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ABSTRACT 

The acoustic activity of the blue whale is widely documented yet poorly 

understood. Hypotheses for its vocalizations range from communication, bathymetric 

echolocation and echolocation of Zooplankton masses. Although extensive 

documentation of frequency structure and duration exists, a long-term monitoring of 

where and when the vocalizations are being made must be accomplished to test the 

validity of these theories. 

The Naval Postgraduate School (NPS) Ocean Acoustic Observatory (OAO), 

which operates a former Sound Surveillance System (SOSUS) at Pt Sur, presents 

itself as a potentially valuable tool in the detection and localization of Pacific blue 

whales. By estimating the transmission loss as a function of bearing, range and 

frequency and synthesizing the ambiguity surface of various model-data linear 

correlation localization algorithms, an assessment of the array's expected performance 

for this purpose was obtained. Important findings of this modeling study include 

estimated maximum detection ranges are longer than 500 kilometers both seaward and 

along the continental slope due to array beamforming gains and matched field 

localization algorithms are accurate and robust in the presence of white noise. The 

application of the results of this study towards the development of a "real-time", 

large-area blue whale localization and tracking algorithm is promising. 
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I. INTRODUCTION 

A. BACKGROUND 

The acoustic activity of the blue whale, Balaenoptera musculus, is widely 

documented yet poorly understood.   Although evidence of assumed biological origin low 

frequency calls has existed since the 1960's (Walker, 1963; Kibblewhite et al., 1967; 

Northrup et al., 1968), it is not clearly known what causes them to vocalize. Hypotheses 

for balaenopterid vocalizations range from communication (Payne and Webb, 1971; 

Watkins, 1981, Watkins et al., 1987), bathymetric echolocation (Clark, 1994; Clark and 

Ellison, 1993) and echolocation of Zooplankton masses (Payne and Webb, 1971; 

Watkins, 1981). Although extensive documentation of frequency structure and duration 

exists, a long-term monitoring of where and when the vocalizations are being made must 

be accomplished to test the validity of these theories. 

The Naval Postgraduate School (NPS) Ocean Acoustic Observatory (OAO), 

which operates a former Sound Surveillance System (SOSUS) at Pt Sur, presents itself as 

a potentially valuable tool in the detection and localization of Pacific blue whales. 

Experiments (Clark and Fistrup, 1995; McDonald et al., 1995) have verified that low 

frequency calls of blue whales can easily be detected in this way. The 1995 experiment, 

which occurred off of the southern California coast using a combination of SOSUS and 

additional passive acoustic devices, determined that acoustic detections of blue whales 

exceeded visual sightings by a ratio of 6:1 (Clark and Fistrup, 1995). 

B. THESIS OBJECTIVES 

Several direct recordings of the blue whale vocalization have resulted in an 



understanding of their characteristic calls. In Table 1, a summary of these published 

historical recordings are presented in chronological order. These recordings demonstrate 

the consistency of the animal's calls and lead to the classification of the "A" and "B" 

type signals. 

The primary objective of this thesis focuses on the feasibility of detecting and 

localizing each of the primary signals produced by the blue whale; the "A" call, an 

amplitude modulated signal with a carrier at 90 Hz, the "B" call, a frequency modulated 

signal centered at 17 Hz and a 51 Hz tonal embedded in the "B" call. Each of the 90, 17 

and 51 Hz signals and their respective propagation in a model Central Pacific ocean are 

synthesized as if the whale were vocalizing at a distance from the Pt. Sur hydrophone 

array. As these signals propagate through the medium, they are modified and arrive at the 

receiver with a multi-path structure. This complex multi-path structure, unique to the 

range and depth of the source, forms the basis for achieving localization through 

matching model predictions to data. 

Two areas of the array performance are assessed. The first involves an 

investigation into the detection ranges along both the "open" water and "along 

continental slope" radials from the array's location. The second area deals with the 

accuracy and robustness of linear, matched field processing schemes in localizing blue 

whale vocalizations. 

C. OUTLINE 

The remainder of this thesis consists of three chapters. Chapter II contains a 

description of the approach. It describes the propagation model used to calculate 



Beamish and Mitchell (1971) AÜantic 

25 kHz theorized as Zooplankton echolocation 
59.2 +/-1 dB source level 

vocalized while feeding, 5000 clicks heard 

Cummings and Thompson (1971b) Atlantic 

20, 25, 31.5 Hz strongest components in the 1/3 octave band 
50, 63 Hz secondary components in the 1/3 octave band 
390 Hz one second pulse 
188 dB source level 

3 part sequence lasting 36.5 sec 
no behavior correlation 
6-169 m depth 

Cummings and Thompson (1994) 

17.5 Hz six spectral lines about 1.5 Hz apart lowest at 17.5 (1st part) 
19,18,17 Hz call begins at 19 .sweeps down in freq to 18 in first 3-4 sees 

then held until last 5 sec, then down to 17 Hz (2nd part) 

19 sec duration of two part vocalization 

Clark and Fristrup (1995) Pacific and Atlantic 

50, 90,17.5 Hz      IUSS recorded Eastern Pacific Blue 
17.5 Hz IUSS recorded Western Atlantic Blue 

Thompson, Findley, Vidaland and Cummings (1996) Pacific 

17.8 Hz harmonically rich FM tone fundamental designated "B type" call 
53.4 Hz strongest component (third harmonic of "B" call) drops to 51 Hz 

in the last 2 sec with median duration of 14.8 sec 
90 Hz AM tone demonstrating this band of energy as a fifth harmonic 

designated "A type" call of median duration 12.2 sec (fundamental 
frequency of 18 Hz) 

98-25 Hz short duration (1 sec) downward sweep with median frequency 
modulation at 52.5 Hz 

Table 1. Summary of pertinent blue whale vocalizations. 



transmission loss and synthesize multi-path arrival structure. It also discusses the 

databases utilized in creating a Central Pacific Ocean model. The assessment of the 

detection ranges and localization performance uses these models. Chapter II also 

describes three linear processing schemes whose performance in localizing the blue whale 

calls is the thrust of this investigation. Chapter m provides a discussion of the modeling 

results pertaining to detection range and localization performance. Chapter IV presents 

the conclusions and recommendations. 



II. METHODOLOGY 

A. DETECTION RANGE ESTIMATION 

1. Environmental Model 

The DBDB-5 bathymetric data provided by the Naval Oceanographic Office 

(NAVOCEANO) was utilized to provide an extensive domain for possible long range 

acoustic propagation of low frequency sounds. The bathymetry enclosed in a circle with 

a 700 km radius, centered at the array, was utilized. The database has a resolution of 5/60 

of a degree in both latitude and longitude. 

The array itself is situated on the down-slope of a submerged topographical 

feature known as the Sur Ridge.   The depth of the array is approximately 1340 meters. A 

sector of 210 to 310 degrees true appears to be a long range, obstruction free view of the 

Pacific Basin. The Pioneer and Guide Seamounts exist to the north while the Davidson 

Seamount provides a small obstruction to the south. A contour plot of the bathymetry in 

the area of interest is illustrated in Figure 1. The bathymetry data for both an "open" 

water and "along continental slope" transect are displayed in Figure 2. 

The sound speed profile (SSP) in the ocean model was derived from a 14-station 

CTD survey conducted by Collins et al. (1997) on board the Research Vessel Pt Sur in 

July of 1996.  The stations were taken along a transect between Sur Ridge and the 

Pioneer Seamount. To establish a nominal profile for acoustic modeling, the SSPs were 

averaged together and passed through a canned cubic spline smoothing program in 

MATLAB to remove any large gradients due to fine structure which could result in 

numerical instability when tracing acoustic rays. The resultant profile is shown in 



Figure 2. 

A MATLAB program called ray3d (Chiu et al., 1994) was used to perform 

eigenray searches and compute signal amplitudes. Additionally, the program calculates 

travel times and phase shifts along the ray paths and generates multi-path arrival 

structure. The program requires root-mean-square (RMS) wave height, sediment density 

and sediment sound speed as inputs. 

Pertinent documentation of the sediment was found in "Initial Reports of the 

Deep Sea Drilling Project, Vol. 18, site number 173". This publication documents the 

findings of the sediment characteristics found in 3000 m of water at approximately 100 

km offshore of Cape Mendocino. The upper 140 m of sediment yields an approximate 

sound speed of 1600 m/s and a density of 1700 grams per cubic centimeter. From 140 m 

to 320 m, the sediment exhibits just a slightly increased density and sound speed. At 320 

m below the sea floor, a thick basaltic layer is encountered. 

Sea surface roughness data was obtained from the climatological database of the 

Naval Pacific Meteorology and Oceanography Center (NAVPACMETOCCEN). A value 

of 1.84 m (6.025 ft) was calculated as a mean wave height for the entire year with a 

standard deviation of 0.129 m (0.424 ft). In order to input this information into ray3d, 

the annual mean wave height was converted to RMS wave height. 

2. Acoustic Propagation Model 

As a whale vocalizes at a distance from the array, the sound arrives at the receiver 

via a multitude of possible ray paths. The Hamiltonian Acoustic Ray-Tracing Program 

for the Ocean (HARPO) was used to calculate these ray paths. By numerical integration 



of the Hamilton's Equations, this program traces the paths of acoustic rays as they travel 

through an analytic model ocean. The original version of this program (Jones et al., 

1986) was upgraded in 1994 (Chiu et al., 1994) to allow for the input of gridded 

bathymetry and sound speed data. The upgraded program was used in this study. 

Invoking acoustic reciprocity, a vertical "fan" of acoustic rays were launched from 

the Pt Sur array. Rays with initial elevation angles from -3 to 30 degrees were traced. 

The limits of the launch angles were selected based on the bottom slope at Sur Ridge and 

the critical angle associated with water-sediment interface. Rays unimpeded by the 

bottom slope near Sur Ridge, with angles less than critical at the sea floor, or that turn 

before reaching the bottom were allowed to cycle through the model ocean. As stated 

earlier, eigenray extraction and arrival structure calculations are accomplished by ray3d. 

Once identified, the eigenray's signal amplitude b», phase shift $» and travel time U, are 

computed. A coherent sum of the multi-path contributions then gives the predicted 

receive signal. Given the complex envelope of the source signal s(t), the complex 

envelope of the predicted receive signals is 

N 

1 KO=E*-0^",WoHK1 CD- 

where N is the number of eigenrays and fo is the carrier frequency of the source signal. 

For a unit amplitude tone transmitted at a frequency of fo, s(t) is constant in time. 

Therefore, the transmission loss, TL, is 



TL = -101og(rr*) (2), 

with 

Ä " (3) 

and where the * symbol used in Equation (2) denotes the complex conjugate. 

The transmission losses calculated at 17,51 and 90 Hz, respectively, along both 

"open" water and "along continental slope" transects are shown in Figure 3.   The "open" 

water radial is oriented on a 230 degree True azimuth from the array, while the "along 

continental slope" radial was directed towards the Farallon Islands to the north. For each 

transect, the only appreciable difference between the transmission loss curves at the 

frequencies of interest is attributed to the frequency dependent effects of surface 

scattering and bottom interaction. 

3. Figure of Merit Estimate 

An estimate for omnidirectional noise was obtained from the Tactical 

Environmental Simulation System (TESS) available at the Naval Postgraduate School. 

Given the input parameters of time of year and location, TESS provides an output of 

ambient noise level. A late summer profile revealed an omnidirectional level of 75 dB re 

1 uPa2/Hz. The summer profile was chosen due to the arrival of the blue whales to the 

Monterey area in late summer. 

The beamforming capability of the array allows for a reduction of the 



omnidirectional noise level. An estimate of the array gain AG is 

AG  = -10 log (horizontal beamwidth / 360 degrees) 

= -10 log (10/360) =   15.6 dB (4), 

where the 10 degree horizontal beamwidth is an average for all the bearings. Application 

of this array gain number provides a significant 15.6 dB reduction in noise. 

In order to estimate the maximum detection ranges along the different radials, it is 

necessary to establish a figure of merit (FOM) estimate. Therefore, FOM is 

FOM = SL - (AN + 10 log A/ - AG) 

=   175 -  (75 + 10 - 15.6)  =    105.6 dB (5), 

where SL is the source level, A/ is the bandwidth of the signal and AN is the 

omnidirectional ambient noise level.  The SL estimate of 175 dB re 1 uPa is a "low end" 

estimate obtained by the authors referenced in Table 1.   Of the three signals utilized for 

this study, the 90 Hz signal has the largest bandwidth.  Estimated at 10 Hz, this 

bandwidth was chosen to provide the most conservative FOM estimate. By applying the 

result of (5) to the transmission loss curves, a maximum detection range estimate can be 

obtained. 



B. LOCALIZATION PERFORMANCE SIMULATION 

1. Signal Models 

An underwater recording made by the Cornell University Lab of Ornithology 

(Charif, pers comm., 1997) was utilized to simulate the source signals. The data was 

recorded on the Research Vessel Cory Chouest in September 1995 and sampled at 400 

Hz. This vocalizing whale was sighted off the coast of southern California at 

approximately 1 AM local time. A spectrograph of the recording is illustrated in Figure 

4. The vocalizations presented in the spectrograph match the frequency structure and 

duration reported in the existing literature. This further suggests that low frequency blue 

whale calls are strikingly invariant throughout the Atlantic and Pacific Oceans and from 

one blue whale to the other. 

Two recognizable "calls" from the recording can be identified. The first call, 

designated the A call, manifests itself as a pulsing amplitude modulated tone of 

approximately 17.5 second duration centered around 90 Hz. The second, the B call, is 

present as a frequency modulated down sweep with a 17 to 18.5 Hz fundamental lasting 

approximately 15 seconds. The third harmonic of this down sweep, centered around 51 

Hz, dominates. 

In order to synthesize the receive signals using ray3d, it is necessary to provide 

the complex envelopes of the animal's vocalizations. For this reason, signals associated 

with the 17,51 and 90 Hz blue whale calls were extracted from the recording and 

bandpass filtered. A complex demodulation of each of these signals was conducted and 

resulted in baseband complex envelopes for each. The magnitude of these envelopes are 

10 



shown in Figure 5. These near-field signals were taken to be the source signals. 

A visual illustration of the synthesis of the received signal at two different source 

locations is given in Figure 6. Both the relative magnitudes of the arrival structure of the 

17 Hz signal and the associated eigenray magnitude-time structures are shown. The 

distortion of the source signal in the arrival structure is due to the multiple eigenrays that 

scale and delay the source signal differently, causing interferences when combined. The 

signal distortion is generally different for different source locations and this is the basis of 

any model-based localization algorithm. 

2. Localization Algorithm and Test Procedure 

Since the bearing can be determined by conventional plane wave beamforming 

using the horizontal array, the major concern is whether or not accurate and robust range 

and depth estimates of a vocalizing blue whale can be obtained. To address this question, 

a "virtual" blue whale was placed in the ocean model at a designated range and depth 

from the array on an open water bearing of 230 degrees True. The transmissions of the 

90-Hz A call, the 17-Hz B call and the 51-Hz B-call harmonic were simulated using the 

source signal and propagation models previously described. The simulated range and 

depth of the blue whale and the simulated arrival structure at the array were then used to 

represent the "true location" and "data," respectively, in modeling the localization 

performance. 

The resolution, accuracy and robustness to noise of three different time-domain 

Bartlett-type localization algorithms (Clay, 1987; Miller and Chiu, 1992; Miller et al., 

1996) applying to each of the signals, were studied and contrasted. Each algorithm is 

11 



based on a linear correlation between a certain property of the observed signal (i.e., data) 

and the predicted (i.e., modeled) signal property for a number of possible source locations 

in a range-depth grid. The collection of the maxima of the normalized correlation 

functions associated with the different tried locations produces the so-called ambiguity 

surface (Tolstoy, 1993). 

The global maximum of the ambiguity surface is the "best" estimate of the blue 

whale's range and depth, its horizontal and vertical dimensions define the footprint, and 

distant peaks of significant heights are potential false targets. Therefore, studying the 

behavior of this ambiguity surface, in particular, how it changes with a different 

algorithm, a different signal type and a different signal-to-noise ratio (SNR) in the data, is 

central to the assessment of localization performance. The difference between the 

estimate and the controlled true location is a measure of accuracy. The size of the 

footprint is a measure of resolution. The heights and number of the distant peaks measure 

ambiguity. While finally, the changes in all of the above measures with controlled 

decreases of SNR are directly related to robustness. 

The first localization algorithm being investigated is a fully-coherent scheme 

involving cross-correlations between the complex envelopes of the observed and 

predicted signals (hereafter referred to as "coherent matching"). The remaining two 

algorithms are incoherent schemes. For the cross-correlations, the second algorithm uses 

the magnitude of the complex envelope (hereafter referred as "magnitude matching"), 

whereas the last algorithm employs the square of the signal envelope (hereafter referred 

as "power matching"). Mathematically, the correlation functions associated with coherent, 

12 



magnitude and power matching are, respectively, 

I rD{t)r^t+x)dx 
C        (T)=- coherent^  ' 

v jrD(t)dtt 
\ 

Irjfodt 
(6), 

lVD{t)\\r*M{t+x)\dx 
C (iY- magnitude^  ' 

\ 
\rD(i)dtt 

\ 
jrjfodt 

(7) and 

Jkß(0|2k^m)|2^ 
C      (x)=- 

N 
\rD{f)dt, J r«(0* 

(8), 

where TD is the complex envelope of the observed (data) arrival structure and YM is the 

complex envelope of the predicted (model) arrival structure. 

In the investigation of footprint sizes, a small search grid of 1 km in range (50-51 

km from the array) by 125 m in depth (25 - 150 m) but with densely spaced grid points 

was used. The vocalizing whale was positioned at a depth of 115 meters and a range of 

50.5 km from the array. The simulation of footprints not only helps to quantify and 

contrast the resolutions of the different algorithms for different types of calls, but also 

provides vital information for the design of an optimal search grid for a real application. 

There is, of course, a trade-off between resolution and computational efficiency. In order 

13 



to expedite an investigation of potential distant false targets which might introduce 

difficulties in obtaining an unambiguous location estimate, coarse spacings of 0.2 km in 

range and 25 m in depth were used to occupy a large search grid covering ranges from 25 

to 75 km and depths from 25 to 150 m. It is fully recognized that this coarse search grid 

is not adequate for a real application of locating blue whales. However, it is suitable for a 

quick analysis pertaining to distant false targets. 

14 



III.   ANALYSIS AND RESULTS 

A. DETECTION RANGE 

Application of the FOM value calculated in (6) to all the "open" water coherent 

transmission loss curves yields a range estimate of at least 500 km. The "along 

continental slope" detection ranges appear bounded only by the coastline.  As would be 

expected, the 17 Hz signal appears to experience the least transmission loss along the 

"open" water transect, yet all three of the signals appear to trend equally with distance 

from the array. A critical FOM value of approximately 85 dB, representing a threshold 

for detection of the blue whale calls in ranges greater than 200 km, can be visualized in 

Figure 4. 

The source level contributes to the variability of this critical FOM value. A 

"conservative value" of 175 dB re 1 uPa was utilized in estimating the ranges. Similar 

calls recorded by the Research Vessel Cory Chouest in 1994 (one year prior to the 

recording used in this thesis) established a source level of 184 dB re 1 uPa (Charif, pers 

comm., 1997). This source level estimate is just four decibels short of a 1971 estimate of 

188 dB re 1 uPa (Cummings et al., 1971). Any increase in the source level from 175 dB 

re 1 uPa would further extend these already long detection ranges. 

B. LOCALIZATION PERFORMANCE 

1. Footprint 

As stated earlier, the size of the footprint for each of the three signals provides a 

measurement of resolution. As the footprint increases in size, both ability to resolve 

multiple whales vocalizing at the same time and the required minimum grid spacing 

15 



increase. The approximate dimensions, in meters, of the footprints are listed in Table 2. 

Frequency (Hz) Horizontal   CrrA Vertical fmN> 

17 300 60 

51 150 20 

90 50 5 

Table 2. Horizontal and vertical dimensions of the footprints for each signal 

The 17 Hz portion of the B call exhibits the largest acoustic footprint of the three 

signals studied. The footprint size, however, decreases rapidly as frequency increases. 

The optimal spacing for the localization grid for real applications should be half the size 

of the smallest footprint (i.e., 25 m in range and 2.5 m in depth). This dimension 

approaches the actual length of the animal and could provide the resolution needed to 

distinguish between whales vocalizing simultaneously at a distance of one grid spacing 

apart. 

2. False Targets 

The presence of high distant peaks in a localization grid is indicative of "false 

targets" and is directly related to the ability of an algorithm to localize unambiguously. 

The goal, of course, is to select an algorithm that exhibits the highest contrast between the 

distant peaks and the peak at the true location in the ambiguity surface. The ambiguity 

surfaces calculated over a large area for each of the three matching algorithms are shown 

in Figures 10-12. Although the magnitude matching scheme for the 17 Hz signal lacks 

the side lobes that are present in the coherent and power matching (see Figure 10) at 43 

16 



and 60 km of range, the overall results, including the considerations of both the 51 and 

90 Hz ambiguity surfaces (see Figures 11 and 12), illustrate that the best choice for an 

unambiguous estimate would be the coherent matching algorithm. 

3. Effects of White Noise 

When gaussian white noise is introduced into the signal to systematically change 

the signal to noise ratio (SNR), the degradation of localization performance due to 

random fluctuations can be evaluated. Two quotient measures were used to quantify the 

degradation as SNR increases. The first quotient was the actual peak divided by the 

largest side lobe peak. The second quotient was the actual peak divided by the mean of 

the top ten side lobe peaks. It is important to note that side lobe peaks existed outside of 

the dimensions of the respective signal footprint.   Figures 13 and 14 illustrate the 

computed degradation curves for the 17 and 51 Hz signals as a function of SNR.   The 

curves for the 90 Hz signal curves are nearly identical to the 51 Hz curves and thus they 

are not shown. Using these curves, localization thresholds can be established. 

A localization threshold can be defined as the SNR beyond which the two 

quotients remain larger than unity. Logically, if the maxima of the normalized model- 

data correlation functions associated with the false targets exceeded the maximum at the 

actual position of the vocalizing whale, the ratio or quotient would be less than one. In 

view of Figure 13, the localization of the 17 Hz signal does appear to be sensitive to 

white noise and requires at least 2 dB SNR, depending on the algorithm used, to ensure 

localization. As SNR increases past this critical value, all three algorithms appear to be 

quite robust for the 17 Hz signal. 

17 



Figure 14 shows the degradation curves for the 51 Hz signal. For this signal, all 

three algorithms appear quite SNR independent and strongly robust. Almost all quotient 

values remain greater to one from 0 to 20 dB SNR.   Considering the computed 

degradation curves shown in Figures 13 and 14, the coherent matching scheme appears to 

be the most robust in noise-present environment. 

18 



IV. CONCLUSIONS 

This thesis has attempted to model the performance of the Pt Sur hydrophone 

array in localizing blue whales. It is important to note that this study provides only a 

"first order" estimate of the array's ability to provide an accurate estimate of a whale's 

position. Based upon the results, however, the potential for actual localization using the 

array appears promising.   Detection ranges along "open" water transects were estimated 

to be greater than 500 km and bounded only by the coastline for "along continental slope" 

transects. Among the three model-data correlation algorithms assessed, the coherent 

matching was found to provide the highest resolution and the most unambiguous position 

estimate.   Additionally, the coherent matching scheme was found to provide the highest 

degree of robustness in the presence of white noise for each of the three signals. 

The range-depth localization grid used in this performance study were oriented 

along a 230 degree True azimuth from the array in order to investigate possible long 

range Pacific basin localization. The late summer arrival of the blue whales into the 

Monterey area, however, often brings the animals close to shore. The whales frequent the 

200 - 500 fathom isobaths as they feed upon the krill patches that bloom in the nutrient 

rich upwelled water. The array's orientation may or may not prohibit localization as these 

animals linger over the continental slope south of the Farallon Islands or venture into the 

Monterey submarine Canyon. The array's performance in localizing in these near shore 

regions has yet to be investigated. 

The obvious next step would be to test the localization algorithms with actual blue 

whale calls detected by the array. A large area localization grid utilizing a horizontal 
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spacing of 25 m and 2.5 m in depth, as determined by the footprint study, is required.   A 

number of factors can pose additional challenges to this task. They include; signal 

mismatches, multiple animal vocalizations and near shore transmission of the signal. The 

latter of these topics is beyond the scope of this study. 

Signal mismatching can easily occur due to the variability, though small, of the 

animal's vocalization. Although the "calls" appear standard in the Eastern Pacific region, 

documentation of acoustic variability is not as well documented as pigmentation 

variability, which serves as a visual identification of individuals (Calambokodis and 

Barlow, 1995).   Localizing multiple animals that are vocalizing within a group presents 

yet another challenge. Luckily, of the balaenopterids that do vocalize, the blue whale is 

more apt to be found alone or in groups of 1- 4. (Calambokodis and Barlow, 1995)   As 

stated earlier, dedicated cataloging of individual vocalizations may greatly assist in this 

challenge. Further study into each of these topics is needed. 
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Figure 1. Bathymetry for the Central Eastern Pacific. The"x" 
indicates the location of the hydrophone array. The Davidson Sea 
mount is located at position 1, while the Pioneer and Guide Sea 
mounts are located at position 2. Contour interval is approximately 
350 meters. 
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oriented 230 degrees True. Both transects originate from the 
array's position. The bottom panel illustrates a nominal sound 
speed profile. 
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Figure 3. Transmission loss curves for both the "open" water (230 
degrees True from the array) and the "along continental slope" 
(towards the Farallon Islands) transects. 
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Figure 4. Lofar spectrogram of blue whale vocalizations. The top 
spectrogram is an A-B-B-B-A-B sequence. The middle spectrogram 
shows the pulsing structure of the A call which lasts approximately 
17.5 seconds. The bottom spectrogram demonstrates the downsweep 
of the B call, harmonically rich in this example, which lasts 
approximately 15 seconds. The vertical axis is frequency while the 
horizontal axis is time index, in seconds, from the beginning of the 
recording (modified from Charif, 1997). 
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the three source signals. 

25 



x 10" 

? 
o 

r -■ -- - r ■ 

32 34 36 38 40 42 44 46 48 50 
„J 

52 

48 50 52 54 56 58 
time in seconds from vocalization 

60 62 64 
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locations. The top two panels are for a source location of 50 km in range 
and 120 m in depth. The bottom two panels are for a source location of 
70 km in range and 120 m in depth. AH ranges and depths are from the 
hydrophone array. 
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2D Magnitude Matching Footprint for 17 Hz signal 
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Figure 7. Surface elevation plot of the ambiguity surface produced 
by the magnitude matching scheme for the 17 Hz signal. 
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Figure 8. Surface elevation plot of the ambiguity surface produced 
by the magnitude matching scheme for the 51 Hz signal. 
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2D Magnitude Matching Footprint for 90 Hz signal 
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Figure 9. Surface elevation plot of the ambiguity surface produced by 
the magnitude matching scheme for the 17 Hz signal. 
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Figure 13. Localization degradation as a function of SNR for the 17 
Hz signal. Two quotients are used to quantify the effect of added 
noise to each algorithm. 
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