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1.      Overview 
Traditionally, visualization of software has been ineffective for the development cycle 
due to the long turnaround time to create visualizations that are relevant to both the level 
of abstraction and domain-specificity that the software developer is working with at any 
given time. The "post-mortem" approach of creating visualizations by hand after 
development of, say a data structure, necessitates a loss of time and money when the data 
structure changes and the visualization has to be redone. Also, errors could be introduced 
in such a manual visualization process. We believe that the Knowledge-Based Software 
Assistant (KBSA) "machine-in-the-loop" approach [GLB+86,GRW96] can be extended 
to the area of software visualization, and thereby remove the stumbling blocks of slow 
turnaround time and human error. Seen in the KBSA light, visualization is not a process 
that occurs "after the fact." Rather, like validation, visualization is co-derived with 
software and maintained similarly. 

We have done research and have implemented an experimental prototype system to meet 
the goal of automatically producing visualizations of software entities, such as abstract 
data types. The approach we have taken is analogous to the approach we have taken in 
the past for automated derivation of algorithms from specifications: begin with a formal 
description of the entity to be visualized, and repeatedly apply automated inference steps 
to transform the description into a form which can be rendered via standard techniques. 
The implementation is being created using our latest system for software design and 
development, called Specware, built using KBSA technology.[JS93,JS95] 

In this report, we document our experiences using Specware to construct formal 
specifications for data visualization. This report is organized as follows: 
• Section 2 provides a conceptual overview of the VIZO system; 
• Section 3 provides an overview of the VIZO system; 
• Section 4 describes a sample visualization; 
• Section 5 describes the VIZO system in greater detail; 
• Section 6 describes the role of sound in vizualization; 
• Section 7 contains a summary of this research; 
• Appendix A contains a more detailed example; and 
• Appendix B describes the Specware system in greater detail. 

2.      Visualization via Abstract Views Enables Automation 

One of the roadblocks that most visualization systems encounter in achieving automation 
is the variety of different types of entities that may potentially be represented crossed 
with the variety of potential ways to represent them. This leads to one of two approaches: 
either attempt to pre-anticipate as many solutions as possible (which inevitably restricts 
the range of applicability to a narrow domain), or require the human to do the work of 
visualization with a set of base tools provided by the system. 
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Figure 1. Relation between View, Rendering and Data 

Our approach begins with the separation of the visualization process into two steps. First, 
categorize the entity being visualized (call this the "data" for convenience, though it may 
in general be a process which will become animated) as an instance of an abstract "view" 
or "pattern". Then, using the inference process described in Section 3, transform the view 
into a "rendering" which reflects the properties of the view. Figure 1 shows the 
relationship between the data, view and rendering for a small abstract datatype (a set of 
pairs). In the case of Figure 1, the entity being visualized is categorized as a set of tuples 
and two renderings are shown for these tuples. 

Notice that the same view can have multiple renderings, and although it is not depicted, 
the same data may have different views. Views can be combined and manipulated 
automatically because they are formally described (i.e., their properties are made explicit) 
in the logical framework of Specware. This approach reduces the necessary pre- 
anticipated constructs to the small set of independent visualization concepts needed to 
make a complex visualization (e.g. adjacency, containment), enabling automation to take 
place. Figure 2 shows a partial hierarchy of aggregate views which can be built using the 
more basic views. 
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Figure 2. Abstract View Hierarchy for Visualization 

Hierarchies such as this are common in the Specware framework, and enable the 
incremental refinement of one view into another (working down the hierarchy), 
eventually ending up with a "renderable" description of the desired data. Once 
automated, a human can then choose between different alternative renderings of the data, 
depending on the task at hand. Novel visualizations result from the combination of views 
that previously have not been combined. For example, Gantt and DAG views can be 
combined to form hybrid dependency/timing diagrams. 

3.      VIZO Architecture: Overview 

The prototype VIZO system attempts to realize the preceding model of automatic 
visualization construction. The VIZO architecture, seen below, shows the visualization 
process at a high-level overview. 



Data Abstract View 

{ <A 1>, 
<B 2> , 
<B    1>     }. 

Refinement Concrete 
Visualization 

D 
D 

Solve 

Constraints 

:DD 

D 
UD 

Render. 
w- 

Figure 3. VIZO Architecture 

Notice the "data" and abstract "view" in the two boxes in the upper-left part of the 
diagram map directly to the data and view from Figure 3. The final "rendering" appears 
in the box in the lower-right. The boxes and arrows between the view and the rendering 
depict the automated reasoning process which results in a visual representation of the 
data. In VIZO, two types of automated reasoning occur. The first is called refinement, a 
process that is based on an automated theorem proving engine and is directly supported in 
Specware. The second is the use of specialized constraint solvers. Both of these 
processes and the roles they play are discussed below. 

3.1.     Refinement 

Refinement is a formal operation in Specware in which an interpretation is created from 
one view to another, allowing any data which can be described using the first view to also 
be described using the second view. Typically, interpretations are used to map abstract 
entities into concrete implementations, such as mapping the sorts and operations of a Set 
abstract data type (ADT) into the sorts and operations of a List ADT. In the visualization 
domain, given a view which describes the data abstractly as a related pair of regions (on 
the screen), there is an interpretation which maps this view into a more refined view in 



which pairs of related regions become ovals connected with a line between them. In this 
example the concept of an amorphous "region" is refined to a specialized instance of a 
region, namely an oval. Similarly, the concept of two regions being "related" is refined to 
a specialized representation of the relation, namely being connected with a line. An 
alternate refinement for the same original view is that of a pair of adjacent boxes. Figure 
4 shows how refinements are used to transform a set of pairs of numbers into a table 
which can be rendered on the screen. 

Notice that in several places (i.e. the two ordering steps and the two adjacency steps), 
existing refinements were used in different contexts. This is one example of how our 
approach eliminates the need to pre-anticipate solutions in order to cover the space of 
useful visualizations. 

3.2.     Constraint Solving 

The result of the refinement process is a formal description that, given a graphics system 
with primitive operations that match those in the description, can be directly rendered. 
Often times it is desirable that the output of the refinement leave certain layout decisions 
uncommitted, allowing multiple solutions which are consistent with the current view. 
For instance, the view may specify that two objects be aligned on their top boundary, but 
it may not matter how close they are in the horizontal dimension. In such a case there are 
many possible final renderings which are consistent with the current view. The 
remaining task is to determine where to place both objects on the screen subject to the 
constraint that the top boundaries align (and possibly subject to other constraints as well). 
Here, we employ a constraint solver to determine a consistent or optimal solution. Figure 
5 shows several of the constraints which commonly arise in visualization, depicted by 
example. 

Constraint solvers are automated reasoning engines, similar to automated theorem 
provers, though they are usually tailored to a specific domain of discourse (such as 
integer linear systems of equations). Because of this, they can be made very efficient for 
the class of problems they address. The match between the kinds of constraints we need 
to solve in VIZO and the traditional domains of constraint solvers (i.e. numerical) is a 
good one. We have explored several freely available constraint solvers: SkyBlue, 
Omega, and an implementation of a solver described in Guy Steele's doctoral dissertation. 
Omega is currently integrated into our theorem prover. While each of these systems may 
be made to work with the VIZO system, we feel that better constraint-solving technology 
- one handling more complex and aggregate constraints - will greatly aid the system, and 
furthermore, such technology is likely to be built within the next few years as the 
importance of constraint-based reasoning is being recognized in the larger community. 
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Figure 4. Refinement Example 

In addition, Kestrel has technology to synthesize highly-efficient constraint solving 
algorithms for the domain of scheduling.[Smith93] We believe that our techniques will 
carry over to allow us to synthesize similar algorithms for constraint solving in two or 
three dimensions (scheduling is an instance of constraint solving in one dimension, i.e. 
time), which is ideal for rendering in two or three dimensions. The high speed of the 



synthesized constraint solvers is a result of "compiling" some or all of the constraints into 
the solver, so that the result is a very efficient algorithm specialized for the problem at 
hand. We believe this holds promise for automating the constraint solving aspects of the 
visualization process. 
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Figure 5. Visualization Constraint Examples 

Using Automated Visualization Interactively 

Thus far we have discussed VIZO in the context of a fully automated visualization 
synthesis engine, which might be part of a larger system (e.g. for software development). 
We believe automated visualization can and should be used in interactive contexts as 



well. The incremental refinement approach taken in VIZO leads to a natural substrate for 
supporting a human-directed, machine-driven visualization system. By factoring out the 
visualization design decisions into independent, composable views, the VIZO approach 
allows for the creation of a visualization system where the human can try out various 
techniques very rapidly by choosing which view to apply next, while the machine carries 
out the task of actually applying the view. The following domain-specific visualization 
scenario illustrates this point. 

4.1.     Visualization Example 

Scenario: a task force command center has been set up to control a rash of fires that have 
broken out in the hills surrounding a city. The command center receives reports of the 
various fires over communication links with helicopter and ground crews throughout the 
area. The reports are varied in the type and amount of information that they give, and 
they are constantly changing. The commander wants to get an assessment of the overall 
situation and decides to concentrate on three pieces of information from each report: (1) 
the fire's position, (2) its size, and (3) its percent containment. Figure 6 shows the 
process that occurs, with each rounded box corresponding to the intermediate 
visualizations that are explored in this process. 

The initial visualization in (b) is a simple table generated using the three types of data 
described in (a). In (c), the users are able to see visually where the fires are in relation to 
each other because the position of the fires are mapped to positions on the screen. This 
view is refined further in (d), where size of the fire determines the scale of the 
representation, and in (f), where the fires themselves are changed from a textual 
representation to a graphical one (a circle), with shading indicating the current 
containment level. At this point the users determine that a different approach would be 
more illuminating, so the visualization is rederived starting with (c) and arriving at (e), 
where the containment percentage is proportional to the scale factor, and size determinant 
of the shading, but this time with a legend to explain the shading. Still, the visualization 
could be made better suited to the task at hand, since the fires that are well contained are 
depicted as larger and the fires that are poorly contained are depicted as smaller. Thus, 
(g) rectifies the situation by inverting the relationship between scale factor and 
containment percentage, so that poorly-contained fires, which are deserving of more 
attention, appear more prominently in the display. Finally, (i) shows a composition of the 
two views in (g) and (h). Notice that this is not a simple overlay of renderings (in which 
the street names would overlap the fires), but rather a composition of the two views, from 
which a final rendering is generated. 
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Figure 6. Domain-Specific Visualization Generation Example 



4.2.    Maintaining Direct Connection Between Data and Visualization 

The VIZO approach has an additional advantage in supporting interactive visualization in 
that the connections between the individual objects on the screen rendering and the data 
that they represent can be explicitly maintained through the view. This allows for the 
creation of an interface in which both the data and the rendering can be manipulated by 
the user, and the other will be updated correspondingly. 

5.      The VIZO Prototype System: In Detail 

The Specware system described in Appendix B is designed to facilitate composition of 
complex software constructs through the use of fundamental mathematical operations, in 
particular those from category theory and sheaf theory. We have endeavored to use a 
consistent design philosophy throughout the implementation of Specware, so that all its 
components achieve a natural interface to the core system, sharing common abstract 
structures and methods as much as possible. 

For example, the same basic paradigm, and much of the same code, is used when 
transforming abstract specifications into detailed specifications, when communicating 
with a theorem prover, and when translating specifications into code. An interesting 
challenge has been to achieve this same kind of seamless interface for a visualization 
system. 

The approach we've explored starts with a triangle model as depicted in Figure 7, which 
is an elaboration ofthat shown in Figure 1. We decompose the structure of a graphical 
depiction into three main components: the data to be viewed, the view/pattern we seek in 
the data, and the graphics used to render such patterns. Each of the three components is 
modeled with a Specware specification, and the two arrows connecting the pattern to data 
and pattern to graphics are modeled with Specware interpretations. 

In all of the examples to follow, the data specification is assumed to be some possibly 
complex specification describing a scheduling domain with operations on it. The pattern- 
to-data or "viewing" interpretation projects an image of the pattern specification into a 
definitional extension of the data specification, i.e., into an extension that merely gives 
names to some terms already implicitly present in the data specification. It is also correct 
to think of the view interpretation as locating the pattern in the data. 

The pattern specification will vary from example to example, although it is both 
convenient and reasonable to assume it is constructed from basic set theoretic structures 
such as numbers, sets, sequences, relations, maps, etc. 

10 
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The structure of the graphics specification will depend on the approach chosen, as 
explained below, but it includes abstract data types for entities such as points, lines, 
boxes, colors, and dimensions. The pattern-to-graphics, or rendering, interpretation maps 
the pattern into graphical terms, effectively showing how to depict such a pattern. 

At this point, not worrying about the details, we could consider taking the colimit of the 
diagram shown in Figure 7, combining all of the sorts and operations from both the data 
specification and the graphics specification. However, that would put all of the 
significant structure down inside one composite specification, effectively hiding it from 
observation and manipulation by higher level Specware operations. 

A better approach is to notice that if specifications are viewed as topoi, which are a kind 
of category, then interpretations become functors, which are a kind of structure 
preserving map from one category to another, which means that given a diagram as in 
Figure 7, we can construct natural transformations, which are a kind of morphing of one 
functor into another (or alternatively, a kind of homomorphism between specified 
portions of specifications). This more elaborated view is shown in Figure 8. 

11 
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Figure 9 shows a simple example to make this more clear. The pattern specification 
contains an abstract operation called NatValue that maps Thing to Nat, and the pattern-to- 
data interpretation maps this NatValue operation onto a Duration operation defined on 
schedules. The rendering, or pattern-to-graphics, leg of the triangle could also be modeled 
entirely within Specware as a simple interpretation. In that case the rendering 
interpretation would map NatValue into something like Color/Value (BarValue, 
TextValue, etc.), defined in the graphics specification, mapping Thing to Color (Bar, 
Text, etc.), as shown in Figure 9. The natural transformation then consists of an 
isomorphism mapping Duration onto ColorValue, Schedule onto Thing, Nat onto Color, 
etc. 

Simple Example 

PATTERN 

NatValue : Thing -> Nat 

Duration : Schedule -> Nat 

defined using 
operations in 

SCHEDULE 

ColorValue: Thing -> Color 

defined using 
operations in 

GRAPHICS 

Figure 9 

12 



Unfortunately, an undesirable side effect of this approach is that the rules for constructing 
specification morphisms (which require specification morphisms to be total functions) 
would require the target Color sort to include the structure of the natural numbers, e.g. to 
have ColorZero, ColorPlus, etc. In general, that probably requires too much structure on 
the target sorts, but with the approach described so far, the only way to eliminate some of 
that structure would have been to simplify the pattern, and that works contrary to desire 
for the view and rendering interpretations to be orthogonal. 

A better approach is shown in Figure 10, where we have connected multiple 
view/rendition triangles to effectively break the depiction into steps. In the first step, we 
use the unrestricted pattern specification, and the rendering interpretation maps Nat into 
an abstract graphics numeric sort that subsequent depictions will specify as a bar, color, 
sequence of digits, etc. Note that both natural transformations describe isomorphisms, 
but the second (on the right) is an isomorphism on less structure than the one on the left, 
since it merely preserves the structure of a total order, whereas the natural transformation 
on the left preserves the more detailed structure of the natural numbers. 

FACTORED DEPICTION 

NAT 
PATTERN 

TOTAL ORDER 
PATTERN 

NatValue TotalOrderValue 

/   \   /   \ 

SCHEDULE 

Duration 

ABSTRACT 
GRAPHICS 
NumberValue 

COLOR 
GRAPHICS 

ColorValue 

Figure 10 

Since the triangles can be composed (side by side) and an identity triangle is easy to 
construct, we can view these triangles as arrows in a depiction category, as shown in 
Figure 11. The abstract structure of an arrow in this category is quite general, essentially 
identifying a homomorphism from part of one specification into part of another, so it 
seems like a good candidate to add to the general toolkit available in Specware, 
independent of its use for visualization. This is a good sign and addresses the abstract 

13 



concern expressed above for an elegant integration with the core Specware system. In 
particular, note that accurate and useful rendering of data involves a lot of structure 
preservation, and we've managed to keep most or all ofthat regular mapping out at the 
inter-specification level where generic Specware tools can manipulate it (as opposed to 
burying it within a single specification in some monolithic presentation). This accords 
well with our goal of integrating graphical operations with fundamental Specware 
structures. 

DEPICTIONS AS ARROWS 

PATTERN PATTERN PATTERN 

DATA       -* ►GRAPHICS   ~*—►GRAPHICS   -* ►GRAPHICS 

EACH TRIANGLE BECOMES AN ARROW 
IN THE NEW CATEGORY OF DEPICTIONS 

DATA ^  GRAPHICS     ►GRAPHICS fc   GRAPHICS 

Figure 11 

This division of depiction into concatenated steps provides additional benefits. 
Conceptually, it allows us to factor the depiction into one phase that casts the structure 
under consideration into abstract graphical terms, and subsequent phases that project 
those abstract terms into physically realizable ones. 

Figure 12 shows this division for a slightly more complicated example in which the 
pattern is a sequence of intervals. The abstract graphical specification 
Abstract_Dimensions introduces the notion of an abstract dimension, which has sufficient 
structure to be a good target for intervals, sets, sequences, tuples, relations, maps, and 
many other set theoretic structures. The first depiction arrow effectively maps the desired 
pattern into a high (in this simple case, two) dimensional space, then subsequent arrows 
project that space down into something renderable in real dimensions for space, time, 
color, etc. 

14 
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Using an abstract dimensional space as the first depiction target has good computational 
and user interface properties. It allows us to automate the subsequent depictions with a 
graphical engine that can produce the effect of what could be done with standard 
Specware tools, but in an optimized manner that avoids the overhead of reifying as much 
structure, and under a specialized user interface that allows the user to project dimensions 
interactively through menus without worrying about the details of constructing actual 
depiction arrows. 

To show how this technology could be developed synergistically with the scheduling and 
architecture projects underway at Kestrel, a simple project demo involving scheduling 
data was constructed and given following the 1996 Knowledge-Based Software 
Engineering (KBSE) conference. The effect was to show in principle how this model 
could be used to construct a Gantt chart from scheduling data. 

To understand how a realistic picture such as a Gantt chart might be constructed, we 
consider a somewhat more elaborate example. Now the data are a schedule, as in Figure 
7, but the pattern, whose top level structure is shown in Figure 13, is a tuple of a string 
(the schedule-name) and a set (of scheduled assets) whose elements are tuples of strings 
(asset names) with a sequence (of trips) whose elements are tuples of a string (a trip 
description) with a sequence (of trip segments) whose elements are tuples of a element 
from a finite set (loading, flying, etc.) and an interval in time. (See Appendix B for 
details concerning the specification language Slang used in Figures 13 & 14.) 

15 



specification Pattern-for-Schedule is colimit of 
diagram 

nodes Labeled-Interval, 
Trivl : Triv,  Labeled- •Set-1 : Labeled-Set, 
Triv2 : Triv,  Labeled- •Set-2 : Labeled-Set, 
Triv3 : Triv,  Labeled- Set-3 : Labeled-Set 

arcs  Trivl -> Labeled-Interval : {E -> Labeled-Interval}, 
Trivl -> Labeled-Set-1 {E -> Set-Elt}, 
Triv2 -> Labeled-Set-1 {E -> Labeled-Set}, 
Triv2 -> Labeled-Set-2 {E -> Set-Elt}, 
Triv3 -> Labeled-Set-2 {E -> Labeled-Set}, 
Triv3 -> Labeled-Set-3 {E -> Set-Elt} 

end-diagram 

Figure 13 

The first depiction triangle was instantiated with a pair of interpretations, each of which 
was constructed using standard Specware tools from smaller component interpretations 
similar to the two shown in Figure 14. 

Interpretation View-Trip-Segment-As-Labeled-Interval 
: Labeled-Interval => Trip-Segment  is 
mediator  Trip-Segment 
domain-to-mediator     {Labeled-Interval -> Trip-Segment} 
codomain-to-mediator   identity-morphism 

Interpretation View-Trip-As-Labeled-Set-of-Labeled-Intervals 
: Labeled-Set => Trip is 
mediator  Trip 
domain-to-mediator     {Labeled-Set -> Trip} 
codomain-to-mediator   identity-morphism 

Figure 14 

The primary pattern-to-graphics interpretation mapped tuples, sequences, strings, etc. in 
the pattern onto various kinds of virtual dimensions in a graphics specification. Then a 
prototype version of the user-interface code was used to dynamically assign virtual 
dimensions to real dimensions, as explained next. 

For this example, we generated 18 such dimensions, as follows: 

two element tuple of <D2, D5> 
sequence over D3 x D4 
two orthogonal finite dimensions 
sequence over D6 
two element tuple of <D7, D10> 
sequence over D8 x D9 
two orthogonal finite dimensions 
sequence over Dll 
two element tuple of <D12, D15> 

Dl schedule 
D2 schedule name 
D3, D4 character region 
D5 scheduled assets 
D6 scheduled asset 
D7 asset name 
D8, D9 character region 
D10 trips 
Dll trip 
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D12 trip description 
D13, D14 character region 
D15 trip segments 
D16 trip segment 
D17 segment status 
D18 segment duration 

sequence over D13 x D14 
two orthogonal finite dimensions 
sequence over D16 
two element tuple of <D17, D18> 
finite set {loading, flying, unloading} 
interval in time 

There are properties on individual virtual dimensions, and constraints among the virtual 
dimensions. For example, the virtual dimensions used for sequences must be mapped 
onto real dimensions with extent, e.g., space or time but not color, whereas dimensions 
that represent a single-valued attribute such as D17 (segment status) are allowed to map 
onto almost any dimension: space, time, color, a set of patterns, etc. Since dimensions 
D3 and D4 form a character plane, they must map to a pair of real dimensions that are 
orthogonal to each other, but it is allowed (even preferable) for both D3 and D18 to map 
to the same real X dimension. 

The rendering engine interacts with the user to map a set of virtual dimensions into real 
dimensions, after which the data are automatically displayed according to that format. 
The user can then change this mapping indefinitely, occasionally asking for the data to be 
redisplayed in whatever format is current. 

Because the number of real dimensions is quite limited, we need to use rules, heuristics, 
and user guidance to consistently and effectively map the myriad virtual dimensions 
down to the available real dimensions. There are several strategies we can employ. One 
is to increase the number of available real dimensions, a second is to hyperlink, a third is 
to collapse redundant dimensions, a fourth is to tile one virtual dimension within another, 
and a fifth is to allow the option of simply ignoring some dimensions. These five 
approaches are described in the following paragraphs. There could be other such 
strategies—this is not meant to be an exhaustive list. 

Adding more real dimensions is not as difficult as it sounds. Since many of the virtual 
dimensions we need to map represent small finite sets, even small sets of visually distinct 
attributes can be exploited to add new dimensions. For example, in addition to X, Y, and 
Z spatial dimensions, we can include color dimensions such as hue or intensity, or 
dimensions that consist of a set of distinguished patterns. In the example above, we could 
map dimension D17 [loading, flying, unloading] onto colors [blue, red, green] or onto 
patterns [thin bar, thick bar, thin bar], etc. 

Hyperlinking allows us to use an alternative part of the screen to actively show additional 
information pertaining to the location specified by a pointer. For example, dimensions 
D12, D13, D14 could be mapped into an active window such that the relevant string 
would be depicted whenever the mouse cursor was over a (real) X,Y coordinate used as 
part of the depiction of some trip. 

Some dimensions can be collapsed into others. In the example above, for any given asset, 
differing coordinates in D15 (sequence of segments) imply differing coordinates in D18 
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(time), so we can collapse D15 onto D18 without losing any information, as indicated in 
Figure 14. Collapsing D15 onto D18 assumes we map D17 (segment status) to color or 
some other dimension distinct from D18 otherwise the association between trip segments 
and trip status may be lost. Likewise, we might be able to collapse D10 (sequence of 
trips) into D18 as well, assuming we map D12 (trip description) to a hyperlink dimension 
or some other dimension distinct from D18. 

Tiling can be useful when one or more dimensions are finite. For example, the 
dimensions used to draw an individual character are finite, hence if the (finite) virtual X 
dimension for characters in some sequence is mapped into the real X dimension, a 
sequence of such characters can be depicted by tiling that finite dimension into repetitions 
along the X axis, using coordinates in the sequence dimension to select particular tiles. 
For another example, the durations in dimension D18 are bounded, and in particular are 
bounded from below by 0, so if we map D18 onto the real X axis we can map some other 
virtual dimension that is finite (e.g. D17, D12, or even D5) into the unused part of the real 
X axis. Sequences and tuples in general often allow these two different kinds of tiling, 
respectively. 

Ignoring a dimension is useful when we just don't care to see some particular information, 
or when the dimensional clutter is otherwise too great and we need to look at lower- 
dimensional slices. In this example, we might choose to ignore dimension D12 (trip 
description) and possibly D7 (asset name) if we were just looking to see if a feasible 
schedule exists. This can be viewed as a degenerate kind of hyperlinking to oblivion. 

For the demo given in September of 1996, one result of interactively making choices as 
described above was the screen partially shown in Figure 15. Other formats, such as a 
swapping of the X and Y axis, were possible but were more crudely rendered, since the 
intent ofthat demo was limited primarily to showing that a traditional Gantt chart could 
be generated. In this picture, a trip segment status has been mapped to color using the 
rules {loading -> blue, flying -> red, unloading -> green}, time has been mapped on the X 
axis, the set of assets have been arranged along the Y axis, and labels for both the entire 
schedule and each asset have been oriented as normal horizontal text. Some dimensions 
were ignored to make the rendering compact. 

A mature graphics engine would probably provide a more graceful facility than a simple 
menu for describing and assigning virtual dimensions to actual (renderable) dimentsions. 
It would also contain a constraint system to ensure that user choices for embedding 
dimensions are consistent, to automatically make choices based on constraint 
propagation, and to allow default embeddings based on heuristics and/or user profiles, 
etc. 
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Figure 15 

Overall, the model we have developed shows promise as an extremely flexible tool for 
rendering complex data. By making rendering decisions about the various dimensions as 
orthogonal as the data permit, we expect to be able to encourage depiction experiments 
that otherwise might not occur to people, and which would be too expensive to explore 
with traditional programming techniques. That kind of high level experimentation 
provides an excellent medium for achieving optimal (and occasionally breakthrough or 
paradigm-shifting) results in real world applications. 

6.      The Role of Sound 

Sound is an important, but under-utilized and under-explored channel for software 
understanding. Note the following key features of sound for understanding: 

• Sound provides an extra channel for providing information to the 
programmer, which can be used in parallel with visualization. 

• It can provide new ways of understanding programs. For example, sounds 
gives a better sense of timing than visual displays. 

With the help of a consultant, Stanley Jordan, we explored the possible uses of music and 
sound to aid in the development and understanding of software. 
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The following are the areas where we considered using sound: 

• During Editing, for keeping track of 
(a) what you are doing, and 
(b) the state of program. 

• During Debugging 
• Understanding and managing the run-time behavior of the program, e.g. 

(a) tuning performance, and 
(b) monitoring progress. 

• User interface enhancement 
• Program/Derivation Understanding 

As a relatively simple experiment we took the output of our scheduling program and 
converted the trips into MIDI data. We used the natural mappings of time in the schedule 
to musical time, and quantity to volume. Other attributes such as kind of cargo were 
mapped to different instruments of pitches. We tried different assignments so as to 
emphasize distinctions between different attributes. Playing the schedule at an 
accelerated rate gave an interesting overview of the schedule. We view this work as 
promising, but still quite experimental. 

As an avenue for future research, we note the parallel between transformational synthesis 
(as in KIDS/Specware derivations) and certain methods of music composition/analysis 
(e.g. Schenkerian). A possible connection to exploration involves finding musical 
refinements corresponding to different program refinements. Given such an approach, 
one could derive a piece of music in parallel to deriving a program. The structure of the 
music would have certain correspondences to the program. By analogy, the music for an 
inefficient program might have excessive repetition. Extending the analogy further, by 
introducing a variable for a repeated expression might have a musical correspondence 
such as using only the first few notes of a long phrase instead of repeatedly using the 
whole phrase. 

A general problem with using automatically generated music is ensuring that it sounds 
reasonable. Inherent in the approach of the previous paragraph is the necessity of 
formalizing musical knowledge in a way comparable to our formalization of 
programming knowledge. This musical model would have to be rich enough to ensure 
results that meet standards of musicality. One possibility is to create models beginning 
with pre-composed pieces (by a musician), which are then parameterized for use in 
derivations. 

In brief, we believe that sound will play an important role in program understanding in 
the future, as the complexity of software systems being built increases each year. Our 
initial findings in this area indicate that graphics are well-suited for uncovering static 
structure, whereas sound may help us uncover dynamic structure or timing. 
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7.      Summary 

This research explored various ways of formally visualizing software systems. We 
explored relationships between views, data, and renderings in a formal setting where 
visualizations were created by mapping data onto abstract views that were refined into 
renderable entities. We explored the feasibility of our approach by developing both a 
formal specification and an implementation of a software system for visualizing 
scheduling information. We also briefly explored the role of sound as a visualization aid, 
and found that although more work remains to be done, sound can be effectively used to 
analyze structure. Our feasibility demonstration conducted in September 1996 proved we 
could visualize systems using formal techniques and that such visualizations could be co- 
derived with system software. However, much work remains. For example: 

• We feel that better constraint-solving technology - one handling more complex and 
aggregate constraints ~ will greatly aid the system, and furthermore, such technology 
is likely to be built within the next few years as the importance of constraint-based 
reasoning is being realized in the larger community. 

• A better characterization of the constraints associated with adding and using real 
(renderable) dimensions is needed. For example, under what circumstances can a 
dimension be collapsed onto another? How can these constraints be formalized and 
used in the VIZO system? 

• How can we better support the task of assigning virtual dimensions to real 
dimensions? What role should heuristics play and how can they be formalized for use 
within VIZO? 

• Finally, the role of sound in analyzing structure needs to be better understood. 

In brief, we feel that we have demonstrated the validity of our premise, that visualizations 
can be co-derived with software and used to aid system understanding. 
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Appendix A. Visualization in the Specware Framework 

A.l. Overview 

This appendix describes an implementation of visualization refinement in Specware as 
part of the VIZO prototype. This appendix is organized as follows: 

• Section A.2 contains a worked example; 
• Section A.3 describes diagram interpretation; 
• Section A.4 describes multiple representations;   and 
• Section A.5 contains the Specware specifications referenced in the preceding sections. 

A.2. Worked Example 

This section describes a key part of the VIZO prototype: a mechanism for hooking the 
visualization domain into the refinement process of Specware. We explored this 
mechanism by creating and manipulating specifications for graphical user interfaces 
(GUIs). 

A.2.1. GUI Template 

The specification GUI Template (given in Section A.5) is a template for constructing 
Specware interpretations which map abstract views to concrete visual representations. 
There may be more than one concrete object for each abstract object, and each concrete 
object may use a different representation scheme. Intervening between the concrete and 
abstract objects are representation objects. This very general scheme allows us to not 
only manipulate screen objects by modifying the underlying data or entity being 
represented, but it also allows us to manipulate the data via, say, mouse operations on the 
screen objects. 

Figures A.l through A.3 show three different aspects of the GIU Template. Figure A.l 
shows GUI Template at an overview level. Figure A.2 shows the internal structure in 
more detail, and Figure A.3 illustrates the relationship between the pieces of the internal 
structure and how they enable flexible visualizations. Figure A.4 shows how the GUI 
Template specification is an interpretation scheme called Triv-to-Dobj, whose pieces can 
later be refined to form interpretations for specific visualizations. (See Section A.3.2.) 
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GUI Template: Abstract as Concrete 

Abstract Thing 1      (relationidata,etc) 

<ball, bat> 

concrete 1 

ball bat 
(screen objects) 

Figure A.l 

Abstract Thing 

rep 1     rep 2    rep 3     rep 4 

cone 1  cone 2  cone 3  cone 4  cone 5 

Figure A.2 

In Figure A.2, rep 1, rep 2, rep 3, and rep 4 all represent the same abstract entity. 
Similarly, cone 1, cone 2, cone 3, and cone 4 are concrete (displayable) representations of 
the abstract entity. Note that cone 5 is a concrete representation that is not a valid 
representation of Abstract Thing. 
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<foo, bar>, <yin, yang> Abs 

Cone 

Figure A.3 

Consider the example depicted in Figure A.3 where two pairs of symbols are represented 
on the screen as two pairs of adjacent boxes with text labels. "Pairness" is being 
represented using adjacency. It happens that "bar" and "yin" have been placed adjacent to 
each other, however, the pair <bar, yin> is not in the set of pairs being represented. Thus, 
below we see that the three adjacent pairs of labels are in the concrete sort, but only two 
of the three are in the rep sort. Rep is a subsort of cone. Notice that in this example, 
unlike the diagram above, each abstract element has only one rep. 

Abs   <foo, bar>, <yin, yang> 

Rep foo bar yin yang foo bar yin yang 

Cone foo bar yin yang foo bar yin yang foo bar yin yang 

Figure A.4 

A.2.2. Display Objects 

Figure A.5 shows the root of a hierarchy of display objects, and includes a legend for 
Figures A.5-A.8. Notice that the named objects are names of specifications which appear 
in Section A.5. Figure A.6 is an annotated version of a Specware diagram for the 
interpretation Pair-to-AdjXPair, in which the GUI Template described in Section A.2.1 is 
instantiated. As it's name suggests, Pair-to-AdjXPair refines an abstract pair of items into 
a pair of visual representations (as regions) of those items, with the added constraint that 
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their regions must be horizontally adjacent. Figure A.7 shows a three-dimensional 
Specware diagram of an interpretation (including its component parts) of a particular pair 
into a pair of adjacent visual regions. Notice that the diagram in Figure A.6 of Pair-to- 
AdjXPair is actually a subdiagram of this full diagram (it is the entire backmost plane of 
the 3D shape). This illustrates one manner in which refinements themselves can be 
composed and refined in Specware. Finally, Figure A. 8 shows the same full example, but 
abstracted slightly to show how it is constructed incrementally, starting with the GUI 
Template on the left and ending with the final refinement on the right. 

In order to better illustrate the visual language of Specware, we will explain in detail the 
full diagram in Figure A.7. The diagram is structured as a three dimensional lattice with 
the lattice points being specifications and the arrows being morphisms between the 
specifications. Each specification has a textual identifier as well as a graphical depiction. 
The morphisms do not show their full structure here, however notice that some 
morphisms are annotated with a small "d" indicating that they are definitional extension 
morphisms. The lattice is basically a three dimensional box: three specs wide, three specs 
tall, and two specs deep. There is an additional buttress plane which juts out from the 
middle front vertical line towards the viewer. 

Each plane in the structure highlights a semantically significant relation among the specs 
which participate in that plane. For instance, the topmost plane consists of abstract data 
type specs, while the bottom-most plane consists of visual element specs. The 
intervening plane contains the mediator specs which complete the interpretations (and 
interpretation schemes) between the abstract and the visual specs. We have used a 
depiction of a computer screen for each spec at this level, indicating that these are specs 
which can be used directly to create automated visualizations. The specs in the left and 
right most vertical planes serve as component specs to the specs in the middle vertical 
plane. For example, The spec labeled "Person" and the spec labeled "Name" are 
components that are imported to create the spec labeled "Pair(Person, Name)". 

Working from back to front we see an instantiation process. The back-most plane is most 
generic (e.g. it contains a spec, "Pair", which describes all possible pairs of elements in 
the universe). The front plane of the box instantiates the specs in the back plane and thus 
restricts the possible models for each spec (e.g. all pairs of persons and names). The 
buttress instantiates the specs further by choosing one particular instance (e.g. the pair 
whose first element is ss#l23-45-6789 and whose second element is John Doe). 

In choosing representations for abstract concepts, especially when several similar 
concepts are simultaneously being displayed, we have found it useful to take a "minimal 
model" approach. The idea is to represent the concept as abstractly as possible (so that it 
covers all intended models) while still conveying the concept unambiguously. Also 
important is to not introduce spurious relationships. 
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A. 3. Further Refinement 

After our initial model of visualization in Specware, we began to refine it based on our 
experience and improved theoretical understanding. 

A. 3.1. Multiple Representations 

We begin with a theory of multiple representations (see Figure A.9). A concrete 
representation of an abstract object A is an object C with an abstraction map abs : C --> A 
and a representation map rep : A --> C. We require that abs ° rep = id, so that rep is 
injective and abs is surjective. Thus, a representation may have more information than 
the abstract object that it represents. For example, a representation of a person's name 
may have a position on the screen and a bitmap displaying the text in some font. 
However, since rep is injective, the concrete object always contains the full content of the 
abstract object. 

Given two concrete representations (Q, reph absx) and (C2, rep2, abs2) of an abstract 
object A, the images of A in Q and C2 (via repx and rep2) are isomorphic via/12 = rep2 ° 

abs\ and/21 = repx ° abs2. That is, 

h\ °/i2 ° repi = repi 

fu°fi\ ° rep2 = rep2 

The entire representations are not isomorphic, just the images of the abstract object within 
the representations. 

This theory appears to have two problems. First, it does not appear to account for 
representations that show only part of an object, since the representation map must be 
injective. For example, suppose we want to show only the parity of an integer (whether it 
is even or odd). Second, the primacy of the abstract object seems to contradict the idea 
that all representations are on equal footing. 

By viewing the same theory in a slightly different way, we can remove both difficulties. 
In place of an abstract object, we choose view, some aspect of the object we would like to 
present. For example, a view for parity would be (0,1}. In the above discussion, the 
view replaces the abstract object, and the abstract object becomes just another concrete 
object. This method also allows multiple views of the same object (see Figure A.9). 

The theory of multiple representations, as presented here, is formally identical to the 
theory of fiber bundles, which is dual to patching theory. In patching theory, we are 
concerned with compatible covers of a large object, while in bundle theory we are 
concerned with compatible representations (see Figure A. 10). 
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Finally, we see that this theory also applies to classes of objects with internal structure, 
such as lists. In this case, the abstraction and representation functions are list 
homomorphisms: 

(rep   (nill)) =   (nil2) 
(rep   (consl  a  1) )   =   (cons2   a   (rep  1) ) 

A.3.2. Specifications 

To build these ideas into a specification for pairs of people and names, we need several 
components: 

• A theory of pair homomorphisms 
• A theory of multiple representations 
• A theory of visualizations of pairs 

These theories are shown in Section A.5.2. The theories of pair homomorphisms and 
multiple representations are straightforward. We then glue three copies of the 
representation theory to two copies of the pair homomorphism theory to capture the 
notion that both the abstraction and representation maps are pair homomorphisms. 

To visualize pairs, we need the idea of a pair as a displayable object, whose components 
are displayable objects, and whose components are adjacent. We build this theory from 
components using a ladder construction. We start with OBJECT, the basic theory of 
objects. We specialize OBJECT to make PAIR and DISPLAY-OBJECT, then use a 
colimit to generate DISPLAY-PAIR. In this way, we combine two independent theories 
automatically. 
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Figure A.5: Display Objects 
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After specializing PAIR to pairs of display objects and further to pairs of adjacent display 
objects, we use colimits twice more generate displayable pairs of adjacent display 
objects. Colimits solve the multiple inheritance problem by allowing us to control 
sharing. Thus, we can specify new concepts where they are fundamental and propagate 
them to where they are needed. For example, "displayability" is a property of objects, not 
of pairs, but we can propagate it to pairs using a colimit. 

Pair 

Triv 

Triv-as-Dobj 

Pair-as-AdjXPair 

abstract-sort 
A 

rep-subsort 
V 

AdjXPair 
(left: right: «_ 

Triv 

T-as-Dobj    T-as-Dobj) 

AdjXPair 

Dobj 

Triv-as-Dobj 

left:    right: 
Dobj Dobj • Dobj 

Result: Representation of Pair as AdjXPair is an instance of GUI template, 
and can therefore be reused in further construction. 

Figure A. 6: Pair to AdjXPair 
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Abs 2; Rep 1 

Figure A.9 

f    View      ) 

Figure A. 10 
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A.5. Specware Specifications 

A.5.1. GUI Template 

%% -*- Mode: RE; Package: SPEC; Base: 10; Syntax: Refine -*- 
!! in-package("SPEC") 
!! in-grammar('SLANG::SPEC-GRAMMAR) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Auxiliary files: 
%% relations.re, tuples.re 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Abstract description of regions 
%% The model to keep in mind is a 2.5-D display (i.e., 2-D display 
%% with layering) 

spec REGION is 
sort Region 

%% adjacency in different directions 

op adj-x? 
op adj-y? 
op adj-z? 

Region, Region -> Boolean 
Region, Region -> Boolean 
Region, Region -> Boolean 

%% (contains x y) is to be read as x contains y 

op contains : Region, Region -> Boolean 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Abstract display objects encompass anything that can be 
%% displayed. In an OOP system this would be the root of a hierarchy 
%% of displayable objects. 

%% For now, the only thing we assume about abstract display objects is 
%% that each such object has an underlying region (its extent). This 
%% theory could be augmented with other generic attributes (e.g., 
%% position) and generic methods (e.g., mouse-handlers). 

spec DISPLAY-OBJECT is 
import REGION 

sort D-Object 
op extent : D-Object -> Region 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Labels are some display objects which some "content". For now, this 
%% content is either a picture or a piece of text (we don't specify 
%% what pictures and text are). 

spec TEXT is sort Text end-spec 
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spec PICTURE is sort Picture end-spec 

spec LABEL is 
import translate DISPLAY-OBJECT by {D-Object -> Label}, 

TEXT, PICTURE 

op content : Label -> (Picture + Text) 
end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Any display object can be labelled by attaching a label to 
%% it. "Attaching" here means that an object and its label are 
%% adjacent in the z-direction. 

spec LABELLED-DISPLAY-OBJECT is 
import 
translate 
colimit of diagram 

nodes DISPLAY-OBJECT, REGION, LABEL 
arcs  REGION -> DISPLAY-OBJECT : {}, 

REGION -> LABEL : {} 
end-diagram 

by {D-Object -> LD-Object} 

op lbl : LD-Object -> Label 

axiom label-is-adj-z is 
(adj-z? (extent ld-obj) (extent (lbl ld-obj))) 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Pair of objects which are adjacent in the x-direction. 

%%  + + 

spec ADJ-X-PAIR is 
import 
translate 
colimit of diagram 

nodes pair : DISPLAY-OBJECT, 
left : DISPLAY-OBJECT, 

right: DISPLAY-OBJECT, 
REGION 

arcs  REGION -> pair : import-morphism, 
REGION -> left : import-morphism, 

REGION -> right: import-morphism 
end-diagram 

by {pair.D-Object  -> Adj-x-Pair, 
left.D-Object  -> Left-D-Object, 
right.D-Object -> Right-D-Object} 

op pair-left   : Adj-x-pair -> Left-D-Object 
op pair-right  : Adj-x-pair -> Right-D-Object 
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%% left and right regions are contained in the overall region 

axiom (contains (extent p) (extent (pair-left p))) 
axiom (contains (extent p) (extent (pair-right p))) 

%% left and right regions are adjacent in the x-direction 

axiom (adj-x? (extent (pair-left p)) (extent (pair-right p))) 

end-spec 

%% Template for displaying something on the screen 

%% abstract-sort    a  a 
%% / \ / \ equiv-rep? 
%% rep-subsort     rrrrrrrr rep? 
äSr I I I I I I I I 

%% concrete-sort  cccccccccccccc 

spec GUI-TEMPLATE is 
sorts Abstract-Sort, Concrete-Sort 
sort-axiom Abstract-Sort = Concrete-Sort | rep? / equiv-rep? 

op rep : Abstract-Sort, Concrete-Sort -> Boolean 
op abs : Concrete-Sort | rep? -> Abstract-Sort 

op rep? : Concrete-Sort -> Boolean 
op equiv-rep? : Concrete-Sort | rep?, Concrete-Sort | rep? -> Boolean 

%% rep? picks outs the subsort of representatives 

definition of rep? is 
axiom (iff (rep? r) (ex (a) (rep a r))) 

end-definition 

%% any two representatives of an abstract thing are equivalent 

definition of equiv-rep? is 
axiom (iff 

(equiv-rep? rl r2) 
(ex (a) (and (rep a ((relax rep?) rl)) 

(rep a ((relax rep?) r2))))) 
end-definition 

%% abs is the abstraction function for the quotient sort Abstract-Sort. 
%% Hence it is the "inverse" of rep. 

definition of abs is 
axiom (equal (abs r) ((quotient equiv-rep?) r)) 

end-definition 

theorem abs-is-rep-inverse is 
(iff (rep a ((relax rep?) r)) (equal a (abs r))) 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% GUI-TEMPLATE in which the concrete sort is a display object 
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spec TRIV-as-D-OBJECT is 
colimit of diagram 

nodes TRIV, 
arcs  TRIV -> 

TRIV -> 
end-diagram 

DISPLAY-OBJECT, 
DISPLAY-OBJECT 
GUI-TEMPLATE 

GUI-TEMPLATE 
{E -> D-Object}, 
{E -> Concrete-Sort} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ip-scheme Triv-to-D-Object : TRIV => DISPLAY-OBJECT is 
mediator TRIV-as-D-OBJECT 
dom-to-med {E -> Abstract-Sort} 
cod-to-med cocone-morphism from DISPLAY-OBJECT 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Given that there are schemes for representing the left and right 
%% components of a pair, the representation of the pair itself imposes 
%% the additional constraint that the chosen representatives for the 
%% components be adjacent in the x-direction. 

PAIR--IMPORT-DIAGRAM is 
ADJ-X-PAIR, 
DISPLAY-OBJECT, 
DISPLAY-OBJECT, 
REGION, 
TRIV-as-D-OBJECT, 
TRIV-as-D-OBJECT, 
REGION, 

•pair 

diagram PAIR-as-ADJ-X 
nodes body : 

left-formal : 
right-formal : 
shared-formal: 
left-actual : 
right-actual : 
shared-actual: 

TRIV, 
gui-template-for 

arcs  left-formal 

left-formal 
right-formal 

right-formal 
shared-formal 
shared-formal 
shared-actual 
shared-actual • 
shared-formal ■ 

TRIV -> body 
TRIV -> gui-template-for-pair 

end-diagram 

GUI-TEMPLATE 
> body 

extent 
> left-actual 
> body 

extent 
> right-actual 
> left-formal 
> right-formal 
> left-actual 
> right-actual 
> shared-actual 

{D-Object -> Left-D-Object, 
-> left.extent}, 
cocone-morphism from DISPLAY-OBJECT, 
{D-Object -> Right-D-Object, 

-> right.extent}, 
cocone-morphism from DISPLAY-OBJECT, 
import-morphism, 
import-morphism, 
{}, 
{}, 
identity-morphism, 

{E -> Adj-x-pair}, 
{E -> Concrete-Sort} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

spec PAIR-as-ADJ-X-PAIR is 
import 
translate 
colimit of PAIR-as-ADJ-X-PAIR—IMPORT-DIAGRAM 
by {left-actual.Abstract-Sort  -> Left-Abstract-Sort, 

right-actual.Abstract-Sort -> Right-Abstract-Sort, 
gui-template-for-pair.Abstract-Sort -> Adj-x-Pair-Q} 

definition of gui-template-for-pair.rep is 
axiom (iff (rep abstract-pair region-pair) 

(and (rep (pi-1 abstract-pair) (pair-left region-pair)) 
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(rep (pi-2 abstract-pair) (pair-right region-pair)))) 
end-definition 

op make-pair : Left-Abstract-Sort, Right-Abstract-Sort -> Adj-x-pair-Q 
op pi-1 : Adj-x-pair-Q -> Left-Abstract-Sort 
op pi-2 : Adj-x-pair-Q -> Right-Abstract-Sort 

%% non-constructive definition 
definition of make-pair is 

axiom (iff 
(equal (make-pair 1 r) p) 
(and (equal (pi-1 p) 1) 

(equal (pi-2 p) r))) 
end-de f ini t i on 

%%  / 
%% / 
%% — 

pi-1 

left 

p R abstract-sort 
/ \ / \ equiv-rep? 

/ \ pi-2 / \ 
--P--  > —R— rep-subsort 

1 right 1 rep? 
--I D  —R— concrete-sort 

definition of pi-1 is 
axiom (iff 

(equal (pi-1 ((quotient equiv-rep?) p)) ((quotient equiv-rep?) 1)) 
(equal (pair-left ((relax rep?) p)) ((relax rep?) 1))) 

end-de f ini t i on 

definition of pi-2 is 
axiom (iff 

(equal (pi-2 ((quotient equiv-rep?) p)) ((quotient equiv-rep?) r)) 
(equal (pair-right ((relax rep?) p)) ((relax rep?) r))) 

end-definition 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

interpretation 
PAIR-to-ADJ-X-PAIR : PAIR => ADJ-X-PAIR is 
mediator PAIR-as-ADJ-X-PAIR 
dom-to-med {L        -> Left-Abstract-Sort, 

R        -> Right-Abstract-Sort, 
Pair     -> Adj-x-pair-Q, 
make-pair -> make-pair, 
pi-1      -> pi-1, 
pi-2      -> pi-2} 

cod-to-med {pair.extent  -> body.pair.extent, 
left.extent '-> body.left.extent, 
right.extent -> body.right.extent} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% spec with example pair 

spec PERSON is 
sort Person 
const PI : Person 

end-spec 
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{E -> L}, 
{E -> Person}, 
{E -> R}, 
{E -> Name}, 

spec NAME is 
sort Name 
const Nl : Name 
end-spec 

%% Observe the use of the empty specification to take the coproduct of 
%% the actuals, PERSON and NAME. This is necessary because both these 
%% specs will be refined into the same spec SAMPLE-LABELS. 
%% The refinement of a colimit diagram produces a target spec defined 
%% as the colimit of a diagram of the same shape. Had we not used the 
%% empty spec, the refinement would have created two copies of 
%% SAMPLE-LABELS. 

spec EMPTY is end-spec 

spec SAMPLE-PAIR is 
import 
translate 
colimit of diagram 

nodes TRIV1: TRIV, TRIV2: TRIV, PAIR, EMPTY, 
PERSON, NAME 

arcs  TRIV1 -> PAIR 
TRIV1 -> PERSON 
TRIV2 -> PAIR 
TRIV2 -> NAME 

EMPTY -> PERSON : {}, 
EMPTY -> NAME   : {} 

end-diagram 
by {L -> Person, R -> Name} 

const sample-pair : Pair 

definition of sample-pair is 
axiom (equal sample-pair (make-pair PI Nl)) 

end-definition 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Sample refinements for components of sample pair 

spec SAMPLE-LABELS is 
import LABELLED-DISPLAY-OBJECT 
%% picture corresponding to sample person 
const Pl-pic : Picture 
%% text corresponding to sample name 
const Nl-txt : Text 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

spec PERSON-as-SAMPLE-LABELS is 
import 
colimit of diagram 

nodes TRIV, SAMPLE-LABELS, GUI-TEMPLATE 
arcs  TRIV -> SAMPLE-LABELS : {E -> LD-Object}, 

TRIV -> GUI-TEMPLATE  : {E -> Concrete-Sort} 
end-diagram 

%% objects which represent persons are labelled with pictures 
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axiom (implies (rep? x) 
(ex (pic) (equal (content (lbl x)) ((embed 1) pic)))) 

%% two person-reps are equal iff they are labelled by the same picture 

definition of equiv-rep? is 
axiom (iff 

(equiv-rep? person-repl person-rep2) 
(equal (content (lbl ((relax rep?) person-repl))) 

(content (lbl ((relax rep?) person-rep2))))) 
end-definition 

const Pl-abs : Abstract-Sort 

%% any representation of sample person should be labelled by sample picture 

axiom (iff 
(rep Pl-abs Pl-rep) 
(ex (Pl-mid) 
(and (equal Pl-abs (abs Pl-mid)) 

(equal (content (lbl ((relax rep?) Pl-mid))) 
((embed 1) Pl-pic))))) 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ip-scheme PERSON-to-SAMPLE-LABELS : PERSON => SAMPLE-LABELS is 
mediator PERSON-as-SAMPLE-LABELS 
dom-to-med {Person -> Abstract-Sort, 

PI     -> Pl-abs} 
cod-to-med {LABEL.extent -> SAMPLE-LABELS.LABEL.extent, 

DISPLAY-OBJECT.extent -> SAMPLE-LABELS.DISPLAY-OBJECT.extent} 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

spec NAME-as-SAMPLE-LABELS is 
import 
colimit of diagram 

nodes TRIV, SAMPLE-LABELS, GUI-TEMPLATE 
arcs  TRIV -> SAMPLE-LABELS : {E -> LD-Object}, 

TRIV -> GUI-TEMPLATE  : {E -> Concrete-Sort} 
end-diagram 

%% objects which represent names are labelled with text 

axiom (implies (rep? x) 
(ex (txt) (equal (content (lbl x)) ((embed 2) txt)))) 

%% two name-reps are equal iff they are labelled by the same text 

definition of equiv-rep? is 
axiom (iff 

(equiv-rep? name-repl name-rep2) 
(equal (content (lbl ((relax rep?) name-repl))) 

(content (lbl ((relax rep?) name-rep2))))) 
end-definition 

const Nl-abs : Abstract-Sort 
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%% any representation of sample name should be labelled by sample text 

axiom (iff 
(rep Nl-abs Nl-rep) 
(ex (Nl-mid) 
(and (equal Nl-abs (abs Nl-mid)) 

(equal (content (lbl ((relax rep?) Nl-mid))) 
((embed 2) Nl-txt))))) 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

ip-scheme NAME-to-SAMPLE-LABELS : NAME => SAMPLE-LABELS is 
mediator NAME-as-SAMPLE-LABELS 
dom-to-med {Name -> Abstract-Sort, 

Nl   -> Nl-abs} 
cod-to-med {LABEL.extent -> SAMPLE-LABELS.LABEL.extent, 

DISPLAY-OBJECT.extent -> SAMPLE-LABELS.DISPLAY-OBJECT.extent} 

ip-scheme 
EMPTY-to-LABELLED-DISPLAY-OBJECT : EMPTY => LABELLED-DISPLAY-OBJECT 
is 
mediator LABELLED-DISPLAY-OBJECT 
dom-to-med {} 
cod-to-med identity-morphism 

A.5.2. Display Pair 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% A concrete representation of an abstract object. 
%% ABS is surjective, REP is injective. 

spec REP is 
sorts Abstract, Concrete 

op rep : Abstract -> Concrete 
op abs : Concrete -> Abstract 

axiom (equal (abs (rep a)) a) 

op abs? : Abstract, Concrete -> Boolean 
op rep? : Concrete, Abstract -> Boolean 

definition of abs? is 
axiom (iff (abs? a c) (equal a (abs c))) 

end-definition 

definition of rep? is 
axiom (equal (rep? c a) (abs? a c)) 

end-definition 

end-spec 

41 



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Pair Homomorphisms 

%% SOURCE.Left <- SOURCE.Pair -> SOURCE.Right 
%%      | II 
%%      V V V 
%% DEST.Left   <-  DEST.Pair  ->   DEST.Right 

spec PAIR-HOMOMORPHISM is 
import SOURCE : PAIR, DEST PAIR 

op left-map 
op right-map 
op pair-map 

SOURCE.Left  -> DEST.Left 
SOURCE.Right -> DEST.Right 
SOURCE.Pair  -> DEST.Pair 

axiom (equal (left-map (SOURCE.left p)) (DEST.left (pair-map p))) 
axiom (equal (right-map (SOURCE.right p)) (DEST.right (pair-map p))) 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% The above diagram, with both REP and ABS vertically. 

spec REP-PAIR is 
translate colimit of diagram 
nodes 

PAIR-AC : REP, 
LEFT-AC : REP, 
RIGHT-AC : REP, 

REP-HOM : 
ABS-HOM : 

PAIR-REP 
LEFT-REP 
RIGHT-REP 

PAIR-HOMOMORPHISM, 
PAIR-HOMOMORPHISM, 

ARROW, PAIR-ABS 
ARROW, LEFT-ABS 
ARROW, RIGHT-ABS 

ARROW, 
ARROW, 
ARROW 

arcs 
PAIR-REP -> PAIR-AC : 
PAIR-REP -> REP-HOM : 

PAIR-ABS -> PAIR-AC : 
PAIR-ABS -> ABS-HOM : 

LEFT-REP -> LEFT-AC : 
LEFT-REP -> REP-HOM : 

LEFT-ABS -> LEFT-AC : 
LEFT-ABS -> ABS-HOM : 

RIGHT-REP -> RIGHT-AC 
RIGHT-REP -> REP-HOM 

{ f -> rep }, 
{ f -> pair-map }, 

{ f -> abs }, 
{ f -> pair-map }, 

{ f -> rep }, 
{ f -> left-map }, 

{ f -> abs }, 
{ f -> left-map }, 

: { f -> rep }, 
: { f -> right-map }, 

RIGHT-ABS -> RIGHT-AC : { f -> abs }, 
RIGHT-ABS -> ABS-HOM  : { f -> right-map } 

end-diagram by 
{ PAIR-AC.Abstract -> Pair-Abstract, 
PAIR-AC.Concrete -> Pair-Concrete, 
LEFT-AC.Abstract -> Left-Abstract, 

42 



LEFT-AC.Concrete -> Left-Concrete, 
RIGHT-AC.Abstract -> Right-Abstract, 
RIGHT-AC.Concrete -> Right-Concrete } 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% A ladder, ending in displayable pairs of adjacent display objects. 

%% OBJECT -> DISPLAY-OBJECT 
%% | | 
%% V V 
%% PAIR -> DISPLAY-PAIR 
%% | | 
%% V V 
%% PAIR-OF-DOS -> DISPLAY-PAIR-OF-DOS 

%% V V 
%%  PAIR-OF-ADJ-DOS -> DISPLAY-PAIR-OF-ADJ-DOS 

spec PAIR-OF-DOS is 
translate colimit of diagram 
nodes 

PAIR, REGION, 
LEFT : DISPLAY-OBJECT, RIGHT : DISPLAY-OBJECT 

arcs 
REGION -> LEFT  : import-morphism 
REGION -> RIGHT : import-morphism 
LEFT   -> PAIR  : { Display-Object -> Left } 
RIGHT  -> PAIR  : { Display-Object -> Right } 

end-diagram 
by { LEFT.Display-Object  -> Left-Display-Object, 

RIGHT.Display-Object -> Right-Display-Object } 

spec PAIR-OF-ADJ-DOS is 
import translate PAIR-OF-DOS 
by { Pair-of-DOs -> Pair-of-Adj-DOs } 
axiom (adj-x? (extent (left p)) (extent (right p))) 

end-spec 

spec DISPLAY-PAIR is 
import translate colimit of diagram 
nodes OBJECT, PAIR, DISPLAY-OBJECT 
arcs 

OBJECT .-> PAIR : { Object -> Pair } 
OBJECT -> DISPLAY-OBJECT : { Object -> Display-Object } 

end-diagram 
by { Object -> Display-Pair } 

end-spec 

spec DISPLAY-PAIR-OF-DOS is 
import translate colimit of diagram 
nodes PAIR, DISPLAY-PAIR, PAIR-OF-DOs 
arcs 

PAIR -> DISPLAY-PAIR : { Pair -> Display-Pair } 
PAIR -> PAIR-OF-DOs  : { Pair -> Pair-of-DOs } 

end-diagram 
by { Pair -> Display-Pair-of-DOs } 
axiom (contains (extent p) (extent (left p))) 
axiom (contains (extent p) (extent (right p))) 

end-spec 
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spec DISPLAY-PAIR-OF-ADJ-DOS is 
translate colimit of diagram 
nodes 

PAIR-OF-DOs, DISPLAY-PAIR, PAIR-OF-ADJ-DOs 
arcs 

PAIR-OF-DOs -> DISPLAY-PAIR    : { Pair-of-DOs -> Display-Pair } 
PAIR-OF-DOs -> PAIR-OF-ADJ-DOS : { Pair-of-DOs -> Pair-of-Adj-DOs } 

end-diagram 
by { Pair-of-DOs -> Display-Pair-of-Adj-DOs } 

end-spec 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Abstract. SPECWARE supports the systematic construction of formal specifications 
and their stepwise refinement into programs. The fundamental operations in SPECWARE 

are that of composing specifications (via colimits), the corresponding refinement by- 
composing refinements (via sheaves), and the generation of programs by composing code 
modules (via colimits). The concept of diagram refinement is introduced as a practical 
realization of composing refinements via sheaves. Sequential and parallel composition of 
refinements satisfy a distributive law which is a generalization of similar compatibility 
laws in the literature. SPECWARE is based on a rich categorical framework with a small 
set of orthogonal concepts. We believe that this formal basis will enable the scaling to 
system-level software construction. 
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1    Introduction 

SPECWARE™ supports the systematic construction of executable programs from axiomatic 
specifications via stepwise refinement. The immediate motivation for the the development 
of SPECWARE is the desire to integrate on a common conceptual basis the capabilities of 
several earlier systems developed at Kestrel Institute [Jüllig 93] T including KlDS [Smith 90] 
and DTRE [Blaine and Goldberg 91]. 

1.1    Reasoning about the Structure of Specifications, Refinements, 
and Code 

The most important new aspect of the framework developed is the ability to represent ex- 
plicitly the structure of specifications, refinements, and program modules. We believe that 
the explicit representation and manipulation of structure is crucial to scaling program con- 
struction techniques to system development. 

The basis of SPECWARE is a category of axiomatic specifications and specification mor- 
phisms. Specification structure is expressed via specification diagrams, directed multi-graphs 
whose nodes are labeled with specifications and arcs with specification morphisms. Specifi- 
cation diagrams are useful both for composing specification from pieces and for inducing on 
a given specification a structure suitable for the design task at hand. 

In SPECWARE the design process proceeds by stepwise refinement of an initial specifica- 
tion into executable code. The unit of refinement is an interpretation, a theorem-preserving 
translation of the vocabulary of a source specification into the terms of a target specification. 
Each interpretation reduces the problem of finding a realization for the source specification 
to finding a realization for the target specification. The overall result of the design process 
is to refine an initial specification into a program module. 

Of course, it is desirable to structure the overall refinement. Progression through multiple 
stages requires sequential composability of refinements. Similarly, parallel composition lets 
us exploit the structure of specifications by putting refinements together from refinements 
between sub-specifications of the source and target specifications. It is for this purpose that 
we introduce the notion of diagram refinements in this paper: just as specification diagrams 
impose a component structure on specifications, so do diagram refinements make explicit the 
component structure of a specification refinement. 

Specification refinement exploits specification structure; code generation, in turn, exploits 
the refinement structure. Given translations to code for the specifications that serve as 
the final refinement targets, SPECWARE generates a system of modules by induction on 
the refinement structure. Layered module construction mirrors sequential composition of 
refinements, and the "gluing together" of modules into larger modules reflects the (parallel) 
composition of specifications and refinements from components. 

Our work combines ideas and notions from the fields of algebraic specifications, category 
theory, and sheaf theory. We believe that the use of such "heavy" formal machinery is well- 
justified. For instance, category theory seems ideally suited for describing the manipulation of 
richly detailed structures at various levels of granularity. Similarly, the sheaf-theoretic notion 
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of compatible families seems fundamental to and pervasive in putting systems together from 
interdependent components. 

The ideas and concepts presented in this paper have been implemented in the SPECWARE 1.0 
system, which continues to be developed. It is interesting to note that the implementation 
efforts seem to fare the better the more closely the implementation reflects the underlying 
theoretical concepts. Conversely, experimentation with the SPECWARE system has had a 
significant impact on the theory of diagram refinement presented here. 

1.2    Outline 

We briefly present our specification language in Sect. 2 and in Appendix A. The focus of 
this paper is the sequential and parallel composition of refinements, as described in Sect. 4. 
Sect. 5 discusses how sufficiently refined specifications can be translated to programs. Sect. 6 
describes related work. Finally, we offer some conclusions and an outlook on future work. 

2    Putting Specifications Together 

The primary component of the SPECWARE workspace is the category of specifications and 
specification morphisms. Diagrams in this category describe system structure. Specifications 
can be put together via colimits to obtain more complex specifications. We will only briefly 
describe these concepts because these ideas are well known; see, e.g., [Burstall and Goguen 77, 
Sannella and Tarlecki 88a]. 

2.1    Specifications 

A specification is a finite presentation of a theory in higher-order logic. An uncommon fea- 
ture of SPECWARE is that subsorts and quotient sorts can be defined using predicates and 
equivalence relations, respectively. For details of the particular logic used, see Appendix A. 

2.1.1    Specification-Constructing Operations 

Specifications can either be directly given (as a set of sorts, operations, axioms, etc.) or 
constructed from other specifications via the following operations (inspired by ASL [Wirs- 
ing 86, Sannella and Tarlecki 88a]) 

translate (spec) by (renaming-rules) 
colimit of (diagram) 
spec import (spec) (spec-elements) end-spec 

"Translate" creates a copy of a specification with some elements renamed according.to 
the given renamings; an isomorphism is also created between the original and the trans- 
lated specifications. "Colimit" is the standard operation from category theory (see, e.g., 
[Mac Lane 71]); colimits are constructed using equivalence classes of sorts, operations, etc. 
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"Import" places a copy of the imported specification1 in the importing specification; an 
inclusion morphism is also generated. 

2.2 Specification Morphisms 

A specification morphism (or simply a morphism) translates the language of one specification 
into the language of another specification in a way that preserves theorems. Specification 
morphisms underlie almost all constructions in SPECWARE. 

2.2.1    Flavors of Specification Morphisms 

The set of sorts given in a specification generates a free algebra via sort-constructing opera- 
tions such as product, coproduct, etc. A specification morphism is a map from the sorts2 and 
operations of one specification to the sorts and operations of another such that (1) the map is 
a homomorphism on the sort algebras, (2) the ranks of operations are translated compatibly 
with the operations, and (3) axioms are translated to theorems. 

A presentation of a specification morphism in SPECWARE is a finite map from the declared 
sorts in the source specification to the declared or constructed sorts in the target specification, 
and from source operations to target operations, such that the map generates a specification 
morphism as described above. 

Many flavors of morphisms can be defined for specifications, ranging from axiom- 
preserving presentation morphisms to logical morphisms between the toposes (theories) gen- 
erated by the source and target specifications. The choice made in SPECWARE (declared 
sorts mapping to constructed sorts) is a pragmatic one, a compromise between simplicity 
and flexibility—morphisms are simple enough for use in putting specifications together, while 
flexible enough to model refinement. 

2.3 Specification Diagrams 

A morphism from .4 to B may be construed as indicating how A is a "part of" B. Thus, we 
can use morphisms to express a system as an interconnection of its parts, i.e., as a diagram. 
Formally, a diagram is a directed multigraph in which the nodes are labeled by specifications, 
and the edges by specification morphisms (in a multigraph, there can be more than one edge 
between any two nodes).3 

2.3.1    Composition (Putting Specifications Together) 

We can reduce a diagram of specifications to a single specification by taking the colimit 
of the diagram. The colimit of a diagram is constructed by first taking the disjoint union 
(coproduct) of all the specifications in the diagram and then the quotient of this coproduct 
via the equivalence relation generated by the morphisms in the diagram. The result will be 

1 Only one specification can be imported. A colimit is necessary if multiple specifications are to be imported. 
2 Here, we take "sorts" to mean all the sorts in the sort algebra. 
3 When convenient, we will treat a diagram as a functor from the category freely generated by its underlying 

graph to the category of specifications and specification morphisms. 
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a valid specification (i.e., the colimit exists) only if the sort algebra is free (this means that 
two structurally dissimilar sorts cannot be identified in a colimit). 

Example 1. The specifications for topological sorting are shown in Fig. 1 (following Knuth 
[Knuth 68, pp. 258-265]). The problem of topological sorting is specified as an input-output 
relation. To specify this relation, we need the concepts of partial order and total order 
on some set of elements; these specifications are first put together via a colimit and then 
imported. The specification for partial orders contains a membership predicate and a less- 
or-equal predicate with appropriate axioms. The specification for total orders renames the 
partial orders specification and extends it with a totality axiom and a less-than predicate. 

In the figure, the arrow labeled "d" is a definitional extension and the arrows labeled "c" 
are part of a colimit cocone. 

3    Stepwise Refinement 

The development process of SPECWARE is intended to support the refinement of a problem 
specification into a solution specification. Refinements introduce additional design detail, e.g., 
the transformation of definitions into constructive definitions, representation choices for data 
types, etc. SPECWARE'S refinement constructs, introduced below, address three important 
aspects of refinement: 

problem reduction: construction of a solution relative to some base; 

stepwise refinement: sequential composition of refinements; and 

putting refinements together: parallel composition of refinements. 

3.1    Interpretations 

The notion of refinement in SPECWARE is that a specification B refines a specification .4 if 
there is a construction which produces models of .4 from models of B [Sannella and Tar- 
lecki 88b]. Specification morphisms serve this purpose because associated with every mor- 
phism a : A —► B there is a reduct functor _!„ which produces models of .4 from models 
ofß. Morphisms, however, are too weak to represent refinements which normally occur 
during software development. So, we use a more general notion, interpretations, which are 
specification morphisms from the source specification to a definitional extension of the target 
specification. 

Definition 1 {Interpretation). An interpretation p : A =» B from a specification A (called 
domain or source) to a specification B (called codomain or target) is a pair of morphisms 
A —* A-as-B <— B with common codomain A-as-B (called mediating specification or simply 
mediator), such that the morphism from B to A-as-B is a definitional extension. 
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Definition2 (Definitional extension). A morphism S -> T is a strict definitional extension 
if it is injective and if every element of T which is outside the image of the morphism is 
either a defined sort or a defined operation. A definitional extension is a strict definitional 
extension optionally composed with a specification isomorphism. 

In this case, we also sometimes say that T is a definitional extension of 5. Definitional 
extensions are indicated in diagrams by   —<*-*- . 

A specification and any definitional extension of it generate the same topos (or theory). 
Hence, interpretations are generalized morphisms. Interpretations are a suitable notion of 
refinement because models of the source specification can be constructed from models of the 
target specification by first expanding them along the definitional extension and then taking 
reducts. 
Example 2. We show in Fig. 2 an interpretation from total orders to sequences in which 
total orders are represented as a subsort of sequences: a sequence represents a total order 
if and only if it does not contain any duplicate elements. This subsort is defined in the 
mediating specification. Total-order operations are then defined on this subsort in terms of 
the underlying sequence operations. 

In general, a source sort may be represented by a more elaborately constructed sort. For 
example, partial orders can be represented as a quotient of a subsort of graphs: to qualify 
as a representative, a graph must be acyclic (this is the subsort predicate), and two acyclic 
graphs represent the same partial order if their transitive closure is the same (this is the 
equivalence relation for the quotient sort). 

Interpretations encompass and generalize the data type refinement introduced in [Hoare 72] 
and other similar schemes. 

3.2    Sequential (Vertical) Composition of Interpretations 

Given two interpretations pi : A =>■ B and p2 : B => C such that the codomain of the first 
is the domain of the second, their sequential composition p2 o px : A => C is obtained as in 
the diagram below (the marking "po" indicates a pushout square).4 We use the facts that 
definitional extensions are closed under composition and are preserved by pushouts. 

A-as-B 

B A-°as-B-as-C B 

B-as-C     i 

\ 

4 Diagrams are assumed to be commutative unless stated otherwise. 
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Sequential composition of interpretations facilitates incremental, layered refinement. 

3.3    Algorithm Synthesis and Interpretation Construction 

Algorithm synthesis plays two roles in the model of software development supported by 
SPECWARE: 

- the creation of constructive definitions in interpretations, and 

- the refinement of input-output relations sufficient to extract a constructively defined 
function. 

Note that the definitions used in the mediating specification of an interpretation are not 
required to be constructive. As an example, see the definition of PRECEDES in the specification 
TOTAL-ORDER-AS-SEq in Fig. 2. If we want to generate code corresponding to this operation, 
then we have to further refine this definition, with the goal of replacing the existential 
quantifier by an algorithm. 

Similarly, the input-output relations used in a top-level specification are not usually 
functional. As an example, see the definition of the relation TOPSORT in the specification 
TOPOLOGICAL-SORTING in Fig. 1. If we want to find a function which satisfies this relation, 
we have to further refine the enclosing specification. This refinement can be guided by a 
hierarchy of algorithm theories which are used to impose additional structure on the speci- 
fication. Details of this process can be found in [Smith 93, Smith and Lowry 90]. 

Algorithm synthesis is one of the creative parts of software development and can be used 
to construct basic interpretations which can then be composed. SPECWARE aids this by 
providing a scaffolding which takes care of the mundane details, thus letting the developer 
identify and focus on the creative part. 

4    Putting Refinements Together 

Just as a specification can be put together from smaller specifications, so can refinements 
of a specification be put together from refinements of component specifications. Formally, 
the various ways of constructing specifications generate a Grothendieck topology on the 
category of specifications and specification morphisms, and refinements form a sheaf with 
respect to this topology. Introductions to Grothendieck topologies and sheaves can be found 
in [Mac Lane and Moerdijk 92], [Artin et al. 72, Exposes I-IV]; an application to algorithm 
derivation and several computer science examples can be found in [Srinivas 93]. 

4.1    Theoretical Basis: A Sheaf of Refinements 

Definition3 (A Topology for Specifications). We obtain a Grothendieck topology on the 
category of specifications and specification morphisms by defining a family of specification 
morphisms { 5t- —► S } with common codomain to be a covering family if S is a definitional 
extension of the union of the images of the arrows in the family. 
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Definition 4 (Image of a Specification Morphism). The image of a specification morphism 
a : 5 —► T is the specification consisting of all elements a(x) where x is any element of the 
source specification, e.g., sort, operation, theorem, etc. 

To see that the topology above encompasses the specification constructing operations 
of Section 2.1.1, observe that a translation generates an isomorphism (which is a singleton 
covering family), and that a colimit specification is covered by its family of cocone arrows. 
The case of import can be reduced to that of colimit. However, it is useful to distinguish 
the case when the import morphism is a definitional extension; it then forms a (singleton) 
covering family. 

Given any cover for a specification, a refinement for the specification can be constructed 
from refinements for the elements of the cover, provided the refinements are "compatible". 
This observation leads to a sheaf. 

Definition5 (A Sheaf of Refinements). Assume a fixed specification B, the base specifica- 
tion. Define a functor TZ : Specop -* Set by assiging to each specification S the set of all 
interpretations (refinements) from S to B, and to each specification morphism m : S -> T 
the function which restricts an interpretation p : T =$► B to an interpretation pom: S => B. 
This functor is a sheaf with respect to the Grothendieck topology defined above. 

The sheaf condition asserts that for every cover { /j : S,- —* S | i € I}, every compatible 
family of interpretations { p* : 5Z- =>■ B \ i G / } can be uniquely extended to an interpretation 
p : S —► B such that the restriction of p along any ft is equal to p,-. 

Informally, a family of interpretations { p,- : Si => B \ i € / } is compatible if the member 
interpretations agree wherever the pieces of the cover overlap. In this case, an interpretation 
p : S —► B can be constructed as the shared union of the given family of interpretations. 
The details of this construction will be omitted here, because the construction is similar to 
the parallel composition of interpretations described below. 

4.2    Practiced Realization: Diagram Refinement 

Three factors prevent a direct realization of the sheaf-theoretic view of putting interpreta- 
tions together presented in the previous section: (1) The compatibility condition is hard to 
check because pullbacks do not exist in general in the category of specification morphisms; 
(2) Equality of interpretations is hard to check; (3) It is unrealistic to assume that a single 
base specification (the refinement target) is given. Typically, we would like to assemble a 
target specification as we refine pieces of the source specification. 

We handle (1) by using only those covers which are directly given by specification con- 
struction operations. In particular, a (finite) colimit explicitly indicates the shared parts 
among the components of a specification. (2) is handled by introducing interpretation mor- 
phisms, which explicitly indicate how one interpretation specializes another. We also use 
a strong equality for morphisms which can be checked syntactically; see Definition 6 be- 
low. (3) is handled by using diagrams in the category of interpretations and interpretation 
morphisms. A preliminary target specification can be assembled from the codomains of the 
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interpretations in a diagram. The target specification can be further modified by modifying 
the diagram of specifications that defines it. 

We will describe these concepts below, finally obtaining a notion of refinement for dia- 
grams. 

Definition6 (Strong Morphism Equality). Two specification morphisms a,r : S -» T are 
equal if for each sort or operation x € S, a(x) = r(x). 

Definition! (Interpretation Morphism). An interpretation morphism from an interpreta- 
tion px : S\ => Ti to another interpretation p2 : S2 =*■ T2 is a triple of specification morphisms 
such that the diagram on the right below commutes. 

Si—Zi Si *Si-as-Tf d   T\ 

*T, —*S2- as-Tt-d— T2 

Interpretations and interpretation morphisms form a category Interp. Another view of 
this category is as (a sub-category of) the functor category of functors from • —► • <— • to 
the category Spec of specifications and specification morphisms. Hence, colimits in Spec 
lift to colimits in the category of interpretations.5 

Specifications, interpretations, and interpretation morphisms form a double category. 
That is, in addition to the obvious sequential/vertical composition of interpretation mor- 
phisms, there is also a parallel/horizontal composition of interpretation morphisms. The two 
compositions satisfy an interchange law: given six interpretations and four interpretation 
morphisms as shown on the left below, the equation on the right is true. 

S1=>T1—»>U1 

Ql ßl 

S2 =>T2 =>U2        (ß2 . a2) o (ft . ax) = (ß2 o ft). (a2 o ax) 
a2 A 

=>c/3 

Now, given two specifications which are defined as colimits, a compatible family of in- 
terpretations can be given as a diagram of interpretations. It will be useful here to treat 
diagrams as functors. 

Deflnition8 (Diagram Refinement). Given two diagrams of specifications dx : Ix —► Spec 
and d2:12 —► Spec, a diagram refinement (5, a) : d\ —► d2 is a pair consisting of a diagram 
of interpretations 8 : Ix-* Interp with shape Ix and a functor cr: Ix —* I2 between the two 
shapes such that the following diagram commutes (dorn and cod are the obvious functors 
5 Definitional extensions axe preserved by colimits. 
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which maps interpretations and interpretation morphisms to their domains and codomains, 
respectively). 

h -h 
di 

d2 

Spec-*-— Interp —-5 
dorn cod 

■Spec 

Example 3. In Fig. 3, we show a refinement of the specification for topological sorting (shown 
in Fig. 1): the partial orders are refined to pairs of sequences (one listing the elements and 
another listing the ordering relation), and the total orders are refined to sequences (as shown 
in Fig. 2). 

The components of the colimit which defines the import into the specification for topolog- 
ical sorting are refined in parallel. The vertical interpretations emanating from this diagram 
form a diagram refinement. Note that the target diagram has a shape which is different from 
that of the source diagram: the extra arrow in the target diagram is used to identify the 
sequences which represent the elements of the partial orders and the total orders (remember 
that topological sorting takes as input a partial order and produces a total order on the same 
set of elements). 

Triv 

Partial 
Order 

Total 
Order 

Triv 

Partial 
Order 

\ 
Total 
Order 

Triv 

Seq-V 
Seq-Pair-V-V' •Seq-X 

Seq-V 
Seq-Pair-V-V Seq-X 

Seq-V 
Seq-Pair-V-V "* Seq-X 

Domain 
Diagram 

Interpretation 
Diagram 

Shape 
Functor 

Codomain 
Diagram 

Fig. 3. Components of a diagram refinement 

4.2.1    Parallel (Horizontal) Composition of Interpretations 

As expected, a diagram refinement yields a refinement from the colimit of the source diagram 
to the colimit of the target diagram. Consider the diagram refinement (5, a) : di —► do above. 

58 



Let Si and S2 be the colimits of the two diagrams. The colimit of the interpretation diagram 
5 is an interpretation p: : Si =► S2 from Si to the colimit (say S2) of the diagram d2 o a : 
Ix -► Spec. The colimit cocone d2 -^ S2 when composed with the shape morphism a gives 
a cocone d2oa -^ S2. From this, we obtain a witness arrow p2 : S2 -»■ 52. The composition 
p2 o p! is the desired parallel composition of the diagram refinement (8, a) : di -»• d2. 

diagrams        di do o a 

colimits Si pi 
>S!> 

P2 

We will denote the parallel composition of a diagram refinement A by |Z\|. 

Example 4. In Fig. 4, we show details of the refinement of the specification for topological 
sorting. The figure illustrates both sequential and parallel composition of interpretations. As 
an example of sequential composition, partial orders are refined to pairs of sequences by rep- 
resenting them as graphs; the graphs are then represented as sets of nodes and sets of edges; 
then, these sets are represented as sequences. There are also several parallel compositions, 
e.g., the refinements of Set-of-Pair and TS-Import. 

4.2.2    Composing Diagram Refinements 

Diagram refinements can be composed by composing the individual interpretations which 
comprise them. Let {61,ax) : di -*■ d2 and (62,02) ■ d2 — dz be two diagram refinements. We 
can juxtapose these as shown below. 

h 
<Tl 

/, 
(72 

■h 

di di 

Spec «-— Interp —- 
dom cod 

-Spec- 
dom 

«2 

Interp 
dz 

cod 
-Spec 

Now, as shown below, we get two diagrams of interpretations with shape h, namely 
61 and 62 o o"i, such that the codomains of the interpretations in the first diagram match 
with the domains of the interpretations in the second diagram. By composing the individual 
interpretations, we get another interpretation diagram with shape Ix. We will denote this 
horizontally composed diagram of interpretations by (<52 o a{) • 8\. The shape morphism for 
the composed diagram refinement is obtained by composing the individual shape morphisms, 
c2 o ai : h —► I2 —*■ h- Thus,. ((82 ° o"i) • 81, a2 o cri) : di -* d3 is the composition of the two 
diagram refinements we started with. 
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Seq-V 
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introduced by 

shape morphism 

colimit 

Seq-Pair-V-V 
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» TS-Import —^—„ TopSort 

Refinement Refinement 

Fig. 4. Refinement of topological sorting 

<T2 Off) 

,h 
di 

Spec-6- Interp -V »-Spec-«■••■ InterpH^Spec 
* —      dom *   coo,.       r dorn r cod       r 

dom cod 

4.2.3    Compatibility of Vertical and Horizontal Interpretation Composition 

If A\ : di —*■ dz and A2 : dz —► d3 are two diagram refinements which can be composed, then 
the distributive law satisfied by them is 

|zlo[ o {ziil = |z\2 o Z\i|. 
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This can be verified by straighforward diagram chasing (using the interchange law for in- 
terpretation morphisms). Thus, |_| is a functor from the category of diagrams and diagram 
refinements to the category of specifications and interpretations. 

The distributive law above is a generalization of other such laws introduced in the lit- 
erature. The law introduced by Goguen and Burstall [Goguen and Burstall 80] is too con- 
straining to be practically useful. The law introduced by Sannella and Tarlecki [Sannella and 
Tarlecki 88b] uses parameterization and does not handle colimits; moreover, it is semantically 
oriented. 

5    Putting Code Fragments Together 

When specifications are sufficiently refined, they can be converted into programs which realize 
them. This involves a switching of logics. We use the theory of logic morphisms described 
by Meseguer [Meseguer 89]. We will confine our attention to entailment systems and their 
morphisms, rather than logics (which include models and institutions). Entailment systems 
are sufficient for the purpose of code generation. 

5.1    Entailment Systems and their Morphisms 

Definition 9 (Entailment System). An entailment system is a triple (Sig, sen, h) consisting 
of 

1. a category Sig of signatures and signature morphisms, 

2. a functor sen : Sig —► Set (where Set is the category of sets and functions) which 
assigns to each signature E the set of I7-sentences, and to each signature morphism 
a : E —* E', the function which translates I7-sentences to 27-sentences (this function 
will also be denoted by a), and 

3. a function h which associates to each signature E a binary relation h^C V(sen(E)) x 
sen(E), called i7-entailment, 

such that the following properties are satisfied: 

1. reflexivity: for any <p G sen(E), {ip} \-£ (p; 

2. monotonicity: if T\-£ <p and V D r, then V \~s <p 

3. transitivity: if Th^ &, for i € /, and rU {<# | i € /} \~s ip, then T \-£ ip; 

4. h-translation: if T h^ <p, then for any signature morphism a : E —*■ E', cr(r) \-s> cr((p). 

To map one entailment system into another, we map the syntax (i.e., signatures and 
sentences) while preserving entailment. Preservation of entailment represents the relevant 
correctness criterion for translating specifications from one logic to another. Note that this 
is similar to the correctness criterion for refinement within a single logic. 
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A simple way to map syntax is to map signatures to signatures, and sentences over a 
signature to sentences over the translated signature. If the former is a functor, the latter 
becomes a natural transformation. 

Definition 10 (Entailment system morphism—plain version). A morphism between entail- 
ment systems ($, a) : (Sig, sen, h) —*• (Sig'( sen', K) is a pair consisting of a functor $ : 
Sig —> Sig' which maps signatures to signatures and a natural transformation a : sen -^ 
sen' o $ which maps sentences to sentences such that entailment is preserved: 

r hr <p => az(r) h^(r) as((f). 

We can visualize a and the naturality condition in the following diagrams. 

Sig Sig' 

Set sen'{E') 

sen(Q) an sen'{Q') 

Morphisms which map signatures to signatures are not flexible enough, especially for 
code generation. In general, it may be necessary to map built-in elements of one logic into 
defined elements of another, and vice versa. This can be realized by mapping signatures to 
specifications, and vice versa, or, in general, specifications to specifications. 

However, morphisms which map specifications to specifications are too unconstrained. So 
Meseguer [Meseguer 89] proposes a general version of entailment system morphisms which 
map specifications to specifications "sensibly". We will use these morphisms but omit the 
detailed definition here. 

5.2    Translating from Slang to Lisp 

The specification language used in SPECWARE is called SLANG. We distinguish SLANG be- 
cause SPECWARE may have multiple back-ends, Lisp, C, Ada, etc., each with its own logic. 

We consider a sub-logic of SLANG, called the abstract target language (for LISP); there is 
one sub-logic for each language into which SLANG specifications can be translated. We will 
denote this sub-logic by SLANG . The sub-logic SLANG is defined by starting with a set 
of basic specifications, such as integers, sequences, etc., which have direct realizations in the 
target language. All specifications which can be constructed from the base specifications, 
with the following restrictions, are then included in the sub-logic: 

— for colimit specifications, only injective morphisms are allowed in the diagram; 6 

6 For colimit specifications which can be construed as "instantiations" of a "generic" specification, the 
morphisms from the formal to the actual may be non-injective. 
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- all definitions must be constructive, i.e., they must either be explicit definitions (e.g., 
(equal (square x) (times x x))), or, if they are recursive, they must be given as 
conditional equations using a constructor set. 

The goal of the refinement process is to arrive at a sufficiently detailed specification which 
satisfies the restrictions above. 

The sub-logic SLANG
--

 will be translated into a functional subset of LISP. To facilitate 
this translation, we couch this subset as an entailment system, denoted LiSP". The signa- 
tures of this entailment system are finite sets of untyped operations and the sentences are 
function definitions of the form 

(defun f  (x) 
(cond ((p x)   (g x)) 
...)) 

and generated conditional equations of the form 

(if  (p x)   (equal  (f x)   (g x))). 

The entailment relation is that of rewriting, since theories in LiSP      can be viewed as 
conditional-equational theories over the simply-typed A-calculus. 

In Fig. 5, we show a fragment of an entailment system morphism from SLANG to 
LISP—. Note, in particular, the translations from and to empty specifications. The set of 
sentences in the SLANG specification INT translates to the empty set; this is because integers 
are primitive in LISP. Similarly, the empty SLANG specification translates to a non-empty 
LISP specification; this is because some built-in operations of SLANG are not primitive in 
LISP. 

5.2.1    Translating Constructed Sorts 

There are numerous details in entailment system morphisms such as that from SLANG 

to LISP—. We will briefly consider the translation of constructed sorts. Subsorts can be 
handled by representing elements of a subsort by the corresponding elements of the supersort. 
Similarly, quotient sorts can be handled by representing their elements by the elements of 
the base sort. Sentences have to be translated consistently with such representation choices: 
e.g., injections associated with subsorts ((relax p)) and the surjections associated with 
quotient sorts ((quotient e)) must be dropped. Also, the equality on a quotient sort must 
be replaced by the equivalence relation defining the quotient sort. 

In Fig. 6, we show the representation of coproduct sorts by variant records. This trans- 
lation exploits the generality of entailment system morphisms: a signature is mapped into a 
theory. 

5.3    Translation of Colimits: Putting Code Fragments Together 

If an entailment system morphism is defined in such a way that it is co-continuous, i.e., 
colimits are preserved, then we obtain a recursive procedure for translation, which is similar 
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SLANG" LISP" 

EMPTY spec SLANG-BASE is 
ops implies, iff 
(defun implies (x y) 
(or (not x) y)) 

(defun iff (x y) 
(or (and x y) 

(and (not x) (not y)))) 
end-spec  

INT SLANG-BASE 

spec F00 is 
import INT 
op abs : Int -> Int 
definition of abs is 
axiom 
(implies (ge x zero) 
(equal (abs x) x)) 

axiom 
(implies (It x zero) 
(equal (abs x) (minus zero x))) 

end-def init ion 
end-spec 

spec FOQ' is 
import SLANG-BASE 
op abs 
(defun abs (x) 
(cond ((>= x 0) x) 

(« x 0) (-0 x)))) 
end-spec 

Fig. 5. Fragment of entailment system morphism from SLANG— to LISP— 

spec STACK is 
import INT 

sort-axiom 
Stack = E-Stack + NE-Stack 

op size : Stack -> Int 
definition of size is 
axiom 
(equal (size ((embed 1) s)) 

zero) 
axiom 
(equal (size ((embed 2) s)) 

(succ (size (pop s)))) 
end-definition 
end-spec 

spec STACK' is 
import SLANG-BASE 
op size, E-Stack?, NE-Stack? 
(defun E-Stack? (s) 
(= (car s) 1)) 

(defun size (s) 
(cond 
((E-Stack? s) 0) 
((NE-Stack? s) 
(1+ (size (pop (cdr s))))) 

)) 

end-definition 
end-spec 

Fig. 6. The representation of coproduct sorts as variant records 
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to that of refinement: the code for a specification can be obtained by assembling the code 
for smaller specifications which cover it. 

The entailment system morphism from SLANG to LISP briefly described above does 
preserve colimits because of our restriction to injective morphisms. In general, this is true 
for most programming languages because they only allow imports, which are inclusion mor- 
phisms. 

6    Related Work 

SPECWARE builds upon a large body of work in formal specifications and program synthesis 
and transformation developed over the last two decades. 

The design of SLANG, the specification language of SPECWARE, was inspired by Sanella 
and Tarlecki's [Sannella and Tarlecki 88a] and Wirsing's work [Wirsing 86] on structured 
algebraic specifications. Putting theories together via colimits was first proposed by Burstall 
and Goguen as part of CLEAR [Burstall and Goguen 77]. SLANG was further influenced by 
ClP [Bauer et al. 85, Bauer et al. 87] and OBJ [Goguen and Winkler 88]. 

SPECWARE adopts in a higher-order setting the notion of interpretations as refinements 
from Turski's and Maibaum's development in first-order logic [Turski and Maibaum87]. 
SPECWARE could be construed as a realization of the design methodology espoused by 
Lehman, Stenning, and Turski, with the addition of parallel refinement composition [Lehman 
et al. 84]. The notion of parallel refinement composition described in this paper is different 
from the horizontal composition of parameterized specifications described by Sannella and 
Tarlecki [Sannella and Tarlecki 88b]. 

The explicit use of subsort and quotient sort constructions in SPECWARE connects data 
type refinement in an algebraic setting with Hoare's abstraction/refinement functions [Hoare 72] 
which also underlie the refinement found in VDM [Jones 86]. 

Our work is both similar and complementary to Bird's and Meertens' equational rea- 
soning approach to program development [Bird 86, Bird 87]. Reasoning about commuting 
specification diagrams is equational reasoning at the specification level; Bird's and Meertens' 
equations are at the axiom level. Of course the two can happily co-exist. 

Our framework for structured code generation is adopted from Meseguer's work on logic 
morphisms [Meseguer 89]. 

The direct impetus to the development of SPECWARE came from the desire to integrate 
several systems developed at Kestrel Institute over the last ten years, and the realization that 
they shared a common conceptual basis. These include the algorithm design system KIDS 

[Smith 90], the data type refinement system DTRE [Blaine and Goldberg 91], REACTO, a 
system for the development of reactive systems [Gilham et al. 89], and a synthesis system 
for visual presentations [Green 87]. An overview is presented in [Jüllig 93]. 
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7    Conclusions 

7.1 Summary 

We presented the specification and refinement concepts of SPECWARE, a system aimed at 
supporting the application of formal methods to system development. Specware draws on 
theoretical work in formal specification and program synthesis as well as on experience 
with experimental systems over the past two decades. The development of SPECWARE con- 
tinues; however, all concepts introduced here have been implemented. We have found the 
co-development of theory and implementation mutually beneficial. 

The basic specification concepts of SPEC WARE are specifications, specification morphisms, 
and diagrams of specifications and specification morphisms. The colimit operation takes 
diagrams of specifications to specifications. 

The basic refinement notion is an interpretation, a morphism from a source specifica- 
tion into a definitional extension of a target specification. Interpretations are closed under 
sequential composition. To arrive at a notion of parallel refinement composition, we first 
observed that colimits and definitional extensions generate a Grothendieck topology on the 
category of specifications and specification morphisms, and that refinements form a sheaf 
with respect to this topology. Essentially this means that that given a specification diagram 
and an assignment of an interpretation to each node in the diagram one can construct an 
interpretation for the colimit of the given specification diagram, provided the compatibility 
condition holds: the interpretations assigned to the nodes must agree on shared parts. 

The difficulty of checking the compatibility condition, among other reasons, prevented the 
direct application of this theory in practice. We instead developed diagram refinements as a 
practical realization; in diagram refinements the compatibility of interpretations is explicity 
ensured by the presence of interpretation morphisms. 

7.2 Future Work 

Current work includes adding to SPECWARE parameterized specifications and interpretations 
of parameterized specifications. This will lead to a vertical composition similar to that of 
Sannella's and Tarlecki's [Sannella and Tarlecki 88b] but to a different horizontal composition 
notion. 

With the addition of parameterized specifications SPECWARE contains a set of primitives 
rich enough to allow for substantial experimentation. For this purpose we will recreate the 
algorithm design capabilities of KIDS in SPECWARE. We also expect the addition of code 
generation to other programming languages in addition to LISP. 
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A    The Logic of Slang 

The specification language used in SPECWARE is called SLANG. We distinguish SLANG be- 
cause SPECWARE may have multiple back-ends, Lisp, C, Ada, etc., each with its own logic. 

SLANG is based on higher-order logic, or higher-order type theory, as described in [Lam- 
bek and Scott 86]. However, unlike Lambek and Scott, we use classical logic (rather than 
intuitionistic logic) because the theorem prover currently used in SPECWARE is a resolution 
prover based on classical first-order logic (with some higher-order facilities). 

Logically speaking, a SLANG specification is a finite collection of sorts, operations, and 
theorems (some of which are axioms). For pragmatic reasons, we have added sort-axioms 
(which are currently used to name sort terms), constructor sets (which are equivalent to 
induction axioms), and definitions (which are sets of axioms characterizing new operation 

symbols). 
Every SLANG specification can be freely completed to a topos (see [Lambek and Scott 86, 

Section 11.12] for a description of this construction). The objects in this topos are all sorts 
definable in the specification; the arrows are all definable operations (i.e., provably functional 
relations). 

Built-in Constructs 

The only sort which is built-in, i.e., is implicitly part of every specification, is Boolean. Along 
with this sort, the standard operations on it such as true, false, and, or, etc., and axioms 
characterizing them are built-in. The universal (fa) and existential (ex) quantifiers, and a 
polymorphic equality (equal) are also built-in. 

Sort Constructors 

Lambek and Scott adopt a minimal set of sort constructors. While this is theoretically 
economical, we have chosen a richer set of sort constructors which arise in practice, especially 
in interpretations. We will use the generated topos to characterize these sort constructors; 
it is straightforward to generate the corresponding axioms. 

N-ary products and coproducts. Given a set of n sorts, their product and coproduct are 
sorts which come equipped with the normal projections and embeddings, and characterized 
by the usual universal property. 

A-l ••• A-n A-l ••• A-n 

(project   1^\       /^project  n) (embed   ljN^      y/^embed  n) 

A-l....,A-n A-1+...+A-n 

Function sorts. Given two sorts A and B, the function sort from A to B, written A -> B, 
satisfies the usual universal property and comes equipped with an evaluation operation, writ- 
ten (<rator> <ap>), and an abstraction operation, written (lambda (<args>)  <body>). 
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Subsorts. Given a sort A and a predicate op p: A -> Boolean on this sort, the subsort 
of A consisting of those elements which satisfy the predicate, written AI p, and the induced 
injection are characterized by the following pullback diagram (1 is the terminal object, and 
! denotes the unique arrow into it from Alp). 

(relax   p) 
p; »-A 

true    _      . 
 "-Boolean 

Quotient sorts. Given a sort A and an equivalence relation op e: A, A -> Boolean on this 
sort, the quotient sort consisting of equivalence classes of elements of A, written A/e, and the 
induced surjection are characterized by the following coequalizer diagram ((A,A) |e is the 
equivalence relation as a subsort of A,A). 

(project   l)o(relax   e) 

(A,A)|e 'A (qtt°tlent e)      „ A/e 
(project   2) o (relax   e) 

Sort Axioms 

Sort axioms are equations between sorts. Currently, these are restricted so that the left- 
hand side is a primitive sort (i.e., a sort which is not constructed using one of the sort 
constructors). Thus, in effect, sort axioms create new names for sorts. This keeps the sort 
algebra free, which is convenient for the type-checker. In the future, we may allow non-free 
sort algebras, and extend the type-checker to handle this. 

Constructor Sets 

A constructor set for a sort is a finite set of operations with that sort as the codomain. A 
constructor set is equivalent to an induction axiom. Here is an example. 

constructors {zero,  one, plus} construct NAT 

axiom induction-for-NAT is 
(fa (P)   (implies 

(and (and (P zero)   (P one)) 
(fa (x y)   (implies  (and (P x)   (P y)) 

(P (plus x y))))) 
(fa (n)   (P n)))) 

Note that a constructor set need not freely generate the constructed sort, i.e., the images of 
the constructors need not be disjoint. Additional axioms are necessary to force this. 
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Definitions 

Definitions in SLANG are finite sets of axioms which completely characterize an operation. 
What this means is that to define a new operation f: A -> B in a specification 5, there 
must be a formula phi with exactly two free variables x: A and y: B such that the relation 
specified by phi is provably functional in S: 

(and (fa (x)   (ex (y)   (phi x y))) 
(fa (x)   (implies  (and (phi x yl)   (phi x y2)) 

(equal yl y2)))) 

Then S can be extended with the operation f together with the defining axiom 

(iff  (equal (f x) y)   (phi x y)). 

References 

[Artin et al. 72] 

ARTIN, M., GROTHENDIECK, A., AND VERDIER, J. L. Theorie des Topos et Coho- 
mologie Etale des Schemas, Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, 
1972.   SGA4, Seminaire de Geometrie Algebrique du Bois-Marie, 1963-1964. 

[Bauer et al. 85] 

BAUER, F. L., ET AL. The Munich Project CIP, Volume I: The Wide Spectrum Lan- 
guage CIP-L, Lecture Notes in Computer Science, Vol. 183.  Springer-Verlag, Berlin, 1985. 

[Bauer et al. 87] 

BAUER, F. L., EHLER, H., HORSCH, A., MöLLER, B., PARTSCH, H., PAUKNER, O., 
AND PEPPER, P. The Munich Project CIP, Volume II: The Program Transformation 
System CIP-S, Lecture Notes in Computer Science, Vol. 292. Springer-Verlag, Berlin, 
1987. 

[Bird 86] 

BIRD, R. S. Introduction to the theory of lists. Tech. Rep. PRG-56, Oxford University 
Computing Laboratory, Programming Research Group, October 1986. Appeared in Logic 
of Programming and Calculi of Discrete Design, M. Broy, Ed., Springer-Verlag, NATO 
ASI Series F: Computer and Systems Sciences, Vol. 36, 1987. 

[Bird 87] 

BIRD, R. A calculus of functions for program derivation. Tech. Rep. PRG-64, Oxford 
University, Programming Research Group, December 1987. 

[Blaine and Goldberg 91] 

BLAINE, L-, AND GOLDBERG, A. DTRE - a semi-automatic transformation system. 
In Constructing Programs from Specifications, B. Möller, Ed. North-Holland, Amsterdam, 
1991, pp.165-204. 

69 



[Burstall and Goguen 77] 

BURSTALL, R. M., AND GOGUEN, J. A. Putting theories together to make specifica- 
tions. In Proceedings of the Fifth International Joint Conference on Artificial Intelligence 
(Cambridge, MA, August 22-25, 1977), IJCAI, pp. 1045-1058. 

[Gilham et al. 89] 

GILHAM, L.-M., GOLDBERG, A., AND WANG, T. C.  Toward reliable reactive systems. 
In Proceedings of the 5th International Workshop on Software Specification and Design 
(Pittsburgh, PA, May 1989). 

[Goguen and Burstall 80] 

GOGUEN, J. A., AND BURSTALL, R. M.   CAT, A system for the correct elaboration of 
correct programs from structured specifications.  Tech. Rep. CSL-118, SRI International, 
Oct. 1980. 

[Goguen and Winkler 88] 

GOGUEN, J. A., AND WINKLER, T. Introducing OBJ3. Tech. Rep. SRI-CSL-88-09, 
SRI International, Menlo Park, California, 1988. 

[Green 87] 

GREEN, C. Synthesis of graphical displays for tabular data. Tech. Rep. SBIR.FR.86.1, 
Kestrel Institute, October 1987.  Final Report for Phase I; Note: accompanying videotape. 

[Hoare 72] 

HOARE, C. A. R. Proof of correctness of data representation. Ada Informatica 1 
(1972), 271-281. 

[Jones 86] 

JONES, C. B.   Systematic Software Development Using VDM.  Prentice-Hall, Englewood 
Cliffs, NJ, 1986. 

[Jüllig93] 

JÜLLIG, R. Applying formal software synthesis. IEEE Software 10, 3 (May 1993), 11- 
22.   (also Technical Report KES.U.93.1, Kestrel Institute, May 1993). 

[Knuth 68] 

KNUTH, D. E. The Art of Computer Programming, Volume 1: Fundamental Algorithms. 
Addison-Wesley, Reading, Massachusetts, 1968. 

[Lambek and Scott 86] 

LAMBEK, J., AND SCOTT, P. J. Introduction to Higher Order Categorical Logic. 
Cambridge University Press, Cambridge, 1986. 

[Lehman et al. 84] 

LEHMAN, M. M., STENNING, V., AND TURSKI, W. M. Another look at software design 
methodology.   ACM SIGSOFT Software Engineering Notes 5, 2 (April 1984), 38-53. 

[Mac Lane 71] 

MAC LANE, S. Categories for the Working Mathematician. Springer-Verlag, New York, 
1971. 

70 



[Mac Lane and Moerdijk 92] 

MAC LANE, S., AND MOERDIJK, I.   Sheaves in Geometry analogic.   Springer-Verlag, 
New York, 1992. 

[Meseguer 89] 

MESEGUER, J.   General logics.   In Logic Colloquium'87, H.-D. Ebbinghaus et al., Eds. 
North-Holland, 1989, pp. 275-329. 

[Sannella and Tarlecki 88a] 

SANNELLA, D., AND TARLECKI, A.   Specifications in an arbitrary institution.   Inf. and 
Corn-put. 16 (1988), 165-210. 

[Sannella and Tarlecki 88b] 

SANNELLA, D., AND TARLECKI, A. Toward formal development of programs from 
algebraic specifications: Implementations revisited. Ada Informatica 25, 3 (1988), 233- 
281. 

[Smith 90] 

SMITH, D. R. KIDS - a semi-automatic program development system. IEEE Transac- 
tions on Software Engineering Special Issue on Formal Methods in Software Engineering 
16, 9 (September 1990), 1024-1043. 

[Smith 93] 

SMITH, D. R. Constructing specification morphisms. Journal of Symbolic Computation, 
Special Issue on Automatic Programming 15, 5-6 (May-June 1993), 571-606. 

[Smith and Lowry 90] 

SMITH, D. R., AND LOWRY, M. R. Algorithm theories and design tactics. Science of 
Computer Programming U, 2-3 (October 1990), 305-321. 

[Srinivas 93] 

SRINIVAS, Y. V. A sheaf-theoretic approach to pattern matching and related problems. 
Theoretical Comput. Sei. 112 (1993), 53-97. 

[Turski and Maibaum 87] 

TURSKI, W. M., AND MAIBAUM, T. E. The Specification of Computer Programs. 
Addison-Wesley, Wokingham, England, 1987. 

[Wirsing 86] 

WIRSING, M. Structured algebraic specifications: A kernel language. Theoretical Com- 
put. Sei. 42 (1986), 123-249. A slight revision of his Habilitationsschrift, Technische 
Universität München, 1983. 

«ILS. GOVERNMENT PRINTING OFFICE:     1998-610-130-61164 

71 


