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1 Executive Summary

The lack of a systematic methodology for the design of feedback laws capable of controlling
complex dynamical systems has been a limiting factor in several current and emerging DoD
missions. The research carried out by the principal investigator in this three year research
effort has focused on analyzing and computing the steady-state behavior of controlled com-
plex dynamical systems. The control of such systems typically involves both the design of
feedback laws which use the current value of the state and the design of dynamical systems
which produce estimates of the current state.

One of the fundamental discoveries made during this research effort concerns the steady-
state behavior of a dynamical system which provides estimates of the current state, propa-
gating smaller amounts of data than required by the standard Kalman filter. The analysis
of this estimation scheme led to an unanticipated discovery about the geometry of certain
classes of linear systems. The geometric properties which were discovered in this way led to
the solution of an outstanding problem in linear systems theory with applications in speech
synthesis, voice recognition and signal processing. These advances were supported by com-
putational methods developed in this research effort and which are documented in this final
report and in a patent application.

Another fundamental discovery made during this research effort was focused on the first
part of controller design discussed above, for a class of distributed parameter systems. The
principle results obtained quantify properties of attractors and the steady-state behavior of
solutions for a controlled Burgers' equation, which is often used as a simple model for tur-
bulence. The principal investigating team also discovered results concerning the asymptotic
behavior of linear distributed parameter systems undergoing harmonic, or periodic, forcing.
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1.1 The Rational Covariance Extension Problem and Speech Syn-
thesis

In the course of our studying the design of nonlinear observers we discovered a description
of the complete phase portrait of the Kalman filter, viewed as a nonlinear dynamical system
on the space of positive real functions. This discovery in turn lead to the solution of an
important problem in signal processing. In particular, in [7] we were able to give a complete
parameterization of all shaping filters which match a given finite window of correlation coeffi-
cients. This was an important open problem in signal processing, first formulated for speech
synthesis (and intensively studied) by researchers at the Phillips Laboratories in Europe. In
[14, 15], T. T. Georgiou proved that to each choice of partial covariance sequence and nu-
merator polynomial of a modeling filter there exists a rational covariance extension yielding
a pole polynomial for the modeling filter, and he conjectured that this extension was unique
so that it provides a complete parameterization of all rational covariance extensions. We
note that this problem has a long history, with antecedents going back to potential theory in
the work of Carath~odory, Toeplitz and Schur [10, 11, 32, 31], and continuing in the work of
Kalman, Georgiou, Kimura and others [19, 15, 22]. This problem has been of more recent in-
terest due to its significant interface with problems in signal processing and speech processing
[12, 9, 26, 21] and in stochastic realization theory and system identification [2, 33, 23]. Our
recent work [7], extends the result of Georgiou and answers his conjecture in the affirmative.
This work has shed new light on the stochastic (partial) realization problem [6] through
the development of an associated Riccati-type equation, whose unique positive semi-definite
solution has as its rank the minimum dimension of a stochastic linear realization of the given
rational covariance extension. However, our proof was not nonconstructive.In [8], we have
been able to give a constructive proof of Georgiou's conjecture, which provides an algorithm
for solving the problem of determining the unique pole polynomial corresponding to the given
partial covariance sequence and the desired zeros. In this work, which was motivated by the
effectiveness of interior point methods for solving nonlinear convex optimization problems,
we first recast the fundamental problem as an optimization problem.

Historically, the only solution to rational covariance extension problem for which there
has been simple computational procedures is the so called maximum entropy solution, which
is the particular solution that maximizes the entropy gain. During this research period, we
were able to demonstrate that the infinite-dimensional optimization problem for determining
this solution has a simple finite-dimensional dual. This motivated the introduction of a
nonlinear, strictly convex functional defined on a closed convex set naturally related to
the covariance extension problem. We were able to show that any solution of the rational
covariance extension problem lies in the interior of this convex set and that, conversely,
an interior minimum of this convex functional will correspond to the unique solution of the
covariance extension problem. Our interest in this convex optimization problem is, therefore,
twofold: as a starting point for the computation of an explicit solution, and as a means of
providing an alternative proof of the rational covariance extension theorem.

Concerning the existence of a minimum, we showed that this functional is proper and
bounded below, i.e., that the sublevel sets of this functional are compact. From this, it
follows that there exists a minimum. Since uniqueness follows from strict convexity of the
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functional, the central issue which needed to be addressed in order to solve the rational
covariance extension problem was whether, in fact, this minimum is an interior point. Indeed,
our formulation of the convex functional, which contains a barrier-like term, was inspired by
interior point methods. However, in contrast to interior point methods, the barrier function
we introduced did not become infinite on the boundary of our closed convex set. Nonetheless,
we were able to show that the gradient, rather than the value, of the convex functional became
infinite on the boundary. The existence of an interior point which minimizes the functional
then follows from this observation.

Some Numerical Examples

Given an arbitrary partial covariance sequence co, cl, . . . , q, and an arbitrary zero polyno-
mial a(z), the constructive proof of Georgiou's conjecture provides algorithmic procedures
for computing the corresponding unique modeling filter, which are based on the convex
optimization problem to minimize the functional W : Rn+' -- R, defined by

ýp(qoqi,...,qn) coqo + clql +". + caqn

1 + j logQ(eiO)Ia(eil)12dO, (1.1.1)2~r f_7r

over all qO, ql,.... q,, such that

Q(eio) = qo +qlcosO+q 2 cos2O+ ... +qcosnO >0 for all 0. (1.1.2)

over all q0, q1,... , qn such that (1.1.2) holds.
In general such procedures will be based on the gradient of the cost functional •, which,

is given by

q (qo,,. .. , qn) = ck - k (1.1.3)

where

k -f eikla(e°)IdO for k=0,1,2,...,n (1.1.4)27 7r Q(eiO)

are the covariances corresponding to a process with spectral density

iu(eie)12  00

Q(e + 2 E Z kcos(kO). (1.1.5)
k=1

The gradient is thus the difference between the given partial covariance sequence co, cl,. . . , c

and the partial covariance sequence corresponding to the choice of variables q0 , q1,. .. , qn at
which the gradient is calculated. The minimum is attained when this difference is zero.

The following simulations have been done by Per Enqvist, using Newton's method (see,
e.g., [24, 27]), which of course also requires computing the Hessian (second-derivative matrix)
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in each iteration. An straight-forward calculation shows that the Hessian is the sum of a
Toeplitz and a Hankel matrix. More precisely,

Hij (qo, ql,..., q) 1 (di+j+di-j) i,j =0,1,2,...,n, (1.1.6)

where

dk = j eikO 10(e)1dO fork=0,1,2,... 2n (1.1.7)27 7 Q (eiO)2"'

and d-k = dk. Moreover, do, di, d2,..., d2n are the 2n + 1 first Fourier coefficients of the
spectral representation

I e, )I12  0_Q( do + 2 E dk cos(k0). (1.1.8)
Q~eiO)2k=1

The gradient and the Hessian can be determined from (1.1.3) and (1.1.6) respectively by
applying the inverse Levinson algorithm (see, e.g., [28]) to the the appropriate polynomial
spectral factors of Q(z) and Q(z) 2 respectively and then solving the resulting linear equations
for ao, l, ... , E and do, dj, d2, ... , d2n; see [13] for details.

To illustrate the procedure, let us again consider the sixth order spectral envelopes of
Figure 1 and 2 together with the corresponding zeros and poles.
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Figure 1: Spectral envelope of a maximum entropy solution.
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Figure 2: Spectral envelope obtained with appropriate choice of zeros.

Hence Figure 3 illustrates the periodogram for a section of speech data together with
the corresponding sixth order maximum entropy spectrum, which, since it lacks finite zeros,
becomes rather "flat". The location of the corresponding poles (marked by x) in the unit
circle is shown next to it. The zeros (marked by o) of course all lie at the origin.
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Figure 3

Now selecting the zeros appropriately as indicated to the right in Figure 4, we obtain
the poles as marked, and the corresponding sixth order modeling filter produces the spectral
envelope to the right in Figure 4. We see that the second solution has a spectral density that
is less flat and provides a better approximation, reflecting the fact that the filter is designed
to have transmission zeros near the minima of the periodogram.
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1.2 Structure of Attractor for a Boundary Controlled Burgers'
Equation

Motivated in part by problems of flow control and combustion control, where nonlinear effects
actually can improve mixing, there has been considerable attention given in the literature
to the study of asymptotic or steady state properties of solutions of nonlinear distributed
parameter systems, such as Navier-Stokes equations, which contain both nonlinear convective
terms and diffusive terms. To this end, part of our research effort concerns the effect of
boundary control on the structure of attractors for Burgers' equation. In the, soon to be
published, work [123], we give a rigorous mathematical justification of the fact that there can
be multiple stationary points contained in the global attractor. Partial numerical concerning
this possibility were first results announced in [95]. The analysis in this paper is based on an
extension of the classical analysis of Sturm-Louiville boundary value problems using the so-
called Priifer transformations or polar coordinates. We should comment that various partial
results were obtained earlier using a variety of approaches but none of these approaches
provided the more complete picture presented here.

In our work [123] we show that for a special class of forcing terms as the gain parameters
in the boundary feedback control are increased from small positive values to large positive
values, the number of stationary solutions vary from three to one. This is in keeping with
our results on conergence of attractors, discussed in the last subsection, where it is shown
that the zero dynamics systems has a single, global, asymptotically stable, equilibrium.

Consider the controlled viscous Burgers' system

Wt - Ew" + WW' = f(W),
w = w(x, t), x E (0, 1), t > 0,
-wX(Ot) = uo(t), wX(1, t) = ui(t), (1.2.1)

w(x, o) = ¢(X),
yo(t) = w(O,t), y1(t) = w(1,t),
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where uo(t), ul(t) are boundary inputs, yo(t), y1(t) are boundary outputs, f E L2 (0, 1) is an
external forcing term modeling an unknown disturbance.

Formally introducing proportional error feedback, with k0 = kj = k

uo = -kyo, ul = -kyl, (1.2.2)

with feedback gain k > 0 we obtain the closed loop Burgers' system

Wt - EWxx + ww' =

XE(o,1), t>0,
-w,(0, t) + kw(o, t) = 0,

w'(1,t) + kw(1,t) = 0,

w(x, 0) = q$(X).

In our work we are interested in forcing terms f(x) possessing a certain symmetry
property and an additional definiteness property. These assumptions considerably simplify
the analysis of the resulting stationary problem.

Assumption 1.2.1. We assume that f is an odd function about x = 1/2 in the interval
[0, 1], i.e.,

f(x)=-f(1-x) for xE[0, 1],

and we introduce the terminology 'antisymmetric about 1/2" or simply "antisymmetric" to
describe such a function.

We will also assume that

f(x) > 0 for x E [0, 1/2).

An important fallout of the antisymmetry condition is that it is preserved by solutions
of (1.2.3).

The stationary Burgers' system associated with (1.2.3) is

-ewIE (x) + w(x)w (x) = f(x), (1.2.3)

wX(0) - kw(o) = 0,
w'(1) + kw(1) = 0.

Our approach proceeds as follows. We first integrate the stationary Burgers' equation
and then introduce the Riccati (or Hopf-Cole) transformation to reduce the stationary Burg-
ers' equation to a second order linear equation containing a spectral type parameter. Un-
fortunately, as mentioned above, the boundary conditions are transformed into nonlinear
boundary conditions. In the stationary case these boundary conditions factor into products
of boundary conditions which appear to be of Sturmian type.

Integrating the differential equation (1.2.3) over the interval [0, x], we arrive at

-ww'(x) + x --- f(s) ds + c, (1.2.4)
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where, c is a constant of integration. Using the boundary conditions, we see that

c = -ekw(O) + w(0)2/2 (1.2.5)

is actually not arbitrary. The parameter c plays an important part in our analysis.
Equation (1.2.4) is a Riccati ordinary differential equation and one classical approach

to solving this equation is to introduce the so called Riccati transformation, i.e., we seek a
solution in the form

w(x) = -2,v'(x) (1.2.6)

Using (1.2.6), the differential equation (1.2.4) is transformed into

v"(x) - (F(x) + A) v(x) = 0 (1.2.7)

where

F(x) = • f(s) ds), (1.2.8)

and

A C (1.2.9)

The boundary conditions are transformed into nonlinear boundary conditions, which,
after using the equations (1.2.7) and (1.2.8), can be written as

-cv(0) 2 +2v'(0)2E2 + 2kv'(0)v(0)E2 = 0, (1.2.10)

-cv(1) 2 + 2v'(1) 2E2 - 2kv'(1)v(1)C2 = 0.

These conditions can be factored into products of conditions that appear to be of "Sturm-
Liouville" type:

(v'(0) - l+v(0)) (v'(0) - 1-v(0)) = 0 (1.2.11)
(v'(1) + 1+v(1)) (v'(1) + l-v(1)) = 0.

(1.2.12)

Unfortunately, the parameters e± depend on the "spectral" parameter A:

l0 =/+(k, A) = k+ A. (1.2.13)

Considering the various possibilities we arrive at four systems that can deliver stationary
solutions

v"(x) - (F(x) + A) v(x) = 0 (1.2.14)
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v'(O) - l+v(0) = 0, v'(1) +± +v(1) = 0, (1.2.15)

v'(0) - l+v(0) = 0, v'(1) + v(1) = 0,

v'(O) - -v(O) = 0, v'(1) +± +v(1) = 0,

v'(0) - 1-v(O) = 0, v'(1) + l-v(1) = 0.

We are interested in non-vanishing solutions, because solutions of the stationary Burgers'

equation are given by v(X) and, therefore, the existence of a zero of v(x) together with

uniqueness of solutions of the initial value problem would imply a blow-up solution.
We next introduce the classical Priifer transformation for (1.2.14)-(1.2.15), namely,

v(x) = r(x)cos¢(x), (1.2.16)

v'(x) = r(x) sin¢(x). (1.2.17)

Differentiating (1.2.16) yields

v'(x) = r'(x) cos4(x) - r(x) sino(x) 0'(x). (1.2.18)

Now combine (1.2.17) and (1.2.18), to get

r(x) sinO(x) = r'(x) cosO(x) - r(x) sinO(x) 0'(x). (1.2.19)

From (1.2.14) we have

v"(x) = (F(x) + A)r(x) cos¢(x), (1.2.20)

and differentiating (1.2.17) gives

v"(x) = r'(x) sinO(x) + r(x) coso(x) 0'(x). (1.2.21)

Combining (1.2.20) and (1.2.21) gives

(F(x) + A)r(x) coso(x) = r'(x) sine(x) + r(x) coso(x) 0'(x). (1.2.22)

Multiplying (1.2.19) by cos¢(x) and adding to (1.2.22) times sin4(x) gives

r'(x) = (1 + F(x) + A)r(x) sin¢(x) cos¢(x). (1.2.23)

Equation (1.2.23) can be solved in terms of 0 as

r(x) = r(0) exp ( (1 + F(s) + A) sine(s) cos¢(s) d5). (1.2.24)

Multiplying (1.2.22) by cos¢(x) and subtracting (1.2.19) times sine(x) gives

r(x) 0'(x) = (F(x) + A)r(x) cos2¢(x) - r(x) sin 2¢(x). (1.2.25)
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Since we are looking for solutions v(x) which have no zeros on [0, 1] and also, since (1.2.24)-
(1.2.25) are linear in r(x), we may assume, without loss of generality, that r(x) > 0 for
XE [0,1].
Using this assumption, we can divide by r(x) in (1.2.25) to obtain

0'(x) = (F(x) + A) cos2 ¢ (x) - sin 2€(x). (1.2.26)

In what follows, equation (1.2.26) is the main equation used in our analysis. On one hand
it is independent of r(x), on the other hand r(x) is completely determined by r(0) and O(x)
in (1.2.24).

Rewriting the boundary conditions (1.2.15), taking into account that r(0) and r(1) are
not zero, and after some simplification using (1.2.26), we obtain the following four sets of
boundary value problems

0'(x) = (F(x) + A) cos 20(x) - sin 2¢(X), (1.2.27)

0(0) = arctan(ls1), (1.2.28)
0(1) = - arctan(ls2), (1.2.29)

where si, 82 E {1, -}.

Our main result is the following theorem.

Theorem 1.2.1. The following statements hold:

a) for any k > 0 there exists an antisymmetric solution of the stationary Burgers' system
(1.2.3). This solution is the unique solution of (1.2.3) for sufficiently large k;

b) for sufficiently small k, in addition to the antisymmetric stationary solution, there also
exist at least two non-antisymmetric stationary solutions;

c) the antisymmetric stationary solution is asymptotically stable for sufficiently large k.

1.3 Harmonic Forcing for Linear Distributed Parameter Systems

In general, the ability to systematically control or influence nonlinear effects would make
a substantial contribution to existing and emerging commercial and defense research and
development programs. Notable examples, widely appreciated within the aerospace industry,
include the development of flight controllers for high angle-of-attack or high agility aircraft.
Indeed, the importance of including the nonlinear behavior of aerodynamic parameters, such
as the coefficient of lift, as a function of the angle-of-attack has long been recognized since
at high angles-of-attack, wind angle moments also exhibit nonlinear effects which cannot be
ignored. Another area of interest is the control of flutter, which can shorten the life cycle of
aircraft and aircraft parts. Indeed, one example of the potential impact of nonlinear control
in problems of flow control is in the control of instabilities in the unsteady separated shear
layer, which has been experimentally shown to greatly influence stall and lift behavior at
high angles of attack.
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It is worth noting, however, that the active control in experiments, such as Batill and
Mueller [100], is based on a priori harmonic forcing, while in nonlinear systems with resonance
it is known that simple harmonic forcing will not necessarily produce the desired response
(see e.g. [41] for an analysis of the steady state response of nonlinear systems by center
manifold methods). This point was also illustrated theoretically by Keefe [59], who showed
that the success of a priori control for the Ginzburg-Landau equation was dependent on the
initial state of the system, which of course may not be controlled or even known, and that
therefore undesirable responses are to be expected in the nonlinear regime. Moreover, the
computation by Fuglsang and Cain [38] of flow over an open cavity suggests that harmonic
forcing at non-resonant harmonic frequencies can produce a limit cycle or chaotic response
that is far more severe than the natural harmonic resonance.

We consider a special class of Single Input Single Output (SISO) linear distributed pa-
rameter control systems in the form

i = Az + bu, (1.3.1)

z(0) = zo, (1.3.2)

y = cz (1.3.3)

where A is the infinitesimal generator of a Co semigroup in a Hilbert space Z and b E £(IR, Z),
c E £(Z, 1R). Here C(X, Y) denotes the space of bounded operators from X to Y.

We assume that the input u is given, in feedback form, as the output of a harmonic
oscillator with frequency a:

wb= Sw, S=[0 a]o~~P 00 [1
,u)u =Frw, (1.3.4)

where F is a given 1 x 2 matrix: F = ['yi, -y2]. Thus u represents a periodic function of period
T = 27r/a as a linear combination of sin(at) and cos(at), namely,

u(t) = '/1 sin(at) + -y2 cos(at). (1.3.5)

Problem 1.3.1. Suppose that we are given the input u in (1.3.5), find an initial condition Zo
in (1.3.2) so that the output y in (1.3.3) is a nontrivial periodic function of period T = 27r/a.

It is well known in finite dimensional linear control theory that if a system is driven by a
periodic input for which the complex frequency ia is a transmission zero of the system, then
the output of the system is zero for all time. Therefore, we should also state the following
more general problem.

Problem 1.3.2. Find conditions on (A, b, c) guaranteeing there is a nontrivial periodic out-
put with the desired period for all a and arbitrary y/, ^Y2 with -y2 + -Y•2 0, i.e., that the
system will support a periodic output of arbitrary period.
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In order that the solution to (1.3.1) be periodic we would at least need that z(T) = z(O).
By the variation of parameters formula we have

z(t) = eAtzo + j eA(t-r)bu(r) dT. (1.3.6)

In order that z(.) satisfy z(T) = z(O) = zo we need

(I- eAT) zo = j eA(T-T)bu(T) dr. (1.3.7)

Assumption 1.3.1. In this paper we will avoid the various technical difficulties and make
the assumption that A is a discrete Riesz spectral operator with simple eigenvalues ( mul-
tiplicity one) {Aj}•;' and eigenvectors {'j,0}jJ. These eigenvectors form a Riesz basis in
Z (i.e., a linear isomorphic image of an orthonormal basis). In this case the adjoint A* is
also a discrete Riesz spectral operator whose eigenvectors {Ib}'* form a biorthogonal Riesz
basis, i.e., (0j, ¢Ok) = jk -

Note that due to our assumption that b and c are bounded rank one operators, we have
a well defined transfer function given by g(s) = c(sI - A)-lb.

Assumption 1.3.2. A natural assumption on our system is that the transfer function is
real, i.e.,

g(-§) = g(s). (1.3.8)

For systems governed by differential equations with real coefficients this condition is auto-
matic.

Definition 1.3.1. A complex number so is a transmission zero if g(so) = 0.

Assumption 1.3.3. Our final assumption is that there are no pole zero cancellations. That
is, we assume that if so is a transmission zero, then so E p(A), the resolvent set of A.

Our main results are stated in the following theorem.

Theorem 1.3.1. Let the operator A in (1.3.1) be a discrete Riesz spectral operator with
a(A) = {f Aj} 1 , the input u is given by (1.3.5) with y2 + _y2 : 0 and let (A, b, c) satisfy
Assumptions 1.1, 1.2 and 1.3. Then we have the following results.

1. There exists an initial condition zo so that the solution z to (1.3.1) is periodic with
period T = 27r/a provided

distance(a(A), {kai I k = 0, ±1, 2, ..2}) > 0. (1.3.9)

Furthermore, the system supports all positive periods T (i.e., we can find a periodic
solution for all possible frequencies a) if

distance(a(A), C) > 0

where CO = {A E C : Re A = 0} denotes the imaginary axis.
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2. In this case, there is a nontrivial periodic output y if and only if ia is not a transmission
zero, i.e., g(ia) 5 0.

3. Finally, let us denote the amplitude of the periodic input u by

=- sup Iu(t)= + 72
tE[O,T]

Then the amplitude of the output y is a linear function of the amplitude of the input
u. In particular, the output can be written in the forms

1 duy(t) = [Re g(ia)]u(t) + -[Im g (ia)d-uW (1.3.10)

a d

= Mulg(ia) 1 [-71 sin(at) + f2 cos(at)]

= MuIg(ia)I sin(at + q) (1.3.11)

where •12 + v722 = 1 and we can easily write explicit formulas for "7, -72 and 0 in terms
of 7Y, -y2 and g(ia). Thus the amplitude My of y can be written as

MY - sup ly(t)l = Mulg(ia)l.
tE[O,TJ

The proof is based on a functional calculus valid for the discrete Riesz spectral operators
considered here. In particular, under the assumptions of the theorem, we can use spectral
theory to obtain explicit representations for the initial data z0 and the solution z. We show
that

zo = -(Yia + y2A) (A2 + a2)- 1 b, (1.3.12)

z(t) = sin(at) (-y1A +± y2a) + cos(at) (-1a - y2A)(A 2 +a 2)-b. (1.3.13)

Applying c to (1.3.13), using the resolvent identity and the fact that the transfer function
is real (cf, (1.3.8)), we can write y as

y(t) = sin(at) [yi Re g(ia) - ,2 Im g(ia)]

+ cos(at) [-/ Img(ia) + y2 Reg(ia)] (1.3.14)

from which a straightforward calculation shows that y is nontrival if and only if

jg(ia)12 = (Re g(ia))2 + (Img(ia))2 5 0,

i.e., if and only if ia is not a transmission zero.
Part 3 of the theorem follows from formula (1.3.14). In particular, a direct calculation

shows that the applitude My of y is related to the amplitude Mu of u by

M2= (7y2 + ^/2)(Re g(ia)2 + Im g(ia)2)

= (ly + -2)I g(ia) 2 = Mu2g(i g )l2 .
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1.4 Existence of Numerical Equilibria

Another result obtained during this research effort was concerned with the effect of boundary
control on the structure of attractors for Burgers' equation. We were able to provide a rig-
orous proof that the structure of the attractor is, in general, nontrivial. Indeed, for a special
class of forcing terms we are able to show that as certain gain parameters in the boundary
feedback control are increased from small positive values to large positive values, the number
of stationary solutions vary from three to one. This result supports our conjecture that for
large values of the gains, there is a single global asymptotically stable equilibrium. In par-
ticular, for zero external forcing term this would say that the resulting closed loop system
is asymptotically stable. This conjecture is based on development of the notion of nonlinear
zeros as a nonlinear enhancement of the classical concept of rootlocus. In particular, we have
given a definition of the zero dynamics associated with the closed loop Bugers' system and
shown that this zero dynamics systems has a single, global, asymptotically stable, equilib-
rium. One would therefore expect that as the gains are increased, trajectories of the closed
loop system would approach the corresponding trajectories of the zero dynamics.

During this period, in joint work with Dr. John Burns (VT & State University), we also
made an interesting discovery concerning the long time behavior of solutions to Burgers'
equation on a finite interval with Neumann boundary conditions. It is easy to see that, for
this problem, constants are equilibria, and for the related linearization about zero - the one
dimensional heat equation with Neumann boundary conditions - it is well known that the
steady state temperature is a constant. Namely, the steady state temperature distribution is
the mean value of the initial temperature distribution. For the Burgers' equation with small
initial data this same type of result holds as a consequence of the Center Manifold Theorem.
That is, Burgers' equation with Neumann boundary conditions possesses a one dimensional
center manifold (constants) and it can be shown that for a small initial conditions solutions
converges exponentially to constant values. As we have shown in our earlier work, in contrast
to the heat equation, the steady state constant is not simply the mean of the initial condition,
but it also depends in some complicated way on both the viscosity parameter and the shape
of the initial condition.

Since the Center Manifold Theorem is only a local result, a natural question is whether,
for arbitrary initial data, the corresponding solution of Burgers' equation tends to a constant
steady state. The answer to this question is still unresolved. Nevertheless, we were able to
resolve in the affirmative an intermediate question. If, for a given initial condition, the
solution approaches a time independent steady state, even in the L sense, then this steady
state must be a constant.

In spite of this result, after considerable numerical testing, it was discovered by researchers
at Virginia Tech University, that for moderately small viscosity and larger "antisymmetric"
initial conditions, numerical solutions can approach a nonconstant, time independent steady
state. We could only conclude that this is simply a numerical anomaly. Nevertheless, due
to the relevance of hydrodynamic problems in applications, it was important to understand
how these nonconstant numerical stationary solutions arise. Our discovery was that these
numerical solutions, for a fixed mesh size or degree of approximation, approach explicit
solutions of the equation that satisfy the boundary conditions only to within values that
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are approximately machine precision zero (or smaller). In particular, these numerical sta-
tionary solutions are given in terms of hyperbolic tangent functions whose derivatives at
the end points behave like hyperbolic secant squared. For moderate initial conditions these
derivatives are on the order of 10-30 which are well below machine precision zero.

This work sheds important light on the use of numerical proofs. In particular, numerical
calculations have been used to "suggest" that Euler equations do not have unique solutions.
The justification for this claim is that a "very fine mesh" is used in the calculation. The
conclusion of our work is that "numerical based" proofs of non-existence must be done with
extreme care.

Burgers' equation on the interval (0, 1) subject to Neumann Boundary Condition is given
by the dynamical system

Wt - fw• + wwX = 0, (1.4.1)

x E(0,1), t>0

w(0,t) =wX(1,t) = 0
w(x, 0) = (X),

The associated stationary Burgers' problem is

-EvXX + vvX = 0, (1.4.2)

vX(0) = vX(1) = 0.

It is not clear without further information that solutions of (1.4.1) should even exist for all
time. The answer to this question is contained in the recent work [119] which, for the special
case of (1.4.1), gives the following result.

Theorem 1.4.1. [119] For arbitrary initial data W E L 2 (0, 1) and 0 < T < oo,

a) (1.4.1) has a unique weak solution

w E LOO ([O, T], L2(O, 1)) nL 2([O,T], H 1(0, 1)),

b) On any cylinder [0, 1] x [to, T] for any 0 < to < T < oo, w E H 2,1([0, 1] x [t0 , T]).

c) There is a globally defined dynamical system on the state space L2(0, 1) given in terms
of a nonlinear semigroup {Tt, t > 0}.

* Tt is continuous in t and W E L 2(0,1).

* Tt is compact for t > 0.

* The system is globally Lyapunov stable.

* There is a global, locally compact attractor.

Even though we cannot, at this time, say that solutions of (1.4.1) approach a constant
steady state, we prove the following intermediate result.
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Theorem 1.4.2. Fix f > 0 and ¢ E L2 (0, 1). Let w(., t) be a weak solution of (1.4.1). If
there is a function h E L 2(0, 1) such that

lim 1w(-, t) - h(')11L2(0,1) -- t --+ 0o0

Then h(.) = co,, for some constant co,,.

For fixed E and for small initial data numerical approximation of the solutions to (1.4.1)
supports the conclusion of the Center Manifold Theorem, namely, solutions tend to a constant
as t tends to infinity. But for small e and "certain" initial data (not to small), the numerical
solution converges to a nonconstant function, cf. [94]. We are lead to conjecture the existence
of some type of Numerical Stationary Solutions for the problem (1.4.1).

One class of initial data for which we obtain this anomaly are functions in the class S
consisting of "antisymmetric" functions, that is,

S = {¢E L2 (0, 1) : O(x) = -(1 - x). (1.4.3)

For initial data ¢ E S, a straightforward consequence of Theorem 2.1, is that w(., t) E S
for all t and hence w(1/2, t) = 0 for all t > 0. Thus if lim w(x, t) = co,, exists then thet--+0

constant co,, must be zero.
The nonconstant solutions in S of the stationary Burgers' equation (not the boundary

conditions) are given in terms of a one parameter family depending on the parameter co.

h(x) = /i;tanh ("ý (1/2 - x)) , h E S. (1.4.4)

It is easy to see that for suitable initial data and co the functions (1.4.4) are actually
numerical stationary solutions to (1.4.1), i.e., they satisfy the Burgers' equation and they
approximately satisfy the boundary conditions.

Namely, the functions in (1.4.4) satisfy (1.4.2) and the boundary conditions

h'(0) = h'(1) c sech 4f (1.4.5)

where -y is an exponentially small positive number.
There is no reason to believe that numerical solutions to Burgers' equation should ap-

proach a function of the type (1.4.4), especially in light of Theorem 2.2 which suggests they
should approach a constant. Nevertheless, this does happen for larger initial data and/or
smaller c.

For a small positive number y there are exactly two solutions (1.4.4) satisfying (1.4.5),
i.e., there exist co _ 0 and c >» 0 giving

hl(x) = /2-tanh (F2y(1/2-x) (1.4.6)
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co sech 2 ( IJ (1.4.7)e 4f
The solution h1 is very nearly the zero function, whereas the solution h2 is not usually small.
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