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1    Executive summary 

1.1    Technical progress 

The fundamental question addressed by the research reported here is how 
integrating the different insights and methodologies of Artificial Intelligence 
(AI) and Operations Research (OR) can help us to search extremely large 
solution spaces. Both AI and OR search techniques have been applied to 
difficult combinatorial optimization problems, but their respective strengths 
and weaknesses are very different. OR algorithms tend to focus on finding 
optimal solutions, and as such must take a "global" view of a problem. In 
contrast, AI approaches are often based on local search, with a focus on 
finding good (but usually not optimal) solutions very quickly. Our research 
has been motivated by an effort to combine the best of both worlds. 

We have made strong progress in three major areas. First, we have devel- 
oped an innovative architecture, "Squeaky Wheel" Optimization (swo), for 
AI local search. Second, we have developed a new hybrid AI/OR approach, 
H-OPT, that incorporates swo and MINTO, a Linear Programming (LP) and 
Integer Programming (IP) solver. The hybrid approach outperforms both of 
the individual components. Third, we have developed some unorthodox, but 
highly effective, approaches to a traditional IP technique known as column 
generation. Each of these advances is discussed below. 

Our development has been done using scheduling problems for a fiber- 
optic cable manufacturing plant, provided for us by Lucent Technologies. 
Using this domain allowed us to work on a well-defined, real-world problem 
for which real data could be obtained. The techniques that we have developed 
in this domain are quite general, and readily applicable to problems of more 
direct interest to the Air Force, such as target partitioning and assignment. 

1.1.1     "Squeaky Wheel" Optimization 

In looking at AI local search techniques for scheduling, we have been able to 
generalize several existing, highly effective scheduling algorithms, including 
Doubleback, previously developed at CIRL, and the patented algorithm used 
in OPTIFLEX, a commercial scheduler. The generalization is based on two 
principles that we have found to be key: 

• Good solutions can be "taken apart" to reveal structure in the (local) 
search space. 



• Local search benefits from the ability to make large, coherent moves in 
the search space. 

Essentially, swo generates a solution, then analyzes that solution to de- 
rive information about the local structure of the search space. That infor- 
mation then serves as feedback to guide the construction of a new solution. 
Because the new solution is constructed from scratch, the transition from 
one solution to the next is not limited to small, local moves as is the case 
with traditional local search algorithms. The new solution may differ from 
the previous solution at many points, but all of the changes are coherent in 
the sense that they are all motivated by the same feedback. The algorithm 
alternates between construction and analysis in this fashion until halted. 

1.1.2 Hybrid AI/OR architecture 

We have developed a hybrid architecture, H-OPT, that combines Integer Pro- 
gramming (IP) for global optimization, and AI local search techniques. Our 
hybrid approach captures the most desirable features of each. Swo is used 
to generate a large number of good feasible solutions quickly, and MINTO, an 
IP solver developed at Georgia Tech, is then used to combine the elements 
from those solutions into a better solution than the local search approach 
was able to find. 

Experimental results are very encouraging. Traditional IP techniques 
alone were unable to generate feasible solutions to the largest problems in 
our test set, even when sub-optimal results were allowed. Although SWO is 
able to generate feasible (and quite good) solutions quickly, it fails to find 
some of the optimal solutions that the IP solver is able to find very quickly 
in H-OPT. Thus the hybrid approach outperforms both of its individual 
components. 

1.1.3 New approaches to column generation 

One approach to applying LP/IP techniques to very large problems is column 
generation. When the matrix defining the full problem is simply too large to 
generate, a relatively small number of columns may be created initially, where 
each column represents one way of solving a sub-problem. A solution over the 
initial set of columns is found, and feedback based on that solution is used 
to guide the generation of new columns.  In this fashion, new columns are 



generated intelligently, and as a result, only a very small subset of all possible 
columns needs to be generated, keeping the problem to a manageable size. 

Column generation has also traditionally been based on solving only iso- 
lated sub-problems, i.e., generating a new column without considering inter- 
actions between it and other columns. In this approach, the sub-problems are 
smaller than the overall problem, and it is possible to prove mathematically 
that with optimal solutions to the sub-problems, an optimal global solu- 
tion will be found. Our experience, however, has been that this approach 
converges very slowly, and that part of the problem is that the columns 
thus generated do not "fit" well with other, existing columns. We have had 
substantially better success generating new columns by generating complete 
solutions, using SWO, so that the new columns are known to work well to- 
gether, at least in that one solution. Columns generated in this fashion turn 
out to allow the IP solver to converge much more rapidly on good solutions 
which are better than any of the solutions generated by SWO alone. 

Little or no attention has been paid to the importance of randomiza- 
tion in IP solvers that rely on column generation. Our experiments have 
demonstrated that controlled randomization can be effective at improving 
the performance of IP techniques. In applying randomization, we have fo- 
cused on decisions for which we can generate a probability distribution that 
reflects the evaluation of each option by a heuristic function. 

1.2 Personnel 

At CIRL, at the University of Oregon, the research has involved David Ether- 
ington, David Joslin, and David Clements. Etherington and Joslin, the Prin- 
ciple Investigators, are faculty members, and Clements is a programmer. 

Under the sub-contract with Georgia Tech, the research has involved the 
Principle Investigator, George Nemhauser, one other faculty member, Martin 
Savelsbergh, and a graduate student, Markus Puttlitz. 

1.3 Publications and Patents 

The following publications have acknowledged this grant: 

• D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz and M. 
Savelsbergh, "Heuristic Optimization: A Hybrid AI/OR Approach." 



Proceedings of the Workshop on Industrial Constraint-Directed Schedul- 
ing, 1997. (Held in conjunction with CP'97, Schloss Hagenberg, Aus- 
tria.) 

This paper summarizes the major results for both SWO and H-OPT. It 
is anticipated that, with additional work extending the results to new 
domains, this will be turned into a journal paper. 

• D. Joslin and D. Clements, "Squeaky Wheel Optimization." To ap- 
pear in Proceedings of the Fifteenth National Conference on Artificial 
Intelligence (AAAI-98), 1998. 

This paper describes the SWO framework in detail, and presents exten- 
sive experimental results. 

• D. Joslin and A. Roy, "Exploiting Symmetries in Lifted CSPs." Pro- 
ceedings of the Thirteenth National Conference on Artificial Intelligence 
(AAAI), 1997. 

This paper shows that it is possible to detect symmetries in problems 
by looking at problem descriptions that are "lifted," i.e., that incorpo- 
rate quantification over finite sets. A similar approach would be readily 
adaptable to SWO, allowing it to avoid searching some redundant re- 
gions of the search space. 

• C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and 
P.H. Vance, "Branch-and-Price: Column Generation for Solving Integer 
Programs." Operations Research, To appear in 1998. 

This paper discusses the fundamental concepts underlying of the use 
of column generation in the solution of integer programs. 

A provisional patent application has been filed covering SWO and H-OPT, 

and we expect that a full application will be filed at the appropriate time. 
In addition, a publication on our new column generation techniques is in 
preparation, pending further experimental results. 

1.4    Outline of the report 

Section 2 describes the fiber optic cable manufacturing domain. Section 3 de- 
scribes our "Squeaky Wheel" Optimization architecture. Section 4 describes 
our hybrid approach that combines SWO with MINTO, an IP solver. Section 5 



outlines some of our most recent work, comparing traditional approaches to 
column generation with some unorthodox, but very effective, variations. The 
final section summarizes our conclusions, and discusses some of the directions 
for future research that we hope to pursue. 



2    Experimental Framework 

2.1 Experimental domain 

This section describes the domain used for all of our experiments, and the 
LP/IP formulation that underlies both the H-OPT architecture (Section 4) 
and our new approaches to column generation (Section 5). This is a rather 
generic scheduling problem so the methodology developed should be applica- 
ble to a wide variety of scheduling problems and many other logistics prob- 
lems. 

The problem we have selected to work on is fairly representative, multi- 
job, parallel machine scheduling problem with lateness and changeover costs 
which originated in a fiber-optic cable plant.1 A cable consists of up to 
216 optical fibers. The sheathing operation involves joining the fibers and 
wrapping a protective rubber sheathing around them. This operation can 
be performed on one of 13 parallel sheathing lines. Typically, the number of 
cables in the set of orders is much larger than the number of sheathing lines. 
Every ordered cable has a release time and a due date. Production cannot 
begin before the release time, and the objective function includes a penalty 
for not completing a cable by the due date. 

The production lines are heterogeneous in the types of cables they are 
able to produce, and the speeds at which they operate. For each cable, only 
a subset of the production lines will be compatible, and the time required to 
produce the cable will depend on which of the compatible lines is selected. 
Job preemption is not allowed, i.e. once a cable has started processing on a 
line, it finishes without interruption. 

We need to make two types of decisions, namely how to assign cables, 
hereafter called jobs, to lines and how to sequence the jobs assigned to each 
line. Objectives are the minimization of the number of late jobs and the 
minimization of the sum of the setup times between jobs. This is an NP- 
hard combinatorial optimization problem. 

2.2 LP/IP formulation 

Our overall approach for both H-OPT and column generation is to formulate 
the problem as an IP problem, and to solve it by a branch-and-bound al- 

xWe wish to thank Robert Stubbs of Lucent Technologies for providing us with data 
to use for our experiments. 



gorithm. Hence we need a "good" IP formulation, an efficient method for 
solving the linear programming (LP) relaxation, and an algorithm to gener- 
ate integral solutions. 

One concept of modeling discrete optimization problems with complicated 
constraints that has been shown to work well in practice is known as set 
partitioning (SP). Suppose we assign schedules (rather than single jobs) to 
lines. Let a line schedule be a feasible assignment of a group of jobs to a 
line, including a sequencing and the associated objective cost. Notice that 
the computation of the objective function value of one line is independent 
of all other lines. To solve the overall problem, we need to find a min-cost 
subset of the set of all line schedules that uses each line at most once and 
includes each job in exactly one line schedule. 

Let xim be the 0/1 decision variable which is 1 if line schedule I is assigned 
to line m. Associated with this variable will be a column aim representing: 

• A set of jobs assigned to line m, represented by 0/1 indicators ajm, 
which are equal to 1 if job j is in line schedule I and 0 otherwise. 
Column aim = Wm} will then be the characteristic vector of the jobs 
in line schedule / for line m. 

• Any ordering of that set of jobs results in a cost Qm associated with 
that line schedule. For a given set of jobs, we would ideally like to find 
a line schedule that minimizes Qm, but solving this problem is NP-hard, 
and in practice we usually must apply heuristic methods. 

This leads to the SP problem 

Minimize     JZ   5Z cimXim 

Subject tO        J2    J2  aimxlm  =  1 
meM ieLm 

Vie J 

5^  Xlm   <   1 Vm e M 

Xlm   G   {0, 1} VZ e \jLm,me M 

where Lm is the set of feasible line schedules for line m, J is the set of jobs, 
and M is the set of available production lines. 

The SP formulation comprises two types of constraints. The first forces 
the solution to the scheduling problem to include each job exactly once. The 
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second makes sure that for each line at most one line schedule can be part 
of the solution. Note that the constraints that determine whether or not 
a line schedule is feasible are not represented in the SP formulation, since 
only feasible line schedules are considered in this formulation. These feasible 
schedules are generated using the "squeaky wheel" optimization techniques 
to be discussed next. 

Although fairly large instances of SP problems can be solved efficiently, 
the algorithmic challenge is to devise methods for solving SPs with a huge 
number of columns. In our scheduling problem, the SP has a column for 
every possible line schedule for every line. The number of such columns is 
generally exponential in the number of jobs. Fortunately, as explained in 
Section 5, it is possible to approximate the SP so that only a relatively small 
number of line schedules are considered. 

3    "Squeaky Wheel" Optimization 

This section describes "Squeaky Wheel" Optimization (SWO), an optimiza- 
tion architecture that also serves as a component in H-OPT (Section 4). Swo 
is a generalization of several existing, highly effective scheduling algorithms, 
including Doubleback Optimization [3] and the genetic algorithm used in 
OPTIFLEX, a commercial scheduler [12]. In SWO, solutions are analyzed to 
provide feedback for a local search algorithm. The algorithm is designed to 
make large "coherent" moves in the search space, thus helping to avoid local 
optima without relying entirely on random moves. 

Some of the most effective approaches for solving systems of constraints 
in recent years have been based on local search. GSAT [11] and WSAT [10] 
apply local search techniques to solving propositional satisfiability problems, 
and WSAT has been used as the solver for the SATPLAN [8] planning system. 
CIRL's scheduling technology uses Doubleback Optimization, which performs 
a kind of local search to improve a "seed" schedule over a number of iterations 
[3]. The commercially successful scheduler OPTIFLEX from i2 Technologies 
is based on a patented approach that uses genetic algorithms [12]. Although 
these approaches differ substantially in the details, there has been a clear 
movement toward the use of local search in AI approaches to optimization 
problems. 

In designing our local search algorithm, we began by looking at the Dou- 
bleback algorithm, because it had been extremely successful in solving a 

10 



Analyzer 

V ^^eedback 

Constructor Prioritizer 
Sequence of 
tasks 

Figure 1: Local search architecture 

standard type of scheduling problem. (On one benchmark related to air- 
craft manufacture [5], CIRL's scheduler produces the best-known solutions 
by a substantial margin, and finds them faster than the closest competitors.) 
However, the Doubleback algorithm is only useful when the objective is to 
minimize makespan (the time required to execute the schedule). Our prob- 
lem domain required a different objective function, using a weighted sum of 
several factors. The problems also used constraints that are more complex 
than could be handled by the current Doubleback algorithm. Because of this, 
we began thinking about the principles behind Doubleback, looking for an 
effective generalization of that approach. 

The architecture that emerged is summarized in Figure 1. There are three 
components: 

Prioritizer Generates a sequence of jobs, with higher priority jobs being 
earlier in the sequence. Uses feedback from the Analyzer to modify 
previously generated sequences. 

Constructor Given a sequence of jobs, constructs a schedule. Uses "greedy" 
scheduling for each job, in the order they occur in the sequence, without 
backtracking. 

Analyzer Given a schedule, analyzes that schedule to find the "trouble 
spots." This feedback is provided to the Prioritizer. 

We call this architecture "Squeaky Wheel" Optimization (swo), from 
the aphorism "The squeaky wheel gets the grease." The idea is that on each 
iteration, the Analyzer determines which jobs are causing the most trouble in 
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the current schedule, and the Prioritizer ensures that the Constructor gives 
more attention to those jobs in the next iteration. Note that this "priority" 
does not reflect the relative importance of a job, but rather the relative 
difficulty of finding a good place to put that job in a schedule. 

In the current implementation, the Analyzer "assigns blame" to each of 
the jobs in the current schedule. For each job we calculate a simple lower 
bound on the minimum possible cost that each job could contribute to any 
schedule. For example, if a job has a release time that is later than its due 
date, then it will be late in every schedule, and the minimum possible cost 
already includes that penalty. The minimum possible setup costs are also 
included. Then, for a given a schedule, the penalty assigned to each job 
is its "excess cost," the difference between its actual cost and its minimum 
possible cost. The setup time penalty for each pair of adjacent jobs is shared 
between the two jobs, and the penalty for lateness is charged only to the late 
job itself. 

Once these penalties have been assigned, the Prioritizer modifies the pre- 
vious sequence of jobs by moving jobs with high penalties forward in the 
sequence. We currently move jobs forward in the sequence a distance that 
increases with the magnitude of the penalty, such that to move from the back 
of the sequence to the front, a job must have a high penalty over several it- 
erations. (Sorting the jobs by their assigned penalty is simpler, and turns 
out to be almost as effective.) As a job moves forward in the sequence, its 
penalty will tend to decrease, and if it decreases sufficiently the job may then 
tend to drift back down the sequence as other jobs are moved ahead of it. If 
it sinks too far down the sequence, of course, its penalty may increase again, 
resulting in a forward move. 

The Constructor builds a schedule by adding jobs one at a time, in the 
order they occur in the sequence. A job is added by selecting a line, and 
a position relative to the jobs already in that line. A job may be inserted 
between any two jobs already in the line, or at the beginning or end of that 
schedule, but changes to the relative positions of the jobs already in the 
line are not considered. Each job in the line is then assigned to its earliest 
possible start time, subject to the chosen ordering, i.e., a job starts at the 
minimum of either its release time or as soon as possible after the previous 
job on that line, allowing for the appropriate setup time between them. 

For each of the possible insertion points in the schedule, relative to the 
jobs already in each line, the Constructor calculates the effect on the objec- 
tive function, and the job is placed at the best-scoring location.   Ties are 
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broken randomly. After all of the jobs in the sequence have been placed, the 
Constructor tries to improve on the completed schedule with a small amount 
of local search. Currently, we only consider reordering jobs within a line. 

The design of the local search architecture was influenced by two key 
insights: 

• Good solutions can reveal problem structure. By analyzing a good so- 
lution, we can often identify elements of that solution that work well, 
and elements that work poorly. A resource that is used at full capac- 
ity, for example, may represent a bottleneck. This information about 
problem structure is local, in the sense that it may only apply to some 
part of the search space currently under examination, but it still may 
be extremely useful in helping figure out in what direction the search 
should go next. 

• Local search can benefit from the ability to make large, coherent moves. 
It is well known that local search techniques tend to become trapped 
in local optima, from which it may take a large number of moves to 
escape. Random moves are a partial remedy, and in addition, most 
local search algorithms periodically just start over with a new random 
assignment. While random moves, small or large, are helpful, we believe 
our architecture works, in part, because of its ability to also make large 
coherent moves. A small change in the sequence of tasks generated by 
the Prioritizer may correspond to a large change in the corresponding 
schedule generated by the Constructor. Exchanging the positions of 
two tasks in the sequence given to the Constructor may change the 
positions of those two tasks in the schedule, and, in addition, allow 
some of the lower priority tasks, later in the sequence, to be shuffled 
around to accommodate those changes. This is a large move that is 
"coherent" in the sense that it is similar to what we might expect from 
moving the higher priority task, then propagating the effects of that 
change by moving lower priority tasks as well. This single move may 
correspond to a large number of moves for a search algorithm that only 
looks at local changes to the schedule, and may thus be difficult for 
such an algorithm to find. 

This architecture can be thought of as searching two coupled spaces: the 
space of solutions, and the space of job sequences. Note that in the space of 
job sequences, the only "local optima" are those in which all jobs are assigned 
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the same penalty, which in practice does not occur. Because of this, the 
architecture tends to avoid getting trapped in local optima in the solutions 
generated by the Constructor, since analysis and prioritization will always 
(in practice) suggest changes in the sequence, thus changing the solution 
generated on the next iteration. The randomization used in tie breaking will 
also tend to help avoid local optima. 

Note that this architecture is a general framework, and not itself a spe- 
cific algorithm. Doubleback can be viewed as an instance of this architecture, 
for example [3]. The OPTIFLEX scheduler [12] can also be viewed as an in- 
stance, with a genetic algorithm replacing the analysis phase. (In effect, 
the "analysis" instead emerges from the relative fitness of the members of 
the population.) These schedulers may appear to have little in common, 
but we believe that we have uncovered some principles that underlie both 
of these approaches. In the case of the OPTIFLEX scheduler, for example, 
we hypothesize that it is not genetic algorithms per se that make the sched- 
uler so effective, but rather the manner in which prioritization and greedy 
construction are combined. 

The importance of prioritization in greedy algorithms is not a new idea. 
The "First Fit" algorithm for bin packing, for example, relies on placing items 
into bins in decreasing order of size [6]. Another example would be GRASP 
(Greedy Randomized Adaptive Search Procedure) [4]. GRASP differs from our 
approach in several ways. First, the prioritization and construction aspects 
are more closely coupled in GRASP. After each element (here, a task) is added 
to the solution being constructed (here, a schedule), the remaining elements 
are re-evaluated by some heuristic. Thus the order in which elements are 
added to the solution may depend on previous decisions. Second, the order 
in which elements are selected in each trial is determined only by the heuristic 
(and randomization), so the trials are independent. GRASP has no mechanism 
analogous to the dynamic prioritization used in SWO, and consequently lacks 
the ability to search the space of sequences of elements, which we believe to 
be a key aspect of our architecture, because it allows the local search to make 
large, coherent moves. 

Our architecture has been applied to both the single-line subproblem of 
generating new columns for an IP solver, and to the solution of the full 
scheduling problem. We currently focus on the use of this approach for 
solving the full problem; these solutions are also used to generate the initial 
set of columns for an LP/IP solver. 

Our current implementation has considerable room for improvement. The 
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analysis and feedback currently being used are very simple, and the construc- 
tion of schedules could take various heuristics into account, such as preferring 
to place a job in a line that has more "slack," all other things being equal. 

The experimental results for swo are presented and discussed in Section 
4. 

4    Hybrid AI/OR architecture 

4.1    Approach 

Both heuristic and exact optimization techniques have been applied to dif- 
ficult combinatorial optimization problems. Typically, heuristics have the 
advantage in speed and size of instances that can be handled, while exact 
methods have the advantage in quality. We present a hybrid approach that 
integrates heuristics and exact optimization techniques with the goal of cap- 
turing the desirable features of both. 

We call our hybrid approach heuristic optimization (H-OPT). SWO, acting 
as one component of H-OPT, generates an initial set of good schedules, and the 
other component, MINTO, uses an Integer Programming algorithm to globally 
optimize those results, producing better schedules by combining elements of 
the schedules in the initial set. 

In the optimization component, a linear program, which is a relaxation 
of an IP, is solved. Each column in the LP represents a feasible solution 
to a subproblem; in the problems used for the experiments for this paper, 
each column represents a feasible schedule for a single production line in a 
multi-line facility. Since there are a huge number of feasible schedules for 
each line, it is not practical to work with the whole LP. Instead, we use a 
local search heuristic to generate high-quality schedules. 

A branch-and-bound solver is then used to obtain "good" integer solutions 
to the overall problem, i.e., finding the optimal combination of columns (line 
schedules) from the heuristically-generated schedules. Given a set of columns, 
the LP solver finds optimal primal and dual solutions to the LP relaxation. 
In future work, the optimal dual values will be used to guide a local search 
algorithm that will produce new columns for the LP throughout the search. 
In the scheduling problem, for example, this feedback indicates which jobs 
are most "difficult" to schedule. 

Swo generates good solutions very quickly by itself, but in combination 
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with the IP optimization, considerable improvements are obtained. The hy- 
brid approach also produces better quality solutions than an existing TABU 

search algorithm, and runs faster. 
In H-OPT, SWO generates as many good schedules as it can within a 

specified time limit. Each of these schedules contains one line schedule for 
each production line. Each individual line schedule becomes a column in the 
LP/IP formulation of a set partitioning problem, as previously discussed. 
A branch-and-bound solver is then used to find the optimal combination of 
columns. The solver used in our implementation is MINTO [9], a general 
purpose mixed integer optimizer that can be customized to exploit special 
problem structure through application functions. The LP relaxations are 
solved using CPLEX [2], a general purpose LP solver. 

4.2    Experimental results 

We have several sets of test data, ranging in size from 40 to 297 tasks (cable 
orders). In each problem there are 13 production lines. We compare the 
following solution methods: 

TABU Uses TABU search [7], a local search algorithm in which moves that 
increase the cost are permitted to avoid getting trapped at a local 
optimum. To avoid cycling, when an "uphill" move is made, it is not 
allowed to be immediately undone. 

SWO Applies the SWO architecture to the entire problem, running for a fixed 
number of iterations and returning the best schedule it finds. 

H-OPT Uses the best schedules generated by swo as the set of initial columns 
in the IP formulation described previously. 

On the 297-task problem, our implementation of TABU was much less 
effective than either swo or H-OPT, failing to find a feasible schedule after 
running for over 24 hours. On the smaller problems, TABU was able to find 
solutions, but both swo and H-OPT outperformed TABU by a substantial 
margin. 

Table 1 presents results for SWO and H-OPT on test sets with the number 
of jobs ranging from 40 to 297. In each case, ten trials were run and the results 
averaged. The second column of the table shows the best objective function 
value we have ever observed on each problem. The next two columns show 
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Data Best 
swo H-OPT 

Avg Avg Avg Extra % 
Set Obj Obj Time Obj Time Impr. 

40 1890 1890.0 162 1890.0 3 0.000 
50 3101 3128.8 201 3127.2 3 0.051 
60 2580 2580.6 242 2580.0 9 0.023 
70 2713 2714.2 282 2713.0 5 0.044 
148 8869 8951.7 604 8874.7 31 0.858 
297 17503 17806.8 1209 17556.1 111 1.406 

Table 1: Experimental results 

the average objective function value, and the average time required for SWO. 
For H-OPT, the last three columns in the table show the average objective 
function value, the average time required by MINTO to optimize over the set of 
columns in the schedules generated by SWO, and the percentage improvement 
in the objective function. All times are in user processor seconds. These 
experiments were run on a Sparestation 10 Model 50. 

For the SWO/H-OPT experiments, we allowed the heuristic solver (swo) 
to generate solutions up to a time limit proportional to the number of jobs, 
with approximately 20 minutes (1200 seconds) allowed for the largest problem 
(297 tasks). The line schedules from these solutions then formed the initial 
set of columns of H-OPT. H-OPT searches for a better combination of those 
columns. In other words, if it finds an improvement, it is the result of using 
columns from different schedules generated by SWO. 

On the smallest problems in our test set, SWO by itself finds solutions 
that are as good as the best solutions we have found by any method. As the 
problem size increases, H-OPT is able to show greater improvements by re- 
combining columns from the schedules found by SWO, with an improvement 
of 1.4% over the performance of SWO alone on the 297-job problem. 

To further characterize the performance of H-OPT, we ran the largest data 
set (297 jobs) with varying amounts of time allowed for SWO to generate the 
"seed" schedules. Each column in Table 2 represents ten runs with a fixed 
amount of time allowed for seed generation. As shown in the table, MINTO 

required only a relatively small amount of time to improve upon the schedules 
produced by SWO. The degree of improvement ranged from 1.3% to 1.7%, 
corresponding to causing an additional 2 to 3 jobs to be completed by their 
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Time allowed for SWO (seconds) 
60 300 j 600 900 1200 1800 

swo 17979.4 17881.9 17818.1 17858.0 17806.8 17777.0 
H-OPT 17715.0 17581.5 17553.8 17547.4 17556.1 17543.1 
% impr. 1.460 1.678 1.482 1.738 1.406 1.315 
Avg. MINTO time 11 49 125 121 111 110 

Table 2: Experimental results (297 task problem) 

due dates.   (The actual improvement, of course, may be a combination of 
reducing lateness and reducing the total setup time.) 

Figure 2 gives another view of the same data. For each of the six experi- 
ments shown in Table 2, the solid line shows the best schedule produced by 
SWO, on average, versus time. The dashed line segments show the results of 
taking the set of schedules generated by swo up to some point (1 minute, 5 
minutes, etc., up to 30 minutes) and allowing MINTO to optimize over that 
set of schedules. The horizontal line shows the best objective value we have 
ever observed, for reference. 

As more time is allowed for SWO to search, better schedules are found, but 
with diminishing returns. On the other hand, until swo has been allowed to 
run long enough to have produced a sufficient number of "good" schedules, 
MINTO does not have enough to work with. This suggests that H-OPT should 
take a dynamic approach to the boundary between SWO and MINTO. For 
example, swo might be allowed to generate schedules, keeping a set of the 
best N schedules found, until Z consecutive iterations go by without any 
change to that set, for empirically determined N and Z. On the 297 task 
problem, H-OPT could have made the transition from swo to MINTO as early 
as 300 seconds, with only a relatively small penalty. 

Although the improvements achieved by MINTO are relatively small (on 
the order of 1.5%) MINTO achieves this improvement quickly, and swo is 
unable to achieve the same degree of optimization even when given substan- 
tially more time. In cases where it is important to optimize as much as 
possible, and to do so quickly, the H-OPT combination of local search and 
global IP optimization can be highly effective. Although this is only a small 
experiment, we believe that these results clearly indicate that the approach is 
promising and should be explored further by both enhancing the techniques 
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Figure 2: Time vs. objective function (297 task problem) 

and the scope of applications. 

5    New approaches to column generation 

The OR community has a history of successfully solving large optimization 
problems that can be formulated as Linear Programming/Integer Program- 
ming (LP/IP) problems. For truly large problems it is often not compu- 
tationally possible to pass a full definition of a problem (all possible rows 
and all possible columns) to an LP/IP engine. To even enumerate, let alone 
solve, such large problems would take more resources than can be bought. 
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However, truly large problems can often be decomposed and are therefore 
still amenable to LP/IP approaches. The particular type of problem we have 
been working on is such a problem. Two types of decision have to be made: 
assignment decisions that specify on which line a job will be executed, and 
sequencing decisions that specify the order in which jobs assigned to a line 
will be executed. Therefore, the problem can be decomposed into a master 
problem that focuses on the assignment decisions, and a subproblem that 
focuses on the sequencing decisions. More specifically, the master problem 
selects from among a set of available line schedules a minimum cost set of line 
schedules such that each job is executed exactly once, and the subproblem 
generates feasible line schedules with their associated costs. 

The typical approach now starts with generating one or more initial com- 
plete schedules using heuristic methods. These initial schedules may range 
from poor to good in quality, but are usually not close to optimal. These 
initial heuristic schedules are used to provide an initial set of line schedules 
for the master problem. 

The LP/IP engine then tries to select a good set of line schedules from 
among the initial set of line schedules. It recombines parts of the various 
initial solutions to provide the best LP solution that can be produced from 
those solutions. In doing so, it also identifies which jobs are giving the en- 
gine the hardest time. This information, i.e., the jobs that are making it 
hard to find a low cost complete solution, is then passed to the subproblem, 
which uses it to generate new line schedules. The generated line schedules 
attempt to address precisely those problems that were identified by the mas- 
ter problem. The newly generated line schedules are then fed back to the 
master problem and the process repeats with the LP/IP engine identifying 
new problem areas on each iteration. 

The process of generating new line schedules is at the heart of this ap- 
proach and is completely driven by LP considerations. Line schedules are 
generated so as to ensure that progress is made towards solving the LP re- 
laxation of the master problem to optimality. Optimal LP solutions are 
necessary in the branch-and-bound paradigm to prove the optimality of the 
best known IP solution. In the context of heuristic optimization, where we 
want to find high quality solutions quickly, it may be more important to let 
IP considerations drive the generation of new lines schedules. The next sec- 
tion discusses preliminary experimental results suggesting that AI techniques 
can be very effective at column generation. 
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5.1    The idea of column generation 

Although H-OPT currently uses MINTO only for the re-combination of columns 
generated by SWO, the H-OPT architecture also allows for introduction of new 
columns in response to the solutions produced by MINTO. We again use the 
LP/IP formulation of the set partitioning (SP) problem discussed in Section 
2. 

To solve the LP relaxation of the SP formulation, called the master prob- 
lem, we use column generation, which means that the LP is solved with all 
of its rows, but not all of its columns present. The LP relaxation of SP in- 
cluding only a subset of the columns is called the restricted master problem. 
Columns are introduced into the restricted master problem in two phases. 
First, an initial set of columns is constructed to form the first restricted mas- 
ter problem. The LP relaxation of the restricted master is then solved to 
optimality. Second, new columns are incrementally added to the restricted 
master problem based on feedback from the LP solution. The same heuristic 
techniques that are currently used to generate the initial set of columns can 
be applied to the problem of generating additional columns. The problem 
of generating new columns using information from the current optimal LP 
solution to the restricted master problem is called the subproblem or pricing 
problem. 

Given an optimal solution to the current LP relaxation of the restricted 
master problem, the dual price for each job j indicates how expensive it 
is for the current solution to cover job j. The idea of column generation 
is to use these dual prices to determine which jobs should be included in 
"good" new columns for the master problem. Since columns correspond to 
line schedules and there are different lines, the pricing problem consists of 
generating feasible schedules for different lines. 

When solving pricing problems, we must evaluate or "price" candidate 
columns. Only candidate columns corresponding to feasible line schedules 
need to be evaluated, i.e. we require that all jobs included can run on that 
line. If we find a column whose cost qm is smaller than the sum of the 
dual prices of the jobs covered by that column, it is a candidate to enter the 
master problem. We say that such a column has a negative reduced cost. If 
no such column exists for any of the lines, the current solution to the LP 
relaxation of the restricted master problem is also the optimal solution to 
the LP relaxation of the entire master problem. 

If we could solve the subproblems to optimality quickly, we would then 
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have a fast LP solver which could then be embedded into a branch-and- 
bound algorithm for solving the entire scheduling problem. Unfortunately, 
the subproblems, while being easier than the original problem, are still NP- 
hard and a very large number of them need to be solved. Therefore we 
will solve the subproblems heuristically and stop generating columns when 
our heuristic terminates. This implies that we may not have solved the LP 
relaxation of the master problem to optimality and that the solution may 
not give a true lower bound. Thus, by using this approximate lower bound 
in the branch-and-bound phase of the algorithm we cannot guarantee that 
an optimal solution will be found to the entire scheduling problem. 

5.2    Column generation based on IP vs. LP considera- 
tions 

Some of the underlying principles of column generation approaches, derived 
from LP considerations, as they apply in our context, are 

1. Try to generate columns with the most negative reduced costs. 

2. Adding columns with positive reduced costs is not beneficial. 

3. The pricing problem has to concentrate on generating line schedules in 
isolation from each other, since the master problem will combine line 
schedules into complete schedules. 

4. The single line scheduling problem is easier to solve and therefore de- 
composing the problem reduces the overall complexity. 

We discuss each assumption in turn. 

Assumption 1: 
Try to generate columns with the most negative reduced costs. 

When generating new columns (either in isolation or using full solutions) 
each line schedule has a reduced cost associated with it. The reduced cost 
is the actual cost of the line schedule (in terms of time, materials, labor, 
etc.) plus the dual values for each job in the line schedule. A dual value 
indicates how much difficulty the most recent pass of the LP/IP engine had 
with a given job. Negative dual values indicate a difficult job for the engine 
to schedule; positive values indicate an easy job for the engine to schedule. 
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The magnitude of a dual value indicates how easy or how difficult the job 
was to schedule in the latest solution. 

Linear programming theory tells us that giving the LP/IP engine new 
columns (line schedules in this case) that have a negative reduced cost will 
result in an improved solution to the LP relaxation of the master problem. If 
the column with maximum negative reduced cost has in fact a reduced cost 
greater than or equal to zero, then it has been proved that the LP solution 
is optimal also for the complete master problem. 

However, pursuing the most negative reduced cost tends to create line 
schedules that will hardly ever be used in a final IP solution. Jobs that run 
on different lines in any good complete schedule are forced into each line 
schedule because they have very negative dual values. Therefore, from an IP 
point of view it may not be wise to restrict attention to the most negative 
reduced cost columns. 

Assumption 2: 
Adding columns with positive reduced costs is not beneficial. 

It turns out that adding positive reduced cost columns can in fact move 
the LP/IP engine closer to a high quality complete schedule. There are 2 
distinct cases: 

1. A column with positive reduced cost is picked up by the LP/IP engine 
immediately after it is added and appears in the next LP/IP solution, 
improving it by some amount. 

2. A column with positive reduced cost does not appear in the next LP/IP 
solution, but does appear in a subsequent LP/IP solution, improving 
it by some amount. 

In the first case (immediate payoff case), the positive column is always 
added in conjunction with some other columns, at least one of which has a 
negative reduced cost. If the positive columns would not have been added 
at this time, then the LP/IP engine would have to go through one or more 
additional iterations to maybe add them later. This may or may not happen 
before running out of time, and even if it does the search may not succeed 
in reproducing those same columns. 

A similar situation is happening when new positive reduced cost columns 
are not immediately useful, but are useful in the long run. In this case the 
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search is effectively leaping ahead and producing columns that would have 
eventually had negative reduced cost anyway. Perhaps more important is 
the fact that columns important to solving the IP may only have negative 
reduced costs very late in the solution process and may not be added before 
we run out of time. 

Assumption 3: 
The pricing problem concentrates on generating line schedules in iso- 
lation from each other, since the master problem will combine line 
schedules into complete schedules. 

When the pricing problem considers the overall scheduling problem, the 
interactions between lines are handled much more effectively. Line schedules 
produced as part of a complete schedule tend to have groupings of jobs 
that are more efficient because the scheduler can see all of its options when 
deciding where to place jobs. 

When generating complete schedules heuristically, it is unlikely that any 
generated schedule will be optimal. However, if the schedule produced is of 
high quality then it is likely that some parts of the complete schedule, i.e. 
some of the line schedules, will be optimal or near-optimal. Each generated 
schedule may have a different set of weak and strong points. 

Assumption 4: 
The single line scheduling problem is easier to solve and therefore de- 
composing the problem reduces the overall complexity. 

Prom a heuristic point of view, solving the line schedule problem is almost 
as hard as solving the complete schedule problem. We do not have to assign 
jobs to different lines, but we do have to select jobs that will run on the line 
currently under consideration. Because each line is considered in isolation 
from the others, it is very difficult to select the jobs that should be run on 
the line under consideration. As a result fairly uninformed choices are made. 

When solving complete scheduling problems the solver has to deal with 
the increased complexity of the full problem, but it is able to make better- 
informed decisions because it can see the whole picture. When solving the 
complete scheduling problem, each decision takes more effort, but far, far 
fewer bad decisions are made. This tradeoff works in favor of generating 
complete schedules in every case we have seen. 
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Data Best Standard Full 
set objective columns schedule 

1890.9 1891.0 Seed objective 
40 1890 1890.9 1890.0 Best objective 

7.3 27.9 Time 
3184.2 3189.6 Seed objective 

50 3101 3180.0 3126.8 Best objective 
40.7 295.0 Time 

2602.1 2600.6 Seed objective 
60 2580 2597.6 2580.0 Best objective 

47.6 292.2 Time 
2748.0 2742.9 Seed objective 

70 2713 2747.1 2722.5 Best objective 
76.1 2808.0 Time 

9038.5 9038.0 Seed objective 
148 8869 9036.1 8901.5 Best objective 

614.5 622.3 Time 
17892.8 17926.9 Seed objective 

297 17503 17892.8 17617.8 Best objective 
652.7 1349.3 Time 

Table 3: Column generation results 

5.3    Experimental results 

In order to evaluate our new approaches to column generation, we ran ex- 
periments comparing the following approaches: 

1. "Standard" column generation, in which SWO is used to generate the 
most negative reduced cost columns it can find, with each column gen- 
erated in isolation. This involves only a relatively minor change to SWO, 
essentially allowing it to solve a problem with a single production line, 
and without the restriction that all jobs must be scheduled somewhere. 

2. Column generation by having swo generate complete schedules, and 
entering all columns (with negative or positive reduced costs). Swo 
used dual values only to determine the initial priority sequence, and 
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otherwise only attempted to generate the best schedule possible, ignor- 
ing reduced costs. 

In each experiment, a set of seed schedules provided the initial starting 
point (as with H-OPT), and column generation was allowed to proceed up to 
a time limit proportional to the size of the problem. 

As the data in Table 3 show, generating full schedules is the most effective 
approach. In experiments currently under way, we are trying to further 
understand the tradeoffs involved in these approaches to column generation. 

6    Summary and conclusions 

Our results so far are very encouraging. As might be expected, based on 
other successful applications, our local search approach is capable of gener- 
ating high-quality schedules very quickly. Allowing additional time does not 
improve those initial results dramatically. However, a combined exact and 
heuristic optimization approach allows a large number of good (and not so 
good) schedules to be "taken apart and recombined" in a way that quickly 
results in a higher quality schedule. 

This hybrid approach takes advantage of the relative strengths of each 
part: local search is able to find good schedules, but tends to get stuck in 
local optima, and IP techniques provide a kind of global optimization that 
has no counterpart in local search. In a given solution, the local search 
approach may get some things right, and some things wrong, but the parts 
that are handled badly in one solution may be handled well in another. In a 
sense, global optimization allows the best parts of the different solutions to 
be combined. 

The swo architecture is itself innovative, and there is still a great deal 
of room for improvement. We are looking at more sophisticated methods 
of analysis and construction, and also looking at other domains that would 
require us to further generalize the approach taken here. 

The use of randomness in integer programming algorithms has received 
little attention, and we believe the randomness introduced by swo (in ran- 
dom tie-breaking during the construction of solutions) is partially responsible 
for the success of H-OPT. In future experiments, we hope to explore further 
the incorporation of randomization techniques. Within swo, we can allow 
randomization to occur in any of the three main modules, and experiments 
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are currently underway to try to understand the impact of randomization 
on the various parts of this architecture. In future work we will also exper- 
iment with a branch-and-price algorithm [1] in which randomized heuristics 
are used to generate new columns throughout the search tree. 

Applying local search techniques for column generation may improve per- 
formance still further. The intuition behind this is that the dual values pro- 
vided by the LP solver may provide valuable feedback to the local search 
engine about which tasks are "most critical." This can provide a bias toward 
different (and hopefully useful) areas of the search space. We have tried to 
use the dual values provided by MINTO to assist in the prioritization of jobs 
for swo, but our results so far have been mixed. We hope in the future to 
better understand this mode of interaction between the two parts of H-OPT, 
and to show that the feedback that MINTO can provide can be very useful to 
swo. 

In the area of column generation, we have made some interesting discov- 
eries that show that traditional LP-driven column generation may not be 
effective if the goal is to find a good solution quickly. 
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