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ABSTRACT 

An autonomous vehicle must be able to determine its global position even in the absence 

of external information input. To obtain reliable position information, this would require the in- 

tegration of multiple navigation sensors and the optimal fusion of the navigation data provided by 

them. 

The approach taken in this thesis was to implement two navigation sensors for a four-wheel 

drive and steer autonomous vehicle: An inertial measurement unit providing linear acceleration in 

three dimensions and angular velocity for the vehicle's global motion and shaft encoders providing 

local motion parameters. An inertial measurement unit is integrated with the Shepherd mobile 

robot and data acquisition and processing software is developed. Position estimation based on shaft 

encoder readings is implemented. The framework for future analysis including most general motion 

profiles have been laid. 

The sensor's system performance was evaluated using three different linear motion profiles. 

Test results indicate that the shaft encoder provide a positioning accuracy better than 99% (typ. 7.5 

mm for 1 m motion) under no slip conditions for pure translational motion. The IMU still requires 

further improvement to allow for both sensors to be combined to an integrated system. 
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I. INTRODUCTION 

A. BACKGROUND AND MOTIVATION 

Landmines have become an ever increasing threat for the civilian communities in post-war 

scenarios. Several million land mines are scattered around the world annually causing more than 

10,000 fatalities and more than 20,000 severe injuries to non-combattants. 

Since effective multi-national proliferation treaties banning the use of anti-personnel mines 

are not yet in place and with major producers for those mines not likely to sign these treaties because 

of their important impact on conventional warfare, it is essential to develop and deploy equipment 

for detection of anti-personnel mines in mine-contaminated regions. 

Moreover, many countries are downsizing their armed forces due to budget constraints and 

thus turning over formerly used defense sites to the local communities. Wide areas of these defense 

sites (such as proving ground, rifle ranges, ...) are contaminated with unexploded ordnance (UXO). 

The contaminated land must be cleared before transferring to civilian use. 

B. OBJECTIVE 

At present, there are not many effective means for mine and UXO detection available. 

The current approach to mine and UXO detection and clearance is labor and time intensive and 

dangerous: explosive ordnance disposal (EOD) personnel walks slowly over the area that is to be 

cleared, trying to detect buried, half buried or totally exposed material. Once an object is found, 

successive steps in the clearance process would include: 

• detect, 

• identify, 

• excavate, 

• defuse, 

• transport 

and 

• dispose 

the object in question. It is therefore desireable to develop a robust, low-cost tool for persuing 

the above steps through the use of robotics and advanced sensing techniques meeting the following 

requirements: 



• Robustness for operation in rough terrain 

• Expandability for different sensors and equipment 

• Precise navigation tools 

Multi-disciplinary research conducted in the Departments of Electrical and Computer Engi- 

neering, Computer Science, Aeronautics and Astronautics, and the Physics Department at the Naval 

Postgraduate School, centers around the development of a semi-autonomous robot system for land 

mine/UXO searching/processing tasks in humanitarian operations [2]. This project has required the 

cooperative effort of several NPS thesis. The emphasis of this thesis is the implementation of an 

integrated navigation system. In the long term, the system components will be comprised by a land 

vehicle, an aerial vehicle, and a ground-based control center. 

The land vehicle, specifically designed for the aforementioned tasks is four-wheel steerable 

and drivable. A prototype vehicle called SHEPHERD is currently in use for this research project. 

The unique design of SHEPHERD provides a high level of sophistication for motion control for it 

to be able to precisely traverse rough terrain. The interested reader is referred to [1]. The scope of 

this project, in general, is very comprehensive and encompasses many scientific areas. In particular, 

interdisciplinary tools such as physics principles including coordinate transformations, kinematics 

and mechanics of rigid bodies, and electrical and software engineering tools are used, discussed and 

covered in this thesi.-:. 

In order to control the vehicle and implement efficient search patterns while at the same time 

reducing redundant search paths, precise knowledge of the vehicle's velocity and position is essential. 

Using an on-board inertial navigation system, the vehicle's acceleration can be measured and it's 3D 

motion precisely computed by the on-board computer. However, an inertial sensor alone can provide 

accurate position information only in the short term, but must be integrated with additional sensors 

if precise long term positional data is required. The vehicle's rough operation environment makes 

it essential that extremeley accurate position information is obtained. To meet this requirement, a 

Global Positioning System (GPS) receiver shall be integrated. 

The purpose of this thesis is to implement and evaluate an integrated navigation system for 

SHEPHERD enabling the operation of the vehicle under extremely rough conditions while at the 

same time providing accurate position information. This thesis will examine the following research 

questions: 

1. Provide the theoretical background for coordinate transformations, 

2. Implement the hardware and software for an Inertial Measurement Unit (IMU), 

3. Implement the software to determine position based on the on-board shaft encoders, 



4. Develop a scheme for sensor fusion for slip-detection. 

ORGANIZATION 

First, a brief overview of the computer architecture for the Shepherd Rotary Vehicle is given 

in Chapter II. Secondly, Chapter III defines the basic reference frames that are being used throughout 

this project. The secondary means of determining the vehicle motion is given by shaft encoders 

that are used for each of four wheels for both, steering and driving. The software implementation is 

described in Chapter IV. Chapter V describes the implementation of a low cost inertial measurement 

system (IMS) both in hardware and software. Its purpose will be to complement the shaft encoder 

system in situations were slip occurs. How both systems may be unified for slip detection and to 

further improve the performance of the navigation system is investigated in Chapter VI. Finally, 

the success and limitations of the use of the system described herein is summarized in Chapter VII 

providing essential results of this research and recommendations for future research in this area. 





II. SYSTEM OVERVIEW 

In this chapter we will give a brief computer hardware description of the system configuration 

for the SHEPHERD Rotary Vehicle. This complements the description given by Mays/Reid [1] and 

is intended to provide the essential information necessary to understand the cross-references to 

computer components given in the following Chapters. 

All mechanical information for the mobile platform is extensively discussed by Mays/Reid 

[1]. However, we shall note at this point that the Shepherd Rotary Vehicle is a four wheel drive 

and steer mobile robot. The four wheels are steerable without limitations and can be rotated and 

driven in either direction (more than 360 degree of rotation space). The four wheel drive and 

steer capability shall provide the robustness required for operation in rough terrain (e.g., sand dune 

scenarios, ...). A side view and front view photo taken from SHEPHERD with a digital camera are 

shown in Figure 2.1 and Figure 2.2, respectively. 

In Figure 2.1 we can can see the four suspension boxes for the four wheels, the steel plate 

that comprises the main support frame for the robot, the inertial measurement sensor mounted 

upside down below the steel plate, and a joystick that is used to manually steer the robot in the 

top right-hand corner. In addition, in the rear view photo you can see the Laptop computer, to its 

left a switchbox for connecting the Laptop to either a CONSOLE or HOST serial port, and to its 

right the joystick. Another view, shown in Figure 2.3 shows the Laptop placed on the steel plate 

and behind it the servo control rack and the VMEBus chassis. 

The complete hardware architecture is comprised of the TAURUS Single Board Computer 

[3], a VME-Bus based single board computer with a Motorola MC68040 as main processor and 

several other on-board processing components and the VME-Bus. At present, this stand alone 

computer system is expanded with a servo controller unit that interfaces to the four wheels and 

a 16-channel differential input A/D-Board. Four channels of the A/D-Board are utilized for the 

inertial measurement unit (IMU) which is discussed in Chapter V. In the future, the system may 

be expanded with several other sensors through the use of the VME-Bus. Figure 2.4 shows a block 

diagram of the system configuration for SHEPHERD. 

A. TAURUS BOARD 

This section describes the TAURUS single-board computer system's main features. The 

hardware is based on a dual processor platform using Motorola's 68040 as the main processor and 



Figure 2.1: Side view from the SHEPHERD Rotary Vehicle. 

Figure 2.2: Front view from the SHEPHERD Rotary Vehicle with wheels rotated by 45°. 



Figure 2.3: Top view from the SHEPHERD Rotary Vehicle. In the front, the Pentium Laptop used 
as a concole, in the middle the servo controller chassis, and in the back the VMEBus rack. 
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Figure 2.4: Shepherd Rotary Vehicle Hardware Configuration. 



the 68030 as a slave processor for basic I/O functions. Signaling between both processors takes place 

via processor interrupts. The system is attached to a VME bus backplane providing the capability 

to expand the system as far as main memory and additional sensor devices are concerned. Among 

the many I/O functions that the TUARUS board provides are: 

• six RS-232C serial communication ports (two through a DUART 68C681, and four through 
a CD2401 Communications Device) 

• two 24 bit parallel ports 

• several timer/counters: Five provided by the AM9513A System Timing Controller, one 
timer is provided in the 68C681 serial port device and eight timer/counters are available in 
the CD2401 

• real time calendar clock device MK48T08 

• SCSI Port 

• Ethernet Port 

More information can be obtained from [3] and the respective operating/user manuals for 

each device. Rather than focussing on all the technological aspects for each device, we merely focus 

on those important ones for understanding the operation of SHEPHERD. 

1. TAURUS Bug Monitor/Debugger 

For start-up and debugging/monitoring purposes, a debugger/monitoring program called 

TAURUSBug resides in the memory region from Oxff800000 through Oxff9fffff (memory bank 

2, see [3], Chapter 2.2). The user may decide whether or not to use this program for the boot-up. 

However, in the sequel, the project group has made heavy use of the debugging tools provided by 

TAURUSBug. 

2. DUART 68C681 

The TAURUS board features a 68C681 device which provides two dual asynchronous re- 

ceiver/transmitter (DUART) serial ports with RS-232C interface. These two ports are utilized for 

up-/and downloading of executable code and data and for user interaction with SHEPHERD. Port 

A is called CONSOLE and Port B is called HOST. Both ports are connected through a switchbox 

to the laptop computer. 



3. Cirrus Logic Communications Controller CD2401 

Up to date, only one of the four RS-232C serial ports provided by the Cirrus Logic Com- 

munications Controller CD2401 is used for interfacing the GPS receiver. 

4. AM9513A Counter/Timer 

The AM9513A LSI circuit provides a total of five independent 16-bit timer/counters which 

can be cascaded to a single 80-Bit timer/counter for long-term observations. The timer number five 

is used for deriving the motion control clock of T=10 ms: every 10 ms a timer interrupt is issued to 

trigger another motion control cycle. This 10 ms timer interrupt is clearly the heart of the system. 

Care should be taken that this interrupt is granted the highest priority level available. This leads 

to the decision to use timer five instead one of the other four. 

5. Programmable Parallel I/O Port Device (Intel 82C55A) 

The Taurus board is equipped with two Intel 82C55A devices each providing three 8-Bit wide 

ports (Port A, B, and C). Only the first device is currently in use for the motion control by means 

of a joystick. A simple PCB board interfaces an IBM-PC Joystick to this I/O device. However, 

some minor changes to the layout of the Joystick circuitry had to be made. Port A comprises the 

x-Position (an 8-bit digital value ranging from 0 ... 255 equivalent to joystick left to right), Port B 

gives the y-Position in the range 0 ... 255 equivalent to down (0x00) and up (Oxf f). Currently, only 

Bits zero and one are in use from Port C providing status information for the two switches on the 

throttle (pushing the left switch or the center switch on the trottle will set bit zero and pressing the 

right button on the throttle will set bit one). The other two push buttons on the left-hand side of 

the joystick have currently no function. In case that needed, they can easily be connected to any of 

the six remaining bits of Port C through the PCB board by use of pull-up resistors. 

6. Interrupts 

Both on-board and off-board Interrupts are supported by the TAURUS board. All on-board 

Interrupts are routed through the Interrupt Steering Mechanism (ISM) to either the 68030 I/O 
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Processor or via a VMEbus Interface Controller device (VIC068) to the 68040 Processor. Note that 

an interrupt can only be routed to one processor at a time. The VIC068 guides both, ISM interrupts 

and VMEbus interrupts to the 68040 processor. This is depicted by Figure 2.5. In accordance with 

[3], the local interrupts by on-board sources from the ISM to the VIC will be labelled as LIRQ-x 

whereas the interrupts form the VIC068 to the 68040 processor are labelled IRQ-x. 

VMEbus Interrupts 

ISM 
Interrupt 
steering 

mechanism 

LIRQ-x > VIC068 
IRQ-x 68040 

Interrupts     \ 
from           \ 

On-Board      / 
Devices      / 

LIRQ-x 68030 

Figure 2.5: Servicing of on-board Interrupts or off-board VME-Bus Interrupts (From Ref. [3]) 

The ISM combines groups of on-board Interrupts to act as a single interrupt source towards 

either the 68030 or 68040 processor. It is important to note that the VIC068 device enables the 

programmer to shift the interrupt levels. In order to handle the proper handshaking in this case, 

the appropriate LIRQ-Shift-Register in the ISM would have to be set. The TAURUS user's manual 

[3] p. 2-71 gives the following example: 

... if LIRQ-5 from the ISM is shifted in the VIC068 to IRQ-3, then the acknowledge signal 
from the 68040 processor to the VIC068 would be IACK-3 which would be passed on to the 
ISM device. LIRQ-SR5 (at SFFF4800A - upper nibble) would be set to shift [the] VIC068 
IACK-3 input to output ISM-IACK-5. 

Some facts that should be remembered: 

• each Interrupt group is associated with an ISM Configuration Register Nibble. 

• the MSB of each Nibble is the steering Bit, where '0' routes the interrupt to the 68030. 

• the remaining three bits of each nibble encode the local interrupt level. 

• upon Power-Up or RESET, all On-Board Interrupts are disabled. 

• Taurus Vector. Table Base address is at OxffelOxxx where xxx = 4 x Vector Number. 

11 



MOTION CONTROL 

As indicated in the previous section, a motion control cycle is initiated with every 10 ms 

timer interrupt.   In brief, this motion control cycle is given by the following sequence of logical 

blocks: 

readEncoder()       Read all shaft encoders "     " ~ 
computeRates ()     Compute (angular) velocity for all steering and driving motors 
bodyMot ion () Compute motion parameters for the vehicle's body (bodyMotion) 
wheelMotionO       Compute the angles and speeds required for each wheel based on 

the results of bodyMotion 
driveHotors ()       Update the servos for driving and steering motors 

The organization of the motion control cycle is described in more detail in Mays/Reid [1]. 

However, it should be noted that the source code as given there has been modified slightly to make 

the routines more efficient and thus less time consuming. 

12 



III. REFERENCE FRAMES 

This chapter gives a brief discussion on reference frames that are being used throughout 

this thesis. 

A. BODY MOTION 

In the analysis of the motion of a rigid body, it turns out that considerable simplification 

in the mathematical formulas for rigid-body motion can be reached if the motion is described with 

respect to its principal axes. The principal axes are chosen such that the cross terms (sometimes 

called the products of inertia) of the moment of inertia tensor / vanish (see [4] for a more detailed 

analysis of this). The axes form a right-handed coordinate system with the origin usually taken to 

be at the body's center of mass (CM). However, at this point we are not concerned with the moment 

of inertia tensor. 

1. Body Reference Frame 

For the purpose of describing the kinematics of a body moving on the Earth's surface the 

reference frame is chosen such that axes of the body frame, which we will call frame {B}, are given 

by the principal axes of the body given as follows: 

x - longitudinal axis (oriented from rear to front of body) 
y - transversal axis (oriented to the left) 
z - normal axis (oriented pointing up, away from the center of the Earth) 

2. Sensor Reference Frame 

Sensors will be employed with a vehicle in order to measure parameters pertaining to the 

vehicle's kinematics. The sensor will provide data relative to its own frame, which we will call sensor 

frame {S}. In general, this frame can be completely different from the body frame. If sensing data 

is provided in a Cartesian coordinate system, the only difference between {B} and {S} might be an 

offset (or translational difference) BPs,org- 

13 



3. Earth Reference Frame 

In order to express the motion of a body as observed by an outside inertial observer we need 

to define a suitable inertial reference frame. An inertial reference frame is defined to be the frame 

for which Newton's laws of motion are valid. For a slow moving vehicle at a particular point on the 

Earth's surface, a suitable reference frame {R} is set up in the following way: 

x - pointing north 
y - pointing east 
z - pointing down, towards the center of the Earth 

We will see later in this chapter that the axes x,y and z of this coordinate system refer to the geodetic 

descriptions of latitude, longitude and geodetic height respectively. Since we do not anticipate any 

large scale motion ( on the order of kilometers ) it is sufficient not to concern ourselves with the 

irregular shape of the Earth and with the resulting mapping/projection problems. 

B. GPS SYSTEM 

In order to describe both the GPS Satellite motion and receiver motion, it is necessary to 

choose a common reference system. Most commonly, the motion is described in terms of velocity 

and position as measured in a Cartesian Coordinate System. The most applicable coordinate system 

for GPS systems are given as follows: Satellite and GPS receiver motion are described in terms of 

the Earth-Centered Inertial and Earth-Centered Earth-Fixed coordinate systems respectively. The 

systems in use are described in detail by Kaplan [5] and are briefly explained below: 

1. Earth-Centered Inertial (ECI) Coordinate System 

In this system, the origin is the center of mass of the Earth. Satellites orbiting the Earth 

obey Newton's second law of motion as described in this System. In the ECI system, the xy-plane 

coincides with the Earth's equatorial plane, the +x-axis points towards some fixed point in space 

(celestial sphere), the z-axis is taken to be normal to the xy-plane pointing towards the north pole. 

The set of axis forms a right-handed coordinate system. However, due to the Earth's inhomogeneous 

shape, irregularities in the Earth's motion cause the ECI frame not to be truly inertial. Therefore, 

the GPS system defines the ECI reference frame as given by the constellation at 1200 hr UTC on 

January 1, 2000. 

14 



2. Earth-Centered Earth-Fixed (ECEF) Coordinate System 

For computing the receivers position, it is more convienient to use a system that is stationary 

in the earth frame. It is known as Earth-Centered Earth-Fixed (ECEF). As with the ECI frame, 

the xy-plane is coincident with the Earth's equatorial plane, the x-axis points in the direction of 0° 

longitude, the y-axis points in the direction of 90° longitude. The x- and y-axes therefore no longer 

describe fixed directions in inertial space. The z-axis completes the right-handed coordinate system. 

3. Conversion between ECI and ECEF 

Conversions between ECI and ECEF system are accomplished by means of matrix trans- 

formations (rotator matrices) which are not further described in this thesis. It is assumed that the 

Satellite ephemeris data is already translated into ECEF system. 

4. World Geodetic System (WGS-84) 

The Department of Defense invented a system to model all irregularities pertaining to de- 

scribing the Earth's gravitational motion. This system is known as the World Geodetic System 

(WGS-84). In addition to modeling the gravitational irregularities, the World Geodetic System 

provides an ellipsoidal model of the Earth. The ECEF coordinate system is affixed to the World 

Geodetic System reference ellipsoid and thus, latitude, longitude and height of a receiver can be 

specified with respect to this ellipsoid. 

C. TRANSFORMATIONS 

To define and manipulate physical quantities such as acceleration, velocity and position we 

must define coordinate systems and find transformations for describing vectors given in one system 

with respect to the other. These transformations will be accompanied by conventions for their 

representation. 

A great variety of similar transformations can be found in many textbooks. Not all of 

them are concisely formulated. It is thus rather confusing to relate different conventions given in 

different textbooks with each other; even though they may describe the same transformation.  A 
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good introduction on spatial descriptions and transformations is given by [6] and we will therefore 

briefly outline the most important aspects and conventions as thev pertain to our problem. 

The inertial reference frame {R} is given by the set of coordinate axis {x,y,z} where the 

xy-plane is the plane parallel to the WGS-84 reference ellipsoid (that is, the earth's surface) with x 

pointing north, y pointing east and z pointing towards the geodetic center of the Earth. The frame 

{B} which is attached to the body is given by the set of axes { x',y',z' } with x' pointing forward, 

y' pointing to the left of the body and z' completing the right-handed coordinate system. Figure 

3.1 shows both frames. 

Figure 3.1: Coordinate Frame for Body relative to point on Earth surface. The x/y-plane spans the 

plane tangent to the Earth's surface. 

There are two governing basic methods of representing the orientation of a body (with the 

Frame {B} attached to it) with respect to the reference frame {R}. One way is to express the 

principal directions of {B} (unit vectors x',y',z') in terms of the coordinate system {R} and stack 

these three unit vectors together as the columns of a 3 x 3 proper orthonormal rotation matrix 

*R=[x'y'z'] 

where £ R has the properties that its columns are mutually orthogonal and have unit length and 

detgR) = 1. Moreover, it can be shown that the inverse of ^R is simply its transpose: 

SR-^SB.3, 
(3.1) 
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and thus giving rise to 

BK.BK.      — B±tBK.    — 1 

Any vector P given with respect to {B} can then be expressed in terms of {R} by the transformation 

RP = * RBP 

Since dealing with 3x3 matrices for describing orientations is usually very tedious, a second way 

of describing the orientation of a body can be derived from a result from linear algebra. Cayley's 

formula for orthonormal matrices (cited by Craig [6]) states that any 3x3 orthonormal matrix can 

be specified by just three parameters. 

There are many ways to represent orientations with only three parameters. Not all of them 

are convenient and the reader may be easily confused while looking for those in different textbooks. 

In the discussion here we follow the conversion of Ref. [6]. 

1. Roll, Pitch, and Yaw 

One way of describing the orientation of a frame {B} relative to the reference frame {R} 

is by describing the body's orientation by observing successive rotations about the three axes (x,y, 

and z) of the fixed refernece frame {R}. Craig [6] refers to this convention as X-Y-Z fixed angles: 

1. start with the frame {B} coincident with the reference frame {R} 

2. rotate {B} about Rx by the roll angle 6 

3. rotate {B} about Ry by the pitch angle <f> 

4. rotate {B} about Rz by the yaw angle ip 

Each of the three rotations takes place about an axis in the fixed reference frame {R}. The resulting 

rotation matrix can be obtained by successively rotating the frame {B} about single axes in the 

stationary frame {R}: 

RR =   RRz(</0 RRy(4>) RRx(0) 

co a (■»}>) co a (<f>)        coa(ip)ain(<l>)ain(9) — ain(i{f)coa(6)        coa(-^)ain(<p)coa(0) + ain(if})ain(9) 

ain(if>)cos(tf>)        ain(il>)ain(<t>)ain(9) + cos(if>)coa(9)        ain(if>)ain(<j>)coa(9) - coa(V)ain(6) 

-ain(4>) co3(<f>)ai-n(9) coa(<f>)coa(6) 

where 

*RX(0) 

l%(40 

1 0 0 

0 cos(d) -.in(B) 

0 i»n(e) co*(0) 

coa(4>) 0 .;»(*) 
0 1 0 

-.in(*) 0 »<(*) 

(3.2) 

(3.3) 

(3.4) 

17 



RRZ«>)   = 
cos(i}>) — jtn(VO 0 

sin(V>) coj(i/>) 0 

0 0 1 
(3.5) 

Therefore, a vector Ba given in frame {B} can be transformed with respect to frame {R} by the 

transformation 

la = £RBä 

2. Euler Angles 

Another possible description of the frame {B} with respect to frame {R} is given by the 

Euler Angles. As opposed to rotating the frame {B} in successive steps about the fixed axes 

of {R}, this description will involve successive rotations performed about the principal axes of the 

rotating frame {B} we are about to move: 

1. start with the frame {B} coincident with the reference frame {R} 

2. rotate {B} about Bz by the angle ip 

3. rotate {B} about By by the angle <\> 

4. rotate {B} about Bx by the angle 0 

The resulting rotation matrix is the same as given above in Equation 3.2. Instead of naming the 

angles 9, <f>, ifi as roll, pitch, and yaw respectively, they are now being referred to as the Euler Angles. 

Craig refers to them as the Z-Y-X Euler Angles. This transformation is equivalent to the one 

given by Fossen [7] on page 10 except that we exchanged the naming for roll and pitch (0 o 0). 

The result obtained yields a fundamental statement as given by Craig [6]: 

... three rotations taken about fixed axis yield the same final orientation as the same three 
rotations taken in opposite order about the axes of the moving frame. 

In this work, we will make reference to the Eulerian angles and this mostly to the fact that 

the Eulerian angles are easier to recognize. However, the euler angles are equivalent to the roll, yaw 

and pitch angles. 

In this chapter we have laid the framework for transforming vectors from one coordinate 

system to the other. We will apply this to the Inertial Measurement Unit and develop a scheme 

for determining the specific acceleration acting on a body even in the presence of the gravitational 

acceleration. 
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IV. POSITION DETERMINATION WITH SHAFT 
ENCODER 

This chapter describes the use of the shaft encoders for position determination. It comple- 

ments and in some cases alters the results obtained by Mays/Reid [1]. As outlined in Mays/Reid [1], 

each servo motor is equipped with shaft encoders which record the actual angles for all eight motors. 

This should provide an easy means for direct position determination under the condition that no 

slip occurs. That is, the difference between an interval T=10 ms by which each encoder (driving and 

steering) advances is directly proportional to the distance travelled or to the angle each wheel was 

rotated and accordingly for the time of observation proportional to the linear and angular velocity. 

It should be noted that the shaft encoders for the driving motors count positive for a 

clockwise rotation of the wheel. Thus, if all wheels are driving forward (which implies that wheels 1 

and 3 are commanded with negative servo data) the shaft encoder readings will decrease for wheels 

2 and 4. In the same manner, if all wheels are steering to the right (clockwise as viewed from above, 

with negative servo data commanded), the shaft encoder readings will increase for all wheels. 

A. DETERMINING THE SERVO PARAMETERS 

It might be necessary from time to time to verify and adjust the servo parameters in use 

for the motion control of SHEPHERD. Therefore, a few test routines have been implemented in the 

file 'motor.c'. These functions are 

driveTestO to determine the driving parameters 
steerTestO to determine the steering parameters 
stopTest () to determine the interaction between driving and steering for dig- 

its commanded to the servos being zero 
velocityTest () to obtain a relationship between digits commanded to the driving 

motors and actual angle rates observed 
circumf erenceTest()    to determine the circumference of the wheels 

1. Steer Parameters 

For determining the steering parameters the following method has been impemented in 

function 'steerTestQ' in file 'motor.c': 
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1. align all wheels with hall sensor 

2. clear the counters 

3. save counter data in variable previous 

4. rotate wheels for a certain number of turns and stop time it takes to rotate the wheel 

5. read shaft encoder 'current' and compute the counter difference to obtain the rate of turn 
and number of counts for a turn 

The source code is implemented as function 'steerTest()' in the file 'motor.c'. It should be 

noted that this test should only be conducted for free wheels off the ground, otherwise the vehicle 

may just wander around. 

Some characteristic data corresponding to a specific velocity commanded is shown in Ta- 

ble 4.1. It can be seen from the Table that when steering the wheel, this would interfere with the 

drive counters as well. The work of Mays/Reid account for this fact by closed loop control. The 

data was taken for no load applied to the wheels (free turning wheels). 

count per turn 
Wheel 1 Wheel 2 Wheel 3 Wheel 4 
-92160.2 -92131.7 -92160.3 -92160.1 

counts per degree -256.00 -255.92 -256.00 -256.00 
time per turn (sec) 6.97 6.98 6.98 6.98 
drive count for turn 2048.0 2047.9 2048.0 2047.9 

Table 4.1: Steering Wheel Data at Digits commanded OxObOO averaged over 10 turns. 

Note when a positive value is commanded to all steering motors that the motion of the 

wheels as viewed from above is counterclockwise and the shaft encoder readings are negative! Prom 

the data, we can derive a relationship between the angular position of the steering motors and the 

encoder readings 

steering wheel 1...4 1 degree = 256 counts 
angle turned [radians]    6 = 6.8177 • lQ-5rad/count 

Table 4.2: Conversion Factor for Steering all Wheels. 

The results given above are in agreement with the findings from Mays/Reid [1], With this 

data in mind, the angular velocity can be easily measured. All that needs to be done is to record 

the difference in steer encoder readings for an observation timeframe (T=10ms) and multiply by the 

above factor and divide by T. 
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2. Drive Parameters 

What is the goal to be determined in this section is: how does the driving data commanded 

to the drive servos (in the range from -1024 to +1023) relate to the actual driving speed. Moreover, 

how does driving interfere with the steering, is there any leakage at all? In order to determine this, 

two functions are in place for use within the SRK. 

The function 'driveTestO' was written in order to determine how the drive encoder 

readings relate to the angular position of the wheel (if the wheel is viewed as a clock). All this function 

does is to record the difference in shaft encoder readings for a given number of turns completed. This 

observation gives rise to the number of counts per degree for driving the wheel. The function does 

not operate autonomous but rather requires user interaction. The user determines when to start 

and end the observation period. This procedure was conducted several times at different speeds - 

although the speed is not of our concern at this point. The results are given in Table 4.3. 

driving at speed 0x0800 (1 turn) 

count per turn 
Wheel 1 Wheel 2 Wheel 3 Wheel 4 
-102746 -103949 -105340 -104038 

counts per degree -285.41 -288.75 -292.61 -288.99 
time per turn (sec) 10.85 10.63 10.97 10.87 
drive count for 1 turn n/a 

driving at speed 0x0800 (averaged over 3 turns) 

count per turn 
Wheel 1 Wheel 2 Wheel 3 Wheel 4 
-103989 -104303 -103967 -104229 

counts per degree -288.86 -289.73 -288.80 -298.53 
time per turn (sec) 10.85 10.63 10.97 10.87 
drive count for 1 turn n/< i 

driving at speed 0x2000 (averaged over 10 turns) 

count per turn 
Wheel 1 Wheel 2 Wheel 3 Wheel 4 
-103756 -104143 -104812 -104705 

counts per degree -288.21 -289.29 -291.15 -290.85 
time per turn (sec) 2.704 2.698 2.729 2.727 
drive count for 1 turn n/a 

driving at speed 0x2000 (averaged over 100 turns) 

count per turn 
Wheel 1 Wheel 2 Wheel 3 Wheel 4 
-104377 -102594 -104440 -104435 

counts per degree -289.92 -284.98 -290.11 -290.10 
time per turn (sec) 2.72 2.71 2.72 2.72 
drive count for 1 turn 63394.94 63297.88 63331.94 63337.61 

Table 4.3: Data obtained for determining drive parameters with program 'driveTestO '. 

It can be seen from the Table that the number of counts per degree for all wheels is given 

by approximately 290 counts/degree except for wheel two at the commanded speed of 0x0800. 
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However, it is assumed that the user simply failed in observing the correct number of turns for this 

wheel. Another test run eventually with even more turns should be conducted. However, for ease of 

computation and in agreement to Mays/Reid [1], it is expected that for a given number of encoder 

counts, all wheels will advance by exact the same angle if commanded by the same digit and the 

conversion is given by 

driving wheel 1...4 1 degree = 290 counts 
angle driven [radians]    6 = 6.018376731 • lQ-5rad/count 

Table 4.4: Conversion Factor for Driving all Wheels. 

In a second step, a function ' velocityTest ()' was implemented in the source file 'motor.c' 

in order to determine the driving speed as a function of servo data sent to the driving servos. The 

inner workings of this function are quite simple: 

1. Align all wheels, set speed = 500. 

2. Set all motors to speed. 

3. Wait one second to let servos attain steady state. 

4. Observe the difference in shaft encoder readings for an observation period of one second. 
Store the readings in main memory (starting at 0x00100000) at consecutive locations. 

5. Decrease speed = speed -10. 

6. If speed < -500 stop, otherwise repeat the loop with step 2. 

7. Stop the test program. 

Once the program was done, the data (steering and driving delta for every second) was 

downloaded as an ASCII dump to the notebook, converted to decimals and further analyzed using 

the MATLAB function 'velocity.m\ Although it was - based on the results from Mays/Reid 

- expected to obtain a nonlinear relationship between the velocity (which is proportinal to the 

difference in encoder readings) and the commanded digits, the results proved to be quite different. 

For free floating wheels, the drive encoder advances for a given speed during the time interval 

of 1 sec are shown in Figure 4.1 and the equivalent steer encoder differences are shown in Figure 4.2. 

To solidify the results, a second experiment, now with the vehicle on the ground has been conducted. 

The results according to this experiment are shown in Figure 4.3 and Figure 4.4. 

As can be seen from the graphs, both experiments show the same linear relationship for the 

driving of all wheels with just slightly changing parameters and in addition to this, the interaction 

from driving to steering for each wheel is insignificant and can be neglected. The test was conducted 

a total of three times, two times with the wheels on the ground and the vehicle moving in a straight 
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Wheel 2, fit digits = -1.3302830e-002 driveDelta + -1.60266 
500 f, 

-3-2-10123 
velocity (driveDelta) [counts/sec]       x 10' 

Wheel 1, fit digits = 1.33118326-002 driveDelta + -1.72896 
500 r 

-3-2-1 0 1 2 3 
velocity (driveDelta) [counts/sec]       x 10* 

Wheel 4, fit digits = -1.3315856e-002 driveDelta + 0.6O989 
500,. 

-3-2-10123 
velocity (driveDelta) [counts/sec]       x IQ* 

Wheel 3, fit digits = 1,3295249e-O02 driveDelta + -0.53392 
500 r 

-3-2-10 1 2 3 
velocity (driveDelta) [counts/sec]       x 10* 

Figure 4.1: Commanded Digits versus Encoder Differences for Free Floating Wheels. 
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i 

digits to servo 
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digits to servo 

Wheel 3 

^ 

digits to servo digits to servo 

Figure 4.2: Influence of Commanded Drive Digits on Steering Wheels. Plot shows Encoder Differ- 
ences vs. Commanded Drive Digits for Steering Motors (Steering Motors set to zero). 
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Wheel 2, m digits = -1.33010716-002 driveDelta + -1.75192 
600 r. Wheel 1. fit digits = 1.3311438e-002 driveDelta + -1.57062 

500 r 

-3-2-10123 
velocity (driveDelta) [counts/sec]       x 10' 

Wheel 4, tit digits = -1.3314266e-O02 driveDelta + 0.47206 
500 f. 

-3-2-10123 
velocity (driveDelta) [counts/sec]       xi0* 

-3-2-10123 
velocity (driveDelta) [counts/sec]       x io" 

Wheel 3. fit digits = 1.3292298e-O02 driveDelta + -014845 
500 r 

-3-2-10123 
velocity (driveDelta) [counts/sec]       x to" 

Figure 4.3: Commanded Digits versus Encoder Differences for Vehicle on the Ground. 

digits to servo digits to servo 

50 h 

0 

Wheel 3 

_ y. 

digits to servo digits to servo 

Figure 4.4: Influence of Commanded Drive Digits on Steering Wheels for Vehicle on the Ground. 
Plot shows Encoder Differences vs. Commanded Drive Digits for Steering Motors (Steering Motors 
set to zero). 
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line and a third time with the vehicle lifted off the ground and the wheels rotating free. Despite 

the changing test conditions, the results were independent from the way the vehicle was suspended. 

The recorded data for each wheel was fitted in a least square sense by a polynomial of order 1 (a 

straight line) and the coefficients are given in Table 4.5 where the encoder difference driveDelta is 

given in units of counts per second. 

Wheel 1 digit = 0.01331 driveDelta [count/sec] -1.65 
Wheel 2 digit = -0.01330 driveDelta [count/sec] -1.65 
Wheel 3 digit = 0.01329 driveDelta [count/sec] - 0.30 
Wheel 4 digit = -0.01331 driveDelta [count/sec] + 0.55 

Table 4.5: Relationship between drive encoder difference and commanded servo drive speeds. 

It is beneficial to use the relationship digit=f(driveDelta/sec) vice the inverse since for any 

motion control process, we are given the desired speed (which is directly proportional to the variable 

driveDelta/sec) and want to obtain the required digit to control the servos accordingly. Using the 

conversion factor given for driving the wheels (see Table 4.4) and the wheel's radius (which we 

assume to be equal for all wheels to be 18.9cm) we obtain the conversion from distance travelled to 

count advances by 

2TT 
1 count 

360 * 290 

1 m   =   87914 counts 

18.9 cm = 1.13747- 10~d cm 

(4.1) 

and we finally end up with a handy relationship between velocity [cm/sec] and digits commanded 

to the servos (the digits are not yet left justified): 

Wheel 1 digit = 11.70 v [cm/sec] - 1.65 
Wheel 2 digit = 11.69 v [cm/sec] - 1.65 
Wheel 3 digit = 11.68 v [cm/sec] - 0.30 
Wheel 4 digit = 11.70 v [cm/sec] + 0.55 

Table 4.6: Relationship between Velocity [cm/sec] and Commanded Servo Digit (needs further be 
multiplied by 16 to justify left). 

After multiplying the above data by 16 in order to shift it digital wise one nibble to the left, 

we obtain 

Table 4.7 yields the values that can be directly sent to the driving servos. They will already 

yield the left-justified data sent to the analog output board. Recall that only the upper 12 bit 

determine the final servo speed. Hence, when driving the wheels, we encounter a discretization error 

introduced by converting the double valued velocity to 12 bit! 
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B. LINEAR MOTION PROFILE 

In order to test the sampling results obtained from both, the shaft encoder and the IMU, 

a simple linear motion profile was implemented in the SRK. The profile is implemented as routine 

'linearMotionlO ' in the source file 'motor.c' and is shown in Figure 4.5. As it turned out later, 

this profile was not suitable to obtain reliable data. Hence, a second profile was implemented as 

routine tlinearMotion2()' and the vehicle's principle behavior is depicted in Figure 4.6. While 

the vehicle would travel a distance of 4 m in forward direction and return to its start position 

upon execution of 'linearMotionlO ', it would travel for 5/6 of a meter forward and stop for 

'linearMotion2() '. However, the vehicles maximum acceleration for the former motion would be 

2 cm/sec2 while for the latter, the vehicle would speed up to 1 m/sec2 which is quite high! 

In the following, the results for the shaft encoders for both motion profiles will be discussed 

utilizing the motion control procedure as outlined in Chapter II on page 12. The analyzing MATLAB 

routine 'shaft.m' is for completeness given in Appendix B.5 on page 65. 

1. Linear Motion Profile #1 

This motion segment lasts for a total of 70 seconds, after which the vehicle is expected to 

have returned to its start position. The stop during the period 30sec < t < AOsec is utilized to mark 

the turning position for the vehicle. 

Clearly, as Figure 4.8 reveals, the driving angles are off by up to 10 degrees upon completion 

of the motion program. On the floor, a lateral deviation of approximately 35 cm has been observed. 

The longitudinal distances traveled came out to be 395 cm for the forward leg and 401 cm for the 

reverse leg. 

Despite the fact that the steering motors are set to zero, there remains interaction between 

driving and steering. It needs to be determined whether or not this relates to badly adjusted (offset) 

servo motors or indeed driving interaction. In any case, it is quite evident that feedback is required 

to provide the desired accuracy for straight motion. The aspects of feedback are not discussed in 

Wheel 1 
Wheel 2 
Wheel 3 
Wheel 4 

digit = 187.20 v [cm/sec]  - 26.4 
digit = 187.04 v [cm/sec]  - 26.4 
digit = 186.88 v [cm/sec]  - 4.8 
digit = 187.20 v [cm/sec]  + 8.8 

Table 4.7: Relationship between Velocity [cm/sec] and Commanded Servo Digit. 
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Figure 4.5: Linear motion profile implemented as linearMotionK). 
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Time [sec] 
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Figure 4.6: Linear motion profile implemented as linearMotion2(). 
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Figure 4.7: Accumulated drive encoder readings versus time for linear motion profile #1. 
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Figure 4.8: Accumulated steer encoder readings versus time for linear motion profile #1. 
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this thesis. However, Mays/Reid [1] provide a brief discussion about this topic. 

2. Linear Motion Profile #2 

In order to serve the IMU analysis better, a linear motion profile was needed which provided 

a greater acceleration for the vegicle. Thus, the linear motion program 'linearMotion2() ' has been 

implemented in the file 'motor. c'. This motion program drives the vehicle over a distance of about 

83 cm (5/6 m) within 4 sec. As was for the motion profile #1, the vehicle follows closely the 

determined path. 

Considering the fact that no feedback has been implemented in the motion control programs, 

it can be concluded that the shaft encoder readings provide sufficient accuracy for determining the 

planar motion for SHEPHERD under the condition that no slip occurs. 

C. UNCERTAINTIES IN MOTION CONTROL 

It is quite obvious that the accuracy of the motion control part and the position determina- 

tion depends on several parameters that may vary over time or that were determined too inaccurate. 

The main reasons for inaccurate motion control and position determination derived from the shaft 

encoder readings are 

1. Inaccurate sensor parameters relating to the angular position of each motor. 

2. Wheel radius not measured correctly or radius changing over time due to wear or changing 
tire pressure. 

3. Data reduction for velocity from double valued data type to 12 bit that are being sent to 
the servos. 

All these factors will eventually degrade the performance of the implemented routines. Hence, there 

will be ample space for improvement for future work. 
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Figure 4.9: Compounded drive encoder readings versus time for linear motion profile #2. 
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Figure 4.10: Compounded steer encoder readings versus time for linear motion profile #2. 
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V. INERTIAL MEASUREMENT UNIT 

This chapter describes the framework that was implemented on SHEPHERD in an attempt 

to obtain reliable velocity and position data based on inertial measurements. All source code as it 

pertains to the implementation of the Inertial Measurement Unit (IMU) is provided in the source 

file 'imu.c' and listed in Appendix C.l starting at page 67. 

Figure 5.1 shows the vehicle's basic appearance with the four wheels at the corners labelled 

1 to 4 and the motion sensor with its three corners marked by a solid dot which span the xy-plane 

in the body frame {B} mounted on its steel plate. The solid dots on the sensor's casing are just to 

relate the upside down orientation to the general appearance as given by Figure 5.2. 

Figure 5.1: Configuration for Shepherd Rotary Vehicle 

Due to the particular design of the SHEPHERD Rotary Vehicle, the vertical axes of each 

wheel are exactly located on the corners of a square of dimension 0.8 x 0.8 m. The sensor is mounted 

upside down below the supporting steel plate at the location indicated in Figure 5.1. 
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A. INERTIAL SENSOR 

For this project, a four degree of freedom inertial sensor cluster (Solid-State Motion Sensor, 

Type MotionPak) from SYSTRON Donner, Concord California [8] is being used. It provides three 

outputs for linear motion measured with servo accelerators {ax,ay, ay) and one output for measuring 

rotational motion about the z-axis (uz). This data comprises a cartesian coordinate system which 

is shown in Figure 5.2. The dots in the three corners shall help identify the attitude of the sensor 

as shown in Figure 5.1. 

Figure 5.2: Axis orientation for MotionPak Sensor 

The MotionPak is customized by the manufacturer for the anticipated dynamic range. Ta- 

ble 5.1 shows most of the specifications as they apply to the model in use. 

x-axis y-axis z-axis 
&x av az ur 

Range ±2g ±2g ±2g ±50°/sec 
Scale factor 3.748F/S 3.752V/g 3.744 V/p 49.881mV/(deg/sec) 
Stationary output 0.0 V 0.0 V +3.75 V 0 V 
Bandwidth 869 Hz 925 Hz 869 Hz 75 Hz 
Noise (10-100Hz) 1.8 mVRMS 1.8 mVjijifs 2.0 mVjjMs 3.9 mVjjMs 

Table 5.1: Operating specifications for MotionPak Model No. MP-G-CQBBB-100, Serial No. 0329 
(after Reference [9]) 

As was already shown by Figure 2.4 on page 8, the analog data provided by the MotionPak 

IMU is converted into digital data by an A/D-Board interfacing to the VMEBus.  The converted 
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digital data is transferred from the A/D-Board to the 68040 processor on the TUARUS board via 

the VMEBus. Figure 5.3 shows how the four analog channels from the MotionPak IMU are actually 

routed through the A/D-Board to the CPU. 

U) 

« ±7.5V 
CH 0 

A/D MUX 

T, = 25^a 

Data block from dual port RAM 
16 bit (12 bit data, left justified) \. 

68040 

s» ±7.5V 
CH 1 

 _^ 
y 

» ±7.5V 
CH 2 

LIRQ-4 

Software trigger (every 10ms) 

IRQ-2 

!= ±2.5V 
CH 3 

VIC 068 

CH15 

Figure 5.3: IMU Hardware Integration 

B. A/D CONVERSION SCHEME 

The IMU provides continuous analog data to channels 1 to 4 of the A/D-Board VME9325 

[10]. With every 10 ms timer interrupt, a block conversion on the AD-Board is triggered via software 

command issued by the interrupt handling routine from the 10 ms timer. The AD-Board is configured 

to multiplex the four input channels every 50 ß sec for a total of 200 samples. Thus, in a consecutive 

order, each of the four channels are sampled at a sampling rate of /s=5000 Hz and the digital data 

is stored sequentially in the A/D-Boards dual-port RAM. Once the block conversion is complete, 

the A/D-Board will issue an interrupt (see Appendix D.4 on page 93 for the exact interrupt level 

in use) to 68040 where the corresponding interrupt handler routine analyzeVME9325() preprocesses 

(filters) the block data and stores it as the most recent data in the global variables 

ax 
^ imuAX 

ay =» imuAY 
az =$■ imuAZ 
uz =* 

imuOmegaZ 
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which will thus be available for the next motion control cycle to update the actual vehicle motion. 

The board's status can be observed by means of LED indicator lights at the boards front panel: 

Green LED 
off 
on 
off 
on 

Red LED 
on 
on 
off 
off 

Status 
Board is not initialized 
Board undergoes initialization 
Board is initialized but inactive 
Board is performing A/D block conversions 

Table 5.2: Status indicator lights for A/D-Board 

At present, the data is merely downloaded via the TAURUSBug 'duO' option (see Ap- 

pendix D.3) through the CONSOLE port to the Laptop and from there to the UNIX System, where 

the data was further analyzed using MATLAB. However, for the future, the sampled data would be 

directly processed by the 68040 processor as outlined above. 

One might ask, why was the odd sampling frequency /, = 5000 Hz is being used instead of 

a more intuitive 10 kHz. A look at the timing diagram Figure 5.4, reveals that the time A between 

the last block conversion (w, in block 50) and the start of the next motion control cycle is governed 

by the sampling frequency: for continuous sampling (e.g., increased block number to transfer), the 

larger fs the smaller will A be. However, there is a constraint on the minimum length of A due 

to the fact that the sampling block data must be transferred to the TAURUS main memory. This 

transfer must be done before the next motion control cylce is issued by the 10 ms timer interrupt. 

This rule must be closely followed, otherwise a loss of sampling data might occur. 

Timer Interrupt k 

0 

|       Block 1 Block 2 

a*x     ay     CLX     ***z     a2     a y     az     <*»z 

I t t t t t t t 

20(V« 

Timer Interrupt  k+1 

I t [ms] 

| Block 1 

ax     ay     az     KJZ   \ax     ay     az     u)r 

n t t;t t i t 
t (ms] 

Figure 5.4: Timing Diagram for A/D-Board 

The A/D-Board maps a preset input span of A = 20 V for a differential input range of ± 

10 V into n=12 bit bipolar two's complement data left justified in a 16 bit word. The value of -2048 

relates to an analog input equvalent of-10 V < xanalog < -9.99512 V. Likewise, the digital output 
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of 2048 relates to 0 V < xanalog < 0.00488 V. The stepsize is given by 6 = £ = ^ = 4.88 mV. To 

make use of the maximum range available, the board provides a variable gain to amplify the input 

signal by factors G=l, G=2, G=4, or G=8. Moreover, we need to scale the data by the appropriate 

scaling factors S for each channel which are given in Table 5.1. Thus, for a given channel with gain 

G and scaling S, we obtain the analog equivalent of the data by shifting the digital value xdigital by 

4 bit to the right (which is equivalent to a division by 16) and than re-scale it according to: 

A 
^analog — nn fi n {^digital ~ 2048) 

Using the scaling factors given in Table 5.1 we end up with the units of [g] for ax,ay, and az and 

[degrees/sec] for uz. Expressing the linear acceleration a in terms of the gravitational acceleration 

g rather than in Si-units of [m/sec2] turns out to be beneficial if we need to find the Euler angles 

and a suitable representation for it in the reference frame {R}. 

C. SCHEME FOR DATA ANALYSIS 

Accelerometers sense the sum of the gravitational acceleration ag and the linear acceleration 

a which is due to an external force applied to the body in the body frame {B} 

Bam    =    Ba + Bg (5.1) 

which relates to the reference frame {R} as 

Räm    =   Ra + Rg       . (5.2) 

In both frames, g is the acceleration of gravity derived from Keplerian physics for two body motion 

theory between the Earth and a body. Usually, g is a function of the distance r between the center 

of masses of the two bodies and can be computed with 

GM 

with the constants G and M as described in Appendix A. For a body at the Earth's surface, 

g « 9.81 m/sec2 and usually, the variation in height for small changes can be neglected. Therefore 

we will not concern ourselves with a variable g and assume that g = 9.81 m/sec2. 

In the following, we will devise a scheme to eliminate the undesired gravity components in 

our measurement data. Therefore, we will have to focus on the stationary vehicle first, that is, the 

only acceleration acting on the vehicle in frame {B} will be the Earth gravity. Moreover, we know 

that in the reference frame {R}, the acceleration due to gravity has only a +z-component whereas 
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in {B} we would usually encounter gravitational components in each of the principal axes unless the 

sensor is perfectly aligned with frame {R}: 

Rg = 0 

W 
and 

ox 

rw 
subject to the constraint that g = y/»f£+*$ + *& To express frame {B} in terms of frame {R} 

we make use of the rotation matrix as outlined in the previous sections and given by Equation 3.2: 

R^        _  R TJ   Br. 

We therefore do need to get the Euler Angles (roll, pitch, and yaw) as defined on page 17. We make 

us of the fact that the acceleration of a stationary sensor as measured in {R} should only display 

the gravitation: 

= RRz(V) R%W RRX(0)B§:TO     . &m — 0 

w 
Solving for BSm yields 

Bäm = "R^WO RRy1W RR^(6) Ram        . 

We recall the identity given in Equation 3.1 on page 16 and rewrite the above equation in terms of 

the transpose of each rotation matrix: 

^ = *R£(VORRy^)*Rj(0)*äm       . (5.3) 

For any measurement vector BSm and the related vector RS in frame {R}, Equation 5.3 together 

with the definitions for the rotation matrices Equation 3.3, Equation 3.4 and Equation 3.5 given on 

page 17 provides us with a system of three equations from which we can determine the Euler Angles. 

In particular, we are easily able to determine the Euler angles as a function of the measurement 

o-xm    =    -g sin(<j)) 

aym   —    g sin(6) cos((j>) 

O-zm      =       g COS(6) C0S{4>) 

(5.4) 

(5.5) 

(5.6) 

We recognize that for the stationary data, the acceleration measured in {B} does not depend on the 

yaw angle $ which is directly related to the heading of the vehicle (in order to obtain the heading we, 
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of course, would need to have a compass at hand). Solving the above system for the two remaining 

Euler angles yields the following equations: 

(j)   =    —arcsin ( — | (5.7) 
\9 1 

or alternatively for 8 

6   =     arcsin    y—- (5.8) 
ygcosifyj 

6    =     arcsin        .    y . (5.9) 

We see that the last two equations both yield a solution for 9. Depending on the accuracy of our 

measurements and the accuracy of the desired math functions we have implemented so far, we may 

prefer the one to the other. Since the Sensor's output data is already scaled with respect to g, the 

Earth's gravity (see Table 5.1), we may prefer the former and discard Equation 5.9. This is reflected 

in the MATLAB listing for 'getdata.m' where the data is arranged accordingly. 

Based on the theory pertaining to the inertial measurement sensor as outlined above, the 

following scheme to obtain the position data for the vehicle is proposed: 

1. Sample stationary data (as is usually the case if one starts up the vehicle) in frame {B} for 
a certain period of time. 

2. Filter the data with an appropriate lowpass filter. 

3. Compute the Euler angles 6 and 0. 

4. Transform the data from frame {B} to frame {R} using the rotation matrices given by 
Equation 3.2, use arbitrary yaw angle ip. 

5. Subtract the acceleration due to gravity acting on the vehicle to obtain the sole acceleration 
due to a specific force given in frame {R}. 

6. Integrate the data in a suitable way to find the velocity and position vector of the vehicle. 

D. INTEGRATION TOOLS 

In our analysis of the inertial measurement sensor, we will have to integrate the data in order 

to arrive at the velocity vector. There are many integration methods available for integrating discrete 

data. For equispaced, discrete data, most of the more commonly known integration formulas such 

as the Trapezoidal rule, Simpson's Rule, ... are based on the Newton-Cotes Integration Formulas 

([11],[12]). Given a set of values /(x») for equispaced Xi = a + ih \/ i = 0.. .n with h = &=£, the 
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integral of f(x) on the interval [a, b] can be approximated by 

/   f(x) dx= [ Pn(x) dx 
Ja Ja 

where Pn(x) is the Lagrangian polynomial that passes through all the points xt and the interval 

[a,b] is covered by the (n+1) equidistant points x{. Pn(x) is given by 
n 

^«(*) = £/(**) ^ 
where at is given by 

»=o 

a,=n 
fc=0 

x-xk 

If we let x = a + hs the above integral for Pn(x) reduces to a simple sum 

/ Ja 
Pn(x) dx = hJ2f{xi) ai=b—^ Yafixi 

r~z ns    '-^ t=0 j=o 
(5.10) 

The values for ns and at can be computed given the above relations. However, we will not concern 

ourselves with this issue and state the results for the first few parameters: 

n ns 0"« Commonly known rule 
1 
2 
3 
4 
5 
6 

2 
6 
8 
90 
288 
840 

1 1 
14 1 
13 3 1 

7 32 12 32 7 
19 75 50 50 75 19 

41 216 27 272 27 216 41 

Tapezoidal 
Simpson's 1/3 
Simpson's 3/8 

Table 5.3: Newton-Cotes Formula Parameters 

Some of these formulas are being implemented in the function ' integral .m' on page page 65 

and used for integrating the acceleration data. The analysis in the following sections will discuss 

which formula shall be preferred to the others. 

E. DATA FILTERING AND COMPUTATION OF POSITION VECTOR 

Several recordings for stationary data have been taken. In the process of obtaining the 

position vector for the vehicle we would expect that starting, say from an initial position (0,0,0){R}, 

this should not vary much as time passes by. 

Initially, the sampling scheme was such that each channel of the IMU was sampled at a 

sampling rate of 100 Hz with every 10 ms timer interval. Later on, this has been changed to a 

sampling rate of 5000 Hz as shown in the timing diagram Figure 5.4 on page 34. 
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1. Stationary Data Analysis 

The data collected for the stationary data analysis in this subsection has been sampled 

prior to changing the sampling frequency from 100 Hz to 5000 Hz. Thus, this is reflected in the 

data presented in this subsection. In addition, the IMU at this stage was not yet mounted to the 

vehicle and the orientation of the axes was such that the sensors z-axis pointed up instead of down 

as shown in Figure 5.1. Figures 5.5 to 5.10 show typical results obtained. They show data recorded 

and processed for a stationary vehicle with file 'imu.m' (see Appendix B.l on page 59). The data 

was recorded on the fifth floor of Spanagel Hall with the sensor titled by a significant amount which 

was not further specified. 

As can be seen from Figure 5.6, the linear components (ax, ay, and az) contain distinct 

sinusoidal components at / = 20Hz and / = AOHz. The origin of this behavior still needs further 

examination. However, it seems not to be related to the block sampling interval of T=10 ms, rather 

than to vibrations inherent in the building. These sinusoidal components can not be beneficial to 

the performance of our compuations. Therefore, we have to eliminate the residues by some suitable 

filtering technique. 

In the time domain (Figure 5.5), we see the effect due to the A/D sampling process: the 

sampled data obtained through the A/D Board truly displays the characteristics for discrete-time 

signals. Moreover, since the sensor was titled, the data will reflect the values according to this 

orientation relative to frame {R}. Thus, the next step involves computation of the Euler angles and 

transforming the data into frame {R} using the results obtained in Equation 3.2. Now, follwoing the 

transformation the data for ax and ay should ideally go to zero (at least in the mean). The result 

is shown in Figure 5.7 with its Fourier spectrum given by Figure 5.8. 

In fact, the acceleration for ax and ay is almost zero whereas the acceleration for az is almost 

—1.0 g (the DC component is not shown in the frequency spectrum. The negative sign for this data 

set is due to the fact that the sensor's z-axis pointed down. The final step is to obtain the velocity 

and the position by integrating the acceleration once or twice, respectively. The velocity is shown in 

Figure 5.9. As can be seen from the plot, the velocity in x- and z-direction pretty much approaches 

steady-state after about 3 sec of recording whereas the velocity in y-direction approaches steady state 

after about 10 seconds (eventually, a longer recording needs to be taken to verify this statement). As 

for the position vector, which is shown in Figure 5.10, we see that during the first second the error is 

small and the position remains pretty much zero. However, as the velocity assumes its steady state, 

the position displays a linear behavior. Therefore, based on the stationary analysis, it is advisable 

to update (reset) the navigation solution based on the IMU at least every second. Even better, if 
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Linear acceleration 

Figure 5.5: Time domain behavior for linear acceleration and angular velocity for the stationary and 
tilted IMU as measured by the A/D-Board (normalized to units [g]) in frame {S}. 

x 10 Spectrum for linear acceleration without DC-component 

0 5 1U 15 20 25 in 
x 10" Spectrum for angular velocity without DC-component 

Figure 5.6: Fourier spectrum for linear acceleration and angular velocity for the stationary and tilted 
IMU as measured by the A/D-Board (normalized to units [g]) in frame {S}. 
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Linear acceleration 
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Figure 5.7: Time domain behavior for linear acceleration and angular velocity for the stationary and 
tilted IMU as measured by the A/D-Board (normalized to units [g]) in the reference frame {R}. 
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Figure 5.8: Fourier spectrum for linear acceleration and angular velocity for the stationary and tilted 
IMU as measured by the A/D-Board (normalized to units [g]) in the reference frame {R}. 
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the Euler angles which represent the attitude of the vehicle could be determined continuously and 

in accordance to the updated Euler angles, new rotation matrices would have to be determined on 

a regular basis. 

2. Non-stationary Data Analysis with Profile #1 

In the sequel, we will analyze data sampled at a sampling frequency of /, = 5000 kHz 

according to the timing diagram depicted in Figure 5.4 from an IMU that is mounted on SHEPHERD 

as shown in Figure 5.1. First, in order to correlate the sampled data to the actual motion of 

the sensor/vehicle, the same linear test motion profile as introduced in Chapter IV and shown in 

Figure 4.5 on page 27 was being utilized. Due to the vast amount of data that had to be analyzed 

(a recording for 70 sec at a sampling frequency of 5000 Hz on four IMU channels comprised a mere 

2.8 MByte!) the analysis was performed on segments of data in order not to exploit the limits of 

computational power. In particular, to enhance the performance of the built in MATLAB Fourier 

transform function, segments contained 65536 samples, which is a power of two (216). 

Figure 5.11 depicts the linear acceleration as determined by the IMU. Despite the fact that 

the linear motion profile was only along the x-axis of the vehicle, the sensor seemed not to distinguish 

between the channels. All three components display some sort of noise and the signals do not at all 

seem to be related to the actual motion profile. 

The detailed analysis of the ax-channel is given in Figure 5.12 and 5.13 for the time frame 

0 < t < 13sec. Figure 5.12 shows that the original data is distorted throughout the entire frequency 

range. Moreover, the time signal does not display the expected behavior according to the true motion 

profile. Instead, the oscillations increase in amplitude as time advances. To reduce the noise, an 

elliptic filter has been used to attenuate the noise in the stopband. The software filter, implemented 

using MATLAB's built in signal processing functions, had the following specifications: 

1. Passband from 0... 20 Hz with max. attenuation of 0.1 dB 

2. Stopband from 50... Hz with min. attenuation of 80 dB 

Other filters such as Chebychev and Butterworth filters were also being tested. None of 

these filter types showed a significant improvement of the data. The only advantage Butterworth or 

Chebychev filters have compared to Elliptic filters is a better phase linearity in the passband. On the 

other hand, and most important for an implementation where computation time is scarce, Elliptic 

filters are most efficient since they yield the smallest-order filter for a given set of specifications [14]. 
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Figure 5.9: Velocity data integrated from the linear acceleration in frame {R}. 
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Figure 5.10: Position integrated from the velocity in frame {R}. 
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Linear Motion Profile 

Figure 5.11: Linear Acceleration measured by all three channels of the IMU for Linear Motion Profile 
#1- 
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Acceleration ax, mean Is 0.009536 

 *WWM*M 

0 

x10J 

4 6 8 10 

FFT for ax [g], mean is AfU?f)flo.009536 [g], fs=5000 Hz 

1000 1500 

Blow up view1 (OWFT for ax [g] 

fl^^  J... ■ 
10 15 25 

ftHzJ 
30 35 40 45 

Figure 5.12: Analysis of linear acceleration ax as measured by the IMU. 
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Figure 5.13: Analysis of linear acceleration ax after data has been filtered by a 6th order elliptic 
filter with passband edge at 20 Hz and Stopband edge at 50 Hz. 
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The results, as depicted in Figure 5.13 do not look too promising. Althought the filter 

achieved to smooth the data and reduce the noise, it could not ensure that the acceleration would 

show any transition at t=10sec. Recall that according to the true profile, the acceleration should 

be zero starting with t=10sec. The only reason that can be attributed to this fatal behavior is 

the dynamic input range of the A/D-Board: operating the accelerometer at a maximum linear 

acceleration of ax = 0.02m/sec2 (which is only » 0.002 g) we utilize only a voltage span from -7.6 

mV to +7.6 mV that is fed into the A/D-Board. Even if the maximum gain of 8 is used to amplify 

this signal, the amplitude would never exceed » 62 mV which comprises a mere four digits in the 

digital output range. 

3. Non-stationary Data Analysis with Profile #2 

It was anticipated that, for the second motion profile as shown in Figure 4.6, results for the 

measured acceleration would improve. The maximum acceleration was set to be 1.0 m/sec2 with 

the maximum velocity reached by the vehicle to be » 0.5 m/s. The sampled data for all three linear 

acceleration channels is shown in Figure 5.14. The plot reveals strong interaction between all three 

channels. One goal would be to get rid of these interferences by means of a suitable filter technique. 

For the time being, we focus on the a^-channel. The time and frequency behavior for the x-channel 

is depicted in Figure 5.15. Strong harmonic components influence the overall performance and a 

similarity to the actual motion can not be found. 

Upon filtering with an elliptic filter of order 6, the recorded data can somewhat be related 

to the true motion. However, since the sharp edges in the ideal acceleration profile (Figure 4.6) 

result in high frequency components of the signal, these edges can not be recognized by the IMU 

(the cutoff frequency for the linear accelerometers is around 900 Hz, see Table 5.1. Nonetheless, the 

questions remains: would this be suffice to compute the velocity? We refer to Figure 5.16 and see 

that the velocity does in principle follow the curve depicted by the ideal motion profile Figure 4.6. 

As soon as the recognizable motion kicks in, the velocity seems to be distorted by an offset in the 

acceleration data (rather than assuming a=0 on the interval t G [2,3] sec). 

4. Non-stationary Data Analysis with Profile #3 

To get rid of the lowpass constraint, a third motion profile has been developed. The profile 

is shown in Figure 5.17. 
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Figure 5.14: Linear Acceleration and angular velocity wz relative to frame {R} measured by the 
IMU for Linear Motion Profile #2. 
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Acceleration ax in frame R, mean is -0.0069787 
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Figure 5.15: Analysis of linear acceleration ax as measured by the IMU. 

Acceleration ax in frarre R alter elliptic filtering 

Figure 5 16: Analysis of linear acceleration ax after data has been filtered by a 6th order ellipt: 
filter with passband edge at 20 Hz and Stopband edge at 50 Hz. 
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Figure 5.17: Linear Motion Profile #3. 
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Clearly, this motion should only contain low frequency components. As was the case for the 

other two motion profiles, the IMU senses noise in all three channels even though the motion takes 

place only in the sensors x-direction. 

F. SUMMARY 

Based on the results obtained from the linear motion profiles #1 .. #3 the following con- 

clusions for the implementation of the inertial measurement unit can be drawn: First, the IMU data 

sampled off the IMU needs to fit appropriately in the A/D-Boards input range. As a crude rule of 

thumb based on the observations made in this Chapter, the time average of the acceleration signals 

to be A/D-converted (this may include any additional gain) should be at least 1/10 th of the max. 

allowable input amplitude of the A/D-Board (e.g., at present, the max. input is ± 10 V, the input 

signal should be at least 1 V in magnitude). A more detailed analysis is required in this respect. 

Probably the most effective solution would be to utilize MotionPak Accelerometers (QFA7000) with 

current output rather than voltage output. In this case, the output could be scaled by the user 

to especially lower 'g' limits by means of variable scaling resistors (see [13] for more information). 

Probably the most significant shortfall in the design of the vehicle was determined to be the variable 

suspension of the vehicle's wheels. Whenever the vehicle accelerates by a significant amount, the 

vehicle's steel platform may tilt. This change of attitude will be recognized by the IMU but can not 

be attributed to a change of the vehicle's main body attitude and thus to a change of position in 

3D space. 
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Figure 5.18: Analysis of linear acceleration ax as measured by the IMU. 
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Figure 5.19: Analysis after Elliptic Filtering (6th order filter) with passband edge at 20 Hz and 
Stopband edge at 50 Hz. 
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VI. SENSOR FUSION 

Having developed the two independent navigation components in the previous Chapters, it 

was anticipated to fuse the data provided by both systems to further improve the accuracy of the 

navigation system. However, since the performance of the IMU does not yield any reliable motion 

data, sensors fusion at this point of time is obsolete. Some literature research has been done to 

obtain a hint as to how to fuse the data. Almost all papers related to sensor fusion utilize the 

extended Kaiman filter. Welch [16] provides a decent introduction in Kaiman filtering. Nonetheless, 

it is anticipated that Neural Networks might be applicable to this problem as well. Thus, the aspect 

of sensor fusion will be left for future work. 
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VII. CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

A. CONCLUSIONS 

The research issues addressed by this thesis were 

• Implement the hardware and software for an Inertial Measurement Unit 

• Implement the software for a shaft encoder system 

• Evaluate the performance for both sensors 

• Sensor Fusion 

Both the IMU and the shaft encoder systems have been implemented in software and hardware. The 

sampling frequency for the A/D-Board was set to be 5 kHz. Both systems have been tested with 

three different linear motion profiles. 

The work conducted in addressing the first of these topics revealed several sources of nav- 

igation inaccuracy. The A/D Converter board currently in use does not match the IMU's output 

range for accelerations below about 1 m/sec2. In addition, due to the vehicle's sophisticated wheel 

suspension, the IMU's attitude control could not be related to the attitude of the vehicle and was 

changing with time as the vehicle moved. This introduced a slowly varying and yet significant error 

in numerically integrating the acceleration. 

The second issue addressed proved to be less difficult. Decent results have been obtained 

for th elinear motion under the condition that no slip occurs and the vehicle's position can be 

determined to within 0.5 percent accuracy. 

The overall motion control system seems to be stable at all. However, it has been observed 

that computation power for the 68040 processor is scarce. This is mainly to the fact that a public 

domain GCC Compiler is in use for generating the executable code. This compiler does not seem 

to generate optimal executable code. In addition, the lack of a math processor and math library 

functions required that semi-optimal trigonometric functions be implemented in the source code as 

well, introducing further inaccuracies. 

B. RECOMMENDATIONS FOR FUTURE WORK 

There are many issues that were briefly addressed in this thesis but could not be investigated 

in detail. Much work needs to be done in the following areas. 
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1. Determine the optimal resolution for the A/D-Board based on the anticipated motion pro- 
files. 

2. Investigate whether or not variable gain control for the IMU data would improve the per- 
formance of the IMU. 

3. Develop a scheme for attitude control vice changing the vehicle's suspension. 

4. Implement the filter algorithms as determined in this thesis. Care needs to be taken that 
computation time is crucial and efficient computation methods be used. 

5. Implement an Input/Output Kernel utilizing the 68030 processor for online debugging, 
display of status information, and eventually off-loading of some of the lower priority task 
such as transferring data between boards. 

6. Investigate how the system presented in this thesis would work for most general type of 
motion including rotational motion and motion in three dimensions. 
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APPENDIX A: CONSTANTS 

 Table 1.1: Constants used throughout the text  
Universal constant of gravitation      G=6.672 • 10-11 k 

m
sec2 

Mass of Earth M=5.98 • 1024 kg 
mean Earth radius R. =6.371 • 106 m 
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APPENDIX B: MATLAB M-FILES 

This appendix contains essential MATLAB M-Files that are being referenced in the text. 

1. IMU.M 

The MATLAAB file ' imu.m' is used to analyze the data recorded from the IMU. It makes 

use of the MATLAB functions 'filterl', 'eulerl.m' and 'integral' which are listed following 

this section. 

1 function imu(fname,G,T,f) 
2 

3 X  
4 X function imu(fname,G,T,f) 
5 •/,  
6 •/. 
7 7, M-File to obtain reliable position data. Procedure: 

8 X 
9 X  1. load data and scale data 

10 X  2. plot data in frame {B} 

11 7.  3. filter data with butterworth LP filter in frame <B} 
12 X  4. determine Euler angles and transform data fto frame {R} 

13 X  5. integrate data to obtain velocity 

14 X 
15 X Author:    Thorsten Leonardy 

16 7. Date:      10/23/97 
17 X Compiler:  MATLAB V4.21c 

18 7. 
19 7. Input:     f name = name of data file 

20 X G    = gain sequence for channels, default [1114] 
21 7. note that G(3) includes the orientation of the 
22 7. IHU's z-axis (>0 is up, <0 is down) 

23 X T    = sampling time for data 
24 7. f    = switch for filtering ax data 

25 X  
26 

27 g=9.81; X local gravitational constant [g=9.81m/s"2] 
28 
29 if nargin<2 

30 G=[l 1 1 4];      7. sample gain 

31 T=0.01; X samples per block and channel 
32 f=0; 7. do not filter data 
33 end 
34 

35 up = G(3)/abs(G(3))  X determine if IMO's z-axis points up 
36 G(3)=abs(G(3)); 

37 
38 X load data, ax,ay and az are in [m/sec~2] or [g], wz is in [rad/sec] 

39 [t,ai,ay,az,wz]=getdata(fname,G,T); 
40 
41 disp('»> Plot data in <B> ...') 
42 plotdata(t,ax,ay,az,vz); X plot data 

43 
44 disp('»> Transform <B} --> {R> ...') 

45 [ax,ay,az]=eulerl(ax,ay,az,up) ;       X transform data to reference frame {A} 
46 
47 disp('»> Plot data in <R> ...') 
48 plotdata(t,ax,ay,az,wz); X plot data in <R> 
49 
50 disp('»> Integrate data in <R} to obtain v ...') 

51 [tv,vx]=integral(t,g*ax,D; 7. integrate step by step 
52 [tv,vy]=integral(t,g*ay,l); X integrate step by step 

53 Ctv,vz3=integral(t,g*(az-up) ,1);       X integrate step by step 
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54 
55 figure 
56 myplot(tv,vx,'Velocity in frame <R}',",'v_x  [m/sec] ', [3 1  1]) 
57 myplot(tv,vy,",",'v_y [m/sec] ', [3 1 2]) 
58 myplot(tv,vz,",'t [sec]','v_z [m/sec]', [3 1 3]) 
59 

60 disp('»> Integrate data in <R} to obtain position ...') 
61 [tp,x]=integral(tv,vx,l); X integrate step by step 
62 [tp,y]=integral(tv,vy,l); 7. integrate step by step 
63 [tp,z]=integral(tv,vz,l); X integrate step by step 
64 
65 figure 
66 myplot(tp,x,'Position in frame <R}',",'x [m] •, [3 1 1]) 
67 myplot(tp,y,",",'y [m] ', [3 1 2]) 
68 myplot(tp,z,",'t [sec]','z [m] >, [3 1 3]) 
69 
70 •/.  

71 7. filter the data for acceleration in x direction 
72 7.  
73 if f 

74 mx=mean(ax); •/, compute the mean 
75 my=mean(ay); •/, compute the mean 
76 mz=mean(az); •/. compute the mean 
77 
78 
79 7. compute the FFT 
80 [AX,f]=filterl(ax,6,t(2)-t(l)); 
81 

82 mAX=AX(l); •/, obtain the mean 
83 AX(1)=0; •/, suppress dc component 
84 
85 figure 

86 myplot(t,ax,['Acceleration ax in frame {R}, mean is  ' num2str(mx)] , >t  [sec]',>ax  [g] •, [3 1 1]) 

88 myplot(f,AX,['FFT for ax   [g] ,  mean is AX(f=0)=  • num2str(mAX)   '   [g],  fs=5000 Hz'] 
89 'f [Hz]','AX [g]',[3 12]) 
90 
91 X zoom on in for f=0..50 Hz 
92 ix=find(f<=50); 
93 myplot(f(ix),AX(ix),'Blow up view for FFT for ax [g]' 
94 'f [Hz]','AX [g]',[3 1 3]) 
95 
96 X  
97 X filter the data 
98 X  

99 af=filterl(ax, 10,20/2500,50/2500,0.1,80); 7. Cauer filter 
100 
101 figure 

102 myplot(t,af.'Acceleration ax in frame {R} after elliptic futerine' 
103 't [sec]','ax [g]',[2 1 1]) 
104 
105 
106 
107 X  
108 X Integrate ax 
109 X  

myplot(t,v,'Velocity vx in frame {R} after elliptic filtering' 
't [sec]','vx [m/s]',[2 1 2]) 

110   [t,v]=integral(t,af,6); 
111 
112 
113 
114 
115 end 7. of if f 
116 

117 dispO» Plot all figures to disk in postscript format as "fname xxx.ns' 
118 for i=l:gcf "   r 

119 figured) 
120 eval(['print -dps2 ' fname '_' num2str(i) '.ps']) 
121 end 
122 
123 return 
124 7.  
125 7. end of 'imu.m' 
126 X  
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FILTERl.M 

The file 'f ilterl' provides a set of suitable filter routines such as an FFT, Chebychev or 

Butterworth filter, and more. 
1 function Cy,f]=filterl(x,type,a,b,c,d) 
2 •/ .  

3 X function [y,f]=filterl(x,type,a,b,c,d) 
4 7.  

5 X Author:    Thorsten Leonardy 

6 X Date:      10/16/97 
7 X Compiler:   HATLAB V4.2cl 

8 X 
9 X Input:     x = input data matrix (M*N) 

10 X type = utility function (filter) to apply 

11 X a..d = parameter used for some filter types 
12 X 

13 X type 2..4 average across the rows: 

14 X type = 2 simple mean 

15 X type = 3 average using Simpson's 3/8 rule 

16 X type = 4 average using Simpson's 1/3 rule on 9 samples 
17 X tyPe = 5 average using trapezoidal rule 
18 X type 6 operate on each row: 

19 X type = 6 obtain Fourier transform (a is the sample interval in [sec]). 
20 X type 7 ... 9 operate on first row only: 

21 X type = 7 moving average FIR-Filter       [n Taps] 
22 X type = 8 Butterworth filter [wp,ws,Rp, Rs] 
23 X type = 9 Chebychev Filter [wp,ws,Rp,Rs] 
24 7. type = 10 Elliptic (Cauer Filter)     [wp, ws,Rp,Rs] 

25 X 
26 X Output:    y = output data (H*N2/2), 

27 X N2 is a power of two closest to and less or equal to N 
28 X f = frequency scale (l*N2/2) for y if type=10 

29 X  
30 

31 disp(['*** Function "filterl", type ' num2str(type) ' ***']) 
32 
33 if type==0 

34 y=x; 
35 return 
36 end 

37 

38 7. compute mean of the sampled data from the channel 
39 if type==l 
40 y=x(a,:); 
41 end 
42 
43 if type=2 
44 y=mean(x); 
45 end 
46 
47 if type==3 
48 c=(3/8)*[l 33233233 1]; 
49 y=c»x/9; 
50 end 
51 
52 if type==4 
53 c=(l/3)*[l 4242424 1]; 
54 y=c*x(l:9,:)/8; 
55 end 
56 
57 if type==5 
58 c=(l/2)*[l 22222222 1]; 
59 y=c*x/9; 
60 end 
61 
62 X r  
63 X Fourier Transform of x 

64 X  
65 

66 if type==6 
67 

68    T=a; X sampling .time of data 
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™ F=1/T;                    X sampling frequency [Hz] of signal 
70 m=mean(x>);               X mean of data sequence 

72 N=size(x,2); X total length of data 
73 N2=2-(floorUog(10/logC2))) X reduced length to power of two 
74 x(:,N2+l:N> = []; X cut off the data sequence 
75 t-T*(0:N2-l); •/, time base corresponding to data 
76 f=linspace(0,F,N2); X frequency base 

78 y. Hatlab computes the Fourier transform of a signal that is sampled 
f3 /. at a sampling frequency fs. The corresponding frequency scale is 
80 I  expressed in terms of the digital frequency omega=2*pi*(f/fs) in 
81 .  the range 0..2*pi (any discrete FT is periodic in terms of omega 
82 /. with period 2*pi) . 
83 

84 y=abs(fft(*'))'; X compute the Fourier Transfor of x(t) 
85 f(:,»2/2+l:N2) = []; •/. discard redundant frequency part 
86 y(:,N2/2+l:N2) = D; X discard redundant upper half of spectrum 

X X(w) relates now to w=[0,pi] 
88 y=y/N2;              •/ normalize the amplitude 
89 
90 end 
91 
92 

93 X ************** moving average FIR filter ********************** 
94 if type==7 
95 
96 if nargin<3 
97 P=5; 
98 end 
99 H=P; 

100 N=size(x,2); 
101 

103 I=l(1':)i X filter only first row 

104 x=x-[ zeros(l,l+H) x(l:H-l-H)]j  X the delav 
105 x=x/(l+M); 
106 
107 y=zeros(l,N); 
108 y(l)=x(l); 
109 
110 for i=2:N 
HI y(i)=y(i-l)+x(i); 
112 end 
113 
114 end 
115 
116 
117 •/.   
118 X IIR Butterworth filter 
119 X  
120 if type == 8 
121 

123 I=x(1':); X filter only first row 

124 X filter specifications (digital frequencies) 
'^ I  eS- if fs=2000Hz and passband edge is supposed to be at fp=500 Hz 
126 X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!! 
127 wp=a; X wp is passband edge [0..1] where 1 relates to fp/(fs/2) 
128 ws=b; '/,  stopband edge ... 
129 Rp=c; X ... and max. attenuation [dB] at passband edge 
130 Rs=d; X ... and min. attenuation [dB] at stopband edge 

"i ?,H^=bUtt0rd<BP,W3,Rp'Rs):  ''•  lilter order ***  3dB cutoff-frequency 
132 disp(['Butterworth filter order > num2str(N)]) 
133 
134 Xfilter process 

135 [b,a]=butter(N,wc); %  compute the filter coefficients 
136 y=filter(b,a,x); X filter the data 
137 
138 end 
139 
140 X  
141 X Chebychev Type II filter 
142 X  
143 if type==9 
144 
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145 

146 
147 

148 

149 
150 

151 
152 

153 
154 
155 

156 
157 

158 

159 

160 

161 

162 

163 

164 

165 

166 
167 

168 

169 
170 
171 
172 

173 
174 

175 
176 
177 

178 
179 

180 
181 
182 

183 
184 

185 
186 
187 
188 
189 
190 
191 

x=x(l,:); '/, filter only first row 

X filter specifications (digital frequencies) 
'/e.g. if fs=2000Hz and passband edge is supposed to be at fp=500 Hz, 

X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!! 
wp=a 

ws=b 
Rp=c 
Rs=d 

X wp is passband edge [0..1] where 1 relates to fp/(fs/2) 

X stopband edge ... 
X ... and max. attenuation [dB] at passband edge 
X ... and min. attenuation [dB] at stopband edge 

[N,wn]=cheb2ord(wp,ws,Rp,Rs);  X filter order and 3dB cutoff-frequency 
disp(['Chebychev Type II filter order ' num2str(N)]) 

[b,a]=cheby2(H,Rs,wn); 

y=filter(b,a,x); 
7. compute the filter coefficients 

X filter the data 

x  
X Elliptic filter (Cauer filter) 
X  
if type==10 

x=x(l,:); X filter only first row 

X filter specifications (digital frequencies) 

X e.g. if fs=2000Bz and passband edge is supposed to be at fp=500 Hz, 
X parameter wp must be wp=fp/(fs/2)=500/(2000/2)=0.5 !!! 
wp=a 
ws=b 
Rp=c 

Rs=d 

X wp is passband edge [0..1] where 1 relates to fp/(fs/2) 
X stopband edge ... 
X ... and max. attenuation [dB] at passband edge 
X ... and min. attenuation [dB] at stopband edge 

[K,Wn]=ellipord(wp,ws,Rp,Rs); 

disp(['Elliptic filter order ' 

[b,a]=ellip(N,Rp,Rs,Wn); 
y=filter(b,a,x); 

X filter order and 3dB cutoff-frequency 
num2str(H)]) 

X compute the filter coefficients 
7. filter the data 

X end of 
7.  

filterl. 

3. EULER1.M 

The function 'eulerl.m' is used to convert the recorded IMU data which is given in the 

sensor frame {S} to the reference frame {R} by means of rotation matrices. 
1 function [ax,ay,az]=eulerl(ax,ay,az,up) 
2 

3 
4 
5 

6 
7 
8 

9 
10 

11 
12 
13 

14 
15 

16 

X  
X function [ax,ay,az]seulerl(ax,ay,az,up) 
X  
X 
X H-File for computing the Euler angles for a given set of data 
X measured in the sensor frame {S} and transforming the data into 

X the reference frame -OR}. 

7. 
X Author: 
X Date: 
X Compiler: 

7. 
X Input: 

X 

Thorsten Leonardy 
10/16/97 
MATLAB V4.21c 

ax(ltN) = acceleration [g] in <S} ax-direction 
ay(l,N) = acceleration [g] in {S> ay-direction 
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17 '{' az(l,N) = acceleration [g] in {S> az-direction 
18 I' UP    = orientation of sensors z-axis (+l=up,-l=down) 

20 7. Return:    acceleration relative to frame {R} 
21 •/. 
22 

23 •/. put data into one measurement matrix aS(3,N) relative to Frame <S> 
24 aS=[ax;ay;az]; 
25 
26 •/.  

27 7. determine the Euler angles based on the average 
28 '/.  acceleration during 2nd second 
29 7.  
30 ix=101:200;        %  may change this 
31 m=mean(aS(:,ix)'); 7. take the mean of first ix values 
32 g=sqrt(m*m');      7. the gravity based on the mean 
33 disp([>—> mean of g in frame {S} is ' num2str(g,6) ' g']) 

35 psi=0.0; •/, psij arbitrary value 
36 phi=-asin(m(l)); 7. phi 
37 theta=asin(m(2)/cos(phi));     %  theta 
38 
39 phi=up*phi; 
40 theta=up*theta; 
41 

42 disp(['~> Theta (roll) is ' num2str(theta*180/pi,7) ' degrees']) 
43 disp([>—> Phi (pitch) is • num2str(phi*180/pi,7) ' degrees']) 
44 disp(['—> Psi (yaw) is ' num2str(psi*180/pi,7) ' degrees']) 

46 7.  
47 7. compute elements of the rotation matrix 
48 7. complete rotation matrix would be R=RZ*RY*RX 
49 7.  
50 

51 RX=[        1 0 0 ; 7. rotation matrix about X A 
52 0     cos(theta) -sin(theta) ; 
53 0    sin(theta) cos(theta) ]; 
54 

55 RY=[ cos(phi)    0      sin(phi)  ;    % rotation matrix about Y A 
56 0       1 o     ; 
57 -sin(phi)    0      cos(phi)  ]; 
58 

59 RZ=[ cos(psi) -sin(psi)      0     ;    7. rotation matrix about Z.A 
60 sin(psi) cos(psi)     0     ; 
61 0       0 1      ]; 
62 
63 7.  
64 7. rotate the data successively to frame <A} 
65 7.  
66 aR=RX*aS;      7. rotate <B} about {R} x-axis 
67 aR=RY*aR;      7. rotate new <B} about <R} y-axis 
68 aR=RZ*aR;      %  rotate new <B} about {R} z-axis 
69 

70 m=mean(aR(:,ix)'); '/.  take the mean of first ix values 
71 g=sqrt(m*m');      '/,  the gravity based on the mean 
72 disp(C—> mean of g in frame {A} is ' num2str(g,6) ' g']) 

74 ax=aR(l,:); 
75 ay=aR(2,:); 
76 az=aR(3,:); 
77 
78 return 
79 '/.  
80 7. end of 'eulerl.m' 
81 7.  
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4. INTEGRAL.M 

This function implements the Newton-Cotes integration formulas as described in the text. 

This provides an easy means to compare the results for different integration schemes. 
1 function [t,y]=integral(t,x,n) 

y, _  
'/■ function [t,y]=integral(t,x,n) 
7. 
%  Integrates the input x based on the Newton-Cotes algorithm. 
7. The integral is computed on each column. 
7. 
'/ n = the number of panels (n panels require n+1 data points) 
X t is the time base corresponding to the data. 

11 7.  
12 
13 [N,c]=size(t) 
14 
15 if (ON) 
16 x-T'; t=t'; N=c;      '/. need data as a vector, N=length of data 
17 end 
18 
19 7. prepare the coefficients in the sum formula 
20 if (n==l),c=[l l]/2; end 
21 if (n==2),c=[l 2 l]/6; end 
22 if (n==3),c=[l 3 3 l]/8; end 
23 if (n==4),c=[7 32 12 32 7]/90; end 
24 if (n==5),c=[19 75 50 50 75 19]/288; end 
25 if (n==6),c=[41 216 27 272 27 216 41]/840; end 
26 c=n*(t(2)-t(l))*c; 
27 
28 for i=l:n:N-n 
29 x(i,:)=c*x(i:i+n,:);     7. store result in place 
30 end 
31 
32 y^cumsumCxdinrN-n,:)) ; 
33 t=t(n+l:n:N); 7» return the time scale 
34 
35 return 
36 7.  
37 7. End of  'integral.m' 
38 7.  

SHAFT.M 

In order to analyze the shaft encoder data that was recorded during the different motion 

programs. 
1    function shaft(fname) 
2 
3    7.  
4 7. function shaft (fname) 
5 •/,  

6 7. 
7 7. M-File to analyze the shaft encoder readings recorded for SHEPHERD'S 
8 7. motion according to the different motion profiles. 
9 7. 
10 7. Author:    Thorsten Leonardy 
11 7. Date:     11/11/97 
12 7.  Compiler:  MATLAB V4.21c 
13 7. 
14 7, Input: fname = name of data file  (no extension ,*.datl) 
15 7. e.g.   at the prompt »shaftClinear4') 
16    7. 
17 
18    7. load data 
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19 eval(['load -ascii ' fname '.dat, data=' fname >;' fname ' = [];']) 

21 X reshape the data 

22 N=length(data)/8 •/. number of 10ms intervals contained in data 
23 data=reshape(data,8,N); 
24 t=0.01*(l:N); •/, the time base 
25 

26 driveDelta=data(l:2:8,:)>;  X driving data [counts/lOms] 
27 steerDelta=data(2:2:8,:)>; %  steering data [counts/lOms] 
28 

29 X account for the fact that drive encoders for «heels 2 and 4 read negative 
30 X differences if wheels are driving forward 
31 driveDeltaO,2:2:4)=-driveDelta(:,2:2:4); 
32 

33 X accumulate the data to obtain true rotation of motors 
34 drive=cumsum(driveDelta);   X the distance travelled 
35 steer=cumsum(steerDelta);   X the angle steered 
36 
37 X scale to SI units 
38 drive=drive/87914;  X drive distance in [m] 
39 steer=steer/256; X angle steered in degrees 
40 
41 X plot data 
42 figure 
43 for i=l:4 
44 if (mod(i,2)) 
45 subplot(2,2,i+1) 
46 else 
47 subplot(2,2,i-1) 
48 end 
49 plot(t,drive(: ,i)),grid 
50 title(['Wheel ' num2str(i)],'FontSize',8) 
51 xlabelOTime [sec] ', 'FontSize' ,8) 
52 ylabeK'Drive distance [m]','FontSize',8) 
53 set(gca,'FontSize',6,'Box','off') 
54 a=axis; a(3)=min(drive(:,i)); a(4)=max(drive(: ,i)); axis(a) 
55 end 
56 eval(['print -dps2 shaft' num2str(gcf) '.ps']) 
57 
58 figure 
59 plot(t,steer).grid 

60 titleCSteer values for Wheels 1..4 with steer value set to zero','FontSize' 8) 
61 xlabeK'Time [sec]','FontSize',8) ' 
62 ylabeK'Steer angle [degrees]','FontSize',8) 
63 set(gca,'FontSize',6,'Box','off') 
64 ix=min(find(t>=65)); 
65 for i=l:4 
66 text(t(ix),steer(ix,i),['Wheel' num2str(i)],... 
67 'HorizontalAlign', 'left', 'VerticalAlign', 'top', 'FontSize' 6) 
68 end 

69 eval(['print -dps2 shaft' num2str(gcf)   '.ps']) 

71 
72 return 
73 X  
74 X end of   'shaft.m' 
75 X  
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APPENDIX C: GCC COMPILER SOURCE-FILES 

This appendix lists the C-source code that is being referred to throughout the text. Each 

individual source file was written in C and crosscompiled using the GCC Compiler Version 2.72 with 

the following command line: 

gcc -c -m68040 -o filename.o filename.c 

1. IMU.C 

The file 'imu.c' provides all the routines required to implement the inertial measurement 

sensor as outlined in Chapter V. Moreover, they provide the interface for further development of 

the system. 

File: 

Environment: GCC Compiler v2.7.2 

Last update:  10 September 1997 

Thorsten Leonardy 
Provides routines required for controlling the inertial 

measurement sensor. 

>gcc -c -m68040 -o navigat.o navigat.c 

Name: 
Purpose 

1 

2 

3 

4 

5 
6 

7 
8 

9 
10 * 
11 * Compiled 

12 * 
13 *  
14 
15 /*  
16 
17 
18 

19 
20 
21 
22 

23 
24 
25 

26 
27 
28 
29 

30 

31 
32 

33 
34 

35 
36 
37 

38 
39 

40 
41 

IMU.C 

»/ 

README 

Here is how the routines work: 

1. Make sure that initVME9325 is called inside mainO 
this will setup the proper interrupt handling for reading data 

from the accelerometer. 

2. A/D-Block conversions as specified in initVME9325 will be initiated with every 
10ms timer interrupt. However, to make the data available, make sure that 
interrupt for conversion complete are being issued: 

3. Call startVKE9325 to enable block conversion complete interrupts 

on IRQ-5 to 68040 processor and therefore copy data into main memory 

4. To seize copying data into main memory» call stopVME9325 

5. The A/D converter is setup such that after every 10ms timer interrupt 

a block conversion will be initiated. A total of ADJJUM.CONVERSIONS 
conversions will be performed on the four channels on the IMÜ 
in the sequence CH0, CHI, CH2, CH3, CH0, ... 
The sample time is set to be 25us (hence, one specific channel will 
be sampled every lOOus) 

6. If interrupts are enabled, the most recent data obtained with every 
10ms timer interrupt will be stored in the structure imu as defined 

in SHEPHERD.H 
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42 

43 

44 
45 

46 
47 

48 
49 

50 

51 
52 

53 
54 

55 

56 

57 

58 
59 

60 

61 
62 

63 

64 

65 

66 

67 

68 

69 

70 

71 

72 

73 
74 

75 
76 

77 
78 
79 
80 

81 
82 
83 
84 

85 
86 
87 

88 

89 
90 
91 

92 
93 

94 
95 
96 

97 
98 

99 
100 

101 
102 
103 
104 

105 
106 
107 

108 
109 
110 
111 
112 
113 
114 

115 
116 
117 

7. The boards status can be observed at the front panel: 
(a) green LED is on -> board performs A/D-Conversions, interrupts enabled 
(b) green LED is off -> board performs A/D-Conversions, interrupts disabled 
(c) red LED is toggling -> Interrupts are being handled by the handler, 

data is read from board into SHEPHERD main memory 
(d) red LED is on/off -> interrupt handler is not being called 

*/ 
»include "shepherd.h" 
»include "imu.h" 

int  adCounter; 

int  mainMemCounter; 
/* counter for debugging purposes */ 

/* to count the data stored in main memory */ 

/* the next is used as temporary storage for analyzing acceleration DATA */ 
unsigned short »mainHemData; 

/* 
* initVME9325(void) 
* 
* Environment: GCC Compiler v2.7.2 

* Last update: 24 July 1997 

* Name: Thorsten Leonardy 
* 
* Purpose: Initializes AD-Board VME9325. Board will convert 

* analog data from channels specified and store the respec- 

* tive digital data (2 Bytes per channel, 12 bit data, lowest 
* nibble is zero) sequentially in dual port ram. 

* Board will operate in Block mode with interrupts and timed 

* periodic triggering (10ms cycle). E.g. perform 10 conver- 
* sions on each of the four channels. Once 40 conversions are 
* made, initiate interrupt to read data into main memory and 
* eventually smooth/filter data. 

void initVHE9325(void) 
< 

*/ 

unsigned char *ad = (unsigned char») VME9325_BASE; /* base address */ 

unsigned char *vmeICR4 = (unsigned char*)VIC.IRQ4; /* VHE ICR IRQ-4*/ 
long *vadr; /» ... Vector base address t/ 

*(ad+0x81)=0xl0; 
*(ad+0x81)=0x02; 

/* software reset */ 
/* turn both    LEDs on to indicate board undergoes 
/* initialization 

*/ 
*/ 

/»  
* Interrupt settings for VIC 

*/ 
vadr=(long*)0xffe40158;  /* VBA address for interrupt handler (4 * 0*56 = 0x158) */ 
*vadr=(long)handlerVHE9325;  /* write address of handler into Vector Table */ 

/* set up VIC interface for VHE-Bus interrupts to TUARUS. AD-Board asserts */ 

/* IRQ-4 upon interrupt to VHE-Bus. Route as IRQ-2 to MC68040. CAUTION !!! */ 
/* make sure jumper J7 on AD-Board is set correctly !!! »/ 

*vmeICR4=0x82;  /* disable VHE-Bus IRQ4 input, route as IRQ-2 to Processor «/ 

*(ad+0x83)=0x56;   /* interrupt vector number provided by board to VIC */ 

/* program scan sequence (may wish to arrange channels to be scanned differently) */ 
/* channels axe nrannoA    rnntraV«->.j ~—J _*..__J ^_     ., . J 

/*   *(ad+0x87) 
/*   *(ad+0x87) 
*(ad+0x87)=0x60 
*(ad+0x87)=0x61 
*(ad+0x87)=0x02 
*(ad+0x87)=0xc3 

scanned, converted and stored in memory in this order 
-0x00; /* channel 0 (ax, +-7.5V input range, gain xl) */ 
=0x01; /* channel 1 (ay, +-7.5V input range, gain xl) */ 

/* channel 0 (ax, +-7.5V input range, gain x8) */ 
/* channel 1 (ay, +-7.5V input range, gain x8) */ 
/* channel 2 (az, +-7.5V input range, gain xl) */ 
/* channel 3 (wy, +-2.5V input range, gain x4) */ 

/* gain x4 to cover max. input range +-10V, */ 

/* set EOS bit to indicate end of scan sequence*/ 

*/ 
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118 /* setup Board Control Register */ 
119 *(ad+0x85)=0x08;   /* enable timer circuit, enable interrupts */ 
120 /* block mode, software initiates very first trigger */ 
121 
122 /* setup timed periodic triggering circuit for 50usec ( T = 10 * 10 / 2 MHz )*/ 
123 *(ad+0x8f)=0x54;   /* setup counter to receive single byte prescaler count */ 
124 *(ad+0x8b)=Ox0A;   /* load prescaler value into Timer Prescaler Register   */ 
125 *(ad+0x8f)=0x94;   /* setup counter to receive single byte timer count */ 
126 *(ad+0x8d)=0x0A;   /* load Conversion Timer Register */ 
127 
128 /* load conversion count register */ 
129 »((unsigned short *)(ad+0x90))=200; 
130 
131 /* initialization is complete */ 
132 *(ad+0x81)=0x01;   /* turn off both LED, disable interrupts */ 
133 
134 sioOut(0,"A/D-Board initialized\n\r"); 
135 
136 return; 
137 }  /* end of AD_Init */ 
138 
139 
140 /* * 
141 * analyzeVHE9325 * 
142 * * 
143 * Environment:  GCC Compiler v2.7.2 * 
144 * Last update:  24 July 1997 * 
145 * Name: Thorsten Leonardy                                       * 
146 * * 
147 * Purpose: Saves the data for one complete block conversion cycle from * 
148 * dual-port RAH of A/D-Board to Shepherd's main memory.      * 
149 * In the future, this routine shall be utilized to analyze   * 
150 * and filter the data and save only the filtered data.       * 
151 * This is called from the interrupt handler routine         * 
152 * AD.Handler.                                         * 
153 * * 
154 » */ 

155 void analyzeVME9325 (void) 
156 { 
157 unsigned short *ad;  /* base address for data */ 
158 int i; 
159 unsigned short adData[AD_NUH_C0NVERSI0NS] ; 
160 
161 
162    ad=(unsigned short*)VME9325_DATA; /* load base address for dual port RAH */ 
163 
164 /* * 
165 * here goes the filtering ... * 
166 * */ 
167 if ((adCounterX5)==0) 
168 toggleVME((unsigned char *)0xfd800000,0x01) ; /* toggle red LED every 50 msec*/ 
169 
170     adCounter++; 
171 
172 /* * 
173 * This is temporary backup * 
174 * */ 
175 
176 for  (i=0;  i<AD_NUH_C0»VERSIONS;  i++) < 
177 adData[i]=*ad++; /* neglect lower nibble */ 
178 *mainHemData++=adData[i]; /* save data in main memory */ 
179 } 
180 
181    «ifdef 0 
182 
183 /* once data is filtered,  store obtained values in imu */ 
184 imu.ax=adData[0]; 
185 imu.ay=adData[l]; 
186 imu.az=adData[2]; 
187 imu.omega_z=adData[3j; 
188 
189 «endif 
190 
191 /* reload start conversion register for next block conversion */ 
192 ad=(unsigned short*)0xfd800090; /* address for SCR */ 
193 *ad=AD_NUH_C0NVERSI0NS;       /* reload register */ 
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194 
195 return; 
196 }  /* end of analyzeVHE9325 */ 
197 
198 
199 7*   
200 * startVHE9325(void) 
201 * 

202 * Environment: GCC Compiler v2.7.2 
203 * Last update:  10 September 1997 
204 * Name:       Thorsten Leonardy 
205 * 

206 * Purpose:     enables interrupts issued by the VHE9325 board. 
207 * 

208 * Called from: whatever function. 
209 * 
210 i. */ 
211 void startVHE9325(void) 
212 { 

213 unsigned char *statusRegister= (unsigned char *)VME9325_BASE+0x0081; 
214 unsigned char *vmeICR4 = (unsigned char*)VIC_IHQ4;      /* VHE ICR IRQ-4*/ 
215 

216 /* initialize global variables ... */ 

217 mainHemData=(unsigned short *)IMU_DATA_ADR; /* start address for data storage */ 
218 adCounter=0; • ° 
219 
220 
221 

222 /* write status register to enable interrupt and turn off red LED */ 
223 *statusRegister=0x09;   /♦ turn off both LEDs, enable interrupts */ 

225 
226 return; 
227 }  /* end of startVME9325 */ 
228 
229 
230    /*   

/* counter for debugging purposes */ 

*vmeICR4=0x02;     /* enable VME-Bus IRQ4 input,  route as IRQ-2 to Processor */ 

231 * stopVME9325(void) 
232 * 

233 * Environment: GCC Compiler v2.7.2 
234 * Last update:  10 September 1997 
235 * Name:       Thorsten Leonardy 
236 * 

237  * Purpose:     disables interrupts off the VME9325 AD-Board. Yet, board 
»ill still perform A/D-Conversions but data will not be 
made available to the operating system. 

238 
239 * 
240 * Called from: 
241 * 
242 *  
243 void stopVME9325(void) 
244 < 

245 unsigned char *statusRegister= (unsigned char *)VME9325 BASE+0x0081; 
246 unsigned char *vmeICR4 = (unsigned char*)VIC_IRQ4;  /* VME ICR IRQ-4*/ 

248 #ifdef 0 
249 /* initialize global variables ...  *l 
260 260    mainHemData= (unsigned short «OIMU.DATA.ADR; /. start address for data storage »/ 

2K5 a^dif    er=0; '*  C0Unter f°r debu8Eing Proses */ 

*vmeICR4=0x82; /. disable VME-Bus IRQ4 input, route as IRQ-2 to Processor */ 

252 #endif 
253 
254 
255 

256 /* write status register to disable interrupt and turn off red LED */ 
257 *statusRegister=0x01;   /* turn off both LEDs, disable interrupts */ 
258 
259 return; 
260 }  /* end of stop¥ME9325 */ 
261 
262 
263 
264 /************************************.»*»*,»»«.»»»„„»„«*„„„„„„„,„, 
265 Assembler routines 
266 **********************»*************.»»****»**»»»»»**»„,*„«»,«„„,„„„„, 
267 ' 
268 
269 
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* handlerVME9325 
* 
* Environment: GCC Compiler V2.7.2 
* Last update: 10 September 1997 
* Name:       Thorsten Leonardy 

* Purpose: Handles the VME-Bus interrupt request from the A/D-Board. 

asm(" 
.even 
.text 
.globl _handlerVHE9325 

_handlerVME9325: 

link 
fsave 

#ifdef 0 
fmovemx 
fmovel 
fmovel 
fmovel 

#endif 

move.1 
and.b 

move.1 
move.w 

move.1 
lea 
move.1 

clr.l 

_loop: 
cmp.l 
ble.b 
nop 
bra.b 
nop 

.proceed: 

.done: 

/* 

a6,#-184 
a68(-184) 

f pO-f p7, sp«- 
fper,spfi- 
f psr, spO- 
fpiar.spfl- 

moveml  d0-d7/a0-a5, spQ- 

addq.l  #1,_adCounter 

#0rfd800081,a0 
#0xfd,(aO) 

#0xfd800090,a0 
#200,(aO) 

#0xfd820000,a0 
.mainMemData,al 
(al),a2 

dO 

#199,dO 
.proceed 

_done 

move.w (aO),dl 
nop 
move.w dl,(a2) 
nop 
addq.l #2,a0 
addq.l #2,a2 
addq.1 #l,d0 
bra.b _loop 

move.l  a2,(al) 

/* allocate 184 Bytes on stack to save registers   */ 

/* move floating point registers 80 bit each */ 
/* move floating point Control Regioster */ 
/* move floating point status register */ 
/* move floating point Instruction address register */ 

/* save data and address registers (14*4 Byte)     */ 

/* increment counter (testing purpose only */ 

/* load address status register */ 
/* turn off green LED        */ 

/* reload start conversion register */ 

/* load address for dual port RAM */ 

/* loop counter */ 

/* read next two byte of dual port RAM 
/* caution: need this due to pipelining */ 

/* increment pointer in dual port RAM */ 
/* increment pointer to next main memory location */ 
/* increment loop counter */ 

/* write back the next main memory location */ 

jsr    _analyzeVME9325   /* copy data from A/D-Boards dual-port RAM to main */ 
/* memory and filter, analyze it */ 
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346 noveml      sp*+,d0-d7/a0-a5 
347 
348 Jtifdef 0 
349 fmovel      spfi+,fpiar 
350 fmovel       spG+,fpsr 
351 fmovel      sp©+,fpcr 
352 fmovemx    sp8+,fp0-fp7 
353 »endif 
354 
355 frestore a6®(-184) 
356 unlk    a6 
357 
358 rte 
359 "); 
360 
361 

362 /**********************************»******»»*****»»«*„,,»,„»„»„ttt„„„t 

363 End of imu.c 

364 *********************»********»****«****»»«„*»*»»«»„„»*„„»„,„„»„„„„/ 
365 

2.    MOTOR.C 

The file 'motor.c' provides the routines required to control the servo motors. Although the 

listing was already given by Mays/Reid [1], some changes had beend done to improve the overall 

execution time, 
l   /* 
2 // Edward Mays 
3 // Shepherd project 
4 // 20 February 1997 
5 // update: 27 October 1997 Thorsten Leonardy 
6 //        "> provide code to detect slip, 
7 H _> eliminate calls to readDriveEncoders, readSteerEncoders 
\ '/ by including code in readEncoders (improves execution speed) 
9 ''       _> compute speed and angular velocity immediately inside 

10 // readEncoders. 
11 // MotionControl 
12 // ==============================================_.==  
13 
14 
15 #include "shepherd.h" 
16 #include "motor.h" 
17 »include "movement.h" 
18 »include "math.h" 
19 
20 double theta, omega, speed; 

21 double a,,_ /* acceleration in cm/sec-2 */ 

=*/ 

22 dd[4]; /* driveDelta required for velocity to steer »/ 
23 int timeForTurn[8] ; /* storage for time it took to rotate 360 degrees [10ms] */ 
24 short testSpeed=0x0b00;       /. temp variable for changing speed */ 

int *leoData=(int *)0x00100000; /* start data storage */ 

25 double radPerDigit[ARRAY_SIZE]; 
26 int ddc=10000,tc=2000; /* desired vale for driveDelta */ 
27 
28 
29 
30 
31 void readEncoders() < 
32 readDriveEncoders (driveReadings); 
33 readSteerEncoders(steerReadings); 
34 > 
35 
36 

37 void readDriveEncoders (unsigned long int array []) 
38 \ 
39 unsigned char *p=(unsigned char*)VMECTRl, el, c2, c3- 
40 int ix; 
41 long int temp; 
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42 
43    for (ix=0; ix<4; ix++) ■(  /* read all four motors subsequentially */ 
44 
45 *(p+3)=0x03; /* load output latch from counter */ 
46 *(p+3)=0x01; /* control register, initialize two-bit output latch */ 
47 
48 /* read three bytes for specific counter ix and save in status  */ 
49 /* first access to Output Latch Register reads least significant */ 
50 /* byte first */ 
51 
52 cl = *(p+l) t OxOOff; 
53 c2 = »(p+i) k  OxOOff; 
54 c3 = *(p+l) k  OxOOff; 
55 arrayCix] = ((unsigned int)cl)l ((unsigned int)c2 « 8) I 
56 ((unsigned int)c3 « 16); 
57 
58      p=p+4; /* increment pointer for next counter */ 
59 
60 
61 } 
62 return; 
63 > /* end of readDriveEncoders */ 
64 
65 
66 void readSteerEncoders (unsigned long int array[]) 
67 < 
68 unsigned char *p=(unsigned char*) (VMECTR1 + 0x0100), cl, c2, c3; 
69 int ix; 
70 
71 
72    for (ix=0; ix<4; ix++) <  /* read all four motors subsequentially */ 
73 
74 *(p+3)=0x03; /* load output latch from counter */ 
75 *(p+3)=0x01; /* control register, initialize two-bit output latch */ 
76 
77 
78 /* read three bytes for specific counter ix and save in status */ 
79 /* first access to Output Latch Register reads least significant byte first */ 
80 
81 cl = *(p+l) k  OxOOff; 
82 c2 = *(p+l) k  OxOOff; 
83 c3 = *(p+l) k  OxOOff; 
84 arrayCix] = ((unsigned int)cl) I ((unsigned int)c2 « 8) I 
85 ((unsigned int)c3 « 16); 
86 
87 
88      p=p+4; /* increment pointer for next counter */ 
89 
90 } 
91 return; 
92 } /* end of readSteerEncoders */ 
93 
94 
95 
96 void computeActualRatesO 
97 < 
98 
99 int i; 
100 double count,speed; 
101 
102 for(i=0; i<=3; i++) 
103 { 
104 if(PreviousCountSpeed[i] == 99999999) /* for derivative for speed */ 
105 actualSpeeds[i]= 0.0; 
106 else 
107 actualSpeeds[i]= 
108 (convertDifference((driveReadings[i] - PreviousCountSpeed[i])) 
109 *DigitToCmDrive[i])/DELTA_T; 
110 PreviousCountSpeedCi] = driveReadings[i] ; 
111 
112 if (PreviousCountSteer[i] == 99999999) /* for derivative for steering */ 
113 actualAngleRates[i]= 0.0; 
114 else 
115 actualAngleRates[i]- 
116 (convertDifference((steerReadings[i] - PreviousCountSteer[i])) 
117 *digitToRadSteer)/DELTA_T; 
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118 PreviousCountSteer[i] = steerReadings[i]• 
119 } 
120 } 
121 
122 
123 

124 void accumulateDriveSpeedO 
125 { 
126 int i; 
127 
128 for(i=0;i<=3;i++H 
129 Display_Speeds[i] += actualSpeeds[i]; 
130 } 
131 return; 
132 } 
133 
134 void accumulateDriveSteerO 
135 < 
136 int i; 
137 

138 for(i=0;i<=3;i++){ 
139 Display.Steers[i] += 10*actualAngleRates[i]; 
140 actualAngles[i] += actualAngleRates[i]»DELTA T: 
141 } 
142 return; 
143 > 
144 
145 
146 

148 Function convertDifference 0 returns the difference between the new shaft 
149 encoder position and the old shaft encoder position. The shaft encoder values 
150 contain only 24 bits (0x000000-0xffffff) . The routine adjusts for the trans- 
151 ition from Oxffffff to 0x000000 and vice versa. 
152 ********»************»****»»***»*«»**»****»«*««»«»M„„»M„„„,„MM       . 
153 ' 
154 int convertDifference(int valje) 
155 < 
156 if(value < -0x800000) 
157 value fe= OxOOffffff; 
158 else if (value >= 0x800000) 
159 value |= Oxff 000000; 
160 
161 return value; 
162 > 
163 
164 
165 /» t 

166 * readNewEncoderO 
167 * t 

168 * Environment: GCC Compiler V2.7.2 « 
169 * Name: Thorsten Leonardy ^ 
170 * Last update: 10/27/97 » 
171 * Purpose: This function reads the counter status for drive and steer * 
172 * motors every 10ms and stores the current values in the * 
173 * variables 'driveReadings' and 'steerReadings'. In addition, * 
174 * tne incremental change to the last update is stored in the * 
175 * variables 'driveDelta' and 'steerDelta' to allow for compu- * 
176 * ting the most current speeds and angular velocities. * 

178 * Called from: driver() in movement.c * 
179 »  

■ */ 

180 void readNewEncoderO 
181 { 
182 
183 unsigned char *p,*d; 
184 int ix; 
185 

186    p=(unsigned char*)VHECTRl; /* access steering counter registers */ 
187 

188 for (ix=0; ix<4; ir++) {    /* read all four driving motors sequentially  */ 

190 driveCountPrevious[ix]idriveCount[ix]; /* save previous value */ 
191 steerCountPrevious[ix]=steerCount[ix]; /* save previous value */ 
192 
193      /* t/ 
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194 
195 

196 
197 

198 

199 

200 

201 
202 

203 
204 

205 

206 
207 

208 
209 

210 
211 

212 

213 
214 

215 
216 

217 

218 
219 

220 
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222 
223 

224 
225 
226 
227 
228 

229 
230 
231 
232 

233 
234 
235 

236 
237 

238 
239 
240 

241 
242 

243 
244 
245 

246 
247 
248 
249 
250 
251 
252 

253 
254 

255 
256 
257 

258 
259 

260 
261 
262 

263 
264 

265 
266 

267 
268 
269 

/* read drive encoders for wheel ix */ 
/* */ 
*(p+3)=0x03; 

*(p+3)=0x01; 

d= ((unsigned char*)ftdriveCount [ix] ) +2; 
*d— = *(p+l)  ft OxOOff; 
*d~ = *(p+l)  ft OxOOff; 
*d      = *(p+l)  ft OxOOff; 

/, ,/ 
/* read steer encoders for wheel ix */ 
/♦ ♦/ 

/* load output latch from counter */ 
/* initialize two-bit output latch */ 

/* start with LSB, need offset */ 
/* read LSB first */ 
/* read next byte */ 
/* read most significant byte */ 

*(p+0xl03)=0x03; 
*(p+0xl03)=0x01; 

d=((unsigned char*)ftsteerCount[ix])+2; 
*d— = *(p+0xl01)  ft OxOOff; 
*d— = *(p+0xl01)  ft OxOOff; 
*d      = *(p+0xl01)  ft OxOOff; 

p=p+4; 

/* load output latch from counter */ 

/* initialize two-bit output latch */ 

/* load LSB first */ 

/* read LSB first */ 
/* read next byte */ 

/* read most significant byte */ 

/* increment pointer for next motor*/ 

/* determine difference between previous and current encoder reading */ 

steerDelta[ix] = (steerCount[ix]-steerCountPrevious[ix])/256; 
driveDelta[ix] = (driveCount [ix] -driveCountPrevious [ix])/256; 

/* consider the fact that a positive driveDelta for wheels 2 and 4 */ 

/* indicate that wheel is driving backwards !!! Thgus, change sign */ 
driveDelta [ix] = (driveCount [ix] -driveCountPrevious [ix]) /256; 

/* the following is just for testing purposes [leo, 11/17/97] */ 
*encoderData++=driveDelta[ix];   /* store in main memory */ 

*encoderData++=steerDelta[ix];   /* store in main memory */ 

} /* end of for */ 

/* account for the fact that a positive driveDelta for wheels 2 and 4 */ 
/* indicate that wheel is driving backwards !!! Thus, change sign to */ 
/* obtain a positive driveDelta for wheel driving forward !!!        */ 
driveDelta[l]=-driveDelta[l]; 

driveDelta[3]=-driveDelta[3]; 

return; 

> /* end of readNewEncoder */ 

/» , 
* readNewEncoder0 * 
* * 
* Environment: GCC Compiler v2.7.2 * 
* Name:        Thorsten Leonardy * 
* Last update:  10/27/97 * 

* Purpose:     This function reads the counter status for drive and steer * 
* motors every 10ms and stores the current values in the     * 

* variables 'driveReadings' and 'steerReadings'. In addition, * 
* the incremental change to the last update is stored in the * 

* variables 'driveDelta' and 'steerDelta' to allow for compu- * 
* ting the most current speeds and angular velocities.       * 
* * 
* Called from: driver() in movement.c * 
» t/ 

void read£ncoder() 
i 

unsigned char *p,*d; 
int ix; 

p=(unsigned char*)VMECTRl;  /* access steering counter registers */ 

for (ix=0; ix<4; ix++) <    /* read all four driving motors sequentially  */ 

driveCountPrevious [ix] =driveCount [ix] ; /* save previous value 
steerCountPrevious[ix]=steerCount[ix] ; /* save previous value 

*/ 
*/ 
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/* */ 
/* read drive encoders for wheel ix */ 
/, t/ 

*(p+3)=0x03; 
*(p+3)=0x01; 

d=((unsigned char*)ftdriveCount[ix])+2 
*d— = *(p+l) ft OxOOff 
*d— = *(p+l) ft OxOOff 
*d  = *(p+l) ft OxOOff 

/* load output latch from counter */ 
/* initialize two-bit output latch */ 

/»  
/* read steer encoders for wheel ix 
/*  
*(p+0xl03)=0x03; 
*(p+0xl03)=0x01; 

►2; /* start with LSB, need offset */ 
/* read LSB first */ 
/* read next byte */ 
/* read most significant byte */ 

*/ 
*/ 
*/ 

/* load output latch from counter */ 
/* initialize two-bit output latch */ 

d=((unsigned char*)ftsteerCount[ix])+2; /* load LSB first 
*d— = *(p+0xl01) ft OxOOff; /* read LSB first 

*(p+0xl01) ft OxOOff 
: *(p+0xl01) ft OxOOff 

/* read next byte 
/* read most significant byte 

*/ 
*/ 
*/ 
*/ 

p=p+4; /* increment pointer for next motor*/ 

/* determine difference between previous and current encoder reading */ 
steerDelta [ix] = (steerCount [ix] -steerCountPrevious [ix]) /256; 
driveDelta [ix] = (dr iveCount [ix] -dr iveCountPrevious [ix]) /256; 

} /* end of for */ 

/* account for the fact that a positive driveDelta for wheels 2 and 4 */ 
/* indicate that wheel is driving backwards !!! Thus, change sign to */ 
/* obtain a positive driveDelta for wheel driving forward !!!       */ 
driveDelta [l]=-driveDelta[l] ; 
driveDelta[3D=-driveDelta[3]; 

return; 

> /* end of readEncoder */ 

/* 
* computeSpeedAndAngleO 
* 
* Environment: GCC Compiler V2.7.2 
* Name: Thorsten Leonardy 
* Last update: 11/21/97 
* Purpose: This function computes the speeds, angles and angular velo- 
* city for all four wheels based on the most recent shaft 
* encoder readings from readNewEncoderO ■ 
* 
* Called from:  driver() in movement.c 
*  

void computeSpeedAndAngle (void) 
*/ 

/* compute measured driving speed [cm/sec] and steering angle [rad] and */ 
/* steering rate [rad/sec] . „/ 
for(i=0; i<=3; i++) < 

actualSpeeds [i]    = ((double)driveDelta[i])*CH.PER_DIGIT/0.01; 
actualAngles[i]   += ((double)steerDelta[i])*RAD_PEE.DIGIT; 
actualAngleRates[i] = ((double)steerDelta[i])*RAD_PER.DIGIT/0.01; 

return; 

/* 
/* Verifies validity of incoming speeds/angles and converts 
/* digitial input for the DA board 
/* 

*/ 
*/ 
*/ 
*/ 
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346 void driveMotors(){ 
347 
348 int ix,Speed_Digit,Steer_Digit, counter; 
349 double speedl, steerl, temp; 
350 
351 unsigned short bitMask=0x8000; /* access bit 15 for align wheel 1 */ 
352 unsigned short *servoStatus= (unsigned short *) (VME9421+0x00ca); /* digital input */ 
353 
354 bitMask = bitHask » 3; 
355 
356 /* updateWheelDriveO; wheel values for driving */ 
357 ■ /* updateWheelSteerO; */ 
358 /* comupte the current actual wheel direction in WheelDirActC] */ 
359 
360 if (mode != 100){ 
361 for(ix =0;   ix <ARRAY_SIZE;  ix++H 
362 /* ********************steering/driving interaction************* */ 
363 /* here +/- 1/50 of the steering value is added to the driving     */ 
364 /* for each specified wheel. Note the negative sign on elements [1]  */ 
365 /* and [33provide the same direction driving as elements [0] and [2] */ 
366 
367 0mega_Speed = desiredSpeeds[ix] + 
368 SteerDriveInteract*desiredAngleRates[ix]*18.9; /* cm/sec */ 
369 
370 /* conversion to digits  */ 
371 Speed_Digit = velocityReferenceTable(Omega_Speed,ix) + 
372 DriveFeedBackGain* (Omega.Speed - actualSpeeds[ix]); 
373 Steer_Digit = rateReferenceTable(desiredAngleRates[ix]) 
374 + steerFeedbackGain* (desiredAngleRates [ix] -actualAngleRates [ix]) 
375 + angleFeedbackGain*norm(desiredAngles[ix]-actualAngles[ix]); 
376 
377 if (Speed.Digit>DigitsHigh) /* Limitation */ 
378 Speed.Digit= DigitsHigh; 
379 if (Steer_Digit>DigitsHigh) 
380 Steer_Digit= DigitsHigh; 
381 if (Speed_Digit<DigitsLow) 
382 Speed_Digit= DigitsLow; 
383 if (SteerJ)igit<DigitsLow) 
384 Steer_Digit= DigitsLow; 
385 
386 switch(mode){ 
387 case 2 
388 case 3 
389 case 4 
390 case 5 
391 case 6 
392 case 7 
393 case 8 
394 case 9 
395 case 10: 
396 case 11:  /* ease 11: linear test drive, added 11/03/97 Leo */ 
397 speedDigits[ix]= (short)Speed_Digit; /* casting to short */ 
398 steerDigits[ix]= (short) Steer _Digit; 
399 break; 
400 
401 case 1: 
402 speedl = speedDigits[ix]; 
403 steerl = SteerDigits[ix]; 
404 if ( speedl > 0) speedl—; 
405 if ( speedl < 0) speedl++; 
406 if ( steerl > 0) steerl--; 
407 if ( steerl < 0) steerl++; 
408 speedDigits[ix] = speedl; 
409 steerDigits[ix] = steerl; 
410 break; 
411 } /* end switch */ 
412 } /* end for */ 
413 } /* end if */ 
414 else { 
415 for (ix=0; ix<3; ix++H 
416 steerDigits[ix] = 0; 
417 } 
418 for (ix=0; ix<4; ix++){ 
419 speedDigits[ix] = 0; 
420 } 
421 
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422 switch (modeTstate){ 
423 case 0: 
424 steerDigits [3] = 
425 modeTstate = l; 
426 break; 
427 
428 case 1: 
429 modeTstate = 2; 
430 break; 
431 
432 case 2: 
433 modeTstate = 3; 
434 break; 
435 
436 case 3; 
437 modeTstate = 4; 
438 break; 
439 
440 case 4: ... 
441 modeTstate = 5; 
442 break; 
443 
444 case 5: 
445 modeTstate = 6; 
446 break; 
447 
448 case 6: 
449 modeTstate = = T; 
450 break; 
451 
452 
453 case 7: 
454 modeTstate = = 8; 
455 break; 
456 
457 case 8: 
458 modeTstate = 9; 
459 break; 
460 
461 case 9: 
462 modeTstate = 10; 
463 break; 
464 
465 case 10; 
466 modeTstate = 11; 
467 break; 
468 
469 case 11; 
470 modeTstate = 12; 
471 break; 
472 
473 case 12: 
474 modeTstate = 13; 
475 break; 
476 
477 case 13: 
478 modeTstate = 14; 
479 break; 
480 
481 case 14: 
482 modeTstate = 15; 
483 break; 
484 
485 case 15: 
486 modeTstate = 16; 
487 break; 
488 
489 case 16: 
490 modeTstate - 17; 
491 break; 
492 
493 case 17: 
494 modeTstate = 18; 
495 break; 
496 
497 case 18: 

50*Flag; 
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498 modeTstate = 19; 
499 break; 

500 
501 case 19: 

502 if (bitMask&tservoStatus)/* read servo status, */ 
503 { /»wait until wheel aligned */ 
504 Flag = -Flag; 

505 modeTstate = 20; 
506 } 
507 break; 
508 

509 case 20: 

510 steerDigits[3] = 0; 
511 -modeTstate = 21; 

512 break; 

513 

514 case 21: 

515 modeTstate = 22; 

516 break; 

517 

518 case 22: 
519 modeTstate = 23; 

520 break; 

521 

522 case 23: 
523 modeTstate = 24; 

524 break; 
525 

526 case 24: 
527 modeTstate = 25; 

528 break; 
529 

530 case 25: 

531 modeTstate = 26; 

532 break; 

533 
534 case 26: 
535 modeTstate = 27; 

536 break; 
537 
538 case 27: 

539 modeTstate =0; 
540 break; 
541 
542 default :  break; 
543 } /* end switch */ 
544 } /* end else */ 

545 
546 «ifdef 0 

547 driveSteer(steerDigits); 
548 driveSpeeds(speedDigits); 
549 «endif 

550 

551 /* here is a more efficient way of setteing the speeds [Leo, 11/18/97] */ 

552 /* instead of using the functions driveSteer and driveSpeeds ...      */ 

553 setServoSpeedO; 
554 

555 

556 }/* end driveHotors */ 
557 
558 
559 

560 double velocityReferenceTable (double desiredVelocity, int i) 
561 { 
562 double inVelocity, 

563 outVelocity; 
564 

565    inVelocity=new_abs (desiredVelocity) ; 
566 

567 if (inVelocity>=0.0 kk  inVelocity<=5.0) 
568 outVelocity = inVelocity*Kl [i] ; 
569 

570 if (inVelocity>5.0 kk  inVelocity< 8.0) 
571 outVelocity = inVelocity*K2[i]; 
572 

573     if (inVelocity>=8.0 kk  inVelocity<20.0) 

79 



574      outVelocity = inVelocity»K3[i]; 
575 

576 if (inVelocity>=20.0 kk  inVelocity<= 70.0) 
577 outVelocity = inVelocity*K4[i] ; 
578 
579 if (inVelocity>70.0 kk  inVelocity<K5) 
580 outVelocity = inVelocity*K6[i]; 
581 
582 if (inVelocity> K5) 
583 outVelocity=1023; 
584 
585 if (desiredVelocity< 0.0) 
586 outVelocity = - outVelocity; 
587 
588 return outVelocity; 
589 } /* end velocityLookupTable */ 
590 
591 

592 double rateReferenceTable (double desiredRate) 
593 { 
594 double inKate, 
595 outDigit; 
596 
597 
598 

599     inRate=new_abs(desiredRate); 
600 
601 if (inRate<= 5.234) 
602 outDigit = inRate*195.4155 
603 else 
604 outDigit=1023; 
605 
606 
607 if (desiredRate< 0.0) 
608 outDigit = - outDigit; 
609 
610 return outDigit; 
611 } 
612 
613 
614 
615 /*   

/»outDigit = new_abs(desiredRate); *//* test only */ 

616 * readOneEncoderO » 
617 * „ 
618 * Environment: GCC Compiler v2.7.2 * 
619 * Name:       Thorsten Leonardy „ 
620 * Last update:  10/27/97 » 
621 * Purpose:     Reads only the encoder specified by 'wheel': * 
622 * wheel = 0 ... 3 reads drive encoder for wheel 1..4 * 
623 * wheel = 4 ... 7 reads steer encoder for wheel 1.. 4 * 
624 * Note:       !!! The data (24 bit) is still left adjusted !!! * 
 t/ 625 *  

626 void readOneEncoder(int ix, int »data) 
627 { 
628 
629    unsigned char *p,*d; 
630 

633 
634 

631 p=(unsigned char*)VMECTRl; /* access steering register */ 
632 p=p+4*ix; B  B 

if (ix>3) p=p+0x0090;    /* account for the fact VHECTR2=VMCTRl+0xl00 */ 

635 *(p+3)=0i03; /* ioad output latch from counter */ 
636 *(p+3)=0x01; /* initialize two-bit output latch */ 
637 

638 d=(unsigned char *)data; /* start with LSB, need offset */ 
639 d=d+2; 
640 *d— = *(p+l) ft OxOOff 
641 *d~ = *(p+l) t  OxOOff 
642 *d  = *(p+l) ft OxOOff 
643 
644    return; 
645 
646 } /* end of readOneEncoder */ 
647 
648 
649 /*  

/* read LSB first */ 
/* read next byte »/ 
/* read most significant byte    »/ 
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650 * linearMotionO * 
651 * * 
652 * Environment: GCC Compiler v2.7.2 * 
653 * Name: Thorsten Leonardy                                  * 
654 * Last update:  10/27/97 * 
655 * Purpose: IMplements a linear motion test profile such that the     * 
656 * vehicle is following steps in successive lOsec time       * 
657 * intervals.                                        * 
658 * Call: User presses '1' on the keyboard (see userO in file user.c)* 
659 * */ 
660 void linearMotionl(void) 
661 i 
662 double vlx, vly, v2, vlyvlxRatio,omega2,omega3, beta,ro,ro2,vheelAngleV; 
663 int ix,Speed_Digit,Steer_Digit; 
664 short *servo0ut; 
665 
666 /* read all shaft encoders */ 
667 readNewEncoderO; 
668 
669 /* compute the actual rates, velocities and angles */ 
670 for (ix=0; ix<4; ix++){ 
671 driveSpeed[ix]=driveDelta[ix]*CH_PER_DIGIT/DELTA_T; /* [cm/s] */ 
672 steerRate[ix]=steerDelta[ix]/DELTA_T; 
673 steerAngle[ix]=steerAngle[ix]+steerDelta[ix]»RAD_PER_DIGIT; 
674 > /* end of for ... */ 
675 
676 
677 /* initialize temporary variables */ 
678 speed=motion. Speed; 
679 theta=motion.Theta; 
680 omega=motion. Omega; 
681 
682 /* * 
683 * body motion (former in movement.c) * 
684 * ,/ 

685 
686    a=2.0;  /* acceleration is 2cm/sec*2 */ 
687 
688 if (time<1000) { 
689 speed=a*time/100.0; /* rise linearly from 0 ..20 cm/sec in 10 sees */ 
690 } 
691 
692 if (time==1000H 
693 speed=a*10.0;   /* vehicle speed constant for next 10 sec */ 
694 } 
695 
696 if (time>=2000) 
697 if (time<3000) 
698 speed=a*(3000-time)/100.0;   /* decelerate to zero speed for 20sec..30sec */ 
699 
700 if (time==3000H 
701 speed=0.0;   /* stop vehicle for 30sec..40sec */ 
702 } 
703 
704 if (time>=4000) 
705 if (time<5000) 
706 speed=a*(4000.0-time)/100.0;  /* reverse motion, move back for 40sec .. 50sec */ 
707 
708 if (time==5000H 
709 speed=-a*10.0;   /* move back with constant velocity */ 
710 } 
711 
712 if (time>=6000) 
713 if (time<7000) 
714 speed=a*(time-7000.0)/100.0; 
715 
716 if (time==7000M 
717 mode=0; 
718 stopVME93250;   /* stop A/D-Board */ 
719 allOffAndZeroO; 
720 } 
721 
722 /* compute required derivatives */ 
723 speedDot=(speed-motion. Speed) /DELTA.T; 
724 thetaDot= (theta-motion. Theta) /DELTAJT 
725 omegaDot=(omega-motion. Omega) /DELTAJT 
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726 
727 /* update the motion */ 
728 motion.Speed = speed; 
729 motion.Theta = theta; 
730 motion.Omega = omega; 
731 
732 /* update the vehicle configuration */ 
733    vehicle.heading = vehicle.heading + motion.Omega*DELTA T; 
l\t vehicle.coord.x = vehicle.coord.x + motion.Speed.DELTAJr'* cos(motion.Theta)• 

vehicle.coord.y = vehicle.coord.y + motion. Speed*DELTA_T » sinGnotion.Theta); 735 
736 
737    /* 

* drive motors (former in motor.c) 

*/ 

/* set speed for «heel 1 */ 
/* set speed for wheel 2 */ 
/* set speed for wheel 3 */ 
/* set speed for wheel 4 */ 

738 
739 
740 

741 dd[0]=speed/wheelRadius[0]»16615.776 
742 dd[1]=speed/wheelRadius[1]»16615.776 
743 dd[2]=speed/wheelRadius[2]»16615.776 
744 dd[3]=speed/wheelRadius[3]»16615.776 
745 
746 

747 speedDigits[0]=(short)(0.0132421*dd[0]-1.15119) 
748 speedDigits[1] = (short) (0.0132276»dd[l]-1.17617) 
749 speedDigits[2] = (short)(0.0132283*dd[2]+0.17110) 
750 speedDigits [3] = (short) (0.0132680*dd [2] +1.21652) 

752 /* set the speeds */ 
753 setServoSpeedO; 
754 
755 return; 
756 } /* end of leoMotionO */ 
757 

758 void linearMotion2(void) 
759 { 

760 double viz, vly, v2, vlyvlxRatio,omega2,omega3, beta.ro,ro2,wheelAngleV- 
761 xnt ix,Speed_Digit,Steer_Digit; 
762 short »servoOut; 
763 

764 /* read all shaft encoders */ 
765 readKewEncoderO; 
766 

767 /» compute the actual rates, velocities and angles */ 
768 for (ix=0; ix<4; ix++){ 

769 driTeSpeed[ii]=driveDelta[ix]*CH.PER_DIGIT/DELTA T;    /* [cm/s] */ 
770 steerRate [ix] =steerDelta [ix] /DELTA.T; 

771 steerAngle[ix]=steerAngle[ix]+steerDelta[ix]*RAD_PER DIGIT- 
772 } /* end of for ... */ " 
773 
774 

775 /* initialize temporary variables */ 
776 speed=motion. Speed; 
777 theta=motion.Theta; 
778 omega=motion. Omega; 
779 
780 /*   

781 * body motion (former in movement.c) 
782 *  * 
783 */ 
784 
785 

a=100.0;      /* max acceleration [cm/sec"2]  */ 

786 /* no acceleration for t<lsec »/ 
787 
788 if  ((time>=100)Si(time<200)) 
789 speed=0.005*(time-100).(time-100); /* vehicle speed  [cm/sec]   (max is 50cm/sec ./ 

791 if ((time>=300)t&(time<400)) 
792 speed=800.0+0.005*time*(time-800.0); 
793 
794 if (time==400)< 
795 mode=0; 
796 stopVME9325();   /* stop A/D-Board */ 
797 allOffAndZeroO; 
798 } 
799 
800 /* compute required derivatives */ 
801    speedDot=(speed-motion. Speed) /DELTA.T 
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802 
803 
804 
805 
806 
807 
808 
809 
810 
811 
812 
813 
814 
81S 
816 
817 
818 
819 
820 
821 
822 
823 
824 
825 
826 
827 
828 
829 
830 
831 
832 
833 
834 
835 
836 
837 
838 
839 
840 
841 
842 
843 
844 
845 
846 
847 
848 
849 
850 
851 
852 
853 
854 
855 
856 
857 
858 
859 
860 
861 
862 
863 
864 
865 
866 
867 
868 
869 
870 
871 
872 
873 
874 
875 
876 
877 

thetaDot=(theta-motion. Theta) /DELTA.T; 
omegaDot= (omega-mot ion. Omega)/DELTA.T; 

/* update the motion */ 
motion.Speed = speed; 
motion.Theta = theta; 
motion.Omega - omega; 

/* update the vehicle configuration */ 
vehicle.heading = vehicle.heading + motion.Omega*DELTA_T; 
vehicle, coord. I = vehicle, coord, x  + motion.Speed*DELTA_T * cos (motion. Theta) ; 
vehicle.coord.y = vehicle.coord.y + motion.Speed*DELTA_T * sin(motion.Theta) ; 

/«  
* drive motors (former in motor.c) 

*/ 

dd[0]=speed/wheelHadius[0] »16615.776 
dd[l] =speed/wheelRadius [1] *16615.776 
dd[2]=speed/wheelRadius [2] »16615.776 
dd[3]=speed/«heelRadius[3]*16615.776 

speedDigits[0] = (short)(0.0132421*dd[0]-1.15119) 
speedDigits[l] = (short)(0.0132276*dd[l]-l. 17617) 
speedDigits[2] = (short)(0.0132283*dd[2]+0.17110) 
speedDigits [3] =(short) (0.0132680*dd[2] +1.21652) 

/* set the speeds */ 
setServoSpeedO ; 

return; 
/* end of leoHotion2() */ 

/* set speed for wheel 1 */ 
/* set speed for wheel 2 */ 
/* set speed for wheel 3 */ 
/* set speed for wheel 4 */ 

* setServoSpeedO 
* 
* Environment:  GCC Compiler v2.7.2 
* Name:       Thorsten Leonardy 
* Last update:  10/27/97 
* Purpose:     This function sets the speed as specified in global vars 
* speedDigits and steerDigits to all servo motors. 
* Called from:  driver() in movement.c 
*  

void setServoSpeed(void) 
■C 

short *servo0ut= (unsigned short*) (VHE9210+0x0082);   /* Analog out    */ 

*/ 

*servo0ut++= 
*servo0ut++= 
*servo0ut++= 
*servo0ut++= 

*servo0ut++= 
*servo0ut++= 
*servo0ut++= 
*servo0ut++= 

-speedDigits[0]»16 
speedDigits[1]*16 
-speedDigits[2]»16 
speedDigits[3]»16 

steerDigits[0]*16 
steerDigits[13*16 
steerDigits[2]»16 
steerDigits[3]*16 

/* set speed for driving wheel 1 */ 
/* set speed for driving wheel 2 */ 
/+ set speed for driving wheel 3 */ 
/* set speed for driving wheel 4 */ 

/* set speed for driving wheel 1 */ 
/* set speed for driving wheel 2 */ 
/* set speed for driving wheel 3 */ 
/* set speed for driving wheel 4 */ 

return; 
} /* End of setServoSpeed */ 

/»  
* clearEncoder(motors) 
* 
* Environment: GCC Compiler V2.7.2 
* Last update:  03 November 1997 
* Name:       Thorsten Leonardy 
* Purpose:     This function clears all shaft encoders. 
* 
* motors       bit mask to select motors, eg. 0x042 selects motor 2 and 7 
* to be cleared. 
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878 void clearEncoder(unsigned char motors) 
879 { 

880 unsigned char *p=(unsigned char*)VMECTRl; 
881 int ix; 
882 

883 for (ix=0; ix<4; ix++,motors/=2) { 

884 if (motors k  0x01) »(p+3)=0x04; /* clear respective counter */ 
885 if (motors k  0x10) *(p+0x0103)=0x04;  /» clear steering counter  */ 
??, , P=P+4;                          /* access next pointer    */ 
887 } 
888 return; 
889 } /* end of clearEncoder */ 
890 
891 
892 /* 
893 * align0 
894 * Environment: GCC Compiler 
895 * Last update:  07 August 1997 m 

896 * Name:       Thorsten Leonardy and Yutaka Kanayama 
897 * Purpose:     This function will align SHEPHERD'S wheels such that all 

will point in the forward direction. It utilizes the hall 
sensors for each of the four wheels. All wheels are being 
aligned simultaneously rather than successively. 

unsigned short *servo0ut=(unsigned short*)(VHE9210+0x008A);    /* Analog out */ 
unsigned short *servoStatus=(unsigned short *)(VME9421+0x00ca); /. digital input */ 
unsigned int  *servoControl= (unsigned int *)VHE2170; /* Data Out */ 

898 
899 * 
900 * 
901 * 
902 *  

903 void align(void) 
904 < 
905 
906 
907 
908 int ix 
909 unsigned short bitMask,speed=Ox0200; 
910 
911 /* set steering speeds */ 
912 »servo0ut=-speed;      /* wheell -> rotate CW */ 
913 *(servo0ut+l)= speed;  /* wheel2 -> rotate CCW */ 
914 *(servo0ut+2)= speed;  /» wheel3 -> rotate CCW */ 
915 *(servo0ut+3)=-speed;  /* wheel4 -> rotate CW */ 
916 
917    bitHask=OxfO0O; 
918 
919 while (bitMaskH 
920 if ( 0x8000 k  »servoStatus )< 
921 *servo0ut=0x0000;     /* set speed=0 for wheel 1 */ 
922 bitHask=bitMask k  0x7000; 
923 } 
924 if ( 0x4000 k  »servoStatus )< 
925 *(servo0ut+l)=0x0000;  /* set speed=0 for wheel 2 */ 
926 bitMask=bitMask k  OxbOOO; 
927 } 

928 if ( 0x2000 k  »servoStatus H 
929 *(servo0ut+2)=0x0000;  /* set speed=0 for wheel 3 */ 
930 bitHask=bitHask k  OxdOOO; 
931 } 

932 if ( 0x1000 k  »servoStatus ){ 
933 *(servo0ut+3)=0x0000;  /* set speed=0 for wheel 4 »/ 
934 bitMask=bitHask k  OxeOOO; 
935 > 
936 } 
937 
938 
939 
940 return; 
941 } /* end of align */ 
942 
943 
944 /* # 

945 * all servos on and set zero speed, [added 11/05/97, Leo] * 
946 *  
947 void all0nAndZero(void){ 
948 

*/ 

sio0ut(0,"Aligned ...\n\rM); 

unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */ 
949 short *servo0ut= (unsigned short») (VHE9210+0xO082);  /* Analog out driving wheell */ 
950 int ix; 
951 
952 
953 

for (ix=0; ix<8; ix++) *servo0ut++=0x0000;  /* set zero speed ♦/ 
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954 *servoControl=0x00924924;       /* turn on all motors */ 
955 
956 return; 
957 } /* end of allOnAndZero */ 
958 
959 
960 /* * 
961 * all servos off and set zero speed, [added 11/05/97, Leo] * 
962 * */ 
963 void allOffAndZero(void) < 
964 unsigned int *servoControl=(unsigned int *)VHE2170; /* Data Out */ 
965 short *servo0ut=(unsigned short»)(VME9210+0x0082);  /* Analog out driving wheell */ 
966 int ix; 
967 
968 for (ix=0; ix<8; ix++) *servo0ut++=0x0000;  /* set zero speed */ 
969 
970 *servoControl=0x00000000;       /* turn on all motors */ 
971 
972 return; 
973 } /* end of allOffAndZero */ 
974 
975 
976 /* * 
977 * Set all driving motors to specific speed * 
978 * */ 
979 void allDrive(short digit){ 
980 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */ 
981 short *servoOut=(unsigned short*) (VHE9210+0x0082);  /* Analog out driving wheell */ 
982 int ix; 
983 
984 for (ix=0; ix<4; ix++) *servo0ut++=digit;  /* set zero speed */ 
985 
986 *servoControl=0x00000924;       /* turn on driving motors */ 
987 
988 return; 
989 } /* end of allDrive */ 
990 
991 
992 /* * 
993 * Set all steering motors to specific speed * 
994 * */ 
995 void allSteer(short digit) 
996 { 
997 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */ 
998 short *servo0ut=(unsigned short») (VME9210+0x008A) ;  /» Analog out steering wheell */ 
999 int ix; 
1000 
1001 for (ix=0; ix<4; ix++) *servo0ut++=digit;  /« set zero speed */ 
1002 
1003 *servoControl=0x00924000;       /» turn on steering motors */ 
1004 
1005 return; 
1006 } /* end of allSteer */ 
1007 
1008 
1009 /* * 
1010 * switches all motors off [added 11/05/97, Leo] * 
1011 * */ 
1012 void allMotorsOff (voidH 
1013 unsigned int *servoControl= (unsigned int *)VHE2170; /* Data Out */ 
1014 
1015 *servoControl=0x00000000;       /* turn off all motors */ 
1016 
1017 return; 
1018 } /* end of allMotorsOff */ 
1019 
1020 
1021 /* * 
1022 * switches all motors on [added 11/05/97, Leo] * 
1023 * */ 
1024 void allMotors0n(void)< 
1025 unsigned int *servoControl= (unsigned int *)VME2170; /* Data Out */ 
1026 
1027 *servoControl=0x00924924;       /* turn on all motors */ 
1028 
1029 return; 
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1030 } /» end of allMotorsOn */ 
1031 
1032 
1033 /*   
1034 * driveTestO * 
1035 * * 

1036 * Environment: GCC Compiler v2.7.2 t 

1037 * Last update: 29 October 1997 „ 
1038 * Name: Thorsten Leonardy                                  „ 
1039 * Purpose: This function computes the actual servo data for all      * 
1040 * driving motors.                                    t 

1041 * Called from: userO upon keyboard interaction (type 'd') * 

1043 void driveTestO */ 

1044 < 

1045 unsigned int  *servoControl=(unsigned int *)VME2170; /* Data Out */ 
1046 unsigned short *servo0ut=(unsigned short*)(VME9210+0x008A); /* Analog out */ 
1047 unsigned short *ser  Status=(unsigned short *)(VME9421+0x00ca); /* digital innut */ 
1048 unsigned short bitl  -0x8000; /* access bit 15 for align wheel 1 */ 
1049 unsigned char *p; 
1050 unsigned int wheelSelect; 
1051 int ix; 
1052 

1053 *servoControl=0x00000000; /* disable (turn off) all wheels   »/ 
1054 ' 

1055 servoOut=(unsigned short*) (VME9210+0x0082);   /* Analog out for drive wheel 1»/ 
1056 wheelSelect=Ox00000004; /* select servo for driving wheel 1 ./ 

1058 p=(unsigned char*)VMECTRl; 
1059 
1060 for (ix=0; ix<4; ix++) < 
1061 
1062 *servo0ut=testSpeed; /* set output value for servo first */ 
1063       *servoControl=wheelSelect;     /* turn on selected servo motor */ 
1064 

1065 sio0ut(0,"Press '.'to start recording time\n\r")■ 
1066 
1067 while (key ! = >.') ; /♦ wait mtil user starts »/ 
1068 

1070 *(P+3)=0x04; /* cleaT  „unter for driving wheel ix */ 

1071 readOneEncoder(ix,(int »HdriveCountPrevious tix] ) ; /* update encoder */ 
1072 readOneEncoder(ix,(int *)tsteerCountPrevious[ix]); /* update encoder */ 

1074      timeForTurn[ix]=intCounter;    /* store time (start observing) */ 

1076      sio0ut(0,"Press ',' to stop recording time\n\r")- 
1077 

1079 Hhile (key! = '',) : I*  vait mtil  »ser «tops the process */ 

1080 timeForTurn[ix]=intCounter-timeForTurn[ix]: 
1081 

1082      *servo0ut++=0x0000; /* stop wheel */ 
1083 
1084 
1085 
1086 

readOneEncoder(ix,(int *)tdriveCount[ix]); /* update encoder */ 
readOneEncoder(ix,(int *)fcsteerCount[ix]); /* update encoder */ 

1087 driveDelta [ix] = (dr iveCount [ix] -driveCountPrevious [ix] ) /256; 
1088 steerDelta [ix] = (steerCount [ix] -steerCountPrevious [ix] ) /256 • 

wheelSelect= wheelSelect«3;     /* select next servo (motor)      */ 1090 
1091 
1092    } 
1093 

1094    *servoControl=0x00000000; /* disable (turn off) all wheels   ./ 

1096 return; 
1097 } /* end of driveTest */ 
1098 
1099 
1100 /*   
1101 * velocityTestO 
1102 * * 

1103 * Environment: GCC Compiler v2.7.2 „ 
1104 * Last update: 07 November 1997 
1105 * Name:        Thorsten Leonardy „ 
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1106 
1107 
1108 
1109 
1110 
1111 
1112 
1113 
1114 
1115 
1116 
1117 
1118 
1119 
1120 
1121 
1122 
1123 
1124 
1125 
1126 
1127 
1128 
1129 
1130 
1131 
1132 
1133 
1134 
1135 
1136 
1137 
1138 
1139 
1140 
1141 
1142 
1143 
1144 
1145 
1146 
1147 
1148 
1149 
1150 
1151 
1152 
1153 
1154 
1155 
1156 
1157 
1158 
1159 
1160 
1161 
1162 
1163 
1164 
1165 
1166 
1167 
1168 
1169 
1170 
1171 
1172 
1173 
1174 
1175 
1176 
1177 
1178 
1179 
1180 
1181 

* Purpose: This function obtaines the velocity versus digit curve.    * 
* Drive servos are given different velociies (digit) every   * 
* two seconds. The first second is to obtain steady state, the* 
* second second will record the shaft encoder difference, thus* 
* giving rise to a encoder reading versus velocity curve.    * 
* The commanded velocity goes from 500 .. -510 at present.   * 

* Called from: userO upon keyboard interaction (type 'v') 
*/ 

void velocityTest(void) 
i 

unsigned int *servoControl= (unsigned int *)VME2170; /* Data Out */ 
short *servo0ut= (unsigned short») (VME9210+0x0082) ;  /* Analog out driving wheell */ 

short speed,digit; 

speed=500; 
digit=speed*16; 

leoData=(int *)0x00100000;   /* start data storage */ 

sioOut(0,"velocityTest\n\r"); 
align 0 ; 
allOffAndZeroO; 

*servoControl=0x00000924 

readNewEncoder(); 
time=0; 

/* turn on driving motors */ 

/* this will be altered by timer interrupt */ 

/* set new driving values */ 
*servo0ut++=-digit;  /* set speed for wheel 1 */ 
*servo0ut++= digit;  /* set speed for wheel 2 */ 
*servo0ut++=-digit;  /* set speed for wheel 3 */ 
*servoOut++= digit;  /* set speed for wheel 4 */ 

while (speed>-510) < 

servo0ut=(short *)(VHE9210+Oi0082); 

/* set new driving values */ 
*servo0ut++=-digit; /* set speed for wheel 1 */ 
*servo0ut++= digit; /* set speed for wheel 2 */ 
*servo0ut++=-digit; /* set speed for wheel 3 */ 
*servo0ut++= digit;  /* set speed for wheel 4 */ 

speed-speed-10; 
digit=speed*16; /* shift nibble left */ 

/* wait a second for motors to settle */ 
while(time<100) ; 

readNewEncoder(); 

/* record for a second */ 
while(time<200) ; 

readNewEncoder(); 

/* store the counter data for previous speed */ 
*leoData++=steerDelta[03; 
*leoData++=steerDelta[l]; 
*leoData++=steerDelta[2] ; 
*leoData++=steerDelta[3]; 
*leoData++=driveDelta[0]; 
*leoData++=driveDelta[l]; 
*leoData++=driveDelta[2]; 
*leoData++=driveDelta[3]; 

allOffAndZeroO; 

return; 
/* end of velocityTest */ 
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1182 
1183 
1184 
1185 
1186 
1187 
1188 
1189 
1190 
1191 
1192 
1193 
1194 
1195 
1196 
1197 
1198 
1199 
1200 
1201 
1202 
1203 
1204 
1205 
1206 
1207 
1208 
1209 
1210 
1211 
1212 
1213 
1214 
1215 
1216 
1217 
1218 
1219 
1220 
1221 
1222 
1223 
1224 
1225 
1226 
1227 
1228 
1229 
1230 
1231 
1232 
1233 
1234 
1235 
1236 
1237 
1238 
1239 
1240 
1241 
1242 
1243 
1244 
1245 
1246 
1247 
1248 
1249 
1250 
1251 
1252 
1253 
1254 
1255 
1256 
1257 

/♦  

* circumferenceTest() 

: Environment: 
•  Last update: 
■ Name: 
Purpose: 

* Called from: 

GCC Compiler v2.7.2 
07 November 1997 
Thorsten Leonardy 
This function drives the vehicle in a straight line and 
stores the difference for all shaft encoders for a given 
observation time. If the distance travelled is being 
measured, one can obtain the relation between shaft encoder 
readings and wheel diameter. 
userO upon keyboard interaction (type 'c') 

*/ 
void circumf erenceTest (void) 
{ 

unsigned int *servoControl= (unsigned int *)VME2170; /♦ Data Out */ 
short *servoOut= (unsigned short») (VME9210+0i0082) ;  /* Analog out driving wheell */ 

short speed,digit; 

speed=300; 
digit=speed*16; 

leoData=(int *)0x00100000;   /* start data storage */ 

sioOut(0,"circumferenceTest 0\n\r"); 

align O; 
allOffAndZeroO; 

*servoControl=0x00000924; /* turn on driving motors */ 

/* determine the digits to command based on linea4r relationship obtained * 
* in velocityTest for each wheel individually. „/ 

I*  assume for one second, that driveDelta=10000 */ 

/* set new driving values for driveDelta approx 10000 over 1 sec */ 
*servo0ut++=(short)(-16*(0.0132421*ddc-l.15119)) 
*servo0ut++=(short)( 16*(0.0132276*ddc-l.17617)) 
*servo0ut++=(short) (-16*(0.0132283*ddc+0.17110)) 
*servo0ut++=(short)( 16*(0.0132680*ddc+l.21652)) 

/* set speed for wheel 1 */ 
/* set speed for wheel 2 */ 
/* set speed for wheel 3 */ 
/* set speed for wheel 4 */ 

time=0; 
readNewEncoderO 

while (time<tc) 

readNewEncoder 0 

allOffAndZeroO; 

return; 
} /* end of circumferenceTest */ 

/* this will be altered by timer interrupt */ 

/* wait 2 sec */ 

/*  
* steerTestO 
* 
* Environment: 
* Last update: 
* Name: 
* Purpose: 
* 
* Called from: 

GCC Compiler v2.7.2 
29 October 1997 
Thorsten Leonardy 
This function computes the actual servo readings for all 
steering motors. 
userO upon keyboard interaction (type 'w') 

void steerTestO 
{ 

unsigned int  *servoControl=(unsigned int *)VHE2170; 
unsigned short *servo0ut=(unsigned short») (VHE9210+Ox008A) ; 
unsigned short *servoStatus=(unsigned short *)(VHE9421+0x00ca) ; 
unsigned char *p; 

* 
■ */ 

/* Data Out */ 
/* Analog out */ 
/* digital input */ 
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1258 
1259 
1260 
1261 
1262 
1263 
1264 
1265 
1266 
1267 
1268 
1269 
1270 
1271 
1272 
1273 
1274 
1275 
1276 
1277 
1278 
1279 
1280 
1281 
1282 
.1283 
1284 
1285 
1286 
1287 
1288 
1289 
1290 
1291 
1292 
1293 
1294 
1295 
1296 
1297 
1298 
1299 
1300 
1301 
1302 
1303 
1304 
1305 
1306 
1307 
1308 
1309 
1310 
1311 
1312 
1313 
1314 
1315 
1316 
1317 
1318 
1319 
1320 
1321 
1322 
1323 
1324 
1325 
1326 
1327 
1328 
1329 
1330 
1331 
1332 
1333 

unsigned short bitMask=0x8000; /* access bit 15 for align wheel 1 */ 
unsigned int wheelSelect=Ox00004000; /* select servo for turning wheel 1 */ 
int ix,turns,a; 

/* align wheels */ 
alignO; 

/* clear all driving and steering motor counters and the variables */ 
clearEncoder(0xff); 

servo0ut= (unsigned short») (VHE921O+0xOO8A); /* Analog out for steering wheel 1 */ 
bitMask=0x8000; 
wheelSelect=0x00004000; 

readNewEncoderO ; 

for (ix=0; ix<4; ix++) < 

turns=0; 
*servoOut=testSpeed; 
*servoControl=wheelSelect; 

/* access bit 15 for align wheel 1 */ 
/* select servo for turning wheel 1 */ 

/* read all encoders */ 

/* set output value for servo first 
/* turn on selected servo motor 

*/ 
*/ 

/* turn wheels for a total of 10 turns */ 
do { 

while(!(bitMaskfc*servoStatus)); /* wait until wheel aligned */ 
while (bitMask£*servoStatus); /* wait until wheel progressed */ 
turns++; /* one turn completed        */ 
if (turns==l) 

timeForTurn[ix]=intCounter;   /* store time (start observing) */ 
if (turns==9){ 

timeForTurn[ix] = (intCounter-timeForTurn[ix3)/8;  /* stop timer */ 
*servo0ut++=0x0800; 

> 
}while (turns<10); 

wheelSelect= wheelSelect«3; 
bitHask = bitMask » 1; 

/* speed for final turn */ 

/* select next servo (motor)      */ 
/* select ner xt status align bit  */ 

*servoControl=0x00000000; /* disable (turn off) all wheels   */ 

readNewEncoderO; 

for (ix=0; ix<4; ix++) radPerDigit[ixD=2.0*PI*10.0/(double)steerDelta[ix] ; 

return; 
> /* end of steerTest */ 

/*  
* stopTestO 
* 
* Environment: GCC Compiler V2.7.2 
* Last update: 03 November 1997 
* Name: Thorsten Leonardy 
* Purpose: This function computes the actual servo readings for all 
* steering motors while the motor speeds are set to zero. 
* Called from: userO upon keyboard interaction (type 's') 
*  

void stopTestO 
{ 

*/ 

sio0ut(0,"Aligning Wheels ...\n\r"); 

align 0 ;   /* align wheels */ 

/* clear all driving and steering motor counters and the variables */ 
clearEncoder(0xff); 

readNewEncoderO; 
allOnAndZeroO; 

time=0; 
sio0ut(0,"Please Wait a minute ...\n\r"); 
while (time<6000) ; /* wait a minute */ 
allOff AndZeroO ; 
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1334 

1335 sioOut(0,"Done\n\r"); 
1336 readNewEncoderO; 
1337 
1338 return; 
1339 > /* end of stopTest */ 
1340 
1341 
1342 
1343 

1344 /*******»**************«»*****.»..»«»»,«»»»,**»»♦».»„,,„,„„„„„„„„,„ 
1345 End of motor.c 
1346 *•**********************».**...»**«****..♦»..♦»,»,.„„„„„„„„„„„„„/ 
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APPENDIX D: SHEPHERD PRIMER 

This appendix provides essential data and procedures which lead to the findings of the 

motion parameters that are required to operate SHEPHERD properly. Boxed text will refer to a 

segment of software code or a command sequence for use in the TAURUS Debugger environment. 

The focus is on the use of the TUARUS Debugger since this provides a quick way to determine most 

of the operating parameters. 

1. MAIN OPERATING PARAMETERS AND CONVERSION FACTORS 

It is sometimes tedious to gather the meat for operating a system. This section strives to 

provide most of the operating parameters pertaining to the use of SHEPHERD in tabulated form. 

Wheel Radius 0.189 m 
max. Tire pressure 49.8 psi 
Drive Encoder (all Wheels)    2 IT radians = 360 * 290 counts 

1 m = 87914 counts 
1 count = 11.37 ^m 

Wheel 1 digit = 187.20 v [cm/sec] - 26.4 
Wheel 2 digit = 187.04 v [cm/sec] - 26.4 
Wheel 3 digit = 186.88 v [cm/sec] -  4.8 
Wheel 4 digit = 187.20 v [cm/sec] +  8.8 
Steer Encoder (all Wheels)     2 n radians = 360 * 256 counts 
 1 degree = 256 counts  

Table 4.1: Shepherd Operating Parameters in a Nutshell 
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2. RESET AND READ SHAFT ENCODERS 

To find out how the servo readings relate to either the steering and/or the driving, use 

the following debugger sequence which resets the servo counter for one wheel, drives the wheel and 

reads the servo counter after steering is done. The same procedures would apply for use with the 

remaining servo motors. 

Taurus_Bug>ns fffffiiob 04 

Taurus_Bug>ns ffff04Be 0800 

Taurus_Bug>MS ffffffOO 00100000 

Taurus.Bug>ms ffffffOO 00000000 

Taurus_Bug>ms ffff610b 03 

Taurus_Bug>ms ffff610b 01 

Taurus_Bug>iid ffff6109:l;b 

FFFF6109 D3 

Taurus_Bug>md ffff6109:l;b 
FFFF6109 C6 
Taurus_Bug>md ffff6109:l;b 

FFFF6109 FB 

Taurus_Bug> 

* clear servo counter for steering wheel 3 
ft set velocity for steering wheel 3 
ft turn on Kotor for steering vheel 3 
ft  ...  after a certain number of revolutions  ... 
ft turn off motor for steering wheel 3 
* select control for motor 7  (steer wheel 3) ft 
ft read least significant byte of 24bit counter 
ft the result 
ft read next byte ... 

ft ... the result 

ft read most significant byte  .. 
ft ...  the result 
ft the complete counter value in this case is 

ft 0rfbc6d3 sign-extended (e.g. -276781) 

3. UP- AND DOWNLOADING DATA FROM TAURUS BOARD 

At this time, there is no straight forward routine for data up- and downloading available. 

Hence, the up- and downloading of data such as waypoints, ... is very tedious. The only way, data 

can be transferred from or to the TAURUS main memory is via the TAURUSBug options <du> for 

downloading data to the Laptop and 'lo\ However, data would be made available only in form of 

the Motorola S-Record format. 

To download data from the TAURSU main memory to the Laptop, the Laptop must capture 

the script sent to the screen to a file (option "T'ext "Capture on the menu bar). In a second step, 

output the data to the screen using the folowing command: 

Taurue_Bug>duO 100000 lOOOff »This Is a damp to the screen» 

Effective address: 00100000 

Effective address: OOlOOOff 

S01FOOOOE4686973206973206120647S6D7020746F2074686S207363726S6E6EFI 
S21410000012341234123412341234123412341234AB 

S214100010123412341234123412341234123412349B 

S21410002012341234123412341234123412341234BB 

S214100030123412341234123412341234123412347B 

S214100040123412341234123412341234123412346B 

S2141000B012341234123412341234123412341234EB 

S214100060123412341234123412341234123412344B 

S214100070123412341234123412341234123412343B 

S214100080123412341234123412341234123412342B 

S214100090123412341234123412341234123412341B 

S2141000A0123412341234123412341234123412340B 

S2141000B012341234123412341234I23412341234FB 

S2141000C012341234123412341234123412341234EB 

S2141000D012341234123412341234123412341234DB 

S2141000E012341234123412341234123412341234CB 

S2141000F012341234123412341234123412341234BB 
S9030000FC 

Taurus_Bug> 
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As can be seen above, the data from memory location 0x100000 to OxlOOOf f will be output 

to the screen and thus captured in the ascii file specified. However, the data will be in the Motorola 

S-Record format and a parsing program needs to extract the pure data. The parsing program 

however, needs to know the datatype of the data given to extract the correct information. E.g., 

extracting data of datatype 'integer' would require a different parsing routine. 

As far as the uploading of data is concerned, the datafile must be transferred in the same 

manner as the SRK program, with the 'L0' option and described by [1]. 

4. INTERRUPTS 

This section describes briefly what type of interrupts are enabled on SHEPHERD. 

a. Timer Interrupt 

Every 10 ms, a timer interrupt is issued by the on board timing circuit.   The interrupt 

handling routine 'TimerHandler' does the following: 

1. increments counter 'intCounter' 
(which may be needed for timing purposes) 

2. initiate (software trigger) a block conversion for the A/D-Board AVME9325-5 

3. call function 'driver' in file 'movement.c' to execute/handle motion control part 

The interrupt is routed through the Interrupt steering mechanism (ISM) to the VIC068 and 

from there to the 68040 processor in the following way: 

AMD9513A 
Level 22 

ISM 
LIRQ-3 

VIC068 
IRQ-3 

68040 

IACK-3 

b. A/D-Board Interrupt 

Every 10 ms, the timer circuit initiates the start of a block conversion on the A/D-Board. 

Once this conversion is complete, the A/D-Board AVME9325-5 issues an interrupt to indicate that 
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the conversion is complete and data is available to be read from its dual port RAM. The interrupt 

handler 'handlerVME9325()' then subsequently calls 'analyzeData' to further analyze/process 

the data. The interrupt vector number is provided by the Board and set to be 0x0056 which relates 

to the location of the address for interrupt handling routine at 0x0158 in the interrupt vector table. 

As opposed to on-board interrupts, the interrupt from the A/D-Converter VME board is 

routed directly through the VIC068 to the 68040 processor: 

VMEBus 

IRQ-2 
IRQ-2 

VIC068 68040 

c. Keyboard Interrupt 

The overarching framework for user interaction is provided by the routine 'user()' in file 

'user.c'. Each time, the keyboard is pressed, an interrupt is issued by the 68C681 on board serial 

circuit to the 68040 through the TSM and VIC068. The ascii code for the key pressed is then be 

stored in the variable inPortA ana further analyzed by the routine [user()' in file 'user.c'. The mode 

flags set in this function will be further processed by functions called during the motion control cycle 

following each 10ms timer interval. For this interrupt, the interrupt vector number is provided by 

the DUART and set to be 0x0060 thus giving rise to the location of the interrupt handling routine 

inPortAHandler at 0x0180 in the interrupt vector table. 

68C681 
Level 8 

ISM 
LIRQ-1 

VIC068 
IRQ-1 

68040  ►> 

IACK-1 

5. REPRESENTATION OF DOUBLE VARIABLES 

According to the M68040 users manual, any double-precision variable is stored in memory 

as an 8 byte data value in the following form 

Since the representation is normalized with the leading (implicit) bit always one we find the relation 
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Bit 63 = s = sign bit (l=negative number) 
Bit 62..52 = e = 11 bit exponent in the range 0x000  ...    0x7f f 
Bit 51..0 = f = 52 bit (13 nibbles) binary decimal (mantissa) 

in the range 0x0000000000000 ...    Oxf f f f f f f f f f f f f 

to the real number representation x by 

z = (-l)s 2e-°x3ff (1 + d) 

with d = f ■ 2-52 . As an example, to display the double variable stored in memory location 0x306e8 

we issue the following TAURUSbug commands 

Taurus_Bug>md 306e8:1;d 
000306E8 1_3F1_1DF44179E4364 

The result is conveniently displayed by the monitor such that the elements can be easily identified: 

s=l, e=0x03f 1, f=0xldf 44179e4364. Hence, the real number is 

0x01df44179e4364s x = (-1)1 2(0x03fi-OxOSff) (l + 
0x10000000000000' 

HOW TO RUN SHEPHERD'S WHEELS 

Three VME boards account for operating of the wheels, both in steering and driving. These 

boards are accessible via the VME Bus Port connector PI and they are: 

Board 
VME 9210 
VME 2170 
VME 9421 

Function 
Analog Output to servos (velocity) 
Servo Control (on/off) 
Servo Status 

GCC Access 
short 
unsigned int 
unsigned short 

Shepherd is equipped with a total of eight servo motors: four wheels with driving and 

turning capability. The setup and software configuration is depicted in Figure (1). In order to 

operate each one of the motors one has to perform the following steps: 

1. Select the angular velocity for the motor by writing a signed short value (16 Bit) to the 
respective channel (see Figure 1 for the channel assignments) on the VME9210 board (analog 
Output). E.g. to turn wheel 3 (rear right) one would write 

*(ffff048e)=(short)velocity; 
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where a positive velocity corresponds to the spin direction as indicated by the arrow in Fig. 
(1). The well known Right-Hand rule applies for determining the direction of spin. 

2. Switch the motor on/off by writing the respective mask to VME2170 at Oxf f f f f f 00. Refer 
to Fig. (1) for the mask assignment. E.g. to drive wheel 2 (front left) and turn wheel 4 
(rear left) simultaneously, one would issue the command 

*(0xffffff00)=(unsigned int)0x00800020 

Any combination is allowed, i.e. mask 0x00900000 would turn wheels 3 and 4. Make sure 
you have set the angular velocities for the wheels you are going to run as outlined in step 1 
above! 

A word of Caution: for driving wheels 1 (front right) and 3 (rear right) forward, negative values must be 

written to the VME9210 Board as outlined in step 1. 
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o 

Wheel 2 Channel Ha.sk 
drive 
steer 

0x«ii0484 
0xfffi048c 

0x00000020 
0x00020000 

Wheel 4 Channel Mask 
drive 
steer 

0rffff0468 
0rf«f0490 

0x00000800 
0x00800000 

o 

/j^   Front 

Shepherd 

o 

V   J 
— 

Wheel 1 Channel Hask 
drive 
steer 

0xf«f0482 
0xf«f048a 

0x00000004 
0x00004000 

Wheel 3 Channel Mask 
drive 
steer 

0x«If0486 
0x«ff048e 

0x00000100 
0x00100000 

o 

V    ) 
— 

Switchbox (aft) 

Figure 4.1:  Wheel Assignment and Servo Register Addressing (Arrows and Dots at each wheel 
indicate the rotation of the respective servos if controlled with positive values. 
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