
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, includ
sources, gathering and maintaining the data needed, and completing and reviewing the collection of informs
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the

Project (0704-0188), Washington, DC 20503.

AF .L-SR-BL-TR-98-

1. AGENCY USE ONLY (Leave blank) REPORT DATE

3/23/98

3. REPORT TYPE AND DATES COVERED

Final Report, 3/95 to 3/98

4. TITLE AND SUBTITLE

Nonlinear Control Theory for Aerospace Vehicles

6. AUTHOR(S)

Blaise Morton and Michael Elgersma

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research/^f
Boiling Air Force Base, DC 20332

RINDING NUMBERS

Contract Number
F49620-95-C-0015

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTAL NOTES

12A. DISTRIBUTION/AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report contains two related manuscripts on the subject of mechanism geometry. The first paper addresses
general theory, the second addresses practical computations. Together, they suggest a general approach for
efficient parametrization of spatial mechanism configuration spaces.

19980414 066 pnc
«KMaynraifflcaBD«

14. SUBJECT TERMS

Mechanisms, Configuration Space, Algebraic Equations, Generalized Eigenvalue
Problems

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

76

16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

1 Introduction
This report contains two related manuscripts on the subject of mechanism
geometry. The first paper addresses general theory, the second addresses
practical computations. Together they suggest a general approach for ef-
ficient parametrization of spatial mechanism configuration spaces. Before
describing the contents of these papers we discuss some of the steps that led
us to this point.

About ten years ago we started developing a general control architecture
for launch vehicles as part of the Adaptive Guidance, Navigation and Control
contract. The objective was to reduce the time and cost of producing flight
software for launch vehicles.

One of the difficult features of launch vehicles, from a control perspective,
is their limited margins in both performance and robustness. Because of lim-
ited performance margin, the ascent trajectory must be carefully tailored for
each flight, depending on payload and mission. Because of limited robustness
margin, the control laws must be reanalyzed and perhaps changed depending
on payload and mission. In order to reduce the time and effort required for
the flight software development, we decided to automate the guidance and
control design tasks in a software-development environment that included a
multibody simulation of the launch vehicle. The multibody model reflected
propellant slosh, engine gimbaling and vehicle flex dynamics. For this reason
we wanted to find an efficient simulation of our multibody system.

The multibody model we adopted for the launch vehicle had one feature
that made the kinematic problem especially easy - there were no closed loops.
In such a case the configuration space is simply the product of the individual
configuration spaces of the joints linking the bodies together. We were using
revolute and spherical joints only, so the configuration space turned out to
be a product of (closed subsets of) circles and orthogonal groups. Easy to
parametrize. The key technical insight for this problem was the realization
that the dynamic computations could be reduced from order N3 to order N,
where N is the number of degrees of freedom. Having figured out how to do
that for our launch vehicle simulation, we survived our first serious encounter
with multibody systems.

The next multibody problem we encountered was a true mechanism prob-
lem - a six-degree-of-freedom hand controller. The hand controller mecha-
nism was a general Stuart platform with three legs connecting the movable

top plate to the base. The details of the configuration are not important for
our discussion here, what is critical is that the motions of the various bodies
making up the mechanism were constrained by loop-closure conditions. In
this situation is it is no longer true that the configuration space is the prod-
uct of the individual configuration spaces of the joints connecting the bodies.
In fact, for general mechanisms of this type, the configuration spaces may be
very complicated and need not be easy to parametrize. This state of affairs
can make it difficult to design a mechanism for an engineering application,
because it is not easy to write down and analyze dynamic equations without
first parametrizing the configuration space (methods do exist, but they are
not so easy to use for system design). In any case, after some effort we were
able to parametrize our hand-controller mechanism and so we survived our
second encounter with multibody systems.

But our curiosity was piqued. The analysis of the hand controller took
longer than we thought it should, and the approach that finally worked was
unsystematic. Surely there was a better approach, one that we could learn be-
fore our third encounter. On looking into the matter, however, we found that
no general, systematic approach was known. In fact, there were single-loop
one-DOF mechanisms (the 7R) for which the most authoritative reference we
could find (Duffy's book) had no solution. In the 1970's, the 7R problem was
called the Mount Everest of mechanism problems by one of the experts in
the field. As luck would have it, the Chinese researchers Lee and Liang had
just solved the 7R problem in 1986 (it was now the early 1990's). Ignorant
of their results, we set out to develop a more systematic approach to general
mechanism problems, and we decided to use the 7R as our acid test for the
general method.

After a little work we found an approach that was at the same time sys-
tematic and computationally tractable. We worked out the details for the
special case of the 7R mechanism and submitted our results for publication in
June of 1993. It was then we learned of the Chinese solution of the 7R prob-
lem, so we could not claim primacy for the 7R solution. But our approach
to the problem was original enough to warrant publication, so we revised
the manuscript and resubmitted it. It appeared as " A New Computational
Algorithm for 7R Spatial Mechanisms " in Mech. Mach. Theory Vol. 31,
No. 1, pp. 23-43, 1996.

In the five years since we first applied our method to the 7R problem we
have continued developing both the theory and the computational methods

associated with the general approach. The fundamental theory is described
in full generality in the first paper included in this report. This first paper
is complete as it stands - ready for publication. The second paper is not
ready for publication, it is the current draft of a working document on the
computational technique. All of the methods discussed in the second paper
have been tested on numerical examples with experimental software, so we
are confident of useful results even though we do not yet know the full range
of applicability. We expect to continue research into this area in the years to
come.

1.1 Discussion of Key Results

The first paper is titled " Multi-Affine Modular Systems for Mechanism Fam-
ilies." A summary of contents can be found in the abstract and introduction
of that paper. Here we outline the key steps.

The first step is to define precisely what a mechanism of (R,P,S)-type
is. A minimal set of parameters needed to describe a mechanism of this
type is then defined. We then describe what is meant by the configuration
space of a mechanism, and develop ideas for computing the dimension of the
configuration space from the parameters describing the mechanism.

Some illustrative examples are then developed to show the difficulty with
the usual formula for the dimension of the configuration space from crude
features of the mechanism data alone. This difficulty motivates consideration
of families of mechanisms, and leads to the distinction between complete
and overconstrained families. A general theory of complete families is then
developed, and it is shown that the usual formula for the dimension of the
configuration space applies to a generic mechanism in such a family. It is
worth pointing out that nongeneric mechanisms in complete families and even
overconstrained mechanisms are often (approximately) encountered in real-
world systems (e.g. door-locks, axles), so the mathematical ideas developed
here are of practical significance, even though they are not usually considered.

Next, for a generic mechanism in a complete family we describe the struc-
ture of a branched cover for the configuration space over a base space com-
posed of a product of joint configuration spaces (this structure often arises,
but not always - consider three bodies connected by spherical joints for a
counterexample). The physical significance of the branch locus and the cov-
ering degree of this branched cover (when it exists) are discussed. It is an

interesting, open problem to find a formula for the covering degree directly
from the mechanism parameters and the joint-data of the base space. In
this situation, to compute coordinates on the configuration space, we can
compute local sections of the branched cover over the base space.

Whether or not the branched cover over the product of joints exists, we
can find a covering set of local parametrizations. Using a special set of
joint coordinates, we show how a modular system of multiaffine equations
describing the configuration space can be generated. The generation of the
multiaffine equations is the central theme of the third section of this paper.
Methods for solving equations of this type are the topic of the second paper
in this report.

The second paper is titled "A Polynomial-Runtime Algorithm for Multi-
Affine Equations." The central theme of this second paper is a polynomial-
runtime algorithm for solving the system of equations developed in the first
paper. In this case, the polynomial time condition means polynomial in the
number of solutions to the system of equations. In general, the number of
solutions of the system of equations grows combinatorially with the number of
equations, so the runtime of the algorithm grows faster than any polynomial
function of the number of equations. Given the growth in the number of
solutions, however, there is no avoiding this problem (just writing down the
solutions to the equations has superpolynomial growth). So, an algorithm
polynomial in the number of solutions is the best one can hope for. It is
worth noting that Groebner basis methods are worse than polynomial in the
number of solutions, so the algorithm described here is an improvement over
Groebner basis.

The text is divided into two chapters. The first chapter concerns solu-
tion methods when the number of equations is the same as the number of
unknowns. In this case the number of solutions for a generic system is given
by a known formula, and the solution method uses that formula.

The two basic techniques are:

1. Dilation - generating many equations of higher degree from the original
multiaffine system

2. Deflation - removing extraneous roots from the higher-order system

When these two methods are applied to systems of multiaffine equations,
the result is a generalized eigenproblem of size equal to the number of solu-

tions. The eigenproblem can be solved in polynomial time, hence the poly-
nomial runtime of the overall algorithm.

The second chapter concerns solution methods for multiaffine systems
when the number of equations exceeds the number of unknowns. Such sys-
tems are called overdetermined. Systems of this type are generated by the
method described in the first paper, hence our interest in them. When coef-
ficients are generic, overdetermined systems have no solutions, so the coeffi-
cients that arise in the mechanism problem must satisfy some special set of
relations that allows solutions to exist.

Overdetermined systems in n variables tend to have fewer solutions than
systems with n equations in n variables, so in theory the solution algorithm
could be quicker. In practice, the additional structure usually makes the so-
lution more difficult - especially in those cases where the number of solutions
is not know a priori.

For the overdetermined systems arising in mechanism .analysis we have
developed a third technique described in section 2.3. It is an iterative method
for reducing the size of a nonsquare generalized eigenproblem to a smaller
square one. A tentative name for this procedure is ablation, but a better
name might be found when the theory is better developed.

The theory in the case of overdetermined systems clearly needs more
work. By implementing these algorithms in experimental code and applying
them to examples we know the methods work at least for some problems,
but we have yet to determine the complete range of applicability.

MULTI-AFFINE MODULAR SYSTEMS FOR MECHANISM FAMILIES

Blaise Morton and Michael Elgersma

Honeywell Technology Center

MN65-2500

3660 Technology Drive

Minneapolis, MN 55418

Abstract

This paper describes part of our six-step, general approach for mechanism kinematic analysis.

The details for a particular application for the 7R spatial mechanism are presented in [ME],

Here we concentrate on the derivation of the modular system for a general class of spatial

mechanisms.

The quaternion-pair approach described below can be applied to spatial mechanisms endowed

with spherical, prismatic and cylindrical joints as well as the revolute joints illustrated in

[ME]. Systems of multi-affine equations are obtained in the same way for single and multi-

loop mechanisms. In these equations, the number of independent variables is equal to the sum

over all joints of the joint degrees of freedom, so such a system is minimal in that sense.

1. INTRODUCTION

The algebraic analysis of mechanism kinematics is an old subject that remains an active area

of research today. Some of the current theoretical interest has been motivated by the growing

power in today's computers, to analyze examples that were simply too complicated to exam-

ine by hand. A case in point is the general 1-DOF, spatial 7R mechanism that was recently

solved by Lee and Liang [Leel,2] in the late 1980s. The subject of this paper is a new

approach to kinematic analysis of mechanisms that addresses a special but important class of

examples, including the 7R mechanism. Here we describe our general approach from a

mathematical point of view. The main result is a computational technique for generating

modular systems of equations [Macaulay] of a very special type.

Before embarking on the general theory we present a simple example, to demonstrate the

nature of the the problem being solved.

Consider a 4-bar, planar linkage. One of the bars is assumed fixed (ground), while the other

three are joined in pairs by revolute joints to form a closed circuit. For general values of the

bar lengths, this simple mechanism has one degree of freedom. Any one of the joint angles

can be used as a local coordinate for the one-dimensional configuration space, pick one of the

angles on the base and call it 03. The problem is to find the values of 0O, e^ and 02 as a

function of 63.

There is a standard technique for converting this problem into a system of algebraic equations.

For each fixed value of ^ there is a simple geometric construction to find the allowed

configurations. The problem reduces to finding the points of intersection of two circles in the

plane, and from the geometry it is clear that there are only two configurations possible for

each value of 9k. The obvious way to compute the coordinates of these two points (and

2

thereby determine the other joint angles) is to write down the pair of quadratic equations in

the coordinates (x,y) of the intersection point and find all solutions. An interesting feature

arises from the algebraic viewpoint -- by Bezout's theorem we might expect to find four solu-

tions rather than two. This apparent inconsistency is resolved by a well-known explanation.

Two of the four algebraic solutions are finite, possibly corresponding to real geometric solu-

tions (if real solutions exist), while the remaining two solutions are always meaningless for

the kinematic problem - they are the circular points at infinity. This problem of extraneous

roots is easily handled in the simple examples, but the analogous problem for more complex

mechanisms has not been solved in general. The work by Duffy [Duffyl] is the most

comprehensive work in which this type of problem has been addressed, but all the spatial

mechanisms analyzed there are 1-DOF, single-loop with prismatic and revolute joints. The

difficulties presented by the 7R problem, for example, can be traced in the evolutionary path

[Freudenstein], [Roth], [Duffy2], [Lee 1,2] that led to the correct solution in this case.

The solution presented in [Lee 1,2] for the 7R problem was not very systematic, leaving open

the question of how to proceed for more complicated (e.g. multiloop) spatial algorithm. To

address the problem of general multiloop spatial mechanisms, we have developed the alterna-

tive approach presented in this paper. This method was first applied to the 7R mechanism in

[ME]. The general mathematical theory is presented here.

To give a flavor of our new approach, let us return to the four-bar example. By the methods

described in Section 3, we derive systems of multi-affine equations in the four variables

Zi, Z2, z3, z4 where

Q

Zj = tan(^) (I'D

In the special case of planar 4-bars, we obtain three equations for each of the four angle

3

parameters - obviously these are not independent. It turns out that only two of these three

(the translation equations) represent real constraints for the parameters Zj. To show the sym-

metry of the construction process we use a variable index notation zk+3, zk+2, zk+1, zk and con-

sider the subscripts in the integers mod 4 for each integer value of k.

For each fixed value of zk+3, we can solve for zk+2, zk+1, and zk. Let the leg lengths be llf 12,

13, and 14. Two components of the translation equations (starting at joint k) are:

|A(zk+3) + zk+2 B(zk+3)J 1
zk+i

= 0eR2
(1.2)

which is a generalized eigenvalue problem with:

A(zk+3) =

B(zk+3) =

W+1k+3+1k+2+1k+l zk+3Hk+4+1k+3+1k+2-1k+l)

zk+3(_1k+4+1k+3+1k+2+1k+l) -1k+4-1k+3_1k+2+1k+l

zk+3Hk+4+1k+3-1k+2-1k+l) -^+4-^+3+^+2-^+1

-lk+4_1k+3+lk+2+1k+l zk+3(lk+4_1k+3+1k+2-lk+l)

(1.3)

(1.4)

To obtain the remaining variable, zk, we can use an additional affine equation obtained by

starting the translation at another joint. By starting at each of the 4 joints, the translation

equations give a set of two scalar multi-affine equations for each choice of k=l,2,3,4 for a

total of 8 equations. Since the k01 equations do not involve zk, we can obtain 8 more multi-

affine equations by multiplying by zk, for a total of 16 multiaffine equations. This set of

multi-affine equations is an example of our main result.

In any application there is more work to be done once the system of equations has been con-

structed. Let us consider the last step for the planar four-bar. From the 16 multi-affine

4

equations there are many ways to select a set of four independent ones to obtain a 4 x 4 gen-

eralized eigenvalue problem involving all the Zj.

|L(zk) + zk+3 N(zk)J
1

zk+i
zk+2

zk+2zk+l

= 0eR4 (1.5)

The determinant of the 4 x 4 matrix on the left-hand side of equation (1.5) must vanish, giv-

ing us a single degree-4 polynomial relation between zk and zk+3. There are several ways to

proceed from here.

First, by proper choice of multi-affine equations in constructing the matrix, one can find spe-

cial structure in the matrices L and N that leads to degeneracies in the determinantal polyno-

mial. The determinant becomes the square of a degree-two polynomial so only two distinct

solutions exist.

Alternately, one can take the point of view that there are many such determinantal polynomi-

als in the same two variables. The polynomial we want is the greatest common divisor of the

complete set.

In any case, when all the multiaffine equations are considered together, it is found that only

two solutions exist

The reader is invited to try his hand in exploring this simple case computationally. The gen-

eral situation for more complicated mechanisms remains an interesting research problem.

2. PROBLEM STATEMENT AND NOTATION

We will be considering spatial mechanisms consisting of rigid bodies connected by joints of

the following type:

1) revolute (type R)

2) prismatic (type P)

3) spherical (type S)

We assume the reader is familiar with the above terminology ~ the mathematical characteriza-

tion of these joints is discussed in the next paragraph. The standard enginnering perspective is

presented in [Duffy]. It should be observed that some other joint types (e.g. cylindric), some-

times considered separately by engineers, can be constructed from the basic joint types above.

The common feature shared by the above three joint types can be stated succinctly: the rela-

tive motions allowed by these joints form real-algebraic subgroups of the group E(3) of

Euclidean motions in R3. The relative motions allowed by an R-joint are those that fix a point

in space and a line containing that point. The relative motions allowed by a P-joint form a 1-

parameter translation group. The relative motions allowed by an S-joint are those that fix a

point in space.

2.1 Mechanism Definition

To specify a mechanism completely (for our purposes), we need the following data:

1) A set W of rigid bodies

2) A subset J of W x W; points in J are pairs of bodies that are connected

6

3) A joint (R, P, or S) for each point in J

4) Data specifying the relative constraint imposed by each joint on its body-pair

The number of bodies (cardinality of W) is denoted N.

We explain "mechanism specification" by a practical analogy. Imagine a box, full of parts, on

which is written "some assembly required." Included in the box is an instruction booklet that

tells how to identify each part uniquely (identify the points in W). The booklet also tells

which part should be attached to another part (identify the points in J), and the means of

attachment is specified as well (joint type for each point in J). On each body, the manufac-

turer has thoughtfully provided fixtures appropriate for the specified joints. The data specify-

ing the relative constraint imposed by each joint is exactly the information required by the

machine operator who endowed each body with its joint fixtures. The reader can imagine

assembling the mechanism, one joint at a time (perhaps according to some recommended

order), until all the bodies are connected by the appropriate joints.

Anyone who has bought a box full of parts on which is written "some assembly required" will

no doubt be wondering if the parts in our hypothetical box really do fit together. In answer to

that question we, like most manufacturers, merely give assurance that the parts were designed

to fit together. We leave some construction details to the customer who should find that, for

some configurations of pieces during assembly, the parts really do fit together as advertised

(provided the dimensions of the pieces are within their design tolerances).

2.2 The Configuration Space of a Mechanism

Once the mechanism is assembled, the individual bodies within it may be moved continuously

through a range of distinct positions and orientations relative to one another. When we con-

sider motions, one specified body is assumed fixed in space (attached to ground) to eliminate

7

motions of the entire mechanism as a rigid body. The set C of all possible distinct, relative

positions of the bodies in the assembled mechanism is called the configuration space. Let us

clarify what we mean by the set of possible distinct, relative positions of the bodies.

We return to our practical analogy. Unlike most manufacturers, we explicitly state that the

pieces might not fit together if their dimensions are outside design tolerances. This can hap-

pen, for example, in a 4-bar planar linkage where the length of one leg is greater than the sum

of the lengths of the other three. A more subtle concern is that different (i.e. nonisotopic)

embeddings of the mechanism in R3 could result if two identical kits are assembled by pro-

cedures involving different intermediate configurations. Moving the mechanism too far in one

direction will cause the bodies to collide. Problems of this sort can be very complicated if

considered in the context of global embeddings ~ the topological questions alone lead to

problems in knot and braid theory. We look instead at the simpler problem in which intersec-

tions are allowed to occur and the various bodies are allowed to pass through each other.

That is, we allow mechanism configurations into the set C even if they are immersed but not

necessarily embedded. In addition, we allow some complex solutions. Allowing complex solu-

tions (at least for some values of the part dimensions) is an artifice mandated by our computa-

tional techniques. The set of real, embedded (i.e. physically realizable) configurations is a

subset of the configuration space C we have defined here.

2.3 Families of Mechanisms

We now define the concept of a family of mechanisms.

Definition: By a family of mechanisms, we mean a collection of mechanisms having the same

number of bodies, isomorphic sets J, and the same joint type for the corresponding points in J.

In other words, the only differences between two mechanisms in the same family are:

8

1) sizes and shapes of the N bodies (independent of joint data)

2) data involving fixed-point location and line orientation at each R-joint

3) direction of translation for each P-joint

4) fixed-point location for each S-joint.

Because we are only concerned with immersed mechanisms, we really do not need to consider

the exact sizes and shapes of the bodies (parameters of the first type). Each body might as

well be all of R3. From our point of view, all that matters is the finite-dimensional space of

parameters associated with the positions and orientations of the R-, P- and S-joints. Each body

serves to fix the relative geometry of the joints attached to it. Using this criterion as an

equivalence relation, we turn attention to equivalence classes of families. We observe that the

equivalence class of a complete family is a finite-dimensional space. From now on we use the

term "family" to denote the term "equivalence class of families," the latter being a more pre-

cise description of our object of attention.

There is an important special class of families that merit special attention.

Definition: A family is called complete if all the parameters of the above four types are

allowed to vary independently.

We have been concentrating on the theory of spatial mechanisms, but all of our statements so

far apply equally well to planar mechanisms. The adjustment required is to leave out spheri-

cal joints and consider only bodies in the plane z=0 connected by R- and P- joints that

preserve that plane. Now that we are considering families of mechanisms, however, we must

recognize the distinction between the planar and spatial cases.

Example la: Consider a four-bar linkage in the plane. There are four real parameters: the dis-

tances between the revolute joints on each of the four bodies. In this case, the complete

9

family is the four-dimensional family of all four-bar linkages in the plane.

Example lb: Consider a three-bar spatial mechanism with spherical joints connecting each bar

with the other two. There are three real parameters: the distances between the S-joints on each

of the three bodies. In this case, the complete family is the three-dimensional family of all

spatial mechanisms of this type.

Note that the four-dimensional family in example la is not a complete family when the 4-bar

is viewed as a spatial mechanism. In fact, unless the geometric parameters of the mechanism

are perturbed in special ways, there are no solutions to the system of algebraic equations

describing the perturbed mechanism. The angles and positions of the pairs of fixed axes asso-

ciated with the R-joints on the four bodies must satisfy compatibility conditions if the bodies

are to fit together in any way at all. We will return to this discussion later.

There are practical reasons for considering families of mechanisms rather than individual

mechanisms, though we do not elaborate this point here. From a theoretical point of view we

shall see that the "family perspective" helps to clarify some of the peculiar mathematical

features of special mechanism types.

Before proceeding, we require some more definitions. We consider the planar and spatial

cases in parallel.

For a joint j, we define the number of degrees of freedom Dj of that joint. In both the planar

and spatial cases, both the R-joint and the P-joint have a single degree of freedom. In the

spatial case only, an S-joint has three degrees of freedom.

In the following we let Nj denote the number of constrains imposed by joint j.

10

In the planar case Nj = 3 - Dj. Each body in the plane starts with three degrees of freedom,

but this number is reduced by Nj independent algebraic equations relating the positions and

orientations of the two bodies connected by j.

In the spatial case Nj = 6 - Dj. Each body in space starts with six degrees of freedom, but

this number is reduced by Nj independent algebraic equations relating the positions and orien-

tations of the two bodies connected by j.

A little thought leads to the following formula for DOF, where DOF is defined to be the

dimension of the configuration space of a mechanism:

Planar Mechanism: DOF = 3 (N-l) - X Nj (2.la)

Spatial Mechanism: DOF = 6 (N-l) -EN n ib)
je J

The number (N-l) appears because one of the bodies is fixed to ground.

A little more thought reveals that these formulas do not always work. Considering example la

as a spatial mechanism provides one counterexample but it is of a very special type. We pro-

vide another, more general counterexample to clarify the problem.

Example 2: Consider a spatial mechanism consisting of two bodies, each with two ball joints.

The two bodies are constructed so that that their ball joints are separated by the same dis-

tance, so the mechanism can be assembled in R3. Note that DOF = 1, because the ungrounded

body is free to spin about the axis through the two ball joints. The right-hand side of

11

equation (2.1b) is 0.

In the following we restrict our discussion again to spatial mechanisms. The reader should be

able to make the proper adjustments for the restricted planar case.

The formula of equation (2.1b) does not work for example 2 because the mechanism type is

overconstrained. By overconstrained, we mean that a special relation must exist among the

parameters of the complete family in order for the mechanism to be realizable. If the distances

between ball joints on the two bodies are different, no solutions (real or complex) exist to the

system of algebraic equations describing the mechanism.

To address this situation, we consider the configuration space C of the mechanism as a subset

of the product space E(3)(N_1) cut out by the intersection of the constraint equations [recall

that one of the bodies is grounded, hence the exponent (N-l)].

Definition: A mechanism is called simply-constrained if its configuration space C is the

transverse intersection of the S N: algebraic constraint equations imposed by its joints.
jeJ J

For a spatial mechanism, the transversality condition means that the rank of the subspace of

the cotangent space of E@f~l) spanned by the differentials of the constraint equations at

each point of C is equal to E N:. From this definition the following consequences are
jeJ

immediate for a simply-constrained mechanism:

1) The configuration space C is a smooth manifold

2) The dimension of C is DOF, which is 6 (N-l) - Z Nj

3) A small neighborhood of the complete family is realizable by simply constrained mechanisms

12

Now consider the parameter space X of the complete family of a simply-constrained mechan-

ism M. The mechanism M represents a point in X at which the constraint equations intersect

transversely in ECS)^"1*. This transversality condition is an open condition, hence is true for a

Zariski-open set U in X. The mechanisms corresponding to points in U are simply-

constrained. Therefore, it makes sense to speak of a family of simply-constrained mechan-

isms; we call such a family a simple family. Note that not every mechanism in a simple fam-

ily need be simply-constrained - in fact, there will be closed sets in X for which the

configuration spaces are singular algebraic sets. On the other hand, every Zariski-open set of

mechanisms containing one of these singular algebraic sets will contain simply-constrained

mechanisms, so the singular behavior inside a simple family is, in some sense, not so bad.

The difference between example lb and 2 is now clear - example lb lies in a simple family

while example 2 does not. A mechanism that does not lie in a simply family is called over-

constrained.

The general concept of mechanism families seems natural from a mathematical viewpoint,

though our current understanding of them is quite limited. In his undergraduate thesis

[Walker], Walker analyzed the class of simple families of single-loop planar linkages. For

this class the complete families, when normalized by a geometric scale factor, are geometric

Simplexes (higher-dimensional tetrahedra) of dimension one less than the number of bars in

the linkage. Walker determined the structure of the algebraic subsets corresponding to singu-

lar mechanisms within the families, and constructed Morse functions on the corresponding

real configuration spaces to determine the changes in topology for families of mechanisms

passing through those singular sets. He also completed the classification of two-DOF

configuration spaces for mechanisms of this type, and obtained partial results for the higher-

dimensional cases. The local parametrization problem appears tractable for planar linkages of

arbitrary loop-structure, though Walker did not address it. We are not aware of any other

references along these lines.

13

2.4 Statement and Discussion of the Main Problem

We are interested in the following problem:

MAIN PROBLEM: Determine, by algebraic methods, explicit parametrizations of the

configuration space for a family of specified mechanisms. This parametrization should be of

minimal degree.

The rest of this section is devoted to discussion of the main problem.

As we have already seen, for most mechanisms in a simple family (i.e. a Zariski-open set),

the configuration spaces are smooth manifolds of dimension DOF as defined by equation (lb).

When C is a manifold, the explicit parametrizations we have in mind form a special, algebraic

coordinate atlas for C.

In general (simply-constrained or not), the construction is as follows.

From the set J of all joints, select (if possible) a subset Q such that:

1) Z D: = DOF
jeQ J

2) the degrees of freedom of joints in Q are independent

For many practical examples we have analyzed, subsets Q satisfying the first condition do

exist (see example 2 above for a counterexample). The meaning of the second condition will

become apparent immediately.

Consider the situation where all the free parameters associated with the joints in Q are frozen

14

at some fixed values. When C is a smooth manifold, the two conditions above are those

required to make the corresponding set of configurations a discrete, zero-dimensional set (i.e.

a set of points). This discrete set is the zero set of the ideal generated by finitely many poly-

nomial equations and so is a finite set. The number of points in that set (counting multiplici-

ties) is denoted Dc/Q, the degree of C over Q. It is not always the case that sets Q can be

found satisfying the above two conditions even for simple families (e.g. example lb), but

there are enough examples to make this special condition worth consideration.

For the rest of this subsection we assume a set of joints Q satsifying the above two conditions

can be found.

The geometric situation can viewed in another way as follows. Suppose the configuration

space C of the mechanism M is a smooth manifold and let Q be a set of joints as above. Let

HQ be the product manifold of all the geometric subgroups of E(3) corresponding to the rela-

tive motions of each joint in Q. Then there is a finite branched covering map 7t : C -> HQ

[Gunning]. The fiber over each point h of HQ is the finite set of points in C for which the

joints in Q have the values specified by h. The number DQQ is the branching order of this

covering. The set Bn defined to be the union of multiple points in C with respect to % is

called the branch locus of %.

Now we observe that the construction above for the configuration space C of a single mechan-

ism extends naturally to the configuration spaces of all mechanism in a family (assuming the

family is realizable, as in the case of simple families). For any configuration-space manifold

C in that family the number DC/Q is the same. Because the number DC/Q is independent of

the choice of C, we change notation and denote this number by DQ.

We are finally able to provide a precise statement of the main problem. Consider a family of

mechanisms and a subset Q satisfying the above conditions 1 and 2. Determine a mapping (in

15

the form of a computational algorithm) from the product space HQ to a set of polynomials in

flag form for the remaining joint positions [Cox], That flag form should have the property

that, for a Zariski-open set of mechanisms in the family, and for every fixed point in HQ, the

number of discrete solutions (counting multiplicity) in that flag is DQ.

The motivation for the main problem arises in the framework of computer-aided mechanism

design, analysis and dynamic simulation. From the flag form it is possible to compute

efficiently all allowed positions of a mechanism. By constructing the flag for a family of

mechanisms, we can use the same basic algorithm for mechanisms in a general class, thereby

allowing a mechanism designer to change the dimensions (e.g. lengths) of the bodies, the

orientations and positions of the joints, in a interactive manner. For simple families, small

changes can be made to every one of the parameters while staying within the class of simply-

constrained mechanisms. Our computational procedure provides a good coordinate atlas for

all mechanisms in that local family.

Once the algebraic equations are formulated, a polynomial flag of the type just described can

be computed by the Groebner-Basis algorithm [Buchbergerl,2]. In practice, however, the

Groebner-Basis algorithm does not provide answers quickly (see [EM] for a discussion of

computational issues). The subject of this paper is an approach that produces a flag of the

same type by more practical computational methods.

In general, a single subset Q will not provide a good atlas for an entire configuration manifold

because the projection map rc generally has a non-empty branch locus. To form a good atlas,

one may consider a finite collection of subsets Qlf • • • ,QK for which the intersection of the

corresponding branch loci is empty. A good atlas is needed for working on dynamical prob-

lems such as mechanism control.

16

3. DEVELOPMENT OF THE MULTI-AFFINE SYSTEM

For a given mechanism, each of the rigid bodies in W has its own reference coordinate sys-

tem. From a kinematic viewpoint, the role of the body coordinate system is to allow

specification of the geometric relation (separation, relative orientation in space) among the

joints on that body. The mathematical data describing the body in its coordinate chart is a

subset of the data required by a machinist to build it. Within each coordinate chart a three-

dimensional coordinate system is specified, and the coordinates of salient parts of the body are

identified. In the following we will use the notation Uj to denote the coordinate chart of body

j, and (x-, yjf Zj) to denote the coordinate functions in Uj. When discussing properties that hold

for a general chart we often omit the subscript j.

3.1 Loop Closure Equations

We first discuss the notion of transition functions. Roughly speaking, a transition function is a

mapping from one coordinate chart to another that identifies those points that are joined

together in the assembled mechanism. In the next paragraph we clarify this notion.

Let SO(3) denote the special orthogonal group of real orthogonal matrices of determinant 1.

The Euclidean group E(3) is the group of all mappings <)> from R3 to R3 of the form:

<>(x) = A x + b (3.1)

where A is in SO(3) and b is in R3. There is a standard representation of E(3) as a subgroup

17

of 4 x 4 matrices by the mapping p defined as follows:

P«t>) =
A b
0 1

(3.2)

where <>, A and b are as in equation 1. The value of the transformation <j> applied to the

three-vector x is realized by identifying x with the four-vector x', where

x' = (3.3)

and computing the usual matrix product

[<Kx)]' = p(<))) x' (3.4)

Consider two coordinate charts, Uj and U2, for a pair of bodies connected by a joint. Using

the 4 x 4-matrix notation, the set of Euclidean motions <t>i2 satisfying the constraint equations

have the following forms, depending on joint type.

First, for an R-type joint, it is easy to check that the 1-parameter transition functions are of

the form

p(<J>2i(e)) =
R(0) b-R(0)a

0 1
(3.5)

where a, b are constant vectors that represent fixed points of the relative motion between the

18

two bodies in the two coordinate systems. The matrix R(0) is a rotation matrix of the fonn:

R(6) = [wpeip]
1 0 0
0 cos(6) sin(8)
0 -sin(6) cos(0).

IT
WW^j 'peip (3.6)

for 6 an arbitrary angle, V the axis of rotation in U2, W the axis of rotation in Ult V^ an

orthonormal 2x3 complement to V, and W^ an orthonormal 2x3 complement to W.

For a P-type joint, the one-parameter transition functions are of the form:

p(<t>2i(0) =

I3 ta

0 1
(3.7)

where t is a scalar variable and a is a constant vector in the direction of the motion. The

matrix I3 is the 3 x 3 identity matrix.

For an S-type joint, the most general transition function is of the form:

P«t>2i(R)) =
R b-Ra
0 1

(3.8)

where a, b are constant vectors that represent fixed points of the relative motion between the

two bodies in the two coordinate systems. R is a general rotation matrix.

Now that the transition functions have been defined it is an easy matter to write down the

loop-closure equations (LCEs). The loop-closure equations are obtained by taking the

19

composition of transition functions around a closed loop. Starting, say, in coordinate chart Uls

pick a general point xx. Any transition function <|>21 maps xL to its image x2 in the coordinate

chart U2 (change of coordinates). The point x2 is mapped in turn to x3 in U3 by a transition

function <|>32, and so on, until finally the point xL in UL is mapped by the function §1L to yx in

the original chart Uj. When the parameters of the transition functions are those one would

measure on the mechanism in a realizable configuration, the compatibility relation yx = x1 is

satisfied. This compatibility relation holds for all x: in ty for which the composition is

defined. This relation is represented mathematically by a loop closure equation.

For a realizable configuration, the compatibility relation must hold for the following geometric

reason. Viewing the transition functions as changes of coordinates associated with the

different bodies, we see that yx and xx are the coordinates of the same geometric point in the

same coordinate chart U^ so they are equal. The associated loop closure equation states that

the composition is the identity map in E(3).

Consider the example of the 7R mechanism. Because this mechanism has only a single loop,

all loop equations have the form:

4>j+7 jt6(öjt<!) <t>j+6 j+5(0j+5) • * • 4>j+i j(©j) = identity (3.9)

where the subscripts are evaluated mod 7. As an example, one of these equations in terms of

the 4 x 4 matrices is (pick coordinates so that bj = 0):

R17(07) -R17(97)a7

0 1

^32(^2) —^32(^2) a2

0 1

R2i(6i) -R2i(6i)ai
0 1

= 1 (3.10)

where I is the 4 x 4 identity matrix, Rj+j j(8j) is the subscripted version of equation 6, and aj

20

is the subscripted version of equation (3.5).

The reader familiar with differential geometry will recognize the significance of the above

construction in more concise but abstract terms. What we have described is a special type of

flat-Euclidean manifold structure [Charlap] on a geometric space associated with the mechan-

ism. This abstract viewpoint was the original motivation behind the transition function

approach. This abstract point of view does not tell us how to proceed with the computations,

but it did get us started. The quaternion pair notation described next provides the computa-

tional key.

3.2 The Quaternion Pair Notation

Quaternions are often used in kinematic analysis, so the mechanism community is familiar

with their properties. Even so, it appears that the quaternion-based approach we present here

has not been exploited in mechanism analysis.

The point of introducing quaternions is to transform the loop closure equations (LCEs)

derived in Section 3.1 into a simpler form. The simplification is not merely cosmetic, it is a

basic reduction of the system of equations into an equivalent but more tractable form.

We assume the reader is familiar with the basics of quaternions. A general reference is [Por-

teus]. The section below is a slight generalization, of the more detailed presentation in [ME],

so some details are omitted.

3.2.1 Unit Quaternions and SO(3)

There is a well-known covering map from the unit quaternions Q(l) to the group of rotation

21

matrices S0(3). This brief section reviews that construction and some of its immediate corol-

laries.

Let p be a nonzero quaternion. Then pwp* is a pure quaternion if and only if w is a pure

quaternion. By the mapping w -> pwp* each nonzero quaternion p defines an invertible linear

transformation S(p) of T. We will primarily consider this transformation in the special case

where p is a unit quaternion, in which case S(p) is in SO(3). Relative to the basis {i,j,k} of T

(which we tacitly assume in the sequel), the matrix S(p) associated with p has the form:

S(p0. Pi» P2> P3) = 2

Po+P? P1P2-P0P3 PiP3 + PoP2

P1P2 + P0P3 Po + P2 P2P3 - P0P1

PlP3-P0P2 P2P3 + P0P1 P0+P32 .

"1 0 0
— 0 1 0

P 0 1
(3.11)

The mapping p -* S(p) projects the unit quaternions Q(l) onto the rotation matrices SO(3).

For each matrix K in SO(3) there are two quaternions, p and -p, such that S(p) = S(-p) = K.

Furthermore, S(p2Pi) = S(p2)S(Pi).

The geometric link between rotation matrices and their associated unit quaternions is easily

derived. Specifically, any unit quaternion q has the form:

q = cos(Y) + sin(y) w (3.12)

where w is a unit-length, pure quaternion. The matrix S(q) is a rotation by the angle 2y about

the axis in the w-direction.

3.2.2 The Quatenion-Pair Cover of the Euclidean Group

22

Now we turn attention to a special group defined by quaternion pairs. Specifically, we will

look at the set Q(l) x T of ordered pairs of quaternions (q,w) and define a group structure on

this set. Let qh q2 be unit quaternions and Wj, w2 be pure quaternions. Define the product:

(q* w2)(qi, wj) = (q^, w2 + q^w^*) (3.13)

Observe that the product is well-defined in Q(l) x T. Note that (1,0) is the identity element,

and

(q, w)-1 = (q*. -q*wq) (3.14)

The set Q(l) x T with this product forms a group, which we call the quaternion-pair group.

This group is the universal cover of the Euclidean group E(3). The full power of the covering

space structure is not needed for our application, all we need is the definition of the mapping.

Therefore, we construct the covering map S* below, but we do not address its topological pro-

perties.

The covering map from the quaternion-pair group to E(3) is closely related to the map S

defined in Section 3.2.1 that maps Q(l) onto SO(3). Let 4>lt <f>2 be two elements of E(3) and

suppose for j = 1,2:

P«t>j) =

Rj a,

0 1
(3.15)

Pick qj such that S(qj) = Rj, and let Wj be the pure quaternion

23

Wj = a^i + ajt2j + apk (3.16)

where a,- = (a^, aj>2, aj>3). Defining the map S*[(qj, Wj)] = <J>j, it is an easy computation to ver-

ify that

S*[(<l2, w2)(qi, wx)] = <t>2 <(>i (3-17)

The mapping S* is clearly onto, it is a two-to-one mapping like rc.

3.3 Transition Functions in Quaternion-Pair Form

The primary goal of this subsection is to determine a quaternion-pair form for transition func-

tions equivalent to the expressions in equations (3.5) through (3.8) in Section 3.1. The idea is

to represent the transition function (^ j (we ignore the dependence of <(> on its parameters)

by a quaternion pair:

a(<|>jfij) = (qj,wj) (3-18)

where qj is a unit quaternion and Wj is a pure quaternion. We begin with the special case of

R-joints.

3.3.1 Representing R-joints

Consider the expression in equation (3.5), and let $ denote foi- Fix 0 and select q, one of the

24

two quaternions such that S(q) = R(8). Let a , ß be the pure quaternions associated with the

vectors a and b. The results of the previous subsection suggest that we use

<m = (q. ß - qoq*) (3-19)

for the quaternion pair representing <(>. Furthermore, if fa and <t>2 are two transition functions

corresponding to (q^ ßi - qia^*) and (q^ ß2 - q^^*). then *e composition map is the

product (see equation (3.19)):

o-OMi) = (Q2fli. ß2 + q2(ßi - «2)q2* - q2qi«iqi*q2*) (3-2°)

There is a pattern in expression on the right hand side of this last equation that will be

clarified in Section 3.4.

A vital detail in the quaternion-pair representation is to include the 0-dependence, which is

described in the following circle lemma.

Circle Lemma: Let R(0) be the one-parameter family of rotation matrices defined in equation

(3.6). There is a pair of unit quaternions (p,q), with p orthogonal to q, such that the great cir-

cle Cj in Q(l) defined by

Q = {COS(Y) p + sin(y) q I 0< y < 2n} (3.21)

is mapped by S onto the circle C2 in SO(3) defined by

C2 = (R(8) I 0£ 6 < 2TI} (3.22)

25

The proof of this lemma is found in [ME].

A more geometric statement of the circle lemma is: circles in the rotation group are covered

by great circles in the unit quaternion group. The significance of this result will be realized in

Section 3.4.

3.3.2 Representing S-joints

Consider the expression in equation (3.8), and let <J> denote <t>2i. Select q, one of the two

quaternions such that S(q) = R and let a , ß be the pure quaternions associated with the vec-

tors a and b. Then as above we choose:

o(<|>) = (q, ß - qccq*) (3.23)

for the quaternion pair representing <)>. The formulas for products of transition functions asso-

ciated with both S-joints and R-joints are the same as equation (3.20) above. The only

difference is that the variable q is now an arbitrary unit quaternion, and not of the special

form stated in the circle lemma.

3.3.3 Representing P-joints

This is the easiest case. For <J)(t) as in Equation (3.7) the answer is:

a(<Kt)) = (q0>t a) (3.24)

where q0 is a constant unit quaternion and a is the pure quaternion associated with the vector

a.

26

3.4 The Multi-Affine Equations

Examining the quaternion-pair representations described in the last section we find that the

LCEs have the following form:

(qi.W!) ••• («JL, WL) = (1,0) (3.25)

We now observe a particular feature of the expression on the LHS of this last equation:

1) the unit-quaternion part of a product is the product of the unit quaternions

2) each summand of the pure quaternion part is a sequential conjugate expression

By sequential conjugate expression, we mean an expression of the form:

F(w) = q1---qmwqm*---q1* (3.25)

where w is a pure quaternion and m varies from 0 to L. The point is that, for all m, when a

sequential conjugate expression is right-multiplied by the unit-quaternion part of the product,

the result is multilinear in all the unit quaternions Oj.

In addition, the equation:

Qu(qi • • • qO = 0 (3.27)

where the function Qu means "pure-quaternion part," provides another set of multi-linear

27

equations in the variables q^

These multi-linear equations in qj can be reduced to multi-affine equations in fewer variables

by the following devices:

1) For each R-joint in the product, use the Circle Lemma and divide by cos (y)

2) For each S-joint in the product, divide by q0 = Re(q)

0i
Let Zi denote the variable tan(—), and define the variables ej, fj, gj by:

<lj,o
%3

(3.28)

Then the LCEs become multi-affine in the variables zis ej, fj, gj.

Observe that the LCEs are already multi-affine in the variables t^ associated with P-joints. The

discussion just concluded brings us to the

Main Result: The loop closure equations (LCEs) generate a host of multi-affine equations,

forming a modular system of a very special type. The number of independent variables

Zi, ej, f, gj tk appearing in these equations is equal to the sum over all joints of the number

of joint degrees of freedom. In general, there are far more equations than unknowns.

The primary benefit of this result lies in providing a special structure to the set of equations

whose solutions describe the configuration spaces of mechanisms of this type. An additional

feature is the systematic approach it provides for generating these equations.

28

An approach for numerical solution of multi-affine equations of this type is illustrated in the

solution to the 7R problem presented in [ME].

29

4. SUMMARY

The discussion below is a summary of our six-step, general approach for mechanism

kinematic analysis. The details for a particular application are presented in [ME].

We have seen that the quaternion-pair approach described below can be applied to spherical,

prismatic and cylindrical joints as well as the revolute joints illustrated in [ME]. Systems of

multi-affine equations are obtained in the same way. Multi-loop mechanisms can also be han-

dled. One of the primary goals of our research effort to use the theory on problems of

moderate size to determine the practical (computational) limitations of this general approach

on more complex mechanisms.

4.1 Reference Coordinate Systems

Each rigid piece of the mechanism has its own reference coordinate system. The concept is

simple ~ each piece can be thought of as a separate entity standing by itself in Euclidean

three-space.

4.2 Transition Functions

The transition functions represent the translation and rotation (Euclidean motion) associated

with the change of reference coordinate systems from one body to the next. The transition

function contains the fixed parameters of the body as well as the free variables associated with

the joint.

30

4.3 Quaternion-Pair Notation

The quaternion-pair notation consists of a pair of quaternions that together represent a single

Euclidean motion: the first is a unit quaternion that represents the rotation and the second is a

pure quaternion that represents translation. The advantage of this notation is that it leads to

loop equations that are multi-affine in the joint variables. These multi-affine equations are of

lower total degree and therefore are much easier to solve than the multi quadratic equations

that arise from using the standard 4x4 matrices containing rotation matrices and a translation

vector.

The quaternion-pairs form a mathematical group under a product defined in Section 3.2.2. The

composition of transition functions is obtained by multiplying the corresponding quaternion

pairs.

4.4 Loop Equations

The loop closure equations are obtained by setting the product of all the quaternion-pair tran-

sition functions around a loop equal to the quaternion-pair identity.

4.5 Multi-Affine Equations

After multiplication by the appropriate factors, the resulting loop equations are multi-affine in

the joint variables. Because the quaternion-pair multiplication is not commutative, additional

independent equations can be formed by cyclic permutations of the transition functions (start-

ing at a different body when forming the loop). Some of the equations obtained in this way

involve fewer variables, so more multi-affine equations of the same degree can be formed by

multiplying those equations by each of the missing variables. In this way, a large number of

affine equations can be formed.

31

4.6 Elimination Techniques

Standard polynomial elimination techniques (such as Groebner basis) work on general systems

of polynomials, but their run times are doubly exponential in the number of noninteger param-

eters. This makes them unusable for mechanisms of even moderate complexity. Conse-

quently we developed specific elimination techniques based on matrix polynomial methods

[Wedderburn] that are much faster for the specific (multi-affine) type of systems of polynomi-

als arising from mechanism kinematics. These specific techniques consist of generalized

eigenvalue problems, explicit polynomial representation of the null space of affine matrices,

and numerical methods from linear algebra.

32

BIBLIOGRAPHY

[Buchbergerl] Buchberger, B., "Grobner Bases: An Algorithmic Method in Polynomial Ideal

Theory," Chapter 6 of Multidimensional Systems Theory, Ed. N. K. Bose, Reidel Publishing

Company, 1985.

[Buchberger2] B. Buchberger, "Applications of Groebner Basis in Non-linear Computational

Geometry," in "MATHEMATICAL ASPECTS OF SCIENTIFIC SOFTWARE", edited by J.

R. Rice, Springer-Verlag, 1988.

[Charlap] Charlap, L, Bieberbach Groups and Flat Manifolds, Springer Verlag, 1986.

[Cox] Cox, D., J. Litde and D. O'Shea, Ideals, Varieties, and Algorithms, Springer-Verlag,

1992.

[Duffy] Duffy, J., Analysis of Mechanisms and Robot Manipulators, John Wiley and Sons,

1980.

[Duffy2] Duffy, J., and Crane, C, 1980, "A Displacement Analysis of the General 7-Link 7R

Mechanism," Mech. Mach. Th. 15(3), pp. 153-169.

[EM] Elgersma, M. and B. Morton, "A Polynomial-Runtime Algorithm for Multi-Affine Equa-

tions," unpublished manuscript, work in progress, March 1998.

[Freudenstein] Freudenstein, F., "Kinematics: Past, Present and Future," Mechanism and

Machine Theory, Vol. 8, No. 2, pp. 151-161, 1973.

33

[Gunning] Gunning, R., Introduction to Holomorphic Functions of Several Variables, Wads-

worth & Brooks/Cole, 1990.

[Hunt] Hunt, K. H, Kinematic Geometry of Mechanisms, Oxford University Press, 1990.

[Innocentil] Innocenti, C. and V. Parenti-Castelli, "Forward kinematics of the general 6-6

fully parallel mechanism: an exhaustive numerical approach via a mono-dimensional-search

algorithm," 22nd ASME Biennial Mechanisms Conference, Scottsdale, AZ, Sep 13-16, 1992.

[Innocenti2] Innocenti, C. and V. Parenti-Castelli, "Direct position analysis of the Stewart

platform mechanism," Mechanism & Machine Theory vol. 25, no. 6, pp. 611-621, 1990.

[Leel] Lee (Li), H.-Y., and Liang, C.-G., "A New Vector Theory for the Analysis of Spatial

Mechanisms," Mech. Mach. Th. 23(3), pp. 209-217, 1988.

[Lee2] Lee (Li), H.-Y., and Liang, C.-G., "Displacement Analysis of the General Spatial 7-

Link 7R Mechanism," Mech. Mach. Th. 23(3), pp. 219-226, 1988. Also presented at the 4th

National Conference on Mechanisms in Yantai, Shandong Province, China (1986).

[Macaulay] Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge Univer-

sity Press, 1916.

[ME] Morton, B. and M. Elgersma, "A Computational Algorithm for 7R Spatial Mechan-

isms," Submitted to Journal of Robotic Systems 21 June 1993.

[Porteous] Porteous, I., Topological Geometry, Cambridge University press, 1981.

[Ragovan] Raghavan, M., and Roth, B., "Kinematic Analysis of the 6R Manipulator of

34

General Geometry," Proceedings of the 5th International Symposium on Robotics Research,

edited by H. Miura and S. Arimoto, MJT Press, Cambridge, 1990.

[Roberson] Roberson, R. and R. Schwertassek, Dynamics of Multibody Systems, Springer

Verlag, 1988.

[Roth] Roth, B., J. Rastegar and V. Scheinman, "On the Design of Computer Controlled

Manipulators," First CISM-IFToMM Symposium on Theory and Practice of Robots and Mani-

pulators, Vol. 1, pp. 93-113, Udine, 1974.

[Thurston] Thurston, W. P. and J. R. Weeks, "The Mathematics of Three-Dimensional Mani-

folds," article in Scientific American, pp. 108-120, July 1984.

[Walker] Walker, K., "Configuration Spaces of Linkages," Undergraduate Thesis Submitted to

Princeton University Matematics Department, 23 April 1985.

[Wedderburn] J. H. M. Wedderburn, Lectures on Matrices, Dover, 1964.

[Wittenberg] Wittenberg, J., Dynamics of Systems of Rigid Bodies, Teubner, 1977.

35

A Polynomial-Runtime Algorithm for Multi-Affine Equations

Michael R. Elgersma and Blaise G. Morton
MS MN65-2810

Honeywell Technology Center
3660 Technology Drive
Minneapolis, MN 55418

Manuscript Note: the method presented here should be compared with
other algorithms (recently published) to construct an optimal size square
sparse resultant matrix for multi-affine (and multi-graded) systems of poly-
nomials. See references:

I. M. Gelfand, M. M. Kapronov, and A. V. ZelevinsM, " Hyperdetermi-
nants," Advances in Mathematics, 96, 1992.

Bernd Sturmfels,

Rojas

I. Z. Emiris

Abstract

This paper deals with n = n1+n2+...+nk equations, multi-affine in k sets
of variables with n» variables in the ith set. In [St] a formula is given for, d,
the number of solutions, and a degree d polynomial in one variable is formed
from a hyper-determinant function of the coefficients and one variable. The
d roots of this polynomial are the value of that variable at the d solution
points.

In the current paper, we give an alternative proof for the number of solu-
tions, and we form &dxd eigenproblem whose eigenvalues are the d values of
one variable, and the other variables are ratios of entries of the eigenvectors.
This technique of forming the eigenproblem directly, then solving it numer-
ically gives an ()(<?) algorithm (where d » n). The previous technique
[St],[Can], [GKZ] of forming the degree d polynomial is 0(dn) or 0((nk)n) ?

The three steps in our algorithm are:
1) Use dilation to form a [min(rii)d] x [min(ni)d], rank-d, eigenproblem.
2) If min(rii) > 1, use deflation to reduce the size of the eigenproblem

a) Compute svd of a matrix of size [min(rii)d] x d.
b) Compute svd of a matrix of size [(minfoi) - l)d] x [min(ni)d].

3) Solve a d x d generalized eigenproblem.
The matrices involved in each of the above three steps are either linear

in the coefficients of the original equations, or are the product of orthogonal
matrices times matrices that are linear in the coefficients of the original
equations. The d eigenvalues give the d values of one of the variables, while
the corresponding values of each of the other variables are given by a ratio of
two linear combinations of the eigenvector. The runtime of the algorithm is
dominated by the runtime of the svd's and the eigensolver. The total number
of floating point operations is 10[mm(ni)rf]

3'.
This paper also deals with the case where there are more equations than

unknowns. The extra equations may eliminate some or all of the solutions.

Chapter 1

Same Number of Equations as
Unknowns

1.1 Introduction
Systems of multi-affine equations arise from applications where some specified
input vector ux, is multiplied by a sequence of k subsystems to give a specified
output vector y^ € R(-ni+n^+-+nk). For i = 1 to A;, subsystem i is linear in its
own subset of n» variables, and is of the form:

y. = Hi{xi)ui (1)

where

Hi(2u) = [Hi,o + Hi,xxitl + Hi,2Xii2 + ... + Hi,nixiini] (2)

Let
rrii+i xmj = size{Hi{xi)) (3)

To ensure as many equations as unknowns at each step:

i

mi > 53 nj for i ^ ^ (^)

and
k

mk+i = J2nj (5)

The product of these subsystems then gives:

3k+i=3L

& = (jll^o + #M*M + H&XW + - + #*.**«.«*]) *i

(6)

(7)

Given the value of the output vector y± G R(.m+n2+...+nk) ^j the value
of the input vector, wi, we have ni + n2 + ... + nk multi-affine equations in
ni + n2 + ... + nk unknown Xij.

Applications that involve systems of multi-affine equations include:

Generalized nxn eigenvalue problem, where k = 2, rii = n — 1, n2 = 1,
1/2 = Q, -ffijwi = column j+1 of the n-dimensional identity matrix. This
gives:

#1,2

0 = [H2fi + x2jlH2,i]

#l,n-l

(8)

Robotics [ME96], where each subsystem is a link in a robot arm, the
variables are associated with the joint degrees of freedom, the inputs are the
base position and attitude, and the outputs are the end-effector positions
and attitude.

Electronic circuits, where multi-input multi-output subsystem i contains
rii op-amps, the variables are the impedances ratios for each op-amp, the
input is a vector of voltages input to the first stage, and the output is a
vector of voltages output from the last stage.

In systems like these, we can solve for all values of each parameter that
give the specified output for the given input. In each case, the problem can
be converted into a generalized eigenproblem.

A 1000 x 1000 eigenproblem requires approximately 8 * (1000)3 floating
point operations, which can be done in approximately two minutes on a 100
MFlop computer. Several sets of exponents that result in d < 1000 solutions
are given in the table below. The number of floating point operations required
for the entire solution is 10[min(rii)d]3 which is given in the last column. A
100 MFlop machine does 108 floating point operations per second, so the
numbers in the last column are all with that exponent.

n = E*=i"» Tli n2 nz TI4 TI5 riß
j (ni+n2+...+nfc)!

m!nü!...nt! 10[min(ni)df

6 1 1 1 1 1 1 720 37e+08
7 2 2 2 1 630 25e+08
7 3 2 2 210 7e+08
7 3 3 1 140 .3e+08
8 4 4 70 2e+08

32 30 1 1 992 98e+08
1000 999 1 1000 100e+08

1.2 Segre Embeddings
Multi-affine equations on P"1 x P"2 x ... x Pn* can be rewritten as linear
equations on p(m+i)(n2+i)...(nfc+i)-i u^g the Segre embedding.

For i = 1 to k, let
1

Xi =
Xi,2

X. t,Jli

eP n< (9)

Let v0 = 1. For j = 1 to k, let

Vj(Xi,X2,..., Xj) —

Vj-l
Xj,lVj-i

G J3(ni+l)(n2+l)...(n>+l)-l ^Q)

Xi,njv3-l .

So vk is a mapping from Pni x P"' x ... x Pn* to p(»i+i)(»*+i)~<»*+i>-i.

1.3 A Formula for the Number of Solutions

Theorem

The degree of the Segre embedding of P"1 x Pn* x ... x Pn*
in p(ni+1)(»2+1)-(nfc+1)-1 is:

d =
(ni +n2 + ...+ 7ijj;)!

n!!n2!...nfc!
(11)

So intersecting P"1 x P"2 x ... x Pn* with a codimension r»i +n2 +... + nk

hyper-plane (ni+na + .-.+n* Hnear equations) in p(»i+i)(»«+U~<»*+1>-1 gives
d _ (»i+^+-+nfc)' p0int solutions.

The'proof*1 below uses techniques from intersection theory that can be
found in [Fulton,84].

Proof

Let <j> be the Segre embedding:

X . pni x pn2 x x pnk _y p(m+l)(n2+l)...(nfc+l)-l (12)

The hyper-plane class u in p(»i+i)(»a+i>~(»*+1>-1 pulls back to:

0l + 02 + ... + ak e H
2(PB1 x Pn> x ... x Pn») (13)

where i/2 is the 2nd Cohomology, and a, is the hyper-plane class in PnK

Look at the coefficients in the expansion of:

(ai + a2 + ... + ajfc)(«i+»2+...+nA=) e H2{nl+n2+...+nk)(pnl x pn2 x x pnkj ^

This expression can be expanded by repeatedly applying the binomial ex-
pansion. Many of the resulting coefficients are zero because for each i from
1 to k we get:

a?i+1 = 0 (15)

We only get one nonzero coefficient in the expansion:

K + a2 +... + aJfc)
(ni+n2+~+n*) =

(ai)(ni+n2+-+n*) +
(m + n2 + ... + n*)(a1)(ni+n2+-+n*-1>(a2 + a3 + ... + a*) + ...

d(al1alk...a%k) + ...

The only term in the expansion where each Oj has exponent less than
rii + 1 is the one where each a,i is taken rij times.

(01 + 03 +... + afc)
(ni+n2+-+n*) = 0 + d(a?la2

lK..a?) + 0 + ... + 0 (16)

The coefficient on this term is:

<j=nfsLi"0=nfs'°i'^ = ("1+?H;-'4;"t)! (17)
"V ni I "V «I J n,!n,!...n»l ^ '

Therefore d is the degree of the Segre embedding, and there are d solutions
to a set of ni + n2 + ... + njt affine equations on this space.

1.4 Dilation Procedure for Forming an Eigen-
problem

In this section, we use the root count d and its factorization to construct an
algorithm for computing the solutions.

We will work with nx + n2 +... + nk multi-affine equations on Pni x P"2 x
x Pn*. For i = 1 to k, let

Xi =

1

Hi

x »,n<

eP m (18)

The ni+n2 + ... + nk multi-affine equations in the xy variables can be
written as:

Avk(Xu X2,..., Xk) = 0E Rm+n2+...+nk (ig)

where the matrix A has nl+n2
Jr...+nk rows and (ni+l)(n2+l)...(nfc-l-l)

columns. The vector vk{XuX2, ...,Xk) lies in the Segre embedding of Pni x
P"2 x ... x Pn* in p[(ni+1)(n2+1)-(nfc+1)-1l.

The expression Avk(Xi,X2,...,Xk) = 0 has fewer equations than mono-
mials. We need to append more equations to get as many equations as
monomials. We can multiply the equations by enough monomials to get as
many equations as monomials in the new matrix equation. Let

sumXi = 1 + Xij + ... + Xi>n. (20)

The vector vk(Xu X2,..., Xk) contains the (n1+l)(n2+l)...(nk+l) monomials
that appear in the expression:

(sumXi)(sumX2)...(sumXk)

In order to get an eigenproblem with d solutions, where

d=n EN"*
i=i

Hi

(ni +n2 + ... +nk)\
ni\ni\...nk\

we can use an equation of the form:

0 = M(Xk)w(X1,X2,...Xk-1)

(21)

(22)

(23)

where w(Xi,X2, ...Xk-i) contains d monomials. To get these d monomials,
we proceed as follows.

For j = 1 to k, let

Then

d -§(rT
The expression:

(sumXj)
r'+1 contains (Tj+1*Uj J monomials

(24)

(25)

(26)

Let the vector w(X) G Rd contain the d monomials in the expression

{sumXiY2 {sumX2)
r3...(sumXk-1)

rk (27)

To get these d monomials, we can multiply the original (ni + l)(ra2 +
l)...(nk + 1) monomials contained in vk(X) by D other monomials where

D = II (ri+1 V1* 1)=nkd/(n1 + n2 + ...+ nk) (28)

Let g(X) e RD contain the D monomials in the following expression:

(sumX1)^-1\sumX2)^-1l..(sumXk-1Y
r"-^ (29)

Let G(Xi,X2,..., Xk-i) be a matrix containing each of the D monomials
in g(Xi, X2,..., Xk-i) times an identity matrix with nx + n2 + ... + nk rows.

G(Xi, X2, ...,Xk-i) =

Ini+ri2+...+nk92{X)

. Irn+n2+...+nkgD{X)

(30)

The matrix G(XUX2,...,Xk-i) has (ni + n2 + ... + nk)D = nkd rows and
(ni + n2 + ... + nk) columns.

The following then are nkd equations, in (nk + l)d monomials.

G(Xl,X2,...,Xk^)Avk(X1,X2,...,Xk) =0 € i^*d> (31)

The above expression contains the (nk + l)d monomials found in:

{sumX^2 (sumX2y
3...(sumXk-1)

rk (sumXk) (32)

Separate all d monomials in (Xi, X2,..., Xk-i) into the vector w(X), and
all nk + 1 monomials in Xk into a nkd x d matrix M(Xk).

0 = M(Xk)w(Xl,X2,...,Xk-1)

The nkd x d matrix M{Xk) is affine in Xk

M(Xk) = Mkfi + Mk>1xktl + ... + Mkinkxkink

(33)

(34)

The Mkii matrices are linear in the original data matrix A.
To convert this system into an eigenproblem with one of the variables as

the eigenvalue, define the following two nkd x nkd matrices:

Mo = [Affc.0, Mk,i,..., Mfc)„4_i] (35)

M! = [MMfc,0,...,0]

and the following size nkd vector:

w =

w
xkjiw
xky2w

(36)

(37)

Xk,nk-lW _

Then the following equation is a size nkdxnkd generalized eigenproblem
with at most d finite eigenvalues.

0 = M(Xk)w = (M0 + z*,n*Mi) a (38)

8

1.5 Deflation Removes Extraneous Roots
Generalized eigenproblems can be converted to regular eigenproblems if ei-
ther Mo or Mi is full rank. Some robotics problems have roots at rrMfc = ±i
which are extraneous. The roots at xk)Tlk = ±i, 0, and oo can be removed by
deflation.

If M0 is low rank, then there are roots at xkjTlk = 0.
If Mi is low rank, then there are roots at xkt1lk = °°.
If M0 + iMi is low rank, then there are roots at xk,nk = +i-
If Mo — iMi is low rank, then there are roots at xk<nk = -i.

If M0 + xMi is low rank for generic x, then the solution set contains sets
of positive dimension, rather than just points.

The rest of this section uses deflation to eliminate roots at infinity. By
interchanging the roles of M0 and Mi, the roots at 0 can also be eliminated.
To remove roots at ±i, first do a linear fractional transformation that maps
+i to 0 and maps —i to oo.

If the system has repeated Jordan blocks with roots at the point being
eliminated, the deflation procedure reduces the size of each of those Jordan
blocks by one, each pass through the loop. So the maximum number of
passes is equal to the maximum size of any Jordan block associated with the
eigenvalue being eliminated.

The matrices M0 and Mi in the last section are square, nkd x nkd, but
the Mi matrix multiplying xk>nk is low rank. (For matrices with more rows
than columns, see the section on "Incomplete Intersection".) To get rid of
the roots at infinity, we can get a smaller dx d generalized eigenproblem
using deflation.

THEOREM (Eigen-Problem Deflation)

The finite pair A, e is a solution to 0 = [M0 + \Mx)e iff the finite
pair A, / is a solution to 0 = [L0 + ALi]/ where L0 and Lx are defined
in terms of the svd of the Mi as follows:

Mi = [I/i,l/2]

Then taking the svd of U2*M0:

U2*MQ = [UUU2

Using these svd's, L0 and L\ are defined by:

Si 0
0 0

Si 0"
0 0

V* (39)

[Vi,V2r (40)

[L0 + ALi] = US[M0 + AMx]V2 (41)

A solution pair A, / of 0 = [L0 + \Lx]f is then mapped back to a
solution pair A, e of 0 = [M0 + AMx]e by:

e = V2f (42)

PROOF

case 1) U\ = 0 and V2 7^ 0 (infinite number of finite A, e solutions)

This can only happen if Mi = 0. In this case, U\ is the empty set, so the
equation [L0 + AIq]/ = 0 is satisfied by any A and any /. Since Mx = 0, U2

is square, so V2 = kernel(MQ) = kernel(M0 + AMi), so e = V2/ is a solution
to [Mo + AMi]e for any A and any /.

case 2) V2 = 0 (no finite A, e solutions)

This can only happen if U2*M0 is full column rank. In this case, U2*[MQ +
AMi] = U2*M0 which has no right kernel, so [M0 + AMi]e cannot be zero
for any nonzero value of e. In this case, there are no nonzero solutions for e.
Also, since V2 = 0, / = 0. So in this case, neither system has a solution.

case 3) C/i 7^ 0 and V2 ^ 0 (finite number of finite A, e solutions)

10

Let

/
= [Vi,V2]*e (43)

Multiplying the eigenproblem by the square orthogonal matrix [Ult U2]*
gives:

0 = [Ult U2]*[M0 + \Mi\e = [Uu U2]*[M0 + XMiWYu V2]

Let
Lltl = C^[M0 + AAf1]Vi

Llt2 = U;[M0 + \M1]V2

L2(1 = i72*[Mo + AM1]V1

L2>2 = U2*[M0 + \M1]V2

[U1,U2]*[MQ + \M1][Vl,V2] =

f
f

(44)

(45)

(46)

(47)

Then:

(48)

(49)
L2,i L2,2

Since V2MX = 0 and U2MQV2 = 0, the L^ block is identically zero.
With L2>2 identically zero, the bottom part of the matrix equation gives:

0 = L2tJ + L2,2f = L2J (50)

Plugging in the expression for L2yi then gives

0 = U*[M0 + XMt]Vj = (U*MQ)Vj = UxSj (51)

Since the matrix U\S\ has full column rank, this implies that

/=0 (52)

so
W=0 (53)

11

This reduces the eigenproblem to:

0 = L1>2f

which can also be written as:

0 = [U*[M0 + \Ml]V2] f = [L0 + XLx]f

(54)

(55)

After solving this new problem, the vector e can then be obtained from:

e = V2/ (56)

The above procedure will have to be repeated if the resulting Lx matrix
is still low rank (replace M0, Mi, and e with L0, Lu and / then repeat). The
eigenvectors get mapped back by the product of the V2 matrices from each
step of the iteration.

After the final Lx is full rank, the following dxd eigenproblem gives the
d values of A = xk>nic and the corresponding d values of the eigenvector /.

[L0 + xk<nkLi]f = 0 (57)

The vector w(Xi, X2,..., Xk-i) is the first d elements of the vector w. The
other Xij can be extracted from the vector tü(Xi,X2, ...,Xk-i).

1.6 Pseudo Code for the Dilation Procedure

Let
M^Mo^!,...,;^] (58)

Let

w(X) =

w(X)
xktiw(X)
xkt2w(X)

Xktnkw{X)

12

(59)

Then
Mw(X) = G(X)Avk(X) (60)

When multiplying monomials in G(X)Avk(X) to get Mw(X), the expo-
nents on the monomials in G(X) and Vk(X) add. Let basea{-,j) be a column
of exponents on the Xi)Xn in the 3th monomial in G(X). Let the function index
be defined such that indexG(basea('-, j)) = j-

The jth monomial in G(X) is given by:

6 II x^eG[(E*=llRi)+m,il (61)
J=l m=l

The rth monomial in vk(X) is given by:

f[ft rr^ev[(E^lini)+m'r] (62)
1=1 m=l

The product of the jth monomial in G(X) and the rth monomial in vk(X)
gives monomial number s = indexü(basea(:, j) + basev(:,m)) in w(X). The
sth monomial in w(X) is given by:

Ä Ö x^[(E^'n<)+m'S] (63)
l=lm=l

These base and index ideas can be used in the following pseudo code for
filling in the M matrix.

for i = 1 to D Put N = nx + n2 + ... + nk rows of A into M
for j = 1 to (nx + l)(n2 + l)...(nfc -1-1) Put a column of A into M

Compute exponents baseG(:,i) on the i01 monomial in G(X)
Compute exponents basev(:,j) on the jth monomial in vk(X)
rowü = indexü(basea(:,i) + basev(:,j))
rowsfr = (i — 1)* N + 1 :i*N
M(rowsfr,rowü) = A(:,j)

end
end

13

1.7 ■ Examples
k - 1 copies of P1, 1 copy of Pm. P1 x ... x P1 x Pm x P1

Get d x d matrix M0 + xkMi.

(sumX1)
ri{sumX2y

3...{sumXk-iy
i'(sumXk)

= (1 + a;1)
m+*-2(l + x2)

m+k-\..{l + a;*-!,! + ... + afc-i,,»)1^ + a*)

So M{xk) has two monomials, 1 and xk, while
ti; has d = (m + (* - l))(ro + (A; - 2))...(m + 1) = (m + (A; - l))!/m!

monomials.

In particular, P'xP^ P1

(sumXtf* (sumXk-i)
ra (sumX3)

= (1 + Z!)m+1(l + a?2,i + .» + afynWl + a*)

Let [MjeP1,

v =

1
^2,1

^2,2

^2,i

EP" (64)

and [l,x3] GP1.
The 2 * (m + 1) * 2 monomials form the vector w:

W =

U
xiii
X321

XiXz2l J

(65)

The 2 + m equations in 2 * (m + 1) * 2 monomials are in the form:

0 = [A0Q, J4OI, J4I0> An]w (66)

14

Dilation is done by multiplying the above equations by all monomials in
(l + xi)m+1, giving:

0 =

Am AQ\ 0
0 Am AQI

0 J4IO An 0
0 Aw An

0 Aoo AQI 0
0 Am AQI

This equation can be written in the form

0 = [M0 + x3Mi]vec

0
0

0 Aio An 0
0 Aio An

XiV

Xi2V

Xim+1U

X3XiV

X3Xi2U

. XzXim+lV

(67)

(68)

where M0 and Mx are each (m + 2)(m + 1) x (m + 2)(m + 1). This gives a
square eigenproblem with (m + 2)(m + 1) eigenvalues.

15

Chapter 2

More Equations than
Unknowns

2.1 Curves on Segre Spaces

Let o be the Segre map from (P1)" x Pm to PN.

a : (P1)" xPB-^EcPN (1)

Let Y C PN be a linear subspace of P^.
Let C be a degree d curve given by

C = Y n E (2)

where the intersection would be empty if Y were in general position, so the
intersection of Y and £ is not transverse.

Let a' be the Segre map from (P1)"' x Pm to P*\ Let Y' C P"' be a
linear subspace of PN .

QUESTION: What is the smallest n' such that

cu {points} = y'n£' (3)

where some extraneouse points have been introduced in the elimination of
some variables.

ANSWER(?): n' = smallest I s.t. d < d' = (I + m)\/m\

16

SOLVE: Use dilation to form a d! x d! parameterized eigenproblem. Use
deflation to eliminate the extraneous points, leaving a d x d parameterized
eigenproblem.

2.2 Example: 7R mechanism

For each fixed value of z7, we get 30 + m equations on P1 x P1 x P1 x
P1 x P1 x P1, with 16 solutions. If only 6 equations are kept, get 6! = 720
solutions.

If 30 or more equations are kept, a linear algebra procedure can be used
to eliminate some variables and get a smaller problem with only the 16 le-
gitimate solutions. However, if this elimination procedure is taken too far,
it ends up as 4 equations on Pl x P1 x P1 x Pl with 4! = 24 solutions.
Eight of these 24 solutions are at ±i which are extraneous. The remaining
16 solutions are legitimate.

To see how the extra equations eliminate the extraneous solutions, we
can look at the Smith form of the affine matrices. The 30 + m equations are
of the form:

■J32

Z6-J32 25J16

h
0 = [M7 ja + «7^7,1]

For each fixed value of z7, let

M6(z6) = [M6i0 + z6M6,i] = [M7fi + z7M7>1]

V8(Z3,Z2,Zi) (4)

I32

Z&I32
(5)

The matrix M6(ze) is size (30+m) x 32. It is rank 30 for all ze (unless m =
0, then rank drops for discrete values of 26). Its Smith form decomposition
is:

M6(z6) = [G6L(Z6),G6R] K-Stop (6)

where the size (30 + m) x 30 matrix Gö^) = [G6L(ze),GeR] is rank 30
for all ze (unless m=0, then rank drops for discrete values of z&). The matrix
K6(ze) is size 30 x 32. The top 16 rows of Ke(ze) are constant, denoted by
the 16 x 32 matrix K6top.

17

Since G&{z&) is full rank for all z6,

kemel[Me{z&)} = kernel[K6(ze)] (7)

In this case we also get (WHY?):

kernel [K6 (z6)] = kernel [K6top] (8)

so we get a new problem, with z6 eliminated, and only 16 equations:

0 = K6t \op
he

Z5I16

78
zj&

V&{z3,Z2,Zl) (9)

If we repeat the above procedure again, eliminating z5, we introduce some
extraneous roots because this time the kernel of the new K(z) matrix is not
the same as the kernel of the constant part of K(z).

Let

M5(z5) = K6top zsh 16
(10)

The 16 x 16 matrix M5(z5) is rank 12 for all (generic?) values of z5, and
can be factored as:

M5(Z5) = [G5L(Z5),G5R]
K5tc

K5bot(zs)
(11)

where the size 16 x 12 matrix G5(zs) = [G5L{Z5),G5R] is rank 12 for all
(generic?) values of z5. The matrix K5{z5) is size 12 x 16. The top 4 rows
of K5(z5) are constant, denoted by the 4 x 16 matrix K5to Hop'

The commutative diagram below shows what happens if we keep only the
constant part of K{z) at each step. The polynomial kernels, X(z), of M(z)
are represented as coefficient matrices, X(bj) = M(6i)-

L, times polynomials
Pj(z) using Lagrange interpolation. Lagrange interpolation results in X(bj)
being the same rank for each j, while the standard polynomial basis, X(z) =
Ei^o1 Xiz\ gives coefficient matrices that can have lower rank for X0 and/or
X^, Lagrange interpolation also allows us to compute only numerical
kernels of M(bj) rather than using Wedderburn theory to compute X{z) =

M{z)^-.

18

After the following diagram stabilizes, the final M(z) has as many equa-
tions as unknowns. All original roots survive, but some "extraneous" roots
may be obtained. When the final M(z) has more columns than rows, we can
use dilation to produce a square eigenproblem. The "extranous" roots are
either at ±i when z = tan(0/2) or at 0,inf when z = ekO). The possible
reason for the "extraneous" roots is:

The discarded non-constant part of K(z) would have removed those roots.
Recall that the real part of the quaternion equations were dropped, because
they were not multi-affine. Since we know where the extraneouse roots are,
we can remove them using deflation, before an eigenproblem is done. When
Wedderburn gave X(z) with low degree, it was in effect romoving roots at
infinity, similar to the way deflation works.

The second commutative diagram uses Wedderburn theory to explicitly
construct X(z) = M(z)1-. The degree of the X(z) polynomial can be less
than its generic value if the equations 0 = M(z)v has "extraneous" roots
at infinity or zero. Roots at infinity or zero can cause Xi = 0 for the first
few or last few values of i. In either case, replaceing X(z) with the lower
degree polynomial obtained by dropping the zero valued coefficients, gives a
smaller system of equations which no longer contain the "extraneous" roots
at infinity or zero.

The advantage of using the Lagrange interpolation instead of the Wed-
derburn theory, is that the degree of the X(z) can be "fractonal", ie the
leading coefficient matrix could be low rank. This causes problems when
computing Mn_i(z„_i) using Wedderburn. However, Lagrange interpolation
has no such problems.

When the final (or original) M(z) is square (eg 3P-3R structure), then
only some roots are legitimate, while many roots are "extranous". Some of
these are the ±i or 0, inf roots known to satisfy the multi-affine equations,
while others do not have eigenvectors that satisfy the required Segre struc-
ture. For the 3P-3R structure, this can be avoided by using a smaller system
of equations associated with only the rotation equations (no translation equa-
tions).

First commutative diagram for the 6R structure.

19

t
R8

Pi{zi)h

Ä4

0 -» R12

[X4(6i),X4(6o)]

X,(Zi)

[X5(h),-,X5(b0))

R*

th

h
Zih

R 16

M4(z4)

[M40,M4i]

Ä4 ->- 0

4/4

.R4 -> 0

" P2 (25K4
Pi(25)^4 t'l6
Po(^5)/4 .

^ötop^)

^5^(25)

Ä4 —> i?16

I Jl6
25 -^16 .

M5(z5)

R16

Pl{.Zs)I2

Po{*f>)h

R2

[X6(b7),...,X6(b0)]
32

[M50,M51]
R

t/32

R16 -> i?4 -* 0

4^16

Ä16 -> 0

X6(z6) M6(ze)
R ,32 R30+m _>. Rm _^ 0

(12)

Alternatively, the 8 x 8 quadratic matrix M4(z5) = [-X5top(z5),X5bot(z5)]
gives an eigenproblem with 16 roots.

Second commutative diagram for the 6R structure.

20

0 -> ä4

Stopfe) M5(z5)

R10 _> Ä16 -+ Ä* -► 0

4
. J4 .

4- [—zih, h]

R8
MA(ZS)

R*
(13)

For other problems, such as the 4R-2P structure, we can first compute
M4(04), then apply the above procedure twice to obtain a 2 x 2 degree 4
matrix with 8 good eigenvalues. Generic data would result in a 2 x 2 degree
6 matrix with 12 eigenvalues. If we kept the zero coefficients in the 2 x 2
degree 6 matrix, we get 8 "good" eigenvalues, and 4 at zero or infinity.

2.3 Incomplete Intersections (for eigenprob-
lems)

After a generic linear change of coordinates, any O-dimensional ideal in n vari-
ables, containing d non-repeated points, can be represented by n polynomial
equations (a complete intersection). The roots of this set of n polynomi-
als will be the original d points (plus additional points at infinity in the
homogeneous case). However, if some structure is imposed on the type of
polynomial equations used to represent the ideal, e.g. multi-affine polyno-
mials, then it may be necessary to use more equations than unknowns (an
incomplete intersection).

Given any system of polynomial equations of any degree, it can be con-
verted to a system of multi-affine equations by replacing powers of variables
with new variables. This generates new variables as well as new relation-
ships amongst the variables. If the ideal is O-dimensional with d non-repeated
point solutions, then after a generic linear change of coordinates, the reduced
Gröbner basis, G = {gi,9i,—,gn}, of the ideal is of the form [Gianni and
Mora 1989]:

21

" 9i '
92

Xl

X2

* z=
■ -B .

.9n .
Xn-1

Xd L xn J

(14)

where the matrix B is unique.

Since rf can be any integer, it need not be of the form obtained for generic
multi-affine systems, in particular it need not even be factorable. When a
system of polynomials of any degree is put into multi-affine form, coefficients
on some monomials may be missing. This may result in some roots being at
infinity or more equations than unknowns (incomplete intersection). Some
systems of polynomials for O-dimensional ideals may also start out as incom-
plete intersections. When there are more equations than unknowns, then the
procedure described in previous sections multiplies them all by new mono-
mials, resulting in an "eigenproblem" with more equations than unknowns.
These extra equations eliminate some of the eigenvalues and eigenvectors.

Anmxn eigenproblem with d solutions has d eigenvalues and d eigen-
vectors (assume all Jordon blocks are size 1?). Let C and D be the d x d
diagonal matrices whose ratio give the d generalized eigenvalues, and let V0

be the nxd matrix whose Ith column is the Ith eigenvector. The eigen problem
can be written as:

0=[A0)JB0] V°C
-VoD

where A0 and B0 are each mxn matrices with m> n> d.

We want to compute V0, C, and D.
If we numerically compute the kernel of the [A0, B0] matrix, we get

(15)

-A,
= kernel[Ao, Bo]

then
V0C

-VoD
Bi

-Ax
V,

(16)

(17)

22

where Vi is an unknown rfi x di matrix,
Since the diagonal C and D matrices commute, right multiplication of the

top half of the above equation by D gives the negative of right multiplication
of the bottom half of the above equation by C. This gives a new nxdj
eigenproblem:

O^lAx.Bilf %° (18)

Repeating this process gives:

B2

-A2

-VXD

= kernel[Ai, Bi] (19)

then

VXC
-VxD

B2

-At
(20)

where V2 is an unknown d2 x d2 matrix,
iProm this, we get a new di x d2 eigenproblem:

0 = [A2,B2]
V2C

-V2D
(21)

This procedure is repeated until the integer sequence d* converges to d.
If the [A0, Bo] matrix starts out square, then numerical experiments indicate
that the integer sequence converges for i > ij where ij is the size of the
largest Jordan block (when 0 < d < oo).

The eigenvectors of the original system can be recovered using either:

VQD
i = AMD*-1 = ... = AiA2...AiVi (22)

or
VoC1 = BMC1-1 = ... = BxB^.BiVi (23)

The diagonal entries of the C and D matrices are never both zero at the
same location on the diagonal. Therefore any column of the Vo matrix can
be solved for using one or the other of the above two equations. If Djj ^ 0,
then

coljiVo) = [AxA^AJcoljlVil/D, JJ (24)

23

If C*j # 0, then
coljiVo] = [BlB2...Bi)colJmiCiJ

t (25)

Actually, the division by the diagonal entries of C or D can be eliminated,
since eigenvectors are typically scaled to unit length anyway.

Note that if we multiply the equation:

VoIT = AxAi.-.AiVi (26)

on the right by C{ we get the same thing as multiplying the equation

VoC1 = BlB2...BiVi (27)

on the right by D\ Therefore we get:

0 = [A^-.-Au BxB2...Bi}
ViC{

-ViD1 (28)

CONVERGENCE OF THE ITERATION

THEOREM: If the m x n eigenproblem [AQ + XB0]v = 0 has 0 < d < co
solutions, then the iteration defined by:

0 = [^i,Bi]
Bi+i

-Ai+i
(29)

converges in imax + 1 iterations to a square dxd eigenproblem, where imax

is bounded by:
' n — d

ceiling
m — n

< imtir. <n-d (30)

See Gantmacher Normal Form to get an exact equation for w [Thomps,1970].

24

PROOF
Let d-i = m, ofo = n, and for i > 0, let di+i be the dimension of the

kernel of Mt. The matrix Mi has 2dj columns, so

di+1 - 2di - rank(Mi) > 0 (31)

Note that

rank([A0 + XB0]) = rank ([A0, B0] ^) < rank([A0, B0\) (32)

Assume rank(M0) > d0 so we get at most a finite number of solutions to
the original eigenproblem. We must have rank(Mi) > dt, else we would get
an infinite number of solutions to the i01 eigenproblem, 0 = (Ai + XBi)v(X)
for all values of A. This would map down to an infinite number of solutions
to the previous eigenproblem, 0 = (Ai-i + XBi-i)Biv(X) for all values of A.
Eventually, this would map down to an infinite number of solutions to the
original eigenproblem, 0 = (AQ + \Bo)B1B2...Biv{\) for all values of A.

Because rank(Mi) > di, we get:

di+i = 2di - rank(Mi) < d{ (33)

so the sequence of nonnegative integers, diy is monotonically decreasing.

LEMMA:

The integer sequence di converges to d, the number of solutions to the
original eigenproblem.

PROOF OF LEMMA:

If dimax+\ = din^, then we get a square eigenproblem at that step. If the
eigenvalues are not repeated, then there is a full set of d^^ eigenvectors,
so the kernel of the 2dimax x dimax matrix [Aimax+1, Bimax+i] will be dimax

dimensional, so di = dimax for all i > imax-

end of PROOF OF LEMMA:

If dj decreases at the slowest possible rate, i.e. di+i = d—l until i = imax,
then imax —n-d. In general

imax <n-d (34)

25

Since rank(Mi) < NumRows(Mi) = di_i, the equation

di+i = 2di — rank(Mi) (35)

gives:
*+i > 2rfi - di-x (36)

Combining this with the initial conditions, d_i = m, d0 — n, gives:

df > n — i(m — n) (37)

This decreasing integer sequence converges for i > imax where imax is
obtained by setting rff = d in the above formula.

»mal > ceiling
do — d

= ceiling
m — do

Combining the upper and lower bounds gives:

n — d

n — d
m — n

ceiling
m — n

< i ü lmax ^ < n — d

(38)

(39)

To obtain a square eigenproblem, one more iteration is needed, since
Ai + XBi is size dj_i x dj.

[A imai+l + A£ *nwxTl J6Ä >dxd (40)

When the sequence converges to some integer d, that must be the number
of solutions to the original eigenproblem because we get square d x d matrices
Ai and Bi, so the following eigenproblem 0 = [A» - \Bi]v has d eigenvalues.
The eigenvector matrix gets mapped back into the original large space by
recursively applying Cvi-x = BM or Dvi-x = AM.

Ok even if there are repeated eigenvalues, and not a full set of d eigen-
vectors.

26

COMMUTING DIAGRAM:

Let Mi = [Ai,Bi]. Let Li+i = kernel(Mi) so that MiLi+i = 0. Define
-Ai+i and Bi+i as the bottom and top halves of the Li+i matrix.

Bi+i
-Ai+i

= U »+i (41)

so AiBi+i = BiAi+1.
Let

A =
Ai 0
0 Ai

and Bi =
Bi 0
0 Bi

(42)

The Ith row in the following diagram gives the ith eigenproblem. The
vertical maps show how the eigenvectors, kernels, and ranges are mapped
(assuming that C = I). The following diagram commutes since -AjBf+i =
BiAi+1.

Rdimax+2 i22dtmax+l !&<■ 0

0

4 #4

R?3

iB3

R?2

IB2

U

U

R2d3

IB3

R2d2

IB2

R2d,

4£l

R2dc

Ms

M2

Mi

Mo

i^2

IB2

R^
4 BQ

Rm 0

(43)

Note that if the assumption C = I is replaced with the assumption D = I,
then a similar diagram can be made by replacing the vertical Bi and Bt maps
with vertical Ai and Ai maps.

If di = d for i > ij, then we get the following dx d eigenproblem with

27

eigenvalues = diag(D).

0 = [Aij+1,Bij+1]
V

-VD
(44)

After the previous diagram converges, we get a pull-back from the follow-
ing commuting diagram:

[Aij+i, BiJ+i]

I Bij+i

R2dij

[Aij,Bi,
R^J-

1

(45)

PullBack = ker [(Bh, -[At,,^]) : Ä** ® R2dij -► A*'"1] (46)

(47)
'*, °

»J+1 0 B,

dim(PullBack) = (dh + 2dij) - rank{[Bi:n -(4A)D (48)

= (dh + 2dh) - rankftAi^Bi,]) = (dh + 2dh) - (2dh - dij+1) = 2d (49)

28

2.4 Incomplete Intersections (general poly-
nomials)

Any set of real polynomial equations in x € Cn can be written in matrix
form as:

Mo
Qo{x)

0 = v0(x) (50)

Where M0 € Ämxp is a matrix of coefficients, v0(x) G Zp[x] is a vector of
monomials, and Qo(x) E Z9,p[x] represents the relations among the monomi-
als v0(x).

<2o(z) = S<2o,iWi(z) (51)
»=i

where the Q0ji matrices are filled with integers, and the Wi(x) are monomials.
For example, in the generalized eigenproblem, 0 = [A - XB]eigvec, we get

—eigvec
Mo = [A, B], vQ{x) = Xeigvec

, and Qo(x) = [XI, I].

In the general case, v0(x) can be expressed as:

v0(x) = M0
J-c0(x)

for any polynomial vector CQ(X) that satisfies

Q0(x)Mo±c0{x) = 0

This can be expanded as:

K

0 = Qo{x)M0
±c0{x) = Y^QojWifäMo^coix)

k

L
»=1

= [QciMo"1, Qo,2Mo±,..., Qo.fcMo-1]

W!(x)Co(x)
w2(x)co(x)

Let

. wk(x)co(x)

(52)

(53)

(54)

(55)

(56)

29

and
WI(X)CQ{X)

W2(X)CQ(X)
vi(x) =

wk(x)co(x) .

We then have a new matrix equation

0 = M1v1{x)

The new monomial vector, vx(x) satisfies the relations:

0 = Qi(rr)vi(x)

where

Qi{x) =

w2{x)I -Wi(rr)J 0 0
w3{x)I 0 -wx{x)I 0

I 0 0
wk{x)I 0 0 0

0
0

0
—Wi(x)J

This gives the new system:

0 =
Qi{x)

vi{x)

(57)

(58)

(59)

(60)

(61)

If we can solve this new system for v^x), then we can reconstruct v0(x)
as follows:

v0{x) = Mo^ix) = M^PiV^/wiix) (62)

where
(63) Pi = [0>0>...J0,Il0>...,0]

such that PiV0(x) = Wi(x)co(x).
If we cannot solve the new system for vx{x), then repeat the above process

until Qj(x)Mj converges to a fixed dimension and degree.

Given the set of d solutions: X = [x(l), x(2),..., x(d)}
Let Vo = [v0(x(l)),vo(x(2)),...,v0(x(d))]. Then the above matrix equa-

tion can be written as:

30

0 = MQVO (64)

We can express V0 in terms of the numerical kernel, Mo"1, of the M0

matrix.

where

V0 = Mo^Co

C0 = [co(x(l)),c0(x(2)),...,Co(x(d))]

(65)

(66)

Special Case
For the eigen-problem,

v0(x) = In

This gives Q0(x) = [xnIn, -/„].
In a slightly more general case

v0{x) = In
Go(x)

1
X\

X2

Xn-l

1
Xi

X2

Xn-\

(67)

(68)

where G0(x) is an m x n matrix. In this case, Qo(x) = [G0(x), —Im]. This
leads to the following commutative diagram:

31

0 -

where

and

I

Rm

0
Im

Rm+n

In
0

Rn

Mo-

Fix)

In
Go(x)

Rm+n

4- Im+n

Rm+n

4- -*m+n

Rm+n

F(x) =

H(x) =

In
GQ(x)

Mo

H(x)

[Go(x),-Im]

R"

t[i»,0]

Rm+n

i[OJm]

Rm

, Mo1-

Mo
Go(x) -I m

H(x)F(x)
Mo

In
G0(x)

0

0

0
(69)

(70)

(71)

(72)

[GoixlImWo1-

The upper left block is the original problem. The lower right block is
the new problem. This applies to the eigenproblem, where F(x) = F(xn)
H(x) = H{xn) are both square matrices that are full rank except when xn is
an eigenvalue.

Let Qo(x) = [\In, -M and show that det[F(xn)] = 0 iff det[H(xn)] = 0.
This can then be used to prove that the Incomplete Intersection algorithm
ends up with a new eigenproblem whose roots are identical with those of the
original system.

32

2.5 References

[Wedderburn]
William Pulton, "Intersection Theory," Springer, 1984.

Blaise Morton and Michael Elgersma, "A New Computational Algorithm
for 7R Spatial Mechanisms," Mechanism and Machine Theory, vol 31 no 1,
pp 23-43, 1996.

Daniel R. Grayson and Michael E. Stillman "Macaulay2," 1996.

Groebner Basis complexity: {polyfo^d71 < flops < \poly(n)]dn

Lazard

Groebner Bases
Buchberger
P. Gianni and Teo Mora (1989), "Algebraic Solutions of Systems of Poly-

nomial Equations Using Groebner Bases," Proceedings of AAECC 5, LNCS
356, p 247-257.

Groebner Basis: tf < flops < dn

Multivariable Resultants
Bhubabeswar Mishra, "Algorithmic Algebra," Springer-Verlag, 1993.

Deepak Kapur and Yagati N. Lakshman, "Elimination Methods: an In-
troduction," Chapter 2 in: B. R. Donald, D. Kapur, and J. L. Mundy,
"Symbolic and Numerical Computation for Artificial Intelligence," Academic
Press, 1992.

Dilation, Macaulay Resultant details and recent extensions.
Lazard(1981), Canny(1988).

U-Resultants (doesn't work if common zeros, even at infinity) (exten-
sion to Macaulay Resultant) Canny(1988), Lakshman(1990a), Lakshman and
Lazard (1991), Manocha and Canny (1991)

F. S. Macaulay, "The Algebraic Theory of Modular Systems," Cambridge
Tracts in Math, and Math. Physics, vol 19, 1916.

33

r n

K CM
03 H

I

■\ en

f-i

Deflation
Dongarra??

Multi-linear Equations (Volume of the Newton Polytope, Chow Variety):
[St] Bernd Sturmfels, "Sparse Elimination Theory," Cortona conference

1991, published in "Computational Algebraic Geometry and Commutative
Algebra" ed. David Eisenbud and Lorenzo Robbiano, 1994.

[Can] Leandro Caniglia, "How to Compute the Chow Form of an Un-
mixed Polynomial Ideal in Single Exponential Time," Applicable Algebra in
Engineering, Communication, and Computing. Springer-Verlag 1990.

[GKZ] I.M. Gelfand, M.M. Kapranov, A.V. Zelevinski, "Discriminants,
Resultants, and Multidimensional Determinants (Mathematics: Theory and
Applications)," Birkhauser, 1994.

Homotopy, Multi-homogeneous:
A. Morgan and A. Sommese, "A homotopy for solving general polynomial

system that respects m-homogeneous structures," Applied Mathematics and
Computation 24 (1987) 101-113.

Incomplete Intersection
[Thomps,1970] Gerald L. Thompson and Roman L. Weil, "Reducing The

Rank of {A - XB),n Proc. AMS 26, 4 (Dec. 1970), p 548-554.
[Dell 1971] Alice M. Dell, Roman L. Weil, and Gerald L. Thompson, "Al-

gorithm 405, Roots of Matrix Pencils: The Generalized Eigenvalue Problem
[F2]," Communications of the ACM, Feb. 1971, Vol 14, Number 2.

[Gant, 1959] F. R. Gantmacher, "The Theory of Matrices, II," Chelsea
Pub. Co., New York, 1959, pp. 35-40.

Acknowledgments

The authors would like to thank Steven G. Pratt for writing efficient
"index" and "base" functions used to implement the dilation algorithm. The
authors would also like to thank Kathryn Lenz for several helpful discussions
on dilation and deflation.

34

