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Support for Temporal Events in Sentinel: 
Design, Implementation, and Preprocessing" 

ABSTRACT 

During the last decade, the functionality of databases has been extended to encompass a large 
range of applications which tend to be very complex in nature with concomitant increase in database 
size requirements. Database management systems (DBMSs) have evolved to meet the requirements 
of emerging applications. Providing monitoring and reactive capabilities to existing conventional 
DBMSs without application or user intervention is one of the directions taken to deal with non- 
traditional real world applications. In contrast to a conventional DBMS which is considered as 
passive or non-active, the self-reacting DBMS is termed active. The active DBMS typically accepts 
ECA (event-condition-action) rules which specify situations that need to be monitored and reacts 
to those situation under certain conditions. An active DBMS adds three new features to a passive 
DBMS: i) Rule Interface to define ECA rules, ii) Event detect mechanism to detect the events 
specified through the rule interface, and iii) Action execution mechanism to execute the action of 
the rule whose condition evaluates to true when the event occurs. 

This work extends Sentinel by completing the local event detector to support temporal events, 
and by pre-processing the Snoop event/rule specification language to generate appropriate calls to 
the event detector. A few Snoop operators, such as A, A*, P and P*, are implemented as part of this 
effort to handle the temporal events. This work first describes how the local event detector works 
(e.g., construction of event graph and event notification mechanism) followed by the description of 
the temporal event handler and its integration into the event detector. We also describe the Snoop 
preprocessor and its integration into the preprocessor of Open OODB (from Texas Instruments, 
Dallas), which is used as the underlying platform for Sentinel. 

'This work was supported by the Office of Naval Research and the Naval Command, Control and Ocean Surveil- 
lance Center RDT&E Division, and by the Rome Laboratories under contract No. F30602-95-1-0030 
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1    Introduction 

Conventional database management systems (DBMS) perform updates and execute queries in a 

demand-based manner, either when applications programs are executed or when interactive users 

perform some operation. A demand-based approach is inadequate for meeting the requirements of 

newer applications with a clear need for monitoring and reacting to pre-defined situations automati- 

cally without, any user/application intervention. As an example, consider a process control environ- 

ment where there is a need to continuously monitor the valve pressures to ensure that the pressure 

does not exceed a particular threshold. In such situations, it is desirable to remove the human from 

its loop, as a human cannot always ensure timely response to critical situations, e.g., very high 

pressures in the valves. DBMSs with the added functionality of asynchronously monitoring situa- 

tions and reacting to these situations are called active DBMSs (ADBMS). In contrast, conventional 

DBMSs are referred to as passive [Cha90]. ADBMSs typically use EC A (event-condition-action) 

rules to specify situations to be monitored and how to react to these situations. Briefly, an event is 

an indicator of a happening which can be simple or complex, a condition is a query based on either 

the existing database state, a set of objects, or transition between states of objects or even trends 

and historical data, and lastly, actions specify the operations to be performed when an event has 

occurred and the condition evaluates to true. ADBMS adds three new features to a DBMS: 

• Rule Interface: This allows applications to define ECA rules. 

• Event Detector: This is the entity which monitors applications as well as the database to 

detect the occurrence of primitive events. It is important to note, that once primitive events 

are detected, it is possible to group these primitive events to detect complex/composite events. 

• Action Execution: This module is responsible for scheduling and managing the execution of 

rule actions in accordance with ECA rule execution semantics. 

Figure 1 demonstrates the major functional extensions an ADBMS provides to conventional passive 

DBMS to support active capability at the application level. 

Most of the earlier work on ADBMS has concentrated on'the support of active capability in 

the context of relational database systems. Recently, there have been a number of attempts at 

incorporating ECA support into an object-oriented database management system (OODBMS). 

Sentinel is an ADBMS based on OODBMS. Sentinel uses Snoop [Mis91, CM94a] as its event/rule 

specification language and provides various parameter or event-consumption contexts for detecting 

composite events to meet a wide range of real-world application needs. 

This work extends the earlier work on Sentinel [Mis91, CM94a, Kri94] by adding the followings: 

i) the stand-alone temporal event detector is integrated into the Sentinel local event detector, ii) 

implementation of relative temporal event, iii) implementation of several Snoop operators (A, A*, 

P and P*), and iv) a pre-processor for detecting Snoop event expressions and processing them 

1 
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Figure 1: Major Extensions of a Regular DBMS to an ADBMS 

appropriately. This  report   also describes the data structures and implementation details of the 

event detector. 

The remainder of this report is structured as follows. Section 2 briefly describes the related 

work on active DBMSs. Section 3 summarizes Snoop, and Section 4 describes the architecture 

of Sentinel. Section 5 describes how the event detector works, and Section 6 discusses the Snoop 

preprocessor. Section 7 has conclusions and future work. 



2    Related Work 

In this Section, a few active OODBMSs are examined to indicate how they provide the active 

behavior. 

2.1    Ode 

Ode [GJS92b, GJS92a] is a database system which is based on the object-oriented paradigm. The 

database is defined, queried and manipulated using the database programming language 0++, 

which is an upward-compatible extension of the object-oriented programming language C++. Ac- 

tive behavior in Ode is provided by incorporating constraints and triggers [GJ91] without the notion 

of ECA rules. Both constraints and triggers consist of a condition and an action. Constraints and 

triggers are defined declaratively within a class definition. Constraints are used to maintain object 

consistency which are applicable to all instances of a class as well as its subclasses. Triggers, on the 

other hand, are used for purposes other than object consistency and are applicable only to those 

instances of the class in which they are declared (along with its subclasses), specified explicitly by 

the user [GJ91]. A trigger is activated on an object by an explicit invocation. A condition C{ is 

paired with an action A{ only, forming a constraint or trigger. Constraints and triggers are fired as 

a result of the invocation of any non-constant member function. Thus events in Ode are considered 

as the disjunction of all non-constant member functions. Events are generated as a result of the 

invocation of non-constant public member functions. Private and protected member functions do 

not generate events. All events signaled by an object of class A cause the evaluation of all con- 

straints and triggers declared within class A. That is, event detection occurs via a method based 

mechanism: constraints and triggers are precompiled into each place in the code where they might 

be activated, specifically, at the end of each non-constant public member function and before the 

commit of every transaction. 

Ode [GJS92b, GJS92a] has also proposed a language for specifying composite events. Basic 

(primitive) events are defined and composite events are constructed by applying operators to basic 

events. The basic events that are supported axe object state events (creation, deletion, access, 

update, read), method execution events (before or after the execution of a method), timed events 

and transaction events. The event operators supported are relative, prior, sequence, choose, every, 

fa and faAbs. Basic events can be qualified with a mask, thus producing logical events. A mask is 

an optional predicate that allows users to specify more complex events. For instance, assume that 

the execution of the withdraw method constitutes a basic event. 

Detection of composite events is accomplished by using finite automata. Each event expression 

maps an event history to another event history that contains only the events at which the event 

expression is satisfied and the trigger should fire [GJS92b, GJS92a]. Each event expression has an 

automaton associated with it that reaches the acceptance state when the event is raised. Input 

to the automaton is the event history, the sequence of logical events, of the object with which the 



automaton is associated. 
Events in Ode are treated as expressions declared within class definitions at compile time. This 

approach has several disadvantages. First, the treatment of events as expressions results in a di- 

chotomy between events and other objects. Second, events cannot be created, deleted and modified 

dynamically. In addition, the introduction of new event types, attributes and operations requires 

major modifications, thus compromising the system's extensibility. The major disadvantage of this 

approach is its inability to express complex events that are raised by occurrences of events in dif- 

ferent classes. To clarify, Ode has adopted a local view of complex events; a complex event defined 

in class A can only be raised by events occurring in that same class A. 

Ode supports Wo coupling modes1, immediate and deferred. 

2.2    ADAM 

ADAM [DPG91] is an active OODB implemented in PROLOG. It treats the rules uniformly as other 

objects, and rule operations are implemented as class methods. Rules are incorporated in ADAM 

by using an object-based mechanism. Basically, an object's definition is enlarged to indicate which 

rules to check when the object raises an event. Inheritance of rules from superclasses to subclasses 

is supported. However, the method by which inheritance is supported is specific to the PROLOG 

language and hence cannot be easily applied to other object-oriented programming languages. 

ADAM does not efficiently allow a rule to be applicable to only one instance of a class. This is 

accomplished by disabling the rule for all other instances. ADAM allows a rule's constituents to be 

modified dynamically. For example, it is possible to specify the condition and action parts of the 

rule at run time. Furthermore, the condition and action parts are defined dynamically rather than 

at compile time. The dynamic characteristics provided by ADAM are influenced by the interpretive 

environment in which ADAM is implemented and thus it is difficult to accomplish all of this in a 

language such as C++. 
Unlike Ode, ADAM adopts the ECA rule format. Events in ADAM are also treated as objects 

which are created, modified and deleted in the same fashion as other objects. An event-class 

is defined having three subclasses: db-eveni, clock-event and application-event. Each event is an 

instance of one of these three subclasses. Events in ADAM are basically generated either before or 

after the execution of a method. When an event is raised, all the methods' arguments are passed by 

the system to the condition and action part of the rule. Thus, the condition and action code may 

^he coupling mode denotes when the condition is to be evaluated with respect to the triggering transaction. 
HiPAC [Cha89, DBM88] introduces three coupling modes, namely, immediate, deferred and detached. The immediate 
coupling mode specifies that a condition is to be evaluated immediately after the signaling of the triggering event. 
This mode causes the temporary suspension of the triggering transaction until the condition is evaluated. The second 
coupling modej deferred, causes the condition to be evaluated at the end (before the commit) of the triggering 
transaction. The last coupling mode, detached, causes the condition to be evaluated in a separate transaction. This 
mode has two variations, specifically, causally dependent and causally independent. Causally dependent coupling 
mode implies a commit dependency between the triggering transaction and the rule, whereas causally independent 
implies that the rule is executed as a separate transaction independently of the triggering transaction. 



refer to the method's input or output parameters during evaluation. In order to create an event, 

the user must specify the name of the method generating the event and when the event should 

be raised. Although ADAM does not support complex events, the system is extensible enough to 

support them. This is due to their treatment of events as objects. 

ADAM only supports the immediate coupling mode and does not support the other coupling 

modes proposed in HiPAC [Cha89, DBM88]. 

2.3    Sentinel 

Sentinel is an integrated active DBMS incorporating ECA rules using the Open OODB Toolkit 

(from Texas Instruments, Dallas). Event and rule specifications are seamlessly incorporated into 

the C++ language. Any method of an object class is a potential primitive event. Furthermore, 

before- and after-variants of method invocation are allowed as events. Composite events are formed 

by applying a set of operators to primitive events and composite events. Events and rules are 

specified in a class definition. In addition, Sentinel supports events and rules which are applicable 

to a specific object instance. In that case, events and rules are specified outside of class definitions 

within the program where instance variables are declared. Supporting this instance-level events 

and rules removes the significant drawback of ADAM's local view of composite events and allows 

composite events which are combinations of events from different classes or different applications 

(global events). 

The parameters of a primitive event correspond to the parameters of the method declared as the 

primitive event and other attributes, such as the time of occurrence. The processing of a composite 

event entails not only its detection, but also the computation of the parameters associated with a 

composite event. The parameters of a composite event are collected, recorded and passed on to 

condition and action portions of a rule. Furthermore, these parameters are stored and reordered 

to meet various parameter contexts which are used to capture the application semantics. Recent, 

Chronicle, Continuous, and Cumulative parameter contexts are supported in Sentinel. 

An event (primitive as well as composite) can trigger several rules, and rule actions may raise 

events which can trigger other rules. Sentinel supports multiple rule executions, nested rule ex- 

ecutions as well as prioritized rule executions. The three coupling modes (immediate, deferred 

and detached) discussed in HiPAC [Cha89, DBM88] were introduced to support application needs. 

Currently immediate and deferred modes have been implemented in Sentinel. 



3    Summary of Snoop 

This section provides an overview 2 of the event specification language Snoop used in Sentinel for 

specifying ECA rules. Snoop uses an even hierarchy to classify events, defines the notion of events 

and event expressions, and describes a set of event operators 3 for constructing composite events. 

3.1 Event, Event Expression, and Condition 

An event is an atomic (happens completely or not at all) occurrence, and an event expression 

is an expression which defines an interval on the time line. A database transaction, operation, 

or a function can, be regarded as an event expression since typically it takes a finite amount of 

time for its execution. Since an absolute point on the time line (which is corresponding to an 

absolute time) can be viewed as a degenerate event expression where a point is a special case of an 

interval, choosing a point that can be declared as an event corresponding to that event expression 

is necessary. Event modifiers [CM94b] are used to transform an event expression to one or more 

events which correspond to various points of interest on the time line for that event expression. 

Snoop provides two event modifiers, begin-of and end-of to transform an arbitrary interval on the 

time line into an event. 

A condition is a boolean function of data values, such as 'the salary of Jane is greater than 

40K'. Evaluation of condition does not produce any side effects, i.e., does not change the database 

state. A condition may be valid over an interval of time. For example, 'the salary remains the same 

during the academic year' is an assertion that can be translated into an ECA rule. A database state 

of interest can be defined in terms of a condition; conversely, being in a state can be checked using 

a condition. Conditions define 'states' and hence are used in ECA rules as guards on transitions. 

A guarded transition fires when its event occurs but only if the guard condition is also true. For 

example, when one withdraws from an account (event), if the balance minus the amount being 

withdrawn (a parameter of the event) is below the minimum amount required (condition), then 

indicate the amount that can be withdrawn (action which may lead to another state). Conditions 

are likely to be formed on the parameters that are computed for a particular event instance (in 

addition to other shared data). 

3.2 Event Classification 

Events can be organized into a hierarchy of event classes. Each event class which has a unique event 

type [CVK+93] and instances of a class are identified by their class type and time of occurrence. 

For example, in a relational database, end-of-delete is an event class and each delete operation 

is an event instance of this class, which may have parameters such as the relation name and the 

tuples inserted in addition to other class parameters. 
2The implementation and syntax of Snoop [Mis91, CM94a] are discussed in Section 5 and Section 6 respectively. 
3The Snoop operators are discussed in Section 5 with implementation details. 



Events can be broadly classified as follows: 

1. Primitive events : Events that are pre-defined in the system by using primitive event ex- 

pressions and event modifiers. A mechanism for the detection is assumed to be available 

[AMC93]. 

2. Composite events : Events that are formed by applying a set of operators [Kri94] to primitive 

and composite events. 

3.2.1 Primitive Events 

Primitive events axe further classified into database events, explicit events, and temporal events. 

Each event (primitive or otherwise) has a well-defined set of parameters that are instantiated for 

each occurrence of that event. 

Database events are related to database operations such as a transaction, and in the relational 

model, they can be retrieve, insert, update and delete. 

Explicit events are those events that are detected and signaled along with their parameters by 

application programs and are only managed by the system. Prior to their usage, explicit events 

and their formal parameters need to be registered with the system. 

Temporal events are related to time and are of two types: absolute and relative. Absolute 

events map to discrete points on the time line (e.g., at 10 a.m.), whereas relative events are defined 

with respect to an explicit reference point (e.g., one hour after an event e occurs, where e is either 

a primitive or a composite event). An absolute time is composed of the following six fields: second 

(ss), minute (mm), hour (hh), day (DD), month (MM), and year (YY), and it is specified in the 

form of [hh:mm:ss/MM/DD/YY]. A relative time is a concatenation of one or more time units and 

has the form: [2 months + 10 days + 5 hrs + 10 mins + 49 sees]. Both absolute and relative can 

have wildcard ('?', or '*') in their expressions to represents multiple times. 

3.2.2 Composite Events 

A composite event expression is defined as an event expression formed by using a set of primitive 

event expressions, event operators (described in section 3.2.1), and composite event expressions 

constructed up to that point.  A composite event is an event obtained by the application of an 

event modifier to a composite event expression. By default, the end-of event modifier is assumed. 

The event classification is shown in Figure 2. 
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Figure 2: Event Classification 

3.3    Snoop Event Operators 

Snoop provides a number of operators for constructing composite events. Below, we summarize the 

operators supported in Snoop with brief explanations: 

1. AND (A): Conjunction of two events E\ and E2, denoted EiAE2, occurs when both Ei and 

Ei occur (the order of occurrence of E\ and E2 is irrelevant). 

2. OR (V): Disjunction of two events E\ and E2, denoted E\VE2, occurs when either E\ or E2 

occurs (simultaneous occurrence is currently excluded). 

3. SEQ (»): Sequence of two events Ei and E2, denoted E^E2, occurs when E2 occurs 

provided E\ has already occurred. This implies that the time of occurrence of E\ is guaranteed 

to be less than the time of occurrence of E2. 

4. NOT (-■): The NOT operator, denoted -i(E2)[Ei, E3],' detects the non-occurrence of the 

event E2 in the closed interval formed by E\ and Es. Note that this operator is different from 

that of !E (a unary operator in Ode [GJS92b]) which detects the occurrence of any event 

other than E (the complement set semantics is used). It is rather similar to the SEQ operator 

except that E2 should not occur between E\ and E3. 

5. ANY: The conjunction event, denoted by ANY(m, Eu E2, ...En) where m<=n, occurs 

when m events out of the n distinct events specified occur, ignoring the relative order of their 

occurrences. 



6. A: One can express the occurrence of an aperiodic event in the half-open interval formed 

by Ei and £3
4. An aperiodic event is denoted as A(Ei, E2, E3), where Ei, E2 and E3 are 

arbitrary events. The event A is signaled each time E2 occurs during the half-open interval 

defined by E\ and E3. 

7. A*: This is a cumulative variant of A expressed as A*(Ei, E2, E3). It is useful when a 

given event is signaled more than once during a given interval, but rather than detecting the 

event and firing the rule every time the event occurs, the rule has to be fired only once. A* 

is detected when E% occurs and accumulates the occurrences of E2 in the half-open interval 

formed by E\ and #3. 

8. P: A periodic event is defined as an event E that repeats itself within a constant and finite 

amount of time. It is denoted as P(JEi, E2, #3), where E\ and E3 are any types of events 

and E2 is a relative temporal event. P occurs for every amount of time specified with the 

time string of E2 in the half-open interval (Ei, E3]. The time string should be positive and 

should not have any wild card to prohibit continuous occurrences of P. 

9. P*: P* is a cumulative variant of P and is denoted by P*{E\, E2, E3). P* occurs only once 

when Ez occurs and accumulates the time of occurrences of the periodic event whenever E2 

occurs. 

10. PLUS (+): Sequence of an event E\ after a time interval TI, denoted Ei + [TI] occurs when 

TI time units are elapsed after E2 occurs. 

3.4    Parameter Contexts 

The notion of parameter contexts is introduced in Snoop to capture application semantics for 

computing the parameters or consuming event occurrences (of composite events) when they are not 

unique. Snoop identifies four parameter contexts that are useful for a wide range of applications. 

These contexts are precisely defined using the notion of initiator and terminator events. An initiator 

of a composite event is a constituent event which can start one detection of the composite event, 

and a terminator is a constituent event which can detect an occurrence of the composite event. 

• Recent: In this context, not all occurrences/instances of a constituent event will be used in 

detecting a composite event, only the most recent occurrence of the initiator for any event 

that has started the detection of that event is used. When an event occurs, the event is 

detected and all the occurrences of events that cannot be the initiators of that event in the 

future are deleted (or flushed). Furthermore, an initiator of an event (primitive or composite) 

will continue to initiate new event occurrences until a new initiator occurs. 
4The interval can either be (tjocc(ßi), t.occ(E2)] or [t-occ(^i), t-OCc(E2)). 



• Chronicle: In this context, for an event occurrence, the initiator, terminator pair is unique 

(after a detection, the initiator and the terminator are flushed). The oldest initiator is paired 

with the oldest terminator for each event (i.e., in chronological order of occurrence). 

• Continuous: In this context, each initiator of an event starts the detection of that event 

and is saved until a terminator occurs. A terminator is paired with every initiator. Thus 

the terminator may detect, one or more occurrences of the same event. The initiator and 

the terminator are discarded after an event is detected. This context is especially useful for 

tracking trends of interest on a sliding time point governed by the initiator event. 

• Cumulative: In this context, all occurrences of an event type are accumulated as instances of 

that event until a terminator occurs (that is, the event is detected). Thus all the occurrences 

of the event detection are packaged in based on their order of occurrences. Whenever an 

event is detected, all the occurrences that are used for detecting that event are deleted. 
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4    Architecture 

This section discusses the architecture of Sentinel, an active OODBMS being implemented at the 

University of Florida. Below, we briefly introduce the Open OODB and the Sentinel architectures. 

4.1    Open OODB 

The Open OODB project [WBT92, OOD93], was initiated by Texas Instruments to build a high 

performance, multi-user object-oriented database management system (OODBMS) in which the 

database functionality can be tailored for the diverse needs of applications. The system provides 

an expandable framework that can also serve as a common testbed for research by database, 

framework, environment and system developers who intend to experiment with different system 

architectures or components. It facilitates incorporation of new components from smaller groups 

lacking resources to build an entire database system. The Open OODB describes the design space 

of OODB and builds an architectural framework that enables configuring independently useful 

modules to form an Object Oriented Database Management System. The Open OODB system 

architecture is divided into: 

• A meta-architecture consisting of a collection of kernel modules and definitions providing the 

infrastructure for creating environments and boundaries, specifying and implementing event 

extensions and regularizing interfaces among modules. 

• An extensible collection of policy manager modules which provide functionality to the system. 

Since Open OODB is an object-oriented front end, it uses Exodus as its underlying storage 

manager through an interface. Open OODB supports multiple application programming languages 

(C++ and Lisp) and has extended these languages to support: persistence, concurrent transactions, 

and schema evolution to developers' existing programming environments. These extensions allow 

programmers to stay within familiar programming paradigms and languages. Open OODB allows 

developers to define a behavioral extension of events, which is an application of an operation to 

a particular set of objects. To perform these extensions we 'must be able to interrupt or trap 

operations. Thus, the trapping mechanism combined with the protocol for permitting the entity 

performing the trapping to invoke an arbitrary extension is known as a sentry. The primary function 

of sentries is to detect events interacting with objects and to pass control to a policy manager which 

controls and performs the actual extension if it is determined that an event should be extended. 

The sentry manager is used for specifying events to be extended and is responsible for deploying 

sentries to detect extended events. 

Sentinel uses Open OODB as its platform. The primary class OODB has been extended to 

have reactive capability and the sentry mechanism is used to build wrapper functions wherever 

necessary. 
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4.2    Sentinel 

Sentinel is based on the Open OODB [WBT92, OOD93].  Sentinel's ECA rule support enhances 

the Open OODB from a passive OODB to an active one. 

Application code including 

ECA rule specification 

Produces Output Files 
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! >      Open OODB modules modified by Sentinel 

Figure 3: Sentinel Architecture 

Figure 3 indicates the functional modules of the open OODB and the extensions for Sentinel. 

These extensions include: 

• Primitive event detection: A method can be specified as a primitive event, and the occurrences 

of the primitive event are notified to the local event detector when the method is invoked. 

We have modified the Open OODB preprocessor to wrap the method invocation with the 

notifications to the local event detector in order to detect primitive events. 

• Composite event detection: Composite events defined within an application is detected by 

using a sequence of primitive events detected according to the specified parameter context 

of the composited event [Kri94, CKAK94]. Each Open OODB application has its own local 

event detector. 

• Global event detection: The events of inter-applications is detected by the global event detec- 

tor. The global event detector communicates with the local event detectors through RPC and 

socket-basec communication to detect global events (This is currently being implemented). 

• Nested transactions: The transaction manager in the client address space supports nested 

transactions [Mos81, Bad93] for concurrent execution of rules. Light weight processes are 

used both for prioritized and concurrent rule execution. 
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• Rule debugger: The rule debugger [Zho95, CTZ95] allows visualization of interactions among 

rules, rules and events, and rules and database objects. 

• Rule editor: The rule editor allows the user to add external rules at run time. It communicates 

with the local event detector to edit rules and events. A graphical user interface for the rule 

editor is currently under development. 

• Snoop preprocessor: The Snoop preprocessor transforms the ECA rules specified either as 

part of a class definition or as part of an application. The preprocessor converts the high-level 

user specification of ECA rules specified in Snoop language [CM94a] into appropriate C++ 

code for eveht detection, parameter computation, and rule execution. 

Figure 4 shows how the class lattice of the Open OODB has been extended. The classes outside 

the dotted box have been introduced for providing active capability. This figure also shows the 

kernel-level enhancements to the Open OODB modules to accommodate nested subtransactions. 

SENTINEL CLASS LATTICE Opm OODB NESTED TRANSACTION MANAGER 

[   REACTIVE )        [   NOTIFI 

J^     ">        r- 
[       RULE }> •[_ SYNCHRONIZATION 

LOCK MANAGER 

(Nested transactions 
lock info held here) 

EXODUS CLIENT 
(Some loclc info held 

here) 

EXODUS SERVER 

(Top level  transaction 
info held here) 

Figure 4: Class lattice and transaction manager of Sentinel 

Figure 5 shows the control flow for supporting event detections and rule executions. The 

Sentinel primitive event detection mechanism is based on the design proposed in [AMC93]. The 

occurrences of the primitive events are signaled with the appropriate parameter collections by 

wrapping notifications of the primitive event method. Both primitive and local composite events 

are signaled as soon as they are detected. 

Each application has a local event detector. When a primitive event occurs it is sent to the local 

event detector and the application waits for the signaling of rules that are detected in the immediate 

mode. The global event detector communicates with the local event detectors for receiving events 

detected locally and with the application's global event handler for signaling the detection of global 

13 



Global  Event  Detector 

Application 1' 
to execute 
detached rule 

orked process 

Local Event 
Detector 

Application n' 
to execute 
detached rule 

Forked process 

begin 
Transaction 

^ 

end 
Transaction 

Application 1 Application N 

Local Event 
Detector 

1 - Primitive Event signaled 
3 - pre-commit and abort signaled 
5 - Inter-application events detected 

2 - Composite event detection for immediate rules 
4 - Causally dependent commit  signaled 
6 - Rules executed as subtransactions 

Figure 5: Local and Global Event Detector Architecture 

events for executing tasks based on global events. There is a clean separation between the events 

detected by the local event detector and the global event detector. 
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5    Design and Implementation of Local Event Detector 

Events are detected by a local event detector (LED) in Sentinel. In this chapter we discuss the 

implementation details of LED, including the constructing an event graph, handling of temporal 

events, and implementation of Snoop operators A, A*, P, and P*. 

5.1    Event Graph 

An event graph is a graph constructed to reflect the primitive and composite events declared in 

an application. Each event is represented as an event node in the graph, and the event nodes are 

connected by thek subscription 5 relationships. An internal node of the event graph represents a 

composite event, and a leaf node represents a primitive event. 

5.1.1 Primitive Event Node 

A primitive event is a leaf node of the event graph and is a subscriber of a method. A primitive event 

node has four attributes: method signature, event modifier, instance number, and object address. 

Method signature stores the unique signature (return type, name and arguments of the method ) of 

a method declared as a potential event. If a primitive event is a temporal event, it keeps the ascii 

time expression of the temporal event instead of a method signature. Event modifier {begin or end) 

[CM94a] tells when the primitive event gets a notification from its associated method. It can be at 

the beginning or at the end of method invocation. The primitive event occurs at the notification 

time. Each occurrence of the primitive event has a unique instance number. If the primitive event 

is declared for a specific object of a reactive class, the attribute object address has the address of 

the specific object, otherwise it has a null pointer. The binding between a primitive event and a 

method is specified with an event modifier by a user in the Snoop language. In the example, 

event begin (el) int sell_stock(int number); 

the primitive event el is bound to a method named sell-stock and the method notifies its occurrence 

at the beginning of its invocation. Composite events and rules can subscribe any number of primitive 

events. These events and rules are kept either in event-list or in rule-list of the primitive event. Leaf 

nodes pass the primitive events immediately to their parent nodes as the semantics of all contexts 

are identical for primitive events. 

5.1.2 Composite Event Node 

A composite event is defined using one or more Snoop operators and primitive events using the 

BNF. The local event detector generates an event tree whose root node represents the composite 

event. Event trees in an application are merged to form an event graph for detecting a set of 

composite events.   This prevents detecting common sub-events multiple times, thereby reducing 

5An object can get notifications when methods of other object's axe executed. We call this notification relationship 
subscription. The notifiable object becomes a subscriber of the notifying object. 
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Figure 6: Event trees 

storage requirements. A sequence of constituent event occurrences makes a composite event occur. 

Since event occurrences happen over a period of time, it is necessary to store the occurrence of 

each event and save its parameter lists to detect composite event occurrences. Each operator node 

which is the root node of an event tree has storage to save these event occurrences. The information 

is saved separately according to the parameter contexts which are applicable to composite events. 

Multiple contexts can be set to an operator node, and these contexts do not interfere with each 

other while the composite event is detected. The stored information is flushed or remains after an 

occurrence of the composite event according to parameter context. Similar to a primitive event, a 

composite event (node) has two linked lists, one for its event subscribers and the other for its rule 

subscribers. Figure 6 shows a few event trees. 

5.1.3    Local Event Detector 

An event detector is implemented as a class, and we have a single instance of this class per ap- 

plication (termed local event detector). A local event detector has a linked list whose nodes hold 

one reactive class of an application. Each node, in turn, has two linked lists, begin Jist and endJist. 

The lists have the subscribers (here, they are primitive events which are bound to one of methods 

in the class) to be notified at the beginning or the end of these methods's invocations. By default 

a subscriber is inserted in the end-list if it does not specify when to be notified. This organization 

reduces the search which is based on the class. However, search for the class is sequential. An event 

graph is constructed while the event trees of composite events in the application are built by their 

subscribing relations. The event graph is connected to the reactive class list through primitive-leaf 

nodes. A primitive-leaf node is associated with a method which belongs to one of the reactive class 

nodes. This connected event graph and the reactive list constitute a local event detector for the 

application. A primitive event constructor registers itself to the reactive class list as a subscriber of 

a method in the list. Figure 7 shows how primitive leaf nodes of an event graph are connected to 

a reactive class list. The reactive class name is "STOCK" and it has three methods: "sell_stock", 
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Figure 7: An Event Graph connected to a reactive class list 

"buy.stock",and "set_price". Figure 8 shows an event detector structure. 

5.1.4    Detecting Events 

The methods that can generate primitive events are modified by the wrapper class methods using 

the sentry feature of the Open OODB system while preprocessing the application program. The 

Open OODB preprocessor was modified to add code for parameter collection and notification to the 

event detector while preprocessing the application program. When a method registered to the local 

event detector is invoked, notifications of this invocation are signaled both at the beginning and at 

end of the method to the local event detector with method signature, class name, event modifier, 

parameter list of the method, and a reactive object if this event is declared as an instance-level 

event. A parameter list is formed right before notification with the parameters of the method. The 

parameter list keeps names, types, and values of the parameters. With the class name, the local 

event detector searches the list of the reactive classes. If there exists no node with the same name, 

it causes an event-raising error. If there is a node with the same name, then it traverses either 

begin-list or end-list according to the event modifier that came with the notification.  Up to this 
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point, every primitive event in any one of the lists is notified regardless of the event method to 

which the primitive event is bound. A primitive event node keeps the method signature and the 

reactive object if any. If the notification that came from the event method has a reactive object, 

the primitive event node compares these two reactive objects as well as their method signatures. 

White spaces are ignored when the comparison takes place. Only when both match it propagates 

its occurrence to its subscribers, which can be composite event or rules. Every time the primitive 

event occurs,' its unique instance number is given, its occurrence time is set in the parameter list, 

and further notifications go to its subscribers. As defined earlier, a composite event is an event tree 

and the root of the event tree is one of the Snoop operators. The node maintains the occurrence 

of its constituent event occurrences with their parameter lists which are stored separately for each 

context set to the node. Whenever it is notified by one of its constituents, the node checks the 

status of its constituents' occurrences. We call the constituent event instance that causes the start 

of an occurrence of the composite event an initiator, and the constituent event instance that causes 

the detection of the occurrence a terminator. If the composite event occurs by the last notification, 

it is detected, and further notifications are sent to its subscribers. The parameter list is recomputed 

to hold event traces from method invocation to this new occurrence and gets the current time as 

a new occurrence time. After the detection and the notifications, the parameter list held in the 

operator storage will be flushed or maintained for the next detection of an event according to the 

operator semantics. Any events or rules can unsubscribe their constituent events even after the 

event graph is constructed. This unsubscription does not change the event graph; only events or 

rules are deleted from the subscriber lists. Resubscribing is as easy as unsubscribing: just insert 

the new subscriber in the list. No restructuring of the event graph is needed. 

5.2    Temporal Event 

5.2.1    Handling Temporal Event 

Unlike the other types of primitive events, temporal events need a temporal event handler as well 

as a local event detector. One temporal event handler is generated per application. The tem- 

poral event handler consists of classes, Time.queue.item, Time-queue, and Time.queueJiandler. 

Time-queue-item is responsible for converting a time expression into a numerical representation. 

Time.queue handles these numerical temporal representations in timely order, and Time_queue_handler 

provides an interface between local event detector and temporal event handler, and manages time 

queues and the timer. Two Time.queues are created when Time.queueJiandler is constructed. 

Converting a Timestring into a Numeric Time Expression: A temporal event is created 

by giving a unique time expression and its identification number, add-item, one of the functions 

of Time-queue-handler, carries the time expression and the identification number to the temporal 

event handler. Examples of declaring temporal events are below: 

Time_queue_handler tqh; 
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tqh.add_item(" 12:00:00/04/18/96", evnt_id );  /* absolute event */ 

tqh.add_item(c'3 hrs 30 mins",  evnt_id );  /* relative event */ 

aid-item creates an instance of Time.queueJtem with the time string and the identification number. 

The time string is converted into a numerical time expression. This conversion is directed by the 

function called convJs if it is an'absolute temporal string, or by the function called conv.rel if it is 

a relative temporal string. Once the time string is decomposed into time units from second to year, 

these decomposed values are converted into integer values. If a time unit includes a wildcard, the 

wildcard is replaced with the lowest value according to its position when the conversion takes place. 

The current time is added to the converted values if it is a relative case. The results of the conversion 

are held in the array tmJiold where each element represents a time unit. These constituent integer 

values are copied to a tm structure which is declared in <time.h> for representing real time, and 

the values in the tm are converted into a time value that represents the number of seconds since 

Jan. 1, 1970, 00:00, Greenwich Mean Time. This final converted result is stored into the convJime 

data member, which is a type of timeJ (long integer). Managing Time Queues: The temporal 

event handler has two time queues-timeq and presJtems- generated when the handler is created. 

A time queue is semaphore-protected; that is, the time queue constructor requests a semaphore 

for the queue from the operating system, and the semaphore is used to serialize additions to and 

deletions from the queue. The timeq is an ordered queue of time queue items. Time queue items 

are queued in timely order before they are set to the timer. If the item has an obsolete time, it is 

not queued. The pres-items queue is used to handle multiple temporal events which have the same 

expiration times. The front item of timeq is moved into the presJtems before its time is set to the 

timer and stays there until the time expires: the item in presJtems is currently set to the timer and 

dequeued when the time expires. Multiple items with the same expiration time are moved together 

into presJtems. If a new item is queued into timeq with an earlier time than that of the item in 

the presJtems, then they are swapped and the timer is reset with the earlier time. 

Setting a Timer: The time of the item in presJtems is set to the timer. Even though there 

is more than one item with the same time in the queue, the time is set to the timer only once. If 

the time becomes obsolete while it stays in the timeq, the item is not set and the next time is set 

to the timer. Setting the timer is done by calling the system function setitimer. 

Processing of Alarm Clock Signal: When the temporal event handler is created, Time.queueJiandler 

constructor installs a signal handler to give an alarm clock signal by calling a system function, sig- 

nal. A signal is sent when the time on the timer expires to the signal handler of the temporal 

event handler. The signal handler calls process, which is a method of Time.queueJiandler. This 

function dequeues all items in the presJtems and gives them notifications with the expiration time. 

Repetitive items are updated with the next higher value and queued into timeq unless updating is 

no longer necessary. The new front item in timeq is moved into presJtems and is set to the timer. 
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1. Request from the local event detector to create a time item 

2. Pushing the item into the time_queue 

3. Pushing the front item into the present _item_queue 

4. Setting the clock 

5. Signaling the time 

6. Notifying to the local event detector 

7. Updating the time item   if the item is repetitive 

Figure 9: Temporal Event Handling 

Figure 9 shows how a time item is handled inside of the temporal event handler. 

5.2.2    Integration of a Temporal Event Handler into a Local Event Detector 

As other types of primitive events, temporal events are detected through an event graph. The 

temporal event handler and the event graph is connected through primitive temporal events. When 

the first temporal event is declared, a reactive class node is inserted into the reactive class list of the 

local event detector with the name "TEMPORAL" instead of a reactive class name. A primitive 

event is declared with a time expression and is listed in a subscribers' list as it is with a method 

signature. Since the time expression is used like a method, the time expression should be unique. 

The end-of event modifier is chosen for temporal event by default. Figure 10 shows how temporal 

events are integrated into a local event detector (this figure only shows the reactive class list and 

primitive events of the local event detector). Once declared, a primitive temporal event checks the 

type of time expression. If it is absolute, a time queue item is created with the time string and 

pushed into the time queue. If it is relative, the time queue item is created when its relative event 

occurs rather than by the primitive event. Relative time expression is used in P, P*, and PLUS 

operators. Since a relative time expression has to know which is its relative event, a time queue 

item is created with the event number of the relative event as well as the time string while an 

absolute time expression has 0 as its event number. When the timer signals that a time is finished 
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Figure 10: Integration of Temporal Event into a Local Event Detector 

on the timer, the temporal event handler catches the signal and notifies the occurrence to every 

time queue item in presJtems with the occurrence time. A time queue item creates a parameter list 

which holds the occurrence time and its event number that were given from its referencing primitive 

event. The event number is added to the end of the parameter list. The notifications go to the leaf 

nodes of the event graph. The primitive leaf nodes have these time expressions instead of method 

signatures. Further notification goes up the event graph through the events that subscribe the 

temporal event. Temporal event notification from the temporal event handler to the event graph 

is sent like a method connected to a primitive event except for a few more steps to reach the event 

graph. 

5.3    Newly Implemented Snoop Operators 

This section describes the implementation details of PLUS, A, 'A*, P, and P* with their algorithms. 

1. PLUS (+): PLUS is used with relative time expressions. A PLUS operator subscribes two 

events E\ and E2, where E\ can be any types of events and Ei should be a relative temporal 

event. Originally E% is specified as a relative time expression from a user. The Snoop 

preprocessor declares it as a relative temporal event. A relative temporal event occurs after 

the amount of time expressed by the time string since an instance of E\ occurs. Unlike 

absolute temporal events which produce time queue items when they are declared as primitive 

events by the Snoop preprocessor, relative temporal events produce time queue items when 

an Ei instance occurs. Each time queue item carries an identification number which is the 

identification number of its referencing E\, and passes this number to E2- When the PLUS 
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Figure 11: PLUS Operator 

operator gets the occurrence notification from E2, it checks the identification number of the 

instance of E<i to verify that the matching E\ instance is still valid. The identification number 

is carried in the last parameter of the parameter list brought with the notification. Any Ei 

occurrence whose identification number cannot be found in the list of E\ is ignored. The 

following Figure 11 shows how the PLUS operator communicates with the temporal event 

handler to handle its relative temporal event. 

The algorithm of detecting relative temporal events follows where ei represents an instance 

oiEi. 

PLUS(Ei, E2): 

PROCEDURE plus_recent( Eu parameterJist) /* Recent */ 
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if left event el is signaled 

get the terminator ID of el 

create a time queue item with the ID and the time string of E<i 

replace el in E\% list. 

- if right event e2 is signaled 

'"■■ get the ID of e2 

if JSi's list is not empty and the ID of el and that of e2 are the same 

pass <el, e2> to the parent with a new t_occ 

The local event detector allows multiple parameter context without any interference to other 

context detections. To make this no-interference gracefully, a PLUS operator has to check 

which other contexts are set. The priorities are given in the order of recent, chronicle, contin- 

uous, and cumulative. By this priority list, only the recent context does not need to check the 

other contexts set. Chronicle context checks whether recent context is set; only when recent 

is not set does the chronicle context produce a time queue item. Continuous context checks 

whether recent or chronicle context is set. If either one of them is set, the continuous context 

cannot produce a time queue item. In the cumulative case, it should check the other three 

contexts to produce a time queue item. Without context checking, multiple time queue items 

are produced for the same instance of E\ and send unnecessary notifications from the time 

queue handler to the event graph, thus increasing traffic bandwidth unnecessarily. Note that 

the validating identification number of a temporal event and checking parameter contexts 

should be done for P and P* as PLUS. 

PROCEDURE plus_chronicle(jE?i, parameter-list) /* Chronicle */ 

if left event el is signaled 

get the terminator ID of el 

if Recent context is not set 

create a time queue item with the ID and the time string of Ei 

append el in E\$ list. 

if right event e2 is signaled 

get the ID of e2 

if .Ei's list is not empty and the head's terminator ID 

and that of e2 are same 

pass <E\?> head, e2> to the parent with a new t_occ 
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If a Snoop operator is set to continuous context, a terminator may detect one or more occur- 

rences of the same event. In a PLUS operator, however, the terminator, which is a relative 

temporal event, is only matched with the initiator which gave birth to the time queue item of 

the terminator. Since the order of relative temporal events is the same as their referencing E\ 

instances, detections of the continuous context are the same as detection of chronicle context. 

PROCEDURE plus_continuous(Ej, parameter-list) /* Continuous * / 

if left event el is signaled 

get the terminator ID of el 

if Recent or Chronicle context is not set 

create a time queue item with the ID and the time string of E2 

append el in Ei's list. 

if right event e2 is signaled 

get the ID of e2 

if Ei's list is not empty and the terminator ID of the head of the 

list and that of e2 are same 

pass <E\s head, e2> to the parent with a new t_occ 

delete the head of #i's list 

Note that in implementation, instead of pairing the head of Eis list and e2, the el whose 

terminator's ID is the same as that of the e2 is searched in the Ei's list in case of losing any 

alarm clock signal from the signal handler. Unmatched els are deleted. 

PROCEDURE plus_cumulative(Ej, parameterJist) /* Cumulative * / 

if left event el is signaled 

get the terminator ID of el 

if Recent, Chronicle, or Continuous context is not set 

create a time queue item with the ID and the time string of Ei 

append el in Si's list. 

if right event e2 is signaled 

get the ID of e2 
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if Ei's list is not empty- 

pass <all el's, e2> to the parent with a new t_occ 

flush Ei's buffer 

2. A: We can express an aperiodic event with the A operator. The aperiodic event occurs 

whenever the second event, Ei occurs during the interval defined by the first and the third 

events. A can occur zero or more times (zero times either when Ei does not occur in the 

interval or when no interval exists for the definitions of E\ and E3). 

A(Ei, E2, E3) : 

PROCEDURE a_recent(Ei, parameter-list) /* Recent */ 

if left event el is signaled 

replace el in Ei's list. 

if middle event e2 is signaled 

if Ei's list is not empty 

pass <el, e2> to the parent with a new t_occ 

if right event e3 is signaled 

flush Ei's buffer 

PROCEDUB.E a_chronicle(Ei, parameter-list) /* Chronicle */ 

if left event el is signaled 

append el in Ei's list. 

if middle event e2 is signaled 

if Ei's list is not empty 

pass <Ei's head, e2> to the parent with a new t.occ 

delete the head of Ei's list 

if right event e3 is signaled 

flush Ei's buffer 
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Prom the above chronicle pseudo code, we can notice that if the previous E% instance makes 

Ei's list empty, a new occurrence of E2 will be ignored even though it occurs during the 

interval. The same situation happens in the continuous context. 

PROCEDURE a_continuoüs(Ej, parameterJist) /* Continuous * / 

if left event el is signaled 

append el to Ei's list 

if middle event e2 is signaled 

if El's list is not empty 

for every instance el in El's list 

pass <Ei's head, e2> to the parent with a new t_occ 

delete Ei's head 

if right event e3 is signaled 

flush Ei's list 

PROCEDURE a_cumulative(Ej, parameterJist) /* Cumulative */ 

if left event el is signaled 

append el to E\ 's list 

if middle event e2 is signaled 

if E\ 's list is not empty 

pass <all els, e2> to the parent with a new t_occ 

flush Ei's buffer 

if right event e3 is signaled 

flush Ei's buffer 

In all the contexts in A, the first occurrence of E3 after the interval has began terminates the 

detection of A. A new instance of Ei is necessary to reinitiate the detection. 
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A*: A* is a. cumulative variant of A. A* is detected only once when E3 occurs instead of being 

detected every time E2 occurs. When E2 occurs, the occurrence time of the instance and the 

values of the parameters which E2 carries are accumulated in E2s list. These accumulations 

of E2 instances require separate storage from £q's list storage. 

In recent context, an occurrence of Ex flushes E2s list since the new occurrence of Ex starts 

another recent interval. 

A*{Ex, E2, Ez): 

PROCEDURE astar_recent(J5i, parameterJist) /* Recent */ 

if left event el is signaled 

replace el in Ex's list, 

flush £2's buffer 

if middle event e2 is signaled 

if JBI'S list is not empty 

append e2 to E2s list 

if right event e3 is signaled 

if £?i's list is not empty 

if E2s list is not empty 

pass <el, all e2s, e3> to the parent with a new t_occ 

flush Ex and E2s buffers 

else 

pass <el, e3> to the parent with a new t_occ 

flush Ei's buffer 

Unlike all contexts of A or recent context of A*, in the chronicle context an occurrence of E3 

does not delete all previous E2 occurrences. The ith occurrence of Ex and the ith occurrence 

of £3 are paired with all E2 occurrences between them. 

PROCEDURE astar_chronicle(JBi, parameterJist) /* Chronicle */ 

if left event el is signaled 

append el in Ex's list. 
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if middle event e2 is signaled 

if Ei's list is not empty 

append e2 to .EVs list 

~ if right event e3 is signaled 

* if Ei's list is not empty 

if iJVs list is not empty 

pass <Ei's head, all e2's whose t_occ are greater than 

that of Ei's head, e3> to the parent with a new t_occ 

delete the head of Ei's list 

delete all e2s in E2's list whose t_occ is less than that 

of JEI'S new head 

if .Ex's list is empty 

flush E2's buffer 

else 

pass <Ei's head,e3> to the parent with a new t_occ 

delete head of Ei's buffer 

In the continuous context, the first occurrence of E3 flushes the lists of Ei and E2 like recent 

context. 

PROCEDURE astar_continuous(Ej, parameter-list) /* Continuous */ 

if left event el is signalled 

append el to Ei's list 

if middle event e2 is signalled 

if Ei 's list is not empty 

append e2 to E2's list 

if right event e3 is signalled 

if Ei's list is not empty 

if E2's list is not empty 

for every instance el in Ei 's list 

pass <el, all e2 whose t_occ is greater than that of 

el,e3> to the parent with a new t_occ 
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flush Ei's and E2's buffers 

else 

for each el in E\ 's list 

pass < el, e3> to the parent with a new t_occ 

flush Ei's buffer 

In cumulative context, we use only one storage for both E\ and E2 parameters since, when 

E3 occurs the first time, all of the stored parameters will be sent in their occurrence order. 

PROCEDURE astar_cumulative(Ei, parameterJist) /* Cumulative */ 

if left event el is signalled 

append el to Ei and E2's common list 

if middle event e2 is signalled 

if Ei's list is not empty 

append e2 in E\ and E2's common list 

if right event e3 is signalled 

if Ei's list is not empty 

pass <all el and all e2 in the common list, e3> to the parent 

with a new t_occ 

flush Ei and E2's common buffer 

P: P repeats itself within a constant and finite amount of time expressed by E2. P occurs 

in every E2 amount of time (that is, when E2 occurs). It is important to note that the 

time expression is a constant and preferably does not cqntain wild card specifications in all 

fields because this will result in continuous occurrences of P. Instances of E2 play the role of 

terminators. Except for the first occurrence of P, the previous occurrence of E2 is the initiator 

of the current occurrence of P. An occurrence of Ei can be an initiator only once for the first 

occurrence of E2, which has the time queue item requested by the Ei occurrence. Thus, 

E2 can be an initiator and a terminator. Checking parameter context to avoid unnecessary 

multiples of time queue item is done like a PLUS operator. 

In recent context, a P event can be repeated until E3 occurs by requesting creating a time 

queue item with the instance number of the recent occurrence of Ei and the relative time 

expression of E2 to the temporal event handler. 
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P(£l, E2) : 

PROCEDURE p_recent(JBi, parameterJist) /* Recent */ 

if left event el is signalled 

get the terminator ID of el 

create a time queue item with the ID and the time string of Ei 

replace el in E\% list. 

if middle event e2 is signalled 

get the ID of e2 

if E\% list is not empty and the ID of el and that of e2 are same 

create a time queue item with the ID of terminator ID of el 

pass <el, e2> to the parent with a new t_occ 

if right event e3 is signalled 

flush JSx's buffer 

In chronicle context, initiators and the matching terminator should be removed after they are 

used. The first occurrence of E2 is used as a terminator, and it cannot be used as the next 

initiator. Thus, the P repeats only once in a half-open interval. 

PROCEDURE p_chronicle(JBi, parameterJist) /* Chronicle */ 

if left event el is signalled 

get the terminator ID of el 

if Recent context is not set 

create a time queue item with the ID and the time string of E2 

append el in E\8 list. 

if middle event e2 is signalled 

get the ID of e2 

if 2?i's list is not empty and the terminator ID of the head of the 

list and that of e2 are same 

pass <E\s head, e2> to the parent with a new t.occ 

if right event e3 is signaled 
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flush Si's buffer 

Since the initiators of continuous and cumulative contexts should be removed after they are 

matched with terminators, these two contexts are also repeated only once. And the instances 

of Ei have to be matched only with the instances of E\ which caused the occurrence of E2. 

For'these two reasons, the continuous and cumulative contexts of a P event are detected like 

the chronicle context. That is, an instance of Ei is matched with an instance of E2 to detect 

a P event only once in time order. 

PROCEDURE p_continuous(.Ei, parameterJist) /* Continuous */ 

if left event el is signaled 

get the terminator ID of el 

if Recent or Chronicle context is not set 

create a time queue item with the ID and the time string of E2 

append el in E\$ list. 

if middle event e2 is signaled 

get the ID of e2 

if Si's list is not empty and the terminator ID of the head of the 

list and that of e2 are same 

pass <.Ei's head, e2> to the parent with a new t.occ 

if right event e3 is signalled 

flush Ei's buffer 

PROCEDURE p_cumulative(Ei, parameterJist) /* Cumulative */ 

if left event el is signalled 

get the terminator ID of el 

if Recent, Chronicle, or Cumulative context is not set 

create a time queue item with the ID and the time string of E2 

append el in E\s list. 

if middle event e2 is signalled 

get the ID of e2 
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if Ei's list is not empty and the terminator ID of the head of the 

list and that of e2 are same 

pass <Ei's head, e2> to the parent with a new t.occ 

if right event e3 is signaled 

flush Ei's buffer 

Figure  12 illustrates the detection of P event, P(Ei, Ei-, E%) in various contexts. 

5. P*: P* is accumulative variant of P. P* occurs only once when E3 occurs and accumulates 

the time of occurrences of the periodic event whenever Ei occurs. Unlike P, an instance of 

Ei cannot be either an initiator or a terminator. Only an E\ occurrence can be an initiator 

and an E3 occurrence can be a terminator. In the implementation, however, an occurrence of 

Ei requests the temporal event handler to create the next time queue item without defecting 

this operator's semantics. 

P*(E1: E2, E3): 

PROCEDURE pstar_recent(Ej, parameter Jist) /* Recent */ 

if left event el is signaled 

get the terminator ID of el 

create a time queue item with the ID and the time string of Ei 

replace el in JE?i's list. 

if middle event e2 is signaled 

get the ID of e2 

if El's list is not empty and the ID of el and that of e2 are same 

create a time queue item with the ID and the time string of Ei 

append e2 to JEVS list 

if right event e3 is signaled 

if Ei's list is not empty 

if E2's list is not empty 

pass <el, all e2s in Ej's list, e3> to the parent with a new 

t_occ 

else 

pass <el, e3> to the parent with a new t_occ 
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flush E\ and £2's buffers 

Except in recent context, an occurrence of E\ stays valid until its matching E3 occurs. Until 

the matching E3 occurs, a time queue item is created with the instance number of the E\ 

occurrence every time interval expressed by E2. That is, it is like having a separate E2' list 

for "each occurrence of E\. 

PROCEDURE pstar .chronicle^, parameter-list) /* Chronicle */ 

if left event el is signaled 

get the terminator ID of el 

if Recent context is not set 

create a time queue item with the ID and the time string of E2 

append el in E\s list. 

if middle event e2 is signaled 

get the ID of e2 

if E\  list is not empty 

if the ID is found in E\S list and if Recent context is not set 

create a time queue item with the ID and the time string 

of £2 

append e2 to E2s list 

if right event e3 is signaled 

if El's list is not empty 

if E2S list is not empty " 

pass <.Z?i's bead, all e2s in E2s list whose IDs are the same 

with the event ID of the E\s head, e3> to the parent 

with a new t_occ 

delete the head of E\s list 

delete all e2s in E^s list whose t_occ is less than that 

of £?i's new head 

if JEI'S list is empty 

flush £2's buffer 

else 

pass <E\s head,e3> to the parent with a new t_occ 

delete head of E\s buffer 

35 



PROCEDURE pstar_continuous(JBj, parameterJist) /* Continuous */ 

if left event el is signaled 

get the terminator JD of el 

if Recent or Chronicle contexts are not set 

create a time queue item with the ID and the time string of Ei 

append el in E\s list. 

if middle event e2 is signaled 

if JBI'S list is not empty 

get the terminator ID of e2 

if Recent or Chronicle context is not set 

create a time queue item with the ID and the time string of E2 

append e2 to #2's list 

if right event e3 is signaled 

if Si's list is not empty 

if E^s list is not empty 

for each el in E\S list 

pass <el, all e2's whose t_occ are greater than that 

of els, e3> 

to the parent with a new t_occ 

flush E\s and üVs buffers, 

else 

for each el in E\S list 

pass <el, e3> to the parent with a new t_occ 

flush JEVS buffer 

PROCEDURE pstar_cumulative(£?j, parameterJist) /* Cumulative */ 

if left event el is signaled 

get the terminator ID of el 

if Recent, Chronicle, or Continuous context is not set 

create a time queue item with the ID and the time string of E2 
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append el to E\ 's list 

if middle event e2 is signaled 

if E\s list is not empty 

get the terminator ID of e2 

if Recent, Chronicle, or Continuous contexts are not set 

create a time queue item with the ID and the time string 

of £2 

append e2 to E^s list 

if right event e3 is signaled 

if Ei's list is not empty 

for each el in E\s list 

link <el and all e2s whose IDs are the same as that 

of els > 

pass the <el and e2 list, e3> with a new t_occ 

flush E\s and £Vs buffers 

Figure  13 illustrates the detection of P* event, P*{E\, Ei, Ez) in various contexts. 
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6    SNOOP Preprocessor 

In this section, we present the details of the use of the Snoop preprocessor and the output it pro- 
duces. We also discuss how the preprocessor works with Open OODB preprocessor. This section 
provides the syntactical aspects of the Section 3. The Snoop preprocessor processes all application 
source programs given by the user before executing the ppCC (OpenOODB pre-proessor). The 
preprocessing extracts appropriate events and rules from the user-defined event and rule specifica- 
tions expressed in Snoop and inserts them into the application program. And the postpreprocessing 
wraps all of the methods in the user-defined reactive classes with notifications. 

6.1 Snoop BNF 

The grammar for Snoop is shown below: 

E   ::= begin-of El | end-of El | El 
El ::= El AND6 E2 | El OR E2 | E2 
E2 ::= E2 SEQ E3 | E3 
E3 ::= Any(Value, E4) | E5 | Any(Value, E5) 
E4 ::= E4, E5 | E5 
E5 ::= A(E1,E1,E1) 

A*{E1,E1,E1) 
P(El,[time string],El) 
P(El,[time string]:parameter,El) 
P*(E1, [timestring] : parameter, El) 
[absolutetimestring] 
(El) + [relativetimestring] 
Explicit Events 
Database Events 
L:(E1) /* Where L is a label */ 
(El) 

Value ::=    integer | oo 

Event expressions generated by the BNF [Mis91] are left associative. Labels are used for expressing 
interest in a sub-expression and their presence determines the parameter attributes computed 
for that expression. A label acts as an identification for the subexpression in a complex event 
expression. A label is also interpreted as the event type for the sub-expression with which it is 
associated; for each such event a 'time of occurrence' attribute is generated as a parameter. Without 
label association it would not be possible to distinguish the occurrence of an event corresponding 
to a sub-expression and to access, if need be, the time of its occurrence from the parameter object. 

6.2 Event and Rule Specification 

The syntax of the Snoop event/rule specification is: 

eventspec ::= event event-modifier method-signature 
| event event_name = event.exp 

event-modifier ::= event_name 

operators, OR, AND, SEQ will be given as symbols, which are |," , and >> by a user 
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I begin ( event_name ) 
| end ( event_name ) 
j begin ( event_name ) && end ( event_name ) 
| end ( event-name ) && begin ( event_name ) 

rulespec ::= rule rule_name ( event_name, 
condition-function, action-function 
[,[parameter-contexi\,[coupling-mode} 
, [priority], [ruleJrigger.mode]] ) 

parameter.context ::= RECENT | CHRONICLE | CONTINUOUS 
| CUMULATIVE 

coupling-mode::= IMMEDIATE| DEFERRED| DETACHED 
priority:— positive integer 
rule-trigger-mode:~ NOW | PREVIOUS 

Items enclosed by square brackets ([ ]) are optional. Both begin-method (by indicating be- 
gin (event.name)) and end-method events (by indicating end (event-name)) are supported. By 
default, the end of a method is taken to be the event. A composite event is expressed with event.exp, 
and a primitive event is specified with event-modifier and method-signature, which is a prototype 
of a method. In Sentinel both class-level and instance -level events are supported. A class-level 
event can be specified either inside of the class definition or in the application program by prefixing 
a class name before method signature as "class.name::methodsignature". An instance-level event 
can be specified only in the application program. The name of the instance and the name of the 
class should be given by the user. The instance name is given by postfixing after the name of the 
event as "event-name:instance.name", and the class name is given as the class-level event specified 
outside of the class definition is. Only integer, float, long integer, character, and character string 
are supported as the types of the parameters of a method. Currently, only functions are used for 
specifying condition/action. In the current host environment (i.e., C++), methods cannot be used 
for condition/action since their invocation is tied to an object which is not known at compile time. 
But these condition and action functions can access stored objects as well as objects in the main 
memory. The parameter option must come first; other can take any place. The parameter context 
of the event which a rule subscribes should be placed right after action-function if it exists. If 
several rules need to be defined on the same event in different parameter contexts, then the rule 
definition has to be duplicated for each context. Coupling modes refer to the execution points. 
Currently, immediate and deferred coupling modes are supported. We use priority classes for spec- 
ifying rule priority. An arbitrary number of priority classes can be defined and totally ordered. 
We allow rule specification at class definition time and as part of an application. We also support 
rule activation and deactivation at run time. Moreover, named events can be reused later. This 
implies that a number of rules may be defined on the same event expression. We provide an option 
rule-trigger-mode for specifying the time from which event occurrences are to be considered for the 
rule. Two options, NOW (start detecting all constituent events starting from this time instant) and 
PREVIOUS (all constituent events are acceptable) are supported as rule triggering modes, with 
NOW being the default. To declare events and rules, the class should be a user-defined reactive 
class. Below, examples of events and a rule specified inside of the class definition are shown: 

class STOCK: public REACTIVE  { 
public: 
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event begin(el) && end(e2) void set_price(float price); 
event end(e3) int selLstock(int qty); 
int get_price(); 
event e4 = el    e3; /* AND composite event */ 
rule Rl(e4, condl, actionl, CUMULATIVE, DEFERRED, 10, NOW); /* class-level rule */ 

}; 

The following examples show ihe events and rules specified outside of the class definition, where 
is in an application program : 

STOCK *IBM, *DEC, *INTEL; 

event begin(e5:IBM) && end(e6:DEC) void STOCK::set_price(float price); 
/* Instance(IBM and DEC)-level event */ 

event end(e7) int STOCK::get_price(); /* Class-level event */ 
event e8 = STOCK_e4 » e7; /*' SEQ composite event */ 
rule Rl(STOCK_e3, cond2, action2, DEFERRED, 20, NOW); /* class-level rule */ 
rule Rl(e5, cond3, action3, CUMULATIVE, IMMEDIATE, 15); /* instance-level rule */ 

To access the events specified inside of the class definition from the outside, we have to prefixing the 
class name to the event name with an underline as "classname-eventname". In the above examples, 
STOCK_e3 and STOCK_e4 show the prefixing. 

6.3    Preprocessing: Event and Rule Declarations 

The preprocessing declares appropriate events and rules with user-defined event and rule speci- 
fications expressed in Snoop and inserts them in the application program. Here, we show how 
these events and rules preprocessing takes place and how the non-Snoop codes are processed with 
examples. 

6.3.1    Primitive event 

• Class-level event specified in a reactive class definition 
class STOCK: public REACTIVE 

{ 

event begin(el) int buy_stock(int number); 

} 
The event specification in the above example is transformed as, 
PRIMITIVE *STOCK_el = new PRIMmVE("STOCK_el", "STOCK", 

"begin", "int buy-stock(int number)"); 

Class-level event specified not in a reactive class definition : 
event begin(e2) && end(e3) void STOCK::set_price(float price); 

The above example is transformed into two primitive events as, 
PRIMITIVE *e2 = new PRIMITIVE("e2", "STOCK", "begin", 
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• 

"void set_price(float price)"); 
PRIMITIVE *e3 = new PRIMITIVE("e3", "STOCK", "end", 

"void set_price(float price)"); 

Instance-level event : 
An instance-level event can be specified only outside of a reactive class definition. 

STOCK *IBM, *DEC; 

event end(e4:IBM) int STOCK::selLstock(mt number); 

The instance name should be specified as well as the class name. 

It is transformed as, 
PRIMITIVE *e4 = new PRIMITIVE( "e4", IBM, "end", 

"int selLstock(int number)"); 

6.3.2    Composite event 

A composite event is specified with a name and an event expression. The event expression specifies 
its constituent primitive or composite events using the Snoop operators. When an event expression 
is processed, calls for creating the event graph for that event expression which itself composes an 
event tree are added to the application code. The examples are followed. 
event e8 = A*( !(el, e2, e3), e2, A(e4, e5, (e6* e7))); 

event e9 = (e3 | el ) "   e2 
The two examples are transformed each as, 
A_star *e8 = new A^tar( new NOT(el,e2,e3), e2, new A(e4, e5, new AND(e6,e7))); 
AND *STOCK.e9 = new AND( new OR(STOCK.e3,STOCK_el), STOCK.e2); 
Note that in the second example, the event names are prefixed with the class name. This means 
that the example is specified inside of the class definition. 

6.3.3    Temporal event 

Both absolute and temporal events are mostly used as constituent events of composite events. They 
have time expressions instead of method signatures and event modifiers. The time expression does 
not have anything to do with a reactive class. Thus ''TEMPORAL" replaces the class name, and 
a null string replaces the event modifier. 

• Relative temporal event: 
When a relative time expression is used in one of P, P*, and PLUS operators, it is declared 
as a relative temporal event. But the temporal event does not have any name, thus, a name 
should be given.  
event elO = P(el, [1 hr], e2); 

If the above event is specified in the reactive class named STOCK, it is transformed as, 
PRIMITIVE *STOCK_rell = new PRIMITIVE("STOCKjrell", "TEMPORAL", 

"", "1 hr"); 
P *STOCK_elO = new P(STOCK_el, STOCK_rell, STOCK.e2); 
The name "rell" is given by the preprocessor. The number (here, it is 1) starts from 1 and 
increases by 1 in every reactive class.   If the above example is specified in an application 
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program, then it is converted as, 
PRIMITIVE *rell = new PRIMITIVE("rell", "TEMPORAL", "", 

"1 hr"); 
P *elO = new P(el, roll, e2); 
The number in the name "rell" starts from 1 at the beginning of the application program 
and increases by 1. 

Absolute temporal event :  
event h-1 = [14:25:00/04/23/96]; 

If the above absolute temporal event is specified in a reactive class definition, where the class 
name is "STOCK", it is converted as, 
PRIMITIV^ *STOCK.ell = new PRIMmVE("STOCK_e5", "TEMPORAL", 

"", "14:25:00/04/23/96"); 
If it is specified outside of the class definition, it is transformed as, 
PRIMITIVE *ell = new PRIMITIVE("e5", "TEMPORAL", "", 

"14:25:00/04/23/96"); 

event el2 = P([00:00:00/01/01/96], [7 days], [00:00:00/12/31/96]); 
In the above example, two absolute temporal events are specified without their names. The 
Snoop preprocessor give them names. If an absolute temporal event is specified outside of a 
class definition, an integer number is given with "abs" string as "absl" for the event. If it 
is specified in a reactive class definition, the class name is prefixed as "STOCK_absl". The 
integer starts from 1 and increases by 1 in every reactive class definition. The above example 
is transformed as, 
PRIMmVE *absl = new PRIMITIVE("absl", "TEMPORAL", 

"", "00:00:00/01/01/96"); 
PRIMmVE *rell = new PRIMITIVE ("rell", "TEMPORAL", 

"", "7 days"); 
PRIMITIVE *abs2 = new PRIMITIVE("abs2", "TEMPORAL", 

"", "00:00:00/12/31/96"); 
P *el2 = new P(absl, rell, abs2); 
or 
PRIMmVE *STOCK^ibsl = new PRIMITIVE("STOCK_absl", "TEMPORAL", 

"", "00:00:00/01/01/96"); 
PRIMITIVE *STOCK_rell = new PRIMITIVE("STOCK_reH", "TEMPORAL", 

"","7 days"); 
PRIMITIVE *STOCK.abs2 = new PRIMmVE("STOCK.abs2", "TEMPORAL", 

"", "00:00:00/12/31/96"); 
P *STOCK_el2 = new P(STOCKlabsl, STOCK_rell, STOCK_abs2); 

6.3.4    Rule 

There should be an event, a condition, and an action to specify a rule. As you can see in the rule 
specification, a rule can have at most four options for detecting the event which it subscribes or for 
triggering the rule in a certain mode. Except the first option which is parameter-context, they can 
be specified in any order.  
\rule rl[el, check.price, set_price, RECENT, IMMEDIATE, NOW, 10]; 
The above rule specification is converted as the following if it is a class-level rule whose class is 
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STOCK: 
RULE *rl = new RULE("rl", STOCK_el, check_price, set_price, RECENT); 
rl->set_mode(IMMEDIATE); 
rl->set_parameter(NOW); 
rl->set_priority(10); 

6.3.5    Non-Snoop codes 

The non_Snoop C++ codes are passed through the Snoop preprocessing without any modifications. 
The preprocessor also inserts Sentinel-related codes in the application program to make it easy for 
the user to use the Sentinel local event detector without worrying about details. The example 
application program and its after-Snoop-preprocessed C++ codes can be found in section 6.7. 

6.4 Files generated by the Preprocessor 

The preprocessor produces several files for other Sentinel server applications such as the rule ex- 
ecution/visualization tool [Zho95] and rule editor.7. For the visualization, events and rules are 
reported with their descriptions and their class names For rule editor, all of the method signatures 
of reactive classes are enumerated in a file. 

6.5 Postprocessing and Integrating into Open OODB preprocessor 

Event methods that can generate primitive events should be wrapped with notifications. The 
Open OODB preprocessor also wraps class methods for its sentry mechanism. The Open OODB 
preprocessor renames an original method by postfixing it with a string 'LOOdbFn", creates a 
wrapper method which has the original method name, and inserts calls into the wrapper method. 
The function named xwrapper.func.code generates OODB code for the wrapped methods. We 
modified it to insert notifications if the method is one of a reactive class. The rule editor allows the 
user to create rules in run time. For the event methods which will be created and subscribed by 
these rules, the notifications are inserted to all of the methods of a reactive class with a condition. 
The condition checks to see if there are any rules subscribing the method at that time. If there are, 
the notifications go to the local event detector before and after the invocation of the original user 
method. Before any notification of the method, the parameters of the method are collected, linked 
in a list and sent with the notifications to the event detector. An example of a wrapper method 
after the Open OODB and Snoop postprocessing can be found in section 6.7. 

6.6 Running Snoop Preprocessor 

The Open OODB toolkit drivers calls the C++ preprocessor, Open OODB preprocessor and then 
C++ compiler. By modifying the driver to call the Snoop preprocessor first, using the Sentinel 
local event detector becomes easy for the user. The Snoop preprocessing can be disabled by the 
s option; in that case, the user only calls the Open OODB preprocessor. The option is given like 
those of the Open OODB preprocessor or C++ compiler. 

6.7 Example of Snoop Preprocessing 

Original Program: 
7It is under development. 
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class STOCK : public REACTIVE 

{ 
private: 

public: 

event end(el) int sell_stock(int qty); 
event begin(e2) && end(e3) void set_price(float price); 
int get_price(); 
event e4 = el " e2; /* AND operator */ 
/* class-level rules */ 
rule Rl[e4, ftondl, actionl, CUMULATIVE, DEFERRED]; 

}; 
int STOCK: :sell_stock(int qty) {  } 
void STOCK::set_price(float price) {  } 
int STOCK::get_price() {   } 
/* Main program */ 
STOCK IBM, DEC, Microsoft; 
main() 

{ 

/* Creating instance-level primitive event */ 
event begin(instance_set_price:IBM) void STOCK::set_price(float price); 
/* SEQUENCE operator */ 
event seq_event = STOCK_e4 >> instance_set_price; 
/* Creating class-level primitive event */ 
event begin(sell-stock) void STOCK::selLstock(int qty); 
/* Creating class-level P event */ 
event p.event = P([00:00:00/01/01/96], [7 days], [00:00:00/12/31/96]); 
/* Creating a rule which contains both class-level 
and instance-level events */ 
rule R2[seq_event, cond2, action2,20, PREVIOUS]; 
/* Creating a class-level rule */ 
rule R3[p_event, cond3, action3, RECENT]; 

OpenOOBD->beginTransaction(); 
IBM.set_price(115.00); 
DEC.set_price(100.00); 
Microsoft.sell.stock(200); 
DEC.get_price(); 
IBM.set_price(75.95); 

OpenOODB->commitTransaction(); 

Snoop Preprocessed Program: 

class STOCK : public REACTIVE 

{ 
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private: 

public: 

int sell-Stock(int qty); 
void set_price(float price); 
int get_price(); 

}; 
/* Main program */ 
STOCK IBM, DEC, Microsoft; 
LOCAL_EVENT J)ETECTOR*Event_detector; 
void init_func(); \ 
main() 

{ 

/* Creating the local event detector */ 
Event_detector = new LOCAL-EVENT_DETECTOR(); 
init_func(); 
/* Creating primitive events */ 
PRIMITIVE *STOCK_el = new PRIMITIVE("STOCK_el", "STOCK" 

"end", "int sell_stock(int qty)"); 
PRIMITIVE *STOCK.e2 = new PRIMITIVE("STOCK.e2" "STOCK", 

"begin", "void set_price(float price)"); 
PRIMITIVE *STOCK_e3 = new PRIMITIVE("STOCK_e3", "STOCK", 

"end", "void set_price(float price)"); 
/*Composite event AND */ 
AND *STOCK_e4 = new AND(STOCK.el, STOCK_e2); 
/* Creating Rule Rl */ 
RULE *R1 = new RULE("R1", STOCK_e4, condl, actionl, CUMULATIVE); 
Rl->set_mode(DEFERRED); 
/* Creating instance-level primitive event */ 
PRIMITD/E *instance_set_price = new PRIMITIVE("instance_set_price", 

IBM, "begin", "void set price(float price)"); 
/* Composite event SEQUENCE */ 
SEQ *seq_event = new SEQ(STOCK_e4, instance_set_price); 
/* Composite event P */ 
PRIMITIVE *absl = new PRIMITIVE("absl", "TEMPORAL", 

"", "00:00:00/01/01/96"); 
PRIMITIVE *rell = new PRIMITIVE("rell", "TEMPORAL", 

"", "7 days"); 
PRIMITIVE *abs2 = new PRIMITIVE("abs2", "TEMPORAL", 

"", "00:00:00/12/31/96"); 
P *p_event = new PSTAR(absl, rell, abs2); 
/* Creating Rule R2 */ 
RULE *R2 = new RULE("R2", seq.event, cond2, action2); 
R2->set_priority(20); 
R2->set_triggerjnode(PREVIOUS); 
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/* Creating Rule R2 */ 
RULE *R3 = new RULE("R3", p.event, cond3, action3, RECENT); 
Notify (NULL, "OODB", "beginT", "begin", system Jist); 
OpenO ODB- > beginTransact ion (); 
Notify(NULL, "OODB", "beginT", "end", system Jist); 

IBM.set_price(115.00); 
..DEC.set-price(lOO.OO); 

Miprosoft.sell_stock(200); 
DEC.get_price(); 
IBM.set_price(75.95); 

Notify (NULL, "OODB", "commitT", "begin", system Jist); 
OpenOODB^commit (); 
Notify (NULL, "OODB", "commitT", "end", system Jist); 

Open OODB Preprocessed Program: 

class STOCK : public virtual .Wrapper, public REACTIVE 

{ 
private: 

public: 

int sell-stock_OOdbFn(int qty); 
int sell-stock(int _looAgrO); 
void set_price_OOdbFn(float price); 
void set_price(float __looAgrO); 
int get_price_OOdbFn(); 
int get_price(); 

}; 
int STOCK::selLstockJDOdbFn(int qty) 

{ 
/* original sell-stock method */ 

} 
int STOCK::selLstock(int _looArgO) 

{ 
.... Open OODB code ... 
/* Parameters are collected in a linked list */ 
PARAJJST *selljstockJist = new PARAJJST(); 
selLstockJist->insert("qty", INT, „looArgO); 
if is J>egin_of_this_subscribed_ 

/* Notify begin of method */ 
Notify(this, "STOCK", "int sell_stock(int qty)", 

"begin" ,sell_stock Jist); 
/* The original sell stock method is invoked here */ 
int ret-value = sell-stock_OOddbFn(_looArgO); 
/* Only if this event is subscribed */ 
if is_end_of_thisjsubscribed 
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/* Notify end of method */ 
Notify(this, "STOCK", "int sell_stock(int qty)", 

"end" ,sell_stock_list); 
return(ret.value); 

} 
void STOCK::set_price_OOdbFn(float price) 

{ 
/* original set_price method-*/ 

} 
void STOCK::set_price(fioat „looArgO) 

{ 
.... Open OODB code ... 

/* Parameters are collected in a linked list */ 
PARA.LIST *set_price_list = new PARA_LIST(); 
set.priceJist->insert("price", FLOAT,__looArgO); 
if is-begin_of_this-Subscribed 

/* Notify begin of method */ 
Notify (this, "STOCK", "void set_price(float price)", 

"begin" ,set_price Jist); 
/* The original set price method is invoked here */ 
set_price_OOdbFn(_looArgO); 
if is_end_of_this_subscribed 

/* Notify end of method */ 
Notify(this, "STOCK", "void set.price(float price)", 

"end", set.price Jist); 

} 
int STOCK::get_price_OOdbFn(char *nl) 

{ 
/* original get_price method */ 

} 
int STOCK::get_price(char _looArgO) 
{ 

.... Open OODB code ... 
/* Parameters are collected in a linked list */ 
PARA-LIST *get_priceJist = new PARA_LIST(); 
get_priceJist->insert("nl", char, —looArgO); 
if is_begin_of_thisjsubscribed 

/* Notify begin of method */ 
Notify(this, "STOCK", "void get_price(char *nl)", 

"begin" ,get_price Jist); 
/* The original set price method is invoked here */ 
int ret.value = get_price_OOdbFn(_looArgO); 
if is_end_of_this_subscribed 

/* Notify end of method */ 
Notify(this, "STOCK", "void get_price(char *nl)", 

"end", get.priceJist); 
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return(ret.value); ]] } 

This example illustrates the use of class-level and instance-level events and rules and also shows 
the wrapping of the methods with a collection of parameters, which are done by the Open OODB 
preprocessor. A class-level composite event e4 is defined which is an AND of el and e2. A class- 
level rule Rl is defined on event e4. Instance-level primitive event setJBM.price is defined for 
STOCK object IBM. A composite sequence event is defined which is a combination of an instance- 
level and class-level event and finally rule R2 is defined on the sequence event (seq.event). A 
periodic event, prevent is defined with absolute time interval. R3 subscribes p_event. Notice 
that after preprocessing the user-defined methods 'sell_stock', 'set_price', and 'get.price' are re- 
named as 'sell_stock_OOdbFn', 'set.price.OOdbFn' and 'get.price_OOdbFn', and wrapper methods 
'selljstock','set_price' and 'get.price' are introduced. Currently 'get.price' is not subscribed by any 
of event of rule, but the reason why it is also wrapped is that we allow the user to create the rules 
subscribing the event later through the rule editor. As seen from the example, appropriate code is 
introduced in the wrapper methods to notify the events. Also the processing of the application - 
level rule and event specification procues appropriate code for generation of event and rule objects 
along with the relevant parameters. 

Regarding the detection of events Rule R2 will be fired first because it is in immediate mode 
with parameters {{DEC, price, FLOAT, 100.00}, {Microsoft, qty, INT, 200}, {IBM, price, FLOAT, 
75.95}}. Rule Rl will be fired later since it is in deferred mode with parameters {{IBM, price, 
FLOAT, 115.00}, {DEC, price, FLOAT, 100.00}, {Microsoft, qty, INT, 200}}. Both DEC and 
IBM prices will be parameters to Rule Rl since its context is specified to be CUMULATIVE. Rule 
R3 is fired every seven days between "00:00:00/01/01/96" and "00:00:00/12/31/96". 
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7    Conclusions 

This report extends earlier work on local event detection in Sentinel. The local event detector 
was extended to support temporal events according to the semantics. We integrated the local event 
detector with the stand-alone temporal event handler first to support other Snoop operators. For 
the integration, the implementation of the local event detector and the temporal event handler 
were modified. In the local event detector, the implementation of primitive events was modified to 
generate temporal items which are handled by the temporal event handler since a temporal event 
is a primitive event. The Snoop operators, A and A*, are reimplemented with new parameter 
computation algorithms. P and P* are implemented to have time capabilities with their new event 
detection algorithms. PLUS is implemented for supporting relative temporal events. In addition, 
the stand-alone temporal event handler has been changed to integrate with the local event detector 
to meet the new complicate situations which were not found when it was implemented originally. 

The earlier work assumed that Snoop event/rule specifications were transformed to internal 
event/rule declarations, and the specified event methods were wrapped with notifications to the 
local event detector. We implemented the Snoop preprocessor so that the event/rule specifications 
are transformed to the internal forms. 

We removed the Snoop postpreprocessor and modified the Open OÖDB preprocessor to wrap 
the methods of a reactive class. Every method of a reactive class is wrapped by notifications with 
condition statements which check the method is bound to an event at run time. This extended 
wrapping allows extra rule editing at run time. The preprocessor produces a few side files for other 
Sentinel applications such as global rule editor and rule debugger. 

This report also explained the local event detector and the temporal event handler. Construct- 
ing of an event graph, detecting of both primitive and composite events, and handling of temporal 
events were described. 
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