
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average l hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Off ice of Management and Budget. Paperwork Reduction Project {0704-018B). Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
31 March, 1998

3. REPORT TYPE AND DATES COVERED
Final Report: 1 Jul 96 - 31 Dec 97

4. TITLE AND SUBTITLE

Search Strategies in Large-Scale Discrete Optimization:
A Joint AI/OR Approach

5. FUNDING NUMBERS

G:F49620-96-1-0335

>- Davia w. Etherington
David Joslin
George L. Nemhauser

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Oregon Georgia Institute of Technology
Office Of Research Serv. and Admin. School of Industrial and
5219 University of Oregon Systems Engineering
Eugene, OR 97403-5219 Atlanta, GA 30332

PR: 2304/DS

T: 2304/GS

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR/PKA
110 Duncan Avenue Suite B115
Boiling AFB, DC 20332-8080

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
Program Manager:
Dr. Abraham Waksman
NM (202)767-5025

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
19980414 057

4£lJ»|r
*te»

*§!&,

13. ABSTRACT (Maximum 200 words)

The aim of this award was to exploit and enhance the differing strengths of Artificial Intelligence (AI)
and Operations Research (OR) in solving hard combinatorial optimization problems, discover synergies,
and so develop better solution techniques.

By studying the strengths and weaknesses of the various approaches in the context of a large-scale
manufacturing problem, a new AI solution approach capable of producing better solutions than
traditional heuristic methods and handling larger problems than exact techniques was developed. This
new approach generalizes a number of seemingly-divergent existing techniques and seems to be widely
applicable.

In addition, it was discovered that OR techniques can be used to augment the new AI solver, resulting in
significant improvements in both solution time and quality. This hybridized approach has also led to a
new understanding of the OR technique known as "column generation," and these insights promise
improvements in solution quality and time for a variety of OR problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
28

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCL

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCL

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCL

20. LIMITATION OF ABSTRACT

UL
MCM 7tc/irt-ni-?fln_<;<;nn ,_J r -»«"»« /(->-... "» 00\

SEARCH STRATEGIES IN LARGE-SCALE
DISCRETE OPTIMIZATION:
A JOINT AI/OR APPROACH

Final Report

Grant number: F49620-96-1-0335

David W. Etherington
David Joslin

Computational Intelligence Research Laboratory
1269 University of Oregon
Eugene, OR 97403-1269
Email: {ether, joslin} @ cirl.uoregon.edu

George L. Nemhauser

Georgia Institute of Technology
School of Industrial and Systems Engineering
Atlanta, GA 30332
Email: george.nemhauser @ isye.gatech.edu

December 31.1997

Contents

1 Executive summary 3
1.1 Technical progress 3

1.1.1 "Squeaky Wheel" Optimization 3
1.1.2 Hybrid AI/OR architecture 4
1.1.3 New approaches to column generation 4

1.2 Personnel 5
1.3 Publications and Patents 5
1.4 Outline of the report 6

2 Experimental Framework 8
2.1 Experimental domain 8
2.2 LP/IP formulation 8

3 "Squeaky Wheel" Optimization 10

4 Hybrid AI/OR architecture 15
4.1 Approach 15
4.2 Experimental results 16

5 New approaches to column generation 19
5.1 The idea of column generation 21
5.2 Column generation based on IP vs. LP considerations 22
5.3 Experimental results 25

6 Summary and conclusions 26

References 27

1 Executive summary

1.1 Technical progress

The fundamental question addressed by the research reported here is how
integrating the different insights and methodologies of Artificial Intelligence
(AI) and Operations Research (OR) can help us to search extremely large
solution spaces. Both AI and OR search techniques have been applied to
difficult combinatorial optimization problems, but their respective strengths
and weaknesses are very different. OR algorithms tend to focus on finding
optimal solutions, and as such must take a "global" view of a problem. In
contrast, AI approaches are often based on local search, with a focus on
finding good (but usually not optimal) solutions very quickly. Our research
has been motivated by an effort to combine the best of both worlds.

We have made strong progress in three major areas. First, we have devel-
oped an innovative architecture, "Squeaky Wheel" Optimization (swo), for
AI local search. Second, we have developed a new hybrid AI/OR approach,
H-OPT, that incorporates swo and MINTO, a Linear Programming (LP) and
Integer Programming (IP) solver. The hybrid approach outperforms both of
the individual components. Third, we have developed some unorthodox, but
highly effective, approaches to a traditional IP technique known as column
generation. Each of these advances is discussed below.

Our development has been done using scheduling problems for a fiber-
optic cable manufacturing plant, provided for us by Lucent Technologies.
Using this domain allowed us to work on a well-defined, real-world problem
for which real data could be obtained. The techniques that we have developed
in this domain are quite general, and readily applicable to problems of more
direct interest to the Air Force, such as target partitioning and assignment.

1.1.1 "Squeaky Wheel" Optimization

In looking at AI local search techniques for scheduling, we have been able to
generalize several existing, highly effective scheduling algorithms, including
Doubleback, previously developed at CIRL, and the patented algorithm used
in OPTIFLEX, a commercial scheduler. The generalization is based on two
principles that we have found to be key:

• Good solutions can be "taken apart" to reveal structure in the (local)
search space.

• Local search benefits from the ability to make large, coherent moves in
the search space.

Essentially, swo generates a solution, then analyzes that solution to de-
rive information about the local structure of the search space. That infor-
mation then serves as feedback to guide the construction of a new solution.
Because the new solution is constructed from scratch, the transition from
one solution to the next is not limited to small, local moves as is the case
with traditional local search algorithms. The new solution may differ from
the previous solution at many points, but all of the changes are coherent in
the sense that they are all motivated by the same feedback. The algorithm
alternates between construction and analysis in this fashion until halted.

1.1.2 Hybrid AI/OR architecture

We have developed a hybrid architecture, H-OPT, that combines Integer Pro-
gramming (IP) for global optimization, and AI local search techniques. Our
hybrid approach captures the most desirable features of each. Swo is used
to generate a large number of good feasible solutions quickly, and MINTO, an
IP solver developed at Georgia Tech, is then used to combine the elements
from those solutions into a better solution than the local search approach
was able to find.

Experimental results are very encouraging. Traditional IP techniques
alone were unable to generate feasible solutions to the largest problems in
our test set, even when sub-optimal results were allowed. Although SWO is
able to generate feasible (and quite good) solutions quickly, it fails to find
some of the optimal solutions that the IP solver is able to find very quickly
in H-OPT. Thus the hybrid approach outperforms both of its individual
components.

1.1.3 New approaches to column generation

One approach to applying LP/IP techniques to very large problems is column
generation. When the matrix defining the full problem is simply too large to
generate, a relatively small number of columns may be created initially, where
each column represents one way of solving a sub-problem. A solution over the
initial set of columns is found, and feedback based on that solution is used
to guide the generation of new columns. In this fashion, new columns are

generated intelligently, and as a result, only a very small subset of all possible
columns needs to be generated, keeping the problem to a manageable size.

Column generation has also traditionally been based on solving only iso-
lated sub-problems, i.e., generating a new column without considering inter-
actions between it and other columns. In this approach, the sub-problems are
smaller than the overall problem, and it is possible to prove mathematically
that with optimal solutions to the sub-problems, an optimal global solu-
tion will be found. Our experience, however, has been that this approach
converges very slowly, and that part of the problem is that the columns
thus generated do not "fit" well with other, existing columns. We have had
substantially better success generating new columns by generating complete
solutions, using SWO, so that the new columns are known to work well to-
gether, at least in that one solution. Columns generated in this fashion turn
out to allow the IP solver to converge much more rapidly on good solutions
which are better than any of the solutions generated by SWO alone.

Little or no attention has been paid to the importance of randomiza-
tion in IP solvers that rely on column generation. Our experiments have
demonstrated that controlled randomization can be effective at improving
the performance of IP techniques. In applying randomization, we have fo-
cused on decisions for which we can generate a probability distribution that
reflects the evaluation of each option by a heuristic function.

1.2 Personnel

At CIRL, at the University of Oregon, the research has involved David Ether-
ington, David Joslin, and David Clements. Etherington and Joslin, the Prin-
ciple Investigators, are faculty members, and Clements is a programmer.

Under the sub-contract with Georgia Tech, the research has involved the
Principle Investigator, George Nemhauser, one other faculty member, Martin
Savelsbergh, and a graduate student, Markus Puttlitz.

1.3 Publications and Patents

The following publications have acknowledged this grant:

• D. Clements, J. Crawford, D. Joslin, G. Nemhauser, M. Puttlitz and M.
Savelsbergh, "Heuristic Optimization: A Hybrid AI/OR Approach."

Proceedings of the Workshop on Industrial Constraint-Directed Schedul-
ing, 1997. (Held in conjunction with CP'97, Schloss Hagenberg, Aus-
tria.)

This paper summarizes the major results for both SWO and H-OPT. It
is anticipated that, with additional work extending the results to new
domains, this will be turned into a journal paper.

• D. Joslin and D. Clements, "Squeaky Wheel Optimization." To ap-
pear in Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI-98), 1998.

This paper describes the SWO framework in detail, and presents exten-
sive experimental results.

• D. Joslin and A. Roy, "Exploiting Symmetries in Lifted CSPs." Pro-
ceedings of the Thirteenth National Conference on Artificial Intelligence
(AAAI), 1997.

This paper shows that it is possible to detect symmetries in problems
by looking at problem descriptions that are "lifted," i.e., that incorpo-
rate quantification over finite sets. A similar approach would be readily
adaptable to SWO, allowing it to avoid searching some redundant re-
gions of the search space.

• C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and
P.H. Vance, "Branch-and-Price: Column Generation for Solving Integer
Programs." Operations Research, To appear in 1998.

This paper discusses the fundamental concepts underlying of the use
of column generation in the solution of integer programs.

A provisional patent application has been filed covering SWO and H-OPT,

and we expect that a full application will be filed at the appropriate time.
In addition, a publication on our new column generation techniques is in
preparation, pending further experimental results.

1.4 Outline of the report

Section 2 describes the fiber optic cable manufacturing domain. Section 3 de-
scribes our "Squeaky Wheel" Optimization architecture. Section 4 describes
our hybrid approach that combines SWO with MINTO, an IP solver. Section 5

outlines some of our most recent work, comparing traditional approaches to
column generation with some unorthodox, but very effective, variations. The
final section summarizes our conclusions, and discusses some of the directions
for future research that we hope to pursue.

2 Experimental Framework

2.1 Experimental domain

This section describes the domain used for all of our experiments, and the
LP/IP formulation that underlies both the H-OPT architecture (Section 4)
and our new approaches to column generation (Section 5). This is a rather
generic scheduling problem so the methodology developed should be applica-
ble to a wide variety of scheduling problems and many other logistics prob-
lems.

The problem we have selected to work on is fairly representative, multi-
job, parallel machine scheduling problem with lateness and changeover costs
which originated in a fiber-optic cable plant.1 A cable consists of up to
216 optical fibers. The sheathing operation involves joining the fibers and
wrapping a protective rubber sheathing around them. This operation can
be performed on one of 13 parallel sheathing lines. Typically, the number of
cables in the set of orders is much larger than the number of sheathing lines.
Every ordered cable has a release time and a due date. Production cannot
begin before the release time, and the objective function includes a penalty
for not completing a cable by the due date.

The production lines are heterogeneous in the types of cables they are
able to produce, and the speeds at which they operate. For each cable, only
a subset of the production lines will be compatible, and the time required to
produce the cable will depend on which of the compatible lines is selected.
Job preemption is not allowed, i.e. once a cable has started processing on a
line, it finishes without interruption.

We need to make two types of decisions, namely how to assign cables,
hereafter called jobs, to lines and how to sequence the jobs assigned to each
line. Objectives are the minimization of the number of late jobs and the
minimization of the sum of the setup times between jobs. This is an NP-
hard combinatorial optimization problem.

2.2 LP/IP formulation

Our overall approach for both H-OPT and column generation is to formulate
the problem as an IP problem, and to solve it by a branch-and-bound al-

xWe wish to thank Robert Stubbs of Lucent Technologies for providing us with data
to use for our experiments.

gorithm. Hence we need a "good" IP formulation, an efficient method for
solving the linear programming (LP) relaxation, and an algorithm to gener-
ate integral solutions.

One concept of modeling discrete optimization problems with complicated
constraints that has been shown to work well in practice is known as set
partitioning (SP). Suppose we assign schedules (rather than single jobs) to
lines. Let a line schedule be a feasible assignment of a group of jobs to a
line, including a sequencing and the associated objective cost. Notice that
the computation of the objective function value of one line is independent
of all other lines. To solve the overall problem, we need to find a min-cost
subset of the set of all line schedules that uses each line at most once and
includes each job in exactly one line schedule.

Let xim be the 0/1 decision variable which is 1 if line schedule I is assigned
to line m. Associated with this variable will be a column aim representing:

• A set of jobs assigned to line m, represented by 0/1 indicators ajm,
which are equal to 1 if job j is in line schedule I and 0 otherwise.
Column aim = Wm} will then be the characteristic vector of the jobs
in line schedule / for line m.

• Any ordering of that set of jobs results in a cost Qm associated with
that line schedule. For a given set of jobs, we would ideally like to find
a line schedule that minimizes Qm, but solving this problem is NP-hard,
and in practice we usually must apply heuristic methods.

This leads to the SP problem

Minimize JZ 5Z cimXim

Subject tO J2 J2 aimxlm = 1
meM ieLm

Vie J

5^ Xlm < 1 Vm e M

Xlm G {0, 1} VZ e \jLm,me M

where Lm is the set of feasible line schedules for line m, J is the set of jobs,
and M is the set of available production lines.

The SP formulation comprises two types of constraints. The first forces
the solution to the scheduling problem to include each job exactly once. The

9

second makes sure that for each line at most one line schedule can be part
of the solution. Note that the constraints that determine whether or not
a line schedule is feasible are not represented in the SP formulation, since
only feasible line schedules are considered in this formulation. These feasible
schedules are generated using the "squeaky wheel" optimization techniques
to be discussed next.

Although fairly large instances of SP problems can be solved efficiently,
the algorithmic challenge is to devise methods for solving SPs with a huge
number of columns. In our scheduling problem, the SP has a column for
every possible line schedule for every line. The number of such columns is
generally exponential in the number of jobs. Fortunately, as explained in
Section 5, it is possible to approximate the SP so that only a relatively small
number of line schedules are considered.

3 "Squeaky Wheel" Optimization

This section describes "Squeaky Wheel" Optimization (SWO), an optimiza-
tion architecture that also serves as a component in H-OPT (Section 4). Swo
is a generalization of several existing, highly effective scheduling algorithms,
including Doubleback Optimization [3] and the genetic algorithm used in
OPTIFLEX, a commercial scheduler [12]. In SWO, solutions are analyzed to
provide feedback for a local search algorithm. The algorithm is designed to
make large "coherent" moves in the search space, thus helping to avoid local
optima without relying entirely on random moves.

Some of the most effective approaches for solving systems of constraints
in recent years have been based on local search. GSAT [11] and WSAT [10]
apply local search techniques to solving propositional satisfiability problems,
and WSAT has been used as the solver for the SATPLAN [8] planning system.
CIRL's scheduling technology uses Doubleback Optimization, which performs
a kind of local search to improve a "seed" schedule over a number of iterations
[3]. The commercially successful scheduler OPTIFLEX from i2 Technologies
is based on a patented approach that uses genetic algorithms [12]. Although
these approaches differ substantially in the details, there has been a clear
movement toward the use of local search in AI approaches to optimization
problems.

In designing our local search algorithm, we began by looking at the Dou-
bleback algorithm, because it had been extremely successful in solving a

10

Analyzer

V ^^eedback

Constructor Prioritizer
Sequence of
tasks

Figure 1: Local search architecture

standard type of scheduling problem. (On one benchmark related to air-
craft manufacture [5], CIRL's scheduler produces the best-known solutions
by a substantial margin, and finds them faster than the closest competitors.)
However, the Doubleback algorithm is only useful when the objective is to
minimize makespan (the time required to execute the schedule). Our prob-
lem domain required a different objective function, using a weighted sum of
several factors. The problems also used constraints that are more complex
than could be handled by the current Doubleback algorithm. Because of this,
we began thinking about the principles behind Doubleback, looking for an
effective generalization of that approach.

The architecture that emerged is summarized in Figure 1. There are three
components:

Prioritizer Generates a sequence of jobs, with higher priority jobs being
earlier in the sequence. Uses feedback from the Analyzer to modify
previously generated sequences.

Constructor Given a sequence of jobs, constructs a schedule. Uses "greedy"
scheduling for each job, in the order they occur in the sequence, without
backtracking.

Analyzer Given a schedule, analyzes that schedule to find the "trouble
spots." This feedback is provided to the Prioritizer.

We call this architecture "Squeaky Wheel" Optimization (swo), from
the aphorism "The squeaky wheel gets the grease." The idea is that on each
iteration, the Analyzer determines which jobs are causing the most trouble in

11

the current schedule, and the Prioritizer ensures that the Constructor gives
more attention to those jobs in the next iteration. Note that this "priority"
does not reflect the relative importance of a job, but rather the relative
difficulty of finding a good place to put that job in a schedule.

In the current implementation, the Analyzer "assigns blame" to each of
the jobs in the current schedule. For each job we calculate a simple lower
bound on the minimum possible cost that each job could contribute to any
schedule. For example, if a job has a release time that is later than its due
date, then it will be late in every schedule, and the minimum possible cost
already includes that penalty. The minimum possible setup costs are also
included. Then, for a given a schedule, the penalty assigned to each job
is its "excess cost," the difference between its actual cost and its minimum
possible cost. The setup time penalty for each pair of adjacent jobs is shared
between the two jobs, and the penalty for lateness is charged only to the late
job itself.

Once these penalties have been assigned, the Prioritizer modifies the pre-
vious sequence of jobs by moving jobs with high penalties forward in the
sequence. We currently move jobs forward in the sequence a distance that
increases with the magnitude of the penalty, such that to move from the back
of the sequence to the front, a job must have a high penalty over several it-
erations. (Sorting the jobs by their assigned penalty is simpler, and turns
out to be almost as effective.) As a job moves forward in the sequence, its
penalty will tend to decrease, and if it decreases sufficiently the job may then
tend to drift back down the sequence as other jobs are moved ahead of it. If
it sinks too far down the sequence, of course, its penalty may increase again,
resulting in a forward move.

The Constructor builds a schedule by adding jobs one at a time, in the
order they occur in the sequence. A job is added by selecting a line, and
a position relative to the jobs already in that line. A job may be inserted
between any two jobs already in the line, or at the beginning or end of that
schedule, but changes to the relative positions of the jobs already in the
line are not considered. Each job in the line is then assigned to its earliest
possible start time, subject to the chosen ordering, i.e., a job starts at the
minimum of either its release time or as soon as possible after the previous
job on that line, allowing for the appropriate setup time between them.

For each of the possible insertion points in the schedule, relative to the
jobs already in each line, the Constructor calculates the effect on the objec-
tive function, and the job is placed at the best-scoring location. Ties are

12

broken randomly. After all of the jobs in the sequence have been placed, the
Constructor tries to improve on the completed schedule with a small amount
of local search. Currently, we only consider reordering jobs within a line.

The design of the local search architecture was influenced by two key
insights:

• Good solutions can reveal problem structure. By analyzing a good so-
lution, we can often identify elements of that solution that work well,
and elements that work poorly. A resource that is used at full capac-
ity, for example, may represent a bottleneck. This information about
problem structure is local, in the sense that it may only apply to some
part of the search space currently under examination, but it still may
be extremely useful in helping figure out in what direction the search
should go next.

• Local search can benefit from the ability to make large, coherent moves.
It is well known that local search techniques tend to become trapped
in local optima, from which it may take a large number of moves to
escape. Random moves are a partial remedy, and in addition, most
local search algorithms periodically just start over with a new random
assignment. While random moves, small or large, are helpful, we believe
our architecture works, in part, because of its ability to also make large
coherent moves. A small change in the sequence of tasks generated by
the Prioritizer may correspond to a large change in the corresponding
schedule generated by the Constructor. Exchanging the positions of
two tasks in the sequence given to the Constructor may change the
positions of those two tasks in the schedule, and, in addition, allow
some of the lower priority tasks, later in the sequence, to be shuffled
around to accommodate those changes. This is a large move that is
"coherent" in the sense that it is similar to what we might expect from
moving the higher priority task, then propagating the effects of that
change by moving lower priority tasks as well. This single move may
correspond to a large number of moves for a search algorithm that only
looks at local changes to the schedule, and may thus be difficult for
such an algorithm to find.

This architecture can be thought of as searching two coupled spaces: the
space of solutions, and the space of job sequences. Note that in the space of
job sequences, the only "local optima" are those in which all jobs are assigned

13

the same penalty, which in practice does not occur. Because of this, the
architecture tends to avoid getting trapped in local optima in the solutions
generated by the Constructor, since analysis and prioritization will always
(in practice) suggest changes in the sequence, thus changing the solution
generated on the next iteration. The randomization used in tie breaking will
also tend to help avoid local optima.

Note that this architecture is a general framework, and not itself a spe-
cific algorithm. Doubleback can be viewed as an instance of this architecture,
for example [3]. The OPTIFLEX scheduler [12] can also be viewed as an in-
stance, with a genetic algorithm replacing the analysis phase. (In effect,
the "analysis" instead emerges from the relative fitness of the members of
the population.) These schedulers may appear to have little in common,
but we believe that we have uncovered some principles that underlie both
of these approaches. In the case of the OPTIFLEX scheduler, for example,
we hypothesize that it is not genetic algorithms per se that make the sched-
uler so effective, but rather the manner in which prioritization and greedy
construction are combined.

The importance of prioritization in greedy algorithms is not a new idea.
The "First Fit" algorithm for bin packing, for example, relies on placing items
into bins in decreasing order of size [6]. Another example would be GRASP
(Greedy Randomized Adaptive Search Procedure) [4]. GRASP differs from our
approach in several ways. First, the prioritization and construction aspects
are more closely coupled in GRASP. After each element (here, a task) is added
to the solution being constructed (here, a schedule), the remaining elements
are re-evaluated by some heuristic. Thus the order in which elements are
added to the solution may depend on previous decisions. Second, the order
in which elements are selected in each trial is determined only by the heuristic
(and randomization), so the trials are independent. GRASP has no mechanism
analogous to the dynamic prioritization used in SWO, and consequently lacks
the ability to search the space of sequences of elements, which we believe to
be a key aspect of our architecture, because it allows the local search to make
large, coherent moves.

Our architecture has been applied to both the single-line subproblem of
generating new columns for an IP solver, and to the solution of the full
scheduling problem. We currently focus on the use of this approach for
solving the full problem; these solutions are also used to generate the initial
set of columns for an LP/IP solver.

Our current implementation has considerable room for improvement. The

14

analysis and feedback currently being used are very simple, and the construc-
tion of schedules could take various heuristics into account, such as preferring
to place a job in a line that has more "slack," all other things being equal.

The experimental results for swo are presented and discussed in Section
4.

4 Hybrid AI/OR architecture

4.1 Approach

Both heuristic and exact optimization techniques have been applied to dif-
ficult combinatorial optimization problems. Typically, heuristics have the
advantage in speed and size of instances that can be handled, while exact
methods have the advantage in quality. We present a hybrid approach that
integrates heuristics and exact optimization techniques with the goal of cap-
turing the desirable features of both.

We call our hybrid approach heuristic optimization (H-OPT). SWO, acting
as one component of H-OPT, generates an initial set of good schedules, and the
other component, MINTO, uses an Integer Programming algorithm to globally
optimize those results, producing better schedules by combining elements of
the schedules in the initial set.

In the optimization component, a linear program, which is a relaxation
of an IP, is solved. Each column in the LP represents a feasible solution
to a subproblem; in the problems used for the experiments for this paper,
each column represents a feasible schedule for a single production line in a
multi-line facility. Since there are a huge number of feasible schedules for
each line, it is not practical to work with the whole LP. Instead, we use a
local search heuristic to generate high-quality schedules.

A branch-and-bound solver is then used to obtain "good" integer solutions
to the overall problem, i.e., finding the optimal combination of columns (line
schedules) from the heuristically-generated schedules. Given a set of columns,
the LP solver finds optimal primal and dual solutions to the LP relaxation.
In future work, the optimal dual values will be used to guide a local search
algorithm that will produce new columns for the LP throughout the search.
In the scheduling problem, for example, this feedback indicates which jobs
are most "difficult" to schedule.

Swo generates good solutions very quickly by itself, but in combination

15

with the IP optimization, considerable improvements are obtained. The hy-
brid approach also produces better quality solutions than an existing TABU

search algorithm, and runs faster.
In H-OPT, SWO generates as many good schedules as it can within a

specified time limit. Each of these schedules contains one line schedule for
each production line. Each individual line schedule becomes a column in the
LP/IP formulation of a set partitioning problem, as previously discussed.
A branch-and-bound solver is then used to find the optimal combination of
columns. The solver used in our implementation is MINTO [9], a general
purpose mixed integer optimizer that can be customized to exploit special
problem structure through application functions. The LP relaxations are
solved using CPLEX [2], a general purpose LP solver.

4.2 Experimental results

We have several sets of test data, ranging in size from 40 to 297 tasks (cable
orders). In each problem there are 13 production lines. We compare the
following solution methods:

TABU Uses TABU search [7], a local search algorithm in which moves that
increase the cost are permitted to avoid getting trapped at a local
optimum. To avoid cycling, when an "uphill" move is made, it is not
allowed to be immediately undone.

SWO Applies the SWO architecture to the entire problem, running for a fixed
number of iterations and returning the best schedule it finds.

H-OPT Uses the best schedules generated by swo as the set of initial columns
in the IP formulation described previously.

On the 297-task problem, our implementation of TABU was much less
effective than either swo or H-OPT, failing to find a feasible schedule after
running for over 24 hours. On the smaller problems, TABU was able to find
solutions, but both swo and H-OPT outperformed TABU by a substantial
margin.

Table 1 presents results for SWO and H-OPT on test sets with the number
of jobs ranging from 40 to 297. In each case, ten trials were run and the results
averaged. The second column of the table shows the best objective function
value we have ever observed on each problem. The next two columns show

16

Data Best
swo H-OPT

Avg Avg Avg Extra %
Set Obj Obj Time Obj Time Impr.

40 1890 1890.0 162 1890.0 3 0.000
50 3101 3128.8 201 3127.2 3 0.051
60 2580 2580.6 242 2580.0 9 0.023
70 2713 2714.2 282 2713.0 5 0.044
148 8869 8951.7 604 8874.7 31 0.858
297 17503 17806.8 1209 17556.1 111 1.406

Table 1: Experimental results

the average objective function value, and the average time required for SWO.
For H-OPT, the last three columns in the table show the average objective
function value, the average time required by MINTO to optimize over the set of
columns in the schedules generated by SWO, and the percentage improvement
in the objective function. All times are in user processor seconds. These
experiments were run on a Sparestation 10 Model 50.

For the SWO/H-OPT experiments, we allowed the heuristic solver (swo)
to generate solutions up to a time limit proportional to the number of jobs,
with approximately 20 minutes (1200 seconds) allowed for the largest problem
(297 tasks). The line schedules from these solutions then formed the initial
set of columns of H-OPT. H-OPT searches for a better combination of those
columns. In other words, if it finds an improvement, it is the result of using
columns from different schedules generated by SWO.

On the smallest problems in our test set, SWO by itself finds solutions
that are as good as the best solutions we have found by any method. As the
problem size increases, H-OPT is able to show greater improvements by re-
combining columns from the schedules found by SWO, with an improvement
of 1.4% over the performance of SWO alone on the 297-job problem.

To further characterize the performance of H-OPT, we ran the largest data
set (297 jobs) with varying amounts of time allowed for SWO to generate the
"seed" schedules. Each column in Table 2 represents ten runs with a fixed
amount of time allowed for seed generation. As shown in the table, MINTO

required only a relatively small amount of time to improve upon the schedules
produced by SWO. The degree of improvement ranged from 1.3% to 1.7%,
corresponding to causing an additional 2 to 3 jobs to be completed by their

17

Time allowed for SWO (seconds)
60 300 j 600 900 1200 1800

swo 17979.4 17881.9 17818.1 17858.0 17806.8 17777.0
H-OPT 17715.0 17581.5 17553.8 17547.4 17556.1 17543.1
% impr. 1.460 1.678 1.482 1.738 1.406 1.315
Avg. MINTO time 11 49 125 121 111 110

Table 2: Experimental results (297 task problem)

due dates. (The actual improvement, of course, may be a combination of
reducing lateness and reducing the total setup time.)

Figure 2 gives another view of the same data. For each of the six experi-
ments shown in Table 2, the solid line shows the best schedule produced by
SWO, on average, versus time. The dashed line segments show the results of
taking the set of schedules generated by swo up to some point (1 minute, 5
minutes, etc., up to 30 minutes) and allowing MINTO to optimize over that
set of schedules. The horizontal line shows the best objective value we have
ever observed, for reference.

As more time is allowed for SWO to search, better schedules are found, but
with diminishing returns. On the other hand, until swo has been allowed to
run long enough to have produced a sufficient number of "good" schedules,
MINTO does not have enough to work with. This suggests that H-OPT should
take a dynamic approach to the boundary between SWO and MINTO. For
example, swo might be allowed to generate schedules, keeping a set of the
best N schedules found, until Z consecutive iterations go by without any
change to that set, for empirically determined N and Z. On the 297 task
problem, H-OPT could have made the transition from swo to MINTO as early
as 300 seconds, with only a relatively small penalty.

Although the improvements achieved by MINTO are relatively small (on
the order of 1.5%) MINTO achieves this improvement quickly, and swo is
unable to achieve the same degree of optimization even when given substan-
tially more time. In cases where it is important to optimize as much as
possible, and to do so quickly, the H-OPT combination of local search and
global IP optimization can be highly effective. Although this is only a small
experiment, we believe that these results clearly indicate that the approach is
promising and should be explored further by both enhancing the techniques

18

18400

18200

O 17800

17600

17400

-i r "i 1 r

Seed generation —
Recombination • Q

Best known

D B

J L I I _I 1_

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (seconds)

Figure 2: Time vs. objective function (297 task problem)

and the scope of applications.

5 New approaches to column generation

The OR community has a history of successfully solving large optimization
problems that can be formulated as Linear Programming/Integer Program-
ming (LP/IP) problems. For truly large problems it is often not compu-
tationally possible to pass a full definition of a problem (all possible rows
and all possible columns) to an LP/IP engine. To even enumerate, let alone
solve, such large problems would take more resources than can be bought.

19

However, truly large problems can often be decomposed and are therefore
still amenable to LP/IP approaches. The particular type of problem we have
been working on is such a problem. Two types of decision have to be made:
assignment decisions that specify on which line a job will be executed, and
sequencing decisions that specify the order in which jobs assigned to a line
will be executed. Therefore, the problem can be decomposed into a master
problem that focuses on the assignment decisions, and a subproblem that
focuses on the sequencing decisions. More specifically, the master problem
selects from among a set of available line schedules a minimum cost set of line
schedules such that each job is executed exactly once, and the subproblem
generates feasible line schedules with their associated costs.

The typical approach now starts with generating one or more initial com-
plete schedules using heuristic methods. These initial schedules may range
from poor to good in quality, but are usually not close to optimal. These
initial heuristic schedules are used to provide an initial set of line schedules
for the master problem.

The LP/IP engine then tries to select a good set of line schedules from
among the initial set of line schedules. It recombines parts of the various
initial solutions to provide the best LP solution that can be produced from
those solutions. In doing so, it also identifies which jobs are giving the en-
gine the hardest time. This information, i.e., the jobs that are making it
hard to find a low cost complete solution, is then passed to the subproblem,
which uses it to generate new line schedules. The generated line schedules
attempt to address precisely those problems that were identified by the mas-
ter problem. The newly generated line schedules are then fed back to the
master problem and the process repeats with the LP/IP engine identifying
new problem areas on each iteration.

The process of generating new line schedules is at the heart of this ap-
proach and is completely driven by LP considerations. Line schedules are
generated so as to ensure that progress is made towards solving the LP re-
laxation of the master problem to optimality. Optimal LP solutions are
necessary in the branch-and-bound paradigm to prove the optimality of the
best known IP solution. In the context of heuristic optimization, where we
want to find high quality solutions quickly, it may be more important to let
IP considerations drive the generation of new lines schedules. The next sec-
tion discusses preliminary experimental results suggesting that AI techniques
can be very effective at column generation.

20

5.1 The idea of column generation

Although H-OPT currently uses MINTO only for the re-combination of columns
generated by SWO, the H-OPT architecture also allows for introduction of new
columns in response to the solutions produced by MINTO. We again use the
LP/IP formulation of the set partitioning (SP) problem discussed in Section
2.

To solve the LP relaxation of the SP formulation, called the master prob-
lem, we use column generation, which means that the LP is solved with all
of its rows, but not all of its columns present. The LP relaxation of SP in-
cluding only a subset of the columns is called the restricted master problem.
Columns are introduced into the restricted master problem in two phases.
First, an initial set of columns is constructed to form the first restricted mas-
ter problem. The LP relaxation of the restricted master is then solved to
optimality. Second, new columns are incrementally added to the restricted
master problem based on feedback from the LP solution. The same heuristic
techniques that are currently used to generate the initial set of columns can
be applied to the problem of generating additional columns. The problem
of generating new columns using information from the current optimal LP
solution to the restricted master problem is called the subproblem or pricing
problem.

Given an optimal solution to the current LP relaxation of the restricted
master problem, the dual price for each job j indicates how expensive it
is for the current solution to cover job j. The idea of column generation
is to use these dual prices to determine which jobs should be included in
"good" new columns for the master problem. Since columns correspond to
line schedules and there are different lines, the pricing problem consists of
generating feasible schedules for different lines.

When solving pricing problems, we must evaluate or "price" candidate
columns. Only candidate columns corresponding to feasible line schedules
need to be evaluated, i.e. we require that all jobs included can run on that
line. If we find a column whose cost qm is smaller than the sum of the
dual prices of the jobs covered by that column, it is a candidate to enter the
master problem. We say that such a column has a negative reduced cost. If
no such column exists for any of the lines, the current solution to the LP
relaxation of the restricted master problem is also the optimal solution to
the LP relaxation of the entire master problem.

If we could solve the subproblems to optimality quickly, we would then

21

have a fast LP solver which could then be embedded into a branch-and-
bound algorithm for solving the entire scheduling problem. Unfortunately,
the subproblems, while being easier than the original problem, are still NP-
hard and a very large number of them need to be solved. Therefore we
will solve the subproblems heuristically and stop generating columns when
our heuristic terminates. This implies that we may not have solved the LP
relaxation of the master problem to optimality and that the solution may
not give a true lower bound. Thus, by using this approximate lower bound
in the branch-and-bound phase of the algorithm we cannot guarantee that
an optimal solution will be found to the entire scheduling problem.

5.2 Column generation based on IP vs. LP considera-
tions

Some of the underlying principles of column generation approaches, derived
from LP considerations, as they apply in our context, are

1. Try to generate columns with the most negative reduced costs.

2. Adding columns with positive reduced costs is not beneficial.

3. The pricing problem has to concentrate on generating line schedules in
isolation from each other, since the master problem will combine line
schedules into complete schedules.

4. The single line scheduling problem is easier to solve and therefore de-
composing the problem reduces the overall complexity.

We discuss each assumption in turn.

Assumption 1:
Try to generate columns with the most negative reduced costs.

When generating new columns (either in isolation or using full solutions)
each line schedule has a reduced cost associated with it. The reduced cost
is the actual cost of the line schedule (in terms of time, materials, labor,
etc.) plus the dual values for each job in the line schedule. A dual value
indicates how much difficulty the most recent pass of the LP/IP engine had
with a given job. Negative dual values indicate a difficult job for the engine
to schedule; positive values indicate an easy job for the engine to schedule.

22

The magnitude of a dual value indicates how easy or how difficult the job
was to schedule in the latest solution.

Linear programming theory tells us that giving the LP/IP engine new
columns (line schedules in this case) that have a negative reduced cost will
result in an improved solution to the LP relaxation of the master problem. If
the column with maximum negative reduced cost has in fact a reduced cost
greater than or equal to zero, then it has been proved that the LP solution
is optimal also for the complete master problem.

However, pursuing the most negative reduced cost tends to create line
schedules that will hardly ever be used in a final IP solution. Jobs that run
on different lines in any good complete schedule are forced into each line
schedule because they have very negative dual values. Therefore, from an IP
point of view it may not be wise to restrict attention to the most negative
reduced cost columns.

Assumption 2:
Adding columns with positive reduced costs is not beneficial.

It turns out that adding positive reduced cost columns can in fact move
the LP/IP engine closer to a high quality complete schedule. There are 2
distinct cases:

1. A column with positive reduced cost is picked up by the LP/IP engine
immediately after it is added and appears in the next LP/IP solution,
improving it by some amount.

2. A column with positive reduced cost does not appear in the next LP/IP
solution, but does appear in a subsequent LP/IP solution, improving
it by some amount.

In the first case (immediate payoff case), the positive column is always
added in conjunction with some other columns, at least one of which has a
negative reduced cost. If the positive columns would not have been added
at this time, then the LP/IP engine would have to go through one or more
additional iterations to maybe add them later. This may or may not happen
before running out of time, and even if it does the search may not succeed
in reproducing those same columns.

A similar situation is happening when new positive reduced cost columns
are not immediately useful, but are useful in the long run. In this case the

23

search is effectively leaping ahead and producing columns that would have
eventually had negative reduced cost anyway. Perhaps more important is
the fact that columns important to solving the IP may only have negative
reduced costs very late in the solution process and may not be added before
we run out of time.

Assumption 3:
The pricing problem concentrates on generating line schedules in iso-
lation from each other, since the master problem will combine line
schedules into complete schedules.

When the pricing problem considers the overall scheduling problem, the
interactions between lines are handled much more effectively. Line schedules
produced as part of a complete schedule tend to have groupings of jobs
that are more efficient because the scheduler can see all of its options when
deciding where to place jobs.

When generating complete schedules heuristically, it is unlikely that any
generated schedule will be optimal. However, if the schedule produced is of
high quality then it is likely that some parts of the complete schedule, i.e.
some of the line schedules, will be optimal or near-optimal. Each generated
schedule may have a different set of weak and strong points.

Assumption 4:
The single line scheduling problem is easier to solve and therefore de-
composing the problem reduces the overall complexity.

Prom a heuristic point of view, solving the line schedule problem is almost
as hard as solving the complete schedule problem. We do not have to assign
jobs to different lines, but we do have to select jobs that will run on the line
currently under consideration. Because each line is considered in isolation
from the others, it is very difficult to select the jobs that should be run on
the line under consideration. As a result fairly uninformed choices are made.

When solving complete scheduling problems the solver has to deal with
the increased complexity of the full problem, but it is able to make better-
informed decisions because it can see the whole picture. When solving the
complete scheduling problem, each decision takes more effort, but far, far
fewer bad decisions are made. This tradeoff works in favor of generating
complete schedules in every case we have seen.

24

Data Best Standard Full
set objective columns schedule

1890.9 1891.0 Seed objective
40 1890 1890.9 1890.0 Best objective

7.3 27.9 Time
3184.2 3189.6 Seed objective

50 3101 3180.0 3126.8 Best objective
40.7 295.0 Time

2602.1 2600.6 Seed objective
60 2580 2597.6 2580.0 Best objective

47.6 292.2 Time
2748.0 2742.9 Seed objective

70 2713 2747.1 2722.5 Best objective
76.1 2808.0 Time

9038.5 9038.0 Seed objective
148 8869 9036.1 8901.5 Best objective

614.5 622.3 Time
17892.8 17926.9 Seed objective

297 17503 17892.8 17617.8 Best objective
652.7 1349.3 Time

Table 3: Column generation results

5.3 Experimental results

In order to evaluate our new approaches to column generation, we ran ex-
periments comparing the following approaches:

1. "Standard" column generation, in which SWO is used to generate the
most negative reduced cost columns it can find, with each column gen-
erated in isolation. This involves only a relatively minor change to SWO,
essentially allowing it to solve a problem with a single production line,
and without the restriction that all jobs must be scheduled somewhere.

2. Column generation by having swo generate complete schedules, and
entering all columns (with negative or positive reduced costs). Swo
used dual values only to determine the initial priority sequence, and

25

otherwise only attempted to generate the best schedule possible, ignor-
ing reduced costs.

In each experiment, a set of seed schedules provided the initial starting
point (as with H-OPT), and column generation was allowed to proceed up to
a time limit proportional to the size of the problem.

As the data in Table 3 show, generating full schedules is the most effective
approach. In experiments currently under way, we are trying to further
understand the tradeoffs involved in these approaches to column generation.

6 Summary and conclusions

Our results so far are very encouraging. As might be expected, based on
other successful applications, our local search approach is capable of gener-
ating high-quality schedules very quickly. Allowing additional time does not
improve those initial results dramatically. However, a combined exact and
heuristic optimization approach allows a large number of good (and not so
good) schedules to be "taken apart and recombined" in a way that quickly
results in a higher quality schedule.

This hybrid approach takes advantage of the relative strengths of each
part: local search is able to find good schedules, but tends to get stuck in
local optima, and IP techniques provide a kind of global optimization that
has no counterpart in local search. In a given solution, the local search
approach may get some things right, and some things wrong, but the parts
that are handled badly in one solution may be handled well in another. In a
sense, global optimization allows the best parts of the different solutions to
be combined.

The swo architecture is itself innovative, and there is still a great deal
of room for improvement. We are looking at more sophisticated methods
of analysis and construction, and also looking at other domains that would
require us to further generalize the approach taken here.

The use of randomness in integer programming algorithms has received
little attention, and we believe the randomness introduced by swo (in ran-
dom tie-breaking during the construction of solutions) is partially responsible
for the success of H-OPT. In future experiments, we hope to explore further
the incorporation of randomization techniques. Within swo, we can allow
randomization to occur in any of the three main modules, and experiments

26

are currently underway to try to understand the impact of randomization
on the various parts of this architecture. In future work we will also exper-
iment with a branch-and-price algorithm [1] in which randomized heuristics
are used to generate new columns throughout the search tree.

Applying local search techniques for column generation may improve per-
formance still further. The intuition behind this is that the dual values pro-
vided by the LP solver may provide valuable feedback to the local search
engine about which tasks are "most critical." This can provide a bias toward
different (and hopefully useful) areas of the search space. We have tried to
use the dual values provided by MINTO to assist in the prioritization of jobs
for swo, but our results so far have been mixed. We hope in the future to
better understand this mode of interaction between the two parts of H-OPT,
and to show that the feedback that MINTO can provide can be very useful to
swo.

In the area of column generation, we have made some interesting discov-
eries that show that traditional LP-driven column generation may not be
effective if the goal is to find a good solution quickly.

References

[1] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance.
Branch-and-price: Column generation for solving huge integer programs.
Operations Research, 1996.

[2] CPLEX Optimization, Inc. Using the CPLEX callable library and
CPLEX mixed integer library, version 4.0, 1996.

[3] J. M. Crawford. An approach to resource constrained project scheduling.
In Artificial Intelligence and Manufacturing Research Planning Work-
shop, 1996.

[4] T. A. Feo and M. G. Resende. Greedy randomized adaptive search
procedures. Journal of Global Optimization, 6:109-133, 1995.

[5] B. R. Fox and M. Ringer. Planning and scheduling benchmarks, 1995.
http://www.NeoSoft.com/ benchmrx/.

[6] M. R. Garey and D. S. Johnson. Computers and intractability: a guide
to the theory of NP-completeness. W. H. Freeman, 1979.

27

[7] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

[8] H. Kautz and B. Selman. Pushing the envelope: Planning, prepositional
logic, and stochastic search. In Proceedings of the National Conference
on Artificial Intelligence, Portland, OR, 1996.

[9] G. Nemhauser, M. Savelsbergh, and G. Sigismondi. Minto, a mixed
integer optimizer. Operations Research Letters, 15:47-58, 1994.

[10] B. Selman, H. A. Kautz, and B. Cohen. Local search strategies for
satisfiability testing. In Second DIM A CS challenge workshop on cliques,
coloring, and satisfiability, Rutgers University, October 1993.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solving
hard satisfiability problems. In Proceedings of the National Conference
on Artificial Intelligence, pages 440-446, 1992.

[12] G. P. Syswerda. Generation of schedules using a genetic procedure, 1994.
U.S. Patent number 5,319,781.

28

