minimize the empirical probability of 
misclassification measured over the training set, 

1    N 

mmPe = l-j-J2t(C(yi),Ci) (4) 

where 6 is the error indication function: 6(u, v) = 1 if u = v and 0 otherwise. 

The most important difficulty in this optimization is that the cost, Pe, 
is a piecewise constant function of the optimization variables. As a result, 
we cannot use traditional gradient descent based optimization methods - the 
gradients are zero almost everywhere. One approach [7] to circumvent this 
difficulty is to replace the piecewise cost function by a smooth approxima- 
tion to it. While the modified cost function is amenable to descent-based 
optimization, in practice, there are numerous shallow local minima on the 
complex cost surface that can easily trap optimization methods based on 
simple descent. In the next section, we present a novel approach based on 
deterministic annealing to simultaneously tackle the piecewise nature of the 
cost function and the problem of shallow local minima traps. 

3    Deterministic Annealing approach 

We take as our starting point, the deterministic annealing approach to clus- 
tering, vector quantization [14] and related optimization problems [13] and its 
extension to structurally-constrained clustering problems [8]. The extended 
method can handle problems involving structural constraints on the cluster- 
ing rule e.g. tree structured vector quantization, pattern classifiers based 
on parametric discriminant functions etc. We have recently applied the ex- 
tended DA method successfully to the design of standard pattern classifiers 
[8], regression functions [9, 12, 11] and source coding systems [10]. The work 
presented in this paper represents an important extension of the method to 
handle time sequences that are modeled by HMMs. 

We cast the optimization problem within a probabilistic framework and 
maintain that, during design, it is useful to consider a randomized HMM 
classifier system. In the randomized classifier, given an observation, a win- 
ning state sequence is randomly chosen from among all state sequences in 
all the HMMs. This (random) choice of the winning state sequence is based 
on a probability distribution - we replace the best-path discriminant rule 
which associates a pattern to a unique winning state sequence by a ran- 
domized best-path discriminant rule that associates each pattern, ys-, to 
every state sequence,  s, in the trellis of every model, Hj, with a proba- 
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bility, P(yi,s,Hj).   Naturally, these probabilities are normalized such that 
£     £      P(yi,s,Hj) = l. 

The probabilities, P(y,-, s, Hj), are obtained in a systematic manner: We 
first note that the non-random best-path discriminant rule may be expressed 
as minimization over s; G \JSi,(Hj) of the cost function, 

j 

D = jfY,l<yi>ai>HA- (5) 
i 

After randomness is introduced, this cost function is replaced by the expected 
cost, 

<0>=^EE   £    Piyut.HjWyi^Hj), (6) 

which is minimized, while simultaneously enforcing a level of randomness 
though a constraint on the Shannon entropy, 

# = -^E£     £     Pfri^HAlogPfri^Hj). (7) 
i      j    SeSi^Hj) 

In particular, we optimize < D > subject to H = H. The probability dis- 
tribution obtained via this constrained optimization problem is the Gibbs 
distribution, 

7i(y*.B.Hi) 

p{yi's'Hj) = E    E    C7»(y.y.g/)- 
(8) 

The value of Shannon entropy, ^, corresponding to this Gibbs distribution 
is determined by the positive scale parameter, j. This parameter also controls 
the "randomness" of the distribution. For 7 = 0, the distribution over paths 
is uniform. For finite, positive values of 7, the Gibbs distribution indicates 
that we assign higher probabilities of winning to state sequences with higher 
log likelihoods. In the limiting case of 7 —»• 00, the random classification rule 
reverts to the non-random "best path" classifier, which assigns a non-zero 
probability of winning only to the path with the highest log likelihood as in 
(2). 

The random classifier's expected rate of misclassification (over the training 
set) can be calculated as 

1    N 

<Pe>=l--£     Y,     Piyu^Hi) (9) 
' = 1 S£Sti(HCi) 
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Next, we pose the problem of optimizing this random HMM classifier 
(choosing {Aj} and 7) to minimize the expected mis-classification probability 
of (9). However, simply minimizing (9) over all Gibbs distributions chooses 
one that is non-random (7 —> 00). While such a non-random, best-path 
classifier is the eventual goal of this design method, we wish to enforce the 
"non-randomness" gradually during the optimization, to avoid shallow local 
minima traps. 

As such, we follow the philosophy underlying the deterministic annealing 
approach and pose the problem of minimizing < Pe > while maintaining a 
level of randomness in the classifier through a constraint on the entropy, H — 
H. This constrained optimization problem is equivalently, the minimization 
of the unconstrained Lagrangian cost function, 

min L =< Pe > -TH, (10) 
{Aj},7 

where T is the Lagrange parameter that we refer to as the "temperature" 
because of an interesting analogy in statistical physics. 

3.1     Analogy to statistical physics 

The Lagrangian minimization of (10) reminds us of the definition of ther- 
mal equilibrium in statistical physics. The quantity, L, is analogous to 
the Helmholtz free energy of a thermodynamic system with average energy 
< Pe >, entropy over energy states, H and temperature, T. This free en- 
ergy is the quantity that is minimized when this thermodynamic system is at 
thermal equilibrium at temperature, T. 

From the optimization viewpoint, we are particularly interested in thermal 
equilibrium at T — 0 which corresponds to direct minimization of < Pe >, our 
ultimate objective. The analogy to physical systems suggests that to minimize 
< Pe >, it is useful to implement an annealing process, that is, gradually 
lower the temperature while maintaining the system at thermal equilibrium. 
We start with a very high value of T, where the sole objective is entropy 
maximization, which is achievable by the uniform distribution. Reducing T 
gradually from this high value, we repeat the process of minimizing L until 
T = 0, where the sole objective is optimizing {Aj} and 7 to minimize Pe. 

After this annealing process, we also include as a final step, a "quench- 
ing" mechanism - we optimize'!Aj} to minimize Pe, while increasing 7 from 
its optimal value at T — 0, in gradual steps, to a very high value. When 
7 is sufficiently high, the classifier reduces to the non-random "best-path" 
classifier. 

The annealing process yields a sequence of solutions at decreasing levels 
of entropy and Pe leading to the "best-path" classifier in the limit. The DA 
method is not a stochastic method like simulated annealing, but instead based 
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on the optimization of the deterministically computed expectation, L, at each 
temperature. This minimization is achieved by a series, of gradient descent 
steps with the following expressions for the gradients : 

dL  _ 

£E    E    %,a;)F(yi,ai){^-<™>J-} 

and 

dL _ 
df 

*rEE      E      i(yi,sJ//j)P(yi)s,Jffj){/(yi!sJ^)-</(yi,s!Jffj)>} 

Here, L(yi,s,Hj) - Tjl(yi,s,Hj) - 6(j,Ci). The operation, < /(•) >j, 
represents an expectation of the (state-sequence dependent) /(•) function over 
the state sequences in the trellis of HMM, Hj. Hence, 

<s^)>)=   E  ^Hi)g!igM      (11) 

Similarly, < /(•) > represents the expectation of the /(•) function over all 
state sequences in the trellises of all the HMMs. Hence, 

<Kyi,s,Hj)>=^2    J2    PiyutyHjMyui.Hj). (12) 
i   seslt(H,) 

An important aspect of the proposed method is the discovery of an efficient 
forward-backward algorithm to determine these gradient parameters. Note 
that the summations in the gradient expressions are over all state sequences 
in the trellis of HMMs. The number of paths depends exponentially on the 
number of states in the HMM. However, these summations can be efficiently 
computed via a forward-backward algorithm which reduces the number of 
computations substantially (proportional to square of the number of states 
in the HMM) thus cutting down on computational complexity and memory 
requirements. The complexity of the DA method scales similarly to the max- 
imum likelihood method with respect to the number of states and training 
vectors. 

4    Experimental Results 

We have performed preliminary simulations to determine the usefulness of 
our new design method.   We experimented on designing simple (2,3 and 4 
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class) classifier systems for eight different data sets of 2000 vectors each. Al- 
lowing three to six states in each Markov model, we designed HMM classifier 
systems using the maximum likelihood and deterministic annealing methods. 
We observe that the proposed DA approach improved the classification per- 
formance consistently and considerably. Over the experiment's data sets, the 
rate of misclassification was reduced by factors of 1.2 to 3. Table 1 details 
the results. 

We are currently investigating the effectiveness of the design method on 
real-world speech data to demonstrate its advantages for the speech recogni- 
tion problem. 

Dataset 1 2 3 4 
No. of Classes 2 2 2 3 

Pe (ML) 17.4% 31.6% 26.5% 28.7% 
Pe (DA) 6.5% 21.7% 18.7% 20.9% 

Dataset 5 6 7 8 
No. of Classes 3 3 3 4 

Pe (ML) 27.0 % 32.5% _, 24.9 % 42.3 % 

Pe (DA) 21.0% 27.3% 17.4% 31.7% 

Table 1: A comparison of the mis-classification rates obtained for HMM clas- 
sifiers designed from eight classified training sets of 2000 patterns each. Each 
set consists of data from 2,3 or 4 classes. ML represents a Max. likelihood 
design algorithm and DA represents the deterministic annealing algorithm. 

5    Conclusion 

In this paper we propose a novel training method for HMM classifier systems 
that jointly optimizes all the models to minimize the true cost, namely, the 
rate of mis-classification. At the cost of moderate increase in complexity, 
considerable improvements in recognition rates are obtained. 
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Abstract 

We investigate the problem of training a Support Vector Ma- 
chine (SVM) [1, 2, 7] on a very large date base (e.g. 50,000 
data points) in the case in which the number of support vec- 
tors is also very large (e.g. 40,000). Training a SVM is equiva- 
lent to solving a linearly constrained quadratic programming 
(QP) problem in a number of variables equal to the num- 
ber of data points. This optimization problem is known to 
be challenging when the number of data points exceeds few 
thousands. In previous work, done by us as well as by other re- 
searchers, the strategy used to solve the large scale QP prob- 
lem takes advantage of the fact that the expected number of 
support vectors is small (< 3,000). Therefore, the existing al- 
gorithms cannot deal with more than a few thousand support 
vectors. In this paper we present a decomposition algorithm 
that is guaranteed to solve the QP problem and that does not 
make assumptions on the expected number of support vec- 
tors. In order to present the feasibility of our approach we 
consider a foreign exchange rate time series data base with 
110,000 data points that generates 100,000 support vectors. 

1     Introduction 
In this paper we consider the problem of training a Support Vector Machine 
(SVM), a pattern classification algorithm recently developed by V. Vapnik 
and his team at AT&T Bell Labs. [1, 2, 7]. SVM can be seen as a new 
way to train polynomial, neural network, or Radial Basis Functions classi- 
fiers, based on the idea of structural risk minimization rather than empirical 
risk minimization 1. From the implementation point of view, training a SVM 

sThe name of SVM is due to the fact that one of the outcomes of the algorithm, in 
addition to the parameters for the classifier, is a set of data points (the "support vectors") 
which contain, in a sense, all the "relevant" information about the problem. 
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is equivalent to solving a linearly constrained Quadratic Programming (QP) 
problem in a number of variables equal to the number of data points. This 
problem is challenging when the size of the data set becomes larger than a 
few thousands, which is often the case in practical applications. A number 
of techniques for SVM training have been proposed [7, 4, 5, 6]. However, 
many of these strategies take advantage of the following assumptions, or ex- 
pectations: 1) The number of support vectors is small, with respect to the 
the number of data points; 2) the total number of support vectors does not 
exceed a few thousands (e.g. < 3.000). Since the ratio between the num- 
ber of support vectors and the total number of data points (averaged over 
the probability distribution of the input variables) is an upper bound on the 
generalization error, the previous assumptions are violated in the following 
cases: 1) the problem is "difficult", so that the generalization error will be 
large and therefore the proportion of support vectors is high, or 2) the data 
set is so large (say 300,000) that even if the problem can have small gener- 
alization error (say 1%) the number of support vectors will be large (in this 
case around 3,000). 
The algorithm that we present in this paper does not make the above men- 
tioned assumptions. It should be noticed, however, that in the case in which 
the assumptions above are satisfied the algorithm does take advantage of 
them. The algorithm is similar in spirit to the algorithm that we proposed in 
[4] (that was limited to deal with few thousands support vectors): it is a de- 
composition algorithm, in which the original QP problem is replaced by a se- 
quence of smaller problems that is proved to converge to the global optimum. 
Although the experiments we report in this paper concern a classification 
problem, the current algorithm can also be used, with minimal modifications, 
to train the new version of the SVM, that can deal with regression as well as 
classification. 
The plan of the paper is as follows: in the next section we briefly sketch the 
ideas underlying SVM. Then in section 3 we present our new algorithm, in 
section 4 we show some results of our implementation on a financial data 
set with 110,000 data-points with as many as 100,000 support vectors and in 
section 5 we summarize the paper. 

2    Support Vector Machines 

In this section we briefly sketch the SVM algorithm and its motivation. A 
more detailed description of SVM can be found in [7] (chapter 5) and [2]. 
We start from the simple case of two linearly separable classes. We assume 
that we have a data set D = {(XJ, 2/j)}-=1 of labeled examples, where y; G 
{—1,1}, and we wish to select, among the infinite number of linear classifiers 
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that separate the data, one that minimizes the generalization error, or at 
least an upper bound on it (this is the idea underlying the structural risk 
minimization principle [7]). V. Vapnik showed [7] that the hyperplane with 
this property is the one that leaves the maximum margin between the two 
classes [1], where the margin is defined as the sum of the distances of the 
hyperplane from the closest point of the two classes. 
If the two classes are non-separable the SVM looks for the hyperplane that 
maximizes the margin and that, at the same time, minimizes a quantity 
proportional to the number of misclassification errors. The trade off between 
margin and misclassification error is controlled by a positive constant C that 
has to be chosen beforehand. In this case it can be shown that the solution 
to this problem is a linear classifier /(x) = sign(^i_1 A,-j/,-xTx,- + b) whose 
coefficients At- are the solution of a QP problem, defined over the hypercube 
[0, C]e, whose precise statement will be given in section 3 (see eq. 1). Since the 
quadratic form is minimized in the hypercube [0, C\l, the solution will have a 
number of coefficients A, exactly equal to zero. Since there is a coefficient Aj 
associated to each data point, only the data points corresponding to non-zero 
Aj (the "support vectors") will influence the solution. Intuitively, the support 
vectors are the data points that lie at the border between the two classes. It 
is then clear that a small number of support vectors indicates that the two 
classes can be well separated. 
This technique can be extended to allow for non-linear decision surfaces. This 
is done by projecting the original set of variables x in a higher dimensional 
feature space: x e Rd => z(x) = (^i(x),..., <0„(x)) G Rn (where n is possibly 
infinite) and by formulating the linear classification problem in the feature 
space. Vapnik proves that there are certain choices of features <j>i for which 
the solution has the following form: 

/(x) = sign I Y^ ^iViK{-x.,Xj) + 6 J 

where K(x,y) is a symmetric positive definite kernel function that depends 
on the choice of the features and represent the scalar product in the feature 
space. In table (1) we list some choices of the kernel function proposed by 
Vapnik: notice how they lead to well known classifiers, whose decision surfaces 
are known to have good approximation properties. 

3    Training a Support Vector Machine 

In this section we present a decomposition algorithm that, without making 
assumptions on the expected number of support vectors, allows us to train a 
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Kernel Function Type of Classifier 
X(x,x,) = exp(-||x- Xj||2) Gaussian RBF 
K(x,xi) = (xIXi + l)d Polynomial of degree d 
K(x, Xi) = tanh(xTXj - 0) Multi Layer Perceptron 

Table 1: Some possible kernel functions and the type of decision surface they 
define. 

SVM on a large data set by solving a sequence of smaller QP problems. The 
two key issues to be considered are: 

1. Optimality Conditions: These conditions allow us to decide com- 
putationally whether the problem has been solved optimally at a par- 
ticular iteration of the original problem. Section 3.1 states and proves 
optimality conditions for the QP given by (1). 

2. Strategy for Improvement: If a particular solution is not optimal, 
this strategy defines a way to improve the cost function and is frequently 
associated with variables that violate optimality conditions. This strat- 
egy will be stated in section 3.2. 

Using the results of sections 3.1 and 3.2 we will then formulate our decompo- 
sition algorithm in section 3.3. 

3.1    Optimality Conditions 
The QP problem that we have to solve in order to train a SVM is the following 

[1, 2, 7]: 

(1) 

where (1),- = 1, Dy = MjK(xi,*j)i /*. rT = («i» •••>«*) and nT = 
(7TX,.. .,vt) are the associated Kuhn-Tucker multipliers. The choice of the 
kernel K is left to the user, and it depends on the decision surfaces one ex- 
pects to work best. Since D is a positive semi-definite matrix ( the kernel 
function K is positive definite ), and the constraints in-(l) are linear, the 
Kuhn-Tucker, (KT) conditions are necessary and sufficient for optimality. 
The KT conditions are as follows: 

Minimize    W(A) = -ATl + |AT£»A 
A 

subject to 
ATy = o                     00 
A-Cl <0                             (T) 
-A <o                     (n) 
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vw(A) + T-n + ^y  = o 
TT(A - Cl) =0 
nTA        / = o 

* * ° (2) n >o K ' 

ATy =0 
A - Cl < 0 
-A <0 

In order to derive further algebraic expressions from the optimality conditions 
(2), we assume the existence of some A,- such that 0 < A; < C, and consider 
the three possible values that each component of A can have: 

1. Case: 0 < A,- < C 
From the first three equations of the KT conditions we have: 

(D\)i - 1 + Wi = 0 (3) 

Using the results in [2] and [7] one can show that this implies that fi = b. 

2. Case: Aj = C 
From the first three equations of the KT conditions we have: 

(DA)i -l + vt+ fiyt = 0 (4) 

It is useful to define the following quantity: 

«,(xi) = ]TAi%tf(x!-,xJ) + & (5) 

Using the fact that \i = b and requiring the KT multiplier i>,- to be 
positive one can show that the following conditions should hold: 

Wff(xj)  <  1 (6) 

3. Case: As- = 0 
From the first three equations of the KT conditions we have: 

(DA)j - 1 - ^ + nyi = 0 (7) 
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By applying a similar algebraic manipulation as the one described for 
case 2, we obtain 

2W(xi) >  1 (8) 

3.2    Strategy for Improvement 
The optimality conditions derived in the previous section are essential in order 
to devise a decomposition strategy that guarantees that at every iteration the 
objective function is improved. In order to accomplish this goal we partition 
the index set in two sets B and N, where the set B is called the working set. 
Then we decompose A in two vectors Aß and A/v, keeping fixed Ajv and 
allowing changes only in Aß, thus defining the following subproblem: 

Minimize   W(AB) =   -A£l + \ [A?BDBBA-B + AT
BDBNAN+ 

+A^DNBAB + AjfDNNAN] - Ajjl 
AB 

subject to 
AßVi? + A^yjv   =   0 
As-Cl <   0 
-AB <   0 

(9) 
where (1), = 1, Daß is such that D{j = yiyjK(xi,Xj), with i £a,j G ß, and 
C is a positive constant. Using this decomposition we notice that: 

• The terms -A^l + IAJJDNNAN are constant within the defined sub- 
problem. 

Since K(x, y) is a symmetric kernel, the computation of A^DBNAN + 
AjjDNBAB can be replaced by 2A^qß./v, where: 

(<l3jv)i = ts£^!/i^.^) i€B (10) 

This is a very important simplification, since it allows us to keep the 
size of the subproblem independent of the number of fixed variables 
AJV , which translates into keeping it also independent of the number of 
support vectors. 

We can replace any Xit i £ B, with any Xj, j € N (i.e. there is no 
restriction on their value), without changing the cost function or the 
feasibility of both the subproblem and the original problem. 

• 

• 
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• If the subproblem is optimal before such a replacement, the new sub- 
problem is optimal if and only if Xj satisfies the Optimality Conditions 
for the appropriate case (3 cases described above). 

The previous statements lead to the following more formal propositions: 

Proposition 3.1  ("Build dovrn"): moving a variable from B to N leaves 
the cost function unchanged, and the solution is feasible in the subproblem. 

Proof: Let B' = B\ {k} and N' = N U {k}. Then: 

W(AB,AN)   =   ~J2Xi~Y^Xi + l 
ieB        ieN 

+ £ XiXjDij 

= -X>-A*-EA' + I 

^2 XiXjDij + 2 ]PXi ^2 XjDi:j+ 
.i,jeB ieB    jeN 

ieB' ieN 

^2 XiXjDij + 2Xk ^2 ^iDik+ 
LiJeB' ieB' 

+2Xk ^ *jD3k + 2 ^2 Xi J2 XjDi} + X2kDkk + Yl XiXiDii 
jeN ieB'    jeN i.ieN 

£A'-E^ 
ieB' ieN' 

Y, XiXjDi, + 2 J2 A> J2 X3Dii+ 
UjeB' ieB'    jeN' 

+    J2    XiXlDil 
i.jeN' 

The solution (AB>, Ajy) is feasible in the subproblem since: 

0    =    A#yB + A^yjv 

=    Ag,yB' + Xkyk + A-NYN 

=    Aß.yB' + A-Jf'YN' 

and the bound constraints are always unaffected. 

Proposition 3.2 ("Build up"): moving a variable that violates the optimal- 
ity conditions from N to B gives a strict improvement in the cost function 
when the subproblem is re-optimized. 
prop:propdown 
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Proof:   This is a direct consequence of Proposition 3.1 and the fact that 
Kuhn-Tucker conditions are necessary and sufficient for optimality. 

3.3    The Decomposition Algorithm 

Using the results of the previous sections we are now ready to formulate our 
decomposition algorithm: 

1. Arbitrarily choose \B\ points from the data set. 

2. Solve the subproblem defined by the variables in B. 

3. While there exists some j £ TV, such that: 

• Xj = 0 and g(xj)yj < 1 

• Xj = C and g(xj)yj > 1 

• 0 < Xj < C and g(xj)yj ^ 1, 

replace any A;, i£ B, with Xj and solve the new subproblem given by: 

Minimize    W (AB) = - AT
B 1 + \ \T

B DBB AB + AT
B qBN 

AB 

subject to 
AßVs + A^yyv = 0 
AB-C1 < 0 
-AB <0 

(11) 
where: 

(qßAr)i = yi^2XjyjK(xi,Xj) ieB (12) 

Notice that we have omitted the constant term —A^l + ^A^D^N^-N in 
the cost function, and that according to Proposition 3.2, this algorithm will 
strictly improve the objective function at each iteration and therefore will not 
cycle. Since the objective function is bounded (W(A) is convex quadratic and 
the feasible region is bounded), the algorithm must converge to the global 
optimal solution in a finite number of iterations. 
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4    Implementation and Results 

We have implemented the decomposition algorithm using MINOS 5.4 [3] as 
the solver of the sub-problems. We tested our technique on a problem known 
for being "difficult": a foreign exchange rate time series that was used in the 
1992 Santa Fe Institute Time Series Competition, in which we looked at the 
sign of the change of the time series, rather than its value. We considered 
data sets of increasing sizes, up to 110,000 points, obtaining up to 100,000 
support vectors. Figure 4 shows the relationship between training times, 
number of data points and number of support vectors in our experiments. 
The training time on a SUN Sparc 20 with 128 Mb of RAM ranged from 
3 hours for 10,000 support vectors to 48 hours for 40,000 support vectors. 
The results that we obtain are comparable to the results reported in [8] using 
a Neural Networks approach, where generalization errors around 53% were 
reported. The purpose of this experiment was not to benchmark SVM's on 
this specific problem, but to show that its use in a problem with as many as 
100,000 support vectors is computationally tractable. 

...... 

!• 

i ' 

Number of Samples 
7 B 9 10 

Figure 1:   (a)Number of support vectors Vs.   number of data points,   (b) 
Training time Vs. number of data points. 

5     Summary and Conclusions 

In this paper we have presented a novel decomposition algorithm that can 
be used to train Support Vector Machines on large data sets that contain 
a large number of support vectors. The current version of the algorithm 
has been tested with a data set of 110,000 data points and 100,000 support 
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vectors on a machine with 40 Mb of RAM. No attempts to optimize and 
speed up the algorithm have been made yet. We believe that this algorithm 
starts to meet the increasing need to deal with data sets where both the 
number of data points and the number of support vectors are of the order of 
105. Problems with these characteristics are likely to be found in the area of 
financial markets, where lots of data maybe available but little generalization 
error is expected. 

Acknowledgements 

The authors would like to thank Sayan Mukherjee for his help in collecting 
and preprocessing the data. 

References 

[1] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for op- 
timal margin classifier. In Proc. 5th ACM Workshop on Computational 
Learning Theory, pages 144-152, Pittsburgh, PA, July 1992. 

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 
20:1-25, 1995. 

[3] B. Murtagh and M. Saunders. Large-scale linearly constrained optimiza- 
tion. Mathematical Programming, 14:41-72, 1978. 

[4] E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training 
and applications. A.I. Memo 1602, MIT A. I. Lab., 1997. 

[5] M. Schmidt. Identifying speakers with support vectors networks. In Pro- 
ceedings of Interface '96, Sydney, July 1996. 

[6] B. Schölkopf, C. Burges, and V. Vapnik. Extracting support data for 
a given task. In U.M. Fayyad and R. Uthurusamy, editors, Proceedings 
of the First International Conference on Knowledge Discovery and Data 
Mining, Menlo Park, CA, 1995. AAAI Press. 

[7] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New 
York, 1995. 

[8] X. Zhang. Non-linear predictive models for intra-day foreign exchange 
trading. Technical report, PHZ Partners, August 1993. 

285 



Classification with Linear Networks Using an On-line 
Constrained LDA Algorithm 

Jose C. Principe, Dongxin Xu 

Computational NeuroEngineering Laboratory 
EB #33, Electrical and Computer Engineering Department 

University of Florida, Gainesville, FL 32611, USA 
{principe,xu} @cnel.ufl.edu 

Abstract 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) are 
two statistical tools utilized in many signal processing areas such as data compres- 
sion and pattern recognition. On-line algorithms such as Oja's rule have found wide 
application for PCA and it has been generalized in our previous paper to LDA 
(Fisher criterion) using the framework of gradient descent learning. In this paper, 
the rule is further extended to accept the case of constraints in the feature extraction 
stage as is often necessary for real world applications. As examples, the new rule is 
applied to regularizers in the form of both a 2-dimensional (2-D) Gaussian filter for 
hand-written digit classification and determination of the memory depth of the 
Gamma filter for isolated word recognition. Results show the good behavior of the 
learning rule and the advantage of using regularization for improved generalization. 

1. Introduction 

There are basically two different roles for feature extraction depending upon the 
nature of the signal processing problem. In signal representation PCA has been 
shown to be the best linear feature extractor, while LDA using the Fisher criterion 
is a common choice in classification. In both cases, the feature extraction stage is 
crucial for the overall performance. Recently, alternate methods based on informa-. 
tion theory have been proposed which seek statistical independent features also 
known as independent component analysis - ICA ([4]). Although naive compared 
to ICA, PCA is well established and on-line training methods such as Oja's rule 
have been proved very robust. More recently, several on-line training algorithms 
have been independently proposed for LDA, [1], [2], [3], but the state-of-the-art is 
less developed. In our previous paper [1], Oja's rule was generalized to LDA under 
the framework of the gradient descent method, which we called generalized Oja's 
rule (GOR). The experiments in [1] have shown the effectiveness of the proposed 
GOR. 

The purpose of this paper is two-fold: First, GOR will be further extended to the 
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case where constraints are imposed on the linear feature extractor. This is an impor- 
tant practical problem, because preprocessing can be thought of as a form of con- 
straint and in this way the function of the preprocessor is integrated with the 
classifier for better performance. One application is regularization or smoothing 
which is needed to improve generalization and can be formulated as constraints on 
the model weights. Based on the extended GOR, we derive as special cases the 
training rule for LDA applied to digit recognition regularized with a 2-D Gaussian 
filter, and to the training of the memory depth of the Gamma memory for word rec- 
ognition. The second purpose of the paper is to compare the performance of differ- 
ent classifiers based on PCA, non-regularized and regularized LDA, and a MLP 
(multilayer perceptron) on hand-written digit data. The adaptation of the Gamma 
memory recursive parameter suffers in general from local minima and in particular 
from a lack of an adequate criterion in temporal pattern recognition settings. We 
show that the time scale parameter is much more robustly adjusted by the GOR 
than by the usual back-propagation method. 

2. Generalized Oja's Rule with Constraints 

This work addresses the linear network shown in Figure 1 which has an output 
v = wTx. In [1], we showed that the generalized Oja's rule updates the weights as: 

Aw = 'Yyi(xi-yib) 
> (1) 

wTb = 1 

where b is a vector which serves as the basic measurement for the problem under 
analysis. For PCA the measurement vector is w, the weight vector itself. For LDA 
the measurement vector is the class mean difference m , which depends upon the 
scatter matrix [1]. 

*i\ w, 

'2^dH- 
Figure 1. Network for PCA or 2 class LDA 

We formulate a constraint as a functional dependence of the weights w on a vector 
of parameters 

w(v) = (w,(v), w2(v),..., w„(v))T (2) 

where v e R    are parameters and usually m<n . We assume that w is differen- 
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tiable with respect to v. There are two main reasons to use this formulation. First, 
we can use the chain rule to compute the sensitivity of the cost with respect to the 
new parameter set. Secondly, linear filters with kernels can be regarded as con- 
straint on is projection weights. 

Let y = f(w,x) = w(v)Tx denotes the output of the linear network when the 

input is x. By applying the gradient method, we get (3) which is the extended GOR 
for the case with constraints: 

A-A^ = £4>,,)-^,>>, (3) 
1 

I/O,*) = l 
If the constraints can be implemented in a recursive form such as in the Gamma fil- 
ter [6], the calculation of the partial derivative in (3) can be done by backpropaga- 
tion, as will be shown in the following. 

3. Regularized LDA with a 2-D Gaussian Filter 

Real world problems are very often data bound, i.e. in high dimensional spaces 
there are no enough data to train the model and to avoid overfitting. One alternative 
is to use regularization or smoothing. As an example, let's look at hand-written 
digit recognition problem, where each digit is a binary or multi-level 2-D image of 
size PxQ (here 24x 18). A quadratic classifier requires the estimation on the 
order of 93,528 parameters which is impractical. Using the analytic approach at 
least 10 times these samples are recommended by practitioners. Iterative techniques 
are able to solve the problem with less data, but overfitting becomes a problem. 
LDA using the Fisher criterion also requires the estimation of the covariance 
matrix, so this reasoning applies to our method. 

To prevent overfitting, a smoothing constraint is applied to the projection vector w. 
One possible solution is to apply a linear combination of 2-D Gaussian kernels to 
the input image which is equivalent to a 2-D linear lowpass filter with an impulse 
response which is Gaussian. The advantage of using a Gaussian filter is that each 
Gaussian kernel is symmetric and the problem can be easily formulated in the 
scheme of equation (3). Note that the Gaussian kernel is used as a weighting func- 
tion over the input instead of as a nonlinear operator applied to the input space as 
done in the radial basis networks (RBFs). 

In Fig.2, each pixel in the image is indexed by (I,J) (1= l,...,P;J= \,...,Q) 
and is ordered to form the data vector x. Correspondingly, the elements of the pro- 
jection vector w can also be indexed by (I, J) and ordered in the same way. Fig. 2 
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depicts the 2-D Gaussian kernels on a 2-D grid. The center of the top left Gaussian 
kernel is (I0, J0) , where I0 and J0 are real values, not necessarily integers. 

Pixel (I,J) 

I 

xxx Gaussian Kernel at index (i,j) 

Figure 2. Regularized LDA Network with Gaussian kernel 

Thus, the center indexed by (i,j) is determined by ((/-l)/7 + /0, (;'-l)/y +/0), 

where lj and lj are also real values and represent the distance between neighboring 
Gaussian kernels in the vertical and horizontal direction respectively. So, the output 
of the network can be expressed as: 

y = w x, w 

gJI,J) = exp 

1 = 17=1" 

(I-(i- l)/;-/0)
2 + (J-(j-l)lj-JQ)

2 

a 
(4) 

where g.. represents the Gaussian kernel at index (ij) and Cy is the correspond- 

ing linear combination coefficient, a is a positive real value related to the variance 
of the Gaussian kernel and can be used to adjust the degree of smoothing. 

Let A» B represent the element by element multiplication between two matrices. 

Let D(i) = I0 + (i-l)lj-I and £>(/) = J0 + (J-l)lj-J be the 
vectors ordered in the same way as x and w . By applying (3), we can derive the 
adaptation rule for c(. •, I0, lj and a as follows: 

ACÜ = Yjy{-X~yb)TgU 

^0 = {Vjix-yb)' EEw^o") 
i=\j = \ 

[i = lj = 1 
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ACT
 

= {jy^-yW 
m     n 

£2>,y%.(D(02+£(/)2) /a2 

J0, lj have similar formulas to Ia and I, respectively. Notice that with this for- 

malism the regularization constant a can be adapted for optimal performance in the 
training set. 

4. Experiment on Hand-written Digit Recognition 

The data includes 100 hand-written digit "3" and 100 hand-written digit "8" with 
size 24x 18. We choose digits "3" and "8" because they are similar, differing 
mainly in their left side. We select 10 exemplars of each for training to illustrate an 
extreme case of a small data set. Solving LDA by the numerical method would not 
be possible because of the scatter matrix singularity. On-line PCA, non-regularized 
LDA and Gaussian regularized LDA are applied to the data, trained by Oja's rule, 
GOR and the extended GOR respectively. A multilayer perceptron (MLP) is also 
applied to the data for comparison, although all the above methods are linear net- 
works. The results are shown in Figures 3, 4, 5, and 6. All the left images represent 
the normalized projection (largest eigenvector for PCA and Fisher direction for 
LDA) after convergence, with white pixels corresponding to positive values. All 
the histograms at the right reflect the distribution of digits "3" and "8" after the pro- 
jection. The smallest classification errors are also indicated in the figures. 

From Fig. 3, we can recognize both the "3" and "8", which suggests that PCA pre- 
serves the important information for representing both the "3" and "8". However, 
the two classes overlap in the PCA projection even for the training data set, which 
simply means that PCA is not the most appropriate feature extractor for classifica- 
tion. Fig. 4 and Fig 5 show the results for both the conventional and Gaussian regu- 
larized LDA. Fig. 6 shows the result for a MLP with 5 hidden and one output nodes 
applied directly to the data. We can see that the training data of the two classes have 
been separated completely by all three methods, and regularized LDA obtains the 
best generalization on the test set for this problem. The left images simply show 
that non-regularized LDA is too noisy and overfitted to the training data, while reg- 
ularized LDA still sustains a degree of smoothness and preserves separation. 

Notice the asymmetric and long tailed distributions created by the MLP outputs, 
which are characteristic of a nonlinear mapper. Recall also that the LDA networks 
are linear, but the weights have been determined to enhance separation. Although 
our network is not a RBF network, we believe that GOR could be used advanta- 
geously to train the linear weights in RBFs. 
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Figure 3. Result ofPCA. (a) weight image; (b) data distribution (training) 

' \ 

(c) 

- 

-1 o 

Figure 4. Result of Non-regularized LDA. 7 errors for testing data. 
(a) weight image; (b) training data distribution; (c) testing data distribution 
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Figure 5. Result of Regularized LDA. 3 errors for testing data. 
(a) weight image; (b) training data distribution; (c) testing data distribution 
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Figure 6. Result of Multilayer Perceptron (5 hidden nodes). 6 errors for testing 
data, (a) training data distribution; (b) testing data distribution 

5. Regularized LDA applied to Gamma memory training 

The gamma memory is the building block for both the gamma filter and the gamma 
neural model ([6], [7]). The hallmark of this structure is a delay element which is 
recursive and can be adapted on-line with the output error using gradient descent. 
For signal representation this adaptation method is reasonable, but for classification 
of temporal patterns the method is a compromise when the classes require different 
memory depths. In this section, the recursive parameter of the gamma memory and 
the weights of the gamma filter (Figure 7) will be adapted using regularized LDA. 

This structure constitutes the first layer of the focused gamma network [7]. 

[I— JL4, 

Figure 7. Gamma Memory + Linear Classifier (Gamma Filter). 

As shown in Figure 7, data are first projected onto the gamma memory and then a 
linear projection is applied. The model can be formalized by (5) 

T    T (Gwfx (g\,g2> ■■Sa) 

<ÜJ 

(5) 

where q is the number of taps in the Gamma memory, g(. e R is a column vec- 
tor which is the order-reversed Gamma kernel (impulse response) at tap i truncated 
with length n . G is the function of Gamma parameter n . By applying the gener- 
alized Oja's rule, the adaptation rule for the model can be obtained as follows: 
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i i 

(6) 

T    T 
Normalization: scaling w so that f(b) = w G b = 1 

where GTx and GTb are the projection of input x and base vector h to the 
gamma memory respectively. Since the gamma memory is a recursive structure, 

df{xt)/d\x and 8f(b)/d\x can be calculated by backpropagation through time 
(BPTT). As (5) and Fig. 7 show, the model can be regarded as a filter. So, Gw is 
the truncated order-reversed impulse response with length n and can be generated 
by activating the model with an impulse. The normalization can be done at the 
same time by adjusting the weights  wl,...,wq . 

It is not difficult to extend the result of (6) to the case of independent multi-channel 
Gamma memories for each channel as required for speech recognition. If we regard 
the whole projection as the concatenation of the projection of each channel, then 
the base vector for PCA in this case is the concatenation of the truncated order- 
reversed impulse response for each channel. For the two-class Fisher LDA, the base 
vector is the class mean difference which is easy to understand and obtain. 

6. Experiment on Isolated Word Recognition 

The data are two classes isolated spoken words "wash" and "cash" from the TIMIT 
database. There are only 7 examples for each word in the database. For this prob- 
lem, we are solely interested in finding the optimum value of the gamma parameter 
u that best discriminates between the two words. The use of long tap delay lines is 
discourage due to the large networks that they produce, so the gamma memory is 
appealing and has produced good results [8]. Common sense tells us that the major 
difference between "wash" and "cash" lies in the beginning of the words. Different 
values of the gamma parameter will let the model focus on different regions of the 
input pattern. Therefore, finding an optimum u such that the model concentrate on 
the most discriminant part of the input data will improve performance. Since back- 
propagation with output MSE (mean squared error) can also be used to adjust the 
gamma parameter in the gamma filter, this method will be compared with the GOR 
training. 

A 16-channel constant Q filter bank (Mel scale) is used as the pre-processing of the 
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speech signal. For a clear illustration, only the results of 1-channel data are pre- 
sented (15th channel). The top panel of Figure 8 was obtained with the optimal 
weights and by stepping n from 0 to 2. This panel measures discrimination (Fisher 
criterion) as a function of u and clearly shows that the ability to discriminate 
between the two words depends heavily upon the value selected (from 0.3 to 0.5; 
values of n larger than 1 are expected to produce low discrimination (filter becomes 
an highpass filter)). We can see that the optimal \JL is around 0.4 which is consistent 
with the observation that long delays are needed. Longer delays will compromise 
resolution too much due to the lowpass nature of the kernel, and discrimination 
drops. When the backpropagation method is utilized (second panel) the value of u 
obtained is far from the optimum. This attest the difficulty of adapting JJ. for pattern 
recognition applications due to the conflicting requirements of finding the best 
scale to represent more than one class. The generalized Oja's rule (third panel) con- 
verges to the optimal value of |u within 100 iterations. 

7. Conclusion 

This paper shows that the generalized Oja's rule can be extended even when the 
weights are a function of hidden variables as may be necessary to solve practical 
problems. LDA is a linear procedure that exploits the difference among classes 
contained in both the mean and the covariance (or scatter) matrix. So it is sensitive 
to poor estimations of parameters which are most often caused by insufficient data. 
Regularization prevents the model from overfitting even when the data yields rank 
deficient covariance matrices. This is one obvious advantage of our on-line LDA 
over the conventional (numeric) LDA implementation where a matrix inverse is 
required. The idea of optimally smoothing the data before LDA can be effectively 
incorporated in the extended GOR learning rule as was demonstrated here. Note 
that the parameters of the Gaussian smoother are adapted during operation, so the 
method extracts as much information as possible from the training data. Although 
the examples are all two-class problems, GOR can be extended to multiple classes 
as we will report in a following paper. 

The results for the adaptation of the recursive parameter in the gamma memory are 
also important since they present for the first time a technique to adapt the n param- 
eter for temporal pattern recognition applications where the method of minimizing 
the output mean square error is not the most appropriate. 
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panel shows that GOR finds the right value of\x in around 100 iteration. 
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Abstract 

Beside the use of purely neural systems, the combina- 
tion of preprocessing units and neural classifiers has been 
used for a variety of signal segmentation and classification 
tasks. Whereas this approach reduces the input dimen- 
sionality as well as the complexity of the classification 
problem, its performance crucially depends on a proper 
preprocessing scheme, i.e., feature extraction. In this 
contribution, adaptive preprocessing units (frequency- 
selective quadrature filters) are proposed that can be ad- 
justed in order to provide optimal features. The mean 
frequencies of the filters are tuned to minimize the clas- 
sification error. Both FIR- and IIR-based filters are 
introduced and compared with respect to their conver- 
gence properties and the classification results. Results 
for the solution of an EEG segmentation task using the 
combined system are given. 

1    Introduction 
A common problem in biosignal processing is the classification (i.e., label- 
ing of samples) and segmentation (i.e., discrimination between samples) of 
signals. From a more general viewpoint, this problem states a supervised 
learning task with the ordering of the learning samples given by time. Due to 
their well-known universal approximation capability, Neural Networks (NNs) 

"This work was supported by the the German Ministry for Education and Research 
(project "Clinical Oriented Neurosciences", 01 ZZ 9602 ) and the Thuringian Ministry for 
Science, Research and Arts (project ITHBRA, B511-95004). 
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seem to be a suited approach for a solution. Whereas a variety of recurrent 
NN models have been proposed, particularly for prediction tasks, we focus in 
the sequel on feedforward networks mainly for three reasons: 

1. Efficient, robust (with respect to the initial conditions) and easily im- 
plementable training algorithms that do not have to consider stability 
restrictions are available for feedforward NNs. 

2. Recurrency is known to "blur" segment borders. Whereas in the linear 
case (IIR filter) this influence is relatively easy to be estimated, this is 
generally not possible for nonlinear systems. 

3. A consistent theory for the generalization of recurrent networks has not 
yet been developed. However, there is some evidence that at least par- 
tially recurrent networks might lack intrinsic generalization capability, 
e.g. with respect to sampling rate changes [8]. 

Using feedforward networks, the relevant part of the signal's past has to be 
fed explicitly into the network. Back and Tsoi [2] proposed the use of FIR- 
synapses that correspond to the parallel presentation of delayed samples. 
One can avoid the significant increase of the input dimensionality connected 
herewith, if a suited preprocessing of the signal is feasible that extracts the 
information for the classification task. A number of authors have adopted this 
combination of signal processing units with neural classification e.g. [7], [5]. If, 
however the parameters of the preprocessing system are not controlled by the 
classification error, the performance of the combined system strongly depends 
on the a priori available knowledge, thus questioning the very advantage of 
the neural approach as a modelfree method. 

In the following, we introduce LTI filters with adaptable mean frequencies 
that constitute the basis of a more general class of nonlinear adaptive signal 
processing units (ASPUs). An algorithm for the adaptation of these systems 
will be given in 3. In section 4 the proposed approach is applied to the 
segmentation of discontinuous EEG. 

2    Adaptive Signal Processing Units 

A signal processing unit provides a mapping of the time series {x(n)}n=it2,... 
onto a set of / features 

Zi(n) =$i(Pi; SE(TI), x(n-l), ...)    i = l...f 

which are fed into a neural classifier with the input-output-relation o{n) = 
o(z(n), W) (with W denoting the weights). In order to integrate the deter- 
mination of the optimal parameter vector p* that controls the calculation of 
the features into the NN training, the gradient Vp.z;(n) has to be computed. 
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2.1    FIR bandpass filter with adaptable mean frequency 

The desired frequency response 

„ ,  , _ /  1   t»m- Aw/2 < \u>\ <wm + Aw/2 
Hi{f°> - \ 0    otherwise 

can be approximated using the FIR coefficients 

** =      '  ^ ¥»* «* = *? 
M-l 

S 
k=0 

z(n)    =     ^ hkx(n-k) 

(k = 0 ... M - 1) where the v* correspond to a suited window function. The 
computation of the gradient is equivalent to a filtering of the input time series 
with the coefficients h'k 

h'k    = vk sin(wm(fc —)) sin(—(A —)) 

a i  \ M~1 

As h and h' are symmetric, both the bandpass and gradient filter realize 
a linear phase. Despite its computational ease, the FIR filter suffers from 
several drawbacks: 

1. The minimal bandwith depends on the filter degree, Aw > ^. 

2. Due to its rippled amplitude gain, the adaptation of the mean fre- 
quency is rather sensitive against local minima. (For harmonic in- 
put signals it can be shown that for arbitrary error functions e(n) = 
e(y(n),o(z(n),-W)) the gradient 

y, fle(n)      y> de{n) dz(n) 

has at least as many zeros as there are sidelobes in the frequency re- 
sponse.) 

As particularly the last point seems to be a severe limitation for an adaptive 
preprocessing system, we introduce the adaptable IIR resonance filter. 

2.2    IIR resonance filter with adaptable mean frequency 

An IIR system with the poles re^"0 realizes the frequency response 

H(u) = (i_P6j(«--u.o))(i_reJ('-+"o))- W 
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As the poles are conjugate complex, this system is realizable: 

z{n) + aiz(n — 1) + a2z(n — 2)    =    b0x(n) (2) 

ai    =    —2rcos(wo) 
—    .»2 a,2    =    r 

bo    =    (1 — r)y/l +r2 — 2rcos(wo) 

For poles near the unit circle (r clearly has to be smaller than 1 to ensure 
stability) the mean (or resonance) frequency is approximately equal to u>o- 
The amplitude gain is unimodal and the 3cü?-bandwith does not primarily 
depend on the order: 

1-7- 
Aw3db « —T=-    for 2nd order systems 

(although an increase of order corresponds to a concatenation of systems 
of 2nd order and thus naturally decreases the band with). For the off-line 
adaptation the computation of the gradient is simple: 

^fW    -     db°x(n)     \^dai
z(n    i)    \Ta

fe("-j) m 
du>0      "    du>0

()     H^o '     h duo {) 
1 = 1 t=l 

2(1-r)sin(2w0)       ,  N     „    .   ,    N  ,       1N - v /      v.    w   rK(n)-2rsin(w0)2(n-l) + 
•^/l + r2 — 2rcos(wo) 

<9.z(n - l)       ,ö.z(n-2) 
2rcosw0—^ J--r2—K- '- 

OUo O(J0 

Eq. (3) can also be used for the on-line adaptation, if the changes of the 
mean frequency are small during any time interval (t,t + T), where r denotes 
the group delay around the mean frequency 

2r2 

r    r > 0.8. 
1-1 

Note that as their recursive coefficients are identical, the stability of the 
resonance filter implies the stability of the gradient filter. An extension of 
(2) and (3) onto higher order filters is straightforward. 

The IIR filter seems to be superior for adaptation as it eliminates both 
mentioned problems of the FIR filter. It does however have a nonlinear 
phase gain resulting in a frequency dependent group delay. This effect can 
be reduced using a suited allpass filter [3]. 

2.3    Frequency-selective Quadrature Filters with adapt- 
able mean frequency 

Frequency-selective Quadrature Filters (FSQFs) can be constructed as a 
combination of bandpass filters described above and generic broad-band QFs, 
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that can be approximated using FIR filters of order MQF with coefficients q 

[6]. Thus one gets 

MQF 
z(n)    -      X] 9kz'{n- k) 

fc=0 

Mr 2OF 
dz'(n)     _      ^  _>'(») 

düJ-n 
=  E <JV 

k=0 dur, 

where z' denotes the output of either an IIR or FIR bandpass filter. 
These filters can be used to detect the envelope of an amplitude-modulated 

signal given a mixture of superposed components or noise. The adaptation 
task could for example be to adapt the mean frequency of the FSQF to 
the (unknown) frequency of the carrier of an AM-signal, assuming that the 
modulating function is known. 

3    Extended Backpropagation for Training AS- 
PUs and NNs 

- - computation of the gradient g^- 

-- initialization of steplength s := so 
SUCCESS—0 

"if K-5^0(O)7r) 
s := a s 

w+ := w. m       ° dw„ 

-- if [c(w+) < e(«m)] 
s:=ßs 

SUCCESS:=1 

--if [SUCCESS==1] 
  js_    de 

"(- s :— as 

Figure 1:   Algorithm for controlling the steplength  (parameter s).    a   < 

1,     ß>l 
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The systems proposed in the previous section enable us to compute the 
gradient of the output error (usually the squared difference of the target and 
the NN's output) with respect to the network weights (standard backprop- 
agation) and the mean frequencies. However, as the values for wm, WQ are 
restricted on the intervall (0,7r), the usual gradient descent technique can not 
be applied. For the deterministic off-line adaptation a variety of methods for 
the solution of restricted optimization problems can be used. Since most of 
them transform the task into a series of unrestricted problems, they can not 
be extended onto the on-line adaptation. A simple, yet effective method 
that can be applied to both approaches is to control the step length in order 
to guarantee that none of the new parameters leaves the admissible range 

(fig- 1). 

4    Segmentation of discontinuous EEG using 
Neural Networks 

4.1 Data Material 

The discontinuous EEG of newborns ( « 27th to 32nd week of conceptual 
age) is dominated by the altering occurrence of burst and interburst patterns. 
In [1] it is pointed out that a pattern-selective analysis is needed for an 
efficient quantification of the functional development of the brain in healthy 
newborns as well as of the severity of disturbances of newborns at risk. For the 
separation of burst and interburst it is essential to detect the "initial wave" 
at the beginning of the burst with an interindividually different frequency 
of about 2.8 ... 12.8 Hz and to track the significantly increased broad band 
power in the frequency range 0.8... 16 Hz. 

For the training as well as for the classification records of frontal elec- 
trodes (Fp\, Fp2) of healthy newborns between the 27th and the 31st week 
(conceptual age) sampled at 128 Hz have been used. The records have been 
segmented into bursts and interbursts by a medical expert. 

4.2 Preprocessing on the basis of FIR filters 

The underlying assumption for the use of FSQFs as a preprocessing method 
is that the occurrence of a burst is characterized by the consecutive emerging 
of power maxima in different frequency bands. This assumption has been 
verified by different studies [9], [1], [4]. Thus a burst can in principle be 
detected using a combination of amplitude demodulators working in different 
frequency ranges. 

Due to the application of adaptable FSQFs, the frequency ranges can 
be chosen in order to optimize the classification results. Table 1 shows the 
initial and the adapted values of the mean frequencies of a bank of FSQFs 
based on FIR filters (M = 101) which was coupled with a (4-3-1) MLP with 
sigmoidal node functions. Both the first and the second band converge to a 
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band 
no. 

im 
(initial) 
[Hz] 

A/ 
(fixed) 
[Hz] 

fm  (after 
training) 
[Hz] 

1 
2 
3 
4 

5.5 
7.9 
10.2 
11.8 

1 
1 
5 
7 

5.8 
5.8 
11.1 
13.0 

band 
no. 

Jm 
(initial) 
[Hz] 

A/sdB 
(fixed) 
[Hz] 

fm   (after 
training) 
[Hz] 

1 
2 
3 

10 
16 
22 

0.2 
0.2 
0.2 

14 
5.7 
23 

Table 1: initial values and 
values after training for 
the mean frequencies of 
the QF-bank (FIR-based) 

Table 2: initial values and 
values after training for 
the mean frequencies of 
the QF-bank (IIR-based) 

frequency that matches the assumed value of the "initial wave" (fig. 2). The 
classification results are shown in fig. 3. 

4.3    Preprocessing on the basis of IIR filters 

In order to demonstrate its robustness, the start values for the QF-bank 
based on IIR-filters have been chosen with greater intervalls and in greater 
distance to the frequency of the "initial wave" (tab. 2). Figure 2 (B) shows 
the convergence of the respective mean frequencies. The results of the IIR 
filter validate the assumption that the frequency range around 5.8 Hz contains 
information which is essential for the segmentation of burst and interburst 
patterns. Band #3 seems to be less important, as its mean frequency is little 
affected by the adaptation procedure. Band #2 is covered by both band #3 
and band #4 of the FIR-based system. 

Figure 3 shows a segment of the original signal and the corresponding clas- 
sification (a (3-3-2) MLP was chosen). The IIR approach performs slightly 
better, particularly concerning the detection of the burst onset. 

5    Conclusions 

A general scheme for the integration of adaptable preprocessing units into the 
training process of a neural classifier has been introduced. In contrast to a 
"pure neural" approach this method allows the implementation of problem- 
specific knowledge. In contrast to static preprocessing, however, the initial 
choice of the preprocessing system needs not to be perfect as its parameters 
can be adapted during ä process very similar to network training. 

The use of both FIR and IIR filters for the construction of frequency 
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(A) 

(B) 
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)                       50 100 150 200                    25 

150 
iterations 

Figure 2: Evolution of 
the training error (SSE) 
versus the convergence 
of the mean frequencies 
(wi,w2,u>3) for the FIR 
filter (A) and the IIR 
filter (B) based FSQFs. 
The w; are given in parts 
of the Nyquist frequency, 
i.e. fi = Wi x 64Fz 
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Figure 3: Segmenation of 
discontinuous EEG (elec- 
trode Fpi, 128 Hz sam- 
pling rate) using an MLP 
combined with FIR based 
(A) and IIR based (B) 
preprocessing. The sub- 
plots (A):(b)-(e) show the 
outputs of the adapted 
FSQFs constructed with 
FIR bandpass filters. The 
lower subplots of both 
figures show the target 
time series and the out- 
put of the neural classifier 
(bold). (In (B) the tar- 
get has been scaled for im- 
proved visibility.) 
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selective ASPUs has been proposed. Whereas FIR-based systems offer a dis- 
tortionless transmission, the adaptation of their frequency parameters is usu- 
ally more complicated than for IIR systems. Furthermore, the latter provide 
more efficient solutions for the construction of extremely narrow passbands. 

For a signal classification task, the efficiency of the new approach has 
been demonstrated. Systems of similar structure seem to be applicable for a 
number of problems where either events of similar, though interindividually 
different characteristics or with (slowly) time-varying features have to be 
detected. In both cases a moderate learning effort could save a significant 
amount of manual evaluation. 
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Wave propagation within a "cortex" of neurons is introduced as a 
neural coupling mechanism. Using this effect for the control of the 
neural learning process, the network generates self-organizing fea- 
ture maps. Additionally, wave propagation is used to influence the 
neural competition in representing the input of the network. By 
this means the network is able to represent temporal aspects of the 
input. Since apart from a global bus such a network only requires 
local interactions, connectivity is very low and a parallel hardware 
implementation suggests itself. Operation of a demonstration setup 
consisting of 16 neurons in digital technology is demonstrated by 
the representation of phoneme sequences. 

1   INTRODUCTION 

Wave propagation caused by reactive and diffusive processes is ubiquitous in 
nature. Such waves can be observed in several biological systems, e.g., among 
cells of the liver, muscles, in ova (for a review see [1]) or within networks of 
glial cells in the brain [2]. The latter example is especially interesting, since 
up to now it is still unclear wether and, if so, how glial cells participate in 
the information processing of the brain [3]. Also in the inanimate nature 
there are several examples of active media showing wave propagation, e.g., 
chemical and gas-discharge systems or semiconductor substrates (see e.g. [4]). 
In these cases diffusion is the spatial interaction that enables the propagation 

process. 

Using an electrical network as active medium we have demonstrated that 
wave propagation can serve as neural coupling mechanism in self-organizing 
topographic feature maps [5]. This facilitates an efficient hardware realization 
of self-organizing neural networks. Apart from a data bus this hardware 
concept only needs local interactions. Thus, connectivity within the network 
is very low.   Since intrinsic dynamic effects of active media are used for 
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information processing, this concept may be called "synergetic" hardware 
implementation [6, 7]. Such a neural hardware is very interesting in view of 
technical applications, since self-organizing feature maps are used in various 
technical fields [8]. 

Furthermore, feature map generation is interesting from the biological point 
of view. Topographic feature maps can be observed in various parts of the 
mammalian cortex. There are, e.g., retinotopic, tonotopic or somatotopic 
maps (see e.g. [9]). 

2   KOHONEN'S ALGORITHM 

We focus on Kohonen's algorithm, which is the most perspicuous model of 
a self-organizing feature map. Each neuron, Nr, of the network is located in 
a "cortex" at a position r. Every neuron corresponds to a reference vector, 
Wr, in an arbitrary feature space. When the neurons are presented with a 
feature vector, U, a winner neuron Nw{n has to be determined. The winner 
neuron, which is located at cortical position rwin, is thought to best represent 
the feature vector, U: 

r„jn=argmin(||U-Wr||). (1) 

Such a minimum detection is used not only in Kohonen's algorithm but also 
in several other neural network models. It can be performed in parallel by 
means of a suitable active medium [5]: Every neuron feeds a stimulus to 
the medium. This stimulus is a monotonously decreasing function of the 
feature space distance ||U — Wr||, so that the highest stimulus is produced 
by the winner neuron designate. On increasing a global medium parameter, 
the highest stimulus causes an "ignition" of the active medium. Detection 
of this ignition terminates the parameter increase and determines the winner 
neuron. 

The essential of Kohonen's algorithm is the learning step, which affects the 
winner neuron and its cortical neighborhood. Learning is an adaption, AWr, 
of reference vectors, Wr, in direction of the feature vector, U. With increas- 
ing cortical distance, 

dwin(r) = \\rwin - r\\, (2) 

between a neuron at position r and the winner neuron at position r„,,-n, the 
relative amount of reference vector adaptation decreases. This interaction is 
described by the neighborhood function, T)(dwi„(r)): 

AWr = ,,(4in(r))(U-Wr). (3) 

Feature vectors, U, are thought to be stochastically presented while both 
height and width of the neighborhood function, 7j((fwin(r)), are successively 
diminished. 

307 



o :neuron 
• : winner 

H:0(r,t)=l 

Figure 1: A wave front, $(r, t), starting at the position of the winner neuron, rwin, 
at time i=0. It propagates within the cortex with veclocity c into the neighborhood 
of the winner neuron. Neurons that are reached by the wave front, i.e. that detect 
$(r, i)=l, start executing the learning rule, Eq. (5). 

3  WAVE PROPAGATION AS A COUPLING MECHANISM 

Let us turn back to the synergetic implementation of Kohonen's network 
based on an active medium. If the medium shows suitable dynamic proper- 
ties, a wave front propagates through the medium starting at time t=0 from 
the point of ignition, rwin, i.e., the position of the winner neuron (Fig. 1). The 
simplest (although not very natural) form of such a wave front propagating 

with velocity c reads 

$(r,i)=ft(c*-||ru r||), (4) 

with the Heaviside function, ft(x)=0 if x<0, and H{x)=l, otherwise. 
This wave front triggers the learning process of each neuron it reaches: 

5wF«) = o 

iw,W-i(u 

if*(p,t)<0.5, 

■W,(<)) if*(r,t)>0.5, (5) 

with a time constant, r. This "local" learning rule can easily be realized in 
a synergetic manner by means of an i?C-device consisting of a capacitor, C, 
and a resistor, R, yielding r=RC. After a certain time, *i, the medium is 
reset, i.e. $(r,<) = 0 if * > <i- Within time ti the wave front has travelled 
a distance dma\=di. Equation (5) yields a neighborhood function, 77, in the 
Kohonen learing rule, Eq. (3), reading 

r)(dwin(r)) = 0 II dwin(T) > Umax 
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2 3 4 

cortical distance llr -rll 

Figure 2: The neighborhood function, i7(||ru,j„ - r||) (Eq. 6), for different values of 
the parameters dmax and cr. The values of cr are equivalent to 1=2, 1=4, 1=8 in 
the digital version (Eq. 13). 

fl(dwin(r)) = 1 - exp I   w,n[- ' —— j if dwin(r) < d„ (6) 

The shape of the neighborhood function, T), is shown in Fig. 2 for different 
values of the parameters dmax and cr. 

4  REPRESENTATION OF TEMPORAL SEQUENCES 

Different attempts have been made to extend or modify the self-organizing 
feature map in order to represent temporal aspects of the presented features. 
This is a very important task if the network is supposed to process context 
information, e.g. in speech processing systems [10]. In general, such a task 
demands a representation of the near past. This can be achieved by means 
of a time-delay architecture, which enables the system to process a certain 
amount of former inputs (for a review see e.g. [11]). One can apply this 
technique to the input of a standard Kohonen feature map: A number of time- 
delayed input vectors are concatenated to a larger vector that serves as feature 
vector, U. This method was succesfully used to improve the recognition of 
transient phonemes in a speech recognition system [10]. 

Another idea to represent temporal dynamics is to use an independent, fully 
interconnected network, which learns the transitions within the cortex of the 
feature map ([12]). Such a network is even capable of reproducing a trained 
input sequence.   A more implicit representation of the past is realized by 
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Fieure 3- Three waves *i(r, t) in the cortex according to Eq. (8) started by three 
subsequent winner neurons at cortical positions r?"*. Subsequent winner neurons 
are forced by the wave to be situated in a certain cortical neighborhood of the 
respective preceding winner neuron. 

providing the neurons of the feature map with a retention and decay of their 
activity If such information on former activity, i.e., being a winner neuron, 
influences the present determination of the winner neuron, then the network 
becomes able to represent temporal sequences [13]. 

Following an idea of Euliano and Principe [14], wave propagation can be 
utilized to process information on the past so that temporal coherence is 
represented in the feature map. Propagation and interference of waves, that 
are attenuated over space and time, influence the neural competition: De- 
termination of the winner neuron is modified with the result, that temporal 
neighborhood of feature vectors in a sequence may lead to an adjacent rep- 
resentation of these vectors in the feature map. Euliano and Principe choose 
a predetermined direction of wave propagation. We will restrict propagation 
in a less rigid and more natural way leading to some advantages. Addition- 
ally, we omit attenuation and interference of waves for the sake of an easier 

hardware implementation. 

Consider a wave, ¥j(r,*), with a concentric wave crest of certain width 6, 
propagating through the cortex. It starts at time t=U at the position of the 
winner neuron r^in. The index, i, numbers the sequence position ol the 
corresponding feature vector, Vit starting with i=l. Wave propagation ends 
at time ti+l, when the next feature vector, U<+i, is presented. Using the 
abreviations Eq. (2) and 

t'i=t- U (7) 

310 



such a wave reads 

*,-(p,<) = nict'i - dwin{r))H(dwin(r) - ct'i + b)H(r,t) (8) 

where %, again, is the Heaviside function. The "History function", H(r,t), 
restricts wave propagation with respect to the past. It is initialized at the 
beginning of a new sequence with 

H(r,h) = l, for all r. (9) 

Afterwards, it is set to zero at a position, r, if the crest of a wave has left 
that position, i.e., 

ff(r,t)->0if*,-(r,*)->0 (10) 

and remains zero for the rest of the sequence. 

As a result, a subsequent wave does not propagate into a region that has 
been passed by an earlier wave during the same sequence. This resembles the 
refractory phase of real neural tissue. Even more natural dynamics would 
allow for a decay of H(r,t) over time. Moreover, this could be understood 
as an explicit measure of time within the network (compare [13]). 

Wave propagation according to Eq. (8) and Eq.(10) is sketched in Fig. 3. The 
final states of three subsequent waves, i.e., \P,(r,t,+i), t=1..3, are shown. In 
the final wave region the probability for a neuron to win the competition 
and to become the winner neuron is enhanced. Equation (1) of the Kohonen 
algorithm is changed to 

vfn = arg minfllUi - Wr|| - /3*,-_1(r, *,-))• (11) 

Only the first winner (i=l) is conventionally determined, i.e., $o=0 in Eq. 
(11). In this case Eq. (11) equals the original Kohonen Eq. (1). On the other 
hand, if ß is large, the position, r|+", of the next winner neuron is forced 
to be in the region $,-(r,tf,-+i)=l (Fig. 3), i.e., in a certain neighborhood 
of the preceding winner neuron. The later the succeeding feature vector 
is presented, the farther away from the predecessor it will be represented. 
Since this is a competitive ordering principle, there may arise contradictions 
to a purely topographic mapping (/?=0), if very different feature vectors are 
neighbors in the sequence or if very similar feature vectors appear far from 
each other in the sequence. However, by tuning ß one can choose what more 
attention is paid to: feature similarity or temporal coherence. 

Figure 3 shows a parameter set, where the distance, (i,-+1 —tt)c, being covered 
by the wave is distinctly larger than the cortical distance of neighboring 
neurons, Ax. In this situation it is possible to represent a noisy feature 
cluster with more than one neuron, i.e., with improved resolution. As a 
consequence, the subsequent feature vector will be represented relatively far 
away from the predecessor. Within the regions of the single, noisy feature 
cluster, the mapping is purely topographic. A disadvantage in such a case is 
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that the total length of a sequence that can be entirely represented is smaller 
than in the case (<,+i — U)c fa Ax. 

If a sequence is too long to be entirely represented, i.e., the wave has com- 
pletely left the cortex (*,(r,i)=0 over the whole cortex), Eq. (11), again, 
becomes identical with Eq. (1). In this case, the next winner is determined 
independently from its predecessor (standard Kohonen). Thus, if the new 
winner neuron is not situated in a refractory region, the sequence is auto- 
matically devided into two independent subsequences. Otherwise, no wave is 
started and the system determines another winner in the standard Kohonen 
manner. 

In the described concept there are two independent processes being governed 
by wave propagation: 1) Influencing the winner election in order to represent 
temporal coherence (Eq. (11)); 2) Control of the learning process of the 
neurons (Eq. (5)). Both processes can be governed by the same wave since 
learning can also be triggered by a wave according to Eq. (8) instead of Eq. 
(4). This can be done in a way that learning is not affected by the history 
function, Eq. (10); i.e., refractory neurons can learn as usual. The only 
restriction is that the parameter dmax in the neighborhood function, Eq. (6), 
be limited to 

dmar < (U+l - U)c (12) 

5   DIGITAL HARDWARE IMPLEMENTATION 

The described concept was developed in view of a digital hardware realization. 
In such an implementation Eq. 5 is replaced by its time discrete analogue, 

AWr = Hz^Ü£, (13) 

with a parameter /. The wave is replaced by a spatially discrete "domino- 
effect". Eq. 13 is executed by the concerned neurons after each propagation 
step of the domino-effect. Owing to this space- and time-discrete procedure 
distance measurement in the cortical space is changed from Euclidian to 
Manhattan distance. The distance of adjacent neurons is set to Ax = 1. The 
neighborhood function, rf(dwin(r)), is the same as given in Eq. 6 with the 
transformation 

■=HT=I))~ (I4) 

Restricting / to a power of two allows to carry out division by I (Eq. 13) in a 
very simple way. Since the whole concept does not require any multiplication 
and because connectivity within the network is very low, the concept is well- 
suited for chip integration. As learning is done stepwise (Eq. 13)) rather 
than continuously (Eq. 5) the possible range of dmax is extended over the 
limit given in Eq. (12) to 

dmax<(ti+i-U)c+Ax. (15) 
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Figure 4: A single neuron Nr of the digital setup. A feature vector, U, is presented 
to all neurons via a global bus. The winner neuron is determined by means of 
a binary search with a sequence of numbers D: if there is a neuron detecting 
D > ||U — Wi||, D is diminished, otherwise it is increased by the current power of 
two. When the search is over, a winner neuron is found and a new front is started 
by this neuron. If the the neuron was passed by the former front not longer than b 
clock cycles before, it belongs to the crest region and increases the numbers D by ß. 
Thus, a winner election corresponding to Eq. (11) results. After a winner neuron 
is found, each neuron detecting that the front has passed executes the learning 
rule (13) with every clock cycle. The front is realized by clocked OR-units being 
interconnected with the next cortex-neighbors: The output is connected to the 
inputs of the OR-units of the neighboring neurons and vice versa. After n clock 
cycles the OR-units are reset and a new front is started by the presentation of the 
subsequent feature vector. 

Operation is demonstrated with phoneme sequences processed by a demon- 
stration setup which consists of 16 neurons in a linear chain. Schematic 
operation of a single neuron is sketched in Fig. 4. Each neuron is emu- 
lated by a PIC16C84 microcontroller. The components of the feature (U) 
and reference vectors (Wr) are stored as 8bit values. The acoustic signal is 
sampled (rate: 14kHz) and Fourier-transformed (512 points in 36.7 ms) by 
a digital signal processor TMS320C26. The resulting spectrum is grouped 
into three frequency channels (0.6-1.0 kHz, 1.0-3.5 kHz, 3.5-7.4 kHz). The 
energy of each single channel contributes one component to a 3-dimensional 
feature vector, U, which, additionally, is normalized. Each feature vector 
corresponds to one spoken phoneme, independently of its natural length. 

In the 1-dim setup, the wave travels in both possible directions after it has 
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Figure 5: Representation of the two phoneme sequences "F OO T" and "F EE T" 
by the 16 neurons of the digital demonstration setup. The parameters of the exper- 
iment are /3=765 (3x8bit, i.e. ß is "large"), ct|=3 and 6=2 (Eq. 8, compare Fig. 
3) and J=16 (Eq. 13). The 16 reference vectors (3-dim), Wr, are initialized with 
random numbers and learning is performed as follows: Ten presentations of each 
sequence (random order) with parameter dmax=4, 20 presentations with <tfmai=3, 
and 30 with dmax=l. (Eq. 6, compare Fig. 2). The probability distributions (condi- 
tional probabilities p(neuron|phoneme)) are obtained with 40 presentations of each 
sequence 

been started at the position, if''", by the first winner neuron of a sequence. 
Owing to the refractory behaviour of the neurons, the second feature vector 
of a sequence selects a direction. The initial variability allows to represent 
two (in a 2-dim network even more) sequences with the same beginning. 
This is shown in Fig. 5 for the two 3-phoneme sequences "F OO T" and 
"F EE T" after 60 random presentations of each sequence. As a result of 
the self-organizing process the neurons are arranged in clusters. Each clus- 
ter represents a single noisy phoneme, as expected in the Kohonen model. • 
Additionally, adjacent clusters represent subsequent phonemes in order to 
represent the temporal order in each sequence. The initial "F" of both se- 
quences is represented in common in the middle of the network, whereas the 
final "T"s of each sequence are represented twice by each end of the network. 
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Abstract 
In this paper we propose novel computationally efficient Schemas for a 

large class of on-line adaptive algorithms with variable self-adaptive learning 
rates. The learning rate is adjusted automatically providing relatively fast 
convergence at early stages of adaptation while ensuring small final misadjust- 
ment for cases of stationary environments. For non-stationary environments, 
the algorithms proposed have good tracking ability and quick adaptation 
to new conditions. Their validity and efficiency are illustrated for a non- 
stationary blind separation problem. 

Keywords: Adaptive on-line learning algorithms, Blind equalization, 
Blind separation of sources from instantaneous mixture. 

1     INTRODUCTION 

The problem of optimal updating of a learning rate (step size) is a key prob- 
lem encountered in a wide class of learning algorithms. Many of the re- 
search work related to this problem is devoted to batch and/or supervised 
algorithms. Many various techniques like conjugate gradient, quasi-Newton 
methods and Kaiman filters have been applied. However, relative little work 
has been devoted to this problem for on-line adaptive algorithms [1, 8,12,13]. 

A large class of on-line learning algorithms (both supervised and unsuper- 
vised) used for training neural networks or nonlinear adaptive systems can 
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be expressed in general form as [2, 8, 12, 13]: 

0(k + l) = 0(k)-r,(k)g(k)     (fc = 0,l,2,...), (1) 

where A; is the iteration index, 0{k) = [0i(k),62(k),...,6n(k)]T is the n- 
dimensional vector of updated unknown parameters, r)(k) > 0 is a learning 
rate (step size), and g(fc) = g(0(/c),x(&),y(fc)) = [gi{k),g2{k),...,gn{k)]T 

is a nonlinear function depending on 9(k) and x(k),y(k) (input and output 
signals respectively). 

In system identification problems for example, the algorithm defined by 
Eq. (1) is termed "supervised" due to the availability of an instantaneous 
output error or desired output signal. In such cases, g(fc) is a function of the 
error and can be considered as the instantaneous gradient (which is a rough 
approximation of true gradient) of a loss (also called cost, error or energy) 
function J(6), i.e.: 

g(fc) = V0J(0,fc) = 
dj(k)  dj(k)       dj{k) 

Mi ' ae2 '•"' aen 
(2) 

However in many applications like blind separation of sources, the true loss 
function J{9) is not available or its evaluation is too time consuming. More- 
over, if g(fc) is not a function of the error, the algorithm is termed "unsuper- 
vised". 

It is well known that the final misadjustment (often defined in terms of the 
mean square error MSE) increases as the learning rate 77 increases. However, 
the convergence time increases as the learning rate decreases [1]. For this 
reason it is often assumed that the learning „rate r\ is a very small positive 
constant, either fixed or exponentially decreasing to zero as time goes to 
infinity. Such an approach leads to relatively slow convergence speed and/or 
low performance and is not suitable for non-stationary environments. 

This inherent limitation of on-line adaptive algorithms represented by (1) 
imposes a compromise between two opposing fundamental requirements of 
small misadjustment and fast convergence demanded in most applications, 
especially in non-stationary environments [1, 12]. As a result, it is desir- 
able to find an alternative method to improve the performance of such algo- 
rithms. Most of the works have been devoted to variable step size LMS-type 
(supervised delta rule) algorithms [11, 15]. In this paper we will consider 
a more general case which includes unsupervised and/or supervised on-line 
algorithms. 

2     SELF-ADAPTIVE VARIABLE STEP SIZE 
ALGORITHMS 

Amari in his fundamental work [1] analyzed the dynamic behavior of 6(k) in 
the neighborhood of the optimal 0* and obtained analytical formulas for the 
convergence speed to 0* and the fluctuation of 0(k) around 0». Moreover, he 
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proposed an efficient method for a variable learning rate [1]. In this paper we 
extend Amari's idea of learning of learning rate by proposing robust, variable 
step-size on-line algorithms. The main objective of this paper is to develop 
a simple and efficient algorithm which enables automatic updating of the 
learning rate. This is especially suited to non-stationary environments. 

Recently, on the basis of Amari's works we have developed a new family of 
on-line algorithms with an adaptive learning rate suitable for non-stationary 
environments [8, 9]: 

0(Jfc + l)    =    8(k)-ri(k)g(k), (3) 
g(fc)    =    (1-P2)e(k-1) + P2g(k), (4) 

v(k)   =   (l-pi)v(k-l) + Pim\\s(.k)\\) (5) 
or    [l-piv(k-l)Hk-l) + Pißv(k-im\s(k)\\),     (6) 

where 0 < p\ < 1, 0 < p2 < 1, ß > 0 are fixed coefficients and V(llg(*OII)is a 

nonlinear function defined, e.g., as V(IIS(*)II) = £ E2=i l&(*)l or lKII3(*)ll) = 
tanh(i£r=i&(fc)2)> with ft(0) = ft(0). It should be noted that Eq. (6) 
Xlhas been obtained from Eq. (5) by simply replacing the fixed pi by a self- 
adaptive term pir}(k - 1). The above algorithms are related (especially Eq. 
(6)) to the very recent research works of Murata et al and Sompolinsky et al 
[12, 13]). It is interesting to note that Eqs.(4)-(5) describe simple first-order 
low-pass filters (LPFs) with cut-off frequencies determined by the parameters 
pi and p2. The even nonlinear function ip is introduced to limit the maxi- 
mum value of the gradient norm ||g(fc)|| and maximal value of the gain ß is 
constrained to ensure stability of the algorithm [8, 9]. 

It should be noted that for fixed 77 the system behaves in such a way that 
parameters 9i(k) never achieve steady state but will fluctuate around some 
equilibrium point. In order to reduce such fluctuations we have employed 
low-pass filters. Intuitively, the self-adaptive system described by Eqs.(2)-(5) 
operates as follows. If gradient components gi(k) have local average (mean) 
values which differ from zero (which are extracted by the first LPF's) then the 
learning rate 7?(fc) is decreasing or increasing to a certain value determined 
by gain ß and norm of gradient components. However, during the learning 
process \gi(k)\ decreases to zero, i.e. after some time <ji{k) starts to fluctuate 
around zero, then 7?(fc) decreases also to zero exponentially as desired. If 
some rapid changes occur in the system then \gi{k)\ suddenly increases and 
consequently t] (k) also rapidly increases from a small value so that the system 
is able automatically to adapt quickly to new environments. 

The learning algorithm (3)-(6) employs global learning rate, i.e. the same 
variable step size r](k) for all the weights 6t. In order to improve performance 
we can use local learning rates, i.e. each parameter 6i can have an individual 
learning rate T)i{k) as follows [8]: 

6i{k + i)    =   6i{k)-T)i{k)gi(k), 

r,i(k)    =    (1 - pMk - 1) + Pißip(\9i(k)\) 

or   r)i(k - 1) + pir]i(k - 1) [Ml0i(*OD - Vi(k - 1)], 
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9i(k)    =    (l-p2)9i(k-l)+p2gi(k). 

We have found that these algorithms work with high efficiency and they 
are easily implemented in VLSI technology. However, they require the proper 
selection of three parameters (px,p2,ß). Although the above algorithms are 
robust with respect to the values of these parameters, their optimal choice is 
problem dependent. Moreover, the algorithm can still be too slow for some 
applications. In order to increase the convergence speed and improve overall 
performance we propose in this paper a new learning strategy which is based 
on the modified conjugate gradient (CG) approach. We would like to empha- 
sis here, that although CG techniques are very well known and have been ap- 
plied successfully to many optimization problems, most of these applications 
are related to batch and supervised learning algorithms. To our knowledge 
the CG approach has not been deeply investigated for on-line adaptive algo- 
rithms, especially, for unsupervised algorithms when cost (loss) functions are 
not explicitly available. In other words, the problem is formulated as follows: 
on basis of available on-line learning rule it is necessary to develop efficient 
algorithms (self-adaptive systems) which provide self-adaptive adjustment of 
learning rate and ensure high convergence speed and small misadjustment 
error. 
In related works other modified conjugate gradient algorithms have been pro- 
posed for adaptive filtering (see e.g. [6]). However, these proposals are lim- 
ited to supervised LMS type adaptive algorithms. In this paper we propose 
a more general approach which can applied to any kind of on-line algorithms 
in the form of Eq.(l) without the knowledge of the Hessian or line search. 

3     A MODIFIED CONJUGATE GRADIENT 
ADAPTIVE ALGORITHM 

In this section we propose a new scheme which extends our previous algo- 
rithms (2)-(6) [8]. Consider first the standard CG algorithm [10, 6] shown 
below, and which is suitable only for batch learning problems since the cost 
function J and its exact gradient g must be available: 

0(k + l)    =   9(k) + V(k)d(k), (7) 

with d(k)    =    -g(Jfe) + o(*)d(Jfe-l), (8) 

r)(k)    =    aTgmmJ(9(k)+r)d(k))     (LS procedure),    (9) 

where in this case k is an index in parameter space, d(k) is a search direction, 
LS means "line-search", PR means "Polak-Ribiere", FR means "Fletcher- 
Reeves".  It can be shown that if the cost function is a n-order quadratic 
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function, this CG algorithm finds the minimum in n steps. In extensions of 
CG to non-quadratic functions, a(k) is reset to zero every R (typically R^n) 
iterations in order to improve the rate of convergence near the minimum [10]. 
Consequently in the case of such a "restart", Eq. (8) becomes: 

d(fc + l) = -g(fc + l). (12) 

Unfortunately, the above algorithm cannot be applied directly to learning 
rule (1) since we assume that the loss function J{6) is not available. In 
this case the line search to find the optimal value of j?(fc) in each iteration 
step can not be performed. Moreover, the true value of gradient g(k) is not 
directly available in on-line adaptive algorithms and must be estimated in 
each iteration step. 

For this reason we propose a modified CG approach in which a time con- 
suming line search procedure is replaced by low-pass filtering of the gradient 
norm. Here, we can use any norm (e.g. Euclidean norm) which converts a 
vector to a scalar (see Eqs.(3)-(6)). In other words, instead of line search we 
have applied a simple low-pass (averaging) technique to estimate the learning 
rate r)(k). 

The parameters in the update recursion are given by (see Fig.l (a)): 

0(Jfc + l)    = 6(k)+v(k)d(k), (13) 

d(fc)    = -t(*) + a(fc)d(fc-l), (14) 

r,(k)    = (l-pi)v(k-l) + ßpi^(\\d(k)\\), (15) 
or [l-Plr)(k-l)]r,(k-l) + Pißv(k-lM\\d(k)\\), (16) 

where 0 < p\ < 1 is a small positive constant, a(k) is an adaptive coefficient 
computed on basis of the Polak-Ribiere or Fletcher-Reeves formula with re- 
setting to zero for every R iterations or if a(k) achieves a value greater than 
a specified threshold (typically a value between 1 and 2). An estimate g(ft) 
of the true gradient g(&) is computed using one of the following formula: 
1) Recurrent formula realized by a first-order IIR low-pass filter (see Fig.l 

(b)): 

g(jfc)    =    (1-P2)£(*-1)+P2g(*) (17) 

2) Sliding window realized by M-th order FIR low-pass filter which in the 
special case performs simple averaging (possibly with forgetting factor 7) 
(see Fig.l (c)): 

-    M-l 

t(fc) = ^E^(fc-i) (18) 
i=0 

The on-line learning algorithm (13)-(18) has useful circuit and signal process- 
ing interpretations (see Fig.l (a), (b) and (c)). Equations (14)-(17) could be 
considered as first order low-pass discrete-time filters. From these interpreta- 
tions many possible extensions or generalizations follow. For instance, instead 
of first-order low-pass filters we could employ second or higher order IIR or 
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FIR filters. Moreover, coefficients pi, pi and (1 — a(k)) can be interpreted 
as parameters corresponding to cut-off frequency of low pass filters. Instead 
of filter with fixed cut-off frequencies we could use adaptive filters with ad- 
justable cut-off frequency, e.g. we could assume that pi(k) = pirj(k - 1) (see 
Eq. (6) [8, 12]). 

Our new algorithm (13)-(18) offers the following advantages: (i) high 
convergence speed due to the optimization based on the conjugate gradient 
approach; (ii) low complexity due to the replacement of a costly line search 
procedure by a much simpler computation of the step size (Eq. (15)); (iii) 
adaptive learning rate suitable for non-stationary environments. 

4    COMPUTER SIMULATION EXPERI- 
MENTS 

In order to confirm the validity and the performance of the developed on-line 
adaptive algorithms we have tested them on a number of specific problems, 
in particular blind equalization/deconvolution and blind separation problems 
[3, 4, 8]. Due to lack of space we give here only an illustrative example for 
blind separation of instantaneous mixture of sources. 

The robust unsupervised on-line learning algorithm for the standard blind 
separation of m sources can be formulated in vector form [4, 8, 7, 5, 14]: 

w«(* + 1) = Wi(k) - m(k)gi(k), (19) 

where gi(k) = -Wj(fc) + f[y(k)]yT(k)wi(k), w* = [%,%, ...,wim]T, (i = 
1,2, ...,m), y(k) = W(fe)x(fc), x(fc) = As(fc), f(y) =y3,W= [wu w2,.., wm]. 
In this formulation there are m local learning rates 7^; a simplified formula- 
tion consists in using only one global learning rate JJ, so that we obtain an 
on-line algorithm of the form (1) as 

0(k + i) = e(k)-v(k)g(k), (20) 

where concatenated vectors are defined as 0{k) = [wf (k), w^(fc),..., w^(fc)]T 

and g(fe) = [g[{k), gj(k),..., g^(A;)]T. Thus our learning schema (3)-(6) and 
(13)-(15) can be directly applied to this problem. The key aspect of the prob- 
lem we consider is that the elements of the mixing matrix A are not fixed 
but change rapidly or drift slowly over time. 

Illustrative example: we consider the following synthetic source signals 
(assumed to be unknown to the algorithm) sampled with sampling period 
At = 2 • l(T4s: 

si(fc)    =   sin(2007rfcAt) cos(3007rfcAf), A 

s2 {k)    =   sign(cos(400?rA;Ai + 50 sin(307rfe At))) 

0.3   0.5 
-0.8   0.1 

First experiment (see fig. 2 (a)): Sensors signals are obtained by mixing 
the source signals with examplar mixing matrix Ai during the first second 
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g(fc) 
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"(*)    d(fc -1) 

Figure 1: Functional block diagram illustrating hardware implementation of 
the new learning Schemas: (a) Eqs. (13)-(15); (b) Eqs (13),(14),(16). (c) 
IIR first-order low-pass filter; (d) Standard averaging with sliding window, 
with null initial conditions. For a(k) = 0, the learning rules simplify to Eqs 
(3)-(6). 
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Figure 2: (a) Comparison of performance indexes obtained with gradient de- 
scent (Eqs. (2)-(5)) and conjugate gradient (Eqs. (13)-(18)). Both algorithms 
use the adaptive learning rate of Eq. 15, with parameters ß = 0.005, ?7(0) = 
0.01, P2 = 0.01; restarts are performed every R = 4 iterations (conjugate 
gradient case). Upper figure: the gradient is estimated using an IIR filter of 
parameter p\ = P2- Lower figure: the gradient is estimated using a FIR filter 
of parameter M = 100. (b) Weights and learning rate for Eqs. (13)-(15) and 
IIR filter, in case of a double change of mixing matrix. 
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and with matrix A2 = Af during the next second. Second experiment (see 
fig. 2 (b)): mixing with Ai during 0.8s, A2 = Af during the next 0.8s, and 
again with Ai. In order to assess the performance of our algorithm we use 
the following normalized performance index PI, which provides a measure 
of crosstalking or estimation of the closeness between W_1 and the desired 
mixing matrix A while taking into consideration the indeterminacy (scaling 
and order of the estimated sources) inherent to the blind separation problem 
[4, 8]: 

m £? (^ max? Ipi»I J      m £? I £? max« \piiI m 2-1 

(21) 
where P(k) = [ptj] = W(*)A. 

Computer simulation results show that the proposed algorithm has good 
dynamic convergence and tracking capabilities. On basis of intensive com- 
puter simulation experiments we have found that the new algorithm with 
Fletcher - Reeves formula with resetting of a(k) every R = n (n = m2, 
number of parameters) iterations or if a(k) achieves a value greater than 
1, provided better performance as compared to Polak-Ribiere formula or al- 
gorithms given by Eqs. (2)-(6). Furthermore, averaging with sliding time 
window by M from 50-100 provides slightly better performance than using 
first order IIR low-pass filter. 

5    CONCLUSIONS 

A new class of on-line adaptive learning algorithms with a variable step size 
is proposed. In our algorithms the learning rate is adjusted depending on 
the value of gradient norm or strictly speaking low-pass filtered version of 
the norm of actual search direction. The low-pass filtering process is op- 
timized by employing a conjugate gradient approach. In contrast to other 
conjugate gradient approaches which require knowledge of a cost function, 
our algorithms can be applied either when a cost function is available (su- 
pervised case) or not (unsupervised case). In this paper we have presented 
an application to the problem of blind separation of sources illustrating the 
applicability of the algorithm to the unsupervised case. 
The main advantages are that the proposed algorithm adapts with high con- 
vergence speed to a fast or slow change of the system and also produces a 
small final misadjustment error. This allows the adaptive system to track 
slow changes or to adapt relatively quickly to abrupt changes, as well as, to 
produce a small steady state misadjustment. 
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Abstract. A method for the analysis of nonstationary time series 
with multiple operating modes is presented. In particular, it is pos- 
sible to detect and to model a switching of the dynamics and also 
a less abrupt, time consuming drift from one mode to another. This 
is achieved by an unsupervised algorithm that segments the data 
according to inherent modes, and a subsequent search through the 
space of possible drifts. An application to physiological wake/sleep 
data demonstrates that analysis and modeling of real-world time se- 
ries can be improved when the drift paradigm is taken into account. 
In the case of wake/sleep data, we hope to gain more insight into the 
physiological processes that are involved in the transition from wake 
to sleep. 

1    Introduction 

Modeling dynamical systems through a measured time series is commonly 
done by reconstructing the state space with time-delay coordinates [11, 16]. 
The prediction of the time series can then be accomplished by training neu- 
ral networks [17]. If, however, a system operates in multiple modes and the 
dynamics is drifting or switching, standard approaches like multi-layer per- 
ceptrons are likely to fail to represent the underlying input-output relations. 
Moreover, they do not reveal the dynamical structure of the system. Time 
series from alternating dynamics can originate from many kinds of systems 
in physics, biology and engineering. Phenomena of this kind are observed, 
for example, in speech [15], brain data [10, 12], or dynamical systems which 
switch attractors [3]. 

In [5, 9,13], we have described a framework for time series from switching 
dynamics, in which an ensemble of neural network predictors specializes on 
the respective operating modes. Related approaches can be found in [1, 18]. 
We now extend the ability to describe a mode change not only as a switching 
but - if appropriate - also as a drift from one predictor to another. Our 
results indicate that physiological signals contain drifting dynamics, which 
underlines the potential relevance of our method in time series analysis. 
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2    Detecting Drifts in the Dynamics 

The detection and analysis of drifts is performed in two steps. First, an 
unsupervised (hard-)segmentation method is applied. It was first presented 
in [4]. In this approach, an ensemble of prediction experts /», i = I,..., N, is 
trained by maximizing the likelihood that the ensemble would have generated 
the time series. For the derivative of the log-likelihood with respect to the 
output of an expert, we get (cf. [5]) 

ölogL 

dfi 

e-ß(v-U)2 

Z.e-Mv-fi)2 (y-fi), (1) 

where y is a data point to be predicted. This learning rule can be interpreted 
as a weighting of the learning rate of each expert by the expert's relative pre- 
diction performance. It is a special case of the Mixtures of Experts [2] learning 
rule, with the gating network being omitted. Furthermore, we imposed a low- 
pass filter on the prediction errors and used deterministic annealing in the 
training process (see [5, 13] for details).3 

As a prerequisite of this method, mode changes should occur infrequent, 
i.e. between two mode changes the dynamics should operate stationary in 
one mode for a certain number of time steps. Applying this method to a time 
series yields a (hard) segmentation of the series into different operating modes 
together with prediction experts for each mode. In case of a drift between 
two modes, the respective segment tends to be subdivided into several parts, 
because a single predictor is not able to handle the nonstationarity. 

The second step takes the drift into account. A segmentation algorithm 
is applied that allows to model drifts between two stationary modes by com- 
bining the two respective predictors, fi and fj. The drift is modeled by a 
weighted superposition 

/(xt) = a(t) /i(xt) + (1 - a(t)) fj(xt),    0 < a(t) < 1, (2) 

where a(t) is a mixing coefficient and x* = (xt,xt-T, • • • ,Xt-(m-i)r)T 1S the 
vector of time-delay coordinates of a (scalar) time series {xt}. Furthermore, 
m is the embedding dimension and r is the delay parameter of the embedding. 
Note that the use of multivariate time series is straightforward. 

The drift segmentation algorithm performs a complete search for the op- 
timal segmentation with the lowest average prediction error and takes the 
described drift into account. The search is performed in the following way: 
For a given time series, which is not necessarily the training set used in the 
training phase, each of the previously trained experts performs a prediction 
for every time step, which results in a matrix of expert outputs fi(xt) versus 
time steps t. This matrix can then be used to compute the mean prediction 
errors for arbitrary segmentations of the time series, including drifts of any 
length and shape. The best segmentation with the lowest prediction error can 
be obtained efficiently by dynamic programming. 
3 Further information and papers can be found at: 

http: //www. first. gmd. de/persons/Kohlmorgen. Jens. html 
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2.1    The Drift Segmentation Algorithm in Detail 

Consider a set P of 'pure' states (dynamical modes). Each state s € P repre- 
sents a single neural network k(s), which solely performs a prediction. Next, 
consider a set M of 'mixed' states, where each state s e M represents a linear 
mixture of two nets i(s) and j(s). Then, given a state s 6 S,S = PU M, the 
prediction of the overall system is performed by 

9s[Xt) ~ \ a(s)fi(s)(xt) + b(s)fj(a)(xt)   ; if s G M ^ 

For each mixed state s 6 M, the coefficients a(s) and b(s) have to be set 
together with the respective network indices i(s) and j(s). For computational 
feasibility, the number of mixed states has to be restricted. Our intention 
is to allow for drifts between any two network outputs of the previously 
trained ensemble. We choose a(s) and b(s) such that 0 < a(s) < 1 and 
b(s) = 1 — o(s). Moreover, the algorithm only allows for a discrete set of 
mixed states. Consequently, a discrete set of a(s) values has to be defined. 
For simplicity, equally distant steps can be chosen, 

ar = -^-j-y , r = l,...,Ä. (4) 

R is the number of intermediate mixture levels. A given resolution R 
between any two out of N nets yields a total number of mixed states \M\ — 
R- N • (N — l)/2. For example, in this paper the resolution R = 32 is used. 
Assume N = 8, then there are \M\ = 896 mixed states, plus \P\ = N = 8 
pure states where only single nets are considered. 

A dynamic programming technique, equivalent to the Viterbi algorithm 
for Hidden Markov Models (HMM) [15], efficiently yields the sequence of nets 
and linear mixtures of nets with the lowest prediction cost C*. C* is the sum 
of squared prediction errors plus transition costs for the best fitting sequence. 
This sequence can be obtained between two points in time, to and tmax, by 
recursively computing, for all s € S, the cost Cs{t) of the most likely state 
sequence that might have produced the time series xt0,...,xt, and whose 
state at time t is s: 

Cs(to) = es(to), (5) 

Cs(t) =es(t)+mm {Cs(t-1) + T(s,s)},    t = t0 + 1,. ..,tmax,     (6) 

(7*=nfin{cs(tmax)}, (7) 

where 

es(t) = (xt - gs(xt-r))2 (8) 
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is the squared prediction error of the pure or mixed network output, and 
T(s, s) is the transition cost to jump from state s to state s. Note that the 
transition costs are in analogy to the transition probabilities in HMMs, i.e. 
the choice of the transition matrix T determines the transition probability 
between any two states. In this way, a priori knowledge about the problem 
can be incorporated. In the following applications, either switches or smooth 
drifts between two nets are allowed, all other possible transitions are disabled 
by setting T(s, s) = oo. 

The resulting segmentation sequence is obtained by backtracking through 
the sequence of states that make up C* (cf. [15]). In the context of HMMs, 
this segmentation can be interpreted as the most likely state sequence that 
could have generated the given time series, in our case with the additional 
assumption that mode changes occur either as (smooth) drifts or as infrequent 
switches. 

3    Applications 

To illustrate the basic idea of this approach, a simple example of drifting 
chaotic dynamics is discussed first. It is followed by an application to a drift- 
ing system of the Mackey-Glass model of blood cell regulation. Finally, an 
application to real-world data is presented: EEG data of an afternoon nap of 
a human. 

3.1    Drifting Chaos 

Consider a chaotic time series {xt}, where xt+i = f(xt), Fig.l(a). Four major 
operating modes are established by using four different chaotic maps: 

fi(x) = 4x(l - x), x € [0,1] (logistic map) 
f2(x) = /x(/i(x)). (double logistic map) 
/3(a;) = 2x, if x e [0, .5) and 2(1 - x), if x e [.5,1] (tent map) 
h{x) = h{h{x)) (double tent map) 

For the first 50 time steps, /i is applied recursively, starting with x0 = 
0.5289. After t = 50 time steps, the dynamics is drifting from /i to /2 using 

f(xt) = (1 - o(t)) h(xt) + a(t) f2(xt),        a(t) = £=^,        (9) 

with ta = 50 and i& = 100. The drift is linear in time and takes another 50 
time steps. Then, the system runs stationary in mode /2 for the following 50 
time steps, whereupon it is drifting to fz in the same fashion as before, and 
so on. At t = 350, the system starts to drift back from f± to /i and the cycle 
starts again at t = 400. 

In the resulting time series one cannot determine the appropriate contin- 
uation xi+i, given only xt and no information about the operating mode. In 
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Fig. 1. (a) A part of the training data, generated by the chaotic return maps /i and 
fi. First, fi is iterated from t = 300 to t = 350. Then, there is a drifi to f\ between 
t = 350 and t = 400. After t = 400, f\ is iterated, (b) The final segmentation 
into training subsets, obtained by the competitive training procedure. Shown are the 
first 450 data points. This segmentation cannot represent the drift. The stationary 
parts, /i in [0,50] and [400,450], f2 in [100,150], f3 in [200,250], /4 in [300,350], 
are predicted by nets 6, 2, 4, and 3, respectively. The nonstationary drifi parts in 
between are shared among all predictors, including nets 1 and 5. 

principle, one way to solve this problem is the method of time-delay embed- 
ding [11]. In this case, however, the inclusion of such kind of memory, e.g. 
using also xt-i, leads to a very complex prediction function [14]. Moreover, 
using a single network for prediction does not reveal the dynamical struc- 
ture of the system. An adequate representation of the underlying relations 
should therefore contain a division into subtasks, as it is performed within 
our framework. 

First, the competing experts approach [5, 9,13] is applied to the first 1200 
data points of the generated time series. An ensemble of 6 predictors fi(xt), 
i = 1, ...,6, competes for the data during the training phase. We use radial 
basis function (RBF) networks of the Moody-Darken type [8] as predictors, 
because they offer a fast and robust learning method. Each predictor has 
20 basis functions. After training, four predictors have specialized each on a 
different chaotic map, and the other two predictors tried to specialize on the 
drift parts. This can be observed in the final segmentation of the competition 
procedure, shown in Fig. 1(b). 

Next, the drift segmentation algorithm is applied to all six networks. It 
perfectly reproduces the behavior of the dynamics, as seen in Fig.2(a) for the 
resolution R = 32: a linear drift between four stationary operating modes is 
obtained. Fig.2(b) is included to demonstrate the effect of a lower resolution. 
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Fig. 2. (a) The segmentation obtained 
[1200,2400], using the resolution R = 32. 
tion of time. The dotted line indicates the 
the respective nets. For example, between 
net 2 to net 4, which in this case turns 
segmentation almost perfectly reproduces 
A segmentation with a low resolution, R 

by the drift algorithm on the test data 
Shown is the sequence of nets as a June- 
evolution of the mixing coefficient a(t) of 
t = 1350 and 1400 it denotes a drift from 
out to be a linear drift, as expected. The 
the behavior of the dynamical system, (b) 
= 3, traverses the drift parts in 3 steps. 

3.2    A Drifting Mackey-Glass System 

Consider a high-dimensional chaotic system generated by the Mackey-Glass 
delay differential equation 

dx(t) 
dt 

= -0.1x{t) + 
0.2x(t - td) 

(10) 
l + x(t-td)10' 

It was originally introduced as a model of blood cell regulation [7]. Two 
stationary operating modes, A and B, are established by using different de- 
lays, td = 17 and 23, respectively. After operating 100 time steps in mode A 
(with respect to a subsampling step size r = 6), the dynamics is drifting to 
mode B. The drift takes another 100 time steps. It is performed by mixing the 
equations for U = 17 and 23 during the integration of eq.(10). The mixture 
is generated according to eq.(2), using an exponential drift 

°(*) = exp(Tö£)'   t = i,...,ioo. (ii) 
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Fig. 3. (a) The drifting Mackey-Glass time series. The dynamical system operates 
in mode A for the first 100 time steps. Then, the dynamics is drifting to mode 
B during the next 100 steps, and remains stationary in B. After t — 300, the 
system switches back to mode A and the cycle starts again, (b) The resulting drift 
segmentation invokes four nets. This is because two nets became experts for mode 
A, and two others for mode B. (c) Increase of the prediction error when predictors 
are successively removed. Although no further training has been performed, up to 
four predictors can be removed without a significant increase of the prediction error, 
(d) The two remaining predictors model the dynamics of the time series properly. 

Then, the system runs stationary in mode B for the following 100 time 
steps, whereupon it is switching back to mode A at t = 300, and the loop 
starts again (Fig.3(a)). The competing experts algorithm is applied to the 
first 1500 data points of the generated time series, using an ensemble of 6 
predictors /,(xt), i = 1, ...,6. The input to each predictor is a vector xt of 
time-delay coordinates of the scalar time series {xt}- The embedding dimen- 
sion is m = 6 and the delay parameter is r = 1 on the subsampled data. The 
RBF predictors consist of 40 basis functions each. 

After training, nets 2 and 3 have specialized on mode A, nets 5 and 6 on 
mode B. This can be seen in the drift segmentation in Fig.3(b). Moreover, the 
removal of four nets does not increase the root mean squared error (RMSE) 
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of the prediction significantly (Fig.3(c)), which correctly indicates that two 
predictors completely describe the dynamical system. The sequence of nets to 
be removed is obtained by repeatedly computing the RMSE of all n subsets 
with n — 1 nets each, and selecting the subset with the lowest RMSE of the 
respective drift segmentation. The segmentation of the remaining nets, 2 and 
5, nicely reproduces the evolution of the dynamics, as seen in Fig.3(d). 

3.3    Wake/Sleep Data 

In [10], we analyzed physiological data recorded from the wake/sleep tran- 
sition of a human. The objective was to provide an unsupervised method 
to detect the sleep onset and to give a detailed approximation of the sig- 
nal dynamics with a high time resolution, ultimately to be used in diagnosis 
and treatment of sleep disorders. The application of the drift segmentation 
algorithm now yields a more detailed modeling of the dynamical system. 

As an example, Fig. 4 shows a comparison of drift segmentation (R = 32), 
hard segmentation (R = 0, i.e. no drift), and a manual segmentation by a 
medical expert. The experimental data was measured during an afternoon 
nap of a healthy human. The computer-based analysis is performed on a 
single-channel EEG recording (occipital-1), whereas the manual segmentation 
was worked out using six physiological signals (EEG, EOG, ECG, heart rate, 
blood pressure, respiration). 

The drift algorithm yields several drift parts. The sleep onset, according 
to the manual segmentation at t « 4000, is represented by an exponential 
drift from a wake-state predictor, net 7, to a sleep-state predictor, net 4. 
On the other hand, the wake-up is introduced at t w 9000 by a slight drift 
back to net 7, which holds until the wake-up point is reached (t « 9500 in 
the manual segmentation). There, a sudden change of the mixing coefficient 
gives more weight to wake-state net 7. After t « 9800 (eyes open), a mixture 
of two wake-state nets, 2 and 7, performs the prediction. 

Compared to both hard segmentations, the drift segmentation reveals 
several interesting details of the dynamical changes in the transition between 
different wake/sleep stages. A more comprehensive analysis of the wake/sleep 
data is beyond the scope of this contribution and we would like to refer the 
reader to our forthcoming publication [6]. 

4    Summary and Discussion 

A method for the unsupervised segmentation and identification of nonsta- 
tionary drifting dynamics was presented. It applies to time series where the 
dynamics drifts or switches between different operating modes. The method 
was illustrated in two cases of drifting chaotic systems. An application to 
physiological wake/sleep data demonstrates that drift can be found in natural 
systems. It is therefore important to consider this aspect of data description. 
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Fig. 4. Comparison of hard segmentation (upper), drift segmentation (middle), and 
a manual segmentation by a medical expert (lower). Only a single-channel EEG 
recording (occipital-1, 1400 sec.) of an afternoon nap is given for the two algo- 
rithmic approaches. Wl and W2 indicate two wake-states (eyes open/closed) in 
the manual analysis, SI and 52 indicate sleep stage I and II, respectively (n.a.: 
not considered, art.: artifacts). Compared to the manual segmentation, the EEG is 
properly segmented by our method. 

In the case of wake/sleep data, where the physiological state transitions 
are far from being understood, we are able to extract the shape of the dy- 
namical drift from wake to sleep in an unsupervised manner. By applying this 
new analysis tool, we hope to gain more insights into the underlying physio- 
logical processes. Our future work is therefore dedicated to a comprehensive 
analysis of large physiological datasets. We expect, however, that our method 
will be also applicable in many other fields. 
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ABSTRACT 

Clustering is an important research area and of practi- 
cal applications in many fields. Fuzzy clustering has shown 
advantages over crisp and probabilistic clustering especially 
when there are significant overlaps between clusters [1], [2], [7], 
[9], [10]. However, all of the fuzzy clustering algorithms are 
sensitive to an exponent parameter, namely the fuzzifler. To 
our knowledge, no theoretical foundations are yet available 
for the optimal choice of this parameter [2], [3], [4], [5], [6], 
[9], [10]. The current work develops an improved scheme for 
the fuzzifler by embedding more knowledge about the data 
set to cluster in its computation. 

Keywords:   Neural Networks, Clustering, Fuzzy Set Memberships, 
Fuzzifler. 

1    INTRODUCTION 

Clustering is an important research area and of practical applications in a 
variety of fields, including pattern recognition and data compression [11]. 
Clustering algorithms attempt to partition the input data into groups, i.e. 
clusters, such that patterns within a cluster are similar to each other than 
are patterns in distinct clusters [5]. Fuzzy clustering algorithms have shown 
advantages over their Crisp / Probabilistic counterparts especially when there 
are significant overlaps between clusters. Investigation of the motivations for 
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introducing the fuzzy set membership notion within clustering algorithms 
goes beyond the scope of the current paper. For a concise review of fuzzy 
clustering schemes and an experiment-based comparison with their Crisp / 
Probabilistic counterparts we refer the reader to the literature; e.g. [3], [4], 
[5], [9], [10], [12]. 

By adopting the fuzzy set membership notion, many fuzzy clustering algo- 
rithms were proposed; e.g. the Fuzzy Learning Vector Quantization (FLVQ, 
for short) [2], the Fuzzy C-Means (FCM, for short) [5], the Fuzzy C Spher- 
ical Shells (FCSS, for short) [10]. A Fuzzy clustering algorithm makes use 
of an exponent parameter said to be the fuzzifier. It constitutes the most 
problematical choice for fuzzy clustering. Indeed, this parameter affects the 
convergence rate as well as the cluster validity of the algorithm. To our 
knowledge no theoretical foundations for an optimal choice of this parameter 
are yet available [2], [3], [4], [5] [6], [9], [10]. Instead, an adequate choice is 
always done via experimentation [3], [4], [5] [6], [9], [10], i.e. this choice is 
still largely heuristic. 

A general rule of thumb about the setting of the fuzzifier was proposed 
and analyzed in literature [4], [5], [2]. In the present paper, we propose a 
solution that makes use of this general rule of thumb. Besides, we make 
closer interactions between the fuzzifier and the data set to cluster. 

The remainder of this paper is organized as follows. In Section 2 we for- 
mulate the clustering problem and give the main notations adopted in this 
paper. In section 3 we discuss the problems faced by an inadequate choice of 
the fuzzifier and outline our proposal and related work. In section 4 prelim- 
inary experimental results are reported. The final section offers discussions 
and conclusions. 

2    NOTATION AND PROBLEM FORMULA- 
TION 

Let c be an integer, 1 < c < n and let X = {x\, X2, • • •, x„} be a set of n 
feature vectors in TV. X is a numerical object data. Xj is a representation 
of the jth object in X. Xjk is the kth feature value of the jth object. The 
number of clusters can be specified a priori or computed from the input data 
set using criteria of optimality such that the fuzzy hypervolume and density 
[6]. A cluster is defined by computing its centroid; i.e. class prototype. For 
this let V = {j/i, vi, • • •, vc} be the set of centroids, V{ € W (1 < i < c). 

Fuzzy clustering algorithms find the optimal partition of the input data 
into clusters by minimizing an error criterion, namely the weighted within 
groups sum of squared errors objective function [2], [3], [4], [5], [6], [9]: 

Jm(U,V;X)=^2f^(uikr\\xk-uifA (1) 
fc=i «=i 
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subject to the constraints: 

n 0 < YlUik < n  v* 

£>,* = !   Vt\* (2) 
»=i 

where uik is the membership degree of the kth feature vector in the ith 

cluster, U is a c x n matrix of «,-* values (1 < » < c, 1 < A; < n); and || |ft 
is a distance measure w.r.t. the matrix A. U is called the fuzzy c-partition of 
the initial data set. m is the fuzzifier used by any fuzzy clustering algorithm. 

The following theorem [2] states conditions on the fuzzy c-partition in 
order to minimize the objective function: 

Theorem 1 Assume \\ xk - Vj \\\> 0, Vj, k . (U, V) may minimize Jm only 
if, form > 1; 

The following section discusses the problems encountered by an inade- 
quate choice of this parameter and introduces a general rule of thumb about 
its setting. 

3    AN IMPROVED SCHEME FOR THE FUZZI- 
FIER 

3.1    Basics 

The fuzzifier is used to weight the distances between the prototype vectors 
and the input vectors in the computation of the membership values. The 
fuzzifier controls the fuzziness of the c-partition to be computed [4], [5]. This 
"amount" of fuzziness ranges from absolute hard clustering (at m = 1) to 
increasingly fuzzy clustering as the fuzzifier takes larger values. This means 
that the discrepancy between memberships of a pattern in different clusters 
is emphasized (resp. reduced) by adopting low values (resp. large values) 
for the fuzzifier.   Furthermore, this parameter influences considerably the 
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convergence rate of the considered algorithms and the cluster validity of the 
data set at hand. 

To our knowledge, no theoretical foundations for the optimal choice of 
this parameter are yet available [3], [5], [4], [6], [2], [9], [10]. In the lack of 
theoretical basis for the optimal fuzzifier that produces best clustering, the 
appropriate value of this parameter is set via experimentation [3], [5], [4], [6], 
[9], [10]. In essence, the choice is still largely heuristic. 

But, one can point out a general rule of thumb that guides the changing of 
this parameter and that addresses both the convergence rate and the cluster 
validity. It can be paraphrased as follows. In fact, clustering is considered as 
a process of competition between prototypes. A simple analysis of (3) and 
(4) reveals the following remarks. By adopting large values for the fuzzifier, 
each prototype will be updated to almost the same small rate since: 

lim «,-,*(<) = - (5) 
m-foo C 

And therefore distant prototypes will win as much as closer ones. Conse- 
quently, no prototype is left during the competition process. However, large 
values are not beneficial to the convergence rate. Consequently, by decreasing 
the fuzzifier gradually to low values, the convergence rate will be improved. 

As a conclusion to this analysis a decreasing scheme is more appropriate. 
Earlier works about this subject are reported subsequently. 

3.2    Related Work 

In works reported in [5] and [2], the fuzzifier was allowed to decrease linearly 
through iterations from a high value to a low terminating value meeting 
the requirements discussed in §3.1. In [2], this solution was used in the 
Descending FLVQ (J.FLVQ, for short). 4.FLVQ has a superior classification 
rate than FCM [4]. Although the adopted decreasing schemes for the fuzzifier 
in [2] and [5] improve the cluster validity and the convergence rate, they are 
still very sensitive to the initial and final values of the fuzzifier. 

It is reported in literature that an appropriate specification of the fuzzifier 
requires knowledge of the characteristics of the data set at hand [4]. Hence, 
creating closer interactions between the fuzzifier and the input data would 
perform better results. It is this property that we investigate and use in our 
solution discussed in the next section. 

3.3    Our Proposal 

4-FLVQ [2] adopts an interesting approach to the problem of choosing the 
fuzzifier. However, in J.FLVQ the fuzzifier takes the same value for all input 
patterns in each iterations which may be non optimal. Moreover, the 4-FLVQ 
is very sensitive to the final and initial values of the fuzzifier [2]. One can 
notice the fact that the boundaries between clusters might be fuzzy. In such 
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case clusters are said to overlap [6]. The degree of overlapping is not the 
same for all clusters. Consequently, they should not be treated equally as in 
4.FLVQ [2]. In fact, the less the overlapping between clusters is, the lower the 
values of the fuzzifier should be. Consequently, this allows us to better control 
the "fuzziness" ("hardness") of each cluster by taking into consideration the 
data set at hand. 

To make the fuzzifier depend on the data set to cluster, we have investi- 
gated the possibility of using the computed memberships of an input vector 
in all possible classes. In fact, the more these memberships are away from 
each other, the more a vector is attracted towards a particular class. In a 
formal manner, we propose the following scheme: 

mfc(t) = mo7c(l-A (<))+<*   V*=l---n (6) 

lc = c-1 
(7) 

&(*) = I>'*W)a        V* = l---n (8) 
»=i 

where m0 is the initial fuzzifier, S is a small real number (S > 1.0) and t is 
iteration counter. 

In order to meet the requirements outlined in §3.1 the parameter ßk>t 

should increase with time. Indeed, the computed memberships of a given 
pattern are more and more away from each other and therefore will have 
a large discrepancy since the considered pattern will be attracted through 
iteration to a special cluster (resp. to more than one cluster when overlapping 
is very important, i.e memberships are close). Due to the constraint in (2), 
there exist some memberships that should increase due to the decrease of 
the others. Thus when ßk(t) increases, the fuzzifier decreases accordingly 
showing a behavior analogous to simulated annealing. Due to the constraints 
in (2), a simple analysis of (8) reveals that the parameter ßk(t) ranges over 
[-,!]■ In fact.tne lowest value for ßk(t) is obtained when all the memberships 
are equal to \. The largest value for ßk(t) is obtained when a membership 
degree of pattern & is 1 in one cluster and 0 in the others. Hence, from (6) 
the fuzzifier ranges over [5, mo +S\. This well justifies the fact that S > 1 
due to Theorem 1, but this parameter should remain small. 

Simple runs of our solution and its comparison to that adopted in the 
4-FLVQ [2] are outlined in the next section. 
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4    PRELIMINARY EXPERIMENTS 

We have used IRIS data of Anderson and Fisher 1. It consists of three 
subspecies, each containing 50 samples. IRIS data is the most widely used 
in the experimentation of clustering algorithms [6], [5], [2], [8]. Indeed IRIS 
data has been widely used by researchers in clustering since 1936 [8] mainly 
because it presents important overlaps between subspecies (subgroups). 

Unlike the J.FLVQ [2], in our solution the fuzzifier does not take the same 
value for all input vectors. Hence, (3) and (4) will change respectively to: 

HS(PT^)*)~^ 

where mk is computed by (6). For the sake of clarity, we note by the Data 
Dependent |FLVQ (DD4FLVQ, for short) the J.FLVQ based on (9) and (10). 

For a fare comparison between DD-4-FLVQ and 4-FLVQ, we have used the 
same parameters. We based our comparison upon two criteria: the number 
of steps needed by the algorithm to converge and the misclassification rate. 
Indeed, these two criteria are the mostly used ones for a fine comparison 
between competing designs [2], [5]. For the sake of simplicity, the matrix A 
used by (9) was set to the identity for both algorithms. 

An initial tracking of class prototypes can be achieved using many tech- 
niques; e.g. unsupervised learning [6], a random process [5] [10]. For our 
concern, we will adopt the same method used in [2]. Due to the space limit, 
this initialization process will not be described herein. The initial and the 
real prototypes of the IRIS subspecies are depicted in TABLES 1 and 2 re- 
spectively. 

vj0    4.30    2.00    1.00    1.00 
vU    6.10    3.20    3.95    1.30 
vjQ    7.90    4.40    6.90    2ÜÖ" 

TABLE 1: INITIAL GUESS OF CLASS PROTOTYPES. 

Simple runs of both algorithms with different settings of their parameters 
are depicted in TABLE 3 where the " *" means that the algorithm does not 
converge within the maximal maximal number of allowed iterations (= 200). 

'IRIS data set is a courtesy of Dr James M. Keller. 

341 



v{ =    5.00 3.43 1.46 0.25 
v$ =    5.94 2.77 4.26 1.33 
v% =    6.59 2.97 5.55 2.03 

TABLE 2: REAL PROTOTYPES OF THE THREE IRIS SUBSPECIES. 

In order to compute the misclassification rate, the same training samples 

Parameters     1 Final Prototypes Iter.     | Misc.     | 

I II 1 11 1 11 

v\ u2 "3 v\ V2 "3 

• mo = 8.0 5.01 5.98 6.55 5.05 5.97 6.54 

e = 0.01 3.40 2.84 3.00 3.42 2.86 3.00 09 16 13 11 
S- 1.3 1.50 4.44 5.36 1.45 4.42 5.36 

Am = 0.04 0.25 1.43 1.95 0.22 1.43 1.96 _ 
mo = 10.0 5.02 6.00 6.53 5.01 5.99 6.53 

£ = 0.01 3.40 2.85 2.99 3.40 2.87 3.00 10 14 12 11 
5- 1.3 1.50 4.45 5.32 1.49 4.46 5.32 

Am = 0.02 0.24 1.43 1.93 0.21 1.44 1.94 

mo = 7.0 5.04 6.00 6.51 

e = 0.001 3.45 2.88 3.00 * 31 * 13 
5 = 1.1 1.45 4.49 5.27 

Am = 0.03 0.23 1.47 1.98 

mo = 5.0 5.01 5.95 6.62 4.98 5.77 6.60 

£ = 0.01 3.40 2.82 3.02 3.37 2.84 3.02 07 16 15 12 
5 = 1.1 1.50 4.41 5.45            1.49 4.25 5.49 

Am = 0.01 0.25 1.41 2.00     |     0.25 1.33 2.04 1          1 1 1 1 

TABLE 3: SIMPLE RUNS OF THE 4FLVQ(I) AND THE DD-|FLVQ(II) WITH 
VARIOUS SETTINGS OF THEIR PARAMETERS. 

are classified using prototypes found by both algorithms. For this, the One- 
Nearest-Prototype method [2] (1-NP, for short) is adopted. 

From TABLE 3, one can notice that DD-J.FLVQ is more stable to the 
changing of its parameters (e,m0,S) than is 4-FLVQ (e,m0,Am). Further- 
more from TABLES 2 and 3 one can notice that DD-+FLVQ approximates 
better the real centroids than does 4-FLVQ. This explains the fact that the 
number of misclassified patterns by DD-jFLVQ is less than that by |FLVQ. 
However, DD-|FLVQ requires in general a greater number of iterations to 

converge than 4-FLVQ. 
Our experimental results 2 have shown that our solution performs better 

clustering than 4-FLVQ. The difference in performance is significant enough 
to encourage further investigations in the suggested direction. 

2Experimental results can be provided by the authors upon request. 
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5    DISCUSSION AND FUTURE WORK 

In a current paper, we have developed a rough solution that solves (to some 
extent) the problem of the choice of the fuzziness parameter in fuzzy clus- 
tering algorithms. We tried to make the fuzzifier depend on the data set to 
cluster. Experimental results have shown that our solution performs good 
clustering as that reported in [2], besides it has a better approximation prop- 
erty. 

We do not pretend that our solution is better than that presented in [2] 
in all the cases. It may be possible to find data sets on which one solution 
performs better clustering than the other. Our central concern is to assess 
closer interactions between the fuzzifier and the input data. Although, our 
solution is still heuristic, the experimental results reported here show its 
validity and usefulness which encourage further investigations in the same 
direction. Embedding more knowledge about the data in the computation of 
the fuzzifier (e.g. cluster width, fuzzy hypervolume [6]) would perform better 
results. For this, an analysis of the effect of such parameters on the fuzzifier 
should be done. Such an analysis is not straightforward. For the time being, 
we are focusing our attention on the analysis of an analogous scheme to that 
presented in (6) embedding the fuzzy hypervolume criteria. Further studies 
as well as simulation results are to be included in a forthcoming paper. 
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Abstract. Neural network minimization problems are often ill- 
conditioned and in this contribution two ways to handle this will 
be discussed. 

It is shown that a better conditioned minimization problem can 
be obtained if the problem is separated with respect to the lin- 
ear parameters. This will increase the convergence speed of the 
minimization. 

The Levenberg-Marquardt minimization method is often con- 
cluded to perform better than the Gauss-Newton and the steepest 
descent methods on neural network minimization problems. The 
reason for this is investigated and it is shown that the Levenberg- 
Marquardt method divides the parameters into two subsets. For 
one subset the convergence is almost quadratic like that of the 
Gauss-Newton method, and on the other subset the parameters do 
hardly converge at all. In this way a fast convergence among the 
important parameters is obtained. 

1.  INTRODUCTION 

This contribution addresses the criterion minimization to obtain the param- 
eter estimate in a model. Two slightly different topics are covered. 

It is shown that a better conditioned minimization problem can be ob- 
tained if the problem is separated with respect to the linear parameters. The 
parameters are divided into two sets depending on if the model is linear or 
nonlinear with respect to the parameter. The iterative minimization can then 
be done over the set of nonlinear parameters instead of over all parameters. 
The better conditioned problem is likely to converge faster than the original 
one. More aspects and an overview about separable minimization problems 
can be found in [5]. 

Many different studies have been done where different minimization al- 
gorithms are compared.   See, e.g., [8, 3] and further references there.   In 

0-7803-4256-9/97/$10.00 ©1997 IEEE 345 



this contribution it is pointed out why the Levenberg-Marquardt algorithm 
often is concluded to be the best one. The reason for this is connected to 
the ill-conditioning, which often occurs in neural net minimization problems, 
see [6]. 

In Section 2 a short background and problem formulation is given and in 
Section 3 the improved conditioning of separable minimization problems is 
shown. Section 4 concerns the Levenberg-Marquardt algorithm and Section 5 
concludes the paper. 

2. PROBLEM FORMULATION 

Considering the following fitting problem. Given N data {y (*), v(*)}£i whi& 
consist of an output y(t) and an input regressor <p(t). For simplicity it will 
be assumed that the output is one dimensional. All the results can easily be 
modified to cover the multi-output case. 

It is assumed that there exists a function /(•) so that the data can be 
described as 

y(t) = f{<p{t))+e(t) 

where e(t) can be described by a white noise sequence. The function /(•) is 
unknown and the goal is to use the data to obtain an estimate of it. This is 
done by proposing a model g with adjustable parameters 

n 

y(t) = gQM*)) = ^2ckgk{f{t),ak) (l) 
*=i 

where y(t) is the prediction of y{t) and n is the number of basis functions gk. 
The parameters ck, ak are put into a common parameter vector 0 = [c a } . 
Depending on the choice of the basis functions gk{;-), different well-known 
nonlinear model structures like radial basis functions and feed-forward neural 
nets are obtained. The dimensions of the parameter ak also depends on the 
particular choice of basis functions. For example, if all basis functions are 
chosen as identical sigmoids, i.e., gk((p(t),ak) - <r(a£<p(*) + ai0) then (1) 
becomes a feed-forward neural network and the number of neurons is given 
by n. The second index added to the parameters indicates the parameters 
connected to the regressor, on, and the parameter connected to the position 
of the sigmoid OJO- N 

Given a model structure g and an estimation data set {y(t), y(*)}t=i tne 

parameter estimate 6 is defined as the minimum of a criterion of fit, e.g., sum 
of squared errors 

Ö = argminViv(Ö) (2) 
9 

where 

vN{e) = ^jym (3) 
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and e(0,t) = y{t)-y{9,t). 
The paper concerns possible improvements how to compute the minimum 

of Vjv(0), i.e., to compute the parameter estimate (2). Before we come to 
the improvements, a more compact, vectorized, notation will be introduced 
which makes the calculations easier to follow. 

The following notation gives a compact way to handle the whole data set 
at the same time e = [e(0,1), e(9,2),..., e(6, N)]T. Define y, y, p,-, and cp in 
the analogous way. Introduce a matrix containing all the basis functions at 
all time instants g = [gi, ..., gn]- 

Note that the model structure (1) is linear in the parameters c but non- 
linear in the parameters o. This feature will be exploited in the^following 
section to derive an improved algorithm to compute the estimate ON. 

2.1.  Iterative Minimization Scheme 

Here follows a short background on minimization which forms the base for 
the discussions in the following two sections. For a thorough treatment of the 
topic see, e.g., [1]. 

To compute 9 (2) one typically uses an iterative gradient based algorithm 
of the following type 

&*+*■) =P> - Hb. (4) 

where Hi is a step length to guarantee a decrease of the criterion (3) in each 
iteration1. The step direction dj is given by 

di = RT1VVN(e<$) (5) 

where Ri is a matrix which modifies the search direction from the steepest 
descent 

W»ffl) = ±e'Te (6) 

to a more favorable direction. 
Starting from an initial parameter value 0Q the equation (4) is iterated 

until §W converges. Depending on the choice of Ri, different minimization 
schemes are obtained. If Ri is chosen to the Hessian of the criterion, 

VH(e$) = ±e'Te' + ±e"Te (7) 

then one has the Newton method. The second term in (7) will typically be 
small compared to the first term and since it is much more computationally 
expensive to compute, it is often canceled. Also, this gives a Ri that is positive 
semi-definite, which is necessary for the algorithm to converge. The following 
alternative search directions are more common in practice: 

1Typically one starts with /*,- = 1, and test if VN(e^i+^) < Vjv(^°)- If that is not 
the case m is decreased and a new 0^i+v> is computed. This process continues until a 
downward step is obtained. 
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- Gradient direction. Simply take Ri = I. 

- Gauss-Newton direction. Use Ri = ^e1 e1. 

- Levenberg-Marquardt direction. Use Ri = jr^e' + 8J- where St is used 
instead of the step size /ij. 

For the Gauss-Newton method the computation of the step direction d,- can 
be formulated as linear quadratic minimization problem, which has to be 
solved in each iteration of (4) 

di = arg min || e'di - e ||2= (e')+e = (e'Te')-VT£ (8) 

from which the definition of the pseudo-inverse (e')+ follows. Similar, in 
each iteration of the Levenberg-Marquardt method the following minimiza- 
tion problem has to be solved 

di = argmin || e'di - e ||2 +S{ || d{ ||a= ( [ |'j ] )    [*? 0 • • • 0]1 (9) 

Remark 1  The linear quadratic minimization problems (8) and (9) can be 
solved using QR-factorization, which is computationally much more efficient 
than computing the pseudo-inverses of e' and [e* & J]T, see [2]. 

The following definitions will be needed in the sequel. 

Definition 1 
The condition number of matrix A is defined as cond(A) = "iffiM) wnere 

o(A) are the singular values of A. If cond(A) is very large A {e.g. > 103), is 
said to be ill-conditioned. 

Definition 2 
An ill-conditioned minimization problem is a minimization problem where e' 
is ill-conditioned. 

Li-conditioned minimization problems are often troublesome to minimize, 
and the iterative search (4) usually converges much slower than for better 
conditioned minimization problems. Neural network minimization problems 
are often very ill-conditioned (see, e.g., [6]) and that motivates the research 
presented in the following two sections. 

3.  SEPARABLE MINIMIZATION PROBLEMS 

There are two kinds of parameters in (1). The model is separable with respect 
to the parameters {c*}, i.e., given the parameters {a*} then {c*} can be 
calculated exactly by the least squares method, without iterative search. The 
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idea to make use of the separabillity feature is not new, a good overview is 
[5] and further references can be found in there. 

However, it has, to the authors best knowledge, not been applied to neu- 
ral nets before. The derivation here deviates slightly from the one in [5], and 
especially it will be shown that the separated problem is better conditioned 
than the original minimization problem. This means that the separated algo- 
rithm can be expected to converge with less iterations, which motivates the 
method. In [5] it is shown that the computational burden per iteration is of 
the same order for the separated and the non-separated algorithm. Hence, 
the use of the algorithm can only be motivated because the iterations become 
more efficient in the meaning that a lower number of iterations will be needed 
to minimize the criterion (3). 

It is possible to combine the separation method with any of the mini- 
mization methods mentioned in previous section and this will be done on an 
example to vizualise the obtained improvement. 

The main idea is simple, the estimate of the separable parameters is de- 
scribed by 

<a) = (g)+y. (10) 

This expression can be substituted into the model (1). Since the parameters 
c have been eliminated this gives a new parameterization of the model with 
less parameters than the original problem. We will now look into the details. 

Divide the parameter update and the derivative with respect to the two 
subsets of parameters, d{ = [djTd°T]T and e' = [ec ea] where the derivative 
sign ' has been suppressed for the sake of clarity. 

Introduce the projection Pc onto the row space of ec 

Pc = £c(£c)+ = ec(e^ec)-1er 

and the complementary projection Qc = I — Pc onto the kernel of ej. Since 
Pc + Qc = I the norm in (8) can be re-written in the following way 

II e'di - e ||a=|| (Pc + Qc)[ec ea]ck - (Pc + Qc)e f= 
II (Qc£»d? - Qce) + (ecd? + Pcead? - Pce) \\2= 

\\Qc£ad^-Qceh + \\£cdi + Pc£adt-Pc£ h    (11) 

In the second step Qcec = 0 and Pcec = ec were used and the last equality 
follows from the fact that PCQC — 0. The first term of (11) can be minimized 
independently of the second term and instead of minimizing the second term 
one can use (10) to obtain c. Hence, if Gauss-Newton method is applied to 
the separated problem the parameter update direction becomes 

dt = argmin || Qcead? - Qce ||2= (Qcea)
+Qc£. (12) 

If the Levenberg-Marquardt algorithm is preferred one has to modify this 
expression in analogy with (8) and (9). 

Given an initial estimate of ay the following algorithm applies 
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Algorithm 1 Separable Gauss-Newton minimization algorithm 

1. Compute c(a) with (10). 

2. Compute ea andec and form Qc. 

3. Compute d? according to (12) and compute a candidate a& with a step 
length IM = 1- 

4. Compute c(oW) with (10) and check that Vjvffl***>) < VN0®). If not, 
repeat from 2 with a smaller pi. 

5. If <*W has not converged, repeat from 2. 

To obtain a separable Levenberg-Marquardt algorithm the steps 3 and 4 have 
to be modified in analogy with (8) and (9). 

The following theorem shows that the separated minimization problem 
becomes better conditioned than the original one. 
Theorem 1  The separated minimization problem is better, or at least as good 
conditioned as the non-separated minimization problem. 
Proof: It is to be shown that 

cond(Qc£0) < cond([ec ej). (13) 

To do that we will make use of the following easily shown facts. Let A be an 
nxn matrix. A reduced matrix Ä is obtained from A_ by deleting one row 
and one column from A. Then max(o-(A)) > max(or(Ä)) and min(<r(A)) < 
min(«r(Ä)) where cr(-) are the singular values of the matrix. 

1. From the definition (13) it then follows that cond(Ä) < cond(A). 

2. If A is invertible cond(A) = cond(A-1). 

3. If A is n x m and n>m then cond(ATA) = cond(A)2. 

Using these facts one has 

cond([£c£o])2 = cond([|££:   g° ]) = 

COQd ( [ C   tfe« - ^fe)-^^)-1 J ) " 
cond^a -eT

aec{e
T

cec)-
leT

cea = cond(elQcQcea) = cond(Qce0)
2.    (14) 

In the second step the matrix is inverted, A, B, and C are sub-matrices 
without interest in this context and they are removed in the third step giving 
the inequality. The claim (13) follows directly from (14). a 

As mentioned in the beginning of the section it is shown in [5] that the 
computational burden of a single iteration is not changed due to using the 
separated Algorithm 1. Instead, Theorem 1 gives the benefit of the separation 
method: a better conditioned minimization problem. 
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3.1. Example 

A data set of 300 samples is obtained in the following way. First 300 input 
data with dimv? = 5 are generated, {<£>(*)}?2:i» from a Gaussian distribution 
with unit variance. Then the output data, {lK<)}?£ü are obtained with a one 
hidden-layer feed-forward neural net with 5 inputs and 1 output. The param- 
eters Ofc are chosen randomly from a Gaussian distribution with variance 2 
and Cfc from a Gaussian distribution with variance 6. The data are then used 

Figure 1: Criterion (3) as a function of the number of iterations of a Gauss-Newton 
search. Solid line: Standard Gauss-Newton method. Dashed line: Gauss-Newton 
applied to the separated problem. 

to estimate a model of the same kind as the one which generated the data. 
The initial parameter values of the model are generated in the same way as 
described above. From the initial parameter values the criterion is iteratively 
minimized using the normal Gauss-Newton, and the separated Gauss-Newton 
method, Algorithm 1. The result is depicted in Figure 1. It is clear from the 
figure that the separated version succeeds much better. The standard Gauss- 
Newton terminates already after a few iterations. The reason for this is the 
ill-conditioning of the minimization problem and that will be explained in the 
following section. 

4. CONVERGENCE SPEED OF MINIMIZATION ALGORITHMS 

In this section an explanation will be given why the Levenberg-Marquardt 
algorithms often performs best on neural network minimization problems. 
Again it has to do with the ill-conditioning which has already been discussed. 

It is well known that steepest descent search for the minimum is inefficient, 
especially for ill-conditioned problems close to the minimum. In such cases it 
is usually expected that the Newton, or Gauss-Newton method will perform 
better. See, e.g., [1]. For these methods the matrix Rt in (5) transforms the 
search direction so that all parameters become equally important. This is 
illustrated in Figure 2, where the level curves of Vjv(ö) are shown. Figure 2 
a) corresponds to an ill-conditioned problem and the valley is a direction in 
the parameter space which has little influence on VN(0). The steepest descent 
method needs many iterations along the valley before the minimum is reached. 
The Gauss-Newton method on the other hand, transforms Viv(0) SO that all 
directions become equally important, depicted in Figure 2 b), and then the 
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convergence is typically much faster. Since the Gauss-Newton method rely on 

Figure 2: Level curves of the criterion VN(0), a) of an ill-conditioned problem, b) 
as seen by the Gauss-Newton method. 

a quadratic Taylor expansion of VN{6) at W>, the gain in convergence depends 
on how close VN{6®) is to be quadratic. It is clear that the quadratic Taylor 
expansion is good only in a neighborhood from the current estimate W>, and 
a too large parameter step brings the estimate outside this region. Let us 
now look how the parameter steps look like with the different methods. 

Since Ä, = j^e' e' is symmetric it can be written Ri = TjQ.lf, where 
the singular values, {qk}, of Ri are the trace of the diagonal matrix Qt and 
Ti consists of the eigenvectors. The parameter update direction (5) for the 
Levenberg-Marquardt method then becomes 

(U = (Ri + a/)"1 WjvCflW) = T.diag (-L-,..., -L-) T?VVN@*>) 
\9i+ö qd + oj 

(15) 

where d is the number of parameters. The corresponding update direction 
for the Gauss-Newton method is obtained by setting 5 = 0 in (15). 

Given a 8 > 0, for those directions corresponding to small eigenvalues 
S » qk Gauss-Newton gives a large step size l/qk. Levenberg-Marquardt 
on the other hand gives a small step of size l/(qk + 6) « 1/6. For those 
directions corresponding to large eigenvalues 5 < qk Levenberg-Marquardt 
gives a step size l/(qk + 6)& l/qk approximately equal to the Gauss-Newton 
step. In this way Levenberg-Marquardt divides the parameter directions into 
two sub-classes. Within the first class one has an efficient convergence of 
"Gauss-Newton type", and within the second class one has a slow converging 
steepest descent method with step length /ij = \/5. In this way one can 
consider the Levenberg-Marquardt method to be "in between" the Gauss- 
Newton method and the steepest descent method. What is the advantage of 
excluding some of the directions from the efficient fit? 

There are two reasons to exclude the directions corresponding to the small 
singular values of £?,- from the parameter update step, i.e., to exclude shallow 
valleys like in Figure 2 a) from the fit. First, in a direction with small qk 

Gauss-Newton takes a large step l/qk. This is likely to be a step outside the 
region where the second order Taylor expansion holds.  Hence, to obtain a 
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decrease in the criterion Vjv(ö) the step length m in (4) must be small. The 
important parameters, corresponding to large % will then also be changed 
with the same small value ßi instead with (for them) the optimal one (/Zj = 1). 
This means that a very small step is taken in the direction where the criterion 
decreases at most, and with a small step size one has to perform a lot of 
iterations before the minimum is reached. It is clear that in such situations it 
is advantageous to divide the parameters in the way the Levenberg-Marquardt 
method does it. 

The second reason to exclude those parameter directions which only influ- 
ence the criterion Vff(0) marginally has to do with the bias variance trade-off. 
Neural nets are often over-parameterized which means that they contain more 
parameters than necessary. The net does not benefit of the freedom which 
some of the parameters give it. Call these parameters spurious, in contrast 
to the useful parameters. It is the spurious parameters which give the shal- 
low valleys in the criterion function VN(9), and the spurious parameters will 
typically only fit the noise in the data. It is hence advantageous to exclude 
them from the fit. This can be done by using regularization or by stopping 
the minimization before the minimum is reached. See, e.g., [7, 4]. 

It remains to decide upon the factor 6 in (15). It is typically chosen by 
trail and error. Given an initial value of S, if that value does not give a 
decrease of the criterion then it has to be increased. On the other hand, if it 
decreases the criterion, then a smaller value is tried in the following iteration. 

Similar arguments can be used to explain why conjugate gradient min- 
imization method, and even steepest descent method, can be better than 
Gauss-Newton method on ill-conditioned minimization problems. 

4.1.  Example 

Let us continue with the example from the previous section. From the same 
initial parameter point the Levenberg-Marquardt and the steepest descent 
algorithms are applied - with the standard scheme and with the separated 
Algorithm 1. The results are depicted in Figure 3. Note that the y-axes 
are differently scaled. The results are strikingly in favor of the separated 
Levenberg-Marquardt algorithm. 

5.  CONCLUSIONS 

The following conclusions can be done upon ill-conditioned neural net mini- 
mization problems: 

• The conditioning of neural network minimization problems can be im- 
proved by separating the problem with respect to the linear parameters. 
This increases the convergence rate of the minimization. 

• The Levenberg-Marquardt algorithm typically converges faster than the 
Gauss-Newton method due to that an efficient convergence is obtained 
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Figure 3: Criterion (3) as a function of the number of iterations of a) a Levenberg- 
Marquardt search b) Steepest-descent search. Solid line: Standard method. Dashed 
line: respectively method applied to the separated problem. 

in the important parameter directions. At the same time the parameters 
which do not influence the criterion substantially are held almost fixed. 
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Abstract - Training recurrent networks is generally believed to be a 
difficult task. Excessive training times and lack of convergence to an 
acceptable solution are frequently reported. In this paper we seek to 
explain the reason for this from a numerical point of view and show 
how to avoid problems when training. In particular we investigate ill- 
conditioning, the need for and effect of regularization and illustrate the 
superiority of second-order methods for training. 

INTRODUCTION 

Recurrent neural networks are an interesting class of models for signal pro- 
cessing as they are able to build up internal memory suited for the task at 
hand and thus often lead to compact model representations. However, it is 
generally believed to be a difficult task to train this type of networks. Several 
authors have addressed the learning problem for recurrent networks, e.g., in 
the context of sequence classification when required to store information for 
an arbitrary period of time [1, 5] but to the best of the authors knowledge no 
one have treated the problem from a general numerical point of view. 

Feedforward networks were treated extensively from a numerical point 
of view in [7] where it was illustrated how training forms an extremely ill- 
conditioned optimization problem. In this contribution we extend this analy- 
sis to include recurrent networks. In particular we identify redundant connec- 
tions and illustrate how ill-conditioning may otherwise arise, which motivates 
the use of regularization. 

Having acknowledged the need for regularization makes way for the highly 
effective second-order methods for training. In this contribution we partic- 
ular focus on the damped Gauss-Newton method and illustrate how this 
method by far outperforms gradient descent on a time series prediction prob- 
lem, namely the Santa Fe laser data. The focus in this contribution is on 
time series prediction, but the results generalize to other applications as well. 

ARCHITECTURE 

The general architecture of the networks considered here are fully connected 
feedback networks with one hidden layer of nonlinear units and a single linear 
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output unit. The output y(t) of the network is linear in order to allow for 
arbitrary dynamical range, and is given by 

y(f) = ^2woiSi(t) + Wob (i) 

where Nh is the number of hidden units, w0i is the weight to the output unit 
from hidden unit j and w0b is a bias weight. The output Sj(i) from hidden 
unit i at time t is computed as 

(Nh Nj \ 

Y^WijSj{t - 1) + wioy(t - 1) + J2wikxk(t) + Wib (2) 
i=l *=1 / 

where iUy is the weight to hidden unit i from hidden unit j, wi0 is the weight 
to hidden unit i from the output unit and Wn is the bias weight for hidden 
unit i. Xk(t) is the fc'th element in the external input vector x(t) at time t 
and Ni is the total number of external inputs. /(■) is the nonlinear activation 
function, in this work we use f(x) = tanh(x). 

Note that the update of the recurrent network presented above is layered, 
as the outputs Si(t) from the hidden units are computed immediately before 
the computation of the output unit output. This is opposed to the update 
presented in e.g. [10] where all the units are updated simultaneously. In [6] it 
was shown that when using fully recurrent networks for forecasting, layered 
update is preferable since synchronous update of the units effectively results 
in a two-step ahead predictor. Note also that the linear output unit does not 
have feedback of its own previous value. This is in order to avoid stability 
problems that are otherwise likely to occur. 

Training 

In this work we focus on time series prediction in which case the input vector 
contains delayed elements of the time series, x(t) = [x(t),... ,x(t - Ni + 1)], 
and the network output is a prediction of the next value in the series, x{t+1) = 
y(t). Training the network means adjusting the weights so as to minimize a 
cost function. Most applications are based on the sum of squared errors, 

1   T 

£(w) = i Y\e{t)¥ ,  e(t) = x(t + 1) - y(t) (3) 
1 t=\ 

where T denotes the number of training examples and w is the concatenated 
set of parameters. The adjustment of the parameters is done off line by an 
iterative sheme, wk+i = wk - rjAwk, where Awfc indicates the direction of 
change and r] is the (adaptive) size of the step. When training recurrent 
neural networks the most commonly used scheme is gradient descent, where 
the direction Aw* is equal to the gradient g, g{ = dE(wk)/dwi. Unfortu- 
nately this method suffers from extremely slow convergence, and the quality 
of resulting solutions is often not satisfactory. 
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Experiments have shown that much more efficient training can be obtained 
by using second-order methods [6]. Here we focus on the damped Gauss- 
Newton method [3], in which the search direction Awfc is determined by 

Awfc = H_1g (4) 

where H is the positive semidefinite approximation to the Hessian, 

Hi--y dy{t) dy{t) ~ d2j?(w*) _ f- T   °--^Q--^^°,"/     '_   T   rdy{fydy{t)     ^d2y(t) 

t=i  ^Wi   ®wi  ~ dwidwj      ^ dwi   dwj dwidwj 
e(t)- (5) 

In each iteration k the step size r) is determined by line search which makes 
the method globally convergent [3]; here we recommend a simple approach 
where t] is halved until a decrease in the cost is obtained [3]. The iterations are 
continued until convergence, determined by a sufficiently small length of the 
gradient, ||g||2 < e. The Gauss-Newton method involves finding the solution 
to a linear system of equations HAwfc = g in each iteration, but the increased 
computational burden is justified by a dramatic increase in convergence and 
thus reduction of overall training time, even for large networks as we shall see. 
However, the success of the damped Gauss-Newton method relies heavily on 
the conditioning of the training problem, as is the case for gradient descent. 

ILL-CONDITIONING 

When training using either gradient descent or the Gauss-Newton method, 
a measure of great importance for the convergence is the condition number 
of the Hessian H. For a symmetric positive definite matrix H, the condition 
number is defined as K(H) = Xmax/Xmin, the ratio between the largest and 
smallest eigenvalue of H. If the condition number is large, the Hessian be- 
comes ill-conditioned. The convergence rate will suffer and the solution to the 
linear system of equations (4) in the Gauss-Newton method becomes unreli- 
able. As a rule of thumb the solution may not be trustworthy if K(H) > e'1/2, 
where e denotes the machine precision [3]. For the IEEE 64-bit floating point 
representation this is equivalent to K(H) > 6.7-107. This may seem as a large 
number, but this order of magnitude is not uncommon in the framework of 
either feedforward networks [7] or recurrent networks as we shall see. 

In [2] it was shown that an eigenvalue of the order of the number of 
input variables could be avoided if the mean was subtracted from each of the 
input variables xk(t) and if a symmetric activation function is used. However, 
these simple countermeasures are not adequate for avoiding ill-conditioning 
in recurrent networks, as the analysis in the following will show. 

The Hessian (5) can also be written as 

H = J*J,J„ = ^) (6) 

where J is the Jacobian matrix, whose columns are the partial derivatives 
of the network output at each timestep in the training series. If J is rank- 
deficient some of the columns are linearly dependent, which is indicated by 
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singular values with the value zero in an SVD analysis. This again leads to a 
singular Hessian and thus an infinite condition number. In practice it is rare to 
find columns in J that are exactly dependent and thus singular values that are 
exactly zero [7]. However, it is often the case that columns are nearly linearly 
dependent, which leads to very small singular values of J and thus large 
condition numbers for the Hessian H. In the following sections we describe 
situations leading to ill-conditioning of J for recurrent networks, arising from 
both exact and approximate linearly dependencies between columns in J. 

Exact dependency 

For the type of recurrent networks defined by (1) and (2) there is built-in rank 
deficiency in the Jacobian since it is easy to show that some of the columns 
in J will always be linear combinations of each other. This is illustrated by 
an example for a small network, but the result apply for networks with an 
arbitrary number of hidden units. The network considered here involves only 
one external input and one hidden unit, and the output is thus defined as 

y(t)    =   w0isi(i)+w0b (?) 
si(t)    ■=   f(wnsi(t-l) + wloy{t-l) + wlxx(t)+wib) (8) 

=    /(fan + WioW0i)si(t - 1) + wixx(t) + (wo, + wi0wob))    (9) 

where (9) is obtained by insertion of (7) in (8). We see that the network 
output will remain unchanged as long as the total weighting k\ of s\(t - 1), 
kt = wn + wioWoi, and the total bias k2 on the hidden unit, k2 = wu + 
wioWob, remains constant. wol and wob can not be changed without directly 
affecting the network output (7) and are therefore kept fixed which we denote 
by *. However, changes in wn, u>l0 and wn that satisfies both expressions 

0      +    w*b ■ wio    +   wn    =    k2 

will leave the network output unchanged. The expressions (10) form hyper- 
planes in parameter space spanned by «in, wi0 and wu and their line of 
intersection is computed as {wii,wi0,wib) = {h,0,k2) + t(-w*ol,l,-w*ob), 
parametrized by t. The line defines a direction in parameter space in which 
the network output is constant. The constant network output means that 
derivatives are zero in this direction. Thus, columns in the Jacobian corre- 
sponding to (tuii,wio,wi&) are linearly dependent. 

When investigating Jacobians for the dependency problem outlined above 
it is however uncommon to encounter singular values exactly equal to zero; 
but according to the derivations this clearly ought to be the case. The rea- 
son for this is the initialization of previous state values when starting up the 
network. If the recurrent network starts iteration at time t - 1 it is common 
practice [10] to set the previous states of the hidden units as well as their 
derivatives to zero, s4(0) = 0 , dsi(0)/dw = 0. This startup procedure 
clearly marks an initial discontinuity in the recursive equations (7) and (8) 
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governing the feedback network. Thus initially the partial derivatives wrt. 
the involved weights in the Jacobian will generally not be linearly dependent. 
But after a few iterations indicating a transient, the dependency arises with 
increasing accuracy. The linear dependency is eliminated if we omit the feed- 
back weights wi0 from the output to the hidden units i, as the degeneracy 
can then no longer occur. This elimination has no influence on the modeling 
capabilities of the network since the remaining weights can be adjusted so 
that the network output remains unaffected. 

Approximate dependency 

Even though removal of the feedback weights wio leading from the linear out- 
put to the hidden units removes the problem of almost exact rank-deficiency 
in the Jacobian for recurrent networks it does not eliminate ill-conditioning 
as experiments show. In [7] the problem of ill-conditioning was analyzed for 
feedforward networks by careful examination of the components entering the 
partial derivatives dy(t)/dwi of the network output and it was found that 
ill-conditioning in the Jacobian can arise from at least these three reasons 
(assuming that the external inputs are not proportional): 

1. The output from a hidden unit is saturated and constant (= ±1). 

2. The outputs from two hidden units are approximately proportional. 

3. The derivatives of two hidden unit outputs wrt. their activations are 
approximately proportional. 

Theoretical and empirical examinations of the components entering the par- 
tial derivatives for recurrent networks reveal that ill-conditioning may arise 
here from the same reasons; such analysis is however not included here. 

Situation 2 where the outputs of two hidden units are proportional and 
thus highly correlated often occurs in practice; e.g., in [9] high correlation 
between hidden unit outputs was found and studied for feedforward networks. 

The effects of situation 2 are similar to the effects of exact dependen- 
cies described above, as we can determine directions in parameter space in 
which the cost function is approximately constant. For recurrent networks 
this situation is much more severe than for feedforward networks since the 
degeneracy will not only affect weights leading to the output, but also many 
weights connecting the hidden units as the experiments will show. 

The scenarios listed above lead to nearly linearly dependencies between 
the columns of J and thus to small eigenvalues in H. However, the condition 
number of a matrix is determined by the ratio between the largest and smallest 
eigenvalues, thus problems do not only arise from small singular values but 
also from large values. As mentioned, the situations described above will lead 
to directions in parameter space where the cost is approximately constant, 
thus when training using the Gauss-Newton method the search direction will 
be dominated by these directions leading to an unrestrained growth in the 
magnitude of the affected weights. This again leads to a significant growth in 
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the magnitude of several of the columns in the Jacobian since many derivatives 
are dominated by terms of the form [10] 

dak(t)     Ä       dsAt-1) ,   , 
uwpq j=1 OWpg 

which becomes large if the weights Wkj become large. The large elements in 
the Jacobian lead to an overall upward scale of the elements in JT J and thus 
to an upward shift of the eigenvalues. 

REGULARIZATION 

A traditional method for handling ill-conditioning is by regularizing the cost 
function [3, 4]. A simple yet highly effective regularization can be obtained 
by augmenting the cost function by a simple quadratic weight decay [4], 

C(w) = £(w) + |wTw (12) 

Simple weight decay is often primarily considered as a means for avoiding 
overfitting as it puts constraints on the parameters and thus reduces the 
degrees of freedom. Weight decay should however also be considered from 
its regularizing effects. The immediate effect is that a gets added to the 
diagonal of the Hessian which puts a lower bound on the smallest eigenvalues, 
since it is easy to show that A(H + al) = A(H) + a. Another effect is the 
limit imposed on the growth of the weights which prevents near singular 
directions in parameter space from dominating the search directions obtained 
by the Gauss-Newton method, thus greatly improving the efficiency of the 
optimization. The constraints put on the weights by the regularization has 
a smoothing effect on the cost function which was clearly illustrated in [6]. 
Here it was also demonstrated that the significance of the second order term 
ignored in (5) diminishes when using simple weight decay as regularization. 

EXPERIMENTS 

In the first experiment we illustrate how ill-conditioning results from some of 
the situations described herein and how regularization improves training. For 
this experiment we used a simple recurrent network to predict the laser data 
from the Santa Fe time series prediction competition [8]. The data were scaled 
so that the first 1000 points used for training had zero mean and unit variance 
and the following 100 values were used as a test set. The network used had 
one external input and three hidden units; there were no feedback from the 
linear output unit to the hidden units as found appropriate above. Training 
was performed initially using five iterations of gradient descent followed by 
the damped Gauss-Newton method. In the left panel of Figure 1 is shown the 
evolution of the mean squared errors normalized by the variance of the sets 
(NMSE, [8]) when training without regularization. It seems that training is 
converging to a solution, but this is not the case as the evolution of the weights 

360 



rrERATION # 

Figure 1: Training without regulaxization. Left panel: Evolution of training and 
test errors. Right panel: Evolution of the weight values. 

in the right panel of Figure 1 shows. What happens is that the outputs of 
two hidden units become almost proportional; this is revealed by the cosine 
to the angle 6 between vectors containing their outputs on the training set 
which at iteration 100 is cos 6 = 0.9998. This corresponds to situation 2 listed 
above. The weights that grow in magnitude are the pairs of weights leading 
from these two units to every unit in the network including the output. Note 
that the error and thus the network output is unaffected since the effects of 
the changes in the growing weights cancel out due to the dependency between 
the hidden units. 

The condition number during training is shown in the left panel of Fig- 
ure 2 and is seen to grow enormously. The rapid increase occurs shortly after 
the initiation of the second-order method which quickly 'discovers' the depen- 
dency between the hidden unit outputs. The near singular Hessian H leads 
to very large weight changes in some directions when solving (4). The large 
steps are however handled by the line search which returns very small step 
sizes, indicated by the smooth increase in the weight magnitudes. In the right 
panel of Figure 2 is shown the eigenvalues of the Hessian after iterations 7, 20 
and 100. At each of the iterations it is seen that the condition number results 
from both very small as well as very large eigenvalues and we note that as 

,r--^^^^ 

,'/ 

 7 
-- 20 ' 
 100 

. 

Figure 2: Training without regulaxization.  Left panel: Evolution of the condition 
number for H. Right panel: Eigenvalues after iterations 7, 20 and 100. 
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Figure 3: Training with regularization, a = 10 3. Left panel: Evolution of training 
and test errors. Right panel: Evolution of the weight values. 

training progresses the eigenvalues extend both upward and downward. 
The training was then repeated using the exact same initial weights and 

the same training approach, but now with a regularization term added to the 
cost function, using a = 10-3. In the left panel of Figure 3 is shown the 
resulting evolution of the errors. The positive effect of the regularization is 
evident, -as the final errors are several orders of magnitude below the levels 
shown in Figure 1 obtained without regularization. Furthermore the stopping 
criterion ||g||2 < 10-4 was satisfied; in the previous experiment using no 
regularization the gradient norm grew proportional to the condition number. 

In the right panel of Figure 3 we see that the regularization term limits the 
growth of the weights compared to Figure 1. Some however still grow large as 
does the condition number shown in the left panel of Figure 4. Even though 
the condition number grows to 108 the damped Gauss-Newton method still 
manages to find a minimum. Experience shows that for this method successful 
training to a (local) minimum can be obtained for condition numbers up to 
about 108 in magnitude. This may depend on the decomposition algorithm 
used when solving (4), here we use the fast and stable Cholesky factorization 
[3]. From the right panel of Figure 4 we learn that the reduction in condition 
number is obtained only from an increase in the smallest eigenvalues resulting 

ITERATION I EIGENVALUE NUMBER 

Figure 4:  Training with regularization, a = 10  3.   Left panel:   Evolution of the 
condition number for H. Right panel: Eigenvalues after iterations 7, 20 and 100. 
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from the regularization. The largest eigenvalues are of the same order of 
magnitude as when training without weight decay, see Figure 2. This is due 
to the still fairly large weight magnitudes. If the regularization term a is 
further increased the larger eigenvalues will also be affected; but so will the 
modeling capabilities of the network, leading to increased errors. 

In the final experiment we compare the performance of damped Gauss- 
Newton with a gradient descent algorithm also using the step-size halving 
line search. The problem is still prediction of the laser series but using larger 
networks with a single input and nine hidden units, 109 weights in total (no 
feedback from the output to the hidden units). Thus, each iteration using 
damped Gauss-Newton involved solution of a 109 by 109 linear system of 
equations. Six initial networks were generated by initializing their weights 
with values drawn from a uniform distribution over the interval [-0.3; 0.3]. 
The training algorithms were then compared when starting from the same six 
initial networks, both using regularization a = 0.02. The resulting evolution 
of errors is shown in Figure 5; in the left panel we see the resulting errors 
using the damped Gauss-Newton method, in the right panel using gradient 
descent. Using both methods the stopping criteria was set to ||g||2 < 10-4 or 
maximum 10000 iterations. 

-TRAIN 
• TEST 

7000     WOO     9000    1«K» 

Figure 5:   Evolution of errors using different optimization methods.   Left panel: 
Damped Gauss-Newton method. Right panel: Gradient descent with line search. 

For the damped Gauss-Newton method the stopping criterion was met in 
all six runs. The average training error (Normalized Mean Squared Error) was 
7.7-10-4, the average test error was 4.9-10-3. The average time for a complete 
training run was 200 seconds. For gradient descent the stopping criterion was 
never met, the termination of the algorithm in each run was due to maximum 
number of iterations reached. The average training error obtained after the 
maximum allowed 10000 iterations was 4.0 • 10~3, the average test error was 
7.8 • 10-3. The average time used for obtaining these error levels was 8140 
seconds. Note that the levels of both training and test errors obtained using 
gradient descent are much higher than the levels obtained using the damped 
Gauss-Newton method even though gradient descent used a factor of 50 times 
more iterations and a factor of 40 times more computer time. Thus, even 
though an iteration of the damped Gauss-Newton method is computationally 
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more costly than an iteration of gradient descent, the additional cost is highly 
justified by the vastly increased convergence rate. Similar justification has 
been observed for networks with up to 300 parameters. 

CONCLUSION 

In this paper we have focused on sources of ill-conditioning and thus the need 
for regularization when training recurrent networks especially using second- 
order methods. Once this need is recognized dramatic improvement in con- 
vergence rate and quality of solution is obtained, even for large size problems. 
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Abstract. Focusing on classification problems, this paper presents a 
new method for linearly combining discriminant-based classifiers to 
the improve classification performance, in the sense of the minimum 
classification errors. In our approach, the problem of estimating lin- 
ear weights in combination is reformulated as the problem of design- 
ing a linear discriminant function using the minimum classification 
error discriminant. In this formulation, because the classification 
decision rule is incorporated into the cost function, better combina- 
tion weights suitable for the classification objective can be obtained. 
Experimental results using neural network classifiers support the ef- 
fectiveness of the proposed method. 

INTRODUCTION 

Compared with a single estimator, combining estimators has been shown to 
better improve generalization error [l]-[8]. Approaches to combine estimators 
have recently attracted major interest in the neural network community be- 
cause of thier simplicity and theoretical implications. The output of the com- 
bined estimator for some input is denned as a linear combination of outputs 
of multiple estimators, where it is assumed that each estimator is separately 
constructed by using the same training data. 

In these approaches, how to determine the linear weights is an important 
problem in practice. A naive way is to employ simple averaging (i.e., equal 
weights). Recently, a few methods have been presented [4][8] to combining 
regressors. However, as we will describe later, these methods are not suitable 
for our problem of combining classifiers. 

In this paper, we newly present a way of combining discriminant-based 
classifiers to improve the classification performance. In our approach, the 
problem of estimating linear weights in combination is reformulated as the 
problem of designing linear discriminant functions using the minimum classifi- 
cation error discriminant. Since the decision rule is directly incorporated into 
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the cost function in this formulation, we can obtain linear weights with which 
a better combined classifier can be constructed for achieving the minimum 
misclassification probability. 

This minimum classification error discriminant approach has successfully 
been utilized to train individual discriminant functions [9] [10]. We newly 
present how this criterion can be used to estimate the linear weights in com- 
bining discriminant-based classifiers. 

PROBLEM FORMULATION 

Let x be an observation vector, and let it be our purpose to assign x to one 
of K classes. A decision rule in terms of discriminant functions is written as 
follows: 

C(x) = k   if   /(fe)(x) = max/w(a;). (1) 
3 

Here C(-) denotes a classification operation and f(k\x) is the discriminant 
function for class k. Thus, a classifier consists of K discriminant functions. 
The simplest instance is the linear discriminant function specified by weight 
vector w as f(x) = wTx, where T denotes the transposition. Neural network 
classifiers might be the most complicated. In the case of a neural network 
classifier, the fcth output unit corresponds to the discriminant function for 
class k. 

Suppose we have M available classifiers, which were trained using the same 
training data V = {(a:*, C(xi)); i = 1,..., N}. Let fm (x; V) denote the out- 
put of the mth discriminant function for class k for some input x after it has 
been trained on V. Then, in an analogous manner to the original definition 
of the linear combination of multiple regressors [2], the combined discriminant 
function for each class can be defined as the linear combination of all KM 
discriminant functions: 

Ä(*)^ a <*>T/(*;!>),    k = l,...,K. (2) 

Here, 

f(x-,V)=(ri1\x-,V),...jtK\x;V),...JÜ\x;V),...J{K)(x-,'D))T  (3) 

and therefore a^ is a KM-dimensional column vector. Another definition 
such as f^om = Z)m=i <^m fm\x;T>), where k = 1,...,K is possible, but our 
definition is more flexible and general. 

Let y(x) = (fclm(x),..., fcomj    be a classifier vector. Then, (2) can be 

written as 
y(x) = WTf(x;V), (4) 

where W = (a^\..., a^). Therefore, one can see that (4) indicates a linear 
mapping from a / e TZKM-space to a y € 7lK-space. 
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Now our goal here is to estimate a(fc), where k = \,...,K to design a 
combined classifier achieving the minimum classification error probability. 

PREVIOUS WORK 

Variance-based Weighting 
Theoretically, if the prediction values of individual estimators are uncorrelated 
and unbiased, the combined prediction value becomes unbiased. Moreover, 
the smallest generalization error at x can be attained only if the weighting 
function is selected as the inverse of the variance of the prediction values at x 
[2] [4] [7]. Tresp et al. [4] proposed a non-constant weighting function defined 
as the inverse of the variance depending on x. This method is promising in 
problems involving the usual combining of regressors denoted as gCOm(x) = 
£M=i0m(a:;X>). In the case of our definiton for combination (2), however, for 
all k the same linear weights: 

a<*>(*) oc (l/var^^a;V)),...,l/var(/(f ^x;V)))* 

are assigned and as a result fgL(x) = f£l(x) = • • • = f^{x). This is clearly 
inappropriate. This might be modified by considering the bias of fm (as; V), 
but generally it is much more difficult to estimate the bias. Consequently, the 
variance-based weighting method is not directly applicable to our task. 

Stacked Regression (MSE-criterion) 
Let b(x) be a K dimensional column vector whose fcth component is one; and 
the others are zero if C{x) = k. Let X be a random variable having the 
distribution p(x). In a regression setting, the mean squared error (MSE) of 
combined classifier fcom is written as 

MSWcom) = Vxl\\b(X)-(aUTf(X-,V),  ..., aWT/(X;P))T|2|. 

1 (5) 
Therefore, one way for estimating the weights with V is just to take a(fe\ 
where k = 1,..., K to minimize 

if)  b(xi)-(a^Tf{xi;V),  ..,/»T/(«4 
i=l 

(6) 

However, as pointed out by Breiman [5], since V is utilized both in the training 
of each 0 and in the estimation of a, the obtained f£h will overfit the 
training data V. This will result in poor generalization. He also presents 
a method called stacked regression to fix this problem, based on the idea of 
stacked generalization by Wolpert [1]. 
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Let fm (xt; T>(-i)) denote the cross-validated output evaluated at the left- 
out a data x4 after ffi has been trained on P(_i} = V - {(xi,C(xi))}. The 
stacked regression estimates of the weights can be obtained by minimizing 

(7) i£  6(««)-(aWT/(xi;D(_0)1  ..., a^;PH))) 

The above MSE solution can be easily obtained as 

where 

fi = f(xi;V(.i))   =    (fl1)(xi;V{_i)),...,riK\xi;Vi_i)), 

•••./ll)(xi;P(-i)),...1/if)(xi;P(_i))r.     (9) 

Looking at (2) carefully, one can see that f^L is a linear discriminant func- 
tion in an /-space. According to the theory of statistical pattern recognition 
[11], i.e., canonical discriminant analysis, the MSE criterion producess the same 
solution as Fisher's linear discriminant criterion. In other words, a combined 
classifier based on the MSE approach is exactly equivalent to Fisher's linear 
discriminant function. It is known that Fisher's criterion works well as a class 
separability measure under the assumption that the distribution of each class 
is normal. In our problem, however, this assumption does not always hold and 
therefore it is clear that the MSE criterion does not always lead to the optimal 
solution in the Bayes sense. 

ESTIMATING WEIGHTS USING THE MINIMUM 
CLASSIFICATION ERROR DISCRIMINANT 

Formulation 

As mentioned in the previous section, since f^h can be seen as a linear dis- 
criminant function parameterized by a(fc) in an /-space, the problem of esti- 
mating the linear weights is exactly equivalent to the problem of designing a 
linear classifier in an /-space. Thus our problem is reduced to designing K 
linear discriminant functions a^> /, ..., oSK> / from cross-validated data 
D' = {(/(«»; Z>(-o). C{xi)); i = l,...,N}. Note that once D' is constructed, 
we do not need D any more to estimate W. To emphasize this, we write 
D' = {(/«, C(ft)) € nKM+1; i = l,...,N}by setting /4 = /(xi; 2>(_i}) and 
C(ft) = C(xi). 

According to a conventional pattern classifier's design, W is found as a 
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minimizer of the following expected loss: 

HW) = E fpkW^W Ic(f) = fc)d/' <10) 
k=lJ 

where Pk is the prior probability of class k and lk(f',W) denotes the loss 
caused by misclassification of observation / when C(f) = k. Note that loss Ik 
depends on a^\..., a^ because a classification with a combined classifier 
is done by a decision rule as: C(x) = k if fcom(x) = maxj fcomix)- 

Since we do not have any knowledge about the distribution of /, we cannot 
directly minimize L(W). In practice, we minimize the following empirical 
average loss using T?: 

L'(w) = jj E E Mt* w>> w«) = fc)> <n) 
i=l fc=l 

where 1(W) is 1 if U is true; 0 otherwise. 

Minimum Classification Error Discriminant 
The most popular loss function is the zero-one loss having 1 for misclassifica- 
tion and 0 for correct classification. This loss function is discontinuous at the 
decision boundary. To derive a gradient algorithm, a smoothed loss function 
[10] in the form 

W\W)   =   lk(dk(f;W)) 

=   l/(l + exp-^^w)+T)) (12) 

is suitable. Here, dk(f; W) is the misclassification measure which enumerates 
how likely / is misclassified as another class. The introduction of a misclassi- 
fication measure to the loss function originated with Amari [9] and Juang & 
Katagiri [10]. We employ Juang & Katagiri's definition: 

i/n 

dk(f; W) = -a«7/ + ( -^-r E («°')7>)" 1      • <13) 

Here r) is a positive constant. Note that when rj —> oo, (13) becomes 

dkifi W) = -a'"7'/ + maxa^7/. (14) 

Clearly, dk < 0 means correct classification and a\ > 0 indicates misclassifica- 
tion. The above lk{d) is a smoothed version of the conventional zero-one loss, 
indeed lk(d) monotonically approaches 0 (1) as d decreases (increases). 
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With these definitions, L'(W) is now well-defined. Consequently, for the 
initial estimate W(0), the weight matrix W can be iteratively estimated by 
using the following probabilistic descent algorithm. 

K dlk(f;W) 
w(t + i) = w(t) - e(*)[/£.i(C(/) = k)    m • (15) 

W=W(t) 

Here, 
dlk       ( dlk dlk   \     1yKMy.K (IQ\ 

SW~\daW'"',daW) ' 

U is a small positive definite matrix, W(t) is the estimate at the tth step. 
Prom the theory of stochastic approximation [12], it is guaranteed that W(t) 
will converge to at least a local optimum solution if e{t) satisfies the following 
conditions: 

oo oo 

lime(t) = 0,    Ve(*) = oo,    and    VVt)2 < oo. 

One can see that the decision rule is incorporated into the overall cost function 
L'(W). Therefore, we can obtain linear weights with which a better combined 
classifier can be constructed for achieving the minimum misclassification prob- 
ability. 

EXPERIMENTS 

Two Class Problem 
We empirically compared our approach with the stacked regression approach 
using two class problems for simplicity. The training data set V = {xi: C(xi), i = 
1,..., 100} was artificially generated from the following two-dimensional nor- 
mal distribution: 

Class l:Af ((-0.5 0.5)', ( ^   °[5 ))+* ((2-0 - 2.0)', ( Q\   <? )), 

Class 2: N ((0.7 - 0.7)T, (^   °'6 X\.. 

In the two class problems, one discriminant function for each class is suf- 
ficient, because by assuming 0 < fCOm(x) < 1, the decision rule can be writ- 
ten as C(x) = 1 if fcom(x) > 0.5; C(x) = 2 otherwise. Thus, (2) is 
reduced to fcom(x) = aTf(x;V). Therefore, the simple averaging method 
(a = (1/3.1/3,1/3)') was also compared. In this experiment, as individ- 
ual discriminant functions, we employed feedforward neural network classifiers 
consisting of two input units, H hidden units, and one output unit. We set 
H = 3,9,15 and therefore 

W = a = (ai,a2,a3)
T   and   f(x;V) = (/i(x;2>), f2(x;V), h(x\V))T. 
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Moreover, in this case, (13) was modified as 

d1(/;W) = 0.5-aT/   and   d2(f; W) = aTf -0.5. 

We set £ = 10 and r = 0. 
Figure 1 shows the classification results obtained by three individual neural 

network classifiers. As one can easily guess, the simplest and the most complex 
class boundaries were obtained when H = 3 and H = 15, respectively. The 
training and test errors obtained by each classifier are1 shown in Table 1. A 
test data set consisting of 3000 points per class was also artificially generated 
independently of V from the above distributions. 

Figure 2 shows classification results obtained by combined classifiers with 
different weighting methods, i.e., simple averaging (Method 1), stacked re- 
gression (Method 2), and the proposed method (Method 3). Table 2 com- 
pares the classification performance of the three methods. The estimated 
weights by Method 2 were aMethod2 = (0.18 0.49 0.33)T, while ocMethodz = 
(0.55 0.16 0.29)T by Method 3. For Method 1, aMethodi = (0.33 0.33 0.33)T. 
Since a classifier with if = 3 is thought to produce the best classification per- 
formace, intuitively aMethod3 (the first component value is much larger than 
the others) can be thought of as the best. 

Table 2 indicates that the stacked regression approach did not work well (it 
was worse than the simple averaging method) and that the proposed method 
produced the smallest classification error among the three methods. More- 
over, looking at Tables 1 and 2, one can see that Methods 1 and 2 certainly 
improved the classification performance, but the test errors obtained from the 
combined classifiers were larger than that of the best individual classifier (i.e., 
H = 3). On the other hand, in the case of the proposed method, the classifi- 
cation performance of the combined classifier was better improved than those 
of all individual classifiers, at least in this experiment. This can be seen in 
Figure 2 where the class boundaries obtained by the proposed method appear 
to be a smoothed collection of locally desired boundaries obtained by individ- 
ual classifiers. 

Real World Data 
We also applied our combination method to a handwritten digit recognition 
problem (10 class problem) as a real-world case. The training and test data 
consisted of 200 points/class. Each data point was a 16 dimensional real vector. 
In this experiment, we used three neural networks with different weight decay 
parameters (A = 0.6, 0.3, 0.15). The number of hidden units was H = 20. 

Table 3 shows the misclassification error obtained by each network. As 
well known, when A was too large (small), the obtained class bounundaries 
under- (over-) fitted to the trainig data. Performing an exhaustive line search, 
we found that A = 0.3 produced the smallest test error. 
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H = 3 

Figure 1: Classification results of neural network classifiers. H is the number 
of hidden units, o and + are class 1 and class 2 sample points, respectively. 
The solid lines denote class boundaries. 

Table 1: Classification performance of individual neural network classifiers. H 
is the number of hidden units. 

Training error (%) 
Test error (%) 

H = 3 
13.0 
17.0 

# = 9 
11.0 
23.0 

if = 15 
13.0 
22.9 

Method 1 

Figure 2: Results of combined classifiers by simple averaging (Method 1), the 
MSE criterion (Method 2), and the MCE criterion (Method 3). 

Table 2: Classification performance of three combining methods: simple aver- 
aging (Method 1), stacked regression (Method 2), and the proposed method 
(Method 3). 

Method 1 Method 2 Method 3 

Training error (%) 
Test error (%) 

12.0 
18.3 

12.0 
20.6 

12.0 
16.0 
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Table 3: Classification performance of individual neural network classifiers. A 
is the weight decay parameter. 

A = 0.6 A = 0.3 A = 0.15 
Training error (%) 
Test error (%) 

5.5 
8.8 

3.9 
8.1 

3.0 
8.6 

Table 4: Classification performance of combined classifiers. 

MSE MCE 
Training error (%) 
Test error (%) 

2.7 
8.9 

3.4 
7.6 

The results for combined classifiers are compared in Table 4. One can see 
that the test error obtained by the MCE criterion was less than that by the 
MSE criterion. Moreover, the combined classifier using the MCE criterion 
outperformed the best single classifier (A = 0.3). 

CONCLUSION 

We have presented a new way for linearly combining discriminant-based classi- 
fiers using the minimum classification error discriminant. One important point 
is to reformulate the weight estimation problem in combination as the design 
problem of a linear classifier in an /-space. This also made us understand 
why the stacked regression (MSE) approach is not suitable for the minimum 
classification error objective, and motivated us to invent our new approach 
suitable for the objective. In our approach, like in the stacked regression ap- 
proach, cross-validated stacked data is used to estimate the linear weights. In 
this sense, we may call our approach stacked classification. 

In our experiments using combined neural network classifiers, we confirmed 
the potential advantage of our method. Some of the future research issues 
involve the classifier selection. In neural network classifiers, it would be better 
to combine networks with different weight decay parameters than those with 
different number of hidden units. However, how to select the weight decay 
parameters in combination is unsettled in this paper. That is, we selected 
weight decay parameters in some ad hoc manner. This practically important 
problem remains as a future task. 
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The paper presents a pruning scheme for the hierarchical mixtures of experts 
(HME), which is a hierarchical and tree-like modular neural network 
trained using the EM-algorithm. The pruning scheme is in the style of 
CART's pruning scheme, and consists of using cross-entropy to select and 
cut out sub-trees of the HME to create a series of nested HMEs. The right 
sized HME can then be selected by using cross-validation. Experiments are 
carried out to demonstrate the successful operation of the scheme. 

1.  INTRODUCTION 

The class of modular networks called the hierarchical mixtures of experts (HME) 
was first introduced by [1]. The HME is divide-and-conquer method, that does not 
suffer from the slow learning problems of single neural networks, but neither does 
it suffer from the large bias of fast-learning tree methods like the Classification 
and Regression Tree (CART) [2]. This paper is concerned with determining the 
correct size of the HME, which is crucial as it is concerned with obtaining the 
optimal bias-variance dilemma [3]. Breiman et al, [2] uses a pruning scheme on 
the CART after it has grown to an excessively large size, and determines the 
structure of the tree. In this paper the same idea is applied to the HME to 
determine its structure, rather than using regularisation [4] or stopping training 
early to control the complexity [1]. Although [4] developed a pruning scheme for 
the HME, it uses a threshold to select the sub-tree, and data can be accumulated 
down the sub-tree at a later time step. The method presented here does not rely on 
a threshold and permanently prunes the sub-trees of the HME. 

The paper begins by introducing the HME and its training in section 2. In section 
3 the pruning and merging scheme is explained, and the results obtained 
presented in section 4. Finally conclusions and discussions are given in section 5. 
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Figure 1 The Hierarchical Mixtures of Experts 

2. HIERARCHICAL MIXTURES OF EXPERTS (HME) 

The HME is a modular neural network, which consists of several expert networks 
assigned to different parts of a task by a hierarchy of gating networks (Figure 1). 
The gating networks weight the outputs of the expert networks, yf, to produce a 
prediction of the output given by: 

/) = Xrf> X4W .(')„(') 

^P[mJ^^} l^Phl^W'I^Wrnjß] 

(1) 

where the sum is over each non-terminal node ntj, and mk, and 0, ,tji, ^are the 
parameters of the expert and gating networks. y,(t> and gf are the notational 
shorthands for^,[x^] and gt[x(t>] respectively, and are the individual samples of yt 

and gi. gf is the gating factor or output of the gating network after it has been 
passed through the binomial logistic function: 

exp 
$   = — 

HI (2) 

where s/t} is the ith output of the gating network. 

To train the HME, the EM-algorithm is used [5]; it is an iterative optimisation 
method that ideally suits the modular structure of the HME. The EM-algorithm 
for the HME works by iterating between estimating the posterior probabilities, 
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hi(t) of the gating factors, and training the expert and gating networks. The 
posterior probabilities for the lowest level gating networks just above the expert 
networks in a two-level HME are: 

„CM') 
"k/i - 

Z-lSkli Pk.! 
k 

and the posterior probabilities in the top-level gating network: 

(3) 

„(') 

A,W=- 
Z«K (4) 

Xsf Z$4 

Pk is the conditional likelihood for each expert network: 

(2nf\Rk 

(5) 

where y is the target output, Rk the covariance matrix for the kth expert, d its 
dimension, andjp^ is the estimation of the output by the kth expert. 

For training the linear expert networks within the iteration of the EM-algorithm, 
weighted-least-squares is used: 

wk
T = (XHXT)~'XHYT 

where X is the matrix of explanatory variables: 

(6) 

X = 

x(t-l)     x(t-2)     -   x(t-l-T) 
x{t-2)     x(t-3) x(t-T-2) 

x(t-n)   x(t-n-i)   ■■■   x(t-n-T) 

and Y is the matrix of regressands: 

Y = [y(t)   y(t-\)   -   y(t-T)] 

(7) 

(8) 

and H is the diagonal matrix of posterior probabilities across time, divided by the 
standard deviation: 
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H — diag "hi     "k.l "i (9) 

However, a non-linear optimisation method like Iterative Weighted-Least-Squares 
(IRLS) [1] is used for training the gating networks, even when the gating network 
itself is linear, because of the binomial logistic function. 

3.  PRUNING SCHEME 

The pruning scheme proposed consists of training a large HME until 
convergence, pruning out the worst sub-tree in the HME, and then reiterating the 
training-pruning cycle until there is only one expert left on the HME. The HME 
with the smallest validation error is then selected out of the series of HMEs 
created by the pruning. 

The criterion for selecting the worst sub-tree, is that the root gating network of 
the sub-tree has the largest cross-entropy: 

I -XtfVa^+M'W-«'0] (10) 

The reason for using cross-entropy is because it is a combination of entropy on the 
posterior, hP plus the Kullback-Leibler number [6]: 

-^Ogm+h-hfAlogh-hPy^log ^r   +[l-hP]l0g 
.(') s. (!) 

fc« 
(11) 

The Kullback-Leibler number is a measure of how close gP is to h/l) over all the 
samples, and is zero when they are identical. An alternative view, is that it 
represents the amount of information loss that has occurred by the gating 
network's attempt to learn the posterior. The entropy measures how sharply the 
posterior, hft} of the gating divides the input space. When the gating network is 
selected for pruning, it is chosen because it splits up the input space the 
smoothest, but has also captured the posterior information. 

Once the worst sub-tree has been selected, it can then be pruned out, and a new 
expert network added in its place. The simplest way to initialise the new expert is 
by randomly generating the weights, but it can cause instability in the training 
after the pruning. A better method is merging or the weighted average of the 
expert's weights in a sub-tree, found by feeding the weights of the experts into the 
sub-tree instead of inputs, and averaging over all samples: 
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(12) 

Initialisation of variance is also important in the merging scheme, and all experts' 
standard deviations should be reinitialised to a large value so that they can 
compete fairly after merging. 

The problem with the merging scheme is that it can not be performed if the 
experts are non-linear. It also does not produce an expert that is a mean-squares 
fit to the data in its local region, even when they are linear, and so further 
training of the whole HME will still have to be performed after the merging. 

The freezing method overcomes the problems of merging, by freezing all the 
weights and standard deviations in the HME, except for the new expert's weights 
and standard-deviation. The new expert's weights and standard deviation are then 
trained iteratively, between the expert's weights and its standard deviation as in 
weighted regression. If the experts are linear the weighted regression becomes an 
iterated weighted-least-squares, and the weights are obtained by: 

wt(nf =(XGXT)~' XGYT (13) 

where X and Y are defined as in (7) and (8) and G is the weighting matrix: 

G = diag Sk.i   Ski 

■V, 

(14) 

and gfr is the multiplication of all the conditional gating factors, g^'s down the 
path to the expert network: 

Ek...u~Si 8i/i---Sk/...u (15) 

The standard deviation, <Tk is: 

IA V-fP] 

1 
(16) 

XsS 

The gating factor, g, is used to weight the least-squares to make sure that the new 
expert is only fitted in the local region covered by the previous two experts that 
have been replaced. The standard deviation has to be estimated iteratively in the 
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weighted regression because it is unknown a priori, and is not necessarily the 
same as the previous two experts. 

After pruning, the optimal size of tree is then selected by validation. This 
validation can be on a single validation set using one series of pruned HMEs. 
Alternatively, it can be done by selecting the majority-optimal sized HME from n 
separate series of pruned HMEs trained on n separate cross-validation sets (n-fold 
cross-validation). The majority-optimal-sized HME is the HME that minimises its 
cross-validation error the most times. 

4.  EXPERIMENTAL RESULTS 

The experiments use the Sunspot time-series (a benchmark time-series), which is 
the yearly activity of the sun from 1700 to 1979, and tackled by [7], using neural 
networks. The actual result of 10-fold cross-validation for one trial is shown in 
each column of (Table 1) as one trial. Each trial shows that the two-expert HME 
predominates. Trials two and three use the same initial weights for the HMEs, so 
that the freezing and merging methods can be compared; the freezing method is 
more consistent. 10-fold cross-validation was used rather than 5-fold cross- 
validation which was found to be inconsistent. The gating and expert networks 
are all linear, with lag vectors of 12 steps as the input. A lag vector of 12 steps is 
suitable because the periodicity of the time-series is approximately 12 years, and 
for the comparison with other benchmark results. The HME was used to generate 
one-step ahead prediction and the normalised mean-squared error (NMSE). 
NMSE as defined by [7], is the mean-square error normalised by the variance 
from the whole of the sunspot data (1700-1979). 

TABLE 1 

1st trial 
merging 

2nd trial 
merging 

2nd trial 
freezing 

2 Expert Networks 4 3 4 

3 Expert Networks 3 3 1 

The number of times different sized networks are selected by the cross- 
validation and pruning in three separate cross-validation trials. Each 
trial represents 10 pruning-training cycles trained by 10-fold cross- 
validation. The figures quoted are the number of times that a particular 
size of HME minimises its cross-validation error in a trial. Results for 
any HME larger than 3 experts in size are not illustrated in the table, 
because the pruning and cross-validation never selects these sizes more 
than once in a given trial. 
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To compare the performance of the different HME structures, the HMEs produced 
by the pruning-scheme were then trained on the whole of the training data, and 
their error-rates compared on the training and two validation sets. In (Figure 2) 
both the average, minimum and maximum NMSE is worst for the 2-gate HME. 
However, the 2-gate NMSE performs the best on the two test sets (Figure 3), 
demonstrating that the pruning-scheme has selected the best size of HME. 
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Figure 2 The NMSE of the different sized HMEs on the 
training set (sunspot 1700-1920). '-' is the average 
NMSE, and '-.' is the maximum and minimum NMSE. 

Nurrber of Expert Networks Nurrtoer ot Expert Networks 

Figure 3 The NMSE of different sized HMEs on the test sets (a) 1921-1955 (b) 
1956-79. '-' is the average NMSE, and '-.' the minimum or maximum NMSE. 

The NMSE for our pruning scheme is lower on the (1956-79) test set than the 
other methods (MLP, TAR etc), and nearly equal with its own result on the 
(1921-1955) test set (Table 2). This is despite the NMSE being nearly twice as 
large as the NMSE on the training set and the first test set (1921-55) when 
compared with the other methods. The pruned HME developed here generalises 
better across both test sets. 
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TABLE 2 

Method of 
Training 

Training Set 
(1700-1920) 
NMSE 

Test Set 1 
(1921-1955) 
NMSE 

Test Set 2 
(1956-1979) 
NMSE 

MLP 0.0862 0.086 0.35 

TAR 0.097 0.097 0.28 

HME 0.061 0.089 0.27 

Linear 0.0984 0.184 0.366 

HME 
pruning 

0.117 0.190 0.208 

The results of the HME pruning, when compared with other results 
trained and tested on the same data: the MLP, TAR and Waterhouse's 
regularised HME (with error-bars). The results are given in the mean- 
square error normalised by the variance from the whole data (NMSE) 

5.  DISCUSSION AND CONCLUSION 

The pruning scheme results in providing the best generalising HME, with regard 
to NMSE on the whole Sunspot data. It saves on some of the computational 
burden that would be required if each size and structure of HME was selected and 
trained separately. The saving is despite the pruning-scheme using the cross- 
validation itself with its high computational burden, because the pruning process 
eliminates many of the possible HME structures that straight cross-validation 
without pruning uses. Of the two methods of initialising expert networks, the 
freezing method is superior to the merging method, as it provides consistent 
results. 

Pruning is also a compliment to the growing method. In the CART, the algorithm 
grows the tree, then prunes back, so that the input space is divided as far as 
possible, and then the weakest branches can be pruned off. In this paper the 
growing idea has been approximated by having a larger-than-necessary HME, but 
currently a growing method to compliment the pruning method is being 
investigated. 
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Blind source separation is the problem of recovering independent signals from their 
mixtures when only the mixtures are observed. In its simplest form, the data model 
is x=As where s is a vector of independent sources, matrix A is the unknown 'mix- 
ing matrix' and x is the vector of observations: the 'mixtures'. It is fair to say that 
this problem is now well understood. In this presentation we consider the problem 
of recovering the source signals from (noisy) observations. This is modeled as 
x=As+n where vector n represents an additive noise, independent from the signals. 
There are many issues related to the noisy problem, which make it significantly dif- 
ferent from the noise-free problem. This talk reviews what is known about the 
noisy case and presents new results. The following points are addressed: 

- What is the optimal filter to recover unknown sources from noisy observations? 
- How to use high order information to define contrast functions which remain 

consistent in the presence of noise. 
- What does the likelihood have to say in a noisy context? 
- Learning noisy mixtures with the EM (Expectation-Maximization) algorithm 

and its stochastic variants 
- The tricky continuity between noisy and noise-free optimal algorithms. 
- Achievable performance in the presence of noise. 
- When is a noise-free algorithm appropriate to deal with noisy observations? 
- Is it really worth to care about observation noise? 
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ABSTRACT 

The author introduced previously a large family of one-unit contrast functions 
to be used in independent component analysis (ICA). In this paper, the family 
is analyzed mathematically in the case of a finite sample. Two aspects of the 
estimators obtained using such contrast functions are considered: asymptotic 
variance, and robustness against outliers. An expression for the contrast 
function that minimizes the asymptotic variance is obtained as a function 
of the probability densities of the independent components. Combined with 
robustness considerations, these results provide strong arguments in favor of 
the use of contrast functions based on slowly growing functions, and against 
the use of kurtosis, which is the classical contrast function. 

1.  INTRODUCTION 

Independent Component Analysis (ICA) [1] is a statistical signal processing 
technique whose main applications are blind source separation, blind de- 
convolution, and feature extraction. In the simplest form of ICA [2], one 
observes m scalar random variables xi,X2,—,xm which are assumed to be 
linear combinations of n unknown independent components, or ICs, denoted 
by si,S2, ...,s„. These ICs s, are assumed to be mutually statistically inde- 
pendent, and zero-mean. Arranging the observed variables Xj into a vector 
x = (xi,X2,---,xm)T and the IC variables Sj into a vector s, the linear rela- 
tionship can be expressed as 

x = As (1) 

Here, A is an unknown m x n matrix of full column rank, called the mixing 
matrix. The basic problem of ICA is then to estimate both the mixing matrix 
A and the realizations of the ICs s; using only observations of the mixtures 
Xj. 
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Estimation of ICA requires the use of higher-order information, i.e., other 
information than that contained in the covariance matrix of x. This higher- 
order information is usually incorporated in the estimation procedures by 
means of 'contrast' functions based on higher-order cumulants [2, 3]. How- 
ever, little justification has been provided in the literature for the choice of 
using higher-order cumulants for the construction of the contrast functions. 
The main reason for their popularity seems to be that they are easy to analyze 
mathematically. No statistical or practical arguments in favor of cumulants 
have been put forth, except for the fact that they may be more resistant to 
Gaussian noise, because the higher-order cumulants of Gaussian noise vanish. 

In this paper, we analyze mathematically a large family of one-unit con- 
trast functions introduced in [4]. The asymptotic variance of the obtained es- 
timators is evaluated, and it is shown that for super-Gaussian ICs, the asymp- 
totic variance is minimized for contrast functions that grow much slower than 
the 4-th power inherent in the fourth-order cumulant or kurtosis. Further- 
more, robustness against outliers also requires slowly growing contrast func- 
tions. As most ICs encountered in practice seem to be super-Gaussian, this 
means that kurtosis may be a rather inadequate contrast function in most 
cases. For neural learning rules, the results imply that better estimates are 
usually obtained using (anti-)Hebbian learning functions that are sigmoidal, 
or even go to zero at infinity. Simulations back up our theoretical arguments. 

2.  GENERAL ONE-UNIT CONTRAST FUNCTIONS 

Consider a linear combination of the observed mixtures Xj, say wTx, where 
the (weight) vector w is constrained so that £{(wTx)2} = 1. Many ICA 
algorithms are based on finding the extrema of the square of the kurtosis 
kurt2(wTx) = (E{(wTx)4}-3)2 of such a linear combination [2, 3]. This can 
be motivated by information-theoretic arguments: the square of the kurtosis 
can be shown to approximate the negentropy of wTx [2]. Moreover, it can 
be proven that the square of the kurtosis of wTx is maximized exactly in the 
points where the linear combination equals, up to the sign, one of the ICs, 
i.e., wTx = ±Si for some i [3, 5]. 

This approach was generalized in [4, 6, 7], where it was shown that instead 
of kurtosis, practically any non-quadratic, well-behaving even function, say 
G, can be used to construct a contrast function for ICA. Such a general 
contrast function can be defined as 

JG(w) = [£x{C?(wTx)} - Ev{G{v)}f (2) 

where v is a standardized Gaussian variable. The second term in brackets is 
a normalization constant that makes JG equal to zero if wTx has a Gaussian 
distribution. Clearly, JQ can be considered a generalization of the square of 
kurtosis, as for G(u) = u4, Jo becomes simply the square of kurtosis of wTx. 
It was shown in [6], using a generalization of the Gram-Charlier expansion, 
how JG approximates the negentropy of wTx in the same way as the square of 
the kurtosis. Furthermore, it was shown in [7] that under weak assumptions, 
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Jo is locally maximized when wTx = ±s;, i.e. when the linear combination 
equals one of the ICs. Therefore, JQ can be used as a contrast function for 
ICA in the same way as the square of the kurtosis. Note that for simplicity, 
we shall also refer to G as a contrast function. 

Thus, we estimate one IC by'solving the following optimization problem: 

w = arg       max       JG(w) (3) 
ß{(wTx)2}=l 

where in practice the expectations are replaced by sample averages. Note that 
this boils down to maximizing or minimizing E{G(wTx)}, where the type 
of extrema searched for depends on the sign of Ux{G(wTx)} — Ev{G{v)}. 
To estimate all the ICs, one needs only to find all the local solutions of this 
optimization problem. We shall not consider here in detail how to solve this 
optimization. Two simple methods are possible. First, one can use a simple 
gradient descent/ascent with a decreasing learning rate, as is considered in 
more detail in [7]. In that case it may be useful to first whiten (or sphere) 
the data, which simplifies the constraint to ||w|| = 1. A second possibility 
is the fixed-point algorithm introduced for kurtosis in [8] and generalized for 
any G in [4]. However, the statistical properties of the estimator defined in 
(3) do not depend on the method of optimization. 

In the following, we shall analyze two fundamental statistical properties of 
w, which are asymptotic variance and robustness. Though in principle almost 
any non-quadratic even function G can be used, in practice the performance 
of different contrast functions may be very different due to limited sample 
sizes and deviations from the model (1). Therefore, some analysis is needed 
to provide guidelines on how to choose the function G to obtain a statistically 
adequate estimator. 

3.   ASYMPTOTIC VARIANCE 

In practice, one usually has only a finite sample of N observations of the 
vector x. Therefore, the expectations in the definition of JQ are in fact 
replaced by sample averages. This results in certain errors in the estimator 
w, and it is desired to make these errors as small as possible. A classical 
measure of this error is asymptotic (co)variance, which means the limit of 
the covariance matrix of w\/N as ./V -> OO. This gives an approximation of 
the mean-square error of w. Comparison of, say, the traces of the asymptotic 
variances of two estimators enables direct comparison of the accuracy of two 
estimators. One can solve analytically for the asymptotic variance of w, 
obtaining the following theorem: 

Theorem 1 The trace of the asymptotic variance of w as defined in (3) for 
the estimation of the independent component s», equals 

_ E{g*(Si)}-(E{si9(si)})2 ,,, 
VG

~
C{A)

   (EisaM-rtstW   ' (4) 
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where g is the derivative of G, and C(A) is a constant that depends only on 
A. 
Proof: Making the change of variable z = ATw, the equation defining the optimal 
solutions z becomes 

Y] stg(zTst) = A ]P Si8?2 (5) 
t t 

where t = 1,.., T is the sample index, T is the sample size, and A is a Lagrangian 
multiplier.. Without loss of generality, let us assume that z is near the ideal solution 
z = (1,0,0,...). Note that due to the constraint £{(wTx)2} = ||z||2 = 1, the 
variance of the first component of z, denoted by zi, is of a smaller order than 
the variance of the vector of other components, denoted by z_i. Excluding the 
first component in (5), and making the first-order approximation g(zTs) = g(si) + 
g'(si)zT-iS-i, where also s_i denotes s without its first component, one obtains 
after some simple manipulations 

J= 5>_x[9(Sl) - Xai] = |; 5>_,[-sV(3i) + \sT-i}Z-iVT (6) 

where the sample index t has been dropped for simplicity. Making the first-order 
approximation A = E{sig(si)}, one can write (6) in the form u = vi-w/T where 
n converges to the identity matrix multiplied by E{sig(si)} - E{g'(si)}, and u 
converges to a variable that has a normal distribution of zero mean whose covariance 
matrix equals the identity matrix multiplied by E{g2{si)} - (E{sig(si)})2. This 
implies the theorem, since z_i = Bw, where B is the inverse of AT without its 
first row. 

Thus the comparison of the asymptotic variances of two estimators of 
the form in (3), but for two different contrast functions G, boils down to a 
comparison of the VQ'S. In particular, one can use variational calculus to find 
a G that minimises VQ- Thus one obtains the following theorem: 

Theorem 2 The trace of the asymptotic variance of w is minimized when 
G is of the form 

G0pt (w) = ci log f(u) + c2u
2 + c3 (7) 

where f is the density function of s,, and C\,C2,c% are arbitrary constants. 

For simplicity, one can choose Gopt{u) = log f(u). Thus one sees that the 
optimal contrast function is the same as the one obtained for several units by 
the maximum likelihood approach [9], or the infomax approach [10]. Almost 
identical results have also been obtained in [11] for another multi-unit algo- 
rithm. Our results treat, however, the one-unit case instead of the multi-unit 
case, and are thus applicable to estimation of a subset of the ICs, and to 
blind deconvolution [7]. 

4.  ROBUSTNESS 

Another very desirable property of an estimator is robustness against outliers 
[12]. This means that single, highly erroneous observations do not have much 
influence on the estimator. 
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In this paper, we shall treat the question: How does the robustness of the 
estimator w depend on the choice of the function G? Note that the robustness 
of w depends also on the method of estimation used in constraining the 
variance of wTx to equal unity in (3). This is a problem independent of the 
choice of G. In the following, we assume that this constraint is implemented 
in a robust way. In particular, we assume that the data is sphered (whitened) 
in a robust manner, in which case the constraint reduces to ||w|| = 1. Several 
robust estimators of the variance of wTx or of the covariance matrix of x are 
presented in the literature; see [12]. 

The robustness of the estimator w in (3) can be analyzed using the theory 
of M-estimators [12]. Without going into technical details, the definition of 
an M-estimator can be formulated as follows: an estimator is called an M- 
estimator if it is defined as the solution 6 for 0 of 

E{iP(x,6)} = 0 (8) 

where x is a random vector and rf> is some function defining the estimator. 
The estimator w in (3) is an M-estimator. To see this, define 6 = (w,A), 
where A is the Lagrangian multiplier associated with the constraint. Using 
the Kuhn-Tucker conditions, the estimator w can then be formulated as the 
solution of equation (8) where if) = ipj is defined as follows (for sphered data): 

*>™={Mtft?W) (9) 

where c = (£x{G(wTx)} - Ev{G{v)})~1 is an irrelevant constant. 
The analysis of robustness of an M-estimator is based on the concept of 

an infuence function, IF(x,0). Intuitively speaking, the influence function 
measures the influence of single observations on the estimator. It would be 
desirable to have an influence function that is bounded as a function of x, as 
this implies that even the influence of a far-away outlier is 'bounded', and can- 
not change the estimate too much. This requirement leads to one definition 
of robustness, which is called B-robustness. An estimator is called B-robust, 
if its influence function is bounded as a function of x, i.e., supx ||IF(x,0)|| is 
finite for every 6. Even if the influence function is not bounded, it should 
grow as slowly as possible when ||x|| grows, to reduce the distorting effect of 
outliers. 

It can be shown [12] that the influence function of an M-estimator equals 

IF(x,0) = BVM) (10) 

where B is an irrelevant invertible matrix that does not depend on x. On 
the other hand, using our definition of ipj, and denoting by 7 = wTx/||x|| 
the cosine of the angle between x and w , one obtains easily 

||V(x,(w,A))||2 =C1±h2(wTx)+C2h(wTx) + C3 (11) 

392 



where Ci,C2,C3 are constants that do not depend on x, and h(u) = ug{u). 
Thus on sees that the robustness of w essentially depends on the behavior 
of the function h(u). The slower h(u) grows, the more robust the estimator. 
However, the estimator cannot be really B-robust, because the 7 in the de- 
nominator prevents the influence function from being bounded for all x. In 
particular, outliers that are almost orthogonal to w, and have large norms, 
may still have a large influence on the estimator. These results are stated in 
the following theorem: 

Theorem 3 Assume that the data x is whitened (sphered) in a robust man- 
ner. Then the influence function of the estimator w is never bounded for all 
x. However, if h(u) = ug(u) is bounded, the influence function is bounded in 
sets of the form {x | wTx/||x|| > e} for every e > 0, where g is the derivative 

ofG. 

In particular, if one chooses a contrast function G(u) that is bounded, h is 
also bounded, and w is quite robust against outliers. If this is not possible, 
one should at least choose a contrast function G(u) that does not grow very 
fast when \u\ grows. If, in contrast, G(u) grows very fast when |u| grows, 
the estimates depend mostly on a few observations far from the origin. This 
leads to highly non-robust estimators, which can be completely ruined by 
just a couple of bad outliers. This is the case, for example, when kurtosis js 
used as a contrast function, which is equivalent to using w with G(u) = u .4 

5.   CHOOSING THE CONTRAST FUNCTION IN PRACTICE 

It is useful to analyze the implications of the theoretical results of the pre- 
ceding sections by considering the following family of density functions: 

/«(*) = Ciexp(C2M
a) (12) 

where a is a positive constant, and Ci,C2 are normalization constants that 
ensure that fa is a probability density of unit variance. For different values of 
alpha, the densities in this family exhibit different shapes. For .5 < a < 2, one 
obtains a sparse, super-Gaussian density (i.e. a density of positive kurtosis). 
For a = 2, one obtains the Gaussian distribution, and for a > 2, a sub- 
Gaussian density (i.e. a density of negative kurtosis). Thus the densities in 
this family can be used as examples of different non-Gaussian densities. 

Using Theorem 2, one sees that in terms of asymptotic variance, an opti- 
mal contrast function for estimating an IC whose density function equals fa, 
is of the form: 

G0Pt(u) = i«r (13) 
where the arbitrary constants have been dropped for simplicity. This im- 
plies roughly that for super-Gaussian (resp. sub-Gaussian) densities, the 
optimal contrast function is a function that grows slower than quadratically 
(resp.  faster than quadratically).   Next, recall from Section 4 that if G(u) 
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grows fast with |u|, the estimator becomes highly non-robust against out- 
liers. Taking also into account the fact that most ICs encountered in practice 
are super-Gaussian, one reaches the conclusion that as a general-purpose 
contrast function, one should choose a function G that resembles rather 

Gopt(u) — |u|a, where a < 2. (14) 

The problem with such contrast functions is, however, that they are not 
differentiable at 0 for a < 1. Thus it is better to use approximating differen- 
tiable functions that have the same kind of qualitative behavior. Considering 
a — 1, in which case one has a double exponential density, one could use 
instead the function G\{u) = log cosh a\u where a\ > 1 is a moderately large 
constant. Note that the derivative of G\ is then the familiar tanh function 
(for a,\ = 1). In the case of a < 1, i.e. highly super-Gaussian ICs, one could 
approximate the behavior of Gopt for large u using a Gaussian function (with 
a minus sign): (?2(M) = — exp(—a^u2 /2) where 02 is a constant. The deriva- 
tive of this function is like a sigmoid for small values, but goes to 0 for larger 
values. Note that this function also fulfills the condition in Theorem 3, thus 
providing an estimator that is as robust as possible in this framework. We 
have found ai = 2 and «2 = 1 to provide 'good' approximations of G\ and 
G2 • Note that there is a trade-off between the precision of the approximation 
and the smoothness of the resulting objective function. 

Thus, we reach the following general conclusion: 

• a good general-purpose contrast function is G(u) = log cosh a\u, where 
ai > 1 is a constant. 

• when the ICs are highly super-Gaussian, or when robustness is very 
important, G(u) = — exp(—a^u2/2) with 02 ft* 1 may be better. 

• using kurtosis is justified only if the ICs are sub-Gaussian and there are 
no outliers. 

In this paper, we have used purely statistical criteria for choosing the 
contrast function. One important criterion that is completely independent of 
statistical considerations is computational simplicity. For example, the calcu- 
lation of the tanh function is rather slow in many environments. The conver- 
gence may be speeded up if one uses instead piecewise linear approximations 
of the derivatives of the contrast functions. In the case of g(u) = tanh(a2it), 
one may define g so that g{u) = azu for |u| < 1/03 and g(u) = sign(u) other- 
wise, where 03 > 1 is a constant. This amounts to using the so-called Huber 
function [12] as G. 

6.   SIMULATIONS 

We performed simulations in which 3 different contrast functions were used 
to estimate one IC from a mixture of 4 i.i.d. ICs. The contrast functions 
used were kurtosis, and the two functions proposed in the preceding section: 
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log cosh (or G\) and the Gaussian function (or G2). The constants were set as 
suggested in the preceding section. We also used three different distributions 
of the ICs: uniform, double exponential (or Laplace), and the distribution of 
the third power of a Gaussian variable. The sample size was fixed at 1000 and 
the fixed-point algorithm in [4] was used to maximize the contrast function. 
The asymptotic mean absolute deviations (MAD) between the components of 
the obtained vectors and the correct solutions were estimated and averaged 
over 1000 runs for each combination of non-linearity and distribution of IC. 
MAD was used instead af variance because it is a more robust measure of 
deviation. 

The results in the basic, noiseless case are depicted in Fig. 1. As one can 
see, the estimates using kurtosis were essentially worse for super-Gaussian 
ICs. Especially the strongly super-Gaussian IC (cube of Gaussian) was es- 
timated considerably worse using kurtosis. Only for the sub-Gaussian IC, 
kurtosis was better than the other contrast functions. There was no clear 
difference between the performances of the contrast functions G\ and G2 ■ 

Next, the experiments were repeated with added Gaussian noise whose 
energy was 10% of the energy of the ICs. The results are shown in Fig. 2. This 
time, kurtosis did not perform better even in the case of the sub-Gaussian 
density. This result goes against the view that kurtosis would tolerate Gaus- 
sian noise well. Indeed, the theoretical arguments supporting that view ne- 
glect any finite-sample effects, and may thus have rather limited validity. 

No outliers were added in these experiments. Experiments confirming the 
robustness of the non-linearities proposed in section 5 can be found in [4]. 

7. CONCLUSION 

The problem of choosing the contrast function for ICA was treated. The 
behavior of a large family of contrast functions, which includes kurtosis as 
a special case, was analyzed. Combining the results on asymptotic variance 
and robustness against outliers, it was shown that the use of kurtosis is not 
justified on statistical grounds, except perhaps for sub-Gaussian independent 
components. Instead, contrast functions that grow slower than quadratically 
were found to be better approximations of the optimal ones in most cases. 
In neural learning rules, this leads, e.g., to the use of tanh-like sigmoids, or 
functions resembling the derivative of a Gaussian function. 
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Figure 1: Estimation errors plotted for different contrast functions and dis- 
tributions of the ICs, in the noiseless case. Asterisk: uniform distribution. 
Plus sign: Double exponential. Circle: cube of Gaussian. 
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Figure 2: The noisy case. Estimation errors plotted for different contrast 
functions and distributions of the ICs. Asterisk: uniform distribution. Plus 
sign: Double exponential. Circle: cube of Gaussian. 
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Abstract 

Local independent component analysis is formulated as a 
task involving the extraction of local geometric structure in 
the joint distribution. Because the geometrical structure of 
statistical independence is not well captured by statistical 
descriptions such as moments and cumulants, we use feature 
detection tools from image analysis to locate the local in- 
dependent component coordinate system. The resulting ap- 
proach to source separation can be implemented in real time 
using conventional image analysis hardware. The generality 
of this approach is demonstrated by blind source separation 
of multi-modal sources, and the pseudo-separation of three 
sources from two mixtures. 

1    INTRODUCTION 

The blind source separation or independent component analysis (ICA) algo- 
rithms of Bell and Sejnowski [2], Pearlmutter and Parra [8], Amari, Cichocki, 
Yang [1] and Cardoso and Laheld [5] all attempt to find a global coordinate 
system where the joint distribution takes on a product form. These linear ICA 
algorithms are all non-local and linear in the sense that non-local informa- 
tion is used and hence only linear mixtures can be separated. They involve 
stochastic gradient descent of the density estimation parameters on a cost 
function such as the Kullback-Leibler divergence, and only work when given 
adequate priors on the joint distribution's parametric form. Recently, the 
authors directed attention to the intrinsic local structure of source mixtures, 
and introduced a local aligned equipartition approach [6, 7]. The resulting 
algorithm performs non-parametric density estimation and blind source sep- 
aration of non-linear mixtures.  In this contribution, we further pursue the 
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local geometric feature approach, but instead use well studied tools from the 
field of image analysis for local feature extraction. In contrast to density es- 
timation source separation algorithms, we use "edge features" in the density 
distribution to locate the independent component coordinate system. We 
demonstrate two dimensional source separation for visual and computation 
reasons, though the approach is clearly not limited in dimensionality. 

2    LOCAL GEOMETRICAL STRUCTURE 

In the blind separation problem, we are given input consisting of a non- 
singular mixture of statistically independent sources, {x} = {As} where the 
joint distribution in the source frame factorizes: Ps(s) = Y[pk{sk)- First we 
rewrite the mixing equation in a more suggestive form with the jth column 
of A denoted by the vector \a,j) 

= ( K)   |G2>   ...  M )   S2   • (^ 

The column vectors of A define an independent component coordinate sys- 
tem. The independent component basis vectors are in general not normalized 
and orthogonal. Prom the mixing equation, it can be seen that the compo- 
nents of the input in the independent component coordinate system are the 
independent source amplitudes. As an example, for sharply peaked sources, 
when only one source s* deviates significantly from its mean, the mixed sig- 
nal will fall predominantly along a line parallel to ai. More generally, high 
density regions or directions are mapped to other high density regions or di- 
rections. In the source frame, the high/low density regions are determined by 
the location of the extrema of the individual source distributions: p'k(sk) = 0. 
Consequently the extremal density directions are parallel to the source di- 
rections. Locating the extremal density directions in the mixture frame thus 
allows for source extraction from the mixture. 

3    SOURCE SEPARATION ALGORITHM 

The local feature detection source separation algorithm operates in batch 
mode, and consists of the following steps: 

a. Obtain histogram of the joint distribution 
The input vector space is partitioned into bins. A straightforward counting 
of the input data points in each bin gives us the histogram of the distribution. 

b. Determine the gradient of the distribution 
We convolve the binned data set with a discrete derivative operator of sup- 
port L to approximate the local gradients of the joint probability distribution. 
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In practice, we have found that L = 7 for our numerics is a good compro- 
mise between accuracy of the gradient estimate and appropriate sensitivity 
to curvature in the data set. 

c. Threshold the gradient 
We first normalize to the maximum amplitude of the gradient. Then we 
consider only the regions where the magnitude of the normalized gradient is 
larger than a certain threshold. These regions are what we term "edges" of 
the distribution. An extrema density region in the joint distribution will be 
surrounded by two regions of high gradient with roughly opposite orienta- 
tions. Thus there are two parallel lines surrounding each extremal direction. 
Numerically, we found that the directions of these lines could be determined 
more accurately by considering them separately. This was accomplished by 
partitioning the large gradient regions according to whether the gradient ori- 
entation points in the upper or lower half plane. 

Figure 1: Left: input distribution in the mixture coordinate frame.  Right: 
density histogram mesh plot. 

d. Hough transform the edge image 
The resulting binary images of the edges of the distribution are Hough trans- 
formed for the detection of high gradient lines (see e.g. Jahne [4]). The peaks 
in the Hough transform, which correspond to the "most popular lines", are 
located. By inserting the two most popular line orientations into an unmix- 
ing matrix, an unmixing transformation which separates the, mixture can be 
obtained. 
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4    SIMULATION RESULTS 

4.1    Separation of unimodal sources 

Two audio files consisting of spoken Japanese phrases were linearly mixed by 
a random mixing matrix. The input distribution consisting of 34934 points 
was histogrammed into 80 x 80 bins, as shown in Figure 1. The plot clearly 
shows the geometrical structure discussed in Section 1. The normalized gra- 
dient of the histogram is computed and thresholded at five percent of the 
maximum value, giving us the "edges" of the joint distribution. Figure 2 
shows the "edge" regions corresponding to large gradient regions pointing in 
the lower half plane. The Hough transforms of the binary images are shown 
alongside. From the two most popular line orientations, An unmixing matrix 
was constructed from the two most popular line orientations. Left multiplying 
the mixing matrix with the unmixing matrix, we find the resulting mixture 
to signal ratio of the two outputs to be 0.95 and 3.8 percent respectively. 

Figure 2: Left: high gradient "edge" regions pointing in the lower half plane. 
Right: corresponding Hough transform. As labeled here, the angle 8 cor- 
responds to the lines' actual orientations instead of the orientation of the 
normal to the lines. The grey-scale bar on the far right indicates the number 
of votes for each line in the Hough transform. 

4.2    Separation of bimodal sources 

Artificial bimodal sources were constructed from the same audio files used 
in the previous section. The mass was intentionally not evenly distributed 
between the two peaks in each source. The mass ratio between the peaks 
was 5/3 in one source and 5/2 in the other. Since gradients are used, the 
amplitudes of the peaks are not as essential as they are in density estimation 
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Figure 3: Separation of bimodal sources. Left: input distribution. Right: 
Hough transform with four peaks corresponding to the four lines. The figure 
axes labels are the same as that for previous figures. 

source separation approaches. The input distribution, large gradient regions, 
and its Hough transform are shown in Figure 3. Again using the the two most 
popular line orientations from the Hough transform, the separation achieved 
a reduction of the mixture to 1 and 1.6 percent of the sources respectively for 
the two outputs. 

4.3    Separation of sources from fewer mixtures 

Not only does this approach work for multi-modal sources, the "non-square" 
blind separation problem where the number of mixtures is less than the num- 
ber of sources can also be tackled. Extra sources will just contribute extra 
density extrema directions. The audio sources were pre-processed to make 
them even more sharply peaked to ease the feature extraction process. Simu- 
lation results are shown in Figure 4. The three peaks in the Hough transform 
now correspond to the three sources in the mixture. The three most pop- 
ular line orientation peaks found in the Hough transform deviate by only 
0.009, 0.01 and 0.002 radians from the actual orientations as determined by 
the mixing matrix. However, this information is not sufficient to construct 
the two-to-three dimensional unmixing map. The problem is not well posed 
since the mixing transformation is not 1-to-l. Nevertheless, a simple "one 
channel" representation of the three sources can be obtained by partitioning 
the input space in accordance with the three high density source orientations 
[7]. A given input x is attributed to the source with the closest corresponding 
orientation, with the value of the output taken to be the dot product of the 
input vector x with a vector of unit length along the source orientation. In 
this unmixing scheme, only one output is non-zero at any given time, hence 
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the overlap between any two outputs is zero. Despite the severity of this 
constraint, the fidelity of the resulting one-channel source approximations is 
remarkably good, as seen in Figure 5. 

■ • • • ■■■••.-■ <?*', 

Figure 4: Pseudo-separation of three sharply peaked sources. Left: input 
distribution. Right: Hough transform with three peaks corresponding to the 
three sources. 

5    CONCLUSION 

The algorithm presented in this paper applies specifically to the separation 
of two dimensional data sets. However, this approach is-clearly more general 
than the specific separation examples presented. The algorithm is applica- 
ble to source distributions which contain large derivatives, such as uniform 
sources. While the Hough transform used is optimized for detecting lines in 
two dimensions, other versions exist which are sensitive to more general fea- 
tures at a range of spatial scales. It is also clear that the approach introduced 
here is not limited to two dimensional or linearly mixed signals. 

The success of this edge-detection algorithm suggests many possible varia- 
tions. For example, if the sources are known to be unimodal and sharply 
peaked, an even simpler algorithm can be used. By normalizing all the input 
vectors to unit length, the task of finding the N independent component basis 
vectors becomes that of finding TV clusters on the TV-sphere. The algorithm 
presented in this paper works for a larger class of sources because it extracts 
information from all high gradient regions in the joint distribution. From 
a mathematical standpoint, we are essentially looking at the iso-probability 
lines in large gradient areas, with the understanding that they are oriented 
preferentially along one of the independent component basis directions. A 
generalization of the algorithm consists of cluster analysis of the local gradi- 
ent directions. 
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Figure 5: The three sources (sl,s2,s3), two mixtures (xl,a;2) and the three 
outputs (ol,o2,o3) obtained by partitioning the input space into three re- 
gions. The outputs were permuted and arbitrarily multiplied by a scaling 
factor to match the sources. Even though only one output deviates from zero 
at any given time, the source approximation is surprisingly good. This is seen 
visually above, and can be verified by listening to the outputs. 

The simplicity of this approach should lead to state-of-the-art algorithms in 
terms of both speed and generality. Not only is the local feature approach 
more robust to noise than density estimation approaches, the performance 
degrades gracefully when extra sources are introduced. And finally, from a 
neural modeling perspective, this approach complements the current work on 
visual cortex modeling. Bell and Sejnowski [3] found that local edge filters re- 
sulted when natural images where fed into their source separation algorithm. 
In this paper, we show that edge-detectors can perform source separation, 
and hence the same neural architecture that codes and processes images can 
also extract independent sources. 
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Abstract 

We present a new set of learning rules for the non- 
linear blind source separation problem based on the in- 
formation maximization criterion. The mixing model is 
divided into a linear mixing part and a nonlinear trans- 
fer channel. The proposed model focuses on a paramet- 
ric sigmoidal nonlinearity and higher order polynomials. 
Our simulation results verify the convergence of the pro- 
posed algorithms. 

1    INTRODUCTION 

In blind source separation or independent component analysis (ICA) the 
problem is how to recover independent sources given the sensor outputs in 
which the sources have been mixed in an unknown channel. The problem 
has become increasingly important in the signal processing area due to their 
prospective application in speech recognition, telecommunications and med- 
ical signal processing. The linear blind source separation problem has been 
studied by researchers in the field of neural networks [1, 2, 5, 9] and sta- 
tistical signal processing [4, 6]. Potential application in automatic speech 
recognition systems has been considered in [10] where two speech signals 
recorded in a real environment have been separated. Furthermore, Makeig 
et al. [12] have studied independent components of electroencephalographic 
(EEG) data. There are several other potential applications in the signal 
processing area which may benefit from ICA as a preprocessing analysis. 
Nevertheless, the linear mixing model may not be appropriate for some real 
environment experiments. Therefore, researchers have recently started ad- 
dressing the ICA problem to nonlinear mixing models [3, 8, 11, 13, 14, 15]. 
In [8, 11, 13] the nonlinear components are extracted using self-organizing- 
feature-maps (SOFM). However, due to the limited number of neurons that 
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map the underlying distribution the derived components have a quantization 
error that increases with increasing distance to the neighboring neurons. 

In this paper, we propose a set of algorithms for the nonlinear mixing 
problem using parametric nonlinear functions. In particular, we assume that 
the mixing is performed in two stages: a linear mixing followed by a nonlinear 
transfer function. We focus on a parametric sigmoidal nonlinearity and on 
higher order polynomials. A similar approach has been independently studied 
by Taleb and Jutten [14]. They approximate the inverse transfer function by 
multilayer perceptrons (MLP) that are trained in an unsupervised manner. 
This kind of model may be justified for several biomedical signal analysis 
problems such as brain blood moving analysis in magnetic resonance imaging 
(MRI) and EEG analysis. It may also be used to account for microphone 
nonlinearities in speech recording experiments. For these problems this model 
may be an appropriate representation of the actual physical phenomenon. 

We present the nonlinear model and derive a set of learning rules based 
on the information maximization criterion [2]. The learning rules are verified 
via simulation and future research is discussed at the end. 

2    NONLINEAR MIXING AND UNMIXING MODEL 

Figure 1 shows the mixing system which is divided into a linear mixing part 
and a nonlinear transfer part. Each channel i consists of an invertible nonlin- 
ear transfer function fi(ti). The unmixing system is the inverse sequence of 

*N 

linear nonlinear Inverse linear 
mbdng      transfer function    transfer function    unmMng 

Figure 1: Mixing and Unmixing Model: The mixing stage consists of a linear mix- 
ing matrix A and a nonlinear transfer function f(t). The unmixing stage consists 
of the inverse operation - the equalization of the nonlinear transfer function g(x) 
and the unmixing matrix W 

the mixing system. Figure 1 shows that we first invert the nonlinear transfer 
function in each channel i with gi(xi) and than unmix the linear mixing by 
applying W to z. The sources s are recovered if gi(xi) and W are the inverse 
functions for /»(£*) and A respectively. 

In our model we use the following signals:    s   =   [si,S2 • •■,SN]
T

, 
t    =    [ti,t2,...,tN]T,   x   =    [xi,x2,...,xN]T,   z    =    [zi,z2,...,zN]T, 
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U = [U1,U2,...,UN]T, f = [fl(tl),f2(t2),---,fN(tN)]T, 
g = [gi(xi),52(^2),■■■,9N{XN)]

T
- Furthermore, the signals are related by 

the following equations: 

t = A-s (1) 

x = f(t) (2) 

z = g(x) (3) 

u = W • z = W • g[f (A • s)] (4) 

3    THE LEARNING RULES 

3.1    Information Maximization 

The separation of independent components from a mixed signal observation 
x can be described by a general measure of independence between the pdf of 
the random variable px(x) and the pdf of its components Il"=i Pxt (%i)- The 
Kullback-Leibler divergence measures the degree of distance defined by: 

«(PKM, f[pXi (**)) = /PX(X) log    /*(X)      rfx (5) 

and vanishes if and only if px(x) factories which leads to 
<5(Px(x),nr=iPx.(a;i)) = °- The observation is px(x) = Ui=iPxi(xi) and 
the Kullback-Leibler divergence have the form of the mutual information of 
x and this can be rewritten in terms of entropies as follows: 

<*(Px(x),Px(x)) = #(px(x)) - H(px(x) I px(x)) (6) 

Bell and Sejnowski [2] have proposed an information-theoretic approach where 
they maximize the mutual information that an output y = h(x) of a neural 
processor contains about its input x. They have shown that for invertible and 
continuous deterministic mappings h(x), the mutual information between in- 
puts and outputs can be maximized by maximizing the entropy of the outputs 
alone where the output pdf satisfies: 

with J(x) being the determinant of the Jacobian of the neural transfer func- 
tion h(x). The Entropy of the Signal y is given by 

H(y) = -E\\npy(y)] = E[ln \J\) - £[lnpx(x)] (8) 

where E denotes the expected value. The maximization is done by maximiz- 
ing the first term with respect to the parameters of the unmixing functions. 
That is, we have to learn the elements of the linear unmixing matrix W and 
the set of parameters for the nonlinearities gi(xi). Using a gradient ascent 
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algorithm we take the derivative of the entropy function with respect to the 
Wij and the parameters of the nonlinearity. Therefore, we derive 

The second term in equation (8) is independent of all model parameters. 
Hence, the gradient of equation (9) is as follows: 

^.„w=^i„idet(w)l+^ta(n^)+^h(ng)(io) 

Considering the set of parameters W, a better way to maximize entropy in 
the feedforward and feedback system is not to follow the entropy gradient, 
as in [2], but to follow its 'natural' gradient, as reported by Amari et al [1]: 

AW oc ^fflwTW (11) 
ÖW 

This is an optimal rescaling of the entropy gradient. It simplifies the learning 
rule and speeds convergence considerably. 

3.2    Learning Rules for Sigmoidal Nonlinear Mixing 

The infomax criterion holds for our model since independent variables can- 
not become dependent by passing them through an invertible nonlinearity. 
Hence, the mutual information before and after the nonlinear stage is not 
affected. 

For the derivation of the learning rule for the Wy we do not need to 
consider the last term of equation (10). Therefore, the learning rule for W 
is: 

AW oc (WT)~1 + (1 - 2y)gT(x) (12) 

considering the Amari et al. extension from equation (11) it follows: 

AW oc W + (1 - 2y)uTW (13) 

Although this learning rule is derived for super-Gaussian sources we may 
extend the rule to the separation of sub-Gaussian sources by including the 
kurtosis into the second term which makes the anti-Hebbian rule to a Hebbian 
learning rule for sub-Gaussians. Girolami and Fyfe use this in the projection 
pursuit network [7]. In order to derive the complete set of learning rules we 
assume that the nonlinear mixing is accomplished by a sigmoidal transfer 
function. 

/i(ti)=^(l-1 + exp
2
(_^i)) (14) 

where 8 denotes the scaling and a the slope of the transfer function. For this 
case, gi{xi) provides the inverse function by 

9i(xi) = -2riarctanh(dja;i) (15) 
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whereas r« = 1/ffi and d = l/«i in the ideal case.  We perform a gradient 
ascent on the entropy function to learn the parameters d, r. 

Ara-r-       and   Ad oc — V0) 

6i--^^MuMMuSji 

and 

The term detW in the equations (17) and (18) is independent from r and d. 
Hence, we can write: 

N 

=   -2arctanh(djXj) ^(1 - 2j/t)wy (19) 
«=i 

and 

(20) 

The third term is then 
' JV 

and 

£-tefeH 
-ta(n^)=i+^(i-^)-1 (22) 

ddj 

3.3    Learning Rules for Flexible Nonlinearities 

A weakness of the sigmoidal nonlinearity is that the learning rules can be suc- 
cessfully applied to only those problems which fit to the parametric structure 
of a sigmoid.  However, in certain situations where the a priori knowledge 
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about the mixing model is not given we need to learn a more flexible nonlin- 
ear transfer function. We assume that a nonlinearity may be approximated 
by polynomials of n-th order. This nonlinear stage my be described as: 

/;(';) = IX1 (23) 
*=i 

The inverse gj(xj) of the function in equation (23) results in an expression 
which is generally not easy to handle with respect to our purposes. We 
therefore make the assumption that the inverse may be approximated by 
P-th order polynomials. Hence, the inverse is: 

9jixi) = ^9ik ■ x) * (24) 
fc=i 

In the same manner, we can perform a gradient ascent on the entropy function 
to learn the parameters gjk'- 

8H 
&9jk oc 

dgjk 
(25) 

Performing this operation on equation (8), the learning rule for finding g^ 
is the sum of the following two terms: 

dgjk \i=l 
dui 

j=i dgjk' 

N 

=   s*-1 J>-"2tt)«ty 
i=l 

and 
' N s >°(iiit 

„*-2 (fc-1) 

dgjk 
(26) 

\i=l 2 (m - 1) • g^xf m-2 

m=l 

4    SIMULATION RESULTS 

4.1    Sigmoidal Nonlinearities 

To verify the validity of the model and the convergence of the learning rules, 
we have performed several experiments with the architecture shown in Figure 
1. Figure 2 shows the result of the mixing and unmixing system. Two 
independent white noise sources with super-Gaussian distribution have been 
generated artificially and are shown in a scatter plot in Figure 2 (a). The 
sources have been first linearly mixed (b) and then nonlinearly mixed (c). 

(27) " ti(z) ' 
t2(z) 

= 12' 
11 

Sl  ' 

.  S2   . 
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an =/i (0.5<i) 

X2 = J2{h) (28) 

The unmixing results in Figure 2 (d) and (e) when the nonlinearities are 
initialized identically and the unmixing matrix W is chosen randomly. The 
algorithm converges after presenting 500 samples and the unmixed signals 
are shown in Figure 2(f). The SNR for the observed mixed signals xx,x2 are 
-6.3dB and -6.1dB respectively. For the unmixed signals ui,u2 the SNR is 
increased to 8.9dB and 8.0dB respectively. 

-10 0 10 20 
linear mixture of indep. sources 

0 0.5 1 
nonlinear mixing of lin. mixture 

^5 0 5 10 
initial Z after nonlinearity 

-20 
0 20 

initial U 

Figure 2: Mixing and Unmixing Simulation, (a) independent sources (b) linear 
mixed sources (c) nonlinear mixing (d) initially unmixed nonlinearity (e) initial 
separated signals u (f) final separated signals u 

4.2    Flexible Nonlinearities 

As in chapter 4.1, we performed several experiments with the architecture 
shown in Figure 1 to verify the learning rules for flexible nonlinearities. For 
the linear and nonlinear mixing stage we use the same mixing matrix and 
nonlinearities as in section 4.1. The independent sources are white noise sig- 
nals with sub-Gaussian distribution. A scatter plot of the sources is depicted 
in Figure 3 (a). The unmixing W and the coefficients g^ of the nonlinearity 
forming polynomials are chosen randomly with Q = P. Figure 3 (f) shows 
the results after presenting 1000 samples. We observe that the order of the 
inverse nonlinearity g(x) has to be higher than the order of the nonlinearity 
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/(t). The stability of the polynomial nonlinearity is highly dependent on 
the initial value of the coefficients and may be chosen to approximate an 
invertible nonlinearity. 

-1        -0.5 0 0.5 
independent sources 

-1        -0.5 0 0.5 1 
nonlinear mixing of lin. mixture 

-0.5 
-0.2 0 

initial U 

-2024 
linear mixture of indep. sources 

-0.4      -0.2 0 0.2        0.4 
initial Z after nonlinearity 

Figure 3: Mixing and Unmixing Simulation Using Flexible Nonlineaxities. (a) inde- 
pendent sources (b) linear mixed sources (c) nonlinear mixing (d) initially unmixed 
nonlinearity (e) initial separated signals u (f) final separated signals u 

In figure 4 a) and b) we show the time course signal of a sinusoid and a 
white noise signal with super-Gaussian distribution. The signals have been 
mixed linearly and transformed by a nonlinear transfer function f(t) where 
f(t) is an invertible 5th-order polynomial function. The inverse is approx- 
imated by a 8th-order polynomial function g(x). The time course of the 
recovered signals are shown in figure 4 e) and f). 

5    CONCLUSIONS AND FUTURE RESEARCH 

We have derived a set of learning rules for the nonlinear blind source separa- 
tion problem based on the information maximization criterion. The mixing 
model is divided into a linear mixing part and a nonlinear transfer channel. 
The proposed algorithms are focused on a parametric sigmoidal nonlinearity 
and higher order polynomials. Simulation results have been performed to 
verify the learning rules. 

We plan to apply the algorithms to biomedical data such as MRI. To this 
end, we need to investigate further the stability and convergence criterion of 
the proposed algorithms. In addition, the model can be extended to exhibit 

413 



-0.5 

600 

600 

600 

200     400 
Signal u1 

600 

600 

0     200    400    600 
5| ■ Signal x2 ■  

mtti^MW 
_5 

0              200 400 600 
10| ■ Signal z2 

200 400 600 
Signal u2 

Figure 4: Mixing and Unmixing Simulation Using Flexible Nonlinearities. 

a nonlinear cross channel mixing. Then, instead of JV nonlinearities for N 
channels we have to find iV2 nonlinearities. Cross channel nonlinearities have 
been considered by Yang et al. in [15] and Burel in [3]. In their approach, the 
nonlinear observation g(x) has been linearly mixed by a second mixing matrix 
W2. The learning rules can be derived to find Wi, W2 and the nonlinearity 
g(x). In contrast to their approach, subject of our future interest is to find 
nonlinear cross-channels which can be parameterized independently from the 
channel transfer functions. 
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Abstract 

This paper provides a detailed and rigorous analysis of the two 
commonly used methods for blind source separation: Linear 
Independent Component Analysis (ICA) and Information 
Maximization (InfoMax). The paper shows analytically that ICA 
based on the Kullback-Leibler information as a mutual information 
measure and InfoMax lead to the same solution if the 
parameterization of the output nonlinear functions in the latter 
method is sufficiently rich. Furthermore, this work discusses the 
alternative redundancy measures not based on the Kullback-Leibler 
information distance and Nonlinear ICA. The practical issues of 
applying ICA and InfoMax are also discussed. 

1.  INTRODUCTION 

The pioneer work of Zipf [1] and the ideas of Attneave [2] about information 
processing in visual perception have led to the idea that nervous system and brain 
may be regulated by an economy principle. In the neural network society these 
ideas were introduced by the important paper of Barlow [3]. In this work the author 
presented the connectionist model of unsupervised learning under the perspective 
of redundancy reduction. The minimum entropy coding method was introduced for 
the generation of factorial codes [4]. Atick and Redlich [5] demonstrated that 
statistically salient input features can be optimally extracted from a noisy input by 
maximizing mutual information. Simultaneously, Atick and Redlich [6] and 
specially the works of Redlich ([7], [8]) concentrate on the original idea of feature 
extraction by redundancy reduction. Several neural network learning algorithms 
for PC A are presented, among others, in [9] and [10]. 

The problem of Linear Independent Component Analysis as linear feature 
extraction, i.e. blind source separation was introduced by Comon [11] and further 
extended in linear and defined in nonlinear case by the works of the authors ([12]- 
[19]). In parallel, Bell and Sejnowski [20] have demonstrated that their InfoMax 
method can also achieve linear feature extraction. This paper provides a detailed 
and rigorous analysis of the two methods and derives conditions under which these 

0-7803-4256-9/97/$ 10.00 © 1997 IEEE 416 



methods lead to identical solution. In addition, the paper briefly addresses the 
cumulant based criteria for ICA as well as Nonlinear ICA. 

2.  LINEAR INDEPENDENT COMPONENT ANALYSIS AND 
INFORMATION MAXIMIZATION 

Let x be random vector of dimension n with the joint probability density function 
p (x) whose covariance matrix is nonsingular. Furthermore, let M be a linear 
square map which maps x into the random vector y whose probability density 
function is p (y) . 

Definition 1: ICA 

Linear Independent Component Analysis (ICA) is an input/output linear 
transformation M from x to y such that the output components with joint 
probability: 

p(y) -p(y,...yn);    y - M* (1) 

are "as independent as possible" according to the appropriate measure, i.e. distance 
<D: 

®lp(y)>np(yi> (2) 
1 / 

In the special case where the complete independence of the output components is 
achieved, the following holds: 

p(yi-y„) - p(yi)-p(y„) (3) 

If the input vector x is jointly Gaussian, ICA is equivalent to the problem of 
diagonalizing the output covariance matrix Q which is the standard PCA 
problem. In order to guarantee the existence of the solution for the ICA problem, 
we assume that the input signal x was originally obtained by the invertible linear 
mixture of the statistically independent signals z. ...z . 

Definition 2: Information maximization 

Let the above defined random vector * be transmitted through a combination of a 
matrix M and n nonlinear functions f(; i - 1 4- n such that the resulting 
components of the output vector w are defined as: 

Wj = f,(y,)        y = Mx (4) 

Under the assumption that the every nonlinear function f. is differentiable and that 
its derivative f.' satisfies 
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J w - 1 (5) 

the information maximization problem is defined as maximization of the entropy 

H(w) =-J dw p(w)  log(p(ti)) (6) 

over the elements of matrix M and, possibly, the free parameters in the 
parameterization of fj. Typical choices for fj are single or neural networks with 
normalized sums of sigmoidal functions. 

At first glance ICA and InfoMax problems seem to be substantially different. 
Nevertheless, it is known that the information maximization leads to the statistical 
factorization of the output components Wj, i.e. that it essentially performs the same 
task as ICA [20]. In the remaining part of the paper we give a rigorous proof that 
these two problems are identical when the Kullback-Leibler information is used as 
a measure of the statistical independence in ICA and when the derivatives f/ are 
capable of approximating output marginal distributions with the infinite precision. 

The Kullback-Leibler distance between the joint and the marginal probabilities is 

defined as: 

p(y) 

IIPW 
>0 (7) K{p(y),np(yi)> - J dyp(y) log 

i 

or equivalently: 

n 

K{P(y),np(yi)> = IH(yi)-H(y) (8) 

i i- 1 

Equation (8) indicates that the Kullback-Leibler distance is the mutual information 
between the output components yi. 

The relationship between the input and output joint probabilities of a differentiable 

map g is equal to: 

'<=*> " ^W <9> 

where J is the Jacobian matrix of g. Consequently, the relationship between the 
corresponding entropies is: 
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H(p(out)) -H(p(m))+J din p(m)  log (|det(J)|) (10) 

Combining equations (7) and (8) with (9), it follows that: 

P(*) >0 

(ID 
K{P(?),nP(yi)> = f d* P(*> ,08 rr   ,   ^   u „vn =        l J IlP(yi) • |det(M) 

<   i 

—H(p(*)) -J d* p(*)  log^nPCXi) • |det(M)H>0 

Since the input entropy H(p(*)) is independent of the input-output 

transformation,  the  minimization  of  Mpty),]^^;)}    is equivalent  to 

maximization of J dx p(x) logfriP^i) -ldet(M)|\ i.e. to the Maximum 

Likelihood Expectation (MLE) of logfjjptyj) -IdetfM)^. In general, the 

analytical expression for the marginal probabilities p (yä) are not known, and their 

estimates p (y) have to be obtained from the data for every change of the matrix 

M. 

Similarly, in the information maximization problem the output joint entropy 

H($) is equal to: 

H(ti) - J dy p(y)  log 
( \ 

p(y) 

V   i 

(12) 
-K{p(y),nfi

,(yi)} 
i 

■-H(p(*))+J dx p(x)  logrnfi
,(yl)-|det(M)|jäO 

■, equivalently, to the MLE of logf ]Jf,' (y,) • |det (M)|"). 

Hence, the ICA with the Kullback-Leibler information measure and the maximum 
information transfer as denned in this paper are posed as: 
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ICA =>       min    K{p(^),JIP(yi)} 

(13) 
INFOMAX       =»       min    K {p (^), JJfj'(yj)} 

i 

or, equivalently, to the following MLE over the input probability p (*) : 

ICA =>       MLE{logfn^(y,).|det(M)n} 

INFOMAX       =>       MLE{logrjJfi
,(yi)-|det(M)n} 

(14) 

A MLE formulation of the InfoMax method is also discussed in [21]-[23]. The 
initial parameterization of the derivatives fj'(Vj) in (14) has a possible 
interpretation as the prior on the estimation of the actual marginal densities p (y;) . 
As mentioned earlier, both methods require parameterization of p(y;) and 
f (y.) . Hence, the problem statements in (13) and (14) can be used to derive 
conditions for the equivalence of solutions of ICA and InfoMax. 

Lemma: 

For a given input distribution p (x) , the ICA and InfoMax problems achieve the 
same degree of statistical independence if the derivatives fj' (y4) can be 
parameterized in the form of the marginal distribution estimates p (y.) . 

The proof is straightforward since it requires that the parameterization of p (x) 
and f (y) are identical. This can be illustrated on an example. 

Example: 

The marginal probabilities p (yj) have to be estimated from the data. A typical 
way of doing that is to estimate elements of a probability density function 
expansion up to the desired order. Let us use the first element of the Edgeworth 
expansion [19], i.e. let p(yp have the form of a Gaussian whose mean and 
standard deviation at is equal to the those of the actual marginal distribution 
P (y^ • Without a loss of generality let us assume that the input distribution p (x) 
is zero-mean. In addition, let us parameterize the derivatives f.1 (y;) as zero-mean 
Gaussian distributions whose standard deviations r. are optimization parameters. 
Hence, it is easy to see that the MLE problems in (14) become 
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ICA =>      MLE{-^[log(0i)]+log(|det(M)|)}      oi   - (yf> 

(15) 

INFOMAX       =*       MLEJ-£ 

2n 

2r. 
+ log(|det(M)|) 

The resulting ICA problem is nothing more than the covariance matrix 
diagonalization [19] where the optimization is performed over the elements of the 
matrix M. In the case of InfoMax, the unknown parameters are not only the 
elements of M but also the Gaussian parameters ii. It is easy to see that the 
optimal value of r. for every fixed matrix M is the actual standard deviation ai 

and, therefore, that the solution of InfoMax problem will also result in the 
covariance matrix diagonalization. 

In practice, it is required that the solutions of both methods are unique modulo 
transformations that preserve statistical independence such as the component order 
permutation and diagonal scaling. The uniqueness is achieved if the number of 
Gaussian components of p(x) does not exceed one. In the case of multiple 
Gaussian distributions, it is well known that there is an infinite number of matrix 
transformations that diagonalize the covariance matrix. Hence, the ICA and 
InfoMax algorithms blind source separation will have unique solutions only if the 
original signal z did not have more than one Gaussian components. In addition, 
there can be problems concerning the scaling of the elements of the matrix M. 
Hence, it is the experience of the authors that imposing the condition 

det(M) = 1 (16) 

makes the optimization numerically stable and avoids possible scaling problems. 
Different parameterizations of M such that the condition in (16) holds can be found 
in [19]. 

3.  ALTERNATIVE REDUNDANCY MEASURES AND NONLINEAR ICA 

The previous section has demonstrated that ICA and InfoMax are identical when 
the redundancy measure in ICA is the Kullback-Leibler information distance and 
when sufficient freedom is given to the marginal output probability modeling and 
estimation. Nevertheless, there are other measures that are easy to implement, 
especially in the case of a linear mixing with a matrix M. The following part of the 
paper briefly reviews ICA based on the properties of cumulant expansion of the 
joint probability density function p (y). The detailed derivation and analysis of the 
cumulant based ICA can be found in [17] and [19]. 

The cumulant based criterion for ICA is derived by comparison of the cumulant 
expansion of the joint probability density p (y) and of the product of the marginal 
output probabilities p(yp . The complete factorization is achieved if the both 
expansions are the same, i.e. if the non-diagonal coefficients in the higher order 
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cumulants of p(y) take desired values (usually zero) imposed by the statistical 
independence of p (y) . Since the cumulant expansion of an arbitrary distribution 
has infinite number of elements, for practical purposes only cumulants up to the 
order four are considered. Hence, the resulting ICA cumulants based criterion has 
the following form: 

4 2 

J(M)   ~   X X     LCnondiag_Cnondiag-desiredJ (17^ 
j _ i        nondiag 

where i defines the cumulant order, and where C^d|ag and Cn],ndJag_degired 

are the non-diagonal cumulant coefficients and their desired values for a given 
cumulant order i of the joint probability density function p(y) . In general, the 
desired coefficients C^)

ndiag_desired are equal to zero. For every change of the 
matrix M, the non-diagonal coefficients are estimated and the cost function J (M) 
further minimized. 

The cumulant based ICA criterion can be further simplified by using the properties 
of cumulant expansion when M is a rotation matrix R [17]. In the case of the 
rotation matrix, the minimization of the criterion in (17), becomes equivalent to 
maximization of the sum of squared diagonal elements. 

min     {J(R)}=max        £        I [cd
(|Jg(R)]2| (18) 

Consequently, the original cumulant cost function is significantly reduced when the 
linear transformation M is restricted to the set of rotation matrices. Although in 
general M is not a rotation matrix, we can still try to take advantage of the property 
described in (18). 

The statistical independence implies diagonal structure of the output covariance 
matrix. Hence, let N be an invertible matrix which diagonalizes the covariance 
matrix of the input variable x: 

N-QX-N
T-D, (19) 

where D, is a nonsingular diagonal matrix according to our assumptions about the 
original signals and the mixing process. Then, all linear input-output 
transformations M which result in statistical independence of output components 
at higher order while preserving the diagonal structure of the covariance matrix of 
y = M • x can be parameterized as follows [17]: 

M - P • D • R • D[05 • N (20) 

where P is a permutation matrix, D is an invertible diagonal scaling matrix, and 
R is a rotation. 
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Since statistical independence is invariant to the diagonal scaling and permutation, 
the only free variable after the scaling with Dj05 • N is the rotation matrix R. 
The suitable parameterization of rotation matrices is defined [19]: 

R = (I + Ar^I-A);        AT =-A (21) 

where A is the skew-symmetric matrix whose number of independent parameters 
is equal to 0.5 n (n - 1) . This parameterization covers all rotation matrices R with 
the property that (I + R) is nonsingular, i.e. that no eigenvalue of R is equal to 
-1. The latter condition represents no restriction in our case since there always 
exists a diagonal unitary matrix which can make the eigenvalues different from -1. 

Now, the cost function in (17) can be posed as the optimization problem w.r.t. the 
matrix R, i.e. A: 

i _ l   diag \LL> 

RT = R-i _ (i + A)-](I-A)    and y - R-D^0-5 -N- x 

The 0.5n(n- 1) free parameters of the matrix A can be determined by any 
gradient based method such as backpropagation. Furthermore, the diagonal 
elements of the cumulant tensors are the cumulants of the individual elements of £ 
which, on the other hand, are polynomial functions of the cross-cumulant elements 
of x. Consequently, the optimization can be significantly simplified by pre- 
calculated the cumulants of x up to the other i. It is the experience of the authors 
that the cumulant based ICA criterion in (22) is numerically superior to the 
Kullback-Leibler distance based ICA. Several applications of the cumulant based 
blind source separation method presented in (22), including the "Cocktail Party" 
example and the mixture of the uniform distributed signals, can be found in [19]. 

As the last point of this section, the authors would like to mention that the ICA 
problem can be formulated also in the case where the input-output map is not a 
matrix but an invertible nonlinear function F. A parameterization of such functions 
with the so called "triangular volume preserving network" is presented in [12] and 
[19]. The reference [19] presents several applications of the Nonlinear ICA. 

4.  CONCLUSIONS 

This paper has provided a detailed and rigorous analysis of the two commonly used 
methods for blind source separation: Linear Independent Component Analysis 
(ICA) and Information Maximization (InfoMax). The paper showed analytically 
that ICA based on the Kullback-Leibler information as a mutual information 
measure and InfoMax lead to the same solution if the parameterization of the 
output nonlinear functions in the latter method is sufficiently rich. Furthermore, 
this work has discussed the alternative, cumulant based blind source separation 
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methods and Nonlinear ICA. The practical issues of applying ICA and InfoMax 
were also discussed. 
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Abstract 

In this paper we present a simple efficient local unsupervised learning 
algorithm for on-line adaptive multichannel blind deconvolution and sepa- 
ration of i.i.d. sources. Under mild conditions, there exits a stable inverse 
system so that the source signals can be exactly recovered from their con- 
volutive mixtures. Based on the existence of the inverse filter, we construct 
a two-stage neural network which consists of blind equalization and source 
separation. In blind equalization stage, we employ anti-Hebbian learning 
in temporal domain for decorrelation. For blind separation, we can ap- 
ply any existing algorithms. Extensive computer simulations confirm the 
validity and high performance of our proposed learning algorithm. 

1   INTRODUCTION 

Blind signal separation from convolutive mixtures of unknown source signals is a 
really challenging and fundamental problem encountered in many applications such 
as cocktail party problem, wideband array signal processing, image processing, dig- 
ital communication, and some biomedical applications. In real world applications, 
the observed signals obtained from sensors are usually convolutive mixtures due to 
the propagating source signals through the dynamic medium and parasitic effects 
like multiple echoes and reverberation. In this paper, we present a new approach to 
multichannel blind deconvolution and separation of i.i.d. source signals. In multi- 
channel deconvolution and separation, an m dimensional vector of received signals 
x(Jb) is assumed to be generated from an n dimensional vector of independent source 
signals s(fc) using the multi-variate linear time invariant filters, i.e., 

M 

x(fc)    =    ^His(fc-t)+n(fc), 
»=o 

=    [H{z)]s(k)+n(k), (1) 
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where H(z) = Yliio H^-' (K(z) is m x n polynomial matrix and z~l is delay 
operator such that z~is{k) = s(k - i)) is the channel transfer function and n(fc) 
is an additive white Gaussian noise. We assume that the number of sensors, m is 
strictly greater than the number of sources, n. The problem of multichannel de- 
convolution and separation is to recover the source signals s(k) from the received 
signals x(k), up to scale factor, permutation ambiguity, and an arbitrary delay, i.e., 
&(k) - PAD(z)s(fc), where P is a permutation matrix, A is a nonsingular diagonal 
matrix, and D(z) = diag{z~dl, ■ ■ ■ ,z~dn}. 

Most existing methods was devoted to recover the spatially independent source 
signals from their convolutive mixtures. The output decorrelation approach was pro- 
posed by Compernolle and Gerven [11] and further investigated by [25, 5, 16]. The 
methods developed in the separation of instantaneous mixtures have been extended 
to multi-channel deconvolution problem (see [15, 24, 10, 2]). Bussgang approach 
in frequency domain has been employed by [17, 18, 19]. Most of time-domain 
method failed to recover the source signals when the channels are nonminimum 
phase systems. To overcome this difficulty, frequency-domain approach are sug- 
gested [17, 18, 19]. However, the frequency-domain approach is block-adaptive 
because it requires to compute FFT. Thus, time-domain approach is better if we can 
handle the nonminimum phase channels properly. In most of aforementioned meth- 
ods, the number of sensors are assumed to be equal to the number of sources and 
was usually restricted to the case of only two source signals. As will be shown in 
this paper, a stable exact inverse system for the convolutive mixture model (1) does 
not exist if there are equal number of sources and sensors, except for trivial cases. 

In this paper, we investigate the separation of i.i.d. source signals (precisely 
speaking, spatially independent and temporally uncorrelated source signals) and de- 
velop an on-line adaptive algorithm. Signal separation task is split into two stages: 
spatio-temporal decorrelation and blind source separation of instantaneous mixtures. 
As will be shown in this paper, blind equalization (based on second-order statistics 
only) is able to deconvolve the Multi Input Multi Output (MIMO) FIR channels up 
to linear mixtures of source signals. Source separation is employed to separate the 
instantaneous mixtures. 

2   THEORETICAL FUNDAMENTALS, BASIC AS- 
SUMPTIONS 

Throughout this paper, the following model assumptions are made: 
Al) The source s(fc) is zero-mean with non-zero variance, temporally uncorre- 

lated, and spatially independent, i.e., 

E{Si(k)} = 0, Vi, (2) 
E{s2i(k)} # O.Vi.fc, (3) 

E{Si{k)Si(k - T)} = 0, Vr^O, (4) 

E{Si(k)Sj(k-T)} = 0, Vr.i^j, (5) 
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where E denotes the expectation operator. 
A2) The number of sensors, m is strictly greater than the number of sources n, 

i.e.,m > n. 
In blind equalization of Single Input Multi Output (SIMO) FIR channels, it has 

been shown that under mild conditions (for example, channels do not have com- 
mon zeros), temporal decorrelation of the composite output (sum of the output of 
equalizer-bank) can equalize the channels, (see [20, 6, 7] for details). This is ex- 
tended to blind equalization of MIMO FIR channels. In this section, we present 
fundamental theoretical results: (1) Under what conditions, a stable inverse system 
(equalizer) for MIMO FIR channels exists?; (2) if there exists a equalizer for MIMO 
FIR channels, how can we equalize channels? Let W(z) be the equalizer of MIMO 
FIR channel H(z) (m x n polynomial matrix). For a given channel H(z), a zero- 
forcing condition for blind equalization of MIMO channels is given by 

W(«)H(z) = PAD(z). (6) 

The transfer function of the channel, H(z) is an m x n polynomial matrix having (™) 
distinct nxn submatrices. Let At(z), i = 1,2, • • • , (™), denote the determinants 
of these submatrices. Let GCD denote the greatest common divisor. In terms of 
these quantities, the existence of FIR equalizer W(z) is given by Massey and Sain 
[22]. 

Theorem 1 An FIR inverse system exists, if and only if 

GCD[A1(z),A2(z),--- ,A(:)(z)] = *-<*, (7) 

for some d>0. 

In particular, such FIR equalizer does not exit if Aj(z) have common zeros (except 
common zeros at origin). Note that this condition can not be satisfied for the case 
where we have equal number of sensors and sources, except for trivial cases. Let 
G(z) be the global system described as G(z) = W(z)H(z). Then G(z) is also 
FIR, of the form 

p 
G{z) = Y,GiZ-\ (8) 

where P is the upper bound of the order of G(z). We generalize the zero-forcing 
condition (6) as 

W(z)H(z) = TB(z) (9) 

where T is an m x m nonsingular matrix. This generalized zero-forcing condition 
(9) has been recently investigated by R. Liu [21] when D(z) = Iz~d. 
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Theorem 2 Let the channel H(z) satisfy the condition (7). Suppose that the as- 
sumptions (Al) and (A2) are satisfied. Then the generalized zero-forcing condition 
(9) is satisfied ify(k) satisfies 

E{y(k)yT(l)} = TSU, 

where 6M is Kronecker delta equal 1 for k=l, otherwise 0. 

(10) 

Sketch of proof: Both H(z) and W(z) are FIR, so G(z) = W(z)H(z) is also 
FIR. Then y(k) = YH=O G«S(A; - i). It is easy to see that if y(k) satisfies (10), then 
the generalized zero-forcing condition (9) is satisfied. 

Thus we can equalize the MIMO channel H(z) by spatio-temporal decorrelation 
of the output y(k) up to linear mixtures. Note that this result is consistent with 
some results in [12, 13]. Suppose that H(z) is full rank for all z. This implies that 
H(z) is a minimum phase system. Then the source signals s(fc) can be viewed as the 
normalized innovation sequence of the observed sequence x(k). One can recover the 
innovation sequence from x(fc) up to an orthogonal matrix Q. This is emphasized 
in [12,13] where whitening is done by linear prediction. In contrast to [12, 13], our 
approach is more robust in the sense that we do not need exact knowledge of the 
order of channels. 

3   NEURAL NETWORK MODEL AND THE LEARN- 
ING ALGORITHMS 

Let W(z) be a generalized zero-forcing equalizer and U € H"xm be a demixing 
memoryless network. Provided that the channel H(z) satisfies the condition (7), 
then UW(z) is a stable inverse system of the FIR channel H(z), and the golbal 
system G(z) should satisfy the relation 

G(z) = UW(z)H(z) = PAD(z). 

Our approach to multichannel blind deconvolution is illustrated in Figure 1. 

(11) 

n(fc) 

/ / 
s(k) 

H(z) 
x(A) 

W(z) y(*) u z(k) 

Unkn own 
/ / 

Figure 1: Neural network block diagram for multichannel blind deconvolution: 
W(z) represents a generalized zero-forcing recurrent equalizer and matrix U de- 
scribes a demixing feedforward memoryless network. 
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For a generalized zero-forcing equalizer W(z), we consider a linear feedback 
network shown in Figure 2. This network is almost fully connected in spatial and 
temporal domain. Note that it does not have algebraic loops (the connections be- 
tween yi(k) and yj(k) and self-connections from j/,(fc) to yi{k)). T he generalized 
zero-forcing equalizer can be viewed as a whitening filter or spatio-temporal decor- 
relation filter. The output yi(k) is described by (see Figure 2) 

L 

yi(k) = Xi{k) + 22Y^WiipWyi(k ~ p)' fOTi = l,...,m, (12) 
j=i p=i 

where the synaptic weight wijp(k) is the connection strength between yi(k) and 
yj(k - p). Or in matrix form 

L 

y(k)=x(k)+yjTwp(k)y(k-p), (13) 
P=i 

where y(fc) = \jfi(k),---,ym(k)]T,x(k) = [n (*),-•■ ,xm(fc)]T, and WP(A;) = 
Kp]mxm is synaptic weight matrix. From (13), it is easy to find that the equalizer 
W(z) can be expressed as 

L 

W(0) = (I-^Wpz-p)-1. (14) 
p=i 

For spatio-temporal decorrelation of the output signals y(k), we apply a simple 
learning algorithm which is a temporal variant of anti-Hebbian learning. The weight 
matrices Wp(fc) forp = 1, • • • , L are updated by the following learning algorithm: 

W„(* + l)    =   Wp(k)-V(k){y(k)yT(k-p)}, (15) 

where r]{k) > 0 is a learning rate. It is easy to see that the above algorithm (15) 
achieves the convergence for 

E{y(k)yT(k - p)} = 0, forp = 1, • • ■ , L. (16) 

Thus at steady state y(fc) = rD(z)s(fc). Note that all stable equilibria of (16) are 
desirable solution where the output y(fc) are uncorrelated in spatio-temporal domain. 
Note that the learning algorithm (15) for the generalized zero-forcing equalizer is 
very simple, local, and biologically plausible. After spatio-temporal decorrelation 
by a generalized zero-forcing equalizer, the output y(k) consists of instantaneous 
mixtures of the source signals. At second stage, source separation feedforward mem- 
oryless network is implemented, described as 

z(fc) = U(*)y(*). (IV) 

For the separation of instantaneous mixtures, any existing methods [14,9, 3,1,4, 8] 
can be employed. In this paper, we employ the following source separation algo- 
rithm [1]: 

U(Jfc + 1) = U(Ä) + tj(fc){I - f(z(fc))zT(fc)}U(fc), (18) 
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yi(fc) 

Figure 2: The proposed linear temporal feedback network for the generalized zero- 
forcing equalizer 

where f(z(fc)) = [f{zi(k)), • ■ • , f{zn(k)]T is properly chosen nonlinear function. 
The choice of this function depends on the statistics of source signals. For example, 
it is known that /(zi(fc)) = ßzi{k) + zf(k) is for sub-Gaussian source signals and 
f{zi(k)) = ßzi(k) + tanh(azj(A;)) is for super-Gaussian source signals for some 
ß>0. 

4   COMPUTER SIMULATIONS 

One exemplary simulation result is presented here. In this simulation, three i.i.d. 
sources and five sensors were used. Three i.i.d. sources consist of random variables 
that are uniformly distributed over the binary set {-1, +1}. Five received signals 
x(fc) were generated by 

x(fc) = H0s(fc) + His(fc - 1) + H2s(A; - 2) 

+H5s(fc-5) + Hi0s(fc-10). (19) 

The weighting coefficients in miximg/convolutive model , H;, i = 0,1,2,5,10 
were generated randomly over the interval [-1,1]. They were assumed to be com- 
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pletely unknown. 

[ -0.8244 -0.5281 0.2690 
0.2790 -0.4718 0.9545 

Hn = -0.8027 0.2088 0.6510 
0.3813 -0.1638 -0.4125 

-0.3169 -0.7274 -0.2183 

H1 = 

-0.7599 -0.2378 0.8745 
0.7246 -0.2266 -0.2742 
0.0496 -0.3765 0.3459 
0.9096 0.1851 0.7272 

-0.0720 -0.2393 0.7922 

H2 = 

0.3430 -0.0721 0.3401 
0.0393 0.8915 -0.7729 
0.3706 -0.0686 -0.0818 

-0.9449 -0.9798 -0.7116 
-0.8525 0.4407 -0.3565 

H, = 

0.3381 -0.5663 0.1081 
0.9698 -0.2780 0.1904 

-0.0709 0.1803 0.3893 
-0.1861 -0.5072 -0.9113 
0.8387 -0.7378 0.3675 

-0.1154 -0.0173 0.6804 
0.4578 0.4206 -0.6061 

-0.3082 -0.3343 -0.1155 
0.1367 -0.2402 0.2099 

-0.9465 0.9707 0.1975 

Hio — 

The eye pattern is shown in Figure 3. Figure 4 shows the original source signals 
s(fc), convolutive mixtures x(fc), and recovered signals z(k). Only 51 samples for 
each are plotted. It can be observed that zi(k) = -s2(k), z2{k) = si(fc), and 
z3(k) = s3{k). From Figure 4, we can see that the recovery of i.i.d. source signals 
from their convolutive mixtures are perfect even for case of nonminimum phase 
channels. 

(a) 0>) (c) 

Figure 3: The eye pattern of recovered signals: (a) z1(k); (b) z2(k); (c) z3(k). 

5   CONCLUSION 

We have presented a new adaptive scheme to blind separation of source signals from 
their convolutive mixtures. Fundamental theoretical results and implementation have 
been presented. Under mild conditions, we have shown that i.i.d. source signals 
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(a) 

fU N-M, 

•p\ M 

(b) 

(c) 

Figure 4: (a) Three original source signals, si(k), s2(fc), s3(k); (b) Five received 
signals, xi(k), x2(k), x3(k), Xi(k), x5(k); (c) Three recovered signals, zi(k) = 
-s2(k),z2(k) = si(fc),2;3(fc) = s3(fc) 

433 



can be recovered by the generalized zero-forcing equalizer and instantaneous blind 
separation. A linear feedback network with associated anti-Hebbian learning has 
been constructed to perform spatio-temporal decorrelation. Computer simulation 
experiments demonstrated validity and high performance of our proposed approach. 
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Abstract- Blind deconvolution and separation of linearly mixed and 
convolved sources is an important and challenging task for nu- 
merous applications. While several recently-developed algorithms 
have shown promise in these tasks, these techniques may fail to 
separate signal mixtures containing both sub- and super-Gaussian- 
distributed sources. In this paper, we present a simple and efficient 
extension of a family of algorithms that enables the separation and 
deconvolution of mixtures of arbitrary non-Gaussian sources. Our 
technique monitors the statistics of each of the outputs of the sepa- 
rator using a rigorously-derived sufficient criterion for stability and 
then selects the appropriate nonlinearity for each channel such that 
local convergence conditions öf the algorithm are satisfied. Exten- 
sive simulations show the validity and efficiency of our method to 
blindly extract mixtures of arbitrary-distributed source signals. 

I. INTRODUCTION 

Blind signal separation is useful for numerous problems in biomedical 
signal analysis, acoustics, communications, and signal and image processing. 
In blind source separation of instantaneous signal mixtures, a set of measured 
signals {xi(k)}, 1 < i < n is assumed to be generated from a set of unknown 
stochastic independent sources {«;(&)}, 1 < i < m, m < n as 

x(fc)    =    Hs(*), (1) 

where x(*) = [an(Jb) • ■ ■ xn(k)]T, s(k) = [si(k) ■ ■ ■ sm(k)]T, and H is an (n x 
m)-dimensional matrix of unknown mixing coefficients {%}. The measured 
sensor signals are processed by a linear single-layer feed-forward network as 

y(Jb)    =    W(k)x(k), (2) 
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where y(k) = [j/i (k) ■ ■ ■ ym (k)]T and W(k) is an (ra x n)-dimensional synaptic 
weight matrix. Ideally, W(k) is adjusted iteratively such that 

lim W(*)H    =   PD, (3) 
* 

where P is an (m x m)-dimensional permutation matrix with a single unity 
entry in any of its rows or columns and D is a diagonal nonsingular matrix. 

Recently, several simple, efficient, and robust iterative algorithms for ad- 
justing W(k) have been proposed for the blind signal separation task [1]—[12]. 
Such methods use higher-order statistical information about the source signals 
to iteratively adjust the coefficient matrix W(k). In this paper, we consider 
one class of on-line adaptive algorithms given by [1] 

W(* + l)    =    W(*) + ^(*)[l-f(y(Jb))yT(Jb)]W(Jb), (4) 

where f(y(fc)) = [fi(yi(k)) ■ ■ ■ fm{ym{k))]T. The optimal forms of the non- 
linear functions {/<(j/)} can be shown to be dependent on the statistics of 
the source signals [2, 7, 8]. For example, if the signal mixture consists of 
sub-Gaussian sources with negative kurtoses, the choices /,-(j/) = fjf(y) = 
\y\psgn(y) for p = {2,3,...} provide adequate separation capabilities. For 
mixtures of super-Gaussian sources with positive kurtoses, the choice /,-(y) = 
fP(y) = tanh(ay) with a > 0 can be used [3, 11, 12]. 

A related task to blind signal separation is that of multichannel signal 
deconvolution, in which x(k) is assumed to be produced from s(ib) as 

oo 

x(*)=   £  Hps(A-p), (5) 
p=—oo 

where Hp is an (n x m)-dimensional matrix of mixing coefficients at lag p. The 
goal is to calculate a vector y(k) of possibly scaled and/or delayed estimates 
of the source signals in s(k) from x(fc) using a causal linear filter given by 

L 

y(t)    =    £wp(*)x(*-p), (6) 

where the (m x n)-dimensional matrices {Wp(k)}, 0 < p < L contain the 
coefficients of the multichannel filter. One algorithm that can be used in this 
task is described in [5, 6] and is given by 

W„(*+l)    =    Wp(k) + r,(k)[Wp(k)-f(y(k-L))uT(k-p)],     (7) 

where the n-dimensional vector u(&) is computed as 

L 

»(*)    =    EWI-«(%(fe-9)- (8) 
4=0 
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This algorithm reduces to that in (4) for L = 0. 
Although simulations have indicated that these algorithms are successful 

at separating and deconvolving linearly-mixed signals, they require knowledge 
about the statistics of the source signals to function properly. In particular, it 
must be known a priori whether the source signals are sub-Gaussian or super- 
Gaussian so that the nonlinearities fi(y) can be properly chosen. Even worse, 
if the measured signals Xi(k) contain mixtures of both sub-Gaussian (e.g. 
digital data) and sup er-Gaussian (e.g. speech) sources, then these algorithms 
may fail to separate these signals reliably. 

In this paper, we propose modifications to the algorithms in (4) and (7) 
that enable sources from arbitrary non-Gaussian distributions to be extracted 
from measurements of the mixed signals. Our methods use simple sufficient 
conditions for algorithm stability that are based on the necessary stability 
conditions originally derived by Amari et al [3]. Our computationally-simple 
algorithms employ time-varying nonlinearities in the coefficient updates that 
are selected from a family of fixed nonlinearities at each iteration to best 
satisfy our sufficient stability conditions. Simulations show the excellent and 
robust convergence behavior of the proposed methods in separating mixtures 
of sub- and super-Gaussian sources. 

II. CRITERIA FOR ALGORITHM STABILITY 

The modified algorithms for separation of sources with arbitrary distribu- 
tions are based on the stability analysis of (4) that is described in [3]. For 
brevity and simplicity of discussion, we only consider (4) and outline the 
necessary extensions of the analysis that are needed to develop our modified 
algorithms, although we later apply the results to the multichannel deconvo- 
lution method in (7). 

The algorithm in (4) can be derived as an iterative stochastic minimization 
procedure for the cost function 

1 m 

<ß(W(k))    =    -Uog(det(W(k)W(k)T))-J2E{l°SPi(yi(k))}'     (9) 
j=i 

where E{-} denotes statistical expectation and -d\ogpi(y)/dy = f{(y). If 
Pi(y) is the actual probability distribution of the source extracted at the ith 
output, then cf>(W(k)) represents the negative of the maximum likelihood cost 
function [2, 7]. The procedure in (4) represents the natural gradient method 
for minimizing (9) iteratively using signal measurements. For details on the 
general form of the natural gradient search method, the reader is referred to 

[!]■ 
In [3], the stability of (4) is analyzed by studying the expected value of 

the Hessian of the cost function, denoted as E{d2<j>(W(k))/dwij(k)dwpq(k)}, 
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in the vicinity of a source separation solution. Here, Wij(k) is the (i,j)th 
element of W(A;), which in [3] is assumed to be a square matrix (m = n). 
In what follows, we remove this restriction. In analogy with the results of 
[3], it is simpler to consider the form of d2<j)(W(k)) in terms of the modified 
coefficient differential 

dX(Jfe)    =    dW{k)WT(k)(W(k)WT(k))-\ (10) 

such that 

dX(*)y(Jb)   =   dW(k)x{k). (11) 

Note that the natural gradient method automatically performs its search in 
the coefficient space spanned by dX(k), so that the coefficient updates remain 
in the original column space of W(0) for all k. We can then represent the 
differential d2(j)(W(k)) in terms of the elements of dX(k) as 

<fy(W(Jb))    =   yT(k)dXT(k)F'd(y(k))dX(k)y(k) 

+ fT(y(k))dX(k)dX(k)y(k), (12) 

where F'd(y(k)) is a diagonal matrix whose (i,i)th entry is //(&•(&)). 
As is shown in [3], the expectations of the terms on the RHS of (12) are 

m        m 

E{yT(k)dXT(k)F'd(y(k))dX(k)y(k)}   =    E   E   *?(*)"* (*)[<M*)]2 

m 

+Ew(*)[daj«(*)]2      (13) 
«=i 

m     m 

E{tT(y(k))dX(k)dX(k)y(k)}    =    ^^ftW^W^iW,!") 
«=i i=i 

where fii(k), crj(k), Kj(k), and pi(k) are defined as 

W(jfe) = E{y?(k)f<(yi(k))}, <r?(t) = E{yUk)}, (15) 

Kj(k) = E{fj(yj(k))},    and   Pi(k) = £{w(*)/(w(*))},      (16) 

respectively, and where it has been assumed that yi(k) and yj(k) are inde- 
pendent for i T^ j. Thus, the expected value of the Hessian is 

m        m 

E{d2<f)(W{k))}    =    E   E   vhjWidxjiWf + piWdxijWdxjiik) 

m 

+EM*)+M*)][<M*)]2- (17) 

»=i 
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For stability, E{d2<f>(W(k))} must be positive for all possible values of 
dxij{h). By examining the RHS of (17), one can obtain the following neces- 
sary and sufficient stability conditions on /,-(j/) for all 1 < i < j < m: 

Ki{k)    >    0 (18) 

ßi(k) + Pi(k)    >    0 (19) 

af{k)Ki{k)a]{k)Kj{k)    >    \[Pi(k) + Pj(k)]2. (20) 

The conditions in (18) and (19) are satisfied in practice for any odd non- 
decreasing function /,-(y) = -fi{-y). However, the condition in (20) is diffi- 
cult to calculate in practice, as it involves m(m - l)/2 different combinations 
for 1 < i < j < m. For this reason, we consider a sufficient stability criterion 
of the form 

aj{k)Ki{k)a]{k)Kj{k)    >    72(k)Pi(k)Pj(k), (21) 

where f(k), j(k) > 0 satisfies for all 1 < i < j < m the inequality 

l2{k)Pi{k)Pj{k)    >    \[Pi(k) + Pj(k))\ (22) 

After some algebra, we find that the smallest value of j(k) satisfying (22) is 

7(*)    =    \\l+Pj^ + El^Y (23) 

where Pmar(k) and pmin(k) are the maximum and minimum values of Pi(k) 
for 1 < i < m, respectively. For this value of -y(Ar), we can guarantee the 
stability of the algorithm in (4) if, for all 1 < i < m, 

af(k)Ki(k)-j(k)Pi(k)    >    0. (24) 

Note that all values of pi(k) converge to one as the coefficients converge to a 
separating solution due to the normalizing condition E{f(y(k))yT(k)} = I, 
such that j(k) «J 1 near convergence. 

III. THE ALGORITHM MODIFICATION 

We now describe the modified algorithms that are based on the stability 
criteria of the last section. It is known that the algorithm in (4) can determine 
a separating solution for W(fc) if a set of nonlinearities {fi(y)}, I <i <m 
can be properly chosen. For this reason, our modified algorithms employ 
a time-varying vector nonlinearity ffc(y(&)) = [fn(yi(k)) ■ ■ ■ fmk(ym(k)]   , 
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where /;*(?/) is chosen to be one of two nonlinearities /jv(y) and fP(y) that are 
optimized for sub- and super-Gaussian source separation tasks, respectively. 
To select fik(y) at time k, we form the time-averaged estimates 

af(k)    =    (l-6)ai(k-l) + 6\yi(k)\2 (25) 

«,>(*)    =    (1-«)M*-1)+ *#(&■(*)) (26) 

Pir(k)    =    (l-S)pir(k-l) + 6yi(k)fr(yi(k)) (27) 

for r = {N, P} and 1 < i < m, where 6 is a small positive parameter. Then; 
fik{y) at time A; is selected as 

f..(v) = { Mv)    if *?(*)*w(*) - 7(*)pw(*) > ff?(*)*jp(*) - y{k)Pip(k)   ,OB. 
W    \ fp(y)     if <r,?(fc)K,iv(fc) - 7(*W(*) < ^(*)«.-p(Jb) - 7(*)WP(*)   

(   } 

where 7(&) is computed at infrequent intervals from past estimates of pt (k). 
With these choices, the resulting vector fj,(y(A;)) is used in place of f(y(ik)) 
to adjust the coefficient matrix in (4). In simulations, it was found that'the 
value of j(k) did not vary significantly over time, and in fact, setting y(k) 
equal to one in (28) for all k appears to provide convergence of the algorithms 
to a separating solution. 

It can be seen that as the coefficients of the system converge, the quantity 
af(k)Kir(k) - pir(k) becomes a reliable estimate of the left-hand-side of the 
inequality in (24) for fik(y) = fr(y). Extensive simulations have shown that, 
so long as a set of nonlinearity assignments exists such that the stability 
conditions in (18)-(20) are satisfied for one ordering of the extracted sources 
at the outputs, then (28) properly selects each fik(y) over time to enable the 
system to reliably extract all source signals regardless of their distribution. 

IV. SIMULATIONS 

We now show the capabilities of our modified source separation algo- 
rithms via simulation. In our first example, we employ the signal separation 
method in (4) to separate ten instantaneously-mixed signals. In this case, 
the three signal sets {Sl(k), s2{k), s3(k), s4(k)}, {s5(k), s6(k), s7(k)}, and 
{s8(k), s9(k), sio(fc)} are i.i.d. with Laplacian, uniform-[-l, 1], and binary- 
{±1} distributions, respectively, where the Laplacian p.d.f. is given by ps(s) = 
0.5e~lsl. Since the first and latter two distributions are super- and sub- 
Gaussian, respectively, the algorithms in [4, 8] cannot linearly separate these 
sources from an arbitrary mixture of them. We generate x(k) as in (1), where 
the entries of H are drawn from a uniform-[0,1] distribution. The values of 
h,j to four decimal places are shown in Table 1. As is clear from the table, 
H exhibits no particular structure, and thus the extraction of the ten sources 
from the measured signals x(k) is a challenging task. 
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Table 1: The entries of H for the ten source separation example 
a, n II  i 2 » * * 6 » » 9 10   | 

0.8424 0.2541 0.3297 0.6648 0.9273 0.4364 0.6019 0.8916 0.9564 0.8823 

0.0570 0.6562 0.4651 0.5970 0.9322 0.7337 0.7483 0.3582 

0.4257 0.5772 0.7443 0.8824 0.9441 0.2775 0.4733 0.1009 0.3935 

0.3068 0.6455 0.9982 0.0223 0.9772 0.1033 0.1339 0.3141 0.9203 

0.6326 0.5300 0.4357 0.4652 0.5468 0.0358 0.1748 0.1137 0.0413 

0.4599 0.4425 0.1115 0.2274 0.9701 0.1367 0.6777 0.7476 0.6656 

0.2081 0.2611 0.2721 0.1238 0.7741 0.0425 0.4375 0.8457 0.7489 

0.2801 0.6381 0.0364 0.0919 0.6716 0.7553 0.7595 0.3628 0.0460 

0.1214 0.1404 0.0398 0.4975 0.9554 0.4872 0.2505 0.6368 0.7157 

10 0.6022 0.2268 0.2975 0.8565 0.8663 0.9502 0.9896 0.4781 0.3873 0.2050 

We apply the algorithm in (4), where f (y(fc)) = f*(y(fc)) is adapted ac- 
cording to our method described in (25)-(28) with rj(k) = 0.005, 6 = 0.01, 
W(0) = I, and 

My) = M3sgn(2/)      and fP(y) = tanh(lOy), (29) 

corresponding to nonlinearities for separating sub- and super-Gaussian-dis- 
tributed sources, respectively. Within each on-line nonlinearity selection pro- 
cedure, we set j(k) to one for all k. From the outputs of the separation 
system, we compute the error vector e(k) = [ei(fc) • • • ei0(k)]T as 

e(jfe)    =    S(k)-B-lPTy(k), (30) 

where approximate versions of the permutation matrix P and scaling matrix 
D as introduced in (3) are obtained from W(k) and H at iteration k = 10000. 
Figure 1 shows these ten error signals. Since each error signal decreases to a 
small value after a sufficient number of iterations, all of the sources are reliably 
extracted using our modified algorithm. Figure 2 plots the performance factor 
i>(k) defined as 

||PTW(*)H||| 
i>{k)    = ||[PTW(*)H],| -1, (31) 

where || • ||B denotes the matrix Euclidean norm and where [Q]d is a diagonal 
matrix whose (i,i)th entry is qu. As can be seen, the value ofip(k) decreases 
to approximately 0.0168 in steady-state, indicating that the system has ad- 
equately separated the ten sources. Moreover, a careful examination of the 
nonlinearities chosen for each extracted output indicate that the appropri- 
ate stabilizing nonlinearity fN(y) or fP(y) was eventually selected for each 
output signal. 

We now combine the algorithm modification in (25)-(28) with the blind 
deconvolution and source separation technique in (7) and apply the resulting 
system to a three-source separation problem. In this case, the three sources 
are chosen to be i.i.d. Laplacian-, uniform-, and binary-distributed, respec- 
tively, and the convolutive mixture model is given by 

x(Jb)    =    A1x(Är-l) + A2x(Är-2) + Bos(Ä;) + B1s(fc-l)>       (32) 
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Figure 1: The ten error signals for the first source separation example, 

where the (3 x 3) matrices Ai, A2, B0, and Bi are given by 

Ai = 

Br 

-0.1 0.3 -0.1 1 " 0.04   0.02    0.03 " 
-0.2 0.2 -0.3 A2 = 0.08   0.04      0 
-0.5 -0.2 0.4 0.03   0.06   0.06 

r o.o2 0.07 0.05 1 ' 0.1     0     0.4 " 
0 0.09 0.08 ,    and   Bi= 0.5   0.4   0.7 

0.07 0.04 0 0.7   0.1    0.6 

,(33) 

(34) 

Figures 3(a)-(c) and (d)-(f) show the vector sequences s(k) and x(fc) in 
this case. The deconvolution system with time-varying nonlinearities was 
applied to these signals, in which 1 = 6, r](k) = 0.0005, 8 = 0.001, Wp(0) = 
I6(p — 3), and y(k) was set to one for all k within the nonlinearity selection 
procedures. Shown in 3(g)-(i) are the error signals ei(fc) = si(fc) - y3(k)/d33, 
e2(k) = s2(k)-y2(k)/d22, and e3(k) = s3(k)-yi(k)/dn, where du, d22, and 
d33 are appropriate scaling factors. As can be seen, the errors decrease to 
small values for each extracted output, and the signal-to-noise ratios for the 
three extracted outputs were empirically found to be 10.0, 7.4, and 15.2 dB, 
respectively. 

Figure 4 shows the actual value of j(k) - 1 on a logarithmic scale for the 
second source separation example. Starting from an initial value of 7(1) = 
2.94, the value of y(k) gradually approaches unity over time. These results, 
combined with the successful separation capabilities of the modified systems, 
indicate that setting y(k) to one within the nonlinearity selection procedures 
does not limit the overall capabilities of the systems. 
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Figure 2: Performance factor ip(k) for the first source separation example. 
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Figure 3: The three source signals ((a)-(c)), the three mixed signals ((d)- 
(f)), and the three error signals ((g)-(i)) for the convolutive-mixture source 
separation example. 

Figure 4: Evolution of -y(k) -1 for the convolutive-mixture source separation 
example. 
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V. CONCLUSIONS 

In conclusion, we have described techniques for selecting the nonlinear- 
ities within blind source separation and deconvolution algorithms to enable 
the separation of sources with arbitrary distributions. The proposed meth- 
ods can be easily implemented in an on-line setting. Simulations applying the 
techniques to instantaneous mixture separation and to multichannel deconvo- 
lution and source separation indicate the ability of the methods to accurately 
separate signal mixtures containing both sub- and super-Gaussian sources. 
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Abstract- Recurrent Canonical Piecewise linear (RCPL) network is denned 
by combining the canonical piecewise linear function with the autoregres- 
sive moving average (ARMA) model such that an augmented inpuf space is 
partitioned into regions where an ARMA nlodel is used in each. Properties 
of RCPL network are discussed. Particularly, it is shown that RCPL func- 
tion is a contractive mapping and is stable in the sense of bounded input 
and bounded output stability. By generalizing Donoho's minimum entropy 
deconvolution approach [5] to the nonlinear case, it is shown that RCPL 
network can achieve blind equalization. RCPL network is applied to both 
supervised and blind equalization and results are presented to show that it is 
computationally efficient and with a very simple structure, can deliver highly 

satisfactory performance. 

I. INTRODUCTION 

Nonlinear techniques offer great potential to improve on the existing meth- 
ods based on the assumption of linearity, and in certain cases, to deal with 
problems for which linear techniques have proven ineffective. Among the 
approaches proposed for nonlinear signal processing, polynomial or Volterra 
niters [12] can yield a small asymptotical probability of error if sufficiently 
high order polynomials are used, but they will also, in general, converge very 
slowly. Neural network structures, such as the multilayer perceptron [6] and 
the radial basis functions [3] have been proposed as an alternative to the 
nonlinear approximation problem, but in communications applications such 
as equalization that requires real-time processing capability, their relatively 
slow convergence characteristics have been the main consideration. The at- 
tractiveness of piecewise linear models on the other hand, stems from the 
fact that while they allow use of a variety of analysis and development tools 
that are linear, they are also good approximators of functions that are highly 
nonlinear. They have been effectively used in control engineering [13], non- 
linear circuit analysis [9], and in channel equalization [2]. A special class of 
piecewise linear structures, canonical piecewise linear (CPL) models, employ 
a global linear model in a partitioned domain space rather than using individ- 
ual linear models in each partition as does the piecewise linear model. Hence 
they greatly reduce the parameter storage requirement of the piecewise lin- 
ear model and gain scheduling model [14], one of the major problems in the 
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implementation of piecewise linear filters. We can use standard linear adap- 
tive filtering techniques to perform training tasks on a piecewise linear filter 
and can easily incorporate known statistical information into the network 
structure. 

We have introduced recurrent CPL function (RCPL) by combining the 
CPL function with the autoregressive moving average (ARMA) model [10]. 
Hence, RCPL mapping is the process of finding partition boundaries of a sam- 
ple space in an augmented domain space where an ARMA model is used for 
approximation in each partitioned region. The proposed RCPL network offers 
the advantages of both the CPL and ARMA models. Specifically, RCPL net- 
work offers the following benefits: (1) it makes use of standard linear adaptive 
filtering techniques to perform training tasks and allows for efficient selection 
of the partition boundaries; (2) it offers savings in computation time and im- 
plementation cost, especially when modeling highly nonlinear functions; (3) 
because of its piecewise linear nature, it is easy to incorporate known sta- 
tistical information into the network structure; (4) since RCPL network also 
employs feedback, it has a distinct dynamic behavior which is much more 
powerful than that attained by the use of finite duration impulse response 
feedforward structures. In this paper, we will first review the definition and 
approximation ability of RCPL network. Then, we discuss the properties 
of RCPL network. Finally, we consider application of recurrent canonical 
piecewise linear (RCPL) network to both supervised and blind equalization. 

II. RECURRENT PIECEWISE LINEAR PIECEWISE NETWORK 

Before giving the formal definition of a recurrent canonical piecewise linear 
representation, first, we present the definition of a canonical piecewise linear 
(CPL) function. CPL network is initially introduced for nonlinear circuit 
analysis [4]. CPL structures provide a desirable compromise between the 
approximation ability of nonlinear models and the efficiency and theoretical 
accessibility of the linear domain, and reduce the parameter storage require- 
ment of piecewise linear models considerably by employing a global linear 
representation. 

The CPL function is defined as [4]: 
Definition 1 (Canonical Piecewise Linear Function): A piecewise linear 
function /: D —► Q, with a compact subset D C RN and compact subset 
Q C RM, is called a canonical piecewise linear function, if it can be expressed 
by a global representation: 

T 

/(x)=a + Bx + ^ci|(ai,x) + A-| (1) 
i=i 

where B G RMxN, a, a G RM, en, x G RN and /?„• G R. 
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On the other hand, a very general class of linear models used for predic- 
tion of a random process x(n) is the class of ARMA models and a natural 
generalization of the linear ARMA model is the nonlinear autoregressive mov- 
ing average (NARMA) model 

x(n) = h(x(n - l), x(n - 2), • • •, x{n - pi), e{t - 1), e(t - 2), • • •, e{n - p2)) 

where h is a nonlinear function and e(n) is the input variable. Next, we in- 
troduce a RCPL function as an extension of CPL function by incorporating 
the NARMA model. 

The RCPL function is defined as [10]: 
Definition 2 (Recurrent Canonical Piecewise-Linear Function): A function 
/: £>i x D2 x I -»■ Q with sample space Di C RN, D2 C Rr, index set I, and 
compact subset Q C RM is said to be a RCPL function if it can be expressed 
by the global representation: 

/(x(n), u(n)) = a + B0x(n) + Bi/(x(n - 1), u(n - 1)) + B2u(n) (2) 

Xk(n) = ak+ b^x(n - 1) + b^/(x(n - 1), u(n - 1)) 
T 

+b3j.u(n) + ^2cki\ {aiki,x(n - 1)> 
8 = 1 

+ (<*2ki, /(x(n - 1), u(n - 1))) + (a3ki,u(n)) + ßu\ (3) 

where x,bu,aiH G RN, u,b3i,a3iti G Rr, a,b2fc, a2«,B0 G R , Bi G 
RMxNt Bz G i2Mxr) ak!ckhßki eR,k = l,2,---,Naadxkia the Mi el- 
ement of vector x. We refer to the structure defined by (2) and (3) as the 
recurrent canonical piecewise linear network: 

From the definition, we see that the domain of RCPL function is par- 
titioned into polyhedral regions where the function defines a linear ARMA 
model in each. 

III. PROPERTIES OF RECURRENT PIECEWISE LINEAR NET- 
WORK 

Based on Definition 1, we show the approximation ability of CPL network by 
the following theorem: 

Theorem 1: Let domain D be a compact space of dimension N and T be 
a set of canonical piecewise linear functions on D. Then, for any continuous 
function / on D, there exists a function / G T such that |/(x) - /(x)| < e 
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for all x G D. 

The proof of the theorem is given in [1]. By comparing definitions 1 and 
2, we can see that RCPL filter is actually a special case of the CPL filter. 
The RCPL filter partitions the input signal space into finite disjoint regions 
and in each region, it can be represented by a FIR filter with infinite length. 
Therefore, the result presented in Theorem 1 also holds for the RCPL filter. 

We can rewrite the RCPL network described by (2) and (3) as follows: 

x(n)    =    ä + Bix(n-1) + B2u(n) (4) 
T 

+    ^2,Ci |(äi,-,x(n- 1)) + {a.2i,-u{n)) + ßi\ 
«=i 

where x(n) = (x(n) /(x(n))T. Using this representation for RCPL, we 
prove the following: 

Theorem 2: For the RCPL network defined by (2) and (3), assume that 
the input vector u(n) is bounded and the parameters satisfy the following 
condition: If there exists an So £ (0,1) such that 

r 

l|Bi|| + X)lMI l|äii||<l-£o (5) 
»=i 

then, there is a real number d, such that for all K > d, the ball D(K) = 
{x : ||x|| < A'} is invariant under  (2) and (3). 

Proof:     Define F(x(n - 1)) = x(n). From (4), we have 
r 

F(x(n-1)) = ä+B!x(n-l)+B2u(n)+Xlci |<äi,-,x(n - 1)) + (ä2,-,u(n)) + ßi\ 

Since u(n) is bounded, there exists a real number TQ such that for ||x(n—1)|| > 
ro, we have 

||ä|| + ||B2lll|u(r.)|| + E[=ill^ll(ll«2i||||u(n)||+|Ä|)      ; 

 w^m £0     (6) 

therefore 

||ä + Bix(n - 1) + B2u(n) + Y, ci |(«ii, x(n - 1)) + {a2i, u(n)) + A 
i=l 

T 

<||ä|| + (||B1|| + X;iNII|Äi,-||)||x(n-l)|| 
*=i 

+    ||B2||||u(n)|| + ^||Ci||(||ä28-||||u(n)||+|Ä|) 
«=i 
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Using equations (5) and (6), we have 

||F(x(n-l))||    <    (1-£o)||x(n-1)||+ £o||x(n-1)|| 

<    ||x(n-l)||        for    ||x(n-l)||>r0 (7) 

On the other hand, because F(x(n-1)) is continuous, there exists a constant 
KQ such that 

||F(x(n-l))||<üCo       for    ||x(n - 1)|| < r0 

Let d = max{r0,KQ}. Then, for every real number K > d, we have 

\\F(x(n - l))\\ < Ko < K       for every    ||x(n - 1)|| < r0 

and by using (7) 

||F(x(n-l))||< \\Z(n-l)\\<K        for every    r0 < ||i(n - 1)|| < K 

Hence, D{K) is invariant. 

The above theorem states that the output of RCPL network described by 
bounded input if condition (5) is satisfied. 

Theorem 3: The map which defines the RCPL network (2) and (3) is a 
contractive mapping if the condition given in  (5) is satisfied. 

Proof. Let 
T 

Jfe(x) = ä + Bix + B2u(n) + ^c,- |{ctu,x) + (öc2i,u(n)) + ßi\ 

then, 

fc(xi) - fc(x2) = Bi(xi - x2) 
T 

+ J2ci( Käie.Xi) + (ä2,-,u(n)> + ßi\- |(äH,x2) + (ä2i,u(n)) + fc\) 
«=i 

and 
T 

||jb(xi) - fc(x2)|| < (||Bi|| + XIINH HÄ»II) 11^1 - x2|| < (1 - e0)||xi - x2|| 
t=i 

which shows that k(-) is a contractive mapping whenever (5) is satisfied. 
Thus, after receiving the input vector u(n), the network will always reach a 
unique equilibrium regardless of its initial state Xo. 

Theorems 1-3 state that under certain regularity conditions, the RCPL 
network is always stable in the sense of bounded input and bounded output 
stability, and can approximate any nonlinear function with arbitrary accuracy. 
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IV. BLIND EQUALIZATION BY RCPL NETWORK 

Blind equalization refers to the problem of determining a transmitted symbol 
sequence in the presence of intersymbol interference (ISI) and noise with- 
out using a training sequence. Most of existing blind techniques such as the 
Bussgang algorithm, cyclic spectrum approach, polyspectra approach, etc., 
are based on the linear channel assumption. There are many cases, how- 
ever, where this assumption is not true, as nonlinear devices significantly 
contribute to system degradation. One example is the digital satellite link, 
in which both the earth station and the satellite are equipped with amplifiers 
operated in a nonlinear region of the input-output characteristics for better 
exploitation of the power of the device. The use of the above blind techniques 
will suffer from a severe performance degradation for unknown nonlinear com- 
munication channels and hence it is very important to develop nonlinear blind 
equalization techniques. We show that nonlinear blind equalization can be 
achieved by matching the distribution of the channel input with that of the 
RCPL equalizer output. 

To show the ability of RCPL network to achieve blind equalization, we 
first discuss some results based on the CPL network. We introduce the fol- 
lowing: The nonlinear channel h(-) maps the input sequence x(n) G ft to 
y(n) — h(x(n), x(n - 1), • • •, x(n - 1 - p)) and the CPL equalizer aims to 
recover the input sequence by constructing a mapping heq : D —* ft where 
D C Rk and ft C R- Assume that the global system, cascade of the non- 
linear channel h(-) and the CPL equalizer heq(-) is denoted by T, and is 
modeled by a CPL network which divides the input space into m disjoint 
regions, Ri, R2, ■ ■•,iJra, and in each region Ri, the CPL function given in (1) 
is equivalent to the following linear model: 

Mi : x(n) = 'Y^wijxj(n) (8) 
j=i 

where Xj(n) = x(n — j + 1) and x(n) is the output of the equalizer. 

We then make the following assumptions: 

(i) Input sequence {x(n)} is an i.i.d. random process. 

(ii) The distribution of x(n) is symmetric about zero with finite variance. 

(iii) The mapping Mi, i = 1,2, ■■■,m is a one to one mapping, and 
ii n ij = 0. 

We then prove the following: 

Theorem 4: Consider the global system T defined by (8) and that the as- 
sumptions (i)-(iii) are satisfied. If the distribution of {x(n)} is the same as 
that of x(n), then, the global system T is identity except for a possible delay 
and a sign factor. 
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The proof of Theorem 4 is given in [1]. As we explained in section III, the 
RCPL filter is a special case of the CPL filter. Therefore, the result presented 
in Theorem 4 is also true for the RCPL filter. Hence, any nonlinear channel 
can be represented as a RCPL function, and furthermore, if we use a RCPL 
network as an equalizer, then, the global system which consists of cascade of 
the the channel and the equalizer is still a RCPL function. Thus, for blind 
equalization, we can update the weights of RCPL equalizer such that the 
instantaneous distribution of the output x(n) of the equalizer converges to 
the input distribution v. 

V. EXAMPLES 

1. Blind Equalization 

Several cost functions such as moment error cost function [8], Godard/Sato 
cost function [7], Vembu-Verdu's convex cost function [15] and partial likeli- 
hood cost function [1] can be used for distribution matching. Godard/Sato 
cost function is not a convex cost function, the derived blind algorithm may 
only find the local minimum. But, if proper initial weights are chosen, the 
algorithm can find the global minimum and the equalizer prediction error 
tends to zero. Thus, the resulting blind equalizer has larger stable margin. 
Vembu-Verdu's convex cost function can help the algorithm to find the global 
minimum for linear channel and the equalizer prediction error can quickly 
enter the decision boundary, however, it results in larger residual prediction 
error after convergence. In [11], a new equalizer structure is proposed by in- 
corporating RCPL network with decision feedback, and a blind algorithm is 
presented based on both the Godard [7] and Vembu-Verdu's cost function [15] 
for the RCPL network based equalizer. We first use Vembu-Verdu's cost func- 
tion in the learning process and then switch to the Godard cost function when 
the absolute gradient of Godard error changes are very slow. As an example, a 
nonlinear communication channel g(n) = gi(n) + 0.1gi(n) where the nonmin- 
imum phase multipath component is given by gi(n) — 0.96(n)+6(n — 1) is con- 
sidered in [11]. The input x(n) takes values form the binary set «S = {—1,1} 
and has a symmetric distribution. The simulation results given in [11] indi- 
cate that the blind algorithm which is derived based on combined Godard cost 
function and Vembu-Verdu's cost function exhibits good tradeoff in terms of 
robustness and achieving low equalizer prediction error. The developed blind 
algorithm is much faster than that derived based on the Godard cost function 
or the Vembu's cost function alone. Here, we only show the bit error curves 
of three cost functions in Figure 1. The RCPL network based decision feed- 
back equalizer outperforms the linear decision feedback equalizer and CMA 
equalizer when equalizing a nonlinear channel. 

2. Adaptive Equalization 

A simple RCPL network and corresponding learning algorithm is given in [10]. 
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Assume that y(n) is the channel output corresponding to the transmitted 
signal x(n) at time instant n. Let y(n) = [y(n), ■ ■ •, y(n - Mi + 1)]T be the 
input vector of RCPL network and x(n) be the output of network trained to 
approximate x(n). We choose the nonlinear function /*(•) of the RCPL filter 
shown in Figure 2 as 

to equalize the following channel: 

y(n) = W(n) + 0.02y,(n)2 + !?(n) (9) 

where the multipath component is given by yi(n) = x(n) + 0.bx(n - 1) + 
0Ax(n - 2), x(n) is the input signal, y(n) is the channel output, and r](n) 
denotes the zero mean, white noise component. 

Figures 3-5 compare the performance of the RCPL equalizer with that of 
the multilayer perceptron equalizer and the recurrent neural network (RNN) 
equalizer for 16-PAM, 8-PAM and 2-PAM signal transmission over the mul- 
tipath channel of (9). Here, RCPL equalizer has only 3 nodes (M = 3) and 
the MLP equalizer has 2 hidden layers with 11 nodes in each layer. The RNN 
equalizer has the the same number of nodes as the RCPL filter. Its activation 
function is a hyperbolic tangent function. The RNN equalizer is modified 
such that it has the same structure as the RCPL filter, that is, no activation 
function is used in its output layer and no delay is employed between the 
most recent output of channel and the output of the equalizer. This modified 
RNN structure gives much better results than standard RNN structure given 
in [8]. The variance of noise is 0.01 in all the simulations. As seen in this ex- 
ample, performance of RCPL equalizer which has piecewise linear activation 
function is much more superior to that of the MLP equalizer and it exhibits 
comparable performance with that of the modified RNN equalizer which uses 
hyperbolic tangent activation function. We also compare the performance of 
RCPL equalizer by using different learning rates in Figure 6. Th simulation 
results shows that the learning rate ai which corresponds to the linear part 
of RCPL equalizer (i.e, the filter with index 0 in Figure 1) plays an important 
role in the learning processing in that it controls the rate of convergence. The 
choice of learning overall rate at which corresponds to the nonlinear part (i.e, 
the filters with indices 1, • • ■, M in Figure 1) is more flexible than ax since the 
choice of order M is more important than that of the learning rate for this 
part. 
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Abstract 

We derive new unsupervised learning rules for blind sepa- 

ration of mixed and convolved sources. These rules are non- 
linear in the signals and thus exploit high-order spatiotempo- 
ral statistics to achieve separation. The derivation is based on 
a global optimization formulation of the separation problem, 
yielding a stable algorithm. Different rules are obtained from 
frequency- and time-domain optimization. We illustrate the 
performance of this method by successfully separating convo- 

lutive mixtures of speech signals. 

1    INTRODUCTION 

In the problem of linear square blind separation [1], one considers L indepen- 

dent signal sources Xi{t) (e.g., different speakers in a room) and L sensors 

yi{t) (e.g., microphones at several locations). Each sensor receives a mixture 
of the source signals. The task is to recover the original sources from the 

observed sensor signals. The separation is termed blind because it must be 
achieved without any information about the sources, apart from their statis- 

tical independence. 
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Blind Separation algorithms can have many applications in areas invloving 

processing of multi-sensor signals, such as speech enhancement (the 'cocktail 

party' problem) and the analysis and interpretation of biomedical signals 

(e.g., EKG, EEG [8]). Most of the separation methods that have been pro- 

posed aim at a simplified version of the problem where the mixing process 

is linear and instantaneous (memoryless). In that case we seek a separating 

transformation gij that, when applied to the sensor signals yi(t), will recover 

the sources, possibly scaled and permuted: xi(t) = V. gijVj(t). In particular, 

independent component analysis (ICA) algorithms [2-7] can identify g^ fast 

and efficiently in many cases. 

However, the mixing in realistic situations is not memoryless, due to multi- 

path propagation and the impulse response of the medium and of the sensors. 

The resulting 'convolutive' mixtures cannot be separated by ICA methods. 

In this paper we present a novel unsupervised learning algorithm for blind 

separation of linear, time-invariant mixtures with memory, termed dynamic 

component analysis (DCA). The separation in this case requires a transfor- 

mation with a dynamic impulse response g%j{t) (a matrix of filters), 

L   °° 

^)=£/<ftW02/j (*-0. (1) 
i=1o 

where Xi(t) are the recovered source signals. More generally, the signals yi(t) 

may be taken from any temporal multi-sensor data set; the new signals Xi(t) 

are termed the dynamic components (DC) of those data. 

Like the original sources, the DCs are characterized by their statisti- 

cal independence, and consequently by the property that their joint mo- 

ments factorize. In the time domain, this implies (xi(t)mXj(t + r)n) = 

(xi(t)m){xj(t + T)"), for i ^ j and all orders m,n at any time lag r; the 

average is taken over time t. Note that in contrast, the independent compo- 

nents found by ICA algorithms satisfy this property only for r = 0. 

In order to find the separating transformation gijit), one could impose 

the joint moment factorization as a condition on the resulting signals Xi(i). 

Rather than imposing it explicitly, which can practically be done only for 

low-order moments [14], an effective way to impose this condition implicitly 

and to all orders is to formulate the separation task as an optimization prob- 

lem via the use of a latent-variable model [10]. Specifically, we construct 

a model for the joint distribution of the sensor signals over iV-point time 

blocks, py[y(to), ...,y(tjv-i)], parametrized by the separating filter matrix 
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g(t0), ...,g(£/tf_i). Next, we define the 'distance' between our model sensor 

distribution and the observed distribution using the Kullback-Leibler (KL) 

distance [11], an information theory-based measure for the distance between 

two distributions. The model parameters are then optimized to minimize 

this distance by the stochastic gradient descent method, yielding the DCA 

learning rules for gij(t). 

This global optimization formulation of the problem can be given in either 

the frequency domain or the time domain. Section 2 presents the frequency- 

domain formulation and the associated learning rules, whereas the time- 

domain version is given in Section 3. The performance of DCA is illustrated 

in Section 4 by successfully separating convolutive mixtures of speech signals. 

Notation: we work in discrete time tn. Lower-case symbols are used for 

time-domain quantities and upper-case symbols for their frequency-domain 

counterparts. We use subscripts to refer to discrete times and frequencies, 

e.g., xn = x(tn) and Xk = X(tJk). Vectors and matrices are boldfaced. 

2    FREQUENCY-DOMAIN OPTIMIZATION 

Let xn be the L-dimensional model source vector, whose elements #,,„ = 
Xi(tn) are the source activities at time tn; these are the latent variables. Let 

yn be the L-dimensional model sensor vector. We work with Appoint time 

blocks {tn}, n = 0,...,N — 1. The two are related by 

M-l 

Xn =  2_j SmYn—m ,        Xfc = GfcYjfc , (2) 
m=0 

where the separating transformation gm is a matrix of filters of length M <C 

N, and G* = G(wjfc) is its iV-point DFT. We focus first of the frequency- 

domain formulation (r.h.s. of (2)) where the separation problem factorizes. 

To construct a model sensor distribution pydYk}) we must start with 

a model source distribution px({X-k})- We use a factorial frequency-domain 

model, 

L   N/2-1 

Px({Xk}) = f[   IJ   Pi,k(Xi,k), (3) 
t=i  k=i 

where Pitk is the joint distribution of ReX,^, ImX^fc. Prom (2) we obtain 

PY = Ylkdet(GkG'k)px, which depends on the separating parameters gm 

and the parameters used to describe Pj^ (see below). 
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Denoting the observed sensor signals by Y^, we now define a distance 

measure D between their joint distribution pY and our model distribution 

PY- For this purpose we adopt the KL distance function [11], which can be 

shown to satisfy D(PY,PY) = —HY - (logpy)y; the second term on the r.h.s. 

is evaluated by averaging logpy(F) using the observed distribution pY ■ Since 

HY, the entropy of the observed signals, is independent of the mixing model 

parameters, minimizing D is equivalent to maximizing the log-likelihood of 

the data, (logpy)y, with respect to gm. It follows that 

j   W/2-1   / L \ 

D(pY,PY) = --  Y,     logdetGfcGj + ^logP,,*     , (4) 
*=i   \ »=i / 

after dropping the average sign and terms independent of gTO. 

Before deriving the learning rules we make a few simplifications in the 

model (3) by omitting the frequency dependence of P^k and using the same 

parametrized functional form for all sources. In addition, we restrict P^k {^i,k) 

to depend only on the squared amplitude | X^k |2. These simplifications are 

made for convenience, but a more complicated parametrization can be used in 

situations where the actual source distribution depends non-trivially on the 

frequency or phase. Note that our model sources are white, in anticipation 

of the whitening effect discussed below. Hence Pi,k(Xi,k) — P(\ ^i,k |2;&)) 
where & is a vector of parameters for source i. For instance, P may be a 

mixture of Gaussian distributions whose means, variances and weights are 

contained in &. 

The frequency-domain DCA learning rules for the separating filters gm 

and the source distribution parameters & are now obtained using a stochastic 

gradient descent minimization of the KL distance (4): 

SGk    =   e [i - *(X*)XJ[] Gfc 

1 N,2~l a 
S&   =   eN £ ^-logP(l*,*l2;fc), (5) 

where <5gm are obtained from <$G;t by inverse DFT for 0 < m < M — 1 and 

are set to zero for m > M. The vector $(Xfc) above is related to the model 

source distribution by 

$(Xa;&) = -Xa —logP(a=| Xiik |2;&) . (6) 

The learning rate is set by e. 
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We point out that to derive the rule for gm we used Sgm = —edD/dgm, 

but since the resulting SGk required matrix inversion for each Wk at each 

iteration, we multiplied it by the positive-definite matrix Gj.Gfc to get the 

less expensive rule (5). It can be shown [9] that this rule indeed decreases D at 

each iteration in the small-e limit. Furthermore, it can be shown to satisfy the 

property of equivariance (see [6,7] for equivariant algorithms for instantaneous 

mixing), which guarantees uniform performance across all invertible mixing 

processes. 

We emphasize the importance of using a time block that is sufficiently 

longer than our model filters. As is evident in the frequency-domain for- 

mulation (r.h.s. of (2) and 5Gk rule of (5)), we are effectively solving N 

individual mixing problems, one at each Uk, and risk recovering the sources 

with different ordering permutation at different frequencies, possibly reducing 

the separation quality. The key point here is that these N problems (or N 

increments SGk) are not independent, since the minimization of the distance 

function with respect to the M time-domain coefficients gm couples them and 

solves them simultaneously. Consequently, to minimize the freedom of arbi- 

trary permutations by exploiting this coupling we must choose M -C N. Note 
that this difficulty does not reflect a limitation of any particular algorithm; 

rather, it is inherent to the convolutive mixing problem. 

3    TIME-DOMAIN OPTIMIZATION 

We now derive the learning rules for the separating filter matrix gm starting 

from the time-domain description (2). For the model source distribution we 

use the factorial form 
L   N-l 

Px({xm}) = II II Pi,m(,Xi,m) ■ (7) 
i=l m=0 

Using (7) together with (2), it is straightforward to derive the time-domain 

model sensor distribution py and its KL distance D to the observed distribu- 

tion Pyl 

1   JV-1   L 

D{Py,Py) = -logdetgo - — Y^ Ysl°gPi,rn • (8) 
m=0 i=l 

As in the frequency-domain case, we simplify the model (7) by omitting 

the im-dependence (assuming stationary sources) and using the same func- 

tional form for all sources, parametrized by the vector &. Hence Pi,m{xi,m) = 
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p(xi,m',£i)- Stochastic gradient descent minimization of the KL distance (8) 

yields the time-domain DCA learning rules: 

6Gk    =    e(g0T)-i_e-Ufc(x)Yt, 
'N 

JV-l i Pi 

m=0    s' 

where <5gm is obtained from SGk by inverse DFT. The vector \tfc(x) above 

is the DFT oiip{xm): *fc(x) = 5]e"iw'Xxm). The latter is related to the 
m 

model source distribution by the logarithmic derivative 

*l>(xi,m;(ii) = --Q-\ogp(a = xitm;£i) . (10) 

The 8Gk rule (9) is related to the rule derived in [12] (see also [13]) using in- 

formation maximization considerations. It is not equivariant and is therefore 

not as efficient as (5). 

4    SEPARATION OF SPEECH SIGNALS 

We illustrate the performance of DCA by applying it to a convolutive mix- 

ture of speech signals. We mixed two lOsec-long signals, obtained from a 

commercial CD at the original sampling rate of 44.1KHz and down-sampled 

to fs = 4.41KHz, by filters Äy',n> whose impulse response is displayed in Fig- 

ure 1. We then used the learning rules (5) and (9) to find the separating 

filters <7ij,n. The signals were processed in 512-point non-overlapping blocks, 

incrementing the separating filters after each block with e = 0.01. 

We used an exponential form for the model source distribution, p oc e~^x\, 

which approximates the distribution of the speech signals, as well as a large 

class of natural signals [15]. We also experimented with other distributions, 

such as the sigmoid-derivative form p oc e~^x/(l + e~^x)2 used in [3]. Note 

that for the frequency-domain rule it is necessary to scale the variance by N 

or, alternatively, to modify the DFT definition by y/N. 

To demonstrate that separation has actually been accomplished, we present 

the convolution (g • /i)y,n of the separating with the mixing filters in Figure 

2. In the case of time-domain separation (solid line) the non-diagonal filters 

(<7 * /i)i2,n and (g * /i)2i,n are strongly attenuated compared to the diagonal 

ones, whereas in the case of frequency-domain separation (dashed line) the 

opposite is true. Thus separation has been achieved by both learning rules, 

followed by an order permutation for the latter. 
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Figure 2: Convolution of the separating filters gij>n, obtained from time- 
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Note that the separation has modified the source power spectra, since 

for the diagonal solid-line filters {g * h)u,n # 0 for n > 0, and similarly for 

the non-diagonal dashed-line filters. This whitening effect results from the 

fact that a general convolutive mixing situation is defined only to within an 

arbitrary permutation and filtering of the sources, just as an instantaneous 

mixing situation is defined to within source permutation and scaling. This 

ambiguity is evident in the frequency-domain form of (2): indeed, the dis- 

tinction between the power spectrum of the sensor signals (| Yjtk |2) and the 

separating transformation Gy.fc cannot be made without prior information 

about the sources or the mixing situation. 

5    CONCLUSION 

In this paper we presented an optimization formulation of the problem of 

convolutive mixing, which allowed us to derive the DCA rules for learning 

the separating filter matrix from the observed mixtures in an unsupervised 

fashion. This formulation is advantageous since it results in a stable algorithm 

and facilitates a systematic derivation of time- and frequency-domain learning 

rules. 
The DCA learning rules are non-linear in the signals and require process- 

ing in N-point time blocks. Consequently, this algorithm exploits high-order 

temporal and inter-sensor statistics to achieve separation. The rules pre- 

sented here whiten the recovered sources; in [9] we show a way to avoid this 

by learning the source spectra as additional model parameters. Consequently, 

we must impose appropriate constraints on the mixing model to avoid the am- 

biguity mentioned above. To do that we derive learning rules for the mixing 

transformation. Those rules, however, do not satisfy the equivariant property, 

in contrast with the frequency-domain rules for the separating transforma- 

tion derived in the present paper; nevertheless, in addition to facilitating the 

imposition of constraints, learning the mixing filters has the advantage of re- 

ducing model complexity since they are usually shorter than the separating 

filters. 
Algorithms that solve the problem of blind source separation address, in 

fact, the more general need for an efficient tool for statistical analysis of tem- 

poral multi-variable data sets. We are currently using DCA to perform source 

analysis of auditory evoked potentials in magnetoencephalogram (MEG) mul- 

tichannel recordings [16], where this technique is capable of separating the 
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contributions to the sensor signals from different sources of neural activity 

that respond simultaneously to the stimulus. 
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Abstract 

The removal of noise from speech signals has applications ranging 
from speech enhancement for cellular communications, to front ends 
for speech recognition systems. A nonlinear time-domain method 
called dual extended Kaiman filtering (DEKF) is presented for re- 
moving nonstationary and colored noise from speech. We further 
generalize the algorithm to perform the blind separation of two speech 
signals from a single recording. 

INTRODUCTION 

Traditional approaches to noise removal in speech involve spectral techniques, which 
frequently result in audible distortion of the signal. Recent time-domain nonlinear 
filtering methods utilize data sets where the clean speech is available as a target sig- 
nal to train a neural network. Such methods are often effective within the training 
set, but tend to generalize poorly for actual sources with varying signal and noise 
levels. Furthermore, the network models in these methods do not fully take into ac- 
count the nonstationary nature of speech. In the approach presented here, we assume 
the availability of only the noisy signal. Effectively, a sequence of neural networks 
is trained on the specific noisy speech signal of interest, resulting in a nonstationary 
model which can be used to remove noise from the given signal. 

A noisy speech signal y{k) can be accurately modeled as a nonlinear autoregression 
with both process and additive observation noise: 

x{k)    = =    /(ar(*-l), ...*(*-M),w)-|-«(*) (1) 
y(k)    -- =    x{k) + n{k), (2) 

where x(k) corresponds to the true underlying speech signal driven by process noise 
v(k), and /(•) is a nonlinear function of past values of x(k) parameterized by w. 
The speech is only assumed to be stationary over short segments, with each segment 
having a different model. The available observation is y(k), which contains additive 
noisen(fc). The optimal estimator gi\en the noisy observations y (A;) = {y{k),y(k- 
!)>••• 2/(0)} is E[x(k) \y(k)]. The most direct way to estimate this would be to train 
on a set of clean data in which the true x(k) may be used as the target to a neural 
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network. Our assumption, however, is that the clean speech is never available; the 
goal is to estimate a; (Ar) itself from the noisy measurements y(k) alone. 

In order to solve this problem, we assume that /(•, •) is in the class of feedforward 
neural network models, and compute the dual estimation of both states x and weights 
w based on a Kaiman filtering approach. In this paper we provide a basic description 
of the algorithm, followed by a discussion of experimental results. 

DUAL EXTENDED KALMAN FILTERING 

By posing the dual estimation problem in a state-space framework, we can use Kaiman 
filtering methods to perform the estimation in an efficient, recursive manner. At each 
time point, the Kaiman filter provides an optimal estimation by combining a prior 
prediction with a new observation. Connor et al.[4], proposed using an extended 
Kaiman filter with a neural network to perform state estimation alone. Puskorious 
and Feldkamp [ 13] and others have posed the weight estimation in a state-space frame- 
work to allow for efficient Kaiman training of a neural network. In prior work, we 
extended these ideas to include the dual Kaiman estimation of both states and weights 
for efficient maximum-likelihood optimization (in the context of robust nonlinear 
prediction, estimation, and smoothing) [15]. The work presented here develops these 
ideas in the context of speech processing. 

A state-space formulation of (1) and (2) is as follows: 

x(Jfc)    =    F[x(k-1)] + Bv{k), 
y{k)    =    Cx(k) + n{k), 

(3) 

(4) 

where 

x(A-) 

x(ifc) 
x(k - 1) 

ar(*-Af+ 1) 

C= [ 1    0    •••    0 ] 

F[x(k)] = 

f(x(k),...,x(k 
x(k) 

x{k-M + 2) 

M+l),w) 

B = Cq (5) 

If the model is linear, then f{x{k)) takes the form wTx(Ar), and F[x.{k)] can be writ- 
ten as Ax(k), where A is in controllable canonical form. We initially assume the 
noise terms v(k) and n(k) are white with known variances <r% and <r£, respectively. 
Methods for estimating the noise variances directly from the noisy data are described 
later in this paper. 

Extended Kaiman Filter - State Estimation 

For a linear model with known parameters, the Kaiman filter (KF) algorithm can be 
readily used to estimate the states [9]. At each time step, the filter computes the linear 
least squares estimate x(k) and prediction x~ (k), as well as their error covariances, 
Px{k) and P% {k). In the linear case with Gaussian statistics, the estimates are the 
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minimum mean square estimates. With no prior information on x, they reduce to the 
maximum likelihood estimates. 

When the model is nonlinear, the KF cannot be applied directly, but requires a lin- 
earization of the nonlinear model at the each time step. The resulting algorithm is 
called the extended Kaiman filter (EKF), and effectively approximates the nonlinear 
function with a time-varying linear one. The EKF algorithm is as follows: 

£-(*)    =   F[x(*-l),w(*-l)] (6) 
TOT ,      dF\x,w] 

P7(k)    =   APi{k - l)AT + Ba\BT,     where    A =      ^ (7) 
x(* - 1) 

*(*)    =   P;{k)CT{CP7{k)CT + *l)-1 (8) 

P±(k)    =    (I-K(k)C)Pr(k) (9) 

x(k)    =   ir(k) + K{k)(y{k)-Cx-(k)). (10) 

Dual Extended Kaiman Filter - Weight Estimation 

Because the model for the speech is not known, the standard EKF algorithm cannot 
be applied directly. We approach this problem by constructing a separate state-space 
formulation for the underlying weights as follows: 

w(jfe)    =    w(*-l) (H) 

y(k)    =    /(x(*-l),w(*))+ »(*)+«(*), (12) 

where the state transition is simply an identity matrix, and the neural network f{x(k- 
1), w(Jfe)) plays the role of a time-varying nonlinear observation on w. These state- 
space equations for the weights allow us to estimate them with a second EKF. 

w-(jfc)       =       w(jfc-l) (13) 

P*(k)      =      P*(*-l) <14) 
K+(k)       =       PZiWikfiH^PT^lUky + al + al)-1 (15) 

P«(k)      =      (I-K«(k)H(k))Pr(k) (16) 

w(it)       =      w-(i) + if*(t)(j/(t) - CF(x(* - 1), w-(i))) ,   (17) 
CdF[x,w] 

where       H(k) = 
9w w(Ar - 1) 

(18) 

The linearization in (18) can be computed as a dynamic derivative [16] to account 
for the recurrent nature of the state-estimation filter, including the dependence of the 
Kaiman gain K(k) on the weights. The calculation of these derivatives is computa- 
tionally expensive, and can be avoided by ignoring the dependence of x(k) on w.1 

This approximation was used to produce the results in this paper. The use of the full 
derivatives is currently being investigated by the authors. 

1 This is equivalent to a single-step of backpropagation through time [ 16]. 
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Figure 1: The Dual Extend Kaiman Filter (DEKF). EKF1 and EKF2 represent the filters for 
the states and the weights, respectively. 

We now have EKFs for estimating both the states x and the weights w, resulting in a 
pair of dual extended Kaiman filters (DEKF) run in parallel (see Figure 1). At each 
time step, the current estimate of x is used by the weight filter, and the current esti- 
mate of w is used by the state filter. For finite data sets, the algorithm is run iteratively 
over the data until the weights converge. 

This approach to dual estimation is related to work done by Nelson [12] in the linear 
case, and to Matthews' neural approach [11] to the recursive prediction error algo- 
rithm [7]2. In the speech literature, the method is most closely related to Lim and 
Oppenheim's approach to fitting LPC models to degraded speech [10]. It also relates 
to Ephraim's model-based approach [6], but uses nonlinear estimation to fit the given 
data instead of using a fixed number of prespecified linear models. 

Nonstationary White Noise Experiment 

The result of applying the DEKF to a speech signal corrupted with simulated nonsta- 
tionary bursting noise is shown in Figure 2. The method was applied to successive 
64ms (512 point) windows of the signal, with a new window starting every 8ms (64 
points).3 Feedforward networks with 10 inputs, 4 hidden units, and 1 output were 
used. Weights typically converged in less than 20 epochs. The results in the figure 
were computed assuming both a\ and (T\ were known. The average SNR is improved 
by 9.94 dB, with little resultant distortion. We also ran the experiment when v\ and 
al were estimated using only the noisy signal. This also produced impressive results, 

2 An alternative approach is to concatenate both w and x into a joint state vector, and apply the EKF to 
the resulting nonlinear state equations (see [7] for the linear case, [ 17] for application to recurrent neural 
networks). This algorithm, however, has been known to have convergence problems. 

3 A normalized Hamming window was used to emphasizes data in the center of the window, and deem- 
phasize data in the periphery. The standard EKF equations are also modified to reflect this windowing in 
the weight estimation. 
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Clean Speech 

Noisy Speech 

Cleaned Speech 

Figure 2: Cleaning Noisy Speech With The DEKF. The speech data was approximately 
33,000 points (4 seconds)long. Nonstationary white noise was generated artificially and added 
to the speech to create the noisy signal y. 

with an SNR improvement of 8.50 dB. In comparison, available "state-of-the-art" 
techniques of spectral subtraction [3] and adaptive RASTA processing [1] achieve 
SNR improvements of only .65 and 1.26 dB, respectively. 

Colored Noise 

For most real-world speech applications, we cannot assume the noise is white. For 
colored noise, the state-space equations 3 and 4 need to be adjusted before Kaiman 
filtering techniques can be employed. Specifically, the measurement noise process is 
given its own state-space equations, 

n(*)    =    Anii(k - 1) + Bnvn{k) 

n(k)    =    Cnn(k), 

(19) 

(20) 

wheren(Ar) isavectorof lagged values of n(k),vn(k) is white noise, An isasimple 
state transition matrix in controllable canonical form, and Bn and C„ are of the same 
form as B and C given in (3) and (4). Note that this is equivalent to an autoregressive 
model of the colored noise, which may be fit from a small section of signal where the 
speech is not present. 

With this formulation for the colored noise, it is straightforward to augment both the 
state x(k) and the weight w(fc) with n(fc), and write down combined state equations. 
Specifically, (3) and (4) are replaced by: 

n(*) J 
F[x(&-1)] 
Ann(k - 1) 

x(fc) 

+ B 
0 

0 
Bn 

v(k) 
Vn(k) 

[C   Cn] 
n(*) 

(21) 

(22) 
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and (11) and (12) are replaced by: 

w(A) 
Ln(fc) 

/     0 
0     An 

W(jt - 1) 
n(*-l) + 0 

Vn{k), 

y(k)    =   /(x(ft-l),w(*)) + C„n(*) + v(k). 

(23) 

(24) 

The noise processes in these state-equations are now white, and the DEKF algorithm 
can be used to estimate the signal. Note, the colored noise explicitly affects not only 
the state estimation, but also the weight estimation. 

Clean Speech 

HuHiin i »■ »MM. 

Noisy Speech 

Cleaned Speech 

Figure 3: Removing Colored Noise With The DEKF. The speech data is 3,500 points long. 
An actual recording of stationary colored noise was added to the speech to create the noisy 
signal y. 

An actual recording of cellular phone noise was added to a speech signal to produce 
the data shown in Figure 3. The noise was modeled as an AR(10) process to deter- 
mine An and (j\n using a segment of the data (512 points) where no speech is present. 
The results in the figure reflect assumed knowledge of a\, and showed an average 
SNR improvement oi5Hl dB. When <r\ is estimated, the SNR improvement is 5.71 
dB. In this case, spectral subtraction and adaptive RASTA processing produced com- 
parable SNR improvements of 4.87 dB and 5.27 dB, respectively. 

MONAURAL BLIND SIGNAL SEPARATION 

If the additive noise is colored and highly nonstationary, the distinction between what 
is signal and what is noise becomes somewhat arbitrary. For this reason, we con- 
sider the observation y(k) = x(k) + n(k) to represent the addition of two signals 
y(k) = xi(k) + x2(k). We simply treat the noise itself as an additional signal that 
must be estimated. This is a form of blind signal separation, in which, for exam- 
ple, the signals result from the mixing of speakers. The problem differs from recent 
methods in the literature [2] for blind signal separation in which M signals must be 
separated from M observations by learning a fixed "inverse weighting" matrix. In- 
stead, we are interested in separating two or more signals from a single (monaural) 
observation. 

Previous work on monaural signal separation has primarily been based on harmonic 
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selection and pitch tracking in the frequency domain [5]. In contrast, we estimate 
each signal by learning a set of short-term models which best separate the signals. 
Extension of the DEKF framework is straightforward. Specifically, we formulate 
state equations containing xi (k) and X2 (k) 

xi(*) 
x2(k) J 

y(k)    =    [Ci  C2] 

Fiix^k-1)] 
F2[x2{k-l)) 

*i(*) 

+ 0 
0 

B2 

vx(k) 
v2{k) 

x2(k) 

(25) 

(26) 

These equations are analogous to the colored noise formulation (22) and (21), where 
n is replaced by x2 and has corresponding nonlinear model F2 with parameters w2. 
To estimate the weight parameters wi for the neural network i*\ associated with xi 
we form the state equations 

x2(&) 

M 

Wj(fe-l) 
F2[x2(k - 1]) + 0 

B2 
v2(k), 

MMk-^),^i(k)) + C2x2(k) + V!(k), 

(27) 

(28) 

where the state x2 is included so that the associated noise process is white (compare 
to (23) and (24)). Finally, for estimating the second set of weight parameters w2 for 
F2 associated with x2, we add a third set of state equations 

w2(Ar) 
xi(*) 

w2(t-l) 
Fi[xa(*-1]) + 0 

Vi(k), 

y(k)     =     /2(X2(*-l)>W2(*)) + ClX1(*)   +   v2(k). 

(29) 

(30) 

It is straightforward to show that given a known (linear) model for each signal, both 
x i (k) and x2 (k) are observable from the additive observation y(k). However, show- 
ing that model parameters may be jointly learned from the observations alone is a 
much more difficult problem. Nevertheless, some simple preliminary experiments 
have been performed which indicate the potential of this approach. Figure 4 illus- 
trates the blind separation of two segments of speech (male /s/ and female /el/) 
which have been added together and then separated in this manner. While encourag- 
ing, the approach should be viewed as only a starting point to a model based frame- 
work for approaching blind signal separation problems. 

ESTIMATING NOISE VARIANCES 

In the implementation of the DEKF, it is assumed that the variances of v (k) and n (k) 
in (3) and (4) are known quantities. In practical applications, however, the noise 
variances must be estimated from the noisy data. We have investigated several ap- 
proaches for doing this in the speech processing domain. 

Additive Noise Statistics: Assuming stationarity of the additive noise, the noise vari- 
ance (?n (or its full autocorrelation) may be estimated from segments of the data y(k) 
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Segment of Combined Speech — Monaural Recording 

Blind Estimate of Female Speech 

Figure 4: Blind Separation. Top figure shows the combined signal supplied to the algorithm. 
In the bottom two figures, the original speech is shown with a dashed line, and the estimated 
signal with a solid line. 100 data points are shown. 

that do not contain speech. For slow variations in the noise statistics, Hirsch [8] has 
proposed an approach based on histograms of spectral magnitudes which does not 
require explicit segmentation of the data into speech and non-speech segments. 

For rapidly changing noise (e.g., background chatter, wind noise, and artifacts in- 
troduced by automatic gain control) we are interested in short-term estimates of the 
noise statistics for each window of noisy speech data. An approach we have devel- 
oped for nonstationary white noise sources re-estimates <?\ as follows. First, we note 
that the optimal weights for the linear estimator 

M 

*(*) = Yl w>y(k ~ 0 = wTy(*)> 
j=0 

may be expressed as 

w* = Ky{ryy - flrjiei), 

(31) 

(32) 

where Ryy is the sample autocorrelation of the noisy speech, and e\ = [1 0 • • • 0]. 
Next, we choose cr\ in (32) such that w leads to a minimum variance estimator. We 
have shown that this provides an upper bound on cr\. Starting at this upper bound, a\ 
is iteratively decreased until WQ > W{ Vi ^ 0, which forces the current observation 
to have the greatest influence the estimator output relative to other observations. A 
new a\ is then re-estimated for each short-term window. This technique was used 
for the results given with the nonstationary white noise experiment. 

Process Noise Variance: To estimate <r^ (assuming an LPC model for the signal), 
Lim and Oppenheim [10] used an expression for the inverse Fourier transform of the 
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signal power (which is a function of cr2,). We have developed an alternative approach 
by noting that the process noise variance u\ can be estimated as the mean squared 
error of a linear AR predictor on the clean data x(k)4. Specifically, 

~2 _ „1     _T R-1„ 
"v —* "x ~~ Vxx^xxVxxi 

where pxx is the cross-correlation between the lagged input vector x(k - 1) and the 
current x (k), and Rxx is the autocorrelation of the inputs. In our setup, only the noisy 
signal y[k) with prediction residual a\ + a2

n - P^R^Pyy is available. We can 

approximate <r2x - p^Rjip** using: 

Ö-^ = CTy-Ö-^, pxx — Pyy - pun, Rxx = Ryy - R-nn- (33) 

This results in the following estimate: 

t^i&l-^-pXpxx. (34) 

Note that when n(k) is white, the terms in (33) simplify because p„„ = &„ei and 
R„n = b\I, where the additive noise variance is estimated as above. 

While these "ad-hoc" methods were used in the experiments reported in this paper, 
estimating the noise variances remains a critical area for future work. Our current di- 
rection is to treat a2 and a2

n as additional parameters which may be optimized within 
the Kaiman and maximum-likelihood framework. 

CONCLUSION AND FUTURE WORK 

We have presented a DEKF algorithm with preliminary results on its application to 
speech enhancement in the presence of both nonstationary and colored noise. The 
approach performs significantly better than the current state-of-the-art on the reduc- 
tion of nonstationary noise, and performs well on colored noise problems as well. 
In addition, the application of the approach to monaural blind signal separation was 
considered as a special case of the nonstationary colored noise problem. 

Future work will include additional approaches to variance estimation, as well as the 
coupling of error statistics, windowing aspects, recurrent training implications, and 
forward-backward methods for smoothing. An additional aspect that is currently un- 
der consideration is the minimization of both prediction and estimation errors by the 
weight filter. While the current implementation minimizes only prediction error of 
the model, the full errors in variables cost function [14, 15] can be minimized by 
a two-observation form of the weight filter. This refinement will be discussed in a 
future paper. 
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Bayesian Ying-Yang Learning Based ICA Models* 
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ABSTRACT 
It has been shown that a particular case of the Bayesian Ying-Yang 

learning system and theory will reduce into a very general ICA frame- 
work. It not only includes the existing information-theoretic ICA ap- 
proaches as particular examples, but also improve their performances, 
extend them to handle the cases that sensors are affected by noises and 
outliers and cases that the number of sensors is larger than the number 
of sources, and also be able to detect the correct number of sources. 
Algorithms are developed for implementing this ICA framework both 
in its general form and in its simplified versions for two important 
special cases, supported by some theoretical results and experimental 
demonstration. 

1. Introduction 
Recently, Independent Component Analysis (ICA) has received increasing 

attention with many applications [1]. Here, we consider a widely used for- 
mulation for the ICA problem. Given that there are n channels of unknown 
source signals s = [s\, • • •, sn]T which are mutually independent with Es — 0. 
The observations from n sensors are given as x = A0s with A0 being an n x n 
unknown nonsingular mixing matrix. The objective is to find a so-called de- 
mixing matrix W such that 

y = Wx = WA0s = Vs,    V = WA0 = YID (1) 
with n being a permutation matrix and D being a non-singular diagonal ma- 
trix. That is, y recovers s up to unknown scales and a permutation of indices. 
Theoretically, we can get such an W as long as it makes {j/i, • • •, y«} mutually 
independent when there is at most one signal in [si,---,sn]T is gaussian, 
which motivated the name [1,2]. A recent popular stream for the problem is 
called information-theoretic approach. One idea is the minimization of the 
mutual information (MMI) J{W) = fyp(y)lnp(y)/Ttf=1 p{v.)dy because J{W) 

is the minimum when {yi, • • •, J/n} mutually independent [1,2,3]. The other 
idea is to maximize the entropy (Informax) J{W) = - Jzp(z)\np(z)dz with 

z = [pi(s/i),---,pn(3/n)] [4]. Both are shown to be special cases of a general 
ICA framework and are equivalent when the accurate Pi{yi) is available [9]. 
However, the accurate pj(y,-) is difficult to get. In [2,3], it is approximated 
by a pre-fixed truncated Edgeworth series or truncated Gram-Charlier series. 

In [4], it is simply fixed at pre-given densities ptiy,) = ^^ with s(j/») being 
one of those sigmoid functions used in the literature of neural networks, and 
understandably such an idea will only work for some special type of source 
signal (e.g., super-gaussians). In [10], a new strategy is suggested, in which 
PiiVi) is no longer prefixed but learned via a flexible density function based 
a finite mixture of densities. It has been shown experimentally that this new 
method can work well in not only the examples that the methods in [1,3,4] 
work, but also the examples that the methods in [1,3,4] fail. 

•Supported by This project was supported by the HK RGC Earmarked Grants 
CUHK250/94E, CUHK484/95E, and Ho Sin-Hang Education Endowment Fund HSH 
95/02. Email lxu@cs.cuhk.hk 
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The present author has a strong belief that the direction of trying approxi- 
mates pi («/,•), though justified, is over-necessary. Therefore, in [9] the marginal 
density p,-(j/,-) was actually replaced by a general integrable function #;(yj), 
while what kind of this function should be remained unclear. In [11], some 
examples of g,{yi) that is able to implement ICA under certain conditions 
have been further given with theoretical analyses. Of course, not every of 
9i{yi) can success in ICA, the workable </,-(j/,-) must come from a family Q. 
However, what kinds of properties this family should bear still remain as open 
a question. 

In recent years, a so called Bayesian Ying-Yang (BYY) Learning system and 
theory has been developed as a unified statistical learning approach, which can 
provide us at least four types of new strengths [5,6,7,8]. First, it is able to unify 
most of the existing major statistical learning models and theories. For examples, 
for unsupervised learning they include ML learning with the EM algorithm, in- 
formation geometry theory with the em algorithm, MDL autoencoder, Helmholtz 
machine, independent component analysis (ICA) by INFORMAX or MMI, LMSER 
learning, principal component analysis (PCA), various clusters and self-organizing 
maps; and for supervised learning they include the conventional ML learning (i.e. 
BP algorithm) for feed-forward network, ML learning for RBF nets, mixture of 
experts and its alternatives. This powerful unification provides us not only deep 
insights on these mentioned popular existing approaches but also further guidances 
on obtaining their new variants or extensions via cross-fertilization. Second, some 
special cases of the BYY Learning bring us several interesting new models on both 
unsupervised and supervised learnings, which deserve further investigation. Third, 
the BYY Learning theory can function as a general theory not only for parameter 
learning , but also for model selection (or more precisely called structural scale 
selection), e.g., for selecting subspace dimension, number of clusters, number of 
gaussians, number of experts, number of hidden units, etc. Finally, this same 
theory can also function as a general theory from regularization and architecture 
evaluation. Readers are referred to [5,6] for a rather systematic review on previous 
results and several new advances. 

In this paper, we show that a particular case of the BYY learning system 
and theory will reduce into a very general enhanced information-theoretic 
ICA framework with several new powers. After briefly introducing the BYY 
learning system and theory in Sec.2, we propose this ICA frame work in 
Sec.3. Then, in Sec.4 the gradient-based ICA algorithms are developed in 
its general forms and two detailed implementations. In Sec.5, the algorithms 
for two important special cases are investigated in details with three impor- 
tant theorems. Finally, in Sec.6 an variant ICA algorithm is proposed and 
demonstrated to be more robust for outliers. 

2. BYY Learning System and Theory 

The perception tasks can be summarized into the problem of estimating 
joint distribution p(x, y) of the observable pattern x in the observable space 
X and its representation pattern y in the representation space Y, as shown 
in Fig.l. We call a passage My\x for the flow like x -> y a Yqng/(male) 
passage since it performs the task of transferring a pattern/(a real body) 
into a code/(a seed). We call a passage Mx\y for the flow y —> x as a 
Ymfif/(female) passage since it performs the task of generating a pattern/(a 
real body) from a code/(a seed). My\x and Mx\y are complement to each other 
and together implement an entire circle x —> y —> x. Interestingly, under the 
Bayesian framework we also have two representations p(x,y) = p(y\x)p(x) 
and p{x,y) = p(x\y)p(y). We use a Yang/(visible) model Mx representing 
p(x) (i.e., modeling the space X), and we use a Ying/(invisible) model My 

representing p(y) (i.e., modeling the space Y). Moreover, My\x is represented 
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Figure 1    The joint spaces X, Y and the YING-YANG System 

by PMy]x{y\x) and Mx\v bv PMx{y(x\y). Together, we have a YANG machine 
Mi = {My\x,Mx} -to implement pMl{x, y) = PMylx{y\x)PMx(x) and a YING 

mächine M2 = {Mx\y,My} to implement PM2(x,y) = PMxh(x\y)pMy(y)- A 
pair of YING-YANG machines is called a YING-YANG pair or a YING- 
YANG system. Such a formalization compliments to a famous Chinese an- 
cient philosophy that every entity in universe involves the interaction between 
YING and YANG. 

The task of specification of a Ying-Yang system is called learning in a broad 
sense. First, we need to specify the variables x,y. Usually, x is assumed to be 
x e Rd. But y can be an y € Rkr, an integer y G [1, 2, • • •, kr] and a binary 
y = [yi, • • •, Vkr], Vi € [0,1], where kT represents the scale or complexity of repre- 
sentation. Next, we specify four components PMX{X), PMy[x(y\x), PMx\y{x\y) and 
PMyiv)- Generally speaking, each of them is specified by three parts. The first 
part is called Architecture Design, denoted by Sa, consisting of the general setting 
on (a) its density function form p (.), (b) one or several types of basic structural 
units and (c) an architecture for organizing a number of these structural units. The 
second part is called model selection or more precisely Structural Scale Selection 
for selecting scale parameters k = [kr, kb

a] which consists of the above representation 
scale kT and the scale or complexity kb of those more complicated basic structural 
units themselves. The third part is called Parameter Learning or Estimation, also 
often called learning simply in a narrow sense, for specifying a particular value of 6 
— a set of real variables on certain domain. Together, for each a € {x, x\y, y\x, y}, 
each Ma = {Sa,Oa,k} is specified only after all its three parts are specified. Some 
examples are given in [7] to this formalization better. 

Our basic theory is that the specifications of the three levels, 
namely Architecture Design, Structural Scale Selection and Parameter Learn- 
ing should best enhance the so called Ying- Yang Harmony or Marry, through 
minimizing a so called separation functional: 

Fs(Mi,M2) = Fs(pMyix(y\x)PMx(x),PMxly(x\y)PMy(y)) > o, 
Fs(Mi,M2) = 0, if and only if PMy\x(y\x)PMx{x) = PMx]y(x\y)PMy(y), (2) 

which describes the harmonic degree of the Ying-Yang pair. Such a learning 
system and theory is called as Bayesian Ying-Yang (BYY) Learning System 
and Theory. 

Three categories of separation functionals, namely Convex Divergence, Lp Di- 
vergence, and De-correlation Index, have been suggested in [6]. The Convex Diver- 
gence is defined as 

FS(PI,P2) = /(I) - SxPi(x)f(^^)dx ^ °> f(u) is a strict convex °n (°>+00)> (3) 
from which we get Fs(Mi,M2) by substituting pi with pMy]x(y\x)pMx(x) and p2 

with PMX,  (x\y)pMy(y)- Its three typical examples are given as follows: 
(a) /(u) = In u, which leads us to the Kullback Divergence: 

KL{MUM2) = jXtyPMy,M
x)PMx(x)^pM^y)pMy(y)dxdy. (4) 

In the special case, the BYY learning is called Bayesian-Kullback YING-YANG 
(BKYY) learning. It is a most useful case and has been extensively studied [5,6,7,8]. 

(b) f(u) = —uß,ß > 1, called as Minus Convex divergence. 
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(c) When f(u) = w^,0 < ß < 1, we called as Positive Convex (PC) divergence. 
Interestingly, when ß = 0.5, it leads to a Root-Inner-Product (RIP) divergence 

Fa{pi>P7.) — 1 — / \/Pi(x)p2(x)dx, which has a nice symmetric feature that the 
Kullback divergence does not have. 

From the BKYY learning eq.(4), we can obtained those four new strengths 
mentioned in Seel for unsupervised learning. Moreover, by replacing the Kullback 
divergence eq.(4) with the above mentioned other non-Kullback separation function- 
als, we can obtain various alternatives for those Kullback divergence based learning 
models, with some new interesting properties (e.g., robust learning), we call them a 
Bayesian Non-Kullback separation functionals Ying-Yang (BNYKK) learning. Also, 
the BYY learning eq.(5) can be extended into a more general BYY learning system 
such that those four new strengths mentioned in Seel for supervised learning can 
also obtained [12,13], both for the cases that the Kullback divergence eq.(l) is used 
and for the cases that those non-Kullback separation functionals are used. 

In the rest of this paper, we will only concentrate on a particular case of 
the BYY learning system and theory that leads to ICA problem. 

3. General BYY ICA Framework and BKYY ICA Scheme 

We modify the problem eq.(l) into a more general case that sensors are 
affected by noises and the number m of sensors may be larger than the number 
n of sources. That is, 

x = As + ex,s = y + ey, y = Wx, m > n, (5) 
where the dimension for y, s vectors is n and for a; ism, also we have that 
.Es = 0, the m components of ex are mutually independent with Eex = 0 and 
also independent of s, and thus also Ex = 0, Ey = 0 and Eey = 0. 

Here we consider that the Ying space is for s and the Yang space is for x. The 
Yang density is PMX (x) = p(x) which can be estimated from the data by sensors. 
The Ying density is unknown exactly, but we can assume that PM,{S) = g(s,6) = 
Yl"=19i(3i,6i) with gi(si,di) being of simple density function form specified but 
8i is variable in © that actually represents the family Q. The Yang passage s = 
y + ey, y = Wx is described by a density PM,\X{S\X) for the random variable ey 

under each given x (thus y). The Ying passage x = As+ex is described by a density 
PMxfs(x\s) for the random variable ex under each given x.   Furthermore, we can 

assume that ex is from gaussian G(ex,0,a2I), and thus PMX<$(X\S) = G(x,As,a2I). 
Moreover, the fact s = 14Ms + Wex + ey suggests that a reasonable case is 

WA = I,    and thus A = W~ = WT(WWT)-1, ey = -Wex. (6) 
Thus, PMX],(X\S) = G(x,W~s,(T2I), and ey is a gaussian G(ey,0, WWT<j2I) and 
independent of a;. 

In summary, we have specified the architectural design as follows 
PMx(x) = P(x), PMS^{S\X) = G(s,Wx,<r2WWT), 

PMxU(x\s) = G(x,W-s,<T2I),pMs(s) = g{s,6) = ]J"=1 gi{si,ei). (7a) 
Next, according to the Ying-Yang learning theory, we specify the remaining 
un-specified items, namely, (a) the structural scale k = kr = n, i.e., the num- 
ber of sources; (b) a2; (c) W; and (d) 0, via eq.(2) to minimize Fs(Mi, M2): 

{W ,<r*2 ,n* ,9'} = arg min{w^nee@} J(W,a2 ,n,6), 

J(W,a2,nJ) = Jx sFs(G{s,Wx,<T2WWT)p{x),G(x,W-s,<T2I)g(s,6))dxds.        (76) 

which is called BYY ICA framework. Particularly, when the Kullback diver- 
gence eq.(4) is used, it is simplified into 

{W,cr*2,n',et} = argmm{Wi<T2intgee} J(W,a2,n,$),     J{W,a2,n,e) = 

JxsG(s, Wx, a2 WWT)P(x) in %'^f^i^ ^ & 
Which is called BKYY ICA Scheme. Due to the space limit, the theoretical 
justification of eq.(7b) and eq.(8) is given elsewhere [14]. Theoretical jus- 
tification for special cases will be given in Sec.5.   From eq.(8), we see that 
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{W,<T2,n,6} should be irrelevant to the term  f p(x)lnp(x)dx and thus can be 
omitted. As shown in details in [14], we can equivalently re-write eq.(8) into 

Js(W,<T2,n,e) = 0.5[(m-n)ln<T2 - In \WWT\ + m - n] + EJa{x,W,a2, 6), 
JG(x,W,o2,e) = -fsG(s,Wx,<72WWT)\ng(s,6)dS,    g(s,$) = f\^=1 <?;(*;,<H 
{W*,e*n} = argmm{Wiee@}Js(W,a2,n,e)l   s.t.    a2 = ^E\\x - W~Wx\\2 

<2 = ^E\\x- W'-W^xW2,     n* = argminn J(n),     J(n) = Js(W*,an
2, n, B*n).  (9) 

With this BKYY ICA scheme, the best parameters W*,6„,<jn
2 are es- 

timated for each given n, and then a best number n* of sources is found 
via n* = argminn J(n) with the corresponding W*.,9^,,cr^2, as the final best 
estimations. 

4. The Gradient-Based Algorithms for The BKYY ICA 

To practically implement BKYY ICA, the key is how to to get W*,6n,an
2 

for each given n. Here, we adopt the gradient-based method. For simplicity, 
we will omit the subscript n in any cases without confusions. 

First, we consider JQ(X,W,a2 ,&) by Taylor expansion of lng(s,ö) around 
y = Wx, and then use the expansion to do the integral: 

Ja{x,W,<r2,e) = - fsG(s,Wx,cr2WWT)lng{s)ds 
= -[lng(Wx,9) + \<r2tr(DhWWT) + o(a2)], 

h(s>9)=a9{g(f?e)aS,    Dh = dh(s,6))/deT. (10a) 
For simplicity, we approximately just use the first term — \ng(Wx, 8) which is valid 
when <T2 is small. Therefore, we have 

dJG(x,W,a2(W),8)/dW = -h(Wx,9)xT. (106) 
Next, we have that   <r2 = -*— E\\x - W~Wx\\2 = 

= tr[Rx] - tr[RxW
T(WWT)-1W],    Rx = E(xxT), 

dw = ^2(W"M/T)-1[WHI - WRxW
T(WWT)-lW}. 

Together with   din]^vT] = 2(WWT)-lW , it follows from eq.(9) that 

Therefore, we can get the following general forms of both the batch way 
and adaptive gradient algorithms for updating W, cr2 with a stepsize n: 

AW = -rf{&W2 - (WWT)~1W - E[h(Wx,e)xT]}, 

A   2 = (WWT)~1 wR*-wR*wT(wwT)-1w 

a2 = ^^E\\x - WT(WWT)-1 Wx\\2. (11) 
AW = -r,{AW2 - (WWT)~1W -h{Wx,e)xT], 

„new 2 _ „old 2 + ^-JL-\\X - WT(WWT)-1Wx\\2. (12a) 

Similarly, we can get the general forms of both batch way and adaptive 
algorithms for updating 0 by 

M = r,Eain9%r*W,    Afl = „elny^. (126) 
Thus, our gradient algorithm can be summarized as an iterative process 

that in each iteration both eq.( 11) and eq.(12b) are used for updating W, a2 

and 6. As well known, as long as the learning stepsize controlled appropri- 
ately, a gradient descent iterative process will guarantee to converge to at least 
a local minimum of Js(W,a2,n,9). So, our iterative process is guaranteed to 
converge, and then we use the converged results as our estimates W*,6n,an

2. 
To get further detailed algorithms, we focus on two types of g(s, 6) family. The 

first one is the finite mixture of parametric densities 

e = [\l-..,\g]T,   P(S\\J) = YI"=1P(^J,')' (13a> 
where p(si\\j,i) is some simple density function. In this case, we have 

480 



p(ik)=E£fSfei' «'=■/>(*>*■ (i36) 
For a gaussian   p(s\\j) = G(s, 0,Aj) with Aj   being a diagonal matrix , we have 

Ms, A,) = -AT1,.-,     **$*'.') = -ip(i|s)[A-' _ AjiWxxTwTAJ*]. (14) 

Thus, putting them into eq.(12), we get the batch way gradient algorithm: 
AW = -V{AW, - {WWT)-iW + £«=1 AJ1WE(p(j\Wx)xx^)}; (15o) 

"j = fPh{x)pU\Wx)dx,    Aj■ = WE[p(j\Wx)xxT]WT. (15c) 
Actually, the algorithm for 6 by eqs.(15b&c) is the so called EM algorithm. Also, 
with eq.(15b) still the same, we have the adaptive algorithm given by 

AW = -T,{*W, - (WWT)^W + J2P
]=1 AJ

1
PU\WX)XX

T
}, (16a) 

<x?ew = afd + VPÜ\Wx),    A>>"» = Afd + np(j\Wx)WxxTWT. (166) 

The second Q family is called 4-th order exponential-polynomial family: 

g(s,9) = c0
1exp(p(s)),    sk = [sk,---,sk]T,k = 2,3, (17) 

where A*, fc = 2, 3,4 are diagonal matrices, which are prefixed such that the follow- 
ing condition holds: 

c0 = Js exp(p(s))ds < co,      f sg(s, 6)ds = 0. 
Thus, from eq.(12), we can get the algorithm for updating W: 

AW = -v{Awi - (WWT)~iW + EUA-1 Wx - A~l(WxY + A~l (W xf}xT}}.    (18) 
Also, from eq.(lOa) we have that for k = 2,3,4 

aing(s,6)   _        _l den    .    dpls) l  . —1 r      c     I     „N   k   T ,     .     t   T, . -1 
ÖA,       - -co    SA^ + -SAT = I

A
A   [-J39(s,0)sksTds + sks

T]Ak
1. 

Unfortunately, the gradient is difficult to be used since    f g(s, e)sksTds is difficult 
in computation, although it is well denned. So, Ak,k = 2,3,4 is prefixed above. 

5. BKYY ICA in Two Special Cases 

The first special case is that there is no noise, i.e., x = A°s° with e°x = 0. 
The algorithms given in Sec.4 still works here with an interesting property. 

When m ^ n, from the fact (m - n)a2 = E\\x - W-Wx\\2tr[E(s°soT)A^(I - 
W~W)T(I- W~W)A0], and the fact that E(s°soT) is diagonal, we have that ß = 0 
if and only if tr[Ä£{I - W~W)T{I - W~W)A0] = 0 or equivalent^ (7 - W~W)A0 = 
(I - WT(WWT)~1W)A0 = 0, which is true if and only if the space spanned by Aa is 
contained in the space spanned by W. In other words, A0 = WTB with n > nQ and B 
is an n X n0 matrix. In this case from eq.(9), we know a2 = 0, WA0E{s°s°T)BTW- 
WA0E(s°soT)BTW = 0. Thus, in eq.(9) we have Ja(x, W,<r2, 6) -> -co, and in eq.(ll) 
and also in the subsequent related equations we have WRX - WRxW

T(WWT)-iWa2 

undefined. Apparently, our method can not normally work here. 
In fact, this is just an interesting property for fast detecting the number 

n0 of sources in the situation without noise affects. In other words, for each 
n we can run any of our algorithms in Sec.4 until either normal convergence 
or a2 = 0, and then we can get the correct n0 by simply increasing from the 
lower side to n0 until <r2 becomes zero ( or very small) or from the upside to 
n0 until <r2 is no longer regarded as zero. 

After we get this n0, we can simply drop the term (m - rc)ln<72 in eq.(9). 
Moreover, since a2 = 0, Js(W,a2,n, 6) = -lng(Wx,e) by eq.(10a) is exact without 
any approximation anymore. Thus, eq.(9) becomes 
Js(W,e) = -0.5ln\WWT\- E\ng(Wx,e),     {W ,9*} = argmm{WtBe@} JS(W, 6). (19) 

and eq.(12a) becomes the following eq.(20) with eq.(12b) used still for 6: 
AW = V{(WWT)~1W + E[h(Wx,6)xT}},   AW = v[(WWT)-iW + h(Wx,6)xT]   (20) 
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Also, for the Q given by eq.(13a), we have that eq.(15a) and eq.(16a) become the 
following eq.(21) with eq.(15c) and eq.(16b) used still for 6, respectively: 

AW = r,{(WWT)-lW - Y,]=i kJX WE[p{j\Wx)xxT]}; 

AW = r1[(WWT)-1W - £J=1 AJ1Wp(j\Wx)xxT]. (21) 

Furthermore, for the Q given by eq.(17), it follows that eq.(18) becomes: 
AW = r,{(WWT)-1W - £[{A-X Wx - A'1 (Wx)2 + A4

_1 (Wxf}xT}}. (22) 

In the above first special case, if we further let m = n — n0, we get the second 
special case. In fact, it is the case given by eq.(l) that has been widely assumed in 
the literature. In this case, W, A0 are both n0 x n0 nonsingular matrices. Thus, we 
have   |WWT| = \W\2   and eq.(19) further becomes 

JS(W,9) = -\n\W\- E\ng(Wx,9), {W*,9*} = argm\n{w<e&@) JS{W,9). _ (23) 
which is exactly the so called information-theoretic approach or maximum likelihood 
method [1,2,3,4]. Moreover, we have that eq.(20) becomes 

AW = r,[(W-1)T + E{h(Wx,6)xT)],     AW = vW~l)T + h(Wx, 9)xT] (24a) 
When h(Wx, 9) is pre-fixed, it is exactly the INFORMAX algorithm by [4]. Via modifying 
AW by WAWWT, eq.(24a) becomes the natural gradient algorithm for MMI[3]: 

AW = r,[W + WE(h(Wx,e)(Wx)T)],    AW = rj[W + Wh(Wx, e)(Wx)T] (246) 
In [3], g(Wx,9) ( thus h(Wx,9)) is pre-fixed via a truncated Gram-Charlier series. Fur- 
thermore, by using eq.(24a) together with eq.(12b) for learning g(Wx,6) via updating 
6, with g(Wx, 9) defined by eq.(13a) and p(si\\j,i) being the derivative of a simple sig- 
moid function, then we get the so called Learned Mixture of Parametric Densities for the 
information-theoretic approach [10,11]. 

In the rest of this section, we further propose two algorithms. The first 
one is obtained via modifying AW by WAWWT in eq.(21) and together using 
eq.(15c) for updating 6. That is, we have 

AW = n{W - Wj2q
=i AJ1E[p(j\Wx)(Wx)(Wx)T]}; (25a) 

p{j\Wx) =       °MWxW aj=EP(j\Wx),    A,■ = WE\p(J\Wx)xxT]WT.    (256) 

AW = r,[W -Wjyj=l AfpUlWx^Wx^Wx)7). (25c) 

aneu. _ aold + vp(j\Wx),    A™w = Afd + r,p(j\Wx)WxxTWT, (25d) 

which is a new Learned Gaussian Mixture algorithm for the problem eq.(l). 
Its advantages are shown in the following two theorems. 

Theorem 1 For the problem eq.(l) and using the batch algorithm eqs.(25a&b) 
with q = 2 only, given the converged nonsingular W* and other parameters 
p*(j\W*x),A* as well as V = W*A0, denote .RJ = E\p*(j\W*x)xxT] and 

Rank[Rf - jRf] = kr. Then, we have that V = IfD as long as kr > n0 - 1, where 
II is a permutation matrix and D being a non-singular diagonal matrix. Moreover, 
when kr < n0 — 1, there are kr row vectors of V* that are linear independent and 
each of them contains only one nonzero elements. 

Proof From eq.(25b), after converged we have W*R*W*T = Aj,j = 1,2 with Aj 

being a positive diagonal matrix. From Rx- = A0RS-A^ with A0 being full rank, we 

know Rank[Rx - Rx] = Rank[R{ - Rs
2] = kr. Also, since that R! = E[p*(j\W*A0)ssT] 

should be a positive diagonal matrix too, we know that Rf - fl| has kT nonzero diagonal 
elements, which means that there are kr corresponding different diagonal elements between 
Rf and fi|, that is, H|(H^)_1 has kr different diagonal values. Furthermore from Aj = 
W*A0R

s{W*Ao)T = VRS
]V

T, we have fifV*T = V^Ai, and V*~lA2 = H|V*T = 

Rs
2(Rl)-1Rs

1V'T = ÄKHJJ-'V—»Ai. Let's denote R = Ä|(H0_1 and A = ^2Af\ 
which are both diagonal, we have RV*T = V*TA. For the j-th column vector of V*T or 
the j-th row vector of V*, we have RvJ = XJVJ with Xj being the j-th digonal element 
of A . For those kr different diagonal elements of R, we have that the kr corresponding 
vectors vT's are linear independent with each containing only one nonzero element. When 

no - kT = 1, the remaining vj should also contain only one nonzero element. Therefore, 
we have V = TID as long as the rank kr > n0 - 1.  When kr < na - 1, since there are 
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n0 — kr diagonal elements of R is 1, their corresponding n0 — kr vectors for vT can be 
linear independent but each contains more than one nonzero elements.      Q.E.D. 

According to this theorem, when the source s is gaussian, we have the learned R* = R% 
and kr = 0, the above Learned Gaussian Mixture algorithm will fail. When there are n0 — kr 
sources in s are gaussian, then Rank[R* — R%] = kr and the algorithm can not recover the 
n0 — kr gaussian sources and the other kr sources can be recovered. If there is at most one 
gaussian source in s, it usually will lead to Rank[R* — R%] = kr > n0 — 1 and we have 
V* = HD. This theorem has justified the experimental successes given in [10,11]. 

This theorem has also provided an implementable way for checking whether the ob- 
tained result is fully successful or partially, or fail through checking Rank[R^ — fi|] = kT. 
In practice, numerical error or other fact may affect the accurate of the algorithm and the 
estimate of Rank[R* — R%] = kr- For reliability, we can use a gaussian mixture with q > 2. 
In this case, we can get the following Theorem 2 based on the above theorem. 

Theorem 2 For the problem eq.(l) and using the batch algorithm eqs.(25a&b) 
with q > 2, given the converged nonsingular W and other parameters 
p*(j\W*x),A* as well as V* - W*A0, denote fi| = E[p*(j\W*x)xxT] and kr is the 

rank of S with S = U{o(j ijySij and S,j being the subspace spanned by the column 
vectors of Rf — R?. Then, we have that V* = IID as long as kr > na — 1, where 
II is a permutation matrix and D being a non-singular diagonal matrix. Moreover, 
when kr < n0 — 1, there are kr row vectors of V* that are linear independent and 
each of them contains only one nonzero elements. 

Theorem 2 suggests that as long as q is large enough, we can fully success if there is at 
most one gaussian source in s; otherwise, we can still recover those non-gaussian sources. 

Next, we give the second algorithm for the problem eq.(l), which is ob- 
tained by modifying  AW by WAWWT  in eq( 18), we have 

AW = r,{W - WE[{K~lWx - A"1^)2 + A^1 (Wxf}(Wx)T]}, (26) 
for which we have 

Theorem 3 For the problem eq.(l) and assuming that the batch algorithm 

eqs.(26)  converged with nonsingular    W* and V*   =   W*A0. Denote    R3
S  = 

diag[E{s\),- ■ ■ ,E{s3
n)],j = 2,3,4. Then, we have V* = UD as long as R3

B is 

full rank and offdiag{A-lE[(W*x)k(W*x)T]} # of Jdiag{h3E[{W*xy(W*x)T}} unless 

ofhiag{E[(Wx)k(W*x)T]} = offdiag{E[(W*xy(W*x)T]} = 0, where j^ke [2,3,4] 
and offdiag[A]   denotes all the off-diagonal elements of A. 

Proof From eq.(26), after converged we have / = AJ1 W*ExxTW*T - 

A"1 E[(W*x)2(W*x)T] + A~xE[(W"xf)(Wx)T], and under the condition of the theo- 
rem, we have E[{W*x)k(W*x)T] = Dk, for k = 2,3,4 with Dk being diagonal. First, 
from E[(W*A0)ssT(W*Ao)T] = V*R2

SV
T = D2 with R2

S being a positive definite 

diagonal matrix, and we have V = D\'2$T(R2
s)~

lI2 with $T$ = /. Second, from 
E[(W*x)2(W*x)T) = E[(Vs)2(V*x)T} = £>3, we have V*2)R\VT = D with D being 

diagonal and V,*, = [v2 ] (i.e., its each element is the square of vij of V = [vij]). Moreover, 

with V = D^/2$T(fi2)-l/2, we have Vfc = [v2
<3] = DiltfJfÄj)-1 with *T = [fa] 

and $T$ = / as given above. Therefore R2,[<t>lJ](R*)-lR!i{R2,)-1'2$(R'2
s)

1'2 = D, 

or [4>2 ]R<b = D' with R and D' being both diagonal. It further follows that <S = 

R-l{<j>2tJ]-lD' and / = $T$ = ß'[02
|J]

_Tfi_2[*fiJ]"
1ö' or by inverting it becomes D'

2
 = 

[<l>lJ]Ri[<l>lj]T' which means t^y = D'*R_1 with *T* = L Thus> D' = [<l>lj]R$ = 
D'ifi-1«* or *$ = I. That is, * = $T and [tfJR = D'$T = D'[4>i,j], which means 

that r,4>2 = rj>i,jd', thus either 4>i,j — 0 or 4>ij ■= d'Jri, with r; and d' being the diagonal 

element of R, D' respectively. Therefore, $T = RED' and each element of E can only to 

be 0 or 1. It follows from / = $T* = RED'2ETR that R~2 = ED'2ET = YTi=i ^^1 
with ei is the column of E. Thus, the off-diagonal elements of e;e^ must be zeros, or 
equivalently E is a permutation matrix $T = EERED' = EDT with DrERED' being 
still diagonal.      QED. 

The above theorem suggests a way to improve the algorithm eq.(26) via imposing some 
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constraints to enhance the chance of satisfying the condition of the theorem. Due to the 
limited space, we leave the details elsewhere. 

Not only the above algorithms given by eq.(25) and eq.(26) have extended the 
existing information-theoretic approaches [1,2,3,4], but also the algorithms given 
by eq.(20), eq.(21) and eq.(22) can be also regarded as the extended information- 
theoretic approaches for the cases that the number of sensors are larger than the 
unknown number of sources. Finally, all these approaches are the special cases of 
the BKYY ICA given in Sec. 3 and Sec.4 for the much general cases given by 
eq.(5).  Furthermore, we can also prove the similar theorems as given by Theorems 

1,2,3. In addition, we can also prove that the obtained a*2 will be the true a2, for 
the algorithms in Sec.4 ■ Due to limited space, we leave these proofs to [14]. 

6. Bayesian Convex Divergence (BCYY) ICA Scheme 

We go back to consider eq.(7b) by using the convex divergence eq.(3).   Due 
to limited space, we leave the general case elsewhere, here we only consider the 
special  case  n   =   m   =   n0 and d1   =   0.     In this case,   we have     y  =  s and 
PMj (s\y) = S(s - y) = S(y - s) = pMl (y\s). Thus, eq.(7b) will becomes 

{W*.{s*}} = ar9 ™™{w,{gi}eG} J{W, {gi}), 

m,fa» = -/,ph(*)/(m^-;:i°;{w>x))^, w = K,---,^r.      (27) 
Through the density transformation   p(y) = Ph(x)/\W\,  we can also get 

AW, {5.}) = - /„ P(y)ffl^(^)dy, (28a) 

which can be regarded as a generalized version of the MMI [3]. Moreover, we trans- 

form it further to z — s(y) by a sigmoid monotonic function s;(r) = J^ 9i{yi)dyi, 

resulting 
J(W) = f(l)-fzp(z)f(¥fa)dz. (286) 

That is, we have reached a generalized version of the   INFORMAX   [4]. 
We consider the special case   /(«) = u@, 0 < ß < 1. From eq.(27), we have 

J(W, {gt}) = /(l) - Jx p\-ß(x)(\ det W\ njL, g,(x'wt)^dx. (29) 

From W QW '''W
T

, we get both the batch way and adaptive algorithms for 
updating W by 

AW = -vß\detW\<3{E[p~'3(x)(Y[k
i=1gi(xtwi))l3(W + h(Wx)(Wx)T)]W}, 

AW= -ß\detW\l3(flk
i=1gt(x

twi))l3(W + h(Wx)(Wx)TW), (30) 

where h is the same as in eq.(lOa). We have removed p^(x) in the adaptive 
equation to save the computation onph(x). It is interesting to compare eq.(30) with 
eq.(24b). We find that the moving step is modulated by a scalar C(|det W\,y,ß) = 

/?(|det W\ Y\i=1 9i(xlwi))^ . This change has one effect at least. Since gi(xlWi) is 

small when |a;'w,'| is large, we have C(\det W\,y,ß) becomes relatively small for 
large |a;'u;,-|. In other words, the algorithm eq.(30) should be more robust to the 
affects by outliers. 

To verify the effect, we use the fixed /i;(s;) = —s? as in [10] which is shown that 
the algorithm eq.(24b) can success on sub-gaussian sources. In Fig.2, shown in the 1st 
row is the result of a problem of 2 channels with sources from sub-gaussian uniform(-l,l) 
signal plus 5% outliers. Shown in the 2nd row is the result of 2 channels with sources 
from sub-gaussian beta(0.5,0.5) signal plus 5% outliers. Shown in the 3rd row is the result 
of a problem of 3 channels with sources: one from the above uniform(-l,l) with outliers, 
one from the above beta(0.5,0.5) with outliers, and one from the super-gaussian permuted 
speech signal. Their histograms are listed in the 1st column from top down. Shown in the 
2nd and 3rd columns are results by the algorithms eq.(30) and eq.(24b), respectively. 

For the first two experiments (the first two rows), the cubic nonlinearity hi(si) = —sj 
is used. The algorithm eq.(24b) given by [3,4] fails because the two channels of sources are 
actually super-gaussian now. The results are consistent to the existingtheoretical results 
[15] that it cannot perform separation for super-gaussian signals. However, interestingly 
the algorithm eq.(30) with ß = 0.5 successes. Trials with ß = 0.8,0.2 also show similar 
results.  Hence, it is demonstrated that the algorithm eq.(30) is indeed more robust than 
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Figure 1    The experimental comparisons on several types of source signals 

the algorithm eq.(24b) to outliers. The third experiment (the 3rd row) used the learned 
mixture of densities as used in [10,11] with gi(si) learned. Now both the BKYY-ICA and 
BCYY ICA algorithm work well. 
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Abstract 

The problem of adapting linear Multi-Input-Multi-Output 
systems for unsupervised separation of linear mixtures of 
sources arises in a number of signal processing applications. 
In this paper we present a new single layer neural network 
in which information transfer maximization is equivalent to 
minimizing a cost function involving the well-known Constant 
Modulus criterion originally used in blind equalization. The 
proposed approach is able to separate sources with negative 
kurtosis as revealed by an analysis of the cost function sta- 
tionary points. Two learning rules are presented to compute 
the optimum separating matrix. One of them turns out to be 
an equivariant algorithm whose convergence does not depend 
on the mixture matrix. 

1     Problem Statement 
Adapting linear Multi-Input Multi-Output (MIMO) systems to separate lin- 
ear mixtures of signals is a problem that frequently arises in signal processing 
applications such as array processing, multiuser detection, linear feature ex- 
traction, etc ... The blind source separation problem can be formulated as 
follows. Let us consider an array of sensors that provides a vector of obser- 
vations x = [xi, X2, • • -, XN]

T
 which is a linear mixture of a vector of sources 

s = [si,S2,---,s/vjT 

x = As (1) 

A represents the N x N mixture matrix. Both the sources and the mixture 
matrix are unknown. The only assumptions we will make in our model are 
A is a non-singular matrix and the sources are zero-mean, statistically in- 
dependent, non-gaussian random processes.   Without loss of generality, we 

•This work has been supported by Xunta de Galicia (grant XUGA  10502A96) and 
CICYT (grant TIC 96-0500-C10-02) 
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can assume that sources have unit variance since power differences can be 
incorporated in matrix A. 

To recover the sources, x is processed through a linear memoryless MIMO 
system, represented by a N x N matrix W, to produce an output vector 
y = [j/i,!/2,---,yw]T 

y = WTx (2) 

The superindex T denotes transpose. Combining both (1) and (2) together, 
we get 

Gs (3) 

where G = WTA is the matrix representing the overall mixing/separating 
system. The objective in source separation is to select W in order that each 
output corresponds to a single and different source «,- up to some fixed gain. 
When this occurs, G can be expressed as the product of a diagonal matrix 
A and a permutation matrix P, i.e., G = AP- 

A basic principle to solve the blind source separation problem is pro- 
vided by the Darmois-Skitovich theorem [1]: if s is a vector of statistically 
independent non-gaussian signals and y = Gs, y is a vector of statistically 
independent signals if and only if G = AP. Therefore, one way to recover 
the sources is to select W in order to minimize the statistical dependence 
among the components in y. This is referred in the literature as Independent 
Component Analysis (ICA) [2] and a number of both block processing [2] and 
adaptive processing [3, 4, 5, 6] methods have been proposed. In the sequel, 
we will focus our attention into adaptive methods since they are easier to 
implement and more related to the field of neural networks. 

Recently, several adaptive algorithms for blind source separation have 
been developed in the context of unsupervised learning of neural networks 
[7]. The separating MIMO system is then interpreted as the linear part of a 
single layer nonlinear neural network (see figure 1). In this model, matrix W 
represents the synaptic weights and g(-) the activation function. The vector 
of the outputs after the nonlinearities «,• = g(yi), i = 1, • • •, N is denoted u. 

single layer non-linear neural network 

A 
X 

W 
go 

go 

s 

y u 

V J      V J 
mixture stage separating stage 

Figure 1: The model. 

Trying to understand the way perceptual systems work, an unsupervised 
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learning paradigm called the infomax principle [8] has been proposed. Ac- 
cording to this principle the parameters of a neural network should be cho- 
sen to maximize the information transfer between the input and the out- 
put. Nadal and Parga [9] have shown that if the activation functions are 
continuous, increasing, invertible and bounded nonlinearities, information 
transfer between x and u is maximized when the components in u are sta- 
tistically independent and have a uniform distribution. This result suggests 
that statistical dependence between outputs tends to reduce when maximiz- 
ing information transfer. However, this is not always true since simulations 
reported in [7] show that information transfer maximization algorithms only 
perform blind source separation when the sources have positive kurtosis. In 
many applications (communications and image processing, for instance) sig- 
nals typically have negative kurtosis and the algorithms in [7] do not work 
adequately. 

In this paper we present a new information transfer maximization algo- 
rithm suitable for sources with negative kurtosis. The algorithm can also be 
interpreted as a generalization of the Constant Modulus Algorithm (CMA) 
[10], therefore reinforcing the link between information-theoretic unsuper- 
vised learning paradigms and blind adaptive filtering. Section 2 presents 
the information transfer maximization criterion. Section 3 introduces two 
learning rules. Section 4 presents some simulation experiments and section 5 
contains the conclusions. 

2    Information Transfer Maximization 

Let us start by considering a single layer nonlinear neural network comprising 
a linear part and a new fixed activation function defined as follows 

g(x) =  f     exp(-(t2 - lf)dt (4) 
J — oo 

Figure 2 shows the plot of g{x) and, similarly to other well-known activation 
functions, it is a continuous, increasing, bounded and invertible nonlinearity. 

Following the infomax principle [8], we select the synaptic weights W 
in order to maximize the information transfer between the input x and the 
output after the nonlinearity u, that is 

'<->=*{-iS«} 
where E{-} denotes expectation, and Pxi'x), pu(u) and pXiU(x,u) are the 
probability density functions (p.d.f.) of x, u and the pair (x,u) respec- 
tively. Taking into account that the entropy of the output u is H(u) = 
E {— lnpu(u)} and that the entropy of u conditioned to the input x is 
.ff(u|x) = E {-\npUiX(u\x)}, (5) is equivalent to 

7(x,u) = #(u)-#(u|x) (6) 
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Figure 2: Nonlinear transfer function. 

Now, since the relationship between u and x is deterministic,, H(u|x) = 0. 
Therefore, maximizing the information transfer is equivalent to maximizing 
the output entropy H(u) [9]. 

Next, we will express H(u) in terms of the input entropy. Provided that 
W is a square and invertible matrix and the nonlinearity in (4) is invertible, 
u has a p.d.f. given by 

Pu(u) Mx) (7) 

t=l 

|dc*W| J[g'(vi) 

where y = WTx. Therefore, 

H(u) = H(x) + J2 E {In g'(yi)} + In \det W| 
N 

(8) 
i=l 

where H (x) is the input entropy. Particularizing for the nonlinearity (4) 

N 

#(u) = F(x)-££{(y?-l)2}+ln |def W| 
i=l 

(9) 

Since the input entropy H(x) does not depend on W, we conclude that 
maximizing H(u) (or equivalently maximizing the information transfer) is 
equivalent to minimizing the cost function 

N 

^(W) = ^Ä{(2/?-l)2}-ln|deiW| (10) 
8 = 1 

This is an important result because this cost function also admits another 
interesting interpretation from the perspective of blind adaptive filtering. 
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The first part of (10) is the extension to MIMO systems of the well-known 
Constant Modulus (CM) criterion [10] widely used in blind equalization. The 
analysis carried out in [11] for a Multiple-Input-Single-Output (MISO) system 
whose output is j/,- = wf x shows that if the kurtosis of all the sources is 
negative, the only existing minima of the criterion E{(yf — l)2} correspond 
to points where a single source is extracted. This means that if a MIMO 
system is adjusted according to the first part of (10), each output %n will 
extract a single source. However, there exists the possibility that the same 
source is extracted at different outputs. This situation is prevented by the 
existence of the second term in (10) because, when it occurs, two columns of 
W are proportional and the second part of (10) grows very large. 

The ability of our approach to perform source separation is further sup- 
ported by an analysis of the stationary points of </>(W) presented in [12]. A 
simple situation of a two sources mixture and a two-inputs-two-outputs neural 
network was assumed. The analysis consisted in finding the points where the 
gradient vanishes and examining the positive definiteness of the Hessian ma- 
trix at these points to determine whether they are maxima, minima or saddle 
points. It was possible to prove that the points W where source separation is 
achieved correspond to minima if the kurtosis of the sources is negative. The 
analysis turned rather involved when trying to show that <j>(W) does not 
contain undesirable stationary points. Nevertheless, computer simulations 
never revealed such undesirable equilibria points. 

3    Learning Rules 

In this section we discuss different learning rules to compute the coefficients 
of the separating matrix that minimize </>(W). The first possibility is to use 
a gradient descent algorithm of the form 

W(n+l) = W(n)-/^^ (11) 

where fi is the algorithm step-size. Taking (2) into account and that det W = 
J2j=i wij zofwij for any row i (cofwij being the cofactor of Wij) we have 

Dropping the expectation operator, the resulting stochastic gradient descent 
algorithm reads 

W(n + 1) = W(n) + n (4 xyT  - 4 xyTD(y) +   [WT(n)]_1)        (13) 

where D(y) = T>iag[y(,yl, ■ ■ -,y2
N}. As discussed in [11], the term +xyT in 

(13) is a typical anti-Hebbian term. The term — xyTD(y) has the twofold 
effect of stabilizing the algorithm and incorporating high order statistics to 
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reach output independence (it is well-known that the anti-Hebbian rule is 
by itself unstable and reaches output decorrelation, not independence). It 
constitutes an improved version of the adaptive Oja's algorithm [13] for prin- 

cipal component analysis. Finally, the term [WT] precludes convergence 
towards a singular matrix W. 

In order to avoid computation of an inverse matrix at each update, a 
second choice as a learning rule is a relative gradient descent algorithm [5] of 
the form 

W(n + l)=W(n)-iiW(n)WT(n)ö^-j (14) 

As long as W(n) remains a nonsingular matrix, it is easily shown that this 
form of adaptation always reduces <^(W) [5]. From (13) it is apparent that 
the resulting stochastic relative gradient algorithm is 

W(n + 1) = W(n) + //W(n) (4 yyT  - 4 yyTD(y) + I) (15) 

where I is the identity matrix. Again, each term in (15) has a clear interpreta- 
tion from the perspective of source separation. The term +yyy forces decor- 
relation between the different outputs whereas the second term —yyTD(y 
involves higher order statistics and forces the stronger condition of indepen- 
dence between different outputs. Finally, the identity matrix I prevents the 
algorithm to converge towards a solution where all the outputs are equal to 
zero. 

Although motivated by the necessity of avoiding matrix inverse computa- 
tions, the learning rule (15) exhibits the more interesting property of being 
an equivariant algorithm [5]. Premultiplying (15) by AT it is obtained that 
the combined mixing/separating system evolves under the following updating 
rule 

GT(n + 1) = GT(n) + ßGT(n) (4 yyT  - 4 yyTD(y) + i) (16) 

that does not depend explicitly on the mixing matrix A. As a consequence, 
(15) possess the equivariance property because the time evolution of the 
global system is independent of A: it only depends on the initial conditions 
and the statistical characteristics of the sources s. It will perform adequately 
even though A is an ill-conditioned matrix. 

4    Computer Simulations 

In this section we present the results of some computer experiments carried 
out to illustrate the performance of the equivariant learning rule (15) and 
establish comparisons with existing approaches. As sources, we consider three 
images with 256 x 256 pixels having a normalized kurtosis of —1.42, —0.75 
and —0.51. These images can be seen in the left column of figure 3. 
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In the first simulation experiment we considered the following mixture 
matrix 

-1    -1    1 " 
1       1     1 (17) 
1     -11. 

The resulting mixed observations are plotted in the middle column of figure 
3. To recover the sources from the observations, a 3 x 3 MIMO system 
is considered whose coefficients are updated according to the equivariant 
algorithm (15). To reduce the misadjustment noise, we chose a variable step- 
size that starts from \i = 5 x 10-4 and is multiplied by 0.6- each 10.000 
iterations. The right column of figure 3 shows the outputs corresponding to 
the separating system obtained after 65.536 iterations which is the size of a 
256 x 256 image. It is clearly seen that our approach was able to successfully 
recover the original sources. 

In order to measure the performance of our algorithm and make compar- 
isons with existing approaches we define the following index [11] which is zero 
iff G = WTA corresponds to source separation 

N   I N       o?. \       N   ( N       o?. \ 

KW) = E Ed^r-i +£U^w"1     (18) 

Figure 4 plots the time evolution of this performance index for the proposed 
algorithm (15), the EASI algorithm with a cubic nonlinearity [5], Bell and 
Sejnowski [7] (BS) and Cichocki and Unbehauen [4]. These three latter were 
implemented with a variable step-size strategy similar to the one described 
above.   It is apparent that our approach performs almost the same as the 
EASI algorithm whereas outperforms BS and CU. 

Finally, to test the equivariance property of the learning rule (15), we 
carried out a second simulation experiment considering the ill-conditioned 
mixture matrix 

" 1.01      1 1 
A=        1      1.01      1 (19) 

1 1      1.01 _ 

Figure 5 plots the performance index for the same algorithms as before show- 
ing again that the EASI algorithm and ours exhibit superior performance 
than BS and CU. In addition, the speed of convergence has remained un- 
changed. 

5     Conclusions 

Existing information transfer maximization algorithms [7] that use conven- 
tional activation functions are only capable of separating sources with positive 
kurtosis and therefore cannot be used in communications or image processing 
applications where signals typically have negative kurtosis. This paper over- 
comes this limitation by presenting a single layer neural network with a new 
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activation function. It is shown that maximizing its information transfer is 
equivalent to minimizing a statistical criterion that involves the well-known 
Constant Modulus criterion [10] originally used for blind equalization. Two 
learning rules have been derived, a conventional gradient descent rule and a 
relative or natural gradient descent rule. The latter turns out to be an equiv- 
ariant algorithm whose performance is independent of the mixture matrix. 
Finally, simulations show that our approach performs the same or better than 
existing blind source separation adaptive algorithms when applied to sources 
with negative kurtosis. 
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Figure 3: Blind separation of three images with the proposed algorithm. 
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Figure 4: Performance index for the first computer experiment with the well- 
conditioned mixture matrix (17). 
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2 3 
Number of Iterations x10 

Figure 5: Performance index for the second computer experiment with the 
ill-conditioned mixture matrix (19).- 
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Abstract 

Blind source separation and blind output decorrelation are two well-known prob- 
lems in signal processing. For instantaneous mixtures, blind source separation is 
equivalent to a generalized eigen-decomposition, while blind output decorrelation 
can be considered as an iterative method of output orthogonalization. We propose a 
steepest descent procedure on a new cost function based on the Frobenius norm 
which measures the diagonalization of correlation matrices to perform blind source 
separation as well as blind decorrelation. The method is applicable to both station- 
ary and nonstationary signals and instantaneous as well as convolutive mixture 
models. Simulation results by Monte Carlo trials are provided to show the consis- 
tent performance of the proposed algorithm. 

1. Introduction 

The field of blind signal processing which includes blind source separation, blind 
decorrelation and blind equalization has recently received a lot of attention. Most of 
the blind separation algorithms are based on high-order statistical information 
because it can be shown that second order statistics are not sufficient to uniquely 
separate sources [15]. However, this proof requires signal stationarity which is not 
applicable to many important real life problems (such as separation of speech). 
There have been also reports showing experimentally that systems based on second 
order statistics can indeed separate mixed sources [l]-[9]. These methods explore 
the time characteristics of the covariance, i.e. either nonstationary temporal esti- 
mates of covariance matrices or time-delayed cross-correlation matrices. Blind 
decorrelation can be formulated with second order statistics and can be solved by 
the orthogonalization of covariance matrices [11, 12]. Therefore methods based on 
second order statistics for blind source separation are related to blind decorrelation, 
but there is no systematic coverage of the two areas. In this paper, we will unify the 
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framework of blind source separation using second order statistics with blind deco- 
rrelation and apply the new algorithm to speech data. 

The signal separation and decorrelation problems can be modeled as 

X(t) = [^(o] 2>^(0 AS(t) (1) 

where S(t) is an jVby 1 zero-mean vector containing the original signal, X(t) is an M 
by 1 coupled signal vector (M >= N), AismMbyN real time-invariant coupling 

matrix, 57(f) is the z'th unknown signal and aki is a real unknown coupling coeffi- 
cient. If A is full rank, we can always use PCA to find the subspace of X(t) which is 
equivalent to the space of S(t). The objective of blind decorrelation is to design a 

full-rank weight matrix WthaX constructs an output 7(f) = WTX(t) displaying a diag- 

onal output covariance E{Y(t)YT(t)}. However, blind separation has a different 
objective since one needs to design a signal separator W which is able to reconstruct 
the original signals. The latter constraint will put a stronger requirement on the 
weight matrix Wsuch that 

T T 
W   = A-1 or W A = PD (2) 

where P is a permutation matrix, D is a diagonal scaling matrix and T denotes 
matrix transpose [13]. The weight matrices for blind separation belong to a subset 
of the blind decorrelation solution. 

2. Approach and criterion 

According to [4, 5], blind separation of nonstationary signals can be formulated as 
the simultaneous diagonalization of two covariance matrices estimated at different 
times, which can be further reduced to a generalized eigen-decomposition problem 
(requiring off-line processing). Orthogonalization of covariance estimates at many 
time instants with regularization was suggested in [6] as an on-line algorithm for 
blind separation. However, the method can only decorrelate signals with positive- 
definite covariance matrices due to a restriction placed on the cost function. Instead 
of using different covariance estimates at different time intervals, one can still per- 
form blind separation (decorrelation) through the simultaneous orthogonalization 
of two or more time-delayed correlation matrices [7, 8] as 

WTE{X(t)XT(t-q)}W= D(q) (3) 

where £>(q) is a diagonal matrix associated with a delay q. The non-symmetrical 

time delayed correlation matrix E{X(t)XT(t-q)} is not necessarily positive-definite 
and hence we cannot apply the criterion proposed by [6]. To our knowledge only 
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the generalized eigen-decomposition was proposed to solve this formulation but the 
method is an analytic solution [7, 8]. Here we will propose an alternative criterion 
to solve the realistic case of non-positive-definite time-delayed correlation matrices 
iteratively. 

The idea is to create a cost function which minimizes directly the difference 
between the quadratic form in the left side of Eq. (3) and its right side. In order to 

measure the distance between the correlation estimate E{X(t)XT(t-q)} and its diago- 
nal version, Z>q(t) we propose the following criterion: 

d d ..2 

I ^q(t) =    I  \\wTE{X(t)XT(t-q)}W-Dq(t) 
q=0 q=0 

2 

(4) 

F 

as well as J(t) = \\WTE{X(t)XT(t-q)}W-D (t) 
4 II " F (5) 

where || \\f denotes the Frobenius norm and d is the total number of the delayed 

covariance matrices Dq(t) we need to constrain. However the choice of d still needs 
to be further analyzed. The Frobenius norm is defined as [14]: 

Jm n 

xxh/ (6) 

where A is an m-by-n matrix. The minimum of this cost function preserves the diag- 

onal elements of E{X(t)XJ(t-q)} but zeros all other elements out, i.e., it solves both 
the blind separation and decorrelation problems. The cost function of Equation (4) 
is a nonnegative fourth-order function of the weight coefficients W. The minimum 

d   ^a^ 
can be obtained using a gradient descent procedure tsW = -r\  Y,     JW ' SimPle 

q = 0 

linear algebra manipulations yield 
d 

AW = ~r]  2   {[Cq(t) + cl(t)]W[WTCq(t)W-Dq(t)]} (7) 

q = 0 

where C_(t) = E{X(t)XJ(t-q)} (8) 
4 

In addition, the gradient descent procedure using our proposed criterion will move 
the directions of the output signals in such a way that orthogonalizes all the vectors 
in tandem as depicted in Figure 1. This methodology is different from Gram- 
Schmidt where the principal component must stabilize before the others converge 
since they are corrected with respect to it. (yielding what is called the deflation pro- 
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cedure.) Deflation procedures converge sequentially which is a known problem for 
the recent prevalent orthogonalization procedures based on the L2 norm or Ray- 
leigh quotient optimization. 

Our procedure does not constrain the size of the vectors, so null vectors can occur 
during learning. This corresponds to a trivial solution that meets the minimization 
of the criterion of Eq. (4). To avoid it, we have to impose a unit length constraint on 
the weight vectors. 

3. Implications of the new criterion 

For the case Z)q(t) = / and q = 0, Eq. (7) yields, 

W(t+l) = W(t)-y]W(t)E{Y(t)YT(t)}[E{Y(t)Yr(t)}-r] (9) 

We will show that this adaptation rule was previously utilized in blind decorrelation 
and independent component analysis. 

3.1 Stochastic Whitening Procedure 

If the requirement is to obtain whitened outputs, We have to estimate E{Y(t)Yr(t)} 
either using an exponential window or batch mode. In [12] the following on-line 
stochastic whitening procedure was derived through a Gram-Schmidt-like orthogo- 
nalization, 

W(t+1) = W(t)-r\W(t)[Y(t)YT(t)-I] (10) 

which is equivalent to Eq. (9) if the first E{y(t)yT(t)} is dropped. 

3.2 Kullback-Leibler Divergence 
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If we replace 7(t) by f(T(t)) in Eq. (10), where f(*) is a proper nonlinear function, 
we obtain the update rule derived from minimization of Kullback-Leibler diver- 
gence in [10]. 

3.3 Generalized Blind Decorrelation Rule 

The adaptation rule for generalized decorrelation at iteration n using Eq. (7) with an 
arbitrary square matrix Cq(t) is 

Wn + \ = Wn + AWn    subject to wT
n(iK(i) = 1, for all i=l, 2, ...,7V.     (11) 

where wn(i) is the ith column vector of Wn. With Eq. (11), we can extend the solu- 
tion presented in [11] to any time-delayed correlation matrix. If we orthogonalize 
several time-delayed matrices using this procedure, we can obtain separated signals 
as in [7]. 

3.4 On-line Adaptation Rule for Blind Separation of Nonstationary Signals 
(Instantaneous mixture) 

It has been proved in [6] that, for linear time-invariant instantaneous mixture of 
locally stationary signals, the source signals can uniquely be determined from the 
sensed signals (except the arbitrariness of the permutation matrix P and the diago- 
nal matrix D) if and only if Eq. (12) holds 

E{y .(t)y .(t)} = 0 for all i#j     at any instant of time t.   (12) 

Eq. (12) can be easily translated as the orthogonalization of the output correlation 
matrix at any instant of time t as in Eq. (13) 

WTE{X(t)XT(t)} W = D0(t) at any instant of time t.     (13) 

Here we propose to use batch learning with non-overlap windowed estimates. The 
blind source separation rule for nonstationary signals becomes 

for the m   batch 

Wm+\ = Wm + AWm, subject to wT
m(i)wm(i) = 1, for all i =1, 2,..., N. 

where wm(i) is the ith column vector of Wm. 

C0 (m) has to be used in Eq. (7) to calculate AWm. 

4. Blind source separation of linear convolutive mixture 

If we have the sensed signal X(t) = [xj(t) x2(t),..., x^t)]7, composed by a linear 

500 



convolutive mixture of sources, X(z) = H{z)S(z), where 

hn(z)    ...    hlN(z) 

H(z) = y*> 
hm(z) "M W<z> 

S(z) = 

sJz) 

*N(Z) 

The solution Y(z) for separated signals is 7(z) = PK(z)ir\z) where P is a permuta- 
tion matrix and K(z) is a diagonal matrix with some arbitrary shaping filters as its 
diagonal elements. We can modify Eq. (8) as 

Cq(t) = £{X(t)X(t-q)} 

where X(i) is 

X(t) = [*!*2...*;v]T; ^j=[x/i)Xj(t-l)...xj(t-L+l)]l^j^N. 

In addition, we also need to modify the separation weight matrix W as 

(14) 

(15) 

W  = 

#11   #21   -   # 

#12  #22 tf> V2 
tf.. 

(16) 

*\N #2tt tf AW 

where tiy = [w^O), w^l), ..., w^L-l)]   j < .^.^^  is the separating filter 

of length L. With the new definitions of Eq. (14), (15) and (16), we can apply Eq. 
(7) to solve for linear convolutive mixture. 

5. Simulation results 

Since the solution for blind source separation is a subset of blindly decorrelated 
outputs we focus our first experiment on blind source separation of instantaneous 
mixed signals. We select speech signals spoken by two male speakers (TIMIT data- 
base), and we artificially mix them with a matrix A. We acknowledge that this a 
simplified problem, but it is one where we have control of the experiments to test 
the new algorithm. The method can be easily extended to any N by N case. 

We choose the mixing matrix A randomly and average the performance by sixty 
Monte Carlo trials with sixty different random initial weights. Then we run the 
experiments for 200 epochs according to our proposed adaptation rule. We seek 
with this experiment to find how reliable is the method, i.e. how many times the 
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solution is found and what is the variance in the estimates. Figure 2 and 3 plot the 
mean Frobenius distances given by Eq. 4 versus epoch number with the corre- 
sponding one standard deviation errorbars (upper / lower limits of performance 
curves). In Figure 2 the criterion is J0 and all the Monte Carlo runs converged to the 
true solution in less than 20 epochs. On the other hand, Figure 3 shows the fast con- 
vergence of our algorithm when we try to minimize the combined criterion 

3 

X Ja . Among the trials we select one to illustrate the convergence results. The 

q = 0 
particular instantaneous mixture matrix was 

A _   0.7012 0.7622 „- 

[o.9103 0.2625J 

After only 4 to 12 learning epochs, the system reaches the optimization with the 
separation weight matrix Wopt. We can investigate if the product of two matrices 

WTA is actually in the form of PD as previously described [13]. Consequently we 

normalize each row of the product matrix WT
opt A by the absolute value of its dom- 

inant element and the product as 

-0.0025 -1.0000 
1.0000   0.0055 KPt

A = (18) 

From Eq. (15) we can see that we have really removed almost all the interference 
from the other source in this trial picked at random. From Eq. (18) we can see that 
SNR (signal-to-noise ratio) is 52.04 dB at receiver 1 and 45.19 dB at receiver 2 
respectively. The distortion is almost unnoticeable. 

In our second experiment, for a convolutive mixture of two sources, we choose an 
arbitrary mixing matrix 

H(z) 
0.85z 2 + 0.1z 3 

0.7z ! + 0.4z 2 + 0.25z 3 

(19) 

The algorithm needs approximately 150 epochs to converge as shown by the learn- 
ing curve plotted in Figure 4 (L = 6 in Eq. (15), d = 20 in Eq. (4) and the energy of 
sj(t) and s2(t) are equal for this case). Since the convolutive model is more compli- 
cated we cannot simply apply the product in Eq. (18) to investigate the simulation 
result. However we can compute the output as 

T 

Y(z) = W\z)H(z)S(z) = 

ron(z) S)V|(Z) 

ro..(z) 

TO iW« ro AW' <*) 

H(z)S(z). (20) 
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where tSJ..(z) is the z-transform of w for 1 < ij <N, and tf(z), S(z) were previ- 
y 

ously defined. Hence from Eq. (20) the outputs for the simulation of the convolu- 
tive model can be obtained as 

Y.(Z) = an(z)Sl(z) + ai2(z)S2(.z) fori= 1,2. (21) 

or y.(t) = y^W+y^M where>>y(t) is the inverse z-transform of a-7-(z)5/.(z) • 

According to Eq. (21) the energy matrix can be defined as [8] 

5>n(t) Xy?2« 
t t 

t t 

and it is 
0.0776 1.1534 

1.0787 0.0946 
in our simulation. (22) 

The SNR are 14.86 dB at receiver 1 and 11.40 dB at receiver 2 respectively, which 
is reasonable for the size of the filters employed. The two original signals, the two 
convolutively mixed signals and the recovered signals are all depicted in Figure 5. 
In listening tests, each output channel is dominated by a single recovered signal. 

epochs 
Figure 2. The performance of 70 under minimization of J0 versus epoch number 

£q=0   ^q 

epochs 
Figure 3. The performance of 2 q=0

3 Jq under minimization of £ q=0
3 7q 

versus epoch number  
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Figure 4. The performance of £ q=0
20 Jq under minimization of£ q=0

20 Jq 

versus epoch number 

Original signal 2 Coupled signal 2 Recovered signal 2 

Figure 5. Signals for the simulation of linear convolutive mixture 

6. Conclusion 

We propose a generalized criterion based on the Frobenius norm for both blind 
source separation and decorrelation lifting a previous restriction on the positive def- 
initeness of covariance matrices. Since the method is based on the minimization of 
a cost function it leads to on-line adaptation algorithms. However, the algorithm is 

not local and the computational complexity is 0(N2), where TV is the size of the net- 
work. The method displays fast and robust convergence as shown by Monte Carlo 
runs. The method is applicable to nonstationary signals like speech. If the signals 
are assumed stationary, the time-delayed decorrelation algorithm can be also used 
as an iterative alternative for blind separation similar to [7]. The cost function was 
extended to convolutive mixtures. 
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Multimedia technologies represent a new ground for research interactions among a 
variety of medias such as speech, audio, image, video, text, and graphics. Future 
multimedia technologies will need to handle information from multiple signal 
sources with an increasing level of intelligence, i.e. automatic recognition capabili- 
ties. On the other hand, neural processing is well-known to be an attractive means 
for implementing robust pattern recognition. It offers a good means for image and 
video segmentation and content-based indexing and retrieval. Unsupervised clus- 
tering and training by example are popular neural learning mechanisms. By these, 
machines may be taught to interpret possible variations of an object: e.g. scale, ori- 
entation/rotation, translation, contrast, and perspective. Ultimately, machines can 
be "trained" to see or hear, to recognize objects or faces, and to perceive human 
gestures or even emotions. In addition to adaptive learning, other useful character- 
istics include layered or hierarchical neural models and spatial/temporal processing 
models (as in temporal and static neural network structures). Some neural models 
have also effectively incorporated statistical signal processing (expectation-maxi- 
mization, Gaussian mixtures) and optimization techniques (annealing). These key 
features of neural information processing have proven to be instrumental and effec- 
tive to many applications in intelligent multimedia processing (IMP). It is therefore 
envisioned that a major impact may be achieved by integrating adaptive neural pro- 
cessing into the state-of-the-art multimedia technologies. Neural processing and 
IMP share the following characteristics: 

Digital Media Carrying Voluminous Spatial-Temporal Data: Tons of audiovi- 
sual information are available in digital form, accessible via internet to/from all 
places around the world. 
Multi-Modality (Multiple Sensor/Data Sources): Joint processing of multi- 
media could result in significant advantages. 
Trend Towards Intelligent Information Processing: So far, only text-based 
search engines are available on the WWW. (In fact, they are among the most 
frequently visited sites.) Some multimedia databases can offer very limited 
searching capabilities for pictures via color/texture features or information 
about the shape of objects in the picture. Advanced and more reliable indexing 
and retrieval techniques are not yet available on the market. 
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Many "laboratory" successes of neural networks for IMP applications have been 
quite encouragingly, reported. Examples include speech recognition/understanding; 
character recognition; texture classification; image/video segmentation; face-object 
detection/recognition; tracking of 3D objects; and lip reading via multi-modality 
combining visual and acoustic processing. 

The potential applications of neural networks for IMP spread over a much broader 
spectrum: education (remote learning); shopping (searching clothes or fashion 
designs or a 3D house model); digital libraries (image catalog); journalism and 
multimedia editing (personalized electronic news service; media authoring; search- 
ing video clips of a celebrity) Multimedia directory services (yellow pages); enter- 
tainment and medical applications; etc. For example, it is not possible to efficiently 
search the web for, say, a sample picture or video clip, but shot from a different 
angle. In fact, there exists no generally recognized description of audiovisual con- 
tents. The research frontier today is gradually moving from what was primarily 
focused on coding (MPEG2 and MPEG4) to a new focus on automatic recognition. 
This trend is precipitated by a new member of the MPEG family: MPEG-7. MPEG- 
7 focuses on "multimedia content description interface". Its goal is to extend the 
current search capabilities to include more information types. Specifically, MPEG- 
7 will specify a standardized description of various types of multimedia informa- 
tion, including: still pictures, graphics, audio, moving video, and information about 
how these elements are combined in a multimedia presentation ('scenarios', compo- 
sition information). This description shall be associated with the content itself, to 
facilitate fast and efficient searching for all the aforementioned medias. MPEG7 
research domain will cover techniques for content-based indexing and retrieval: 
pattern recognition, face detection/recognition, fusion of multi-modality. For these, 
neural networks offer a very promising core technology. 
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Abstract 

A novel method for regression has been recently proposed by 
V. Vapnik et al. [8, 9]. The technique, called Support Vector 
Machine (SVM), is very well founded from the mathematical 
point of view and seems to provide a new insight in function 
approximation. We implemented the SVM and tested it on 
the same data base of chaotic time series that was used in 
[1] to compare the performances of different approximation 
techniques, including polynomial and rational approximation, 
local polynomial techniques, Radial Basis Functions, and Neu- 
ral Networks. The SVM performs better than the approaches 
presented in [1]. We also study, for a particular time series, 
the variability in performance with respect to the few free 
parameters of SVM. 

1    Introduction 
In this paper we analyze the performance of a new regression technique called 
a Support Vector Machine [8, 9]. This technique can be seen as a new way 
to train polynomial, neural network, or Radial Basis Functions regressors. 
The main difference between this technique and many conventional regres- 
sion techniques is that it uses the Structural Risk Minimization and not the 
Empirical Risk Minimization induction principle. Since this is equivalent to 
minimizing an upper bound on the generalization error, rather than mini- 
mizing the training error, this technique is expected to perform better than 
conventional techniques. Our results show that SVM is a very promising 
regression technique, but in order to assess its reliability and performances 
more extensive experimentation will need to be done in the future. We begin 
by applying SVM to several chaotic time series data sets that were used by 
Casdagli [1] to test and compare the performances of different approximation 
techniques. The SVM is a technique with few free parameters. In absence of 
a principled way to choose these parameters we performed an experimental 
study to examine the variability in performance as some of these parameters 
vary between reasonable limits. The paper is organized as follows. In the 
next section we formulate the problem of time series prediction and see how 
it is equivalent to a regression problem. In section 3 we briefly review the 
SVM approach to the regression problem. In section 4, the chaotic time series 
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used to benchmark previous regression methods [1] are introduced. Section 
5 contains the experimental results and the comparison with the techniques 
presented in [1]. Section 6 focuses on a particular series, the Mackey-Glass, 
and examines the relation between parameters of the S VM and generalization 
error. 

2    Time Series Prediction and Dynamical Sys- 
tems 

For the purpose of this paper a dynamical system is a smooth map F : RxS —► 
<S where S is an open set of an Euclidean space. Writing F(t,x) = Ft(x), 
the map F has to satisfy the following conditions: 

1. JFo(x) = x; 

2. Ft(F.(x)) = F,+t(x)    Vs,t€R 

For any given initial condition x0 = FQ(K) a dynamical system defines a tra- 
jectory x(<) = Ft(xo) in the set S. The direct problem in dynamical systems 
consists in analyzing the behavior and the properties of the trajectories x(2) 
for different initial conditions xo- We are interested in a problem similar 
to the inverse of the problem stated above. We are given a finite portion 
of a time series x(t), where a; is a component of a vector x that represents 
a variable evolving according to some unknown dynamical system. We as- 
sume that the trajectory x(<) lies on a manifold with fractal dimension D (a 
"strange attractor"). Our goal is to be able to predict the future behavior 
of the time series x(t). Remarkably, this can be done, at least in principle, 
without knowledge of the other components of the vector x(i). In fact, Tak- 
ens embedding theorem [7] ensures that, under certain conditions, for almost 
all T and for some m < 2D+ 1 there is a smooth map / : TZm —► Tt such that: 

x(nr) = f (x((n - l)r), x((n - 2)r),..., x((n - m)r)) (1) 

The value of m used is called the embedding dimension and the smallest 
value for which (1) is true is called the minimum embedding dimension, m*. 
Therefore, if the map / were known, the value of x at time nr is uniquely 
determined by its m values in the past. For simplicity of notation we define 
the m-dimensional vector 

xn_i = (x((n - l)r), x((n - 2)r),..., x((n - rn)T)) 

in such a way that eq. (1) can be written simply as x(nr) = /(x„_i). 
If N observations {x(nr)}^=1 of the time series x{t) are known, then one 
also knows N — m values of the function /, and the problem of learning 
the dynamical system becomes equivalent to the problem of estimating the 
unknown function / from a set of N — m sparse data points in TZm.  Many 
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regression techniques can be used to solve problems of this type. In this paper 
we concentrate on the Support Vector algorithm, a novel regression technique 
developed by V. Vapnik et al. [9]. 

3    Support Vectors Machines for Regression 

In this section we sketch the ideas behind the Support Vectors Machines 
(SVM) for regression, a more detailed description can be found in [9] and [8]. 
In a regression problem we are given a data set G = {(x,-,^)},^, obtained 
sampling, with noise, some unknown function g(x) and we are asked to de- 
termine a function / that approximates g(x), based on the knowledge of G. 
The SVM considers approximating functions of the form: 

D 

/(x,c) = 5^c-^(x)+6 (2) 
»=i 

where the functions {<^,(x)}fi1 are called features, and b and {c,-}?^ are coef- 
ficients that have to be estimated from the data. This form of approximation 
can be considered as an hyperplane in the D-dimensional feature space de- 
fined by the functions &(x). The dimensionality of the feature space is not 
necessarily finite, and we will present examples in which it is infinite. The 
unknown coefficients are estimated by minimizing the following functional: 

1   N 

Ä(c) = -£|j/8--/(x8-,c)|f+A||c||2 (3) 
i — l 

where A is a constant and the following robust error function has been defined: 

I »-/(*,,«:) |e=<   ° *lw-/(*,c)|<e 
Vi - /(x,-, c) |    otherwise. 

Vapnik showed in [8] that the function that minimizes the functional in eq. 
(3) depends on a finite number of parameters, and has the following form: 

N 

/(x, a, a*) = J2(a*i - oti)K(x, x,) + b, (5) 

where a\on = 0, aiy a} > 0  i = 1,..., N, and K(x, y) is the so called kernel 
function, and describes the inner product in the D-dimensional feature space: 

D 

üf(x,y) = £>(*)& (y) 
»=i 

The interesting fact is that for many choices of the set {«^(x)}^, includ- 
ing infinite dimensional sets, the form of K is analytically known and very 
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simple, and the features fc never need to be computed in practice because 
the algorithm relies only on computation of scalar products in the feature 
space. Several choices for the kernel K are available, including gaussians, 
tensor product 5-splines and trigonometric polynomials. The coefficients a 
and a* are obtained by maximizing the following quadratic form: 

N N .     N 

R(a*,a) = -e£(a?+a,-)+5]!KK-o,-)-2 ^(aJ+a.OK-«*)^^,^-), 
« = 1 8 = 1 »1.7=1 

(6) 
subject to the constraints 0 < a\,ai < C and J2?=i(a* ~ai) = °- Due to the 

nature of this quadratic programming problem, only a number of coefficients 
a* — ttj will be different from zero, and the data points associated to them 
are called support vectors. The parameters C and e are two free parameters 
of the theory, and their choice is left to the user. They both control the 
VC-dimension of the approximation scheme, but in different ways. A clear 
theoretical understanding is still missing and we plan to conduct experimental 
work to understand their role. 

4    Benchmark Time Series 

We tested the SVM regression technique on the same set of chaotic time 
series that has been used in [1] to test and compare several approximation 
techniques. 

4.1 The Mackey-Glass time series 

We considered two time series generated by the Mackey-Glass delay-differential 
equation [4]: 

ffefii _ _0 lx(t) +    °-2^ ~ A> (7) 

with parameters A = 17,30 and embedding dimensions m = 4, 6 respectively. 
We denote these two time-series by MGn and MG3o- In order to be con- 
sistent with [1] the initial condition for the above equation was x(t) = 0.9 
for 0 < t < A, and the sampling rate r = 6. The series were generated by 
numerical integration using a fourth order Runge-Kutta method. 

4.2 The Ikeda map 

The Ikeda map [2] is a two dimensional time series which is generated iterating 
the following map: 

f(xi,x2) = (l + /i(a;1cosw-a;2sinw),//(a;isinw-(-X2Cosw)),        (8) 
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where w = 0.4 - 6.0/(1 + x\ + x\). In [1] Casdagli considered both this time 
series, that we will denote by Ikedalt and the one generated by the fourth 
iterate of this map, which has a more complicated dynamic, and that will be 
denoted by Ikeda^. 

4.3    The Lorenz time series 

We also considered the time series associated to the variable x of the Lorenz 
differential equation [3]: 

x = <r(y - x),    y = rx -y - xz,    z = xy-bz (9) 

where a = 10, b = §, and r = 28. We considered two different sampling 
rates, r = 0.05 and r = 0.20, generating the two time series Lorenzo.05 and 
Lorenzo.20- The series were generated by numerical integration using a fourth 
order Runge-Kutta method. 

5     Comparison with Other Techniques 

In this section we report the results of the SVM on the time series presented 
above, and compare them with the results reported in [1] about different ap- 
proximation techniques (polynomial, rational, local polynomial, Radial Basis 
Functions with multiquadrics as basis function, and Neural Networks). In all 
cases a time series {x(nr)}^^, was generated: the first N points were used 
for training and the remaining M points were used for testing. In all cases 
N was set to 500, except for the Ikeda4, for which N = 100, while M was 
always set to 1000. The data sets we used were the same that were used in 
[1]. Following [1], denoting by fN the predictor built using N data points, 
the following quantity was used as a measure of the generalization error of 

fN: 

lit  \       X     V^    (a;(nr)-/jy(xn-i))2 ,    , 

n=N+l 

where Var is the variance of the time series. We implemented the SVM using 
MINOS 5.4 [5] as the solver for the Quadratic Programming problem of eq. 
(6). Details of our implementation can be found in [6]. For each series we 
choose the kernel, K, and parameters of the kernel that gave us the smallest 
generalization error. This is consistent with the strategy adopted in [1]. The 
results are reported in table (1). The last column of the table contains the 
results of our experiments, while the rest of the table is from [1] with param- 
eters and kernels set as in the remaining part of this section. 
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Mackey-Glass time-series: the kernel K was chosen to have the following 
form: 

7^1       sin(0.5(a:(«0 - a#°)) 
(11) 

where x^ is the d-th component of the ra-dimensional vector x, and a v is an 
integer. This kernel generates an approximating function that is an additive 
trigonometric polynomial of degree v, and correspond to features <f>i that are 
trigonometric monomials up to degree v. We tried various values for e and 
C. The embedding dimension for the series MGn and MG30 were m — 4 
and m = 6 in accordance with the work by Casdagli, and we used v = 200 
and e = 10~3. 

Lorenz time-series: For the Lorenz0.05 and Lorenz0.20 series the polyno- 
mial kernels of order 6 and 10 were used. The embedding dimensions used 
were 6 and 10 respectively. The value of e used was 10-3. 

Ikeda map: a B-spline of order 3 was used as the kernel, and the value of e 

was 10"3. 

Poly Rational Locd=1 Locd=2 RBF N.Net SVM 

MG1T -I.95C) -1.14(2) -1.48 -1.89 -1.97 -2.00 -2.36 (258) 

MG30 -I.40W -1.33(2) -1.24 -1.42 -1.60 -1.5 -1.87(341) 

Ikedai -5.57(12) -8.0l(8) -1.71 -2.34 -2.95 - -6.21 (374) 

Ikedai -1.05(") -1.39(14) -1.26 -1.60 -2.10 - -2.31 (427) 

£<""0.05 -4.62(6) -4.30(3) -2.00 -3.48 -3.54 - -4.76 (389) 

LOTQ,20 -1.05(5) -1.39(6) -1.26 -1.60 -2.10 - -2.21 (448) 

Table 1: Estimated values of log10 <r(/„) for the SVM algorithm and for various 
regression algorithms, as reported in [1]. The degrees used for the best rational and 
polynomial regressors are in superscripts beside the estimates. Loc _ and Loc 
refer to local approximation with polynomials of degree 1 and 2 respectively. The 
numbers in parenthesis near the SVM estimates are the number of support vectors 
obtained by the algorithm. The Neural Networks results which are missing were 
also missing in [1]. 

6    Sensitivity of SVM to Parameters and Em- 
bedding Dimension 

In this section we report our observations on how the generalization error 
and the number of support vectors vary with respect to the free parameters 
of the SVM and to the choice of the embedding dimension. The parameters 
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we analyze are therefore C, e, the dimensionality of the feature space D, and 
the embedding dimension m. All of these results are for the MGy-j series. 
Figure la demonstrates that C has little effect on the generalization error 
(the plot spans over 7 orders of magnitude). The parameter C has also little 
effect on the number of support vector, as shown in figure lb, which remains 
almost constant in the range 10-2 — 102. The results were similar for kernels 
with low (D = 2), high (D = 802) and infinite dimensionality of the feature 
spaces. 

C vs L2 error 
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Figure 1: (a) The L2 generalization error versus C for the MGn series, (b) 
The number of support vectors versus C for the same series. The kernel was 
an additive trigonometric polynomial with v = 200. 

The parameter e has a strong effect on the number of support vectors and on 
the generalization error, and its relevance is related to D. In order to see why 
this happens, remember that if 7[c] and 7emp[c] are respectively the expected 
risk and empirical risk, with probability 1 — rj: 

I[c] < Iemp[c] + T 
fc(logM + i)-ioga 

N 
(12) 

where r is a bound on the cost function used to define the expected risk and 
h is the VC-dimension of the approximation scheme. It is known that the 
VC-dimension satisfies h < min(—' g2 ' , D) + 1[10], where R is the radius 
of the smallest sphere that contains all the data points in the feature space, 
A is a bound on the norm of the vector of coefficients. When D is small, the 
VC-dimension h is not dependent on e and the second term on the bound 
of the generalization error is constant and therefore a very small e does not 
cause overfitting. For the same reason when D is large the term is very 
sensitive to e and overfitting occurs for small e. Numerical results confirm 
this. For example, figures 2 and 3 which correspond to feature spaces of 802 
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and infinite dimensions, respectively, show overfitting. (The kernels used were 
the additive trigonometric polynomial with v - 200 and a B-spline of order 
3, respectively.) Figure 4 corresponds to a feature space of 10 dimensions 
and there is no overfitting. (The kernel used was the additive trigonometric 
polynomial with v — 2.) 
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Figure 2: (a) The L2 generalization error versus e with a 802 dimensional 
feature space. The inset magnifies the boxed region in the lower left section 
of the plot. Note that overfitting occurs, (b) The number of support vectors 
versus e for the same feature space. 
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Figure 3: (a) The L2 generalization error versus e with an infinite dimensional 
feature space. The inset magnifies the boxed region in the lower left section 
of the plot. Note that ovefitting occurs (b) The number of support vectors 
versus e for the same feature space. 

518 



u 
0 
M 
h 
0 

CM 
►3 

Epsilon vs L2 error 
i    i    i    i    i 

2 
xlO 

m 
u 
0 
o 

:    1 01 

Epsilon vs Support vectors 

B- 

6- 

4- 

2" 

4 

3 

2 

1 

_ 

i 

.    i
.
i
.
i
.
i
.

 

1 
-6 
0 

* T * ^"'t *' * T * * T "*r^ i 
-5   -4   -3   -2   -1 

10   10   10   10   10 

epsilon 

(a) 

-6   -5   -4   -3   -2   -1 
10   10   10   10   10   10 

epsilon 

(b) 

Figure 4: (a) The L2 generalization error versus e with a 10 dimensional 
feature space. Note that there is no overfitting (b) The number of support 
vectors versus e for the same feature space. 

The effect of the embedding dimension m on generalization error was also 
examined. According to Takens theorem the generalization error should de- 
crease as m approaches the minimum embedding dimension, m*. Above m* 
there should be no decrease in the generalization error. However, if the regres- 
sion algorithm is sensitive to overfitting the generalization error can increase 
for m > m*. The minimal embedding dimension of the MGn series is 4. 
Our numerical results demonstrate the SVM does not overfit for the case of 
a low dimensional kernel and overfits slightly for high dimensional kernels, 
see figure 5. The additive trigonometric polynomial with v — 200 and 2 were 
used for this figure. 

7    Discussion 

The SVM algorithm showed excellent performances on the data base of chaotic 
time series, outperforming the other techniques in the benchmark in all but 
one case. The generalization error is not sensitive to the choice of C, and very 
stable with respect to e in a wide range. The variability of the performances 
with e and D seems consistent with the theory of VC bounds. 
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Figure 5: The L2 generalization error versus the embedding dimension. The 
solid line is for a 802 dimensional feature space and the dashed line is for a 
10 dimensional feature space. 
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Abstract 
We present an adaptive metric learning vector quantization procedure based on the 
discrete-cosine transform (DCT) for accurate face recognition used in multimedia 
applications. Since the set of learning samples may be small,- we employ a 
mixture model of prior distributions. The model selection method, which 
minimizes the cross entropy between the real distribution and the modeled one, is 
presented to optimize the mixture number and local metric parameters. The 
structural risk minimization is used to facilitate an asymptotic approximation of 
the cross entropy for models of fixed complexity. We also provide a formula to 
estimate the model complexity derived from the minimum description length 
criterion. The structural risk minimization method proposed achieves an 
recognition error rate of 2.29% using the ORL database, which is better than 
previously reported numbers using the Karhunen-Loeve transform convolution 
network, the hidden Marcov model and the eigenface model. 

1.   INTRODUCTION 

In this paper, we describe an adaptive metric learning vector quantization (LVQ) 
using the discrete cosine transform (DCT) for face classification in multimedia 
applications, such as used in camera and facial signature recognition. 

In the past, the Karhunen-Loeve(KL) transform and principal component 
analysis (PCA) have been successfully used for face feature detection [1][2]. We 
employ the DCT transform with the added advantage of having a 
computationally-efficient and data-independent matrix [3] as an alternative to the 
KL transform which requires data-dependence eigenvectors as a priori information. 

Another approach of the LVQ procedure as described in [4] is an 
effective clustering method for a large set of training samples. However, the 
performance is degraded with learning from a small set of samples. A number of 
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promising approaches considering local probability distribution [5] [6] [7] [8] 
[9]have also been proposed. For example, Hastie presents the normal mixture 
model, assuming a common variance matrix for all classes. However, for the 
learning from an insufficient set of learning samples, the assumption of local 
distribution is crucial [9], which makes the choice on the number of mixture 
components extremely difficult [5]. 

For the learning from a small set of samples, we propose an adaptive 
metric LVQ, based on a mixture model of local prior distributions. Our model 
assigns a variable number of the mixture classes to each class and then 
determines the mixture number and local metric parameters to minimize the cross 
entropy between the real distribution and the modeled one. In the model 
selection, the minimum description length (MDL) [10] and the structural risk 
minimization (SRM) principles [11] are indispensable. The structural risk 
minimization of negative log-likelihood has been introduced as an asymptotic 
approximation to the cross entropy minimization in cases where the model 
parameters have fixed complexity. Moreover, we can estimate the model 
complexity kc and the data number Np using the complexity formula kc(logNp) 
/Np derived from the MDL criterion. It provides a good measure to make the 
trade-offs between accuracy and complexity in determining the length of DCT 
coefficients for the case of larger kc/Np ratio. 

The local minimization of the entropy distance is demonstrated for face 
recognition of the ORL face database, which consists of 40 persons of 10 
different poses with distinct variations such as open/close eyes, smiling/non- 
smiling faces, glasses/non-glasses poses, and rotation up to 20 degrees. The 
results are compared with those obtained from using the hidden Marcov model 
[12], PCA, convolution network [13] based on KLT features, and Kohonen's 
self-organization map. 

2.  ADAPTIVE METRIC MODEL 
2.1.  The  Learning  Algorithm 

An adaptive metric LVQ estimates the Mahalanobis distance, D(xp,xk
tl), 

between an input vector xp =(xpl, ■ ■ ■, xp,Np) and a reference vector 

*^ =(*/''•"'» xJi,Np A assuming 

W-TZZ;**!'**'*»' 
'     '-;?      ~*\f v-1/^'      T*1 

V^rE,.        2 
exp£(Jc'-**)%'<*'-**)). (1) 
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Each component of the input vector is assumed to be independently and 
identically distributed (i.i.d). Therefore, \T,k\ll.„ = Su.j)Ot-J and P(0*).YlZp[0tJ} 

For each presentation of an input vector in class p, we estimate the 
Mahalanobis distance and update components of reference vectors 3c* and x'ß 

for the first and second nearest neighbor classes k and /, respectively, as 
depicted in the following equations: 

<M,=<U,+Ä^-^,)       f™P = k- (2) 

<*., = <„-#*"-<„)   t0TP*L (3) 

2.2.     Local Information Measure 

To obtain optimal variances from small learning sets, we propose a 
mixture model using the minimization of the cross entropy between an 
unknown true distribution P(/') and a modeled one Q(**■'), which is equal 
to    -logP(xki).    We    deal    with the    empirical risk function 
X* Q,(xt

p')/Np in the place of the cross entropy \P(x*J) Q( xu ) dxki for an 

i.i.d sample sequence of xki„...xki
Np. According to the Vapnik-Chervonenkis 

theory, the error is bounded by 

Pisup J^Jßl^JirlJaW e^<4exp< e' + 
h(\n(2Np/h) + iy 

Nr 
(4) 

The h is the Vapnik-Chervonenkis dimension denoting parametric complexity 
and Np is the sample size. We obtain asymptotically optimal variances from 
the mixture distributions by increasing the size of training samples even in 
cases where the learning parameters have a fixed complexity h. 

Figure 1 shows a schematic illustration of structure of mixture classes. 
Our model assumes the (q+1 )-fo\d product of mixture distribution, Pq(o

k',xk') = 
n 9

j=0 P( Gm<i>,',xm<J>,i), to derive the asymptotically optimal variance oq *■' of 
component i in class k. Let the (q+l)-fo\d mixture classes Mu

q be provided 
with a structure: 

U Af*1' eM'-'-eM, tk,i M    > ,k,i    _ 
'mind) — lmin(2) —   min(^)• (5) 

min(g) (g+l)JVp J—t   t-t ^q 
J=0   P=l 

{q+\)Np 

1 ie,(<T"wu,*;üW), 
P=I 

i £iog/»(«T"yM,jt;ÜU). 
;=0   p=l 

(6) 
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k,i 
Iminfj) 

Figure 1. A schematic structure of mixture classes defined by using a likelihood 
function t'm!„m of mixture number j. 

The _/-th mixture class m(j) is assigned according to each reference class k based 
on the likelihood measure lk,i

mi„w. For each class, the minimal size of the 
mixture model is uniquely derived from equation (5). Then, an optimal variance 
is obtained by 

Z%o «i(;)./ 

q + \ 
(7) 

Furthermore we can extend this model by introducing the complexity 
term (kclogNp /2+logM )/ Np based on the minimum description length(MDL) 
criterion: 

C,~{C^fl0g^+l0gM1- (8) 

The kc and M denote the dimension of the model and the maximum number of 
the model respectively. This is equivalent to the MDL criterion in providing a 
trade-off between correctness and complexity in selecting the distribution model. 

2.3. Number of DCT Coefficients 

The optimal number of coefficients in the DCT approximation of gray images 
can be derived from the MDL criterion: 

L = - log(P(<r)) + - log(Ar ) + log M, (9) 
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assuming 

V2rca 2cr  «i v=i 

CU,.V) ~ J{x,y)        N 4-m=\ *-m~\ u"'-vl (a,v) COS 
ff(2jc+l)u 

2N COS 
»(2y+l)y 

2N 

(10) 

(11) 

The it, Np and M denote the dimension of the model, the number of data samples 
and the maximum number of model classes. The F(uv) is the discrete cosine 
transform of f(xy) and the Ndcl is number of the coefficients. The maximum 
likelihood DCT coefficients are obtained by minimizing the /rfc,of equation (9). 

3.   RESULTS 

The ORL database consists of 40 persons with 10 distinct facial 
expressions. The original image of 114x 88 pixels is transformed into an image 
of 16x16 pixels. The coefficients derived from the 16x16 DCT are used for 
learning. 
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Figure 2. Relationships between the number of DCT coefficients and recognition 
error rate and mean absolute error. 
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First, we derive an optimal number of DCT coefficients. Figure 2 
shows the relationships between the numbers of coefficients and the recognition 
error rate and mean absolute error for the coefficients {Fa

(uv) I 0< u, v < Ndcl} 
and {Fb

(uv)l 0 < u + v < Ndct}. It demonstrates the trade-off between error rate 
and complexity in the DCT approximation. Increasing the coefficient number 
reduces the approximation error but increases the complexity of the learning 
network by kJlogNp). The recognition error rates reach the minimum value at 
around 36 coefficients. 

The main issue of constructing our learning model is to assume proper 
input pattern distributions. For examples, Hastie proposes a normal distribution 
sharing common component variance among all classes [5]. Table 1 shows error 
rate and description length obtained from the distributions with three kinds of 
variances. The distribution with a common component variance specified by (c2) 
[5] is compared with a distribution with different component variances specified 
by (c3) and with that of Kohonen LVQ with aki=l (cl). The result of the 
distribution (c3) is worse than that of Kohonen LVQ with oki=l. The error rate 
obtained from the distribution (c2) is better than those obtained from (cl) and 
(c3). The learning performance significantly depends on the distribution 
assumptions. We ensure the goodness of the assumptions in terms of description 
length. The description length derived form the distributions (c2) and (c3) are 
1084 and 1616, respectively. The assumption used in Hastie model has attained 
smaller description length by effectively reducing the complexity term in 
equation (8). The complexity terms derived from distributions (c2) and (c3) are 
(kc/2) logNp +log( kc Np ) and kclogNp (In our simulation, the number of 
classes kc and the number Np of patterns are 40 and 5, respectively.) The 
distribution proposed by Hastie [5] is more probable when the complexity term 
is reduced, although it is the very restrictive assumption. 

Table 1. Error rate and description length obtained from the distributions with three 
kinds of variances. 

^^^^ cl c2 c3 

Variance G^=l Np Gk'' 

Error 
rate[%l 12.10 9.12 14.30 
Description 
length 1084 1616 
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To reduce the first term of equation (8), our approach employs a mixture 
model of normal distributions allowing a variable number of mixture classes. To 
determine an optimal size, we explore minimization of several metric measures 
consisting of (ml) cross entropy, (m2) variance distance and (m3) mean value 
distance, which are defined by using normal distributions of classes k and /. 
Table2 shows the error rates and average variances obtained from fourfold 
mixture distributions. The asymptotic minimization of cross entropy is 
estimated by using £(olt'i2+o1'i )• The error rate obtained from the cross entropy 
minimization is 7.68%, which is better than 8.24% and 12.25% obtained from 
mean value distance and variance distance minimization. 

Table2 Error rates and average variances obtained from fourfold mixture distributions. 

^—-^_ ml m2 m3 
Metric 
measure XCa^^+o1''2) I |ak,i_aU|2 I ||lk,i_^l,i|2 

Error 
rater%l 7.68 12.25 8.24 

Variance 36.20 38.82 38.87 

For component inputs of DCT coefficients, the entropy distance is 
defined by assuming a variable number of i.d.d mixture classes. Figure 3 shows 
the relation of average variance and error rate to the number of mixture classes. 
We compare the performance of using our model specified by (m4), with results 
derived from a fixed size of mixture classes for all the components specified by 
(ml) and (m2). The minimal error rates of 7.65% and 8.24% or the variances of 
618 and 960 are obtained at the size of 3 and 4 for the entropy distance and the 
centroid distance. Using our model, the error rate and average variance are 
decreased and saturated to 6.28% and 516 with an increase in the number of i.i.d 
mixture classes. The essence of the structural risk minimization allows variable 
size of the mixture classes according to equation (5) for i.i.d DCT components. 
The error rate with variable size of mixture classes is significantly improved 
from 7.78% to 6.28% by allowing an optimal size of mixture classes defined by 
the entropy distance. 
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Figure 3. Relation of average variance and error rate to number of mixture classes. 

Table 3. Face recognition results using 5 faces for training and 5 testing from the 
ORL database. 

DCT+ 
AMLVQ 

SOM+ 
CN 

KLT+ 
CN 

Pseudo2D 
HMM 

Eigenfaces 

Error 
rate[%] 2.29 3.8 5.3 5.0 10.5 

Table 3 shows the face recognition results using 5 faces for training and 
5 testing from the ORL database. Figure 4 shows the recognition error rates as 
a function of number of training faces. An error rate of 2.29% using our method 
is achieved, which is better than the 3.8%, 5.3%, 5% and 10.5% obtained using 
SOM+CN, KLT convolution network [13], Pseudo 2D hidden Markov model 
[12] and eigenface model [13], respectively. Furthermore the previous results 
were obtained with averaging two best trials, while our results were obtained 
with averaging the best five. 
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Figure 4. Recognition error rates as a function of number of training faces. The other 
faces of 10 faces are used for testing. 

4.   CONCLUSIONS 

We present a DCT-based adaptive metric LVQ employing a mixture model 
designed for learning from small sample sets such as in face identification. 
Adaptive sizes of the mixture classes and local metric parameters are derived 
from the structural empirical risk minimization for a certain model complexity. 
We extend this model to provide a general trade-off between error and complexity 
by introducing the complexity term in MDL. The optimal size of the DCT 
coefficients is also obtained, achieving the lowest recognition error rate using the 
ORL database reported so far. 
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ABSTRACT 

Speaker verification is a rapidly maturing technology that is be- 
coming available for commercial applications. In this paper, we 
investigate the application of data fusion methods to sub-word im- 
plementations of speaker verification. At a sub-word level, we uti- 
lize the diversity of the information provided by the neural tree 
network and Gaussian mixture model to provide a more robust 
sub-word model. The phrase-level scores for each modeling ap- 
proach are obtained and then combined. The data fusion method 
we use for combining the model scores is the linear opinion pool. In 
addition to using the diversity of the model scores, we also apply 
the concept of redundancy by using a leave-one-out approach to 
partition the input data. This allows us to generate several models 
and accommodate the small training sample issues imposed by our 
specific applications. The theoretical results of the above analy- 
sis have been integrated into a system that has been tested with 
several databases that were collected within landline and cellular 
environments. These results are included in this paper. We have 
found that the proper data fusion techniques will typically reduce 
the error rate by a factor of two. 
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1 INTRODUCTION 

Speaker verification consists of determining whether or not a voice sample 
provides sufficient match to a claimed identity. Speaker verification has nu- 
merous applications in areas that necessitate the validation of a person's iden- 
tity. For example, when initiating a bank account transaction over the phone 
or at an automatic teller machine (ATM), speaker verification can provide 
an additional level of security over personal identification numbers (PINs). 
Also, speaker verification has the advantage over other forms of biometric au- 
thentification, such as fingerprint, retinal scan, etc., in that it can be applied 
over the telephone network. These are some of the characteristics that make 
speaker verification a very attractive technology for numerous commercial 
applications. 

Speaker verification applications are generally text-independent or text- 
dependent. Text-independent speaker verification systems do not require that 
the same text be used for training and testing. Text-dependent speaker veri- 
fication systems require that the same text be used during both training and 
testing. Though text-independent systems may be more convenient from a 
user standpoint, text-dependent systems provide additional security in that 
they 1) require fraudulent imposter attempts to use the same password, and 
2) tend to provide better performance than text-independent systems. Text- 
dependent speaker verification systems will be the focus of this paper. 

In this paper, we investigate the application of data fusion methods to 
sub-word model implementations of text-dependent speaker verification. The 
effects of segmentation for sub-word implementations are addressed. Two 
modeling approaches are then considered for score combination, namely the 
neural tree network and Gaussian mixture model. 

This paper is organized as follows. The following section provides an 
overview of the processing steps in performing speaker verification. This 
overview includes a brief description of feature extraction, model evaluation, 
and data fusion. This is followed by a description of the implementation 
details that are specific to our system. The experimental results for several 
text-dependent tasks are then provided. The databases used for these ex- 
periments are collected within both landline and cellular environments. A 
summary of the results is then given. 

2 SPEAKER VERIFICATION 

Speaker verification generally consists of feature extraction followed by model 
construction and evaluation. As part of model construction and evaluation, 
we will also address the concept of data fusion where the scores of several 
models are combined to create a composite score. This composite score will 
be that which is applied to a threshold to yield the final decision. These phases 
of speaker verification are briefly described in the following subsections. 
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2.1 Feature Extraction 

Feature extraction consists of deriving characteristics of the speech signal 
that are unique to an individual. The predominant characteristic that causes 
people's voices to be different from one another is the shape of the vocal tract. 
The difference in the length and cross-sectional areas in the vocal tract from 
person to person results in different resonant frequencies and bandwidths. 
Hence, most feature extraction routines for speaker recognition utilize some 
type of spectral analysis. Typical features are the cepstrum or variants of 
it. Pole-filtered, mean-removed cepstrum [1] are the features used in the 
experimental results section. For this feature set we first obtain a channel 
estimate by computing the pole-filtered mean of the linear predictive (LP) 
cepstrum of the input speech. This channel estimate is converted to a filter 
that is applied to the speech to inverse out the channel effect. Then, the LP 
cepstrum of the filtered speech is used as the feature. 

2.2 Modeling 

A speaker verification model is constructed from feature data, specifically 
that from a target speaker and possibly from non-target speakers. This model 
should have the ability to provide a level of match to the target speaker when 
given a new set of feature data. For text-dependent speaker verification, a 
model should capture the temporal information in addition to the acoustical 
information. The standard models that accomplish this are hidden Markov 
models (HMMs) and dynamic time warping (DTW). In general, segment- 
based approaches to speaker verification maintain temporal information. An- 
other important piece of information for model construction or evaluation is 
data that is not from the target speaker, or "non-target" data. One method 
for incorporating this information is used during model evaluation and is 
known as cohort normalization [2]. Another method is to use non-target data 
during training, which can be accomplished by using discriminative training 
approaches [3] or neural networks [4]. 

The modeling approach here is based on the neural tree network (NTN) 
and Gaussian mixture model (GMM). The NTN [5] is a hierarchical classifier 
that uses a tree architecture to implement a sequential linear decision strat- 
egy. The NTN has been evaluated for text-independent speaker verification 
[4], whole-word based, text-dependent speaker verification [6], and sub-word 
based, text-dependent speaker verification [7, 8]. Data fusion methods were 
considered for whole-word NTN models with dynamic time warping [6, 9]. 
In this paper, we evaluate data fusion methods for sub-word NTN models 
combined with Gaussian mixture modeling, which is also a popular model for 
speaker verification [10]. 
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2.3    Data Fusion 
Data fusion methods can take advantage of the concepts of diversity and re- 
dundancy to improve system performance. Diversity can be used to improve 
system performance through the incorporation of different information Sim- 
ilarly, redundancy can achieve the same goals through the re-use of data. 
These concepts have been thoroughly explored in the field of communications 
and have also been applied to pattern recognition problems. The basic idea 
is that if several models can be constructed, whose errors are mutually un- 
correlated, then performance advantages can be obtained through the proper 

combination of the model scores. 
The combination of different sources of information has been explored 

within a field known as data fusion. A comparison was done between several 
data fusion techniques, including the linear and log opinion pools [11], and 
voting [12] for a speaker verification application [6]. This comparison showed 
the simplest method, namely the linear opinion pool, to do at least as well 
as the other methods. Hence, the linear opinion pool will be considered here. 
The linear opinion pool is evaluated as a weighted sum of the outputs for 

each model: n 

Plinear(x)   =   f>iPi(*), W 
»=1 

where ft„e«r(*) is the probability of the combined system, <* are weights 
«(«) is The probability output by the ,« model, and » is the number of 
models.  For all experiments in this paper, a,- is between zero and one and 

the sum of the a,-'s is equal to one. 

3    SPEAKER VERIFICATION SYSTEM 

The speaker verification system used in this paper is known as the T-NETIX 
SpeakEZ Voice PrintSM system. This system is text dependent and utihzes 
sub-word NTN and GMM models, along with vocabulary-independent pass- 
word selection and data fusion. The vocabulary-independent password selec- 
tion is enabled through a technique known as blind segmentation [13J.1 he 
blind segmentation algorithm will automatically determine the number of seg- 
ments and segment boundaries for a password without the use of transcription 
information. The NTN and GMM scores for each subword are accumulated 
to form the phrase-level score for each model type. 

Additionally, a leave-one-out strategy is deployed to utilize the data re- 
dundancy in addition to facilitating threshold selection. Basically, for N 
enrollment repetitions of a password, there will be N separate models Each 
model is trained with N - 1 repetitions with a different repetition left-out 
for each model. The left-out repetition can then be applied to the model 
to yield an unbiased target speaker score that can be used in setting the 
threshold for speaker acceptance/rejection. 
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Figure 1: Training a speaker model 

The procedure to train a model for a given speaker is illustrated in Figure 
1. The multiple repetitions of the speaker's password are used by the seg- 
mentation module to estimate the number of subwords in the password along 
with the subword boundaries. The mean vector and diagonal covariance ma- 
trix of the subword segments are obtained as by-products of the segmentation 
module. These are used as the GMM component of the speaker model. For 
each subword segment of the password, a NTN model is also trained. The 
closest subword segments from other speakers who are already enrolled in the 
database are used as non-target data for training these subword NTN models. 

The procedure to verify a claimed identity is illustrated in Figure 2. The 
given testing utterance is segmented to the optimal number of segments de- 
termined during training. The subword segment vectors are scored using 
the appropriate subword NTN and GMM models. The scores of these sub- 
word segments are averaged and a composite score for the entire phrase is 
obtained. The phrase-level NTN and GMM scores are then fused together 
using the linear opinion pool. We have performed experiments that did not 
show any advantages by combining this information at the subword level. If 
multiple models are obtained during training using the leave-one-out method, 
then all these models are scored in the above manner. These model scores 
are averaged to yield the final output score. 
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Figure 2: Testing a claimed identity 

4    EXPERIMENTAL RESULTS 

The T-NETIX SpeakEZ Voice PrintSM system is evaluated with three toll 
quality speech corpora that were collected by T-NETIX. The first database 
is known as the "names" database. The names database consists of 10 male 
target speakers, each with three enrollment utterances of their full name. The 
imposter attempts are comprised of the remaining nine speakers and all use 
the correct password. The second database is known as the "open sesame" 
database. This database consists of 56 enrolled speakers and 47 separate non- 
target speakers. Each speaker enrolled with the phrase "open sesame", hence, 
this scenario reflects a fixed-text situation. The third database is known as 
the "cellular" database. This database is also a fixed-text application that 
uses the password "Al Capone" for all speakers. This database was collected 
using cellular phones and consists of 26 evaluation speakers and and 15 non- 
target speakers. The aspects of each database are summarized in Table 1. 
The non-target speakers column in Table 1 refer to the development set that 
is used during training of a speaker model. To avoid bias in the results, the 
development speakers are not used as imposters during the actual testing. 
The evaluation speakers are used to measure the actual system performance. 

The first experiment evaluates the system equal error rate as a function 
of the number of segments. Generally, the system computes the number 
of segments per password, but in this case, we have forced the number of 
segments to be constant for all speakers. The results of this experiment as 
performed on the names database are shown in Figure 3. It is clear from 
Figure 3 that the GMM requires several segments before the performance 
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Figure 3: EER versus number of segments 

starts to become competitive. The performance of the NTN, however, starts 
to degrade as the number of segments increases beyond four or five segments. 
This is due to the fact that the number of data samples per NTN decreases as 
the number of segments increases. Hence, for the NTN the lack of data starts 
to overcome the benefits of decomposing the acoustic space of the password. 

The next experiment evaluates the equal error rate as a function of alpha 
for the linear opinion pool method of data fusion. The system uses a variable 
number of segments per speaker. The results of this experiment for the names 
database are shown in Figure 4. Here, it can be seen that the individual 
performance of the GMM and NTN is 3.2% and 3.4%, respectively. However, 
by combining the results of these methods, the EER can be reduced to 1.6%. 

This experiment was also evaluated with the "Open Sesame" and "cellu- 
lar" database and the results for these experiments are shown in Figures 5 
and 6, respectively. The results for the "Open Sesame" database show the 
individual performance of the NTN and GMM to be 1.6% and 2.3%, respec- 
tively, whereas the performance of the fused output is 0.9%. For the cellular 
"Al Capone" database the individual performance of the NTN and GMM is 
11.8% and 10.2%, respectively, while the performance of the fused output is 
8.2%. 

The experimental results for T-NETIX's SpeakEZ Voice PrintSM system 
are tabulated for the "names", "Open Sesame" and "cellular" databases in 
Table 1. The results in this table reflect the fusion results when a = 0.5. 
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Names database: Equal error rate versus alpha 

Figure 4: Linear opinion pool for names database 

Open Sesame database: Equal error rate versus alpha 
-i 1- 

Figure 5: Linear opinion pool for "Open Sesame" database 
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Cellular "Al Capone" database: Equal error rate versus alpha 

Figure 6: Linear opinion pool for "Cellular" database 

5    CONCLUSION 

The T-NETIX SpeakEZ Voice PrintSM system is evaluated for several text- 
dependent speaker verification tasks. These include applications in both cellu- 
lar and landline environments. The T-NETIX SpeakEZ Voice PriniSM system 
does not have any constraints on the vocabulary from which the password is 
selected. This is accomplished through the use of sub-word neural tree net- 
works and a blind segmentation algorithm that does not require phonetic label 
information. In addition, the system utilizes concepts within data fusion to 
capitalize upon different modeling approaches whose errors are uncorrelated. 
The data fusion techniques are found to reduce the error rate by a factor 
of two for the landline databases. The error rate for the cellular database 
is reduced by 20%.  The error rates for the landline and cellular databases 

Password 
text 

# development/ 
evaluation speakers 

# true/imposter 
trials 

Performance 
(EER) 

"Open Sesame" 47/56 195/11,229 1.3% 
Own full name 80/10 males 100/450 1.6% 

"Al Capone" 15/26 273/6825 8.2% 

Table 1: Performance for the SpeakEZ Voice PrintSM system 
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are roughly 1-2% and 8%, respectively. We find these results very encour- 
aging given the constraints of limited training repetitions, short enrollment 
utterances, and unconstrained vocabulary for password selection. 
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Abstract - A chaotic annealing neural network model based on transient chaos 
and dynamic gain is proposed for solving optimization problems with continuous- 
variables such as maximal likelihood estimation of spatial signal sources in this 
article. Compared to conventional neural networks only with point attractors, 
the proposed neural network has richer and more flexible dynamics which are 
expected to have higher ability of searching for globally optimal or near-optimal 
solutions. After going through an inverse-bifurcation process, the neural network 
gradually approaches to a conventional Hopfield neural network starting from a 
good initial state. Numerical simulations show both the effectiveness escaping 
from local minima and the ability solving for nonlinear maximal likelihood 
estimation of spatial sources of the proposed network 

L INTRODUCTION 

In many branches of science and technology one often encounters difficult 
optimization problems which have intractable computational complexity . For these 
problems there is a large but finite set of possible solutions, among which we desire to 
find the one which globally minimizes the cost function involved. Typical examples 
are the knapsack problem and traveling salesman problem (TSP). Through the 
pioneer work in [2], the collective computational properties of the Hopfield neural 
network (HNN) for seeking a stable equilibrium can be utilized in solving many 
difficult optimization problems. The main difficulty in solving many actual 
optimization problems using HNN is that the network tends to become trapped in 
local minima due to its gradient descent dynamics. To avoid getting stuck in local 
minima , both stochastic simulated annealing (SSA) approand deterministic 
simulated annealing (DSA) techniques have been proposed and are combined with 
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neural networks. Typical examples of neural networks with SSA function are 
Boltzmann machines and Gaussian machines. On the other hand, various DSA 
approaches, such as hardware annealing (namely gain sharpening) in the Ijjppfield 
networks and cellular neural networks and mean field approximate annealing , have 
been proposed and applied to neural networks. 

Recently, a number of artificial neural networks with chaotic dynamics have been 
extensively investigated because of their more complex neurodynamics. Unlike the 
conventional networks only utilizing gradient descent dynamics, the neural networks 
with chaotic dynamics have richer and far-from equihbrium dynamics with various 
coexisting attractors, not only of fixed points and periodic points but also of strange 
attractors. This kind of complicated neurodynamics is a promising technique for 
information processing and optimization. In particular, an intriguing property of 
chaotic neural network to move chaotically over fractal structure in the phase space 
may be an efficient heuristic method searching for global optimal or near global 
optimal point, avoiding getting stuck at local minima. The maximum difficult 
happened for the use of the chaotic characteristics is to decide when to terminate the 
chaotic dynamics, or how to harness chaotic behavior for convergence to a stable 
equilibrium point corresponding to an acceptably near-optimal state. 

In order to make full use of the advantages of both chaotic neurodynamics and 
conventional gradient descent (or convergent) neurodynamics, this article proposes a 
neural network model with transient chaos and dynamic gain for nonlinear 
optimization solving problem. This neural network is expected to have higher ability 
of searching for the global-optimal or near-optimal solution. The characteristics of the 
proposed network are analyzed and examined by numerical simulations in details. 

IL A NEUKAL NETWORK WITH TRANSIENT CHAOS AND TIME- 
VARIANT GAIN 

It is well-known that Hopfield network with continuous-time or asynchronously 
discrete-time state transitions guarantee convergence to a stable equihbrium solution 
but suffer from local minimum problems. Since the chaotic neural network is of 
richer and more flexible neurodynamics whose running region is only a fractal 
structure in the phase space and may be used to efficiently escape from local minima 
problem in chaotically. Therefore, in order to obtain a global optimal or near-optimal 
convergent solution for nonlinear optimization, we ingeniously combine the chaotic 
dynamics with convergent dynamics and propose a new chaotic neural network 
model based on transient chaos and time-variant gain (NNTCTG), as defined below: 

^=
l+e-m^)) (1) 
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In \ 
yi(t + l) = kyXt) + o^Id^wijxJ(t) + Iij-zi{t)(xi(t)-I0) (2) 

z,.(^l) = (l-ß)Z,(0   ' (3) 

84(r + l) = (l-yX(0 0 = 12,-,«)      (4) 

wherex, ,yt and /, are output, internal state and input bias of neuron i, wv 

connection weight from neuron ;' to neuron i, a = positive scaling parameter for 

inputs, k = damping factor of nerve membrane (0 < k < l), zt{t) = self-feedback 

connection weight (z,(f)>0), ß = damping factor of the time-dependent 

z; (t), (O < P < l), s, (t) = gain parameter of the output function (s,(t) > 0 ), Y = 

damping factor of the time-dependent e t (t), (O < y < l). 

In (l)-(4), if E,(^) equals to a big positive constant s; and z,(?) is a positive 

constant z, and 70 = 0 , then the NNTCTG is reduced as the chaotic neural 

network (CNN) proposed in [7]. So the NNTCTG is regard as a generalized CNN 
and is expected to has some similar chaotic phenomenon of complicated bifurcation 

structures with CNN. By introducing the time-dependent variables z, (t) and s, (t), 

the chaotic dynamics of NNTCTG can be reasonably harnessed and highly accurate 
steady-state solution for nonlinear optimization problem can be obtained as well as 
long as we choose appropriately the parameters in NNTCTG. This will be shown by 
numerically next section. 

The term z,(r)(x,(^)-/0)  in (2) is related to inhibitory self-feedback or 

refractoriness and is the main factor generating chaotic phenomenon. It can be shown 
that NNTCTG actually has transiently chaotic dynamics which eventually converges 
to a stable equilibrium point through successive bifurcations like a route of reversed 

period-doubling bifurcations, with the temporal evolution of zt(t) and e,.(?) by in 

(3). Variables z,(?) and s,(?) corresponding to the temperature in usual stochastic 

simulated annealing process in exponential ccoling schedule harness the chaotic 
behavior for convergence and the speed of reversed bifurcation. Actually, the 

damping of z,(f)   and   e,.(f)   produces successive bifurcations so that the 

neurodynamics eventually converge from strange attractors to a stable equilibrium 
point. 

Comparing with HNN, the NNTCTG has an additional nonlinear time-dependent 

damping term. As the self-feedback connection weights zt(t) tend toward zero with 
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time evolution in the form of zi(t) = zi(oyß, the NNTCTG defined in (l)-(4) 

eventually reduce to the continuous-time HNN which had been extensively used to 
solve many difficult optimization problem in many domains. On the other hand, with 

the temporal evolution of gain parameter s,.(r) simultaneously, the convergent 

NNTCTG after a reversed period-doubling bifurcation process gradually approaches 
to a HNN with desired gain value, which is very suitable for accurate nonlinear 
optimization solving of continuous-variables. 
According to above discussions, it is clear that the procedure of NNTCTG in solving 

for nonlinear optimization problem is able to be divided into two phases: chaotic 
bifurcation phase and gradient convergent phase. In the first phase, a complicated and 
rich chaotic bifurcation process is created by big values of refractoriness and gain for 
the network to escape from local minima, whose mechanics can be regarded as a kind 
of DSA and called chaotic simulated annealing (CSA). After that, a good initial state 
at a neighborhood of globally optimal solution is provided for the gradient descent 
dynamics of the second phase of NNTCTG so that the network can easily reach the 
global optimal or near-optimal solution of the problem. 

DL NEURODYNAMICS ANALYSIS OF NNTCTG 

In order to analyze and examine the nonlinear dynamics of the proposed NNTCTG, 
we use it to solve a concrete optimization problem whose objective function is defined 
as 

E(x1,   x2) = (x, -0.7)2((x2 +0.6)2 + 0.l) + (x2 -0.5)2((x, +0.4)2 +0.15).     (5) 

Point (0.7,0.5) is the global minimum while the points (0.6,0.4), (0.6,0.5) and (0.7, 
0.4) are local minima in the landscape of energy function of (5). 
Let us set the values of the network parameters in (l)-(4) as 

£ = 1.0;   f(0) = [230,   230];   70=0.5;   z(0) = [0.082,   0.082]. (6) 

By Letting V*_yvijx)+It = -(E\dcx■.,  {' = 12), the objective function of the 

concrete optimization problem can be transformed as the energy function of the 
corresponding NNTCTG. Through this transformation our proposed NNTCTG can 
be formed to solve this kind of optimization problems and can evolve from a given 
initial state. 
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Fig. 1 Time evolutions ofX(t) and the Lyapunov exponent A in the dynamics of the NNTCTG 

Fig.l shows the time evolutions of Xl{t),X1(t) and their Lyapunov exponent A , 

which are calculated by (l)-(4) with  ß =0.01,  Y=0.01 and  a =0.015 and given 
initial state y(0)=[-0.2828, -0.0461]. 

The Lyapunov exponent A for X\\f) and X2\f) is calculated by 

*.,-■ 
■   lim 

,   m-\ 

-Tin 
k=0 

dx^k + l) 

dx,(k) 
i = l   2 (7) 

The positive values of A in Fig. 1 indicate that NNTCTG actually have chaos during 

the first 110 iterations for xx(t) and x2(t) in this problem. After that, the network 

enters into its gradient convergent stage since the Lyapunov exponents are negative 

values. As z^t)  and e;(?)  are damped in exponential schedule simultaneously, 

Fig.l shows clearly that the neuron outputs Xx(t) and X2(t) gradually transit from 

chaotic behavior to fixed (or steady) values through a reversed period-doubling 
bifurcation process. In other words, the proposed NNTCTG has transiently chaotic 
dynamics and almost coincides with the HNN's dynamics when the values of time- 

dependent Zj^t)  and  St[tJ  decreases enough. This supports our discussion last 

section. The fixed output of the network is just the global minimizer (0.70,0.50) after 
185 iterations. 
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evolutions for the two cases. 
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Fig 2 shows contour plots of the energy function and trajectories of output values of 
NNTCTG when network parameters are set as above except for the initial states 
(0 5631 -0 3461) and (0.0337,0.8453). The outputs initially located at a-(-1.0, -1.0) 
and b=(0 9992 10) follow the individual trajectories when the network is allowed to 
evolve After a shortly bifurcation process, the steady-state outputs of the network for 
location a and location b are both (0.7,0.5) which corresponds to the global rnimmum. 
It is also shown that the first stage of each trajectory is a temporal process of reversed 
period-doubling bifurcations whose searching regions in the state space shown by 
points in Fig 2(a) and (b), which can be at anywhere in whole state space in 
unpredictable or chaotic manner, is restricted to a small possibly fractal structure 
whose volume should be zero with respect to the Lebesgue measure of the whole state 
space So CSA is much more efficient in computation than the famous SSA which 
needs to search the whole state space. Fig.2(c) and (d) also show that the energy 
functions corresponding to the two trajectories are also follow the same two phases, 
namely a fixed value (global minimum) is approached in gradient descent manner 
after a reversed bifurcations. . .. 

When we use the HNN to solve the problem with same conditions, the initial 
location a and b result in the local nunimizer in the steady-state outputs whose 
trajectories are also shown in Fig.2 by dashed-line. From this attempt, it is clearly 
seen that the proposed NNTCTG with intrinsic CSA mechanics has much stronger 
ability searching for global optimal or near-optimal solution of nonlinear optimization 

than conventional HNN. 
In the sequel we vary ß and Y to investigate me dynamics of the NNTCTG while 

other parameters are fixed as in (6). 
Fig.3 shows the time evolutions of neuron output x,(f) with different values of 

damping ß and Y. As shown in Fig.3(a) and (c), with Y =0.001 or 0.005 and ß 
=0.01, the parameter Y controls the bifurcation speed of transient chaos and the 
accuracy of the steady-state solutions. On the other hand, as was shown in Fig.3(b) 

and (d), when Y =0 and ß =0.01 or 0.1, after shortly bifurcation, the output of x, (t) 

becomes an oscillation and can not be stabilized at a fixed point at least at 2000 
iterations done for the problem. In other words, the NNTCTG without time-variant 
gain can not be used to solve nonlinear optimization with continuous variables. 
Therefore, the damping factor Y of time-variant gain is a key parameter in 
NNTCTG which not only governs the bifurcation speed of the transient chaos and 
controls the solving accuracy of the network, but also trades off the gain requirements 
of both transiently chaos and steady-state HNN. In addition, the coefficient a is a 
balance parameter between the chaotic dynamics contributed by time-dependent term 
in (2) and convergent dynamics by the gradient term of energy function in (2), which 
should be chosen appropriately in practical applications. 
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Fig.3 Trajectories of neuron xl with different values of damping factors of ß and y 

In order to further examine the ability of obtaining global and near-global solution 
for complex nonlinear optimization problem, we compute (5) with 10000 different 
initial states and list the results in Table 1. For convenient comparison, we also give 
the statistical results of HNN for the same conditions in Table 1. It can be seen that 
NNTCTG is always able to obtain the global optimal solution every time, but HNN 
can obtain the global optimal solutions for only 238 times because of its greedy 
gradient descent manner. Average iteration for convergence of NNTCTG is 195 
iterations which is about one quarter time than that of HNN. 

TABLE 1 RESULTS OF 10000 DIFFERENT INITIAL CONDITIONS ON OPTIMIZATION 
PROBLEM AS (6) BY NNTCTG AND HNN 

Neural Network Model NNTCTG HNN 
Rate of global minima (%) 10000(100%) 238( 2.44%) 
Rate of local minima (%) 0( 0%) 9762(97.46%) 

Average iterations for convergence 195 749 

IV APPLICATION TO DOA ESTIMATION OF SPATIAL SOURCES 

Recently highly accurate direction of arrival (DOA) estimations of spatial signal 
sources have been studied extensively and find applications in radar, communications, 
sonar, geophysical imaging and so on. Typical techniques are maximum likelihood 
(ML), MUSIC, minimum variance, propagating operator and ESPRIT, etc.. Although 
the ML method among them provides an optimum solution, it is not as prevailing as 
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so called suboptimal methods mainly because of its Wgh^putational complexity 
for optimizing a nonlinear likelihood function expressed as 

(8) 

where d is the interval between array units, X is signal frequency, P denotes the 
number of signal sources, N is the number of array units, M is the number of flash 
shots, x (/) represents the received data of/th unit in fth flash shot. Variable 8, is 

the direction of the /th signal source, q>, is the initial phase and $,(/) is the 

amplitude of signal sources. 
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Fig4 Trajectories of the network for estimatingthree signal sources 

When to apply the parallel massive computational ability of Hopfield-like neural 
networks to this ML estimation in real time, it suffers from local minima problems. 
Here we use the proposed NNTCTG to solve this problem. Through appropriate 
transformation, equation (8) can be transformed as the energy function of NNTCTG 
which can be used to solve the ML DOA estimation in hand. 

Example: DOA estimation for three narrow passband signal sources whose 

incoming angles are 21°, 32° and 50°, respectively. SNR is 20dB. N=5. The 
network parameters are chosen as k = 1.0; e(0) = 280; I0 = 0.5; z(0) = 0.082. 

ß =0.001, Y =0.04 , a =0.009. Fig.4 shows the trajectories of the proposed 
network for the three spatial signal sources. It can be seen that the global optimal 
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solution, which is hard to be obtained by the conventional HNN-like methods, is 
easily reached by our neural networks. 

IV. CONCLUSIONS 

In this paper, we proposed a chaotic annealing neural network for accurately solving 
nonlinear optimization with continuous variables and applied it to ML estimation of 
spatial sources. It is an ingenious combination of chaotic dynamics and convergent 
dynamics whose intrinsic CSA mechanics has much higher ability to search for 
globally optimal or near-optimal solutions than conventional HNN and has higher 
computational efficiency than SSA. Numerical results have been given to examine 
and demonstrate the merit of the proposed neural networks. 
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ABSTRACT 

In this work, we propose an neural network equalizer with a fuzzy 
decision learning rule based on the generalized probabilistic descent 
algorithm with the minimum decision error formulation. Then, the neural 
network use the multi-layer perceptron. It is shown that the decision region 
overlapped by noise can be overcome by the use of a fuzzy decision learning 
rule based on the generalized probabilistic descent algorithm. We apply this 
algorithm to neural network equalizer with binary sequences in nonlinear 
distortion channel. Simulation results confirm that the fuzzy decision 
learning algorithm works more effectively than the hard decision learning 
algorithm when the learning patterns are not separable by high additive 
noise. 

1. INTRODUCTION 

In the digital communication equalization is an technique to reduce the 
influence of channels with nonlinear distortion such as amplitude and delay 
distortion. Application of neural-network techniques and fuzzy logic techniques 
to channel equalization leads to a better performance compared to the linear 
equalizer with inverse-filtering formulation [1-4]. The channel equalization 

based on neural network can be viewed as a classification problem in a 
geometric setting where an equalizer is constructed as a decision making device 

to reconstructed the transmitted symbol sequence. 
The decision-based learning rule is effective for clearly separable decision 

boundary. When overlapping regions occurs due to the noise at the decision 
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boundary, however, neural network equalizer suffer from poor discrimination. 
Such problem is well known in pattern and speech recognition [5,6]. To solve 
the problem, we need a technique based on a somewhat fuzzy decision appears to 
be more suitable. 

In this work, we propose an neural network equalizer with a fuzzy decision 

learning rule based on the generalized probabilistic descent algorithm with the 

minimum decision error formulation [6]. This learning algorithm incorporates a 

penalty criterion into the conventional method with hard decision. Then, a 
penalty function treat the errors with equal penalty once the magnitude of errors 

exceeds certain threshold. The neural network for equalizer use the multi-layer 
perceptron (MLP). We apply this algorithm to neural network equalizer with 
binary sequences in nonlinear distortion channel. 

2. NEURAL NETWORKS AS CHANNEL EQUALIZER 

The transmitted data sequence x(t) is assumed to be an independent sequence 
taking values from {-1, 1} with an equal probability. The channel output o(t) is 
corrupted by an additive noise. The task of the equalizer at sampling instant t is 
to produce an estimate of the input symbol x(t-ri) using the channel output 
vector o(t) = [o(t),...,o(t-m + l)], where the integer m and n are known as the 

order and the delay of the equalizer, respectively.     For describing a geometric 
formulation of the equalization problem, define 

Pm,n{l) = {B{t)eRm\x{t-r,) = l] 

Pm,„{-l) = {o{t)^Rm\x{t-n) = -l} 

where Rm is the m-dimensional Euclidean space and, Pmn(l) and p n(-i) 

represent the two sets of possible channel noise-free output vectors o{t) that can 

be produced from sequences of channel inputs containing x{t-n) = l and 

x{t-n) = -l, respectively. It is also clear that, if the states of x(t),..., x(t-n) are 
finite, ö(t) can be only take finite values. 

If the distribution of the noise is provided, the conditional density function of 
observing    the    channel    output    vector    0(t)    given    o(t)ePmn(])and 

o{t) €Pmn{-1), respectively, are completely specified. Denoting two conditional 

density functions as b^oUlw'1) and b_,(o(t),w-'), respectively, the equalizer 
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can be characterized by the function 

x(t-n) = sgn(fde(o{t))) 

= sgn(b1(o(t),w')-b_1(o(t),w-1)) 

achieves the minimum bit-error-ratio (BER), where 

(2) 

represents a slicer. 

The set 
{o(t)eR%{o(t))>o\ 

is known as the decision region of the optimal BER equalizer and the decision 

boundary of this equalizer consists of the set of points 

{o(t)eR%{o(t)) = o\ 

When the decision boundary is clearly separable, the decision-based learning 
algorithm is effective to solve this equalization problem [1]. However, due to the 

noise the decision boundary often are not separable. 
In decision boundary, the influence of noise is now investigated. The optimal 
boundary of NN equalizer with m=2 and n=0 for Gaussian white noise with SNR 
15 dB and 5 dB are illustrated in Fig. 1, where the region on the left half plane of 

the boundary is the optimal decision region. It is seen that noise clearly affects 

the decision region. 

3. LEARNING RULE BASED ON THE FUZZY DECISION 

One way of providing tolerance, for the non separable case, can be derived 

based on a somewhat fuzzy decision [7]. The fuzzy decision has different 
degrees of error associated with each decision, for example, marginally 

erroneous, erroneous, and extremely erroneous. The technique imposes a proper 
penalty function on all the "bad' decisions as well as the 'marginally correct' 

ones. The final solution represents the best compromise in terms of the total 
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Fig. 1. Channel output points and optimal decision boundary. Channel 
o(t) = x(t)+0.5x(f - 7), equalizer order m=2 and lag n=0; 

(a) optimal decision boundary, 
(b) decision boundary from hard decision under 5 dB, 
(c) decision boundary from hard decision under 15 dB. 

penalty. In short, this allows 'soft' or 'fuzzy' decision, as opposed to the hard 
decision. To cope with 'marginal' training sequence, and to provide a smooth 
'gradient' for training, the penalty must be a function of the degree of error. To 
derive the fuzzy decision training, firstly we can choose an appropriate 
discriminate function gt\p{t);wl) as 

gMt)>w')4<i(t)-i>Ut)>™l))2> i—u      (3) 

where in the training mode d(f)=x(f-ri) and during the data transmission 
d{t) = x{t-n). 

The misclassification measure Q for a desired sequence belonging to the 1- 
decision region is defined as 

Q(t)=-gMtw)+g-Mt)>w~1) (4) 

The expected error as an objective criterion for weights w of MLP is defined as 
follows: 
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L(W) = E[j(Q(t))] (5) 

where a loss function j(Q(t)) ■■ is defined to evaluate the cost of the 

current decision and a is a positive constant for scaling. 

The loss function provides a means to minimize the number of decision errors 

and will induce the learning rule to emphasize state located at a short distance 

from the decision boundary. Then, the loss function has four regions for fuzzy 
decision: (1) correct with satisfactory vigilance, (2) correct with vigilance to be 

improved, (3) error on which correction will be attempted, (4) error to remain 

uncorrected, as Fig. 2. 

J(d) 

correct decision 

(1) (2) 

incorrect decision 

(3) (4) 

Fig. 2. Four regions for fuzzy decision. 

The gradient descent search method can be applied to minimize the expected 
error of (4). Suppose that a current desired sequence is known to belong to 
decision region of l;j(Q(t))eC'. Finally, we can obtain the fuzzy decision 

training rule as 
Reinforced training: 

*""* (6) 

Antireinforced training: 

where J'(ßW)is the derivative of the loss function evaluated at Q(i). 

(7) 
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In (6) and (7), weights are adjusted in proportion to the value of J'{Q(t)) and 

the maximum changes in the weights are happened when Q(f)=0, which means 
that the decision criterion is exactly in the boundary of region 1 and -1. So the 

more confusable those two models are, the reinforced training is carried out on 

the parameters of the correct model, while the more antireinforced training is 

carried out on the parameters of the incorrect model. Consequently, the 

discrimination between the correct model and the incorrect model will be 
increased 

3. EXPERIMENTAL RESULTS 

In order to evaluate the performance of the proposed method the equalization 
for nonlinear channel with noise is studied The channel model is 

o{t) = 6{t)+0.2o2(t)+v(t),    v(t) * N(0, a2) 

o{t) = 0.3482 x(t)+0.8704x(t -l) + 0.3482x(t - 2) 

For m=3 and n=0, the 3-layer neural network (3-9-5-1) with 3-input and 1- 

output is used as equalizer. Under SNR 5 dB and 15 dB, Fig. 3 show the 
decision region formed by a NN equalizer with fuzzy decision learning 

algorithm and conventional decision learning algorithm, and optimal decision 
region. It can be seen that the decision region formed by the fuzzy decision is 
near that optimal decision region rather conventional decision. 

We compare the bit error rates (BER) achieved by NN equalizer and NN 
equalizer with decision feedback (DF) [8] using the proposed method and 
conventional method for different SNRs and scale a of loss function. The 

equalizers are trained for the first 1000 points. Fig. 4 illustrates the BER 
performance averaged over 20 runs started from different random initial 
weights. It may be observed from Fig. 4 that the equalizer using the proposed 
method attains about 0.5-1.0dB improvement relative to the equalizer using the 
hard decision learning rule, although the correspondence between the curves is 
closet in the low noise situations. 

Fig. 5 illustrate BER performance of NN equalizer with decision feedback 
using the fuzzy decision and hard decision. In NN equalizer with DF also, the 

proposed method performs the well performance in comparison with the hard 
decision, when the level of additive noise is high. 
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4. CONCLUSIONS 

In this work, we propose an neural network equalizer with a fuzzy decision 
learning rule based on the generalized probabilistic descent algorithm with the 

minimum decision error formulation. It is shown that the decision region 

overlapped by noise can be overcome by the use of a fuzzy decision learning 

rule based on the generalized probabilistic descent algorithm. We applied the 
proposed method to equalize the nonlinear communication channel with noise. 

Simulation results confirm that the fuzzy decision learning algorithm works 
more effectively than the hard decision learning algorithm when the learning 

patterns are not separable by high additive noise situations. 
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ABSTRACT 

Spatial beamforming using a known training sequence is a well-understood 
technique for canceling uncorrelated interferences from telecommunication 
signals [1]. Most of on-line adaptive beamforming algorithms are based on 
linear algebra and linear signal models. Anyway both in the transmitter 
amplifier and in the array receiver nonlinearities may arise, producing 
distorted waveforms and reducing the performance of the demodulation 
process. A nonlinear spatial beamformer with sensor arrays may use a 
neural network to cope with communication system nonlinearities. 
In this work we show that a feedforward neural network trained with a LS- 
based algorithm may get the convergence in a time suitable to most 
applications. 

1. INTRODUCTION 

Signal processing by sensor arrays is sought as a technique for improving location 
parameter estimation (high resolution algorithms) and increasing the capacity of 
telecommunication links. The key feature of sensor arrays is that the number of 
processed sources and the Signal-to-Noise-Ratio (SNR) are limited in principle 
only by the system size [2]. 
In particular an array is able to create a spatial gain pattern with somewhat 
arbitrary shape by properly combining the outputs, according to a specified 
optimization criterion. Different patterns can be formed in parallel from the same 
received    signals,    enabling   sfmultaneous   demodulation    and   interference 
suppression in a multiple source environment. 
If the beam computation is realizable by an on-line approach, the capacity of the 
communication system can be substantially improved. This requires adaptive 
algorithms able to converge to the steady-state solution before link parameters 
change. This is a serious problem in mobile communication systems, that may 
suffer also from the presence of nonlinearities along the signal path [3] and 
impulsive interferences, thus requiring a proper nonlinear treatment [4]. 
The signal model at the array output is represented by the classical linear equation 
[2]: 
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"s(0" 
x(0 = A .^ +n(0 (1) 

where x(t) is the M-by-1 sensor snapshot vector at time t, s(t) is the ideal K-by-1 
(K<M) signal vector, A represents the (unknown) M-by-Q array steering matrix 
[2], i(t) is the (Q-K)-by-l  interference (K<Q<M) and n(t) is the additive 
background noise, uncorrelated with source and interference. All involved signals 
are assumed to be complex-valued (analytic signals) [1],[2]. 
Adaptive spatial beamforming often uses a preamble training sequence y(t) to 
recognize useful signals and cancel interferences by steering array nulls toward 
disturbances [1]. 
y(t) may be an analog local replica of the useful signal(s) s(t), or the sequence of 
modulated symbol vectors {ai,i=l,2,..,N} which forms s(t) [3]: 

N 

s(t) = XajUff-tf? (2) 
i=l 

The goal is to choose the proper parameters of a function F(x(t)) of the array 
output which best approximates y(t). In classical beamforming the function is 
linear and is expressed as the Hermitian product with a weight vector w: 

y(0 = w"x(0 + e(0, (3) 

where e(t) is the approximation error. 
Due to channel non-stationarity and communication efficiency requirements the 
adaptation process of w should be fast. The most widely known algorithms for on- 
line adaptation are based on the stochastic gradient descent, or Least Mean 
Squares (LMS) [5]. Anyway, the rate of convergence of LMS is linear [6] and is 

bounded by (p-l)2/(p+l)2, where p is the condition number of the Hessian matrix 
[6]. 
As a matter of fact, the Hessian matrix in narrowband adaptive beamforming 
coincides with the (scaled) spatial cross sensor correlation matrix (CSCM) of 
sensor outputs. Its condition number is of the same order of the array SNR and 
can be very high (102-109) in telecommunication applications. For this reason 
linear beamformers frequently use methods based on Recursive Least Squares 
(RLS) to get higher rates of convergence with respect to classical gradient-based 
approaches [5]. 

2. NEURAL BEAMFORMING 

In communication systems the adaptive array is part of a chain of blocks; most of 
them are intrinsically nonlinear or may exhibit undesired nonlinearities 
(amplifiers, mixers, clampers, ...). In order to cope with these nonlinearities, a 
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nonlinear beamformer should be  employed.  Feedforward multilayer neural 
networks may provide a solution to this problem [7]  in a straightforward 
approach. 
The input-output relationship of the proposed neural network beamformer with M 
sensors is: 

y(0 = ^{x(0}+e(0 (4) 

In this case the correct model for x(t) is related to s(t) by the equation: 

x(0 = AG ■(0" 
i(0 

+ n(0 (5) 

In this formula G{.} is an unknown nonlinear M-by-Q matrix transfer function, 
that should be inverted by the neural beamformer. 
Using the I/? norm, the error functional Jto be minimized is: 

J = E$race[e(t)eH (t)]} (6) 

where £{.} denotes the expectation operator over time, trace[.] is the matrix trace 
operator and (.)H indicates Hermitian transposition. 
The neural beamformer realizes a nonlinear memoryless functional of x(t). A 
standard multilayer perceptron (MLP) can approximate arbitrary input-output 
relationships of this kind [7]. The input of the MLP are the sensor outputs, while 
y(t) contains the target signals. 
The minimization of J may be accomplished by separating the real and the 
imaginary parts of all signals and using a standard backpropagation (BP) 
approach [7]. As an alternative, the complex neuron model can be used, which 
gives some benefits for the reduced number of free weights [5],[7]. 
Backpropagation is a stochastic gradient descent method and is characterized by 
the same limitations of LMS [7]. Faster second-order [6] convergence can be 
obtained with the Block Recursive Least Squares (BRLS) approach described in 
[8],[9]. In [9] BRLS is shown to be a Newton-type algorithm able to reach 
convergence with a very favorable numerical conditioning. 
In this work we show by numerical simulations how a neural beamformer trained 
with the BRLS technique can be very effective in the presence of high levels of 
noise and interference, while detecting and recovering multiple signals of interest. 
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Figure 1: two-layer MLP. 

3. SUMMARY OF THE BRLS ALGORITHM 

The BRLS algorithm is an iterative learning procedure which solves an 
overdetermined linear system of equations for each layer of the network. With 
respect to similar algorithms, it minimizes the error functional at the linear 
summation nodes of the neurons {descent in the neuron space [9]), in contrast to 
the traditional optimization in the weight space. 
At the n-th iteration and for the k-th layer we introduce the following matrices: 

Xk(n) 

f  T A 
*k,l(n) 

xk,p(n) 

Yk(n) = 

(yl^ 

yk,p(n) 

(7) 

where xT
k)p(n) and yTk,p(n) are the input and output row vectors of the linear 

section of the MLP layer, in the presence of the p-th learning pattern (P is the 
length of the whole batch). The lengths of xT

kjp(n) and yTk,p(n) are respectively 
(Nk+1) and N^+i, being Nk the number of input units to the layer; Xj(n) contains 
the external inputs, while XL+i(n) contains the global outputs of the net (see fig. 1 
for the case L=2). 
Matrices Yk are computed in a forward-propagation step through the k-th layer, 
similar to that of standard BP [7]: 

Xk(n)Wk(n) = Yk(n) (8) 

while the passage through the nonlinearities is represented by the following: 
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Xk+i(n) = [f(Yk(n))   1] (9) 

f(.) represents the activation function and 1 is the column of the bias inputs. At the 
first iteration weight matrices Wk are initialized at random. 
The optimization in the neuron space is performed separately for each layer 
following the formula: 

Yk(n)=Yk(n) + Dk(n) (10) 

where Yk is an estimation of the desired Yk based on the direction matrix D^. 

Dk may be chosen in several ways, depending on the method being adopted. The 
simplest choice is the negative of the gradient matrix: 

Yk(n) = Yk(n)-iiVYk£ (11) 

where r\ is a proper correction factor. The derivatives of E w.r.t. the y's are 
computed using formulas similar to those of BP [7]. 
Given the estimate Yk, the new weight matrix for each layer is computed from 

the Least Squares (LS) solution of the following system: 

Xk(n)Wk(n + l) = Yk(n) (12) 

where in particular QR or SVD based algorithms can be used [5]. Formula (12) 
represents the general formulation of the class of LS-based learning algorithms; it 
consists in perturbing the matrix Yk in order to recover the consistency of the 
system in the LS sense. This gives the new weight matrix Wk(n+1), to be used in 
the next forward-propagation step. 
In order to stabilize learning in earlier steps, when weight are far from optimal 
values, a recursive implementation can be adopted, updating the solution by the 
classical on-line RLS-QR algorithm [5],[9]. In this case the forward and 
backpropagation phases act on the last block of snapshots [2]. A proper 
exponential forgetting factor X can be used to discard the influence of older 
samples [5]. More details about the BRLS algorithm can be found in [9]. Here we 
point out that the numerical robustness of the algorithm is threatened by the 
severe ill-conditioning of matrix X\ which is just the square root of the array 
CSCM. However the use of a square root formulation keeps the condition number 
acceptably low (104-s-105), allowing the use of the limited precision floating-point 
arithmetic offered by commercial DSP microprocessors. 
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4. EXPERIMENTAL TRIALS 

In the proposed computer experiment a linear equispaced array of ten sensors, 
with an intersensor spacing of half wavelength, is used as receiver. The useful 
signals are two independent 8-QAM waveforms with a SNR of 10 dB w.r.t. each 
sensor, impinging from 8 and 25 degrees of azimuth, referred to the array 
broadside; the elevation is zero degrees for both sources. The signals of interest 
are distorted by a memoryless arctangent nonlinearity, which models the amplifier 
static transfer function. The interference is represented by a white Gaussian noise 
source, coming from a direction of 15 degrees, with a SNR of 20 dB. The array 
receiver gains fluctuate with a standard deviation of 1% of their nominal values 
during the experiment. The background noise is supposed to be Gaussian, white 
and isotropic [2]. The conditions of the experiment are recognized to be rather 
unfavorable since all coherent sources are within one array beamwidth [2], [3]. 
The neural network used in the experiment is a multilayer perceptron with 20 
inputs, 8 hidden neurons and four outputs, with sigmoidal-type nonlinearities. 
Learning was performed with the BRLS algorithm on 100 epochs of 30 snapshots 
each. Several values for the forgetting factor X were tried; in the described 
experiment ?i=0.99 was used. The following figure shows the curve of the ratio of 
the target signal power (Mean Squared Signal, MSS) to the error power (Mean 
Squared Error, MSE) for each source of interest during the learning. The steady 
state solution is reached after about 35 epochs. 
The almost monotonic shape of the learning curves demonstrates the ability of the 
BRLS algorithm to deal with ill-conditioned problems and to track the short time 
channel fluctuations that can be expected in real systems. Also remarkable is the 
insensitivity of the BRLS method to the starting guess of the network weights [9], 
which is essential for successful signal processing applications. 

CONCLUSION 

The recently introduced BRLS algorithm for fast training MLP networks allows 
the use of neural architectures in challenging multichannel DSP problems, 
characterized by severe ill-conditioning of the data matrix coupled with stringent 
requirements on convergence rate. The general approach described in [9] has a 
great flexibility in changes of the error functional and learning parameters, and 
may introduce several forms of weight regularization through system (12) [5]. We 
plan to apply the BRLS neural approach to combine space-time equalization of 
communication channels and nonlinear distortion correction. 
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ABSTRACT 

Methods which combines outputs of multiple pattern classifiers to 
enhance the overall classification rate are studied. Specific attention is 
given to combination rules which are independent of the input feature 
vectors. Potential performance enhancement and limits of this so 
called stack generalization method are discussed. In particular, a 
phenomenum called "alias" is introced which gives an upper bound of 
the performance which can be achieved uisng stack generation for a 
given set of member classifiers. Experimentation using several 
machine learning data bases are reported. 

I. INTRODUCTION 

Pattern classification is the enabling technology for speech 
recognition, image understanding, target recognition, and other 
important signal processing applications. A pattern classifier is a 
decision-making algorithm which determines the class label of a 
feature vector presented to the classifier. Based on statistical decision 
theory, artificial intelligence, fuzzy logic theory, and many other 
approaches, numerous types of pattern classifiers have been 
developed [3]. However, it remains an open question on which 
pattern classifier to use given a particular problem on hand. It is 
generally accepted that a universal pattern classifier which will out- 
perform every other pattern classifiers is unlikely to be found. 

A practice which is gaining popularity is to combine the output 
of several pattern classifiers, using, say the majority voting 
combination method. The situation is analogous to the decision 
making process in human society where many experts, each specialize 
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in a sub-fields, are often summoned to form a committee to solve a 
complicate problem in a collective manner. The belief is that collective 
efforts can often arrive at a superior decision than by any individual 
expert. A pattern classifier formed by a combination of several 
member classifiers is called a committee classifier in this study. A 
number of prior studies of committee classifiers have been reported 
There are several empirical studies of combining multiple classifiers 
reported in literature [1], [2], [5], [6], [10], [11], [14], [15], [16], 
[4], [9], [12], [13], [17], [18]. We note there is another family of 
algorithms for combining multiple classifiers, called mixture of expert 
(MoE) approach [7], [8], [19]. In the MoE approach, the output of 
member classifiers are linearly combined with weights which are 
functions of input feature vectors through the use of a "gating 
network". In this study, we distinguish committee classifiers from 
Mixture of experts by restricting the combination rules of a committee 
classifier to be dependent on output of member classifiers only, and 
not directly dependent on the inputs to each member classifier. 

Many of these works reported that the enhancement of 
classification rate of a committee classifier will be maximized when its 
member classifiers are independent to each other. This is often done 
assuming the committee classifier's output is an ensemble average 
(linear combination) of those of its member classifiers. Such an 
analysis is more suitable when the member classifier's output is 
interpreted as an estimate of the posterior probability of a given feature 
vector belongs to a specific class. For those classifiers whose output 
is binary valued, such an analysis is not quite applicable. In [5], the 
voting mechanism of member classifiers is analyzed assuming the 
output of each classifier obeys a binomial distribution. Some 
asymptotic behavior of such a majority committee classifier has been 
given. In general, majority voting is a simple, yet effective 
combination method. 

Wolpert [15], [16] used the term "stack generalization" to 
describe a general committee classifier whose output may be multiple 
level nonlinear combination of lower level member classifiers. Voting 
can be regarded as a special case of stack generalizers. In this study, 
we will analyze what is the best performance a nonlinear committee 
classiifer can achieve given that each member classifier gives only 
binary output and is fixed (i.e. can not be modified or trained). We 
identified a phenomenum called "aliasing" which corresponds to the 
situation that feature vectors with different class labels having the 
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same output combination from all member classifiers. When an alias 
occurs, the combined classifier will never reach perfect classification. 

In section II, some basic notions of a committee classifier will be 
reviewed briefly. In section m, the alias phenonum will be analyzed. 
Some simulation results will be reported as well. In the following 
discussion, we will denote x to be the current feature vector presented 
to a classifier, and y(i) as the output of the ith expert classifier. The 
output of the combined committee classifier will be denoted by z. 

II. LINEAR COMMITTEE CLASSIFIER 

Committee classifier consists of a committee of n individual 
pattern classifiers. There outputs, denoted by {y(i); 1 < i < n} are to 
be combined, linearly or non-linearly, via a set of combination rules, 
to form the final output, z. For classification problem, the outputs 
y(i) and z are c by 1 vectors with a "1" in an kth entry indicating the 
classifier decides that the input feature vector x belong to the kth class. 
Usually, one would allow only one element to be 1 and the rest should 
remain at 0. 

A linear committee classifier approach is based on the 
assumption that each classifier's output is a real number between 0 
and 1 and can be interpreted as an estimate of the posterior probability 
of x is drawn from class i given its value x, P{ilx}. A model of the ith 

classifier's output can be written as: y(x,i) = P{ilx} + e(ilx) where 

e(ilx) is a random estimation error with zero mean and variance oj (x). 
Then the objective is to find a set of weights {w(i); 1 < i < n} such 
that the variance of the overall linear estimate 

||z(x) -£ y(x,i)w(x,i)||2 (1) 
i=l 

is minimized. This minimum variance estimate so obtained can be 
found as: 
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w(x,i) = 
af(x) 2 [1/ojW 

i*j 

(2) 

In other words, the weights are inversely proportional to the variance 
of the estimate. To apply this method, one must estimate the error 
variance of G2

(X) for each expert classifier. 

Ill NONLINEAR COMBINATION RULES 

Nonlinear combination rules can be regarded as a general meta- 
classifier designed to classify a concatenated feature vector y(x) = 
[y(x,l) y(x,2) • • • y(x,n)]. Any known classifier structures, such as 
MAP (maximum a posterior probability), kNN (k nearest neighbors), 
SOM (self-organization map), decision trees (e.g. ID3), can be 
applied to serve this purpose. The question is, is there any way to 
predict how the committee classifier performs compared to individual 
member classifiers? 

xl x2 x3 y1 y2 y3 yl y(desired) 
0 0 0 0 0 i 1 0 
0 0 1 0 1 0 1 1 
0 1 0 1 1 1 0 1 
0 1 1 1 0 1 1 1 
1 0 0 0 0 0 1 0 
1 0 1 0 1 0 0 0 
1 1 0 1 0 1 0 0 
1 1 1 I 1 1 1 1 

Figure 1. Examples illustrating aliasing effect of a 
committee classifier 

Let us examine a special case illustrated in figure 1 when both inputs 
(feature vectors) and outputs of each classifier are discrete value in {0, 
1}. In this case, there are only 2k different input combinations where 
k is the feature vector dimension. In other words, we have a Boolean 
function realization problem on hand. Let us focus on a single class at 
a time. We now have a truth table similar to one shown in figure 1 
(shadowed cells indicate misclassification of the corresponding 
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classifier). In this figure, y is the desired mapping and yl-y4 are 4 
imperfect member classifiers. The question now is: Given yl, y2, y3, 
y4, can a meta-classifier (combination rules) be defined so that it 
gives an output which is the same as y? Here is an incomplete 4 
Boolean variable minimization problem, and one of the solution is: y 
= y2»y4 + yl»y4 + yl»y2. In other words, combining yl, y2, and 
y4, the committee classifier is able to yield 100% classification rate on 
this training data set - a performance better than any individual 
classifier. On the other hand, if there are only yl, y2, y3 are 
available, note that when (yl,y2,y3) = 010, and 101, both of them 
appear twice with different values of y. Thus, one can choose only 
one of the values. This implies that the maximum classification rate 
will be at most 6/8 which is no better than either yl or y2 alone. This 
phenomenon of having different target values associated to the same 
classifier output combination is called alias. 

When y(x,i)e {0, 1}, the feature space X is decomposed into 
disjointed regions labeled by the derived feature vectors (yl, y2, • • •). 
Alias can be regarded as the mis-classification errors within each of 
these regions. Therefore, an optimal combination rule would be to 
assign each of these regions to a class label which minimize the alias 
error. As a matter of fact, in this case, the optimal committee classifier 
amounts to a look-up table which maps from each binary vector to a 
specific class label. 

IV. EXPERIMENTATION 

We have employed the four data sets from machine learning 
database at UCI. They are: A. credit card applications, B. breast 
cancer diagnosis, C. DNA Promoter sequence recognition, and D. 
poisonous mushroom identification. Each data file is randomly 
partitioned into three parts. A three-way cross-validation procedure is 
adopted to better estimate the generalization error: Each method is 
applied three times (trials) to each data file. In each trial, two of the 
three parts are used as training data, and the third as the testing data. 
After three trials, each of the three parts of the original data file will be 
tested exactly once. The testing error rates of the three trials then are 
averaged to yield the overall classification rate of a particular 
classification method on a given data set. 
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Four expert classifiers are used in this experiment: a 3-nearest 
neighbor (3NN) classifier, a maximum likelihood (ML) classifier, a 
Learning vector quantization (LVQ 2.1) classifier, and a multi-layer 
perceptron (MLP) classifier. In developing the ML classifier, feature 
vectors in each class is assumed to have a normal distribution. Thus, 
it effects a linear classifier. With the MLP classifier, a 2-layer, fully 
connected configuration (one hidden layer) is used, with 10 hidden 
units - a number assigned arbitrarily. Since our objective here is not 
to compare performance of individual classifiers, sub-optimal 
implementation of these classifiers should not prevent us from 
comparing results between the committee classifier to the best of the 
individual classifiers. Each of these four classifiers will be used as the 
committee classifier classifying not only the output of the member 
classifiers, but also the original feature vector to facilitate aliases-free 
classification. All but the LVQ algorithm are implemented with Matlab 
(v.4.2c) m-files, tested on a HP workstation. The LVQ algorithm is 
implemented by the SOM research group of the University of 
Helsinki, and is available at ftp://cochlea.hut.fi/pub/. 

Note that for each data set and each classification method, there 
are actually three different expert classifiers developed - each 
developed on one of the three different training data set. Thus, all 
experiment are performed three times on these three different 
partitions, and the results are reported as the average of three trials. 
The distribution of these inputs are summarized in the following table 
1 to table 3 below. The order of outputs are ML-3NN-LVQ. 

Output of Cancer 1 Cancer 2 Cancer 3 
Experts Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

111 109 2 110 1 106 1 
112 0 0 1 0 0 3 
121 0 6 0 2 0 5 
211 0 0 0 0 0 0 
222 0 11 0 6 0 8 
221 0 0 0 0 0 0 
212 0 0 0 0 0 0 
122 0 46 4 50 2 49 

Table 1. Cancer data set output. 
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Output of Cardl Card 2 Card 3 
Experts Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

111 60 6 69 8 58 8 
112 0 0 2 0 1 0 
121 3 2 2 0 3 0 
211 12 5 7 5 14 12 
222 6 57 11 55 7 48 
221 5 4 2 1 3 6 
212 5 6 5 3 7 5 
122 1 0 1 1 0 0 

Table 2. Card data set output. 

Output of Heart 1 Heart 2 Heart 3 
Experts Class 1 Class 2 Class 1 Class 2 Class 1 Class 2 

111 73 12 73 12 73 13 
112 2 3 3 7 0 5 
121 4 6 1 2 7 3 
211 4 1 3 7 3 5 
222 14 58 13 67 17 45 
221 4 1 5 9 2 0 
212 4 5 0 1 4 3 
122 5 34 3 24 5 45 

Table 3. Heart data set output. 

The shaded area in these three tables have two or three outputs 
indicating class 2, and according to majority voting rule, it should be 
classified as class 2. We see that aliases do occur. For example, in 
table 3, under the column of Heart 1, while all three classifiers' 
outputs indicating class 1, there are 12 samples actually belong to 
class 2. Therefore, no matter how smart the committee machine will 
be, it will be unable to distinguish these 12 samples as class 2. This is 
verified in the following experiment: We construct an induced feature 
vector which consists of the outputs of each of the four classifiers. 
Then we develop a committee classifier to classify these extended 
feature vectors using each of the four types of classifiers (3-NN, ML, 
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LVQ, MLP). Again, three trials are performed on each of the three 
different partitions of each data set, and the results are reported below: 

Voting ML 3-NN LVQ 3.0 Optimal 
Cancer 4.98% 2.49% 3.64% 4.02% 2.11% 
Card 19.18% 19.18% 19.77% 19.18% 18.41% 
Gene 21.98% 26.86% 22.66% 14.88% 13.79% 
Heart 22.03% 22.09% 22.90% 22.03% 20.00% 

Table 4. Classification Error rates of committee 
classifiers with outputs of member 
classifiers  only 

From this table, we observe that the committee combination will 
at times out-performs the majority voting significantly. However, 
some combinaton methods, notably the 3-NN methods consistently 
performs worse than the simple voting. This is because there are only 
8 different distinct input data samples, and 3-NN is inadequate to 
perform classification when the number of distinct data samples are 
too few. The entries in the column labelled with "optimal" are 
minimum classification errors can be achieved by the committee 
classifier given the component classifiers. It is a lower bound. The 
errors incurred in this column are due entirely to the aliasing effect 
discussed earlier. 

From above results, we observe that compared to simple 
majority voting, the committee machine approach, at least with this 
experiment, does not significantly improve the classification 
performance in general. Among the three different classifiers, LVQ 
3.0 seems consistently out-perform the voting method, while other 
two classifiers gives mixed results. Compare the committee method, 
and the extended committee method, where original features are used, 
the results are mixed. Our preliminary explanation is that the additional 
dimension causes the ML or 3-NN based committee classifier 
confused. 
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Abstract 

An algorithm for unsupervised speaker classification using Kohonen SOM 
is presented. The system employs 6x10 SOM networks for each speaker and 
for non-speech segments. The algorithm was evaluated using high quality as 
well as telephone quality conversations between two speakers. Correct 
classification of more than 90% was demonstrated. High quality conversation 
between three speakers yielded 80% correct classification. The high quality 
speech required the use of 12th order cepstral coefficients vector. In telephone 
quality speech, additional 12 features of the difference of the cepstrum were 
required. 

INTRODUCTION 

Speaker recognition (identification and verification) is being used in many 
commercial, military and forensic applications. Usually the problem is defined as 
supervised classification, where a-priori knowledge on the speakers is available so 
that pre-training can be performed [1-4]. In many applications, however, no such 
a-priori knowledge is available. Unsupervised methods must be used. 

Solutions to various aspects of the problem have been suggested in the 
literature. The application of hierarchical NN was described in [5], and HMM 
based systems in [6-9]. Other methods based on EM algorithm for Gaussian 
mixture estimation [10], and various VQ methods [11-13], were also employed . 

In general, given a multi-speaker conversation, the algorithm has to estimate 
the number of speakers, to segment the speech signal and to assign each segment 
to its speaker. The problem has been also termed "speech segmentation" [10-11]. 
In our current application the number of speakers, R, is assumed to be known. 
Generally, during a conversation, it may happen that one speaker interferes with 
another. We assume that the speech signal does not contain such interference, 
namely simultaneous speech does not occur. All segments with simultaneous 
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speech are currently manually eliminated from the data prior to performance 
evaluation, (during the training process all the data was used). 

We suggest here an unsupervised classification system that first makes a 
preliminary segmentation into speech/non-speech segments, using only "energy" 
threshold. The system then automatically trains R+l Kohonen SOM [14]: R for the 
speakers and one for non-speech segments. Initial conditions are set, and then all 
neural networks (NN) compete among themselves until a balance is achieved. 

There were four reasons why Kohonens' SOM was chosen. First, an 
unsupervised learning algorithm was required because of the problem definition. 
Second, due to short segments, multiple centroids are required to describe each 
speaker. Third, when we use SOM's, every SOM defines a different speaker model 
(or non-speech model). If we use one large network, it would be impossible, to 
indicate which centroids (or neurons) belongs to the same model. For this reason 
other unsupervised networks such as ART2 [15], or the network architecture 
proposed by Nissani [16], cannot be used. Fourth, every SOM is a trained code 
book (CB), this means that it can be used as CBs for discrete HMM that can later 
be used for (supervised) speaker recognition. 

SYSTEM'S ARCHITECTURE 

The general block diagram of the system is shown in figure 1. 

speech 
signal 

silence detector 
using "energy1 

threshold 

Pre-Processing 
features 

extraction 

1" speaker 2"1 speaker 

Fig. 1: General description of the unsupervised speaker classification system. 
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The speech analysis was based on overlapping 15 milliseconds analysis frames, 
with 5 millisecond frame rate. Each frame was represented by a features vector 
which included the 12* order cepstral coefficients, estimated from the 12th order 
LPC. In the telephone data, the features vector was augmented by the 12th order 
first difference cepstral coefficients [1]. In addition the mean absolute value of an 
accumulated 50 millisecond frame was also calculated, for speech/non-speech 
evaluation. 

Rough segmentation of speech and non-speech data was performed by 
thresholding the absolute value feature. The threshold level was set at three percent 
of the maximum, for high quality speech and one percent for telephone data. The 
levels were determined experimentally. The fact that higher level was required for 
high quality speech seems illogical. It is probably due to the fact that in the high 
quality data the variance of the speech amplitude is much lower than that of the 
telephone speech. The use of more sophisticated speech detection algorithms 
should explored hear. 

The initial conditions to the system were determined as follows: all segments, 
classified by the rough speech/non-speech classifier as non-speech, were used to 
train the non-speech network. Segments roughly classified as speech segments 
were randomly and equally divided and used to train the R speaker models. 

Each one of the models (including the non-speech model) was a Kohonen 6x10 
SOM. Each SOM was trained by the Kohonen algorithm [14]. The inputs to the 
SOM were the cepstrum, or cepstrum and difference cepstral coefficients. The 
outputs of the SOM were Euclidean distances between input vector and network's 
weight vectors. In each iteration, at the end of the training process, regrouping 
process was employed. The grouping process was performed with a segments of 
100 frames (0.5 second). 

The algorithm is based on clustering the data in such a way that a total error 
criterion, during regrouping, is minimized. 

Let d™k(r), be the Euclidean distance between the n-th-vector of the k-th 

segment ( vnk ) and the closest centroid in the r-th model, during iteration m: 

<1(r) = d(vn,,c^(r)) = (vn,-c^(r)f(vn, -*«(,)) (1) 

In the m-th iteration, the total distance between the k-th segment and the r-th 

model, D(
k
m)(r), is given in (2). 

100 

Dtm)W = EdW(r) (2) 
»=i 

The k-th segment, Sk , is assigned to the model j (SOMj) yielding minimum 

total error: 

580 



y = argmin{D(
A
m)(r)}: 

r=0,...,Ä 
Sk eSOMj (3) 

Hence an iteration of the process is defined by: 

1. Retrain the models with the new clusters, achieved by the previous iteration. 
2. Regroup the data using (3). 
3. Check for termination: If termination criterion is met, exit, if not return to 

step 1. 
It has been proved that this algorithm converges [17]. 

At the end of this iterative procedure, the system provides R+l models, for the 
R speakers and for non-speech data. The data is segmented and labeled as required. 

The termination criterion used here was based on the regrouping. Termination 
was declared when two consecutive iterations showed no change in the clusters. It 
is of course possible to use a less restrictive criterion which will require that two 
consecutive iterations will exhibit a change of no more than a given predetermined 
level. The use of such a criterion will reduce computation time at the expense of 
accuracy. 

CLASSIFICATION ERROR EVALUATION 

The algorithm is based on the classification of 0.5 second segments. Each 
segment may be assigned to one model (speaker or not-speech model) or, in 
transient segments, due to the finite resolution, may be common to two models or 
more. The definition of the classification error is clear in the non-transient 
segments. In case of transient segments, the correct assignment may be to either 
one of the correct models. Obviously, it makes sense to define classification error 
that takes in account a segment split between models. A linear piecewise 
classification error weight is used here. 

Figure 2 shows 10 seconds (200 frames per second) of manually classified 
speech and the error weighting. The dashed lines show an example where a 
segment includes speech from both the first and the second speakers. 

The error weighting has been defined as follows: 
1. From the manual segmentation of the speech, all transient times, namely the 

switching    times    between    speakers    were    found    and    denoted: 

{nltn2,...,nM}. 
2. In the neighborhood of every transient time a local error weighting function, 

was defined as: 

™M = 
n-n„ 

L/2 |»-»J<y 
otherwise 

(4) 
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where L is the segment's duration (L=500msec. in our case). 

3.  Sum all the local weighting functions and subtract \M — l) : 

M 

gM=I"»-(M-i) 
m=l 

4.  The general weighting function will be: 

\g(n)       ;    g(n) > 0 

(5) 

w\ (n) = 
0 otherwise 

(6) 

W 

2 

B 1-5 

•a 1 
a. 

M0.5 

0 

-0.5 

1.5 

1200 1400 1600 1800 2000 2200 2400 2600 2800 
Observations 

-0.5 
1200 1400 1600 1800 2000 2200 2400 2600 2800 

Observations 

Fig 2: Error weighting function ("0"-non-speech, "1"- speaker A, "2"- speaker B). 
a) 10 seconds of manual segmentation, b) Weighted error function. 

THE DATA BASE 

The Hebrew data base, used for the evaluation of the system, consisted of 9 
files with two speakers, 3 files with three speakers, all of high quality speech 
dialogue, and 12 telephone dialogues. The duration of the high quality speech files 
were 72-180 seconds per file. Telephone files duration were about two minutes per 
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file. The high quality speech (7.8khz bandwidth) was sampled in an acoustic room, 
at 16KHz sampling rate and 12Bit resolution. Five males and one female 
participated in the conversations. One of the speakers took part in all dialogues. 
The telephone quality dialogues were recorded from the telephone line. The data 
was filtered by a 3.8KHz low pass filter and sampled at 8KHz sampling rate, with 
12Bit resolution. Twenty four male speakers participated in the dialogues. 

RESULTS 

The algorithm was evaluated with the small data base described above. All high 
quality conversations between two speakers, where tested on segments of half 
second, without overlapping. It was found that most of the errors between 
automatic and manual segmentation were due to transitional segments and the 
relatively poor resolution of the system. Table 1 shows a sample of the results for 
high quality speech. 

TABLE 1: CONFUSION MATRIX (HIGH QUALITY SPEECH) 
weighted error 

A B NS 
A 93.5 0 1.6 
B 4.3 94.9 3.4 

NS 2.2 5.1 95.0 
Total 
Error 
[%] 

5.6 

For high quality speech, using the part of the data base with two males 
conversation, the error was between 5.5% and 6.0%. For male/female dialogue the 
error was only 4.3%. 

The algorithm was also evaluated with, two speakers, telephone quality speech. 
When 12th order cepstrum features were used and half a second segments without 
overlapping were employed, classification results were very poor (11-47% 
weighted error). Augmenting the features vector with 12 delta-cepstrum features 
and 75% overlapping - the results improved significantly. Eight (out of the total of 
12) conversations significantly improved their classifications (approximately 6% 
weighted error). The confusion matrix is presented in table 2. Other 4 (out of the 
12) did not converge. These four files were examined by a human listener. The files 
were found to be of very low quality. One of the files was judged by the listener as 
having three, rather than two speakers. 

We have tried to apply a 3 speakers (plus non-speech) networks to these files. 
The non-speech segments were all well classified. Two of the four files converged 
into two separate clusters (with error of about 15%) and one extra cluster that 
contained segments of both speakers. The third file had one good cluster, one 
cluster containing segments of both speakers and one extra cluster that contained 
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simultaneous speech. The last file converged into two good clusters and one extra 
cluster that contained breath sounds, coughs and other interferences. 

High quality, three speakers conversation files were processed with features 
and segmentation similar to the ones used in telephone quality speech. The results 
were not as good as for two speakers case (19.5% classification error). 

TABLE 2: TELEPHONE CONVERSATION, 
CONFUSION MATRIX. 

weighted error 
A B NS 

A 93.6 2.4 1.8 
B 0.9 94.0 4.6 

NS 5.5 3.5 93.6 
Total 
Error 
[%] 

6.2 

Figure 3 shows a 10 seconds of segmented speech. It can be seen that except 
for very short segments of non-speech at the beginning and at 8 seconds, there is 
an agreement between the manual and automatic segmentation. 
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Fig. 3: 10 second classification of telephone conversation. 
("0"-non-speech, "1"- speaker A, "2"- speaker B). 

a) manual segmentation, b) SOM networks segmentation 

Figure 4 shows an example of the system's convergence as a function of 
iteration number. In case of two speakers, thirty to forty iterations are needed for 
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convergence for one minute of telephone conversation. For two minutes of data , 
50-65 iterations are usually needed. However, after 20 iterations, the system 
usually yields results close to optimal. In practice, about 20 iterations will be 
needed. 

Fig. 4: The weighted error as a function of iteration number, An example for 
convergence determination. 

CONCLUSIONS 

A new architecture for unsupervised speaker classification was presented, using 
Kohonen SOM. With two speakers, and cepstral coefficients, both high quality and 
most telephone quality conversations, yielded classification errors of about 6%. 

The same data base was used with an unsupervised algorithm based on HMM 
[9]. The results of the two algorithms are compatible. More work is required in 
order to determine, with sufficient statistical significance, whether one algorithm is 
more accurate than the other. The computation time difference between the two 
must also be further examined before a conclusive comparison can be made. 

The algorithm achieves better results for conversations between male and 
female. This result is not surprising, because of the differences in the voice 
characteristics of the sexes. 

For conversations with 3 speakers, classification error is about 20%. The errors 
appear between the speakers. The non-speech model yields about 5% error, similar 
to the two speaker case. Note that the data duration in two and three speakers 
experiments were approximately the same. More data may be needed in order to 
improve the three speakers results. 

The current algorithm assumes that the number of speakers is known. We are 
currently in the process of developing a validity algorithm which will estimate the 
number of speakers participating in the conversation. In addition we are working 
on increasing the resolution of the algorithm. 

A pre-processing algorithm will be developed to detect incidents of 
simultaneous speech, to allow automatic removal of such incidents. 
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ABSTRACT 

This paper explores a neural network hardware structure with 
distributed neurons that exhibits useful properties of self-scaling 
and averaging. In conventional sigmoidal neural networks with 
lumped neurons, the effects of weight errors and mismatches 
become more noticeable at the output as the network becomes 
larger. It is shown here that based on a stochastic model the 
inherent scaling property of a distributed neuron structure 
controls the output noise (error) to signal ratio as the number of 
inputs to an Adaline increases. Moreover, the averaging effect of 
distributed elements minimizes characteristic variations among 
neurons. These properties altogether provides a robust hybrid 
hardware with digital synaptic weights and analog neurons. A 
VLSI realization and an application of this neural structure are 
explained. 

1. INTRODUCTION 

One of the problems in the hardware implementation of a neural network is output 
error caused by various non-ideal elements. Analog neural network circuits are 
generally area-efficient but inaccurate, i.e. they are prone to problems such as gain 
errors, mismatches, offsets and drifts. In digital circuits, on the other hand, the 
main source of error is finite word length which in the case of synaptic elements is 
referred to as weight quantization effect. In order to realize dense and high-speed 
neural networks with large number of neurons for real world applications, the use 
of simple synapses and neurons with low precision weights and other types of 
non-idealities is unavoidable. The effect of implementation errors especially 
becomes more noticeable at the output when the network becomes larger [1]. 

In this paper we study a hybrid analog-digital neural network hardware with 
distributed neuron structure. Here, we are only concerned about errors and 

1 The authors would like to acknowledge financial support from Natural Sciences and Engineering 
Research Council of Canada (NSERC) and the Micronet Network of Centres of Excellence. The 
authors also thank Canadian Microelectronics Corporation (CMC) for their VLSI design software, 
equipment and fabrication services. 
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quantization effects in recall hardware or, in other words, the implementation of an 
ideally-trained network. 

Sensitivity to weight errors of neural networks with increasing number of neurons 
is analyzed in [1]. A stochastic model is developed to study an ensemble of 
networks with differing weights and the focus is on implementation of recall 
phase. We modify this model to study the properties of a distributed neuron 
hardware structure. It will be shown here, based on the modified model, that the 
self-scaling property of a distributed neuron controls its stochastic gain and hence 
reduces the output noise (error) to signal ratio when the size of the network grows. 
Also, the averaging effect of distributed elements minimizes mismatches across a 
sizable chip. A VLSI realization and an application of this hardware structure are 
also presented along with some simulation and experimental test results. 

2.  IMPLEMENTATION OF DISTRIBUTED NEURON 

Figure 1 shows an Adaline with distributed neurons. In general, two main tasks of 
a neuron are summation of synaptic inputs, and nonlinear saturating function. If an 
Adaline is built with transconductance synapses and nonlinear resistive neurons, 
then summation is performed simply by hardwiring the outputs of synapses 
together. As shown in Fig. 1, a neuron of this type can be distributed into parallel 
elements having the same equivalent characteristic. In this case, equivalent 
resistive neuron receives the summation current and delivers, on the same 
supernode, an output voltage nonlinearly proportional to total synaptic input. 

Vl 

Fig. 1 Hybrid structure with distributed neuron 

Each element of a distributed neuron can be integrated with one synapse to form a 
unified synapse-neuron (USN) block. A reconfigurable network based on 
distributed neurons is discussed in [2]. A hybrid analog-digital USN is presented 
by the authors in [3]. Here, experimental test results are presented from a recent 
CMOS fabrication. Fig. 2-a shows transistor-level diagram of a distributed 
neuron.  Each element of neuron receives an average of input synaptic currents 
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(lave) ancl performs a nonlinear saturating I-to-V function by combining the 
quadratic characteristics of four MOS transistors. 

Fig. 2 a   Implementation of distributed neuron 

2.1.   Self-scaling Property 

Fig. 2-b shows the measured characteristics of 2-input and 5-input distributed 
neurons fabricated in 1.2|0. CMOS. Distributed neuron structure exhibits an 
interesting self-scaling property. As the number of synaptic inputs (i.e. the 
number of neurons in previous layer) increases, the overall nonlinear characteristic 
stretches by itself. This property restores information received from extra inputs 
that would have been lost otherwise in large saturation areas of a fixed lumped 
neuron with increasing number of inputs. 

jjbifpeiaii      University of Windsor       |     |      |    =-'-•!'! 

0.1m/ 

Fig. 2 b  Experimental test results and self-scaling property 

In fact, different applications require different number of neurons and neuron 
inputs. When the number of inputs to a lumped neuron increases, over-saturation 
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occurs. One method to circumvent this situation is to reduce synaptic activity via 
scaling down each weight by an arbitrary factor. This method is handy in software 
implementation. Equivalently, we should be able to use the same net input 
combined with a scaled activation function. Distributed neuron structure presents 
such scaling scheme. In fact, if the number of inputs to a distributed neuron is 
increased by a factor S, neuron will consist of 5 similar nonlinear resistive blocks 
in parallel (each possibly consisting of N original sub-blocks; here we assume 
N=l). As current divides equally among 5 similar blocks (each block receiving an 
average current Iave) output voltage can be obtained in two alternative ways. If we 
consider the overall nonlinear function F(.) we have, Vout = F(Isum). On the 
other hand, regarding each individual block with nonlinear resistive function /(.) 

we can write: Vout = /(/. -ave.) = nllfL) = f( _ „XüäJi) = f(2^.Vk).   Since the 

two voltages must be the same, we conclude: 

msum) = f(^ vk) 0) 

Therefore, a distributed neuron exhibits a self-scaling property which is equivalent 
to scaling down all the weights proportional to increase in the number of inputs. 
This property will be used in Section 3 to define a stochastic model for distributed 
neuron and to quantify the improvement obtained from this structure. 

2.2.   Averaging Effect 

Analog lumped neurons implemented at different locations across a sizable chip are 
subject to noticeable variations in their expected characteristics. To demonstrate a 
worst case scenario, 2-input neurons with the same circuits as explained before are 
laid out as lumped cells at various locations, including corner positions, on a test 
chip. Measurements are performed on different cells and repeated over five 
fabricated chips. The worst case on-chip variations of the characteristic is found 
between two corner cells as 66mV in 5 Volt range (i.e. analog accuracy of 1.3%, 
approx. equivalent to 1 of 6 bits resolution). In Fig. 2-c a typical measured 
characteristic is shown on the left and a close-up of the worst case curves around 
5V is shown on the right. The existing variations are related to fabrication process 
parameters, mainly the gradient of threshold voltage, VT, across the silicon die. 
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Fig. 2 c    On-chip variations of characteristic (worst case) 
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The advantage of a truly distributed neuron can be observed when the building 
elements are distributed in one or two dimensions across the chip. In this case, an 
average of various characteristics is obtained which corresponds to average process 
parameters. The characteristic variations between two averaged neurons built in 
this manner is reduced only to the variability of two adjacent cells. In the case of 
our test chip, this mismatch was 26 mV in 5V range or 0.5%; as opposed to 1.3% 
for the case of lumped corner cells. 

3. STOCHASTIC MODEL FOR DISTRIBUTED NEURON 

For a conventional Madaline with lumped neurons, a stochastic model defines the 
ideal output of node n in layer / and the corresponding output error as follows [1]: 

Yln = /(X/7. W/t„) ( X;
r stands for transposed matrix) (2) 

AY/i„=/((X/+AX/)
r.(W/)n+AW/j„))-/(X/

r.W/>„) (3) 

W, n , X/ , AW; n and AX/ are independent identically distributed (iid) random 
vectors representing weights, inputs, weight errors and input errors respectively. 

Based on this model, output Noise-to-Signal Ratio of layer /, defined as the ratio 
of the variance of the output error of layer / to the variance of the ideal output of 
layer /, is formulated as follows: 

NSRl = ^L = g(4Nax<Jw)x(^- + ^) (4) 
o yi a x     <y w 

The output NSR of a sigmoidal Adaline is expressed as a linear combination of 

input NSR, o2&xl G2
X and weight NSR, a Aw/c W, and is amplified by a 

stochastic gain function g> 1. Gain g is an increasing function of its argument, 

4N~OXOW , where N is the number of inputs to Adaline, and ax and ow are 
standard deviations of input and weight, respectively. 

Thus, in a conventional neural network with lumped sigmoidal neurons an increase 
in the number of inputs, causes an increase in the stochastic gain, g, and hence an 
unwanted increase in output NSR. If the number of inputs to the Adaline increases 
by a factor S and the input and weight variances do not change, in the absence of 
any scaling scheme output NSR will increase as follows: 

■2.       ~2 
NSR = g{4N^oxow)x{^ + ^-) (5) 

CTx        G w 

In a distributed neuron structure, on the other hand, the characteristic of a neuron is 
changed adaptively based on the number of inputs. This self-scaling effect is a 
natural way of controlling g and hence decreasing NSR. 
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It has been shown earlier in Eq. (1) that self-scaling property of a distributed 
neuron is, in effect, equivalent to scaling down all the weights to the same 
saturating function while the number of inputs increases. Now, let us investigate 
the effect of this on output Noise (error) to Signal Ratio of an Adaline. 

9 7 9 If ws = w IS is defined as scaled weight, then we have o w$=o w IS and 

O Aws = O Aw / S .   Thus, 

NSR^g{4KSaxaWs)^ + ^) = gi^^m^ + ^-)   (6) 
5 Ox        (Tws V5 Ox        Ow 

The terms in linear combination remain unchanged, while the gain factor is reduced 

due to the scaling of its argument by 1 / -Js . The corresponding stochastic model 
is shown in Fig. 3. This property reduces NSR and improves the performance of 
recall hardware especially in large networks. The improvement is shown here by 
an example. 

2 
O Aw 

i/JS 

Fig. 3   Stochastic model of an Adaline with distributed neuron 

Example:    Suppose an Adaline with   N = 25 inputs, for which inputs and 
weights are uniformly distributed over the range  [a,b] = [-2,2]; therefore 
11 1 ox = ow=(b-a)  /12 = 4/3. For an 8-bit quantization scheme, weights are 

quantized to levels equally spaced by  q = 1 / 64 ; thus, weight error variance will 

Further,    we   assume    o Ax = o AW-    For be    o-2Aw=92/12 = 2xl0~5. 

~{NOXOW>2   ,  gain  function  defined  in   [1]   may  be  approximated  as: 

g(^^NoJCow)~0.5 + 0.53^[Noxow. Output noise-to-signal ratio of this Adaline 

is:NSR = g(4Noxow).( O Ax   ,  O Aw 

o\ 
^-5 -4 

2 ) = g(6.67).(3x 10"3) - 1.2 x 10""* = -39dB. 

Now if the number of inputs are increased to 100 (an increase by factor 5=4), for a 
conventional   lumped   neuron   characteristic,  NSR is found from (5) as: 

NSR = g(13.3).(3 x 10~5) = 2.3x 10-4 = -36.4dB. If, instead, we use a distributed 

neuron  structure, then from  (6) we will obtain:   A'5/? = g(3.33).(3xl0-5) 

= 6.8xl0~ =-41.7dB. In this example, NSR is reduced almost by a factor of 3, 
i.e. more than 5dB improvement. The effect would be even more noticeable for 
larger scaling factors. 
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4. VLSI APPLICATION 

Figure 4 shows the schematic diagram of a 4-3-2 hybrid VLSI neural network with 
distributed neuron structure that is designed and implemented in 1.2^. CMOS using 
Cadence tools. This network is built with 23 similar blocks. Eighteen of these 
blocks are unified synapse-neurons (USN) each consisting of a Multiplying DAC 
synapse with 5-bit sign-magnitude weight and a portion of a distributed neuron. 
Five remaining blocks are used for neuron bias (threshold) adjustment. These 
units are in fact the same USNs on silicon with their nonlinear load disactivated. 
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Fig. 4    Schematic diagram of VLSI implementation 

This network is trained off-line for a 4-input template matching problem. An 
interactive Back-Propagation simulator based on XView programming on Sun- 
Sparc is used that allows user to define network architecture and I/O patterns. The 
resulting weights are rounded off to the resolution of hardware (5 bits) and a 
simulated recall is followed. When this final phase is passed, the weights will be 
programmed on chip. Weights (w's) and bias values (b's) for the above circuit are: 

w [1]_ 

-5 0 -5" 
["-14 6 1 

6 9 8 
, wra = 5 -15 

12 -10 1 
-7 -8 

-5 Ü -sj 

bm„ = 4 (V/,n) 
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Figure 5 a shows four templates earlier introduced to the network during training. 
Outputs 1 and 2 respond to templates 1 and 2, respectively. Both outputs remain 
zero for templates 0 and 3. A complete transistor-level simulation is performed on 
693 active and about 900 parasitic elements of recall circuit shown in Fig. 4. 
Figure 5 b shows typical post-layout results at 1 MHz input vector rate. To 
calculate each output vector, hybrid neural network performs 18 multiplications, 5 
additions and 5 distributed nonlinear operations; an equivalent calculation rate of 
28 x 10^ /Sec, Current and power consumption on Vdd=5V are: lave ~ 730/J.A 
and Pave ~3.65mW. The circuit is functional at higher speeds or on lower 
supply voltages. For example, on supply voltage Vdd=3.3V, specifications are 
Iave =155/M and Pave ~0.5mW, i.e. 86% power saving compared to 
consumption on Vdd= 5Volts. 
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Fig. 5    Template matching problem and results 
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A chip is designed in 1.2^, CMOS (see Fig. 6) that contains two different versions 
of this network: 1) A weight-programmable network with electronic inputs, 2) A 
network with photosensitive inputs and pre-programmed weights for an optical 
template matching application. 

With programmable synaptic weights network can be programmed to recognize 
different templates to be detected in different applications. The particular 
application that we are interested in is feature extraction in a handwritten numeral 
recognition system. This system consists of three stages: preprocessing, feature 
extraction and classification. Directional border codes are the features to be 
extracted by this network [4]. The basic process performed on a typical 
handwritten number and the 2x2 directional templates for feature extraction are 
illustrated in Fig. 7. More details about this system can be found in [5]. 

The same VLSI building blocks are conveniently used in the design of larger 
neural networks (e.g. [6]"). In a network with 16 inputs, the required weight 
resolution for recall is still five (1 sign and 4 magnitude) bits. If lumped neuron 
blocks were used in a larger network; however, the quantization noise and 
mismatches would increase the output noise to signal ratio and in order to control 
NSR and avoid misclassification one has to: a) increase the weight resolution and 
analog circuit accuracies, or b) redesign new neuron blocks to effectively reduce 
their gain factor against implementation errors. 

Programmable 
Weight: 

Electron 
Inputs 

Optical 
Input 

Sensors 

Fig. 6  Fabricated CMOS test chip 

5.  CONCLUSION 

A robust neural network hardware structure with analog distributed neurons, digital 
weights and multiplying DAC synapses is presented. Two properties of this 
structure, namely self-scaling and averaging of neurons, are emphasized that both 
reduce the effect of some implementation errors. Experimental test results are 
presented for building blocks and a VLSI application is described. 
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ABSTRACT: 

This paper applies multilayer neural networks to the 
problem of forecasting the flow of the River Nile in 
Egypt. Estimating the flow of the River Nile can have 
significant economic impact, since it can help in manag- 
ing scarce irrigation water. The second goal of the pa- 
per is utilize the time series as a benchmark to compare 
between different neural network forecasting methods. 
We compare between four different methods for input 
and output preprocessing, including a novel method pro- 
posed here based on the Discrete Fourier Series. We also 
consider the problem of forecasting several steps ahead. 
We compare between three methods for the multistep 
ahead prediction problem. 

INTRODUCTION: 

Neural networks have been used in many forecasting applica- 
tions, for example stock market, exchange rate [1], and electric 
load forecasting [2]. We present here yet another forecasting ap- 
plication, namely river flow forecasting. Forecasting river flows is 
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an important application, that attracted the interest of scientists 
since more than 50 years. It can help in predicting agricultural 
water supply, predicting potential flood damage, estimating loads 
on bridges, etc. 

In this paper the first goal is to apply neural networks to 
the problem of predicting the flow of the River Nile in Egypt. 
In addition, we exploit the river forecast problem as a bench- 
mark to compare between different neural network forecasting 
approaches. The approaches, which all use multilayer networks 
with backpropagation training, are mainly different approaches 
to preprocess the time series and different approaches to solve 
the multistep ahead forecast problem. 

ON THE FLOW FORECAST PROBLEM: 

The river flow forecasting problem has been traditionally tackled 
using linear techniques, such as AR, ARMAX, and Kaiman filter, 
and also using nonlinear regression (see [3]-[6]). We have found 
only one method in literature that uses neural networks, namely 
for the Huron River in Michigan [6]. Most of the forecasting 
methods consider one-day ahead forecast. For the River Nile a 
longer term forecast is more of interest, though it is more difficult 
than the one-day ahead problem. 

The problem of flow forecast for the River Nile is particularly 
important for Egypt. Egypt depends almost exclusively on the 
Nile for agricultural irrigation. The flow of the River Nile exhibits 
a seasonal behavior. The flow is low during the winter months, 
and peaks during the months of August and September. The 
High Dam of Aswan (located South of Egypt) retains incoming 
water, and releases it in a more uniform way, so as to optimally 
fill agricultural and electricity generating needs (acting like the 
capacitor or the reservoir effect). Forecasting the flow of the river 
Nile can help in determining the optimum amount of water to 
release, and thus can help to more efficiently manage the water. 
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NEURAL NETWORK APPLICATION: 

We used readings of the average daily flow volume for each ten- 
day period at the Dongola station, located in Northern Sudan. 
The readings spanned the period from 1974 to 1992. We used a 
network consisting of one hidden layer, with 3 hidden nodes in the 
hidden layer, and trained it using the standard backpropagation 
method. The network is trained for 4000 iterations. We used 150 
points for each of the training stage and the testing stage. We 
used as error measurement the RMS normalized error, defined 
as the square root of the sum of squared errors, divided by the 
square root of the sum of squared desired outputs. Henceforth, 
when mentioning the "error", we will be meaning the RMS nor- 
malized error. As for the crucial design part of determining what 
inputs to use for the neural network, we have experimented with 

the following inputs: 

1) the flows at the previous few time periods, 
2) the flow at the same time period one year ago and two years 

ago, 
3) the average of the flow of the last 12 months, 
4) the period number (scaled by the number of periods), e.g. 

for the month of May the input would be 5/12. 

We have performed simulations, and found the following obser- 

vations: 

1) There is a strong correlation between the training error and 
the testing error. This means that there is good generaliza- 
tion. Choosing a network/input set that gives a low training 
error will almost surely result in a low testing error. 

2) In several exploratory runs we have found that no valida- 
tion set was needed to determine optimal stopping point in 
training. The error for the test set goes clown uniformly with 
iteration and does not bottom out. 

3) For the majority of input combinations the results were 
somewhat similar. There were several cases which gave 
higher errors, but these were mostly for cases with insuf- 
ficient number of inputs, and one can eliminate them easily 
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by observing the training error. 

4) The forecasts for all periods of the year were quite accurate. 
Only for the peak flow periods there was some small error 
(see Figure 1 for the test forecast results of a ten-day ahead 
case). This suggests possibly training a separate network for 
the high flow periods, and using some kind of gating-type 
network (see [7], [8], [9]). 
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Figure 1: The results of the ten-day ahead 
forecast for the test period 

ALGORITHM COMPARISON: 

In addition to this basic neural network implementation, we used 
the data as a benchmark to compare between different neural 
network forecasting methods. The methods we used are the fol- 
lowoing: 
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Method 1) The neural network is trained to forecast the actual 
flow of the next time period. 

Method 2) The neural network is trained to forecast the dif- 
ference in flow between next period's flow and current period's 
flow (the desired output for the neural network at time t is 
x(t + 1) — x(i), properly scaled). 

Method 3) We subtract the seasonal average of the flow to create 
a seasonally adjusted time series. Then we apply the neural net- 
work to forecast this seasonally adjusted series. This approach, 
hopefully, makes it a simpler problem for the neural network, by 
letting the neural network concentrate on forecasting the devi- 
ations from the seasonal average, rather than estimating both, 
the seasonal average and the deviation. 

Method 4) A novel algorithm we propose here, that might be 
particularly suitable for seasonal (cyclical) time series. Let x(t) 
be the time series values, and let the period be fixed (say T), but 
however the time series varies from cycle to the other, and can 
have a longer term variation or trend. Because of the seasonality 
of the time series, the Fourier series will be a natural represen- 
tation of such series, and will carry much useful information rel- 
evant to the task of forecasting the series. Therefore, it seems to 
be potentially an effective method to predict the Fourier coeffi- 
cients, by giving them as input to the neural network. For every 
time t we calculate the Discrete Fourier Series (DFS) of the points 
ar(*-T+l),..., x(t), to obtain DFS coefficients XQ(t),..., XT-i(t)- 
These represent the result of a moving window of the DFS cal- 
culation. We train a separate neural network for every DFS 
coefficient. The network takes previous values of the DFS coefi- 
cient time series as inputs (that is Xn(t — Tp + 1), ...,Xn(t)), and 
is trained to estimate the future coefficient Xn(t + 1). Once all 
T forecasts from the T neural networks are available, they are 
inverted to obtain an estimate for the whole signal in the T-long 
period from t — T + 2 till t + 1. The estimate of the signal at the 
end of the period (at time t + 1) is taken as the signal forecast. 

In addition to these methods, we considered the problem of fore- 
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casting several steps away (the multistep ahead problem). Thus, 
we have a time series x(l),...,x(t), and would like to forecast 
x(t + k), where A; > 1. Of course the larger A; is, the more dif- 
ficult the problem is. We have considered several methods to 
implement the multistep ahead forecast problem, and we will 
compare between these methods. The methods are: 

Method 5) Direct Method: We train the neural network to di- 
rectly forecast the kth period ahead. Thus, the desired output 
for the network will be x(t + k). 

Method 6) Recursive Method: We consider a network that fore- 
casts a single step ahead, and apply this network recursively to 
forecast k step ahead. Thus, at any intermediate step the net- 
work will use some of the forecasts it obtained at previous steps 
as inputs. There are two basic methods to train such a network. 
We implemented these two methods in the comparison: 

a) To train the network to perform simply a single step ahead 
forecast. 

b) To consider a backpropagation through time scheme [10]. 
That is, we consider the k steps ahead forecast as the result 
of a cascade of identical networks, and train this composite 
structure of networks. 

IMPLEMENTATION RESULTS: 

We have performed simulations for the comparisons for each of 
the single step ahead group and the multistep ahead group. For 
each comparison we performed five different runs using five dif- 
ferent combinations of some of the inputs described last section. 
Table 1 shows the results for the test period for the single step 
ahead case. One can see that the most basic method, forecasting 
the actual flow (Method 1) results in the best forecast accuracy. 
The results were generally consistent accross all five runs, mean- 
ing that the variation in error among the five runs was small. For 
the multistep group, we have performed both a two step ahead 
comparison and a three step ahead comparison.   One can see 
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that the direct method (Method 1) is superior, especially for the 
three step ahead case (see Table 2 and Table 3 respectively). The 
recursive method trained using a backpropagation through time 
approach was much better than that trained to perform a single 
step ahead forecast. 

Although the comparative performance of the different ap- 
proaches is usually problem dependent, this comparison should 
give some insight, and is therefore an addition to other compar- 
ison studies such as [11]. 

Method 
Method 1 
Method 2 
Method 3 
Method 4 

Avg(Test Error) 
0.213 
0.240 
0.290 
0.287 

StDev(Test Error) 
0.006 
0.014 
0.011 
0.008 

Table 1: Comparison of single step ahead methods: the 
average and the standard deviation of the testing error 

Method 
Method 5 

Method 6a 
Method 6b 

Avg( Test Error) 
0.315 
0.685 
0.310 

StDev(Test Error) 
0.007 
0.184 
0.008 

Table 2: Comparison of multistep ahead methods: the 
average and the standard deviation of the testing error 

for the two step ahead case 

Method Avg(Test Error) StDev(Test Error) 
Method 5 

Method 6a 
Method 6b 

0.374 
0.623 
0.489 

0.021 
0.164 
0.080 

Table 3: Comparison of multistep ahead methods: the 
average and the standard deviation of the testing error 

for the three step ahead case 
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Abstract 

We stabilized a chaotic Modal Neural Network (MNN) for the purpose of 
robust speech recognition. A Modal Neural Network is an Artificial Neural 
Network system which includes two levels of information processing. The first 
level is trained to store and retrieve some acoustic and visual patterns. The 
different states of this network, which represent the sound classes in a task of 
speech recognition, are called modes and are supposed to chaotically evolve 
when speech recognition is performed in adverse environments. 
The control of the chaotic behavior of the different modes constitutes the second 
level. An external signal, taken from a visual input such as the lip-opening 
parameters of the speaker is applied to stabilize an acoustic modal network of 
which the modes are moved from an initial position to a target position. The 
addressed task is the audio-visual recognition of the 10 French vowels, perturbed 
by some noises. The Perceptual Linear Predictive analysis applied to the speech 
signal of the 10 vowels outputs some vectors formed by 5 spectral parameters. 
They are in turn fed into a Modal Neural Network implemented as a feed- 
forward network. When the noise level increases, the classes stored by the 
acoustic MNN exhibit a chaotic behavior which is stabilized by the signal given 
by the visual path. We show that in an uncooperative environment, a chaotic 
modal neural network stabilizes well. 

Key Words: Robustness, Chaos, Audio-Visual Speech Recognition, Adaptation. 
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1.   INTRODUCTION 

Robustness is the ability for a given system to face unknown situations. In the speech 
domain the problem for a speech perceiver (e.g. an Automatic Speech Recognition 
System) is keeping good performances of speech recognition even if the spectral and 
temporal information conveyed in the speech signal are perturbed by some 
undesirable noises. This is a crucial problem because, when the training and testing 
conditions differ, the performances of the speech recognition systems can be 
drastically reduced, thus limiting the spread of speech technology to real world 
applications. 

Even if the current approaches (which are based on the improvement of the quality of 
microphones or on a better speech signal processing) have given encouraging results 
[1], they are all based on the idea that the performance degradation of speech 
perceivers could be eliminated by decreasing the mismatch between their training and 
testing conditions. However, our experience in this domain [2] showed that only small 
changes in acoustic environments could be solved by this kind of approach, while big 
changes required more study on the understanding of the perturbation nature and 
learning about the impressive robustness of living systems. 

Stein and Meredith (1993) demonstrated that the information processing in a cat's 
brain are initially segregated at the neural level. Neurons dedicated to one sense do 
not interact with those of another sense until the stimulus is transmitted to the brain. 
There the signal converges to the same target in the superior colliculus. The superior 
colliculus appears to be responsible for attentive and orientation behaviors. Based on 
these neurological facts two levels of information processing are considered in this 
paper. 
The first level extracts modes from the global stimulus reaching the acoustic sensor 
(i.e. microphone). The different modes extracted constitute some stable and 
observable states of the acoustic sensorial subsystem and can be identified to one of 
the different classes of sounds in a given vocabulary of automatic speech recognition 
system. The second level processes the modes which could behave chaotically if the 
patterns encountered at the training and testing conditions are so different. The 
oscillations and chaos are ubiquitous in the brain. They reveal an indecisiveness 
between the input pattern and the stored patterns and it is guessed by some authors 
that oscillations and chaos may play an important role on binding and integration of 
different information in the brain. Moreover, some other findings in the speech 
transmission domain have shown that a chaotic system like the Lorenz system defined 
by a set of differential equations, is able to provide some self-synchronization ability 
to a speech transmitter and a speech receiver, so that their robustness increases [4]. 
Hence the oscillations and chaos of a Modal Neural Network could be used to 
increase the robustness of a speech perceiver. 
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Several methods have been developed for controlling the chaos [5] by which an 
unstable orbit can be stabilized in a chaotic system. Recently some authors have used 
them to control neural networks states by implementing an external artificially 
generated signal [6]. 
In this paper, the chaos of MNN is controlled by an external signal measured in a real 
world (i.e. by a visual input). The MNN in a chaotic state means that the stimulus 
provided by the acoustic path is not enough to suppress the indecisiveness of the input 
sound class. By using the modes extracted from the visual path as control signals, a 
stabilization occurs. 

In the next section, we describe the general features of a MNN. In section 3, the 
network controller is introduced. In section 4 our experiment protocol and results are 
discussed. In section 5, we compare the results to others and conclude the paper in 
section 6. 

2. MODAL NEURAL NETWORK 

In this study, we assume two kinds of perturbations which in turn correspond to two 
kinds of robustness problems for a given information integration system: 
• coherent perturbations can be solved by a control theory approach. In this 

framework some corrections of the system states could be obtained by designing a 
closed loop to drive the modes of the system. For us, this case corresponds to a 
testing condition not so different than the training conditions. 

• chaotic perturbations require that the system be able to visit some new stable 
states which are very far from the conditions encountered during the training 
phase. In other words the system must be "creative" because it reflects the states 
of a creative system ("human talker"). Thus, the study carried here could be seen 
as a complementary vision of the robustness problem as discussed in [2]. 

We associate those two different perturbations to kind and aggressive robustness 
problems respectively. Kind robustness can be achieved by using the Kaiman filtering 
or any other error correction method. Aggressive robustness requires a more 
"creative" behavior of the control system like the chaotic one. For the task considered 
in this paper, we model kind robustness with the Artificial Neural Networks which are 
considered to be noise-resistant, and specifically with Modal Neural Networks while 
aggressive robustness is modeled by the chaotic control of the MNN modes. 
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Acoustic Input 
(5 Spectral Parameters) 

Visual Input 
(3 Lip-opening parameters) 

Acoustic Modal 
Neural 
Network 

Visual Modal 
Neural 
Network 

Sound 
Class 

Fig. 1: A system architecture for robust audio-visual speech recognition. Two Modal Neural 
Networks (see text) model the information processing subsystems for the visual and acoustic 

paths. 

A MNN can be taken as any neural network implementation of ANN to store, retrieve 
and manipulate some stimuli. In the speech domain a MNN for audio-visual speech 
perception takes as input a speech signal together with some lip-opening parameters 
and thus outputs the class of the sound: it implements a sound classifier. 

Let / represent the input space and O the output space of data recorded from a 
system for which we try to find a model. The solution obtained with an Artificial 
Neural Network can be understood as the search of a function f(W,I,E) which 

associates / to O in terms of information encoding into the weights W of the neural 
network. If the network is successfully implemented and trained then we can consider 

that is has computed an inverse matrix A so that we have: O = A' I. The modes of 
this latter matrix store the underlying mapping between / and O. Different solutions 
exist to solve this problem, e.g. the Hopfield network which seems to be plausible in 
terms of biological implementation. They are well-known examples. Some other 
solutions like feed-forward neural networks could be used to obtain the function 
/ and the different modes. 
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3. CONTROLLING THE MODES OF A MNN 

From    the    discussion     in     section     2,     we    will     model     a    MNN    as 

S = \A[,A2,-",Ai,---,XM}, a system S having Mmodes Xt i = 1-• • M . Let us 

denotes m(t) = 

K 

"M. 

The problem is now to control the movements of the different modes so that they go 
towards some desired targets. When the modes are close to the unit circle in the 
Nyquist plane, then there are some oscillations. When the modes are real and positive 
there is instability and chaos. 
We will use a parallel updating rule introduced in [3] and defined as: 

1 2 / 

m(t) = 1 - 2xp(a,/n(0 + a2[m(t)]2 + I(t)) with    Y(z) = -j== C e"/2dx v ' V2;r •% 
where I(t) represents a control signal and ax, a2 two weighting parameters. 

This rule generates phenomena like periodic, chaotic and bifurcation behaviors for 
different values of the noise level <J [6]. The control consists in taking the modes 
computed in the visual path as I(t) and to recover clean acoustic modes from noisy 
ones. 
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Fig. 2 : The modes computed on the audio path perturbed by a gaussian noise with a SNR of - 
20dB are chaotic (a). Conversely the visual path has less perturbed modes (b). The stabilization 

due to the visual path modes occurred in (d) after a period of indecisiveness in (c). 
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(c) (d) 

Fig. 3 : The modes computed on the audio path perturbed by another vowel sound with a SNR 
of -20dB are chaotic (a). Conversely the visual path has less perturbed modes (b). The 

stabilization due to the visual path modes occurred in (d) after a period of indecisiveness in (c). 

4.    EXPERIMENTS 

The movie of a speaker pronouncing the  10 French vowels is considered the 
experimentation start point. 
The image of the speaker's face is processed by the Snakes method to extract some 
lip-contours [7]. We applied this method to extract some lip-opening parameters (the 
center of gravity of the mouth opening area, the vertical and horizontal lip width). 
Those three lip parameters are input to the visual MNN. 
Similarly, each vowel acoustic signal is processed with the Hermansky PLP method 
[8]. The resulting 5-dimension vector is given to the acoustic MNN. 
For each vowel 100 pairs of audio-visual patterns are obtained for the experiment. 

The experiment concerns the control of the modes computed on the auditory path by 
the visual path. The MNNs (acoustic and visual) are two feed-forward neural 
networks [9] which are trained to classify the 10 vowels. After the training the MNNs 
weights are frozen. For each MNN we do not make the sigmoidal thresholding at the 
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output units. Thus they have outputs varying between 0.0 and 1.0 corresponding to the 
strength of the network modes. For more discussions on the training of these networks 
see [9]. 
The first experiment concerns the audio-visual recognition of the 10 vowels perturbed 
by a gaussian noise (see Fig. 2) and the second for a perturbation by the vowel /a/ 
signal pronounced by a female speaker. Note that this latter case corresponds to a 
situation for which two speakers speak at the same time (i.e. the perturbation is the 
voice of another speaker). The two experiments are carried out for a Signal to Noise 
Ratio (SNR) of-20 dB. 

In a quiet environment the acoustic input allows a good computation of the modes of 
the 10 vowels which would be on the diagonal like in Fig. 2d. When the noise level 
increases (see Fig. 2a), the coordinates of the modes behave chaotically because no 
sufficient information is delivered by the auditory path. This unstable behavior can 
then be controlled by the visual path which brings the complementary information 
(Fig. 2c) to stabilize the acoustic modes (see Fig. 2d). 
If we change the kind of perturbation we observe similar results. However the effect 
of the visual path in the modal space is not as good (Fig. 3c), and this is due to the 
great perturbation of the vowel spectral information when the perturbation is a vowel 
sound. In the two cases we achieved the stabilization. 

5. DISCUSSION 

Many studies have been carried out on the control of the chaos. Among them some 
have specifically been applied to speech domains. Cuomo and al. (1993) have shown 
the interest of using Lorenz chaotic system for a robust transmission between a 
transmitter and a receiver. The basic idea is to take advantage of the self- 
synchronization feature of a chaotic system which is able from any starting initial 
condition to reach a given target. When a receiver and a transmitter lose their 
synchronization because of some perturbations in the channels, then the two chaotic 
systems are able to re-synchronize by themselves. The application consists in 
considering the speech signal to be transmitted as a low-level perturbation and this 
increases the reliability and robustness of the transmission. In this study this feature is 
used to move a MNN toward a nominal performance state. 
The control of a Hopfield neural network has been shown in [6]. It showed a 
possibility to use a chaotic system as a two-module information processing system. 
The second neural system, identified-as the colliculus in the cat's brains, sends a signal 
which stabilizes the chaotic behavior of the first neural system which stores and 
recalls patterns. Only some simulated data have been tested. 
As far as we know, our present study seems to represent the first attempt to position 
the modes computed from audio-visual data recorded by a human subject. 
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6. CONCLUSION 

We described a framework for controlling the chaotic movements of the modes of a 
neural network which learns to recognize visual speech. An external signal taken from 
another sensorial input (visual) allowed us to stabilize the network. The results 
obtained on the 10 French vowels displayed in a modal space and perturbed by a 
white noise (gaussian) and a colored noise (another vowel sound) has shown some 
strong capabilities of the Modal Neural Network for processing new incoming events 
occurring in real world conditions. The complementarity between the auditory and the 
visual paths is taken at the level of modes whereas the environment has been supposed 
to be handled by the MNN. The general methodology based on two interacting 
information processing modules could be applied to other kind of sensor integration 
problems and related to other studies on multi-modal data analysis. 

If the basic structure of the MNN is a Hopfield network then our study may be 
compared to some biological plausible implementation of information processing in 
the brain. Nevertheless, the methodology developed could be taken as a contribution 
to the modeling of robust information processing for real world applications. 
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ABSTRACT 

A demonstration program has recently been completed to apply 
various artificial intelligence techniques including, neural 
networks, expert systems, and case-based reasoning to fault 
detection in satellite communications systems. The GMM 
program implemented these techniques for Global Military 
Satellite Communications Maintenance. Neural networks were 
designed and trained to analyze incoming Built-in-Test (BIT) 
fault signatures from the satellite communications terminal. 
Expert systems were developed to embed diagnostic knowledge 
relating to equipment maintenance. The prototype hybrid 
system uses neural filters to detect faults, which are further 
processed by expert systems to classify the faults and provide 
repair directions. 

INTRODUCTION 

Present military communications systems perform Built-in-Test (BIT) false 
alarm reduction and fault isolation through largely heuristic algorithms such as 
n-of-m filtering and deterministic isolation trees. These methods are often 
implemented in a combination of system processing (typically software) and 
manual procedures contained in maintenance manuals. Furthermore, methods 
of collecting BIT history often rely on the maintainer to fill out paperwork, with 
no systematic feedback. 
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Once fielded, BIT performance of these systems has proven difficult to 
improve, both because upgrades are difficult and because of the lack of 
centralized analysis and machine learning. Consequently excessive unnecessary 
repair actions and the need for skilled maintained keep maintenance costs high 
over the life of the system. 

GMM AI-BASED APPROACH TO BIT 

The purpose of the Global MILSATCOM Maintenance (GMM) program was to 
apply Artificial Intelligence and Neural Network methods to address the lack of 
automated systematic improvement BIT performance, especially in the post- 
fielding environment. 

In the GMM concept, terminals process BIT fault signatures using AI 
techniques. Whenever a maintenance action occurs, history is automatically 
transmitted to a central analysis facility using satellite communication 
resources on an as-available basis. At the central facility, a diagnostic/system 
analyst uses AI tools to analyze the accumulated history and, if appropriate, 
generate updates to the AI processing in the fielded terminals. Hence, each 
fielded system benefits from the cumulative experience of all fielded systems. 

GMM has the potential to significantly reduce fielded system maintenance 
costs. The savings can arise from improved fault diagnosis which allows 
operators to assume field maintenance duties, thereby eliminating skilled field 
maintainers and related training and personnel costs, and reducing unnecessary 
repair actions. 

The goal of the GMM program was to demonstrate the GMM concept by 
developing and integrating prototype components employing the AI techniques 
of neural networks, expert systems and case-based reasoning. 

Figure 1 graphically depicts the system concept. In this concept, the fielded 
terminals may have neural network filters at several levels in the equipment 
hierarchy: module, assembly, subsystem and system. These neural filters may 
receive corroborating fault signature data from BIT hardware and other neural 
filters and also environmental information such as temperature or vibration. 
They use this data to make local low-level fault classifications. The results of 
the neural filters may be used by an expert system to make higher-level fault 
classifications and give repair directions. 
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Figure 1. GMM System Concept 

Reports on BIT fault indications are sent to a central facility and stored. Fault 
signatures, environmental information, repair actions and fault isolation 
decisions are also sent, using the communication system on a low priority "as- 
available" basis. In the conceptual GMM system, the central site has a storage 
capability for fault history data from the terminals. An analyst reviews the data 
to determine if the neural networks or the expert system logic are incorrect. 
The fault isolation logic can be modified and new test cases can be added to the 
training data library of the neural networks. Periodically the fault isolation 
logic and the neural networks can be updated and distributed. 

The use of a centralized AI-based analysis facility with automated, user- 
transparent access to fault and repair data from a large community of fielded 
systems which themselves employ AI techniques is the key to effectively 
introducing AI and learning techniques at the organizational maintenance 
level. 
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In the GMM concept, neural network technology was selected for use at 
terminal field sites to refine and improve the results of BIT fault reporting and 
subsequent fault detection. The results of this development are described in 
this paper. 
Expert system technology was selected to improve the knowledge acquisition 
process as well as to provide the capability to generate executable fault isolation 
logic. In concept, the diagnostic system will consist of two tools, one for 
diagnostic fault logic development and one for execution of that logic. 

The technology of case-based reasoning (CBR) was selected for use in 
maintaining and optimizing parts of the system which can be more costly to 
maintain traditionally, such as the expert system. In addition, CBR embodies 
an inherent mechanism for system adaptation and learning. The case-based 
reasoning function examines the failure events, compares them to known cases 
in the library, and recognizes deficiencies. Also, since the incoming failure 
events may not exactly match the existing cases in the library, the case-based 
reasoning function will incorporate new experiences into the library by 
adapting existing cases with information from the new event to make new 
cases. The case library will grow with new information, which can then be 
used by the system analyst to determine where and when to update the other 
functions of the system. The global position of the case library and case-based 
reasoning function will allow the distributed knowledge of the system to be 
collectively examined, refined, and returned to all sites consistently. After the 
concept was defined, funding cuts did not permit this CBR component to be 
implemented in the prototype. 

NEURAL NETWORK DEVELOPMENT 

We selected a representative terminal system with BIT based on traditional 
technology. The system was comprised of a rich set of replaceable units. These 
replaceable units are noted in this paper as generic components labeled units A- 
E as depicted in figure 2. 
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Figure 2: Representative Terminal System 

The fault signatures available can be represented in the following ambiguity 
groups: 

a subcomponent of Unit B 
a subcomponent of Unit C 
the cable between Units A and B 
the cable between Units B and C 
the cable between Units C and D 
the cable between Units C and E 
the waveguide between Units C and E 
a subcomponent of either Unit B or Unit C, but not the cable 
between Units B and C 

The BIT signatures for the Unit B/Unit C have 96 bits in their raw form. 
Examination of the Unit B/Unit C fault logic trees revealed that the terminal 
isolation processing uses less than half of the fault bits. Those bits that did not 
contribute to a decision (i.e., designator bits, RF switch status, etc.) were 
removed from consideration, leaving 39 relevant bits. 

Next, a matrix which we called the Base Vector Table (BVT) was constructed 
with a column for each of the 39 bits and a row corresponding to each 
indictment as defined by each distinct solution node of the fault logic trees. 
The BVT provided a tabular representation of the terminal's fault isolation 
processing for the Unit B and Unit C. 
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After the input data sources were identified and examined, a set of network 
output classifications was defined: 

1. Unit A/cable/Unit B 
2. UnitB 
3. Unit B/cable/Unit C 
4. UnitB/UnitC 
5. Unit D/cable/Unit C 
6. UnitC 
7. waveguide/Unit E/Unit C 
8. Unit E/cable/Unit C 
9. No Fault 

From the set of 9 output classes, two others were derived. The first consisted of 
4 classes and grouped all Unit B indictments, all Unit C indictments and all 
Unit B/Unit C indictments together: 

1. Unit B (from faults 1 and 2 above) 
2. Unit C (from faults 5, 6, 7, and 8 above) 
3. Unit B/Unit C (from faults 3 and 4 above) 
4. No Fault (from 9 above) 

The second consisted of a binary "yes/no" classification, based on the given 
unit. This required two binary classifiers, one for the Unit B and one for the 
Unit C. The binary Unit B classifier had the following classes: 

1. Unit B (from faults 1, 2, 3, and 4 above) 
2. Not Unit B (from faults 5, 6, 7, and 8 above) 

The binary Unit C classified had the following classes: 

1. Unit C (from faults 3 through 8 above) 
2. Not Unit C (from faults 1, 2, and 9 above) 

The motivation for the binary network architecture was to configure the 
networks as binary decisions with an overall classification scheme resembling a 
binary decision tree. By structuring the individual neural networks as binary 
decisions with one output node, the network can effectively be "tuned" to detect 
the desired classification. As a detector, well-established statistical methods 
can be applied to better understand the data and the network. These methods 
are discussed in detail in Appendix A which describes the Multi-layer Layer 
Perceptron (MLP) design algorithm [1]. 
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This algorithm uses information from the training data set to structure the 
network, including calculation of the necessary number of hidden nodes to 
execute the mapping, and computation of "good" starting weights. The 
algorithm provides a means of designing portions of the architecture of the 
neural networks in advance. It can also reduce training time, improve the 
convergence rate, increase the likelihood of convergence at a global minimum, 
and improve the generalization performance on novel data. 

NEURAL NETWORK RESULTS 

The failure data collected during factory testing demonstrated the potential of 
pre-deployment "field" data to provide early feedback to a central facility in a 
GMM system, or to system engineers in a more traditional design environment. 
However, to be effective, all opportunities to collect BIT signature data should 
be exploited. In addition, a rigorous and preferably automated method of 
linking repair actions to failures and BIT signatures must be in place. 

A summary of the training/testing results for all networks is given in Table 1. 
The fact that the training and testing results were similar indicated that the 
networks were able to generalize and were not "memorizing" the training data. 
The results indicated that the networks could distinguish well among the 
different classes. 

Network 

% Correct 
Synthesized 
Training Data 

% Correct 
Synthesized 
Testing Data 

% Correct 
Factory 
Data 

9-Class Heuristic 100.0 98.4 100.0 
4-Class Heuristic 99.4 99.0 96.4 
Binary Unit B Statistical 100.0 95.9 96.4 
Binary Unit C Statistical 99.5 91.5 93.0 

Table 1. Results of Network Training and Testing 
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ADVANTAGES OF THE GMM APPROACH 

The major advantage of the GMM approach to maintenance is the automated, 
closed-loop nature of the data collection, analysis, and feedback path. This 
allows each fielded system to benefit from the cumulative experience of all 
fielded systems. 

Fault information is processed using a variety of AI techniques, each selected 
for its particular suitability to the task it performs. Whenever a maintenance 
action occurs at a given field site, history is automatically transmitted to a 
central analysis facility where a diagnostician or system analyst uses AI tools 
to analyze the accumulated history and, if appropriate, generate updates to the 
AI processing in all the fielded systems. In addition, the automated nature of 
the process provides a much-needed consistency in the methods of making and 
installing modifications to the diagnostic tools and process. 

The capability of evolutionary improvement was experienced first-hand by the 
GMM neural network developers. During network training it was discovered 
that the "No Fault" data class had not been included in the training data for the 
statistical networks. As a result, their classification results were initially poor. 
Examples of "No Fault" data were added to the training data set and the 
networks were retrained and tested. As expected, a second iteration of testing 
against the factory data yielded much improved results as shown in Table 2. 
This is an example of the GMM concept in practice. 

Network 

Binary Unit B Statistical 
Binary Unit C Statistical 

% Correct Factory 
Data Without "No 
Fault" 
75.0 
64.0 

% Correct Factory 
Data With "No Fault" 

96.4 
93.0 

Table 2: Improved Results by Adding "No Fault" Class 
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SUMMARY 

The major conclusions of the project were that the study of the neural networks 
indicated that the backpropagation network model has potential for application 
to fault location. The expert system tools KAS and LTS were found to be well- 
suited for inclusion in a GMM system. Additional work is needed to prototype 
an implementation of the Central Analysis Facility in order to confirm the 
effectiveness of the overall GMM concept. Enhancements to the GMM concept 
were identified that would broaden its scope beyond fielded systems to include 
depot facilities, an automated hardware component tracking system, and a 
maintainer training system. 

The work described in this paper was performed by Raytheon Company under 
the Global MILSATCOM Maintenance (GMM) contract for the Defense 
Advanced Research Projects Agency (DARPA) with U. S. Army CECOM, PM 
SATCOM as Executive Agent [3]. It expanded upon work performed under a 
previous contract, Neural Network False Alarm Filtering, which was performed 
by Raytheon Company for Rome Laboratory Air Force Materiel Command [4]. 

REFERENCES 

[1] E. Wilson and D. Tufts, "Multilayer Perceptron Design Algorithm," 
Proceedings of the 1994 IEEE Workshop on Neural Networks for Signal 
Processing, pp. 61- 68. 

[2] F. Aylstock, L. Elerin, J. Hintz, C. Learoyd, and R. Press, "Application of 
Neural Network Technology to Built-in Test False Alarm Filtering," Ninth 
AIAA Conference on Computers in Aerospace, San Diego, CA October 1993. 

[3] Scientific and Technical Report for the Global MILSATCOM Maintenance 
(GMM) Program, Volume I, September 1996 (pending authorization for public 
release). 

[4] RL-TR-94-216. Neural Network False Alarm Filter Final Technical Report. 
December 1994, Volume I. 

625 



Multi-linguistic Handwritten Character 
Recognition by Bayesian Decision-based Neural 

Networks* 

Hsin-Chia FuJ Y.Y. Xu 
Department of Computer Science and Information Engineering 

National Chiao Tung University 
Hsin-Chu, Taiwan, ROC 

Email: hcfu@csie.nctu.edu.tw 
Fax: (886)-3-5724176, Tel: (886)-3-5731930 

Abstract 

This paper proposes a multi-linguistic handwritten characters recog- 
nition system based on Bayesian decision-based neural networks (BDNN). 
The proposed system consists of two modules: First, a coarse clas- 
sifier determines an input character to one of the pre-defined sub- 
classes partitioned from a large character set, such as Chinese mixed 
with alphanumerics. Then a character recognizer determines the 
input image to its most matched reference character in the subclass. 
The proposed BDNN can be effectively applied to implement all these 
modules. It adopts a hierarchical network structures with nonlin- 
ear basis functions and a competitive credit-assignment scheme. Our 
prototype system demonstrates a successful utilization of BDNN to 
handwriting of Chinese and alphanumeric character recognition on 
both the public databases (HCCR/CCL for Chinese and CEDAR for 
the alphanumerics) and in house database (NCTU/NNL). Regarding 
the performance, experiments on three different databases all demon- 
strated high recognition (88~92%) accuracies as well as low rejec- 
tion/acceptance (6.7%) rates, as elaborated in Section 3.2. As to 
the processing speed, the whole recognition process (including image 
preprocessing, feature extraction, and recognition) consumes approx- 
imately 0.27second/character on a Pentium-90 based personal com- 
puter, without using hardware accelerator or co-processor. 

1     Introduction 
Machine recognition of characters has been a topic of intense research since 
1960's [4]. During the last decade, more and more commercial products were 

*This research was supported in part by the National Science Council under Grant NSC 
85-2213-E009-125. 
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available in the market. On the other hand, due to the enormous number of 
variations involved, handwriting recognition applications still require more 
work before they can reach comparable performance as a human. Generally 
speaking, current handwriting recognition techniques and problems can be 
categorized into the following two types: (1) on the character input methods 
(e.g., on-line and off-line approaches), and (2) on the character languages. 
On-line and off-line: For the on-line approach, a computer receives tra- 
jectory coordinates by sampling the writing trace from a pen-based panel or 
a tablet. For the off-line approach, the whole text image is scanned into a 
computer and is stored in digital image format. Therefore, off-line character 
recognition process are usually more difficult than on-line approaches. Nev- 
ertheless, both on-line and off-line recognition techniques have their unique 
technical problems. 
Language issues: It is well known that Chinese characters (including Kanji 
in Japanese) are unique and different from that of western languages, in that 
they are non-alphabetic and have quite complicated stroke structures. Taking 
modern Chinese language as example, there are more than 5,000 commonly 
used characters and a word may consists of one or several characters. The 
large character set of a language usually causes degradation in recognition 
accuracy and speed. 

In addition, directly applying current mono-language character recogni- 
tion techniques [2] to multi-linguistic document will be quiet difficult, due 
to: 

1. separating mixed characters of different languages efficiently and cor- 
rectly is not trivial, sometimes it is just as hard as recognizing charac- 
ters, 

2. implementing two or more different types of recognition modules is not 
time and space (both software and hardware) efficient, 

3. combining recognition results from two different types of recognition 
modules is somewhat an unnecessarily extra work. 

Therefore, it is desirable to design a uniform recognition architecture for 
the multi-linguistic character recognition. First, select a set of proper char- 
acter features for characters of different languages in a document, such that 
they can be represented by a uniformed feature vectors. Then, a charac- 
ter recognition architecture for large character set can be adopted directly 
(or with just minor modification) to multi-linguistic character recognition. 
Comparing to the large character set such as Chinese, alphanumerics can be 
considered as a small set of special characters to the larger Chinese character 
set. Thus, uniformed feature selection and recognition architecture can be 
applied. 

It is well known in the statistical pattern recognition [1], that the Bayesian 
decision rule can be implemented as an optimal image pattern classifier. By 
applying the statistical features of a character image, the Bayesian rule can 
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be used to match an input character to a reference character with minimal 
classification error. A Bayesian Decision-based Neural Network (BDNN) has 
the merits of both neural networks and statistical approaches. For example, 
Lin and Kung [3] proposed a probabilistic Decision Based Neural Networks 
(PDBNN) for the implementation of a face recognition/detection system. 
More specifically, the modularity of the BDNN makes itself suitable imple- 
mentation for not only the mono-language, but also for the multi-linguistic 
language character recognition. Therefore, we propose the BDNN to attack 
the multi-linguistic character recognition problems. The organization of this 
paper is as follows: In section 2, the mathematical background and the archi- 
tecture of the BDNN is presented. Then, the overview of a total system for 
handwriting recognition is presented in Section 3. The system consists of two 
modules, which are all implemented by the BDNN. The two modules: coarse 
classifier and character recognizer are discussed in great details. Experimen- 
tal results of these modules are provided in both of these two sections. 

2     Bayesian Decision-based Neural Network 

Bayesian Decision-based Neural Network (BDNN) is a Bayesian rule based 
modular neural network for classification. One subnet of a BDNN is designed 
to represent one object class. Suppose there are k categories wi, • • •, uik in the 
feature space of a classifier or a cluster, the Bayesian decision rule classifies 
input patterns based on their posterior probabilities: An input character x 
is classified to category w,- if P(u{ | x) > P(UJ | x), for all j ^ i. Suppose the 
likelihood density of input pattern x given category w; is a D-dimensional 
Gaussian distribution, the posterior probability P(w; | x) by Bayes rule is 
P(aji | x) = P(wi>ifWi\ p(x | Ui) = N(ßi,Hi) where P(w,-) is the prior 

probability of category w,- (£* j p(ui) = *)> and P(x) = Efli P(
W
0P(

X
 I 

uk)- 
The category likelihood function p(x | w,-) can be extended to the mixture 

of Gaussian distributions. Define p(x | w,-,0ri) to be one of the Gaussian 
distributions which consist of p(x | w,-), p(x | w,-) = X)r/=i ^(®n | Wj)p(x | 
Wi,0ri), where P(Qri | <*>i) is the prior probability of cluster rt, and Qri 

= {^n,SrJ is the parameter set for the cluster r,-, when input character 
patterns are from category w*. By definition, J2ri'=i ■P(0'-, | w,-)=l. In 
most general formulation, the basis function of a cluster should be able to 
approximate the Gaussian distribution with full rank covariance matrix, that 

p(x | w;,On) = 
1 

(27r)2|Sr, 
^-exp —z(x- UnfE^ix- tiri) (1) 

where Sr; is the covariance matrix. However, for those applications which 
deal with high dimension data but finite number of training patterns, the 
training performance and storage space discourage such matrix modeling. A 
natural simplifying assumption is to assume uncorrelated features of unequal 
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importance. Suppose that p(x \ Wi,Qri) is a D-dimensional Gaussian dis- 
tribution with uncorrelated features, that ßri = [/J.rii,ßri2, • • • ,ßnD]T is the 
mean vector, and diagonal matrix Sri = diag^^, (r^.2, • • •, of #] is the co- 
variance matrix. As shown in Figure 1, a BDNN contains K subnets, which 
are used to represent a if-category classification problems. Inside each sub- 
net, an elliptic basis function (EBF) is used to serve as the discriminate 
function for each cluster r,-: ^(x,w,-, 0r<) = —\ J2d=i arid{%d — /^d)2 + 0ri. 

If 6ri is set-to 6Ti = — yln27r + \Y^d=i ^nartd, then exp{0(x,w,-,0ri)} can 
be viewed as the Gaussian distribution, as described in Eqn. (1), except for 
a minor notational change: ^— = trf.d. 

2.1    Learning Rules for BDNN 

The training scheme for BDNN contains the following three phaseOBs: unsu- 
pervised learning phase, supervised training phase, and self-grow learn- 
ing phase. 

Unsupervised Learning Phase: The first phase of BDNN training is an 
unsupervised learning. The values of the parameters in the network are ini- 
tialized in this learning phase. Many unsupervised clustering algorithms, such 
as K-means or Vector Quantization methods can be applied to unsupervised 
learning. 

Supervised Learning Phase: As for the supervised learning, teacher 
information is used to fine-tune decision boundaries. When a training pattern 
is misclassified, the reinforce or anti-reinforced learning technique is applied: 

Reinforced Learning : w(m+1) = w(m) + ^V^x, w) 

Antireinforced Learning : w(m+1) = w^m) - r)V<p(x, w) (2) 

Threshold Updating The threshold value of BDNN recognizer can also 
be learned by reinforced or anti-reinforced learning rules. 

Self-growing Phase: One of the difficult in the unsupervised learning for 
BDNN is the decision on the selection of the proper number of clusters for 
the K-means algorithm. Therefore, we propose the self-growing of clusters 
(in the following, it is called receptor) during the supervised learning phase. 

There are three main aspects for the self-growing rules: 
(11) When a new receptor should be created? 
(12) Which receptor should be partitioned to create a new receptor? and 
(13) How to initialize the centre and the covariance of the created new recep- 
tor? 

On Issue II, while the training sets are presented again and again, how- 
ever the train status (especially the recognition rate) states unchanged or 
improves very slowly.   In other words the current BDNN can not properly 
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learn and represent the whole training data sets. Therefore, extra Bayesian 
type receptors are needed to improve the modeling power of the current 
BDNN. 

On Issue 12, when an extra receptor is needed to improve the training 
performance, we propose to create a new receptor from the receptor which 
produces the most of misclassification during the recent training processes. 
On Issue 13, when a new receptor is created, its initial values of the centre 
and covariance matrix needs to be properly determined, otherwise the classi- 
fication capability may not be improved efficiently. Suppose that, a character 
pattern x corresponding to cluster 0, is presented to a BDNN classifier, then 
let us look into two receptors: the receptor 5,- corresponds to cluster ©,-, and 
the receptor (say Sj) corresponds to the largest response among the clusters 
other than 6;. Let Oj and Oj be the output for receptor S,- and receptor Sj, 
respectively. Let us define the ratio of these two outpus with respect to the 
training pattern x as px = %■■ According to the retrieving scheme of the 
proposed BDNN, if Oj is larger than or equal to o,- (i.e., px >1), then the 
retrieving result of input pattern x must be wrong. Apparently, the smaller 
the px could be, the better the classification performance would be. There- 
fore, it would be better to initialize the new receptor with proper parameters 
(i.e., ft, E,-), such that the px has smaller values (< 1) with respect to all the 
other receptors Sj ■ Since a proper initial value fi0 and E0 will have smaller 
px, thus, the best position for the centre should be located at x, i.e., ßo = x, 
so that the new receptor will generate the maximal output, for the input 
pattern x. To determine the S0, we let S0 = &l, <r is a positive constant 
(to be determined). Suppose that the a of the new receptor Si is not prop- 
erly determined, as shown in Figure 3(a), then the created receptor will have 
its largest possible output Oj(/i,-) to be smaller than the output Oj(m) of an 
existing receptor Sj ■ Consequently, the new receptor 5,- will not be able to 
reduce the value of px- We call that the receptor 5, is "overwhelmed' by 
receptor Sj. To prevent the overwhelming problem, Figure 3 (b) shows a 
properly initiated new receptor Si. Therefore, the following two constraints 
are suggested. 

(2TT) 2 jSjh 

(27T0-) 2 

-(x-^fS/Hx-w) 

2 

< °'(x) = 77—7Ü   (3) 
(27TCr) 2 

<°i(A*i)= ,_  ,D|V ,i    (4) 
(2TT) 2 |SJ|3 

These two constraints imply that receptor Si and receptor Sj will not over- 
whelm each other. To satisfy Eq.(4), <r should be less than  )~TX- Thus> 

27TOj(X) £> 

bv using —5- as an initial value, a can be iteratively decreased by a 
J Ö    27T0j(X)D 

small value t] (0 < t) < 1) until Eq.(4) is satisfied. Then, the final value of r 
can be used as the initial value of a0 for the new receptor Si. 
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3    BDNN Handwritten Character Recognition 
System 

A BDNN-based Handwritten character Recognition system is being devel- 
oped in the Neural Networks Laboratory of National Chiao-Tung University. 
The total system configuration is depicted in Figure 2. All these three main 
modules, pre-processing and feature extraction module, coarse classifier, and 
character recognizer post-recognition module are implemented on a Pentium- 
90 based personal computer. A 300 dpi scanner is used to acquire document 
images, or page images. The acquired binary images are then down sized to 
150 dpi for the following processing. 

3.1 Image Pre-processing and Feature Extraction 

Image pre-processing of a multi-linguistic character recognition is by no 
means of any different from the mono-language character recognition. The 
binary images of a handwritten character are first passed through a series 
of image processing stages, such as boundary smoothing, noise removing, 
space normalization, and stroke thinning operations. By evaluating most of 
the well known feature [2], we selected features with high index value, such 
as crossing count (CCT), belt shape pixel number (BSPN), and stroke ori- 
entation feature (STKO) as candidate features for the proposed character 
recognition system. 

3.2 Multi-stage character recognition 

Since there are as many as 5000 commonly used characters, and 62 of al- 
phanumerics and symbols in a traditional multi-linguistic Chinese document, 
thus it is desired to perform a coarse classification (or clustering) to reduce 
the domain size of the character recognition. By having a small working do- 
main, not only the over all recognition speed and recognition rate can be 
greatly improved, also the training on the fine-grained character recognizer 
can be much easier and faster. As illustrated in Figure 4, the two stage mix- 
ture character recognizer contains a coarse classifier as the first stage, then 
followed by a fine-grained character recognizer. 

3.2.1     Coarse classification 

In order to achieve a balanced recognition performance in a multi-stage recog- 
nition system, the coarse classifier needs to maintain a very high accuracy, 
(e.g., > 99.9%). Although this is a difficult task, we propose to use the CCT 
feature and overlapped K-means clustering algorithm [2] for the implementa- 
tion of the coarse classifier. By applying the two public databases suggested 
in Section 3.3, to train the proposed coarse classifier, this goal was achieved. 
The training and testing results are listed in Table 1. 
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Table 1: The training and testing results of coarse classification 

Number 
of 

cluster 

Ave. No. of 
characters 

in a cluster 

Inside test 
of clustering 

rate 

Outside test 
of clustering 

rate 
60 1156 100% 99.9% 

3.2.2     Character recognition 

The design of character recognizer is based on a BDNN for a character basis. 
A character recognizer is dynamically formed by a set of character BDNNs, 
which are one to one corresponding to the characters in an activated clus- 
ter by the coarse classifier. The training of the character BDNNs was first 
conducted by the unsupervised learning schemes, then each BDNN was fine 
tuned by the supervised learning scheme. During the retrieving phase, each 
of the character BDNN produces a score according to the mixture Gaussian 
distribution function p(x \ uii,Qri). The character BDNN with the highest 
score is the winner and its corresponding reference character is considered 
as the output of the character recognizer. By allowing about 6.7% of rejec- 
tion on the input characters, the the recognition accuracy can reach 92.12%. 
Training and testing results of the character recognizer are listed in Table 2. 

Table 2: Experimental results of the Multi-linguistic character recognition 
by BDNN. 

Test type Top 1. Top 2. Top 3. 
inside 91.07 % 95.15 % 96.18 % 

outside 88.22 % 89.76 % 90.89 % 
w/rej 92.12 % 93.01 % 93.68 % 

3.3    Handwritten Character Databases 

In this research, there are two main sources of databases for the training and 
testing of BDNN: the CCL/HCCR1 [5] database and the CEDAR database. 
The CCL/HCCR1 database contains more than 200 samples of 5401 fre- 
quently used Chinese characters. The samples were collected from 2600 peo- 
ple including junior high school and college students as well as employees 
of ERSO/ITRI. Each sample character was scanned at 300dpi to generate 
a 144 X 150 pixel image. According to the script regularity, each charac- 
ter sample in the 5401 database was manually arranged in sequential order. 
In other words, suppose a handwritten character is scripted like a printed 
character, then it is placed at the beginning of the sequence. Consequently, 
cursive handwritten character samples will be placed at the bottom part of 
the sequence. The CEDAR database contains various style of handwritten 
alphanumerics, which were lifted from envelop address blocks in USA. 
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3.4    Overall performance evaluation 

The system built upon the proposed has been demonstrated to be applicable 
under reasonable variations of character orientation, sizes, and stroke width. 
This system also has been shown to be very robust in recognizing charac- 
ters written by various tools, such as pencils, ink pens, mark pen as well as 
the Chinese calligraphy brushes. The prototype system takes only five sec- 
onds to partition characters on an A4 size input image, and takes 270 ms in 
average to identify a character image out of a commonly used Chinese char- 
acter set on a Pentium 100 based personal computer. For alpha-numerical 
character recognition, the recognition is about three times faster. Further- 
more, because of the inherent parallel and distributed processing nature of 
BDNN, the technique can be easily implemented via specialized hardware for 
real-time performance. 

4      Concluding Remarks 

In this paper, a neural network based handwritten character recognition sys- 
tem is proposed and implemented on a Pentium-90 based personal computer. 
This system performs coarse classification, and mixture character recogni- 
tion. The BDNN, a Bayesian Decision-based Neural network, is applied to 
implement the major modules of this system. This modular neural network 
deploys one subnet to take care one object (character), and therefore it is able 
to approximate the decision region of each class locally and precisely. This 
locality property is attractive especially for personal handwriting or signa- 
ture identification applications. Moreover, because its discriminant function 
obeys probability constraint, BDNN has more nice properties such as low 
false acceptance/false rejection rates. On the other hand, due to the enor- 
mous number of variations involved, handwriting recognition applications 
still require more work before they can reach comparable performance by 
a human. Therefore, document analysis and recognition becomes an inter- 
esting and fascinating research topic in the field of intelligent information 
processing. 
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Abstract 

A dynamic neural network is developed to detect soft failures of sensors and 
actuators in automobile engines. The network, currently implemented off- 
line in software, can process multi-dimensional input data in real time. The 
network is trained to predict one of the variables using others. It learns to 
use redundant information in the variables such as higher order statistics and 
temporal relations. The difference between the prediction and the measure- 
ment is used to distinguish a normal engine from a faulty one. Using the 
network, we are able to detect errors in the manifold air pressure sensor (Vs) 
and the exhaust gas recirculation valve (Va) with a high degree of accuracy. 

1    Introduction 

The basic behavior of an automotive engine is well known (Dobner 1983, 
Cook and Powell 1988). In the intake manifold of an automotive engine, 
shown schematically in Figure 1, the mass air flow rate (V;), exhaust gas 
re-circulation valve position (V0), engine speed (V0), and manifold absolute 

pressure (Vs) are related by a first order dynamics: 

dVs/dt = F(Vi,V0,Va,Vs). 

In many automobiles, sensors directly measure the variables Va, V», and 
V0, and the actuator command Va is also monitored. However, the above 
equation indicates that there is a redundancy between these variables. The 

*To whom correspondence should be addressed.  Phone: 818-395-2805.  Fax: 818-792- 
7402. Email: dawei@hope.caltech.edu 
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consistency of the time-history of the four variables can be used to check 
for faults in the three sensors and in the actuator. Thus for example by 
monitoring the variable Vs, we should be able to reliably detect errors in 
variables such as V„.t We present a neural network model that can capture the 
above dynamics of a six-cylinder engine on a production vehicle. Even though 
the neural network presented here is for a specific engine diagnostic problem, 
the approach is quite general and can be easily used for other applications as 
well. 

Vi V, Vo 

wm * k. -mi * ■:■„■"   J 

* 

Va 

Figure 1: Engine flow diagram. There are two in-flows VJ and Va and one 
out-flow V0. Because the conservation of mass, the change of Vs, which is 
proportional to the total change of mass in the manifold, is proportional to the 
net mass flow, which is a function of V;, Va, V0, and Vs. 

2    Network 

A two layer feedback neural network is developed to predict one variable (Vs) 
using three others. The architecture of the network is illustrated in Figure 2. 
The network has 3 feed forward inputs (Vi, V0, and V0), 16 first (hidden) layer 
neurons, and 1 second (output) layer neuron*. The predicted Vs is fed back 
as the fourth input. The facts that (i) the first layer uses time-delayed output 
variables and (ii) the input-output relationship of each neuron is sigmoidal, 
allows the network to capture the knowledge that the physical system is 
characterized by a first order non-linear dynamics. 

^There is an extensive body of literature on fault diagnosis. The inherent relationships 
and redundancies of measured variables of dynamic processes are often used to detect faults 
(e.g. Isermann 1993). 

■"■Different number of hidden neurons has been tried. 16 gives a good level of performance 
for this task 
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The data for training and testing the network was collected by a lap- 
top computer during normal city and highway driving using an experimental 
hardware setup within the vehicle. The data was then loaded to a SUN work- 
station for training and testing. We focus on faults in the sensor Vs and the 
actuator Va. The latter was chosen for its difficulty in detection. The faults 
were introduced by a hardware fault generator and simulates an 80% Vs fault 
or an 80% Va fault. (80% Vs fault means that the sensor Vs reading is 80% 
of the real value. 80% Va fault means that in the local actuator control loop 
for Va, the sensor output is 80% of the actual value. This will cause the 
actuator Va to open more for a given Va command, thereby increasing the Vs 

by roughly 5%.) 

Vi(t-H) 

Vi(t) Va(t) Vo(t) V,(t) 

Figure 2: Network architecture. This feedback network has two layers of neu- 
rons, there are total of 80 connections (five for each hidden neuron) and 17 
thresholds (one for each neuron). Those 97 parameters of the network are 
trained by back error propagation (BEP). 

The connections of the network are trained by back error propagation 
(BEP) with a momentum term on a training data set. To learn the dynamic 
correctly, the training data are presented in the following fashion: 

1) find a random starting point in a long time sequence of data, set 
the initial value of the feedback input to the measured Vs; 

2) run the input through the network to get an output Vs, calculate 
the output error (the square difference of the predicted V« and the 

real one); 
3) set the feed forward input to the next data point and the feedback 

input to the predicted Vs; 
4) repeat steps (2) and (3) for 100 steps to collect the error signal; 
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5) repeat step (1), (2), (3) and (4) for 4 steps to further collect the 
error signal; 

6) update the connection according the BEP learning rule; 
7) repeat (1) through (6) until the error does not reduce any more or 

until the limit of computation are reached. 
The performance of the network is tested on a separate validating data set. 
In all the plots, except the one mentioned, the validating data set is used. 

3    Network Performance 

The purpose of training the close-loop (feedback) network is to facilitate the 
identification of a normal vehicle from a faulty one, and thus diagnose a fault. 
The variance (root of mean square) of the distribution of the difference be- 
tween the predicted and the measured Va is used as the quantitative measure 
of the network's identification power. 

3.1    System Identification 

The trained neural network predicts Vs value very well. This is shown in 
Figure 3 (left) for a segment of the normal data set, sampled every 25 ms for 
400 seconds, under normal city driving conditions. The predicted Va values 
(dashed line) and the measured Vs values are very close to each other. 

100 100 

200        300 
time (sec) 

200 300 
time (sec) 

Figure 3: Vs prediction for normal vehicle (left) and faulty vehicle (right). 

With a network of this accuracy, it is easy to detect faults in sensor Vs. 
Figure 3 (right) shows a segment of the data set which was collected with 
faulty Vs sensor (the reading is 80% of the true value). It is the same vehicle 
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but with an altered Vs sensor. We can see that the prediction is about 20% 
above the measured value, i.e., the network predicts a Vs value 20% greater 

than the actual reading, given other variables. 
But if a fault only causes small changes in Vs, it is not so easy to see the 

difference from a plot like Figure 3. For the data set which was collected 
with the faulty Va actuator (the Va actuator opens 20% more than the Va 

command), the changes in Vs is only about 5%. The difference between the 
predicted and measured Vs, i.e., the residual, gives a quantitative measure. 
The distribution of the residual is quite different for a normal vehicle and a 

faulty one. 

3.2    Diagnostic Variable 

Figure 4 (left) shows the Vs residual values for the same segment of the data 
set as in Figure 3 (left) for a normal vehicle. The residuals are well within 
1 with the mean close to 0. Obviously there are many ways to characterize 
the residual, e.g., binning it for different Vs values and/or Va values. Even 
the residuals at different times could give information on whether a vehicle is 

normal or not. 

"3 2 

•3 0 

-4 

-6 

ff* jA |#f wfc- 
100 200   300 

time (sec) 

400 200   300 
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Figure 4: Vs residual for normal vehicle (left) and a vehicle with Va fault (right). 

The residual variance is the most natural one to characterize the spread 
of the residual distribution. For the current application, this is sufficient to 
separate a normal vehicle from a faulty one. For the the segment of the 
normal data set shown in Figure 3 (left) the running average of the residual 
variance is shown in Figure 5 (left, the curve in the middle). It is clear that 
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the residual variance converges to 0.8 within about 200 sec. This translates 
to roughly 1.8% of the measured Vs. We can see from Figure 5 (right) that 
the Vs residual variance of a vehicle with 80% Va fault is much larger than 
this, so it is possible to detect the Va fault with average Vs residual variance. 

3.3    Discrimination Power 

Since the Vs fault is easy to detect, only the performance of the network for 
detecting 80% Va fault is presented in the following. Figure 4 (right) shows 
the Vs residual values for an 80% Va fault vehicle. The Vs residuals have much 
larger variances, in contrast to those in Figure 4 (left) for a normal vehicle. 
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Figure 5: Vs residual variance for normal vehicle (left) arid a vehicle with Va 

fault (right). Three segments are plotted for each of the normal data set and 
the faulty data set. The variances for a faulty vehicle are larger than the normal 
ones by more than a factor of two. 

Figure 5 shows the running average of Vs residual variances for three 
segments of the normal data set (left) and three segments of the Va fault 
data set (right). The Vs residual variances for the faulty data set are around 
1.8 , more than two times larger than 0.8 variance for the normal data set. 
Again, the variances approach their asymptotic values within about 200 sees. 
The small difference from segment to segment reflects the random driving 
pattern during the data collection (there was no set driving schedule). 

4    Network Generalization 

The most serious concern for any data dependent model (neural network 
and math based models alike) is how well the model generalizes.   This is 
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investigated in two ways: variations from the training data to validating 

data, variations for different drivers. 

4.1    Training and Validating 

Figure 6 (left) shows the Vs residual variances on three segments of the train- 
ing data set. These can be compared with the three segments of the val- 
idating data set in Figure 5 (left). Both the training and validating data 
were collected for the same driver A in this case. All the running averages 
of V, residual variances approach 0.7 to 0.9 after 200 seconds. There is no 
significant difference in the variance for training and validating data. 
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Figure 6: Vs residual variance for training (left) and for different drivers (right). 
On the right, the lower two curves are for driver B and the upper one is for 

driver C. 

4.2    Different Drivers 

Figure 6 (right) shows the V3 residual variances of three segments of normal 
data from two other drivers (B and C) which can be compared with the three 
segments of the validating data set as before (Figure 5, left). The network 
was trained for driver A. Thus the data for different drivers are not part of the 
training data set. The running averages of Vs residual variances for drivers B 

and C are only slightly higher, ranging from 0.7 to 1.1. 

The small difference in performance for training, validating, and drivers 
is well below the level of V, change caused by the V« fault. Thus the network 

can still give a reliable signal to detect the fault. 
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5    Discussion 

Based on the intrinsic dynamic of the intake manifold of an automotive engine 
(shown in Figure 1), We choose a feedback network instead of a feedforward 
one. To test what a feedforward network can do, we also trained a network 
without the Vs feedback, i.e., a standard two layer feedforward network. 

Figure 7 shows the performance of the trained feedforward network. The 
running average of Vs residual variances for three segments of the normal 
data set (left) and three segments of the Va fault data set (right) are shown 
in this figure. The prediction accuracy of the feedforward network is much 
lower than the feedback network (Figure 5). The variances for the normal 
data set are two times larger than the feedback network and are very close 
to the variances for the Va fault data set. 

200 300 
time (sec) 

200 300 
time (sec) 

Figure 7: Performance of a feedforward network. As in Figure 5, Vs residual 
variance for normal vehicle is shown on the left and a vehicle with Va fault on 
the right. Three segments are plotted for each of the normal data set and the 
faulty data set. Different from Figure 5, the variances for normal and faulty 
vehicles are not very far apart. 

Another alternative is to train a feedforward network with true Vs, not 
the feedback from the output. With the same training schedule, the network 
learned mostly to follow the Vs input. Thus the performance is even worse 
than without the Vs input — in term of discriminating faulty and normal 

vehicles. 
We have also trained feedforward networks with multiple time-delayed 

inputs of Vh Va, and V0. They have similar level of performance as the 
feedforward network in Figure 7, which is much worse than the feedback one. 
Thus the feedback element of the network is truly important. 
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6    Summary 

This research demonstrates the usefulness of applying neural network tech- 
nology for engine modeling and diagnostics. Using a well accepted statistical 
measure — the variance — the two layer network with feedback achieved a 
accurate manifold air pressure (Vs) prediction with 1.8% variance which en- 
ables the detection of 4.5% Vs variance caused by exhaust gas recirculation 

valve (Va) faults of the same vehicle. 
We should point out that it is not necessary to collect the data in con- 

tinuous 400 sec windows. For the current method to work, one only needs 
to collect small pieces of data say, 2 or 3 seconds long, and collect many 
pieces to accumulate enough statistics. On the other hand, collecting and 
processing data continuously every 25 ms itself is not very demanding. The 
computational needs for processing data after the network has been trained 
is only about 4000 multiplication per second. 
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Abstract - We introduce a new generalized feed-forward structure that 
provides for multiple time scales. The gamma, Laguerre and other locally 
recurrent feed-forward structures perform poorly in cases where widely 
varying time constants are required. By exponentially varying the time- 
constant along the delay line, a single delay line is able to represent 
signals that include various time scales. We demonstrate both discrete- 
and continuous-time versions of this multiple time-scale structure which 
we call the multi-scale gamma filter. The multi-scale gamma has a very 
natural implementation in sub-threshold CMOS and measured impulse 
responses from a continuous-time analog VLSI chip are shown. 

1    INTRODUCTION 

For many practical problems, the gamma structure is superior to the standard 
tap delay line because of its ability to automatically choose an appropriate 
time-scale [1] [2] [3]. This advantage becomes particularly significant for 
problems involving extremely long impulse responses for which the standard 
tap delay line solutions can require thousands of taps. Unfortunately, the 
gamma structure has a few problems of its own: 

1. Choosing the optimal time scale is a very difficult computational prob- 
lem. Gradient descent is not guaranteed to find the optimal time 
scale [4]. This problem becomes particularly troublesome when we build 
dedicated hardware (analog or digital) for implementing these filters. 

2. Even when a single optimal time-scale can be found, the structure may 
not be able to efficiently represent information occurring at other time 
scales. 
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3. As with the FIR case, choosing an appropriate number of taps is also a 
difficult optimization procedure. 

Sections II and III discuss the discrete- and continuous-time realizations of 
a multiple time-scale generalization of the gamma filter which addresses the 
above problems. Section IV discusses an analog VLSI hardware implementa- 
tion of this filter. 

2    DISCRETE-TIME MULTI-SCALE GAMMA FILTER 

Our proposed discrete-time multi-scale gamma filter is shown in Figure 1. 
Unlike the gamma filter, the location of the pole at each stage depends on 
the tap k. The transfer function between taps can be written as: 

ak J ■ (j, Xk(z)  

Xk-i(z)      z - (1 - a*-1 - fi) (1) 

(We assume that a < 1.) If we perform a two-dimensional search for the op- 
timal a and ß, this structure cannot perform worse than the original gamma, 
since the gamma filter is included as a special case when a = 1.     We can 

x(n) 

i-n 1 -an l-aK> 

xk(n) 

Figure 1: Discrete-time multi-scale gamma filter 

demonstrate a problem for which the multi-scale filter easily outperforms the 
gamma filter by posing a system ID problem that includes two widely sepa- 
rated poles. We use the transfer function H(z): 

H(z) = 
0.3 

(z-0M)(z-0.95) (2) 

For the gamma structure, we scan all possible values of ß between 0 and 1. 
For convenience, we set /i = 1 in the multi-scale gamma so that the first 
stage is exactly an ideal delay. We then scan all values of of a between 0 
and 1. The Wiener-Hopf equations were used to solve for the optimal weight 
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values in order to obtain the MSE. The results for various numbers of taps 
(from 2 to 5) are shown in Figure 2. In all cases, the gamma filter has more 
difficulty in approximating the system with a small number of taps. Since 
we are scanning all values of the free parameter, a practical optimization 
procedure is still an open problem. The solution for the multi-scale gamma 
can be further improved if we also optimize for fi instead of setting \i = 1. 
Currently we are not exploring this direction because we seek simple search 
methods that can be readily implemented in dedicated hardware.   The multi- 
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Figure 2: Mean square error comparisons between the gamma filter (solid line) and 
the multi-scale gamma filter (dotted line). We plot MSE vs p (for gamma) or a for 
(multi-scale gamma). 

scale gamma structure is now better able to represent signals with widely 
varying time constants but we still require a difficult optimization procedure 
to find the optimal a (assuming /z = 1). Rather than perform this difficult 
search procedure, we borrow a standard weight pruning technique from neural 
network theory [5]. We purposely include more taps than we need in order to 
cover a large range of time scales and selectively deactivate any weight values 
that are small in magnitude. 

We have simulated a system ID problem using the multi-scale gamma filter 
in which the transfer function of the unknown system is given by: 

H{z) = 
0.4(2 - 1) 

«(Z-0.1)CZ-0.7)(J8-0.9) 
(3) 

The Mean Square Error vs. number of taps is shown in Figure 3. For an 
n-tap filter, the smallest 10 - n weight magnitudes are set to zero. We again 
assume that /z = 1. There are a few things to note in Figure 3. First, 
the a = 0.9 solution is better than a = 0.5 for an equal number of taps. 
For a = 0.5, the poles are spaced too far apart. Second, for both values 
of o there is a sharp transition beyond which adding more taps does not 
decrease the error. This sharp transition can be used to choose a reasonable 
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Figure 3: Plot of MSE vs. number of taps using the weight pruning method. For 
each number of taps, the smallest magnitude weights are set to zero. 

number of taps for each problem. Minimizing the number of taps reduces 
the overall amount of computation and also lowers the misadjustment of the 
system. We plan to use this weight pruning method to avoid implementing 
complex, non-convex optimization procedures in our dedicated hardware. The 
weight pruning method also provides a mechanism for choosing an appropriate 
number of taps. 

3    CONTINUOUS-TIME MULTI-SCALE GAMMA FILTER 

Our continuous-time multi-scale gamma (ms-gamma) structure is shown in 
Figure 4. The ms-gamma is a cascade of first-order low-pass filters with 
time constants that slow down exponentially as signals propagate down the 
cascade. If we define the time constant of the last stage to be r, then the 
next to the last stage has a time constant of ar where 0 < a < 1.     Since 

l 

a TS+1 

1 
a2ts+l ats+1 TS+1 

Gk(s) G,(s) Gi(s) G„(s) 

Figure 4: Continuous-time multi-scale gamma memory 

the time constant changes by a factor of a for each stage, if we set a = 
1, the ms-gamma reduces to the usual gamma memory. We can simplify 
the mathematical analysis by considering an infinite cascade of sections. In 
general, for a < 1 

Hk(s) = 
1 

akrs + 1 
(4) 
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And full system response at tap k is given by 

oo i 

(5) 
k=i 

Because of the infinite cascade, the following scaling laws can be easily de- 
rived. In the s-domain: 

Gi+1(s) = Gi(as) (6) 

In the time-domain: 
(7) 9i+i{t) = -Pi(-) 

Therefore the impulse functions gi{t) are all identical with the exception of a 
scaling of the amplitude and time axis. 

We have derived an analytic form of the impulse response at each tap for the 
ms-gamma for both the finite and infinite cascade versions. Both expressions 
consist of a weighted sum of exponentials. The expression ,of the impulse 
response of the infinite cascade is simpler and can be written as: 

9i(t) = jr 
Ak-i 

-e«'f 

k=i 

where oo i 

~~   11  1 - aJ-m 

(8) 

(9) 

Figure 5 shows the impulse response curves of ms-gamma both simulated 
and measured.   The peak values of the impulse response are equally spaced 

20 30 40 50 
lime: micro second 

20 30 40 50 
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(a) (b) 

Figure 5: (a) Simulated multi-scale gamma kernels, (b) Measured kernels. 
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for the gamma filter but are not equally spaced for the ms-gamma. For the 
infinite cascade, define U to be the peak value of the impulse response gi(t), 
the scaling law results in the following relation: 

ti+l — ati (10) 

which means that the time of the peak at stage i + 1 is simply the product 
a and the time of the peak at stage i. This implies that the peak value of 
the impulse response for consecutive taps of the infinite cascade are equally 
spaced on a log time plot. Figure 6 shows the peak location of 10 normalized 
tap responses on a log time plot for the finite ms-gamma memory. Notice 
that after the first few taps, the peak values become equally spaced and the 
impulse response shapes converge to the same shape. This is exactly what is 
expected from the infinite cascade analysis. 

10- 10" 
logarithm (base on 1 O) of time : 

Figure 6: Impulse responses of the multi-scale gamma memory on a log-time plot. 
The peak value of each impulse response has been normalized to unity for display 
purposes. 
We have also performed system identification simulations using the ms-gamma 
filter in continuous-time. Figure 7 shows that the ms-gamma performance 
index is fairly flat when i is larger than 800. Since the performance surface 
is fairly constant and close to its optimal value in this region, finding the op- 
timal r may not be so important for this structure. Figure 8 shows that when 
the number of taps (k) increases, the performance index becomes even more 
flat. With our example, the unknown system is a 5th order system and using 
a 5th order ms-gamma filter is enough to approximate the unknown system. 
Increasing the number of taps to k = 6 does not provide much improvement. 
These results suggest that there may be no need to find an optimal scale (as 
is necessary for the gamma) if many time scales are explored simultaneously 
(as in the ms-gamma). The misadjustment of the system may be reduced by 
systematically zeroing out any weights that do not contribute significantly to 
the output. 
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Figure 7: Performance index comparison of gamma and multi-scale gamma struc- 

tures. 
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Figure 8: Performance index of multi-scale gamma with different numbers of taps 
(k). 

4    ANALOG HARDWARE IMPLEMENTATION 

We have previously implemented the gamma filter in analog VLSI [6] and 
have integrated a continuous-time LMS gradient decent method to determine 
the weight values [7]. In order to implement the multi-scale filter, a resistive 
line is connected along the tap bias controls to achieve a linear voltage drop 
from one end to the other. Because the CMOS transamps are operated in the 
sub-threshold region, the output currents are exponential in the bias voltages, 
which means their poles also exponential decreasing as k increases. A similar 
strategy was used in the implementation of the silicon cochlea [8]. Figure 9 
shows the schematic for the fc-tap multi-scale gamma structure. The resistors 
are chosen with the same value, the time constant T is controlled by the 
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Vlow 

Figure 9: Circuit implementation of the multi-scale gamma structure. 

voltage Vhigh and factor a is set by Viow. A twelve-tap multi-scale gamma 
structure had been fabricated using MOSIS 2/wn N-WELL technology. The 
measured impulse responses from the chip are shown in Figure 5(b). This 
analog implementation provides a fast, low-cost, low-power solution for many 
adaptive filtering applications. 

5    CONCLUSION 

We have introduced the multi-scale gamma to allow for widely varying time- 
scales in the input signals. The gamma, Laguerre and other locally recurrent 
feedforward structures perform poorly in cases where widely varying time 
constants are required. By exponentially varying the time constant along the 
delay line, a single delay line is able to represent signals that include various 
time scales. Our results also suggest that we may be able to skip the difficult 
search procedures required to find a single optimal time constant as is nec- 
essary for the standard gamma and Laguerre filters. We demonstrate both 
discrete- and continuous-time versions of the multi-scale gamma structure. 
The same extension can be applied to the Laguerre memory and most other 
locally recurrent networks. These multiple time-scale structures have a natu- 
ral implementation is sub-threshold CMOS and measured impulse responses 
from a continuous-time multi-scale gamma chip were shown. 
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A probabilistic neural network based technique is presented for 
unsupervised quantification and segmentation of the brain tissues 
from magnetic resonance image. The problem is formulated as 
distribution learning and relaxation labeling that may be partic- 
ularly useful in quantifying and segmenting abnormal brain tis- 
sues where the distribution of each tissue type heavily overlaps. 
The new technique utilizes suitable statistical models for both 
the pixel and context images. The quantification is achieved by 
model-histogram fitting of probabilistic self-organizing mixtures 
and the segmentation by global consistency labeling through a 
probabilistic constraint relaxation network. Experimental results 
show the efficient and robust performance of the new algorithm. 

1. INTRODUCTION 

Quantitative analysis of brain tissues refers to the problem of estimat- 
ing tissue quantities from a given image and segmentation of the image 
into contiguous regions of interest to describe the anatomical structures. 
The problem has "recently received much attention largely due to the im- 
proved fidelity and resolution of medical imaging systems, and because of 
its ability to deliver high resolution and contrast, magnetic resonance (MR) 
imaging has been the dominant modality for research on this problem. For 
quantification of brain tissues from MR images, stochastic model based 
approach has been by far the most popular. The stochastic model based 
approach typically employs a finite mixture model, which we have shown 
in our recent study of MR image statistics, is a very suitable model for the 
task. Therefore, probabilistic neural networks are particularly suitable for 
application in quantitative analysis of MR images, since while providing a 
formal statistical formalization of the problem they also offer efficient on- 
line computation of the quantities of interest, a feature especially important 
for evaluation of studies in a clinical setting, for example an analysis to be 
performed on a sequence of MR images. 
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In this paper, we present a probabilistic neural network approach for 
efficient analysis of brain tissues by using single-valued MR brain scans. 
The procedure provides a complete treatment of the problem of quantita- 
tive image analysis in that, a quantification stage that includes automatic 
determination of tissue types is followed by a segmentation stage which in- 
corporates local spatial context with global statistical description of pixel 
intensities for reliable description of the anatomical structures. In partic- 
ular, we formulate tissue quantification as a distribution learning problem 
and use relative entropy as the information distance between the standard 
finite normal mixture (SFNM) distribution and the image histogram. The 
actual quantification is performed by a probabilistic self-organizing mix- 
tures (PSOM) network in which we use an information theoretic criterion, 
the minimum conditional bias/variance (MCBV) criterion, to determine 
the suitable number of mixture components in a given MR image. The 
procedure is fully unsupervised so it is able to work with both normal and 
abnormal cases. The actual segmentation is performed, after quantifica- 
tion, through combining maximum likelihood thresholding and stochastic 
regularization, by a probabilistic constraint relaxation network (PCRN). 
Experimental results demonstrate the efficient and reliable performance of 
the proposed scheme, in terms of the quantification achieved by PSOM, 
consistency of the order determination by using the proposed information- 
theoretic criterion, MCBV, and the final segmentation results by PCRN. 

2. PROBLEM STATEMENT 

Over the last few years, considerable success has been reported in MR 
image analysis both by using finite mixture distributions and by neural 
networks based methods. And very recently, a cross fertilization of these 
two approaches, probabilistic neural networks have emerged as a powerful 
tool in MR image analysis such as tissue quantification and segmentation. 
New approach provides valuable insight for designing and learning in neural 
networks, such as consistency of parameter estimates and determination of 
suitable network structure among others. 

Assume that the spatial location of each pixel X(, has one-to-one cor- 
respondence to its true label /?. By randomly reordering all pixels in the 
underlying probability space, i.e., ignoring information regarding the spa- 
tial ordering of pixels, we can treat pixel labels as random variables and 
introduce a probability measure by using a multinomial distribution with 
unknown parameters 7^ for each component. Since it reflects the distribu- 
tion of the number of pixels in each component, itk can be interpreted as a 
prior probability of the global context information. Thus, the relevant (suf- 
ficient) statistics are the tone statistics for each component and the number 
of pixels in each of the component. The marginal probability measure for 
any pixel image, i.e., the SFNM distribution, can be obtained by writing 
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the joint probability density of xi and U and then summing the joint density 
over all possible outcomes of U, resulting in a sum of the following general 
form: 

K 

f(u\r) = Y^irk9(u\ßk,<rl) (1) 
k=i 

with X)*=i "■* = 1 and 

g{u\nk,Gk) = exp( 2^2—) 

where /z* and a\ are the mean and variance of the fcth Gaussian kernel. We 
use K to denote the number of Gaussian components and r e TZ3K~1 to 
denote the total parameter vector that includes /z*, a\, and itk for all K 
components. 

On the other hand, since in tissue segmentation, context information is 
of particular importance, by assuming that the context images are random 
variables with Markovian property, a localized SFNM distribution can be 
formulated to incorporate local regularities statistically, i.e., to impose local 
consistency constraints on context images in terms of a stochastic regular- 
ization scheme. For each pixel i, we define the spatial constraint as a local 
set of all pairs (h,lj) such that the consistency between U and lj can be 
measured by the compatibility function I(k,lj). We define /(•,•) as the 
indicator function and define the neighborhood of pixel i, di by opening a 
bxb window with pixel i being the central pixel where b is assumed to be an 
odd integer. Note that pairs of labels are either compatible or incompatible 
in this case. Then, we compute the frequency of neighbors of pixel i with 
labels compatible to an assumed label of pixel i, denoted by ir^ , given the 
labels of its neighbors let G ~R,h _1 by 

: P(h = k\\9i) = ^Y E T& = k> lm) (2) pKH — n,\i0i) —  h2 _ 1 

j€di 

and the localized SFNM distribution for Xj directly follows by 

where ir£ is interpreted as the conditional prior of component determined 
by the uncertainty introduced by la». 

Tissue quantification addresses the combined estimation of regional com- 
ponent parameters {itk,Pk,Vk) and the detection of the structural param- 
eter K in Eq. (1) given the pixel images x. A distance minimization 
approach is developed where the mixture density is fitted to' the histogram 
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of the data by finding the optimal parameters with respect to a distance 
measure. We use relative entropy (the Kullback-Leibler distance) [?] for 
tissue quantification in MR images. Relative entropy measures the infor- 
mation theoretic distance between the "true" distribution /x(ti) and the 
estimated SFNM distribution /(u|r), and is given by 

£(/x||/r) = £/xMlog-^ (4) 

Note that the use of the relative entropy cost also overcomes problems 
such as convergence at the wrong extreme faced by the squared error cost 
function as it weighs errors more heavily when probabilities are near zero 
and one, and diverges in the case of convergence at the wrong extreme 
[4]. We have shown that, when relative entropy is used as the distance 
measure, distance minimization is equivalent to maximum likelihood (ML) 
estimation of the SFNM parameters. 

Anatomical structure, in addition to the the results of tissue quantifi- 
cation that reveals different tissue properties, provides very valuable in- 
formation in medical applications. Tissue segmentation is a technique for 
partitioning the image into meaningful regions corresponding to the ob- 
jects. Tissue segmentation may be considered as a clustering process where 
the pixels are classified into the attributed tissue types according to their 
gray-level values and spatial correlation. A reasonable assumption is the 
spatially close pixels are likely to belong to the same tissue type. Accord- 
ingly, tissue segmentation addresses the realization of context images k, 
i = 1, • • •, N, given the observed pixel images x. Based on the localized 
SFNM formulation (3), a deterministic relaxation labeling can be used to 
update the context images after global tissue quantification by locally min- 
imizing the pixel classification error. With a motivation similar to the one 
in [2, 3], the general technique seeks for a consistent labeling solution where 
the criterion is to maximize global consistency measure by using a system 
of inequalities. The structure of relaxation labeling is motivated by two ba- 
sic considerations: 1) decomposition of a global computation scheme into 
a network performing simple local computations; 2) suitable use of local 
context regularities in resolving ambiguities. 

3. METHOD AND ALGORITHMS 

In this paper, we present the theory and algorithms for the two stages; 
(1) quantification which involves network order selection and adaptive com- 
putation of the parameters to achieve both classification, and (2) segmen- 
tation which uses the order and the parameters computed in the quantifi- 
cation stage to perform hard classification by incorporating local context 
constraints. 
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Since the prior knowledge on the true structure of a real image is gener- 
ally unknown, it is most often desirable to have a neural network structure 
that is adaptive, in the sense that the number of local components is not 
fixed beforehand. In the probabilistic neural network scheme we propose for 
MR image analysis, using a smaller or larger number of mixture components 
than the number of tissue types represented on a particular slice will result 
in incorrect identification and quantification of the tissues in that partic- 
ular slice. This situation is particularly critical in real clinical application 
where the structure of the individual slice for a particular patient may be 
arbitrarily complex. We proposed a new information theoretic criterion for- 
mulation, the MCBV criterion, to solve the model selection problem. Our 
approach has a simple optimal appeal in that it selects a minimum condi- 
tional bias and variance model, i.e., if two models are about equally likely, 
MCBV selects the one whose parameters can be estimated with the small- 
est variance. A practical MCBV formulation with code-length expression 
is further given by 

MCBVCKT) = -log(£(x|fML)) + £ 5 \og2neVar{fkML) (5) 

where £(•) denotes the joint likelihood function and TUML is the maximum 
likelihood estimate. 

Recently, on-line versions of the EM algorithm are proposed for large 
scale sequential learning in maximum likelihood estimation. Such a pro- 
cedure obviates the need to store all the incoming observations, changes 
the parameters immediately after each data point allowing for high data 
rates. The PSOM we present here is a fully unsupervised and incremental 
stochastic learning algorithm. The scheme provides winner-takes-in proba- 
bility (Bayesian "soft") splits of the data, hence allowing the data to con- 
tribute simultaneously to multiple tissues. By adopting a stochastic gra- 
dient descent scheme for minimizing -D(/x||/r), the corresponding on-line 
formulation is obtained by 

W(t+1) = $ + a(t)(xt+1 - /li'H+D*'   k = *> -'K- ^ 

°?+1)=°T+&(*)[(*»! - ^r - -f H+i)*' k=*> ••■'K-  w 

where the variance factors are incorporated into the learning rates while 
the posterior Bayesian probabilities are kept, and a(t) and b(t) are intro- 
duced as the learning rates, two sequences converging to zero, ensuring 
unbiased estimates after convergence. Self organization at both the neu- 
ron and modular levels refers to a specific human brain capability, which 
tends to convert the similarity of input features into the proximity of finite 

658 



participating neurons [5, 10]. Mapping this operation to the PSOM, we de- 
sign a network where both the structure and weights are updated according 
to an unsupervised learning algorithm. More precisely, the network orga- 
nizes itself to efficiently map the data to the feature space through adaptive 
mechanisms where the information theoretic criteria are shown to provide 
a reasonable approach for the solution of the problem. In particular, both 
structure and weights of the PSOM "compete" for the assignment order of 
each model and assignment probability of each observation. Overall con- 
vergence dynamics of the PSOM are similar to SOM in that a solution is 
obtained by "resonating" between input data and an internal representa- 
tion. Such a mechanism can be considered as a more realistic learning than 
the batch EM procedure. 

Given the SFNM parameters, i.e. the image components computed by 
ML principle, there are several approaches to perform pixel classification. 
When the true pixel labels I* are considered to be functionally independent 
and non-random constants, competitive learning approaches can be used for 
the segmentation of different tissue types. We can define the consistency 
of discrete relaxation labeling and formalize its relationship to global opti- 
mization as follows: We first define the component in the localized SFNM 
distribution (3) as a support function: 

^^vk^-^r1^ <9) 

Note that the support function Si(k) is a function of the component (tissue 
type) k. Then tissue segmentation is interpreted as the satisfaction of a 
system of inequalities: 

Si(h) > Si(k), (10) 
for all A; and for i = 1, • • •, N, where a consistent labeling is defined as the 
one having maximum support at each pixel simultaneously. We further 
define the average local consistency measure 

N 

^a^EE^-*)5^) (") 
t=l    k 

to link consistent labeling to global optimization. It is shown that when 
the spatial compatibility measure is symmetric and .4(1) attains a local 
maximum at 1, then 1 is a consistent labeling [2, 6, 8]. Hence, a consis- 
tent labeling can be accomplished by locally maximizing A(l). We propose 
a probabilistic constraint relaxation network (PCRN) to perform contex- 
tual tissue segmentation by imposing neighborhood context regularities to 
alleviate the ambiguity problem. PCRN uses stochastic discrete gradient 
descent procedure where each pixel is randomly visited and its label is 
updated, i.e., pixel i is classified into the fcth region if 

U = arg {min (log(a|) - 2 log^«) + (Xi - nufa?) j (12) 
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where 7rj^ is defined in (2). 
Rather than minimizing an energy function but looking for a possible 

local maximum of a global consistency measure, in PCRN the input layer 
has a neuron that corresponds to each pixel image and the output layer 
has a neuron that corresponds to the label of the original image. Compe- 
tition within hidden layer ensures that only one neuron becomes active at 
any pixel location. Gating between output and the hidden layer incorpo- 
rates the local labeling information to provide locally consistent labeling 
and hence to remove the ambiguities. Reciprocal feedback from output to 
gating unit allows each hidden neuron to control its activation. We can 
view consistency as a "locking-in" property, i.e., since the support func- 
tion defined for a given pixel depends on the current labels at neighboring 
pixels, this neighborhood influences the update of the given pixel through 
probabilistic compatibility constraints. With the constraint propagation, 
the relaxation process iteratively updates the label assignments to increase 
the consistency, find a more consistent labeling with the neighboring labels, 
ideally so that each pixel is designated a unique label [2]. 

4. EXPERIENTAL RESULTS AND DISCUSSIONS 

In this section, we present results using the probabilistic neural net- 
work based approach we introduced to quantify and segment tissue types 
from real MR brain images. We present a simulation study to test the 
performance of model identification (selection and quantification) with the 
proposed criterion (MCBV). We generate a test data with up of four over- 
lapping normal components. Each component represents one local cluster. 
The value for each component is set to a constant value and normal dis- 
tributed noise is then added to the data. The phantom, the MCBV curve 
as a function of the number of local clusters K, and the final distribution 
learning, are plotted in Figure 1. According to the information theoretic 
criteria, the minima of the curve indicate the correct number of the image 
components. The result shows that the number of local clusters suggested 
by the new criterion is correct and the histogram-model fitting is satisfac- 
tory. 

For the real MR brain image, information theoretic criterion is first ap- 
plied to detect the number of tissue types thus allowing the corresponding 
network to adapt its structure for the best representation of the data. The 
PSOM algorithm is used to quantify the parameters of the tissue types lead- 
ing to a ML estimation. Segmentation of identified tissue components is 
then implemented by PCRN through contextual Bayesian decision. Figure 
2 (a) shows the original data consisting of pure brain tissues, Tl-weighted 
image parallel to the AC-PC line, acquired with a GE Sigma 1.5 Tesla sys- 
tem. The imaging parameters are TR 35, TE 5, flip angle 45°, 1.5 mm 
effective slice thickness. The corresponding histogram is given in Figure 2 
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Figure 1: Experimental results of model selection and final quantification 
on the simulated image. 

(b). that has a considerably complex characteristics since the tissue types 
are all highly overlapping. Evaluation of different image analysis techniques 
is a particularly difficult task and dependability of evaluations by simple 
mathematical measures is largely in question. The quality of the quanti- 
fied and segmented image usually depends heavily on the subjective and 
qualitative judgements. In this study, besides the evaluation performed by 
radiologists, we use the global relative entropy (GRE) value to reflect the 
quality of tissue quantification and for assessment of tissue segmentation, 
we use post-segmentation sample averages as an indirect but objective cri- 
terion. As discussed in the literature, the brain is generally composed of 
three principal tissue types, i.e., WM, GM, CSF, and their pair-wise combi- 
nations, called partial volume effect. Since the MRI scans clearly show the 
distinctive intensities at the local barin areas, the functional tissue types 
need to be considered. We let Kmin — 2 and Kmax = 9 and calculate 
MCBV(K) (5) (K = Kmin, ...,Kmax). The result suggested that the brain 
image contains 8 tissue types. When performing the computation of the 
information theoretic criteria, we used PSOM to iteratively quantify differ- 
ent tissue types for each fixed K. The results of final tissue quantification 
with K0 = 8 is shown in Figure 2 (b) where a GRE value of 0.02 - 0.04 nats 
is achieved. The PCRN tissue segmentation is performed where PCRN up- 
dates are terminated after 5-10 iterations since further iterations produced 
almost identical results. The segmentation result is shown in Figure 2 (c). 
Although the segmentation contains some small isolated spots (less than 
4-pixel size), the PCRN approach is quite encouraging. These quantified 
tissue types agree with that of a physician's qualitative analysis results. 

We also present a comparison of the performance of PSOM with that 
of the EM and the competitive learning (CL) algorithms in MR brain tis- 
sue quantification, to evaluate the computational accuracy and efficiency of 
the algorithm in the standard finite normal mixture (SFNM) distribution 
learning, based on the objective criterion and learning curves. We applied 
all the methods to the same example and used the GRE value between 
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Figure 2: Results of MR brain tissue quantification and segmentation. 

the image histogram and the estimated SFNM distribution as the goodness 
criterion to evaluate the quantification error. Figure 3 (a) shows learning 
curves of the PSOM and competitive learning (CL), averaged over 5 inde- 
pendent runs. As observed in the figure, PSOM outperforms CL learning 
by faster convergence and lower quantification error, and reaches a final 
GRE value of about 0.04 nats. Figure 3 (b) presents the comparison of 
PSOM with that of the EM algorithm for 25 epochs. As seen in the learn- 
ing curves, PSOM algorithm again shows superior estimation performance. 
The final quantification error is about 0.02 nats while preserving the faster 
convergence rate. 
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Figure 3: Comparison of the learning curves of PSOM and CL (left) and 
EM (right). 

5. CONCLUSIONS 

Our main contribution is the complete proposal of a three-step learning 
strategy for determination of both modular structure and components of 
the network. In this approach, the network structure (in terms of suitability 
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of the statistical model) is justified in the first step. It is followed by soft 
segmentation of data such that each data point supports all local compo- 
nents simultaneously. The associated probabilistic labels are then realized 
in the third step by competitive learning of this induced hard classification 
task. The main limitations of current approach are that, 1) it requires the 
testing of all possible network structure candidates during the model fit- 
ting procedure, hence is not efficient especially for processing MR sequence 
images where an on-line learning is preferred, and 2) applications to real 
MR data indicates the possibility of being trapped in a local minimum in 
ML estimation by the PSOM since there is no guarantee of attaining the 
global minimum. To summarize, the results of the experiments we have per- 
formed, indicate the plausibility of this approach for brain tissue analysis 
from MRI scans, and show that it can be applied to clinical problems such 
as those encountered in tissue segmentation and quantitative diagnosis. 
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