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Introduction 

Breast cancer is one of the leading causes of death among women. However, there is clear 
evidence that early diagnosis and subsequent treatment can significantly improve the chance 
of survival for patients with breast cancer.1-4 

Mammography has become one of the major diagnostic procedures with a proven capability 
for detecting early-stage, clinically occult breast cancers.5"8 However, breast cancers in their 
early stage are small and frequently their radiographic appearance differs only subtly from 
that of normal tissue or benign abnormalities. Because of this subtlety, the potential for 
misclassification by radiologists is substantial. Only 10-30% of cases that have 
mammographically suspicious findings and are subjected to biopsy prove to be malignant.9 

On the other hand, approximately 10-30% of patients with breast cancer are misdiagnosed by 
mammography (have the cancer missed or not detected on their mammograms).10-14 

Besides the subtle nature of radiographic lesions associated with breast cancer, many errors in 
radiological diagnoses can be attributed to human factors such as subjective or varying 
decision criteria, distraction by other image features, and simple oversight.15-17 Studies 
suggest that these errors may occur even with experienced radiologists.18-19 These errors 
may be reduced by the use of automated detection schemes that can locate and classify 
possible lesions, thereby alerting the radiologist to examine these areas with particular 
caution. Moreover, the automated detection schemes can serve as a "second radiologist", 
similar to the double reading by two radiologists that is commonly practiced in diagnostic 
radiology to increase diagnostic efficacy. 

Microcalcifications are commonly considered to be important signs of breast cancer. It has 
been reported that 30-50% of breast cancers detected radiographically demonstrate 
microcalcifications on mammograms.20-25 Up to 90% of cases of ductal carcinoma in situ 
present with microcalcifications.26 The correlation between the presence of 
microcalcifications and the presence of breast cancer suggests that accurate detection of 
microcalcifications will improve the efficacy of mammography as a diagnostic procedure. 

Microcalcifications occur in malignant and benign conditions. Some microcalcifications are 
characteristically benign or are associated with a benign process. For example, calcified 
fibroadenomas have a typical "popcorn" configuration appearing coarse and solitary. Milk of 
calcium demonstrates sedimentation.27 Vascular calcifications have a tram track appearance, 
typical of vascular calcifications seen in other areas of the body. Dermal calcifications tend 
to be smooth and round with lucent centers. Secretory calcifications are thick, smooth, cigar- 
shaped, and usually non-branching. Features supporting benignity include uniform size and 
density of the calcium flecks, as is seen in sclerosing adenosis.28 Furthermore, benign 
microcalcifications tend to be uniformly dense or scattered, without a segmental or linear 
distribution.29 

Some microcalcifications associated with malignancy have a typically granular or linear 
appearance. They usually occur in clusters consisting of greater than 15 particles.30 The 
particle size is small (less than 1 mm) and the shape is irregular.31 Some clusters of 
microcalcifications have neither the typically benign nor typically malignant configurations 

DAMD 17-94-J-4377 — 5 — Final Report 



Diagnosis of Breast Cancer   Chris Y. Wu, Ph.D. 

described above. These "indeterminate" microcalcifications present a significant diagnostic 
problem and require careful analysis. 

The number of microcalcifications per cm2 has been shown to be the most important 
predictor of malignancy, with clusters consisting of less than 10 microcalcifications per cm2 

having a high chance of benignity. Clusters consisting of microcalcifications numbering 
greater than 15 per cm2 have a higher chance of malignancy.32 

The task of detection and classification of microcalcifications for the diagnosis of breast 
cancer is a difficult one. The inability to correctly predict cancer is not only due to the 
overlap in appearance between microcalcifications associated with benign and malignant 
conditions, dense breasts, improper technical factors or simple oversight by radiologists may 
contribute to the failure to detect microcalcifications. Differing levels of confidence and 
training among interpreting radiologists may lead to inconsistent recommendations for 
management. 

Radiologists classify breast microcalcifications into one of three groups: benign, likely 
malignant, and ^determinate. Most patients with indeterminate types of calcifications 
undergo a breast biopsy to exclude cancer. Any method that would correctly classify benign 
types of calcifications previously considered indeterminate would decrease the frequency of 
biopsy and therefore the cost of detection of breast cancer. 

Several investigators have been developing computer programs for the automated detection 
of microcalcifications on mammograms.33-36 Chan et al. showed that the computer program 
can detect subtle microcalcifications that may be missed by radiologists, indicating that it is a 
promising approach to the automated detection of microcalcifications.37 More recently, Wu 
et al. applied an artificial neural network (ANN) to detect microcalcifications.38 The ANN, 
trained by using the power spectrum of regions of interests (ROI) containing 
microcalcifications, was able to eliminate 50% of false-positive detections of a rule-based 
scheme37'39 while preserving more than 95% of the true-positive detections. The neural 
network achieved an Az value of 0.85 for the detection of clustered microcalcifications. 
Several other computer schemes for detection of microcalcifications were also reported by 
Astley et al.,40 based on likelihood estimators, by Grimaud et al.,41 using mathematical 
morphology tools, and by Karssemeijer,42 using a stochastic method based on Bayesian 
decision theory. 

As stated earlier, microcalcifications can be associated with either benign or malignant 
processes. It is important to distinguish different types of microcalcifications after they have 
been identified by a detection scheme. Accurate classification of microcalcifications into 
benign and malignant groups would help improve the sensitivity of the diagnosis as well as 
reduce the number of unnecessary biopsies. 

As the first step in the process of developing an automated computer scheme for 
classification of microcalcifications, a neural network system was developed to classify 
microcalcifications in the radiographs of biopsy specimens. Classification of 
microcalcifications in radiographs of biopsy specimens is an "idealized" situation. 
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In biopsy specimens, underlying tissue around microcalcifications is less than that present in 
normal mammograms. Therefore, the scatter radiation recorded on films is reduced, resulting 
in improved contrast. Higher dose and geometrical magnification can also be used to obtain 
radiographs of biopsy specimens as compared with regular mammograms. Less 
magnification results in less geometrical unsharpness. Higher exposure can be used to 
achieve greater signal to noise ratio and thereby improve image quality of radiographs. 

Therefore, microcalcifications in the radiographs of biopsy specimens are more clearly 
represented than those in regular mammograms. After we can successfully apply our 
algorithm to classify microcalcifications in radiographs of specimens, we will make 
necessary adjustments to apply the algorithm to the regular mammograms. 

In recent years, rapid progress of research on artificial neural networks (ANN)43 has been 
reported extensively in the field of computer science and many applied fields. Neural 
networks address detection, classification, and decision-making problems not by pre- 
specified "conventional" algorithms, but rather by "learning" from examples presented 
repeatedly. The popularity of neural networks is primarily due to their apparent ability to 
make decisions and draw conclusions when presented with complex, noisy, or partial 
information and to adapt their behavior to the properties of the training data. Neural 
networks are capable of parallel-processing a large amount of information simultaneously 
and have been shown44-45 to be a useful tool for pattern recognition in fields where 
conventional algorithmic approaches and rule-based expert systems may not be successful. 

Conventional diagnosis of breast cancer, a combination of mammography and physical 
examination has been the most effective screening methods to date. However, the ability of 
the conventional techniques to discover cancer with an acceptable reliability is limited. The 
limitations are manifest in the facts that average positive predicative value for suspicious 
breast lesions is only 20-30% at surgical pathology and approximately 10-30% of breast 
cancer are missed by mammography.10'14' ^ In addition, mammography may fail to reveal 
breast lesions that are present in certain groups of women such as those with 
mammographically dense breasts, women with prior breast cancer who are at risk for 
recurrence following therapy, and those with prosthetic breast implants. 

Recent studies have suggested that BMRI may be an effective tool that complements the 
conventional techniques such as mammography in the diagnosis and management of breast 
carcinoma.47-50 BMRI has a very high sensitivity in detecting cancer lesions. The 
applicability of MRI as a diagnostic procedure in breast cancer is currently limited, however, 
by the low specificity and high cost. While BMRI shows promise in solving some of the 
difficult diagnostic problems, the time required to examine the massive amounts of data 
resulting from each patient can potentially make cost of MRI very high. Technical advances 
have decreased the data acquisition time to approximately fifteen minutes per patient. 
However, data analysis remains cumbersome at best and a stumbling block to ready clinical 
acceptance. It can take 1-2 hours for a radiologist to analyze the large amount of images of 
each patient. The analysis performed often have qualitative and subjective properties, which 
is one of the reasons for the low specificity of BMRI. 
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We have developed an image display and analysis system that allows interactive 3D image 
manipulation and qualitative analysis of selected image regions. This computer visualization 
system can help radiologists improve the efficacy of examining the massive amount of data. 
The computer system may improve the specificity of detecting breast carcinoma, reduce the 
subjectivity of radiologists in interpreting BMRI images, and cut the cost by reducing the 
time radiologists have to spend reading the large number of images. This system can make 
BMRI a cost-effect procedure with high sensitivity and specificity in the diagnosis of breast 
cancer. 
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Body of Report 

METHODS 

Algorithms for classification of microcalcifications have been developed in two stages. First, 
a convolution neural network based method was developed to classify microcalcifications 
using radiographs of pathological specimen. Second, an image feature based method was 
developed to classify microcalcifications using real mammograms. The image features used 
and optimal structure of the backpropagation neural network were determined by using 
genetic algorithm. 

Classification of microcalcifications in pathological specimen 

The overall approach for the classification of microcalcifications using a CNN system is 
shown in Figure 1. The radiographs of pathological specimen are digitized by a high 
resolution digitizer. Regions of interest (ROI) containing microcalcifications are manually 
selected. These ROIs are preprocessed and used as input to the CNN system. Finally, the 
classification results are examined by the ROC analysis. 

I       Biopsy Specimen      | 

,_J , 
I Radiographs I 

J. 
I Digitization I 

, L._ . 
| Preprocessing | 

| CNN \ 

Diag; nosis 

ROC Analysis 

Figure 1.      Overall approach for the classification of microcalcifications using CNN. 
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The classification of microcalcifications is based primarily on the fact that 
microcalcifications associated with malignant processes generally have more irregular shapes 
with fuzzy and spiculated boundaries and are less uniform in density and size. They are 
usually grouped into multi-particle clusters. The microcalcifications associated with benign 
processes, on the other hand, usually tend to have smoother and well-defined boundaries, 
rounded shape, and uniform densities and sizes. The neural network system will be trained to 
recognize the characteristics of each type of microcalcifications. 

The CNN is based on the network structure of Fukushima's Neocognitron51 which is 
designed to simulate the vision of vertebrate animals. The structure of CNN used in this 
study resembles a simplified Neocognitron. A two-dimensional convolution operation from 
the input layer to the hidden layer is employed to simulate radiologists' viewing of a 
suspected area. The CNN has the ability to process and recognize two dimensional image 
patterns and has been shown to be an effective tool in image processing and pattern 
recognition.52-54 

Acquisition of Mammoarams 

The selected radiographs of breast biopsy specimen are digitized with an image resolution of 
21pmx21um per pixel by a CCD camera digitizer (DBA Systems Inc.). With high 
resolution digitization, the morphological information of microcalcifications can be 
preserved, which enables the neural network system to differentiate different types of 
microcalcifications on the basis of their geometrical shapes and density patterns. Figure 2(a) 
shows a cluster of microcalcifications in original radiographs of pathological specimen. 
Shown in Figure 2(b) are clustered microcalcifications after being digitized with the high 
resolution digitizer. The shapes and density patterns of the microcalcifications are better 
defined in Fig. 2(b) than those shown in Fig. 2(a). 

(a) (b) 

Figure 2.      Microcalcifications shown in an original radiograph of pathological specimen 
(a) and shown in a radiograph digitized with a high resolution (21 pm x 21 pm) 
digitizer (b). 
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Convolution Neural Network 

The structure of the CNN52 is shown in Figure 3. The input to the CNN are ROIs of matrix 
size of 64 x 64 pixels, containing benign or malignant type of microcalcifications. Only one 
hidden layer is used in this study. The connections between input and hidden layer are 
grouped into seven different kernels based on the structure of Fukushima's Neocognitron.51' 
55 There are two output units in the output layer, with each unit corresponding to a benign or 
malignant class of microcalcifications. The hidden layer and the output layers are fully 
connected. 

Input Hidden Output 

Image matrix 
64x64 

Figure 3.      Structure of a convolution neural network used for the classification of 
microcalcifications. 

The training algorithm of the CNN is similar to that of a backpropagation neural network, in 
which backpropagation and the generalized delta rule are used in the training process.56 The 
input signals are now two dimensional images. The weights are all arranged in the 
convolution kernels. In the feed-forward propagation, the output of Zth layer are first 
convoluted with weight filters. The sum of the convolution is then added by a bias term to 
form the net input to the next layer. 

Nl
q
+\x,y) = 5>P*<?W) + 4 9 [1] 

p=\ 

where NM(x,y) is the net input to the unit (x,y) in layer l+l, Ol
p(x,y) is the output of the 

unit in layer I, Wl
M(x,y) is a weight kernel, and b1*1 is a bias term in layer l+l. In the 

notation, layer number / = (1,2,..., L), cluster number in the Zth layer p = (1,2,..., Pl), and 
cluster number in the (Z+i)th layer q - (1,2,..., Pl+1). Note that * denotes discrete 
convolution, 
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&,*KX.» =II(^U)<9O'-*J-)0). [2] 
' i 

We can then rewrite equation [1] as 

Oq
+\x,y)=f(Nl;\x,y)), [3] 

where/is the activation function 

/(*) = 1 . [4] 
1 + exp(-jc) 

In the error backpropagation, the weights are modified, similar to that in Eqn.[2], as the 
following, 

AWlq(n + l) = r1(d
,;1*Ol

p) + aAWlq(n), [5] 

to minimize the error function, 

E = ^(nx,y)-0^x,y))2, [6] 

where T(x, y) is the target output. 

In the training process of the CNN, each image block is rotated and reflected such that the 
number of training data are increased eight fold. The rotation and reflection represent 
different orientations of microcalcifications in mammograms. The training with additional 
orientation can effectively make the CNN rotational invariant. 
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Classification of microcalcifications in real mammograms 

An alternative approach was employed to classify microcalcifications of in clinical 
mammograms. Microcalcifications can be characterized by a number of quantitative 
variables describing the underlying key features of a suspicious region such as the size, 
shape, and number of microcalcifications in a cluster. These features are calculated by an 
automated extraction scheme for each of the selected regions. The features are then used as 
input to a backpropagation neural network to make a decision regarding the probability of 
malignancy of a selected region. The initial selection of image features set was a rough 
estimation that may include redundant and non-discriminant features. A genetic algorithm 
was employed to select an optimal image feature set from the initial feature set and select an 
optimized structure of the neural network for the optimal input features. Finally, the 
performance of optimized neural network is evaluated using the selected sub-features. The 
performance of neural network is then compared with that of radiologists in classifying the 
clusters of microcalcifications. 

A selected region is a 256 x 256 matrix from a mammogram that is digitized at 50 microns 
per pixel with a Lumisys scanner. Figure 4 shows two regions of interest (ROI) selected from 
original mammograms: (a) benign and (b) malignant. The background trend in a selected 
region is eliminated by an adaptive trend correction technique. The trend-corrected image is 
then binarized by taking the top level of 32 quantization levels. A series of pre-processing 
techniques that include open and dilation operations, logic AND, and labeling operation are 
applied to the binary image to eliminate artifacts while preserving the original shapes of 
microcalcifications. Image features are extracted based on the pre-processed image and two 
morphologically filtered images. Nineteen image features are extracted for each cluster of 
microcalcifications characterizing the size, number of microcalcification in the cluster, and 
shape. 

(a) (b) 

Figure 4      Two ROIs of size 256 x 256 selected from original mammgrams: (a) benign and 

(b) malignant 
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Pre-Processinq 

The pre-processing algorithm is demonstrated in Figure 5. The purpose of pre-processing is 
to obtain a binary image of microcalcifications. The pixels representing microcalcifications 
have values of one and the rest have values of zero. We need only binary image because 
image features we use are not based on density but rather based on only size, shape, 
clustering, and number of microcalcifications in a cluster. 

Mammogram 

Opening 

256x256 Region 

Adaptive Trend 
Correction 

Adaptive 
Thresholding 

Dilation AND 

Size Test 

Figure 5 Pre-Processing of Selected Region of a Mammogram 

a. Adaptive background trend correction 

A average filter of kernel size of 23 x 23 pixels is used to remove the background trend in a 
selected region. At each pixel in the selected region, an average value is calculated for the 
surrounding 23 x 23 pixels and subtracted from the original pixel value. This process is 
repeated for all the pixels in the selected region. The adaptive technique is used to isolate 
microcalcifications from their immediate surroundings rather than from a different region that 
may have a different density level. As long as the sizes of microcalcifications remain small 
and microcalcifications are not clustered too close to each other, this method will be able to 
preserve the original shapes of microcalcifications. The kernel size of 23 pixels is equivalent 
of approximately 1.2mm. Therefore, microcalcifications that are larger than 1.2mm in size 
are eliminated by the background correction process. 
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b. Adaptive thresholding 

After background correction, a threshold is applied to the image such that only 2048 pixels of 
highest intensity (pixel value) are kept (assigned pixel value 1) and the rest pixels are 
assigned pixel values of 0. The number of pixels that are kept after thresholding is 
determined empirically that the sizes of microcalcifications in the threshold image are similar 
to those in the original image. 

c. Opening operation 

A morphological Opening operation with 3x3 kernel size is applied to the binary image to 
remove line artifact. The Opening is a combination of an erosion followed by a dilation. 

d. Dilation 

A morphological Dilation operation is applied after the OPEN operation to fill in the small 
holes near the boundary of an object. 

e. AND operation 

To preserve the shape of microcalcifications, an AND operation between the original binary 
image and the image after dilation is performed. 

f. Labeling 

A labeling process is applied after the AND operation to eliminate small objects that still 
remain in the image that are less than 5 pixels in size. Any object that is that small is 
unlikely to be an microcalcification. 

Imaae Feature Extraction 

Three images are used in feature extraction. The three images are: Image 1, the preprocessed 
image; Image2, dilation of Image 1 by a 5 x 5 kernel; Image3, dilation of Image 1 by a 25 x 25 
kernel. The process is demonstrated in Figure 6. 

1. Number of microcalcifications N from Image 1 

2. Area (number of pixels) in Image 1 S1 

3. Area (number of pixels) in Image2 S2 

4. Area (number of pixels) in Image3 S3 

5. (S2-S1)/N, a measure of average number of irregular pixels 

6. (S3-S 1)/N, a measure of average distance between microcalcifications in a cluster 

7. (S2-S1), total number of irregular pixels 
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8. (S3-S1), a measure of average distance between microcalcifications in a cluster 

9. VI, size of the largest microcalcification in Imagel - size of average microcalcification in 
Image 1 

10. V2, size of the average microcalcification in Imagel - size of the smallest 
microcalcification in Imagel 

11. V3, size of the largest microcalcification in Imagel 

12. V4, size of average microcalcification in Imagel 

13. V5, size of smallest microcalcification in Imagel 

14. El, ellipticity of the largest microcalcification on Imagel 

15. WAE, weighted average ellipticity of microcalcifications on Imagel 

16. Ax, length of semi-major axes of the fitted ellipse of a cluster on Imagel 

17. Bx, length of semi-minor axes of the fitted ellipse of a cluster on Imagel 

18.AX/BX 

19.AxxBx 

A total of 19 image features are extracted for candidate cluster and used as input to a 
backpropagation neural network. 

Figure 6       (a) Original gray scale image, (b) Binary image, (c) Best-fit ellipse and its semi- 
major axis A^ and semi-minor axis Bx, (d) Dilation with 5x5 kernel, and (e) 

Dilation with 25 x 25 kernel. 

Genetic Algorithms 

Genetic algorithms are directly modeled after biological systems and behavior. All the values 
of a structure represent the neural network characteristics that uniquely define a candidate 
solution in the space of possible solutions. Utilizing genetic algorithms, the Genetic 
Supervisor evolves successor populations, or generations, from a limited population of initial 
candidate solutions. It does this by treating the inclusion or exclusion of each column of data 
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in the full Input column set as features; the number of layers and the number of neurons per 
layers as features; and the control parameters of each neural network as features. 

These features are then varied in each new generation with the resulting structure evaluated in 
terms of neural network fitness. Each structure in the generation is evaluated and judged by 
either the lowest RMS Error achieved after a fixed number of epochs or by the number of 
epochs taken to achieve a minimum point in RMNS Error. These two measures represent 
neural networks that train to minimal error or neural networks which train with minimal 
epochs. These criteria can be applied to the set of training cases or the set of test cases. 

If the structure representing a neural network successfully meets the fitness criteria selected, 
then the values of its features will be retained and bred with other structures. For each 
generation, the Genetic Supervisor generates a population of structures in on of two ways. 
All the structures of an initial generation and a certain number of structures in subsequent 
generations are created with features set to random values constrained within specified limits. 
Subsequent generations are created by cross-breeding the strings of successful structures or 
occasional mutations of randomly selected features of successful structures. Some or many 
of the weakest structure may be culled, these are replaced with new structures. 

Through this evolution-like process, an optimal neural network can be developed. Note, 
however, that this process requires the training of many versions of the neural network to 
determine an optimal one; for neural network models mat have large network configurations 
or have large data sets this can be a lengthy process - but so can biological evolution! 

A system consisting of a Backpropagation neural network and a Genetic Supervisor is 
developed to classify the extracted image features. The Genetic Supervisor attempts to select 
the best subset of image features from the provided input set, configure the best neural 
network structure, and adjust the parameters of the network for optimum performance. The 
performance of the neural network system is evaluated by ROC analysis. 

Reduction of Patient Call Backs 

A third set of images will be selected at GUMC which are images of patients that are called 
back after screening exam to follow up. A majority of the called back patients are benign. 
The objective is to reduce the number of call back patients are definitely benign and therefore 
reduce the overall cost of breast cancer diagnosis practice. 

Database 

Pathological Specimen Images 

Eighty regions of interest (ROI) that contain clustered microcalcifications (40 benign and 40 
malignant) are selected from 60 digitized radiographs of pathological specimen in this study. 
Figure 7 shows all of the 80 ROIs selected in the database. There are substantial variations in 
size among benign or malignant microcalcifications. The information concerning the 
classification of microcalcifications ("truth") are obtained from the results of biopsy 
examination. Background trend correction is employed to remove the non-uniform 
background structure in different ROIs. 
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Clinical Mammoarams 

Two sets of clinical mammograms were collected. The first set contains 70 cases of clusters 
of microcalcifications and the second set contains 62 cases of microcalcifications. The two 
sets cases were selected from two different sources of medical institutions. The 
microcalcifications in both sets were rated subtle by radiologists. The diagnostic truth of all 
of the cases in the selected sets had been verified by biopsy. 
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(a) 

(b) 

Figure 7       Database for the training and testing of the CNN; (a) 40 ROIs containing benign 
clustered microcalcifications and (b) 40 ROIs containing malignant clustered 

microcalcifications. 
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Diagnosis of breast cancer by MRI using a neural network based computer vision 
system 

Figure 8 shows the overall scheme of the two-step approach that is employed in this project. 
After the images are acquired, an interactive image display and image analysis is used to aid 
the radiologists' examination of the images and initial diagnoses. Meanwhile, the computer 
vision system will detect the suspicious areas in the 2D slices. The detected lesions at 
various slice images will then be grouped automatically to form 3D lesions. A 3D 
convolution neural network will be employed to distinguish the 3D lesions that have shapes 
typical of malignant tumors from other benign lesions. The final results will be presented to 
radiologists to make a final diagnosis. 

Figure 8 Overall scheme of the neural network based computer vision system 
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Image acquisition and display 

The BMR examinations are performed using a bilateral dedicated breast coil operating in the 
receive mode with a 1.5 Tesla MRI system. The imaging pulse sequence used is a 3D FISP 
(fast imaging with steady state free precession) variant, a rapid gradient echo (GRE) 
technique that allows volume imaging of both breasts with 2.5mm consecution slice 
thickness. Each acquisition sequence uses 64 partitions for the total slab thickness of 
160mm. The matrix size of 2D slice field of view is 256 x 256. The width of the field is 
approximately 380mm, making the pixel size in the 2D slice image about 1.5mm. The 
imaging time per sequence is 84 seconds. 

The scans are performed once prior to contrast administration and five consecutive times 
following intravenous gadolinium bolus administration. No delays occur between each of the 
five contrast-enhanced scans. The images are calculated after all five enhanced scans are 
completed. The gadolinium contrast agent is administered at a dose of 0.1 mmol/kg using 
one of the three FDA-approved paramagnetic agents: gadolinium diethylene triamene 
pentaacetic acid demeglumine (Gd-DTPA, Berlex); gadolinium diethylene triamene 
pentaacetic acid bis-methyl amide (Gd-DTPABMA, Winthrop); or gadolinium tris 
(hydroxymenthyl) aminomethane (Gd-D03A, Squibb). The paramagnetic agents are given 
via the largest indwelling catheter cable to be placed in a peripheral vein over five seconds. 
The contrast injection will be followed by lOcc saline flush injection to clear the intravenous 
line of contrast. 

We have developed an image registration technique to match image slices at same location 
during a time sequence so that the pre-contrast image can be subtracted correctly from the 
post-contrast images. Image slices are stacked up to construct a 3D image object by volume 
rendering. The 3D object can be rotated and viewed from different angles. The user can also 
select an arbitrary projection plane and display the density of breasts in the selected plane. 

3D images in one complete exam before and after contrast injection can be displayed in a 
continuous loop to demonstrate the dynamic change of signal enhancement in the lesions. 
The 3D display of subtracted images after contrast injection will reveal regions of strong 
signal enhancement. Radiologists can then zoom in to those regions of strong enhancement 
and analyze them with quantitative image analysis tools that will be developed in this system. 
The image analysis tools can plot enhancement curves at any given location. 

Detection of suspicious areas in images of 2D slice images 

Enhancement profiles that show the signal intensities at different time intervals before and 
after the injection of contrast agent will be calculated at each pixel in a slice image. Features 
characterizing the signal enhancement after contrast injection will be automatically extracted 
from the enhancement profiles. The features will be calculated based on time derivatives of 
the enhancement curve. The feature selection will be optimized by using a self-organizing 
feature map neural network. 

A three-layer, feed-forward, back-propagation neural network will then be employed to 
recognize pixels with abnormal enhancement profiles. Enhancement profiles will be selected 
from cancer and normal regions of the breasts to train the neural network. The trained neural 
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network, provided with enhancement profiles of individual pixels of an image, will be able to 
identify those pixels belonging to a region that could be potentially cancerous. A 2D lesion is 
formed by connecting all the positive pixels identified by the neural network in a local area in 
a 2D slice image. The detected lesions in consecutive 2D slice images will be grouped 
together using a region growing technique to construct 3D objects. 

Classification of 3-D suspicious lesions 

Suspicious regions that are identified in the previous step will include both malignant and 
benign lesions. Studies have shown that the morphology of lesions may present a clue to 
lesion origin.57 The presence of internal septation and lobulation suggest the lesion 
represents a fibroadenoma, while border irregularity and rim enhancement are highly 
suggestive of carcinoma. The morphology of lesions is better delineated in 3D than in single 
2D slice images. A three-dimensional convolution neural network (CNN) will be employed 
to recognize image patterns corresponding to benign and malignant lesions. CNN has been 
shown to be an effective tool for two dimensional image pattern recognition.58 We have 
applied CNN in many different applications to classify various image patterns in chest x-ray 
images and mammograms. CNN has been found to be superior to the conventional fully 
connected neural networks in processing two-dimensional images of relatively large matrix 
sizes.59 

The suspicious areas detected in a slice image are two-dimensional projections on a arbitrary 
plane of three-dimensional lesions. As discussed earlier, the morphology of lesions may be 
important information in distinguishing benign lesions from malignant cancers. However, 
spiculated boundaries of three dimensional lesions may not show up in some of their two 
dimensional projections. As a result, lesions may not be classified correctly based on their 
projections on a 2D plane alone. To improve the specificity of detecting cancer lesions, 
suspicious areas that are identified in each of 2D slice images will be grouped together to 
form 3D lesions. The 3D lesions will be classified into benign and malignant types of lesions 
by using a three dimensional convolution neural network. The classification will be based on 
the three-dimensional boundary information of the lesions. 

The structure of the 3D neural network is demonstrated in Figure 2, with the convolution (the 
connections between the input layer and each kernel in the hidden layer) carried out in three 
dimensional space. The 3D convolution neural network is developed based on the 2D CNN 
model that has been successfully applied in pattern recognition of digital mammography. In 
the convolution neural network, the connections between two layers are grouped into a 
number of clusters, each functioning as a 3D convolution filter. Therefore, the processing of 
input signals by the CNN is spatially shift-invariant. The shift-invariance makes CNN 
suitable for image pattern recognition. Pixel values of the 3D objects will be used as input to 
the CNN. 
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Figure 9 Structure of a 3D convolution neural network 

The training algorithm of the 3D CNN53-54 is similar to that of a back-propagation neural 
network.60 The input signals are now three dimensional images. The weights are all 
arranged in the convolution kernels. In the feed-forward propagation, the outputs of Zth layer 
are first convoluted with weight filters. The sum of the convolution is then added by a bias 
term to form the net input to the next layer. 

P=i 

where Nl
p\x,y,z) is the net input to the unit (x, y, z) in layer l+l, Ol

p(x,y,z) is the output of 

the unit in layer /, Wl
p q(x,y,z) is a weight kernel, and bl

q
+1 is a bias term in layer l+l. In the 

notation, layer number I = (1,2,..., L), cluster number in the Zth layer p = (1,2,..., Pl), and 
cluster number in the (Z+7)th layer q = (1,2,..., Pl+1). Note that * denotes discrete 
convolution, 

r°Ä W)=SSS (4fcM) -Kß - *>J -y>k~ *»■ [8] 

In the error back-propagation, the weights are modified, similar to that in a back-propagation 
neural network,60 as the following, 

*Wp,q(n + l) = iT(dl
q
+1*Op) + aAWlq(n), [9] 

to minimize the error function, 
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E=^(T(x,y,z) - Of(x,y,z))2, [10] 

where T(x,y,z) is the target output. 
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RESULTS 

Images of pathological Specimen 

Jackknife Method 

A jackknife method was employed to evaluate the performance of the CNN. In the jackknife 
method, half of the ROIs were randomly selected from the database of 80 ROIs. These ROIs 
were used to train the convolution neural network. The other half of the ROIs were then used 
to test the performance of the CNN. By choosing different random samples from the 
database, the jackknife test can be repeated to generate multiple test output and provide a 
better estimate of the true performance of the CNN in classifying benign and malignant 
clusters of microcalcifications. 

ROC Analysis 

The output values from the two output units were examined by using Receiver Operating 
Characteristic (ROC) analysis.61-62 The LABROC4 algorithm63 developed by Metz et al. 
was used to fit ROC curves to the continuous data from the output of CNN. The area under 
the ROC curve (Az) was used as an overall measure of diagnostic performance. The result 
from each jackknife test was analyzed individually by using ROC analysis. Ten jackknife 
tests were performed. A final ROC curve was obtained by averaging the results from the 10 
jackknife tests, as shown in Figure 10. The CNN system performed very well in classifying 
benign and malignant clusters of microcalcifications, achieving an Az value of 0.90. 

Potential Application in Recommending Courses of Action 

A potential application of CNN is to classify microcalcifications into groups of definitely 
benign and possibly malignant. By applying a low threshold level to the output values of the 
CNN, we can make CNN a classifier that is not very specific but with 100% sensitivity. 

With such a classifier, some benign microcalcifications may be classified as possibly 
malignant, but all of the microcalcifications classified as benign are definitely negative. 
Thus, radiologists can ignore the clusters of microcalcifications that are classified as benign 
and only concentrate on those that are classified as possibly malignant. As a result, the time 
radiologists spend reading mammograms can be reduced and detection efficacy of breast 
cancer can be expected to improve. 
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Figure 10     ROC analysis of the performance of CNN in classifying benign and malignant 

microcalcifications. 

The ability of CNN to serve as a classifier to eliminate benign microcalcifications can be 
demonstrated in Table I. In each of the jackknife tests, we set threshold levels of the output 
of CNN such that all of the malignant ROIs are to be called positive by the computer system 
and calculate the number of the benign ROIs that can be called negative (i.e., have output 
values below the threshold level for positive ROIs). 

Table I shows the results for each individual jackknife test as well as the averaged results of 
the 10 jackknife tests (second column). The CNN can identify, on average, approximately 
42% of the benign clusters of microcalcifications with 100% sensitivity (without missing any 
malignant clusters). Therefore, if this CNN system were used to help radiologists in 
detecting malignant microcalcifications, radiologists would only need to examine about half 
of the detected microcalcifications. 

As discussed earlier, studies have shown that approximately 10-30% of breast cancers are 
missed by mammography and only 10-30% of biopsy cases recommended by mammography 
are actually malignant. As a comparison to the reported performance of radiologists in breast 
cancer diagnosis, we also listed in Table I (third and fourth columns) the average specificities 
and positive predictive values, defined as the portion of malignant cases among the biopsied 
cases. 

With a sensitivity of 80%, approximately the same level of sensitivity reported by average 
radiologists, the neural network system achieved a positive predictive value for malignancy 
of 84%, compared with 10-30% achieved by radiologists. Therefore, the CNN appears to be 
a very promising tool for assisting radiologists in making decisions for the diagnosis of breast 
cancer. 
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Real mammograms 

Genetic algorithms are employed to optimize the structure of a neural network and select the 
best performing subset from the initial image features. Additional cases of patients that have 
been recalled for further examination are being collected at GUMC. The performance of the 
neural network system based on these cases will help determining the usefulness of the 
system in reducing unnecessary biopsies. 

Optimized Feature Set bv Genetic Algorithms 

Genetic Algorithms were applied to the first subset of seventy cases selected from the 
database. Two different sets of image features, each consisting of six features, were selected 
as a result of the optimization process. The neural network performed equally well with the 
two selected subsets. 

Feature Set #1: 
1. V3, size of the largest microcalcification in Image 1 
2. V4, size of average microcalcification in Image 1 
3. V5, size of smallest microcalcification in Image 1 
4. El, ellipticity of the largest microcalcification on Image 1 
5. WAE, weighted average ellipticity of microcalcifications on Image 1 
6. Ax, length of semi-major axes of the fitted ellipse of a cluster on Imagel 

Feature Set #2: 
1. El, ellipticity of the largest microcalcification on Imagel 
2. WAE, weighted average ellipticity of microcalcifications on Imagel 
3. Ax, length of semi-major axes of the fitted ellipse of a cluster on Imagel 
4. Bx, length of semi-minor axes of the fitted ellipse of a cluster on Imagel 
5. V3-V4 
6. V4-V5 

The optimized parameters for the neural network are: learning rate 0.7 ~ 0.95 and momentum 
0.02 ~ 0.06. 
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Figure 11 Performance of feature-based neural network in classification of 
microcalcifications 

We evaluated the performance of the optimized neural network by using round-robin method 
and ROC analysis. Figure 11 shows the ROC curve for the classification of 
microcalcifications based on extracted image features. 

The system of neural network and genetic algorithms improved performance over our 
previous TRBF neural network64. The neural network system was able to classify benign and 
malignant microcalcifications at a level favorably compared to experienced radiologists. On 
the same database evaluated, the ROC curve for an experienced radiologist yielded an Az of 
0.54, while the Az of the ROC curve for the neural network with optimized structure is 0.68. 
The use of the neural network system can be used to help radiologists reducing the number 
biopsies in clinical applications. 

Case demonstration of 3D image visualization 

Figure 12 demonstrates a display of selected 2D slice images (a), a constructed 3D image (c), 
and signal enhancement curve of a selected region (d). The enhancement curves are used by 
radiologists to determine the probability of malignancy of a specific region. Other 
characteristics of signal enhancement such as enhance and washout time, gradients of 
enhancement curves, and variations among a selected region can also be calculated. 
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(a) 2D slice image 

(b) Position of the 2D slice in the breast 

(c) Reconstructed 3D image 
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Time 

(d) Enhancement curve of a selected region 

Figure 12 Image visualization in BMRI 

Two patient exams are demonstrated here. In each exam, the 64 two-dimensional slices at 
each time interval are stacked up to construct a three dimensional image. Volume rendering 
as well as surface-rendering are used to visualize the 3D image object. For each patient 
exam, there are one pre-contrast 3D image and 5 consecutive post-contrast 3D images. The 
six reconstructed 3D images are displayed in a continuos loop so that the change of signal 
enhancement over time can be observed. In each of the 3D images, a 2D projection plane can 
be selected at any orientation to step through the 3D image and display the signal intensity 
within the 2D plane. The user can also point to any specific location in a 2D image and 
display the pixel value at that location. A user can also select a specific region in any 2D 
plane and display the change of signal intensity over the time sequence to obtain signal 
enhancement curves. 

In the first case demonstrated here, a patient has a tumor in the right breast which is almost 
invisible in the original images. It can be identified on the subtracted images, as shown in 
Figure 13. 

The second case is a normal case. The image subtraction and 3D reconstruction make it 
easier for radiologists to locate potential tumor. The radiologists can examine the suspicious 
area in detail from the 2D projections planes in which the suspicious areas are located. 
Figure 14 shows the signal enhancement of subtracted 2D slice images. 
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(a) (b) 

Figure 13 Effect of image subtraction: (a) 3D original image (b) 3D subtracted image (c) 2D 
original slice (d) 2D subtracted slice 

(a) (b) (c) 

(d) (e) (f) 

Figure 14 Signal enhancement of breast images in MRI: (a) pre-contrast image (b-f) 5 post- 
contrast images. 
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DISCUSSIONS 

It is important to note that the CNN is designed as an automated classifier of 
microcalcifications for the diagnosis of breast cancer. It will be used in conjunction with 
other schemes for the detection of microcalcifications in digital mammograms. Once 
microcalcifications are detected, the CNN will be applied to classify them into benign 
(negative) and malignant (positive) groups. Radiologists can ignore the microcalcifications 
that are classified into the benign group and examine those that are classified as malignant to 
decide whether to recommend biopsy or short term follow-up exams. 

Table I. Application of CNN in Recommending Courses of Action 

Jackknife Test Correctly identified        False Positives at 
negative cases at 90% sensitivity 
100% sensitivity 
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8.3 
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4.4 
78% 
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False Positives at 
80% sensitivity 

2 
2 
0 
6 
1 
2 
2 
8 
5 
2 
3 

85% 
84% 

* Positive Predictive Value—Defined as the portion of the actually positive cases among the 
cases diagnosed that are classified as positive by a diagnostic system. 

The results discussed are based on radiographs of biopsy specimen of microcalcifications. 
The specimen images have, in general, better image quality and greater signal-to-noise ratio 
than the regular mammograms. The radiographs digitized with high resolution digitizers 
provide the morphological information of individual microcalcifications that makes the 
classification of microcalcifications into benign and malignant groups possible. The CNN 
system will need to be tested on regular mammograms. Some parameters of CNN may need 
to be fine tuned when applied to regular mammograms and the CNN system may not achieve 
the same performance level as it did in this study. 

Both a large training and testing database are necessary in order to train and evaluate the 
performance of the neural network sufficiently and reliably. We will be expanding our 
database significantly in the future. To further improve the accuracy of the classification, a 
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hybrid neural network (HNN)65 will also be employed to classify microcalcifications based 
on the input of both image data and image features66 that will be automatically extracted. 

The evaluation of feature based neural network with Generic Algorithm was based on a very 
difficult data set which was different from what was used for evaluation of image based 
neural networks. The microcalcification clusters in the data set for feature based neural 
network are very subtle and an experienced radiologist only scored an Az of 0.54 in 
classifying between benign and malignant clusters. The size of the database is also small. 
We are currently in the process of expanding our database to include more mammograms 
from different hospitals. 
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Conclusions 

We have demonstrated that the convolution neural networks can be an effective tool in the 
diagnosis of breast cancer. The results obtained in this study are very promising, even though 
they were based on a relatively small training and testing database. These results indicate the 
potential usefulness of CNN in classification of microcalcifications in digital mammograms. 
An extensive clinical test of our developed system using real mammograms will be needed to 
determine the clinical applicability. 

Genetic algorithms are an effective tool to select optimal input features and structure of a 
backpropagation neural network. The neural network, combined with genetic algorithms, is 
able to effectively classify benign and malignant microcalcifications. The results of the 
neural network system can be used to help reducing the number of benign biopsies. 

We have developed an image visualization system to aid radiologists to analyze breast MRI 
images efficiently and accurately. The interactive image visualization and quantitative image 
analysis enable radiologists to examine breast MRI cases more efficiently and accurately. We 
are also developing an automated detection system that can locate the potential tumors from 
the acquired images based on signal enhancement pattern and intensity. This visualization 
system can make BMRI more accurate and cost-effective, and thus make BMRI clinically 
feasible. 
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