
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
19980416 114

IMPLEMENTATION AND EVALUATION
OF AN INS SYSTEM FOR THE
SHEPHERD ROTARY VEHICLE

OTKJQtTAL: ÜCTED4

by

Thorsten Leonardy

December, 1997

Advisor:
Second Reader:

Xiaoping Yun
Xavier K. Maruyama

Approved for public release; Distribution is unlimited.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate
or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, Va 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

December 1997
3. REPORT TYPE AND DATES COVERED

Master's Thesis
4. TITLE AND SUBTITLE

IMPLEMENTATION AND EVALUATION OF AN INS SYSTEM FOR
THE SHEPHERD ROTARY VEHICLE

6. AUTHORS

Leonardy, Thorsten

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, California 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT(maitmum 200 words)

An autonomous vehicle must be able to determine its global position even in the absence of external
information input. To obtain reliable position information, this would require the integration of multiple
navigation sensors and the optimal fusion of the navigation data provided by them.

The approach taken in this thesis was to implement two navigation sensors for a four-wheel drive and
steer autonomous vehicle: An inertial measurement unit providing linear acceleration in three dimensions and
angular velocity for the vehicle's global motion and shaft encoders providing local motion parameters. An
inertial measurement unit is integrated with the Shepherd mobile robot and data acquisition and processing
software is developed. Position estimation based on shaft encoder readings is implemented. The framework
for future analysis including most general motion profiles have been laid.

The sensor's system performance was evaluated using three different linear motion profiles. Test
results indicate that the shaft encoder provide a positioning accuracy better than 99% (typ. 7.5 mm for 1 m
motion) under no slip conditions for pure translational motion. The IMU still requires further improvement
to allow for both sensors to be combined to an integrated system.

14. SUBJECT TERMS

Robotics, Sensors, Navigation, NPS, Shepherd, Rotary Vehicle
15. NUMBER OF PAGES

114
16. PRICE CODE

n/a
17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
239-102

Approved for public release; distribution is unlimited

IMPLEMENTATION AND EVALUATION OF AN INS SYSTEM FOR
THE SHEPHERD ROTARY VEHICLE

Thorsten Leonardy
Lieutenant, German Navy

Dipl.-Ing. Nachrichtentechnik, German Armed Forces University, Munich 1989

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Physics

Author:

from the

NAVAL POSTGRADUATE SCHOOL

December 1997

Thorsten LeuiiMkljiV

Approved by:

William B. Maier, Chairman
Department of Physics

m

IV

ABSTRACT

An autonomous vehicle must be able to determine its global position even in the absence

of external information input. To obtain reliable position information, this would require the in-

tegration of multiple navigation sensors and the optimal fusion of the navigation data provided by

them.

The approach taken in this thesis was to implement two navigation sensors for a four-wheel

drive and steer autonomous vehicle: An inertial measurement unit providing linear acceleration in

three dimensions and angular velocity for the vehicle's global motion and shaft encoders providing

local motion parameters. An inertial measurement unit is integrated with the Shepherd mobile

robot and data acquisition and processing software is developed. Position estimation based on shaft

encoder readings is implemented. The framework for future analysis including most general motion

profiles have been laid.

The sensor's system performance was evaluated using three different linear motion profiles.

Test results indicate that the shaft encoder provide a positioning accuracy better than 99% (typ. 7.5

mm for 1 m motion) under no slip conditions for pure translational motion. The IMU still requires

further improvement to allow for both sensors to be combined to an integrated system.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND AND MOTIVATION 1

B. OBJECTIVE 1

C. ORGANIZATION 3

II. SYSTEM OVERVIEW 5

A. TAURUS BOARD 5

1. TAURUS Bug Monitor/Debugger 9

2. DUART 68C681 9

3. Cirrus Logic Communications Controller CD2401 10

4. AM9513A Counter/Timer 10

5. Programmable Parallel I/O Port Device (Intel 82C55A) 10

6. Interrupts 10

B. MOTION CONTROL 12

III. REFERENCE FRAMES 13

A. BODY MOTION 13

1. Body Reference Frame 13

2. Sensor Reference Frame 13

3. Earth Reference Frame 14

B. GPS SYSTEM 14

1. Earth-Centered Inertial (ECI) Coordinate System 14

2. Earth-Centered Earth-Fixed (ECEF) Coordinate System 15

3. Conversion between ECI and ECEF 15

4. World Geodetic System (WGS-84) 15

C. TRANSFORMATIONS 15

1. Roll, Pitch, and Yaw 17

2. Euler Angles 18

IV. POSITION DETERMINATION WITH SHAFT ENCODER 19

A. DETERMINING THE SERVO PARAMETERS 19

1. Steer Parameters 19

2. Drive Parameters 21

B. LINEAR MOTION PROFILE 26

1. Linear Motion Profile #1 26

vn

2. Linear Motion Profile #2 29

C. UNCERTAINTIES IN MOTION CONTROL 29

V. INERTIAL MEASUREMENT UNIT 31

A. INERTIAL SENSOR 32

B. A/D CONVERSION SCHEME 33

C. SCHEME FOR DATA ANALYSIS 35

D. INTEGRATION TOOLS 37

E. DATA FILTERING AND COMPUTATION OF POSITION VECTOR ... 38

1. Stationary Data Analysis 3o

2. Non-stationary Data Analysis with Profile #1 42

3. Non-stationary Data Analysis with Profile #2 46

4. Non-stationary Data Analysis with Profile #3 46

F. SUMMARY 50

VI. SENSOR FUSION „

VII. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 55

A. CONCLUSIONS 55

B. RECOMMENDATIONS FOR FUTURE WORK 55

APPENDIX A: CONSTANTS K- 57

APPENDIX B: MATLAB M-FILES 59

1. IMU.M 5g

2. FILTER1.M 61

3. EULER1.M 63

4. INTEGRAL.M 65

5. SHAFT.M 65

APPENDIX C: GCC COMPILER SOURCE-FILES 67

1. IMU.C 67

2. MOTOR.C 72

APPENDLX D: SHEPHERD PRIMER 91

1. MAIN OPERATING PARAMETERS AND CONVERSION FACTORS ... 91

2. RESET AND READ HAFT ENCODERS , 92

3. UP- AND DOWNLOADING DATA FROM TAURUS BOARD 92

4. INTERRUPTS

a.

b.

 93

Timer Interrupt o3

A/D-Board Interrupt o3

vm

c. Keyboard Interrupt 94

5. REPRESENTATION OF DOUBLE VARIABLES 94

6. HOW TO RUN SHEPHERD'S WHEELS 95

LIST OF REFERENCES 99

INITIAL DISTRIBUTION LIST 101

IX

ACKNOWLEDGMENTS

This research was only possible due to the efforts of many people. Instrumental in the success

of this research was the assistance of Michael Williams. His expertise in wide-ranging technical

experience and software engineering skills enabled the development of the system up to this point.

Many thanks to my thesis advisor Dr. Xiaping Yun and second reader Dr. Xavier K.

Maruyama for their knowledge of, guidance with, and enthusiasm for the subject material. Both

made the conduction of this thesis an enjoyable and rewarding experience.

I owe debt of gratitude to the faculty and staff in the Physics Department and Combat

Systems Curriculum for the outstanding education that was made available to my fellow officers

and I through our course of study. Special thanks goes to Dr. William B. Maier who guided me

through my very first and final quarter at the Naval Postgraduate School. Dr. Armstead added a

very entertaining note to the endeavors of teaching Quantum Physics and Statistical Physics.

Appreciation goes to the founders of the TßX and WF$L word-processing system, Donald

Knuth and Lesley Lamport. It amazes me that such a capable scientific typesetting software is freely

available in the public domain. I certainly enjoyed writing this document in WIgfi2e.

Most importantly, I would like to thank my wife Ute. She endured many extended periods

of my absence without complaint. This effort would not have been possible without her. Thanks for

your love and patience!

XI

XU

I. INTRODUCTION

A. BACKGROUND AND MOTIVATION

Landmines have become an ever increasing threat for the civilian communities in post-war

scenarios. Several million land mines are scattered around the world annually causing more than

10,000 fatalities and more than 20,000 severe injuries to non-combattants.

Since effective multi-national proliferation treaties banning the use of anti-personnel mines

are not yet in place and with major producers for those mines not likely to sign these treaties because

of their important impact on conventional warfare, it is essential to develop and deploy equipment

for detection of anti-personnel mines in mine-contaminated regions.

Moreover, many countries are downsizing their armed forces due to budget constraints and

thus turning over formerly used defense sites to the local communities. Wide areas of these defense

sites (such as proving ground, rifle ranges, ...) are contaminated with unexploded ordnance (UXO).

The contaminated land must be cleared before transferring to civilian use.

B. OBJECTIVE

At present, there are not many effective means for mine and UXO detection available.

The current approach to mine and UXO detection and clearance is labor and time intensive and

dangerous: explosive ordnance disposal (EOD) personnel walks slowly over the area that is to be

cleared, trying to detect buried, half buried or totally exposed material. Once an object is found,

successive steps in the clearance process would include:

• detect,

• identify,

• excavate,

• defuse,

• transport

and

• dispose

the object in question. It is therefore desireable to develop a robust, low-cost tool for persuing

the above steps through the use of robotics and advanced sensing techniques meeting the following

requirements:

• Robustness for operation in rough terrain

• Expandability for different sensors and equipment

• Precise navigation tools

Multi-disciplinary research conducted in the Departments of Electrical and Computer Engi-

neering, Computer Science, Aeronautics and Astronautics, and the Physics Department at the Naval

Postgraduate School, centers around the development of a semi-autonomous robot system for land

mine/UXO searching/processing tasks in humanitarian operations [2]. This project has required the

cooperative effort of several NPS thesis. The emphasis of this thesis is the implementation of an

integrated navigation system. In the long term, the system components will be comprised by a land

vehicle, an aerial vehicle, and a ground-based control center.

The land vehicle, specifically designed for the aforementioned tasks is four-wheel steerable

and drivable. A prototype vehicle called SHEPHERD is currently in use for this research project.

The unique design of SHEPHERD provides a high level of sophistication for motion control for it

to be able to precisely traverse rough terrain. The interested reader is referred to [1]. The scope of

this project, in general, is very comprehensive and encompasses many scientific areas. In particular,

interdisciplinary tools such as physics principles including coordinate transformations, kinematics

and mechanics of rigid bodies, and electrical and software engineering tools are used, discussed and

covered in this thesi.-:.

In order to control the vehicle and implement efficient search patterns while at the same time

reducing redundant search paths, precise knowledge of the vehicle's velocity and position is essential.

Using an on-board inertial navigation system, the vehicle's acceleration can be measured and it's 3D

motion precisely computed by the on-board computer. However, an inertial sensor alone can provide

accurate position information only in the short term, but must be integrated with additional sensors

if precise long term positional data is required. The vehicle's rough operation environment makes

it essential that extremeley accurate position information is obtained. To meet this requirement, a

Global Positioning System (GPS) receiver shall be integrated.

The purpose of this thesis is to implement and evaluate an integrated navigation system for

SHEPHERD enabling the operation of the vehicle under extremely rough conditions while at the

same time providing accurate position information. This thesis will examine the following research

questions:

1. Provide the theoretical background for coordinate transformations,

2. Implement the hardware and software for an Inertial Measurement Unit (IMU),

3. Implement the software to determine position based on the on-board shaft encoders,

4. Develop a scheme for sensor fusion for slip-detection.

ORGANIZATION

First, a brief overview of the computer architecture for the Shepherd Rotary Vehicle is given

in Chapter II. Secondly, Chapter III defines the basic reference frames that are being used throughout

this project. The secondary means of determining the vehicle motion is given by shaft encoders

that are used for each of four wheels for both, steering and driving. The software implementation is

described in Chapter IV. Chapter V describes the implementation of a low cost inertial measurement

system (IMS) both in hardware and software. Its purpose will be to complement the shaft encoder

system in situations were slip occurs. How both systems may be unified for slip detection and to

further improve the performance of the navigation system is investigated in Chapter VI. Finally,

the success and limitations of the use of the system described herein is summarized in Chapter VII

providing essential results of this research and recommendations for future research in this area.

II. SYSTEM OVERVIEW

In this chapter we will give a brief computer hardware description of the system configuration

for the SHEPHERD Rotary Vehicle. This complements the description given by Mays/Reid [1] and

is intended to provide the essential information necessary to understand the cross-references to

computer components given in the following Chapters.

All mechanical information for the mobile platform is extensively discussed by Mays/Reid

[1]. However, we shall note at this point that the Shepherd Rotary Vehicle is a four wheel drive

and steer mobile robot. The four wheels are steerable without limitations and can be rotated and

driven in either direction (more than 360 degree of rotation space). The four wheel drive and

steer capability shall provide the robustness required for operation in rough terrain (e.g., sand dune

scenarios, ...). A side view and front view photo taken from SHEPHERD with a digital camera are

shown in Figure 2.1 and Figure 2.2, respectively.

In Figure 2.1 we can can see the four suspension boxes for the four wheels, the steel plate

that comprises the main support frame for the robot, the inertial measurement sensor mounted

upside down below the steel plate, and a joystick that is used to manually steer the robot in the

top right-hand corner. In addition, in the rear view photo you can see the Laptop computer, to its

left a switchbox for connecting the Laptop to either a CONSOLE or HOST serial port, and to its

right the joystick. Another view, shown in Figure 2.3 shows the Laptop placed on the steel plate

and behind it the servo control rack and the VMEBus chassis.

The complete hardware architecture is comprised of the TAURUS Single Board Computer

[3], a VME-Bus based single board computer with a Motorola MC68040 as main processor and

several other on-board processing components and the VME-Bus. At present, this stand alone

computer system is expanded with a servo controller unit that interfaces to the four wheels and

a 16-channel differential input A/D-Board. Four channels of the A/D-Board are utilized for the

inertial measurement unit (IMU) which is discussed in Chapter V. In the future, the system may

be expanded with several other sensors through the use of the VME-Bus. Figure 2.4 shows a block

diagram of the system configuration for SHEPHERD.

A. TAURUS BOARD

This section describes the TAURUS single-board computer system's main features. The

hardware is based on a dual processor platform using Motorola's 68040 as the main processor and

Figure 2.1: Side view from the SHEPHERD Rotary Vehicle.

Figure 2.2: Front view from the SHEPHERD Rotary Vehicle with wheels rotated by 45°.

Figure 2.3: Top view from the SHEPHERD Rotary Vehicle. In the front, the Pentium Laptop used
as a concole, in the middle the servo controller chassis, and in the back the VMEBus rack.

V
M
E

Pi-Connector

P2-Connector J^

TAURUS Board

MC68C681

S2C55 Dev.l

jJONSOL^
HOST :

y-Position

Button-Status

UNIX
Workstation

GPS Receiver

Joystick

Interface Card
(10 Bit A/D)

\ Pi-Connector ^> AVME-9325-5 A/D-Board 4 Channels/12 Bit
Mot ion Pak

■s^ Pl-Conncctor ^

VIPC-610 (Indus try Pack Carrier)

24BH/CH4..7 IP-Quadrature 2 Steer Wheel 1..4

24Bit/CH0..3 IP-Quadrature 1 Drive Wheel 1..4

Pi-Connector ^

VME-9210 Analog Out

Velocity Control
(12 Bit,

8-Channels)

CH 0..3
Steer Wheel 1..4

<
Drive Wheel 1..4 CH 4..7

Pi-Connector ^>
VME-2170A Digital Out Bits 12..23

Steer Wheel 1..4

32 Bit Digital out Drive Wheel 1..4 Bits 0..11

Cf Pi-Connector J>
Digital in Bits 12..23

Steer Wheel 1..4

Drive Wheel 1..4 Bits 24..31

Figure 2.4: Shepherd Rotary Vehicle Hardware Configuration.

the 68030 as a slave processor for basic I/O functions. Signaling between both processors takes place

via processor interrupts. The system is attached to a VME bus backplane providing the capability

to expand the system as far as main memory and additional sensor devices are concerned. Among

the many I/O functions that the TUARUS board provides are:

• six RS-232C serial communication ports (two through a DUART 68C681, and four through
a CD2401 Communications Device)

• two 24 bit parallel ports

• several timer/counters: Five provided by the AM9513A System Timing Controller, one
timer is provided in the 68C681 serial port device and eight timer/counters are available in
the CD2401

• real time calendar clock device MK48T08

• SCSI Port

• Ethernet Port

More information can be obtained from [3] and the respective operating/user manuals for

each device. Rather than focussing on all the technological aspects for each device, we merely focus

on those important ones for understanding the operation of SHEPHERD.

1. TAURUS Bug Monitor/Debugger

For start-up and debugging/monitoring purposes, a debugger/monitoring program called

TAURUSBug resides in the memory region from Oxff800000 through Oxff9fffff (memory bank

2, see [3], Chapter 2.2). The user may decide whether or not to use this program for the boot-up.

However, in the sequel, the project group has made heavy use of the debugging tools provided by

TAURUSBug.

2. DUART 68C681

The TAURUS board features a 68C681 device which provides two dual asynchronous re-

ceiver/transmitter (DUART) serial ports with RS-232C interface. These two ports are utilized for

up-/and downloading of executable code and data and for user interaction with SHEPHERD. Port

A is called CONSOLE and Port B is called HOST. Both ports are connected through a switchbox

to the laptop computer.

3. Cirrus Logic Communications Controller CD2401

Up to date, only one of the four RS-232C serial ports provided by the Cirrus Logic Com-

munications Controller CD2401 is used for interfacing the GPS receiver.

4. AM9513A Counter/Timer

The AM9513A LSI circuit provides a total of five independent 16-bit timer/counters which

can be cascaded to a single 80-Bit timer/counter for long-term observations. The timer number five

is used for deriving the motion control clock of T=10 ms: every 10 ms a timer interrupt is issued to

trigger another motion control cycle. This 10 ms timer interrupt is clearly the heart of the system.

Care should be taken that this interrupt is granted the highest priority level available. This leads

to the decision to use timer five instead one of the other four.

5. Programmable Parallel I/O Port Device (Intel 82C55A)

The Taurus board is equipped with two Intel 82C55A devices each providing three 8-Bit wide

ports (Port A, B, and C). Only the first device is currently in use for the motion control by means

of a joystick. A simple PCB board interfaces an IBM-PC Joystick to this I/O device. However,

some minor changes to the layout of the Joystick circuitry had to be made. Port A comprises the

x-Position (an 8-bit digital value ranging from 0 ... 255 equivalent to joystick left to right), Port B

gives the y-Position in the range 0 ... 255 equivalent to down (0x00) and up (Oxf f). Currently, only

Bits zero and one are in use from Port C providing status information for the two switches on the

throttle (pushing the left switch or the center switch on the trottle will set bit zero and pressing the

right button on the throttle will set bit one). The other two push buttons on the left-hand side of

the joystick have currently no function. In case that needed, they can easily be connected to any of

the six remaining bits of Port C through the PCB board by use of pull-up resistors.

6. Interrupts

Both on-board and off-board Interrupts are supported by the TAURUS board. All on-board

Interrupts are routed through the Interrupt Steering Mechanism (ISM) to either the 68030 I/O

10

Processor or via a VMEbus Interface Controller device (VIC068) to the 68040 Processor. Note that

an interrupt can only be routed to one processor at a time. The VIC068 guides both, ISM interrupts

and VMEbus interrupts to the 68040 processor. This is depicted by Figure 2.5. In accordance with

[3], the local interrupts by on-board sources from the ISM to the VIC will be labelled as LIRQ-x

whereas the interrupts form the VIC068 to the 68040 processor are labelled IRQ-x.

VMEbus Interrupts

ISM
Interrupt
steering

mechanism

LIRQ-x > VIC068
IRQ-x 68040

Interrupts \
from \

On-Board /
Devices /

LIRQ-x 68030

Figure 2.5: Servicing of on-board Interrupts or off-board VME-Bus Interrupts (From Ref. [3])

The ISM combines groups of on-board Interrupts to act as a single interrupt source towards

either the 68030 or 68040 processor. It is important to note that the VIC068 device enables the

programmer to shift the interrupt levels. In order to handle the proper handshaking in this case,

the appropriate LIRQ-Shift-Register in the ISM would have to be set. The TAURUS user's manual

[3] p. 2-71 gives the following example:

... if LIRQ-5 from the ISM is shifted in the VIC068 to IRQ-3, then the acknowledge signal
from the 68040 processor to the VIC068 would be IACK-3 which would be passed on to the
ISM device. LIRQ-SR5 (at SFFF4800A - upper nibble) would be set to shift [the] VIC068
IACK-3 input to output ISM-IACK-5.

Some facts that should be remembered:

• each Interrupt group is associated with an ISM Configuration Register Nibble.

• the MSB of each Nibble is the steering Bit, where '0' routes the interrupt to the 68030.

• the remaining three bits of each nibble encode the local interrupt level.

• upon Power-Up or RESET, all On-Board Interrupts are disabled.

• Taurus Vector. Table Base address is at OxffelOxxx where xxx = 4 x Vector Number.

11

MOTION CONTROL

As indicated in the previous section, a motion control cycle is initiated with every 10 ms

timer interrupt. In brief, this motion control cycle is given by the following sequence of logical

blocks:

readEncoder() Read all shaft encoders " " ~
computeRates () Compute (angular) velocity for all steering and driving motors
bodyMot ion () Compute motion parameters for the vehicle's body (bodyMotion)
wheelMotionO Compute the angles and speeds required for each wheel based on

the results of bodyMotion
driveHotors () Update the servos for driving and steering motors

The organization of the motion control cycle is described in more detail in Mays/Reid [1].

However, it should be noted that the source code as given there has been modified slightly to make

the routines more efficient and thus less time consuming.

12

III. REFERENCE FRAMES

This chapter gives a brief discussion on reference frames that are being used throughout

this thesis.

A. BODY MOTION

In the analysis of the motion of a rigid body, it turns out that considerable simplification

in the mathematical formulas for rigid-body motion can be reached if the motion is described with

respect to its principal axes. The principal axes are chosen such that the cross terms (sometimes

called the products of inertia) of the moment of inertia tensor / vanish (see [4] for a more detailed

analysis of this). The axes form a right-handed coordinate system with the origin usually taken to

be at the body's center of mass (CM). However, at this point we are not concerned with the moment

of inertia tensor.

1. Body Reference Frame

For the purpose of describing the kinematics of a body moving on the Earth's surface the

reference frame is chosen such that axes of the body frame, which we will call frame {B}, are given

by the principal axes of the body given as follows:

x - longitudinal axis (oriented from rear to front of body)
y - transversal axis (oriented to the left)
z - normal axis (oriented pointing up, away from the center of the Earth)

2. Sensor Reference Frame

Sensors will be employed with a vehicle in order to measure parameters pertaining to the

vehicle's kinematics. The sensor will provide data relative to its own frame, which we will call sensor

frame {S}. In general, this frame can be completely different from the body frame. If sensing data

is provided in a Cartesian coordinate system, the only difference between {B} and {S} might be an

offset (or translational difference) BPs,org-

13

3. Earth Reference Frame

In order to express the motion of a body as observed by an outside inertial observer we need

to define a suitable inertial reference frame. An inertial reference frame is defined to be the frame

for which Newton's laws of motion are valid. For a slow moving vehicle at a particular point on the

Earth's surface, a suitable reference frame {R} is set up in the following way:

x - pointing north
y - pointing east
z - pointing down, towards the center of the Earth

We will see later in this chapter that the axes x,y and z of this coordinate system refer to the geodetic

descriptions of latitude, longitude and geodetic height respectively. Since we do not anticipate any

large scale motion (on the order of kilometers) it is sufficient not to concern ourselves with the

irregular shape of the Earth and with the resulting mapping/projection problems.

B. GPS SYSTEM

In order to describe both the GPS Satellite motion and receiver motion, it is necessary to

choose a common reference system. Most commonly, the motion is described in terms of velocity

and position as measured in a Cartesian Coordinate System. The most applicable coordinate system

for GPS systems are given as follows: Satellite and GPS receiver motion are described in terms of

the Earth-Centered Inertial and Earth-Centered Earth-Fixed coordinate systems respectively. The

systems in use are described in detail by Kaplan [5] and are briefly explained below:

1. Earth-Centered Inertial (ECI) Coordinate System

In this system, the origin is the center of mass of the Earth. Satellites orbiting the Earth

obey Newton's second law of motion as described in this System. In the ECI system, the xy-plane

coincides with the Earth's equatorial plane, the +x-axis points towards some fixed point in space

(celestial sphere), the z-axis is taken to be normal to the xy-plane pointing towards the north pole.

The set of axis forms a right-handed coordinate system. However, due to the Earth's inhomogeneous

shape, irregularities in the Earth's motion cause the ECI frame not to be truly inertial. Therefore,

the GPS system defines the ECI reference frame as given by the constellation at 1200 hr UTC on

January 1, 2000.

14

2. Earth-Centered Earth-Fixed (ECEF) Coordinate System

For computing the receivers position, it is more convienient to use a system that is stationary

in the earth frame. It is known as Earth-Centered Earth-Fixed (ECEF). As with the ECI frame,

the xy-plane is coincident with the Earth's equatorial plane, the x-axis points in the direction of 0°

longitude, the y-axis points in the direction of 90° longitude. The x- and y-axes therefore no longer

describe fixed directions in inertial space. The z-axis completes the right-handed coordinate system.

3. Conversion between ECI and ECEF

Conversions between ECI and ECEF system are accomplished by means of matrix trans-

formations (rotator matrices) which are not further described in this thesis. It is assumed that the

Satellite ephemeris data is already translated into ECEF system.

4. World Geodetic System (WGS-84)

The Department of Defense invented a system to model all irregularities pertaining to de-

scribing the Earth's gravitational motion. This system is known as the World Geodetic System

(WGS-84). In addition to modeling the gravitational irregularities, the World Geodetic System

provides an ellipsoidal model of the Earth. The ECEF coordinate system is affixed to the World

Geodetic System reference ellipsoid and thus, latitude, longitude and height of a receiver can be

specified with respect to this ellipsoid.

C. TRANSFORMATIONS

To define and manipulate physical quantities such as acceleration, velocity and position we

must define coordinate systems and find transformations for describing vectors given in one system

with respect to the other. These transformations will be accompanied by conventions for their

representation.

A great variety of similar transformations can be found in many textbooks. Not all of

them are concisely formulated. It is thus rather confusing to relate different conventions given in

different textbooks with each other; even though they may describe the same transformation. A

15

good introduction on spatial descriptions and transformations is given by [6] and we will therefore

briefly outline the most important aspects and conventions as thev pertain to our problem.

The inertial reference frame {R} is given by the set of coordinate axis {x,y,z} where the

xy-plane is the plane parallel to the WGS-84 reference ellipsoid (that is, the earth's surface) with x

pointing north, y pointing east and z pointing towards the geodetic center of the Earth. The frame

{B} which is attached to the body is given by the set of axes { x',y',z' } with x' pointing forward,

y' pointing to the left of the body and z' completing the right-handed coordinate system. Figure

3.1 shows both frames.

Figure 3.1: Coordinate Frame for Body relative to point on Earth surface. The x/y-plane spans the

plane tangent to the Earth's surface.

There are two governing basic methods of representing the orientation of a body (with the

Frame {B} attached to it) with respect to the reference frame {R}. One way is to express the

principal directions of {B} (unit vectors x',y',z') in terms of the coordinate system {R} and stack

these three unit vectors together as the columns of a 3 x 3 proper orthonormal rotation matrix

*R=[x'y'z']

where £ R has the properties that its columns are mutually orthogonal and have unit length and

detgR) = 1. Moreover, it can be shown that the inverse of ^R is simply its transpose:

SR-^SB.3,
(3.1)

16

and thus giving rise to

BK.BK. — B±tBK. — 1

Any vector P given with respect to {B} can then be expressed in terms of {R} by the transformation

RP = * RBP

Since dealing with 3x3 matrices for describing orientations is usually very tedious, a second way

of describing the orientation of a body can be derived from a result from linear algebra. Cayley's

formula for orthonormal matrices (cited by Craig [6]) states that any 3x3 orthonormal matrix can

be specified by just three parameters.

There are many ways to represent orientations with only three parameters. Not all of them

are convenient and the reader may be easily confused while looking for those in different textbooks.

In the discussion here we follow the conversion of Ref. [6].

1. Roll, Pitch, and Yaw

One way of describing the orientation of a frame {B} relative to the reference frame {R}

is by describing the body's orientation by observing successive rotations about the three axes (x,y,

and z) of the fixed refernece frame {R}. Craig [6] refers to this convention as X-Y-Z fixed angles:

1. start with the frame {B} coincident with the reference frame {R}

2. rotate {B} about Rx by the roll angle 6

3. rotate {B} about Ry by the pitch angle <f>

4. rotate {B} about Rz by the yaw angle ip

Each of the three rotations takes place about an axis in the fixed reference frame {R}. The resulting

rotation matrix can be obtained by successively rotating the frame {B} about single axes in the

stationary frame {R}:

RR = RRz(</0 RRy(4>) RRx(0)

co a (■»}>) co a (<f>) coa(ip)ain(<l>)ain(9) — ain(i{f)coa(6) coa(-^)ain(<p)coa(0) + ain(if})ain(9)

ain(if>)cos(tf>) ain(il>)ain(<t>)ain(9) + cos(if>)coa(9) ain(if>)ain(<j>)coa(9) - coa(V)ain(6)

-ain(4>) co3(<f>)ai-n(9) coa(<f>)coa(6)

where

*RX(0)

l%(40

1 0 0

0 cos(d) -.in(B)

0 i»n(e) co*(0)

coa(4>) 0 .;»(*)
0 1 0

-.in(*) 0 »<(*)

(3.2)

(3.3)

(3.4)

17

RRZ«>) =
cos(i}>) — jtn(VO 0

sin(V>) coj(i/>) 0

0 0 1
(3.5)

Therefore, a vector Ba given in frame {B} can be transformed with respect to frame {R} by the

transformation

la = £RBä

2. Euler Angles

Another possible description of the frame {B} with respect to frame {R} is given by the

Euler Angles. As opposed to rotating the frame {B} in successive steps about the fixed axes

of {R}, this description will involve successive rotations performed about the principal axes of the

rotating frame {B} we are about to move:

1. start with the frame {B} coincident with the reference frame {R}

2. rotate {B} about Bz by the angle ip

3. rotate {B} about By by the angle <\>

4. rotate {B} about Bx by the angle 0

The resulting rotation matrix is the same as given above in Equation 3.2. Instead of naming the

angles 9, <f>, ifi as roll, pitch, and yaw respectively, they are now being referred to as the Euler Angles.

Craig refers to them as the Z-Y-X Euler Angles. This transformation is equivalent to the one

given by Fossen [7] on page 10 except that we exchanged the naming for roll and pitch (0 o 0).

The result obtained yields a fundamental statement as given by Craig [6]:

... three rotations taken about fixed axis yield the same final orientation as the same three
rotations taken in opposite order about the axes of the moving frame.

In this work, we will make reference to the Eulerian angles and this mostly to the fact that

the Eulerian angles are easier to recognize. However, the euler angles are equivalent to the roll, yaw

and pitch angles.

In this chapter we have laid the framework for transforming vectors from one coordinate

system to the other. We will apply this to the Inertial Measurement Unit and develop a scheme

for determining the specific acceleration acting on a body even in the presence of the gravitational

acceleration.

18

IV. POSITION DETERMINATION WITH SHAFT
ENCODER

This chapter describes the use of the shaft encoders for position determination. It comple-

ments and in some cases alters the results obtained by Mays/Reid [1]. As outlined in Mays/Reid [1],

each servo motor is equipped with shaft encoders which record the actual angles for all eight motors.

This should provide an easy means for direct position determination under the condition that no

slip occurs. That is, the difference between an interval T=10 ms by which each encoder (driving and

steering) advances is directly proportional to the distance travelled or to the angle each wheel was

rotated and accordingly for the time of observation proportional to the linear and angular velocity.

It should be noted that the shaft encoders for the driving motors count positive for a

clockwise rotation of the wheel. Thus, if all wheels are driving forward (which implies that wheels 1

and 3 are commanded with negative servo data) the shaft encoder readings will decrease for wheels

2 and 4. In the same manner, if all wheels are steering to the right (clockwise as viewed from above,

with negative servo data commanded), the shaft encoder readings will increase for all wheels.

A. DETERMINING THE SERVO PARAMETERS

It might be necessary from time to time to verify and adjust the servo parameters in use

for the motion control of SHEPHERD. Therefore, a few test routines have been implemented in the

file 'motor.c'. These functions are

driveTestO to determine the driving parameters
steerTestO to determine the steering parameters
stopTest () to determine the interaction between driving and steering for dig-

its commanded to the servos being zero
velocityTest () to obtain a relationship between digits commanded to the driving

motors and actual angle rates observed
circumf erenceTest() to determine the circumference of the wheels

1. Steer Parameters

For determining the steering parameters the following method has been impemented in

function 'steerTestQ' in file 'motor.c':

19

1. align all wheels with hall sensor

2. clear the counters

3. save counter data in variable previous

4. rotate wheels for a certain number of turns and stop time it takes to rotate the wheel

5. read shaft encoder 'current' and compute the counter difference to obtain the rate of turn
and number of counts for a turn

The source code is implemented as function 'steerTest()' in the file 'motor.c'. It should be

noted that this test should only be conducted for free wheels off the ground, otherwise the vehicle

may just wander around.

Some characteristic data corresponding to a specific velocity commanded is shown in Ta-

ble 4.1. It can be seen from the Table that when steering the wheel, this would interfere with the

drive counters as well. The work of Mays/Reid account for this fact by closed loop control. The

data was taken for no load applied to the wheels (free turning wheels).

count per turn
Wheel 1 Wheel 2 Wheel 3 Wheel 4
-92160.2 -92131.7 -92160.3 -92160.1

counts per degree -256.00 -255.92 -256.00 -256.00
time per turn (sec) 6.97 6.98 6.98 6.98
drive count for turn 2048.0 2047.9 2048.0 2047.9

Table 4.1: Steering Wheel Data at Digits commanded OxObOO averaged over 10 turns.

Note when a positive value is commanded to all steering motors that the motion of the

wheels as viewed from above is counterclockwise and the shaft encoder readings are negative! Prom

the data, we can derive a relationship between the angular position of the steering motors and the

encoder readings

steering wheel 1...4 1 degree = 256 counts
angle turned [radians] 6 = 6.8177 • lQ-5rad/count

Table 4.2: Conversion Factor for Steering all Wheels.

The results given above are in agreement with the findings from Mays/Reid [1], With this

data in mind, the angular velocity can be easily measured. All that needs to be done is to record

the difference in steer encoder readings for an observation timeframe (T=10ms) and multiply by the

above factor and divide by T.

20

2. Drive Parameters

What is the goal to be determined in this section is: how does the driving data commanded

to the drive servos (in the range from -1024 to +1023) relate to the actual driving speed. Moreover,

how does driving interfere with the steering, is there any leakage at all? In order to determine this,

two functions are in place for use within the SRK.

The function 'driveTestO' was written in order to determine how the drive encoder

readings relate to the angular position of the wheel (if the wheel is viewed as a clock). All this function

does is to record the difference in shaft encoder readings for a given number of turns completed. This

observation gives rise to the number of counts per degree for driving the wheel. The function does

not operate autonomous but rather requires user interaction. The user determines when to start

and end the observation period. This procedure was conducted several times at different speeds -

although the speed is not of our concern at this point. The results are given in Table 4.3.

driving at speed 0x0800 (1 turn)

count per turn
Wheel 1 Wheel 2 Wheel 3 Wheel 4
-102746 -103949 -105340 -104038

counts per degree -285.41 -288.75 -292.61 -288.99
time per turn (sec) 10.85 10.63 10.97 10.87
drive count for 1 turn n/a

driving at speed 0x0800 (averaged over 3 turns)

count per turn
Wheel 1 Wheel 2 Wheel 3 Wheel 4
-103989 -104303 -103967 -104229

counts per degree -288.86 -289.73 -288.80 -298.53
time per turn (sec) 10.85 10.63 10.97 10.87
drive count for 1 turn n/< i

driving at speed 0x2000 (averaged over 10 turns)

count per turn
Wheel 1 Wheel 2 Wheel 3 Wheel 4
-103756 -104143 -104812 -104705

counts per degree -288.21 -289.29 -291.15 -290.85
time per turn (sec) 2.704 2.698 2.729 2.727
drive count for 1 turn n/a

driving at speed 0x2000 (averaged over 100 turns)

count per turn
Wheel 1 Wheel 2 Wheel 3 Wheel 4
-104377 -102594 -104440 -104435

counts per degree -289.92 -284.98 -290.11 -290.10
time per turn (sec) 2.72 2.71 2.72 2.72
drive count for 1 turn 63394.94 63297.88 63331.94 63337.61

Table 4.3: Data obtained for determining drive parameters with program 'driveTestO '.

It can be seen from the Table that the number of counts per degree for all wheels is given

by approximately 290 counts/degree except for wheel two at the commanded speed of 0x0800.

21

However, it is assumed that the user simply failed in observing the correct number of turns for this

wheel. Another test run eventually with even more turns should be conducted. However, for ease of

computation and in agreement to Mays/Reid [1], it is expected that for a given number of encoder

counts, all wheels will advance by exact the same angle if commanded by the same digit and the

conversion is given by

driving wheel 1...4 1 degree = 290 counts
angle driven [radians] 6 = 6.018376731 • lQ-5rad/count

Table 4.4: Conversion Factor for Driving all Wheels.

In a second step, a function ' velocityTest ()' was implemented in the source file 'motor.c'

in order to determine the driving speed as a function of servo data sent to the driving servos. The

inner workings of this function are quite simple:

1. Align all wheels, set speed = 500.

2. Set all motors to speed.

3. Wait one second to let servos attain steady state.

4. Observe the difference in shaft encoder readings for an observation period of one second.
Store the readings in main memory (starting at 0x00100000) at consecutive locations.

5. Decrease speed = speed -10.

6. If speed < -500 stop, otherwise repeat the loop with step 2.

7. Stop the test program.

Once the program was done, the data (steering and driving delta for every second) was

downloaded as an ASCII dump to the notebook, converted to decimals and further analyzed using

the MATLAB function 'velocity.m\ Although it was - based on the results from Mays/Reid

- expected to obtain a nonlinear relationship between the velocity (which is proportinal to the

difference in encoder readings) and the commanded digits, the results proved to be quite different.

For free floating wheels, the drive encoder advances for a given speed during the time interval

of 1 sec are shown in Figure 4.1 and the equivalent steer encoder differences are shown in Figure 4.2.

To solidify the results, a second experiment, now with the vehicle on the ground has been conducted.

The results according to this experiment are shown in Figure 4.3 and Figure 4.4.

As can be seen from the graphs, both experiments show the same linear relationship for the

driving of all wheels with just slightly changing parameters and in addition to this, the interaction

from driving to steering for each wheel is insignificant and can be neglected. The test was conducted

a total of three times, two times with the wheels on the ground and the vehicle moving in a straight

22

Wheel 2, fit digits = -1.3302830e-002 driveDelta + -1.60266
500 f,

-3-2-10123
velocity (driveDelta) [counts/sec] x 10'

Wheel 1, fit digits = 1.33118326-002 driveDelta + -1.72896
500 r

-3-2-1 0 1 2 3
velocity (driveDelta) [counts/sec] x 10*

Wheel 4, fit digits = -1.3315856e-002 driveDelta + 0.6O989
500,.

-3-2-10123
velocity (driveDelta) [counts/sec] x IQ*

Wheel 3, fit digits = 1,3295249e-O02 driveDelta + -0.53392
500 r

-3-2-10 1 2 3
velocity (driveDelta) [counts/sec] x 10*

Figure 4.1: Commanded Digits versus Encoder Differences for Free Floating Wheels.

s °-5

i

digits to servo

mar

i °

digits to servo

Wheel 3

^

digits to servo digits to servo

Figure 4.2: Influence of Commanded Drive Digits on Steering Wheels. Plot shows Encoder Differ-
ences vs. Commanded Drive Digits for Steering Motors (Steering Motors set to zero).

23

Wheel 2, m digits = -1.33010716-002 driveDelta + -1.75192
600 r. Wheel 1. fit digits = 1.3311438e-002 driveDelta + -1.57062

500 r

-3-2-10123
velocity (driveDelta) [counts/sec] x 10'

Wheel 4, tit digits = -1.3314266e-O02 driveDelta + 0.47206
500 f.

-3-2-10123
velocity (driveDelta) [counts/sec] xi0*

-3-2-10123
velocity (driveDelta) [counts/sec] x io"

Wheel 3. fit digits = 1.3292298e-O02 driveDelta + -014845
500 r

-3-2-10123
velocity (driveDelta) [counts/sec] x to"

Figure 4.3: Commanded Digits versus Encoder Differences for Vehicle on the Ground.

digits to servo digits to servo

50 h

0

Wheel 3

_ y.

digits to servo digits to servo

Figure 4.4: Influence of Commanded Drive Digits on Steering Wheels for Vehicle on the Ground.
Plot shows Encoder Differences vs. Commanded Drive Digits for Steering Motors (Steering Motors
set to zero).

24

line and a third time with the vehicle lifted off the ground and the wheels rotating free. Despite

the changing test conditions, the results were independent from the way the vehicle was suspended.

The recorded data for each wheel was fitted in a least square sense by a polynomial of order 1 (a

straight line) and the coefficients are given in Table 4.5 where the encoder difference driveDelta is

given in units of counts per second.

Wheel 1 digit = 0.01331 driveDelta [count/sec] -1.65
Wheel 2 digit = -0.01330 driveDelta [count/sec] -1.65
Wheel 3 digit = 0.01329 driveDelta [count/sec] - 0.30
Wheel 4 digit = -0.01331 driveDelta [count/sec] + 0.55

Table 4.5: Relationship between drive encoder difference and commanded servo drive speeds.

It is beneficial to use the relationship digit=f(driveDelta/sec) vice the inverse since for any

motion control process, we are given the desired speed (which is directly proportional to the variable

driveDelta/sec) and want to obtain the required digit to control the servos accordingly. Using the

conversion factor given for driving the wheels (see Table 4.4) and the wheel's radius (which we

assume to be equal for all wheels to be 18.9cm) we obtain the conversion from distance travelled to

count advances by

2TT
1 count

360 * 290

1 m = 87914 counts

18.9 cm = 1.13747- 10~d cm

(4.1)

and we finally end up with a handy relationship between velocity [cm/sec] and digits commanded

to the servos (the digits are not yet left justified):

Wheel 1 digit = 11.70 v [cm/sec] - 1.65
Wheel 2 digit = 11.69 v [cm/sec] - 1.65
Wheel 3 digit = 11.68 v [cm/sec] - 0.30
Wheel 4 digit = 11.70 v [cm/sec] + 0.55

Table 4.6: Relationship between Velocity [cm/sec] and Commanded Servo Digit (needs further be
multiplied by 16 to justify left).

After multiplying the above data by 16 in order to shift it digital wise one nibble to the left,

we obtain

Table 4.7 yields the values that can be directly sent to the driving servos. They will already

yield the left-justified data sent to the analog output board. Recall that only the upper 12 bit

determine the final servo speed. Hence, when driving the wheels, we encounter a discretization error

introduced by converting the double valued velocity to 12 bit!

25

B. LINEAR MOTION PROFILE

In order to test the sampling results obtained from both, the shaft encoder and the IMU,

a simple linear motion profile was implemented in the SRK. The profile is implemented as routine

'linearMotionlO ' in the source file 'motor.c' and is shown in Figure 4.5. As it turned out later,

this profile was not suitable to obtain reliable data. Hence, a second profile was implemented as

routine tlinearMotion2()' and the vehicle's principle behavior is depicted in Figure 4.6. While

the vehicle would travel a distance of 4 m in forward direction and return to its start position

upon execution of 'linearMotionlO ', it would travel for 5/6 of a meter forward and stop for

'linearMotion2() '. However, the vehicles maximum acceleration for the former motion would be

2 cm/sec2 while for the latter, the vehicle would speed up to 1 m/sec2 which is quite high!

In the following, the results for the shaft encoders for both motion profiles will be discussed

utilizing the motion control procedure as outlined in Chapter II on page 12. The analyzing MATLAB

routine 'shaft.m' is for completeness given in Appendix B.5 on page 65.

1. Linear Motion Profile #1

This motion segment lasts for a total of 70 seconds, after which the vehicle is expected to

have returned to its start position. The stop during the period 30sec < t < AOsec is utilized to mark

the turning position for the vehicle.

Clearly, as Figure 4.8 reveals, the driving angles are off by up to 10 degrees upon completion

of the motion program. On the floor, a lateral deviation of approximately 35 cm has been observed.

The longitudinal distances traveled came out to be 395 cm for the forward leg and 401 cm for the

reverse leg.

Despite the fact that the steering motors are set to zero, there remains interaction between

driving and steering. It needs to be determined whether or not this relates to badly adjusted (offset)

servo motors or indeed driving interaction. In any case, it is quite evident that feedback is required

to provide the desired accuracy for straight motion. The aspects of feedback are not discussed in

Wheel 1
Wheel 2
Wheel 3
Wheel 4

digit = 187.20 v [cm/sec] - 26.4
digit = 187.04 v [cm/sec] - 26.4
digit = 186.88 v [cm/sec] - 4.8
digit = 187.20 v [cm/sec] + 8.8

Table 4.7: Relationship between Velocity [cm/sec] and Commanded Servo Digit.

26

linearMotion1()

E

c o

Time [secj

Time [sec]

E
Ü 200 -

Time [sec]

Figure 4.5: Linear motion profile implemented as linearMotionK).

linearMotion2()

Time [sec]

O 20

Time [sec]

Time [sec]

Figure 4.6: Linear motion profile implemented as linearMotion2().

27

Wheel 2

X X

3 ; / I. ;J ; j
I«
C \'i\ ; ; K--I ;

TS '■'/■ \

£ 1S

O
1 Z;LXJZl :"¥■";

0.5 ■ 1 ! \ i ; K"..;
0 y ■■ ' \:

Wheel 1

0 10 20 30 40 50 60 70

Time [sec]

Wheel 4

XfB
:|:EEl ■■■;■■■■ Y ;■ ■

0 10 20 30 40 50 60 70

Time [sec]
0 10 20 30 40 50

Time [sec]

Figure 4.7: Accumulated drive encoder readings versus time for linear motion profile #1.

Steer values for Wheels 1 ..4 with steer value set to zero

Time [sec]

Figure 4.8: Accumulated steer encoder readings versus time for linear motion profile #1.

28

this thesis. However, Mays/Reid [1] provide a brief discussion about this topic.

2. Linear Motion Profile #2

In order to serve the IMU analysis better, a linear motion profile was needed which provided

a greater acceleration for the vegicle. Thus, the linear motion program 'linearMotion2() ' has been

implemented in the file 'motor. c'. This motion program drives the vehicle over a distance of about

83 cm (5/6 m) within 4 sec. As was for the motion profile #1, the vehicle follows closely the

determined path.

Considering the fact that no feedback has been implemented in the motion control programs,

it can be concluded that the shaft encoder readings provide sufficient accuracy for determining the

planar motion for SHEPHERD under the condition that no slip occurs.

C. UNCERTAINTIES IN MOTION CONTROL

It is quite obvious that the accuracy of the motion control part and the position determina-

tion depends on several parameters that may vary over time or that were determined too inaccurate.

The main reasons for inaccurate motion control and position determination derived from the shaft

encoder readings are

1. Inaccurate sensor parameters relating to the angular position of each motor.

2. Wheel radius not measured correctly or radius changing over time due to wear or changing
tire pressure.

3. Data reduction for velocity from double valued data type to 12 bit that are being sent to
the servos.

All these factors will eventually degrade the performance of the implemented routines. Hence, there

will be ample space for improvement for future work.

29

Wheel 1

E*
(D 0.5

|0.3

Q
0.2

0.1

1-5 2 25 3 3.5

Time [sec]

Figure 4.9: Compounded drive encoder readings versus time for linear motion profile #2.

Steer values for Wheels 1 ..4 with steer value set to zero

Time [sec]

Figure 4.10: Compounded steer encoder readings versus time for linear motion profile #2.

30

V. INERTIAL MEASUREMENT UNIT

This chapter describes the framework that was implemented on SHEPHERD in an attempt

to obtain reliable velocity and position data based on inertial measurements. All source code as it

pertains to the implementation of the Inertial Measurement Unit (IMU) is provided in the source

file 'imu.c' and listed in Appendix C.l starting at page 67.

Figure 5.1 shows the vehicle's basic appearance with the four wheels at the corners labelled

1 to 4 and the motion sensor with its three corners marked by a solid dot which span the xy-plane

in the body frame {B} mounted on its steel plate. The solid dots on the sensor's casing are just to

relate the upside down orientation to the general appearance as given by Figure 5.2.

Figure 5.1: Configuration for Shepherd Rotary Vehicle

Due to the particular design of the SHEPHERD Rotary Vehicle, the vertical axes of each

wheel are exactly located on the corners of a square of dimension 0.8 x 0.8 m. The sensor is mounted

upside down below the supporting steel plate at the location indicated in Figure 5.1.

31

A. INERTIAL SENSOR

For this project, a four degree of freedom inertial sensor cluster (Solid-State Motion Sensor,

Type MotionPak) from SYSTRON Donner, Concord California [8] is being used. It provides three

outputs for linear motion measured with servo accelerators {ax,ay, ay) and one output for measuring

rotational motion about the z-axis (uz). This data comprises a cartesian coordinate system which

is shown in Figure 5.2. The dots in the three corners shall help identify the attitude of the sensor

as shown in Figure 5.1.

Figure 5.2: Axis orientation for MotionPak Sensor

The MotionPak is customized by the manufacturer for the anticipated dynamic range. Ta-

ble 5.1 shows most of the specifications as they apply to the model in use.

x-axis y-axis z-axis
&x av az ur

Range ±2g ±2g ±2g ±50°/sec
Scale factor 3.748F/S 3.752V/g 3.744 V/p 49.881mV/(deg/sec)
Stationary output 0.0 V 0.0 V +3.75 V 0 V
Bandwidth 869 Hz 925 Hz 869 Hz 75 Hz
Noise (10-100Hz) 1.8 mVRMS 1.8 mVjijifs 2.0 mVjjMs 3.9 mVjjMs

Table 5.1: Operating specifications for MotionPak Model No. MP-G-CQBBB-100, Serial No. 0329
(after Reference [9])

As was already shown by Figure 2.4 on page 8, the analog data provided by the MotionPak

IMU is converted into digital data by an A/D-Board interfacing to the VMEBus. The converted

32

digital data is transferred from the A/D-Board to the 68040 processor on the TUARUS board via

the VMEBus. Figure 5.3 shows how the four analog channels from the MotionPak IMU are actually

routed through the A/D-Board to the CPU.

U)

« ±7.5V
CH 0

A/D MUX

T, = 25^a

Data block from dual port RAM
16 bit (12 bit data, left justified) \.

68040

s» ±7.5V
CH 1

 _^
y

» ±7.5V
CH 2

LIRQ-4

Software trigger (every 10ms)

IRQ-2

!= ±2.5V
CH 3

VIC 068

CH15

Figure 5.3: IMU Hardware Integration

B. A/D CONVERSION SCHEME

The IMU provides continuous analog data to channels 1 to 4 of the A/D-Board VME9325

[10]. With every 10 ms timer interrupt, a block conversion on the AD-Board is triggered via software

command issued by the interrupt handling routine from the 10 ms timer. The AD-Board is configured

to multiplex the four input channels every 50 ß sec for a total of 200 samples. Thus, in a consecutive

order, each of the four channels are sampled at a sampling rate of /s=5000 Hz and the digital data

is stored sequentially in the A/D-Boards dual-port RAM. Once the block conversion is complete,

the A/D-Board will issue an interrupt (see Appendix D.4 on page 93 for the exact interrupt level

in use) to 68040 where the corresponding interrupt handler routine analyzeVME9325() preprocesses

(filters) the block data and stores it as the most recent data in the global variables

ax
^ imuAX

ay =» imuAY
az =$■ imuAZ
uz =*

imuOmegaZ

33

which will thus be available for the next motion control cycle to update the actual vehicle motion.

The board's status can be observed by means of LED indicator lights at the boards front panel:

Green LED
off
on
off
on

Red LED
on
on
off
off

Status
Board is not initialized
Board undergoes initialization
Board is initialized but inactive
Board is performing A/D block conversions

Table 5.2: Status indicator lights for A/D-Board

At present, the data is merely downloaded via the TAURUSBug 'duO' option (see Ap-

pendix D.3) through the CONSOLE port to the Laptop and from there to the UNIX System, where

the data was further analyzed using MATLAB. However, for the future, the sampled data would be

directly processed by the 68040 processor as outlined above.

One might ask, why was the odd sampling frequency /, = 5000 Hz is being used instead of

a more intuitive 10 kHz. A look at the timing diagram Figure 5.4, reveals that the time A between

the last block conversion (w, in block 50) and the start of the next motion control cycle is governed

by the sampling frequency: for continuous sampling (e.g., increased block number to transfer), the

larger fs the smaller will A be. However, there is a constraint on the minimum length of A due

to the fact that the sampling block data must be transferred to the TAURUS main memory. This

transfer must be done before the next motion control cylce is issued by the 10 ms timer interrupt.

This rule must be closely followed, otherwise a loss of sampling data might occur.

Timer Interrupt k

0

| Block 1 Block 2

a*x ay CLX ***z a2 a y az <*»z

I t t t t t t t

20(V«

Timer Interrupt k+1

I t [ms]

| Block 1

ax ay az KJZ \ax ay az u)r

n t t;t t i t
t (ms]

Figure 5.4: Timing Diagram for A/D-Board

The A/D-Board maps a preset input span of A = 20 V for a differential input range of ±

10 V into n=12 bit bipolar two's complement data left justified in a 16 bit word. The value of -2048

relates to an analog input equvalent of-10 V < xanalog < -9.99512 V. Likewise, the digital output

34

of 2048 relates to 0 V < xanalog < 0.00488 V. The stepsize is given by 6 = £ = ^ = 4.88 mV. To

make use of the maximum range available, the board provides a variable gain to amplify the input

signal by factors G=l, G=2, G=4, or G=8. Moreover, we need to scale the data by the appropriate

scaling factors S for each channel which are given in Table 5.1. Thus, for a given channel with gain

G and scaling S, we obtain the analog equivalent of the data by shifting the digital value xdigital by

4 bit to the right (which is equivalent to a division by 16) and than re-scale it according to:

A
^analog — nn fi n {^digital ~ 2048)

Using the scaling factors given in Table 5.1 we end up with the units of [g] for ax,ay, and az and

[degrees/sec] for uz. Expressing the linear acceleration a in terms of the gravitational acceleration

g rather than in Si-units of [m/sec2] turns out to be beneficial if we need to find the Euler angles

and a suitable representation for it in the reference frame {R}.

C. SCHEME FOR DATA ANALYSIS

Accelerometers sense the sum of the gravitational acceleration ag and the linear acceleration

a which is due to an external force applied to the body in the body frame {B}

Bam = Ba + Bg (5.1)

which relates to the reference frame {R} as

Räm = Ra + Rg . (5.2)

In both frames, g is the acceleration of gravity derived from Keplerian physics for two body motion

theory between the Earth and a body. Usually, g is a function of the distance r between the center

of masses of the two bodies and can be computed with

GM

with the constants G and M as described in Appendix A. For a body at the Earth's surface,

g « 9.81 m/sec2 and usually, the variation in height for small changes can be neglected. Therefore

we will not concern ourselves with a variable g and assume that g = 9.81 m/sec2.

In the following, we will devise a scheme to eliminate the undesired gravity components in

our measurement data. Therefore, we will have to focus on the stationary vehicle first, that is, the

only acceleration acting on the vehicle in frame {B} will be the Earth gravity. Moreover, we know

that in the reference frame {R}, the acceleration due to gravity has only a +z-component whereas

35

in {B} we would usually encounter gravitational components in each of the principal axes unless the

sensor is perfectly aligned with frame {R}:

Rg = 0

W
and

ox

rw
subject to the constraint that g = y/»f£+*$ + *& To express frame {B} in terms of frame {R}

we make use of the rotation matrix as outlined in the previous sections and given by Equation 3.2:

R^ _ R TJ Br.

We therefore do need to get the Euler Angles (roll, pitch, and yaw) as defined on page 17. We make

us of the fact that the acceleration of a stationary sensor as measured in {R} should only display

the gravitation:

= RRz(V) R%W RRX(0)B§:TO . &m — 0

w
Solving for BSm yields

Bäm = "R^WO RRy1W RR^(6) Ram .

We recall the identity given in Equation 3.1 on page 16 and rewrite the above equation in terms of

the transpose of each rotation matrix:

^ = *R£(VORRy^)*Rj(0)*äm . (5.3)

For any measurement vector BSm and the related vector RS in frame {R}, Equation 5.3 together

with the definitions for the rotation matrices Equation 3.3, Equation 3.4 and Equation 3.5 given on

page 17 provides us with a system of three equations from which we can determine the Euler Angles.

In particular, we are easily able to determine the Euler angles as a function of the measurement

o-xm = -g sin(<j))

aym — g sin(6) cos((j>)

O-zm = g COS(6) C0S{4>)

(5.4)

(5.5)

(5.6)

We recognize that for the stationary data, the acceleration measured in {B} does not depend on the

yaw angle $ which is directly related to the heading of the vehicle (in order to obtain the heading we,

36

of course, would need to have a compass at hand). Solving the above system for the two remaining

Euler angles yields the following equations:

(j) = —arcsin (— | (5.7)
\9 1

or alternatively for 8

6 = arcsin y—- (5.8)
ygcosifyj

6 = arcsin . y . (5.9)

We see that the last two equations both yield a solution for 9. Depending on the accuracy of our

measurements and the accuracy of the desired math functions we have implemented so far, we may

prefer the one to the other. Since the Sensor's output data is already scaled with respect to g, the

Earth's gravity (see Table 5.1), we may prefer the former and discard Equation 5.9. This is reflected

in the MATLAB listing for 'getdata.m' where the data is arranged accordingly.

Based on the theory pertaining to the inertial measurement sensor as outlined above, the

following scheme to obtain the position data for the vehicle is proposed:

1. Sample stationary data (as is usually the case if one starts up the vehicle) in frame {B} for
a certain period of time.

2. Filter the data with an appropriate lowpass filter.

3. Compute the Euler angles 6 and 0.

4. Transform the data from frame {B} to frame {R} using the rotation matrices given by
Equation 3.2, use arbitrary yaw angle ip.

5. Subtract the acceleration due to gravity acting on the vehicle to obtain the sole acceleration
due to a specific force given in frame {R}.

6. Integrate the data in a suitable way to find the velocity and position vector of the vehicle.

D. INTEGRATION TOOLS

In our analysis of the inertial measurement sensor, we will have to integrate the data in order

to arrive at the velocity vector. There are many integration methods available for integrating discrete

data. For equispaced, discrete data, most of the more commonly known integration formulas such

as the Trapezoidal rule, Simpson's Rule, ... are based on the Newton-Cotes Integration Formulas

([11],[12]). Given a set of values /(x») for equispaced Xi = a + ih \/ i = 0.. .n with h = &=£, the

37

integral of f(x) on the interval [a, b] can be approximated by

/ f(x) dx= [Pn(x) dx
Ja Ja

where Pn(x) is the Lagrangian polynomial that passes through all the points xt and the interval

[a,b] is covered by the (n+1) equidistant points x{. Pn(x) is given by
n

^«(*) = £/(**) ^
where at is given by

»=o

a,=n
fc=0

x-xk

If we let x = a + hs the above integral for Pn(x) reduces to a simple sum

/ Ja
Pn(x) dx = hJ2f{xi) ai=b—^ Yafixi

r~z ns '-^ t=0 j=o
(5.10)

The values for ns and at can be computed given the above relations. However, we will not concern

ourselves with this issue and state the results for the first few parameters:

n ns 0"« Commonly known rule
1
2
3
4
5
6

2
6
8
90
288
840

1 1
14 1
13 3 1

7 32 12 32 7
19 75 50 50 75 19

41 216 27 272 27 216 41

Tapezoidal
Simpson's 1/3
Simpson's 3/8

Table 5.3: Newton-Cotes Formula Parameters

Some of these formulas are being implemented in the function ' integral .m' on page page 65

and used for integrating the acceleration data. The analysis in the following sections will discuss

which formula shall be preferred to the others.

E. DATA FILTERING AND COMPUTATION OF POSITION VECTOR

Several recordings for stationary data have been taken. In the process of obtaining the

position vector for the vehicle we would expect that starting, say from an initial position (0,0,0){R},

this should not vary much as time passes by.

Initially, the sampling scheme was such that each channel of the IMU was sampled at a

sampling rate of 100 Hz with every 10 ms timer interval. Later on, this has been changed to a

sampling rate of 5000 Hz as shown in the timing diagram Figure 5.4 on page 34.

38

1. Stationary Data Analysis

The data collected for the stationary data analysis in this subsection has been sampled

prior to changing the sampling frequency from 100 Hz to 5000 Hz. Thus, this is reflected in the

data presented in this subsection. In addition, the IMU at this stage was not yet mounted to the

vehicle and the orientation of the axes was such that the sensors z-axis pointed up instead of down

as shown in Figure 5.1. Figures 5.5 to 5.10 show typical results obtained. They show data recorded

and processed for a stationary vehicle with file 'imu.m' (see Appendix B.l on page 59). The data

was recorded on the fifth floor of Spanagel Hall with the sensor titled by a significant amount which

was not further specified.

As can be seen from Figure 5.6, the linear components (ax, ay, and az) contain distinct

sinusoidal components at / = 20Hz and / = AOHz. The origin of this behavior still needs further

examination. However, it seems not to be related to the block sampling interval of T=10 ms, rather

than to vibrations inherent in the building. These sinusoidal components can not be beneficial to

the performance of our compuations. Therefore, we have to eliminate the residues by some suitable

filtering technique.

In the time domain (Figure 5.5), we see the effect due to the A/D sampling process: the

sampled data obtained through the A/D Board truly displays the characteristics for discrete-time

signals. Moreover, since the sensor was titled, the data will reflect the values according to this

orientation relative to frame {R}. Thus, the next step involves computation of the Euler angles and

transforming the data into frame {R} using the results obtained in Equation 3.2. Now, follwoing the

transformation the data for ax and ay should ideally go to zero (at least in the mean). The result

is shown in Figure 5.7 with its Fourier spectrum given by Figure 5.8.

In fact, the acceleration for ax and ay is almost zero whereas the acceleration for az is almost

—1.0 g (the DC component is not shown in the frequency spectrum. The negative sign for this data

set is due to the fact that the sensor's z-axis pointed down. The final step is to obtain the velocity

and the position by integrating the acceleration once or twice, respectively. The velocity is shown in

Figure 5.9. As can be seen from the plot, the velocity in x- and z-direction pretty much approaches

steady-state after about 3 sec of recording whereas the velocity in y-direction approaches steady state

after about 10 seconds (eventually, a longer recording needs to be taken to verify this statement). As

for the position vector, which is shown in Figure 5.10, we see that during the first second the error is

small and the position remains pretty much zero. However, as the velocity assumes its steady state,

the position displays a linear behavior. Therefore, based on the stationary analysis, it is advisable

to update (reset) the navigation solution based on the IMU at least every second. Even better, if

39

Linear acceleration

Figure 5.5: Time domain behavior for linear acceleration and angular velocity for the stationary and
tilted IMU as measured by the A/D-Board (normalized to units [g]) in frame {S}.

x 10 Spectrum for linear acceleration without DC-component

0 5 1U 15 20 25 in
x 10" Spectrum for angular velocity without DC-component

Figure 5.6: Fourier spectrum for linear acceleration and angular velocity for the stationary and tilted
IMU as measured by the A/D-Board (normalized to units [g]) in frame {S}.

40

Linear acceleration

1 1 t t l i i i

0 3 1

X10
2 3 4 5 6 7 8 9 10

Figure 5.7: Time domain behavior for linear acceleration and angular velocity for the stationary and
tilted IMU as measured by the A/D-Board (normalized to units [g]) in the reference frame {R}.

Spectrum for linear acceleration without DC-component

I
A/uvwtAWWw-WlHvW^ WUMlivWw*'

0 -3 6

X10"3

::::i::::i:":"
 — --

0
X10'

3r"

15 . 20 . .25 30. 35
Spectrum for angular velocity without DC-component

in i i t • ' iirram I*»M ' -.Jw. ■ilrfMrinwif i Aifun tfiftni n
20 25 30

f[H2]

Figure 5.8: Fourier spectrum for linear acceleration and angular velocity for the stationary and tilted
IMU as measured by the A/D-Board (normalized to units [g]) in the reference frame {R}.

41

the Euler angles which represent the attitude of the vehicle could be determined continuously and

in accordance to the updated Euler angles, new rotation matrices would have to be determined on

a regular basis.

2. Non-stationary Data Analysis with Profile #1

In the sequel, we will analyze data sampled at a sampling frequency of /, = 5000 kHz

according to the timing diagram depicted in Figure 5.4 from an IMU that is mounted on SHEPHERD

as shown in Figure 5.1. First, in order to correlate the sampled data to the actual motion of

the sensor/vehicle, the same linear test motion profile as introduced in Chapter IV and shown in

Figure 4.5 on page 27 was being utilized. Due to the vast amount of data that had to be analyzed

(a recording for 70 sec at a sampling frequency of 5000 Hz on four IMU channels comprised a mere

2.8 MByte!) the analysis was performed on segments of data in order not to exploit the limits of

computational power. In particular, to enhance the performance of the built in MATLAB Fourier

transform function, segments contained 65536 samples, which is a power of two (216).

Figure 5.11 depicts the linear acceleration as determined by the IMU. Despite the fact that

the linear motion profile was only along the x-axis of the vehicle, the sensor seemed not to distinguish

between the channels. All three components display some sort of noise and the signals do not at all

seem to be related to the actual motion profile.

The detailed analysis of the ax-channel is given in Figure 5.12 and 5.13 for the time frame

0 < t < 13sec. Figure 5.12 shows that the original data is distorted throughout the entire frequency

range. Moreover, the time signal does not display the expected behavior according to the true motion

profile. Instead, the oscillations increase in amplitude as time advances. To reduce the noise, an

elliptic filter has been used to attenuate the noise in the stopband. The software filter, implemented

using MATLAB's built in signal processing functions, had the following specifications:

1. Passband from 0... 20 Hz with max. attenuation of 0.1 dB

2. Stopband from 50... Hz with min. attenuation of 80 dB

Other filters such as Chebychev and Butterworth filters were also being tested. None of

these filter types showed a significant improvement of the data. The only advantage Butterworth or

Chebychev filters have compared to Elliptic filters is a better phase linearity in the passband. On the

other hand, and most important for an implementation where computation time is scarce, Elliptic

filters are most efficient since they yield the smallest-order filter for a given set of specifications [14].

42

4r

2 ■
*ü

iß
■g o.

Velocity in frame R

■3* 0.01

I
>" OH

ttsec]

Figure 5.9: Velocity data integrated from the linear acceleration in frame {R}.

Position in frame R

t[sec]

Figure 5.10: Position integrated from the velocity in frame {R}.

43

Linear Motion Profile

Figure 5.11: Linear Acceleration measured by all three channels of the IMU for Linear Motion Profile
#1-

44

Acceleration ax, mean Is 0.009536

 *WWM*M

0

x10J

4 6 8 10

FFT for ax [g], mean is AfU?f)flo.009536 [g], fs=5000 Hz

1000 1500

Blow up view1 (OWFT for ax [g]

fl^^ J... ■
10 15 25

ftHzJ
30 35 40 45

Figure 5.12: Analysis of linear acceleration ax as measured by the IMU.

Acceleration ax after Elliptic filtering

x10J

1.5r-

t[sec]

Blow up view for FFT for ax [g]

10 15 25
f[Hz]

30 35 40 45

Figure 5.13: Analysis of linear acceleration ax after data has been filtered by a 6th order elliptic
filter with passband edge at 20 Hz and Stopband edge at 50 Hz.

45

The results, as depicted in Figure 5.13 do not look too promising. Althought the filter

achieved to smooth the data and reduce the noise, it could not ensure that the acceleration would

show any transition at t=10sec. Recall that according to the true profile, the acceleration should

be zero starting with t=10sec. The only reason that can be attributed to this fatal behavior is

the dynamic input range of the A/D-Board: operating the accelerometer at a maximum linear

acceleration of ax = 0.02m/sec2 (which is only » 0.002 g) we utilize only a voltage span from -7.6

mV to +7.6 mV that is fed into the A/D-Board. Even if the maximum gain of 8 is used to amplify

this signal, the amplitude would never exceed » 62 mV which comprises a mere four digits in the

digital output range.

3. Non-stationary Data Analysis with Profile #2

It was anticipated that, for the second motion profile as shown in Figure 4.6, results for the

measured acceleration would improve. The maximum acceleration was set to be 1.0 m/sec2 with

the maximum velocity reached by the vehicle to be » 0.5 m/s. The sampled data for all three linear

acceleration channels is shown in Figure 5.14. The plot reveals strong interaction between all three

channels. One goal would be to get rid of these interferences by means of a suitable filter technique.

For the time being, we focus on the a^-channel. The time and frequency behavior for the x-channel

is depicted in Figure 5.15. Strong harmonic components influence the overall performance and a

similarity to the actual motion can not be found.

Upon filtering with an elliptic filter of order 6, the recorded data can somewhat be related

to the true motion. However, since the sharp edges in the ideal acceleration profile (Figure 4.6)

result in high frequency components of the signal, these edges can not be recognized by the IMU

(the cutoff frequency for the linear accelerometers is around 900 Hz, see Table 5.1. Nonetheless, the

questions remains: would this be suffice to compute the velocity? We refer to Figure 5.16 and see

that the velocity does in principle follow the curve depicted by the ideal motion profile Figure 4.6.

As soon as the recognizable motion kicks in, the velocity seems to be distorted by an offset in the

acceleration data (rather than assuming a=0 on the interval t G [2,3] sec).

4. Non-stationary Data Analysis with Profile #3

To get rid of the lowpass constraint, a third motion profile has been developed. The profile

is shown in Figure 5.17.

46

Linear acceleration
1

„ 0.5

«* 0

-0.5

fl*M™wiiin

I I i n ■ i iP

0 ■'—^x"

1.5 2 2.5
Angular velocity

hi^«Mt^S«M«i^^^

2
l[s]

Figure 5.14: Linear Acceleration and angular velocity wz relative to frame {R} measured by the
IMU for Linear Motion Profile #2.

47

Acceleration ax in frame R, mean is -0.0069787

1-5 2 2.5

FFT for ax [g], mean is Afc(fH6j= 0.02141 [g), fs=5000 Hz

i^ j~jm.kak£^A.M 1 .
1000 1500

Blow up viej (olf^FT for ax |gj

"i 1M III In ■ ■ ,|

Figure 5.15: Analysis of linear acceleration ax as measured by the IMU.

Acceleration ax in frarre R alter elliptic filtering

Figure 5 16: Analysis of linear acceleration ax after data has been filtered by a 6th order ellipt:
filter with passband edge at 20 Hz and Stopband edge at 50 Hz.

48

linearMotion3()

a> 02 ■

<D -0.2 o o <

Time (sec]

Time [sec]

Figure 5.17: Linear Motion Profile #3.

49

Clearly, this motion should only contain low frequency components. As was the case for the

other two motion profiles, the IMU senses noise in all three channels even though the motion takes

place only in the sensors x-direction.

F. SUMMARY

Based on the results obtained from the linear motion profiles #1 .. #3 the following con-

clusions for the implementation of the inertial measurement unit can be drawn: First, the IMU data

sampled off the IMU needs to fit appropriately in the A/D-Boards input range. As a crude rule of

thumb based on the observations made in this Chapter, the time average of the acceleration signals

to be A/D-converted (this may include any additional gain) should be at least 1/10 th of the max.

allowable input amplitude of the A/D-Board (e.g., at present, the max. input is ± 10 V, the input

signal should be at least 1 V in magnitude). A more detailed analysis is required in this respect.

Probably the most effective solution would be to utilize MotionPak Accelerometers (QFA7000) with

current output rather than voltage output. In this case, the output could be scaled by the user

to especially lower 'g' limits by means of variable scaling resistors (see [13] for more information).

Probably the most significant shortfall in the design of the vehicle was determined to be the variable

suspension of the vehicle's wheels. Whenever the vehicle accelerates by a significant amount, the

vehicle's steel platform may tilt. This change of attitude will be recognized by the IMU but can not

be attributed to a change of the vehicle's main body attitude and thus to a change of position in

3D space.

50

1

0.5 ■

0 ■

Acceleration ax in frame (R), mean is 0.009618

2 3 4 5 6

FFT for ax [g], mean is A^^Sijl 0.01381 [g], fs=5000 Hz

m nw mkt nk §L\ JLWk^^nm flft Mh mm — all M i mm lAahiiM I t
1000 1500

Blow up view ftftn" for ax [g]

»V-Vy^Wj U~^VW^~J '—^«*w LA^ * -A~J L^M^I^J nn._. ..
20 25 30

f[Hz]

Figure 5.18: Analysis of linear acceleration ax as measured by the IMU.

Acceleration ax in frame {R} after elliptic filtering

Velocity vx in frame (R) after elliptic filtering

1. 0.05 ■
5

4
t [sec]

Figure 5.19: Analysis after Elliptic Filtering (6th order filter) with passband edge at 20 Hz and
Stopband edge at 50 Hz.

51

52

VI. SENSOR FUSION

Having developed the two independent navigation components in the previous Chapters, it

was anticipated to fuse the data provided by both systems to further improve the accuracy of the

navigation system. However, since the performance of the IMU does not yield any reliable motion

data, sensors fusion at this point of time is obsolete. Some literature research has been done to

obtain a hint as to how to fuse the data. Almost all papers related to sensor fusion utilize the

extended Kaiman filter. Welch [16] provides a decent introduction in Kaiman filtering. Nonetheless,

it is anticipated that Neural Networks might be applicable to this problem as well. Thus, the aspect

of sensor fusion will be left for future work.

53

54

VII. CONCLUSIONS AND RECOMMENDATIONS
FOR FUTURE WORK

A. CONCLUSIONS

The research issues addressed by this thesis were

• Implement the hardware and software for an Inertial Measurement Unit

• Implement the software for a shaft encoder system

• Evaluate the performance for both sensors

• Sensor Fusion

Both the IMU and the shaft encoder systems have been implemented in software and hardware. The

sampling frequency for the A/D-Board was set to be 5 kHz. Both systems have been tested with

three different linear motion profiles.

The work conducted in addressing the first of these topics revealed several sources of nav-

igation inaccuracy. The A/D Converter board currently in use does not match the IMU's output

range for accelerations below about 1 m/sec2. In addition, due to the vehicle's sophisticated wheel

suspension, the IMU's attitude control could not be related to the attitude of the vehicle and was

changing with time as the vehicle moved. This introduced a slowly varying and yet significant error

in numerically integrating the acceleration.

The second issue addressed proved to be less difficult. Decent results have been obtained

for th elinear motion under the condition that no slip occurs and the vehicle's position can be

determined to within 0.5 percent accuracy.

The overall motion control system seems to be stable at all. However, it has been observed

that computation power for the 68040 processor is scarce. This is mainly to the fact that a public

domain GCC Compiler is in use for generating the executable code. This compiler does not seem

to generate optimal executable code. In addition, the lack of a math processor and math library

functions required that semi-optimal trigonometric functions be implemented in the source code as

well, introducing further inaccuracies.

B. RECOMMENDATIONS FOR FUTURE WORK

There are many issues that were briefly addressed in this thesis but could not be investigated

in detail. Much work needs to be done in the following areas.

55

1. Determine the optimal resolution for the A/D-Board based on the anticipated motion pro-
files.

2. Investigate whether or not variable gain control for the IMU data would improve the per-
formance of the IMU.

3. Develop a scheme for attitude control vice changing the vehicle's suspension.

4. Implement the filter algorithms as determined in this thesis. Care needs to be taken that
computation time is crucial and efficient computation methods be used.

5. Implement an Input/Output Kernel utilizing the 68030 processor for online debugging,
display of status information, and eventually off-loading of some of the lower priority task
such as transferring data between boards.

6. Investigate how the system presented in this thesis would work for most general type of
motion including rotational motion and motion in three dimensions.

56

APPENDIX A: CONSTANTS

 Table 1.1: Constants used throughout the text
Universal constant of gravitation G=6.672 • 10-11 k

m
sec2

Mass of Earth M=5.98 • 1024 kg
mean Earth radius R. =6.371 • 106 m

57

58

APPENDIX B: MATLAB M-FILES

This appendix contains essential MATLAB M-Files that are being referenced in the text.

1. IMU.M

The MATLAAB file ' imu.m' is used to analyze the data recorded from the IMU. It makes

use of the MATLAB functions 'filterl', 'eulerl.m' and 'integral' which are listed following

this section.

1 function imu(fname,G,T,f)
2

3 X
4 X function imu(fname,G,T,f)
5 •/,
6 •/.
7 7, M-File to obtain reliable position data. Procedure:

8 X
9 X 1. load data and scale data

10 X 2. plot data in frame {B}

11 7. 3. filter data with butterworth LP filter in frame <B}
12 X 4. determine Euler angles and transform data fto frame {R}

13 X 5. integrate data to obtain velocity

14 X
15 X Author: Thorsten Leonardy

16 7. Date: 10/23/97
17 X Compiler: MATLAB V4.21c

18 7.
19 7. Input: f name = name of data file

20 X G = gain sequence for channels, default [1114]
21 7. note that G(3) includes the orientation of the
22 7. IHU's z-axis (>0 is up, <0 is down)

23 X T = sampling time for data
24 7. f = switch for filtering ax data

25 X
26

27 g=9.81; X local gravitational constant [g=9.81m/s"2]
28
29 if nargin<2

30 G=[l 1 1 4]; 7. sample gain

31 T=0.01; X samples per block and channel
32 f=0; 7. do not filter data
33 end
34

35 up = G(3)/abs(G(3)) X determine if IMO's z-axis points up
36 G(3)=abs(G(3));

37
38 X load data, ax,ay and az are in [m/sec~2] or [g], wz is in [rad/sec]

39 [t,ai,ay,az,wz]=getdata(fname,G,T);
40
41 disp('»> Plot data in ...')
42 plotdata(t,ax,ay,az,vz); X plot data

43
44 disp('»> Transform <B} --> {R> ...')

45 [ax,ay,az]=eulerl(ax,ay,az,up) ; X transform data to reference frame {A}
46
47 disp('»> Plot data in <R> ...')
48 plotdata(t,ax,ay,az,wz); X plot data in <R>
49
50 disp('»> Integrate data in <R} to obtain v ...')

51 [tv,vx]=integral(t,g*ax,D; 7. integrate step by step
52 [tv,vy]=integral(t,g*ay,l); X integrate step by step

53 Ctv,vz3=integral(t,g*(az-up) ,1); X integrate step by step

59

54
55 figure
56 myplot(tv,vx,'Velocity in frame <R}',",'v_x [m/sec] ', [3 1 1])
57 myplot(tv,vy,",",'v_y [m/sec] ', [3 1 2])
58 myplot(tv,vz,",'t [sec]','v_z [m/sec]', [3 1 3])
59

60 disp('»> Integrate data in <R} to obtain position ...')
61 [tp,x]=integral(tv,vx,l); X integrate step by step
62 [tp,y]=integral(tv,vy,l); 7. integrate step by step
63 [tp,z]=integral(tv,vz,l); X integrate step by step
64
65 figure
66 myplot(tp,x,'Position in frame <R}',",'x [m] •, [3 1 1])
67 myplot(tp,y,",",'y [m] ', [3 1 2])
68 myplot(tp,z,",'t [sec]','z [m] >, [3 1 3])
69
70 •/.

71 7. filter the data for acceleration in x direction
72 7.
73 if f

74 mx=mean(ax); •/, compute the mean
75 my=mean(ay); •/, compute the mean
76 mz=mean(az); •/. compute the mean
77
78
79 7. compute the FFT
80 [AX,f]=filterl(ax,6,t(2)-t(l));
81

82 mAX=AX(l); •/, obtain the mean
83 AX(1)=0; •/, suppress dc component
84
85 figure

86 myplot(t,ax,['Acceleration ax in frame {R}, mean is ' num2str(mx)] , >t [sec]',>ax [g] •, [3 1 1])

88 myplot(f,AX,['FFT for ax [g] , mean is AX(f=0)= • num2str(mAX) ' [g], fs=5000 Hz']
89 'f [Hz]','AX [g]',[3 12])
90
91 X zoom on in for f=0..50 Hz
92 ix=find(f<=50);
93 myplot(f(ix),AX(ix),'Blow up view for FFT for ax [g]'
94 'f [Hz]','AX [g]',[3 1 3])
95
96 X
97 X filter the data
98 X

99 af=filterl(ax, 10,20/2500,50/2500,0.1,80); 7. Cauer filter
100
101 figure

102 myplot(t,af.'Acceleration ax in frame {R} after elliptic futerine'
103 't [sec]','ax [g]',[2 1 1])
104
105
106
107 X
108 X Integrate ax
109 X

myplot(t,v,'Velocity vx in frame {R} after elliptic filtering'
't [sec]','vx [m/s]',[2 1 2])

110 [t,v]=integral(t,af,6);
111
112
113
114
115 end 7. of if f
116

117 dispO» Plot all figures to disk in postscript format as "fname xxx.ns'
118 for i=l:gcf " r

119 figured)
120 eval(['print -dps2 ' fname '_' num2str(i) '.ps'])
121 end
122
123 return
124 7.
125 7. end of 'imu.m'
126 X

60

FILTERl.M

The file 'f ilterl' provides a set of suitable filter routines such as an FFT, Chebychev or

Butterworth filter, and more.
1 function Cy,f]=filterl(x,type,a,b,c,d)
2 •/ .

3 X function [y,f]=filterl(x,type,a,b,c,d)
4 7.

5 X Author: Thorsten Leonardy

6 X Date: 10/16/97
7 X Compiler: HATLAB V4.2cl

8 X
9 X Input: x = input data matrix (M*N)

10 X type = utility function (filter) to apply

11 X a..d = parameter used for some filter types
12 X

13 X type 2..4 average across the rows:

14 X type = 2 simple mean

15 X type = 3 average using Simpson's 3/8 rule

16 X type = 4 average using Simpson's 1/3 rule on 9 samples
17 X tyPe = 5 average using trapezoidal rule
18 X type 6 operate on each row:

19 X type = 6 obtain Fourier transform (a is the sample interval in [sec]).
20 X type 7 ... 9 operate on first row only:

21 X type = 7 moving average FIR-Filter [n Taps]
22 X type = 8 Butterworth filter [wp,ws,Rp, Rs]
23 X type = 9 Chebychev Filter [wp,ws,Rp,Rs]
24 7. type = 10 Elliptic (Cauer Filter) [wp, ws,Rp,Rs]

25 X
26 X Output: y = output data (H*N2/2),

27 X N2 is a power of two closest to and less or equal to N
28 X f = frequency scale (l*N2/2) for y if type=10

29 X
30

31 disp(['*** Function "filterl", type ' num2str(type) ' ***'])
32
33 if type==0

34 y=x;
35 return
36 end

37

38 7. compute mean of the sampled data from the channel
39 if type==l
40 y=x(a,:);
41 end
42
43 if type=2
44 y=mean(x);
45 end
46
47 if type==3
48 c=(3/8)*[l 33233233 1];
49 y=c»x/9;
50 end
51
52 if type==4
53 c=(l/3)*[l 4242424 1];
54 y=c*x(l:9,:)/8;
55 end
56
57 if type==5
58 c=(l/2)*[l 22222222 1];
59 y=c*x/9;
60 end
61
62 X r
63 X Fourier Transform of x

64 X
65

66 if type==6
67

68 T=a; X sampling .time of data

61

™ F=1/T; X sampling frequency [Hz] of signal
70 m=mean(x>); X mean of data sequence

72 N=size(x,2); X total length of data
73 N2=2-(floorUog(10/logC2))) X reduced length to power of two
74 x(:,N2+l:N> = []; X cut off the data sequence
75 t-T*(0:N2-l); •/, time base corresponding to data
76 f=linspace(0,F,N2); X frequency base

78 y. Hatlab computes the Fourier transform of a signal that is sampled
f3 /. at a sampling frequency fs. The corresponding frequency scale is
80 I expressed in terms of the digital frequency omega=2*pi*(f/fs) in
81 . the range 0..2*pi (any discrete FT is periodic in terms of omega
82 /. with period 2*pi) .
83

84 y=abs(fft(*'))'; X compute the Fourier Transfor of x(t)
85 f(:,»2/2+l:N2) = []; •/. discard redundant frequency part
86 y(:,N2/2+l:N2) = D; X discard redundant upper half of spectrum

X X(w) relates now to w=[0,pi]
88 y=y/N2; •/ normalize the amplitude
89
90 end
91
92

93 X ************** moving average FIR filter **********************
94 if type==7
95
96 if nargin<3
97 P=5;
98 end
99 H=P;

100 N=size(x,2);
101

103 I=l(1':)i X filter only first row

104 x=x-[zeros(l,l+H) x(l:H-l-H)]j X the delav
105 x=x/(l+M);
106
107 y=zeros(l,N);
108 y(l)=x(l);
109
110 for i=2:N
HI y(i)=y(i-l)+x(i);
112 end
113
114 end
115
116
117 •/.
118 X IIR Butterworth filter
119 X
120 if type == 8
121

123 I=x(1':); X filter only first row

124 X filter specifications (digital frequencies)
'^ I eS- if fs=2000Hz and passband edge is supposed to be at fp=500 Hz
126 X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!!
127 wp=a; X wp is passband edge [0..1] where 1 relates to fp/(fs/2)
128 ws=b; '/, stopband edge ...
129 Rp=c; X ... and max. attenuation [dB] at passband edge
130 Rs=d; X ... and min. attenuation [dB] at stopband edge

"i ?,H^=bUtt0rd<BP,W3,Rp'Rs): ''• lilter order *** 3dB cutoff-frequency
132 disp(['Butterworth filter order > num2str(N)])
133
134 Xfilter process

135 [b,a]=butter(N,wc); % compute the filter coefficients
136 y=filter(b,a,x); X filter the data
137
138 end
139
140 X
141 X Chebychev Type II filter
142 X
143 if type==9
144

62

145

146
147

148

149
150

151
152

153
154
155

156
157

158

159

160

161

162

163

164

165

166
167

168

169
170
171
172

173
174

175
176
177

178
179

180
181
182

183
184

185
186
187
188
189
190
191

x=x(l,:); '/, filter only first row

X filter specifications (digital frequencies)
'/e.g. if fs=2000Hz and passband edge is supposed to be at fp=500 Hz,

X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!!
wp=a

ws=b
Rp=c
Rs=d

X wp is passband edge [0..1] where 1 relates to fp/(fs/2)

X stopband edge ...
X ... and max. attenuation [dB] at passband edge
X ... and min. attenuation [dB] at stopband edge

[N,wn]=cheb2ord(wp,ws,Rp,Rs); X filter order and 3dB cutoff-frequency
disp(['Chebychev Type II filter order ' num2str(N)])

[b,a]=cheby2(H,Rs,wn);

y=filter(b,a,x);
7. compute the filter coefficients

X filter the data

x
X Elliptic filter (Cauer filter)
X
if type==10

x=x(l,:); X filter only first row

X filter specifications (digital frequencies)

X e.g. if fs=2000Bz and passband edge is supposed to be at fp=500 Hz,
X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!!
wp=a
ws=b
Rp=c

Rs=d

X wp is passband edge [0..1] where 1 relates to fp/(fs/2)
X stopband edge ...
X ... and max. attenuation [dB] at passband edge
X ... and min. attenuation [dB] at stopband edge

[K,Wn]=ellipord(wp,ws,Rp,Rs);

disp(['Elliptic filter order '

[b,a]=ellip(N,Rp,Rs,Wn);
y=filter(b,a,x);

X filter order and 3dB cutoff-frequency
num2str(H)])

X compute the filter coefficients
7. filter the data

X end of
7.

filterl.

3. EULER1.M

The function 'eulerl.m' is used to convert the recorded IMU data which is given in the

sensor frame {S} to the reference frame {R} by means of rotation matrices.
1 function [ax,ay,az]=eulerl(ax,ay,az,up)
2

3
4
5

6
7
8

9
10

11
12
13

14
15

16

X
X function [ax,ay,az]seulerl(ax,ay,az,up)
X
X
X H-File for computing the Euler angles for a given set of data
X measured in the sensor frame {S} and transforming the data into

X the reference frame -OR}.

7.
X Author:
X Date:
X Compiler:

7.
X Input:

X

Thorsten Leonardy
10/16/97
MATLAB V4.21c

ax(ltN) = acceleration [g] in <S} ax-direction
ay(l,N) = acceleration [g] in {S> ay-direction

63

17 '{' az(l,N) = acceleration [g] in {S> az-direction
18 I' UP = orientation of sensors z-axis (+l=up,-l=down)

20 7. Return: acceleration relative to frame {R}
21 •/.
22

23 •/. put data into one measurement matrix aS(3,N) relative to Frame <S>
24 aS=[ax;ay;az];
25
26 •/.

27 7. determine the Euler angles based on the average
28 '/. acceleration during 2nd second
29 7.
30 ix=101:200; % may change this
31 m=mean(aS(:,ix)'); 7. take the mean of first ix values
32 g=sqrt(m*m'); 7. the gravity based on the mean
33 disp([>—> mean of g in frame {S} is ' num2str(g,6) ' g'])

35 psi=0.0; •/, psij arbitrary value
36 phi=-asin(m(l)); 7. phi
37 theta=asin(m(2)/cos(phi)); % theta
38
39 phi=up*phi;
40 theta=up*theta;
41

42 disp(['~> Theta (roll) is ' num2str(theta*180/pi,7) ' degrees'])
43 disp([>—> Phi (pitch) is • num2str(phi*180/pi,7) ' degrees'])
44 disp(['—> Psi (yaw) is ' num2str(psi*180/pi,7) ' degrees'])

46 7.
47 7. compute elements of the rotation matrix
48 7. complete rotation matrix would be R=RZ*RY*RX
49 7.
50

51 RX=[1 0 0 ; 7. rotation matrix about X A
52 0 cos(theta) -sin(theta) ;
53 0 sin(theta) cos(theta)];
54

55 RY=[cos(phi) 0 sin(phi) ; % rotation matrix about Y A
56 0 1 o ;
57 -sin(phi) 0 cos(phi)];
58

59 RZ=[cos(psi) -sin(psi) 0 ; 7. rotation matrix about Z.A
60 sin(psi) cos(psi) 0 ;
61 0 0 1];
62
63 7.
64 7. rotate the data successively to frame <A}
65 7.
66 aR=RX*aS; 7. rotate <B} about {R} x-axis
67 aR=RY*aR; 7. rotate new <B} about <R} y-axis
68 aR=RZ*aR; % rotate new <B} about {R} z-axis
69

70 m=mean(aR(:,ix)'); '/. take the mean of first ix values
71 g=sqrt(m*m'); '/, the gravity based on the mean
72 disp(C—> mean of g in frame {A} is ' num2str(g,6) ' g'])

74 ax=aR(l,:);
75 ay=aR(2,:);
76 az=aR(3,:);
77
78 return
79 '/.
80 7. end of 'eulerl.m'
81 7.

64

4. INTEGRAL.M

This function implements the Newton-Cotes integration formulas as described in the text.

This provides an easy means to compare the results for different integration schemes.
1 function [t,y]=integral(t,x,n)

y, _
'/■ function [t,y]=integral(t,x,n)
7.
% Integrates the input x based on the Newton-Cotes algorithm.
7. The integral is computed on each column.
7.
'/ n = the number of panels (n panels require n+1 data points)
X t is the time base corresponding to the data.

11 7.
12
13 [N,c]=size(t)
14
15 if (ON)
16 x-T'; t=t'; N=c; '/. need data as a vector, N=length of data
17 end
18
19 7. prepare the coefficients in the sum formula
20 if (n==l),c=[l l]/2; end
21 if (n==2),c=[l 2 l]/6; end
22 if (n==3),c=[l 3 3 l]/8; end
23 if (n==4),c=[7 32 12 32 7]/90; end
24 if (n==5),c=[19 75 50 50 75 19]/288; end
25 if (n==6),c=[41 216 27 272 27 216 41]/840; end
26 c=n*(t(2)-t(l))*c;
27
28 for i=l:n:N-n
29 x(i,:)=c*x(i:i+n,:); 7. store result in place
30 end
31
32 y^cumsumCxdinrN-n,:)) ;
33 t=t(n+l:n:N); 7» return the time scale
34
35 return
36 7.
37 7. End of 'integral.m'
38 7.

SHAFT.M

In order to analyze the shaft encoder data that was recorded during the different motion

programs.
1 function shaft(fname)
2
3 7.
4 7. function shaft (fname)
5 •/,

6 7.
7 7. M-File to analyze the shaft encoder readings recorded for SHEPHERD'S
8 7. motion according to the different motion profiles.
9 7.
10 7. Author: Thorsten Leonardy
11 7. Date: 11/11/97
12 7. Compiler: MATLAB V4.21c
13 7.
14 7, Input: fname = name of data file (no extension ,*.datl)
15 7. e.g. at the prompt »shaftClinear4')
16 7.
17
18 7. load data

65

19 eval(['load -ascii ' fname '.dat, data=' fname >;' fname ' = [];'])

21 X reshape the data

22 N=length(data)/8 •/. number of 10ms intervals contained in data
23 data=reshape(data,8,N);
24 t=0.01*(l:N); •/, the time base
25

26 driveDelta=data(l:2:8,:)>; X driving data [counts/lOms]
27 steerDelta=data(2:2:8,:)>; % steering data [counts/lOms]
28

29 X account for the fact that drive encoders for «heels 2 and 4 read negative
30 X differences if wheels are driving forward
31 driveDeltaO,2:2:4)=-driveDelta(:,2:2:4);
32

33 X accumulate the data to obtain true rotation of motors
34 drive=cumsum(driveDelta); X the distance travelled
35 steer=cumsum(steerDelta); X the angle steered
36
37 X scale to SI units
38 drive=drive/87914; X drive distance in [m]
39 steer=steer/256; X angle steered in degrees
40
41 X plot data
42 figure
43 for i=l:4
44 if (mod(i,2))
45 subplot(2,2,i+1)
46 else
47 subplot(2,2,i-1)
48 end
49 plot(t,drive(: ,i)),grid
50 title(['Wheel ' num2str(i)],'FontSize',8)
51 xlabelOTime [sec] ', 'FontSize' ,8)
52 ylabeK'Drive distance [m]','FontSize',8)
53 set(gca,'FontSize',6,'Box','off')
54 a=axis; a(3)=min(drive(:,i)); a(4)=max(drive(: ,i)); axis(a)
55 end
56 eval(['print -dps2 shaft' num2str(gcf) '.ps'])
57
58 figure
59 plot(t,steer).grid

60 titleCSteer values for Wheels 1..4 with steer value set to zero','FontSize' 8)
61 xlabeK'Time [sec]','FontSize',8) '
62 ylabeK'Steer angle [degrees]','FontSize',8)
63 set(gca,'FontSize',6,'Box','off')
64 ix=min(find(t>=65));
65 for i=l:4
66 text(t(ix),steer(ix,i),['Wheel' num2str(i)],...
67 'HorizontalAlign', 'left', 'VerticalAlign', 'top', 'FontSize' 6)
68 end

69 eval(['print -dps2 shaft' num2str(gcf) '.ps'])

71
72 return
73 X
74 X end of 'shaft.m'
75 X

66

APPENDIX C: GCC COMPILER SOURCE-FILES

This appendix lists the C-source code that is being referred to throughout the text. Each

individual source file was written in C and crosscompiled using the GCC Compiler Version 2.72 with

the following command line:

gcc -c -m68040 -o filename.o filename.c

1. IMU.C

The file 'imu.c' provides all the routines required to implement the inertial measurement

sensor as outlined in Chapter V. Moreover, they provide the interface for further development of

the system.

File:

Environment: GCC Compiler v2.7.2

Last update: 10 September 1997

Thorsten Leonardy
Provides routines required for controlling the inertial

measurement sensor.

>gcc -c -m68040 -o navigat.o navigat.c

Name:
Purpose

1

2

3

4

5
6

7
8

9
10 *
11 * Compiled

12 *
13 *
14
15 /*
16
17
18

19
20
21
22

23
24
25

26
27
28
29

30

31
32

33
34

35
36
37

38
39

40
41

IMU.C

»/

README

Here is how the routines work:

1. Make sure that initVME9325 is called inside mainO
this will setup the proper interrupt handling for reading data

from the accelerometer.

2. A/D-Block conversions as specified in initVME9325 will be initiated with every
10ms timer interrupt. However, to make the data available, make sure that
interrupt for conversion complete are being issued:

3. Call startVKE9325 to enable block conversion complete interrupts

on IRQ-5 to 68040 processor and therefore copy data into main memory

4. To seize copying data into main memory» call stopVME9325

5. The A/D converter is setup such that after every 10ms timer interrupt

a block conversion will be initiated. A total of ADJJUM.CONVERSIONS
conversions will be performed on the four channels on the IMÜ
in the sequence CH0, CHI, CH2, CH3, CH0, ...
The sample time is set to be 25us (hence, one specific channel will
be sampled every lOOus)

6. If interrupts are enabled, the most recent data obtained with every
10ms timer interrupt will be stored in the structure imu as defined

in SHEPHERD.H

67

42

43

44
45

46
47

48
49

50

51
52

53
54

55

56

57

58
59

60

61
62

63

64

65

66

67

68

69

70

71

72

73
74

75
76

77
78
79
80

81
82
83
84

85
86
87

88

89
90
91

92
93

94
95
96

97
98

99
100

101
102
103
104

105
106
107

108
109
110
111
112
113
114

115
116
117

7. The boards status can be observed at the front panel:
(a) green LED is on -> board performs A/D-Conversions, interrupts enabled
(b) green LED is off -> board performs A/D-Conversions, interrupts disabled
(c) red LED is toggling -> Interrupts are being handled by the handler,

data is read from board into SHEPHERD main memory
(d) red LED is on/off -> interrupt handler is not being called

*/
»include "shepherd.h"
»include "imu.h"

int adCounter;

int mainMemCounter;
/* counter for debugging purposes */

/* to count the data stored in main memory */

/* the next is used as temporary storage for analyzing acceleration DATA */
unsigned short »mainHemData;

/*
* initVME9325(void)
*
* Environment: GCC Compiler v2.7.2

* Last update: 24 July 1997

* Name: Thorsten Leonardy
*
* Purpose: Initializes AD-Board VME9325. Board will convert

* analog data from channels specified and store the respec-

* tive digital data (2 Bytes per channel, 12 bit data, lowest
* nibble is zero) sequentially in dual port ram.

* Board will operate in Block mode with interrupts and timed

* periodic triggering (10ms cycle). E.g. perform 10 conver-
* sions on each of the four channels. Once 40 conversions are
* made, initiate interrupt to read data into main memory and
* eventually smooth/filter data.

void initVHE9325(void)
<

*/

unsigned char *ad = (unsigned char») VME9325_BASE; /* base address */

unsigned char *vmeICR4 = (unsigned char*)VIC.IRQ4; /* VHE ICR IRQ-4*/
long *vadr; /» ... Vector base address t/

*(ad+0x81)=0xl0;
*(ad+0x81)=0x02;

/* software reset */
/* turn both LEDs on to indicate board undergoes
/* initialization

*/
*/

/»
* Interrupt settings for VIC

*/
vadr=(long*)0xffe40158; /* VBA address for interrupt handler (4 * 0*56 = 0x158) */
vadr=(long)handlerVHE9325; / write address of handler into Vector Table */

/* set up VIC interface for VHE-Bus interrupts to TUARUS. AD-Board asserts */

/* IRQ-4 upon interrupt to VHE-Bus. Route as IRQ-2 to MC68040. CAUTION !!! */
/* make sure jumper J7 on AD-Board is set correctly !!! »/

vmeICR4=0x82; / disable VHE-Bus IRQ4 input, route as IRQ-2 to Processor «/

(ad+0x83)=0x56; / interrupt vector number provided by board to VIC */

/* program scan sequence (may wish to arrange channels to be scanned differently) */
/* channels axe nrannoA rnntraV«->.j ~—J _*..__J ^_ ., . J

/* *(ad+0x87)
/* *(ad+0x87)
*(ad+0x87)=0x60
*(ad+0x87)=0x61
*(ad+0x87)=0x02
*(ad+0x87)=0xc3

scanned, converted and stored in memory in this order
-0x00; /* channel 0 (ax, +-7.5V input range, gain xl) */
=0x01; /* channel 1 (ay, +-7.5V input range, gain xl) */

/* channel 0 (ax, +-7.5V input range, gain x8) */
/* channel 1 (ay, +-7.5V input range, gain x8) */
/* channel 2 (az, +-7.5V input range, gain xl) */
/* channel 3 (wy, +-2.5V input range, gain x4) */

/* gain x4 to cover max. input range +-10V, */

/* set EOS bit to indicate end of scan sequence*/

*/

68

118 /* setup Board Control Register */
119 *(ad+0x85)=0x08; /* enable timer circuit, enable interrupts */
120 /* block mode, software initiates very first trigger */
121
122 /* setup timed periodic triggering circuit for 50usec (T = 10 * 10 / 2 MHz)*/
123 *(ad+0x8f)=0x54; /* setup counter to receive single byte prescaler count */
124 *(ad+0x8b)=Ox0A; /* load prescaler value into Timer Prescaler Register */
125 *(ad+0x8f)=0x94; /* setup counter to receive single byte timer count */
126 *(ad+0x8d)=0x0A; /* load Conversion Timer Register */
127
128 /* load conversion count register */
129 »((unsigned short *)(ad+0x90))=200;
130
131 /* initialization is complete */
132 *(ad+0x81)=0x01; /* turn off both LED, disable interrupts */
133
134 sioOut(0,"A/D-Board initialized\n\r");
135
136 return;
137 } /* end of AD_Init */
138
139
140 /* *
141 * analyzeVHE9325 *
142 * *
143 * Environment: GCC Compiler v2.7.2 *
144 * Last update: 24 July 1997 *
145 * Name: Thorsten Leonardy *
146 * *
147 * Purpose: Saves the data for one complete block conversion cycle from *
148 * dual-port RAH of A/D-Board to Shepherd's main memory. *
149 * In the future, this routine shall be utilized to analyze *
150 * and filter the data and save only the filtered data. *
151 * This is called from the interrupt handler routine *
152 * AD.Handler. *
153 * *
154 » */

155 void analyzeVME9325 (void)
156 {
157 unsigned short *ad; /* base address for data */
158 int i;
159 unsigned short adData[AD_NUH_C0NVERSI0NS] ;
160
161
162 ad=(unsigned short*)VME9325_DATA; /* load base address for dual port RAH */
163
164 /* *
165 * here goes the filtering ... *
166 * */
167 if ((adCounterX5)==0)
168 toggleVME((unsigned char *)0xfd800000,0x01) ; /* toggle red LED every 50 msec*/
169
170 adCounter++;
171
172 /* *
173 * This is temporary backup *
174 * */
175
176 for (i=0; i<AD_NUH_C0»VERSIONS; i++) <
177 adData[i]=*ad++; /* neglect lower nibble */
178 *mainHemData++=adData[i]; /* save data in main memory */
179 }
180
181 «ifdef 0
182
183 /* once data is filtered, store obtained values in imu */
184 imu.ax=adData[0];
185 imu.ay=adData[l];
186 imu.az=adData[2];
187 imu.omega_z=adData[3j;
188
189 «endif
190
191 /* reload start conversion register for next block conversion */
192 ad=(unsigned short*)0xfd800090; /* address for SCR */
193 *ad=AD_NUH_C0NVERSI0NS; /* reload register */

69

194
195 return;
196 } /* end of analyzeVHE9325 */
197
198
199 7*
200 * startVHE9325(void)
201 *

202 * Environment: GCC Compiler v2.7.2
203 * Last update: 10 September 1997
204 * Name: Thorsten Leonardy
205 *

206 * Purpose: enables interrupts issued by the VHE9325 board.
207 *

208 * Called from: whatever function.
209 *
210 i. */
211 void startVHE9325(void)
212 {

213 unsigned char *statusRegister= (unsigned char *)VME9325_BASE+0x0081;
214 unsigned char *vmeICR4 = (unsigned char*)VIC_IHQ4; /* VHE ICR IRQ-4*/
215

216 /* initialize global variables ... */

217 mainHemData=(unsigned short *)IMU_DATA_ADR; /* start address for data storage */
218 adCounter=0; • °
219
220
221

222 /* write status register to enable interrupt and turn off red LED */
223 *statusRegister=0x09; /♦ turn off both LEDs, enable interrupts */

225
226 return;
227 } /* end of startVME9325 */
228
229
230 /*

/* counter for debugging purposes */

vmeICR4=0x02; / enable VME-Bus IRQ4 input, route as IRQ-2 to Processor */

231 * stopVME9325(void)
232 *

233 * Environment: GCC Compiler v2.7.2
234 * Last update: 10 September 1997
235 * Name: Thorsten Leonardy
236 *

237 * Purpose: disables interrupts off the VME9325 AD-Board. Yet, board
»ill still perform A/D-Conversions but data will not be
made available to the operating system.

238
239 *
240 * Called from:
241 *
242 *
243 void stopVME9325(void)
244 <

245 unsigned char *statusRegister= (unsigned char *)VME9325 BASE+0x0081;
246 unsigned char *vmeICR4 = (unsigned char*)VIC_IRQ4; /* VME ICR IRQ-4*/

248 #ifdef 0
249 /* initialize global variables ... *l
260 260 mainHemData= (unsigned short «OIMU.DATA.ADR; /. start address for data storage »/

2K5 a^dif er=0; '* C0Unter f°r debu8Eing Proses */

*vmeICR4=0x82; /. disable VME-Bus IRQ4 input, route as IRQ-2 to Processor */

252 #endif
253
254
255

256 /* write status register to disable interrupt and turn off red LED */
257 *statusRegister=0x01; /* turn off both LEDs, disable interrupts */
258
259 return;
260 } /* end of stop¥ME9325 */
261
262
263
264 /************************************.»*»*,»»«.»»»„„»„«*„„„„„„„,„,
265 Assembler routines
266 **********************»*************.»»****»**»»»»»**»„,*„«»,«„„,„„„„,
267 '
268
269

70

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

* handlerVME9325
*
* Environment: GCC Compiler V2.7.2
* Last update: 10 September 1997
* Name: Thorsten Leonardy

* Purpose: Handles the VME-Bus interrupt request from the A/D-Board.

asm("
.even
.text
.globl _handlerVHE9325

_handlerVME9325:

link
fsave

#ifdef 0
fmovemx
fmovel
fmovel
fmovel

#endif

move.1
and.b

move.1
move.w

move.1
lea
move.1

clr.l

_loop:
cmp.l
ble.b
nop
bra.b
nop

.proceed:

.done:

/*

a6,#-184
a68(-184)

f pO-f p7, sp«-
fper,spfi-
f psr, spO-
fpiar.spfl-

moveml d0-d7/a0-a5, spQ-

addq.l #1,_adCounter

#0rfd800081,a0
#0xfd,(aO)

#0xfd800090,a0
#200,(aO)

#0xfd820000,a0
.mainMemData,al
(al),a2

dO

#199,dO
.proceed

_done

move.w (aO),dl
nop
move.w dl,(a2)
nop
addq.l #2,a0
addq.l #2,a2
addq.1 #l,d0
bra.b _loop

move.l a2,(al)

/* allocate 184 Bytes on stack to save registers */

/* move floating point registers 80 bit each */
/* move floating point Control Regioster */
/* move floating point status register */
/* move floating point Instruction address register */

/* save data and address registers (14*4 Byte) */

/* increment counter (testing purpose only */

/* load address status register */
/* turn off green LED */

/* reload start conversion register */

/* load address for dual port RAM */

/* loop counter */

/* read next two byte of dual port RAM
/* caution: need this due to pipelining */

/* increment pointer in dual port RAM */
/* increment pointer to next main memory location */
/* increment loop counter */

/* write back the next main memory location */

jsr _analyzeVME9325 /* copy data from A/D-Boards dual-port RAM to main */
/* memory and filter, analyze it */

71

346 noveml sp*+,d0-d7/a0-a5
347
348 Jtifdef 0
349 fmovel spfi+,fpiar
350 fmovel spG+,fpsr
351 fmovel sp©+,fpcr
352 fmovemx sp8+,fp0-fp7
353 »endif
354
355 frestore a6®(-184)
356 unlk a6
357
358 rte
359 ");
360
361

362 /**********************************»******»»*****»»«*„,,»,„»„»„ttt„„„t

363 End of imu.c

364 *********************»********»****«****»»«„*»*»»«»„„»*„„»„,„„»„„„„/
365

2. MOTOR.C

The file 'motor.c' provides the routines required to control the servo motors. Although the

listing was already given by Mays/Reid [1], some changes had beend done to improve the overall

execution time,
l /*
2 // Edward Mays
3 // Shepherd project
4 // 20 February 1997
5 // update: 27 October 1997 Thorsten Leonardy
6 // "> provide code to detect slip,
7 H _> eliminate calls to readDriveEncoders, readSteerEncoders
\ '/ by including code in readEncoders (improves execution speed)
9 '' _> compute speed and angular velocity immediately inside

10 // readEncoders.
11 // MotionControl
12 // ==_.==
13
14
15 #include "shepherd.h"
16 #include "motor.h"
17 »include "movement.h"
18 »include "math.h"
19
20 double theta, omega, speed;

21 double a,,_ /* acceleration in cm/sec-2 */

=*/

22 dd[4]; /* driveDelta required for velocity to steer »/
23 int timeForTurn[8] ; /* storage for time it took to rotate 360 degrees [10ms] */
24 short testSpeed=0x0b00; /. temp variable for changing speed */

int *leoData=(int *)0x00100000; /* start data storage */

25 double radPerDigit[ARRAY_SIZE];
26 int ddc=10000,tc=2000; /* desired vale for driveDelta */
27
28
29
30
31 void readEncoders() <
32 readDriveEncoders (driveReadings);
33 readSteerEncoders(steerReadings);
34 >
35
36

37 void readDriveEncoders (unsigned long int array [])
38 \
39 unsigned char *p=(unsigned char*)VMECTRl, el, c2, c3-
40 int ix;
41 long int temp;

72

42
43 for (ix=0; ix<4; ix++) ■(/* read all four motors subsequentially */
44
45 *(p+3)=0x03; /* load output latch from counter */
46 *(p+3)=0x01; /* control register, initialize two-bit output latch */
47
48 /* read three bytes for specific counter ix and save in status */
49 /* first access to Output Latch Register reads least significant */
50 /* byte first */
51
52 cl = *(p+l) t OxOOff;
53 c2 = »(p+i) k OxOOff;
54 c3 = *(p+l) k OxOOff;
55 arrayCix] = ((unsigned int)cl)l ((unsigned int)c2 « 8) I
56 ((unsigned int)c3 « 16);
57
58 p=p+4; /* increment pointer for next counter */
59
60
61 }
62 return;
63 > /* end of readDriveEncoders */
64
65
66 void readSteerEncoders (unsigned long int array[])
67 <
68 unsigned char *p=(unsigned char*) (VMECTR1 + 0x0100), cl, c2, c3;
69 int ix;
70
71
72 for (ix=0; ix<4; ix++) < /* read all four motors subsequentially */
73
74 *(p+3)=0x03; /* load output latch from counter */
75 *(p+3)=0x01; /* control register, initialize two-bit output latch */
76
77
78 /* read three bytes for specific counter ix and save in status */
79 /* first access to Output Latch Register reads least significant byte first */
80
81 cl = *(p+l) k OxOOff;
82 c2 = *(p+l) k OxOOff;
83 c3 = *(p+l) k OxOOff;
84 arrayCix] = ((unsigned int)cl) I ((unsigned int)c2 « 8) I
85 ((unsigned int)c3 « 16);
86
87
88 p=p+4; /* increment pointer for next counter */
89
90 }
91 return;
92 } /* end of readSteerEncoders */
93
94
95
96 void computeActualRatesO
97 <
98
99 int i;
100 double count,speed;
101
102 for(i=0; i<=3; i++)
103 {
104 if(PreviousCountSpeed[i] == 99999999) /* for derivative for speed */
105 actualSpeeds[i]= 0.0;
106 else
107 actualSpeeds[i]=
108 (convertDifference((driveReadings[i] - PreviousCountSpeed[i]))
109 *DigitToCmDrive[i])/DELTA_T;
110 PreviousCountSpeedCi] = driveReadings[i] ;
111
112 if (PreviousCountSteer[i] == 99999999) /* for derivative for steering */
113 actualAngleRates[i]= 0.0;
114 else
115 actualAngleRates[i]-
116 (convertDifference((steerReadings[i] - PreviousCountSteer[i]))
117 *digitToRadSteer)/DELTA_T;

73

118 PreviousCountSteer[i] = steerReadings[i]•
119 }
120 }
121
122
123

124 void accumulateDriveSpeedO
125 {
126 int i;
127
128 for(i=0;i<=3;i++H
129 Display_Speeds[i] += actualSpeeds[i];
130 }
131 return;
132 }
133
134 void accumulateDriveSteerO
135 <
136 int i;
137

138 for(i=0;i<=3;i++){
139 Display.Steers[i] += 10*actualAngleRates[i];
140 actualAngles[i] += actualAngleRates[i]»DELTA T:
141 }
142 return;
143 >
144
145
146

148 Function convertDifference 0 returns the difference between the new shaft
149 encoder position and the old shaft encoder position. The shaft encoder values
150 contain only 24 bits (0x000000-0xffffff) . The routine adjusts for the trans-
151 ition from Oxffffff to 0x000000 and vice versa.
152 ********»************»****»»***»*«»**»****»«*««»«»M„„»M„„„,„MM .
153 '
154 int convertDifference(int valje)
155 <
156 if(value < -0x800000)
157 value fe= OxOOffffff;
158 else if (value >= 0x800000)
159 value |= Oxff 000000;
160
161 return value;
162 >
163
164
165 /» t

166 * readNewEncoderO
167 * t

168 * Environment: GCC Compiler V2.7.2 «
169 * Name: Thorsten Leonardy ^
170 * Last update: 10/27/97 »
171 * Purpose: This function reads the counter status for drive and steer *
172 * motors every 10ms and stores the current values in the *
173 * variables 'driveReadings' and 'steerReadings'. In addition, *
174 * tne incremental change to the last update is stored in the *
175 * variables 'driveDelta' and 'steerDelta' to allow for compu- *
176 * ting the most current speeds and angular velocities. *

178 * Called from: driver() in movement.c *
179 »

■ */

180 void readNewEncoderO
181 {
182
183 unsigned char *p,*d;
184 int ix;
185

186 p=(unsigned char*)VHECTRl; /* access steering counter registers */
187

188 for (ix=0; ix<4; ir++) { /* read all four driving motors sequentially */

190 driveCountPrevious[ix]idriveCount[ix]; /* save previous value */
191 steerCountPrevious[ix]=steerCount[ix]; /* save previous value */
192
193 /* t/

74

194
195

196
197

198

199

200

201
202

203
204

205

206
207

208
209

210
211

212

213
214

215
216

217

218
219

220
221

222
223

224
225
226
227
228

229
230
231
232

233
234
235

236
237

238
239
240

241
242

243
244
245

246
247
248
249
250
251
252

253
254

255
256
257

258
259

260
261
262

263
264

265
266

267
268
269

/* read drive encoders for wheel ix */
/* */
*(p+3)=0x03;

*(p+3)=0x01;

d= ((unsigned char*)ftdriveCount [ix]) +2;
*d— = *(p+l) ft OxOOff;
*d~ = *(p+l) ft OxOOff;
*d = *(p+l) ft OxOOff;

/, ,/
/* read steer encoders for wheel ix */
/♦ ♦/

/* load output latch from counter */
/* initialize two-bit output latch */

/* start with LSB, need offset */
/* read LSB first */
/* read next byte */
/* read most significant byte */

*(p+0xl03)=0x03;
*(p+0xl03)=0x01;

d=((unsigned char*)ftsteerCount[ix])+2;
*d— = *(p+0xl01) ft OxOOff;
*d— = *(p+0xl01) ft OxOOff;
*d = *(p+0xl01) ft OxOOff;

p=p+4;

/* load output latch from counter */

/* initialize two-bit output latch */

/* load LSB first */

/* read LSB first */
/* read next byte */

/* read most significant byte */

/* increment pointer for next motor*/

/* determine difference between previous and current encoder reading */

steerDelta[ix] = (steerCount[ix]-steerCountPrevious[ix])/256;
driveDelta[ix] = (driveCount [ix] -driveCountPrevious [ix])/256;

/* consider the fact that a positive driveDelta for wheels 2 and 4 */

/* indicate that wheel is driving backwards !!! Thgus, change sign */
driveDelta [ix] = (driveCount [ix] -driveCountPrevious [ix]) /256;

/* the following is just for testing purposes [leo, 11/17/97] */
encoderData++=driveDelta[ix]; / store in main memory */

encoderData++=steerDelta[ix]; / store in main memory */

} /* end of for */

/* account for the fact that a positive driveDelta for wheels 2 and 4 */
/* indicate that wheel is driving backwards !!! Thus, change sign to */
/* obtain a positive driveDelta for wheel driving forward !!! */
driveDelta[l]=-driveDelta[l];

driveDelta[3]=-driveDelta[3];

return;

> /* end of readNewEncoder */

/» ,
* readNewEncoder0 *
* *
* Environment: GCC Compiler v2.7.2 *
* Name: Thorsten Leonardy *
* Last update: 10/27/97 *

* Purpose: This function reads the counter status for drive and steer *
* motors every 10ms and stores the current values in the *

* variables 'driveReadings' and 'steerReadings'. In addition, *
* the incremental change to the last update is stored in the *

* variables 'driveDelta' and 'steerDelta' to allow for compu- *
* ting the most current speeds and angular velocities. *
* *
* Called from: driver() in movement.c *
» t/

void read£ncoder()
i

unsigned char *p,*d;
int ix;

p=(unsigned char*)VMECTRl; /* access steering counter registers */

for (ix=0; ix<4; ix++) < /* read all four driving motors sequentially */

driveCountPrevious [ix] =driveCount [ix] ; /* save previous value
steerCountPrevious[ix]=steerCount[ix] ; /* save previous value

*/
*/

75

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345

/* */
/* read drive encoders for wheel ix */
/, t/

*(p+3)=0x03;
*(p+3)=0x01;

d=((unsigned char*)ftdriveCount[ix])+2
*d— = *(p+l) ft OxOOff
*d— = *(p+l) ft OxOOff
*d = *(p+l) ft OxOOff

/* load output latch from counter */
/* initialize two-bit output latch */

/»
/* read steer encoders for wheel ix
/*
*(p+0xl03)=0x03;
*(p+0xl03)=0x01;

►2; /* start with LSB, need offset */
/* read LSB first */
/* read next byte */
/* read most significant byte */

*/
*/
*/

/* load output latch from counter */
/* initialize two-bit output latch */

d=((unsigned char*)ftsteerCount[ix])+2; /* load LSB first
*d— = *(p+0xl01) ft OxOOff; /* read LSB first

*(p+0xl01) ft OxOOff
: *(p+0xl01) ft OxOOff

/* read next byte
/* read most significant byte

*/
*/
*/
*/

p=p+4; /* increment pointer for next motor*/

/* determine difference between previous and current encoder reading */
steerDelta [ix] = (steerCount [ix] -steerCountPrevious [ix]) /256;
driveDelta [ix] = (dr iveCount [ix] -dr iveCountPrevious [ix]) /256;

} /* end of for */

/* account for the fact that a positive driveDelta for wheels 2 and 4 */
/* indicate that wheel is driving backwards !!! Thus, change sign to */
/* obtain a positive driveDelta for wheel driving forward !!! */
driveDelta [l]=-driveDelta[l] ;
driveDelta[3D=-driveDelta[3];

return;

> /* end of readEncoder */

/*
* computeSpeedAndAngleO
*
* Environment: GCC Compiler V2.7.2
* Name: Thorsten Leonardy
* Last update: 11/21/97
* Purpose: This function computes the speeds, angles and angular velo-
* city for all four wheels based on the most recent shaft
* encoder readings from readNewEncoderO ■
*
* Called from: driver() in movement.c
*

void computeSpeedAndAngle (void)
*/

/* compute measured driving speed [cm/sec] and steering angle [rad] and */
/* steering rate [rad/sec] . „/
for(i=0; i<=3; i++) <

actualSpeeds [i] = ((double)driveDelta[i])*CH.PER_DIGIT/0.01;
actualAngles[i] += ((double)steerDelta[i])*RAD_PEE.DIGIT;
actualAngleRates[i] = ((double)steerDelta[i])*RAD_PER.DIGIT/0.01;

return;

/*
/* Verifies validity of incoming speeds/angles and converts
/* digitial input for the DA board
/*

*/
*/
*/
*/

76

346 void driveMotors(){
347
348 int ix,Speed_Digit,Steer_Digit, counter;
349 double speedl, steerl, temp;
350
351 unsigned short bitMask=0x8000; /* access bit 15 for align wheel 1 */
352 unsigned short *servoStatus= (unsigned short *) (VME9421+0x00ca); /* digital input */
353
354 bitMask = bitHask » 3;
355
356 /* updateWheelDriveO; wheel values for driving */
357 ■ /* updateWheelSteerO; */
358 /* comupte the current actual wheel direction in WheelDirActC] */
359
360 if (mode != 100){
361 for(ix =0; ix <ARRAY_SIZE; ix++H
362 /* ********************steering/driving interaction************* */
363 /* here +/- 1/50 of the steering value is added to the driving */
364 /* for each specified wheel. Note the negative sign on elements [1] */
365 /* and [33provide the same direction driving as elements [0] and [2] */
366
367 0mega_Speed = desiredSpeeds[ix] +
368 SteerDriveInteract*desiredAngleRates[ix]*18.9; /* cm/sec */
369
370 /* conversion to digits */
371 Speed_Digit = velocityReferenceTable(Omega_Speed,ix) +
372 DriveFeedBackGain* (Omega.Speed - actualSpeeds[ix]);
373 Steer_Digit = rateReferenceTable(desiredAngleRates[ix])
374 + steerFeedbackGain* (desiredAngleRates [ix] -actualAngleRates [ix])
375 + angleFeedbackGain*norm(desiredAngles[ix]-actualAngles[ix]);
376
377 if (Speed.Digit>DigitsHigh) /* Limitation */
378 Speed.Digit= DigitsHigh;
379 if (Steer_Digit>DigitsHigh)
380 Steer_Digit= DigitsHigh;
381 if (Speed_Digit<DigitsLow)
382 Speed_Digit= DigitsLow;
383 if (SteerJ)igit<DigitsLow)
384 Steer_Digit= DigitsLow;
385
386 switch(mode){
387 case 2
388 case 3
389 case 4
390 case 5
391 case 6
392 case 7
393 case 8
394 case 9
395 case 10:
396 case 11: /* ease 11: linear test drive, added 11/03/97 Leo */
397 speedDigits[ix]= (short)Speed_Digit; /* casting to short */
398 steerDigits[ix]= (short) Steer _Digit;
399 break;
400
401 case 1:
402 speedl = speedDigits[ix];
403 steerl = SteerDigits[ix];
404 if (speedl > 0) speedl—;
405 if (speedl < 0) speedl++;
406 if (steerl > 0) steerl--;
407 if (steerl < 0) steerl++;
408 speedDigits[ix] = speedl;
409 steerDigits[ix] = steerl;
410 break;
411 } /* end switch */
412 } /* end for */
413 } /* end if */
414 else {
415 for (ix=0; ix<3; ix++H
416 steerDigits[ix] = 0;
417 }
418 for (ix=0; ix<4; ix++){
419 speedDigits[ix] = 0;
420 }
421

77

422 switch (modeTstate){
423 case 0:
424 steerDigits [3] =
425 modeTstate = l;
426 break;
427
428 case 1:
429 modeTstate = 2;
430 break;
431
432 case 2:
433 modeTstate = 3;
434 break;
435
436 case 3;
437 modeTstate = 4;
438 break;
439
440 case 4: ...
441 modeTstate = 5;
442 break;
443
444 case 5:
445 modeTstate = 6;
446 break;
447
448 case 6:
449 modeTstate = = T;
450 break;
451
452
453 case 7:
454 modeTstate = = 8;
455 break;
456
457 case 8:
458 modeTstate = 9;
459 break;
460
461 case 9:
462 modeTstate = 10;
463 break;
464
465 case 10;
466 modeTstate = 11;
467 break;
468
469 case 11;
470 modeTstate = 12;
471 break;
472
473 case 12:
474 modeTstate = 13;
475 break;
476
477 case 13:
478 modeTstate = 14;
479 break;
480
481 case 14:
482 modeTstate = 15;
483 break;
484
485 case 15:
486 modeTstate = 16;
487 break;
488
489 case 16:
490 modeTstate - 17;
491 break;
492
493 case 17:
494 modeTstate = 18;
495 break;
496
497 case 18:

50*Flag;

78

498 modeTstate = 19;
499 break;

500
501 case 19:

502 if (bitMask&tservoStatus)/* read servo status, */
503 { /»wait until wheel aligned */
504 Flag = -Flag;

505 modeTstate = 20;
506 }
507 break;
508

509 case 20:

510 steerDigits[3] = 0;
511 -modeTstate = 21;

512 break;

513

514 case 21:

515 modeTstate = 22;

516 break;

517

518 case 22:
519 modeTstate = 23;

520 break;

521

522 case 23:
523 modeTstate = 24;

524 break;
525

526 case 24:
527 modeTstate = 25;

528 break;
529

530 case 25:

531 modeTstate = 26;

532 break;

533
534 case 26:
535 modeTstate = 27;

536 break;
537
538 case 27:

539 modeTstate =0;
540 break;
541
542 default : break;
543 } /* end switch */
544 } /* end else */

545
546 «ifdef 0

547 driveSteer(steerDigits);
548 driveSpeeds(speedDigits);
549 «endif

550

551 /* here is a more efficient way of setteing the speeds [Leo, 11/18/97] */

552 /* instead of using the functions driveSteer and driveSpeeds ... */

553 setServoSpeedO;
554

555

556 }/* end driveHotors */
557
558
559

560 double velocityReferenceTable (double desiredVelocity, int i)
561 {
562 double inVelocity,

563 outVelocity;
564

565 inVelocity=new_abs (desiredVelocity) ;
566

567 if (inVelocity>=0.0 kk inVelocity<=5.0)
568 outVelocity = inVelocity*Kl [i] ;
569

570 if (inVelocity>5.0 kk inVelocity< 8.0)
571 outVelocity = inVelocity*K2[i];
572

573 if (inVelocity>=8.0 kk inVelocity<20.0)

79

574 outVelocity = inVelocity»K3[i];
575

576 if (inVelocity>=20.0 kk inVelocity<= 70.0)
577 outVelocity = inVelocity*K4[i] ;
578
579 if (inVelocity>70.0 kk inVelocity<K5)
580 outVelocity = inVelocity*K6[i];
581
582 if (inVelocity> K5)
583 outVelocity=1023;
584
585 if (desiredVelocity< 0.0)
586 outVelocity = - outVelocity;
587
588 return outVelocity;
589 } /* end velocityLookupTable */
590
591

592 double rateReferenceTable (double desiredRate)
593 {
594 double inKate,
595 outDigit;
596
597
598

599 inRate=new_abs(desiredRate);
600
601 if (inRate<= 5.234)
602 outDigit = inRate*195.4155
603 else
604 outDigit=1023;
605
606
607 if (desiredRate< 0.0)
608 outDigit = - outDigit;
609
610 return outDigit;
611 }
612
613
614
615 /*

/»outDigit = new_abs(desiredRate); *//* test only */

616 * readOneEncoderO »
617 * „
618 * Environment: GCC Compiler v2.7.2 *
619 * Name: Thorsten Leonardy „
620 * Last update: 10/27/97 »
621 * Purpose: Reads only the encoder specified by 'wheel': *
622 * wheel = 0 ... 3 reads drive encoder for wheel 1..4 *
623 * wheel = 4 ... 7 reads steer encoder for wheel 1.. 4 *
624 * Note: !!! The data (24 bit) is still left adjusted !!! *
 t/ 625 *

626 void readOneEncoder(int ix, int »data)
627 {
628
629 unsigned char *p,*d;
630

633
634

631 p=(unsigned char*)VMECTRl; /* access steering register */
632 p=p+4*ix; B B

if (ix>3) p=p+0x0090; /* account for the fact VHECTR2=VMCTRl+0xl00 */

635 *(p+3)=0i03; /* ioad output latch from counter */
636 *(p+3)=0x01; /* initialize two-bit output latch */
637

638 d=(unsigned char *)data; /* start with LSB, need offset */
639 d=d+2;
640 *d— = *(p+l) ft OxOOff
641 *d~ = *(p+l) t OxOOff
642 *d = *(p+l) ft OxOOff
643
644 return;
645
646 } /* end of readOneEncoder */
647
648
649 /*

/* read LSB first */
/* read next byte »/
/* read most significant byte »/

80

650 * linearMotionO *
651 * *
652 * Environment: GCC Compiler v2.7.2 *
653 * Name: Thorsten Leonardy *
654 * Last update: 10/27/97 *
655 * Purpose: IMplements a linear motion test profile such that the *
656 * vehicle is following steps in successive lOsec time *
657 * intervals. *
658 * Call: User presses '1' on the keyboard (see userO in file user.c)*
659 * */
660 void linearMotionl(void)
661 i
662 double vlx, vly, v2, vlyvlxRatio,omega2,omega3, beta,ro,ro2,vheelAngleV;
663 int ix,Speed_Digit,Steer_Digit;
664 short *servo0ut;
665
666 /* read all shaft encoders */
667 readNewEncoderO;
668
669 /* compute the actual rates, velocities and angles */
670 for (ix=0; ix<4; ix++){
671 driveSpeed[ix]=driveDelta[ix]*CH_PER_DIGIT/DELTA_T; /* [cm/s] */
672 steerRate[ix]=steerDelta[ix]/DELTA_T;
673 steerAngle[ix]=steerAngle[ix]+steerDelta[ix]»RAD_PER_DIGIT;
674 > /* end of for ... */
675
676
677 /* initialize temporary variables */
678 speed=motion. Speed;
679 theta=motion.Theta;
680 omega=motion. Omega;
681
682 /* *
683 * body motion (former in movement.c) *
684 * ,/

685
686 a=2.0; /* acceleration is 2cm/sec*2 */
687
688 if (time<1000) {
689 speed=a*time/100.0; /* rise linearly from 0 ..20 cm/sec in 10 sees */
690 }
691
692 if (time==1000H
693 speed=a*10.0; /* vehicle speed constant for next 10 sec */
694 }
695
696 if (time>=2000)
697 if (time<3000)
698 speed=a*(3000-time)/100.0; /* decelerate to zero speed for 20sec..30sec */
699
700 if (time==3000H
701 speed=0.0; /* stop vehicle for 30sec..40sec */
702 }
703
704 if (time>=4000)
705 if (time<5000)
706 speed=a*(4000.0-time)/100.0; /* reverse motion, move back for 40sec .. 50sec */
707
708 if (time==5000H
709 speed=-a*10.0; /* move back with constant velocity */
710 }
711
712 if (time>=6000)
713 if (time<7000)
714 speed=a*(time-7000.0)/100.0;
715
716 if (time==7000M
717 mode=0;
718 stopVME93250; /* stop A/D-Board */
719 allOffAndZeroO;
720 }
721
722 /* compute required derivatives */
723 speedDot=(speed-motion. Speed) /DELTA.T;
724 thetaDot= (theta-motion. Theta) /DELTAJT
725 omegaDot=(omega-motion. Omega) /DELTAJT

81

726
727 /* update the motion */
728 motion.Speed = speed;
729 motion.Theta = theta;
730 motion.Omega = omega;
731
732 /* update the vehicle configuration */
733 vehicle.heading = vehicle.heading + motion.Omega*DELTA T;
l\t vehicle.coord.x = vehicle.coord.x + motion.Speed.DELTAJr'* cos(motion.Theta)•

vehicle.coord.y = vehicle.coord.y + motion. Speed*DELTA_T » sinGnotion.Theta); 735
736
737 /*

* drive motors (former in motor.c)

*/

/* set speed for «heel 1 */
/* set speed for wheel 2 */
/* set speed for wheel 3 */
/* set speed for wheel 4 */

738
739
740

741 dd[0]=speed/wheelRadius[0]»16615.776
742 dd[1]=speed/wheelRadius[1]»16615.776
743 dd[2]=speed/wheelRadius[2]»16615.776
744 dd[3]=speed/wheelRadius[3]»16615.776
745
746

747 speedDigits[0]=(short)(0.0132421*dd[0]-1.15119)
748 speedDigits[1] = (short) (0.0132276»dd[l]-1.17617)
749 speedDigits[2] = (short)(0.0132283*dd[2]+0.17110)
750 speedDigits [3] = (short) (0.0132680*dd [2] +1.21652)

752 /* set the speeds */
753 setServoSpeedO;
754
755 return;
756 } /* end of leoMotionO */
757

758 void linearMotion2(void)
759 {

760 double viz, vly, v2, vlyvlxRatio,omega2,omega3, beta.ro,ro2,wheelAngleV-
761 xnt ix,Speed_Digit,Steer_Digit;
762 short »servoOut;
763

764 /* read all shaft encoders */
765 readKewEncoderO;
766

767 /» compute the actual rates, velocities and angles */
768 for (ix=0; ix<4; ix++){

769 driTeSpeed[ii]=driveDelta[ix]*CH.PER_DIGIT/DELTA T; /* [cm/s] */
770 steerRate [ix] =steerDelta [ix] /DELTA.T;

771 steerAngle[ix]=steerAngle[ix]+steerDelta[ix]*RAD_PER DIGIT-
772 } /* end of for ... */ "
773
774

775 /* initialize temporary variables */
776 speed=motion. Speed;
777 theta=motion.Theta;
778 omega=motion. Omega;
779
780 /*

781 * body motion (former in movement.c)
782 * *
783 */
784
785

a=100.0; /* max acceleration [cm/sec"2] */

786 /* no acceleration for t<lsec »/
787
788 if ((time>=100)Si(time<200))
789 speed=0.005*(time-100).(time-100); /* vehicle speed [cm/sec] (max is 50cm/sec ./

791 if ((time>=300)t&(time<400))
792 speed=800.0+0.005*time*(time-800.0);
793
794 if (time==400)<
795 mode=0;
796 stopVME9325(); /* stop A/D-Board */
797 allOffAndZeroO;
798 }
799
800 /* compute required derivatives */
801 speedDot=(speed-motion. Speed) /DELTA.T

82

802
803
804
805
806
807
808
809
810
811
812
813
814
81S
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

thetaDot=(theta-motion. Theta) /DELTA.T;
omegaDot= (omega-mot ion. Omega)/DELTA.T;

/* update the motion */
motion.Speed = speed;
motion.Theta = theta;
motion.Omega - omega;

/* update the vehicle configuration */
vehicle.heading = vehicle.heading + motion.Omega*DELTA_T;
vehicle, coord. I = vehicle, coord, x + motion.Speed*DELTA_T * cos (motion. Theta) ;
vehicle.coord.y = vehicle.coord.y + motion.Speed*DELTA_T * sin(motion.Theta) ;

/«
* drive motors (former in motor.c)

*/

dd[0]=speed/wheelHadius[0] »16615.776
dd[l] =speed/wheelRadius [1] *16615.776
dd[2]=speed/wheelRadius [2] »16615.776
dd[3]=speed/«heelRadius[3]*16615.776

speedDigits[0] = (short)(0.0132421*dd[0]-1.15119)
speedDigits[l] = (short)(0.0132276*dd[l]-l. 17617)
speedDigits[2] = (short)(0.0132283*dd[2]+0.17110)
speedDigits [3] =(short) (0.0132680*dd[2] +1.21652)

/* set the speeds */
setServoSpeedO ;

return;
/* end of leoHotion2() */

/* set speed for wheel 1 */
/* set speed for wheel 2 */
/* set speed for wheel 3 */
/* set speed for wheel 4 */

* setServoSpeedO
*
* Environment: GCC Compiler v2.7.2
* Name: Thorsten Leonardy
* Last update: 10/27/97
* Purpose: This function sets the speed as specified in global vars
* speedDigits and steerDigits to all servo motors.
* Called from: driver() in movement.c
*

void setServoSpeed(void)
■C

short *servo0ut= (unsigned short*) (VHE9210+0x0082); /* Analog out */

*/

*servo0ut++=
*servo0ut++=
*servo0ut++=
*servo0ut++=

*servo0ut++=
*servo0ut++=
*servo0ut++=
*servo0ut++=

-speedDigits[0]»16
speedDigits[1]*16
-speedDigits[2]»16
speedDigits[3]»16

steerDigits[0]*16
steerDigits[13*16
steerDigits[2]»16
steerDigits[3]*16

/* set speed for driving wheel 1 */
/* set speed for driving wheel 2 */
/+ set speed for driving wheel 3 */
/* set speed for driving wheel 4 */

/* set speed for driving wheel 1 */
/* set speed for driving wheel 2 */
/* set speed for driving wheel 3 */
/* set speed for driving wheel 4 */

return;
} /* End of setServoSpeed */

/»
* clearEncoder(motors)
*
* Environment: GCC Compiler V2.7.2
* Last update: 03 November 1997
* Name: Thorsten Leonardy
* Purpose: This function clears all shaft encoders.
*
* motors bit mask to select motors, eg. 0x042 selects motor 2 and 7
* to be cleared.

83

878 void clearEncoder(unsigned char motors)
879 {

880 unsigned char *p=(unsigned char*)VMECTRl;
881 int ix;
882

883 for (ix=0; ix<4; ix++,motors/=2) {

884 if (motors k 0x01) »(p+3)=0x04; /* clear respective counter */
885 if (motors k 0x10) *(p+0x0103)=0x04; /» clear steering counter */
??, , P=P+4; /* access next pointer */
887 }
888 return;
889 } /* end of clearEncoder */
890
891
892 /*
893 * align0
894 * Environment: GCC Compiler
895 * Last update: 07 August 1997 m

896 * Name: Thorsten Leonardy and Yutaka Kanayama
897 * Purpose: This function will align SHEPHERD'S wheels such that all

will point in the forward direction. It utilizes the hall
sensors for each of the four wheels. All wheels are being
aligned simultaneously rather than successively.

unsigned short *servo0ut=(unsigned short*)(VHE9210+0x008A); /* Analog out */
unsigned short *servoStatus=(unsigned short *)(VME9421+0x00ca); /. digital input */
unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */

898
899 *
900 *
901 *
902 *

903 void align(void)
904 <
905
906
907
908 int ix
909 unsigned short bitMask,speed=Ox0200;
910
911 /* set steering speeds */
912 »servo0ut=-speed; /* wheell -> rotate CW */
913 *(servo0ut+l)= speed; /* wheel2 -> rotate CCW */
914 *(servo0ut+2)= speed; /» wheel3 -> rotate CCW */
915 *(servo0ut+3)=-speed; /* wheel4 -> rotate CW */
916
917 bitHask=OxfO0O;
918
919 while (bitMaskH
920 if (0x8000 k »servoStatus)<
921 *servo0ut=0x0000; /* set speed=0 for wheel 1 */
922 bitHask=bitMask k 0x7000;
923 }
924 if (0x4000 k »servoStatus)<
925 *(servo0ut+l)=0x0000; /* set speed=0 for wheel 2 */
926 bitMask=bitMask k OxbOOO;
927 }

928 if (0x2000 k »servoStatus H
929 *(servo0ut+2)=0x0000; /* set speed=0 for wheel 3 */
930 bitHask=bitHask k OxdOOO;
931 }

932 if (0x1000 k »servoStatus){
933 *(servo0ut+3)=0x0000; /* set speed=0 for wheel 4 »/
934 bitMask=bitHask k OxeOOO;
935 >
936 }
937
938
939
940 return;
941 } /* end of align */
942
943
944 /* #

945 * all servos on and set zero speed, [added 11/05/97, Leo] *
946 *
947 void all0nAndZero(void){
948

*/

sio0ut(0,"Aligned ...\n\rM);

unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */
949 short *servo0ut= (unsigned short») (VHE9210+0xO082); /* Analog out driving wheell */
950 int ix;
951
952
953

for (ix=0; ix<8; ix++) *servo0ut++=0x0000; /* set zero speed ♦/

84

954 *servoControl=0x00924924; /* turn on all motors */
955
956 return;
957 } /* end of allOnAndZero */
958
959
960 /* *
961 * all servos off and set zero speed, [added 11/05/97, Leo] *
962 * */
963 void allOffAndZero(void) <
964 unsigned int *servoControl=(unsigned int *)VHE2170; /* Data Out */
965 short *servo0ut=(unsigned short»)(VME9210+0x0082); /* Analog out driving wheell */
966 int ix;
967
968 for (ix=0; ix<8; ix++) *servo0ut++=0x0000; /* set zero speed */
969
970 *servoControl=0x00000000; /* turn on all motors */
971
972 return;
973 } /* end of allOffAndZero */
974
975
976 /* *
977 * Set all driving motors to specific speed *
978 * */
979 void allDrive(short digit){
980 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */
981 short *servoOut=(unsigned short*) (VHE9210+0x0082); /* Analog out driving wheell */
982 int ix;
983
984 for (ix=0; ix<4; ix++) *servo0ut++=digit; /* set zero speed */
985
986 *servoControl=0x00000924; /* turn on driving motors */
987
988 return;
989 } /* end of allDrive */
990
991
992 /* *
993 * Set all steering motors to specific speed *
994 * */
995 void allSteer(short digit)
996 {
997 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */
998 short *servo0ut=(unsigned short») (VME9210+0x008A) ; /» Analog out steering wheell */
999 int ix;
1000
1001 for (ix=0; ix<4; ix++) *servo0ut++=digit; /« set zero speed */
1002
1003 *servoControl=0x00924000; /» turn on steering motors */
1004
1005 return;
1006 } /* end of allSteer */
1007
1008
1009 /* *
1010 * switches all motors off [added 11/05/97, Leo] *
1011 * */
1012 void allMotorsOff (voidH
1013 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */
1014
1015 *servoControl=0x00000000; /* turn off all motors */
1016
1017 return;
1018 } /* end of allMotorsOff */
1019
1020
1021 /* *
1022 * switches all motors on [added 11/05/97, Leo] *
1023 * */
1024 void allMotors0n(void)<
1025 unsigned int *servoControl= (unsigned int *)VME2170; /* Data Out */
1026
1027 *servoControl=0x00924924; /* turn on all motors */
1028
1029 return;

85

1030 } /» end of allMotorsOn */
1031
1032
1033 /*
1034 * driveTestO *
1035 * *

1036 * Environment: GCC Compiler v2.7.2 t

1037 * Last update: 29 October 1997 „
1038 * Name: Thorsten Leonardy „
1039 * Purpose: This function computes the actual servo data for all *
1040 * driving motors. t

1041 * Called from: userO upon keyboard interaction (type 'd') *

1043 void driveTestO */

1044 <

1045 unsigned int *servoControl=(unsigned int *)VME2170; /* Data Out */
1046 unsigned short *servo0ut=(unsigned short*)(VME9210+0x008A); /* Analog out */
1047 unsigned short *ser Status=(unsigned short *)(VME9421+0x00ca); /* digital innut */
1048 unsigned short bitl -0x8000; /* access bit 15 for align wheel 1 */
1049 unsigned char *p;
1050 unsigned int wheelSelect;
1051 int ix;
1052

1053 *servoControl=0x00000000; /* disable (turn off) all wheels »/
1054 '

1055 servoOut=(unsigned short*) (VME9210+0x0082); /* Analog out for drive wheel 1»/
1056 wheelSelect=Ox00000004; /* select servo for driving wheel 1 ./

1058 p=(unsigned char*)VMECTRl;
1059
1060 for (ix=0; ix<4; ix++) <
1061
1062 *servo0ut=testSpeed; /* set output value for servo first */
1063 *servoControl=wheelSelect; /* turn on selected servo motor */
1064

1065 sio0ut(0,"Press '.'to start recording time\n\r")■
1066
1067 while (key ! = >.') ; /♦ wait mtil user starts »/
1068

1070 *(P+3)=0x04; /* cleaT „unter for driving wheel ix */

1071 readOneEncoder(ix,(int »HdriveCountPrevious tix]) ; /* update encoder */
1072 readOneEncoder(ix,(int *)tsteerCountPrevious[ix]); /* update encoder */

1074 timeForTurn[ix]=intCounter; /* store time (start observing) */

1076 sio0ut(0,"Press ',' to stop recording time\n\r")-
1077

1079 Hhile (key! = '',) : I* vait mtil »ser «tops the process */

1080 timeForTurn[ix]=intCounter-timeForTurn[ix]:
1081

1082 *servo0ut++=0x0000; /* stop wheel */
1083
1084
1085
1086

readOneEncoder(ix,(int *)tdriveCount[ix]); /* update encoder */
readOneEncoder(ix,(int *)fcsteerCount[ix]); /* update encoder */

1087 driveDelta [ix] = (dr iveCount [ix] -driveCountPrevious [ix]) /256;
1088 steerDelta [ix] = (steerCount [ix] -steerCountPrevious [ix]) /256 •

wheelSelect= wheelSelect«3; /* select next servo (motor) */ 1090
1091
1092 }
1093

1094 *servoControl=0x00000000; /* disable (turn off) all wheels ./

1096 return;
1097 } /* end of driveTest */
1098
1099
1100 /*
1101 * velocityTestO
1102 * *

1103 * Environment: GCC Compiler v2.7.2 „
1104 * Last update: 07 November 1997
1105 * Name: Thorsten Leonardy „

86

1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

* Purpose: This function obtaines the velocity versus digit curve. *
* Drive servos are given different velociies (digit) every *
* two seconds. The first second is to obtain steady state, the*
* second second will record the shaft encoder difference, thus*
* giving rise to a encoder reading versus velocity curve. *
* The commanded velocity goes from 500 .. -510 at present. *

* Called from: userO upon keyboard interaction (type 'v')
*/

void velocityTest(void)
i

unsigned int *servoControl= (unsigned int *)VME2170; /* Data Out */
short *servo0ut= (unsigned short») (VME9210+0x0082) ; /* Analog out driving wheell */

short speed,digit;

speed=500;
digit=speed*16;

leoData=(int *)0x00100000; /* start data storage */

sioOut(0,"velocityTest\n\r");
align 0 ;
allOffAndZeroO;

*servoControl=0x00000924

readNewEncoder();
time=0;

/* turn on driving motors */

/* this will be altered by timer interrupt */

/* set new driving values */
servo0ut++=-digit; / set speed for wheel 1 */
servo0ut++= digit; / set speed for wheel 2 */
servo0ut++=-digit; / set speed for wheel 3 */
servoOut++= digit; / set speed for wheel 4 */

while (speed>-510) <

servo0ut=(short *)(VHE9210+Oi0082);

/* set new driving values */
servo0ut++=-digit; / set speed for wheel 1 */
servo0ut++= digit; / set speed for wheel 2 */
servo0ut++=-digit; / set speed for wheel 3 */
servo0ut++= digit; / set speed for wheel 4 */

speed-speed-10;
digit=speed*16; /* shift nibble left */

/* wait a second for motors to settle */
while(time<100) ;

readNewEncoder();

/* record for a second */
while(time<200) ;

readNewEncoder();

/* store the counter data for previous speed */
*leoData++=steerDelta[03;
*leoData++=steerDelta[l];
*leoData++=steerDelta[2] ;
*leoData++=steerDelta[3];
*leoData++=driveDelta[0];
*leoData++=driveDelta[l];
*leoData++=driveDelta[2];
*leoData++=driveDelta[3];

allOffAndZeroO;

return;
/* end of velocityTest */

87

1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257

/♦

* circumferenceTest()

: Environment:
• Last update:
■ Name:
Purpose:

* Called from:

GCC Compiler v2.7.2
07 November 1997
Thorsten Leonardy
This function drives the vehicle in a straight line and
stores the difference for all shaft encoders for a given
observation time. If the distance travelled is being
measured, one can obtain the relation between shaft encoder
readings and wheel diameter.
userO upon keyboard interaction (type 'c')

*/
void circumf erenceTest (void)
{

unsigned int *servoControl= (unsigned int *)VME2170; /♦ Data Out */
short *servoOut= (unsigned short») (VME9210+0i0082) ; /* Analog out driving wheell */

short speed,digit;

speed=300;
digit=speed*16;

leoData=(int *)0x00100000; /* start data storage */

sioOut(0,"circumferenceTest 0\n\r");

align O;
allOffAndZeroO;

servoControl=0x00000924; / turn on driving motors */

/* determine the digits to command based on linea4r relationship obtained *
* in velocityTest for each wheel individually. „/

I* assume for one second, that driveDelta=10000 */

/* set new driving values for driveDelta approx 10000 over 1 sec */
servo0ut++=(short)(-16(0.0132421*ddc-l.15119))
servo0ut++=(short)(16(0.0132276*ddc-l.17617))
servo0ut++=(short) (-16(0.0132283*ddc+0.17110))
servo0ut++=(short)(16(0.0132680*ddc+l.21652))

/* set speed for wheel 1 */
/* set speed for wheel 2 */
/* set speed for wheel 3 */
/* set speed for wheel 4 */

time=0;
readNewEncoderO

while (time<tc)

readNewEncoder 0

allOffAndZeroO;

return;
} /* end of circumferenceTest */

/* this will be altered by timer interrupt */

/* wait 2 sec */

/*
* steerTestO
*
* Environment:
* Last update:
* Name:
* Purpose:
*
* Called from:

GCC Compiler v2.7.2
29 October 1997
Thorsten Leonardy
This function computes the actual servo readings for all
steering motors.
userO upon keyboard interaction (type 'w')

void steerTestO
{

unsigned int *servoControl=(unsigned int *)VHE2170;
unsigned short *servo0ut=(unsigned short») (VHE9210+Ox008A) ;
unsigned short *servoStatus=(unsigned short *)(VHE9421+0x00ca) ;
unsigned char *p;

*
■ */

/* Data Out */
/* Analog out */
/* digital input */

88

1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
.1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333

unsigned short bitMask=0x8000; /* access bit 15 for align wheel 1 */
unsigned int wheelSelect=Ox00004000; /* select servo for turning wheel 1 */
int ix,turns,a;

/* align wheels */
alignO;

/* clear all driving and steering motor counters and the variables */
clearEncoder(0xff);

servo0ut= (unsigned short») (VHE921O+0xOO8A); /* Analog out for steering wheel 1 */
bitMask=0x8000;
wheelSelect=0x00004000;

readNewEncoderO ;

for (ix=0; ix<4; ix++) <

turns=0;
*servoOut=testSpeed;
*servoControl=wheelSelect;

/* access bit 15 for align wheel 1 */
/* select servo for turning wheel 1 */

/* read all encoders */

/* set output value for servo first
/* turn on selected servo motor

*/
*/

/* turn wheels for a total of 10 turns */
do {

while(!(bitMaskfc*servoStatus)); /* wait until wheel aligned */
while (bitMask£*servoStatus); /* wait until wheel progressed */
turns++; /* one turn completed */
if (turns==l)

timeForTurn[ix]=intCounter; /* store time (start observing) */
if (turns==9){

timeForTurn[ix] = (intCounter-timeForTurn[ix3)/8; /* stop timer */
*servo0ut++=0x0800;

>
}while (turns<10);

wheelSelect= wheelSelect«3;
bitHask = bitMask » 1;

/* speed for final turn */

/* select next servo (motor) */
/* select ner xt status align bit */

servoControl=0x00000000; / disable (turn off) all wheels */

readNewEncoderO;

for (ix=0; ix<4; ix++) radPerDigit[ixD=2.0*PI*10.0/(double)steerDelta[ix] ;

return;
> /* end of steerTest */

/*
* stopTestO
*
* Environment: GCC Compiler V2.7.2
* Last update: 03 November 1997
* Name: Thorsten Leonardy
* Purpose: This function computes the actual servo readings for all
* steering motors while the motor speeds are set to zero.
* Called from: userO upon keyboard interaction (type 's')
*

void stopTestO
{

*/

sio0ut(0,"Aligning Wheels ...\n\r");

align 0 ; /* align wheels */

/* clear all driving and steering motor counters and the variables */
clearEncoder(0xff);

readNewEncoderO;
allOnAndZeroO;

time=0;
sio0ut(0,"Please Wait a minute ...\n\r");
while (time<6000) ; /* wait a minute */
allOff AndZeroO ;

89

1334

1335 sioOut(0,"Done\n\r");
1336 readNewEncoderO;
1337
1338 return;
1339 > /* end of stopTest */
1340
1341
1342
1343

1344 /*******»**************«»*****.»..»«»»,«»»»,**»»♦».»„,,„,„„„„„„„„,„
1345 End of motor.c
1346 *•**********************».**...»**«****..♦»..♦»,»,.„„„„„„„„„„„„„/

90

APPENDIX D: SHEPHERD PRIMER

This appendix provides essential data and procedures which lead to the findings of the

motion parameters that are required to operate SHEPHERD properly. Boxed text will refer to a

segment of software code or a command sequence for use in the TAURUS Debugger environment.

The focus is on the use of the TUARUS Debugger since this provides a quick way to determine most

of the operating parameters.

1. MAIN OPERATING PARAMETERS AND CONVERSION FACTORS

It is sometimes tedious to gather the meat for operating a system. This section strives to

provide most of the operating parameters pertaining to the use of SHEPHERD in tabulated form.

Wheel Radius 0.189 m
max. Tire pressure 49.8 psi
Drive Encoder (all Wheels) 2 IT radians = 360 * 290 counts

1 m = 87914 counts
1 count = 11.37 ^m

Wheel 1 digit = 187.20 v [cm/sec] - 26.4
Wheel 2 digit = 187.04 v [cm/sec] - 26.4
Wheel 3 digit = 186.88 v [cm/sec] - 4.8
Wheel 4 digit = 187.20 v [cm/sec] + 8.8
Steer Encoder (all Wheels) 2 n radians = 360 * 256 counts
 1 degree = 256 counts

Table 4.1: Shepherd Operating Parameters in a Nutshell

91

2. RESET AND READ SHAFT ENCODERS

To find out how the servo readings relate to either the steering and/or the driving, use

the following debugger sequence which resets the servo counter for one wheel, drives the wheel and

reads the servo counter after steering is done. The same procedures would apply for use with the

remaining servo motors.

Taurus_Bug>ns fffffiiob 04

Taurus_Bug>ns ffff04Be 0800

Taurus_Bug>MS ffffffOO 00100000

Taurus.Bug>ms ffffffOO 00000000

Taurus_Bug>ms ffff610b 03

Taurus_Bug>ms ffff610b 01

Taurus_Bug>iid ffff6109:l;b

FFFF6109 D3

Taurus_Bug>md ffff6109:l;b
FFFF6109 C6
Taurus_Bug>md ffff6109:l;b

FFFF6109 FB

Taurus_Bug>

* clear servo counter for steering wheel 3
ft set velocity for steering wheel 3
ft turn on Kotor for steering vheel 3
ft ... after a certain number of revolutions ...
ft turn off motor for steering wheel 3
* select control for motor 7 (steer wheel 3) ft
ft read least significant byte of 24bit counter
ft the result
ft read next byte ...

ft ... the result

ft read most significant byte ..
ft ... the result
ft the complete counter value in this case is

ft 0rfbc6d3 sign-extended (e.g. -276781)

3. UP- AND DOWNLOADING DATA FROM TAURUS BOARD

At this time, there is no straight forward routine for data up- and downloading available.

Hence, the up- and downloading of data such as waypoints, ... is very tedious. The only way, data

can be transferred from or to the TAURUS main memory is via the TAURUSBug options <du> for

downloading data to the Laptop and 'lo\ However, data would be made available only in form of

the Motorola S-Record format.

To download data from the TAURSU main memory to the Laptop, the Laptop must capture

the script sent to the screen to a file (option "T'ext "Capture on the menu bar). In a second step,

output the data to the screen using the folowing command:

Taurue_Bug>duO 100000 lOOOff »This Is a damp to the screen»

Effective address: 00100000

Effective address: OOlOOOff

S01FOOOOE4686973206973206120647S6D7020746F2074686S207363726S6E6EFI
S21410000012341234123412341234123412341234AB

S214100010123412341234123412341234123412349B

S21410002012341234123412341234123412341234BB

S214100030123412341234123412341234123412347B

S214100040123412341234123412341234123412346B

S2141000B012341234123412341234123412341234EB

S214100060123412341234123412341234123412344B

S214100070123412341234123412341234123412343B

S214100080123412341234123412341234123412342B

S214100090123412341234123412341234123412341B

S2141000A0123412341234123412341234123412340B

S2141000B012341234123412341234I23412341234FB

S2141000C012341234123412341234123412341234EB

S2141000D012341234123412341234123412341234DB

S2141000E012341234123412341234123412341234CB

S2141000F012341234123412341234123412341234BB
S9030000FC

Taurus_Bug>

92

As can be seen above, the data from memory location 0x100000 to OxlOOOf f will be output

to the screen and thus captured in the ascii file specified. However, the data will be in the Motorola

S-Record format and a parsing program needs to extract the pure data. The parsing program

however, needs to know the datatype of the data given to extract the correct information. E.g.,

extracting data of datatype 'integer' would require a different parsing routine.

As far as the uploading of data is concerned, the datafile must be transferred in the same

manner as the SRK program, with the 'L0' option and described by [1].

4. INTERRUPTS

This section describes briefly what type of interrupts are enabled on SHEPHERD.

a. Timer Interrupt

Every 10 ms, a timer interrupt is issued by the on board timing circuit. The interrupt

handling routine 'TimerHandler' does the following:

1. increments counter 'intCounter'
(which may be needed for timing purposes)

2. initiate (software trigger) a block conversion for the A/D-Board AVME9325-5

3. call function 'driver' in file 'movement.c' to execute/handle motion control part

The interrupt is routed through the Interrupt steering mechanism (ISM) to the VIC068 and

from there to the 68040 processor in the following way:

AMD9513A
Level 22

ISM
LIRQ-3

VIC068
IRQ-3

68040

IACK-3

b. A/D-Board Interrupt

Every 10 ms, the timer circuit initiates the start of a block conversion on the A/D-Board.

Once this conversion is complete, the A/D-Board AVME9325-5 issues an interrupt to indicate that

93

the conversion is complete and data is available to be read from its dual port RAM. The interrupt

handler 'handlerVME9325()' then subsequently calls 'analyzeData' to further analyze/process

the data. The interrupt vector number is provided by the Board and set to be 0x0056 which relates

to the location of the address for interrupt handling routine at 0x0158 in the interrupt vector table.

As opposed to on-board interrupts, the interrupt from the A/D-Converter VME board is

routed directly through the VIC068 to the 68040 processor:

VMEBus

IRQ-2
IRQ-2

VIC068 68040

c. Keyboard Interrupt

The overarching framework for user interaction is provided by the routine 'user()' in file

'user.c'. Each time, the keyboard is pressed, an interrupt is issued by the 68C681 on board serial

circuit to the 68040 through the TSM and VIC068. The ascii code for the key pressed is then be

stored in the variable inPortA ana further analyzed by the routine [user()' in file 'user.c'. The mode

flags set in this function will be further processed by functions called during the motion control cycle

following each 10ms timer interval. For this interrupt, the interrupt vector number is provided by

the DUART and set to be 0x0060 thus giving rise to the location of the interrupt handling routine

inPortAHandler at 0x0180 in the interrupt vector table.

68C681
Level 8

ISM
LIRQ-1

VIC068
IRQ-1

68040 ►>

IACK-1

5. REPRESENTATION OF DOUBLE VARIABLES

According to the M68040 users manual, any double-precision variable is stored in memory

as an 8 byte data value in the following form

Since the representation is normalized with the leading (implicit) bit always one we find the relation

94

Bit 63 = s = sign bit (l=negative number)
Bit 62..52 = e = 11 bit exponent in the range 0x000 ... 0x7f f
Bit 51..0 = f = 52 bit (13 nibbles) binary decimal (mantissa)

in the range 0x0000000000000 ... Oxf f f f f f f f f f f f f

to the real number representation x by

z = (-l)s 2e-°x3ff (1 + d)

with d = f ■ 2-52 . As an example, to display the double variable stored in memory location 0x306e8

we issue the following TAURUSbug commands

Taurus_Bug>md 306e8:1;d
000306E8 1_3F1_1DF44179E4364

The result is conveniently displayed by the monitor such that the elements can be easily identified:

s=l, e=0x03f 1, f=0xldf 44179e4364. Hence, the real number is

0x01df44179e4364s x = (-1)1 2(0x03fi-OxOSff) (l +
0x10000000000000'

HOW TO RUN SHEPHERD'S WHEELS

Three VME boards account for operating of the wheels, both in steering and driving. These

boards are accessible via the VME Bus Port connector PI and they are:

Board
VME 9210
VME 2170
VME 9421

Function
Analog Output to servos (velocity)
Servo Control (on/off)
Servo Status

GCC Access
short
unsigned int
unsigned short

Shepherd is equipped with a total of eight servo motors: four wheels with driving and

turning capability. The setup and software configuration is depicted in Figure (1). In order to

operate each one of the motors one has to perform the following steps:

1. Select the angular velocity for the motor by writing a signed short value (16 Bit) to the
respective channel (see Figure 1 for the channel assignments) on the VME9210 board (analog
Output). E.g. to turn wheel 3 (rear right) one would write

*(ffff048e)=(short)velocity;

95

where a positive velocity corresponds to the spin direction as indicated by the arrow in Fig.
(1). The well known Right-Hand rule applies for determining the direction of spin.

2. Switch the motor on/off by writing the respective mask to VME2170 at Oxf f f f f f 00. Refer
to Fig. (1) for the mask assignment. E.g. to drive wheel 2 (front left) and turn wheel 4
(rear left) simultaneously, one would issue the command

*(0xffffff00)=(unsigned int)0x00800020

Any combination is allowed, i.e. mask 0x00900000 would turn wheels 3 and 4. Make sure
you have set the angular velocities for the wheels you are going to run as outlined in step 1
above!

A word of Caution: for driving wheels 1 (front right) and 3 (rear right) forward, negative values must be

written to the VME9210 Board as outlined in step 1.

96

o

Wheel 2 Channel Ha.sk
drive
steer

0x«ii0484
0xfffi048c

0x00000020
0x00020000

Wheel 4 Channel Mask
drive
steer

0rffff0468
0rf«f0490

0x00000800
0x00800000

o

/j^ Front

Shepherd

o

V J
—

Wheel 1 Channel Hask
drive
steer

0xf«f0482
0xf«f048a

0x00000004
0x00004000

Wheel 3 Channel Mask
drive
steer

0x«If0486
0x«ff048e

0x00000100
0x00100000

o

V)
—

Switchbox (aft)

Figure 4.1: Wheel Assignment and Servo Register Addressing (Arrows and Dots at each wheel
indicate the rotation of the respective servos if controlled with positive values.

97

98

LIST OF REFERENCES

[I] Mays, Edward J. and Reid, Ferdinand A., Shepherd Rotary Vehicle: Multivariate Motion Control
and Planning, Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1997

[2] Kanayama, Yutaka, et.al. Research on a Semi-Autonomous Ground and Aerial Vehicle System
for Mine/UXO Detection and Clearing, Naval Postgraduate School, Monterey, CA, August 1996

[3] TUARUS 68040/68060 VMEBus Single Board Computer, User's Manual, Omnibyte Corpora-
tion, West Chicago, IL, March 1995

[4] Fowles, Grant R. and Cassiday, George L., Analytical Mechanics, Saunders College Publishing,
Orlando, FL, 1990

[5] Kaplan, Elliot D., Editor Understanding GPS, Principles and Applications, Artech House Inc.,
Norwood, MA, 1996

[6] Craig, John J., Introduction to Robotics: Mechanics and Control, 2nd Edition, Addison-Wesley
Publishing Company, Inc., Reading, MA, 1995

[7] Fossen, Thor I., Guidance and Control of Ocean Vehicles, John Wiley & Sons, West Sussex,
England, 1994

[8] Systron Donner Operating Manual, MotionPak, Solid State Motion Sensor, Model MP-1, Spec-
ification MP-G-CQBBB-100, Systron Donner Inertial Division, Concord, CA

[9] Systron Donner, MotionPak, Final Test Data Sheet, Model MP-G-CQBBB-100, Systron Donner
Inertial Division, Concord, CA, 5 November 1996

[10] ACROMAG Series 9325 High Speed Analog Input Board with RAM, User's Manual, Acrömag
Incorporated, Wixom, MI, 1994

[II] Stoer, Josef, Einführung in die Numerische Mathematik I, Springer Verlag, Berlin, Germany,
1972

[12] Gerald, Curtis F., and Wheatly, Patrik 0., Applied Numerical Analysis, 5th Ed., Addison-
Wesley Publishing Company, Inc., Reading, MA, 1994

[13] Selecting Range and Calibrating Voltage Scale Factor with the QFA7000 (Quartz Flexure Ac-
celerometer), Information Sheet, Systron Donner Inertial Division, Concord, CA, January 1995

[14] Proakis, John G. and Manolakis, Dimitris G., Digital Signal Processing. Principles, Algorithms,
and Applications, Prentice Hall, NJ, 1996

[15] Walker, Randy G., Design and Evaluation of an Integrated, Self-Contained GPS/INS Shallow-
Water A UV Navigation System (SANS), Master's Thesis, Naval Postgraduate School, Monterey,
CA., June 1996

[16] Welch, G. and Bishop, Gary, An Introduction to the Kaiman Filter, University of North Carolina
at Chapel Hill, NO, June 1997 Available at http://www.cs.unc.edu/-welch/kalman/kalman.html

[17] Shultis, J. Kenneth, 3TßX Notes, Practical Tips for Preparing Technical Documents, Prentice
Hall, Englewood Cliffs, NJ, 1994

99

100

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Road, STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Dr. Xiaping Yun, Code EC/Yx 2
Electrical and Computer Engineering Department
Naval Postgraduate School
Monterey, CA. 93943

4. Dr. Xavier K. Maruyama, Code PH/Mx 1
Department of Physics
Naval Postgraduate School
Monterey, CA. 93943

5. Chairman 1
Department of Physics
Naval Postgraduate School
Monterey, CA. 93943

6. Dr. Yutaka Kanayama, Code CS/Kz 1
Computer Science Department
Naval Postgraduate School
Monterey, CA. 93943

7. Thorsten Leonardy 1
c/o Erichsen
Am Wiesenbogen 12
D-24999 Wees
Germany

8. Streitkräfteamt/Abteilung III 1
Fachinformationszentrum der Bundeswehr
Friedrich-Ebert-Allee 34
53113 Bonn
Germany

101

