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AN INTEGER SOLUTION 
HEURISTIC FOR THE ARSENAL 
EXCHANGE MODEL (AEM) 
by Daniel J. Green, James T. Moore, and 
John J. Borsi 

Air Force Studies and Analyses Agency 
(AFSAA) was using the Arsenal Exchange 
Model (AEM) to allocate the weapons of var- 
ious strategic force structures to targets. AEM 
often allocates a fractional number of weap- 
ons to a class of targets and then truncates 
this number to get an integer allocation of 
weapons. AFSAA wanted a better approach 
to obtain integer solutions. In this research, 
Dan Green, Jim Moore, and John Borsi devel- 
oped a heuristic which finds better integer 
solutions in less than five seconds. Their heu- 
ristic has been incorporated in AEM. 

ON THE PRINCIPLE OF "FALSE 
RANGING" IN WEAPONRY 
by Israel David 

Suppose you are an army commander 
who is requested to join a multinational 
force, complying with others' guns or am- 
munition. Or suppose a serious "bug" has 
been detected in a crucial weapon fire con- 
trol system. Or imagine any other unpre- 
dicted situation that arises which calls for 
an unconventional use of weapons. Is there 
any methodology that may help in suggest- 
ing a relatively handy, simple and accurate 
means for coping with such problems in 
times of emergency?—The present paper 
further clarifies, defines and exemplifies 
the problem. It discusses the apparently old 
approach to its solution in simple contexts, 
coined here "false ranging." Moreover, it 
shows how modern OR techniques may be 
used to generalize the principle and to en- 
able its application in larger contexts. 

RISKNAV™: A DECISION AID 
FOR PRIORITIZING, 
DISPLAYING, AND TRACKING 
PROGRAM RISK 
by C. C. Cho, P. R. Garvey, and 
R. J. Giallombardo 

This work presents a family of prefer- 
ence models for prioritizing program risk. 
These models originate from multiattribute 
utility theory and rank-order project-de- 
fined risk events as a function of multiple 
criteria. Such criteria includes, but is not 

limited to, a program's cost, schedule, and 
technical performance. In addition, the meth- 
odology is tuned for quantifying the effects of 
coupled (dependent) risks. As a decision- 
aid, these models target where engineering 
assets are best applied to mitigate poten- 
tially crippling areas of risk to a program. 

THE PROBABILISTIC MULTIPLE- 
TRAVELLING-SALESMEN 
FACILITY-LOCATION PROBLEM: 
SPACE-FILLING CURVES AND 
ASYMPTOTIC EUCLIDEAN 
ANALYSES 
by Yupo Chan and David L. Merrill 

All of us need to make decision in un- 
certainty, particularly regarding the de- 
mands that are placed upon our day-to-day 
operations. The operations have to be exe- 
cuted in real time, and long-term plans 
have to be made. In the defense commu- 
nity, we face such issues as base closures 
and fleet requirements to sustain a required 
mission. When locating the base for a fleet 
of fligh-inspection aircraft, Yupo Chan and 
David Merrill show how some analysts in 
the U. S. Air Force went through these de- 
cisions. While flight-inspection requirements 
vary from day to day, the authors offer a 
robust analysis procedure that can respond 
to these stochastic demands. Furthermore, 
the same analysis procedure, when carried 
out over a sufficient lengthy period of time 
(such as a year), can suggest basing and fleet 
size alternatives. Best of all, the procedure 
can be executed in the field with minimal 
computational requirements. It offers a fast 
solution to a highly taxing technical problem 
in Operations Research, while guaranteeing 
an error bound to the "quick solution" (a "75 
percent solution"). The model reflects a cur- 
rent trend in combinatorial optimization, 
wherein the best of heuristics with analytical 
formulation are combined in a single model. 

APPLICATION AND EXTENSION 
OF THE THRUPUT II 
OPTIMIZATION MODEL FOR 
AIRLIFT MOBILITY 
by Richard E. Rosenthal, Steven F. Baker, 
Lim Teo Weng, David F. Fuller, 
David Goggins, Ayhan 0. Toy, Yasin Turker, 
David Horton, Daniel Briand, and 
David P. Morton 

Recent advances in computing and 
model formulation have permitted optimi- 

Executive 
Summaries 
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EXECUTIVE SUMMARIES 

zation models to influence airlift mobility deci- 
sion making. This paper describes the use of a 
large-scale linear program to provide insight to 
the C-17 Defense Acquisition Board. For this 
analysis, we used a variety of airlift fleets under 
a two Major Regional Contingency scenario. 

We also describe ongoing efforts to improve the 
realism and tractability of optimization models 
for airlift anayses, including model reduction 
and decomposition techniques, as well as incor- 
porating the stochastic nature of aircraft break- 
downs. 
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ABSTRACT 
The Air Force Studies and Analyses 

Agency (AFSAA) uses the Arsenal 
Exchange Model (AEM) to allocate 

weapons to targets. AFSAA needed an im- 
proved method for converting the continu- 
ous solution produced by AEM into a 
feasible integer solution. The current inte- 
gerization method leaves weapons unused 
and targets uncovered. In the method de- 
veloped in our research, the noninteger val- 
ued variables in the continuous solution are 
truncated to produce an integer solution. 
An integer goal program is implemented to 
reallocate the weapons and targets made 
available in the truncation process. The 
truncated solution is then combined with 
the results of the integer goal program to 
produce a feasible integer solution for the 
original problem. Our method, using the 
linear programming relaxation of the inte- 
ger goal program, was implemented in 
AEM. The implementation was used to 
solve four test cases. In all four cases, our 
method produced results that were closer 
to the continuous solution in terms of dam- 
age expectancy, target coverage, and goal 
performance than the results produced by 
the current method. 

INTRODUCTION 
Since the dawn of the nuclear age, the 

United States' defense community has been 
analyzing the capabilities of the nuclear ar- 
senals of both the United States and its 
potential adversaries. One approach to this 
analysis is to assign the weapons of one 
country to targets in another country. 
When a weapon is assigned to a target, this 
means the specified weapon will be used to 
attack the designated target. To measure 
the damage achieved by this assignment, 
the weapon's probability of arrival at the 
target and the weapon's probability of 
damaging the target are used to compute 
damage expectancy. 

The number of weapons can exceed 
10,000 and the number of potential targets 
can also exceed 10,000. Thus, the problem 
of assigning weapons to targets can be very 
large with over 100 million variables repre- 
senting possible weapon to target assign- 
ments. The problem is made more chal- 

J§Approved for Public Release; Distribution Unlim- 
ited 

lenging by the fact that the number of 
weapons assigned to a particular target can 
be greater than one. 

The Arsenal Exchange Model (AEM) 
represents this assignment problem by 
grouping similar weapons and similar tar- 
gets. The available weapons are divided 
into types. Examples of weapon types are 
B-52 bombs, B-52 cruise missiles, Minute- 
man III warheads, and Trident D-5 war- 
heads. The targets are grouped by class. 
Examples of target classes are tank facto- 
ries, submarine pens, missile silos, and air- 
fields. For each weapon type, the number 
of available weapons and the weapon's 
characteristics are modeled. Weapon char- 
acteristics include: yield, reliability, and ac- 
curacy. For each of the target classes, the 
number of targets and their characteristics 
are modeled. Target characteristics include: 
hardness, radius, and value (Bozovich et al. 
1993:149-151). 

Using this grouping of weapons and 
targets, AEM allocates weapons to targets 
for either side in a scenario (Bozovich et al. 
1993:4). The allocation's measure of good- 
ness is damage expectancy (DE). DE for a 
particular weapon-target combination is 
the product of a weapon's probability of 
kill against a target times the target's value. 
AEM calculates this DE for each possible 
weapon-target combination and then does 
an allocation of weapons to targets so as to 
maximize the sum of damage expectancies. 
These weapon-target combinations are 
called strategies, and they are the decision 
variables in AEM. 

An allocation is completely defined by 
specifying the number of times each strat- 
egy is used (Bozovich et al. 1993:154-157). 
In addition to maximizing damage expect- 
ancy, other objectives or requirements for 
the allocation may be established. Exam- 
ples of these include a requirement that all 
targets have a weapon allocated to them, 
that an average DE of 0.75 be achieved 
against tank factories, and that each missile 
silo should be allocated two weapons. 
These requirements may be added as goals 
which the allocation should satisfy as 
closely as possible or as "hard" constraints 
which the allocation must satisfy. While the 
hard constraints must be satisfied, even at 
the expense of reduced DE, the goals do not 
have to be satisfied. Although AEM tries to 
satisfy all goals, the resources required to 
satisfy all goals may not be available. In this 
situation, AEM gets as close to goal satis- 
faction as possible. AEM will sacrifice DE 
to achieve the goals, but when sufficient 
resources are not available to satisfy all 
goals, it continues with the solution pro- 

An Integer 
Solution 
Heuristic for 
the Arsenal 
Exchange 
Model 
(AEM)*§ 

Daniel J. Green, 
James T. Moore, 

AFIT/ENS.2950 P Street, 
Wright-Patterson AFB, OH 
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AN INTEGER SOLUTION HEURISTIC FOR THE ARSENAL EXCHANGE MODEL 

cess. Therefore, failure to satisfy a goal affects 
the goodness of the allocation while failure to 
satisfy a constraint affects the feasibility of the 
allocation. 

AEM employs a preemptive goal program- 
ming approach to solve the problem of allocat- 
ing weapons to targets when prioritized goals 
are specified. In AEM, solving the problem of 
allocating weapons to targets poses two prob- 
lems. The first problem concerns redundant 
constraints. AEM adjusts the levels of the goals 
to avoid the singularity problems redundant 
constraints cause. The second problem occurs 
when a goal cannot be satisfied. When this is 
the case, AEM fixes the goal at the value 
achieved before proceeding with the inclusion 
of the next level of prioritized goals. This ap- 
proach yields a continuous solution of the 
weapons to target allocation problem. 

In the procedure presented in this paper, 
we develop a superior method for obtaining 
feasible integer solutions from the continuous 
solution provided by AEM. Since AEM is also 
the main solution engine in the Conventional 
Target Evaluation Methodology (CTEM), our 
procedure also has potential to improve the 
performance of this model. CTEM (Gallagher 
and Kelly 1991) uses AEM to allocate conven- 
tional and /or nuclear weapons to a conven- 
tional target base. Since an integer solution to 
this problem aids planning and evaluation, our 
procedure has the potential to improve CTEM's 
usefulness and performance. 

Because an integer number of weapons 
must be allocated to an integer number of tar- 
gets, the problem AEM seeks to solve is an 
integer programming (IP) problem. However, 
the problem is so large, often involving more 
than a million general integer variables, that the 
time required to find an optimal integer solu- 
tion is prohibitive in the setting in which AEM 
is used. Fortunately, defense analysts do not 
require the optimal integer solution; rather, 
they require a good feasible integer solution 
quickly. In order to provide a feasible integer 
solution in a reasonable amount of time, AEM 
relaxes the integer requirements and solves the 
resulting linear programming (LP) problem. 
AEM then takes the noninteger variables in the 
continuous LP solution and truncates them. 
Since this truncation process leaves weapons 
unused and targets uncovered, it seems likely 
that the method could be improved (Cotsworth 
1993). The objective of this research is to de- 
velop a method for obtaining integer solutions 

for the weapon to target allocation problem 
which is superior to the current truncation ap- 
proach. In the following sections, we present 
the mathematical model used by AEM, AEM's 
application of goal programming, our solution 
heuristic and its implementation, the results of 
testing our heuristic, and some conclusions and 
recommendations. 

AEM'S MATHEMATICAL MODELING 
AEM solves a mathematical model to find a 

feasible allocation of weapons to targets which 
maximizes DE. This model has the following 
formulation: 

Objective Function 

Maximize 2 DE, xt (1) 

subject to: 

2  x, < Tj   j = 1,2, • • , n (2) 
»GST; 

X   BkiXi<Wk   fc = l,2, • ■• >P (3) 
iGSWt 

xt ^ 0    i = 1,2, • ■ , m (4) 

where: 

m = 
n = 

P  = 
By = 

DEj = 

Wk = 
swk = 

Ti = 
ST,  = 

The number of allowable strategies. 
The number of target classes. 
The number of weapon types. 
The number of type k weapons 
expended by one use of strategy i. 
The damage expectancy resulting 
from one use of strategy i. 
The number of type k weapons. 
The set of strategies which use 
weapon type k. 
The number of class / targets. 
The set of strategies which attack 
target class ;'. 

X; = The number of times strategy i is 
used in the allocation. 

The objective function (1) maximizes the 
sum of the damage expectancies of the strate- 
gies. For each strategy, the damage expectancy 
is computed. This computation does not de- 

Page 6 Military Operations Research, V3 N2 1997 
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pend on or consider the damage achieved by 
other strategies. Although this approach does 
not consider the damage done to other targets 
by a strategy, this situation can be mitigated by 
the use of designated ground zeros which 
group targets together for damage calculation 
purposes based on the selected weapon. Con- 
straints (2) are the target constraints. They en- 
sure that, for each target class, the number of 
targets attacked by the strategies is no greater 
than the number of targets. Constraints (3) are 
the weapon constraints. They ensure that, for 
each weapon type, the number of weapons 
used in the strategies is no greater than the 
number of weapons available. To this basic for- 
mulation, AEM adds the constraints and goals 
designated by the analyst. Goals specified by 
the analyst are added to the basic formulation 
using a goal programming approach. 

GOAL PROGRAMMING IN AEM 
In addition to maximizing DE when allo- 

cating weapons to targets, other goals for the 
allocation may be established. In AEM, these 
goals are called hedges. There are four types of 
hedges (Bozovich et al. 1993:138): 

1. Requirements pertaining to the total 
damage achieved on a specified set of target 
classes by a specified set of weapon types. An 
example is allocate weapon types 2 and 3 to 
achieve an average damage expectancy of at 
least 0.8 against class A targets. 

2. Requirements pertaining to the total 
number of allocatable weapons from a specified 
set of weapon types allocated against a speci- 
fied set of target classes. An example is use no 
more than one-half of the available type 2 
weapons against class A targets. 

3. Requirements pertaining to the total 
number of targets hit by a specified set of 
weapon types. An example is attack at least 
one-half of the class A targets using type 2 
weapons. 

4. Requirements that all strategies for the 
specified weapon/target combinations satisfy a 
set of criteria. The criteria deal with the amount 
of damage expectancy achieved by the strategy, 
the number of weapons involved, and the pres- 
ence of certain weapon types in the strategy. An 
example is attack class A targets using strate- 
gies with damage expectancies of at least 0.8. 

Goals are often similar to constraints in the 
problem. For example, a goal may be to allocate 

a weapon to every class A target. This goal may 
be written as: 

^ %i + d" = TA 

i£SA 

where SA is the set of strategies that attack 
target class A, TA is the number of class A 
targets, and d~ is the deviation variable which 
represents the number of class A targets which 
do not have a weapon allocated to them. The 
goal is to minimize the deviation variable d~. 
The target constraint for class A targets is: 

/ j  Xj■ + S = 1 J4 

where s is the slack variable for this constraint. 
If the goal is met, then d~ and s will both be 
zero and AEM will remove the columns asso- 
ciated with these variables from the tableau. 
Once the variables d~ and s have been re- 
moved, the rows associated with the goal and 
with the constraint may both be written as: 

2  *i 
i<ESA 

TA 

Duplicate or redundant rows in the tableau 
result in a singular constraint matrix which 
causes difficulties for the LP solver used in 
AEM. Currently, the AEM solver uses a combi- 
nation of generalized upper bounding (GUB), 
decomposition, Gauss-Jordan elimination, and 
compact tableau storage. For large, complex 
AEM applications, precision and solution time 
problems are noticeable (Gallagher and Kelly 
1991:881). The AEM LP solver uses several 
techniques to alleviate the precision problems. 
Among these are reinversion and backward 
pivoting. Although these techniques alleviate 
precision problems, those caused by redundant 
constraints are not entirely corrected. The iden- 
tification and elimination of redundant con- 
straints is a difficult and challenging problem. 
One approach to this problem would require 
the pairwise comparison of the goal and hedge 
constraints with the weapon and target con- 
straints. For large problems, the amount of time 
required to accomplish all comparisons would 
be prohibitive. 

As shown above, the redundant constraints 
are usually caused by goals or hedges. These 
redundant constraints cause singularity prob- 
lems in the Gauss-Jordan elimination routine. 
Since singular matrices cannot be inverted, 

Military Operations Research, V3 N2 1997 Page 7 
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AEM multiplies the right-hand-side of all goals 
by 0.9995. This causes the goals and constraints 
to differ, but does not change the goals enough 
to cause a significant change in the solution. 
That is, the goal performance should only 
change by 0.05 percent (Cotsworth 1993). 

AEM incorporates these goals in the LP 
relaxation using preemptive goal programming 
where a series of linear programming subprob- 
lems are solved. The first subproblem may be 
formulated as: 

Objective Function 

Maximize 2 DEt xt 
i=i 

- 2 MOk dt + wh dh)    (5) 
hSP1 

subject to: 

2  x, =£ Tj   j = 1,2, / n 
IGST, 

X   Bkixt<Wk   fc = l,2, 

(6) 

(7) 
i<ESWk 

2 ak{Xi + du - dt = 0.9995&, 
i=i 

h = 1, • • • 

x{ > 0   i = 1,2, • • ■ 

<7 

m 

d;,dt>0   h = l,2,---,q 

(8) 

(9) 

(10) 

where: 

m = The number of allowable strategies, 
n = The number of target classes, 
p  = The number of weapon types, 
q = The number of goals for the 

allocation. 
Bki = The number of type k weapons 

expended by one use of strategy i. 
DEj = The damage expectancy resulting 

from one use of strategy i. 
Wk = The number of type k weapons. 

SWk = The set of strategies which use 
weapon type k. 

T = The number of class / targets. 

ST = The set of strategies which attack 
target class ;'. 

a^ = The coefficient associated with 
strategy i in goal h. 

bh = The right-hand-side of goal h. 
w^  = 0, if goal h is a sgoal, and 1 

otherwise. 
w^  = 0, if goal h is a ^goal, and 1 

otherwise. 
dh

+  = The positive deviation variable 
associated with goal h. 

d^   = The negative deviation variable 
associated with goal h. 

PI  = The set of goals assigned to priority 
one. 

Xj = The number of times strategy i is 
used in the allocation. 

M = A very large positive integer. 

The objective function (5) maximizes the 
sum of the damage expectancies of the strate- 
gies while imposing a penalty for not satisfying 
goals. Constraints (6) are the target constraints. 
They ensure that, for each target class, the num- 
ber of targets attacked by the strategies is no 
greater than the number of targets. Constraints 
(7) are the weapon constraints. They ensure 
that, for each weapon type, the number of 
weapons used in the strategies is no greater 
than the number of weapons available. Con- 
straints (8) incorporate the goals into the math- 
ematical model. Note the right-hand-side is 
multiplied by 0.9995 to prevent the inclusion of 
a redundant constraint. 

To solve this goal program, AEM uses an 
enhanced preemptive goal programming ap- 
proach to allocate weapons to targets so as to 
maximize damage to targets while achieving 
specified goals (Gallagher and Kelly 1991:880). 
As a result, a continuous solution is produced 
by solving a series of linear programming sub- 
problems. Priorities are assigned to the goals 
and the subproblems are solved to minimize 
the deviation from the goals in order of prior- 
ity. The objective of each subproblem is to max- 
imize DE while minimizing the deviation from 
the goals at the current priority level without 
increasing the deviations from the higher pri- 
ority goals. In the optimal tableau for the above 
subproblem, if a priority one goal has been met, 
the weighted deviation variables associated 
with the goal have a value of zero. If a priority 
one goal cannot be met, a weighted deviation 
variable associated with the goal will be non- 
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zero in the optimal tableau. In this case, the 
right-hand-side of the goal is adjusted so as to 
make the deviation variable have a value of 
zero. Once the weighted deviation variables 
have been set to zero, they are removed from 
the tableau. This prevents the solutions of sub- 
sequent subproblems from deviating from the 
level of goal achievement reached in the current 
subproblem. The weighted deviation variables 
associated with the priority two goals are then 
added to the objective function and the new 
subproblem is solved. The process is continued 
until the deviation variables of all the goals 
have been added to the objective function 
(Cotsworth and Garrett 1991 :Sec II, 32-33). The 
flow of the subproblems is shown in Figure 1. 
For example, assume the highest priority goal 
requires the average damage expectancy of 
class A targets to be at least 0.8. If it is possible 
to achieve this level of damage expectancy, 

RELAX ALL GOALS; 
SET/EQUAL TO 1 

I 
SOLVE PROBLEM WITH 
PRIORITY (GOALS 
ENFORCED 

I 
FIX PRIORITY/GOAL 
PERFORMANCE 

TERMINATE WITH CONTINUOUS SOLUTION 

Figure 1.   AEM's Preemptive Goal Programming 
Approach. 

then all subsequent subproblems are con- 
strained to also produce an average damage 
expectancy of at least 0.8. If the greatest possi- 
ble average damage expectancy against class A 
targets is only 0.79, then all subsequent sub- 
problems are constrained to produce an aver- 
age damage expectancy of 0.79 against class A 
targets. 

If the integer restriction on the variables 
was enforced within the goal programming so- 
lution process, significant differences between 
the integer and continuous solutions could be 
observed. To see how the solution obtained 
using LP relaxation would differ from the so- 
lution found solving integer programming sub- 
problems, again assume that the highest prior- 
ity goal is to achieve an average damage 
expectancy of 0.8 against class A targets. If this 
goal cannot be met, then the integer solution 
will have a deviation which is at least as large 
as the deviation produced by the LP relaxation. 
For example, the integer solution may achieve 
an average damage expectancy of 0.78, while 
the LP relaxation may achieve 0.79. In this sit- 
uation, subsequent subproblems will be less 
constrained in the integer case; the integer con- 
strained subproblems require an average dam- 
age expectancy of 0.78 while, for the relaxed 
case, 0.79 is required. Although the integer so- 
lution has not done as well as the continuous 
solution on this goal, the remaining subprob- 
lems are less constrained in the integer case, 
and therefore, the integer solution may perform 
better than the continuous solution on lower 
priority goals. 

On the other hand, if the goal can be met, 
then, in the relaxed case, all subsequent sub- 
problems are also required to achieve an aver- 
age damage expectancy against class A targets 
of at least 0.8. However, in the integer case, it 
may not be possible to achieve a damage ex- 
pectancy of exactly 0.8. It may be that the low- 
est average damage expectancy which can be 
achieved by an integer solution, while still 
achieving at least 0.8, is 0.81. This means that 
subsequent subproblems are more constrained 
in the integer case; they must produce an aver- 
age damage expectancy of at least 0.81 while, in 
the relaxed case, only 0.8 is required. Although 
the integer solution may meet this goal at a 
higher level than the continuous solution, the 
remaining subproblems are more constrained, 
and therefore, the integer solution may do 
worse than the continuous solution on lower 
priority goals. 
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Because of the complex balancing which 
occurs between the goals, it is difficult to pre- 
dict how the optimal integer solution would 
compare to the continuous solution. The inte- 
ger solution may do worse than the continuous 
solution on some goals and better on others. In 
addition, because the final subproblem may be 
more or less constrained, the integer solution 
may have a damage expectancy which is 
higher, lower, or exactly the same as the dam- 
age expectancy achieved by the continuous so- 
lution. 

FEASIBLE INTEGER SOLUTIONS 
AEM currently produces feasible integer 

solutions by starting with the solution of the LP 
relaxation and truncating all of the noninteger 
valued variables. Since there are an integer 
number of weapons and targets, many of the 
variables in the LP solution have integer values. 
However, when variables which do not have 
integer values are truncated, the result is un- 
used weapons and uncovered targets. Thus, the 
truncation can result in an inferior feasible in- 
teger solution with reduced damage expect- 
ancy. 

An examination of the linear programming 
relaxation of the Generalized Assignment Pro- 
gram (GAP) suggests an approach for achiev- 
ing better feasible integer solutions for the 
weapon allocation problem. Benders and van 
Nunen show that the number of non-unique 
assignments is less than or equal to the number 
of machines which are used to capacity. This 
suggests that the solution of the linear pro- 
gramming relaxation of the GAP (LGAP) may 
be a good starting point for a heuristic (Benders 
and van Nunen 1983:48). 

One heuristic which builds upon the solu- 
tion of the LGAP is Trick's LR-Heuristic. In this 
heuristic, the unsplit jobs are fixed, leaving only 
the split jobs to be scheduled. Variables associ- 
ated with machine and job assignments are de- 
leted from the problem if the remaining unused 
capacity of a machine is not sufficient to per- 
form a job. The resulting LGAP is solved and, if 
necessary, the procedure is repeated until the 
integer requirements are satisfied. Trick shows 
that the procedure will have to be repeated at 
most m times where m is the number of ma- 
chines (Trick 1992:140). 

Since the problem AEM is designed to 
solve is different from the GAP, Trick's LR- 

Heuristic will not be directly applicable to AEM 
solutions. However, the heuristic developed in 
this research is similar to Trick's in that it be- 
gins with the solution of the LP relaxation, the 
integer portion of the solution is fixed, and a 
new problem is formulated to reassign the re- 
sources associated with the noninteger portions 
of the continuous solution. 

If, instead of truncating all the noninteger 
variables, some were rounded up, the damage 
expectancy and target coverage would be im- 
proved, as compared to the current solution 
method, and the goal performance would still 
be about the same as in the continuous solution. 
In fact, since most goals require that at least a 
certain level of damage expectancy or target 
coverage be attained, and since rounding some 
variables up will increase both damage expect- 
ancy and target coverage, goal performance 
should generally be improved compared to the 
integer solutions obtained using the current 
method. Also, the objective of the continuous 
solution produced by AEM is to maximize 
damage expectancy while satisfying goals 
which include coverage of important target 
classes. These observations lead to the use of a 
similar goal programming approach to ensure 
coverage of the important target classes while 
determining which noninteger valued variables 
in the continuous solution should be rounded 
up. The heuristic which implements this ap- 
proach is presented in the next section. 

FEASIBLE INTEGER SOLUTION 
HEURISTIC 

Relying on the observations presented in 
the previous section, an integer goal program 
may be constructed which maximizes damage 
expectancy while allocating weapons to every 
target in those target classes which were com- 
pletely covered in the continuous solution. 
Completely covered means the number of strat- 
egies allocated to a target class equals the num- 
ber of targets in that class. This allocation prob- 
lem is called the Rounding IP and may be 
formulated as follows: 

Objective Function 
m 

Maximize 2 DEjXj - Md" (11) 
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subject to: 
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(12) 

(13) 

(14) 

(15) 

(16) 

where: 

The number of strategies with 
noninteger value in the continuous 
solution. 
The number of target classes which 
were attacked using noninteger 
valued strategies in the continuous 
solution. 
The number of weapon types which 
were allocated using a noninteger 
valued strategy in the continuous 
solution 
The number of type k weapons 
expended by one use of strategy i. 
The damage expectancy resulting 
from one use of strategy i. 
A large positive number. 
The set of strategies with noninteger 
values in the continuous solution. 
The subset of S that attacks target 
class /. 
The subset of S that uses weapon 
type k. 
The subset of S which attacks target 
classes that were completely covered 
in the continuous solution. 
The number of class / targets left to 
be attacked. 
The set of target classes that were 
completely covered in the continuous 
solution. 
The number of type k weapons left to 
be allocated. 
The deviation variable associated with 
the goal. 

0 if strategy i's truncated value 
should be unchanged. 
1 if strategy i's truncated value 
should be increased by 1. 

For each target class with uncovered tar- 
gets after the noninteger valued variables have 
been truncated, the target constraints (12) en- 
sure that the number of targets attacked is no 
greater than the number of targets left uncov- 
ered. Constraints (13) are the weapon con- 
straints which ensure that, for each weapon 
type with unused weapons after the noninteger 
valued variables have been truncated, the num- 
ber of weapons allocated is no greater than the 
number of weapons left unused. Constraint (14) 
is the goal of completely covering those target 
classes which were completely covered in the 
continuous solution. The objective function (11) 
seeks to maximize the total damage expectancy 
minus a penalty which is accessed for deviating 
from the goal. The IP constructed has n + p + 
1 constraints and m binary variables. 

The heuristic which uses the Rounding IP 
to determine which truncated strategies should 
be increased by one is presented below. 

STEP 1: Obtain the continuous solution 
from AEM. If all variables are integer, stop. 

STEP 2: Create a truncated solution by 
truncating all noninteger valued variables. Set 
aside this truncated solution. 

STEP 3: Gather information from the con- 
tinuous solution. 

a. Identify the target classes which were 
completely covered in the continuous solution. 

b. Identify strategies with noninteger value 
in the continuous solution. 

c. Create a new target list from those targets 
which were attacked in the continuous solution 
but are not attacked in the truncated solution. If 
there is a noninteger number of targets of some 
class, round up to the next highest integer. 

d. Create a new weapons list from those 
weapons which were used in the continuous 
solution but are not used in the truncated solu- 
tion. If there is a noninteger number of weap- 
ons of some type, truncate to obtain an integer 
number of weapons. 

STEP 4: Formulate the Rounding IP using 
information collected at STEP 3. 

STEP 5: Solve the Rounding IP. 
STEP 6: Combine the solution obtained in 

STEP 5 with the truncated solution from STEP 
2. 
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HEURISTIC IMPLEMENTATION 
In implementing the heuristic, three factors 

motivated the relaxation of the integer restric- 
tion (15) on the decision variables xv The first 
factor is the solution routines used by AEM. 
AEM uses a linear programming solver and 
does not contain an algorithm for solving inte- 
ger programming problems. Switching to an- 
other programming code is not practical be- 
cause of verification and validation concerns 
and because the current code is tailored to solve 
the complex, large scale problem of allocating 
weapons to targets. The second factor is the 
observation that solutions of the Rounding IP 
with the integer restriction (15) relaxed often 
produced integer solutions. The third factor 
concerns solution times. Since AEM is used by 
analysts to evaluate a wide range of weapon 
mixes and targeting constraints, the actual time 
required to solve realizations of the allocation 
problem is important, and integer program- 
ming problems are often difficult and time con- 
suming to solve. Because of these factors, the 
integer restriction (15) of the Rounding IP was 
relaxed. The heuristic implemented in AEM fol- 
lows. 

STEP 1: Obtain the continuous solution 
from AEM. If all variables are integer, stop. 

STEP 2: Create a truncated solution by 
truncating all noninteger valued variables. Set 
aside this truncated solution. 

STEP 3: Gather information from the con- 
tinuous solution. 

a. Identify the target classes which were 
completely covered in the continuous solution. 

b. Identify strategies with noninteger value 
in the continuous solution. 

c. Create a new target list from those targets 
which were attacked in the continuous solution 
but are not attacked in the truncated solution. If 
there is a noninteger number of targets of some 
class, round up to the next highest integer. 

d. Create a new weapons list from those 
weapons which were used in the continuous 
solution but are not used in the truncated solu- 
tion. If there is a noninteger number of weap- 
ons of some type, truncate to obtain an integer 
number of weapons. 

STEP 4: Formulate the LP relaxation of the 
Rounding IP using information collected at 
STEP 3. 

STEP 5: Solve the LP relaxation of the 
Rounding IP. 

STEP 6: Produce an intermediate integer 
solution by rounding all noninteger valued 
variables to the nearest integer. 

STEP 7: Combine the intermediate integer 
solution obtained in STEP 6 with the truncated 
solution obtained at STEP 2. 
At Step 6, the solution of the LP relaxation is 
rounded. This rounding procedure did not pro- 
duce infeasible allocations. At Step 7, the trun- 
cated integer solution from Step 2 is combined 
with the integer solution obtained from solving 
the LP relaxation and rounding at Steps 5 and 6. 
The combination is accomplished by adding the 
integer valued strategies from Step 2 to those 
obtained at Step 6. Once this is done, the new 
integer solution can be evaluated to determine 
its damage expectancy, target coverage, and 
goal performance. A flowchart of the integer 
solution heuristic is presented in Figure 2. 

TESTING 
The heuristic has been tested on hundreds 

of classified real world problems. Experienced 
analysts report satisfaction with the results. 
Three unclassified test cases were provided by 
Mr. William L. Cotsworth and the results of a 
representative actual case were provided by the 
US Air Force Studies and Analyses Agency 
(AFSAA). Information on the three unclassified 
cases is presented in Table 1. Table 1 shows the 
case, and for each case, it shows the number of 
weapons, weapon types, targets, target classes, 
and goals. 

Case 1 strategies could use one or two 
weapons while cases 2 and 3 allowed only sin- 
gle weapon strategies. Because of the classified 
nature of the actual case, its information cannot 
be presented. 

For each case, three solutions were pro- 
duced. In the following discussion, solution 1 is 
the continuous AEM solution, solution 2 is the 
integer solution obtained using the current in- 

Table 1. The Three Unclassified Cases 

Case  Weapons Weapon Targets   Target   Goals 
Types                   Classes 

1 8,691 
2 13,432 
3 29,381 

34          5,774      122        33 
19        10,938        11        39 
50        34,812      999        11 

Vage 12 Military Operations Research, V3 N2 1997 



AN INTEGER SOLUTION HEURISTIC FOR THE ARSENAL EXCHANGE MODEL 

START WITH TRUNCATED SOLUTION 

I 
NEW PROBLEM - UNUSED WEAPONS & UNCOVERED TARGETS 

I 
SOLVE AS GOAL PROGRAM WITH OBJECTIVE OF MAXIMIZING 
DAMAGE EXPECTANCY AND GOAL OF MAINTAINING TARGET 

COVERAGE OF CONTINUOUS SOLUTION 

I 
SOLVE USING AEM ROUTINES 

1 
COMBINE WITH TRUNCATED SOLUTION 

Figure 2.   Integer Solution Heuristic 

teger solution method in which all noninteger 
variables in the continuous solution are trun- 
cated, and solution 3 is the integer solution 
obtained using the heuristic presented in the 
previous section. 

Table 2 presents the continuous solution for 
each of the unclassified cases. The table shows 
the number of strategies with nonzero value, 
the number of strategies with noninteger val- 
ues, the damage expectancy achieved, and the 
number of targets covered. 

Tables 3 and 4 show the damage expect- 
ancy and target coverage, respectively, 
achieved by each of the three solution methods. 
As can be seen, the damage expectancy 
achieved by the heuristic (solution 3) matches 
the damage expectancy obtained by the contin- 
uous solution (solution 1) and exceeds that of 
the truncation method (solution 2). The heuris- 
tic covers almost as many targets as the contin- 

Table 2.   The Continuous Solution 

Case Strategies Noninteger    Damage     Targets 
Strategies   Expectancy Covered 

160 

1051 

34 72.59 5503.39 
48 46.46 7225.00 
46 49.18 19414.23 

Table 3.   Damage Expectancy 

Case Solution 1 Solution 2 Solution 3 

1 
2 
3 

72.59 
46.46 
49.18 

72.25 
46.30 
49.13 

72.59 
46.46 
49.18 

Table 4. Targets Covered 

Case Solution 1 Solution 2 Solution 3 

1 
2 
3 

5503.39 
7225.00 
19414.23 

5481.00 
7198.00 
19398.00 

5503.00 
7223.00 
19413 

uous solution and again outperforms the cur- 
rent integer solution approach. 

When the three solution procedures are 
compared from the view point of goal perfor- 
mance, the heuristic outperforms the current 
integer solution method and closely approxi- 
mates the goal performance of the continuous 
solution. This comparison is presented in Table 
5. 

The actual case was run at the AFSAA. 
Because the case is classified, none of the spe- 
cifics can be given here. Table 6 summarizes the 
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Table 5.   Comparing Results 

Case    Case    Case 
1 2 3 

Largest Absolute Difference     50%  3.75%  0.43% 
in Goal Performance 
between Solution 1 and 
Solution 2 

Largest Absolute Difference   0.51%   1.54%   0.04% 
in Goal Performance 
between Solution 1 and 
Solution 3 

Average Absolute 3.78%  0.53%  0.11% 
Difference in Goal 
Performance between 
Solution 1 and Solution 2 

Average Absolute 0.03%  0.10%   0.01% 
Difference in Goal 
Performance between 
Solution 1 and Solution 3 

Table 6.   Performance Summary Actual Case 

2/1 X 100 3/1 X 100 

Average Goal Performance 
Damage Expectancy 
Target Coverage 

96.18 100.02 
99.26 100.01 
99.17 100.01 

performance of solutions 2 and 3 as a percent- 
age of the performance of the continuous solu- 
tion. It can be seen that solution 3 (the heuristic) 
approximates the continuous solution more 
closely than solution 2 in terms of goal perfor- 
mance, damage expectancy, and target cover- 
age. 

In all reported applications of the heuristic 
presented above, solution times were extended 
no more than five seconds. Depending on prob- 
lem size, AEM can require 10 to 50 minutes of 
computer time to reach a solution. The five 
seconds needed to produce superior integer so- 
lutions is acceptable to all users of AEM. 

CONCLUSIONS AND 
RECOMMENDATIONS 

The integer solution heuristic for the Arse- 
nal Exchange Model developed in this research 
has been incorporated in AEM. AEM has a user 
base of 45 Department of Defense organizations 

and the organizations using the new procedure 
include United States Strategic Command, J-5 
and J-8 of the Joint Staff, and the Air Force 
Studies and Analyses Agency. These organiza- 
tions report confidence in and a high level of 
satisfaction with the integer solution heuristic. 

In the four cases tested, the heuristic 
proved to be an improvement over the current 
method in terms of damage expectancy, target 
coverage, and goal performance. Because the 
heuristic was implemented using the LP relax- 
ation of the Rounding IP, the result is not guar- 
anteed to be integer. In fact, because of the 
AEM solution procedure, the results will gen- 
erally not be integer. However, in the cases 
tested, all the variables were close to integer 
and, when the noninteger variables were 
rounded to the nearest integer, the resulting 
allocation was feasible. If the variables are not 
all close to integer, it is possible that a weapon 
or target could be created in the rounding pro- 
cess, so the resulting solution would be infea- 
sible. For example, if two strategies attacking 
the same target were both selected 0.5 times, 
and then both rounded up so that they were 
each selected once, the resulting allocation 
would attack one more target than was avail- 
able. 

Adding an integer solver to AEM would 
avoid this problem; however, the risk of pro- 
ducing an infeasible solution may not be great 
enough to justify the added expense. More re- 
search, needs to be done to determine under 
what circumstances an infeasible solution may 
be produced and the likelihood of these circum- 
stances occurring. Until this problem is solved, 
if the solution of the LP relaxation is not close to 
integer, the user should check carefully to en- 
sure that the allocation produced by our ap- 
proach is feasible. 

The new integer solution heuristic we have 
developed improves the overall performance of 
AEM. Since AEM is the primary solution en- 
gine for CTEM, our procedure can be used to 
enhance and improve the performance of this 
model. Because of the general nature of our 
procedure, it has the potential to be adapted to 
any model which provides continuous solu- 
tions of integer programming problems where 
resources are assigned or allocated. 
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ABSTRACT 
False ranging" refers to deliberately 

controlling a gun, or any weapon sys- 
tem, in a counter doctrinal manner, so 

as to account for its usage in exceptional or 
improvised missions. Though improvisa- 
tions and counter doctrinal uses may be 
debated, and their desirability may change 
from one army to another, the advantages 
of "false ranging" are often conspicuous. In 
this paper we introduce the subject via con- 
crete examples, from some simple ones to 
the more complex, and then discuss several 
quantitative issues pertinent to the tech- 
nique. Devising false ranging menus in- 
volves finding simple tables of constants to 
replace various continuous parameters (un- 
known to the user in the field). After build- 
ing an abstract optimization model which 
is general enough, we demonstrate its use 
in devising false-ranging menus. 

1. INTRODUCTION 
Consider the following problem. Army 

tanks are usually equipped with light mor- 
tars, serving as an anti-personnel defensive 
weapon. Suppose that the mortars are rig- 
idly attached to the turrets of the tanks, and 
that it has been surprisingly discovered 
that reasonable terrain obliquity (side incli- 
nation) may have significant influence on 
the impact point of this weapon. There are 
now several possible attitudes towards the 
problem: one is to ignore it, arguing that 
this direct fire may be corrected for by the 
gunners. A second one is to launch a large- 
scale emergency project of providing inde- 
pendent balance- mechanisms for all the 
mortars on the tanks. A third approach is 
the one which this article is concerned with: 
it calls for supplying the tank-gunners with 
a table of constants, specifying what incre- 
mental ("false") values they have to add to 
the true range and to the traversing of the 
turret so as to account for the side inclina- 
tion and to hit the target. We call this "false 
ranging". Note that this approach is not 
mutually exclusive with the other two. It is 
only that the problem is not completely 
ignored, on the one hand, and the orderly 
solution that should follow need not be an 
urgent one, on the other hand. A temporary 
(but satisfactory) solution is easily sup- 
plied. Indeed, the calculation of the con- 
stants is a matter of simple trigonometry 
and of examination of the relatively simple 
flight equations of the short-range mortar 

bombs. Even more importantly, only very 
few constants need to be conveyed: all pos- 
sible combinations of target ranges and 
side inclinations may be classified to a 
small number of groups, one constant ap- 
plying for each group. This is because the 
accuracy issue is indeed not that critical in 
the present application. 

"False-ranging" type solutions are 
known in infantry weaponry applications 
as well as in armor applications, especially 
for systems with non-computerized fire 
control. Thus, for instance, tanks with 
range drums that do not possess an inde- 
pendent scale for smoke projectiles are in- 
structed to use an existing scale together 
with an appropriate "false" range table. 
Again in tank gunnery, appended "false" 
range-tables enable firing at exceptional an- 
gles of sight. (Upwards or downwards direct 
fire in mountenous areas). Sufficient docu- 
mentation of such instances in the confines 
of the present expository paper is problem- 
atic either because of classification issues or 
the length required to appropriately con- 
vey the case. Consequently, in Section 2 
below we contrive a scenario involved with 
a sniper-gun application, and work out the 
pertinent false ranging solution in detail. 
The question is whether it is possible to use 
an existing sniper-gun system with an im- 
proved, newly-introduced, match bullet. 
Our aim in the presentation is threefold: 
first to introduce the approach of indirect 
false-ranging, that is, the use of an auxiliary 
physical parameter. Second, to show that 
applications that require high accuracy and 
are involved with flight equations are sol- 
uble in the proposed method, and last, on 
the presentational level, to equip the reader 
with a nontrivial case he can follow and 
work out himself without any need of be- 
lieving computer simulation reports. 

Our last example, and the most com- 
plex one, deals again with sudden avail- 
ability of (improved) ammunition, this time 
of artillery shells. It shares with the previ- 
ous example its concern for utmost accu- 
racy (though now for far more distant 
ranges) and its solution via indirect inputs. 
The question is how to enable fire of com- 
patible-caliber artillery ammunition which 
the artillery units battery computers systems 
do not know. This unorderly scenario may 
arise when civilian companies introduce 
improved ballistics or extended range am- 
munition, when ad-hoc coalitions of multi- 
national forces are formed, when a super- 
power grants a big supply of ammunition 
to an ally (a decision which is made by 
politicians and is often unpredicted), when 
such supply falls to the hands of the army 
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as capture in wartime, etc. It is to be stressed 
that even if the full flight simulation modeling 
of the new projectile is at hand, its introduction 
to all of the guns battery computer systems in 
an orderly retrofit process is very slow. Thus, in 
any of the aforementioned scenarios, and espe- 
cially in time of emergency, a false ranging 
solution might be called for. However, in this 
case a solution in terms of a list which specifies 
"false" ranges per se is absolutely impractical 
because of its resultant length. Thus, in analogy 
with the basic approach of the sniping-gun ex- 
ample, a use of a relevant auxiliary parameter is 
called for. One could think of introducing to the 
battery computer a false value of, say, the gun 
muzzle-velocity parameter, so as to compen- 
sate for the "wrong" projectile. An important 
new characteristic of this problem is that in the 
case of artillery fire, when aiming to a given 
target, grossly varied trajectories may be in ef- 
fect, dependent on the many relevant unknown 
environmental conditions. Thus, firing at a 
given gun-elevation and using any given false- 
ranging parameter would entail variability of 
the mean point of impact. (We shall use through- 
out the common abbreviation mpi for the mean 
point of impact). This variability should be 
properly controlled. 

The above examples are representative of 
many others in which false-ranging can be used 
in exceptional or improvised missions. As a 
rule, improvisations and counter doctrinal uses 
should be avoided, and their desirability de- 
pends on the spirit of the specific army, on 
military tradition and on the availability of 
technological and financial resources. (In addi- 
tion, the frequency of engaging emergency mis- 
sions is obviously of major relevance here). At 
any rate, it is evident that the false ranging 
principle is versatile and that its use, with ap- 
propriate safeguards, may enable a wider and 
more flexible utilization of a system. In emer- 
gency times, it may amount to a decisive con- 
tribution in battlefield. 

In this paper we discuss several quantita- 
tive issues pertinent to devising false ranging in 
weaponry. In typical applications the false 
ranging menus are composed of simple tables 
of constants which are aimed at replacing in the 
best possible way various continuous parame- 
ters (unknown to the user in the field). In the 
next section we pinpoint this issue by briefly 
analyzing the small-arms example in a way that 
the reader could easily check. Since the phe- 
nomenon of systematic errors (which in many 

cases amount to the mpi variability such as in 
the above artillery case) is common to many 
weapon systems, it is this issue which will be 
the focus of the rest of the exposition: in any 
false ranging method the resultant mpi vari- 
ability should be controlled for any given entry 
parameter (say, target range), and the variabil- 
ity over all the relevant entry values be mini- 
mized. The optimization and control should be 
subject however to the requirement of simplic- 
ity, which is mandatory in manual (non com- 
puterized) false ranging. In section 3 the artil- 
lery problem will be defined more specifically 
and some pertinent data, obtained by relevant 
simulation studies will be cited regarding this 
problem. In section 4 we build an abstract op- 
timization model to deal with false ranging 
problems that entail mpi errors in individual 
entries. Consequently, the use of the model in 
devising false-ranging menus is discussed in 
section 5 and is worked out for the data pre- 
sented in Section 3. 

2. THE SNIPER-GUN EXAMPLE 
Suppose a certain sniping rifle shoots bul- 

let-type X to a maximum effective (horizontal) 
range of 1000 meters. The design of the sniping 
telescope sight is based naturally on the rele- 
vant firing table, that is, relationship between 
gun elevations and target ranges. In reference 
[3] we present a simple explicit model which is 
accurate enough for the present application and 
enables one to easily follow the subsequent 
analysis. We have: 

1600gx 

2>iro\{\ - kx) 
2 + 

1 

1 -kx (1) 

where x is the horizontal target range, a is the 
elevation (gun firing angle) in mils, g is the 
coefficient of gravity, v0 is the bullet muzzle 
velocity and k is a constant that encapsulates 
the exterior ballistics of this bullet-type. The 
physicality of this model is justified in [3] on 
the grounds of a few simplifying assumptions 
for flat trajectories, and of empirical findings. 

Let us assume that bullet X has v0=785 
meters/sec and fc=fcx=420Xl0"6. (In real life 
problems this value can be extracted by a least 
squares fit of the model (1) to firing test results). 
Columns (1) and (2) of Table 1 below give a 
partial firing table compatible with (1). 
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Suppose now that a new, same-caliber 
match-bullet Y has been introduced, with im- 
proved ballistics such that its maximum effec- 
tive range is 1100 meters (a considerable advan- 
tage in sniping rivalry). Suppose further that 
both bullet types have the same muzzle veloc- 
ity, and that for the new bullet Eq. (1) holds 
with fc=fcY=352xlO~6. The detailing in Table 1, 
columns (1) and (3) may now provide a listing 
of "false ranges" which should be implemented 
to the sight, so as to hit any range with bullet Y. 
For example, to hit a target at range 1100 with 
bullet Y a false range of approximately 1000 
should be set. This menu entails however a 
tedious listing of all ranges. 

A different approach might take advantage 
of fire-control systems which are currently con- 
sidered by various developers of modern 
sniper guns. Assume that measured surface air- 
pressure may be fed to the system so as to be 
corrected for by the sight. Now, with regard to 
Eq. (1), further ballistic analysis may show how 
a nonstandard air pressure may be accounted 
for compatibly with model (1). We shall use the 
model: 

Table 1.   Accuracy of small-arms false ranging 

3200# 
vk2xq(q + l)vl   \(1 - kx) 

1 
- kqx - 1 

(2) 

where q=4c2—2, and c is the ratio between the 
measured air pressure and the standard air 
pressure, the latter being the value which un- 
derlies (1). (For an easily-read ballistics source 
book the reader is referred to [5]. The heuristic 
model (2) is advocated in [3]). Again, for the 
sake of presentation we assume that the fire 
control system uses a model which agrees with 
(1), together with the update for air-pressure 
(2), and that it is familiar with kx, so to say, but 
not with kY. 

Column (4) of Table 1 presents the applica- 
tion of the model (2) with P0=785 m/sec, k=kx 

and an air-pressure ("false") value of 
c=0.902743. This value has been obtained by 
least squares minimization of the respective 
meter differences from the target, in perpendic- 
ular planes at the specified target ranges. These 
differences are listed in column (5) and are 
easily calculated from the angular differences 
(4)-(3) and the range (1). The total optimal sum 

Range a a a (mils) dheight 
(meters) (mils) (mils) k = kx (meters) 

k = kx k = kY c = .90274 (4) vs. 

(3) 

(1) (2) (3) (4) (5) 
300 2.917 2.827 2.817 -0.004 
500 5.586 5.270 5.244 -0.013 
700 9.155 8.352 8.309 -0.029 
800 11.416 10.208 10.163 -0.036 
900 14.108 12.331 12.292 -0.036 
1000 17.353 14.777 14.761 -0.017 
1100 — 17.619 17.658 0.041 

of squares is 55.6 cm2 and the root-mean- 
squares (rms) is 2.82 cm. Still, taking a step 
forward, it can be shown that if the two groups 
of ranges 300 to 800 and 900 to 1100 are taken 
separately, using two distinct optimal values of 
c, the achievable accuracy is of 2,12 cm overall 
rms. (Use c=0.907291 for the first group and 
c=0.902473 for the second group). Obviously, 
the greater the number of c-values employed 
the more accurate is the method, at the expense 
of its simplicity however. The final decision as 
to the exact recipe of false ranging and to the 
degree of the desirable overall accuracy de- 
pends on the specific problem. In the present 
case relevant considerations may concern the 
required accuracies of match-fire, the round to 
round precision of bullet types X and Y, and so 
on. In general we ask what minimal number of 
c-values must be prescribed, what their values 
are and what the entailed mpi-accuracies are. 

3. AN EXAMPLE WITH MPI 
VARIABILITY FOR INDIVIDUAL 
ENTRIES 

The purpose of this section is to present an 
authentic case with mpi variability, together 
with some concrete numerical data. We make 
specific the conditions of the artillery applica- 
tion that was posed in the introduction, relating 
to a problem which was solved successfully by 
false ranging in the past. (Reference [2] contains 
a detailed unclassified account of that success- 
ful application). 
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Suppose that an artillery force, equipped 
with modern battery-computer systems, is 
trained to deliver fire-for-effect of projectile Bl 
based on prior target-registration with projec- 
tile A. This data transfer and non-self registra- 
tion is supported by the computer and is done 
in the first place because projectile A is cheap, 
old-fashioned and less effective, while projec- 
tile Bl is modern, effective and expensive. Pro- 
jectile B2 is a new, even more effective version 
of projectile Bl which has become available to 
the military forces in an exceptional procedure 
such as described in the introduction. A tem- 
porary trickery or false input to the existing 
systems is sought so as to enable immediate use 
of ammunition B2. 

The false ranging solution to the problem 
has been performed via the aforementioned 
auxiliary parameter of muzzle velocity. For any 
specific target and environmental conditions it 
is possible to find, by numerical solution of the 
flight equations, the muzzle velocity value that 
would compensate for the difference between 
projectile B2 and projectile Bl. However, as 
explained in the introduction and unlike the 
state of affairs in the simple small-arms exam- 
ple, different muzzle velocity values would fit 
the same target for different possible environ- 
mental conditions, which in this application 
may include meteorological data, laying and 
positioning displacements of the guns, and 
many others. An exhaustive simulation study 
has therefore been performed to estimate the 
average and the standard deviation of the re- 
sulting muzzle velocity correction (increment 
to the true muzzle velocity) for individual entry 
values of the desired false-ranging table. The 
flight trajectories have been computed using 
the Modified Point-Mass Trajectory model, see 
[7] and [8]. For details of the overall simulation 
algorithm see [2]. Sample results of these sim- 
ulation studies are given in Table 2, and inter- 
polation can be used to extend these data for 
any required entry value. (It is to be noted that 
the natural entry parameter to the false-ranging 
menu in the present application is the projec- 
tile-A final elevation. It is the parameter which 
becomes known to the operator at the relevant 
moment and which signifies target registra- 
tion). 

Later on, in Section 5 below, we exemplify 
our proposed false ranging optimization 
scheme by applying it to the present data. 

Table 2.   Optimal muzzle velocity-corrections: 
numerical results for selected entries. 

projectile A 
elevation 

(mils) 

muzzle velocity- 
correction approx. 

target-range 
(m) average 

(m/sec) 
standard-dev. 

(m/sec) 

(1) 
250 

(2) 
-2.7 

(3) 
3.3 

(4) 
11700 

300 -2.7 2.7 13000 
350 -4.0 2.4 14000 

400 -6.1 2.3 15000 

450 -6.6 1.6 15800 

500 -7.1 1.7 16600 

550 -8.7 1.7 17300 

600 -9.1 1.7 17800 

4. A GENERAL MODEL FOR FALSE- 
RANGING WITH MPI VARIABILITY 

In this section we propose an abstract 
model for false ranging that allows for mpi 
variability in individual entries. This model 
suggests an appropriate optimization scheme 
for finding simple and accurate false-ranging 
tables, as shown later. 

We distinguish between the false-ranging 
parameter (e.g. added-range, air pressure and 
muzzle velocity in the opening examples) and 
the entry parameter. Though we have men- 
tioned a case where the entry parameter could 
be two dimensional (side-inclination together 
with target-range in the armour example) we 
shall assume, for the sake of simplicity, that it is 
one-dimensional and that it may vary in a 
given range of values [a,b]. 

Let us use the following notation: 
x - An entry value for the false-ranging 

table. 
$ - A multidimensional "environmental" 

variable which is the source of the mpi variabil- 
ity and which will be called "a profile" for 
short. 

v(x,<p) - The compensating false-ranging 
constant, for given x and a realization <p of 3>. 

ju,(;t)=E<&|y(x,<5)] - The average optimal 
false-ranging constant (cf. Table 2). 

s(x)=o-^(x,<I>) - The standard deviation of 
the constant (cf. Table 2). 

A(u,x,(p) - The mpi miss which results from 
using an arbitrary value u of the false-ranging 
parameter. We have A(v(x,(p),x,(p)=0. 
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In the last example x is the registration 
elevation for projectile A, 5> is the meteorolog- 
ical profile, laying and positioning conditions, 
etc., and v(x,(p) is the muzzle-velocity constant 
which results from the computation which was 
mentioned in the previous section. 

Let us now consider a given range of values 
of the entry parameter, say xx up to x2. 

Definition 1. (Criterion of optimality). 
A false-ranging constant u* will be called 

optimal if: 

E*,«^«[A2(w,X,0)] (3) 

is minimized by u=u*. 
The criterion (3) is a classical weighted 

least-squares criterion, applied to the target 
miss using one false-ranging constant for a 
range of values of the entry parameter. See e.g. 
[6] for an account of the (deterministic) contin- 
uous-parameter least-squares optimization ap- 
proach. To simplify the exposition, equal 
weighting for each entry value will be assumed. 
Thus, the expression in (3) becomes: 

— *— E$[A2(M,x,«D)]dx. (4) 
i       x2     X] 

We now proceed to find formulae for the 
optimal false-ranging-constant and for the ac- 
curacy of its application in a range of entry 
values. 

For the expectation in (4) we have: 

E$[A2(w,x,<I>)] = Var4>[A(u,x,<$>)] 

+ E|[A(M,x,<D)].    (5) 

Writing now u0 for v{x,<$>) and neglecting non- 
linear terms of the relevant Taylor expansion 
we get: 

A(«,x,<p) = A(u0,x,<p) 

d 
+ (M - u0)—A(u,x,<p)\u=U0.    (6) 

The first term in the R.H.S of (6) equals zero. 
We stipulate that for any x, a kind of a 

"mean value" profile cpx exists, in a way that the 
following hold: 

n(x) = v(x,<px). (7) 

many solutions <px for Eq. (7). We emphasize, 
however, that <px plays only a conceptual role in 
the subsequent analysis and its determination 
is not required in practice. Defining now: 

D(x) = -r-Mu,x,<px)\u=u 

we get: 

du 

A(u,x,(px) = (u - ix(x))D(x). 

(8) 

(9) 

In fact, in many applications a "profile" in- 
cludes many factors, such that there might be 

A few words are in order here. D(x) is the 
incremental miss of the target incurred by an 
incremental change in the optimal false-rang- 
ing-parameter. This function of x has to be as- 
sessed by the analyzer. In the last artillery prob- 
lem D(x)=p1(xym1(x)/p2(x), where px(x) and 
p2(x) are the incremental range per incremental 
gun elevation for projectile Bl and projectile B2 
respectively, and mx(x) is the incremental range 
per incremental muzzle-velocity for projectile 
Bl. All three of these functions are available 
from the respective standard books of firing 
tables. (For the contents and the standard 
NATO format tables see e.g. [8], or any US 
Army book of field artillery firing tables). 

In order to get an applicable expression for 
(5) we proceed in making three assumptions. 
First, 

E*[A(M,X,4>)] = A(u,x,(px), (10) 

that is, the mean mpi-error is attained at the 
mean profile (see remark after (7) above). Sec- 
ond, 

o-$[A(U,x,<D)] = o*[A(/n(x),x,<l>)] (11) 

(The variance of the mpi-error while implement- 
ing a given false-ranging value u is the same as 
in implementing the optimal u. This, unlike the 
mean error, is approximately true for values of u 
which are not too-distant from ju-(x)). Finally, 

o-$[A(p,(x),x,<I>)] = A(tx(x) + s(x),x,<px), 
(12) 

namely, the standard error using the optimal 
false-ranging constant approximately equals 
the error (miss of target) which is incurred (for 
an average profile) when using a false-ranging 
value which equals the average optimal con- 
stant plus its standard deviation. Combining (5) 

Military Operations Research, V3 N2 1997 Page 21 



ON THE PRINCIPLE OF "FALSE RANGING" IN WEAPONRY 

and (9)-(12) we have: 

E*[A
2
(M,X,4>)] = D2(x)(s2(x) + (M - ix(x))2) 

(13) 

By Definition 1 we get the optimal u by differ- 
entiating (4) and equating to zero. Using (13) 
and Leibnitz' rule: 

-j— [expression in 

x2 — Xi       du 
[D2(x)(s2(x) 

+ (u - ii{x))2)\dx = 
%2        ^1 

(u - ii{x))D2{x)dx 

and finally 

li{x))D2{x)dx 

D2(x)dx 

(14) 

This is the formula for the optimal constant 
in a range [xx,x2]. We see that it depends on ju,(x) 
but not on s(x). From (13) we also get the root- 
mean-square accuracy of using u* for a given x in 
[xlrx2], namely, 

rms(x) = D(x) ^s2(x) + (u* - JU(X))
2
. 
(15) 

5. DEVISING FALSE-RANGING 
TABLES IN PRACTICE 

Our objective now is to determine a parti- 
tion of the interval [a,b] of the relevant values of 
the entry parameter. Regarding a partition 
a=x0<x1<x2<. ■ ■ <xIX=b we say that there are n 
zones (subintervals) and that the x's are zone 
delimiters. For each zone a constant false-rang- 
ing-value is to be assigned. We require that the 
following three conditions will be met: 

a - The root-mean-square error will be 
bounded by a predetermined constant, uni- 
formly for each entry value. 

b - The number of zones n will be minimal 
such that condition a holds, and 

c - The total rms error over [a,b] will be the 
minimum possible for n. 

In [4] we present a special-purpose dynamic 
programming algorithm for the exact solution of 
false-ranging like problems. It is based on dis- 
cretization of the entry-parameter domain, and 
on shortest-path finding of the optimal parti- 
tion for given number of subintervals n. (Opti- 
mality in the sense of least total rms). A similar 
procedure has already been suggested by Bell- 
man and Dreyfus [1, pp. 334-335] for the basic 
problem of the optimal least-squares approxi- 
mation to a function by a piecewise-linear func- 
tion. They assumed a given number n of linear 
segments. Though the present interpretation 
and the overall least-squares functional are dif- 
ferent, the logic of the dynamic programming 
solution is identical to that of [1]. Starting with 
n=l, the resultant optimal solution is checked 
for feasibility (condition a above). If this check 
fails, n is increased by one. The procedure stops 
when a feasible (condition a) - minimal (condi- 
tion c) solution is found for the first time. Mini- 
mality in the sense of condition c is guaranteed 
by exploiting Eq. (14) within the dynamic pro- 
gramming algorithm. (This last fact implies a 
need for an extra check of the resultant parti- 
tion, namely a check for the validity of the 
assumptions that underlie (14) and are listed in 
the previous section). 

As it happens frequently in military OR, 
field applications involve additional factors 
which are not included in the neat model. In 
this case, for example, we have neglected the 
need for a standard format for various tables 
(there are several propellant types and charge 
zones), the desirability of round partition delim- 
iters, etc. Attempting a flexible approach, we 
note that by the nature of the application only a 
small number of zones have to be determined. 
Hence it would be practical to find the required 
partition and the optimal u*'s (the "menu") by 
trial and error. This could be done using the 
handy formulae of the previous section. The 
results of Section 4 show how to find the rms- 
optimal false-ranging value u* for any subinter- 
val [Xi,xi+1], and what is the incurred rms error 
for any entry value x when using u. Further- 
more, for validating the boundedness condition 
a we content ourselves with checking rms(x) 
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only at the zone delimiters. Indeed, recognizing u* 
(14) as a mean value of /LI(X) on the respective 
zone, it is plausible that more often than not 
rms(x) would be bounded from above by the 
maximum of ims^j) and rms(x2), for all x in 
[xx,x2]. For example, if D(x) is constant, then by 
(14) u is a mean value strictly by the mean-value 
theorem. If, in addition, ;u,(x) is linear and s{x) is 
constant we get under the root in (15) a parab- 
ola which is minimized at the mean value, and 
maximized at the end values xx and x2. 

The necessary inputs to carry out the opti- 
mization are recognized as the functions JU,(X), 
s(x), and D(x) of Section 4. All of these functions 
are supposed to be continuous on [a,b]. We 
remark parenthetically that the solution for 
such cases as discussed in Section 2 come out as 
a special case of the present scheme, with 
s(x)=0. Note that for the small-arms example 
n(x) equals c(x), and D(x) can be analitically 
derived from Eq. (2). 

Let us work out the case of Section 3. ix(x) 
and s(x) are interpolated from the values of 
Table 2 for 250^x<600, where x is projectile-A 
elevation (in mils). The function D(x) is evalu- 

ated as explained in Section 3 (relevant values 
appear in Table 3 below). Suppose that an mpi 
variability bound of 50m rms is required. By 
inspection of Table 2 one may converge to the 
following table after a short trial and error pro- 
cess: 

In Table 3 column (1) contains the tentative 
partition, and column (2) states the zone-opti- 
mal false-ranging constants according to Eq. 
(14). The next three columns show the neces- 
sary inputs that were discussed above, and the 
last column states the zone-delimiter rms ac- 
cording to Eq. (15). Although the method of 
trial and error does not necessarily minimize 
the total rms error, we obtain a convenient par- 
tition which obeys condition a. It can be seen 
that no significant deviation from the proposed 
partition is possible, so that the optimal number 
of zones (and of false-ranging constants) must 
be 3. 

Even if overall accuracy can be somewhat 
improved it is advantageous to have round 
delimiter values, and therefore the present ta- 
ble is satisfactory. In fact, applying the dynamic 
programming algorithm [4] for the current ex- 

Table 3.   Optimal u's and delimiter rms for a tentative false-ranginge table 

projectile-A elevation zone li (x) s (x) D(x) rms (x) 
zone delimiters optimal u* (m/sec) (m/sec) (m/sec) (m) 

(mils) (m/sec) 

(1) (2) (3) (4) (5) (6) 
250 -2.7 -2.7 3.3 14.5 47.9 
300 -2.7 2.7 15.2 41.0 
300 -4.3 -2.7 2.7 15.2 47.4 
400 -6.1 2.3 16.9 49.5 
400 -7.6 -6.1 2.3 16.9 46.5 
600 -9.1 1.7 21.4 47.9 

Table 4. Optimal elevation zones, optimal u's and delimiter rms 

projectile-A elevation zone M*) s{x) D(x) rms (x) 
zone delimiters optimal u* (m/sec) (m/sec) (m/sec) (m) 

(mils) (m/sec) 

(1) (2) (3) (4) (5) (6) 
250 -3.3 -2.7 3.3 14.5 48.6 
370 -2.7 2.7 15.2 46.0 
370 -6.4 -2.7 2.7 15.2 46.6 
510 -6.1 2.3 16.9 36.9 
510 -8.6 -6.1 2.3 16.9 38.6 
600 -9.1 1.7 21.4 38.2 
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ample yields the following optimal solution, up 
to a resolution of 10 mils in the entry-parame- 
ter: 

The overall rms of Table 3 is 40.4 meters, 
while the optimal rms (Table 4) is 38 meters. 

complex. The model we built serves in a con- 
venient way in devising false ranging recipes 
that comply with the simultaneous require- 
ments of accuracy and simplicity, when such 
recipes are feasible. 

CONCLUSION 
It has been argued in this work that the 

general approach of false ranging may be man- 
ifestly rewarding when no orderly and fast so- 
lution is possible. While each instance may re- 
quire its own "trick" (and sometimes real 
innovative thought), there are clear unifying 
characteristics of the application of this princi- 
ple. In general, the design of false ranging in- 
volves the following three interrelated ques- 
tions. Firstly, what are the physically accessible 
inputs or settings in the system that are candi- 
dates for false positioning? Secondly, how can 
one provide the operator of the system (in cases 
where the improvisation is not automated) 
with the shortest and simplest possible ad-hoc 
menu? Thirdly, what are the performances, 
usually accuracies, of the improvised method? 

In the paper different evolutionary stages 
of the principle have been mentioned. The most 
simplistic one, that is, a detailed list of "false" 
ranges versus the "true" ones is mentioned (in 
the description of Table 1). The next step, which 
includes aggregation of values to make a sim- 
pler list, comprises the solution for the tank- 
mortar example which was mentioned in the 
Introduction. Then the idea of using an auxil- 
iary parameter is introduced (the sniper exam- 
ple) - though still in a deterministic context. 
Finally, the "noisy", probabilistic application is 
discussed - applied to the artillery problem. 

As was demonstrated in the paper, false 
ranging recipes typically involve substitution 
of discrete values for a certain continuously 
changing parameter. We have adopted a least- 
squares optimization approach to build an ab- 
stract model of enough generality to cope with 
false-ranging problems with mpi variabilities. 
Note that the present formulation particularly 
suits analyses where a perfect analytical repre- 
sentation of the system is unavailable, and yet 
the average and the standard deviation of the 
optimal false-ranging value for any single entry 
value may be assessed by simulation studies. 
This is often the case when dealing with sys- 
tems which are technically and operationally 
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ABSTRACT 
This paper presents a management 

tool for prioritizing, displaying, and 
tracking program risk. The tool, 

called RiskNav, provides program offices a 
structure for conducting continuous risk 
assessments. Using classical utility theory, 
RiskNav rank-orders and tracks project-de- 
fined risk events as a function of their esti- 
mated cost, schedule, and technical perfor- 
mance impacts. This includes quantifying 
the effects of coupled risk events. As a de- 
cision-aid, RiskNav assists in identifying 
where engineering resources are best allo- 
cated to mitigate potentially crippling areas 
of risk to a program. 

A. INTRODUCTION 
Successfully managing today's major 

defense systems requires deliberate and 
continuous attention to risk due to reduced 
budgets, expanded mission objectives, and 
increased schedule pressures. To support 
the risk assessment process, a methodology 
and software application named RiskNav 
was developed. 

RiskNav is a management tool that fa- 
cilitates frequent program risk assessments. 
RiskNav follows the risk assessment pro- 
cess in AFMCPAM 63-101, the Air Force's 
Acquisition Risk Management Guide 
(AFMCPAM, 1993). As such, RiskNav of- 
fers program managers a means to inte- 
grate risk assessment directly into their sys- 
tems engineering processes. 

Among the outputs produced by Risk- 
Nav are its graphical displays. A primary 
display is the relative ranking of risk events 
prioritized by their impact to a program 
and probability of occurrence. An example 
is shown in Figure 1. 

Additional displays are available that 
show the level of coupling (dependence) 
between any two risk events. This identifies 
where attacking one event may offer the 
added value of attacking associated events. 

The following presents the underlying 
theory in RiskNav. This includes a method 
for quantifying the effects of coupled risk 
events, an issue not well addressed in cur- 
rent practice. 

B. METHODOLOGY OVERVIEW 

B.1 Process 
Implementing RiskNav begins with the 

formation of a cross-functional project risk 

assessment team. Membership includes 
representatives from the major engineering 
and program control disciplines. Once in 
place, the team proceeds through the six 
steps illustrated in Figure 2. 

These steps are described as follows: 

1. Identify ... Identify key program risk 
areas. 

2. Define ... Define the set of risk events 
that fall within the risk areas identified 
in step 1 (this includes defining event 
coupling relationships). 

3. Assess ... Assess subjective probabili- 
ties that each risk event will occur. 

4. Estimate ... Estimate impacts for each 
risk event. 

5. Display ... Display the prioritization of 
risk events determined by RiskNav's 
ranking algorithms. 

6. Analyze ... Evaluate results, check for 
consistency, and conduct sensitivity 
analyses. Results serve as inputs to the 
formulation of risk mitigation strategies 
by the management team. 

Risk areas are defined at the functional area 
of a program. An example might be Mes- 
sage Processing. For each risk area defined 
by the risk assessment team, the set of 
events considered to have an unfavorable 
outcome are then specified. These are de- 
fined as risk events. For instance, a risk 
event within the risk area Message Process- 
ing might be 

"Current processor fails to meet search 
and beacon plot message processing re- 
quirements of 20,000/12 seconds." 

Ideally, risk events should be stated with 
sufficient clarity to support an assessment 
of the subjective probability of the event 
occurring. Additional examples of risk 
events are provided in Section B.5. 

A variety of assessment methods can 
be used for the first four steps. These in- 
clude the use of independent surveys, one- 
on-one interviews across the project, and 
electronic meeting room technologies. Doc- 
umentation of the risk assessment team's 
rationale, for each step shown in Figure 2, 
is a critical, history-preserving, aspect of 
the process. 

B.2 Risk Event Prioritization 
RiskNav defines risk events as vectors 

in «-dimensional space. The components of 
these vectors represent areas of a program 
impacted by the event. 
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Figure 1. A RiskNav Display. 

Three areas typically impacted by risk 
events are shown in Figure 3. The components 
xc, xs, and xT represent the impact of risk event 
X on a program's cost, schedule, and technical 
performance areas. To provide a basis for com- 
parison, these impacts are normalized to unit 
scales. 

For convenience, this paper presents Risk- 
Nav's methodology in terms of the above three 
components; higher dimensional generaliza- 
tions to more than three components* is 
straightforward. 

Risk events are prioritized by their "impact 
intensity". One way to measure intensity is by 
the norm of X. Specifically, the impact intensity 
I of risk event X is 

0</(X)= V(4 + x2
s + 4)/3^i    (1) 

where 0 < xc, xs, xT < 1 and xc, xs, and xT are 
the component-level cost-schedule-technical 
(CST) impact intensities of X. 

Equation 1 is a special case of the Hardy- 
Littlewood-Polya weighted mean (Hardy, 
1967), which, when normalized to the unit-in- 
terval, is given by equation 2. 

0 < IA(X) (2) 

* In practice, a particular risk event impacts any number of 
areas (components) of a program. The number and nature 
of these components must be defined and specified by the 
risk assessment team. 

1 Identify Estimate 
4 

T T M 
«.* | Define P"""j Display^ 

Assess 
3 

Analyze 
6 

'Formulate 
Mitigation 
Strategies 

Figure 2. RiskNav Process (Steps 1-6). 

In the expression above, k > 0, 0 < xr ^ 1, and 
wr is a positive weight assigned to the rth- 
component xr. The sum of the component-level 
weights is denoted by W. 

Equation 2 allows the risk assessment team 
to directly weigh component-level impact in- 
tensities. For instance, if a risk event's impact 
intensity is measured by the rule 

x2
c + xj + 4xj 2\ 1/2 

h(X) = 

where x1 = xc, x2 = xs, and x3 = xT, then the 
event's technical impact xT is given twice the 
weight of xc and xs. When k = 1, the additive 
impact intensity measure becomes a linear 
weighted mean of the components. A fixed in- 
crement in each component produces a fixed 
increment in the overall impact intensity, inde- 
pendent of the values of the components. With 
k + 1 this is no longer true. The effect on the 
overall impact intensity from each increment in 
a component will depend on the value of the 
component as well as on the values of the other 
components. 

From utility theory, equation 2 (with k = 1) 
reduces to the well-known additive multi-at- 

Technical 
Impact 

1-- 

xT 

Q, 

Risk Event 

 / 
Cost 

/ ,    Impact 

1 > 
Schedule 
Impact 

Figure 3. A Risk Event Vector. 
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tribute utility function (MUF) (Keeney, 1976). 
However, with equation 2 a high utility (impact 
intensity) in one component (e.g., xc) does not 
necessarily imply a high utility (impact inten- 
sity) overall. A component of X at its maximum 
impact (e.g., xc = 1) does not guarantee IA(X) 
will be maximum. 

A measurement rule that guarantees the 
overall impact intensity is maximum whenever 
a component of X is at its maximum intensity is 
given by equation 3. 

osux) = [i-nd-w^i (3) 

Equation 3 is related to the well-known 
Keeney-Raiffa multiplicative MUF (Keeney, 
1976). In particular, if k = 1, wr = 1 (for all r), 
n = 3, and x1 = xc, x2 = xs, and x3 = xT, 
equation 3 reduces to 

IM(X) = 1 - (1 - xc)(l - xs)(l ~ xT)        (3a) 

Equation 3a exhibits a property sometimes re- 
ferred to as constructive interaction. That is, a 
high utility (impact intensity) in one compo- 
nent (e.g., xc) means a high utility (impact in- 
tensity) overall. 

Notice if any component xc, xs, or xT (in 
equation 3 or 3a) is unity, then IM(X) = 1. In 
equation 3, this is true regardless of the weight 
assigned to the component. Such a property is 
desirable for military decision-makers. It allows 
a risk event to be signaled (flagged) for further 
consideration when just one component is at its 
extreme. A comparison of I^(X) and IM(X) is 
given in Table 1. 

Measuring a risk event's impact intensity 
by equations 2 or 3, permits the risk assessment 
team to define weights as a constant or as func- 
tion of the component-level intensities. For in- 
stance, suppose an additive rule (equation 2) 
was used to measure impact intensity. The 
team might define w^ as an increasing function 
of xc as xc approaches one. Three possible func- 
tions are illustrated in Figure 4. 

Viewing risk events as vectors in n-dimen- 
sional space, whose components reflect the ar- 
eas of a program impacted by the events, is a 
useful way to conceptualize risk and plan for its 
elimination. Measuring an event's impact by 

0 

f1(xc) = u0+ulxc 

f2(xc.) = uü+ulxl 

f3(xc) = u0+Ui[l-(\-xc)
2] 

1 

Figure 4. Illustrative Weight Functions for Cost 
Impact Intensity xc. 

the rules described, provides the flexibility 
needed by a risk assessment team. Measure- 
ment rules, such as equations 2 or 3, can be 
defined to reflect the degree of risk averseness 
appropriate to the program and the decision- 
maker's preference structure. 

B.3 Impact Scales 
Illustrated in Figure 2, a risk event is 

viewed as a vector whose components reflect 
the event's CST impacts to the program. These 
components are normalized to the unit interval, 
so that the impact intensities of each event can 
be compared on a common scale. 

Estimating CST impacts is a critical aspect 
of the risk assessment process. It can also be the 
most time and resource intensive aspect of the 
process. The resources applied to estimate these 
impacts should reflect the purpose for, and 
scope of, the risk assessment. Clearly, more care 

Table 1.   Measuring Impact Intensity 

Values For UX) UX) 
(xc, xs, XT) (Eqt. 1) (Eqt. 3a) 

(0.00, 0.00, 0.00) 0.00 0.00 
(0.00, 0.00, 0.25) 0.14 0.25 
(0.00, 0.00, 0.50) 0.29 0.50 
(0.00, 0.50, 0.50) 0.41 0.75 
(0.50, 0.50, 0.50) 0.50 0.88 
(0.00, 0.00,1.00) 0.58 1.00 
(0.00, 0.50,1.00) 0.65 1.00 
(0.00,1.00,1.00) 0.82 1.00 
(0.50,1.00,1.00) 0.87 1.00 
(1.00,1.00,1.00) 1.00 1.00 
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given to developing impact estimates offers a 
decision-maker a more meaningful risk assess- 
ment. 

Unfortunately, it is a frequent case that risk 
assessments are done with very little time and 
resources available to estimate CST impacts di- 
rectly. To facilitate the risk assessment process 
in such circumstances, a set of utility scales can 
be developed to "bound" the impacts. Figure 5 
illustrates a utility scale developed for technical 
performance. 

This scale was modified from AFMCPAM 
63-101 (AFMCPAM, 1993). Further illustrations 
of utility scales, including those for cost and 
schedule, can be found in reference 1. Utility 
scales must, in general, be customized for each 
specific project application. 

B.4 Risk Event Coupling 
An important consideration in any risk as- 

sessment is the identification of event relation- 
ships. Risk events can relate to each other in 
their occurrences. They may influence each 
other to occur together (concurrently or se- 
quentially) or in each other's absence, or their 
occurrences may be totally independent of each 
other. This relation of association or disassoci- 
ation, if any, may be traceable to some root 
causes that make events appear to induce or 
exclude each other's occurrence. For RiskNav a 

Technical 
Performance Impact *r 

1-- 

Decrease to system 
performance eliminates 
all margin 

2/3-- 

Degradation of subsystem 
performance, minor 
decrease in system   ^^- 
performance (still above 
requirement) 1/3-- 

Little effect on subsystem 
or system performance   —■ 
(includes producibility and 
support) 

l 
Cost Impact 

5/6 

1/2 

1/6 

Many critical system 
requirements not achieved 

Degradation of subsystem 
performance, moderate decrease in 
system performance (requirement still 
achieved) 

Potential degradation in 
subsystem performance, but 
system level not affected 

_ Schedule 
Impact 

procedure was developed to calculate "cou- 
pling level" which was designed to measure 
such a relation. 

RiskNav defines event coupling as the ten- 
dency of the relation between two risk events. 
A coupling level is defined which measures the 
strength of the tendency. Coupling level ranges 
in value between +1 and -1. A coupling level 
of 0 reflects the case where two events are 
independent of each other in their occurrences. 
A positive coupling level between 0 and +1 
results when two events have a tendency to 
"induce" each other's occurrence. A negative 
coupling level between 0 and -1 results when 
two events have a tendency to "exclude" each 
other's occurrence. Either positive or negative, 
the two events are dependent on each other. 
The coupling level defined here is used to mea- 
sure the strength of their tendency to "induce" 
or "exclude" each other's occurrence. 

The following provides definitions used in 
the rest of this paper. In each, it is useful to 
consider the occurrence of a risk event in a 
common time period (e.g., between time 0 and 
time T, inclusively) that is relevant to the situ- 
ation under analysis. If an event occurs after 
time T, it is considered a non-occurrence for the 
purposes of the analysis. The terms are: 

A) P(X;) is the non-zero marginal probability 
that risk event X, will occur. It expresses the 
likelihood of the event's occurrence at some 
time r during a period of interest. 

B) P(X,|X;) is the conditional probability that 
risk event X, will occur given that risk event 
Xj will occur. This does not imply that event 
Xj already occurred or that it will occur 
before event X,. It expresses the likelihood 
of the occurrence of event X{ if event X; is 
known to occur at some time t during a 
period of interest. 

C) P(X„ X) is the joint probability that risk 
events X; and X; will both occur. This does 
not imply any sequence of event occur- 
rences. It expresses the likelihood that both 
risk events will occur, each at some time t 
during a period of interest. 
A basic relationship between the above 
probabilities is given by equations 4 and 4a. 

P(X,,X;) = P(X;|X/)P(Xy) 

= P(X;|X,)P(X,) 

(4) 

(4a) 

Figure 5. A Utility Scale for Technical Performance 
Impact. 

D) L(X„ Xj) is the coupling level between the 
occurrences of risk events X, and X;-. It 
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is a measure of the strength of the ten- 
dency between the two events' occur- 
rences, each at some time t during a pe- 
riod of interest. 

B.4.1 Measuring Risk Event Coupling.   The 
coupling level of two risk events X; and X; is 
measured as follows: 
Rule A: If P(X(-, Xj) > P(X,)P(X;) then 

_,__ P(X,,X;)-P(X,)P(X;) 
UA'"' *l>     Min{P(X,-), P(X;)} - P(X,) P(X;) 

Rule B: If P(X„ X;) < P(X,)P(X,) then 

P(Xj/X/)-P(X,-)P(X,-) 

then 

UXit Xj) = P(X,)P(X;) 

The above measurement rules normalize the 
joint probability P(X„ Xj) of risk events X, and 
X: by a value that is a function of their marginal 
probabilities P(X,) and P(Xj). The normalization 
reflects that the tendency of the relation be- 
tween two events' occurrences can be strong 
even though their marginal probabilities may 
be low and that the tendency can be weak when 
the marginal probabilities may be high. A fur- 
ther discussion of this is provided in the appen- 
dix. The following conditions result from the 
coupling measurement rules defined above. 

1. If the occurrence of one risk event, say X;-, 
definitely "induces" the occurrence of the 
other event X,-, that is 

P(X,|Xy) = 1=>P(X„ Xy) = P(Xy) 

and 

then 

P(X;) < P(X,) 

L(X,-, Xy) = +1 

Thus, the coupling level +1 indicates defi- 
nite "induction" between events X; and Xy. 
The coupling level is +1 if P(X,|X;) = 1, or 
P(X;|X;) = 1, or both. 

2. If one risk event, say X;-, has no influence on 
the other event X, (the two events are inde- 
pendent), that is 

P(X,|X;) = P(X,)=>P(X„ X;) = P(XdP(Xj) 

L(X,-, Xy) = 0 

Thus, the coupling level 0 indicates indepen- 
dence between X, and Xy. The independence 
is always mutual since P(X,-|X;-) = P(X;) im- 
plies P(Xy|X,) = P(Xj). 

3. If the occurrence of one risk event, say X;, 
definitely "excludes" the other event X„ that 
is 

then 

P(X,|Xy) = 0=>P(X„ Xy) = 0 

L(X„ Xy)  =   -1 

Thus, the coupling level of -1 indicates def- 
inite "exclusion" between events X; and X;. 
The definite "exclusion" is also always 
mutual since the conditional probability 
P(X,|Xy) = 0 implies P(X;|X,) = 0. 

To compute L(X„ Xj) the necessary inputs 
are the joint probability P(X{, X.) and the mar- 
ginal probabilities P(Xt) and P(X). 

Values for the marginal probabilities most 
often reflect subjective assessments. They are 
made early in the risk assessment process. The 
joint probability is the remaining input needed 
to complete the calculation of L(X;, Xj). Unlike 
the marginal probabilities, the joint probability 
is not assessed directly. It is determined from 
equation 4, which requires an assessment of the 
conditional probability P(X;|X;). There is a 
range of feasible values from which to make 
this assessment. This range is a function of the 
marginal probabilities P(X,) and P(X;). It is 
given by 

where 

l,V ^ P(X,|Xy) < Ui\j 

i - P(X,)1 
l,v = Max] 0, 1 -     D,y,    [ (5) 

M;li = 

P(Xj) 

Min{P(X,), P(Xy)} 

P(Xj) (6) 

B.4.2 Assessing Probabilities 
This section offers guidelines for assessing 

the marginal and conditional probabilities 
needed to measure the coupling level between 
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two risk events. There is a large corpus of lit- 
erature on the subject of subjective probability 
elicitation. An excellent treatment of this topic, 
along with a detailed bibliography, is given by 
Clemen (Clemen, 1990). 

The guidelines below provide a framework 
for translating qualitative assessments of an 
event's likelihood of occurrence into probabil- 
ity values. A translation scheme for assigning 
marginal probabilities is offered in Table 2. The 
author's experience is the basis for the scheme 
presented. 

When risk event coupling is considered, it 
is necessary to assess the conditional probabil- 
ity of an event's occurrence given the occur- 
rence of another (related) event. This assess- 
ment differs from the marginal probability 
assessment in two respects. First, the condi- 
tional probability assessment is easier if done in 
relation to the marginal probability, which is 
assessed earlier in the RiskNav process. Sec- 
ond, there are bounds (Z,-L- and u^) that are ap- 
plicable to the conditional probability. A 
scheme, also based on the author's experience, 
is suggested in Table 3. This aids the risk as- 
sessment team in making conditional probabil- 
ity assessments as they relate to risk event cou- 
pling. 

B.5 An Illustration 
This section illustrates portions of a risk 

assessment conducted on a radar system mod- 

Table 3.   A Conditional Probability Assignment 
Scheme 

Table 2.    A Marginal Probability Assignment 
Scheme 

Qualitative Assessment of Event 
X,- Occurring 

Quantitative 
Translation 

Sure to Occur 1.0 
Almost Sure to Occur 0.9 
Very Likely to Occur 
Likely to Occur 
Somewhat > than an Even Chance 

0.8 
0.7 
0.6 

An Even Chance to Occur 0.5 
Somewhat < than an Even Chance 0.4 
Not Very Likely to Occur 
Not Likely to Occur 
Almost Sure Not to Occur 

0.3 
0.2 
0.1 

Sure Not to Occur 0.0 

Qualitative Assessment 
of Event X, Occurring 
Given the Occurrence 

ofX, 

Quantitative 
Translation P(X!|X/) 

Likelihood Increased to 
Maximum Possible 

Likelihood Increased 
Significantly 

Likelihood Basically 
Unchanged 

Likelihood Decreased 
Significantly 

Likelihood Decreased 
to Minimum Possible 

P(X;) + 

«•V 

uty - P(X,) 

P(Xd - 

P(X,) 

k 

ernization. Table 4 presents several RiskNav 
inputs and outputs from that assessment. 

Table 4 summarizes the key inputs re- 
quired for RiskNav. These inputs must be de- 
veloped by the risk assessment team. They in- 
clude establishing the impact scale maximums, 
estimating CST impacts (xc, xs, and xT) for each 
risk event, and assessing the subjective proba- 
bilities of each risk event (i.e., the marginal 
probabilities). 

Table 4 also presents the impact intensities 
computed for each risk event. In this example, 
equation 1 was used. The risk events having the 
highest impact intensities are Xxl, X12, and 
X21. A display generated by RiskNav, of these 
intensities is provided at Figure 1. This shows 
the relative ranking of these events prioritized 
by their combined CST impacts and probabili- 
ties of occurrence. 

Next, it is important to identify risk event 
interrelationships. For purposes of this illustra- 
tion, suppose the risk assessment team identi- 
fied that coupling relationships exist between 
the four pairs of risk events shown in Table 5. 
From the marginal probabilities assessed for 
each risk event in Table 4, coupling levels L(X„ 
X.) are determined from either rule A or rule B. 

Figure 6 presents a RiskNav display de- 
signed to illustrate risk event coupling and the 
computed coupling levels. Such a display pro- 
vides decision-makers an important visual aid; 
one that focuses their attention on attacking 
critical risk events that also have high-impact 
associations with other coupled events under 
consideration. Figure 6 illustrates a moderate to 
high tendency for risk event X21, if it occurs, to 
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Table 4.   Radar System Modernization An Example RiskNav Risk Assessment 

Impact Scale Maximums*      Max{xc} = 1 at $20M       Max{xs} = 1 at 36 Mos.       Max{xT} = 1 (by defn.) 

Risk Area 1. This area 
includes two risk events 
associated with the 
system's ability to meet 
surveillance capacity 
requirements. 

Risk Area 1 (Concluded) 

Risk Area 2. This area 
includes three risk events 
associated with the 
system's software 
development. 

Risk Area 2 (Continued) 

Risk Event X1V Message Processing—"Currently proposed processor fails to 
meet search and beacon plot message processing requirements of 20,000/12 
seconds." 

Risk Assessment Team Inputs: 

17 15 
xc = 2ß,*s = 3g,*r = 0.8,P(XL1) = 0.5 

RiskNav Output: Impact Intensity I = 0.72 

Risk Event X12. Track Processing—"Currently available COTS/GOTS fails 
to meet requirement for processing /fusing internal and external tracks into 
a single track." 

Risk Assessment Team Inputs: 

16 20 
Xc = 2Q,xs = 3g,xT = 0.9,P(XL2)  = 0.9 

RiskNav Output: Impact Intensity I = 0.76 

Risk Event X2-1. Software Size—"Software size exceeds 100K source 
instructions above initial estimates." 

Risk Assessment Team Inputs: 

10 24 
xc = 2ß,xs = ^,xT = 0.7,P(X2.a) = 0.8 

RiskNav Output: Impact Intensity I = 0.62 

Risk Event X2 2. Spare Memory—"The performance of the system 
architecture fails to allow the required 50 percent memory reserve." 

Risk Assessment Team Inputs: 

Risk Area 2 (Concluded) 

xc = 2ß,xs = ^,xT = 0.2,P(X2.2) = 0.5 

RiskNav Output: Impact Intensity I = 0.14 

Risk Event X2 3. Software Staffing—"Contractor is experiencing a high- 
turnover rate and fails to meet required staffing levels of 50 full-time 
development persons." 

Risk Assessment Team Inputs: 

15 
36 -,xT = 0/P(X2.3) = 0.5 xc - 20,xs 

RiskNav Output: Impact Intensity I = 0.25 

* These maximums are set by the risk assessment team; for instance, Max{xc} could be the maximum devia- 
tion acceptable from the planned program cost; it could also denote the maximum or budgeted program cost. 

"induce" risk events Xlt and X12- Likewise, 
Figure 6 reveals a weak tendency for risk event 
X21, if it occurs, to "exclude" the occurrence of 
risk event X23. 

When two risk events X,- and X, are shown 
to be moderately to strongly coupled, say 

L(Xir Xj) > 0.5 
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Event X, 

2.1 
2.1 
2.1 
2.1 

Table 5.   Risk Event Coupling and Coupling Level Determination 

Event X, 

1.1 
1.2 
2.2 
2.3 

Eqt. 5 

0.375 
0.875 
0.375 
0.375 

Eqt. 6 

0.625 
1.00 
0.625 
0.625 

P(x,-P9 L(X,-, Xy) Rule 
Subjective A or Rule B 

Assessment 

0.60 0.80 Rule A 
0.95 0.50 Rule A 
0.55 0.40 Rule A 
0.40 -0.20 Rule B 

it-vr.i 

Cnunlinn Graoh for Point: 2.1 
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Figure 6. A Risk Event Coupling Display—L(X„ X,) from Table 5. 

it indicates that they should be considered to- 
gether in a risk mitigation strategy. Some com- 
mon root causes between them may be identi- 
fied so that mitigation strategies can be 
formulated to reduce their probabilities of oc- 
currence simultaneously. 

Note that coupled events do not necessarily 
imply one causes the other to occur. Occur- 
rences between events that are positively cou- 
pled could be due to some cause common to 
both. Thus, management should not just attack 
one event to reduce risk and blindly hope for 
the same result for the coupled event. 

When two risk events X, and X; are not 
coupled nor decoupled (or weakly coupled or 
decoupled), say 

-0.25 < L(X„ X;-) < 0.25 

their occurrences are independent (or nearly 
independent) of each other. That is, the proba- 
bility of the occurrence of one event is not af- 
fected by the occurrence or nonoccurrence of 
the other event. From a risk management per- 
spective, such events should be considered in- 
dividually in a risk mitigation strategy. 

When two risk events X, and X; are mod- 
erately to strongly decoupled, say 

L(X,-, X;) < -0.5 

it indicates a pair that tends toward mutual 
exclusiveness. The closer L(X;, X;) is to negative 
one the more it becomes that risk events X, and 
Xj cannot both occur during the period of in- 
terest. That is, both events may not occur but if 
one of them occurs the other will not occur. 
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Decoupled risk events also require separate at- 
tention by management. Although these events 
fall into the region where there is a tendency 
towards mutual exclusion, their individual im- 
pact intensities may be significant. 

C. Some Remarks 
A key concept in RiskNav is its definition 

of impact intensity. In defining a way to mea- 
sure this it was decided not to compute the 
expected impact intensity, given by the formula 
below 

E[I(X)] = P(X)J(X) 

The reason for this is as follows: a risk 
event with high impact intensity and low prob- 
ability of occurrence and another event with 
low impact intensity and high probability of 
occurrence can produce comparable values for 
the expected impact intensity. However, they 
may require different levels of management at- 
tention and different risk mitigation strategies. 
In program risk management it is usually more 
desirable and/or more cost-effective to focus 
the risk mitigation effort on reducing events 
with high impact intensity and high probability 
of occurrence. 

When two risk events are determined to be 
highly coupled, a natural question to ask next is 
how they impact the program together if both 
events occur. In such a circumstance, treat the 
two events as one and assess the net impact of 
the combined event on the program in each 
dimension of cost, schedule, and technical per- 
formance. Note that the net impact of the com- 
bined event in each dimension may not be just 
the sum of the individual impacts. They may 
partially overlap, compensate each other, or 
have an interactive effect. With the new assess- 
ment, the impact intensity can be calculated for 
the combined event with its probability of oc- 
currence being the joint probability of occur- 
rence of the two individual events. This step 
can also be extended to a third event and so on. 

In the coupling methodology, note that the 
conditional probability is assessed between two 
events. From such a pairwise assessment it may 
turn out that events X1 and X2 are positively 
coupled and so are events Xx and X3, but events 
X2 and X3 are determined to be decoupled. 
Even though this situation is conceivable with 
certain peculiar event definitions, the contra- 

diction on the surface does indicate possible 
inconsistency in the conditional probability as- 
sessment. The user should take the situation as 
a warning when it occurs and reexamine the 
assessments, and/or investigate the events in- 
volved, to determine if such a situation is jus- 
tified. 

D. Summary 
This paper presents a methodology for pri- 

oritizing, displaying, and tracking program 
risks. It was developed from a program office's 
need for a straightforward way to isolate key 
critical risk events from those considered less 
threatening. 

RiskNav embodies a sound risk assessment 
process, one that can be directly embedded into 
the systems engineering approach. It's method- 
ology is not mechanically cumbersome; nor is it 
a highly complex mathematical scheme. Risk- 
Nav's prioritization and event coupling dis- 
plays are very useful in support of risk assess- 
ment reviews within a program office or to a 
program's executive-level decision-makers. 

The benefits gained by implementing Risk- 
Nav on a program include: the early identifica- 
tion of risk events such that mitigation strate- 
gies can be developed in a timely manner, 
establishing a common set of project-specific 
cost, schedule, and technical performance 
scales on which to map risk event impacts, 
creating a structured environment within the 
systems engineering process for monitoring 
and documenting changes in risk events and 
their prioritizations over time. In the spirit of T. 
Gilb, RiskNav is one of many possible ap- 
proaches for "actively attacking risks before 
they actively attack you (Gilb, 1988)." 
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Appendix 

A Further Discussion of Event 
Coupling 

In this appendix, a rationale for the rules 
defined for measuring the coupling level be- 
tween two events is given along with a discus- 
sion of some variations in the rules. As shown 
in the equations for the coupling level L(X„ Xj), 
the measurement rules utilize the joint proba- 
bility P(X,-, Xj) of risk events X; and X;- as a base 
for expressing their tendency to occur together 
or in each other's absence. As an indicator for 
such a tendency, however, the joint probability 
has to be modified as it expresses the likelihood 
that both events will occur, not exactly the in- 
fluence that the occurrence of one event has 
directly or indirectly on the other. 

For example, two independent events each 
with a marginal probability of 0.9 have a joint 
probability of 0.81. This high probability of 
both events to occur only reflects the fact that 
each event has a very high probability to occur, 
independent of whether the other event is ac- 
tually to occur or not. Since the two events have 
no influence on each other's occurrence, their 
coupling level would be 0. On the other hand, 
suppose two events each with a marginal prob- 
ability of 0.1 have a joint probability of 0.1 also. 
Though low, this joint probability along with 
the marginal probabilities implies that if any of 
the two events is to occur, the other is sure to 
occur. There is a definite "induction" of one 
event's occurrence by the other and thus their 

coupling level would be +1 to indicate such a 
positive and complete influence. For still an- 
other example, assume two events have a mar- 
ginal probability of 0.5 each and a joint proba- 
bility of 0. Even though each event has a 50 
percent chance to occur, they for sure will not 
both occur; if one is to occur, the other will not. 
The influence of one event's occurrence on the 
other is also complete in this case but it is in a 
negative sense. The coupling level for these two 
events would be -1 to indicate such a definite 
"exclusion". 

The modification on the joint probability 
P(Xir Xj) to produce an appropriate measure for 
coupling is done in two steps. First, the joint 
probability is adjusted (subtracted) by a value 
of P(Xt)P(Xj), which would be the joint proba- 
bility of the two events should they be indepen- 
dent. Thus, if the adjusted value is 0, the two 
events must be independent of each other. If it 
is positive, the two events must be not indepen- 
dent; the higher the adjusted value, the more 
positively related are (or mutually "inductive") 
the two events' occurrences. On the other hand, 
if it is negative, the two events must be not 
independent either; the lower the adjusted 
value, the more negatively related are (or mu- 
tually "exclusive") the two events' occurrences. 

The value P(X;, Xj) - P(X,)P(Xp is then 
rescaled (divided) by its largest possible abso- 
lute quantity, which is different depending on 
whether the adjusted value is positive or nega- 
tive (thus the two rules). The purpose of this 
step is to make the resulting value for coupling 
level to vary between 0 and +1 for positively 
related events and between 0 and -1 for neg- 
atively related events. When the adjusted value 
is positive, its largest possible quantity for 
given P(X,) and P(X;) is clearly the value when 
the joint probability is at its maximum, which 
can be shown to be the smaller of the two 
marginal probabilities. Thus, the divider for the 
adjusted value is Min{P(X,), P(Xj)} - P(X,)P(X;) 
and that results in Rule A. 

When value P(Xir Xj) - P(X,)P(X;) is nega- 
tive, its largest possible absolute quantity is 
such when the joint probability is at its mini- 
mum. For given P(XJ) and P(Xj), the minimum 
joint probability can be shown to be Max{0, 
P(X,) + P(Xj) - 1}. This is to say when P(X,) + 
P(Xj) > 1, there is a probability at least as large 
as P(X,) + P(Xj) - 1 that the two events will 
both occur, i.e., they cannot be totally exclusive 
of each other. To reserve the coupling level of 
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—1 for the case when two events are totally 
exclusive of each other (i.e., P(X,-, X) = 0), we 
purposely use 0 in place of Max{0, P{Xt) + P(X;) 
- 1} to obtain the largest possible absolute 
quantity P(X;)P(X;). Dividing the negative ad- 
justed value by this quantity gives Rule B. 

Note from the rules L(XU X;) = L(X;-, X,), i.e., 
the coupling measure we define here is the 
same for either ordering of the events, much as 
the case for the joint probability P(X{, Xj). This 
symmetrical property of the coupling level 
seems consistent with events independent or 
totally exclusive of each other as either relation- 
ship can be shown to be mutual between the 
two events involved. However, when two 
events are such that one definitely "induces" the 
other, the reverse may or may not be true. This 
may seem inconsistent with the symmetrical 
property of the coupling level (+1 in this case). 
One way to make the coupling level L(X„ X;) to 
respond to this non-mutual relationship is to 
replace the term Min{P(X;), P(X)} in Rule A by 
P(X-). With this change, L(Xir X) = +1 when 
P(X-|X) = 1, but L{Xj, X,) < +1 with the equal- 
ity held true only if P(X;|X,) = 1 (i.e., the cou- 
pling level is symmetrical if the definite "induc- 
tion" relationship is mutual). But, this change 
would make the coupling level non-symmetri- 
cal in general and would require more calcula- 
tion for each pair of positively related events. 
We decided in this paper not to adopt the 
change but to select symmetry for simplicity. 

Although this paper has presented one ap- 
proach to measuring risk event coupling, other 
ways are possible. For example, the correlation 
between two risk events can be used to mea- 
sure coupling, as one referee suggested. Specif- 
ically, define a Bernoulli random variable for 
the event: Y, = 1 if X, occurs and Y, = 0 other- 

wise. We then have 

E(Yt) = P(X,) 

Var(Y;) = P(X,)[1 - P(X,-)] 

Cov(Y;, Yy) = P(X„ X,-) - P(X;)P(X;.) 

From the above relationships, the correlation 
between Y{ and Y;- becomes: 

Corr(Y„ Y;) 

P(X;)    11/2 [P(X,-|X,Q - P(X,)] 
1-P(X;)J     [P(X,){1-P(X,)}]1/2 

If the risk events are independent, then this 
measure is zero because the difference in the 
numerator of the second term is zero. If X; 
induces X,-, so that P(X|X) = 1, and P(X) < 
P(X;), then 

Corr(Y„ Yj) = 
P(X;) 

P&i). 

1/2 i - P(X;) 
1 - P(Xj) 

1/2 

In fact, the bound of 1 is achieved only if 
P(X;.) = P(X,). If Xj excludes X„ so that P(X;|X;) 
= 0 and P(X) + P(X;.) < 1, then 

Corr(Y;, Y;) 

P(X;) -11/2 

Ll-P(Xy). 
P(X;) -|l/2 

1 - P(X,) 

This bound is achieved only if P(Xt) + P(X;) = 
1. 

The measure proposed in this paper, L(X{, 
Xj), has the advantage that the bounds of ±1 
are always achievable, regardless of the mar- 
ginal probabilities. However, the correlation 
approach described above has an easy interpre- 
tation. 
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ABSTRACT 
The Probabilistic Multiple-Travelling- 

Salesmen Facility-Location Problem 
locates a depot and constructs the a 

priori tours for visiting all demand in- 
stances at n nodes. It is an NP-hard prob- 
lem that defies straightforward solutions. 
We offer an 0(n2) solution algorithm based 
on Space-Filling-Curve (SFC) heuristics. A 
companion 0(n) algorithm suggests that 
the 1-median and 1-center solutions can be 
good approximations for such a facility- 
location problem. A flight-inspection prob- 
lem in the United States Air Force serves as 
an ideal case-study for the methodology 
proposed here. Even though a solid recom- 
mendation cannot be offered to the inspec- 
tion problem due to insufficient data, the 
case study allows us to illustrate the meth- 
odology with clarity. For example, a worst 
case error bound for the heuristics ensures 
the solution is within 0(log n) of the opti- 
mum. By comparing with linear-program- 
ming relaxation solutions to 52 instances of 
the problem, the heuristic solution is 
shown to be within 7.6 percent of the opti- 
mal on the average. Short cuts for locating 
depot is suggested using the 1-center and 
1-median approaches, where route lengths 
are approximated by Euclidean distances. 
The 1-center and 1-median approximations 
are validated based on asymptotic proper- 
ties and computational experiences with 
the top 50 Air-Force flight-check bases. Fi- 
nally, we illustrate how the methodology 
can offer operators in the field a simple but 
effective means to respond to changing de- 
mands on a day-to-day bases with trivial 
computational requirements. 

I. INTRODUCTION 
In the last decade, there has been an 

explosion of activities in location and rout- 
ing analyses, particularly combined loca- 
tion-routing models (Chan forthcoming). 
Even more exciting is the probabilistic for- 
mulation of such class of problems (Laporte 
et al. 1987, Dror et al. 1989, Bertsimas et al. 

1 Correspondent is professor, Dept. of Operational 
Sciences, 2950 P Street, Air Force Institute of Tech- 
nology, Wright-Patterson AFB, Ohio 45433-7765. 

This paper won the 1991 Koopman Prize of the Mili- 
tary Applications Society of the Institute of Operations 
Research and Management Science 

1990, Bertsimas and Van Ryzin 1991, Bert- 
simas 1992, Bramel 1992, Bramel et al. 1992, 
Jamil et al. 1994, Laporte et al. 1994, Bertsi- 
mas and Simchi-Levi 1996). These activities 
are motivated by both practical applica- 
tions and the intellectual content of such 
problems. The requirement for just-in-time 
deliveries, for example, is urgent in the in- 
dustrial sector as much as emergency re- 
sponses in the defense community. The ex- 
citing computational advances go hand-in- 
hand with research in complexity theory 
and "duality" in integer programming. 

This paper documents research in a 
Probabilistic Multiple-Travelling-Salesmen 
Facility-Location Problem (PMTSFLP). The 
problem is to construct k a priori tours and 
to pre-select a location for the depot that 
will minimize the expected cost of all in- 
stances of the demands. A natural problem 
arises in the United States Air Force regard- 
ing its flight-inspection missions to all Air 
Force Bases (and selected civilian airports.) 
Here, demands vary from week-to-week 
among the bases. The acquisition of a brand 
new inspection-aircraft fleet also motivated 
the re-examination of basing decision. Fi- 
nally, the lack of analysis capability at the 
Squadron level dictated some a priori 
scheme that can easily be modified for spe- 
cial instances in the field without extensive 
computational requirements. 

While the literature stopped short at 
Probabilistic Travelling-SaZesman Facility- 
Location Problems, this research extends 
the findings to multiple salesmen. The 
Space-Filling-Curve (SFC) heuristic is also 
extended to provide the implementation 
tool. Because of the computational effi- 
ciency of SFC, the combined location-rout- 
ing problem can be solved by re-optimiza- 
tion, wherein the relative merits of each 
basing decision can be easily updated from 
a previous solution and then compared 
with one another. For a changed problem in- 
stance—whether due to different demands or 
fleet size—re-optimization can be readily per- 
formed. The "best" can then be selected, 
commensurate with its efficient location- 
routing strategies. Finally, the SFC heuristic 
allows for quick response to a particular 
instance of the problem with practically 
trivial computational requirements, thus al- 
lowing operators in the field to respond 
quickly to changing conditions on a day-to- 
day basis. 

In this paper, we first formulate the 
location-routing model, particularly its 
probabilistic version. This formulation is, to 
the best of our knowledge, the first of its 
kind and not found in the literature. This 
serves as the lower bound for validation 
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purposes. The model is used to measure the 
performance of a fast SFC heuristic: the thrust 
of this research. The results of a carefully-de- 
signed case-study are validated not only by the 
exact mathematical-programming model, but 
also the approximate median and center solu- 
tions. These validations, including analytic er- 
ror bounds, all point toward the viability of 
solving the PMTSFLP using the proposed SFC 
approach. 

II. LOCATION-ROUTING MODELS 
Selecting a location for basing a fleet of 

inspection-aircraft can be modelled by several 
means. If aircraft routing is not of concern, a 
median or center formulation may be sufficient. 
On the other hand, a combined routing-and- 
location model becomes mandatory when a 
base is to be located specifically such that the 
amount of actual flying is kept at a minimum. 
By way of a definition, the 1-median problem 
seeks to locate a facility so that it is proximal to 
all demands on the average. Let us use p{ to 
denote the probability of demand at node i, and 
dtj as the Euclidean distance from demand i to 
facility /, y. as the binary variable to locate 
facility at site /, and x{j as the binary variable 
indicating that the facility at site ;' will serve 
demands at site i. The 1-median problem where 
I is the set of n nodes in a network is simply a 
special case of the p-median problem when p = 
1. This special case can be solved very simply 
by evaluating the objective-function value for 
locating the single facility at each of the n 
nodes. The location that yields the smallest 
value is then selected. The 1-center is defined as 
the location where the most distant demand 
node from it is as close as possible and can be 
computed equally with ease (Daskin 1995). 

A. Simplified Analytic Model. The classic 
Travelling-Salesman-Problem (TSP) seeks a 
minimum tour among all n nodes (Hoffman 
and Wolfe 1985). The more general binary-pro- 
gramming-formulation for Multiple Salesmen, 
or multiple-TSP, can be stated as 

2-t Xij 

min 21 E dtjXij 

v      _ jk    if j = l(or the depot) 
s.t. Z*i/-|i    if/= 2, 3, ...,n. 

(1) 

(2) 

/Si 

k    if i = l(or the depot) 
1    if i = 2, 3, .. . , n. (3) 

where xu = 0, x{j G {0,1}, and k is a given integer 
(1 < k ^ K) specifying the number of aircraft 
deployed in the fleet. Fleet sizes ranged be- 
tween 2 and 4 in our case study (as will be 
shown in Section V). In addition, subtour- 
breaking constraints should be implemented. 

A PMTSFLP is characterized not only by 
uncertain demand, the number of "salesper- 
sons" (airplanes) sent "on the road" k is also a 
variable, only limited by the fleet availability K 
at the depot. The actual number of airplanes 
used to solve the flight-inspection problem is 
determined by the squadron commander based 
on timeliness-of-response and a "reasonable" 
time for the flight crew to be "on the road." For 
a depot based at node 1, we have 

K > D Xu; 3= 1 

K. ZJ 
Xi\ 

(4) 

(5) 

For small networks of seven nodes or less, 
the set of linear (rather than binary) program- 
ming constraints, (4) through (7), works ex- 
tremely well in replacing Equations (2) through 
(3) above, including the subtour-breaking con- 
straint. 

Xij + Xji ss 1    for all i, j not equal to 1    (6) 

xn + xxi < 2    for all i. (7) 

The above states that a trip must enter and 
leave a demand node via different ways except 
to and from the depot. In other words, these 
two constraints effectively keep aircraft from 
"doubling back" except to and from the depot, 
which means the minimum subtour would 
have to involve three bases. Since our case 
study initially involves low bases-visited-to-air- 
craft ratio, this effectively precludes subtours. 
Finally, 

^ Xij = 1    for all j except the depot (i¥=j) 
iel 

(8) 
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X Xjt = 1    for all;' except the depot (ii=j) 

(9) 
fei 

This constraint forces exactly one entry and one 
exit to and from every node other than the 
depot. Again, the above simplified multiple- 
TSP linear program only works up to seven 
nodes (including the depot) in our experimen- 
tation. 

B. Exact Analytic Model. To ensure that 
these simplified subtour-breaking constraints 
work, "conventional" subtour-breaking con- 
straints are used to validate the resulting tours: 

8, «y + |I|x;/<|I|-l 2 :£i#; 
(10) 

where S's are real numbers that count the num- 
ber of "hops." As a final check, crew-duty-day 
restrictions are enforced. This is to reinforce our 
concept that the tours are designed, both man- 
ually by the commander in the field as well as 
the analytical models here, to fit a mission (i.e. 
each salesman-tour) within the allowable "time 
on the road": 

o\ o-j + UXij ^ U - dij V2 < i±j< 
(11) 

where a/s are the real variables representing an 
"odometer reading" at node i, recording the 
amount of travel up to node i on the tour. Here, 
U is the crew-duty-day limitation in hours. The 
above subtour-breaking equation (11) ignores 
the leg to and from the depot. It is clear that the 
a associated with the first demand point on a 
tour should equal the distance to the home 
depot. Additionally, the distance from the last 
node prior to returning to the depot cannot 
exceed the remaining "range" U of the vehicle. 
The following additional equations (Chan and 
Baker 1996) sufficiently restrict range to com- 
plete equation (11). 

oy        i = l, 2<;< 
djiXji + (Tj<U   i = 1, 2 < ;' < (12) 

In all cases, the simplified constraints and the 
crew-duty-day requirements are validated 
(Reynolds et al. 1990). While not a proof for the 
formulation, Equations (4)-(9) appear to work 
well to break subtours for small networks. 

The combined location-routing model, the 
main subject of this paper, is the combination of 
the 1-median and multiple-TSP where dtj in 
Equation (1) is replaced by D,y to mean distance 
measured along a tour that connects depot / to 
demand z, rather than a Euclidean distance be- 
tween i and j necessarily. Here the distance 
measure D^—cr,—<r;- is the difference in "odom- 
eter readings," where the "odometer" records 
travel mileage on the tour. For the forcing/link- 
ing constraint between the location and routing 
problems, one can write (Loftus and Chan 
1992). 

2 xij < KVi    Vie/ (13) 
jBMi 

1 <= 2 *„. s Ky,    v/e/ (14) 
ieNj 

where M, is the set of nodes emanating from 
node i and N; the nodes incident upon /. These 
constraints are somewhat tricky. For example, 
when K = 2, the terms Ky{ and Ky;- need to be 
changed to l-y; and l-y;- respectively when de- 
mand exists at a depot. Also we write for the set 
of candidate-depot sites /. 

i + Ey* 
kej 

Vie/,   v/e/ 

xa + xu < 1 + yx   V iei - /,   V/e/ 

(15) 

(16) 

which establishes the precedence relationship 
between basing decisions y and routing deci- 
sions x. Again, these constraints are tricky. For 
K=2 and when demands exist at the depots, for 
example, Equation (15) is no longer required 
(Shirley and Chan 1993). In lieu of an explicit 
linking/forcing constraint, however, Merrill 
(1989) enumerated all possible depots that can 
base a vehicle fleet and pick the one with the 
lowest cost. His approach essentially uses a 
sequential approach to solve location-routing 
problems. It is justifiable since all depots are 
existing depots and they are few in number; 
little or no additional costs will be necessary to 
base a vehicle fleet there. Thus a location-rout- 
ing model degenerates into several routing 
models based at candidate depot sites. Another 
view of this is to consider the 1-median prob- 
lem, where distances are in the subgraph de- 
fined by the k tours of the multiple-TSP. 
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C. Summary. This concludes our analytic 
formulation of PMTSFLP. Because of the prob- 
abilistic nature of the demand, a priori optimi- 
zation is employed here, whereby a depot is to 
be located in anticipation of future demands. 
Another characteristic of the current formula- 
tion is that a variable number of vehicles can be 
dispatched, limited only by the fleet size avail- 
able at the depot in response to a demand instance. 
The analytic formulation advanced in this sec- 
tion includes the simplified formulation for 
small networks (up to seven nodes), consisting 
of Equations (1) and (4) through (9). The sim- 
plified model is a linear-programming model 
that has been shown to work by an exact, 
mixed-integer-programming formulation con- 
sisting of Equations (l)-(3) and (10)-(16). In the 
exact model, care is taken to distinguish be- 
tween the case where demand exists at a depot 
and where it does not. The simplified model, 
owing to the small-size network and a prepro- 
cessing of missions (see Table I), does not need 
to employ a "range" constraint to limit the time 
a vehicle spends "on the road." The exact for- 
mulation, on the other hand, does—since the 
exact formulation is designed to handle large 
size networks covering a large geographic area 
in general. Most importantly, these analytic 
models—the LP formulation in particular— 
provides the lower bound for validating the 
a-priori-optimization heuristic, corresponding 
to a fixed number of salespersons (aircraft) as 

shown in Table I. To the best of our knowledge, 
both analytic formulations are the first of their 
kind and have not been reported elsewhere in 
the literature. While the LP formulation is fresh 
and practical for our problem, the combined 
location-routing models adds to the existing 
knowledge base, particularly the introduction 
of Equations (12) through (16). 

III. PROBABILISTIC MULTIPLE- 
TRAVELLING-SALESMAN FACILITY- 
LOCATION PROBLEM 

The Probabilistic Travelling-SaZesman Facil- 
ity-Location Problem (PTSFLP) can now be for- 
mally defined as a location-routing prob- 
lem—as stated in section II—in which the 
demands are random and the number of sales- 
persons is a variable. Thus demand comes from 
node i with probability pt. The demand list 
constitutes the basis for planning an optimal 
tour and locating the depot, so that the ex- 
pected tour-length is at its minimum. Thus if 
demand at node i exists then the node must be 
visited; otherwise, a visit is not required. The 
magnitude of the demand is not relevant in our 
formulation; therefore, demand is modelled as 
a random variable with realizations zero and 
one. Obviously, one way to solve the PTSFLP is 
to solve for all the instances of the constituent 
Travelling-Salesman Facility-Location Problem 
(TSFLP), even though this can be an extremely 

Table I.   Selected Database of Flight Inspections from Scott 

Mission No. of 
aircraft 

Bases visited 

1 2 Moody Dobbins MacDill Tyndall Hurlburt 

2 3 Patrick MacDill Kingsville Ellsworth Range 1 

3 2 Williams March Moody 
4 3 Barksdale Oklahoma City Dallas Ellington Kingsville 

5 2 Williams McClellan McChord Andrews England 

6 2 Libby Davis-Monthan Reese Columbus 

7 3 Kessler Patrick Volk Richards-Gebaur 

8 3 Offutt Little Rock Robins Myrtle Beach Shaw Moody 

9 4 Homestead Palmerola Andrews Kirtland Offutt Range 1 

10 3 Richards-Gebaur Oklahoma City Fort Smith Barksdale Redstone 

11 2 Cannon Amarillo Oklahoma City Kirtland Nellis Range 2 

12 4 Little-Rock Wright-Patterson Carswell Nellis Peterson Langley 

13 3 Pope Richards-Gebaur Fairchild Carswell Ellsworth Maxwell 
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laborious process. But there are some recent 
findings on the TSFLP that can be exploited to 
bypass this imposing (if not impossible) task. 
We will generalize these observations to the 
Multiple-Salesmen case (k > 1), as formulated 
in PMTSFLP. 

Distinction is made here between a priori 
tours, where it is possible to minimize the ex- 
pected tour-length by taking the expected- 
value of the random-demand vector, and poste- 
rior tours, where one selects a minimum-length 
tour for each demand-realization by complete 
enumeration. When the number of aircraft k is 
fixed in the optimization, lengthy tours may 
result, which can be longer than the squadron 
commander likes to have the crew away from 
their family. Post-optimization caters for these 
situations when optimization violates the "time 
on the road" constraint (11). More aircraft are 
subsequently used to shorten crew-duty days. 
As k is increased to satisfy the "time on the 
road" constraint for each salesperson (aircraft 
crew), we pay for this through an increased 
total tour-length among all salespersons (i.e. 
inducing feasibility for a "super-optimum"). 
The total tour-length is monotonically non-de- 
creasing as we move toward a 1-median depot 
solution (or when k —» n). As we approach the 
1-median solution, the total tour-length is at its 
longest while individual salesman-tour is at its 
shortest. Obviously, post-optimization is of sec- 
ondary importance here, since it is relatively 
straightforward. It is used in this paper to con- 
duct control experiments, in which historical 
flight records characterized by reasonable crew- 
duty days are revisited to assess how historical 
performance measures against optimization. 

A. Theory. Hakimi (1964) suggested that 
the medians of a network are found among the 
nodes. Berman and Simchi-Levi (1988) ex- 
tended Hakimi's original finding to the TSFLP, 
suggesting that the optimal location has to oc- 
cur at a node also. The PTSFLP then reduces to 
finding node / for the expected tour-length of 
TSFLP that minimizes v(j) = 2SC/ P(S) L(S U ;'). 
Here P(S) is the probability that the instance 
occurs with nodal demands realized at a subset 
of nodes S in I. L(SL)j) is the length of 
the optimal Travelling-Salesman-Tour (TST), 
T(S U ;'), for the instance S with the base 
located at /. And for independent p,'s, P(S) = 
Uies pi niez_s (1 - p{). Bertsimas (1989) showed 
that if Pj = 1, or demand exists at a facility with 

certainty, the optimal location for the facility 
(depot) is in fact at ;' if the distance matrix 
satisfies the triangle inequality dtj ^ dik + dkj. 
Furthermore he extended a solution heuristic 
by Berman and Simchi-Levi (1988a), wherein a 
relative worst case error of (1 - p;-)/2 is 
achieved, when ;' is the optimal location. When 
Pj = 1 for all /, the problem reduces to a deter- 
ministic TSFLP, and the solution is expected to 
be exact. 

As suggested previously, it is cumbersome 
(if not impossible) to compute the optimal tour 
in every instance. In the Probabilistic Travel- 
ling-Salesman Problem (PTSP) literature such 
as that by Berman and Simchi-Levi (1988a) and 
Laporte et al. (1994), the concept of an a priori 
tour based at;' is introduced, T(j), visiting all 
potential demands. For a particular instance, 
one skips nodes without a demand. The prob- 
lem then boils down to finding the location j 
and the "master" tour T that minimizes g(j, T) 
= 2SCJ P(S) LT (S U j) where LT(X) is the length 
of the master tour restricted to sites in X. This 
brings us face-to-face with the PTSFLP, where it 
has been shown that the optimal location oc- 
curs at a node also (Berman and Simchi-Levi 
1988a). 

B. Algorithm. The PTSFLP can be reduced 
to the solution of n PTSPs. Given the vector of 
probabilities (plf p2, ■ ■ ■, p„) and the optimal 
location at node /, the corresponding optimal 
tour Tj is the Probabilistic Travelling-Salesman 
Tour (PTST) with the vector of probabilities 
Pj = (pv ..., Pj-V 1, pj+1, ..., Pn), where the 
depot carries with it a unitary probability. The 
problem then boils down to finding the n opti- 
mal PTSPs corresponding to the vectors of 
probabilities P; (/' = 1,2,..., n), and then select 
the one with the minimum expectation. The 
resulting /* is the optimal location. It can be 
shown that this result can be generalized to the 
multiple-salesmen case as in PMTSFLP. Inde- 
pendent of one another, Bertsimas (1988) and 
Merrill (1989) arrived at a similar SFC heuristic 
for solving the PTSFLP and the PMTSFLP re- 
spectively. Here, we state an extension of Mer- 
rill's solution, which is a more general algo- 
rithm for the multiple-salesmen application to 
be discussed in this paper: 

Step 1. Given the coordinates of the loca- 
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tions of all the demands in Set I, use SFC to find 
a priori master-tours Tk or the tours of k sales- 
persons. (See detailed algorithm for SFC in the 
following section.) 

Step 2. Compute for every ;' (;' = 1,2,... n), 
Gn(j, Tk), where G„ is the generalization of the 
tour-length function g with k vectors of proba- 
bilities Pj(k) corresponding to k salespersons 
covering n demand nodes without replication. 
Specifically P'ß) = (pv ...,pmj p,- = 1), where 
mk < n, and with the set of nodes I partitioned 
into I = Ix U I2 U ... U Ik, where I,- D I;- = 0 for 
i # /. The union notation simply denotes the 
partition of n nodes on the space-filling curve 
into mlt mz, ... ,mk number of nodes based on 
clustering, with m1 + m2 + ■.. + mk = n. An 
extended SFC heuristic, called multiple-SFC is 
used to operationalize this, as will be explained 
in sequel. 

Step 3. Select the point ;* (;' £ I) that mini- 
mizes Gn(j, Tk). Location ;'* and the tours 7£ 
constitute the solution to PMTSFLP, call this 
G*(/*, Tfy. If optimization is sought where k* is 
given, stop; otherwise proceed. 

Step 4. For post-optimization with all poten- 
tial demand instances SCI and where k is a 
variable, perform steps 1 through 3 for all k 
where k* ^ k ^ K. The minimum master tour- 
length a;* (f *, 7T) = mirv^K G„*(f, 7$ de- 
termines the optimal facility-location /'**, the 
optimal tours T£1», and the number of vehicles 
k** to be employed to serve all potential de- 
mands. G 

Aside from the optimization vice post-optimi- 
zation distinction, Step 4 is necessary in view of 
the "time on the road" constraint (11), which 
could make Tk infeasible. Inasmuch as SFC 
does not have a range constraint explicitly built 
in, Step 4 will enforce the "range constraint," 
assuming K is large enough to make it possible. 

IV. SPACE-FILLING-CURVE 
HEURISTICS 

Space-filling-curves (SFC) constitute an ex- 
tremely fast heuristic to solve the planar TSP. It 
is an 0(n log n) method based on sorting and 
works as follows (Bartholdi and Platzman 
1988): 

Step 1. Given the n coordinates (X„ Y,) of 
the nodes in the plane, compute the number 
f(Xir Y,) for each node. The function / is called 
the Sierpinski curve. 

Step 2. Sort the numbers/in ascending or- 
der and visit the nodes in the same order, pro- 
ducing a tour T. (It is convenient to have / 
ranged between 0 and 1.) D 

A. Properties. Consider an instance S of 
the problem. Suppose the SFC heuristic pro- 
duces a tour T(S) if we run the heuristic on the 
instance S representing a realization of de- 
mands at a subset of nodes I. Let T(0) be the 
tour produced by the heuristic on the original 
instance. Then T(S) = 7(0), or the order of visit 
among the two tours are the same according to 
step 2 of the SFC heuristic above. The reason is 
that the sorting preserves the order, which is 
exactly the property of the probabilistic travel- 
ling-salesman-problem (PTSP) as well (Bertsi- 
mas 1989). This is akin to the observation by 
Hargrave and Nemhauser (1962) that the order 
of visitation around the convex hull circum- 
scribing a network does not change in reaching 
the optimal solution. If one can map points in 
Euclidean space onto a unit square and overlay 
a circuit generated by a SFC which visits all 
nodes within the square (as shown in Figure 1), 
then the order which the nodes are visited as 
one travels along the curve will approximate 
the order the points would be visited by a 
travelling salesman on an optimal tour. Close- 
ness of orders in this case refers to travel length 
on the tour. 

Bartholdi and Platzman (1988) went on to 
show that if two nodes are close on the SFC, 
then they are close on the plane as illustrated by 
points i and / in Figure 1. Conversely, if two 
nodes are close in the plane, then they are likely 
to be close on the curve. In the example shown 
in Figure 1, it is true for points i - j, but not for 
i' — j. In other words, i is close to / both on the 
plane and on the SFC. Even though i' is close to 
;' physically on the plane, however, they are not 
close on the SFC (at least not as close as the i-j 
pair anyhow). A set of n nodes projected into a 
square of area A and mapped onto a SFC will 
always result in a tour length no greater than 
2VMA, which is also the limit for the TSP tour. 
For a unitary square, this reduces to 2\/n. The 
ratio of heuristic tour-length to theoretical is 
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Figure 1 - "Space-filling curve 'visits' (encircles) all points in a square" 

0(log n). Asymptotically, the heuristic tour will 
be at most 25 percent greater than an optimal 
tour for very large number of random demand- 
points (n —> °°). The algorithm is extremely fast, 
consisting of essentially sorting. Its computa- 
tional complexity is 0(n log n) in the worst case, 
and 0(n) in the expected case. In the terms of 
Bartholdi and Platzman (1988), the heuristic is 
abstemious in its data requirements. Only the 
0(n) coordinates of the points to be visited are 
necessary, while the 0(n2) distances between 
points are ignored. In other words, information 
on the metric and the distribution from which 
the points are drawn are not required. The al- 
gorithm is agile in that demand points may be 
inserted into or deleted from the tour and the 
solution can be updated within 0(log n) steps. 
Finally, the computer coding is trivial. 

It is possible to solve certain multiple-trav- 
elling-salesmen problems (MTSP) by partition- 
ing routing tasks (Bartholdi et al. 1983). De- 
mand nodes are assigned to one of the 
salesmen, who in turn performs TSPs on his 
assigned nodes. An example was mentioned 
(Bartholdi and Platzman 1988) in which de- 
mand nodes are uniformly distributed among a 

square. By partitioning the TSP heuristic into 
segments containing equal number of nodes, a 
solution is obtained corresponding to segments 
of roughly equal lengths. Extending the SFC 
heuristic to handle the multiple-salesmen prob- 
lem through the preservation of nearness of 
data points for each salesman, we obtained a 
solution to the MTSP which will be illustrated 
in our case study. 

The multiple-SFC heuristic outlined in Sec- 
tion III.B to solve the PMTSFLP can be executed 
in 0(n2) time. Step 1 of the algorithm can be 
executed in 0(n log n) time since it is nothing 
more than a straight application of the SFC 
heuristic with partitioning introduced. Now 
notice the difference in calculating Gn(j, Tk) and 
G„(/'+l, Tk) in step 2 is only in the probability 
vectors, which differ merely in the ;th and 
(;'+l)th positions. For this reason, we can up- 
date from Gn(j, Tk) in 0(n) time during re- 
optimization. After the computation for G(l, Tk) 
in 0(n2) time, the rest can be completed in 0(n). 
The net computational complexity is 0(n2). 
Step 3 clearly takes 0(n) time, and step 4 0(kn2), 
with k<Hn. The final result is therefore 0(kn2) 
for the entire algorithm. 
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The PMTSFLP heuristic yields a tour length 
at a factor of 0(log n) from the optimal 
PMTSFLP-tour-length [Bartholdi and Platzman 
(1988, 1982)]. It is asymptotically optimal and 
equivalent to the Multiple-Travelling-Salesmen 
Facility-Location Problem (MTSFLP). In other 
words, Bartholdi and Platzman (1988) proved 
thatg(z, T)/v{i) = 0(log n) where g and v are the 
SFC-heuristic and analytical solution to the 
PTSP through re-optimization. The MSFC clus- 
tering partitioning for PMTSP is within a con- 
stant factor r of the best, since proximity on the 
Sierpinski curve means proximity on the plane. 
To the extent that proximity in the plane means 
only a likely proximity on the curve, it is ex- 
pected that r & 1. The conjecture is the r = 1 + 
e where e is a small positive number. Hence 
G"(j**, T^)/w{j**) < r 0(log n) in the PMSFLP 
algorithm in Section III.B, where w{f*) is the 

optimal tour-length from the analytic model 
and r is likely to be a problem-specific constant. 
Combining the results from the PMSFLP algo- 
rithm above, and for n demand points that are 
randomly distributed. 

G„(;, Tk)/w(j**) ^ G*„(j*, Tt)/zv(D 

< G;*(f *, 17)/MD 
= 0(log n) (17) 

where r is problem dependent and r ^ 1.25. In 
the asymptotic case when n is sufficiently large, 
limn_ sup Gn(r, r;)/w(j**) = 1.25. 

B. Example. To illustrate the simplicity of 
the multiple-SFC heuristic, we have included 
here in Figure 2 a graphical illustration of Mis- 
sion 13, which involves three aircraft and seven 
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Figure 2 - "The multiple-space-filling-curve heuristic" 
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bases (including the home depot of Scott Air 
Force Base). We show the transformation of the 
(X, Y) coordinates of the seven bases into the 
Sierpinski-curve function/(X, Y). These/-values 
allow a ranking of the bases between the scale 
of 0 to 1. Clusters of these bases suggest multi- 
ple-TSP tours. Using three aircraft, the logical 
tours constructed out of the clusters are: 

Aircraft 1: Scott - Carswell - Scott 
Aircraft 2: Scott - Maxwell - Pope - Scott 
Aircraft 3: Scott - Richards-Gebaur - Ellsworth - 

Fairchild - Scott 

In forming these clusters, remember the Sier- 
pinski curve is actually continuous, with the 
end points 0 and 1.0 being the same. 

We like to emphasize that Figure 2 is sim- 
ply an extract from a much larger Sierpinski 
curve, consisting of 98 Air Force bases—a prob- 
lem that will surpass present computational 
facilities should an analytical solution be at- 
tempted. Showing the other 91 bases on the 
curve is possible but impracticable, and it will 
confuse the point we are trying to illustrate 
here. But the principle is the same. In general, 
the k intervals (tours Tk) in the Sierpinski curve 
can be chosen in a number of ways (Bowerman 
and Calamai 1994). The first is the naive ap- 
proach of breaking the curve up into intervals 
of n/k points. The second is to break the curve 
up at the largest gaps. The third is to break the 
curve at k sites where the demands are all 
found within a small circle of each other. We 
suggest breaking the curve up at the k largest 
gaps, for preservation of proximity and mini- 
mization of individual-salesman tour-lengths. 
These clusters will form the demands which 
tours Tk(j) will be constructed from a candidate 
home-base /. 

C. Optimality vs. Post-Optimality Partitioning. 
Notice that when k is determined this way, or 
by the LP-relaxation or mixed-integer-pro- 
gramming formulation of Equations (1) 
through (16) it is a random variable. Thus in the 
SFC heuristic, if all tours are selected a priori, 
and the partitioning into individual tours for 
each salesman is performed after observing the 
potential demands, then the number of sales- 
persons is a random variable. This is captured 
in Steps 3 and 4 of the PMTSFLP algorithm in 

Section III.B. On the other hand, if all decisions 
are made based on when k is specified with the 
data in Table I and in accordance with the 
LP-relaxation formulation in Equations (1) 
through (3) and (6) through (9), then the num- 
ber of salespersons is given and no longer a 
random variable. The relationship between op- 
timality and post-optimality partitioning can 
also be viewed in the following way. Recall 
random-variable k is bounded between k* and 
K in step 4, where k* is the fixed number of 
aircraft to be flown in a priori analysis and K is 
the available fleet size. If k = 1, we have the 
PTSFLP; and if k > 1, we have the PMTSFLP. 
For the purpose of constructing master tours, an 
individual salesman-tour will be shorter as k 
increases, while the total tour-length among all 
salespersons will increase. In the limiting case 
when k = n - 1, or the number of salespersons 
is equal to the number of demand points, a 
spanning tree of n — 1 arcs is formed in which 
each salesperson visits one individual customer 
in an out-and-back fashion. Each salesperson 
spends the least amount of time on the road in 
this case but the company expends the largest 
travel budget to cover all salespersons. Aside 
from k, we recall the demand vector is another 
random variable for a priori analysis while it is 
fixed for a subset S of the I demand points in 
posteriori analysis. In steps 1 through 3 of the 
algorithm, k a-priori master-tours are con- 
structed to cater for all demand-points. For 
post-optimization in step 4, we stay with the 
master-tour concept in which all potential de- 
mands in I are to be covered (irrespective of 
realization), and as k increases in step 4 of the 
PMTSFLP, the individual-salesman tour will 
for sure be shorter. Where the range constraint 
may be violated in step 3, the addition of sales- 
persons on-the-road in step 4 will eventually 
afford a feasible solution provided that K is 
large enough and no single demand is beyond 
the range of an aircraft from home base. 

Because the multiple-SFC is nothing more 
than the regular SFC with special partitioning, 
the asymptotic values of the regular SFC ap- 
proximation will hold in both a priori and pos- 
teriori PMTSFLP. The reader is reminded that 
the order of visit in the "master" tour T remains 
the same irrespective of the partitioning. Also, 
we should think about the correspondence be- 
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tween the range of/and X-Y space in terms of 
proximity measures. Thus in the asymptotic 
case when there are ubiquitous demands over 
the X-Y space (which mapped into uniform 
distribution on the /-space), the partition 
among salesmen (and hence the value of k) 
becomes unimportant as far as solution accu- 
racy is concerned. To see the implications of 
this result, consider two special cases. Case 1 is 
when the n demand points {n -> °°) are ran- 
domly distributed on the Sierpinski curve. In 
this case, the clustering partition scheme gives 
the same result as the scheme where the curve 
is equally divided into k parts. The end product 
is r = 1.25. Consider case 2 when the n demand 
points are densely packed into k different clus- 
ters. In the limiting case, each cluster degener- 
ates into a single point. Now the MSFC heuris- 
tic yields k "out-and-back" tours from the home 
depot. Then r = 1, or the clustering algorithm is 
perfect since no mis-classification is introduced 
due to distance distortions within a cluster dur- 
ing the SFC-transformation^X,-, Y,). 

V. CASE STUDY 
The navigational-aid inspections by the Air 

Force to military facilities offer a unique oppor- 
tunity to study the PMTSFLP. At the time of the 
original study (Merrill 1989), the Facilities 
Checking Squadron at Scott Air Force Base was 
scheduled to be operating six new C-29 aircraft 
to replace the then existing fleet. This created 
an environment for re-examining basing de- 
cisions. Operating cost and timeliness-in- 
response were only two among a myriad of 
considerations (which include political implica- 
tions of base closings). But they will be the main 
concerns of this study. This in turn leads to the 
implicit assumption of considering only exist- 
ing bases—rather than new bases—that can 
support such a fleet of inspection aircraft with- 
out additional capital investment. Four bases at 
the central part of the continental United States 
and two at the East and West coasts are candi- 
dates for close examination. 

Historical data of flight-inspection missions 
over a one-year period were examined. The 
data were grouped by mission type and time 
frame. Only demands accomplished within ten 
duty-days of each other were grouped together 
considering crew-duty requirements. This is a 

reflection of timeliness-in-response as well as 
the common practice wherein a crew is out 
on-the-road for no more than ten days. Pure- 
inspection tours, operational-evaluation tours 
and the like were grouped separately to ensure 
a qualified crew could accomplish the tasking. 
Table I shows a reduced database where each 
mission contains no more than seven nodes. 
These were extracted from 1 September 1987 to 
31 August 1988, forming a record for validation 
purposes using the analytical LP model (which 
can take only up to seven nodes). The bases 
shown in Table I are to be visited by one or 
more aircraft as specified. 

All together there are 13 instances S (out of 
28) consisting of subsets of bases requiring a 
visit by an inspection aircraft. Even though not 
shown in the data-set in Table I, it should be 
noted that Scott, the existing base, requires 15 
visits during the year of study. In general, a 
zero frequency is assigned to the home base in 
the multiple-TSP analytical model (or its in- 
spection needs are assumed to have been 
"taken care of,") whether it be Scott or other 
candidate home-base locations. However, the 
actual frequencies do play a role in locating 
median and center, and in employing the exact 
analytical MIP-model. While there are bases 
that have more frequent demands than others, 
the demand frequencies appear to be quite uni- 
form in general. In other words, the p/s are 
fairly close to be equal to one another on the 
average, with only minor exceptions. 

An examination of their geographic loca- 
tions also shows that the bases cover a majority 
of the continental United States. There appears 
to be no particular region which has an over- 
whelming demand in comparison to others. 
Similar to others in the 98 total, each base in the 
continental United States is identified by its 
longitude and latitude, from which great-circle 
distances between bases—following curvature 
of the globe—are readily computed. This paves 
the way for the implementation of SFC-heuris- 
tic through the use of HyperCard—a graphical 
package on the Apple Macintosh computer. 

While this constitutes a natural case study 
for the PMTSFLP, there are some restrictions 
that prevent a direct field implementation of 
the results reported here. Among the most 
prominent is the fact that these instances, or 
grouping of bases to be visited, are somewhat 
conditioned upon Scott being the base depot. 
But in our study here, these instances are used 
as demand for all alternate basing decisions. 
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This may be a good assumption for depots 
close to Scott in the central United States. But 
the assumption may become indefensible 
should a coastal base become a reality. Another 
problem is that one year of data may not be 
sufficient to cover all instances to validate a 
priori optimization as discussed here in this 
paper. As a result of all of these factors, the 
re-optimization algorithm will give us the the- 
oretical tour length Gn(j, Tk) in Section III, but 
not necessarily the actual distance and depot 
location as defined by real-world evaluation. 

VI. RESULTS 
As mentioned previously, space-filling- 

curve (SFC) heuristics were used to tackle the 
combined location-routing problem on poten- 
tial demands that may exist in the 98 bases 
within the continental United States. We also 
extended the SFC heuristics to handle multiple- 
salesmen situations, implementing a mere sug- 
gestion by Bartholdi and Platzman (1988). In 
validating the multiple-SFC (MSFC) heuristics, 
results from the four candidate depots in the 
central part of the United States were compared 
with the optimal MTSP results based on the 
data in Table I. In 8 of the 13 instances for 
McConnell AFB and Altus AFB, 9 of 13 in- 
stances for Scott AFB, and 10 of 13 for Little 
Rock AFB, the results were exactly the same. 
For those cases where differences exist, the 
MSFC heuristics always provided answers 
within 17 percent of the optimal and averaged 
within 7.6 percent of the optimal between the 
four basing-decisions. 

A. Route-Distance Savings. For the MTSP 
analytical-solutions, we investigated only 13 
out of the 24 missions (instances) in the conti- 
nental United States, in which six or fewer 
nodes are to be visited from the home base (see 
Table I). The 11 missions not analyzed include 
anywhere from 7 demands (served by 3 air- 
craft) to 19 demands (served by 4 aircraft), with 
a majority in the 9- to 10-demand category. The 
data-base analyzed represents 54 percent of the 
entire set of missions during the year. Limiting 
the data-base to six demands or less does not 
seem to bias the data geographically toward 
any portion of the continental United States. 
These are the missions, as explained above, in 
which optimal MTSP solutions are available, 

using the simplified set of subtour-breaking 
constraints contained in Equations (4)-(9). 
Bases chosen for basing considerations include 
six locations—four at the center part of the 
continental United States (Little Rock, McCon- 
nell, Altus and Scott), two at the coasts (Dover 
and Travis). The coastal locations are consid- 
ered since in the larger single and multi-year 
data-base, occasional trips are made to Asia 
and Europe. 

The results of the MSFC heuristics on Scott, 
the existing base of operation, indicated a dis- 
tance savings of 2869 miles of en-route flying 
per mission over a year, assuming the same 
number of missions, the same number of air- 
craft dispatched per mission, and the same vis- 
iting locations. This translates to about three 
additional missions a year or seven additional 
flight-hours per mission. While this, by itself, is 
not a significant saving, the effect of combined 
location-and-routing changes can in fact be 
substantial. Figure 3 shows the various basing 
decisions. The existing basing-location at Scott 
is characterized by the horizontal line at an 
average of 6996 miles per tour under existing 
operating conditions. This compares with the 
various locational decisions at Little Rock, Mc- 
Connell, Altus, Dover and Travis. It can be seen 
that the savings from improved routing at 2869 
miles at Scott is significant enough to over 
shadow locational changes to the other bases 
except when the depot is located at Travis on 
the west coast. In reading Figure 3, one should 
keep in mind—once again—that the missions 
are grouped the same as in the mission data as 
shown in Table I, irrespective of the basing 
decision. As suggested in Table I, the number of 
aircraft used ranged from two to four. Should 
we allow the stops to interchange among mis- 
sions, there would be substantially more sav- 
ings involved, as alluded to above. 

B. Consistency Among Base Locations. Table 
II compares the results of the combined loca- 
tion-routing analysis above with the median 
and center problems for the six candidate bases 
under consideration. Line two of the Table 
shows the exhaustive enumeration of the 13 
instances of the candidate basing-locations. 
This means running the LP multiple-travelling- 
salesmen problem (MTSP) 78 times (Moore et 
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Figure 3 - "Comparison between existing basing location at Scott and alternate bases" 

Table II.   Base Ranking Using Location vs. Location-Routing Analyses 

Base Little Rock McConnell Altus Scott Dover 

2 The multiple-spacefilling-curve heuristic was run on the 98 bases within the continental United States. 
3 This analytical model was run on the 13 instances. 
4 The ranking was based on the 13-instance data-set. 

Travis 

Location-Routing (MSFC)2 1 2 3 4 5 6 

Location-Routing (MTSP)3 1 2 4 3 5 6 

Median4 1 3 2 4 5 6 

Center4 1 2 4 3 5 6 

al. 1991, Stephens et al. 1991, Shirley et al. 1992). 
The first line is the PMTSFLP as formulated 
above and solved by the MSFC heuristics. The 
third line is the median problem on the bases in 
the 13 instances. The fourth and last line is the 
center problem on the same data-set. It is inter- 
esting to note that the ranking of the six candi- 
date bases are the same based both on the Heu- 
ristic MSFC and optimal MTSP solutions, 
except for the third and fourth, which are re- 
versed between the two solution methods 
(Moore et al. 1991, Stephens et al. 1991). It is 
surprising to see the degree of similarity be- 
tween the preference ranking among all four 

analyses. This is even more surprising consid- 
ering that the "valley" appears to be quite "flat' 
in Figure 3, suggesting there is little difference 
between bases 1,2,3 and 4 at the central part of 
the United States. Perhaps the similarity be- 
tween the median (for the 13 instances) and 
location-routing solutions can be explained in 
terms of an "evenly distributed" demand pat- 
tern. Likewise, the similarities between the cen- 
ter (for the 13 instances) and location-routing 
results can be attributed to a fairly symmetrical 
demand pattern about the candidate bases con- 
sidered. Perhaps one can use the median and 
center as the approximation for locational deci- 

Page 48 Military Operations Research, V3 N2 1997 



THE PROBABILISTIC MULTIPLE-TRAVELLING-SALESMEN FACILITY-LOCATION PROBLEM 

sions in PMTSFLP when the demands are 
evenly distributed and are about equal. One 
can show that in the case of pt = p' and n —> °°, 
1-center, 1-median and PMTSFLP all approach 
and are all tightly distributed near the same 
depot location at the center of a unit square 
(Bartholdi and Platzman 1982). 

Here a more formal justification is offered 
for the agreement between the median/center 
results and the PMTSFLP results. Recognize 
that the 1-median problem in the case of uni- 
form demands reduces to min;e/ S,eJ d^ and the 
1-center problem reduces to min^j (max,er d,y), 
which is the circumcenter. Both the median and 
center are located at the "dead center" of the 
unit square in this case. For PTSPs of uniform p, 
the length of the SFC tours is no greater than 
2 Vn as in TSP, and can be considered to be Vn 
within a scaling constant for large n and MTSP. 
The symmetry of the problem also yields the 
central point of the unit square as the depot 
location for PMTSFLP. We have to contend that 
for the PMTSFLP (with n -*• °°), a near optimal 
solution is obtained by the following means. 
Consider an arbitrary depot, include its k — 1 
nearest neighbors as k — 1 of the tours in Tk, 
and take the remaining n — k points as the last 
tour in Tk. These nearest neighbors are all very 
close (within distance 0(Vk/n) of the depot) 
and the remaining large-tour solution is an in- 
stance of PTSP. Clearly, this yields a PMTSFLP 
location other than the dead center of a unit 
square. For this reason, only an asymptotic 
(rather than exact) statement can be made re- 
garding the center, median and PMTSFLP be- 
ing tightly distributed near the dead center of 
the square. 

C. Computational Implications. The data- 
base analyzed in Table I represents 47 bases 
(n = 47) in the total of 98 included in the entire 
continental U.S. Equation (17) suggests that the 
accuracy of the MSFC is 0(log n), the sample 
data is expected to yield an estimate 

Gi7(j*, Tt)/w(j**)      0(log47) 
Gw(j**,T7)/w(j**)     0(log98)- 

Inasmuch as there are at most 98 bases in the 
entire data-set, this ratio amounts to an accu- 
racy of (log 47)/(log 98) = 84% of the best we 
can do. Once again, the amount of agreement 

between the locational ranking as obtained by 
MSFC and the remaining three analysis— 
MTSP, median and center—is striking. It ap- 
pears that the only difference between MSFC, 
MTSP and the center is the rank reversal be- 
tween Altus and Scott, two locations which are 
very close to one another in tour length accord- 
ing to Figure 3. The reversal between McCon- 
nell and Altus in the median ranking also re- 
flects the minor difference between their tour 
lengths as shown again in Figure 3. Aside from 
the purpose of pre-positioning a home base, the 
MSFC analysis on the entire 98 bases can also 
be stored as in a "Roledex" file a priori for 
routing the inspection fleet on a day-to-day 
basis without any extra computation—a prac- 
tice totally compatible with the field environ- 
ment under which the squadron level is oper- 
ating. 

The probabilistic aspect of the PMTSFLP 
model is of such importance that we like to 
reemphasize the main thrust of this paper one 
more time. Line one of Table II represents the a 
priori tours constructed for real-world consid- 
erations when deterministic demands are never 
available. In such state of ignorance, the deci- 
sion maker has no choice but to construct a 
priori tours out of the comprehensive set of 
bases which require flight checks—all 98 of 
them within continental United States. For val- 
idation purposes, we also show in line two 
posterior tours based on historical information 
on 13 instances of demands. It represents the 
tours selected after the demand realization been 
observed. The purpose is simply to show that 
the SFC heuristic can approximate an analytic 
location-routing model. It also serves to pro- 
vide a necessary variant to justify the main 
point of this paper, which once again, is the 
construction of a priori tours in a world of un- 
certainty. Notice that line one is constructed 
from a random demand, but the number of 
aircraft (salespersons) is fixed. While the air- 
craft fleet is fixed in both line one and line two, 
it can be treated as a random variable as well, as 
illustrated in the PMTSFP algorithm and in the 
mathematical programs. 

A comparison among all four lines in Table 
II is worthwhile, nevertheless the results need 
to be interpreted in terms of the data upon 
which the findings are based. Once again, the 
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data in Table I are historical records based upon 
Scott AFB being the home depot for all flight- 
inspection operations. But the experiments con- 
ducted in this research verify adequately how 
the PMTSFLP can be used to eventually base 
the fleet of inspection aircraft based on a much 
larger and more realistic validation data-base. 
It is understandable why a much larger data- 
base for line one does not deter the solution 
efficiency in that the MSFC, being of 0(n2) com- 
plexity, is inherently a much simpler problem 
than the location-routing MTSP problem. The 
important point is that an extremely difficult 
problem can be approximated by a much easier 
problem. 

D. Methodological Implications. A method- 
ological finding is also worth discussing here. 
The simplified LP formulation for MTSP re- 
ported in Section II yielded solutions satisfac- 
torily. In spite of the advances over the past 
decade in improving the compactness of the 
subtour-breaking constraint such as the one 
used in Equation (11), this formulation can be 
very practical for enumerative computation of 
all instances as performed in the MTSP solution 
above. It allows an integer solution to the MTSP 
using a regular linear-programming code. Re- 
member that the number of times we solve the 
NP-hard MTSP is in the order of n\S\, where the 
number of instances \S\ is a large number. Any 
savings effort will be necessary. For the com- 
bined location-routing MIP as shown in the 
forcing/linking Equations (13) through (16), the 
number of additional equations beyond a mul- 
tiple travelling-salesman-problem amounts to 
the order of n2, which is a huge number as n 
becomes large. 

Again, there is a difference between the 
two ways of solving the location-routing 
model. The MTSP way of enumerating all 13 
instances among the alternative basing loca- 
tions is the hard way, and the MSFC heuristic is 
the easy way. The former is NP-hard while the 
latter is 0(n2). It is again gratifying to see that a 
difficult solution algorithm can be approxi- 
mated by an easy algorithm. The efficiency of 
MSFC, when compared with the formal MTSP, 
can be dramatically brought out by the com- 
puter execution-times. Instead of several hours 
on the Apple Macintosh to run the 13 instances 

via the LP model, we are talking about 10 min- 
utes using the MSFC heuristics to solve all 98 
potential bases in the continental United States. 
Best of all, we need to do this only once, and the 
order of visit remains valid for all instances. It 
appears there is a definite role that SFC can 
play (Bertsimas 1989) in practical applications. 

VII. CONCLUSION 
The Probabilistic Travelling-Salesman Fa- 

cility-Location Problem (PTSFLP) determines 
the whereabouts of a depot so as to minimize 
the tour among all demand nodes. We ex- 
tended the PTSFLP to include multiple sales- 
men and offer a solution to the new model. We 
call this the Probabilistic Multiple-Travelling- 
Salesmen Facility-Location Problem (PMTS- 
FLP). The deterministic multiple-travelling- 
salesmen-facility-location problem (MTSFLP) is 
formulated here for the first time, which helps 
to validate a particular instance of the PMTS- 
FLP. This includes both a complete mixed-inte- 
ger-program formulation incorporating range 
(distance) constraints and an integer-yielding 
linear-program formulation of the multiple- 
travelling-salesmen problem (MTSP) for small 
networks—the latter being used for complete 
enumeration of candidate depot locations in 
solving the MTSFLP. Through the use of Space- 
Filling Curves (SFC), an efficient multiple-SFC 
heuristic is constructed to solve the PMTSFLP. 
The inherent robustness of SFCs, particularly 
their ability to preserve the order of visit among 
all nodes, allows for a priori optimization of 
various instances of the PMTSFLP, where in- 
stances refer to situations where demands are 
realized. 

The solution algorithm is by-and-large a 
straightforward mathematical extension of the 
single-travelling-salesman case using partition- 
ing on the space-filling curve. However, it a 
significant extension in a couple of ways. First, 
the concept of random demands is extended to 
recognize a variable fleet-size (or a random 
number of salespersons). This provides flexibil- 
ity for operators in the field to cope with me- 
chanical breakdowns and crew-availability 
problems which often disable part of the fleet. 
Second, the multiple-salesmen case is the only 
meaningful location model to consider in our 
opinion. The locational problem disappears in 
the deterministic single-salesman case where 
the tour length does not depend on where the 
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base is located—thus reducing the problem 
simply to a routing problem. 

Notice the fleet size is intimately related to 
the time each crew spends "on the road." The 
larger the number of aircraft used, the shorter 
each individual-tour of a crew. Conversely, the 
smaller the fleet, the longer each crew is away 
from home base in his/her round-robin tours. 
A small enough fleet-size may result in an un- 
duly lengthy-tour for each aircraft (crew). It 
may even violate the "range constraint" in a 
vehicle-routing formulation of the PMTSFLP. 
To introduce feasibility, one has to increase the 
number of dispatched aircraft from k to fc+1, 
k+2, ..., up to the point when the time each 
crew spent on-the-road is brought down 
enough to fit the range constraint. Obviously, 
this is done at the expense of total system- 
mileage logged across the entire fleet. In a sen- 
tence, the individual-salesman tour is the short- 
est and the total mileage systemwide is the 
longest when k=K, where K is the maximally 
available fleet-size. 

The asymptotic properties of the PMTSFLP 
algorithm, deemed an important finding of this 
paper, have been specified in terms of the per- 
formance bound O(log n), the accuracy bound 
1.25, and the combined result of r O(log n), 
where n is a finite number of randomly-distrib- 
uted demand-points and r (l<r<1.25) is prob- 
lem-dependent constant. Another important 
contribution is that k, the actual number of 
salesmen deployed, is parametric in these per- 
formance bounds. An equivalent set of bounds 
can be written for a variable k (with l<fc<K), 
parametric on the probabilistic-demand vector 
PHPvP* ■■■> Vn)- 

The flight-inspection missions of the Air 
Force Facilities Checking Squadron lends itself 
to be an extremely natural case study of the 
PMTSFLP, particularly when the basing deci- 
sion is re-examined with the acquisition of a 
new fleet of inspection aircraft. The case study 
is facilitated by the availability of one-year of 
historical data, covering a variety of instances 
with varying demand patterns. A datum for 
comparison also exists, consisting of the exist- 
ing practice of the Squadron at Scott Air Force 
Base. Even though the one-year data and the 
way they are grouped does not allow coverage 
of all instances of demand to reach a definitive 
basing and routing decision, it does allow us to 
illustrate with clarity the efficiency of the mul- 
tiple-SFC (MSFC) heuristic. For comparison, we 
solved the equivalent MTSP linear program us- 

ing a simplified formulation of the subtour- 
breaking constraints. Of the 52 instances 
solved, 35 instances yielded the exact same so- 
lution as the MSFC heuristic. Overall, the heu- 
ristic solution is within 7.6 percent of the opti- 
mal for each basing-location on the average. 

Our analysis shows that the PMTSFLP 
yields a ranking of depot locations which are 
very similar to the medians and centers. We 
have attributed this in part to the even-distri- 
bution of demand and the ubiquitous geo- 
graphic-coverage of the demand nodes (Camp- 
bell 1992). Further analysis suggests there may 
in fact be some relationship between PMTSFLP 
and the center and median problems, perhaps 
in an asymptotic sense. This could allow the 
PMTSFLP depot-location to be approximated 
very easily by solving the 1-center or 1-median 
problem. 

We have verified the accuracy of the MSFC 
heuristic through solving 78 multiple-TSPs 
among six alternate basing decisions. From an 
applicational standpoint, the research offers a 
fast, yet accurate analysis tool for basing and 
routing decisions. Given sufficient data, defi- 
nite basing recommendations can be forthcom- 
ing. For the Facilities Checking Squadron, the 
SFC heuristic constitutes a convenient, yet rig- 
orous, routing tool for the commander to re- 
spond to different demands on a day-to-day 
basis. Best of all, this can be carried out with 
minimal computational requirement. As such, 
it is a timely contribution toward current em- 
phasis on quick-response analysis in the De- 
partment of Defense. 

Even though this paper is motivated by 
defense applications, it is obvious that the 
methodology advanced here has equal applica- 
bility to many other time-sensitive delivery 
problems. These range from overnight-package 
delivery to emergency and disaster manage- 
ment when demands are random. All these 
problems require pre-positioning a depot and 
pre-planning vehicle routes that are robust 
enough for any contingencies that may arise. 
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ABSTRACT 
THRUPUT II is a linear programming 

model developed at the Naval Post- 
graduate School for the U.S. Air 

Force Studies and Analyses Agency (AF- 
SAA) to help improve the efficiency of the 
airlift mobility system. It determines the 
maximum on-time throughput of cargo 
and passengers that can be transported 
with a given aircraft fleet over a given net- 
work, subject to appropriate physical and 
policy constraints. THRUPUT II was used 
in the analysis provided by AFSAA to the 
C-17 Defense Acquisition Board in Novem- 
ber, 1995. This paper reviews the model's 
formulation, describes its use in the C-17 
analysis, and reports extensions that have 
been developed since the model's first ap- 
pearance. 

1 INTRODUCTION 
This paper is a status report on a multi- 

year research effort to apply optimization 
modeling technology to the analysis of stra- 
tegic airlift mobility. The purpose of the 
research is to help the U.S. Air Force im- 
prove logistical efficiency. Optimization is 
used to determine the maximum on-time 
throughput of cargo and passengers that 
can be transported with a given aircraft 
fleet over a given network, subject to ap- 
propriate physical and policy constraints. 
The model can be used to help answer 
questions about selecting airlift assets and 
about investing or divesting in airfield in- 
frastructure. 

The primary model discussed in this 
paper is called THRUPUT II, which was 
introduced in a Naval Postgraduate School 
(NPS) Masters thesis [Lim, 1994] and fur- 
ther developed in a Military Operations Re- 
search article [Morton, Rosenthal, and Lim, 
1996]. Since those earlier publications were 
written, THRUPUT II provided inputs to 
the C-17 Defense Acquisition Board deci- 
sion of November 1995. This experience 
and other subsequent developments are 
covered here. A new model is currently 
under joint development between NPS and 
the RAND Corporation [Melody et dl, 
1996]. The distinguishing features of this 
new model are discussed in the conclusion. 

The progenitors of THRUPUT II were 
the first THRUPUT, developed at the Air 
Force Studies and Analyses Agency [Yost, 
1994]; and the Mobility Optimization 
Model  (MOM),  developed  at  the  Joint 

Staff's Force Structure Resource, and As- 
sessment Directorate 08) [Wing et al, 1991]. 
All of these models are implemented with 
the General Algebraic Modeling System 
(GAMS) [Brooke, Kendrick and Meeraus, 
1992]. 

Examples of the types of mobility ques- 
tions that can be analyzed with optimiza- 
tion are: For a given fleet and a given net- 
work, 

• Are the aircraft and airfield assets ade- 
quate for the deployment scenario? 

• What are the impacts of shortfalls in air- 
lift capability? 

• Where are the system bottlenecks and 
when will they become noticeable? 

This type of analysis can be used to 
help answer questions about selecting air- 
lift assets and about investing or divesting 
in airfield infrastructure. Such analyses are 
accomplished through repeated runs of the 
model. Each run assumes a particular sce- 
nario as defined by a given set of time- 
phased movement requirements and a 
given set of available aircraft and airfield 
assets. It is then solved for optimal values 
for the number of missions flown, and the 
amounts of cargo and passengers carried, 
for each unit, by each aircraft type, via each 
route, in each time period. 

After describing the optimization 
model in Sections 2 and 3, Sections 4 and 5 
discuss analyses performed in the recent 
non-developmental airlift aircraft (NDAA)/ 
C-17 study. A special-purpose algorithm 
for solving large problem instances and a 
modeling extension to incorporate aircraft 
reliability are described in Section 6. Sec- 
tion 7 presents conclusions and ongoing 
research. 

2 OVERVIEW OF MODEL 
In this section we give a conceptual 

overview of the airlift optimization model. 
Then, Section 3 provides a detailed mathe- 
matical formulation. Sections 2 and 3 can be 
skipped by readers familiar with [Morton, 
Rosenthal, and Lim, 1996]. 

2.1 Model Features 
The model has been designed to handle 

many of the airlift system's particular fea- 
tures and modes of operation. For example, 
the payload an aircraft can carry depends 
on the maximum leg distance of a mission 
(shorter mission legs allow greater pay- 
loads), and aircraft with heavy loads may 
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be required to make frequent enroute stops. 
Also, there is a need to ensure cargo-to-carrier 
compatibility since some military hardware is 
too bulky to fit into certain aircraft. These fea- 
tures have been incorporated in the model to 
make it as realistic as possible. Others, such as 
the use of tanker aircraft for aerial refueling of 
airlift aircraft, incorporating crews, and model- 
ing intra-theater shuttles and ground transpor- 
tation are the subject of the follow-on model 
mentioned earlier. The major features of the 
airlift system currently captured by the model 
include: 

• Multiple origins and destinations: In contrast 
to MOM, the current model allows the airlift 
to use multiple origin, enroute and destina- 
tion airfields. 

• Flexible routing structure: The air route 
structure supported by the model includes 
delivery and recovery routes with a variable 
number of enroute stops (usually between 
zero and three). This provision allows for a 
mixture of short-range and long-range air- 
craft. The model can thus analyze trade-offs 
between higher-payload, shorter-range 
flights and lower-payload, longer-range 
flights. For further routing flexibility, the 
model also allows the same aircraft to fly 
different delivery and recovery routes on op- 
posite ends of the same mission. 

• Aircraft-to-route restrictions: The user may 
impose aircraft-to-route restrictions; e.g., 
only military aircraft may use military air- 
fields for enroute stops. This particular pro- 
vision arises because the USAF Air Mobility 
Command (AMC) may call upon civilian 
commercial airliners to augment USAF air- 
craft in a deployment, under the Civil Re- 
serve Airfleet (CRAF) program. The model 
distinguishes between USAF and CRAF air- 
craft. 

• Aircraft assets can be added over time: This 
adds realism to the model, because CRAF 
and other aircraft may take time to mobilize 
and are typically unavailable at the start of a 
deployment. 

• Delivery time windows: In a deployment, a 
unit is ready to move on its available-to-load 
date (ALD) and has to arrive in the theater 
by its required-delivery-date (RDD). This as- 
pect of the problem has been incorporated in 
the model through user-specified time win- 
dows for each unit. The model treats the time 
windows as "elastic" in that cargo may be 
delivered late, subject to a penalty. 

2.2 Conceptual Model Formulation 
The primary decision variables are the 

number of missions flown, and the amounts of 
cargo and passengers carried, for each unit, by 
each aircraft type, via each available route, in 
each time period. Additional variables are de- 
fined for the recovery flights, for aircraft inven- 
toried at airfields, and for the possibility (at 
high penalty cost) of not delivering required 
cargos or passengers. 

2.2.1 Objective Function 
The purpose of the optimization model is 

to maximize the effectiveness of the given airlift 
assets, subject to appropriate physical and pol- 
icy constraints. The measure of effectiveness is 
the minimization of total weighted penalties 
incurred for late deliveries and non-deliveries. 
The penalties are weighted according to two 
factors: the priority of the unit whose move- 
ment requirement is not delivered on time, and 
the degree of lateness. The penalty increases 
with the amount of time late, and non-delivery 
has the most austere penalty. 

The anticipated use of the model is for sit- 
uations when the given airlift resources are in- 
sufficient for making all the required deliveries 
on time. On the other hand, if there are enough 
resources for complete on-time delivery, then 
the model's secondary objective function is to 
choose a feasible solution that maximizes un- 
used aircraft. The motivation of the secondary 
objective is that if the available aircraft are used 
as frugally as possible, while still meeting the 
known demands and observing the known con- 
straints, then the mobility system will be as 
well prepared as it can be for unplanned break- 
downs and unforeseen requirements, such as 
additional contingencies. 

2.2.2 Constraints 
The model's constraints can be grouped 

into the five categories: demand satisfaction, 
aircraft balance, aircraft capacity, aircraft utili- 
zation, and aircraft handling capacity at air- 
fields. 

• Demand Satisfaction Constraints: The cargo 
demand constraints attempt to ensure for 
each unit that the correct amounts of cargo 
move to the required destination within the 
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specified time window. The passenger de- 
mand constraints do the same for each unit's 
personnel. The demand constraints have 
elastic variables for late delivery and non- 
delivery. The optimization will seek to avoid 
lateness and non-deliveries if it is possible 
with the available assets, or to minimize 
them if not. 

• Aircraft Balance Constraints: These con- 
straints keep physical count of aircraft by 
type (e.g., C-17, C-5, C-141, etc.) in each time 
period. They ensure that the aircraft assets 
are used only when they are available. 

• Aircraft Capacity Constraints: There are 
three different kinds of constraints on the 
physical limitations of aircraft—troop car- 
riage capacity, maximum payload, and cabin 
floor space—which must be observed at all 
times. 

• Aircraft Utilization Constraints: These con- 
straints ensure that the average flying hours 
consumed per aircraft per day are within 
AMC's established utilization rates for each 
aircraft type. 

• Aircraft Handling Capacity at Airfields: 
These constraints ensure that the number of 
aircraft routed through each airfield each 
day is within the airfield's handling capacity. 

2.3 Assumptions 
Some major assumptions of the model are 

listed below. These are known to be sacrifices of 
realism, but such assumptions are needed in 
modeling most real-world problems due to the 
limitations of data availability or the need to 
avoid computational intractability. 

• Air Force planners use a measure called 
Maximum-on-Ground (MOG) to represent 
airfield capacity. The literal translation of 
MOG as the maximum number of planes 
that can be simultaneously on the ground at 
an airfield is somewhat misleading, because 
the term MOG means more than just the 
number of parking spaces at an airfield. In 
actuality, airfield capacity depends on many 
dimensions in addition to parking, including 
material handling equipment, ground ser- 
vices capacity and fuel availability. Some Air 
Force planners use the terms parking MOG 
and working MOG to distinguish between 
parking space limits and servicing capability. 
Working MOG is always smaller than park- 
ing MOG, and is the only MOG for which we 

have data. Working MOG is an approximate 
measure because it attempts to aggregate the 
capacities of several kinds of services into a 
single, unidimensional figure. Disaggrega- 
tion of airfield capacity into separate capac- 
ities for parking spaces and for each of the 
specific services available would yield a 
more accurate model. Ongoing projects at 
AMC [Schubert, Whisman, and Steppe, 1996] 
and RAND [Stucker, 1996] involve stochastic 
and deterministic simulations, respectively, 
whose purpose is to determine appropriate, 
and possibly multidimensional, MOG val- 
ues. The model presented here will benefit 
from these investigations. 

• Inventoried aircraft at origin and destination 
airfields are considered not to affect the air- 
craft handling capacity of the airfield. This 
assumption is not strictly valid since an in- 
ventoried aircraft takes up parking space, 
but, as noted, working MOG dominates 
parking MOG. 

• Deterministic ground time: Aircraft turn- 
around times for onloading and offloading 
cargo and enroute refueling are assumed to 
be known constants, although they are nat- 
urally stochastic. This ignores the fact that 
deviations from the given service time can 
cause congestion on the ground. To offset the 
optimism of this assumption, an efficiency 
factor is used in the formulation of aircraft 
handling capacity constraints to cushion the 
impact of randomness. Then, in Section 6, we 
describe a stochastic optimization formula- 
tion that explicitly models stochastic ground 
times and indicate how this optimization 
model has been linked with a discrete-event 
simulation. 

Other approximations of reality employed 
in the model for computational tractability are 
aggregation of airfields, discretization of time, 
and continuous decision variables. A limitation 
on the scope of the model is that it considers 
only inter-theater, not intra-theater deliveries. 

3 OPTIMIZATION MODEL 
This section gives a mathematical formula- 

tion of the conceptual model outlined above. 
The airlift optimization model is formulated as 
a multi-period, multi-commodity network- 
based linear program (LP) with a large number 
of side constraints. Two key concepts are em- 
ployed in the model. The first is the use of a 
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time index to track the locations of aircraft for 
each time period. The modeling advantages of 
knowing when an aircraft will arrive at a par- 
ticular airfield are that it enables us to model 
aircraft handling capacity at airfields and to 
determine unit closure (i.e., the time when all of 
a unit's deliveries are complete). This approach 
is in contrast to the THRUPUT model of [Yost, 
1994], which takes a static-equilibrium or 
steady-state approach. 

The second key concept is model reduction 
through data aggregation and the removal of 
unnecessary decision variables and constraints 
prior to optimization. This is necessary as the 
airlift problem is potentially very large. With- 
out this model reduction step, the number of 
decision variables would run into the millions, 
even for a nominal deployment. The unneces- 
sary decision variables and constraints are re- 
moved by extensive checking of logical condi- 
tions, performed by GAMS during model 
generation. This is discussed in greater detail in 
Section 5. 

3.1 Indices 

u       indexes units, e.g., 82nd Airborne 
a       indexes aircraft types, e.g., C-17, C-5, 

C-141 
t,t'       indexes time periods 

b       indexes all airfields (origins, enroutes, 
and destinations) 

i       indexes origin airfields 
k       indexes destination airfields 
r       indexes routes 

3.2 Index Sets 
Airfield Index Sets 

B       set of available airfields 
I QB       origin airfields 

K C B       destination airfields 

A        C A flauer — **-bulk 

A      C A 

aircraft capable of hauling 
over-sized cargo 
aircraft capable of hauling 
out-sized cargo 

Aircraft Index Sets 

A       set of available aircraft 
types 

Abulk C A       aircraft capable of hauling 
bulk-sized cargo 

Bulk cargo is palletized on 88 X 108 inch 
platforms (84 X 104 usable) and can fit on any 
military aircraft (as well as cargo-configured 
CRAF) [Merrill, 1997]. Over-sized cargo is non- 
palletized rolling stock; it is larger than bulk 
cargo and can fit on a C-141, C-5 or C-17. Out- 
sized cargo is very large non-palletized cargo 
that can fit into a C-5 or C-17 but not a C-141. 

oute Index Sets 

R set of available routes 
RaCR permissible routes for aircraft 

Kb Q K 

type a 
permissible routes for aircraft 
type a that use airfield b 

Rau Q Ra permissible routes for aircraft 
type a carrying cargo or troops 
for unit u 

Ki c Ra 

Rak Q Ra 

permissible routes for aircraft 
type a that use origin airfield i 
permissible routes for aircraft 
type a that use destination 
airfield k 

DRt c R 

RRk C R 

delivery routes that originate 
from origin i 
recovery routes that originate 
from destination k 

A delivery route is a route flown from a 
specific unit's origin to its destination for the 
purpose of delivering cargo and/or passengers. 
A recovery route is a route flown from a unit's 
destination to that unit's or some other unit's 
origin, for the purpose of making another de- 
livery. Since recovery flights carry much less 
weight than deliveries, the recovery routes 
from k to i may have fewer enroute stops than 
the delivery routes from i to k. 

Time Index Sets 

T       set of time periods 
Tuar C T       possible start times for aircraft of 

type a flying a mission for unit u 
on route r 

The set Tuar covers the allowed time win- 
dow for unit u, which starts on the unit's avail- 
able-to-load date and ends on the unit's re- 
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quired delivery date, plus some extra time up 
to the maximum allowed lateness for the unit. 

3.3 Given Data 
Movement Requirements Data 

ACSqFta 

LoadEffa 

MovePAXu 

MovelIEu 

ProBulku 

ProOveru 

ProOutu 

Penalty Data 

LatePenUE,, 

Troop movement requirement 
for unit u 
Equipment movement 
requirement in short tons 
(stons) for unit u 
Proportion of unit u cargo that 
is bulk-sized 
Proportion of unit u cargo that 
is over-sized 
Proportion of unit u cargo that 
is out-sized 

Lateness penalty (per ston 
per day) for unit u 
equipment 

LatePenPAXu       Lateness penalty (per 
soldier per day) for unit u 
troops 

NoGoPenlIEu       Non-delivery penalty (per 
ston) for unit u equipment 

NoGoPenPAXu       Non-delivery penalty (per 
soldier) for unit u troops 

MaxLate       Maximum allowed lateness 
(in days) for delivery 

Preserveat       Penalty (small artificial 
cost) for keeping aircraft 
type a in mobility system 
at time t 

Cargo Data 

UESqFtu 

PAXWt 

Aircraft Data 

Supplyat 

MaxPAXa 

PAXSqPta 

Average cargo floor space (in sq. 
ft.) per ston of unit u equipment 
Average weight of a soldier 
inclusive of personal equipment 

Number of aircraft of type a 
that become available at time t 
Maximum troop carriage 
capacity of aircraft type a 
Average cargo space (in sq. ft.) 
consumed by a soldier for 
aircraft type a 

URatea 

Airfield Data 

MOGCapbt 

MOGReqab 

MOGEff 

Cargo floor space (in sq. ft.) of 
aircraft type a 
Cargo space loading efficiency 
(<1) for aircraft type a. This 
accounts for the fact that it is 
not possible in practice to fully 
utilize the cargo space. 
Established utilization rate 
(flying hours per day) for an 
aircraft of type a 

Aircraft capacity (in narrow- 
body equivalents) at airfield b 
in time t 
Conversion factor to a narrow- 
body equivalent for an aircraft 
of type a at airfield b 
MOG efficiency factor (<1), to 
account for the fact that it is 
impossible to fully utilize 
available MOG capacity due 
to randomness of ground 
times 

Aircraft Route Performance Data 

Maxhoadar       Maximum payload (in stons) 
for aircraft type a flying route 
r 

GTimeabr       Aircraft ground time (due to 
onload or offload of cargo, 
refueling, maintenance, etc.) 
needed for aircraft type a at 
airfield b on route r 

DTimeabr       Cumulative time (flight time 
plus ground time) taken by 
aircraft type a to reach airfield 
b along route r 

FHTimear       Total flying hours consumed 
by aircraft type a on route r 

Ctimear       Cumulative time (flight time 
plus ground time) taken by 
aircraft type a on route r 

DaysLateuart       Number of days late unit u's 
requirement would be if 
delivered by aircraft type a 
via route r with mission start 
time t 
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3.4 Decision Variables 
Mission Variables 

Xuart       Number of aircraft of type a that 
airlift unit u via route r with mission 
start time t 

Yart       Number of aircraft of type a that 
recover from a destination airfield 
via route r with start time t 

Aircraft Allocation and De-allocation Variables 

Allot* 

Release* 

Number of aircraft of type a that 
are allocated to origin i at time t 
Number of aircraft of type a that 
were allocated to origin i prior to 
time t but are not scheduled for 
any missions from time t on 

Aircraft Inventory Variables 

Hait 

HP, akt 

Nplanesa 

Number of aircraft of type a 
inventoried at origin i at time t 
Number of aircraft of type a 
inventoried at destination k at 
time t 
Number of aircraft of type a in 
the air mobility system at time t 

Airlift Quantity Variables 

TonsUE,, 

TPAX,, 

Total stons of unit u equipment 
airlifted by aircraft of type a 
via route r with mission start 
time during period t 
Total number of unit u troops 
airlifted by aircraft of type a 
via route r with mission start 
time during period t 

Elastic (Nondelivery) Variables 

UENoGou       Total stons of unit u 
equipment not delivered in the 
prescribed time frame 

PAXNoGou       Number of unit u troops not 
delivered in the prescribed 
time frame 

Each of the decision variables is constrained to 
be non-negative. 

3.5 Formulation of the Objective 
Function 

minimize: 

5353 53 53 LatePenUEv 
u      a   r€Ra t€Tuar 

■ DaysLateuart • TonsUEuart 

+ 5353 53   53  LatePenPAX" 
u       a    r&Ra t€Tuar 

■DaysLateuart ■ TPAXuart 

+ YJ{N°GoPenUEu- UENoGou 

U 

+NoGoPenPAXu ■ PAXNoGou) 

+ y~" y2 Preserveat-NPlaneSat 
a      t 

The DaysLateuart penalty parameter has 
value zero if t + CTimear is within the pre- 
scribed time window for unit u. Thus, the first 
two terms of the objective function take effect 
only when a delivery is late. The third term in 
the objective function corresponds to cargo and 
passengers that cannot be delivered even 
within the permitted lateness. Late delivery 
and non-delivery occur only when airlift assets 
are insufficient for on-time delivery. 

The reason for including elastic variables 
that allow late delivery and non-delivery is to 
ensure that the model produces useful informa- 
tion even when the given assets are inadequate 
for the given movement requirements. The al- 
ternative of using an inelastic model (i.e., a 
model with hard constraints that insist upon 
complete on-time delivery) is inferior because it 
would report infeasibility without giving any 
insight about what can be done with the assets 
available. 

A useful modeling excursion that is made 
possible by the elastic variables is to vary the 
number of time periods. As the horizon is 
shortened, it is interesting to observe the in- 
crease in lateness and non-delivery. 

As noted, the model's anticipated use is in 
cases when the airlift assets are insufficient for 
full on-time delivery. In the opposite case, the 
model will be governed by the fourth term of 
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the objective function, which rewards asset 
preservation for the reasons given in Section 2. 

Some care must be taken in selecting the 
lateness and non-delivery penalties and the air- 
craft preservation rewards to ensure consis- 
tency. Late delivery should be preferred to non- 
delivery. The weights will be consistent with 
this preference provided the late penalty (per 
ston per day) is less than the corresponding 
non-delivery penalty (per ston) divided by the 
maximum allowed lateness (in days). 

3.6 Formulation of the Constraints 
As noted in the conceptual model, there are 

five categories of constraints. Their mathemat- 
ical formulations are as follows. 

3.6.1 Demand Satisfaction 
Constraints 

There are four different kinds of demand 
constraints, corresponding to troops and the 
three classes of cargo (bulk, over-sized and out- 
sized). Separate constraints are required for the 
different cargo types to ensure cargo-carrier 
compatibility. For example, a carrier of over- 
sized cargo cannot be used to carry the larger 
out-sized cargo. On the other hand, it is possi- 
ble to use a carrier of out-sized cargo to carry 
over-sized cargo. The model accounts for this 
asymmetry. 

The demand constraints also account for 
the desired delivery time-windows by use of 
the index sets Tuar and the lateness parameters 
DaysLateuart. 

3.6.2 Aircraft Balance Constraints 
There are five kinds of aircraft balance con- 

straints enforced for each aircraft type in each 
time period. At origin airfields, they ensure that 
the number of aircraft assigned for delivery 
missions plus those inventoried for later use 
plus those put in the released status equal the 
number inventoried from the previous period 
plus recoveries from earlier missions and the 
new supply of aircraft that is allocated to the 
origin. 

The meaning of releasing, or de-allocating, 
an airplane in period t is that it is not flown on 

Demand Satisfaction Constraints for 
All Classes of Cargo: 

Y^     Yl    S   TonsUEuart + UENoGou 

= MoveUEu   Vu with MoveUEU > 0 

Demand Satisfaction Constraints for 
Out-Sized Cargo: 

Y    Y    S   TonsUEuart + UENoGou 

aeAout r£Rau t£Tuar 

> ProOutu ■ MoveUEu 

Vu with MoveUEu > 0 

Demand Satisfaction Constraints for 
Over-Sized Cargo: 

J2       S      J2   TonsUEuart + UENoGOu 
aeAovr. reRau t€Tuar 

> (ProOveru + ProOutu) ■ MoveUEu 

Vu with MoveUEu > 0 

Demand Satisfaction Constraints for 
Troops: 

YJ2Y1    TPAXuart + PAXNoGOu 

a     rERau teTuar 

= MovePAXu   Vu with MovePAXu > 0 

any missions from period t through the end of 
the horizon. In practice, the analyst can inter- 
pret a release in the model's solution in a vari- 
ety of ways. It can mean, as in the case of the 
civilian CRAF aircraft, that the plane is literally 
sent back to its owner, but not necessarily. The 
aircraft can also be kept in the mobility system, 
available as a replacement in case of break- 
downs or for unforeseen demands. 

The second kind of aircraft balance con- 
straints concerns destinations. They are similar 
to the first kind except releases are not allowed 
and the roles of delivery and recovery missions 
are reversed. The third kind of aircraft balance 
constraint ensures that if any new planes be- 
come available in period t, they are allotted 
appropriately among the origins. There is a 
potential gain in efficiency to allow the opti- 
mizer to make these allocation decisions, rather 
than relying on the user to pre-assign them to 
origin airfields. The fourth type of aircraft bal- 
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ance constraints is a set of accounting equations 
for defining the NPlanesat variables based on 
cumulative allocations and releases. 

In the following constraints we use the no- 
tation [Ctimear] to denote Ctimear rounded to the 
nearest integer. 

Aircraft Balance Constraints 
at Origin Airfields: 

y^   y^  XUart + Hait + Releaseait 

u   r€DRi 

= Hai,t-1 + Allotait 

+ y^ ^ Yarv   Va,i,t 
rERai t'+[CTimear]=t 

Aircraft Balance Constraints 
at Destination Airfields: 

y  J    Yart + HPakt= HPak,t-l 
reRRic 

+X] y3     y^    xuarV va, 
■"  reRak       t'eTuar 

t' + [CTimear]=t 

Aircraft Balance Constraints 
for Allocations to Origin Airfields: 

t t 

y^ y^ AllotaW < y^ Supplyat,   Va, t 

k,t 

t'=l    i t'=i 

The above constraint is in the cumulative 
form, rather than in the simpler form 2i Allotait 

< Supplyat to allow aircraft that become avail- 
able in period t to be put into service at a later 
period. 

error that can result from rounding Ctimear to 
[Ctimear], the nearest integer, in the other bal- 
ance constraints. For example, suppose Ctimear 

is less than half a day for some aircraft a and 
route r. When this time is rounded to zero in 
the balance constraints of the route's origin and 
destination, these constraints unrealistically 
permit an unlimited number of missions per 
day on that route. Solving the model with this 
deficiency would yield overly optimistic re- 
sults. 

One way to fix this problem would be to 
insist that Ctimear be rounded up to a higher 
integer. Then the model would be overly pes- 
simistic, because it would rule out the possibil- 
ity of an aircraft flying two or more missions in 
a day even when this is possible. This sort of 
problem is common in mathematical modeling 
whenever time is discretized. The approach 
taken here is to enforce the following additional 
constraints, based on the cumulative plane- 
days available. 

Cumulative Aircraft Balance Constraints: 

t 

/        /  j / J Kgrtt' Xuart> 

r&Ra t'=l   u 

t t 

+  y^   yj Kartt'Yart' +z2z-/ ^ait' 
r£Ra t'-l i    t'=l 

t t 

NPlaneSaf   Va, t 

whereKartt' 

(t-tf + 1     lit' <t<t' 
\ CTimear     itt>t' + C 

+ CTimear - 1 
CTimear — 1 

Aircraft Balance Constraints Accounting 
for Allocations and Releases: 

t 

NPlanesat = yj yj Allotaiti 
t'=l    i 

y^ y^ Releaseau<   Va, t 
t'=l    i 

The fifth and final set of aircraft balance 
constraints helps to correct the discretization 

The right-hand-side indicates the cumula- 
tive number of plane-days available for type a 
aircraft up to day t. The left-hand-side accounts 
for all possible plane activities up to day t, 
whether flying or inventoried. The inventory 
terms are straightforward. The delivery and 
recovery terms work as follows: if a delivery 
initiated on day t' is completed by the end of 
day t, then the entire time Ctimear (which may 
be integer or fractional) is included in the left- 
hand-side of the cumulative balance constraint 
for day t. On the other hand, if a delivery 
initiated on day t' is not completed by the end 
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of day t, then only the time expended so far, 
t — t' + 1, is counted in the day t constraint. 

An experiment attesting to the value of the 
cumulative aircraft balance constraints is re- 
ported in [Morton, Rosenthal, and Lim, 1996]. If 
the Ctimejs were all integer, these constraints 
would be redundant and could be omitted. 

Y^ XI    IC   FltTimear ■ Xuart 
u reRa teTuar 

+ J2 J2FltTimear'Yart 
r€Ra    t 

< y^yURateg ■ NPlanesat   Va 

3.6.3 Aircraft Capacity Constraints 

Troop Carriage Capacity Constraints: 

TPAXuart < MaxPAXa ■ Xuart 

VM, a,r,t: te Tuar 

Maximum Payload Constraints: 

TonsUEuart + PAXWt- TPAXuart 

< MaxLoadar ■ Xuart   Vu,a,r,t : t € T„ 

Cargo Floor-Space Constraints: 

PAXSqFta ■ TPAXuart 

+ UESqFtu ■ TonsUEuart 

< ACSqFta ■ LoadEffa ■ Xuart 

Vu,a,r,t: t € Tuar 

3.6.4 Aircraft Utilization Constraints 
The aircraft utilization constraints ensure 

that the total flying hours consumed by the 
fleets of each aircraft type over the planning 
horizon are within AMC's established utiliza- 
tion rates [Wilson, 1985; Gearing et ah, 1988]. 
These rates are meant to capture spares avail- 
ability, aircraft reliability, crew availability, and 
other factors. The utilization constraints are for- 
mulated by comparing the flying hours con- 
sumed by an aircraft fleet in delivery and re- 
covery flights to the maximum achievable 
flying hours for the fleet according to the utili- 
zation rate. 

As an illustration of the above constraint, 
consider a fleet of five aircraft of the same type 
made available from day 11. If the utilization 
rate for this aircraft type is 10 flying hours per 
aircraft per day and the horizon is 30 days, then 
the maximum achievable flight time 1000 hours 
(10 hours/plane-day X 20 days X 5 planes). 
This total may not be exceeded for the whole 

fleet over the entire planning horizon, however, 
it is not unusual for a subset of aircraft to ex- 
ceed utilization rates over a subset of the hori- 
zon, particularly during the early (surge) stage 
of a deployment. 

3.6.5 Aircraft Handling Capacity at 
Airfields (M0G Constraint) 

The aircraft handling constraints at air- 
fields, commonly called MOG constraints, are 
perhaps the most difficult to model. This is 
because of two complicating factors that neces- 
sitate approximations. First, there is no airfield 
capacity data available that provides separate 
accounting of parking spaces and all the vari- 
ous services (refueling, maintenance, etc.). The 
MOG data provided by the Air Force is an 
approximation, attempting to aggregate all 
these services. Thus, the units of MOGCapbi are 
an idealized notion of airfield parking spaces 
(normalized to narrow-body sized aircraft), not 
a precisely defined physical quantity. 

The second complicating factor in model- 
ing airfield capacity is the congestion caused by 
the uncertainty of arrival times and ground 
times. A deterministic, time-discretized optimi- 
zation model cannot accurately treat events oc- 
curring within a time period. For example, sup- 
pose the time period of the model is one day 
and an airfield has 20 landings per day. How 
much congestion occurs depends on when the 
landings occur during the day, a phenomenon 
not captured in the daily model. The MOG 
efficiency factor MOGEff is introduced to cush- 
ion the effect of not explicitly modeling uncer- 
tainty. In Section 6.2, we describe a stochastic 
programming model that more directly handles 
aircraft reliability and its effect on airfield ca- 
pacity. The MOG constraints are formulated for 
each airfield and time period (as before, we use 
the notation [Dtimeabr] to denote Dtimeabr 

rounded to the nearest integer). 
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EEE     E 
u      a   r€K« t't^T 

t'+ [DTimeabr]=t 

{MOGReqab ■ GTimeabr/24) ■ XuaTt> 

+EE     E 
a    r€Rat' + [DTimeabr]=t 

{MOGReqab ■ GTimeabr /24) ■ YarV 

<MOGEff-MOGCaPbt   V6,t 

Dimensional analysis is useful for under- 
standing these constraints. The right-hand-side 
is in the units of narrow-body parking spaces, 
because MOGCapbt is in those units and 
MOGEff is dimensionless. The first term on the 
left-hand-side accounts for airfield capacity 
consumed by all delivery missions that pass 
through airfield b during period t. The second 
term on the left does the same thing for recov- 
ery missions. The dimension of MOGReqab is 
narrow-body parking spaces per plane, the di- 
mension of Gtimeabr/24 is days, and the dimen- 
sions of XuarV and Yarr are planes per day; thus, 
the MOG constraints are dimensionally bal- 
anced. 

Aircraft inventoried at origin or destination 
airfields do not consume any MOG capacity in 
the above formulation. This is not a mathemat- 
ical limitation, but rather a modeling choice 
taken because inventoried planes do not con- 
sume ground services. It can be easily modified 
if data for "parking space MOG" and various 
"ground service MOGs" become available. 

3.6.6 Initial Conditions 

Hait = 0 \/a,i,t:t<0 

HPakt=0 \/a,k,t:t<0 

XUart =0 Vu, a, r, t: t < 0 

YaTt=0 Va,r,t:t<0 

4 FLEET-MIX TRADEOFF ANALYSIS 
Prior to the C-17 Defense Acquisition Board 

(DAB) decision in November, 1995, there were 
a number of fleet options being considered as 

replacements for the aging C-141 fleet. These 
included "pure" C-17 fleets, as well as mixed 
fleets that included not only C-17s, but also a 
number of Non-Developmental Airlift Aircraft 
(NDAA), a Boeing 747-400F assigned the USAF 
designation C-33. THRUPUT II's first "opera- 
tional" test supported the analysis required by 
the C-17 DAB. 

Although many criteria must be considered 
when designing a fleet mix, a principal consid- 
eration is the ability to deliver the U.S. mobility 
requirements in support of our National De- 
fense Strategy—currently two nearly-simulta- 
neous Major Regional Contingencies (2-MRCs). 
Since THRUPUT II was designed to study stra- 
tegic airlift, a two theater mobility study was a 
natural application of the model. 

In the 2-MRC scenario, much of the cargo 
being flown from CONUS to the theaters is 
considered "out-sized" equipment, such as 
tanks or helicopters. Out-sized cargo is prob- 
lematic, since it can only fit on certain wide- 
body aircraft, such as the C-5 or C-17. The C-33 
is a hybrid in this regard; it can carry some, but 
not all types of out-sized cargo. THRUPUT II's 
features are well suited to contrast the capabil- 
ities of the long range, high payload C-33, with 
the more versatile, but smaller C-17. It was 
conceivable that THRUPUT II would show the 
lifting capability of a modest C-33 fleet could 
move most of the bulk and over-size cargo, 
allowing C-5s to satisfy the out-size require- 
ment. Alternatively, the results might show 
that the demand for out-sized cargo movement 
dominates, and that the C-5 must be supple- 
mented with C-17s to meet that requirement. 

An additional fleet mix tradeoff involves 
the consumption of ground resources. The C-17 
is designed to onload and offload quickly in an 
austere environment, while the C-33 is princi- 
pally an airliner, and requires longer runways 
and a more robust support infrastructure. 
However, unless refueled in flight, the C-17 
needs to stop more frequently than a C-33, 
which could offset any advantage derived from 
its reduced ground requirements. These two 
contrasting aspects of C-17 and C-33 resource 
utilization could interplay so as to give one 
aircraft considerable advantage in a contin- 
gency. 

Cargo loading and airfield utilization are 
just two of a myriad of issues surrounding the 
procurement of any new airlifter. Without de- 
tailed modeling and simulation, the C-17 DAB 
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could not hope to make an informed choice 
based on objective criteria. However, unlike 
previous boards, this time the analysis included 
results provided by a detailed optimization 
model. 

4.1 Input 
THRUPUT II's input requirements are gen- 

eralized into four categories: 1) unit, 2) airfield, 
3) aircraft, and 4) route data. The source of the 
unit movement requirements is called the 
Time-Phased Force Deployment Data, or 
TPFDD. This highly detailed list of equipment 
and personnel requirements is intended to 
identify everything necessary to carry out our 
national strategy. Consequently, it can be quite 
detailed and extremely long. In fact, the TPFDD 
used in this analysis initially consisted of more 
than 21,000 entries. Modeling each of these en- 
tries as a THRUPUT II unit was unthinkable, 
given current computational limitations. 
Through careful screening and consolidation 
(see Section 5), the TPFDD was reduced to just 
over 200 entries, each of which was read into 
THRUPUT II as a unit. From the pared TPFDD, 
we examined the origins (Aerial Ports of Em- 
barkation—APOEs), and destinations (Aerial 
Ports of Debarkation—APODs) and attempted 
to set up a realistic enroute basing scheme that 
could support the movement. 

The primary guidance for this airfield and 
TPFDD information was the Joint Chiefs of 
Staff, J8, force structure analysis called the Mo- 
bility Requirements Study, Bottom-Up Review 
Update, MRS-BURU [Joint Chiefs of Staff, 
1995]. Its results were driven by a specific 
2-MRC TPFDD, considered to be the most 
widely accepted requirements listing in exis- 
tence. This report not only identified the who, 
what, when, and where of every movement 
requirement, but also listed the available air- 
fields, including their relative capacities for air 
cargo traffic flow. MRS-BURU is credited for 
providing the motivation for upgrading the 
U.S. airlift fleet. 

Compared with unit and airfield informa- 
tion, aircraft and route data were relatively 
straightforward to gather. Although an air- 
craft's effect on the airlift system is contentious, 
its performance characteristics are largely ob- 
jective and easily derived. Route data presented 
a more difficult, yet not insurmountable chal- 
lenge. Relying only on currently established 

AMC routing condemns the model to favor 
aircraft whose payload-range characteristics re- 
semble the current fleet. Allowing THRUPUT II 
the latitude to choose new routes based on an 
aircraft's unique capabilities was preferable, so 
we offered many more route-aircraft combina- 
tions than might seem necessary at first glance. 
The tradeoff between making sufficient routes 
available and model tractability is discussed in 
[Toy, 1996]. 

In addition to the airlift system parameters, 
there were several subjective factors to consider 
when setting up the scenario. One such factor 
was the MaxLate parameter, which establishes 
how late cargo and passengers can arrive be- 
fore incurring an extremely large nondelivery 
(no-go) penalty. Increasing MaxLate naturally 
allows more overall cargo to be delivered, but 
has the unfortunate effect of dramatically in- 
creasing the size of the model, since there are 
more feasible movement options. However, the 
need to keep the model small must be balanced 
with a reasonable estimate of when "late" be- 
comes "too late" from an operational stand- 
point. For the purposes of this work, MaxLate 
was set at eight days, meaning any cargo or 
passengers that could not be moved by the 
Required Delivery Date (RDD) + 8 would be 
considered not delivered and cause the maxi- 
mum penalty to be charged. Fortunately, the 
eight-day maximum affected all excursions 
similarly, thus mitigating any relative advan- 
tage attributable to this subjectivity when com- 
paring fleet mixes. 

As with all analyses, preparing the above 
inputs took vast amounts of time. However, we 
believe many of these inputs are not scenario 
specific, and can be re-used with little adjust- 
ment in a variety of studies. 

4.2 Analysis 
THRUPUT II's C-17/NDAA analysis was 

conducted parametrically by running each pro- 
posed fleet mix as a separate excursion. The 
performance of each fleet was evaluated pri- 
marily by how much of the movement require- 
ment (cargo and passengers) was delivered in a 
timely manner. Examining unit "closure" in 
this way, we were able to identify several sig- 
nificant differences between fleets. One such 
difference is illustrated by Figures 1A and IB. 
In these figures, days from the "kickoff" of the 
first contingency are given on the horizontal 
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Figure 1. Tons delivered (vertical axis) versus contingency day (horizontal axis). The difference between the 
requirement and delivery lines in each scenario indicates that the aircraft fleet used in Excursion 2 performs 
better than the baseline. 

axis. The two plots show the cumulative 
amount of cargo moved to date (stons), con- 
trasted with the cumulative amount of cargo 
required to date. Figure 1A corresponds to the 
baseline fleet mix for the study. Figure IB cor- 
responds to one of the alternative fleet options 
under consideration. 

Ideally, the airlift fleet should be able to 
accommodate the entire demand on time. How- 
ever, given the non-uniform nature of the 
TPFDD requirements, all of the fleets examined 
had difficulty recovering from extremely large 
spikes in demand. The fleet used in the baseline 
case falls behind early and experiences great 
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difficulty catching up with the requirement. 
However, the fleet used in Excursion 2 experi- 
ences only brief lags in the cargo delivery. It 
was more able to move cargo early, and hence 
stayed ahead of the imminent demand surges. 

Another key metric used to evaluate the 
different fleets was the relative proportions of 
on-time, late, and undelivered cargo and pas- 
sengers. Figures 2A and 2B detail the results for 
the five cases examined. While all of the cases 
delivered similar amounts of on-time cargo, to- 
tal cargo delivered (including late deliveries) 
varied significantly—notably between Excur- 
sion 1, and Excursions 2,3, and 4. Interestingly, 
a comparison of the two figures shows that as 
the airlift fleet was tailored to improve cargo 
delivery, the number of passengers delivered 
went down. As a result, it appears that none of 
the proposed fleets dominate with respect to 
both cargo and passenger delivery. 

During the course of our output analysis, 
we were unexpectedly enlightened by what 
began as a casual look at the marginals, or 
"shadow prices" associated with an optimal 
solution. Although not a key aspect of the 
study, airfield size played an enormous role in 
the overall performance of each of the fleets. 
The output revealed that relatively small 
changes in the airfield's capacity at key enroute 
and destination airfields would yield dispro- 
portionate changes in system performance. 
Moreover, these key bases differed depending 
on which fleet mix was under consideration. 
For example, fleets with many C-17s stressed 
enroute airfields considerably more than fleets 
with many C-33s. Conversely, excursions with 
a large number of C-33s relied heavily on des- 
tination airfield size, but did not require as 
extensive an enroute infrastructure due to their 
longer range. Given the performance character- 
istics of the two aircraft, this insight is not sur- 
prising, but the quantification of an airfield's 
marginal value is a great benefit of optimiza- 
tion that is unavailable in simulation. More- 
over, this discovery clearly emphasized that a 
fleet mix decision is not one to be made in 
isolation. All aspects of the airlift system, in- 
cluding such factors as airfield infrastructure 
must be considered when choosing a mix of 
aircraft. They are not independent; treating 
them as such risks providing decision makers 
with skewed information about a critical piece 
of our nation's mobility force. 

The analysis described here, performed by 
the THRUPUT II team in support of the 1995 

C-17/NDAA DAB decision, is indicative of the 
type of insight that can be provided by this 
optimization model to a decision maker. We 
have elected to emphasize this theme rather 
than delve into the scenario and excursion spe- 
cific details such as fleet composition and bas- 
ing structure. However, one aspect of this 
project that does demand closer description in- 
volves the methods used to reduce such a large 
(indeed initially intractable) model to a man- 
ageable size. 

5 MODEL REFINEMENTS FOR 
IMPLEMENTATION 

5.1 Model Reduction 
One of the key issues regarding implemen- 

tation of optimization modeling, particularly in 
military applications, is the balancing of real- 
ism vs. tractability. 

No mathematical model can ever be totally 
realistic. The optimization modeling process is 
itself a constrained optimization problem. The 
objective of the process is to maximize the 
amount of realism achieved, subject to the lim- 
itations on computational tractability. Regard- 
less of the rapid rate of advances in computing, 
we will always be faced with finite limits on 
tractability and hence never achieve total real- 
ism. The question is: how much realism can one 
achieve with the resources at hand? 

THRUPUT II has decision variables with as 
many as four indices, such as Xuart, so the crux 
of the balancing problem is the number of (u, a, 
r, £)-tuples included in any real instance of the 
model. In general, the more tuples allowed, the 
more realistic the model, but the more difficult 
it is to solve. The number of tuples depends on, 
first, how many of each index type exists (how 
many units, aircraft types, routes and time pe- 
riods are modeled), and, second, what rules are 
used for allowing or prohibiting any (u, a, r, t) 
combination from being considered. These two 
aspects of model reduction are discussed next. 

5.1.1 Aggregation 
The number of units, aircraft types, routes 

and time periods in the instances we ran of the 
model were chosen with a great deal of atten- 
tion to the issues raised above. Distasteful as it 
may seem, a certain amount of aggregation of 
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Figure 2. On time, late, and undelivered cargo for various airlift fleets. 
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entities is needed in any real-world modeling 
project. In this case, the most significant aggre- 
gation took place in the generation of airfields, 
units and time periods. Aggregation of airfields 
implies, in turn, a limit on the number of avail- 
able routes. 

We developed a location-theoretic optimi- 
zation model for airfield aggregation, but in the 
case of the C-17/NDAA study, the USAF avia- 
tors on our team just used military judgement 
to decide which airfields to aggregate [Turker, 
1995]. In the end, the infrastructure of the 
2-MRC scenario was represented by 29 air- 
fields. 

The routes generated over the selected air- 
fields were the product of a combination of the 
location-theoretic optimization model and the 
oversight of the aviators. The program used a 
tree structure to consider possible routes and 
screened them for inclusion based on various 
rules. The rules included: critical leg length of 
the aircraft, required crew rest or crew change, 
deviation of route length from great circle dis- 
tance, aircraft/airfield compatibility (the civil- 
ian reserve fleet has landing restrictions not 
imposed on military aircraft and vice versa), 
and others. The oversight step was particularly 
intriguing, because the location and routing 
model was developed by a Turkish naval offi- 
cer, who had no access to the real names and 
locations of the airfields during development 
and testing. Some routes had to be added or 
deleted based on understanding of the actual 
situation. The final result of this process was 
the inclusion of 313 routes for the entire sce- 
nario. 

As stated in Section 4, the TPFDD file we 
were given for the C-17/NDAA analysis had 
over 21,000 movement requirements. This data 
set was first screened for the deletion of ex- 
tremely small requirements. Then it was aggre- 
gated by assuming two movement require- 
ments could be merged if the following 
conditions held: they had the same type of 
cargo (or passengers) to be moved, they had the 
same origin and destination (after airfield ag- 
gregations), and they had nearly simultaneous 
RDDs. The definition of "nearly simultaneous 
RDDs" was governed by a set of user-supplied 
parameters, which enforced simultaneity less 
rigorously as we went further out towards the 
horizon. 

Aggregation of time is always a delicate 
issue in optimization modeling. Time has to be 
discretized, and nothing has a more direct ef- 

fect on model size than the choice of time dis- 
cretization units. For the C-17/NDAA study, 
we chose to divide time into two-day time pe- 
riods, of which there were 47. Using 94 one-day 
time periods was intractable. See [Morton, 
Rosenthal, Lim, 1996] for an experiment on a 
single-MRC scenario, which showed that the 
cumulative aircraft balance constraints in Sec- 
tion 3.6.2 help lessen the effect of time discreti- 
zation. 

5.1.2 Variable Elimination and 
Sparsity 

An algebraic modeling language such as 
GAMS is very conducive to implementing rules 
for limiting the number of admissible combina- 
tions of indices. In the case of the (u, a, r, t) 
tuples mentioned above, an Xuart variable is 
allowed to exist if all the following conditions 
hold: 

• Route r flies from unit u's origin to its desti- 
nation 

• Aircraft type a can fly on route r with an 
acceptable payload 

• The start time, t, of the mission is after unit 
u's available-to-load date 

• The arrival time, if the mission starts at time 
t, is on or before RDD(u) + MaxLate 

• There is a match between some cargo type 
(or passengers) that aircraft type a can carry 
and unit u's movement requirement 

• Aircraft of type a must be available at the 
origin of route r at time t 

These rules are evaluated once for each 
tuple and stored in a GAMS dynamic set. This 
set is referenced when the constraints are gen- 
erated in order to achieve as much model spar- 
sity as possible. The set is also used to eliminate 
other variables. For example, the aircraft inven- 
tory variables at destination airfields, HPakt, 
cannot exist unless some aircraft of type a can 
potentially arrive at airfield k prior to time t. 

There were other dynamic sets in THRU- 
PUT II. In our experience with real-world opti- 
mization models, a serious investment of devel- 
opment time in the fme-tuning of dynamic sets 
for implementing model reduction rules can 
have a big payoff in tractability. 
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5.2 Computational Experience 
After using the aggregations and reduc- 

tions noted above, the model runs required for 
the C-17/NDAA study had the following prob- 
lem dimensions: 200 units, seven (or fewer) 
aircraft types, 313 routes, 47 time periods and 
29 airfields. The resulting model sizes and so- 
lution times are given below: 

Scenario    Rows    Cols      Non-      Solve 
(000) (000) zeros Time 

Baseline 161 183 1.9 mil 2.98 hrs 
Exl 124 142 1.5 mil 1.95 hrs 
Ex 2 154 177 1.9 mil 2.57 hrs 
Ex 3 154 177 1.9 mil 3.14 hrs 
Ex 4 154 177 1.9 mil 2.48 hrs 

new ideas for interesting summary reports 
while analyzing the old ones. Among the most 
widely used reports were: 

• Total number of delivery missions flown, by 
aircraft type. 

• Total number of missions flown, by route. 
• For each unit, the closure date (date of last 

delivery if unit is fully delivered) displayed 
next to the ALD and RDD, along with the 
total amounts delivered on-time, late and not 
at all. 

• For each MRC and time period, cumulative 
deliveries vs. requirements, separated by 
bulk, over-size, out-size and passengers. 

• For each airfield, a report on MOG utiliza- 
tion, summarized as the number of days 
when MOG use exceeds P percent of capac- 
ity for P = 10, 25, 50, 75, 90, 95, and 100. 

These runs were performed with GAMS as 
the problem generator and CPLEX 3.0 [CPLEX 
Optimization Inc., 1994] as the solver on an IBM 
RS6000/590 workstation. These rather large- 
scale optimization models presented a chal- 
lenge. There were, in fact, several unsuccessful 
early attempts. We were very fortunate to be 
able to get advice from CPLEX Optimization, 
Inc. [Lowe, 1995] on solver settings. We sent 
them, via FTP over the Internet, a file contain- 
ing a 3 million non-zero instance of the model, 
which they were able to solve. (This was when 
most but not all of the variable eliminations and 
sparsity refinements were implemented, so 
they have solved an even larger problem than 
the ones reported above.) The key advice from 
the CPLEX people was to use the barrier (inte- 
rior point) algorithm, with tolerances and op- 
tions tuned for this particular model. 

5.3 Output 
Each run of THRUPUT II for the C-17/ 

NDAA study produced large amounts of out- 
put data. This profusion of information was too 
much for an analyst to absorb, so it had to be 
organized in relevant summary reports of the 
optimal solution. Since each case took a long 
time to solve, we made sure that all the optimal 
solution information was stored in readily ac- 
cessed files. Then, a separate GAMS reporting 
program could be run many times against the 
same optimal solution. This proved to be useful 
because the AFSAA analysts often thought of 

6 MODEL EXTENSIONS 

6.1 Solution by Cascade 
Although the difficulties associated with 

solving a large THRUPUT II model can be par- 
tially redressed by the model reduction tech- 
niques just described, ongoing research at the 
Naval Postgraduate School demonstrates that 
THRUPUT II may be solved in a piecemeal 
manner, thus greatly increasing the allowable 
problem size. This section describes that effort. 

Consider how a scheduler would approach 
the 2-MRC scenario. Meticulously optimizing 
all aircraft, loading, and route decisions over 
the entire scenario length is impossible for at 
least two reasons: 1) future uncertainty makes 
gathering accurate data for the latter periods of 
a scenario problematic, and 2) a sufficiently 
long contingency overloads the scheduler's 
ability to reconcile the myriad of decisions. A 
modeler formulating a linear program faces the 
same difficulties, namely incorporating the in- 
creasing problem size with decreasing certainty 
as the length of the scenario grows. For either 
scheduler or modeler, perhaps the most 
straightforward way of dealing with the diffi- 
culties incurred by a large scenario is to focus 
sequentially on a subset of the scenario's peri- 
ods, then move forward in time to a new sub- 
set. This temporal "myopia" degrades the solu- 
tion quality, but makes the problem simpler to 
solve. Moreover THRUPUT II, which is used to 
mimic scheduling but does not produce sched- 
ules, is more "accurate" if it can incorporate the 
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realism of nearsighted scheduling. For exam- 
ple, when choosing fleet size or infrastructure 
for use in future mobility contingencies, THRU- 
PUT II ideally wishes to optimize given the 
current scheduling capabilities, instead of a Uto- 
pian capability. A truly optimal schedule gen- 
erated by THRUPUT II might alter decisions 
made at the outset of a contingency based on 
specific delivery requirements several weeks 
later. This is unrealistic, and can be avoided by 
reducing the ability of the formulation to look 
so far ahead. 

The proximal cascade heuristic applied to 
THRUPUT II proceeds by solving for all vari- 
ables and constraints whose domain is defined 
for the first 20 (for example) periods. Thus mis- 
sions are flown so as to minimize delivery pen- 
alties in the first 20 periods, subject to the con- 
straints applicable in those periods. Then, the 
process is cascaded forward in time to solve for 
a later set of periods. Mathematically, this im- 
plies generating a feasible solution by succes- 
sively solving for only a subset of rows and 
columns, then moving to a set of rows and 
columns corresponding to later time periods. 
Each of these subproblems should overlap the 
previously solved subproblem in order to min- 
imize the end effects caused by the former's 
temporal limitation. Fortunately, this method- 
ology is facilitated by the structure of THRU- 
PUT II. Variables and constraints in this model 
directly affect only nearby time periods. For 
example, missions flown on day 5 of a scenario 
have a large impact on the missions that can be 
flown on day 7, but only a minor impact on the 
missions that can be flown on day 25. This 
characteristic manifests itself as an overlapping 
"staircase" along the main diagonal of an LP's 
constraint coefficient matrix. The width of the 
overlap gives the number of time periods di- 
rectly affected by the decisions (variable levels) 
made in a given time period. The rest of the 
coefficient matrix is relatively sparse, since 
variables (columns) associated with the early 
time periods rarely appear in constraints (rows) 
corresponding to the later time periods. This 
well known methodology is known as either 
the rolling horizon, or proximal cascade heuristic. 
However, the heuristic is sparsely documented, 
and is theoretically incomplete, since no 
scheme to bound the solution quality has been 
offered. 

The quality of the solution produced by the 
proximal cascade heuristic is dependent on many 
scenario specific factors, and cannot be stated 

theoretically for most problems. However, a 
bound on the solution quality may be derived 
by exploiting information derived from this 
heuristic solution. Since a given time period is 
only directly linked to a few adjacent time pe- 
riods, relaxing the rows associated with these 
nearby periods can separate subproblems out 
of an otherwise linked model. As with most 
decompositions however, the success of this 
scheme is dependent on the ability to compute 
accurate prices for resource consumption of the 
relaxed constraints. With such prices, a La- 
grangian penalty can be applied to the sub- 
problems, and a lower bound can be derived. 
Often, price selection is computationally inten- 
sive, which makes Lagrangian methods unde- 
sirable. However, in this case, reasonable prices 
are readily available from the proximal cascade 
heuristic just computed. 

The proximal cascade heuristic offers a way 
to produce a more realistic schedule than an 
unencumbered optimization model. It also 
greatly reduces the tractability problems asso- 
ciated with the large models demanded by mo- 
bility planners. Finally, the cost of scheduling 
myopia may be estimated by solving a series of 
relaxed subproblems. For these reasons, the 
method shows great promise for use with 
THRUPUT II [Baker, 1997]. 

6.2 Incorporating Aircraft Reliability 
Aircraft reliability is an important factor in 

the ability of the airlift system to deliver troops 
and materiel in a timely fashion. The current 
fleet has a mix of planes with differing reliabil- 
ity characteristics. For example, the C-5 re- 
quires unscheduled maintenance on approxi- 
mately 15% of its landings while the rate for the 
newer (and smaller) C-17 fleet is under 7% 
(1994 peace-time data, AMC). Broken aircraft 
reduce the lift capability of the system by re- 
ducing the size of the effective fleet. In addi- 
tion, aircraft requiring unscheduled mainte- 
nance and repairs reduce throughput by 
consuming scarce resources (e.g., maintenance, 
crew-duty hours, ramp space) that might oth- 
erwise contribute to on-time deliveries. 

Simulation models for airlift systems are 
attractive because they can incorporate high 
levels of detail such as tracking individual air- 
craft and incorporating unscheduled mainte- 
nance and repairs. However, simulation mod- 
els typically use naive aircraft routing and 
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scheduling rules; as a result, it is possible to 
provide a simulation model with additional re- 
sources (e.g., more aircraft or routing options) 
and yet have system performance degrade. Lin- 
ear programming models use more aggregate 
representations of the airlift fleet and infra- 
structure and do not incorporate uncertainty. 
However, due to optimal scheduling and rout- 
ing, linear programming models better lend 
themselves to analysis of system bottlenecks by 
providing marginal values on specific re- 
sources, and in some cases, LP models may be 
more appropriate for comparing system perfor- 
mance under different sets of resources. 

A stochastic optimization model for strategic 
airlift combines the ability of a simulation to 
include uncertain aircraft ground times with an 
LP's ability to optimally schedule and route 
aircraft. However, the resulting stochastic opti- 
mization model is typically very large and re- 
quires special-purpose optimization software. 
We have extended the LP model of Section 3 to 
incorporate aircraft reliability [Goggins, 1995]. 
The model is identical to the deterministic 
model except that the ground time GTimeabr 

which appears in the airfield capacity con- 
straint (Section 3.6.5) is replaced with a discrete 
random variable and the modified constraint 
includes an elastic decision variable which al- 
lows the constraint to be violated at a certain 
cost. 

Mathematically, these modifications can be 
summarized as follows. Let w denote a specific 
ground-time scenario (such as a scenario where 
a C-5A breaks, and its repair time is seven 
hours), and let pbi be the probability of observ- 
ing scenario <o for a particular base b and time t. 
GTime™br represents the "effective ground-time" 
spent by aircraft a at base b when flying route r 
under ground time scenario &>, and MOGPenbt 

is the unit penalty for violating the airfield ca- 
pacity at base b in time t. The elastic decision 
variable Rbt 2= 0 denotes the amount by which 
capacity is exceeded at airfield b in time t under 
scenario w. The new airfield capacity con- 
straints and the additional objective function 
term are specified in the following two equa- 
tions. 

The stochastic optimization model has been 
solved for the modest-sized data set in [Lim, 
1994] which has 20 units, seven aircraft types, 
17 airfields, and 30 time periods. Three of the 
seven aircraft were modeled as having random 
ground times (C-5, C-17, and C-141) and we 
assumed each aircraft type breaks indepen- 

Airfield Capacity Constraint when Aircraft 
have Random Ground Times: 

EEE       E 
u      a   r£Ra    t'+ [DTimeabr] = t 

{MOGReqab ■ GTime»hr/24) ■ Xuart> 

+EE     E 
a   r£Rat'+[DTimeabr]=t 

(MOGReqab ■ GTime^/24) ■ Yart, - R& 

<MOGCapbt   \/b,t,u> 

Additional Objective Function Term 
to Discourage Capacity Violations: 

h       t      u> 

dently. Ground times were approximated by 
discrete distributions with 9 realizations for 
each aircraft type, resulting in 93 = 729 realiza- 
tions for each base b and time t combination. 
The resulting stochastic model increases the 
number of airfield capacity constraints by a 
factor of 729 over the deterministic model from 
30 X 17 = 510 to 371790. There are an equal 
number of additional decision variables of type 
Rbt. We solved the stochastic model with a 
Benders' decomposition algorithm. While the 
total number of constraints in the stochastic 
model is greater by a factor of more than 50, the 
increase in running time over the deterministic 
model is a factor of 12 (20 minutes to 100 sec- 
onds on an IBM RS6000 590 workstation) [Gog- 
gins, 1995]. 

Since the linear and stochastic program- 
ming models contain more aggregate represen- 
tations of the airlift system, we examined 
whether the schedules proposed by these opti- 
mization models were "flyable" in a more de- 
tailed simulation. We developed a discrete- 
event stochastic simulation model that took as 
input the output of these mathematical pro- 
grams; specifically, the simulation model at- 
tempts to execute a proposed aircraft routing 
schedule. The strategy of coupling optimization 
and simulation models in this way is very at- 
tractive. Confidence can be gained in the opti- 
mization model as certain parameters are tuned 
(as we describe below) and the performance of 
the simulation can be improved since naive 
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scheduling rules are replaced with those pro- 
posed by an optimization model. 

Our experimental results on the modest- 
sized data set of [Lim, 1994] compared sched- 
ules proposed by the linear and stochastic pro- 
gramming models. During the peak demand 
periods, we observed a 10% increase in cargo 
and troop deliveries when the simulation 
model executed schedules proposed by the sto- 
chastic program. Because the stochastic optimi- 
zation model is larger and more difficult to 
solve (and cannot currently be solved within 
algebraic modeling languages such as GAMS), 
it is desirable to "tune" the deterministic opti- 
mization model so that it yields delivery sched- 
ules that are achievable in the simulation 
model. As described in Section 3.6.5, control- 
ling the "MOG efficiency value" MOGEffis one 
way to achieve this. We empirically determined 
that a MOGEff value of 0.80 gave deterministic 
optimization schedules that were "flyable" in 
the stochastic simulation. 

7 CONCLUSIONS AND ONGOING 
RESEARCH 

THRUPUT II is an optimization model of 
the airlift mobility system that has proven use- 
ful to Air Force analysts in an important acqui- 
sition study. The Air Force analytical commu- 
nity has in the past put much more reliance on 
simulation than on optimization. This is in con- 
trast to civilian industries, such as petroleum, 
electronics, airlines, forestry and many others, 
where optimization is very widely used. 

While we were developing THRUPUT II, a 
similar and concurrent effort was under way at 
the RAND Corporation. The CONOP model of 
[Killingsworth and Melody, 1994] is also a 
GAMS-based, multi-period linear program- 
ming model for airlift optimization. It has some 
features not found in THRUPUT II. In May, 
1996, the NPS and RAND groups started a joint 
effort to develop a new optimization model 
with the best features of both THRUPUT II and 
CONOP. The new model is called the NPS/ 
RAND Mobility Optimizer (NRMO). Among 
NRMO's features that are not modeled in 
THRUPUT II are: 

• The use of tankers for aerial refueling, and 
the facility for some tankers to change roles 
between refueling and cargo hauling. 

• The modeling of shuttle flights and ground 
transportation in theater: some units have 

the option of direct delivery vs. transship- 
ment, and some aircraft have the option of 
changing roles between strategic carriers and 
shuttlers. 

• Detailed flow balance and utilization con- 
straints for crews. 

• The modeling of recovery bases, so that air- 
craft arriving in theater have the option of 
receiving services and crew changes at some 
other airfield besides the MRC's main port of 
debarkation. 

The NRMO model is currently in use in a 
study of airfield infrastructure and in a large 
Pacific scenario. The detailed formulation of 
NRMO and the results of these studies will be 
given in a future report [Melody et al., 1996]. 
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ERRATUM: BENCHMARKING AND EFFICIENT PROGRAM DELIVERY 
FOR THE DEPARTMENT OF DEFENSE'S BUSINESS-LIKE ACTIVITIES 

In the article "Benchmarking and Efficient Program Delivery for the Department of Defense's 
Business-like Activities" that appeared in the Spring 1996 issue of Military Operations Research there 
is an error in the DEA model (2) presented on page 24. The formulation as it appears in the article 
is as follows: 

maximize hn 
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This formulation shows each ratio of weighted outputs to weighted inputs to be summed and 
that the sum must be less than or equal to one. This is incorrect. The correct formulation is to have 
each ratio to be less than or equal to one. Following is the corrected model (2) as it should have 
appeared in the article. 
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In the corrected model there would be 241 constraints—one for each commissary (237 commis- 
saries) plus one for each output and input variable. In the incorrect model that appeared in the article 
there would have been only five constraints. 

I would like to note that the error did not affect the results of the research presented in the article. 
The model as used in the actual analysis was correct. Only the presentation of the model in the paper 
was incorrect. 

I would like to thank Major Greg Hoscheit of the Army Recruiting Command for noticing the 
error and pointing it out. 
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TRAVELLING-SALESMEN FACILITY- 
LOCATION PROBLEM: SPACE- 
FILLING CURVES AND ASYMPTOTIC 
EUCLIDEAN ANALYSES 

by Yupo Chan and David L. Merrill 

Yupo Chan has 25 years of postdoctoral 
experience in industry, universities, and gov- 
ernment, including an honorary assignment as 
a Congressional Fellow. His research interests 
center around transportation science, networks 
and combinatorial optimization, multicriteria 
decision-making facility-location and spatial 
temporal information. Dr. Chan earned all his 
three degrees from MIT. He swims seven days 
a week, which explains why his hair is bleached 
grayer and grayer every time you see him. 

David Merrill is senior analyst at the Anal- 
ysis Group of the US Air Force Air Mobility 
Command at Scott Air Force Base. He is a re- 
tired career Air Force officer with extensive 
flying experience. His recent policy-oriented 
analyses include the acquisition of the Air Force 
C17 fleet. Among his professional honors is the 
Koopman Prize of the Institute of Operations 
Research and Management, awarded to the 
subject paper in 1991. 
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by Richard E. Rosenthal, Steven F. Baker, 
Lim Teo Weng, David F. Fuller, David Goggins, 
Ayhan 0. Toy, Yasin Turkey, David Horton, 
Daniel Briand, and David P. Morton 
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Professors Richard Rosenthal and David Nor- 
ton (now at UT Austin) served as the team 
leaders. The student members were: Steven 
Baker (USAF), Lim Teo Weng (Republic of Sin- 
gapore Air Force), David Fuller and David 
Goggins (USN), and Ayhan Toy and Yasin 
Turker (Turkish Navy). 

The remaining team members were David 
Horton and Daniel Briand (USAF), who super- 
vised the research team from AFSAA at the 
Pentagon. 

Although everyone participating in this re- 
search has been reassigned, many of the mem- 
bers continue to work on airlift mobility issues. 
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EDITORIAL POLICY 

The title of our journal is Military Operations Research. We are interested in publishing 
articles that describe operations research (OR) methodologies used in important military 
applications. We specifically invite papers that are significant military OR applications. Of 
particular interest are papers that present case studies showing innovative OR applications, 
apply OR to major policy issues, introduce interesting new problem areas, highlight 
educational issues, and document the history of military OR. Papers should be readable 
with a level of mathematics appropriate for a master's program in OR. 

All submissions must include a statement of the major contribution. For applications 
articles, authors are requested to submit a letter to the editor-exerpts to be published with 
the paper-from a senior decision-maker (government or industry) stating the benefits 
received from the analysis described in the paper. 

To facilitate the review process, authors are requested to categorize their articles by 
application area and OR method, as described in Table 1. Additional categories may be 
added. (We use the MORS working groups as our applications areas and our list of 
methodologies are those typically taught in most OR graduate programs.) 

Editorial 
Policy 
and 
Submission 
of Papers 

INSTRUCTIONS TO MILITARY OPERATIONS RESEARCH AUTHORS 
The purpose of the "instructions to Military Operations Research authors" is to expedite 

the review and publication process. If you have any questions, please contact Ms. Corrina 
Ross, MORS Communications Manager (email: morscm@aol.com). 

General 
Authors should submit their manuscripts (3 copies) to: 

Dr. Gregory S. Parnell, Editor, Military Operations Research 
Military Operations Research Society 
101 South Whiting Street, Suite 202 
Alexandria, VA 22304       Per the editorial policy, please provide: 

• authors statement of contribution (briefly describe the major contribution of the article) 
• letter from senior decision-maker (application articles only) 
• military OR application area(s) 
• OR methodology (ies) 
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EDITORIAL POLICY AND SUBMISSION OF PAPERS 

TABLE 1: APPLICATION AREAS & OR METHODS 

Composite Group APPLICATION AREA OR METHODOLOGY 

I. STRATEGIC & 
DEFENSE 

Strategic Operations 
Nuclear Biological Chemical Defense 
Arms Control & Proliferation 
Air & Missile Defense 

Deterministic Operations Research 
Dynamic Programming Inventory 
Linear Programming 
Multiobjective Optimization 
Network Methods 
Nonlinear Programming II. SPACE/C41SR Operational Contribution of Space 

Systems 
C41SR 
Operations Research & Intelligence 
Information Warfare 
Electronic Warfare & Countermeasures 
Unmanned Systems 
Military Environmental Factors 

Probabilistic Operations Research 
Decision Analysis 
Markov Processes 
Reliability 
Simulation 
Stochastic Processes 
Queuing Theory 

III. JOINT 
WARFARE 

Land & Expeditionary Warfare 
Littoral Warfare/Regional Sea Control 
Power Projection, Planning, & 
Execution 
Air Combat Analysis & Combat ID 
Special Ops/Operations other than War 
Joint Campaign Analysis 

IV. RESOURCES Mobility & Transport of Forces 
Logistics, Reliability, & Maintainability 
Manpower & Personnel 

Applied Statistics 
Categorical Data Analysis 

Forecasting/Time Series 

Multivariate Analysis 

Neural Networks 

Nonparametric Statistics 
Pattern Recognition 
Response Surface Methodology 

V. READINESS & 
TRAINING 

Readiness 

Analytical Support to Training & 
Mission 
Rehearsal 
Battlefield Performance, Casualty 
Sustainment, & Medical Planning 

VI. ACQUISITION Measures of Effectiveness 
Test & Evaluation 
Analysis of Alternatives 
Cost Analysis 
Decision Analysis 

VI. ADVANCES 
IN MILITARY OR 

Modeling, Simulation, & Gaming 

Revolution in Military Affairs 
(Long Range/Strategic Planning) 
Computing Advances in Military OR 

Others 

Advanced Computing 

Advanced Distributed Systems (DIS) 
Cost Analysis 
Wargaming 

Length of Papers 
Submissions will normally range from 10-30 pages (double spaced, 12 pitch, including illustra- 

tions). Exceptions will be made for applications articles submitted with a senior decision-maker letter 
signed by the Secretary of Defense. 
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EDITORIAL POLICY AND SUBMISSION OF PAPERS 

Paper Electronic Submission with Figures, Graphs and Charts 
After the article is accepted for publication, an electronic version of the manuscript must be 

submitted in Microsoft Word or WordPerfect. For each figure, graph, and chart, please include a 
camera-ready copy on a separate page. The figures, graphs, and tables should be of sufficient size for 
the reproduced letters and numbers to be legible. Each illustration must have a caption and a 
number. 

Mathematical and Symbolic Expressions 
Authors should put mathematical and symbolic expressions in Microsoft Word or WordPerfect 

equations. Lengthy expressions should be avoided. 

Approval of Release 
All submissions must be unclassified and be accompanied by release statements where appro- 

priate. By submitting a paper for review, an author certifies that the manuscript has been cleared for 
publication, is not copyrighted, has not been accepted for publication in any other publication, and 
is not under review elsewhere. All authors will be required to sign a copyright agreement with 
MORS. 

Abbreviations and Acronyms 
Abbreviations and acronyms (A&A) must be identified at their first appearance in the text. The 

abbreviation or acronym should follow in parentheses the first appearance of the full name. To help 
the general reader, authors should minimize their use of acronyms. If required, a list of acronyms can 
be included as an appendix. 

Footnotes 
We do not use footnotes. Parenthetical material may be incorporated into a notes section at the 

end of the text, before the acknowledgment and references sections. Notes are designated by a 
superscript letter at the end of the sentence. 

Acknowledgments 
If used, this section will appear before the references. 

References 
References should appear at the end of the paper. The references should be unnumbered and 

listed in alphabetical order by the name of the first author. 

Appendixes 
If used, this section will appear after the reference. 
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MILITARY OPERATIONS RESEARCH SOCIETY 

MILITARY OPERATIONS RESEARCH SOCIETY, INC. 

COPYRIGHT ASSIGNMENT AGREEMENT 

., hereinafter ("Assignor(s)") and THIS AGREEMENT, made by and between  
MILITARY OPERATIONS RESEARCH SOCIETY, INC., hereinafter Assignee). 

Assignor(s) (for U.S. Government employees: to the extent legally permissible) hereby grants, transfers, 
assigns, and conveys to Assignee, its successors and assigns, the entire title, right, interest ownership 
and all subsidiary rights in and to an article entitled .  

 (hereinafter the "Work"), including, 
but not limited to, the right to secure copyright registration of the Work and to any resulting 
registration in Assignee's name as claimant. Notwithstanding the foregoing, Assignor(s) reserves all 
proprietary rights other than copyright, such as patent rights; a royalty-free right to reproduce the 
Work; and the right to prepare derivative works based upon the copyright in the Work. 

Assignor(s) hereby confirms that Assignor(s) owns the entire title, right and interest in the work, 
including the right to reproduce, prepare derivative works based upon the copyright in the Work, 
and distribute the Work, whether or not the Work constitutes a "work made for hire" as defined in 
17 TJ.S.C. Section 201(b); Assignor(s) agrees that no rights in the Work are retained by Assignor(s) 
except as stated above. Assignor(s) agrees to execute any documents that might be necessary to 
perfect Assignee's ownership of copyrights in the Work and to registration. 

Assignor(s) represents that the Work has not been copyrighted or published; that it is not being 
submitted for publication elsewhere; and, if the Work is officially sponsored by the U.S. Government, 
that it has been approved for open publication. 

This Agreement constitutes the entire agreement between the parties hereto; this Agreement super- 
sedes any prior oral or written agreement or understanding between the parties; and, in the case of 
a Work Made for Hire, this Agreement has been signed by the Assignor(s)'s employer. This 
Agreement shall only be effective if and upon the date that the Work is accepted by Assignee for 
publication in Military Operations Research, the Tournal of the Military Operations Research Society or 
PHALANX, the Bulletin of the Military Operations Research Society. 

ASSIGNOR(S) ASSIGNOR(S) 

By: By:. 

Title:. Title:. 

( 

Date:. Date:. 

MILITARY OPERATIONS RESEARCH SOCIETY, INC. (ASSIGNEE) 

By:  

Title:. 

Date:. 

Page 82 Military Operations Research, V3 N2 1997 



Subscriptions, Monographs & Workshop Reports Order Form 

SHIP TO: 
Name: 

Return form to: 

Military Operations Research Society 
101 S. Whiting Street, #202 
Alexandria, VA 22304-3418 

Phone: 703-751-7290 
FAX: 703-751-8171 
E-mail: morsoffice@aol.com 

Oraanization: 

Address: 

Phone: 
All orders must include a phone number. 

Please note: All prices are for US orders only! For INTERNATIONAL prices please call the MORS office. 

PHALANX Bulletin subscription (Published Quarterly) 1 year-$20 2 years-$35 

Military Operations Research (MOR) Journal subscription 1 year-$40 2 years-$75 

SAVE$$ Combined both subscriptions and SAVE$$ 
PHALANX and MOR Journal 

1 year-$55 2 years-$100 

DESCRIPTION QTY Freight PRICE TOTAL 

Simulation Technology 1997, Sessions 1,2 & 3                                                                              (1988) $10.00 

Human Behavior and Performance as Essential Ingredients in Realistic Modeling of                       (1989) 
Combat-MORIMOCII, Vol 1 & 2 

$ 55.00 

MORIMOCIII                                                                                                                                        (1990) $ 10.00 

MORS/ITEA Emphasizing the "E" in T&E                                                                                        (1991) $10.00 

Simulation Validation Workshop-SIMVAL II                                                                                   (1992) $10.00 

Emphasizing the Cost in COEA-MORS/SCEA Mini-symposium                                                    (1993) $ 10.00 

ITEA/MORS How Much Testing is Enough?                                                                                   (1994) $10.00 

Joint Requirements Oversight Council Process Workshop (JROC)                                                  (1994) $10.00 
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THE MILITARY OPERATIONS RESEARCH 
SOCIETY SYMPOSIUM 

(MORSS) 

Currently, an average of over 950 military 
operations research analysts attend the 
annual Military Operations Research 

Society Symposium (MORSS), a national 
professional society under the sponsorship of 
the Joint Staff, US Army, US Navy, US Air 
Force, US Marine Corps and the Office of the 
Secretary of Defense. The attendees represent 
the services, the private sector, academe, and 
other government agencies. The MORS 
Symposium provides them with a unique 
opportunity to hear the thoughts of influential 
military leaders. It also provides them with the 
opportunity to exchange information and 
examine completed or ongoing research in a 
classified setting. 

The symposium consists of a series of meetings 
centered around 32 working groups. The 
working groups also meet in composite sessions 
to address a wider spectrum of topics, which are 
of interest to their associated composite group. 
In addition, MORS offers general sessions and 
tutorials. The general/special sessions include 
thematically related invited papers of broad 
interest, selected best working group papers, 
workshop reports and sessions, and an education 
session. The tutorials are generally educational 
sessions on tools and techniques of operations 
research. 

The 66th MORS Symposium will be held 
at the Naval Postgraduate School (NPS) 
in Monterey, California on 23-25 June 

1998. This year's theme, Preparing for Military 
Operations Research in the 21st Century, was 
echoed in remarks recently made by the Chief of 
Naval Operations concerning graduate 
education at NPS: "Students will expand their 
breadth of knowledge in a particular discipline 
and will reinvigorate their ability to successfully 
analyze and solve the complex challenges we 
face. These important skills will help guide our 
Navy   into   the   21st   Century  through   fresh 

thinking and innovation." Because of its 
mission, the Naval Postgraduate School is the 
perfect setting for our society to prepare a path 
to the next century. 

23-24-25 June 1998 
66th 
MORSS 

Naval Postgraduate School 

This year's symposium will consist of a keynote 
session on Tuesday, three general sessions, eight 
composite group/working group sessions, three 
tutorial sessions during lunch, two poster 
sessions, and the social event Wednesday 
evening. 

So, mark your calendars now for the 66th 
Military Operations Research Society 
Symposium at the historic Naval 

Postgraduate School from 23-25 June 1998. Get 
ready to enjoy one of the most beautiful spots 
on the face of the earth — the Monterey 
Peninsula. Help us provide a path to the next 
century by contributing to a successful 
symposium with an early response to the Call 
for Papers and submitting your "approved for 
public release" abstract in January. And while 
you're convincing your boss to let you go to the 
Symposium, convince him or her to go with 
you! If you have any doubts at all on presenting 
a paper, have any other questions, have not 
received the ACP, or would like to assist the 
program staff, please contact the MORS office 
at (703) 751-7290 or CDR Kirk Michealson at 
(703) 697-0064. 
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