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Marine Population Dynamics: A theoretical introduction 

Donald B. Olson 

The purpose of this lecture is to lay out the basic problems in population dynamics in a concise 

manner and compare them with the equations for the fluid dynamics that they must be coupled 

with to understand marine ecosystems. To begin let us define a population of organisms that have 

characteristics allowing them to be pooled into a single population based on genetics, i.e. species or 

lineages within a species, or functional considerations such as all herbivorous Zooplankton in a region. 

This population can then be quantified as the ith population in some spatial/temporal domain within 

a larger scale ecosystem in terms of its population density, n^. This measure of population maybe 

expressed in the number of individuals per volume or in some "biogeochemical currency" such as 

/zmols - nitrogen per unit mass in the environment as a whole. The latter is common in a wide 

variety of models that one can express in terms of nitrogen pools, for example the inorganic nitrogen, 

phytoplankton, Zooplankton or NPZ model (Olson and Hood , 1994; Steele and Henderson, 1991). The 

dynamics of such a population are expressed in terms of all of the other relevant ecosystem components 

by an equation of the form 

drii/dt =   Fi(fj.ij,nj),    i — 1,2, 3, ...m. 

Here m; represents the typically spatial variable parameters that govern a population's reactions with 

itself and the other m components of the ecosystem. Fi is an operator that describes the interaction 

of the parameters and the m populations. Prior to exploring the nature of F{ it is worthwhile to 

introduce an alternate form, 

drii/dt -  rti Fi{fiij,rij) 

where the population density is explicitly expected to appear at least linearly in all of the terms on the 

right. This equation is known as the Kolmogorov equation after the illustrious Russian contributor to 

both fluid and population dynamics. 

The details of a population's behavior described by these equations depends on the specification 

of Fi. In particular in the case that Fi / Fi(t) the populations are said to consist of a autonomous 

system involving an endogenous set of coupled populations, i.e. the system is a closed dynamics 

system.   Under this situation one might consider the population as a whole and ask for equilibria 



corresponding to the solutions of Fi{y.,rij) = 0. These equilibrium states or fixed points, Ä;, can be 

further analyzed through methods similar to those used in fluid dynamics to consider the stability of 

populations. The fluid dynamics analog here are the Euler equations for a flow 

du/dt = Vp. 
P 

Systems with temporal dependence in the operator form non-autonomous and therefore non-Hamiltonian 

systems governed by equations of the form 

dni dt  =   Fidi^rij.v^.t)) 

where i>(7,*) represents a forcing or dissipative term. Such systems are referred to as exogenous 

systems. The fluid analog is the Navier-Stokes equation 

1 •> 
du/dt  =   —Vp +  vV2u. 

P 

The details of population dynamics and the manner in which it couples with the oceanic circulation 

depends on the terms implicit in the total derivatives (d/dt) and the specification of F{. First of all it 

is assumed that the derivative is a material one following the flow. Therefore the derivative on the left 

includes advective effects that can be taken to include both the mean flow, U, and turbulent diffusion. 

Writing the derivative out gives 

dni/dt  =   U ■ Vn;  +  Vu'n; 

The last term is typically included as a diffusion term whose correct specification will be a topic 

in many of the following lectures. On the right hand side in the F; term the self-motive forces of 

populations can be written in similar terms. In this form one can take the motion on the part of the 

biology and add it to the material derivatives. That is, the total population motion will be governed by 

the vector addition of the flow and their swimming, utotai = u + Uswimming- Similarly the diffusion 

of a population will involve both behavior and the flow. The biological diffusion will in general depend 

on the other populations in Fi(rij) in the sense that predator-prey or density dependent interactions 

within a population such as competition for resources or reproduction will add to diffusion. Since these 

interactions are at a minimum spatially dependent "Fickian" diffusion terms will typically appear in 

the form V • (üf;Vn;) at least. The problem of specification of the diffusivity, if;, in terms of animal 

behavior will be treated in later lectures by Danny Griibaum. 



Beyond the effects imparted on populations by their own ability to move the remaining interactions 

between organisms and their environment involves the interplay between reproduction, i.e. population 

growth, and mortality or population loss. These can be written explicitly in an expansion of our 

operator 

where the population growth operator, Gi, is typically a nonlinear functional that includes both linear 

growth terms and what are known as density dependent terms that can be written in the form ßijUinj. 

The ßij is a competition coefficient governing the interactions between populations. Population growth 

in the fisheries literature is often treated as a recruitment term that accounts for reproduction in a 

manner that often includes the factors following actual birth that limit the arrival of new members 

into the population. This is an example where the population is defined by a species at a given age 

when individuals are recruited to the population of concern to the fishery. Often fisheries models are 

written in terms of power curves to reflect the population density influences on population growth. 

Mortality in populations can either assume a proportional rate of death or may have some form 

of predator-prey relating consumption of one population by another in the ecosystem. Let us first 

examine the simplest form of both growth and mortality, 

dn/dt  = gn —  dn =  gjn 

where gi = g — d is the net population growth. The difficulty with this equation is evident from its 

fixed point, n = 0, and its solution, n = n0e
9lt. The latter shows that the equilibrium point is 

stable with no population for gi < 0 and becomes infinite for gi > 0. This is the Malthusian dilemma 

(Malthus, 1798) that was explored by a number of scientists including Graunt, Linnaeus, Franklin, 

and Euler in the 17th and 18th century (see Caswell, 1989). The conclusion is that this simple linear 

equation can not realistically depict a population. 

Instead to achieve realistic populations the governing equations must contain higher order terms. 

This leads to the formulation of what is known as logistic growth (Verhulst, 1836) 

dn/dt  =  rn(l  —  n/K) 

where r is the maximum growth and K the carrying capacity of the environment. This equation has 

fixed points n  = ÜT, 0 and the time dependent solution 



n0KeTt 

n  = K  + n0(e
rt-iy 

Therefore the solution for any finite initial n asymptotes to K i.e. the n   =   0 solution is unstable. 

Several cases with simple logistic dynamics are shown in Fig. 1. 

The logistic equation as written above is a competition model and as such does not really account 

for mortality. A more complete parameterization, then, might take the form 

dn2 

dn/dt =  rn(l  - n/K) — 
(k2  + n2) 

that has been used to simulate spruce bud worm population dynamics by Ludwig et al. (1978). The 

death term here is parameterized as a sigmoid curve (Fig. 2). The student may consider the following 

questions concerning this system. 

• How many equilibrium solutions exist for this equation? 

• What is the non-dimensional form and structure of the solution? 

For a full treatment of these questions see chapter one of Murray (1990). There are a number of 

nonlinear forms that have been suggested in the literature as closures for population models. These are 

summarized in Fig. 2. Mathematically each parameterization produces its own twist on the dynamics 

of a population. The first, Lolkta-Volterra is in essence a rediscovery of the 18th century debate on 

population closures mentioned above. The Michaelis-Menton form derives from studies of bacteria 

cultures in the middle of this century. The Ivlev formulation is a favorite in fisheries biology, but in 

the author's experience gives rather strange fixed states. The sigmoid curve of the spruce bud worm 

problem is perhaps the best formulation for both predator-prey and uptake problems. Unfortunately, 

it is also a problem in terms of solving for fixed points since it generally leads to polynomials higher 

than five, even in very simple models such as the NPZ. Asymptotic parameterizations that include 

the behavior of the sigmoid function as a dn2 term at low population levels (k2 >> n2) have been 

strongly suggested by Steele and Henderson (1991). 

It is worth discussing at this point the degree to which we can discern the appropriate choices based 

on observations. This is the single largest challenge in biological oceanography today. While huge 

steps are being made to better quantify various biomass quantities and to determine rates, much of the 

present work is incapable of deciding between formulations. In particular, there is a major debate on 

whether or not there is any sort of density dependent control on marine populations. The discussion 



n(t)A 

Fig. 1. Solutions to the logistic equation for population density, n(t), with initial conditions above 

the carrying capacity, if, of the environment, just below K and below K/2. Note that all of the 

cases asymptote to K in time, t. 



nB(n) 

nB(n) 

nB(n) 

nB(n) 

Fig. 2. Population dynamic parameterizations commonly used in the literature. From top to bottom 

these are the linear formulation with and without a carrying capacity term (dashed). The 

second is the exponential function introduced by Ivlev. The third is the sigmoid or Hollings type 

III curve. The fourth is the Michaelis-Menton formulation that can be derived from chemical 

dynamics and is often used in relationship to nutrient uptake in phytoplankton. This is also 

referred to as a Hollings type II. 

6 



above points out that there must be some form of density dependent closure on populations. Yet, 

with the current observational capability there is little evidence that it acts in real populations. This 

either suggests that populations are maintained in a range where this sort of behavior does not act, in 

our parlance here they exist in a linear range of the equations, or the observations are inadequate to 

discern the effects of density dependence. This leads us now to a set of linearized population models. 

Linearized Pooled Models 

There are various places one might start to model marine ecosystems. A common choice pursued 

in various coastal programs such as the Coastal Upwelling Ecosystems Analysis (CUEA, Wroblewski, 

1977) and by investigators interested in carbon or nutrient fluxes such as those working on Joint Global 

Ocean Flux Studies (JGOFS) modeling is a system that is written in terms of some "currency" vari- 

able which is conserved within the system. The nitrogen, phytoplankton, Zooplankton (NPZ) model 

discussed by Steele (1974), written in terms of nitrogen content as the biogeochemical "currency", 

is the basic example of this approach. An extended version of this sort of system is the one devel- 

oped by Fasham et al. (1990). Here let us consider a simple linearized version of NPZD or nitrogen, 

phytoplankton, Zooplankton, detritus model. The basic set of equation are: 

N  =  a(l-j)gPZ + (l-S)dZ + eD - -uIPN 

P  =  uIPN  - gPZ  -  sP 

Z  =  a-ygPZ - dZ 

D  =  (l-a)gPZ + SdZ +  sP  -  eD. 

The variables are defined below. The entire system along with an expansion to explain the partition 

of nitrogen during Zooplankton grazing are shown in Fig. 3. 

N  = Nitrogen concentration in /imoles/kg. 

P  = Phytoplankton concentration in nitrogen equivalent (/nnole s /kg). 

Z  = Zooplankton concentration (/xmoles/kg). 

D  = Detritus concentration (/zmoles/kg). 



OH 

«3 

(l-5)dZ 

Fig. 3. Structure of the NPZD model for plankton dynamics. See text for details. 



I = Light intensity. This is a function of depth and in general P. 

u = Phytoplankton growth rate per unit N and I. 

g = Grazing rate. 

d = Death rate for Zooplankton. 

e  = Remineralization rate for detritus. 

s  = Senescence term for phytoplankton. 

a = Assimilation efficiency for Z. Ratio of assimilation to ingestion. 

7  = Metabolic efficiency for Z. Ratio of growth to assimilation. 

6  = Assimilation efficiency for higher trophic levels. 

Here the dot ( ) is meant to denote the time derivative. Since we want to treat populations in 

relation to ocean flows this derivative will in general be replaced by the material derivative (d/dt = 

d/dt + V-W) and a diffusion term will be added to the right-hand side of the equations. In an 

initialization of the model it is necessary to specify the total amount of nitrogen in the system or 

Na N + P +  Z + D. 

The problem can be generalized through the use of indicial notation and expressed in terms of a 

matrix. In this form the equations above can be written as 

Bi  =  UjBj + NikBiBk + fi 

where Bi denotes the ith component and Lij and Nifc are linear and nonlinear operators representing 

the terms on the right above. The system above can expressed in matrix form. 

P 

Z 

N 

b 

-s 0 0 0 

0 -d 0 0 

0 (l-tf)d 0 e 

s 6d 0 — e 

P 

Z 

N 

D 



+ p 

0-5 ul     0 P 

0 a-yg 0       0 Z 

0    0(1-7)5    -ul   0 JV 

0 (1 - a)g 0 0 J [ D 

Note that all of the nonünearity involves the P-pool with either N or Z. There are no nonlinear 

terms in D which might arise if an active bacteria pool was explicitly included. As a general comment, 

however, the detritus pool is isolated in the models such as Fasham et al. (1990) and can easily be 

collapsed into the current form. The largest effect of adding bacteria is to make the e time dependent. 

Finally, while the system is nonlinear it does not include logistic nonlinearities. For example it might 

be necessary to include explicit density dependent interactions between pools. The most common 

means of expressing these involve terms such as 

ÜIP(N - P)I{K0 + N) ;      a19Z(P - Z)/P, 

for the phytoplankton and Zooplankton growth terms respectively where ü and g are the new growth 

coefficients. These are the Michaelis-Menten (M-M below) and Lotka-Voltera (L-V below) forms. Note 

that these terms are not easily expressed in our generalized form above and will involve prognostic 

variables, JV, Z, P in the matrix. 

Equilibrium Solutions 

The NPZD equations can have up to four real, positive equilibrium solutions. The relevant solutions 

(Bi > 0.) can be found by setting all of the time derivatives on the left of the equations equal to zero 

and then solving for the equilibrium conditions, Z?;. The first equilibrium state has 

P  -  d/a-yg 

from the Z equation. Then Z = (uIN - s)/g from the P equation. Using the total nitrogen to 

specify D = N0-P — N-Z and substitution gives 

N   =  (as(l - -j)d/ajg +  (1 - S)ds/-y + e(d/ajg - s/g - N0))/A 

where 

A =  v.Ia(l--y)d/a-yg +  (l-6)dul/g - uld/a-yg -  e(l+ul/g). 

10 



Back substitutions then give D and Z. The second equilibrium occurs as N —> s/ul and therefore 

from the solution above as Z —> 0. In this case D  =  Ps/e and 

P  =   {N0-s/uI)/{l + s/e). 

The final equilibrium of interest occurs as N0 -> s/ul and P = D -> 0. The three solutions are 

shown graphically in Fig. 4 as functions of N0 and ul. These are equivalent to the three states 

identified by Flierl and Davis (1992) for the simpler system without D. Interestingly the addition of 

D adds no equilibrium where the other variables are greater than zero. 

The lack of P dependence on light in the initial equilibrium has bothered various authors [e.g. 

Steel and Henderson, 1992). In fact the dependence on light only enters the P terms in the transition 

between the various equilibria contrary to what intuition suggests. In the area above the Z extinction 

curve in Fig. 4. P is independent of light and grazing controlled. It then becomes a function of light 

in the second region. The comments of Steele and Henderson (1992) concerning this highly linearized 

set of equations are, however, well taken and it is worthwhile to explore these before attempting to 

generalize the pooled approach to multi-species pools. The analysis above is therefore primarily useful 

as an illustration of how a more complete system might be formulated. The equilibrium states in 

models are crucial for understanding the system. 

Multi-species Formulations 

The equations above can be expanded to include any number of species. Here they are expanded 

to include two phytoplankton and two Zooplankton. The equations become 

Pi   =  uJPiN  - siiPiZi  -  slPl 

P2  =  u2IP2N  -  0i2P2£i  - 922P2Z2  -  s2P2 

Z\   —  a-\\9\\P\Z\  +  ai2gi2P2Zi  — ^\Z\-gzZ\Z2 

Z2    =    022522P2^2   +   &z9zZ\Z2    —   d2Z2 

N  =  -U-LIPXN  - u2IP2N + An Pi 2i  +  A12P2Z1  + A22P2Z2 

11 
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0 20 40 60 
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80 100 

Fig. 4. Regime diagram for the fixed states of the NPZD model. The hatched area indicates the region 

in total nutrient and light space (N0 vs ul) where all four variable have finite concentrations. At 

the curve labeled Z =) the Zooplankton become extinct. At the lower curve P goes to extinction 

carrying D with it. Below this curve the nutrient is all in the inorganic pool. 
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+ AZZXZ2 + (l-61)d1Z1  + (l-S2)d2Z2 + eD 

and 

D   -  a11P1Zi  + a12P2Zi  + a22P2Z2 

+ azZiZ2 + SidiZi  + 62d2Z2 + aiPx  + s2P2  - eD 

where Aij = (aeij — atJ)^j, a^- = (1 — aeij)gij and the cz terms denote coefficients for Zooplankton 

feeding on Zooplankton. All of the terms have the same definitions as above. Note that this formulation 

can be used to describe two parallel food chains one envisioned to consist of pico-phytoplankton (Pi) 

and micro-zooplankton (Z\) and the other containing larger phytoplankton (P2) and something like 

copepods (Z2). Here a set of terms allowing grazing of the smaller phytoplankton by the Z2 component 

has been dropped. In its place the chains are linked by allowing grazing of the Z\ by the larger 

Zooplankton. 

As above the equilibrium states, B can be found by setting B>i  =  0. Writing down just the P and 

Z solutions in terms of N gives 

Zi   =  {utIN - si}/gu 

Z2   =  {u2IN - gX2Z-i - s2}/g22 

P2  =   {d2 - azgzZi}/(a22g22) 

A   =   {di + gzZ2 -a12g12P2}/(augu). 

Solution of the N and D equations with constant total nitrogen (N0) in the system yields a quadratic 

equation for N. Note that these equilibria have explicit light dependence in the phytoplankton so- 

lutions. Therefore adding more realistic food-web dynamics leads to more intuitive light dependence 

without the Z2 closure of Steele and Henderson (1992). Finally, this system has four extinction states 

that are all of the form B —» 0 as IN decreases to a constant made up of the parameters in a form 

similar to those in the simple NPZD case.   The extinction horizons are then hyperbolic curves in 
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the N - I space. This is analogous to the simple NPZD system where the extinction horizons are 

hyperbolic in N0 — I. 

There is not time today to go into the influence of non-linear dynamics on food chains. Students 

are encouraged to consider the model of Hastings and Powell (1991) who consider a single food chain 

with density dependent terms and show that it exhibits limit cycles and chaos. 
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Lecture 2: Complexity in Biological Models 

Glenn Flierl, June 21, 1994 

Von Foerster's Equation 

Biological systems are complex in many ways. Ecosystems are comprised of many 

species, with different and changing life strategies. Organisms can interact as predator- 

prey, or symbiotically, or as competitors. Even individuals in a single species behave 

differently as their age and as their internal states (e.g., nutritional) change. Individuals 

and propagules move spatially and, in the ocean especially, are subject to movements from 

physical flows. To illustrate some of the complexities and dynamics found in biological 

systems, we shall consider a single species and discuss the distribution of weights in the 

population and how it changes with time. This is called the Von Foerster-McKendrick 

equation. 

Derivation 

Let n = n(w, x, t, n) be the number of individuals of a certain species per unit weight, 

where w denotes weight, and x and t denote space and time. Then the total number of 

individuals is given by: 

n dw, 
/"Ml 

J Wo 

where WQ and w\ are the minimum and maximum weight of individuals. The number of 

individuals between w and w + dw changes with time from gains and losses as individuals 

increase in weight, moving into or out of the weight class, and by death: 

n(w, t + dt)dw = n(w, t)dw — g(w + dw)n(w + dw, t)dt + g(w)n(w, t)dt — n(w)n(w, t)dt 
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where g (which can be expressed as dw/dt) is the growth rate, and fi is the death rate. In 

the limit as dt and dw go to zero, this equation can be expressed as follows: 

^ = -^gn)-fin (1) 

(NOTE: Equation (1) is analogous to the equation for conservation of a tracer in a flow, 

with g replacing ü, and fj,n acting as a sink. The g is inside the derivative just as tracer per 

unit volume would be in a conservation equation. We usually see terms like U-Q^S because 

we deal with tracer per unit mass while u is the volume flux rather than the mass flux.) 

The boundary condition for equation (1) is the production of individuals in the lowest 

weight class. Assuming constant weight at birth, this production is given by: 

g(wo)n(w0) =  I     b(w',t)n(w',t)dw' (2) 
Jwo 

where b(w',t) is the weight specific birth rate (the reproductive function). 

I) Linear Solution: 

Assuming that g and \x are not functions of n, we can solve equations (1) and (2) as 

follows: Rewriting in terms of gn, we find that: 

and using the method of characteristics, 

dw 
-dJ=9^t) 

g(w(t),t)n(w(t),t) = gQn0exp\-       (/* ~ "37 ) dt> 

[    Jo   \       9cn/w(t'),t> 

where go = <7(to(0),0) and no = n(iu(0),0) are the initial growth rate and population 

distribution, respectively.  Holding the birth rate fixed, we can evaluate the steady state 

solution: 
d(gn) fi 

"AT = —g{gn) 
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or 

gn = gono exp 
'Wo   9 

^dw' 

This solution is illustrated in Fig. 2, for the functions g and fi shown in Fig. 1. As shown 

in Fig. 2, n is a minimum where g is a maximum, and vice versa. This result arises 

because the time an individual spends in a given weight class is inversely proportional to 

the growth rate of that weight class. 

II) "Turbulent" Solution: 

Allowing g and fj, to fluctuate randomly around given means shifts the mean distribu- 

tion of n slightly (Fig. 3). To explain this effect, we can decompose n, g and fj, into mean 

(ensemble average) and fluctuating quantities: 

n=n+ri, g = g + g', n = ß + fii, 

and substitute these expressions into (1) to derive equations governing the time evolution 

of n: 
dn d 

gn — [in — -r—(g'n') — filnl (4) 
dt dw dw 

and that of n': 

— = -— (gri + g'n + g'ri - g'ri) - Jin' - fi'n - /x'n' + \x'ri (5) 

These equations are analogous to those governing turbulent advection of a passive tracer. 

As in the fluid dynamics analysis, there is a closure problem for equations (4) and (5). To 

get some idea of the effects of the fluctuations, we assume that g and fi are constants and 

that g' and fi' are functions of time only. We then linearize equation (5): 

dn'     _dn' , .dfx        , 

We can find each of the particular solutions separately (after some algebra) and conclude 

that 
        f°° _.   
fj,'n' =  /     Covßipi(r)n(w — gr,t — r)e  /iTdr—> ^r^n^w^t) 

Jo 

17 



16 
U 

si 

% 
o 
u 
to 
JJ 
si to 

20 40 60 80    100   120 
Weight w 

140   160   180   200 

1 
0) 

«S 
u 

si 

0.5 

0.45 - 

0.35 

Figure 1: Weight growth and death rates 
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~g7ri = j     Covglg,(r)-^e-ßTdT —> -g'2Tg~(w,t) 

where the decorrelation times rM and r5 are assumed short. The terms ( ^'2Tßfi{w,i)\ and 

(— g'2Tg^(w,t)) can be substituted back into equation (4) to determine a final expres- 

sion for the time rate of change of the mean population distribution, n. The first term, 

[li'2Tnn(w,t)\, increases the death rate, //, (a parameter change) while the second term, 

(— g'2Tg^(w, t)j, gives a flux proportional to the gradient (in weight) — it acts to diffuse 

the mean distribution of individuals (a structural change). 

Ill) Nonlinear Dynamics 

The dynamics (1-2) will be nonlinear if g, /J,, or b depend in some way upon the 

population numbers, whether total or in particular weight classes. In order to understand 

the nonlinear behavior we first calculate the linear modes of equations (1) and (2). We 

assume g = 1 so that weight (w) is equivalent to age (a). Then equation (1) becomes: 

dn dn 

*—&-"•* W 

with the boundary condition that 

/•OO 

n(0,t) =  /     b(a)n(a,t)da (7) 
Jo 

This system has the solution (for /i constant): 

n(a, t) = n(0, t - a)e-/ia (8a) 

where 
/•OO 

n(0,i)= /     [6(a)n(0,<-o)e-"a]da (86) 
Jo 

We then look for a normal mode structure for ra(0,£): 

n(0,£) oc e at 
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Plugging this form into (8b) gives 

/»OO 

1 =  /     b{a)t-^+°)ada (9) 
Jo 

The values of a satisfying equation (9) depend on the form of the reproductive function, 

6(a). 

Examples: 

i. If individuals only reproduce at a specific age, ao: 

b(a) = boS(a — ao) 

Plugging this reproductive function into (9) we find 

1 = &0e
-(H"£r)a° =>crm = ~H-\ (ln(60) + i27rm)    ,    m - integer 

(Figure 4) where the multiple crm's result from the different branches of the natural log 

in the complex plane. Notice that all the complex growth rates (crm) have the same real 

part. 

ii. For a more general reproductive function centered at a0 we can rewrite (9) as: 

1 = b0e^
+a)ao /     b(a)e-(ll+er){a-aoUa 

Jo 

Taylor expanding the integrand: 

e-(H-<r)(a-a0) ~ 1 _ (^ + ff)(a _ a0) + ^(fi + a)\a - aQf... 

and assuming that b(a) is symmetric around ao: 

l«e("+'),0[/    b(a)da + ^(ß + a)2  f   (a - a0)
2b(a)da (10) 

= e(H-«>o B + \{n + afD\ 
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For a reproductive function narrowly distributed around ao, we recognize that D « B. 

Defining e as the ratio (D/B), we can expand a: 

a = a0 + e<7i + ... 

and Taylor expand to find 

e_(M+(T)ao ä e_(/i+cro)aoj1 _ e(TiGo + ^ 

The 0(1) balance in equation (10) is 

1 = ße~(H-<T°)ao 

which has the same solution as in the delta function case considered above.   The 0(e) 

balance is then 

<Tia0 = (n + ao)2 

Solving for the growth rate, Re(a), gives 

Re(am) = -ß+-±-l + — 
ao a0 

/ln(B)\2      /2m7rV 
\   a0   )        \ a0  ) 

,    m — integer 

From this equation, we can see that the growth rate decreases as \m\ increases (Figure 5). 

For m = 0, a is real and the growth rate is a maximum. Over time, this real a dominates 

the solution for n(0,t), and the population approaches a fixed age distribution. 

The general theorem: 

For the linear problem, if 6(a) has a finite width, there is a stable age distribution 

toward which the system tends. 

Leslie Matrix 

Returning to equation (6) 
dn dn 
~dt^~'da~IJ'n 
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we can discretize the system, to give 

n(a, t) — n(a — Acs, t — At)exp ( — /        fida' ] 
V     Ja—Aa / 

or 
r o 

vi     o 
nt+At 

0 üm_i    0 

The boundary condition (7) can similarly be discretized: 

0 

nt 

TOO 

n(0,£) =  /     b(a)n(a,t)da = y^6jn(qj,t), 
./o , 

or 

(11) 

rco,t+At = [0 h  ■■■ bm-i] 

no,t 

•™m-l,t 

Combining (11) and (12) gives the Leslie Matrix equation: 

nt+At = Lnt ,   where  L = 

As before, we look for solutions of the form 

0 6i &m-l" 

Vl 0 

0 «m-l 0     . 

(12) 

(13) 

nt = nQta  = UQS , where a = ln(5) 

Then 

n0 St+At = (^0)5*, so £n0 = 5^-no ?At- 

indicating that the values 5At = e0^* are the eigenvalues of the Leslie Matrix. 

Additional complexity can be included in the Leslie Matrix. For example, if one 

wanted to include copepod moulting, which results in a jump in weight class, the Leslie 

Matrix would have the form shown in Fig. 6. 
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Nonlinearities 

Returning to equation (1) 

dn d 
—— = — —— (an) — an 
dt dwyy J    p 

with the boundary condition (2) as before 

g(w<j)n(wo) =  I     b(w',t)n(w',t)dw' 

we see that the system will be nonlinear if g, w or b are functions of n (density dependence). 

For example, for territorial animals the birth rate may be dependent on both the available 

space (resource), R, and some function of the number of individuals: 

\f(n)J 
a simple example of which is 

R 
b = B j 8{a -a0) 

,n(°o), 

where the density dependence is on one age only and B is some function (positive definite 

by definition). We choose g — 1 and /i and R constants. We write the solution as: 

n(ao,t) = n(ao,t — ao)e  ^a° 

using (8a, 8b). Depending on the functional form of B the above solution — an iterated 

map — exhibits a broad range of behaviors including equilibria, limit cycles and chaos 

(Figure 7). Such behavior may disappear, however, when b has a wider distribution. 

How can one reduce the complexity yet conserve the important characteristics? Let 

us rewrite the system (13) dividing the matrix L to its subdiagonal component Lo, which 

is assumed to be linear, and the reproduction part that contains all the nonlinearities: 

nt+At L0 + b[^-)R 
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Figure 7d: n vs. R for p = 4 
Power = 4, R = 1 

Figure 7e: n vs £ for p = 4, Ä = 1 
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We've also assumed that the birth rates vary only as the total population changes and are 

not sensitive to the details of the age distribution. Denoting the total number of individuals 

by TV: 

N = 2_]™  or  iV = sTn  where  sT = [1,1, • ■ •, 1] 

and multiplying (14) by sT we find: 

Nt+i = sTL0nt + b ( — J sTRnt 

if one assumes that: 

(15) 

nt = Nt~/ ,   with   y~] 7j = 1 

(15) becomes: 

Nt+i = s  Lot Nt + b 
Nt 

^T rRty Nt (16) 

The reduced model is again an iterated map.  To calculate the coefficients, however, we 

must choose 7. 

One approach is to find the neutral point by varying the total population N, calcu- 

lating the eigenvalues of L~o + b(l/N)R, and searching for the point where the maximum 

eigenvalue is 1. We can use the associated eigenvector for 7. 

Another, more sophisticated, technique is to decompose the system into its normal 

modes by changing basis: 

n, = 7(0M° (17) 

of' are the amplitudes and 7^ are the orthonormal eigenvectors of the system: 

5(07(0 = Lo+R 7 (0 

Suppose that only the eigenvalue S^ has magnitude greater than one and the rest are 

stable. Then, substitution of (17) to (14) gives: 

*S4,= ('y(i>)"1[i + »(^)* T«/.« = 
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X n 
A. (i) 

We can estimate the amplitude of the stable modes (h^, j > 0) from the steady solution 

h[j) ~ 
h(<»sT^m) 1-50')   * 

and use this to find an iterated map for h\ (0) 

H+At — l + (fe-l)f(°'j) 
*|0) + 6-1 f(0J)^ 

with 

6 = 6 
>i0)^7(0) + ^m)^7(m), 

Si) and /if    coming from (18). 

(18) 
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Lecture 3: Grunbaum June 22, 1994 

Basic Formulations of Animal Aggregation and Movement 

In studying animal motion in the ocean, one must keep in mind that the ocean is very 

dilute with respect to concentrations of organisms. The dynamics of animal motion are 

therefore governed largely by who encounters whom, both actively and passively. In order 

to provide some perspective on this problem, a hodgepodge of simple, illustrative examples 

will here be presented. These examples are not necessarily realistic representations of the 

real world; rather, they are meant to provide insight and provoke thought regarding further 

refinements. 

Model types and descriptions of animal position and abundance be classified according 

to the following schemes: 

1. Lagrangian (individual-based) vs. Eulerian models (continuum-based) 

2. density-dependent vs. density-independent motion 

Lagrangian Models: 

In Lagrangian models, populations are described in terms of individual position or 

velocity (or some similar quantity); i.e., "the Lagrangian viewpoint involves identifying 

(marking) each individual and following the subsequent motion" (Okubo, 1980, p. 3). The 

basic governing equations are the equations of motion; e.g., for a group of fish: 

mX = F = F, + F5+Fd + Fr + Fe (1) 

where, m = mass; and X = position.    F represents a collective force, which may be 

conceptualized in terms of its components: 
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Fi = locomotory force (tendency to maintain constant forward flying or swimming 

speed; this term could incorporate the effects of viscous drag or other dynamic terms) 

Fg = grouping force (tendency to move towards or away from neighbors) 

Fa = alignment force (tendency to match the velocity of one's neighbors) 

Fr = random component (including both environmental and behavioral stochasticity) 

Fe = environmental effects (including externally imposed directional tendencies, chem- 

ical gradients, physical barriers, etc.). 

This representation may be simplified or elaborated upon as appropriate. 

One advantage of this approach is that the modelled behavior operates at the level 

of the individual, as in nature, where the individual-not the school-makes the "decisions" 

regarding animal motion. The disadvantages are that (1) there is a practical limit to N, 

the number of model individuals; and (2) this approach is not amenable to analysis as are 

models with PDE's. Values of N are typically between 5 and 30, sometimes up to 100, 

and only rarely up to 10,000, whereas real schools of animals are often orders of magnitude 

larger. Locust swarms, for example, typically contain 109 individuals. 

To gain some sense of how these Lagrangian models might be used, consider the 

example of Pacific salmon and their migration from the open ocean to their natal streams. 

In the open ocean, at the beginning of their journey, the fish swim directly towards 

the river mouth, perhaps by compass navigation. Once in the river itself, nearing the 

end of their journey, the fish seem to follow primarily olfactory clues. In the coastal 

areas approaching the river mouth, however, it is unclear by what mechanism the fish are 

navigating. Here, the geography is often very complex, and the fish encounter a blend of 

oceanic and riverine conditions. 
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In exploring this general phenomenon of coastal navigation, Pasqual and Quinn (1990) 

considered specifically the case of sockeye salmon and their return to the Fräser River, 

British Columbia. One possible coastal navigation strategy for these fish might be "pilot- 

ing." However, salmon returning to the Fräser River come in around both the southern and 

northern tips of Vancouver Island (fig. 1), although, as smolts, most of these fish exited 

from the river to the ocean via the northern route. It seems unlikely, then, that the return 

route is "chosen" based on prior experience. Ultrasonic tracking data (fig. 2) indicate that 

the fish do not simply trace the shoreline nor do they use tides alone to navigate. Tracking 

studies near northern Vancouver Island have also revealed that adult Fräser River sockeye 

salmon display a southeastward directional preference (the general direction of the home 

river). Upon encountering an obstacle, the fish were observed to swim in the opposite 

direction for some time before resuming their original directional tendency-perhaps as a 

mechanism to reduce the probability of entrapment in a bay or inlet. 

These observed behaviors might result from either global preference of a compass 

direction or orientation to proximal information (e.g., temperature and salinity). The 

objective of Pasqual and Quinn (1990) was to explore the former possibility-specifically, 

whether the preference of a compass direction might be an effective guidance mechanism 

in geographically complex coastal areas. They developed a set of models, or "strategies", 

of sockeye salmon movement, consistent with the preference of a compass heading as a 

form of orientation, but with no knowledge of landmarks and no sensory contact with the 

target river. Since the typical transit time for a fish's entire journey is several weeks, the 

effects of water velocity are assumed to average out and are ignored within the model. The 

model fish are initially released at the head of Charlotte Strait, and their progress toward 

the Fräser River is modelled according to these rules of individual motion: 

Xt+i = Xt + St sin <j)t (2) 
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Yt+i =Yt + St cos <f>t (3) 

where, St = swimming speed, randomly chosen from a gamma distribution taken from the 

data, and <j> = direction, in degrees with respect to the north, chosen independently of St. 

Pasqual and Quinn examined the results of four different strategies for choosing the 

directional angle, <f>: 

1. "uniform" strategy: null model, or random search, in which the fish direction is 

represented at each time step by a random deviate from a uniform distribution, taking 

compass values between 0 and 360°. 

2. "normal" strategy: direction is added to the fish trajectory by modelling its heading 

at each time interval as a random deviate from a normal distribution. The mode of the 

distribution, fx, represents the more frequent direction in degrees with respect to the north. 

For each choice of \i (11 total, each constant throughout a given run), 500 individuals were 

run through the model, and statistics were then run on the results. 

3. "inertial" strategy: a correlated random walk, keeping track of the preferred direc- 

tion and the last direction: 

<f>t+i = tan"1 Z- (4) 
•Jb 

where x = (1 — u)sin(<j>t + A<j>) + UJsin// ; and y = (1 - u)cos{<f>t + A</>) + ucosß. <j>t 

represents the last direction of the fish; A<j> represents some correction to that direction; 

ß represents the preferred direction; and u represents a weighting factor. 

In other words, the new direction of motion depends on the heading of the individual 

during the previous time step, as well as a tendency to return to the preferred direction. 

The strength of that tendency depends upon w, which ranges from 0 to 1. 
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4. "escapist" strategy: same algorithm as the "inertial" strategy, but with the added 

stricture that whenever an individual encounters the shore, it uses the "uniform" strategy 

for a while before returning to the "inertial" strategy. 

Note that the uniform and normal strategies do not incorporate memory of prior 

behavior, whereas the inertial and escapist strategies do. 

The results of these various strategies were evaluated in terms of their success in 

(1) capturing the main features of sockeye salmon movement, and (2) guiding fish to the 

target river mouth. In both regards, the "uniform" strategy fared poorly: the simulated 

trajectories were very unlike the observed trajectories, and none of the 500 fish in the 

simulation reached the Fräser River mouth. All three directed strategies produced more 

realistic trajectories. 

The basic results of the normal and inertial strategies are presented in figs. 3 and 

4. Within the normal strategy, no combination of direction and directional precision 

brought more than 40% of the model salmon to the Fräser River within 28 days. For 

preferred headings between 135 and 145°, over 35% of the fish arrived at the goal, but this 

proportion declined sharply for angles outside this narrow range. The median timing for 

those fish reaching the goal was also strongly affected by the directional precision: more 

directed movement resulted in shorter migration times. 

For the "inertial" strategy, higher proportions of the 500 model salmon reached the 

goal (fig. 4). A success rate in excess of 95% was observed for a preferred heading of 150° 

and intermediate directional precision. Too great a directionality resulted in inflexible 

movement and an inability to escape enclosed embayments, whereas too low a directionality 

resulted in erratic movement and little net progress towards the river mouth. A wide range 

of angles, for cases of higher directional precision, resulted in a quick trip to the goal (fig. 

4b). 
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The "escapist" strategy yielded results similar to those of the "inertial" case. Figure 

5 shows the spatial distribution of the 500 "escapist" fish, and overlain catch data. Note 

that survey catches were high for various regions of Queen Charlotte Strait, the southern 

coast of Johnstone Strait, and the central part of the Strait of Georgia. These patterns 

are all consistent with the concentrations of fish generated by the "escapist" simulation. 

Another example of the application of a Lagrangian model of animal motion relates to 

burst-swimming fish. Many evolutionary adaptations for faster and more efficient motion 

in water are evident in fish: streamlined body shapes, efficient fin shapes and motion, 

modification of skin surface, etc. Another adaptation might be swimming "style." Weihs 

(1974) examined the mechanics of swimming to explore whether fish might swim more 

efficiently by alternating periods of accelerated motion and powerless gliding, as opposed 

to constant, steady swimming. 

For mid- to large-sized fish, the Reynolds number (Re) is relatively high (Re > 1000); 

and for high Re, the resistance of a given rigid body is proportional to the velocity squared. 

For the case of a coasting fish, then, the resistance (drag) of the water is given by: 

D = 0.5eACDu2 = cu2 (5) 

where, A = surface area of the fish; CD — coefficient of drag; and u = velocity. 

Figures 6 and 7 illustrate the point that when a fish is actively propelling itself forward 

by undulatory motion, the drag coefficient is increased. In fig. 7, vortices can be seen 

shedding off the tail; the marks alongside the fish also indicate small vortices emerging out 

of the boundary layer-hence the increased drag. For a swimming fish, then: 

Ds = acu2, a > 1 (6) 

A typical value for a is ~ 3. 
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Efficiency, which improves with speed, is expressed as: 

_        Tu        _ 

cost to fish 

where, T = thrust (useful work produced). Observational data indicates that efficiency- 

is linearly related to swimming speed for a wide range of cruising speeds; hence, ß is a 

constant. 

For a coasting fish: 

and for a swimming fish: 

mil = T — acu2 (8) 

mil — — cu . (9) 

Given that basic dynamic, we now have a means to address the question: What 

is the best strategy for crossing distance l0 within time r-slow-plodding, steady motion 

(the "tortoise fish"), or alternating periods of hard swimming, coasting, hard swimming, 

coasting? 

"Best" is here defined as that strategy which minimizes the metabolic cost of the 

crossing. The cost of the entire journey, E, is: 

E I   -Tu dt (10) 
Jo   V 

For the (baseline) steady-state case (i.e., crossing at constant speed, Uc): 

Uc = ±, (11) 

Tc = acUl , (12) 

and 

»7c = ßUc . (13) 
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The steady-state rate of working, normalized per unit energy and distance is given 

by: 

Ec = -TcUcr = ^Uc (14) 

Consider now the case of the burst-swimming fish (fig. 8). This fish starts off a speed 

Ui, which is lower than Uc. It produces a thrust, T, higher than that required to maintain 

the initial speed and accelerates according to equation (8). Upon reaching speed Uf at 

time ii, the fish stops undulating and begins gliding with zero thrust, decelerating until it 

reaches Ui again. Ue represents the maximum speed the fish would have attained had it 

not begun coasting. The entire time cycle (swim-coast) is represented by <i + <2- 

As the gliding periods require no propulsive energy expenditure, the energy required 

per cycle (from equation (10)) is given by: 

E, 
r T 

v=        —U d* (15) 
Jo   Pu 

The ratio of the cost of burst swimming cost to constant swimming, R, is given by: 

Ev _    2 h^h+_h) 
Ec~   e   (h + hf 

R=g. = v? T   2 a6) 

where, h = distance travelled in the acceleration phase, and fe = distance travelled in the 

coasting phase. This ratio R can serve as a quantitative criterion, showing under what 

conditions cyclic acceleration and gliding are advantageous to the fish (i.e., when R > 1). 

Figure 9 shows the ratio of energy required per unit length in acceleration-glide motion to 

that required in steady speed swimming at the same average velocity, as a function of a 

nondimensional average velocity, Uc/Ue. The calculations were made for various maximum 

speeds obtained by accelerating (solid lines). For Uc/Ue = 1, the two modes of swimming 

are identical, as the average velocity is then equal to the maximum velocity. As a result, 
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the energy required is the same, and R = 1. For any other (lower) average speed, there is 

a large range of possible acceleration-glide combinations that will save energy (R < 1). 

The dashed line indicates the theoretical minimum, of R as a function of average 

velocity. This minimum is 1 when the average and maximum velocities are equal, and 

decreases to 1/a as the average velocity approaches zero. The shape of the dashed line 

indicates that the smaller the required average velocity, the greater are possible benefits 

of the swim-glide technique. 

Eulerian Models: 

Recall that, "in the Eulerian viewpoint, the flow of population individuals past a 

fixed point is observed" (Okubo, 1980). In these models, the conserved quantity is density, 

p, a continuum quantity. (The concept of "density" will be covered in more detail in a 

subsequent lecture; for the moment, think of it as a PDF of individual position, population 

density, etc.). The basic equation is a reaction- diffusion equation: 

! = -VJ + Ä (17) 

where, J represents a density flux. For example: 

^ = V2iDP)-ViUp) + R (18) 

The first term represents spatially varying diffusion; U is the local mean velocity, incorpo- 

rating both behavioral and environmental components; and R represents a reaction term 

(i.e., a source of sink due to population dynamics). The basic question is: How does p 

behave with time? 

As an example, consider the generation of a diffusion equation from a simple random 

walk in one dimension. Consider an animal that moves along the x-axis in discrete steps, 
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at discrete times. At time t = 0, the animal is at the origin, x = 0. With time, however, 

due to the animal's behavior, (i.e., every At — j, the animal moves Ax to the right or 

left), a population of such individuals will tend to spread out. After a long enough period 

of time, a Gaussian distribution will be approached. 

Given that p(m, N) is the probability of arriving at the mth gridpoint after N steps: 

P^^ = 2^(U <19> 
where, (n k) = kl£lk)r 

Using Sterling's formula, which is appropriate when N is large (i.e., for N > 1 and 

N >m): 

p(m,JV) = y— ei&- . (20) 

Defining x = mAx and N = Xt: 

P(,,«)dx-*£,.«)£. (21) 

Defining 
„     XAx2 

D = —-—,       A —> oo, Ax -* 0 with Z> constant , (22) 

simple substitution yields: 

p(M)=^br*- (23) 

In this very simple case, then, we have now related the individual behavior described above 

to a probability, P(x, £), which is continuous. 

To get a description of the dynamics of overall behavior (i.e., starting with a descrip- 

tion of individual behavior and now moving towards a global description of the population), 

observe that this distribution obeys a particular PDE (the diffusion equation): 

dP      „d2P 
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An important point here is that this PDE is a lucky fact which is observed after the 

distribution above is obtained. This fortunate occurrence has predisposed people to expect 

that there will always be a suitable PDE found at the end, but not so! (The same is true 

in the case of fluid dynamics). 

Using this (eqn 24), we can now perform statistical analyses regarding how the pop- 

ulation might be expected to behave. We might, for example, calculate the mean-square 

displacement: 
/oo 

x2P(x,t) dx (25) 
-oo 

with the result that 

< x2 >= 2Dt . (26) 

This final result is important, because in sampling populations we often can obtain only 

statistical information (as in eqn. 26), rather than continuous rate information (as in eqn. 

24). 

?p = ap+eP*_bPH+tl^ (27) 

= cPH - dH2 + v-— (28) 
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I Levin and Segel (1976) apply the concept of this diffusive tendency to the study of 

plankton patchiness in the ocean. Letting P represent the population of phytoplankton, 

and H, the population of herbivores: I 

1 
I dt dx2 

where, aP=linear growth; eP2=nonlinear growth rate; \i = phytoplankton diffusivity; 

cP-ff=consumption term; and z/=herbivore diffusivity.   Equation 27 is applicable to a I 

post-cropped population of phytoplankton 

I 
Note that there are two important properties incorporated into these expressions: 

(1) an "autocatalytic" effect in phytoplankton density (i.e., nonlinear growth, with phy- | 

toplankton growing more rapidly when more individuals are present), attributable to a I 
I 
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reduced efficiency of herbivory as phytoplankton density increases; and (2) differential 

dispersal rates, since herbivores are motile animals (i.e., v > /j,). 

This system is seen to have a spatially uniform stable equilibrium. Setting all deriva- 

tive terms to 0: 

- ad 

ac 
*=^3 (30) 

provided that be — ed > 0 and c> e. P and H represent equilibrium values. 

I 
I 
I 
1 
I 

I ~ These basic dynamics of the system, considered in a spatial context, are somewhat 

■ counterintuitive, as diffusion is often thought of as a "spreading-out," stabilizing, homoge- 

nizing process. But can it create pattern by destabilizing an otherwise stable interaction? 

P| Introducing a small-amplitude perturbation to the system: 

) P = P + P' cos(kx)est (31) 

j| H^B + H' cos(kx)est (32) 

and assuming P',H' <C P,S yields: 

P2 = (P2 + 2PP + P'2) (33) 

Since P > P'', the P'2 term goes to zero, as does the P2 term. 

At issue is the question of whether s is ever greater than 0 in a case where the non- 

spatial case is stable. Defining 

R = -, (35) 

and 

Rc = —7= ,     , (36) 

(V^-N/Tf)2 
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the uniform state is found to be stable for R < Rc, but unstable for R> Rc (i.e., nonuni- 

form perturbations grow). 

For R only slightly greater than Rc, the uniform state is replaced by a new steady 

state in which phytoplankton and herbivores are more concentrated in certain regions (fig. 

10). The pattern is maintained because the herbivores have a higher diffusivity than do 

the phytoplankton (i.e., v > fi) and thus tend to "leak out" into phytoplankton-poor areas, 

enabling the phytoplankton to persist. 
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Figures: 

1. Northern route to the Fräser River, British Columbia. (Shaded = land; white = 

water). 1 = Queen Charlotte Strait; 2 = Johnstone Strait; 3 = Strait of Georgia. D = 

departure line for the model fish; G = goal. ^From Pascual and Quinn (1990). 
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gn 5. Spatial distribution generated by 500 simulated fish for the "escapist" movement 

V strategy for a preferred heading (//) of 125° (shaded areas) and observed catch rates (closed 

H circles). D represents the departure line for the model fish; G represents their goal. From 

Pascual and Quinn (1990). 

1 ^ 6.    Visualization of flow over Trachurus mediterraneus politicus during movement 

lM by inertia and passive breathing.   Synchronous film frames (plan and side views).   V = 

0.52 m/s, Re = 7.1 x 104. From Aleev (     ). 

1 7. Visualization of fish movement. Horizontal line indicates point of boundary-layer 

■ transition from laminar (L) to turbulent (T) flow. Dashes mark individual microvortices 

in the turbulent boundary layer, and bent arrows indicate sense of vorticity in the wake. 

I; From Aleev (     ). 

1 
I 
t 
I 

2. Trajectories of six sockeye salmon as revealed by ultrasonic tracking. Closed circles 

represent release points. From Pascual and Quinn (1990). 

3. Contours of (a) percent success in reaching the goal, and (b) median timing in 

days for 500 simulated fish under the "normal" movement strategy for different values of 

preferred heading (/j,) and directional precision (= coefficient of variation of normal heading 

distribution). From Pascual and Quinn (1990). 

4. Contours of (a) percent success in reaching the goal, and (b) median timing in 

days for 500 simulated fish under the "inertial" movement strategy for different values of 

preferred heading (fi) and directional precision (a? = weight to the preferred direction). 

From Pascual and Quinn (1990). 

8. Velocity as a function of time for burst-swimming fish. U{ = initial velocity; Uf 

= highest velocity attained during cycle; and Ue = maximum sustained velocity (i.e., 

velocity the fish would have attained had it not begun coasting). Uc = velocity of the 

constant-speed fish. 
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9. R, the ratio of energy per unit distance required for acceleration-gliding motion 

to that required for steady speed swimming, versus the average velocity (normalized by 

the maximum sustained speed, Ue). Uf = highest velocity attained during cycle. ^From 

Weihs (1974). 

10. Creation and maintenance of phytoplankton patchiness by diffusive instability. 
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white-watt^-It^^ifn'f r ^i f Sf ^"1 rePrf entati°n of the binaiy sPa<* ««** used in the simulations (shaded = land, white-water, D- departure line, G = goal, 1 = Queen Charlotte Strait, 2 = Johnstone Strait, 3 = Strait of Georgia). 
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3.2, 

FIG. 2. Trajectories of six sockeye salmon as revealed by ultrasonic 
tracking (from Quinn and terHart 1987; Quinn et al. 1989). • = 
release point. 
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FIG. 8. Spatial distributions generated by 500 simulated fish for the escapist movement strategy for preferred headings (JJL) of (a) 150° and 
(b) 120° (D = departure line, G = goal). Intensities in the shaded areas indicate relative abundances (logarithm of the number of times a cell was 
visited by a fish). (Fig. 8 concluded next page) 
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Figure 74. Visualization of flow over Trachurus mediterraneus ponticus Aleev during movement by inertia and passive 
breathing. Synchronous film frames (plan and side views) from filming with two cameras. La-13.6 cm, V-0.3-m/s, 
Re = 7.1 xlO4. See text. 
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Figure 72. Visualization of fish movement. A, Salmo gairdneri irideus Gibb., La = \ 6.3 cm, 
V =0.75 m/s, Re = 1.2 xlO5; B, Carassius auratus (L.), jL„ = 12.2cm, V = 0.29m/s, Re = 
3.5x10"; C, Mugi/auraius Risso, La = 12.0 cm, V = 0.95 m/s, Re = l.lxl05; D, Mugil saliens 
Risso, I.a = 19.0cm, V = 0.76m/s, Re = 1.4xl05; E, Mugil auratus Risso JL<, = 18.0cm, V = 
0.48 m/s, Re = 8.7 x 10"; F, Chalcalburnus chalcoides (Gül.) La = 13.5 cm, V = 0.84 m/s, Re = 
1.1x10s; G, Spicara smaris (L.), La = 15.9cm, V = 0.46m/s, Re = 7.4xl04; H, Diplodus 
annularis (L.), L0 = 16.4cm, V = 2.00 m/s, Re = 3.3xl05; I, Diplodus annularis (L.), L„ = 
16.4 cm, V = 0.76 m/s, Re = 1.2 x 105; J, Dip/odus annu/aris (L.), JLa = 16.4cm, V = 0.36 m/s, 
Re=4.5xl04. Horizontal line indicates point of laminar (L) to turbulent (T) boundary-layer 
transition; dashes mark individual microvortices in the turbulent boundary layer; bent arrows 
indicate sense of vorticity in the wake. 
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Lecture #4 - Density-dependent Models of Social Aggregation1 

Lagrangian Models 

Schooling behavior of fish is one problem in density dependent social aggregation 

studies amenable to Lagrangian description. Fish are observed to travel in groups 

wherein individuals maintain a characteristic distance from other individuals in the 

group and they match both the speed and direction of other individuals within the 

group. As shifts occur, individuals change their position and velocity to maintain their 

characteristic distance from other individuals and to align their velocity with other 

individuals. 

While many social aggregation models are designed to provide heuristic insight 

rather than quantitative prediction, simplification is still necessary for both classes of 

models due to the complexity of factors driving aggregation behavior. While 

simplifying assumptions are necessary in order to produce models of schooling 

behavior, there are biological motivations for many of the assumptions commonly 

used. For example, defining a series of threshold distances which control the 

directional behavior of modeled individuals is an approach firmly rooted in the 

biological characteristics of fish. Fish have more than one sensory system with which 

they can detect their neighbors and these different apparatuses may induce different 

behavioral responses to neighbors. The lateral line system of fish is sensitive to 

pressure fields and could be responsible for influencing individuals to swim away from 

each other in order to maintain a certain minimum distance between them and their 

neighbors in the school. This asserted influence of the lateral line system is supported 

by experimental evidence that shows that fish whose lateral line has been severed do 

not tend to maintain as large a minimum distance from other members of their school 

as do intact individuals. In contrast, the tendency for schooling individuals to swim 

toward each other, if they are beyond a certain threshold distance from other school 

members, may be visually cued. Visual control of maximum threshold distance might 

tend to allow individuals to rejoin their school as long as the school is within their 

field of visual perception. 

Notes prepared by Cathryn Rhodes and Richard Matear 
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One formulation for modelling schooling behavior based on fish changing their 

swimming direction was investigated by Aoki (1982). To simplify the problem of 

modelling schooling behavior, Aoki created a discrete time model in which: 1) 

decisions at each time step are independent of previous time steps, 2) movements are 

confined to 2 dimensions and occur on the horizontal plane, 3) speed and direction are 

independent stochastic variables, 4) interactions between individuals cause only 

directional changes; speed is independent of other individuals and is chosen from a T 

distribution, and 5) initially, individuals are distributed randomly within a square and 

their directions are uniformly distributed from 0° to 360°. Individuals are considered 

to have concentric zones surrounding them, defined by their radial distance (Figure 1). 

The zones can be conceptualized as distances at which the focal fish is either 

"comfortable" or "uncomfortable" with its distance from the other members of the 

school. If the focal fish is too close or too far away from the school, it is judged to be 

"uncomfortable" with its distance from the school and swims away from or toward the 

school until it is "comfortable" with its position relative to the school. However, if the 

other individuals in the school are a "comfortable" distance from the focal fish, that 

fish will align its swimming direction with that of the other members of the school. 

The focal fish is considered to make these choices based on the following decision 

rules where r is the radial distance from the focal to the jth individual: 

if 

r^ £ r • ( rg swim toward neighbor 
rl * ri ( r2 swim parallel to (align with) neighbor 

r- ( r-i swim away from neighbor. 

The probability density for the direction of movement of the ith individual is given by: 

-O-M,) 

(1) 

where: 

/=number of neighbors in the school 

8 = the angle describing the direction of the ith individual 
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M -=the change of direction induced by the /th individual 

W—weighting factor for the influence of the ;'th individual 

S—distance between the ith and jth individual 

This formulation will yield a probability distribution for the angle 8 that looks rather 

complex; however, this distribution is really a composite of many Gaussian 

distributions (Figure 2). In this model, it is the M-'s that incorporate the variability in 

behavior between the individual members of the school. 

Eulerian Models 

Density dependence can also be modeled in the Eulerian sense. The question can 

be asked, "How do cells interact to produce a clumped distribution?" One method for 

creating Eulerian models is to consider populations of organisms in analogy with 

physical systems and to examine cell population densities using the cell potential 

approach (Cohen and Murray 1981). If we consider a gradient in potential /i 

representing a flux J that is proportional to Xfi, we can think of the potential as the 

work done by changing the state by a small amount. If we have a spatial distribution 

of cell density, n(x,tj, and an associated internal energy per unit volume, e(n), of the 

developing spatial pattern, we may write 

E[n\=fe{Ti)dx (2) 
v 

where, 

E[n]=the total energy 

e(n)=the total energy per unit volume. 

The work done in changing states by a small amount— ön--is 6E; from this we can 

define the cell potential, ^(n), as the variational derivative ÖE/ßn, 

m-*rme'M (3) 
ön 

A flux J is produced proportional to Vfi, so 

J=-DV\i(n) <4) 

Therefore the continuity equation for n is 
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*£ = -VJ=V-[DVn(n)] = V-[D«"(n)V#i] = V-[D\n)Vn] (5) 
Of 

where 

D*=De"(n) (6) 

In the classical diffusion case where diffusion is considered to be constant, the internal 

energy e(n)=rrl2. In this situation, i"(n)=n, and D =D and if D is a function of x, t, 

and n, (5) becomes 

•^=V-[D*GUn)Vrt] (7) 
of 

In this equation, energy is proportional only to cell density. In an environment where 

there may be spatial heterogeneity, internal energy associated with a cell distribution 

might depend on the gradient in cell density. 

If we take a more realistic energy function, 

E[n]=f[e(n)+±(yrif}dx (8) 
v 

we can use the Landau-Ginzburg free energy form 

efo)-«!+*£ (9) 
2      4 

from which we can obtain 

H =an+bn3-kV2n 

and 

(10) 

—=-V(-DV(ön+fcn3-JfcV2n)) (") 
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1 

This can also be written as 

^=Z)aV2n+D*VV-D*V4n (12) 
dt 

where 

DaV2n s diffusion 

Db V n   s higher order dispersive term 

Dk V n   s aggregation term 

So far, this description is only phenomenological. However, certain morphogenetic 

characteristics of motile cells could be described by this model. Attaching biological 

meaning to these equations depends on identifying "internal energy" with specific 

individual behaviors and positions. 

Another Eulerian approach for modeling density dependent population effects is to 

use an integral equation for the spatial dependence of density, p. This approach has 

been used by Kawasaki(1978) and Alt(1985). If we take 

öp=z)i>!p-JL(p.tf) as) 
dt       dx2   3* 

where the first term is random walk diffusion and the second term contains the integral 

density dependence as 

U=jW(x'-x)p<x')dx <14) 

then W(x) is the response to density of neighbors as a function of distance. We can 

diagram Wasa function of x (Figure 3). Near the origin, for example, there might be 

a zone of repulsion, which changes to a zone of attraction as distance between 

individuals increases. 

It would be more analytically and computationally convenient to have a PDE rather 

than an integral form. Therefore, we shall examine PDE approximations to the PIDE 
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form in Figure 3. We will compare the linear stability properties of the integral form, 

with the understanding that appropriate stability behaviors are a necessary property of 

the simplified equation. 

Expand the animal density, p, by considering a sinusodial perturbation p' to the 

mean density p as follows 

pCc^p+p'sinCfcc)«!* (15) 

Substituting this equation into the integral partial differential equation and computing 

the sine tranform of the new equation, one obtains 

S=-k2D+kpW(k),     m)=fW(x)mb)dx <16> 

As an example, by defining the convolution function that describes the animal 

behavior as 

W{x)=xe-^ (17) 

one can obtain an explicit equation for the sine transform of this function, which is 

Wm=±fike~A (18) 

2 

As shown in Figure 4, the sine transform term in the integral formulation (Equation 

(16)) approaches zero as wavenumber k becomes large. Thus, short wavelength 

disturbances are dissipated quickly by diffusion. Using a Taylor series expansion of 

convolution integral, one can writh the n   order approximation to an individual 

velocity as 

*.-i £/£■»*• (,9) 
M>  OX   1»»« 

Subsituting this equation into the integral partial differential equation, and again 

calculating the growth rate, one obtains the following equation 
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s=-k2D=kpw(k),     w;*)=y;^M 00) 

A polynomial approximation, (20), to the true growth rate (16) shows divergent 

behavior for large wavenumber (Fig. 4). Thus a PDE approximation derived from a 

Taylor series, as in (19), would be expected to have erroneously growing modes either 

in the actively aggregating or actively disaggregating case, depending on the order of 

the approximation. 

Generalized Social Behaviour 

For Eulerian models of density-dependent interactions, the flux density involves 

some sort of term representing the average "decision" made by individuals at a 

particular time and place. What follows here is a simple demonstration that the 

density above does not contain enough information to specify the expected flux, even 

if the underlying behavior is known. Thus additional assumptions are needed which 

specify more fully when and where animals are actually found.  Figure 5 shows a 

schematic of the different zones sensed by a fish. If an individual fish senses another 

fish in one of these zones the fish will react to this fish. For example,  a fish may try 

to move toward fish in subdomains 1 to 4 while trying to maintain its current distance 

from fish in domains 5 to 8. 

By defining the number of neighbors in subdomain d- as n-, the behavioral 

response of an individual is determined by sensing the number of other individuals in 

its vicinity. The behavioral response is described as the movement decision function, 

f(x,t)=f (rij, rt2, ..., nM). The expected movement of an individual is calculated from 

the expectation of .the function at a given time and location,Using a Taylor series ,-y. 

expansion, the movement decision function can be expanded 

/=/(v1,v2r..,vJf)=/(Pl,p2,...,Pjf)+x; (VPI)#4E ^rp)(yj-pj)-M-   (22) 

W ÖP|    ZI-1 ÖPföPy 

where p~ {EvJ, is the average in the sample domain. From this expansion, the 

expected movement of an individual is 
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• -«V>"^i.P»-,PJ+W)4E^VPiXvPy>^?—-• (23) 

This leads to a closure problem which requires higher moments of the density 

distribution to evaluate the expected movement of an individual.  If one assumes a 

Poisson distribution in the animal density, the second and higher order moments are 

calculable and the expected movement animals at a given time and location can be 

determined. 

Integral Equation for Density-Dependent Swarming 

Lagrangian Model 

The equation of motion of an individual can be written as 

^L+^F(f)+UM (24) 
dt    dt 

where the function U(x,t) demotes an advective veloctiy and the function F(t) 

describes the behavioral forces acting on an individual. The behavioral forces can be 

separated into two terms 

F(f)=Fß)+Fß) (25) 

The first term of the behavioral forces, Fr(t), describes random forces acting on an 

individual which are chosen at an average rate Xr from a Gaussian distribution of zero 

mean and standard deviation a . The second term of the behavioral forces, Fs(t), 

defines "social" forces acting on an individual. These forces are chosen at an average 

rate X& with constant magnitude a, and direction determined by social response to its 

neighbors. 

Figure 6 shows schematically how the density of individuals over a unit sensing 

range is used to determine the social response of an individual. This response is as 

follows: 1) count the number of individual within sensing range to estimate local 

density; 2) estimate direction of gradient, i.e. count which side has more neighbors, 

and move down gradient if above "target density", and up gradient if below. 

64 



In one dimension, the mathematical representation of this response can be 

described by the following equation 

FM
s*8<?vv»Vk    S^saPn-l-v^Xvj-v^] (26) 

where at a particular social response, Vj  is the number of neighbors on the left hand 

side and v2 is the number of neighbors on the right hand side, and ju is the target 

situation. The individual will move in the direction of the target density//. 

Eulerian Model 

An Eulerian representation of the Lagrangian model can be formulated by using 

the following reparameterization. 

*=V*,;    Y-^.   *vf- (27> 

In this reparameterisation, D defines the diffusitvity, y defines the characteristics 

aggregate veleocity, X is the total rate of choosing new forces, and Axc is the 

characteristic steplength for social responses. A further assumption to deriving the 

Eulerian model is that the individual's environment does not, in a statistical sense, 

change significantly over a single time or space step. The Eulerian model is 

l,!,S"rW^ *(Pi.P2> 2|i)] (28) 
at     Qx     ox 

The variable <P, the expected decision of the aggregate population, can be defined as 

* = E E/K^SCVi.v^n) (29) 

where the function / defines the joint probability density function of n, and ny, and g 

is the social response function. At this point, we cannot go further without information 

about the PDF. For a suggestion about plausible assumptions about /, we turn to a plot 

of mean versus variance of bin density, and note that mean and variance are 

approximately equal in most cases (Figure 7). This suggests an assumption that the 

occurence of individuals is similar to a Poisson point process governed by the density 
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r(x,t). Assuming that the population density at a point is governed by a Poisson 

distribution one can further analysis this equation. Formally, the Poisson distribution of 

points assumes: 1) the probability of n individuals within and interval [xj, x2] depends 

only on n, xj and x2, 2) the samples n- on a distinct interval are independent, and 3) 

there never is an infinite number of samples on a finite interval. If these conditions are 

satisfied, the Poisson probability of k individuals in an interval Xj to x2 is given as 

Pin=k)=e-^y      p=fp(x)dx (30) 

is the average number of individuals in [xj , x2]. With the Poissan point distribution, 

the joint probability density function for / is given as 

/frW-^-^U^;        Pi&)-fpW&.   P2(*)=fp(*)<fr (31) 

V V2l x-1 x 

Figure 8 shows the quasi steady state numerical solution for the density of individuals 

at an instant (rough curve) along with mean values obtained from averaging several 

realization of the density distribution (smooth curve). The quasi steady-state density of 

individuals is maintained at a slightly higher value (47) than the optimal density 

prescribed in the model (40). This higher density of individuals is maintained by 

conditions at the sharp boundary between a large number of individuals and almost no 

individuals. Away from this discontinuity, the individuals do a random walk because 

they are unable to move effectively away from other individuals. The mean versus 

density variance plot (Figure 7) show that, for small mean values and variances, the 

data do fit the Poisson distribution (solid line in Figure 8). Figure 9 compares the 

numerical results of a model which uses the Poisson assumption (dashed line) and one 

that does not (solid line). The Figure suggests that the Poisson assumption is useful 

for this experiment. However, the possibility of writing PDE for the social behavior 

depends on the environmental properties of the behavior one is trying to simulate. 

I 
1 
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Figure 1: Perception zones defining "comfort" zones around focal fish, see text for details. 

Figure 2: Probability density function for the direction of movement of individual fish based on the 
turning angle 9. This function is a composite of     normal distributions. 
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Attraction 
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Repulsion 
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Figure 3: Response of focal individual (W) to the density neighbors as a function of distance (x). 

r»- + n«3 

k value 

= i 

Figure 4. Curve showing the limitation in trying to simplify the integral expression to a partial 
differential term. 
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Figure 5. Fish sensing domains. 

(expected 
density) 

sensing range 

Figure 6. Density of individuals and their corresponding sensing range 
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Mean vs. Variance of Density 
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Figure 7. Plot of mean versus density variance. 

Instantaneous Density 

Figure 8. The quasi steady state numerical solution for the density of individuals at an instant 
(jagged line) and the mean curve obtained from averaging several realizations (smooth line). 
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50 r 
Expected Density- 

Figure 9. Numerical solution of the model (solid line) and the numerical solution obtained using 
the Poisson distribution (dashed line) 
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Animal Interactions 

D. Grünbaum Lecture 3 

Friday 

1    Non-spatial models 

One of the challenges in understanding the ecological effects of social aggregations is that the dynamics 

of animal aggregation take place at a wide variety of length and time scales. The length scales of 

interest range from inter-individual distances, often on the order of centimeters, to regional differences 

in population density that occur on the order of hundreds of kilometers. Analogous time scales range 

from seconds to months. Mathematical approaches that explicitly incorporate both extremes of this 

spectrum are difficult to devise. 

Before delving into detailed analyses of individual behavior, it is worthwhile to consider a broader 

view of aggregation and its biological consequences. In this broad perspective, we consider that many 

of the primary ecological effects of aggregation (predation and consumption rates, population move- 

ments, etc.) are determined principally by the way individuals are arrayed into groups, i.e., the group 

size distribution. Furthermore, there appears to be some commonality in the group size distribu- 

tions of many widely differing types of animals, which suggests that details of the social behavior 

may not always be important (Okubo, 1986). Initially, therefore, we omit explicit consideration of 

the interactions between individuals, and instead focus on the interactions of groups: fusion and fis- 

sion, migratory patterns, encounter rates with predators and prey, etc. In doing so, we acknowledge 

that ultimately we will have to justify our group-level dynamics as appropriate descriptions of the 

individual-level interactions. This can be done either with individual-based simulations or with some 

of the PDE approaches discussed elsewhere. In the meantime, this non-spatial, group-level approach 

gives us a context in which to understand more detailed models of aggregations, and perhaps can give 

us some insights into some of the common features of group size distributions across many animal 

taxa. 

Prior to consideration of spatial distributions of animals in relation to the physical environment it 

is necessary to consider the basics of animal grouping, i.e. the dynamics behind aggregation. The first 

goal is to come up with a scheme for computing group size, n. Following the developments in Okubo 

(1986) the number of groups, gn, of containing n individuals has some distribution as in Fig. la. The 

changes in this distribution of groups depends on the rate of fission and fusion of groups. These can 
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a) 

b) 

n 

Fig. 1. a) Distribution of groups g in number of groups per size of group, n. The distribution drawn 

suggest there are no solitary individuals a broad peak and then very few large groups, b) Group 

distributions based on a geometric distribution. See text for details. 

74 



be written as a(fc,Z,£), the rate of fusion of groups of size k and I into a group size k + I and the rate 

of fission, b(kt I, t) of groups of size k into two groups size I and k — I. The group size distribution then 

is governed by, 

—-  =  (fusion to form groups sizej) 

— (fusion of groups sizej with others) 

+ (groups splitting to form groups sizej) 

— (groups sizej splitting) 

In terms of the fusion and fission rates this becomes, 

tin ■       1 J_1 °° 
-77 = r J2 a(k>J ~ k>t)9k9j-k ~ 5Z a(k>3^)9k9j 
ai       Z k=\ k=i 

00 j—i 

1=3+1 k=l 

For a single group size this simplifies to 

^ = -9l f; a(*. z, t)^ + f>(*. /, *). 
*" Jt=l fc=2 

Cohen (1971) considers the case where only individuals leave or enter the groups. In this simple 

case 

a(ltl,t) = a0 + ail 

b(l,l-l,t) = bo + b1l 

where ao, ai, 60 and 6j > 0 and a^, 6^ = 0 for i = 2...00 

-^ = [OQ + ax(j - l)]gj-i - (a0 + aij)gj 

+ [bo + h(j + 1)]gj+i - (b0 + hj)gj 

where j < 2 
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tj- = -co 53 Si ~ ao9i - «l 53 *Si + boYlsi + bo92 + &i 53 *# + 261^2 

Now for the case of a constant total population, JV, 

N = 53 39 j = constant 

the group distribution can be solved for. 

As an example consider the case b0 = 0, aj < h If G = total number of groups 

r(j+p-l) ■_! 

for j = 1,2,3, with /> = a0/ai and /3 = aa/6i. Note that /3 is alway s < 1 

As p approaches 1, g approaches a geometric distribution (Fig. lb) 

At this point it is worthwhile considering some fundamental questions. For example, is there a 

maximum group size? If so, what controls its scale? On one hand one can argue that the large scale 

physical aspects of the environment can set the scale of groups. On the other side, however, the small 

scale individual behavior may dominate the fission and fusion of groups and therefore determine group 

size. One manner in which the latter is manifest is in density dependent behavior. 

2    Encounter Rates 

An example of how the fusion rates in the previous section might be made "rigorously mechanistic" 

(i.e., justifiable at the individual level) is an analysis of the encounter rates between groups whose 

spatial dimensions, velocities, directional persistences, tactic coefficients, and other characteristics vary 

with group size. In this analysis, we can borrow some key results from operations research that have 

been applied to understanding the rates of interaction for randomly moving individuals. Specifically, 

these results relate velocity and interaction distances to the dynamics of predator-prey systems. 

Encounters between predator and prey are dependent on their relative motion whether induced 

by flows or by swimming. Typically the vulnerability of a prey to predation changes throughout the 

development of an individual. An example of this is apparent in the vulnerability of the copepod 

Calanus pacificus to different predators as shown in Fig.   2 (Greene, 1986).  In the smaller napliur 
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Fig. 2. Vulnerability to attack of C. pacificus by large copepods (dashed line) and ctenophores (solid 

line) as a function of development stage, naplii (I to VI) and then copepodites (I to VI). Figure 

is redrawn from figures in Greene (1986). 
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stages C. pacificus becomes more vulnerable to attack from larger copepods as it increases it size. It 

becomes more capable at evading attack as it develops into the copepodite stages. Vulnerability then 

shifts to ambush predators such as ctenophores (Greene, 1986). Switches in predator vulnerability or 

in prey selection over the development of a predator depends upon the relative velocities of predator 

and prey and the distance they can perceive each other. This distance is the encounter radius, R, and 

the problem becomes one of specifying the probability of encounters along with their outcomes. 

Gerritsen and Strickler (1977) lay out a basic model framework for considering encounters between 

predator and prey. The formulation begins by considering the number of prey in some solid angle, du 

in the predators sensory field, 

du = sin 6d9d(f> 

where the position relative to the predator is given by fi = (0,4>). The predator and prey are assumed 

to occupy single points in space and are randomly distributed with respect to position and direction 

of motion. Then the probability of a prey within the encounter radius of the predator being within 

the element duj is 

P(ü)du) = — sin Odedcj) 

The expected number of prey is the 

E\n} = — sm6d0d4> 
47T 

where NH is the density of the prey. 

What remains is a specification of velocities for the predator, v and prey, u. Given these their 

relative vector velocity is w - v - u. The magnitude of the relative velocity is then w = |w| = 

y/u2 + v2 - 2uv cos(ö). The rate of prey encounter is just the integral 

■KR
2
NU r2* r2* 

y 4-rr     Jo    Jo 

■KR
2
NHU    ,    ,3        , ,3/ -[(■a + v)3  -  \u-v\3/uv]. 

This can be approximated by 

_       *R2NH    V? + 3V2\ 
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and 

„      irR2NH (V
2
 + ZU

2
\      ^ 

The encounter rate and encounter probability as a function of predator and prey velocities are 

displayed in Fig. 3. The conclusion is that it is advantageous for a predator to either cruise at 

its maximum speed or to stay stationary. Hence the two behaviors seen by Greene (1986) are both 

reasonable strategies for a predator depending on the relative velocity of the prey. For fast prey it is 

best to lay in ambush, while for slow prey the encounter rate goes up with predator speed. 

There are several modifications to the Gerritsen and Strickler (1977) that can be proposed. For 

example, the encounter radius could be made a function of the prey velocity, R = R(v.) to take into 

account the influence of a moving prey on visual or olfactory sensory capabilities. Another addition is 

the influence of flow in the environment on encounters as proposed by Rothschild and Osborne (1988). 

This theory shows that turbulence can enhance encounter rate by adding to the relative velocity. K 

W is the turbulent velocity the encounter rates become 

„       TR
2
NH fu

2 + 3v2 + 4W2\      ^ 
Z   =      j—    ; u << v, 

P 3       V    (v2 + w2)2    J 

„       TR
2
NH (V

2
 + 3U

2
 + 4W

2
\      ^ 

Zp = —-—    1— );v<<u, P 3       V    (u2 + W2)*    J 

for the two behavioral limits. 

3    Density Dependent Population Process 

The idea that the dynamics of large numbers of interacting animals can be described neatly by a 

compact set of population-level differential equations is probably the most basic justification for the 

study of mathematical biology. However, the success of differential equation models in describing 

natural biological systems has been decidedly mixed. This is in part because the ODE and PDE 

models have been for the most part invented heuristically as population descriptions, rather than 

derived rigorously from individual-based models. A rigorous derivation would not only give us more 

confidence that we have the best possible DE description, but presumably also would give us indications 

of when the approach is likely to succeed or fail. However, these derivations are difficult to carry out, 

especially in the case of density-dependent interactions such as predation or social interaction. Here, we 

examine in some detail a comparison of an individual-based simulation to various differential equation 
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Pred. Speed V Pred. V 

Fig. 3. Encounter rate, Zp> and encounter probability as a function of predator velocity v for different 

prey velocities, u, in the Gerritsen and Strickler (1977) model. 
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approximations to it, which highlights some of the ways that essential dynamics can be compromised 

by the transition to differential equation descriptions. 

Density dependence in population dynamics can be thought of as arising through competition 

between individuals for food as a predator population becomes dense or it might arise because of 

competition for other resources such as nesting sites. There is a large literature on density dependence 

and its formulation (see Murray, 1989). Here the interaction between a predator-prey system that 

has antagonistic predators that attack each other also is considered. The system is known as the 

hawk-dove problem after Durret & Levin (1993). 

The hawks (H) and doves (D) problem is setup with a pay-off matrix that determines the interaction 

between the the populations both internally (D,D or H,H) and externally (H,D). The interactions can 

be written in a matrix form as 
player 2 

H        D 

player    Ha        b 

1 D      c d 

Player 1 meets player 2 and the coefficients a,b,c or d determine the pay off. For a fraction of hawks, 

p, then the gain for hawks is 

8H  =  ap + (1 - p)b 

while for the doves the payoff is 

6D  =  cp +  (l-p)d. 

For the case where hawks dominate over doves and also eliminate each other, a < 0 and c < 0 and 

the other coefficients are positive, i.e. hawks gain from the doves and doves are mutually beneficial. 

What is left to specify is the manner in which encounters occur. Here three situations are considered, 

1) a dynamical system operating on the population as a whole, 2) a spatial system with Laplacian 

diffusion, and 3) and interacting particle system on a grid. 

3.1    Version 1 : Dynamical System 

The dynamical system is assumes that the interactions occur in proportion to the total population, 

i.e. spatial structure can be ignored. If the density of hawks is u and that of doves v, then the fraction 



of hawks and doves are u/(u + v) and v/(u + v) respectively.  The dynamics of the populations are 

governed by 

du 
~dt 

= u a—; h b K{U + v) 
u + v       u+ v 

dv 
~dl 

= v c 1- d K(U + v) 
U+ V U + V 

3.2    Version 2 : Reaction Diffusion Form 

If the right-hand sides of the dynamical system above are written as uR(u) and vR(v) respectively 

and the model is placed in the spatial context by adding spatial diffusion the equations become 

8t 
u = u 

u 
+ b K{U+ v) 

U + V U + V 
+ KV2u 

V = V c—: h d—; K{U + v) + KV2v 
dt~      ' [ u + v  ' ' u + v 

This is pictured as a continuous approximation to a random walk on the part of the populations across 

a two dimensional space. 

3.3    Version 3 : Cellular Autonoma 

Another alternative is to consider the populations as consisting of particles that move on a grid 

consisting of ij points. The population of hawks at the ith and jth grid cell is then rn_j. Similarly the 

population of doves in this grid cell is rjij. Look at a neighborhood N around (i,j) 

The populations at site i,j then change by acting on the partition between hawks and doves in 

the neighborhood 

Pij = ~ 
Vij 

Vij + &j 

acting through the payoff matrix as shown above. 
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a) 

b) 
V 

u 

Fig. 4 a) Attractor space for the dynamic system model. The two attractors both have extinct hawks 

(u) and any introduction of hawks leads the attracting solution with finite numbers of doves (v) 

to become unstable and move to the total extinction state (u = v = 0). b) Attraction space 

for the modified dynamic system that includes explicitly probability of encounters by treating 

individual birds as Poisson points. See text for details. 
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The first two versions of the model have similar outcomes as outlined by the results from the 

dynamic system shown in Fig. 4a. There is a fixed state that consists only of doves. Any finite 

addition of hawks leads to attraction to the null state without either hawks or doves. By contrast the 

third version-has exhibits coexistence. This is driven by persistence of dove outbreaks in the model. 

These do not happen persistently in the reaction diffusion case because the diffusion operator leads to 

infinite dispersion and has finite tails at infinity. Another way of interpreting coexistence in Version 3 

is that there is a small probability of having a hawk at any given time. This allows refuge areas where 

doves increase. It is the finite action radius of the cell model that allows this to occur. 

It is possible to modify the dynamic system to include the behavior seen in Version 3, i.e. per- 

sistence of both u and v. This is accomplished by explicitly including the probability aspect into 

the system. This is done by interpreting population density such that individuals represent Poisson 

points. The equations then become 

du 
-7T- — u 

dt 

dv 

a(h + (l- h)-^—] + 6(1 - h)—- K(1 + u + v) 
\ u + vj u + v 

c(l - h)-^— + d(h + (l- h)—V— \ -K(1 + U + V) v u + v \ 'u + vj 

where 
1 _ e-\N\(u+v) 

h 
\N\(u+v) 

and | JV| = number of grid points in JV. The attractor space then takes the form sketched in Fig. 4b. 

This is a fair approximation of the population dynamics for the third version of the model. Adding 

the probability based modification is essentially taking into account the probability that a dove will 

encounter a hawk. This leads us to the general problem of encounter rate in an environment. 
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Taxis 
Danny Grünbaum 

Spatially-varying diffusion 

We shall assume that the organisms make decisions based on the conditions at their 
location and/or the conditions at some distance Ax away. We shall derive continuum 
equations for the probability density in space and time, using the Fokker-Planck equation. 
If S(x, t) is the probability density for the animal occupying x at time t and <f>(x',t\x, t+At) 
is the probability that it will move from position x' at time t to position x at time t + At, 
we have 

S(x,t + At)= I S(x',t)<f>(x',t\x,t + At)dx' (1) 

Note that J" <j>dx = 1. 
The organism needs to decide when to jump and which direction. We can imagine a set 

of criteria based on the current position or upon the ending position after the movement. If 
we define 9 to be the relative weight of the starting vs. the ending position in the decision 
(0 < 9 < 1), we can model <j> by 

(f> =C/([1 - 9]x' + 9x)S(x' -Ax-x) + C0(x')S(x - x') 

+ Cr([l - 9]x' + 9x)8(x' + Ax - x) 

where Ax is the size of the jump and Ci, Cr are the probabilities of moving left or right, 
respectively, and C0 is the probability of staying put. Using this in (1) gives the evolution 
of the probability as a difference equation 

S(x,t+At) = S(x+Ax,t)Ci(x + Ax-9Ax)+S(x,t)C0(x) + S(x-Ax,t)Cr(x-Ax + 6Ax) 
(3) 

In addition, we impose the constraint that the sum of probabilities of leaving a point x' to 
the left, the right, or staying put must sum to one: 

Ce(x' - 9Ax) + Co(x') + Cr(x' + 0Ax) = 1 (4) 

We use (4) to eliminate Co in (3) and then Taylor-expand the left-hand side to order 
At and the right-hand side to order Ax2. Subtracting S(x,t) from both sides and dividing 
by At gives the advection-diffusion equation 

—S = -4-(uS) + S^(DS)-294-(S^-D) (5) 
dt dxy     J     dx2K      } dxy   dx    ' w 

with 
Ax AxP1 

u = [Cr(x) - Ci(x)\—    ,       D = -^[Cr(x) + Ct(x)] 
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If the transitions are symmetric [in the sense that Cr(x) — Ct(x)], the steady state solutions 
satisfy S = D29~l and when 

0 = 0 (jump determined by starting point) S ~ 1/D 
9 = 1 (jump determined by ending point) S ~ D 
9 = 1/2 (jump determined by half-way point) S ~ const. 

In the first case, known as a "repulsive random walk" since the characteristics of the jump 
are determined by the conditions currently sensed, the animals accumulate in regions 
of low diffusivity, whereas they cluster where the diffusivity is high in the case of the 
"attractive random walk." The 9 = 1/2 case behaves like physical diffusion (or, rather, 
parameterizations thereof) and does not lead to any accumulation. The repulsive random 
walk appears to me the most common behavior. 

Searching algorithm 

Alt (1980) developed a model incorporating searching behavior. Let c(t,x, u, r) be 
the density of searchers at point x at time t who are traveling at speed u and have been 
moving at that speed for a time r. At each time, the organism can choose to continue 
traveling in the same direction or to make a turn. The speed c = |u| is taken to be 
constant. This behavior corresponds to the prototypical "runs and tumbles" of simple 
bacterial chemotaxis. In the terminology of Othmer et al. (1988), it is a velocity-jump 
process, meaning a random walk in which individual position is continuous in time but 
velocity is discontinuous. 

One might expect that in an effective gradient-climbing random walk, the probability 
of turning may be low when the animal starts out in a particular direction, but increase 
with time if the environment is becoming less favorable. On the other hand, it may remain 
low or decrease if the environment is improving. The length of run variable, r, is introduced 
to allow such effects. The rate of turning is denoted ß(t,x, u, r). The arguments of the 
turning rate implicitly define the environment experienced by the individual since the 
previous turn, because they make it possible to reconstruct where the individual was at 
any given r > 0. Thus ß defines the behavioral response to the variable environment, in a 
general form but with the limitation that an individual's "memory" only goes back as far 
as the last turn. 

Following in the lines of the Von-Foerster equation derivation leads to the evolution 
equation for a: 

d d 

with 

<r(u,0)=  / I ß(u',T)<r(u',T)k(u',u)du'dT ' 

(with the x, t arguments implicit). k(\i', u) is the transition probability that an individual 
moving at u' before a turn is moving at u afterwards, k is assumed to be symmetrical, 
i.e., fc(u',u) = fc(u, u'). Also, no individuals are created or lost by turning, so 

/ 
k(u', u)du = 1 
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These equations are non-dimensionalized, with x scaled by the length L on which the 
environment varies and t scaled by L/c, where c again is the cruising speed. The variable 
r is scaled by the characteristic length of a run, r0 which is taken to be small compared to 
the time T over which environmental variability is felt. Thus, there is a small parameter 
e = TO/T which can be used to find approximate solutions. Scaling ß by the short time 
scale To gives the non-dimensional equations 

eDua+— a = -ßa (6) 
or 

<r(u, 0) =  / / ß(u', r)<r(u', r)fc(u', u)du'dT (7) 

with Du = J| + u • V. Define the total rate of turning by 

/•OO 

r(i,x,u) = /    ß(i,x,u,r)<r(i,x,u,r)dr 

=  /     ß(t, x, u, r)cr(t - er, x - eur, u, 0) exp   - / dsß(t + e(s - r)) 
(8) 

dr 

so that 
<T(U,0)=  fr(u')k(u',u)du' (9) 

Finally, we shall examine the total density for all run times: 

a(u) =  / <J(U, r)Jr 

which satisfies [from integrating (6) and using the initial condition (7), the definition (8), 
and (9)] 

eDuä =a(u,0)- j drßa 

eDuW(u) =   / r(u')fc(u', u)c?u' - r(u) (10) 

In the repulsive case, turning rates are determined entirely at the point of departure, 
and we take ß(t, x, u, r) = ß0(t — er, x — eur, u) and expand in e, using, for example, 

ß ~ A>(t,x,u) - eDu/30(*,x,u) + ie2(I>u)2/?o(t,x,u) + ... 

After some manipulation, the expression for the total turning rate becomes 

r~ß0ä-^-Dußo 
PO 
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and (10) gives a closed expression for a.   Note that this expression assumes sufficiently 
slow spatial and temporal rates of change of the environmental variable p. 

In the case where the turning occurs with equal probability through an angle of — £0 

to £ around the current travel direction, we have 

JbCu'.uHl1/2*»    u • u'> ««(2£o) 
V    '   '     lO else 

and £o is taken to be small, we can approximate the integral in (10) and find 

d2 

where 9 is the angle of travel [u = (cos 0, sin 6)] and the diffusivity is 

In the steady state, <x = C/V. 
Suppose the environmental cue p(x) increases linearly in the x direction. If we de- 

fine the functional behavior of ßo, we can then calculate the diffusivity, the equilibrium 
distribution of W and the expected up-gradient velocity v = fWcos(6). Consider two cases: 

1. Area-restricted search. 

If the turning rate depends only upon the environmental conditions at the current 
spot, 

ßo = l + Xo(p)   , 

the diffusivity becomes 

P=f[l-eXoAos0] 

2. Chemotaxis 

Here, the turning rate depends upon the gradient in environmental conditions. 

ßo = l + Xi(Dup)  , 

and the diffusivity is 

v=fe[i + Xl('P'cose)} 

Both forms have a diffusivity including a random walk part and a part which can lead 
to up-gradient motion; however, chemotaxis can be much more efficient. Why do many 
organisms exhibit area-restricted search behavior, instead? Chemotaxis requires a way to 
sense gradients, whether directly or by memory of past conditions, and such capabilities 
may be beyond the organism. In addition, when hunting discrete prey, it may be very 
difficult to assess gradients or even local densities. Steps over long distances may be 
required, and many organisms, while capable of rapid escape movements, do not maintain 
speed and direction very long. There are energetic costs to exploring large spatial scales, 
as well. One might anticipate animals settle for a mixed strategy, perhaps also using 
information gleaned from neighbors. 
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Evolutionary and ecological benefits of grouping 
Danny Grünbaum, June 28, 1994 

1     Introduction 

There are several ideas proposed to explain why animals aggregate into groups : 

• 

• 

• 

• 

Predator saturation : If the predator can capture only one prey at a time, then the 

probability of an individual prey getting hunted decreases with the size of prey group. 

Many eyes : Grouping into herds increases the chance of detecting and hence fleeing 

from danger. 

Predator confusion : A large enough prey group can confuse or even frighten a potential 
predator. 

Foraging for resources :   If the resource is patchy but large enough to feed many 
individuals when found then grouping may be a very efficient strategy for foraging. 

In this lecture, we examine three examples of groupings found in nature : 

• Swarming locusts. Locusts form huge fairly coherent swarms consisting of billions of 
individuals. Danny Grünbaum has constructed an individual based model to mimic 
the behavior of the swarm. The description and results of his model are described here. 

• Schooling fish. In order to provide a theoretical basis for the many eyes and better 
foraging arguments mentioned above, we discuss the work of Grünbaum (199x). These 
notes make liberal use of text and figures from the source which carefully compares 
asocial and social behavior in a controlled experiment to bring out the advantages of 

grouping. 

• Aggregating slime mold. Slime mold amoebae exist in unicellular form when there is 
enough food. Under stress, the cells communicate with each other using a chemical 
messenger, cAMP and aggregate to form fruiting bodies. Most of the cells form the 
stalk of the fruiting body and hence die. A few lucky ones become spores which 
are dispersed and hence form the basis of the next generation. In absence of this 
aggregation, chances are that all the unicellular organisms would die. In this way, 
evolution has selected for aggregation so that a few individuals survive at the expense 
of most when the alternative is death for everyone. The material in these notes is 
shamelessly lifted from Keller & Segel (1971) which discusses the conditions necessary 
for the instability responsible for aggregation. 
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2    Swarming locusts 

African locusts exhibit two distinct social behaviors viz., solitary and gregarious. These are 
determined by population density i.e., whether each locust exhibits one behavior or the other 
depends on how many members of its own species it finds near itself. In the first behavior, 
which occurs during low density situations, the individual lives an independent lifestyle. It 
largely ignores its neighbors and competes for resources on its own terms. 

When the locust density exceeds some critical density, however, the locusts' behavior changes 
dramatically. The locusts begin to respond to olfactory cues which serve to engage all 
individuals in an ensemble (or gregarious) activity. The locusts then tend to aggregate 
readily. At this stage, they are usually juveniles and cannot fly. They form "hopper bands" 
and roam across the land in groups ranging in size from tens of thousands to millions of 
individuals. While gregarious, the individuals become adults and acquire the ability to fly. 
From a hopper band, the group takes the form of a rolling swarm. Both hopper bands 
and swarms are very destructive to the flora of land they pass over. This can have serious 
consequences for agricultural areas they pass over. 

Examination of the behavior of a single locust initially on the ground yields insight into the 
dynamics of the swarm. The locust first flies into the wind as it takes off from the trailing 
edge of the swarm. Then, while near the top of the swarm, it is carried downwind at a typical 
airspeed of around 15 m/s. After some amount of time in air, it descends, heading back into 
the wind as it drops to the leading edge of the swarm. When many locusts each behave 
in this way, the swarm as a whole adopts an inverted trapezoidal shape, short side down. 
Each locust spends on the order of a half hour on the ground, resting and foraging for food 
before taking off again. Because of the merging of several ground groups, the locust swarms 
can consist of 109 to 1010 individuals and have a footprint of 10s to 100s of square miles. 
The density of the swarm is roughly one locust per cubic meter, plus or minus an order of 
magnitude. As a group, they move downwind at a rate of a few kilometers per hour. The 
form of the swarm is highly variable, the above being a description of the apparent general 
tendencies. 

It is hypothesized that the reproductive advantage of this social strategy comes from finding 
rain since wet ground is necessary for locust reproduction. The surface winds are likely to 
be blowing in the direction of a surface convergence zone, above which moisture in upwardly 
transported air may fall as rain. 

The tendency of an individual locust to head into the center from the edges is low when 
heading intoihe wind, but higher when traveling with the wind. Can this large scale behavior 
be explained by certain rules which each locust follows individually ? It is argued that while 
flying, the locusts prefer to sense a certain apparent (retinal) velocity of the ground. While 
close to the ground, they tend to head into the wind in an effort to reduce the rate at which 
the ground passes through their field of view. As they gain altitude, this apparent rate will 
decrease due to perspective. Therefore, the higher locust will tend to move with the wind in 
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order to maintain the preferred retinal velocity. Since locusts appear to have a visual acuity 
of about 0.5-1.0 degrees and a focus at infinity, it is reasonable to hypothesize this type of 

behavior. 

A model has been constructed in an attempt to capture this type of large scale behavior 
from local decisions made by individual locusts. For this model, it is hypothesized that the 
locusts try to maintain a certain orientation depending on their altitude. This is modeled 
as a 'comfort' function. Diffusion of the locust density value is a constant plus a value 
inversely proportional to the comfort level. This comfort function results from both the 
desire for a certain apparent velocity at a given altitude and a desire to fly within a certain 
altitude range. Hence, the comfort function depends on flight orientation angle (relative 
to horizontal-downwind) and altitude. If we look at the time evolution of density of locust 
population versus orientation and altitude starting from a situation of all locusts on the 
ground and evenly distributed about orientation angle, the population density plot tends to 
look like the comfort function. At the altitude where the density-weighted orientation angle 
is equal to f, the net locust population travels at the speed of the wind. Higher, the locust 
flies with the wind; lower, it flies against the wind. Summing across altitude yields density 
versus altitude. Doing this shows that the maximum density occurs high in the swarm. In 
fact, more locusts are above the altitude where the locusts' average speed equals the wind 
speed, so the swarm as a mass moves downwind. The net result is a modeled population 
whose bulk properties, velocity and density with height, are in general agreement with those 
observed in real swarms. 

3     Schooling as a strategy for chemotaxis in a noisy 
environment 

Most aquatic animals employ tactic behaviors to follow environmental gradients and locate 
patchily distributed resources. Important resources, particularly those which are advected 
within the water column, often display ecologically significant variations at large length 
scales (> 10km). However, the gradients which might lead an animal to large-scale resource 
concentrations are not only weak but overlain by "noisy" fluctuations at the micro-scales 
(< 10m) at which animals typically sense their environments. Here, a theoretical basis is 
provided for the hypothesis that schooling behavior improves the ability of school members 
to climb chemical gradients under challenging conditions when directional signal-to-noise 

ratios are low. 

First, we examine a simple, asocial bacterial chemotaxis algorithm. The results of this null 
model are compared with simulations in which individuals display schooling behavior in 
addition to chemotaxis. Effects of group size on the success of finding resources is examined. 
Also addressed is the responsiveness of the school to time-varying chemical gradient direction. 
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3.1    Asocial searching 

An animal that cannot directly sense favorable regions must locate them through some sort 
of trial-and-error process of probing in various directions and modifying course depending 
on the results. Here, we present a simple Markovian model for chemotaxis. Suppose, for 
example, that individuals are searching on a plane surface where the concentration increases 
in the positive x-direction. Further, suppose that the individuals are moving at unit speed, 
and change their direction randomly to the left or right at discrete time intervals At and the 
difference in angular orientation is small if the individual is oriented up-gradient and larger 
if orientation is down-gradient i.e., 

A, = riAei(i^)) (1) 

where Ad is the angular change in a time interval At, and 8 is the angle with respect to 
the concentration gradient (the x-axis, here). rx is randomly chosen to be +1 or —1 at each 
time step so that an individual turns with equal probability to the left or right. A8\ is the 
maximum difference in angular heading the individual will make if it is headed down-gradient. 
Following these rules, the individual will move away from unfavorable headings much faster 
than from favorable headings and will soon point in the correct heading (see figure 1). If 
there is small-scale noise, then the animal might feel the concentration is increasing when 
actually it is decreasing and vice-versa. To model this effect, we modify the above rule by 
adding a random angular change regardless of the animal's orientation i.e., 

Af-nAfc + nAftp^pffi) (2) 

where r0, like r-i is also chosen to be +1 or —1 at each time step. A8Q measures the vigor 
of random motion the individuals go through in absence of any signal, or equivalently the 
noisiness of the signal. 

This type of chemotaxis has been analyzed thoroughly (Alt 1980, Okubo 1980, 1986, Othmer 
et. al. 1988) making it a convenient searching behavior with which to compare searching 
strategies of social individuals. The long-term behavior of these individuals can be expressed 
by taking the diffusion limit of the random walk in 9. The present case is a "repulsive" 
random walk, in which the probability of moving depends only on conditions at the point of 
departure. The probability density of orientation angles, p(0,t), evolves according to 

MM) _ d2 D(e)o(e .x n) -^^-wD{e)p{e^ (3) 

where D{8) is a directionally varying diffusivity. p(8,t) represents the probability at time 
t that an individual is heading in the direction 8 or, equivalently, the fraction of a large 
(non-interacting) population with that orientation.   The diffusivity has a constant and a 
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eb + A6(eb) 

Figure 1: "Bacterial" chemotaxis by directionally variable "step" size in the change of head- 
ing angle. Shown are two heading direction, a nearly up-gradient orientation (9a) and a 
nearly down-gradient orientation (9b), where the concentration of an attracting substance 
increases in the positive s-direction. An individual changes heading in either direction, right 
or left, with equal probability. However, increments in angular orientation are smaller if the 
individual is oriented up-gradient and larger if orientation is down-gradient. Thus, on aver- 
age, an individual spends more time moving in up-gradient than down-gradient directions, 
resulting in up-gradient taxis. 

directionally varying component, 

D{6) =D0 + 
cos(ey 

A, (4) 

where D0 and Z?i are given (Levin, 1986) by 

D0=
A92° D1 

A9\ 

2 At'    ~L     2 At 

The steady state solution to the Fokker-Planck equation (3) is 

p(6) = 
(1 + d)1* 

TT(2 + CZ(1-COS(0)))' 

(5) 

(6) 

where d = Di/D0 is the relative diffusivity (Davis et. al., 1991), a measure of the relative 
strength of the chemotactic signal and noise — small d means that the gradient is heavily 
obscured by small-scale noise; large d means that the gradient is distinct. This equilibrium 
distribution of orientation angles shows the fraction of time a typical individual spends in 
each orientation, and consequently, how fast it moves up-gradient on the average. The 
average up-gradient velocity of an individual, as a fraction of individual's forward speed is 

U(d) = (1 + d)g -1 
(7) 
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Equations (6) and (7) summarize the effectiveness of the bacterial chemotaxis algorithm 
— when the signal dominates noise (d ^> 1), individuals virtually always orient correctly, 
and progress-up-gradient at close to full speed; when the noise predominates (d <C 1), the 
angular distribution of individuals is nearly uniform, and the up-gradient velocity is nearly 
zero (see figure 2). In an intermediate range of values (0.3 < d < 3), there is measurable 
but slow movement up-gradient. Following, we address whether individuals operating in this 
intermediate signal-to-noise range improve their ability to move up-gradient by adopting a 
social behavior i.e., schooling. 

0.4 
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-10      1 
Orientation angle 

4        6 
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Figure 2: The effectiveness of the simple "bacterial" chemotaxis algorithm as a function of d, 
the relative diffusivity. The left panel shows that the equilibrium distribution of orientation 
angles is more tightly clustered about the up-gradient direction for higher d. The right 
panel shows that individuals spend a greater fraction of their time in favorable orientations, 
resulting in higher average velocity with increasing d. 

3.2    Simulations of searching with schooling behavior 

To investigate the gradient-climbing ability of schooling searchers, we employ a simplified 
model of schooling behavior (figure 3). Subtleties of schooling models are ignored for the 
sake of keeping the simulations and analysis simple. The key attributes of schooling models 
are : 

• Limited sensory area : The animals have a decreasing probability of detection or 
responsiveness to neighbors at large separation distances. This effect is modeled by 
individuals responding only to other individuals within a unit radius (the "detectable" 
neighbors); individuals more than a unit radius are ignored. Also, equal weight is given 
to the detectable neighbors. 
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Density preference/Grouping tendency : The schooling individuals have a preference 
for a certain density range — they will turn towards their neighbors if the school is 
sparse and turn away from their neighbors if the school gets too dense. This switch from 
attractive to repulsive interactions mediated by local density of animals is modeled as 
follows. If the number of detectable neighbors is within the preferred density range, 
then the individual takes no action. On the other hand, if the number of neighbors is 
outside that range, the individual turns by a small amount, AÖ3, to the left or right 
according to which side has more neighbors and whether it has too many or too few 
neighbors in order to bring the number of neighbors within the preferred density range. 

Alignment tendency : This is the tendency of animals to match velocities. Since the 
animals are moving with unit speed, this effect is modeled by randomly choosing one 
of the detectable neighbors and turning a small amount, A04, towards that neighbor's 
heading. Over many time steps, the individual will tend to align with the average 
heading of its nearby neighbors. 

Individual behavior : The animals are responding to other cues in the environment 
such as predator, prey or resource gradients. This, in our case, simply amounts to the 
individuals retaining the bacterial chemotactic behavior. 

Figure 3: Schematic of schooling behavior. In the simplified schooling algorithm, each 
individual reacts to neighbors within a unit distance, shown here as a shaded circle. Also 
shown is r, the radius of the tightest turn that can result from social behavior. If this radius 
is smaller than the reaction distance (r <C 1) then individuals can turn tightly to remain 
close to neighbors; if it exceeds the reaction distance (r >• 1), individuals are not capable of 
turns tight enough to stay near a neighbor. 
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These behaviors can be made independent of step size by expressing them as a = A#3/At, 
the rate of turning towards and away from neighbors, and ß = A04/At, the rate of turning 
to align with-neighbors. Incidentally, the parameters a and ß can also be usefully thought 

of in terms of 

r = "TA (8) 
a + ß 

the radius of the tightest circle that an individual can make under the combined influence 
of the two social behaviors. The size of this radius, relative to other characteristic lengths 
such as the detection range, determines in part the group properties of the school. 

The results of the simulations show that schooling individuals, on average, move more directly 
in an up-gradient direction than asocial searchers with the same chemotactic parameters. 

Figure 4 shows the individual positions in a periodic domain in simulations of asocial and 
social chemotaxis at t = 100, N — 64. The chemotaxis parameters, D0 = 0.3 and D\ = 
0.6 are within the range of relative diffusivity (d = 2) for which up-gradient motion due 
to bacterial chemotaxis is relatively inefficient (17 = 0.268). The social parameters are 
a = 6.0, ß = 6.0. Individuals seek to have between 56 and 63 detectable neighbors. Figure 5 
displays the distribution of orientation angles at i = 100 in the simulations shown in figure 4, 
showing a tightened angular distribution in the social chemotaxis simulation compared to 
the asocial case. Figure 5 also shows the time-series of average up-gradient velocities for the 
same simulations, beginning with random initial conditions and continuing until t = 100. 
Velocity is stochastic in both cases, but higher for the social algorithm. 

Asocial Schooling 

Figure 4: Simulations of asocial and social chemotaxis at t = 100 with N — 64. The left panel 
displays the positions of individuals for the asocial, "bacterial" chemotaxis algorithm whereas 
the right panel displays positions of individuals for the "social" chemotaxis algorithm. The 
gradient is uniform and increases to the right. 
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Figure 5: Simulations of asocial and social chemotaxis. Orientation angles show a tightened 
angular distribution in the social chemotaxis (top right) compared to the social case (top left). 
Bottom panel displays time series of average up-gradient velocities for the same simulations. 
Velocity is stochastic in both cases, but higher for the social algorithm. 
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Effect of group size 

Here, we address the question of how large a group must be before the individuals start 
experiencing the benefits of schooling and whether there are diminishing returns at large 
group sizes. 

Figures 6 and 7 show the gradient-climbing velocity as a function of group size. Figure 6 
shows the histograms of average velocity over the interval 0 < t < 30, for asocial searchers and 
social searchers in groups of 8, 16 and 32. Asocial search is represented by 1024 individuals; 
social searches are represented by the same number of individuals arranged in groups of 
several sizes (128 runs of 8 individuals, 64 runs of 16 individuals, 32 runs of 32 individuals). 
Figure 7 shows the median, 10th and 90th percentiles of group velocity as function of group 
size. Included in this plot are groups of 64 and 128 (32 runs for each). Parameters are as in 
figure 4, except that in each social simulation the number an individual seeks is 7/8 of the 
total number of individuals (e.g., 28 neighbors for N = 32). 

For the current simulations, the group need not consist of very many individuals to provide its 
members with a searching advantage. Schools with as few as eight members do substantially 
better on average than isolated individuals. Also, we see that chemotactic efficiency increases 
with group size until roughly 64 individuals and that further increases in size have little effect 
on up-gradient velocity. 

Another effect of increasing group size is to decrease the variation in searching success be- 
tween individuals as seen by the difference between the 10t/l and 90"1 percentile searchers 
falling with increasing group size. 
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Figure 6: Gradient-climbing velocity as a function of group size. Displayed are histograms 
of average velocity for asocial searchers and social searchers in groups" of 8, 16 and 32. 
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Figure 7: Median, 10"1 and 90*'1 percentiles of group velocity as a function of group size. 

3.3    Perfect vision : a non-spatial approximation to social chemo- 
taxis 

As the group size and density grow, stochasticity in the behavior of each member has a 
relatively weaker effect on group motion and the behavior of the group as a whole becomes 
more consistent and predictable. Consider now a school of large size and high density, and 
assume that the school is strongly cohesive i.e., the group always remains together and the 
grouping tendency is invoked relatively seldom by a typical member and can be neglected. 
In this dense and cohesive school, individuals might be said to have "perfect vision", because 
they almost "see" amongst their neighbors a large and representative sample of the angular 
distributions of the group as a whole. The distribution of orientation angles can be seen to 
evolve as 

dP(e,t) 
dt 

^DieW,t)-ß§-e 
(/•9+ir rO N 
Jo      p(6')d9' - J^ p{ff)dff (9) 

where the first term corresponds to the chemotactic behavior and the second term corre- 
sponds to the alignment behavior — an individual's equal probability of choosing any one 
of its neighbors at a given time, ß is the rate of turning towards neighbor's headings. This 
non-linear partial integro-differential equation cannot be solved analytically in general and 
is hence solved numerically. Solutions of (9) are consistent with simulations discussed above 
— increasing rate of alignment, ß results in more rapid convergence about the up-gradient 
direction and tighter equilibrium angular distributions (see figures 8 and 9). 
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Figure 8: Orientation angle distribution under the "perfect vision" scenario for asocial search- 
ing (ß = 0) and three choices of the alignment parameter, ß (in all cases, d = 2). The top 
panel displays the equilibrium distribution of orientation angles, showing tightened distribu- 
tions for stronger alignment tendency. The bottom panel shows average up-gradient velocity 
as a function of time with initially uniform angular distributions. Stronger alignment ten- 
dency results in a faster response to the gradient and higher up-gradient velocity. 
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Figure 9: Average up-gradient velocity under the "perfect vision" scenario as a function 
of the rate of alignment, ß. Velocity initially increases rapidly with ß, then saturates and 
approaches the maximal value asymptotically. 

Response to time-varying signal 

The calculations so far have all considered an initially uniform angular distribution and con- 
stant (albeit noisy) chemotactic signal. In a more realistic environment, where concentration 
of the chemotactic substance varies in time and space, the direction of the large-scale gra- 
dient might change as the searchers swim along. To climb gradients effectively under these 
circumstances, searchers need the ability to adjust and correct heading direction. 

In the example in figure 10, the gradient is initially pointed in the negative y-direction. 
After an initial period of 5 time units, during which the school orients perpendicularly to 
the x-axis, the gradient reverts to the usual s-direction orientation. The school must then 
adjust to its new surroundings by shifting to climb the new gradient. This example shows 
that alignment works against course adjustment — the stronger the tendency to align, the 
slower is the group's reorientation to the new gradient direction. 

3.4    Conclusions 

Social chemotaxis is essentially bound up in the statistics of pooling the outcome of many 
unreliable decisions — if averaging decisions among a large group of individuals at one instant 
can substitute in part for averaging many decisions by a single individual over space and 
time, then each member of the group may arrive at the "right" decision more quickly and 
with greater accuracy than it would in isolation. 
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Figure 10: Response to changing gradient directions under the "perfect vision" scenario for 
asocial searching (ß = 0) and three choices of the alignment parameter, ß. These calculations 
are the same as those in figure 8, except that the gradient is along the y-axis (6 = — TT/2) 

for the time interval 0 < t < 5, and reverts to the usual orientation (0 = 0) thereafter. 
The top panel displays transient angular distributions at t = 20, showing lower degrees of 
adjustment to the new gradient direction for stronger alignment tendencies. The bottom 
panel displays average up-gradient velocity as a function of time. Although the equilibrium 
velocity is highest for the strongly aligning case, strong alignment also prevents a group from 
rapidly correcting course when the gradient direction changes. In this particular scenario, 
an intermediate tendency (/3 = 1) appears to result in the highest up-gradient motion. 
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4    Slime mold aggregation 

After exhausting their food supply, the amoebae first tend to distribute themselves uniformly 
over the space available to them, but later they begin to aggregate in a number of centers. 
The point of view taken here is that early in the life cycle of the amoebae the properties 
of the cells are such that a uniform distribution is stable. Random non-uniformities which 
inevitably occur in a real system, decay. At some point in the life cycle of all the cells, 
however, the characteristics of the individual cell change in such a way as to make the 
uniform distribution unstable. Hence, the initiation of aggregation is viewed as a breakdown 
of stability. This point of view does not require that cells be distinguished. 

Here, we derive a simplified model for the chemotactic motion of amoebae and analyze the 
linear stability of the uniform state. The conditions for instability illustrate the balance of 
effects responsible for aggregation. Linear theory will provide a spatial pattern of aggre- 
gation corresponding to the largest temporal growth rate. The pattern which is actually 
observed and the saturation mechanism for arresting the growth will, no doubt, depend on 
the nonlinear effects. 

4.1     Formulation 

Acrasin is the chemotactic attractant that is produced by cells. Let a(x,y,t),p(x,y,t) and 
r](x,y, t) represent the concentration (mass per unit area) of amoebae, acrasin and acrasinase 
respectively. Acrasin is produced by the amoebae at a rate f(p) per amoeba (allowing for the 
acrasin production to depend on the ambient acrasin concentration). Acrasinase is produced 
by the amoebae at a rate g(p,rj) per amoeba (allowing for the acrasinase production to 
depend on the ambient acrasin and acrasinase concentrations). Acrasinase is an enzyme 
which breaks down acrasin by first forming a complex C (of concentration c) which dissociates 
into the free enzyme (acrasinase) plus the degraded product i.e., 

p + 77 ^ C -A 77 + product. 

Acrasin, acrasinase and the complex undergo Fickian diffusion. The amoeba concentration 
changes as a result of an oriented chemotactic motion towards positive acrasin gradient and 
a random motion analogous to diffusion. Hence, we have 

da/dt = -V-(DiV/9) + V-(D2Va) (10) 

dp/dt = -k1pV + k.1c + af(p) + DpV2p (11) 

dc/dt = klP7] - (fc_x + k2)c + DcV
2c (12) 

drj/dt = -k1prj + (k^1 + k2)c + ag(p,rl) + Dr,V2rj (13) 
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Here ki,k-i and k2 are the rate constants for the acrasin-acrasinase reaction, Dp,Drj and 
Dc are constant coefficients of diffusion and D1 and D2 are functions of p and a and measure 
the strength of the influence of the acrasin gradient on the flow of amoebae and the vigor of 
the random motion of the individual amoebae respectively. 

4.2 Simplification of chemistry 

Notice that the amoebae respond chemically only to acrasin. The effect of acrasinase and the 
complex is to remove acrasin from the system. Here, we make some assumptions which allow 
us to model the effect of chemistry through a destruction term for acrasin which depends 
only on the ambient acrasin concentration. This leads to a simplified two equation model 
for the amoebae and acrasin concentrations. 

The first is Haldane's assumption that the complex is in a steady state with regard to the 
chemical reaction : 

klPT) - (fc_! + k2)c = 0. (14) 

Next, we assume that the total concentration of enzyme (both free and bound) is a constant, 

Vo- 
T) + C^T]o. (15) 

Equations (14) and (15) are an alternative to (12) and (13). 

It follows from (14) and (15) that 

r, = T?O/[1 + Kp] where K = fci/(fc_i + h) (16) 

With (14) and (16), (11) becomes 

dp/dt = -k{p)p + af(p) + DpV
2p, (17) 

where 
k(p) = Vok2K/(l + Kp). (18) 

Rewriting (10) 
da/dt = -V^xVp) + V-(D2Va) (19) 

Equations (17), (18) and (19) form the simplified model for a and p. 

4.3 Linear stability of the uniform state 

A uniform state for the amoebae and acrasin prior to aggregation appears to be consistent 
with observation. Equations (17), (18) and (19) possess an equilibrium solution of the form 

a = a0,p = po (20) 
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where ao and po are constants such that the rate of acrasin production matches the rate of 
acrasin destruction i.e., 

aof(po) = k(p0)p0. (21) 

We perform a linearized temporal stability analysis about this state. Hence, expand 

a(x,y,t)   =   a0 + ä(x,y,t) (22) 

p{x,y,t)   =   p0 + p(x,y,t) (23) 

valid for small perturbations about the uniform state. Upon substitution into (17), (18) and 
(19) and ignoring higher than first-order terms in the fluctuations, we obtain 

dp/dt   =   -kp + a0f'(po)p + f{po)ä + DpV2p (24) 

da/dt   =   -D1{a0,po)V2p + D2(a0,p0)V
2ä (25) 

where a prime denotes a derivative and 

k = k(p0) + pok'(p0). (26) 

The linearized equations (24) and (25) have coefficients which are not functions of space or 
time and so we seek solutions of the form 

ä   =   ä cos(qiX + q2y)exp(at), (27) 

p   =   p cos^z + q2y) exp(ai) (28) 

Substituting (27) and (28) into (24) and (25), we obtain 

(F-a)p + f(po)a = 0, (29) 

Diq
2p-(D2q2 + a)a = 0, (30) 

where it is understood that D\ and D2 are evaluated at a = üQ, p = po, and 

q2=ql+ql    F = f'(p0)a0 -k - q2Dp. (31) 

For a non-trivial solution, the determinant of the coefficients vanishes i.e., 

er2 - a(F - q2D2) - (q2f(po)D1 + q2D2F) = 0. (32) 

This is a quadratic equation in a of the form 

a2 + ba + c = 0. (33) 

The discriminant (b2 — 4c) is positive and hence the roots are real. The condition for stability 
is that both the roots be negative or b > 0 and c > 0 i.e., 

F<q2D2,   F<-f(p0)D1/D2. (34) 
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Since f(p0),D1 and D2 are positive, F < —f(pQ)Di/D2 is sufficient. For a given value of q, 
the sole condition for stability is thus 

Dlf(p0) + D2f'(Po)a0 < D2(k + Dpq2). (35) 

Instability will occur if the left side of the above equation exceeds the right side. This will 
first occur for disturbances associated with a zero value of q (by solving (32) one can also 
show that unstable disturbances with q = 0 always grow fastest). The instability condition 
is, therefore, 

~T2r + —k—>1- (36) 

Rewriting using (21), we have 

^ + ^>l. (37) 
D2a0 k 

Here, we discuss the physical mechanisms responsible for aggregation as indicated by the 
instability condition (36). 

Case 1 : D1f(p0) > D2k 

This is the only effect in the event that acrasin production is independent of the ambient 
concentration of acrasin (i.e., f(p) a constant). Suppose there is a high concentration of 
amoebae and acrasin initially at some point P. The greater the equilibrium acrasin produc- 
tion rate, /(/Jo), the more rapidly the local concentration of acrasin-producing amoebae at P 
raises the acrasin level still further. In addition, a large value of Di will cause the amoebae 
near P to be more strongly attracted by the relatively high concentration of acrasin at P. 
Hence, a slight perturbation can reinforce itself. On the other hand, a large value of D2 indi- 
cates a strong tendency to smooth out the local maximum in amoeba density by "diffusion". 
Similarly, a large value of the decay coefficient k, will more effectively flatten out the local 
maximum in acrasin density. When a0f'{p0)/k is negligible compared to one, it is thus the 
relative predominance of the combined effects of diffusion and decay on the one hand, and 
acrasin production and the chemotactic response on the other hand, which determine the 
stability or instability of a uniform distribution of amoebae and acrasin. 

Case 2 : a0f'(p0) > k 

This implies that a small increase in acrasin level causes an increase in acrasin output which 
outweighs its more rapid decay. This would lead immediately to an instability in the level 
of acrasin. This effect cannot operate in isolation of the previous one as that would require 
that Di ;= 0 which would make the amoeba not responsive to acrasin, and aggregation would 
not be observed. 

108 



4.4    Discussion 

What does perturbation with q = 0 mean ? 

If territory size is identified with the wavelength of the most unstable disturbance, then the 
theory predicts infinite territory sizes. Really what the prediction q = 0 is saying is that 
the wavelength at the onset of aggregation is so large that it cannot be quantified in this 
somewhat crude model. 

Effect of threshold in the chemotactic response 

Let us assume that the amoebae are not sensitive to acrasin gradients unless the spatial 
average of \Vp/p\ is larger than some constant a. The instability condition is modified to 

-Djr + —r->l+Dp-r- (38) 

Thresholding is believed to have the effect of limiting territory sizes. Because an amoeba 
sensing the local gradient can move up a gradient even if the signal to noise ratio was fairly 
low, it is unclear whether it makes sense to threshold the chemotactic response. 

What properties are not necessary for aggregation ? 

Encouraging agreement between the experiments and the predictions made by this theory 
shows that the following properties are unnecessary to explain the onset of aggregation and 
the non-random spacing of centers : (a) markedly special properties of the centers; (b) 
acquisition of stickiness; (c) abrupt changes in cellular physiology; (d) orienting pulses paced 
by the center; (e) a spacing substance. 

109 



References 

1] ALT, W. 1980 Biased random walk models for chemotaxis and related diffusion approx- 
imations. J. Math. Biol. 9, 147-177. 

2] DAVIS, C. S., FLIERL, G. R., WIEBE, P. H. & FRANKS, P. J. S. 1991 Micropatch- 
iness, turbulence and recruitment in plankton. J. Mar. Res. 49, 1-43. 

3] GRÜNBAUM, D. & OKUBO, A. 1994 Modeling social animal aggregations. Frontiers 

in Theoretical Biology (ed. S. A. Levin) Lecture Notes in Biomathematics, vol. 100, 

Springer-Verlag. 

4] GRÜNBAUM, D 199X Schooling as a strategy for chemotaxis in a noisy environment, to 

appear. 

5] KELLER, E. F. & SEGEL, L. A. 1971 Model for chemotaxis. J. Theor. Biol. 30, 
225-234. 

6] LEVIN, S.A. 1986 Random walk models and their implications. Mathematical Ecology 
(eds. T. G. Hallam & S. A. Levin) Biomathematics, vol. 17, Springer-Verlag. 

7]  MURRAY, J. D. 1993 Mathematical Biology Biomathematics, vol. 1, Springer-Verlag. 

8] OKUBO, A. 1980 Diffusion and Ecological Problems : Mathematical Models Biomathe- 
matics, vol. 10, Springer-Verlag. 

[9] OKUBO, A. 1986 Dynamical aspects of animal grouping : swarms, schools, flocks, and 
herds. Advances in Biophysics 22, 1-94. 

[10]  OTHMER, H. G., DUNBAR, S. R. & ALT, W. 1988 Models of dispersal in biological 
systems. J. Math. Biol. 26, 263-298. 

Notes compiled by Scott Stewart and Amar Gandhi. 

110 



Lecture IX: Glenn Flierl - The Physics of Patchiness 

Example 1: A patch in a shear flow 

Let the density of a certain biological population be described by the Fokker-Planck equa- 

tion: 

^=V2(tf(*,n)-n) (1) 

and let K be described by an areal integral of a weighting function multiplied by the 

concentration of organisms: 

*(*,n) = F (//.(*,* W*) 

where it; is a monotonically decreasing function of the distance (x — x'), and F decreases 

monotonically with the weighted density, n. We require that 

Jl«*'** 'x = 1 

An example: Let us impose a simple shear flow field: u = (u, v) = (Sy, 0), and choose a 

simple weighting function: 

w(x,x') = ^KoM     . (2) 

Defining m by: 

and using the fact that w is — j2 times the Green's function G which satisfies 

(V2 - 7
2) G = S(r)    , (3) 

we get 

(V2 - 72) m = -72n (4) 
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which is coupled to equation (1): 

Dn 
m      V2(F(m).n)     . (5) 

Denoting spatial averages by overbars, we notice from (4) that fh = n, since V2m = 0. 

Spatially averaging equation (5), we also see that n is an equilibrium solution, since ^ — Q 

Letting primes denote the deviation from the spatial average, we can linearize equation 

(5) around the equilibrium solution 

(l+*s)*-*,('w-'+*£M • 
Assuming a normal mode solution in space and a growing mode in time, n oc e^V*1, we 

find 

(a + Syik)n' = V2 fom) • n' + ^^™') (6) 

and 
d2 

i 

d 

k2 - -^ + 72 ) m' = 72n'    . 

Solving for the special case k = 0 and j- —> il, we find that 

, 72       , 

which can be plugged into equation (6) to give 

From this solution, we can see that an instability will develop if the term in brackets is 

negative. For the particular choice of F 

F(m) = e~Xfh    , 

an instability will develop if 

72     J n 
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I 
I 
1 

With growth in the band 0 < I2 < j2(Xn — 1), this solution indicates that a sufficiently- 

dense population can group into bands oriented along the shear. In the absence of shear, 

the bands can be arranged in any direction and we might expect the patch distribution to 

I be isotropic. Equation (6) suggests that shear may break up patches which vary in x. 

Numerical experiments with equations (4) and (5) shown in Figure 1 demonstrate the 

evolution of patches and the alignment in the presence of shear. 

I Example 2: Circulation and biology around Georges Bank 

M We can model the (steady) flow past Georges Banks as flow in a rectangular region, with 

solid northern and western boundaries, and constant inflow along the eastern boundary. 

The bank is represented as a circular bump (Figure 2). 

I 

1 
I The equation for conservation of potential vorticity in this inviscid system is: 

I 
I 
I 
I 
I 
I 
i 
i 
I 

where /i(x) is the depth of the fluid at x, ( is the vertical component of the relative vorticity, 

defined by 
dv      du 
dx      dy 

and / is the Coriolis parameter, approximated by 

f = fo + ßy   ■ 

For the steady state or rigid lid system, the conservation of mass equation is simply 

V • (üh) = 0    , 

so we can write the velocity in terms of a stream function, ip: 

uh = —Hij)y   and vh = HxJ>x 
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Letting q be the potential vorticity 

V-fV^ + Zo+ly 
q- l , (8) 

we can rewrite equation (7) as follows 

which indicates that q is constant along streamlines. 

At the eastern boundary, both the depth and velocity are constant, with h = H, and 

u = UQ. The stream function and potential vorticity in this region are therefore 

V = -U0y  and  q = ——— = — I/o - —ip 

Because the potential vorticity is conserved along streamlines, this solution for q must hold 

at all points in the domain. (This is not strictly true for regions where the streamlines are 

closed, but we will assume that q has the same form along closed streamlines.) Plugging 

this solution for q into equation (8) gives an equation for tp everywhere in the domain: 

or, if we assume that the height of the bottom topography is small compared with the 

maximum depth (i.e. that -g « 1), 

,2 ,   ß \ _,        H-h 
^+mr=—H-A-"' ■ (9) 

Solving first for the inertial boundary current away from the bank (where h — H), we find 

that 

V>i = -Uoy | 1 - exp ( -Jjj-x 

or, if A = _fc2 

fa = -U0y (1 - e~kx) 
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Figure 2: Topography, showing shallow bank in rectangular region with uniform 
inflow 

Figure 3: Streamfunction for the flow 
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this figure, the scale of the bank was taken to be twice the characteristic width of the 

inertial boundary current - i.e. ro = 2k) 

d      ( .    d       .    d 
B = g(h)B - aB2 + KV2B (10) 

72; 

I. In one dimension, if the velocity is zero and the growth is assumed constant, equation 

(10) simplifies to Fisher's equation 

dB_,„n       „9 .  „d2B 
~dt ~ 

which has two equilibrium solutions 

B = 0  and B = - 
a. 
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I 
i In the region of the bank, (where h decreases,) ( must also decrease to conserve potential 

vorticity, resulting in clockwise (anticyclonic) circulation around the bank. The equation 

for ^2 in this region is 

(V2-*2)^2==-^/o | 

with the boundary condition that ^2 goes to zero on the eastern boundary. This equation 

can be solved with Green's functions and the method of images. I 
The combined solution for the stream function (V>i + ^2) is shown in figure 3. (Note: for J[ 

I 
I Now, we can add some simple biology to this model. 

The biological model follows an unstructured population of organisms (B) described by '■ 

the following equation: 

DB i 
l 
1 

where g(h) is the growth function, aB2 represents logistic interactions, and KV2B repre- 

sents the horizontal diffusion of the organisms. The growth of the organisms is assumed 

to be a function of depth, because the region is relatively shallow, and the mixed layer 

extends over the full depth. ■ 

Solutions: I 
I 

f = g{h)B-aB^K^ (1!) I 

I 
I 
I 



The unsteady solution connecting these two equilibria takes the form of a moving diffusion- 

growth front. We assume the following form for the solution: 

B = B{x - ct)    . 

Plugging this solution into equation (11) gives 

dB        „       „,     „<PB 
-c- = gB-*B>+K— 

which has a solution 

B=9- 
a 

in which w is the length scale of the front 

1      1       , o x       1       .   x 
- H— tanh tanh — 
4     4 w      2 w 

I 
| 

1 
I 
1 
1 
I 
I 
I 
i 
i 
i 
i 
t 
I we can rewrite (10) as 

| £-(*H?-5)* + * 

I 
I 
I 

The speed at which the front propagates is then given by 

t = ^ • 

This is quite close to the minimum speed (c = 2) which tends to be the solution developing 

from a step function (or very sharp) initial condition (c.£, Murray, 1990). 

II. There is also a straightforward solution for the one dimensional case with non-zero 

velocity and growth. First, using the following transformation: 

dS      ( ,.v     ux     u2\ <^5 
dx2 

Assuming the solution has the form 

5 = <j>(x)e'rt    , 



we find that 
.d2(f> (       ux     u2 

— Schroedinger's equation. The growing modes correspond to bound states. 

We can model the growth of the biology over Georges Bank using 

9 = 90 (l - ^) (12) 

where ro is the half-width of the (one-dimensional) bank. In this form, the growth equation 

gives maximum growth over the bank, where the mixed layer depth is shallow, and light 

is more available. 

Taking u constant, we can integrate equation (12) to give 

<f> = exp 
P 

where I2 = 2,/^r0. V 9o 

Also, solving for a gives 
u 2 

cr = go 
y/Kg 

2K        r0 

which indicates that the population on the bank can only grow if u is small relative to #o 

and K. Specifically, population growth is not possible if 

2. „W_       VK9~o\        __:r  _   .    \K 
uz > IK   go -       ,   or if  r0 < \ r0    J y g0 

The characteristic speed, c, and scale, w, in Fisher's equation for the same parameter set 

are 
'K 

c « yKgo   ,   and w = 
" 9o 

so that the flow speed must be smaller than the propagation speed of a diffusive-growth 

front and the bank scale must be larger than the characteristic front width in order for 

growth to occur. 
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The final solution for B is then 

B = exp ( I -V) fa* 

The first exponential in this equation acts to shift the peak in the population of organisms 

downstream from the region of peak growth. 

III. In two dimensions, if we assume that u is large relative to K and g, the biology will 

predominantly be confined to the region over the bank, where the streamlines are closed. 

In this case, we can find a first order solution, BQ, that satisfies a simplified version of 

equation (10) 

^xBy-tpyBx = J(ip:B) = 0    , 

which indicates that Bo is purely a function of xj>. The corresponding second order equation 

is then 

+ J(<P,B1) = gBo-oiB
2

0+KV2B0    . 
dt 

We can eliminate B\ from this equation by integrating over the region between two closed 

streamlines. The resulting equation is 

A^- = A (^j1) Bo - AoiBl + <f      KVBo • n - /       KVB0 ■ h   . 
^"" \     ■"■    / Jouter Jinner 

Dividing by A and defining average growth and diffusivity parameters, we can rewrite this 

equation as 
dBQ R2J_   d ^dB 
— = gBo - «B0 + -K— 

where 

$vhidS  ' 
The numerical solution for this two-dimensional case is shown in figures 4, 5, and 6. A 

similar case with a source of biology in the northwest corner of the domain is shown in 

figure 7. The sepatrix and stagnation points may play a significant role, since g limits to 

the value of g at the stagnation point, while the diffusivity K vanishes to this order (since 

the circulation time is infinite). Matching to the exterior can be rather tricky. 
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The problem of pattern and scale in ecology 
Simon Levin, July 8 & 11, 1994 
Credits : 
Professor Levin layed out a mosaic of interesting problems in ecology and evolutionary biol- 
ogy which are amenable to mathematics. These lecture notes rely heavily on Prof. Levin's 
papers — Levin (1992), Gueron & Levin (1995), Iwasa & Levin (1995), Gueron & Levin 
(1993) and Durrett & Levin (1994); entire paragraphs have been lifted word for word from 
these papers in the writing of §1 — 5. The material reported in §6 is original work of the 
author of these notes. 

1    Introduction 

It is argued that the problem of pattern and scale is the central problem in ecology, unifying 
population biology and ecosystems science, and marrying basic and applied ecology (Levin, 
1992). Applied challenges, such as the prediction of the ecological causes and consequences 
of global climate change, require the interfacing of phenomena that occur on very different 
scales of space, time, and ecological organization. For example, the general circulation models 
that provide the basis for climate prediction operate on spatial and temporal scales many 
orders of magnitude greater than the scales at which ecological studies are carried out. It is 
crucial to learn to interface the phenomena occurring at different levels. 

Furthermore, there is no single natural scale at which ecological phenomena should be stud- 
ied; systems generally show characteristic variability on a range of spatial, temporal, and 
organizational scales. The observer imposes a perceptual bias, a filter through which the 
system is viewed. This has fundamental evolutionary significance, since every organism is 
an "observer" of the environment, and life history adaptations such as dispersal and dor- 
mancy alter the perceptual scales of the species, and the observed variability. It likewise has 
fundamental significance for our own study of ecological systems, since the patterns that are 
unique to any range of scales will have unique causes and biological consequences. 

The key to prediction and understanding lies in the elucidation of mechanisms underlying 
observed patterns. Typically, these mechanisms operate at different scales than those on 
which the patterns are observed; in some cases, the patterns must be understood as emerging 
from the collective behaviors of large ensembles of smaller scale units. In other cases, the 
pattern is imposed by large scale constraints. Examination of such phenomena requires the 
study of how pattern and variability change with the scale of description, and development 
of laws for simplification, aggregation, and scaling. 

In this lecture, an attempt is made through four examples to address the theme of relating 
phenomena occurring at different levels of description. The first example looks at group 
size distributions emerging from social dynamics (occurring at individual level). The second 
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example focuses on temporal patterns, specifically, the timing of life history events in response 
to environmental conditions as selected by evolution. The third example tries to explain 
the striking spatial patterns of wildebeest herd fronts as an emergent property of the rules 
followed by individual animals whose view of the world is far smaller than the observed large- 
scale patterns. The fourth example uses extensions of the hawk-dove game to study effects 
of discreteness and spatial structure at the micro-level on macro-level behavior. Finally, we 
discuss connections with similar efforts made in physics (condensed matter, fluid dynamics) 
to relate properties at different levels of description. 

2    The dynamics of group formation — Fission/Fusion 

In this section, an attempt is made to relate group size distributions to processes of aggre- 
gation (fusion) and splitting (fission). Both of these processes can be related to individual 
behavior. For example, the decision of an individual to join or not join a group of size n, as 
well as the decision by individuals in a group of size n to permit or not permit an additional 
individual to join, may be represented in the fusion rate of groups of size 1 and groups of 
size n. A central question is to see whether modal group size is an epiphenomenon, not one 
preferred or even perceived by individuals. 

Below, we derive an integro-differential balance equation for the time evolution of a group 
size distribution. Setting the time derivative in this equation to zero yields the equation that 
the stationary distribution must satisfy. Explicit solutions are found when the fission/fusion 
scenario is simplified. Resulting stationary distributions are discussed. 

Generality of approach is sacrificed here to illustrate the program. Details like including sex 
in the species are ignored. Working out the general solution for the stationary distribution 
equation and studying its stability properties is under progress and the reader is urged to 
consult the source (Gueron & Levin, 1995) for more details. 

2.1     The model 

We consider a continuous model where a population of total size P is distributed into groups 
of size x (s € [0, oo)). Let f(x,t) denote the density distribution of groups of size x at time 
t. Assuming that all of the moments (about 0) of f(x,t) exist (f(x,t) is constrained to have 
an exponentially decaying tail), we denote 

Mn{t) = I   znf(z,t)dz = the nth moment about 0. (1) 
Jo 

Further, 

/•oo 

G(t) = M0{t)=        f{z,t)dz   =   Total number of groups (2) 
Jo 
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roo 

P(t) = Ml(t) =        zf(z,t)dz   =   Total population size (3) 

For now, we restrict attention to fixed population size and so P(t) — P. 

In the following, we discuss the stationary distributions (f(x)) and their associated moments 
(Mn). Their time-independence is distinguished by omittance of explicit time-dependence. 

The model rests on two density-dependent functions, 

ip(x,y)   —   probability per unit time for two groups of sizes x and y to merge. 

4>{x,y)   =   probability per unit time for a group of size x to fragment and 

generate groups of size y and (x — y) (ignoring breakage into 

multiple fragments). 

Of course, 

</)(x, y) = <j){x, x — y)       (by definition) (4) 

x <y =>■ (f>(x,y) = 0       (fragments are smaller than the "mother" group) (5) 

ip(x,z) = tjj(z,x)       (by symmetry) (6) 

We also introduce 

p{x)   =   probability per unit time of a group of size x to break into two fragments, 

Q(x,y)   =   probability that, given that a group of size x breaks into two fragments, 

the fragments are of size y and x — y. 

Clearly, 
<ß(x,y) = p(x)Q(x,y) (7) 

and p(x) is simply half (because of double counting) the integral of <f> over all possible group 
sizes smaller than x i.e., 

1   fx 1 fx 

P(X)=2J    ^Z>)dz = 2P^ J   Q(x>z)dz (8) 

so that, provided p(x) ^ 0, 

fXQ(x,z)dz = 2. (9) 
Jo 

2.1.1    Evolution equation for the group size distribution 

The time evolution of the density distribution of groups is the result of the balance between 
fission and fusion : 

df(x,t) 

dt 

poo 
-p(x)f(x,t)- /    f(x,t)f(z,t)^(x,z)dz 

Jo 

+2Jo f(y^^x-y^^y'x-y)dy + Jx fiv^iy^y    (10) 
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where the four terms reflect respectively fragmentation of groups of size x, amalgamation of 
groups of size x with other groups, generation of groups of size x by merging of two smaller 
groups and fragmentation of larger groups into fragments, one of which is of size x. 

2.1.2    Equation for the stationary distribution 

By setting the time-derivative in the above equation to zero, we obtain the equation for the 
stationary distribution, f(x) : 

/•oo ]_     rx i-oo 

-P{x)f(x)-f(x)j     f(z}il>(x,z)dz + -J   f(y)f(x-y)i>(y,x-y)dy+J    f(y)<j>(y,x)dy = 0 
(11) 

We are interested in the structure of the distribution — to see if there is a peak corresponding 
to the "most frequent group size" which appears endogenously from the social dynamics. It 
would be instructive to study how and when this peak appears, what determines its position 
and width, whether multiple peaks are admissible and so forth. More generally, we would like 
to examine the existence, uniqueness and stability properties of the stationary distribution. 

2.2     Simplified scenario 

In order to make the model more tractable, we assume that Q(x,y) is independent of y 
i.e., the conditional distribution for fragments is uniform. Hence, Q(x,y) = -, implying 
cf>(x, y) = |p(a:). Further, we assume that the symmetric function tp(x, y) is separable, so that 
■4>{x,y) = aa(x)a(y), where a(x) is some nonnegative function. Also, we restrict attention 
to the special form for p(x) viz., p(x) — ßxa(x) which implies that <f)(x,y) = 2ßa(x). a and 
ß are some positive constants. 

With this, the stationary distribution equation becomes 

/•oo 

—ßxa(x)f(x) — aa(x)f(x) /    a(z)f(z)dz 
Jo 

2       r& /-oo 
+2al a(y)f(y)a(x-y)f(x-y)dy + 2ßjx <y)fWy = o (12) 

At this point, any specific case of the model is defined by the choice of the function a(x) and 
the parameters a and ß. 

2.2.1    Exact solution 

In the above simplified equation for the stationary distribution, notice that a(x) and f(x) 
always appear together with the same arguments and so, if we define the auxiliary function 
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g(x) = a(x)/(x), the equation reduces to 

- ßxg(x) - ag(x) /    g(z)dz + -a /   g(y)g(x - y)dy + 2/3 /    g{y)dy = 0       (13) 
JO 2     J0 Jx 

which incidentally is the equation for /(x) if a(x) = 1. 

The solution by the method of Laplace transform is 

g[x) = 2— exp 
a 

2 

4j- (14) 1 

Returning to the general case we write the stationary solution 

f{x) = 2^e-A* (15) 
aa(xj 

where the value of A is determined by the equation 

P = 2- [" -^e~Xzdz (16) 
a Jo  a.{z) 

This result is valid for any positive a{x) with algebraic asymptotic behavior at x —> oo (to 
ensure all moments exist). Singularity occurs when a(0) = 0 (e.g., for a(x) — x), although 
the integral may still converge. Consequently, to ensure that the population (P) remains 
finite, we must restrict the choice a(x) to satisfy 

Ü3 =*?><> (") 
a(x) 

x->0    £ 

This explicit solution proves the existence and uniqueness for the stationary distribution. 

From equation (15), it is easy to see that for every choice of nondecreasing function a(x), the 
resulting stationary distribution is a monotonically decreasing function of x. On the other 
hand, we conclude that any choice of a decreasing function a(x) yields a group size stationary 
distribution that has at least one local maximum. Below, we look at some concrete examples 
of a(x) to bring these points out. 

2.2.2    Three typical examples 

We focus our attention on three typical examples, where the function a(x) is constant, 
decreasing, or increasing. Figure 1 shows the stationary distributions in these three cases. 

Case 1 : a(x) = 1 

Here, we have ip[x,y) = ct,p(x) = ßx, and <j)(x,y) = 2/3. In this case, group fusion is 
independent of group size; that is the probability for a group of size x to merge with a group 
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a{x) = 1 
a(x) = x 
a(x)   =  1/x 

10 

Figure 1: Stationary distributions for a(x) = 1 (exponential distribution), a(x) = x (singular 
distribution), and a(x) = 1/x (distribution with local maximum), a = ß = X = 1. 

of size y is constant (independent of x and y). Furthermore, group fission is proportional to 
group size. 

The stationary distribution is an exponential distribution of group sizes, in which the most 
frequent groups are the "small ones". 

Case 2 : a(x) = x 

Here, we have ip(x,y) = axy,<f>(x,y) = 2ßx, and p(x) = ßx2. This accounts for grouping 
behavior in which large groups are more "attractive" or likely to collide and merge with 
others than are smaller ones, in proportion to their size. Furthermore, larger and larger 
groups become increasingly unstable, so that the fragmentation rate increases nonlinearly 
with group size. 

The stationary distribution is singular at x = 0, i.e., we have small groups piling up near 
x = 0 and larger groups becoming less abundant. 

Case 3 : a(x) = 1/x 

Here, we have ip(x,y) = a/xy, <j>(x,y) = 2/5/x, and p(x) = ß. Thus, groups break at a rate 
independent of their size, for example due to external disturbances that affect all groups 
uniformly. Furthermore, the form oitp(x,y) suggests that solitary individuals, or individuals 
in small groups, do not remain in such groups for long. Possibly, due to the fact that it is 
disadvantageous to be in small groups, small groups merge at high rates to form larger ones. 

The stationary distribution has a local maximum corresponding to the modal group size. 
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2.3    Summary 

The problem of what determines group size distribution in nature is a fundamental one, 
carrying with it both ecological and evolutionary significance. Here, we see that a popula- 
tion can display a modal group size without having this quantity built explicitly into the 
dynamics. As individual behaviors change in response to cues, so too will the distribution 
of groups formed. 

3    The timing of life history events 

This section, drawing upon Iwasa & Levin (1995), investigates evolutionarily stable seasonal 
timing of life history events (emergence, germination, breeding or migration to find new 
sites). In each of these cases, the "early birds" have the greatest potential for high payoffs, 
and for securing favorable habitat, but may run the greatest risks of uncertain conditions. 
We suppose that following reproduction or germination there is a risk of disturbance, for 
example due to frost, storm, or predation and that such a disturbance event would kill 
all offspring already produced. If the last date of disturbance were known beforehand, the 
evolutionary tradeoff would be easily resolved : all individuals would germinate or breed just 
after the last distubance event. However, uncertainty exists regarding dates of disturbance. 
Hence, evolution will select for a compromise, balancing the tradeoffs between the higher 
risks and higher benefits of early germination. 

Let x be the last date of disturbance, and f{x) the probability distribution of x. We assume 
that f(x) has a single peak. The latest possible date of disturbance is denoted by tf. An 
example of such a distribution is 

f Cx^-1 (tf - x)C2-\   for  0 < x < tf 

/(*) = . (18) 
{ 0, otherwise 

The evolutionarily stable strategy depends upon the details of interaction of environment 
with the population. Some of these are : 

• Spatial scale of disturbance Disturbances may have a finite spatial extent and hence 
only affect individuals in a small area or may affect the entire population. We refer to 
the area affected by a single disturbance as a "patch". 

• Mode of competition Fitness of individuals may be determined by time allowed for 
growth or by whether they managed to occupy nest sites. 

• Mode of population regulation The dynamics of who wins and who loses in the 
game of life can occur over a small area or alternatively, in the presence of migration, 
over a large area. 
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3.1    Rank-independent fitness 

First, we consider a scenario with 

• Spatial scale of disturbance The environment consists of a number of patches, each 
having a different last date of disturbance. The distribution of number of patches 
having various last dates follows /(x) and is constant over generations. 

• Mode of competition Let tp(y | x) be the breeding success of an individual that 
begins breeding on day y given the last date of disturbance is x. The breeding success, 
provided individuals are not killed by the disturbance, decreases with the laying date 
y. A possible form for ip(y | x) is 

e-by,   if  y > x 
ip(y | x) = I (19) 

.    0,      if  y < x 

• Mode of population regulation There is ample mixing and population regulation 
takes place effectively over the entire population. 

Let 4>(y) represent the expected fitness of individuals that breed at time y. This is simply 
the fitness given that a disturbance did not occur i.e., 

<i>{y) =   /   ip(y \ x) f(x) dx 
Jo 

=    e-* f f{x)dx (20) 

Because 4>{y) is a non-negative continuous function on [0, £/], it generally attains its maximum 
at a single date y*. This suggests that all the individuals should evolve to start breeding 
synchronously on the same date. Some of them are killed because the disturbance in their 
patch comes later than y*, but reproduction in other patches in which the disturbance ends 
before y* will produce the next generation. The population on the whole is quite stable 
in recruitment because the fraction of disturbed and nondisturbed patches does not change 
between generations. 

3.2    Rank-dependent fitness 

Next, we consider the following scenario : 

• Spatial scale of disturbance There is only one patch i.e., the disturbance affects 
the whole area. 
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• Mode of competition The relative advantage of different breeding dates is given 
not by the absolute date but by the ranking within the local population. To illustrate 
this, suppose that a limited number (n) of nesting sites are available, and that only 
those who start breeding in one of these sites are able to breed. Then, to achieve some 
reproductive success, one must be included among the first n individuals that start 
breeding after the last disturbance date x. 

• Mode of population regulation Success in acquiring a nest site is the method of 
population regulation. 

Suppose that the reproductive success of an individual that starts breeding on day y is 

f e-./">«) *    if y>x 
ift{y | x) (21) 

0, if y < x 

where a is the parameter reflecting the intensity of competition and g(y) is the distribution 
of breeding dates. A very large value of a indicates very strong competition so that only 
those who start breeding just after the last disturbance can have reasonable reproductive 
success. In contrast, if a is zero, there is no advantage to start breeding earlier. 

The fitness of an individual with breeding date y is 

ftf 

<Ky) =   /   tp(y\x)f(x)dx 
Jo 

=    fyV«/*»(*>* f(x)dx (22) 
Jo 

The evolutionarily stable population will be comprised of a distribution of individuals, each 
with a different starting date. To see this, assume otherwise : if the population were com- 
posed only of individuals starting on a single "best date" y*, then a mutant that started 
breeding just before y* would have a large advantage, enjoying the best growing success in 
the population at the cost of a very small increase of risk. Hence, a distribution of breeding 
dates is the only evolutionarily stable strategy, which we denote by g*(y)- Further, this 
distribution will ensure that all breeding individuals have the same fitness (denoted by A). 
This is true by definition because if there were a date with better or worse fitness, then the 
distribution would be unstable. This implies that 

(j)(y) = A,   Vy such that g*(y) > 0 .    . 

<t>iv) < \   Vy such that g*(y) = 0. l    ' 

It may be shown that 

f(y)/ Jxt f(x)dx,   for  y > xc 

g*(y) = { (24) 
0, for  y < xc 

1 
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where the critical date xc is given by 

f f 

Jx   f{x)dx = - 
+ a (25) 

Figure 2 illustrates a couple of examples of this strategy. Equation (25) indicates that xc 

becomes very early (close to zero) if competition is intense (large a); in this case, g*(y) 
approaches f(y). In contrast, if the competitive advantage is small (small a), xc approaches 
t-f and breeding should occur only after the disturbances have almost surely passed. 

fix)   
g(x)   

0.8 ■ 

\ 
■ 

0.6 \ ■ 

0.4 ■ 

0.2 ^ "^ 

' 

• 

Figure 2: The evolutionary stable distribution of starting date for rank-dependent fitness 
scenario. f(x) = 3 x 10-5 x3 (10 — a;)2-5, (a) competitive advantage of starting breeding 
early is large and truncation thus occurs relatively early, (b) competitive advantage is small 
and thus the truncation date is late. 

3.3    Locally regulated population 

Here, we have the same scenario as in the rank-independent fitness case except for the 
mode of population regulation — there is no mixing prior to population regulation and so 
population is regulated on a local basis within each patch or subhabitat. This is termed 
"soft" selection in contrast to the "hard" selection occurring in the rank-independent case. 

The reproductive success of an individual with starting date y is proportional to that given 
in Eq. (19), but is normalized within each local population : 

ijj(y | x) = < 
e-by/JtJg(z)e-bzdz,   if  y > x 

0, if  y < x 
(26) 

The reproductive success of an individual with breeding date y is the average of tp over the 
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different local populations included in the whole population : 

^) = llw£^Tj{x)dx (27) 

The evolutionarily stable distribution satisfies the same conditions (given by Eq. (23)) as in 
the rank-dependent case. It can be shown that the distribution satisfying these conditions is 
again a truncated one, where no breeding occurs before a critical date xc but some oviposition 
occurs every day after xc. xc satisfies 

f{xc) = bH f{y)dy (28) 
Jo 

and the evolutionarily stable distribution of oviposition dates is 

r£(/(v)«-*)> if »>*c 
9*(y) 

where A is determined by 

(29) 
0, if  y < xc 

x = lir+ ff(y)dy (3°) 
Figure 3 illustrates a couple of examples of this strategy. The stable solution g*(y) is deter- 
mined by the environmental disturbance function f[x) and growth advantage b. xc decreases 
with b — if b is strong, then the critical date xc becomes early and g*(y) approaches f(y) 
but has a peak later than the peak of f(y). On the other hand, if b is weak, xc approaches 
if and most breeding starts on the date all possible disturbance ends. 

3.4    Synchronized disturbance 

The scenario addressed here is similar to the rank-independent fitness case with the difference 
that the disturbances are synchronized over the whole population i.e., there is effectively only 
one patch to consider. The arithmetic average of reproductive success is no longer the correct 
criterion for measuring evolutionary advantage; instead, we must use the geometric average 
because the function maximized is the average of logarithmic reproductive success (assuming 
the population has no overlapping generations). Therefore, we have 

<j>(y)= [tflog[i>(y\x)]f(x)dx (31) 
Jo 

The fitness ip(y \ x) is given as before by Eq. (19). The evolutionarily stable strategy is a 
distribution and can be specified by a probability distribution p(y). The logarithmic fitness 
is given by a functional of p(y) : 

<KK-)) = £ log \£ e"*p(yW] fix) dx (32) 
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0.4 

Figure 3: The evolutionarily stable distribution of starting date for locally regulated pop- 
ulation scenario, /(x) = 3 x 10~5 x3 (10 — x)2"5. (a) growth advantage is large (b = 1.5) 
and the truncation occurs relatively early, (b) growth advantage is small (b — 0.3) and the 
truncation date is late. If g(y) is regarded as a probability distribution for a mixed strategy, 
the same graph gives the optimal mixed strategy for the synchronized disturbance case. 

The evolutionarily stable strategy is the one that maximizes the above functional under the 
constraint 

(33) 
f f 

/    P{y)dy = 1 and p(y) > 0 
Jo 

This constrained optimization problem can be analyzed via Langrange's multipliers. It has 
the same mathematical structure as Eq. (23) and hence the optimal strategy is the same 
as obtained for the locally regulated population case. However, there is a crucial difference 
— in the case of locally regulated population both a mixed strategy (breeding dates 
following a distribution) and a mixture of pure strategies (all members of subpopulation 
breeding synchronously) achieve an evolutionary equilibrium whereas in the present case of 
bet-hedging, a single mixed strategy is optimal but a mixture of pure strategies is unstable. 

3.5    Discussion 

To summarize, we see that in the rank-independent case the optimal strategy calls for syn- 
chronous breeding-start. In other situations, asynchronous breeding evolves — either as a 
mixture of individuals having pure strategies or as a population choosing the breeding date 
according to a probability distribution. 

Another way to slice the problem is to consider the effects of Regulation) the spatial scale 
over which population regulation occurs versus -^disturbance, the patch-size. If Regulation ~> 
•^disturbance a pure strategy is expected to evolve. If, on the other hand, Regulation < ^disturbance 
a mixed strategy or a mixture of pure strategies is expected to evolve. 
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4    Self-organization of front patterns in large wilde- 
beest herds 

Aerial photographs of migrating wildebeest herds reveal striking distributional patterns. 
Some share the same characteristic zigzagged irregular wavy front, with a typical wavelength 
large with respect to the body-length (e.g., see figure 4). These patterns vary over scales that 
are much larger than the individual's perceptual range, and thus cannot be explained simply 
as random fluctuations on uniformity. Instead, the patterns seem to be self-organizing, 
building and reinforcing on inhomogeneities. Furthermore, since the individual is only aware 
of its immediate surroundings, broad-range patterns must be explained in terms of local 
decisions. This section drawing upon its source (Gueron & Levin, 1993) proposes such a 
model that exhibits spontaneous generation of long-range patterns similar to observed herd 
front patterns and provides a mechanism for it. 

Figure 4:  An aerial photograph of a large wildebeest herd, revealing large-scale patterns. 
(reprinted from Sinclair, A. R. E. (1977) by courtesy of The University of Chicago Press.) 
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4.1    The model 

4.1.1 Tracking "leaders" is sufficient 

Modeling of small herds (Gueron et. al, unpublished data) revealed that the herd "leaders" 
(i.e., the individuals at the front, with respect to the direction of propagation) belong to 
a distinct group, namely those that (for whatever reason) inherently have a faster walking 
pace (speeders). Without any global plan (or knowledge of the global distribution of the 
herd), speeders simply advance, overtaking slower individuals, and finally generate a leading 
band that consists of only speedy individuals. The propagation direction is controlled mainly 
by these leaders. This allows for some simplifications in modeling wildebeest herds at large 
scales. Since the pattern development we are addressing is defined by leaders, we regard 
only the "leading band" for analyzing this phenomena. The rest of the herd (i.e., the trailing 
layers), which is not modeled explicitly, lies behind the front layer and "fills in the gaps" as 
they develop. 

The front layer is modeled as a curve y(x,t), x G (—00,00), i > 0 evolving in both space and 
time. In this model we assume that the speedy band has "perfect directionality". Hence, 
changes in the velocity are reflected only by changes in its magnitude (while the direction 
remains constant). Without loss of generality, this direction is chosen to be the Y-axis. 

4.1.2 Speed adjustment 

Individuals are considered to have an inherent preferred speed at which they walk when they 
do not interact with their (left and right) neighbors. When they do interact, they adjust 
(increase or decrease) their speeds according to an intrinsic behavior pattern. If for instance, 
individuals trailing relative to their neighbors speed up and those leading slow down, the 
pattern at large time would correspond to the leading edge moving as a straight front. If 
on the other hand, individuals trailing slow down and leaders speed up, any inhomogeneity 
will be reinforced. Provided that these behaviors reverse when the gap increases too much, 
the instability will saturate and keep the herd from segregating. Segregation will occur if 
encouraged speeders go on speeding and never stop to "wait" for the trailers to catch up. 

The interaction among the herd members is modeled as a function of the relative position 
with respect to the neighbors. The relative position as defined by 

A(y(z, <)) = 2s Sis y(5't)ds ~ y(s'4)' (34) 

which compares the location of an individual located at y(x,t) with the average location 
of the neighborhood (ranging 8 to each side) surrounding it. The (positive) parameter 8 
determines how local the interaction with the neighbors is. Here, 8 is small compared with 
the characteristic wavelength of the front pattern, thus accounting for a local influence range. 
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The velocity (v = y) is modeled as a function of A. A straightforward way to model an 
intrinsic velocity (vo(t)) and the ability of an individual to adjust its speed as a result of 
interaction with its neighbors is 

y = vo(t) + F(A(y)) (35) 

for some (differentiate) function F reflecting the speed adjustment that depends on the 
interaction. 

4.2    Stability analysis of traveling front solutions 

The natural question to ask at this point is whether there are simple steady-state solutions 
that produce "wavy" front patterns and, in particular, vary over scales that are larger than 
0(6). If we restrict attention to solutions of polynomial order (i.e., solutions that are bounded 
by c|a:|n as |cc| —>■ oo, for some positive integer n and a real constant c), it can be shown that 
there are no bounded solutions on x £ (—oo, oo) which yield the multiple peaks we seek. 
The only bounded solution of interest from a stability standpoint is the uniform traveling 
front (front moving as a straight edge). If F'(0) = 6^0, then the uniform traveling front is 
(linearly) stable for b > 0 and unstable for b < 0. Further, wavelength of the fastest growing 
mode when b < 0 is estimated to be 

4493 (n\ /"max ~ —7—• (36) 

This estimate gives a rough approximation to the characteristic wavelength observed in the 
nonlinear problem. 

4.3    Numerical results 

For numerical computations, Eq. (35) is transformed to the discrete form 

yt=v0(t) + F(A(yi)),   i=l...n (37) 

where A is written as 

A(yi(:M))= 7^-7 'EW-W- (38) 
4P ~r i j-i-p 

The continuous (infinite) region x €: (—00,00) is replaced with the finite set of samples at 
i = 1.. .n with periodic boundary conditions, p is the number of neighbors on each side 
of the animal with which it interacts. Equations (37) and (38) form a system of n coupled 
ordinary differential equations for the variables yi representing the herd's front layer. These 
equations are written in dimensionless form. We define our length and time units in such a 
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way that the intrinsic velocity, v0, equals 1. In the simulations, a dimensionless time step of 
0.1 is used. 

F, the response to displacement from a uniform position, satisfies ^(0) = 0. It should also be 
bounded. Since it represents the velocity change, corresponding to a given displacement, its 
magnitude should not exceed v0 (to avoid negative velocities, or exceeding twice the intrinsic 
velocity). F should have one positive and one negative simple root to provide for reversing 
the behavior trends when the gap increases too much. In the simulations, the following 
function that satisfies the above requirements is used, 

F(A) = ±sin(A) (39) 

where the sign ± is chosen as + to demonstrate the stable cases (i.e., where the uniform 
traveling front is a stable solution) and — for the unstable cases (where inhomogeneities in 
the uniform traveling solution get amplified). 

4.3.1    Stable case — straight front 

For the stable case, the response to lagging behind is speeding up, and the response to being 
ahead is slowing down. As implied by the stability analysis, the uniform traveling front is 
a stable solution for such cases. It is expected to be an "attractor" in the sense that any 
initial conditions will eventually lead to a uniform front after a long enough time has elapsed. 
Figure 5 presents the results of a run where the initial pattern decays to a uniform front. 
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Figure 5:   The stable case.   Traces of i/;(i) versus i for 17 different time steps from t 
0,... ,200. The initial disturbances get smoothed out to form a straight front. 
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4.3.2    Unstable case — irregular wavy front 

In the unstable cases, the response to lagging behind is slowing down (until the gap reaches 
the saturation level where the behavior is reversed). On the other hand, being ahead is 
"encouraged" by speeding up (until the gap reaches the saturation level where the behavior 
is reversed). For such cases the uniform front is an unstable solution, and small perturbations 
are expected to grow and to generate some irregular patterns. Figure 6 shows the runs with 
three different values for p. We see that, indeed, we get "wavy" fronts where the typical 
wavelength is on a larger scale than the typical interaction range. Thus, local rules have 
produced long-range effects. It is also seen from the simulations that after bifurcating from 
the uniform arrangement, these solutions reach a "semi-steady state" i.e., although the 
fronts keep changing in time, the changes are on a small scale and the global pattern seems 
persistent. 
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Figure 6: The unstable case. Traces of yi(t = 0,100,200) versus i for p = 1 (upper left), p 
= 2 (upper right), p = 3 (bottom left), and p = 4 (bottom right). Smooth initial conditions 
produce irregular wavy patterns. Increasing the local interaction neighborhood increases the 
wavelength of the large-scale pattern. 

146 



4.3.3    Effect of size of interaction neighborhood 

Comparing plots in figure 6 reveals that the ratio of the observed characteristic wavelengths 
is roughly as predicted from eqn. (36). Further, computer experiments also suggest that as 
the interaction becomes more local, the patterns become more erratic and hence the front 
becomes longer. In the limit that the interaction neighborhood becomes very large, the 
front becomes very flat. Of great interest is the fact that the patterns fit the experimental 
observations better as the neighborhood of interaction becomes more local. 

5    The importance of being discrete and spatial 

One of the fundamental issues in the modeling of any system is the choice of level of detail. 
Figuring out which details at one level are important to the determination of phenomena at 
other levels, and which can be ignored lies at the heart of understanding mechanisms. In this 
section, based on Durrett & Levin (1994), we consider and compare four approaches to mod- 
eling the dynamics of spatially distributed systems : 1) mean field approaches (described by 
ODE's) in which every individual is considered to have equal probability of interacting with 
every other individual; 2) patch models that group discrete individuals into patches without 
additional spatial structure; 3) reaction-diffusion equations, in which infinitesimal individ- 
uals are distributed in space; and 4) interacting particle systems, in which individuals are 
discrete and space is treated explicitly. Each model represents different assumptions about 
the interactions at the microscopic/individual scale. The predictions about macroscopic 
quantities are studied in three separate biological scenarios. 

5.1     Four approaches to modeling species interactions 

We pose a system in which there are two types of individuals, whose interaction is described 
by a game matrix : 

H   D 
H   a    b (40) 
Dei 

Here, H denotes a hawk and D a dove. This nomenclature is applicable in scenario 3 below, 
but more generally it is used to refer to strategies employed by two sub-populations. To 
explain the game matrix : b is, for example, the payoff to a hawk when interacting with a 
dove. When the population consists of a fraction p of hawks and 1 — p of doves then the 
payoff for an individual hawk is ap + 6(1 — p) which is interpreted as the net birth/death of 
hawks. 

In addition to the net growth rate, we assume that there is a density dependent death rate 
per individual that is proportional to the total density. 
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Below, we describe the four approaches taken.   See figure 7 for relationships between the 
approaches. 

Discrete 
individuals> 

Mean Field 
(ODEs) Spatial 

structure 

Patch Models 

Spatial 
structure 

Reaction-Diffusion 
Equation 

Discrete 
individuals 

Interacting Particle 
System 

Figure 7: Relationship of the four approaches studied. 

In our first two models, we assume that the populations are large enough to ignore the dis- 
creteness of individuals. Under the continuum hypothesis, we speak of density of individuals 
as a real-valued quantity and interpret rates as terms in the differential equation for the 
density. 

5.1.1    Mean field model 

If we ignore all spatial structure, and lump all the individuals together so that every indi- 
vidual has an equal probability of encountering every other individual, then we arrive at the 
following dynamical system for the densities of hawks (u) and doves (v) : 

(41) 

5.1.2    Reaction-diffusion system 

The traditional (but occasionally incorrect) way to turn a dynamical system into a reaction- 
diffusion system is to simply add diffusion terms to the two equations : 

du 
dt 
dv 
dt 

(42) 

where A = d2/dx\-\-d2jdx\. For simplicity we have assumed that the two diffusion constants 
are the same and we have scaled time to make them equal to 1. When different diffusion 
rates are considered, an additional parameter (the ratio of the diffusion constants) enters 
and the range of behaviors is enlarged. 
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In the next two models, individuals retain their nature as discrete units. Let S be the set of 
sites or "patches", and assume that the state at time t is given by two functions rjt and (t from 
S to {0,1,...-}. So, r/t(x) and (t(x) represent the number of hawks and doves in patch/site 
x at time t. We take time to be continuous, i.e., t can be any nonnegative real number; 
so the temporal evolution is described by specifying the rate at which things happen. We 
say something happens at rate r if the probability of an occurrence in a short amount of 
time h is rh + o(h), where o(h) denotes a quantity with o(h)/h —» 0 as h —> 0. When an 
event occurs at a constant rate r then the times t{ between successive occurrences have an 
exponential distribution with parameter r; that is, P(U > t) = exp(—rt). In the following 
two models, three types of events occur, viz., migration, deaths due to crowding, and the 
game step. The difference between the two models lies in their treatment of space. 

5.1.3 Patch model 

Subdivision of population into patches recognizes the importance of space at local scales but 
the collection of patches, S, has no spatial structure; thus, we choose S = {1,2,..., N} where 
N is the number of patches. 

Migration. Each individual changes its spatial location at rate //, and when it moves, it 
moves to a randomly chosen patch. 
Deaths due to crowding. Each individual at x at time t dies at rate /C(T/4(X) + (t(x))- 
Game step. Let pt(x) = r}t(x)/(r)t(x) + (t(x)) be the fraction of hawks at site x. Each hawk 
experiences a birth (or death) rate of apt(x) + b(l — Pt(x)) while each dove experiences a 
birth (or death) rate of cpt[x) + d{l — pt{x)). 

5.1.4 Interacting particle system 

Here, we identify patches with the two-dimensional integer lattice, i.e., S = Z2. The dynam- 
ics are formulated as follows : 

Migration. Each individual changes its spatial location at rate /x, and when it moves, it 
moves to a randomly chosen neighbor of x. 
Deaths due to crowding. Each individual at x at time t dies at rate /c(?yt(x) + (t(x)). 
Game step. Let Af be the interaction neighborhood for the model. We consider the following 
two choices for J\f : 

•A/i = {z e Z2 : |zi| -(- \z2\ < 1}        (0,0) and its nearest neighbors 
M2 = {z € Z2 : \zx\ < 2, \z2\ < 2}   a 5 x 5 square centered at (0,0) 

For any choice of A/" we define the number of hawks and doves in the interaction neighborhood 
of x at time t as 

Vt(x) = J2 Vt(x + z) Ux) = J2 (t(x + z) 
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and 
Pt(x) = rjt(x)/(fjt(x) + (t(x)) 

Like before, each hawk experiences a birth (or death) rate of apt(x) + b(l — pt(x)) while each 
dove experiences a birth (or death) rate of cpt(x) + d{\ — Pt(x)). 

A word about the initial conditions : in all the simulations with patch model and interacting 
particle system, the initial distribution of hawks and doves is specified by [-^initial, Anitiai] — 
this specifies a distribution where at each location, the number of hawks is a uniformly dis- 
tributed integer in [0,..., ^initial] and likewise the number of doves is a uniformly distributed 

integer in [0,..., Anitiai] • 

5.2    Scenario 1 — Stable equilibrium 

a = 0.4   6 = 0.8 
c = 0.6    a = 0.3 

This scenario represents an apparent symbiotic relationship because the fitness of each is 
enhanced by the presence of the other. This choice of a, b, c and d could also represent the 
sum of a constant growth rate and negative effects of competition : 

( 0.4   0.8 "\      ( 1    l\,( -0-6   -0.2 \ 
\ 0.6   0.3 )      \ 2   2 ) + \ -1.4   -1.7 ) 

This would then correspond to the competition situation in which each species inhibits 
itself more than it inhibits the other, for which coexistence results owing to the existence 
of a globally stable internal equilibrium. This result is captured by all four of the models 
studied. 

• 

• 

Mean field model Figure 8 shows the behavior of the dynamical system in (u, v)- 
space. There is a unique equilibrium that is the limit starting from any initial state in 
which both species have positive density. 

Reaction-diffusion system Because the density-dependent dynamics promote co- 
existence locally, the reaction-diffusion system shows the same behavior globally as 
well. 

Patch model Figure 9 shows a simulation of the patch model with N — 2500 patches 
when \L = 1 and we start from an initial condition [4,4]. We observe that the number 
of hawks and doves rise from initial levels near 1.5 to equilibrate near 2.0 and 2.7 
respectively; although there are fluctuations coming from the fact that there are only 
2500 patches. 
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Figure 8: Phase portrait for Scenario 1. 

Figure 9: Average number of hawks and doves per site in Scenario 1 for a simulation of the 
patch model with 2500 sites. 
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Interacting particle system Figure 10 shows a simulation on a 100 x 100 system 
with periodic boundary conditions with fi = 0.4 starting from [7.5,7.5] initial condition. 
We observe that the densities of hawks and doves converge exponentially fast to their 
equilibrium values, although again there are some fluctuations in the densities due to 
the fact that there are only 10,000 sites. It is suspected that this particular interacting 
particle system has a unique equilibrium state that is the limit starting from any initial 
state that is (a) translation invariant (spatially homogeneous) and (b) in which each 
species has a positive density. 
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Figure 10:   Average number of hawks and doves per site in Scenario 1 of the interacting 
particle system on a 100 x 100 lattice. 

5.3    Scenario 2 — The importance of being spatial 

a 
C : 

0.7   6 = 0.4 

0.4   <£ = 0.8 
K 0.08 

This may be thought of as two species competing for use of the same resource and in which 
competition each inhibits the other species more than it does itself. In this situation, the 
nonspatial models disagree with the ones that treat space explicitly. 

• Mean field model Figure 11 shows that the dynamical system has two stable equilib- 
ria (ü, 0) and (0, v) on the axes, and their basins of attraction contain the whole positive 
quadrant except for a line through the origin containing the equilibrium (u*, v*), which 
is a saddle point. Here, initial densities determine the basin of attraction and hence 

which species wins out. 
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Figure 11: Phase portrait for Scenario 2. 
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• Reaction-diffusion system For "generic" initial conditions, (u(x,t),v(x,t)) will con- 
verge to (0,ü) uniformly on compact sets. To explain the eventual domination of 
doves, note that the reaction diffusion equation admits traveling wave solution u(x, t) = 
U(x — pt),v(x, t) = V(x — pt), where U and V are monotone functions with U(—oo) = 
0, U(oo) = ü, V(—oo) = v, y(oo) = 0. Since b = c and d > a, the velocity p > 0 
indicating that an interface between a region of all doves and a region of all hawks 
moves in a direction that favors the doves. 

• Patch model Figures 12 (a) and (b) show a simulation of the patch model with p = 1 
for the [5,5] and [7,3] initial configurations respectively. In the first case the hawks dies 
out while in the second the doves dies out. Thus, the species that wins out depends 
on the initial conditions. 

Figure 12: Average number of hawks and doves per site in Scenario 2 for a simulation of the 
patch model with 2500 sites, (a) [5,5] initial condition — hawks die out. (b) [7,3] initial 
condition — doves die out. 

• Interacting particle system Figure 13 shows the behavior on a 100 x 100 system 
with periodic boundary conditions with p — 1 starting from [10,5] initial condition. 
As in the reaction-diffusion system, the doves win owing to the same mechanism — 
if a large enough pocket of doves (i.e., a region in space that contains mostly doves) 
forms then that region will grow linearly in radius and take over the system. On a 
small system this pocket may not have a chance to form, but if we consider the system 
on the infinite lattice Z2 and start with a translation invariant initial distribution with 
a positive density of doves, such a pocket will form with probability one and the hawks 
will die out. 
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Figure 13:   Average number of hawks and doves per site in Scenario 2 of the interacting 
particle system on a 100 x 100 lattice with [10,5] initial condition. The hawks die out. 

5.4    Scenario 3 — The importance of being discrete 

a = -0.6 
c= -0.9 

b: 
d 

0.9 
0.7 K = 0.02 

This corresponds to the case when the hawk strategy dominates the dove strategy — hawks 
always do better than the doves, but a population consisting purely of hawks dies out. This 
may be thought of as a classic fugitive species in a spatial mosaic or of two competitors sharing 
a resource along a successional gradient. In each case, the dominant species eliminates 
the weaker one locally but then dies out itself, and the vacant space is recolonized by the 
inferior species. Here, the models that explicitly take discreteness of individuals into account 
(patch model, interacting particle system) tell us that the hawks and doves can coexist in 
an equilibrium whereas the continuum models (mean field model, reaction-diffusion system) 
tell us that after large value of time, both populations die out. 

• Mean field model Figure 14 shows that all trajectories starting with positive densities 
of hawks and doves end at (0, 0). 

• Reaction-diffusion system It would seem conceivable to have a front of doves being 
chased by a front of hawks so that the area in front of the doves would not be colonized 
and the area behind the hawk population would be left empty. Numerical simulations 
conducted in a one-dimensional domain with no-flux boundary conditions confirm the 
existence of such a scenario (see figure 15). However, this solution becomes unstable 
when perturbed by even low-intensity noise in the hawk density and collapses to global 
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Figure 14: Phase portrait for Scenario 3. 
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extinction of both species. Hence, we conclude that since the local behavior tends 
towards extinction of both species, the reaction-diffusion system will collapse as well 
for "generic" initial conditions. 

Figure 15: Solution of the reaction-diffusion system in Scenario 3 exhibiting a population of 
doves being chased by a population of hawks so that the area in front of the doves would not 
be colonized and the area behind the hawk population would be left empty. The direction 
of travel is to the right. The dove front moves faster than the hawk front and so this pattern 
does not become steady in some moving frame of reference. No flux boundary conditions 
were employed. 

• Patch model Figure 16 shows a simulation of the patch model with /z = 1 for the [2,8] 
initial condition. After an initial dramatic increase in the number of doves, the system 
settles down to an equilibrium where both hawk and dove densities are positive. The 
equilibrium is maintained as the doves recolonize empty spots where they are eventually 
attacked and taken over by hawks which eventually die out leaving the spot open for 
the cycle to start afresh. 

• Interacting particle system A typical simulation of the interacting particle system 
begins with a period in which the hawk population grows faster than the dove popu- 
lation until the fraction of hawks is too large and both species start to die out. When 
the density gets low we have a few doves who are completely isolated and give birth at 
rate d. These doves start colonies that grow and would fill up the space to the doves' 
preferred equilibrium density, except for the fact that along the way they encounter a 
few hawks that managed to escape extinction. These hawks reproduce faster than the 
doves, the fraction of hawks grows, and the cycle begins again. 

Figure 17 shows the behavior on a 150 x 150 system with periodic boundary conditions 
with fi = 1. We see that the hawk and dove densities oscillate around their equilibrium 
values. These oscillations grow as the system size is reduced and so can be called a 
"finite-size effect". Essentially, the large oscillations are present in small sub-systems 
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Figure 16: Average number of hawks and doves per site in Scenario 3 for a simulation of the 
patch model with 2500 sites and the [2,8] initial condition. 

but they are not synchronized across sub-systems and hence cancel out yielding a 
constant average picture. 

Also, the larger neighborhood over which averages are taken for the game step makes 
the local fraction of hawks less random and makes the system behave more like the 
dynamical system. To explain the last remark, consider our system on an N x N grid 
and suppose (i) each site uses an interaction neighborhood equal to the entire lattice 
and (ii) each particle experiences deaths at rate K,(uf + vf) where üf and vf are the 
number of hawks and doves per site at time t. Then, it is easy to show that as N —> oo, 
üf and vf converge to the solution of the differential equation (41). 

We should also note that the equilibrium for the interacting particle system has spatial 
structure not possible in the patch model. 

5.5    Partial differential equation limits of particle systems 

It is possible to get alternative reaction-diffusion systems by applying the diffusion approx- 
imation to migration in the interacting particle system. If we consider particles performing 
independent random walks on Z2 then under suitable assumptions the joint distribution 
of the number of particles at any finite set of points will converge to independent Poisson 
random variables. Combining this observation with the fact that the migration occurs on a 
much faster time scale than the game interaction, sites near x at time t are independent and 
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Figure 17:   Average number of hawks and doves per site in Scenario 3 of the interacting 
particle system on a 150 x 150 lattice. 

have a Poisson number of hawks and doves with means u(x,t) and v(x,t) which satisfy the 
"hydrodynamic equations" : 

£ = Au + u{a(h + (l-h)^)+b(l _*)-£._ «(!+„ + „)} 

where 

h = h(u,v) 
■ exp(-\Af\(u + v)) 

(43) 

(44) 
|-A/](ti + v) 

where |jV| is the number of points in the interaction neighborhood. 

Comparing Eqns. (43) and (42) reveals two differences : there is an extra 1 in the death 
term but more importantly, the form of the game term has changed. To examine the second 
difference, we note that h(u, v) converges to 1 as (u+v) —* 0 and decreases to 0 as (u+v) f oo. 
When h is close to 0 (which occurs for example if \Af\ is large) the game term is almost what 
it was before. When h is close to 1, the game term is almost a in the first equation and d in 
the second equation, reflecting the fact that when the density is small most individuals are 
isolated and think that the universe consists exclusively of their own type. 

The changes in the limiting equation bring about a drastic change in the behavior of the 
reaction-diffusion equation and the associated dynamical system and that is the dynamical 
system now has a globally attracting fixed point. There are other systems that can be obtained 
based on slightly different assumptions about the limiting behaviors but they seem to share 
the existence of an attracting fixed point. 
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6    From level to level 

Physics contains many different models, which might describe different aspects of the very 
same physical system. A gas is composed of molecules, but it also obeys the laws of fluid 
mechanics. Or again, a fluid near its critical point is a bunch of molecules, but they can 
also be described by a scale-invariant field theory. The microscopic rules are time-reversible 
whereas the macroscopic world has irreversibility. The common-sense physics that we as 
humans need to know in dealing with our generally low-viscosity world is quite different from 
the physics a bacterium would need to know to deal with its small-scale high-viscosity world, 
though both are described by the same laws at a more fundamental level. In each of these 
cases, there is a tension between two levels of description. For each situation, different laws, 
formulations, conceptualizations, theories and experiments apply at each of the two levels. 
Clearly, it is important to know how the different realities caught by the different models 
fit together. Statistical mechanics provides methods to relate the macroscopic behavior of 
a system with a large number of degrees of freedom, to the laws governing its microscopic 
behavior. 

As is clear from the examples discussed in this lecture, similar questions are being asked in 
basic ecology and in the context of applied problems like global climate change. It is hoped 
that what has worked in physics might also work here. In order to facilitate this discussion, 
we construct a toy model based on the work of Durrett &: Levin (1994) which captures several 
essential features of spatial population dynamics. We then draw parallels between efforts to 
study similar systems in condensed matter physics and fluid dynamics to motivate questions 
to be asked about our model and possible ways of answering them. 

6.1     Lagrangian population dynamics 

In the interacting particle system discussed in §5, population is discrete, time is continuous 
and space is discrete. We extend this model by making space continuous as well i.e., by 
removing the restriction that animals can only live on the lattice and allowing them to move 
as points in space. The dynamics are formulated as follows : 

Migration. Each individual performs brownian motion. We specify the diffusion coefficient 
characterizing p(x,t), the PDF of the particle. 
Deaths due to crowding. Each individual at x at time t dies at rate K,(rjt(x) -f (t{x))- 
Game step. Each hawk experiences a birth (or death) rate of apt(x) + 6(1 —pt(x)) while each 
dove experiences a birth (or death) rate of cpt(x) + d(l — pt(x)). 

Here, rjt(x), (t(%) is the number of hawks and doves respectively in a circular region of radius 
R (the interaction radius) centered at x. As before, pt(x) = r}t{x)/(r]t(x) + Ct{x))- 

This model is appealing on several counts : 
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• 

• 

• 

Higher spatial resolution. By going to a grid-free treatment of space, the resolution of 
features is limited by the number of particles and not the discreteness of space. 

Advection. It is straightforward to advect the animals by fluid flow to mimic situations 
in marine environments. More generally, we can view the flow as the tendency to per- 
form taxis following the gradient of some environmental variable or to model seasonal 
migrations. 

Social behavior. It is quite easy to incorporate social behavior by causing the animals 
to move towards/away from each other as they try to optimize the number of neighbors 
or change tactics depending on the density of predator/prey. 

6.2    Coarse graining 

We want to understand how the macroscopic behavior of our model changes as the mi- 
croscopic parameters are changed. By macroscopic behavior, we mean (a) the equilibrium 
behavior for the average densities of hawks and doves and (b) the dynamics of relaxation 
to equilibrium. Our system is dominated by fluctuations and so the study of our system 
is essentially a study of fluctuations. Monte Carlo simulations have been used successfully 
to study fluctuating systems in physics (Mouritsen, 1984 and Binder & Heermann, 1992). 
Below, we briefly look at how this method is used for the Ising model. Our system is con- 
ceptually not different from the Ising model and so Monte Carlo methods can be applied to 
study the equilibrium and the approach to equilibrium in our system as well. In the vicinity 
of phase transitions in the Ising model, correlation lengths and relaxation times diverge. This 
challenges the Monte Carlo method in the vicinity of phase transitions and one must resort 
to other methods such as the renormalization group. Our system has phase transitions as 
well with the associated large correlation lengths and long relaxation times and in order to 
study these behaviors, other techniques have to be looked into. 

6.2.1    Markov chain Monte Carlo method for the Ising model 

The 2-D Ising model consists of a square lattice and associated with each point of the lattice 
is a magnetic spin, a number s that is either 1 or — 1. The system's Hamiltonian in the 
absence of an externally imposed magnetic field is 

H = - J J2 SiSj,    J > 0 
<»,j> 

where J is the exchange energy and the sum is taken over all nearest-neighbor pairs. Let Q 
represent a microstate i.e., a particular assignment of ±1 to lattice sites. The probability of 
a certain microstate is 

p(ü) = ^exp[-ßH(n)}. 
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Here, ß = l/kBT where kB is Boltzmann's constant, and T is the temperature and Z is the 

partition function given by 
Z = £exphSff(n)] 

where the sum is over all the microstates.   Given the probability distribution of the mi- 
crostates, the thermodynamic value of a measurable physical quantity, f(Q), is obtained in 

the canonical ensemble as 

</>=E/(fi>W (45) 
{n} 

Equation (45) constitutes the formal connection between the microscopic and macroscopic 

worlds. 

The idea behind Monte Carlo methods is to approximate the above sum over all configura- 
tions by a sum over a set of representative configurations. The simplest possible procedure 
would involve an unbiased choice of configurations (simple sampling). In this case, we have 

, f._SgiexpHgff(nQ]/(a) 

This procedure is inefficient since the Boltzmann weights (exp[—ßH]) vary over orders of 
magnitude and we are wasting the effort used to compute the configurations that do not 
contribute much to the partition function. The thing to do is to bias the choice of configu- 
rations so that we only pick out configurations that make a big contribution to the partition 
function. The simple and most natural choice is to pick a configuration ti with probability 

exp[-ßH(Ü)}. Then, 
1     M 

</>=sEW). 
1=1 

The problem is, of course, to find a procedure which practically realizes this so-called im- 
portance sampling. Metropolis advanced the idea not to choose the successive states {ft} 
independently of each other, but to construct a Markov process where each state is con- 
structed from a previous state via a suitable transition probability. One such way is the 
famous Metropolis algorithm. Using it, we can determine the equilibrium values of quan- 
tities such as magnetization. Further, we can think of the evolution of the Markov chain 
as time evolution of the system. This dynamic interpretation of the importance sampling 
Monte Carlo method allows us to study the relaxation to equilibrium. Typically, one uses 
102 - 104 Markov chains each of length 103 - 105 to get reasonable statistics. This method is 
very effective at higher temperatures where (a) the correlation lengths are small and the size 
of the system can be made much larger than the correlation length and (b) the relaxation 
times are short in comparion with the length of the Markov chains and so equilibrium is not 

hard to reach. 

In our model, we have a dynamic process which can be interpreted as a Markov chain and 
so it is straightforward to analyze our system using the Monte Carlo method. 
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6.2.2    Finite size effects 

In scenario 3 in §5, the mean-field approximation predicts global extinction whereas the real 
system has non-zero average hawk and dove densities. The discrepancy arises because the 
mean-field approximation assumes that all hawks and doves are within the interaction radius 
of each other. If the interaction radius, R ~ L where L is the system size, the mean-field 
approximation would hold. The question of interest then is how the macroscopic behavior 
changes as we increase L and approach the limit R <C L. This question can be answered 
with the Markov chain Monte Carlo method. One fixes R and considers successively larger 
values of L and tracks how the macroscopic behavior changes. By looking at the scaling, 
behavior for R -C L can be predicted. 

6.2.3    Broken ergodicity, critical slowing down and phase transitions 

The realization of the Markov chain Monte Carlo method will provide thermodynamic equi- 
librium provided that the process is ergodic. Ergodicity requires that any one configuration 
of the Markov chain is accessible from any other configuration via a finite number of tran- 
sitions. There are two ways in which the ergodicity hypothesis can be violated. First, the 
phase space might be reducible into several ergodicity classes and second, the relaxation 
times rr might be very much longer than the length of the Markov chain r<As in which case 
ergodicity is effectively broken. We examine both of these cases. 

A. Reducible phase space 

Consider scenario 3 in §5. If there is global extinction, then there is no way for the system 
to populate itself. Hence, the global extinction part of the phase space is accessible from the 
rest of the phase space but the reverse is not true. If we consider a system large enough, 
then the likelihood of global extinction decreases and we can be reasonably certain that the 
system is ergodic. 

Alternatively, consider the behavior of our model for 

a = 0.7   6 = 0.4 
c = 0.4    d = 0.7 

(46) 

This represents two populations interacting where each helps its own kind more than the 
other. Owing to the symmetry in the problem, there are two possible stable end-states viz., 
either the hawks survive or the doves survive. Which state is picked out depends on the 
initial conditions If we start with a large number of hawks and few doves it will be very 
hard to reach the part of phase space where doves dominate. Hence, we effectively have 
two reducible ergodicity classes and we can study each one in turn using the Monte Carlo 
method. 
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B. Extremely long relaxation times 

Again, consider the model (46). Now, we are interested in the time it takes for the system 
starting from a particular initial condition to reach either of the equilibria. If the initial state 
had more hawks than doves, then the hawks will quickly dominate and lead to extinction of 
doves. Clearly, if we started with even more hawks initially, we would reach the extinction 
of doves even faster. Consider, then what happens if we start with roughly equal number 
of hawks and doves in a really large domain. Owing to random fluctuations in the system, 
locally either the hawk or dove population will dominate and form clusters. However, once 
this state is reached, evolution becomes exceedingly slow as the dynamics of cluster-cluster 
interaction is very slow. On a much slower time-scale then, the clusters will grow which 
will be reflected in increasingly large correlation lengths. This is called "critical slowing 
down" and is observed in biopolymers, anisotropic magnets and binary metallic alloys. This 
phenomenon is associated with the kinetics of phase transitions and is covered in the review 
volumes by Binder (1986, 1984). There is reason to believe that the time to reach equilibrium 
behaves as t ~ \x\~a where x is some appropriate distance to the separatrix dividing the 
basins of attraction of the two equilibria. Of particular interest would be the calculation of 
the 'dynamic critical exponent' a. 

6.3     Stochastic differential equations 

Below, we look at how stochastic differential equations have been used to study the turbu- 
lence problem. This suggests that a similar approach might be useful in studying our model 
as well. First, in order to set up the notation, consider the stochastic differential equation 

dXt = a(t, Xt)dt + b(t, Xt)£tdt 

where Xt is the random variable whose change is given by a deterministic or averaged drift 
term a(t,Xt) perturbed by a noisy diffusive term b(t,Xt)£t, where the £t are standard Gaus- 
sian random variables for each t and b(t, Xt) is a state-time dependent intensity factor. This 
symbolic differential is interpreted as an equation 

Xt{u>) = Xt0(u) + ['a(s,X,(u>))ds + [tb(s,X.{u))dWa{u>) (47) 

for each sample path w where Wt is the corresponding Wiener process. 

6.3".l    Turbulence problem 

In turbulence, one studies homogenous isotropic turbulence in a 3-D periodic box as a model 
for studying features of real turbulence. If we are studying turbulence in the wake of a car, 
for instance, this model of turbulence only applies on scales much smaller than the dimension 
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of the car where the dynamics and mechanisms of how the turbulence was generated do no 
longer matter. The governing equations are the incompressible Navier-Stokes equations : 

-^ + (u • V)u = —Vp + i/V2u + F 
at p 

V-u = 0 

where u(x,i) is the fluid velocity, p is the density, p is the pressure, v is the molecular 
viscosity and F is the force. The force models the effect of the outside world on the flow in 
the box. In absence of this force, the turbulence will transfer energy to ever smaller scales 
until it is dissipated by molecular viscosity and the fluid would eventually come to rest. 
Usually, one considers Gaussian, white-in-time random force in a narrow wavenumber band. 

6.3.2    Local extinction scenario 

Consider the behavior of our model for scenario 3 discussed in §5. 

a =-0.6   6 = 0.9 
c=-0.9   d=0.7 

The behavior of the lagrangian model is qualitatively not different from the interacting par- 
ticle system model. In absence of migration of particles, the populations collapse. Migration 
provides the mechanism for recolonization and the cycle can then continue. 

Let us consider a system of size L and interaction radius R such that R ~ L and L is large. 
In this case, the behavior of the system is well approximated by the mean-field model : 

t =«{«=£ +*;£-*(« + «)} UR) 

Now, consider that we have an assembly of such systems and we want to model the effect 
of the other such systems on one of them, not knowing the states of the other systems. The 
only coupling between these systems is through migration i.e., net loss or gain of particles as 
they move between systems. This can be modeled through a white-noise term in the above 
ODE leading to 

dUt = Ut {a^ + b^ - K{Ut + Vt)} dt + a\Ut)dWl 
dv* = v* {cmk + dmk - <u* + ^)} dt + a>(vt)dw? 

(49) 

Care has to be taken to make sure that the densities do not become negtive. 
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6.3.3 Ito or Stratonovich ? 

The difference between Ito and Stratonovich calculi comes from interpreting the latter in- 
tegral in (47) when approximating the integral with a discrete sum. In Ito calculus, the 
integrand b(s,Xs(u>)) is evaluated at the left hand of the discretization intervals whereas in 
Stratonovich calculus, the evaluation point is chosen to be the middle of the discretization 
interval. Ito calculus has the martingale property which turns out to be crucial in stochastic 
analysis quite often. Stratonovich calculus does not have the martingale property but it does 
enjoy similar properties to those of classical calculus which the Ito calculus does not have. 
They are both mathematically valid formulations of stochastic differential equations and we 
need to decide which interpretation is appropriate for our problem. 

Stratonovich calculus is the appropriate one when the white noise is used as an idealization of 
a smooth real noise. In our problem, this is not the case. Moreover, we have discrete popula- 
tion sizes and the dynamics are nonanticipative and hence, we say that the Ito interpretation 
is the appropriate one for our problem. 

6.3.4 Numerical solution 

For direct simulation of trajectories, strong schemes are required. Kloeden & Platen (1992) 
and Kloeden, Platen & Schurz (1994) give an in-depth introduction to numerical schemes 
for the integration of stochastic differential equations. Of crucial importance is the steady 
probability density function p*(u,v). There is a Fokker-Planck equation for the evolution 
of p(u,v,t) and there is reason to believe that for all initial conditions, p(u,v,t) tends to 
the same steady-state p*(u,v) after some time. Weak schemes can be used to calculate this 
distribution function. 

6.3.5    What does SDE say about our model ? 

Once we have an efficient method for computing p(u,v), then we can practically change 
the microscopic parameters and observe its effect on the stationary probability distribution. 
Hence, even though adding white noise to the mean-field model may not accurately reproduce 
the equilibrium states or the dynamics of relaxation to equilibrium, there is a good chance 
that it will mimic the relation of microscopic laws to macroscopic behavior. 
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Ekman drift modulation as a factor in connections between coastal 
eddy systems and fisheries recruitment in the Florida Keys. 

Claes Rooth, 
School of Marine and Atmospheric Science, University of Miami. 

Persistent oceanic eddy/recirculation patterns have long been recognized for their 
possible role in isolated island ecosystems as temporary storage reservoirs for pelagic 
larvae and juveniles which might otherwise be lost from the local system through large 
scale advection processes. While such effects are affected by local geographic and 
climatological circumstances, general characteristics of the retention process can be 
identified, such as conditions under which accretion of biota from the outside may occur 
into the retention domain , and whether preferred exit paths from retention "reservoirs" 
can be identified . Such questions form the focus of a subproject within the Southeast 
Florida and Caribbean Recruitment study (SEFCAR),. which seeks to explore the impact 
of a distinct regional ocean circulation climatology in the Straits of Florida and Caribbean 
regions on the recruitment processes of a variety of fish and crustacean species. 

The general physical influences on the Florida Keys recruitment processes have 
been described by Lee & al. (1992) as follows: The Gulf Stream/Florida Current provides 
an ever-present strong advection field off-shore of the Florida Keys, but its precise path 
oscillates widely and irregularly in response to the quasi-periodic Gulf Stream intrusion 
(known as the Loop Current) into the Gulf of Mexico. The normal flow pattern in the 
entrance to the Straits of Florida takes the form of a wide cyclonic loop, the Tortugas 
Gyre, with a counterflow along the westernmost section of the Florida Keys. A smaller, 
and somewhat less persistent loop circulation tends to form along the middle Keys in a 
region of slightly wider shelf topography, the Pourtales terrace. Occasional cutoff of the 
Loop Current at its neck between the Yucatan Peninsula and the Florida Keys leads to a 
temporary disappearance of the recirculation cells, and advection of the core waters of the 
Pourtales gyre and at least part of the Tortugas Gyre through the Straits of Florida, these 
gyres provide a significant albeit intermittently interrupted regional retention probability. 
In combination with the climatological wind forcing, they provide a mechanism for 
enhancing return probabilities to the inshore reef tracts through the interaction between 
the wind induced (Ekman) drift effects and the eddy circulations. 

Three aspects of these interactions will be discussed here, viz. (1) the modification 
of the Ekman drift by properties of the surface current field, (2) the resulting convergence 
patterns within eddy retention zones, and (3) the onshore transport effect associated with 
cyclonic coastal eddies under coastal downwelling conditions. 

Oceanic wind systems are in general not conducive to direct generation of 
baroclinic circulation responses in the upper ocean layers, of a character which elicits 
strong biological response effects. Their horizontal scales are too far removed from the so 
called deformation radius associated with near surface trapped circulations (R<j=c/f, 
where c is the long gravity wave speed associated with near surface motion modes, and f 
is the Coriolis parameter. Values of the order of 5-10 km are typical in mid and high 
latitude situations). The primary biological impacts of direct wind forcing are therefore 
associated either with edge effects, as in coastal upwelling, or with modifications of the 
general upper layer stratification and nutrient supplies by vertical transport processes. It 
turns out, however, that surface responses on frontal scales are induced by the structure of 
surface currents even when the wind forcing has much larger horizontal scales. 

Niiler (1969) observed that mesoscale Ekman drift convergence will be induced 
by the vorticity fields in surface currents, in proportion to their strength relative to the 
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I 
I Coriolis parameter, i.e. to the Rossby number of a current jet. He did not recognize, 

though, that an equally important effect arises because the surface current modifies the 
shear in the near surface wind. Bye (1986) introduced the term "understress" for the latter 
effect, and suggested that it might introduce a significant damping rate for oceanic 
surface currents. Dewar and Flierl (1987) explored the impact of such stress feedback 
effects on isolated current rings, with emphasis on their dissipative effects. Upwelling 
effects implicitly related to the latter were explored by Rooth and Xie (1992, RX 
hereafter)) and by Rooth et al. (1994). RX also showed that the understress effect and the 
Ekman drift convergence due to surface vorticity gradients can be unified in terms of 
equivalent stress curl effects because the latter can also be interpreted as induced by 
boundary layer vorticity transport by the Ekman drift. 

YA 
Illustrating the relative shear geometry 

^ (surface current) 

Ufsurface wind) 

X 

In the above illustrated relative geometry, the effective wind shear in the current 
direction is Usin(|>-v, and the total shear velocity U+vsin<j) (to order v/U). The total 
kinematic stress in the current direction (determining the cross current Ekman drift) is to 
order v2 seen to be: 

tc = - Cd(U2sin(j> - Uv(l+ sin2<j>)) (1) 

where Cd is the surface drag coefficient normalized by the density ratio between 
the media (we shall here assume that Cd=2xl0"6). For a straight oceanic jet, the surface 
vorticity is given by the current shear, vn, and the effective stress curl is found to be: 

curl xc = -CdU(vn(l+ sin2«))) + HUvnn) (2) 

where the second term represents the Ekman drift convergence effect identified by 
Niiler (1969). Note that although this term is likely to be instantaneously dominant under 
many circumstances, it vanishes for a time variable wind with zero mean, while the first 
term is only weakly sensitive to wind direction and thus cumulative in its effects. 

In considering biological impacts of near surface dynamic processes in the oceans, 
Lagrangian temporal persistence of the phenomena becomes a major concern, since full 
evolution of biological impacts may require times typically counted in days or more. That 
is, homogeneity under advection in a frontal jet is critical in simple models of slow 
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responses in a fast flowing current. As an example, water in the Gulf Stream core with a 
current speed of 1-2 m/sec is displaced of the order of 100 km in a day. 

The case of current rings is very different because of the recirculation and 
resultant trapping of waters that occurs in these features. In an isolated current ring, 
where the tangential velocity vanishes at the outer boundary, the area integrated vorticity 
must vanish. For a symmetric ring, a streamline must then exist where the vorticity 
vanishes, separating a core region with vorticity of the rotation sign of the ring, and an 
outer one with the opposite vorticity sign. The under-stress effect will induce 
convergence in the cyclonic vorticity zone, and divergence in the anticyclonic one, and 
thus induce concentration or dispersal tendencies in different radial domains of a ring. 

The radial Ekman transport, Mr, is: 

Mr = - (f+Vn)-1 cd(U2sin<j> - Uv(l+ sin2((>)) (3) 

The effect of the mean ambient Ekman drift (the first term in III) is to distort the 
surface circulation, setting up a retention zone which is displaced from the eddy center as 
illustrated below in a surface stream function section, taken parallel to the wind and 
through the center of an axisymmetric cyclonic ring. Its average around a streamline 
vanishes. In the figure, the slanted lines are a stream function representation of the 
ambient Ekman transport. Neglecting for the present the correction due to the ring 
vorticity, the Ekman drift modified stream lines are the horizontal projections of the 
intersections between a set of slanted planes and an axisymmetric bowl defined by its 
cross section in the figure, and the closed resultant stream lines are generated by the set of 
intersections between the illustrated ones. 

1^ Retention 
domain 

0 

Hyperbo£ 
stagnation point 

Retention pole 
Stream function 

Eddy center 

Assuming that the retention zone stream lines are still approximately circular, and 
noting that the radial Ekman drift correction due to the ring vorticity vanishes at the core 
boundary, we can estimate the total Ekman drift convergence rate into the core region as: 

$ Mfd<}> = 3nrcdf~
lUv (4) 

and the corresponding mean vertical velocity inside the ring core region as: 

I 
1 
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I 
1 -    3c,Uv 

w=— 3cdUR0 
fr 

(5) 

Rossby numbers (RQ) for well developed rings are typically of order 0.1 to 0.5. 
We choose 0.2 (appropriate for the Florida Keys eddies) for an example computation, 
take the density normalized drag coefficient as 2x10-6 anci ad0pt a moderate wind speed 
of 7,5 m/sec (15 knots), to yield an up(down)welling rate of SxlO-Sm/sec, or 
approximately 0.7 m/day in a warm (cold) core ring. With ring life times of the order of a 
month, this provides significant mass displacements between the radial ring zones. 

Lateral ventilation of the surface layer along the trajectories outside the retention 
zone does occur with the mean Ekman drift. For a symmetric ring under steady wind 
conditions, the entire Ekman flux that hits the eddy boundary is shunted around the 
retention zone through a crescent shaped region which encompasses approximately one 
half of the total eddy area, as illustrated below: 

Process zonation in 
a symmetric warm core 
ring. The vertically 
hatched area is swept 
by externally con- 
nected stream lines 
and the retention 
zone encompasses 
the entire diver- 
gent core region 
and a part of the 
outer region with 
convergent under- 
stress effect. 

The hatched lozenge 
shaped feature indicates 
location of enhanced wind 
stirring. 

Wind 
direction 

If the wind direction should reverse, something like half of the affected surface 
area will be included in the restructured retention zone. Thus slowly variable winds may 
in fact engender an effective eddy diffusivity between the eddy surface layer and its 
surroundings. 

In addition to the understress induced convergence effects, there is also a 
modulation of the wind induced mixing processes. Conventional approximations suggest 
proportionality to the cube of the friction velocity, and thus a substantial enhancement of 
the wind stirring in the region of maximal opposing current speed, the center of which is 
indicated in the figure by the diagonally hatched lozenge shape. 

Returning our attention to the Florida Keys situation, we have there examples 
both of the current jet (Gulf Stream) and ring current interaction situations (Tortugas and 
Pourtales gyres). Both of the gyre objects are cyclonic in nature, and thus characterized 
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by convergence effects in their core regions. As cyclonic recirculation zones along a 
climatologicai downweliing boundary, they provide the possibility of significant storage 
effects for maturing iarvae and early juvenile stages of a number of iocally important fish 
and crustacean species. A rather unique aspect of the Florida Straits climatology is 
however the juxtaposition of a strong boundary current and opposing winds over much of 
the year. As discussed by Rooth et al. (1994), this leads not oniy to the prospect of local 
retention and return to the inshore region of progeny of reef populations, but aiso to a 
prospect for capture by the coastal eddies of various flotsam, whether biological or 
inanimate, which is carried by the Gulf Stream jet. Once captured, such objects can be 
carried onshore by the quasi-persistent coastal gyres, to be preferentially delivered 
onshore in their downstream quadrants (relative to the Gulf Stream flow). A surface 
layer strip of several kilometers with is estimated to be diverted from the stream into the 
Pourtaies Gyre circulation along the roughiy 40 km downstream width of the latter. 

Because of the somewhat ephemeral character of these inshore gyres, particularly 
of the smaller Pourtaies Gyre (off the middle Keys), a mechanism is here provided for 
substantial variability in local recruitment success, dependent on the relative timing of 
spawning events and the vagaries of the gyre structures. Further research is needed 
particularly on how the effective thickness of the Ekman drift layer and the vertical 
distribution habits of various organisms interact to modify the transport rates. One may in 
particular expect that diel migrations of Zooplankton, over a depth range which exceeds 
the Ekman drift profile scale, shouid introduce a strong relative dispersal factor in trophic 
ievel interactions whenever the "mixed iayer is pooriy mixed". New techniques for 
surface drift current mapping based on VHF radio backscatter from surface waves, 
combined with ins situ continuous sampling techniques along ship transects are being 
applied in the SEFCAR project, and will hopefully in time lead to clarification of some of 
these problems. 

Acknowledgments: SEFCAR is supported by a NOAA through a grant to the Cooperative 
Institute for Marine and Atmospheric Studies (CIMAS) in Miami. A significant part of 
the material presented here was developed as part of a Ph.D dissertation by Lian Xie who 
is currently affiliated with North Carolina State University. 
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Survival: What is it and when does it occur? 
Chris Cosner 

Dept. of Mathematics 
Univ. of Miami 

Coral Gables, FL 33124 
One of the basic problems in ecology is that of determining whether a population, 

species, or community can be expected to survive. A common theoretical approach is to 
build and study mathematical models for the population dynamics of the species of interest 
and their interactions with the environment and each other. If the population dynamics 
are simple and well-understood, and the physical environment is homogeneous, then there 
may be a globally attracting equilibrium for the model with all equilibrium populations 
or densities at high levels. In general, however, there are some major problems with this 
approach. First, even simple systems may have complicated dynamics such as limit cycles 
or strange attractors, i. e., chaos. Second, the influence of the physical environment may 
be complex and/ or erratic, so that a complete description of the population dynamics 
is not technically feasible. Third, the interactions of a population with the environment 
or other populations may be known only approximately. Thus it is worthwhile to con- 
sider alternatives to the existence of a globally attracting equilibrium. Three of those are 
compressivity, permanence/ uniform persistence, and practical persistence. 

A model which can be viewed as a dynamical system is said to be uniformly persistent 
if it has a globally attracting set which is bounded below in every component by a positive 
number or density. It is said to be permanent if the attractor is also bounded above. 
Usually a system must be autonomous or periodic in time for the idea of permanence to 
apply. Typically permanence is established for a model of m species by showing that any 
subsystem with m — 1 species at steady state is unstable with respect to the remaining 
species; i.e., the remaining species can invade if introduced at low densities. A review of 
the theory is given in Hutson and Schmitt (1992); see also Cantrell, Cosner, and Hutson 
(1991, 1993). 

A model which preserves an ordering of the initial data is said to be compressive if there 
exists a minimal steady state which is stable from below and a maximal steady state which 
is stable from above. The crucial requirement is that the system be order-preserving. That 
will typically be the case for continuous time models of a single species, two competitors, 
or an arbitrary number of mutualists, but will fail for predator-prey systems or for three 
or more competitors. The idea of compressivity is discussed by Hess (1991) in the context 
of reaction-diffusion models. Criteria for systems of ordinary differential equations to be 
order-preserving are given by Smith (1988); often those criteria will extend to reaction- 
diffusion systems. 

In principle, practical persistence simply means uniform persistence or permanence 
with some explicit lower bounds for the globally attracting positive set. In practice, prac- 
tical persistence is typically established by a collection of ad hoc techniques which include 
the use of multiple Lyapunov functions and comparisons with simpler subsystems or single 
species models. There is little general theory (yet) for practical persistence, but related 
ideas are discussed in Cao and Gard (1993) and have been used in the analysis of reaction- 
diffusion systems in Cosner and Lazer (1984) and Cantrell, Cosner, and Hutson (1993). A 
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detailed treatment is given in Cantrell and Cosner (preprint). A major advantage of the ad 
hoc methods used to establish practical persistence is that they may be used in situations 
where the coefficients in the model are only approximately known or have complicated 
(but bounded) time dependence. 

To see how these ideas apply or fail, consider the reaction-diffusion models 

Oil 
— = DV2u + (a- bu)u (1) 
at 

du 2 / 7 \ — = U\ V u + (a — bu — cv)u 
at 
dv      _^ _2        . . 
— = D2v v + [a — tu — jv)v 
at 

du o       /      , N — = D\ V u + (a — bu — cv)u 
at 

-£ = D2V
2v + (-d + eu)v 

at 

■7— = DiV u + [a(<, u,v) — b(t,u,v)u — c(f, u,v)v]u 
at 

—- = D2 V2t> + [d(t, u, v) + e(t, u, v)u + f(t,«, v)v]v 
at 

(2) 

(3) 

(4) 

where the spatial domain is a bounded region Q and u = v — 0 on dQ,. Model (2) is for 
competition; (3) and (4) are predator-prey models. 

For (1) there will be a unique positive equilibrium density u — 0(D,a,b) which is 
globally attracting among positive solutions whenever 00 > 0, where CTQ is the largest 
eigenvalue of 

DV2V> + <"/> = (rip    in ft 

xj) = 0   on du. 

Furthermore, if we normalize ip by max^> = 1, then (oo/fr)^ 5: 6(D,a,b) < a/b (see for 
example Cosner and Lazer, 1984). 

The existence of a globally stable positive equilibrium in (2), (3), or (4) has been 
established only under quite restrictive hypotheses about the coefficients. On the other 
hand, the ideas of permanence, compressivity, and practical persistence all apply to (2) 
provided the largest eigenvalues of 

D2V
2ip2 + [d- e6(Di, a, b)}i>2 = <rip2 

V»i = ^2 = 0    on d£l . 

are both positive; see Cantrell, Cosner, and Hutson (1991), Hess (1991) and Cosner and 
Lazer (1984) respectively. For (3) and (4) compressivity fails, since the systems are not 
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order-preserving. It seems difficult or impossible to establish practical persistence in (3) 
because of the difficulty in obtaining upper bounds on v. Permanence will hold for (3) if 
the largest eigenvalues of 

n in Q, 
D2V

2xl>2 + [-d + ed{Dx, a, 6)]V>2 = <nh 

^1 = ^2 = 0   on du. 

are both positive; see Cantrell, Cosner, and Hutson (1991). On the other hand, perma- 
nence in (4) can be established only if the time dependence in the coefficients is periodic 
or at worst almost periodic and the coefficients are explicitly known. However, even if the 
only information available on the coefficients is a collection of upper and lower bounds, 
it is sometimes possible to establish practical persistence. The key point is that a sin- 
gle reaction-diffusion equation is always order-preserving, and even a reaction-diffusion 
inequality will retain some order-preserving properties. Suppose that in (4) we have 
a < a(u,u,t) < a, b < b(u,v,t) < b, etc. Then for any solution (it, v), u must satisfy 

— < Dx V2« + (a - bu)u  , 
at 

so, by comparison with (1), we have u < a/b for t large. When enough time has passed to 
realize that bound on u, we have 

— < £>2 V2u + (d+ e(a/b) - cv)v 

so that comparison with (1) shows that eventually v < M = [d + e(a/6)]/c . [This is the 
point where the argument for practical persistence breaks down for (3).] Having obtained 
an asymptotic upper bound on v, we can obtain an asymptotic lower bound on u provided 
that a is large enough and c or M is small enough. For t large, 

du — 
— > DiV2U + (a-cM- bu)u 
at 

so that if the largest eigenvalue of 

Di V2V> + (a - cM)ij> = <TV    in SI 

ip = 0   on3fi 

is positive, we have u > 6(Di,a — cM,b) for large t. As previously noted, this lower bound 
can be estimated in terms of xj> and the eigenvalue. Finally, we can use the asymptotic 
lower bound on u to generate an asymptotic lower bound on v. For t large, 

dv —      — 
— >D2V

2v + (d+e6(D1,a-cM,b)-fv)v     , 
at 
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so v > w where w has the same initial data as v at some large value of t and 

^- = D2V
2w + (d + eOtDt ,a-cM,b)- Jw)w (5) 

at 

with w = 0 on dft. Although (5) has a spatially varying linear growth term, it behaves 
in much the same way as (1). Specifically, equation (5) will have a unique globally stable 
positive equilibrium p provided that the largest eigenvalue of 

D2 V2V> + (d + eß{Di, a - cM, b))ip = aif>    in ft 

V> = 0   on 9ft 

is positive. In that case, v > p for large t. With a bit more work, p can be estimated from 
below in terms of the eigenvalues and eigenfunctions of simpler related problems. 

It is clear from the above discussion that eigenvalues play a crucial role in the analysis 
of reaction-diffusion models. Related ideas may also be applied to matrix models. A key 
result in matrix theory is the Perron-Frobenius theorem, which ensures the existence of a 
real principal eigenvalue for any nonnegative irreducible matrix. The corresponding infi- 
nite dimensional result is the Krein-Rutman theorem, which together with the maximum 
principle and some technical results in the theory of partial differential equations ensures 
the existence of a principal eigenvalue for problems of the form 

V • D(x)Vx{> + B(x) • Vr/> + C(x)ip = <jxj>    in ft (6) 

V> = 0   on 9ft 

even though the differential operator is not self-adjoint nor even in divergence form. There 
are corresponding results for time periodic parabolic equations. For a discussion, see Hess 
(1991). Use of the theory of eigenvalue problems such as (6) permits the application of 
the ideas of compressivity, permanence/ uniform persistence, and practical persistence to 
problems with periodic coefficients and/ or transport mechanisms more complicated than 
simple diffusion. 
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Abstract 
Two-fluid flows exhibit phenomena which form a subject rich in interdisciplinary sci- 

ence. Industrial applications include the formation of bicomponent fibers such as nylons, 
the production of photographic films and the pipeline transport of crude oil. Theoreti- 
cally, there are often many possibilities for the shape of the boundary separating the two 
fluids. On the other hand, experiments show that some shapes are preferred over others. 
The question thus arises as to which interface shapes can be observed, and what physical 
processes govern the selection of interface shapes. A first step towards the answer concerns 
the stability of the interface, and the appearance of new arrangements from unstable ones. 

The equations governing flows composed of two immiscible fluids with different viscosi- 
ties and densities are the Navier-Stokes equations and incompressibility. The consideration 
of viscoelastic effects will require the replacement of the Navier-Stokes equations with a 
momentum equation plus a constitutive model. The volumes of the fluids are prescribed, 
and at the unknown interface position, we have the kinematic free surface condition, the 
continuity of velocity and shear stress, and the jump in the normal stress is balanced by 
surface tension. Appropriate boundary conditions are imposed to complete this formu- 
lation, e.g., the no-slip condition at solid walls, periodicity in the unbounded direction. 
There are at least five dimensionless parameters: a Reynolds number, a surface tension 
parameter, volume ratio, viscosity ratio and density ratio. 

The lecture focuses on the stability of two-layer plane channel flow, which has been 
instructive in understanding phenomena that occur in more complicated flows. Computa- 
tional and asymptotic results on linear stability will be discussed. We proceed from the 
linear stability analysis to the study of nonlinear bifurcations. Bifurcation theory proceeds 
basically in two steps. First, one must show that in the neighborhood of a point where 
an instability arises, the problem of solving the differential equation can be reduced to a 
finite dimensional problem. The center manifold theorem is used in this respect. Secondly, 
the relevant coefficients in the finite dimensional equations must be calculated and the 
resulting equations must be solved. For shearing flows, we have investigated the stability 
of the bifurcating travelling wave solutions for plane Couette-Poiseuille flow. Periodicity 
is prescribed in the horizontal direction. Numerical results on whether the bifurcation is 
supercritical or subcritical have been obtained for several flow profiles. 

The stability of the primary traveling wave solution to sideband perturbations has 
been examined in various contexts, such as water waves. The usual idea is to derive an 
amplitude evolution equation known as the Ginzburg-Landau equation. This equation 
involves an amplitude factor for the critical mode which is allowed to vary slowly as a 
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function of rescaled space and time variables. The situation with two fluids presents a 
complication to the usual framework of the Ginzburg-Landau equation. The reason is that 
in addition to the critical mode leading to traveling waves, there is another neutral mode 
at zero wavenumber, which corresponds to a shift of the interface. We will incorporate the 
evolution of this long-wave (or mean-flow) mode, which has been neglected in past work 
on two-layer flows. If slow modulations are allowed, we obtain, instead of the Ginzburg- 
Landau equation, a coupled set of three partial differential equations for the amplitudes 
(of the traveling wave mode, the long-wave mode, and the pressure mode). This raises 
the possibility that as a result of an instability of the primary traveling wave solution to 
sideband perturbations, the resulting dynamics may be dominated by the mean-flow mode. 
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Abstract 

I investigate the dispersal-driven instabilities that arise in a discrete-time predator-prey 
model formulated as a system of integrodifference equations. Integrodifference equations con- 
tain two components: (1) difference equations, which model growth and interactions during a 
sedentary stage and (2) redistribution kernels, which characterize the distribution of dispersal 
distances that arise during a vagile stage. Redistribution kernels have been measured for a 
tremendous number of organisms. Using a particular predator-prey model as an example, I 
show how dispersal-driven instabilities arise and demonstrate the use of a Galerkin method to 
approximate the stable, spatially patterned solutions which result. 

1    Introduction 

There is nothing surprising in the observation that organisms track spatial and environmental 
variation. Indeed, there is an extensive literature on habitat selection (Fretwell and Lucas, 1969; 
Morse, 1980; Cody, 1985; Bazzaz, 1991; Morrison et al., 1992; Block and Brennan, 1993) and on 
the role of habitat selection in determining the dispersion of organisms. There is also an older 
literature on autecological components of niche (Grinell, 1917, 1924, 1928; James et al., 1984), 
species-specific responses to gradients (Gleason, 1926), and populations (Andrewartha and Birch, 
1954, 1984) that argues that environmental heterogeneity is frequently the principal determinant 
of distribution and abundance. 

Despite the ubiquity of environmental heterogeneity, patterned spatial distributions may also 
arise in homogeneous environments (Steele, 1974,1976,1978; Mackas and Boyd, 1979; Levin, 1992). 
Thus it is essential that we ask whether patterns can arise solely as the result of trophic interactions 
and dispersal. A number of scientists have investigated this question using continuous-time growth 
models with simple (Fickian) diffusion. The diffusion in these reaction-diffusion models is generally 
thought of as a stabilizing influence (McMurtrie, 1978), one that homogenizes populations and 
moderates temporal fluctuations. However, Turing (1952) demonstrated that diffusion may also 
combine with intra- and interspecific interactions to yield instability and spatial patterns. Turing's 
concerns were largely developmental. However, his ideas regarding diffusive instability were soon 
transferred to ecology by Segel and Jackson (1972), Levin and Segel (1976), and Segel and Levin 
(1976). There is now an extensive literature on diffusive instability and pattern formation in ecology. 
Okubo (1980), Conway (1984), and Murray (1989) provide useful introductions to this literature. 

"Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 
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A difficulty with reaction-diffusion, equations is that they are inappropriate for the innumerable 
species with discrete, nonoverlapping generations. To circumvent this difficulty, I will consider 
discrete-time models built around contact distributions (Mollison, 1977)—probability distributions 
for the distance that an organism moves. Discrete-time spatial contact models have a surprisingly 
long history. They are at the heart of the problem of random flights (Markoff, 1912; Chandrasekhar, 
1943) wherein a particle undergoes a sequence of independent and random displacements of given 
distribution. Later, Slatkin (1973), Weinberger (1978, 1984) and Lui (1982a, 1982b, 1983, 1985, 
1986, 1989a, 1989b) used them to describe changes in gene frequency. And recently, they have 
appeared in population ecology as integrodifference equations (Kot and Schaffer, 1986; Hardin et 
al., 1988a, 1988b, 1990; Kot, 1989, 1992; Anderson, 1991; Hastings and Higgins, 1994; Neubert et 
al., in press) for populations with discrete nonoverlapping generations and well-defined growth and 
dispersal stages. 

In Section 2 I briefly formulate a system of integrodifference equations for a predator and 
its prey. Each individual integrodifference equation is built around a redistribution kernel (contact 
distribution); some possibilities are outlined. Under certain assumptions, the system I study admits 
a spatially homogeneous solution at which the two species coexist. In Section 3,1 perform a linear 
stability analysis around this solution, and derive a dispersion relation for the growth rates of 
perturbations of a given wavelength. For some parameter values, a particular wavenumber will 
have a positive growth rate. Perturbations with this wavenumber will grow, until a new spatially 
structured solution is obtained. In Section 4,1 present a Galerkin method for approximating these 
spatially structured solutions. A particular example is used throughout to illustrate the methods. 
Concluding remarks are relegated to Section 6. 

2    Integrodifference Equations 

Difference Equations 

I wish to consider some simple models for interacting populations—predator and prey or host 
and parasitoid—that grow, interact, and disperse, in synchrony, on a continuous one-dimensional 
habitat. Each model will be built on top of a system of first-order difference equations, 

Nt+1    =   f(Nt,Pt), (la) 

Pt+i   =   g(NuPt), (lb) 

for the levels of the two populations, Nt and P4, at time t. There is a long history of such difference 
equations (Nicholson, 1933; Nicholson and Bailey, 1935; Hassell, 1978). Some of the better-studied 
systems are known to exhibit complicated and/or chaotic dynamics (Beddington et al., 1975; Gu- 
mowski and Mira, 1980; Lauwerier and Metz, 1986; Hadeler and Gerstmann, 1990; Neubert and 
Kot, 1992). 

A particular example of system (1) is the predator-prey model 

Nt+1   =   Ntexp[r(l-Nt-Pt)], (2a) 

Pt+1   =   cPtNt, (2b) 
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(Neubert and Kot, 1992). This model exhibits most of the same qualitative behavior as the tradi- 
tional Lotka-Volterra model 

Nt+1   =   (l + r)Nt-rN?-cNtPu (3a) 

Pt+1   =   cNtPt, (3b) 

(Maynard Smith, 1968). In particular, both models have three equilibria corresponding to (1) 
extinction of both species, (2) extinction of the predator and survival of the prey at its carrying 
capacity, or (3) coexistence of both species. This last equilibrium is stable for some parameter 
values, and can become unstable by Hopf, transcritical, or subcritical flip bifurcations. Systems 
(2) and (3) differ in that the former maintains first quadrant invariance whereas the later does 
not. I will use system (2) as the underlying set of difference equations in the examples presented 
throughout this report. 

Dispersal 

System (1) makes no allowance for the dispersion of the organisms. To amend this situation, let 
Nt(x) and Pt(x) represent each population's density in space at the start of the tth generation. 
I imagine that change occurs as the composition of two distinct stages. Growth, predation, and 
reproduction occur during a density-dependent sedentary stage. During this stage, Nt(x) is mapped 
to f(x,Nt{x),Pt(x)) while Pt(x) is mapped to g(x,Nt(x),Pt(x)). Explicit spatial dependences in / 
and g (from here on dropped) reflect clinal (spatially varying, time-independent) variation in the 
parameters. Movement occurs during the second stage. I describe the details of this movement 
with a pair of linear integral operators that tally the movement from all y to x. The composition 
of these two stages yields a coupled system of integrodifference equations, 

Nt+1(x)   =    [ k1(x,y)f(Nt(y),Pt(y))dy, (4a) 

Pt+i(x)   =    [ k2(x,y)g(Nt(y),Pt(y))dy, (4b) 

for the growth and dispersal of N and P in their one-dimensional domain ti. 
The two functions ki(x,y) and k2(x,y) at the heart of system (4) are redistribution kernels. 

Each kernel describes the dispersal of one of the populations from y about y. The product ki(x, y) dy 
is the probability that an N individual at x at t +1 originated, at time t, from an interval of length 
dy about y. The product k2(x,y)dy provides the same information for P propagules. The two 
kernels are constrained to be nonnegative. Each kernel may depend on absolute location or on 
relative distance. If both kernels depend on relative distance, we may rewrite system (4) in terms 
of convolution integrals: 

Nt+i(x)   =     ( kl(x-y)f(Nt(y),Pt(y))dy, (5a) 
Jü 

Pt+1(x)   =    I k2(x-y)g(Nt(y),Pt(y))dy, (5b) 
Ja in 

I will restrict my attention to redistribution kernels of this type for the remainder of this report. 
There are a number of methods for estimating redistribution kernels from observed data (South- 

wood, 1978; Silverman, 1986). In point of fact, redistribution kernels have been measured for a 
tremendous number of organisms, ranging from plant spores to small animals (Dobzhansky and 
Wright, 1943; Wolfenbarger, 1946,1959,1975; Cremer, 1966; Platt and Weiss, 1977; Stapanian and 
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Smith, 1978; Taylor, 1978; Westelaken and Maun, 1985; Okubo and Levin, 1989; Tang, 1989; Will- 
son, 1993). Observed dispersal curves are frequently characterized as being leptokurtic (Bateman, 
1950; Okubo, 1980; Howe and Smallwood, 1982; Howe and Westley, 1986; Wilson, 1992). 

Theoretical redistribution kernels can also be derived from first principles. For example, consider 
a propagule that performs a one-dimensional unbiased random walk (Fickian diffusion) during 
which there is a constant probability of becoming immobile. After a sufficiently long time, the 
probability density function for the location of the propagule is given by the leptokurtic Laplace or 
double-exponential distribution (Broadbent and Kendall, 1953; Williams, 1961; Neubert et al., in 
press): 

jb(x) = |e-*H (6) 

(see Figure 1). 
While many measured dispersal curves have their maxima located at the source, a large number 

are bimodal, with their maxima at some intermediate distance from the parent (Cremer, 1966; Platt 
and Weiss, 1977; Stapanian and Smith, 1978; Howe et al., 1985). By coupling radial advection with 
a constant settling rate one can derive the bimodal double-gamma redistribution kernel (Neubert 
et al., in press): 

k(x) 
a* 
~~2 

\x\ e -a \x\ 
(7) 

(see Figure 1). Okubo and Levin (1989) have derived other dispersal curves with nonzero modes 
which take into account height dependent wind speeds and vertical eddy diffusivity. The kernels 
(6) and (7) are simple in form and will be used in the examples below. 

I 
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-8-6-4-2        0 2 4 
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Figure 1: Laplace and double-gamma redistribution kernels. Laplace redistribution kernels result 
when propagules diffuse and suffer a constant probability of becoming immobile. Double-gamma 
redistribution kernels are obtained when radial advection is coupled with a constant settling rate. 
In this figure, a = ß = 1 (see equations [6] and [7]). 
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3    Dispersal-Driven Instabilities 

Turing (1952) was the first to appreciate that diffusion may destabilize a spatially uniform solution. 
Diffusive instability occurs when one species diffuses and decays so rapidly that it cannot exert 
its stabilizing influence upon a second species (Segel and Jackson, 1972). In this section, I study 
the effects of dispersal on an otherwise stable equilibrium of system (1) and thereby show that 
dispersal-driven instabilities also occur in systems of integrodifference equations. 

Linear Analysis 

I start with a pair of difference equations, 

Nt+1   =   f(NuPt), (8a) 

Pt+i   =   g(Nt,Pt), (8b) 

with an equilibrium point (N*,P*) in the interior of the first quadrant. The equilibrium point 
must satisfy 

N*   =   f(N*,P*), (9a) 

P*   =   g{N*,P*). (9b) 

I assume that this equilibrium point is asymptotically stable, with all of the eigenvalues of the 
Jacobian or community matrix 

/ II   §L 1    dN     dP 

dg       dg 
8N     dP (N',P') 

(10) 

of magnitude less than one. 
Next, I add dispersal and consider 

Nt+1(x)   =    /     k1(x-y)f(Nt(y),Pt(y))dy, 
J — oo 
/oo 

k2(x-y)g(Nt(y),Pt(y))dy. 
-oo 

(11a) 

(lib) 

The domain is infinite so that I may start with a spatially uniform steady state. I further limit 
myself to kernels k\(x — y) and k2(x — y) that are symmetric (or even) and nonnegative. Finally, 
as a matter of convenience, I assume that there is no mortality during dispersal, 

/oo 
ki(x)dx = 1, 

-oo 
(12) 

so that (N*,P*) is also a spatially uniform steady state of the full integrodifference system (11). 
Can dispersal destabilize (N*,P*)1 Consider perturbations of the steady state of the form 

Nt(x)   =   N* + nt(x), 

Pt(x)   =   P*+pt(x). 

For sufficiently small perturbations, we may linearize about (JV*,P*), 
/oo 

h(x - y) [auntiy) + a12pt(y)] dy, 
-oo 
/oo 

k2{x - y) [a2int(y) + a22pt(y)] dy. 
-oo 

(13a) 

(13b) 

(14a) 

(14b) 
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The dij are once again given by the Jacobian of the underlying system of difference equations 
evaluated at (N*,P*) (see equation [10]). If the perturbations nt and pt decay to zero, (N*,P*) is 
asymptotically stable. 

The integrals in equations (14) are convolutions.   Since convolution integrals simplify under 
Fourier transformation, we may use the Fourier transform pair 

/(«)   =    /     e™f(x)dx, 
J—oo 

f{x) = ^/JLe~iW/(a;)dw' 
and the transformed perturbations 

/oo 
eiuxnt(x)dx, 

-oo 
/oo 

eiuxpt(x)dx, 
-00 

to simplify our analysis. Indeed, upon taking the transform of system (14), I get 

Pt+i 
KJ 

Pt 

where J is the Jacobian or community matrix 

/ an   ai2 \ 
J = 

and K is given by 

K = 

\ °21     022  j 

( jbi(w)      0     \ 

V     0      fc3(w) / 

Decay of the nt(w) and pt(u) for all u> guarantees the decay of nt(x) and pt(x) in ^(IR). 
In the absence of dispersal, 

fnt+1\Jnt\ 

V Pt+i J      \P* J 

With dispersal, 

V Pt+i J        \ pt J 

(15a) 

(15b) 

(16a) 

(16b) 

(17) 

(18) 

(19) 

(20) 

(21) 

By assumption, (JV*, P*) is asymptotically stable in the absence of dispersal, with all of the eigen- 
values of J of modulus less than one. Dispersal-driven instability arises if the matrix KJ, in turn, 
has one or more eigenvalues of modulus greater than one. 

One can say more. All eigenvalues of J have modulus less than one if the trace and determinant 
of J satisfy the Jury test (Jury, 1964, 1974) 

1-trJ + detJ    >   0, 

1 + trJ + detJ   >   0, 

1 - det J    >   0. 

(22a) 

(22b) 

(22c) 
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For dispersal-driven instability, conditions (22) must still hold. In addition, one of the corresponding 
conditions on KJ, 

l-tr(KJ) + det(KJ)   >   0, (23a) 

l + tr(KJ) + det(KJ)   >   0, (23b) 

l-det(KJ)   >   0, (23c) 

must be violated. The matrix K depends on the wavenumber u; dispersal-driven instability will 
occur (if it occurs at all) for limited ranges of u>. 

Inequality (23a) guarantees that no real eigenvalue of KJ is larger than +1. If we violate this 
inequality, the uniform steady state will lose its stability to a spatially structured solution. I refer 
to this situation as a plus-one bifurcation. If we reverse inequality (23b), so that an eigenvalue 
passes below -1, stability is lost to a spatially structured, time-periodic solution of period two (a 
two-cycle); we have a minus-one bifurcation. The reversal of (23c) would lead to a Hopf bifurcation 
(with a complex conjugate pair of eigenvalues passing through the unit circle), would that it could 
occur. However, two-species dispersal-driven Hopf bifurcations are impossible (Kot and Schaffer 
1986; Kot 1989). 

Dispersion Relation 

Inequalities (23) determine whether small amplitude perturbations of a particular wavenumber will 
eventually grow or decay. They do not, however, give the relative growth rates of each wavenumber. 
We would like to know, for example, which wavenumber will initially grow the fastest. (At least for 
the examples presented later, it is this wavenumber which best characterizes the spatially patterned 
solutions.) We must therefore calculate the growth rates explicitly. 

The linear growth rate, Amax, for each wave number a>, is given by the largest (in modulus) 
eigenvalue of the matrix KJ. The eigenvalues are in turn given by the solutions of the characteristic 
equation 

A2 - tr (KJ) A + det(KJ) = 0. (24) 

Thus, 

A(w) = i {tr (KJ) ± ^/[tr(KJ)]2-4det(KJ)|. (25) 

The expression Amax = Amax(u;) is called the dispersion relation. If |Amax| is larger than 1 at a 
particular wavenumber, that wavenumber is unstable. The "most dangerous" wave number, a;*, 
is the one which produces the largest |Amax|. Figure (2) shows an example of a typical dispersion 
relation. 

Example 

Consider as an example system (2), which in the absence of the predator reduces to the Bicker 
curve (Ricker, 1954). System (2) posseses the unique equilibrium 

N*   =   -, (26a) 

P*   =   1--, (26b) 

where predator and prey coexist. The stability of this equilibrium is determined by the Jacobian 
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Figure 2: A typical dispersion relation. The linear growth rate Amax is plotted as a function of the 
wavenumber u. Any wavenumber between u>i fa 1.50 and o>2 « 2.12 is unstable. u>* fa 1.77 is the 
most unstable wavenumber. In this figure r = 0.9, c = 1.75, a = 1.3 and ß = 10.0. 

or community matrix J evaluated at equilibrium point (26): 

/ i_ L   _r \ 

V / c-1     1 

The Jury conditions (22) guarantee that this equilibrium is stable for 

(27) 

0 < r < 

1< c < 2, 
Ac 

(28a) 

(28b) 

If c < 1, the predator is not efficient enough to maintain itself and all trajectories are drawn to 
an equilibrium at which the predator is absent and the prey exist at their carrying capacity. If c 
becomes larger than two a Hopf bifurcation results, and (except at a few critical values of c) the 
equilibrium (N*,P*) generally yields its stability to a stable invariant circle. Finally, if r becomes 
larger than 4c/(3 — c), a subcritical flip bifurcation ensues (Neubert and Kot, 1992): the predator 
population undergoes a catastrophic collapse to extinction and the prey population is left to its 
natural tendencies. 

To these dynamics, I added combinations of two redistribution kernels, the double-gamma 
distribution (7), and the Laplace distribution (6). I thus considered four different models (two 
species, each with one of two kernels). For a high-r prey, sufficiently high predator overdispersal 
invariably set off a minus-one bifurcation, with pattern formation. In three of the four models (the 
exception involved two Laplace distributions), sufficiently high prey overdispersal led to a plus-one 
bifurcation, again with pattern formation. Plus-one bifurcations did not require high prey intrinsic 
rates of growth. Indeed, any point in region (28) could be destabilized by sufficiently high prey 
overdispersal. 
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Figures 3 and 4 show the outcome of a typical numerical simulations. The parameters r and c 
were chosen so as to lie in region (28). I added double-gamma-distribution dispersal to the prey 
and Laplace-distribution dispersal to the predator so as to give 

with 

Nt+1(x)   =    [ k1(x-y)Nt(yyl1-N<W-p<MUy, 
Jo 

Pt+1(x)   =    [ k2(x-y)[cNt{y)Pt(y)]dy, 
Jn 

h(x-y)  =   \\x-y\e-a\x~y\ 

(29a) 

(29b) 

(30a) 

(30b) 

Mathematical analyses were performed on an infinite domain. Numerical simulations were, in 
contrast, performed on a large finite domain ft using a fast FFT algorithm (Anderson, 1991). In 
particular, I iterated system (29) until I obtained a stable solution. Figure 3 shows the resulting 
steady state for a = 13 and ß = 5. The interior of this solution is flat. There is variation toward 
the ends, but this is an edge effect stemming from the finiteness of the domain. As I increased the 
variance of the predator's dispersal kernel (by decreasing ß), the "homogeneous" solution eventually 
became unstable. In its place I obtained a spatially structured two-cycle. This period doubling is 
characteristic of a minus-one bifurcation. 

In contrast, when I increased the variance of the prey's redistribution kernel (by decreasing 
a), I obtained a plus-one bifurcation: the spatially homogeneous solution was replaced by a time- 
independent, but spatially structured, steady state (see Figure 4). A plot of the dispersion relation 
for this case is shown in Figure 2. Note that the most unstable wavenumber (u* « 1.77) correctly 
predicts the wavelength of the solution (2ir/ui* ta 3.55) far from the boundary. 

4    The Galerkin Approximation 

The task before us now is to predict the resulting spatially structured solution, given a perturbation 
with a particular wave number. A Galerkin method suits this purpose. 

Equations (11) for the perturbations nt(x) and pt(x) may be written as, 

/oo f °°   1 
^hix-y) j££ 

/oo f °°   1 
W*-y) \J2n 

■°° U=i '• 

'<> dy (31a) 
) N*,P* 

nt(y)öü + Pt(y)-Qp '•} dy 
N*.P* 

(31b) 

where I have used the Taylor series expansions of the functions / and g near the equilibrium solution 
(JV*, P*). I assume that the perturbations are even and periodic1 with period L 

nt(x + L)   =   nt(x), 

pt(x + L)   =   pt(x). 
(32a) 

(32b) 

1TMs assumption has the effect of discretizing the spectra of the linear integral operators in (11), which in the 
absence of (32) have continuous spectra. 
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Figure 3: A minus-one bifurcation. For the indicated values of r, c, and a, increasing predator 
dispersal from ß = 5 to ß = 0.5 destabilizes a spatially homogeneous solution. The resulting 
instability grows until a stable, spatially-patterned, two-cycle is reached. I iterated system (29) 
5,000 times on a domain of length 100 using the initial conditions N(x) = 0.833, P(x) = 0.167 
and 4,096 gridpoints prior to plotting the two-cycle. The top panel illustrates the redistribution 
kernels for the predator (dashed line) and for the prey (solid line) before (left) and after (right) the 
bifurcation. The middle and bottom panels show the prey and predator distributions for succeeding 
iterations, after convergence, before (left) and after (right) the bifurcation. 
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Figure 4: A plus-one bifurcation. For the indicated values of r, c, and /?, increasing prey dispersal 
from a = 13 to a = 1.3 destabilizes a spatially homogeneous solution. The resulting instability 
grows until a stable, spatially-patterned, equilibrium is reached. I iterated system (29) 5,000 times 
on a domain of length 100 using the initial conditions N(x) = 0.571, P(x) = 0.429 and 4,096 grid 
points prior to plotting the new equilibrium. The layout of this figure mirrors that of Figure 3. 
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(The analysis for general periodic functions is similar, but more tedious.) I can then approximate 
the perturbations as truncated cosine series with time-dependent coefficients: 

M 
nt(x)   =   ^2 o j(t) cos ujX, (33a) 

M 

Pt(x)   -   ^bj(t)cosu>jX, (33b) 
j=o 

where 
2xj 

u>j = -f. (34) 

I then substitute the expressions (33) back into equations (31) to obtain difference equations for 
the coefficients a; and b{. I illustrate this procedure next. 

Before proceeding, it is useful to introduce some notation. Define the linear operators which 
determine the coefficients in the linear, quadratic, and cubic parts of the Taylor series exansion as 

Lt-   =   ai&N + bidp, (35a) 

Qjj   =   aiajd%N + 2aibjd^fP + bibjdpp, (35b) 

Qj,jfc   =   aiüjakdNNN + 3aiüjbkdpfNp + Zaibjbkd^pp + bibjbkdppp. (35c) 

Where, for example, the symbol d%P = a^dP- Using expressions (33) and (35) in equations (31) I 
obtain 

M oo t M 

J2 an(t + 1) cosu;nx   =     /     ki(x - y)\ J^ Ljf(N*'p*) cos wi 
n=0 J-°° I j=0 

1   M   M M   M 

9/_^z^ Qj,kf(N*,P*) cosüjjy cosu>ky 
Z i=0 jfc=0 

,   M   M   M 

+    6 E S X) Cij)fc/(iV*, P*) cosuiy cos UJJJ cos uky 
i=0 j=0 fc=0 

+   ■•■>dy, (36a) 

M f M 

22 bn(t + 1) cosunx   =     /     k2(x - y)\ ]T Lj g(N*, P*) cosojjy 
n=0 J-°° lj=0 

,   M   M 

+    Ö Ys X Qj,k9(N*,P*) cos Ujy cosojky 
z i=o k=o 
,   M   M   M 

+    ß X X X Ci'j'h g(N*'P*} cos UiV cos^y cos Uky 
i=0 j=0 fc=0 

+    • • • \dy. (36b) 

I can simplify equations (36) using the identity 

coscjj cosUk = - [cos(o?j + Uk) + COS(OJJ - Uk)], (37) 
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\COSU)jX. 

and the fact that the ki are even and have Fourier transforms, 

ki(x - y) cosojjydy = fc;(wj) < 
-oo 

Using formulas (37) and (38) in equation (36) produces, 

M M 
]T]a„(i + l) coswnx = ^L;/(iV*,P*)fci(wi) COSUJX 

=0 j=0 

1    M    M 
+    i X) XI Qj.*/(^*'P*) {*i(wi + w*)cos [(wi + "*)*] + *i(wi - w*)cos KWJ _ uk)x]j 

(38) 

n=0 

j=0A=0 
Af    M    Af 1       i»       JM       JH /■ 

+    24 X X X c*J.*/(^*'P*) 1 *i (Wi + wi + w*) cos Kw* + wi + w*^ + 
»=o ?=o it=o '■ 

*i(w,- + Uj - uk) cos [(wf + Uj - Wfc)a;] + 

ki(u>i - Uj + u>h) cos [(u{ - u>j + Uk)x] + 

ki(ui -Uj - Uk) cos [(WJ — Wj- - Uk)x] > -\ , (39a) 

M M 
]jP bn(t + 1) cos w„:c = ^2Ljg(N*,P*) k2(uj) COSUJX 

n=0 j'=0 

1   M    M f- ~ 1 
+    T X X Qi'k9(N*'P*) {^(WJ + Wit) cos [(UJ + uk)x] + k2(uj - uk) cos [(UJ - uk)x]j 

j=0fc=0 
-     Af   M    Af s 

+    Ö4 X X X Ci.iMN*>P*)\ *a(w< + wi + w0 cos Kw' + wj + «*)*] + 
.■_n -•—n i. n *■ »=0 j=0 *=0 

k2(ui + UJ - Uk) cos [(w,- + Wj - Wfc)a;] + 

k2(ui — UJ + Uk) cos [(w, — Uj + Uk)x] + 

k2(ui — Uj — Uk) cos [(w,- — Wj — Wjt)a;] > H  (39b) 

I now have two equations for the 2(M + 1) unknowns an(t), bn(t). The paucity of equations is 
remedied by the fact that the cosines are mutually orthogonal: 

tu 0   if   j^fc 
/   coscjjX cosukxdx = <   1   if   j = k^0 

Jo I   2   if   j = k = Q 

2   /* 
(40) 

Multiplying each of equations (39) by cos unx and integrating each over the interval 0 < x < L, I 
obtain as many equations as unknowns: 

( 1 1 1 M 

ao(« + 1) = \ Lo + -Qo,o + 2^C0,o,o + ^ £ Qw + 

1   M 

9 A ^ 24 j=o 

JW—j M j 

X CJ>k,j+k + 22 C3,k,k-j + X Ci-fc.i- 
fc=0 fc==j k=0 

>f(N*,P*), (41a) 
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On(f+l)     =     fci(w„)<Ln + - 
M M—n 

1 
+    M 

n   n—j 

j=0 j=n j=0 

  n       Af 

2_* Yi Ci,fc,n-j-fc + 2^  2J   ci.fcj+fc-n 
j=0 fc=0 j'=0 k=n-j 

M    M+n—j M—n M—n—j 

+        X)        X!     CJ>fc>J+fc-n+   £      2     Ci.*J+*+n 
i=n+l     k=0 j=0      fc=0 

n   Af+j-n M        M 

+     X3     zJ     Cj,k,n-j+k +    Y      Y,    C3,k,n-j+k 
j=0    k=0 j=n+l k=j-n 

M—n    M M j—n 

+      LJ     Y,    ^j,k,k-j-n + Y/Y Ci,k,j-k-n 
j=0 k=j+n j=nk=0 

M M M-nj+n 

+ E E       Cj,k,j-k+n+  Y  ^2CJ,k,j-k+n 
j=M-n+l k=j+n—M j=0 fc=0 

f I 1 1   W 
&o(* + 1) = < L0 + -Qo,o + ^C0,o,o + - £ Q«+ 

f(N\P*),      (41b) 

24 

"Af-i M 

\g(N*,P*), (42a) 

6„(< + l)   =   fc2(wn)^Ln + 

1 
+    24 

1   M 

™ X) X) cj,k,j+k + Y2 cj,k,k-j + Y C3,k,j~k 
j=0 |_fc=0 k=j k=0 

n M M—n 

2L, Qj'.i-i + X^ QiJ-n + 2-/ Qi.i+n 
V. ~   |_i=0 j=n j=0 

n   n—j n       M 

X, zJ C3,k,n-j-k + Y    Y    CM+k-n 
_j=0 fc=0 j=0 k=n-j 

M     M+n—j M—n M—n—j 

+     X,     zJ   ci,fcJ+fc-n + z3    z3   Ci,fc,i+fc+n 
J=n+1     fc=0 j=0      k=0 

n   M+j-n M M 

+     Yl     zJ     Ci,fc,n-j+fc +    E       X)    Cj,fc,"-j+fc 
j"=0     k=0 j=n+l k=j-n 

M—n     M M j—n 

+      z3     X)    Cj,fc,fc-j-7i + X3 X) CJ,k,3-k-n 
j=0 fc=j'+n j=7i fc=0 

M Af M—nj+n 

+ X) X,       Cj,fc,j-AH-n+   X)  XlCi.fc-J-fc+n 

j=M-n+l k=j+n-M j=0 k=0 

Although they appear complicated, iterating the difference equations (41-42) is a trivial task 
compared with the numerical solution of the full set of integrodifference equations (29-30). And 
while they were derived for problems on an infinite domain, Figures (5) thru (8) illustrate that 
equations (41-42) also perform well in approximating the solutions far from the boundaries of a 
finite domain. 

In Figure 5 I have plotted the trajectories of system (41-42), using only two modes (M = 1), 
and starting from an initial condition which represents a small perturbation (with the critical 

\g(N*,P*).      (42b) 
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Figure 5: Amplitudes in the Galerkin approximation. Here, I have iterated equations (41-42) 
1500 times, with M = 1 and u = u* from the initial conditions ao = &o = &i = 0, a\ — 0.001. 
The predator-prey interaction is governed by system (29-30), with the parameter values r = 0.9, 
c = 1.75, a — 1.3, and ß = 10.0. For these parameter values u* = 1.77152. Using the asymptotic 
values of the amplitudes produces a good approximation to the steady-state solutions of system 
(29-30). See Figure 6. 

wavenumber) in the prey density. The parameter values are the same as those used in the right 
panel of Figure 4. Each of the amplitudes a,, b{, monotonically approaches a steady state value and 
reaches that level after approximately 1000 iterations. Using those asymptotic values in equations 
(33), I have plotted both the numerically simulated and approximate solutions in Figure 6. The 
approximation performs reasonably well in the center of the domain, where boundary effects are at 
a minimum. 

I have carried out the same procedure for the minus-one bifurcation of Figure 3. Figure 7 shows 
the trajectories of system (41-42), using only two modes (M = 1), and starting from an initial 
condition which represents a small perturbation (with the critical wavenumber) in the prey density. 
The parameter values were the same as those used in the right panel of Figure 3. In this case the 
amplitudes exhibit growing oscillations until t « 1000, when a stable two-cycle is acheived. Figure 
8 displays both the numerical and approximate solutions, where I have used the asymptotic values 
of the amplitudes in equations (33). Again the approximation is good only in the middle of the 
domain. 
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Figure 6: Comparison of approximate and numerical steady-state solutions to system (29-30). The 
parameter values are as given in Figure 5. Numerical solutions were computed on a domain of 
length 100. Since the solution is symmetric, only the left half of the domain is shown. 
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Figure 7: Amplitudes in the Galerkin approximation. Here, I have iterated equations (41-42) 1500 
times, with M = 1 and w = w*, from the initial conditions ao — bo — b\ = 0, a\ — 0.001. The 
predator-prey interaction is governed by system (29-30), with the parameter values r = 2.5, c = 1.2, 
a. = 13.0, and ß = 0.5. For these parameter values u>* = 1.37. The solution alternates between the 
two branches in the graphs of a\ and b\. Using the asymptotic values of the amplitudes produces 
a good approximation to the two-cycle solutions of system (29-30) in the middle of a large domain. 
See Figure 8. 

5    Discussion 

I have shown above how to derive Galerkin-type approximations to the solutions of a predator-prey 
system of integrodifference equations. Even though the appoximations were derived on an infinite 
spatial domain, the appear to be good far from the boundary of a large finite domain. With these 
easily computed approximations in hand, we can answer questions that would be impossible to 
answer with only a linear analyis and would be computationally expensive to answer by numerical 
simulation of the full system. 

For example, reconsider Figures 5 and 7. They show that (at least for the appropriate parameter 
values) a plus-one bifurcation decreases the average population size of the prey (ao) while increasing 
that of the predator (bo). Figure 7 shows that the opposite is true for a minus-one bifurcation. One 
would like to know how the mean values and the amplitudes of the spatial patterns change with 
changing parameter values. 

Figures 9 and 10 show bifurcation diagrams for system (41-42) with M = 1. For each value of the 
bifurcation parameter and for the other parameter values indicated, I calculated the most unstable 
wavenumber w* using Brent's method (Press et al., 1992). System (41-42) was then iterated 2500 
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Figure 8: Comparison of approximate and numerical two-cycle solutions to system (29-30). The 
parameter values are as given in Figure 7. Numerical solutions were computed on a domain of length 
100. Since the solution is symmetric, only the left half of the domain is shown. The approximation 
only becomes good far from the boundaries. 
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times after which 10 iterations were plotted. Figure 9 displays the plus-one bifurcation that occurs 
as prey dispersal is increased relative to the predator. After the bifurcation, as ß increases, mean 
prey numbers decrease while mean predator numbers increase. The amplitude of the resulting 
spatial pattern also increases monotonicaJly with increasing ß. 

The patterns resulting from the minus-one bifurcation shown in Figure 10 exhibit a more com- 
plicated dependence on the dispersal parameters. After the bifurcation, as prey dispersal decreases 
(for increasing a), mean prey numbers increase to a maximum and then decrease again. Mean 
predator numbers show the opposite trend, but the extreme value is not obtained for the same 
level of a. While the amplitude of the spatial pattern in prey numbers increses monotonically, the 
amplitude of the predator pattern acheives a maximum value for a « 16 and then decreases. 

The linearized stability analysis of Section 3 is not capable of predicting the trends described 
above. Although they could be computed by numerically iterating the full system, it would be com- 
putationally expensive. Another limitation of the linear analyis is its inability to predict secondary 
bifurcations. Figure 11 shows that the Hopf bifurcation of a spatially homogeneous solution which 
occurs as c increases beyond 2 (see inequality [28a]) persists even after a plus-one bifurcation. The 
result, shown in Figure 12, is a spatially patterned solution whose mean values and amplitudes 
oscillate in time. Although it is practically difficult to compare numerical and approximate solu- 
tions for this example, the minimum and maximum amplitudes predicted by the approximation 
for c = 2.1 (see Figure 11) are good approximations to the amplitudes exhibited by the numerical 
simulations. It would be interesting to see if the other bifurcations of the homogeneous solution 
predicted by inequalities (28) persist for patterned solutions. It is known, for example, that the 
subcritical flip bifurcation which occurs for the map (2) does not occur, for some dispersal param- 
eters, for the system of integrodifference equations (4) when both species have Laplace dispersal 
kernels (Neubert et al., in press). Wether or not the bifurcation occurs on the infinite domain is 
an open and interesting question. 

I have stated throughout this report that the approximation technique used here performs 
"well" in the interior of a large finite domain. Sources of error in this approximation are at least 
four-fold: (1) truncation of the Taylor series after cubic terms, (2) truncation of the cosine series 
after two modes, (3) inclusion of only the most unstable mode even though other nearby modes 
are also unstable, and (4) effects of a finite domain. (Of course there are also small errors in the 
numerical simulations.) It would be interesting to quantify each of these sources of error so that 
one could determine which is the most important. 
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Figure 9: A transcritical bifurcation. For the parameter values r = 0.9, c = 1.75, a = 1.3, and for 
ß ranging between 8 and 12,1 calculated the most unstable wavenumber, u>*, and the linear growth 
rate ofthat wavenumber, A, using Brent's method (Press et al., 1992). For each value of ß, I then 
iterated system (41-42) from the initial condition a0 = &o = &i = 0 and ai = 0.001, and plotted 
10 iterates after a transient of 2500 iterates. The figure illustrates that the system undergoes a 
transcritical bifurcation near ß = 9.2 as predator dispersal is diminished relative to the prey. 

199 



0.0005 

0.0000 

Figure 10: A flip bifurcation. For the parameter values r = 2.5, c = 1.2, ß = 0.5 and for a ranging 
between 10 and 40,1 calculated the most unstable wavenumber, u>*, and the linear growth rate of 
that wavenumber, A, using Brent's method (Press et al., 1992). For each value of a, I then iterated 
system (41-42) from the initial condition ao = &o = h = 0 and a-y = 0.001, and plotted 10 iterates 
after a transient of 2500 iterates. The figure illustrates that the system undergoes a flip bifurcation 
near a = 12 as prey dispersal is diminished relative to the predator. 
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Figure 11: A Hopf bifurcation. For the parameter values r = 0.9, a = 1.3, ß = 10.0, and for c 
ranging between 1 and 2.25,1 calculated the most unstable wavenumber, w*, and the linear growth 
rate ofthat wavenumber, A, using Brent's method (Press et al., 1992). For each value of c I then 
iterated system (41-42) from the initial condition a0 = b0 = h = 0 and ax = 0.001, and plotted 
100 iterates after a transient of 2500 iterates. The figure illustrates that the system first undergoes 
a transcritical bifurcation near c = 1.55. As c becomes larger than two the stable equilibrium 
undergoes a Hopf bifurcation. See Figure 12. 
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Figure 12: Hopf bifurcation of a spatially structured solution. As shown in the right panel of 
Figure 4, a steady spatially structured solution is stable for the parameter values r = 0.9, c = 1.75, 
a = 1.3,' and ß = 10. As c is increased, this solution exhibits a Hopf bifurcation (see Figure 11 
and equation 28). This figure illustrates 6 iterations of system (29-30) from the initial conditions 
N = N*,P = P*, using c = 2.1. 
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Effects of nutrient storage and photoadaptation on phytoplankton 

ecology 

Emmanuel Boss 

U. of Washington, School of oceanography, WB-10, Seattle 98195. 

Introduction 

As phytoplankton are advected in the mixed layer the amount of light they encounter 

changes. In order to adapt to the varied light environment they developed several mech- 

anisms that permit them to continue to grow in very different light regimes. The most 

common mechanisms are changes in the number of photosynthetic units and/or their size. 

A series of observations was performed by J. Mara (Mara, 1978a, Mara, 1978b) to 

examine the time evolution of the production rate of phytoplankton in different light 

regimes. The experiment's set-up consisted of a container in which the cells were grown 

and harvested to keep their density constant. The specie chosen for the experiments was 

the coastal chain forming diatom Lauderia borialis, which has a typical cell size of 40//m. 

Two sets of experiments were conducted: 

1. The response to a step light forcing (Fig. 1); after the cells were kept for 12 hours 

in dark, the cells were exposed to a constant light level for 12 hours. Rate of O2 production 

was measured as a function of time for cells exposed to different constant light levels. 

2. The response to a "daily" and modulated light forcing (Fig. 2); the cells were kept 

for 12 hours in dark and then exposed for 12 hours to a time-varying light level. 

In all of the experiment the following were observed: 

1. The integrated photosynthesis over a day (over 10 hours for the step) was almost 

the same for all cells in light levels above 5% of the maximal value. Modulated and "daily" 

light exposure with the same integrated light had the same integrated photosynthesis. 

2. For the step function forcing, the rate of O2 production by the cells that were 

exposed to low light initially rose and then decreased. 
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3. An afternoon depression in the rate of production was observed in the time-varying 

light regime. 

In a subsequent paper Denman and Mara (1986) explained the results of the step- 

function forcing experiment and modeled them as a consequence of a cumulative exposure 

to light which inhibits the rate of production. 

There may be, however, another explanation for the above observation. An internal 

nutrient storage, filled in the dark phase of the experiment and depleted during the light 

phase can explain the observed decay in production rate. The final asymptotic tail of the 

decrease in production rate can be explained as a steady state reached in which production 

rate equals uptake rate. The initial rise of production rate for the cultures exposed to low 

light can be explained as a result of photoadaptation. 

Nutrient storage, a behavior which is observed in large (O(10 — 100/u)) cells, permits 

phytoplankton to decouple the nutrient uptake from the light conditions, thus maximizing 

growth. On the short term, nutrients taken at night are assimilated during the day while 

on the long term some phytoplankton store even more nutrients than they need for their 

own growth, passing it to their off-spring ('luxury consumption'). The diatoms in Mara's 

experiments are capable of nutrients storage. 

The equal areas under the production rate curves suggest that the light is not the 

inhibiting factor (if it were, the cells exposed to strong light would have produced less). 

Moreover, the initial increase in production rate for cells exposed to low light is not con- 

sistent with inhibition. Finally, it is hard to explain why phytoplankton that are exposed 

to 10 percents of the light level at the surface will be inhibited. 

In the following section the alternative explanation of nutrient limitation and light 

adaptation is tested. A model is used to check whether this hypothesis is consistent with 

the observation. 

A model to test the candidate hypothesis 

In order to check whether the above hypothesis is consistent with the observations, a 

numerical model was designed. It consists of phytoplankton growing in a container. The 

208 



cell's nutrients are divided into two compartments; incorporated (JV,-) and unincorporated 

(or stored) nutrient (Ns) (Fig. 3). Only the response to a step-function forcing was 

modeled, as it is easier to make some convenience assumption for this relatively short 

experiment. The nutrient is not specified but is assumed to be the limiting factor. 

The equation describing the mass budget of the nutrients in the different compart- 

ments are: 

a. Container mass balance: 

^ = (r - Ge)Ni (1) 

with iVc denoting the concentration the nutrient in the container, r the respiration rate 

and Gc the nutrient uptake rate by the cells. 

b. Storage mass balance: 
dN 
^f = (Gc-G1)Ni-QNs (2) 

Where Ns denotes the storage concentration, Q the harvest rate and G\ the assimilation 

rate. 

c. Incorporated nutrient's mass balance 

dNi 

dt 
= (G1-r- Q)Ni (3) 

d. The uptake rate: 

c- = wsi^ (4) 

The uptake rate is assumed to be of the monod type with half saturation and maximal rate 

Kc and Vc, respectively. f(Ns) is some monotonically decreasing function of the storage 

concentration. 

e. The assimilation rate: 

G\ is formulated such that it will represent limitation due to either light or nutrient. The 

nutrient function is of the Monod type with a half saturation constant Ks and a maximal 
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assimilation rate jUm. The light function is a similarly saturating function with a maximal 

assimilation rate pm and an initial slope a (Platt et al., 1980). Subsequently a will be 

assumed to be a photoadaptive parameter, changing as the light environment does. There 

are two formulations for such an adaptation (Cullen and Lewis (1988): 

first order kinetics: 

da      1 . „        . ,„x 
^ = -(*-«) (6) 

and logistic kinetics: 

da      a (a — a\ .„. 

* = ~r {—) P) 

T is the adaptation rate and a is the asymptotic value of a. In this model it is assumed 

that a is determined by the nutrient's availability and is given as the value of a which 

makes the light function of the assimilation rate equal to the nutrient function in (5). 

In order to minimize the number of free parameters some convenience assumptions 

are made. First it is assumed that the concentration of the nutrient in the container is 

constant. The second assumption is that the uptake (U) is constant in both day and night 

with f(N„) = 1. This will be the case if the storage is never filled up. 

The model parameters are determined by the details of the experiment as described 

in Mara (1978a, 1978b). 

1. Equations (2)-(3) were reformulated to per/cell units (the units used by Mara) 

where a cell denotes a certain (constant) amount of incorporated nutrient. 

2. The initial number of cells was taken as n(t=0)=20,000/ml. 

3. The constant uptake U was assumed to be equal to the O2 production rate at the 

end of the experiment (where ^jf- = 0) and was fixed at 0.008mmol 02/hr/cell. 

4. Ns(t = 0) = 12Un(t = 0), as the cells were kept for 12 hours in the dark. 

5. The maximal assimilation rate was taken to be equal to 0.08mmol 02/hr/cell, 

based on the initial production rate of the cells exposed to 100% fight in Fig. 1, which were 

assumed to be nutrient (rather than light ) limited. This determined the ratio x3+jv7(t=o) 
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6. The first set of data from Fig. 1 (t=12.5 min) was used to reproduce a P-I curve. 

pm and a were fitted to match this curve. 

7. T — 8hr,in accordance with the data. 

8. r = 0.01, a commonly used respiration coefficient. 

9. Q = 0.0025 hr~l is given. 

Results 

The model was run using a 4th-order Runga-Kutta integrator. The logistic adaptation 

gave results that are more consistent with the data (Fig. 4). Taking r = 0 and Q = 0 did 

not changed the results noticeably. The following are observed: 

a. The model run seemed to capture most of the features observed in the experiments, 

including the initial increase of production rate for cells exposed to low light level and its 

subsequent decay. 

b. Final Ns value is less than 8% of its initial value (the storage cannot be totally 

empty when the uptake is non zero). 

c. The exponential decay of the production rate did not match for low light level. 

Discussion 

The hypothesis presented here is consistent with the following observations: 

1. In the oceans 70% of the daily photosynthesis at the surface and 58% of the total 

water-column photosynthesis occurs before noon (Parsons et al., 1984). 

2. In laboratory experiments diel oscillations in photosynthesis occur primarily in 

large cells, and are decoupled from the cell division cycle for diatoms. 

3. When starved, the oscillation amplitude decreases (Harding et al., 1981; Prezelin, 

1992). 

The assumption of constant uptake in the above model needs some clarification. It 

may be the case if the cells are diffusion limited, a case in which the container concentration 

of the limiting nutrient is going to be very small (Mara's container was well stirred, but 

nutrient weren't added during the experiment), or if the cells are reaction limitation, a case 
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I that can be consistent with high nutrient concentration. Two limiting reactions come to 

mind. Actual nutrient uptake if it is mediated by enzymatic reactions, and dark reaction » 

limitation, i.e. the assimilation is limiting (Jumars, 1994, personal communication). The 

I 
I 

I 
I 

above model will be suitable only for the case of uptake limitation. 

Nutrient storage seems, at first look, to be a strategy that is always advantageous. 

By storing nutrient at night one can expect to have a good meal during the day. There is, 

however, a tradeoff; storage, in large quantities, requires both space and mechanisms to I 

fight leakage. Both are energetically costly. Moreover, increase in size may result in a loss 

as the gross utilization rate increases as Rß, 2 < ß < 3, while the diffusive flux increases £ 

only as R, the cell radius (Jumars, 1993). 

Light adaptation has it costs too. A cell has to invest in pigment assimilation in order 

to adapt to lower light. Thus it is understandable that the cell does not adapt to the night 

darkness but does adapt to the low light level of a cloudy day or a location in the deep 

part of the euphotic zone.  If the cell does not have the nutrient to assimilate, it has no ijj 

reason to adapt and thus it is sensible to assume that the adaptation is connected to the 

nutrient availability, as was assumed in the model. 

If the above hypothesis holds, it has the potential to simplify ecological models that 

describe phytoplankton growth in relation to physical processes. The integrated amount 

of light during the day is the important parameter that will determine the cell production. I 

Below the light threshhold production will be light limited and above it growth will be 

very much the same for all cells (assuming the same uptake for all cells). In the field one 

would have to analyze cell contents before dusk to determine their potential production. 

Physics of chlorophyll distribution 

In this section an equation for the distribution of chlorophyll (or any other character- 

istic that photoadapts, such as a in the model of the previous section) in the upper ocean 

is derived. It is important to derive equations connecting biomass and the more commonly 

measured chlorophyll in order to model upper ocean phytoplankton dynamics. 

I 
I 
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I 
I ^ Derivation of the equation 

mj Let T denote the amount of chlorophyll per unit weight of phytoplankton.  Let the 

change in V be regulated by a first-order reaction (as (6) above): 

■M=T(TX,(I,N)-T) (8) 

where T^ denotes the value towards which T relaxes with a time scale 7-1 and which will 

I be a function of light i", (itself a function of depth and time) and nutrient availability N 

yi (as there is no point to produce more chlorophyll if there isn't a nutrient to assimilate). 

™ In this study, however, the effect of a variable nutrient field will be ignored, and light will 

■ be assumed to be the only limiting resource. Another possible formulation, ignored here, 

is of a logistic type, i.e. Tt = 7^ p~ ' (eq. (7) above). 

Let n be the concentration of phytoplankton (in unit weight/ unit volume/unit of 

chlorophyll). The evolution of n is described by a conservation equation: 

I 

I s 

V 
1 
4 
I 
I 
I 
1 
I 

Dn 
-— = fin-s + V (KVn) (9) 

where s denote loss term (e.g. predation), K the diffusion coefficient and \i the growth 

rate, which depends on I\ since we assume that the phytoplankton adapts in order to 

maximize it. 

Expanding the material derivative to include the dependence of n on T and using (8) 

gives: 

-^ = -£+ VW + 5f N (Foo - T)] = im - S + V (KVn) (10) 

where u denotes the flow field (including velocities relative to the free flow such as those 

induced by sinking and swimming). 

The mass of phytoplankton per unit volume is given by: 

^1 max 

n =  / nJr, 
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and 
_       £ ra" TndT ^ 
•p __   Ji- min  ■'■.' 

ft 

nY is the thus the mass of chlorophyll per unit volume. Integrating (10) with respect to T 

and using (8), we derive an equation for the rate of change of phytoplankton mass: 

dn 

~dt 

can define s = S(n)n which when inserted to the RHS of (11) gives S(n)n. An equation 

for the chlorophyll concentration (77 = tn) evolution is found by multiplying (10) with T 

and integrating with respect to V: 

Fin fFmax 

^L + V(UT7) - 7 (T^n -r,)= *Wr - S(h)rj + V (KVrj) (12) 
m Jrmin 

which is coupled to (11). 

It is sensible to assume that fx, the growth rate, follows a curve of the monod type: 

V 

dr 
dt 

1        /*■!■ max __ 

+ uVr-7(roo-f) = 3 /        {T-f)i^naT+ 
n JVmin 

VK{VT) + 2K (V/n(n)) • Vf (14) 

notice that the growth rate term disappears if /u ^ fj,(T). To my knowledge the derivation 

presented here has not appeared elsewhere.    The resulting equation (14), without the 
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ri- max /*■!• max ^fl 

+ V(un)= (xndT- sdT + V(KVn) (11) | 
J J- rain " *■ min 

Assuming that predation does not depend on T (sensible unless T correlates with size), one I 

I 
I 
i 

(13) I 

1 
(K, + r) 

which can be fitted locally fitted to straight fines, generating only one higher moment 

in eq.   (11) (a closure problem).   Although the system of equation (11)-(12) are mass 

balance equation of the directly measured variables (chl/volume and biomass/volume), the I 

fight -adaptation literature has focused on the changes of the f itself, the concentration 

of chlorophyll per unit of phytoplankton mass.   An equation for T can be derived by 

subtracting from (12) f times (13) and dividing by n, resulting in: I 
I 
I 
1 
I 
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1 

1 
I 

growth-term contribution was given in Lande and Lewis (1989) (hereafter LL89), who 

have studied different growth related photoadaptive parameters other than chlorophyll. 

Simplifying equation (14) to one dimension (z), assuming no time dependence, no 

advection, constant n, constant K, and Too = a + bz (i.e. i.e linearly related to log(/)), 

results in the solution (LL89): 

T(z) =T00 + bLe-z!L,    L = ^/Ffr (15) 

1 

I 
I 
I 
P where a no-flux boundary condition at the surface was used. The effect of adaptation is 

■ seen to be confined to a top boundary layer. The effect deepens with the level of turbulence 

and the speed of adaptation. 

■ Working with chlorophyll per unit mass of phytoplankton (14) rather than per unit 

volanre of wate, (12) *. the advantage that the signal from region of lower productivity 

■i can be extracted from a larger volume of water.   Two drawbacks of this model is its 

neglect of the nutrient dynamics (unless conserved in fj,) and the hidden assumption of no 

perturbation from average values measured due either to biological variability (/x, 7, s and 

# motility) and the environment (w and K). Investigating only one genus of phytoplankton 

may limit the biological variability, making the above eulerian model more applicable. 

'Ml In the next section some potential effects of the flow variability on phytoplankton 

growth-rate and photoadaptive variable distribution are presented. Two different models 

'■ are presented; the first model is eulerian, based on a simplified version of the above model, 

,M and is used to solve for the distribution of a photoadaptive parameter and its dependence 

■™ on background waves frequency.  The second model is a lagrangian model, following the 

cell movement in a wavy flow, in which the effect of the waves on the mean growth rate is 

sought. The cells are assumed to be passive tracers of the flow. 

A Eulerian model with fluid flow variability 

I Let u be a two dimensional (x,z) flow field representing an internal wave field around 

a thermocline, 

^ = — caze~az cos(kx — ut) 
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where c is the phase speed and a a nondimensional amplitude. 

(u, w) = (—^z, Viz*) = [cae~az(l — az) cos(kx - ut),waze~az sm{kx — ut)] 

with the thermochne located at z = —.  Assuming that n and K are constant and that 

jj, ^ ju(r), (14) becomes: 

EL + £Vf - 7 (Foo - f) = KV2t (16) 

<9<r>*    d<wr>*      ,_       _  „    „ d<r>x 

—dT- + —dz— = ^T--<r>) + Kv-d^- (17) 

Without the second term on the LHS (assumed of smaller order) the long-time solution to 

(17) is given by (15). 

Subtracting (17) from (16): 

ßv d < r >x d2v    f    <92r 1 
°L- + {j(*,n- < J(*,r') >*} + -^^ = 71" + I<H^ + {KV-Q-T)   (18) 

t The terms in the curly brackets are neglected, assuming that they are of smaller order 

than this equation (which is first order in the perturbation). Further assuming that after 

the transient dies, V ex e
t(fcx~u;*), and substituting the solution given by (15): 

^- + (l + KHk2)T' = -w  b{l-e~zlL (19) 

Integrating in time and looking for the long time solution: 

,—az 
T' = -Hi - e~zlL)^Ze   ., {8sm{kx -wt) + ucos(kx -ut)) 

[0ji + U> 

i 
! 

I 
i 
i 
i 
i Decomposing f into its x-average < t >x and its perturbation f", with T'  <C < f >x. 

Assuming that the velocity field is a perturbation quantity (i.e. of the same order as 

f') and dropping the bars from the variables, the equation for < T >x is given by the ■ 

x-average of equation (16): 
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where 5 = {KHk2) + 7. Thus: 

so that the second term in (17), according to this solution, is: 

d < T'w >x        boj25a2 

dz 
^.-.(«„-xKx-«-/*)_ £.-./,) 

This term (divided by 7) gives the correction to T below the top boundary layer (assuming 

the thermocline is deeper). It scales like the perturbation amplitude squared, and its 

neglect is thus consistent with the solution (15). The correction term is maximal for high 

frequency waves (as the cells do not then have time to adapt) and decreases with KH (since 

horizontal gradients are smoother). Although an exact solution of (17) was not derived 

the range of validity of the solution of (17) with a neglected term and its estimated error 

was found. It is thus expected that the adaptation will be surface trapped depending more 

on turbulent mixing (K) than internal waves amplitudes (a). 

Adaptation and internal waves, a lagrangian view: 

In this section an effect of fluid motion and light adaptation on the phytoplankton 

growth-rate is investigated. A simple example illustrating it is as follows: suppose that a 

parcel of water is oscillating in a regular manner (e.g. due to the above internal waves). 

Assuming that the photoadaptive property is proportional to log(i') (LL89): 

Too = a + b(z - z0). (20) 

Solving (8): 

r = 7e-* / Tooe^'dt' + T(t = 0)e~^. (21) 

Assuming the fluid parcel oscillate aound ZQ, Z = ZQ + B sm(ut), and denning C = bB, 

(21) gives: 

T = 7e~7* f {a + C sin(wf)) e7*' dt' + T^* 
Jo 
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a(l - e-*) + TTT-^K h sinM " u cosM) ~ ^~Jt) + Toe-7*, 

which becomes when t —> oo (with e-folding scale 7): 

The mean of the photosynthetic trait is equal to its value at its mean position, a result 

which is not surprising due to the linearity of Too with z. Still the effect over the growth 

rate of the deviation from the mean can be appreciable. As an example, assume that the 

photosynthetic trait V is the a of the growth rate formula (Platt et. al., 1980): 

for which both a and b (in (21)) are positive (LL89). In order to make it mathematically 

tractable, it is assumed that the parcel is deep enough (below 30m) so that: 

P^al0e~kz. 

Calculating the average growth rate: 

Using (17) gives: 

< P >= I0e-
kzo al0(kB)+     ]UC 2MkB) 

218 
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r = a + . 2
7,C -. (7sin(wt) - u cos(ut)) =< T > +r'. (22) | 

(7^ +0JZ) 

i 
I 
i 

P = pm(l-e-^iy,    I = I0e~kz, I 

i 
1 

< P >= I0e-
kzo < aekBcos(u;t) >= I0^~ f   <a> e-

kBcosiuJt) + a'e-kBcos(wt)dt. | 
T    Jo 

I 
I 
i where ln is the modified Bessel function of the n-th order. The first term which was ana- 

lyzed by Flierl (personal communication) is a production increase (relative to the non-wavy 

case) due to the nonlinear fight structure. The second term, due to the light adaptation, is M 

also a production increase (6 > 0), largest when u = 7, the natural adaptation time of the 

system. It is natural to expect that the photoadaptive response time will be of the same 

oscillation frequency as the vertical motion experienced by the phytoplankton since doing 

1 
I 
I 



I 
it will maximize their growth. This strategy will be useful for coherent motions, such as 

seiches and internal tides (with time scales of 6-24 hours, similar to observed time scale 

for light adaptation). 
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Fig. 1. 02 production (p) over time for various 
light levels. After 12 hr of dark light was 
turned on at time t=0. 100%=1500uE/m2/sec. 
From Mara (1978b). 
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Fig. 2. 02 production over time for both diuraally varying and fluctuating 
regime. The total light intensity is the same in both experiments and so is 
the time-integrated production. From Mara (1978a). 
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Fig. 3. Schematics of the experiment model. Arrows denote fluxes, 
N, the amount of nutrient in each compartment, G, the uptake and 
Q the harvest rate. 
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Allele Frequency Clines 
in a Population Genetics Model 

Amanda Cohen 
Univ. of Washington 

INTRODUCTION 

Spatial gradients or clines in allele frequencies are important for the mainte- 
nance of genetic diversity in natural populations. These clines can develop 
in diallehc populations living in spatially heterogeneous environments, if the 
two alleles have different selection coefficients in different regions of the do- 
main, and the migration rate is low relative to the rate of selection. 
Several authors have modeled the formation and maintenance of allele fre- 
quency clines. Slatkin (1973), for example, modeled a large, continuously 
distributed, randomly mating population subject to natural selection. He 
derived a characteristic length scale for his model, lc = l/^/s (where s is 
the strength of the selection), and suggested that significant gene frequency 
variations cannot develop at scales less than this characteristic length. Sim- 
ilarly, Nagylaki (1975) defined a dimensionless parameter, k2 = 2sa2/a2 

(where s is again the strength of selection, a is the length scale of habitat 
variation, and a is a measure the variance in migration). He then argued 
that, subject to certain simplifying assumptions, a cline can only exist if 
k > tan-1 a, where a is the ratio of the selection coefficients on either side 
of the (one-dimensional) domain. Keller (1984) studied cline formation in 
a one, two or three dimensional region. He included the effects of diffu- 
sion and selection, and he developed an asymptotic solution describing the 
steady state spatial structure of the cline, for the case in which selection is 
much stronger than diffusion. Keller (1984) also provides a brief review of 
several other cline formation models, including the two-dimensional version 
of Nagylaki's (1975) formulation. 
The model developed here follows a population of diploid, randomly mating 
organisms in a one-dimensional, bounded domain, to investigate the effects 
of diffusion and spatially varying selection on allele frequencies at a single, 
diallelic locus, neglecting the effects of mutation and genetic drift. Unlike 
many earlier models of cline formation, this model considers the diffusion 
of individuals rather than alleles, so the population is allowed to stray from 
Hardy-Weinberg equilibrium. 
The model consists of six equations - a continuous reaction-diffusion equa- 
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tion and a discrete reproduction equation for each of three genotypes. The 
reproduction equations are applied at the end of each generation; the contin- 
uous equations are applied between reproductive events. Eigenmode solu- 
tions are found for the three continuous equations, and the first (or first few) 
modes from each solution are substituted into the reproduction equations 
to generate a discrete map. The map describes the number of individuals 
of each genotype at the start of a generation as functions of the population 
size and genotype distribution at the end of the previous generation. The 
behavior of the map is evaluated for various forms of the selection functions. 
With spatially homogeneous selection, genetic diversity can only be main- 
tained if the heterozygote has a selective advantage. Results with spatially 
varying selection depend on the relative length of the generation time, the 
shape of the selection functions, and the spatial symmetry of the system of 
equations. 

FORMULATION 

The model considers a diallelic population with discrete, non-overlapping 
generations distributed over a bounded, one-dimensional domain. The num- 
ber of individuals of each genotype evolves continuously between reproduc- 
tive events according to the following modified reaction-diffusion equation: 

«a£2 = -*(.w..t)+£$ä.       i -1,2,3     (i) 

with no-flux conditions applied at the boundaries of the domain: 

dpi(x,t) 
dx 

= 0. (2) 

In equation (1), Pi(x,t) is the number of individuals of genotype i, fti(x) 
(hereafter referred to as the selection function) describes the spatially vary- 
ing death rate of genotype i, and K(d2pi/dx2) accounts for the diffusion of 
individuals. 
Note that the diffusion rate, K, is spatially homogeneous and independent 
of genotype. The selection function varies spatially and depends on geno- 
type, but does not include density dependence - the death rate of a given 
genotype is independent of the total population size. 
At the end of each generation, the organisms reproduce.   The number of 
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individuals of each genotype in the new generation is given by: 

,UM). fawy^ (_^(1,r))  (3, 
p, = WihPiPi + AAPift + A/3W3 + (.flß)f>l)ß exp /   o^ 1     (4) 

^.(tetwW^^j (6) 

where p'i{x,0) refers to the number of individuals of genotype i at the start 
of the next generation, and Pi(x, T) is the number of individuals of genotype 
i at the end of the current generation. In these equations, pi and p3 denote 
homozygous individuals, and p2 denotes heterozygous individuals, /i, fa 
and fa are parameters describing the relative fecundity of each genotype; T 
is the length of a generation; N(x, T) is the total population at the end of a 
generation (N(x,T) = pi(x,T) + p2(x,T) + p3(x,T)); and a and ß are pa- 
rameters regulating the growth rate of the total population. The arguments 
of the functions in equations (4) and (5) are left out to aid in reading the 
equations; the arguments are the same as in equation (3). 
A brief explanation of the rationale behind equations (1) - (5) is warranted. 
Equation (1) is similar to the equations used by Nagylaki (1975) in his 
analysis of cline formation in the presence of selection, advective drift and 
diffusion. In the present analysis, only selection and diffusion are considered. 
Equations (3) - (5) are modified from Webb (1981). If fa, fa and fa = 1, 
these equations give the familiar Hardy-Weinberg ratios for the genotypes 
at the start of the next generation. Inclusion of the parameters fa, fa and 
fa allows for more complicated dynamics, because differential fecundity and 
assortative mating can be approximated. A more accurate representation of 
differential fecundity and assortative mating would require six parameters - 
one for each possible type of mating pair. Only three parameters are used 
here, to simplify the analysis. 
The exponential terms in equations (3) - (5), modified from the Bicker equa- 
tion for population growth (Murray, 1993), reduce the rate of population 
growth for large N. These terms affect the population dynamics but do not 
alter the genetics, because the three genotypes are affected identically. The 
use of density-dependent exponential terms in the reproduction equations, 
(3) - (5), and not in the reaction-diffusion equation, (1), reflects the assump- 
tion that density effects (such as nutrient limitation) impact individuals far 
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t 
1 

more at the instant of reproduction than during non-reproductive periods. 

SOLUTION METHOD 

The solutions to the selection-diffusion equation (1) can be expressed as in- 
finite sums of eigenmodes: 

Pi(x> *) = S ai>i exP (-*«') &J'(X)> i = 1>2'3- (6) 
3 

Plugging equation (6) into equations (1) and (2), and scaling out the diffu- 
sivity, K, (i.e. redefining m{x) and A»j), one finds that the eigenvalues, Xij, 
and eigenfunctions, ipij, must satisfy 

d2Aj = (ßi{x) - XtjWij, 1 = 1,2,3 (7) 

conditions 

0, i = 1,2,3. (8) 

dx2 

subject to the no-flux boundary conditions 

Wij _ 
dx 

From Sturm-Liouville theory, it can be shown that for the partial differen- 
tial equation (1), if the selection function /x,(i) is real and positive, all the 
eigenvalues in equation (6) are also real and positive, and the lowest order 
eigenfunction, V't.Oj is everywhere positive. 
Because the eigenvalues in equation (6) are ordered along the positive, real 
axis, the higher order modes decay more rapidly than the first mode. Thus, 
for a sufficiently long generation time, T, the higher order modes are neg- 
ligible at the end of each generation. That is, the population size and the 
spatial distribution of the genotypes at the end of a generation are dictated 
almost entirely by the amplitude and shape of the first (or first few) modes. 
To a first approximation, then, equation (6) can be truncated to 

Pi(x, t) = aito exp (-Xifit) i>i,o(x). (9) 

The accuracy of this approximation is discussed below. 
Plugging the simplified solution for pi at t = T (equation (9) with i = 1) 
into reproduction equation (3), one finds that 

p[(x,0)   =   aii0Vi,o (10) 

(/1a1,oexp(-A1|0r)V>1,o + (/2/2)a2,oexp(-A2,or)V>2,o)2c 
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with 

C(x) = ß exp f -- Y^ ai>0 exp (-Ai)0T) ipifi 

The equations for p'2 and p'3 have a similar form that can easily be derived 
from equations (4), (5) and (9). 
Taking advantage of the orthonormality of the eigenfunctions, ipij, one can 
multiply both sides of the simplified equations for the p'{s by V'i.o and inte- 
grate over x to derive equations for a'1>0, a'2i0 and a'30: 

<o = 7 / ~ ?\   T, ,   ( Mlt0(x)dx (11) 
'       L JL £; «i,o exp (-Ai)0T)i>i,o{x) 

a'2 o = 7 / ^ t
C\   „, ,   , M2fl{x)dx (12) 

'       L JL Ei ^.o exp (-Ai)0T) ipi,o(x) 

and 
cf. 

with Ci;(a:), (^(z) and C3(a:) given by 

Cu{x)   =   /EOi,o exp (-Ai)0T) V;,o(*) + (/2/2)a2>0exp (-A2>0T) iM*), 

C2(x)   =   /3 exp ( -- Y ai>0 exp (-Ali0T)if>ifi J , and 

C3(x)   =   2/i/3axioa3io exp (-(A1>0 + A3>0)T) ^1,0(1)^3,0(2;) 

+/i/2ai,oa2,oexp(-(A1>0 + Mß)T)ipi,o(x)ip2fl(
x) 

+/2/3a2,oa3,oexp (-(A2,o + *3,o)T) i>2,o{x)i>3,o(x) 

+(/2
2/2)a|>0 exp (-2A2,0T) ^2fi(x)2. 

Equations (11), (12) and (13) form a 3x3 discrete map that gives, for each 
genotype, the amplitude of the first mode at the start of the next generation 
in terms of the amplitudes at the start of the current generation. This map 
can be iterated from one generation to the next to determine, to first order, 
the temporal evolution of the populations of each genotype. 
The allele frequencies can be calculated from the total population size and 
the genotype distribution. Letting A\ and A2 denote the two allele types, 
and p and q the respective allele frequencies, and assigning pi, p2 and p3 

individuals the genotypes A1A1, A\A2 and A2A2 respectively, one finds that 
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p and q are given by: 

_      Pl(x,t) + (p2(x,t)/2) 

*M,"*(*.*) + Pa(x, *) + /*(»,*) U ' 

and 

Because of the modal truncations in the />is, the formulae for p and q are 
most accurate for t = T - i.e. at the end of a generation, when the contri- 
butions from the higher order modes are smallest. 
To improve the accuracy of this model, one can use additional modes in 
equations (9). Using, for example, the first three modes in the solutions for 
the pis results in a 9x9 discrete map similar in form to equations (11) - (13). 

RESULTS 

Model results are discussed for both spatially homogeneous and spatially 
inhomogeneous selection functions. For model runs with spatially homoge- 
neous ms, the eigenfunctions and eigenvalues are found analytically. For 
spatially varying ^s, the eigenfunctions are determined numerically. All 
map iterations are performed numerically. 
In the spatially homogeneous case, only a single-mode truncation is dis- 
cussed. In the spatially inhomogeneous case, results from a one-mode trun- 
cation are compared with those from a three-mode truncation, for both a 
long and a short generation time, T, to explore the effects of reducing the 
generation time. 

I. Spatially Homogeneous Selection 

In the first set of model runs, spatially homogeneous selection functions were 
used - that is, fii(x) = pn. Only single-mode truncations were investigated. 
With spatially homogeneous ms, the eigenfunction equation, (7), has sinu- 
soidal solutions of the form 

IpiJ = COs(yf\itj - [LiX + 4>). 
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The eigenvalues, Xij, are then defined by 

r2„-2 

Ki = ^-+K (16) 

in jwhich L is the length of the domain. Truncating this solution to the 
zeroth mode (j = 0; X{i0 = //») results in simple, spatially homogeneous 
solutions for the />»s: 

Pi = Oii0exp(-mt). 

For this form of the /?;s, equations (11) - (13) simplify somewhat to: 

aU= (/1a1,oexp(-/z1r)+ (/2/2)a2,0exp(-Ax2r))
2
/3exp /   a     N    (1?) 

<o = §/3exp(-|i?1) (18) 

and 

4o = (/3a3,oexP (-jfrT) + (/2/2)a2,oexp (-^T))'^ /^\    (M) 

in which 

I?i(x)   =   ai>0 exp (-/iiT) + a2,o exp (-/x2T) +03,0 exp (-/Z3T),    and 

D2{x)   =   2f1f3alioa3fiexp(~(fM1 + fJ,3)T) 

+/i/2ai,oa2,oexp (-{m + fi2)T) 

+/2/3a2,oa3,oexp (-(/x2 + Ms)?1) + (/2/2)a^0exp (-2/*2T). 

Interestingly, this apparently three-dimensional map is actually composed 
of a two-dimensional map that defines the ratios among the a^os, and an 
independent, one-dimensional map that defines their magnitudes. The two- 
dimensional map rapidly approaches a steady-state solution, but the mag- 
nitudes of the aifiS continue to vary according to the one-dimensional map. 
The separation into a one- and a two-dimensional map is best illustrated 
by solving for the fixed points of the two-dimensional map. Taking a2>o as 
the independent variable, one can look for constants k\ and A3 such that 
aito = &ia2io and a3)o = k3a2,o- Plugging these formulae into equations (17) 
- (19) generates recursive equations for fci and £3: 

,,_<o_ (fci/iexp(-mT) + (/a/2)exp(-^T)) .    . 
kl~a'2fi- 2(ft8/s + (/2/2)) l    ' 
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and 
,, _ <o _ (*a/3exp(-^T) + (/2/2)exp(-^2T)) .    . 
Ä3-a'2>0- 2 (*!/! +(/a/2)) * V    ' 

Prom these equations, it is evident that kik3 = | for every generation after 
the first. Substituting this relationship into equation (20) one finds that 

y = 2&?/i exp (-IHT) + hf2 exp (-/x2T) . 
1       2fc1/2exp(-/z2T) + /3exp(-/i3T) 

The fixed points of this equation can be found by setting the left-hand-side 
equal to Jfei. If f\ and f$ are not equal, these fixed points have the form 

,   _    F3 — -f2 
1 " 2(F1 - F2) 

, Ft-Fi 
«3 = 2(F3-F2y 

where Fj = fj exp(—/ZjT). The nature of the solutions depends on the ratios 
Aexpr-/xiT| d /2expf%2T) Diagrams „f the evolution of ki over time are 

shown in figure 1. In cases m which «i goes to 0 or oo, the heterozygote and. 
one of the two homozygotes (pi or p3) goes extinct. A stable fixed point, in 
which both p\ and p3 survive, only exists if 

/1exp(-/x1T) /2exp(-/x2T) 
/2exp(-Ai2T) /3exp(-M3T)- 

This result, which has been discussed by many authors (see, for example, 
Haxtl and Clark, 1989) indicates that genetic diversity present in the system 
can only be maintained if the fitness of the heterozygote is greater than the 
fitness of either homozygote - a situation called overdominance. 
Although the ratios among the a^os approach steady-state after only a few 
generations, the magnitudes of the a^os continue to vary according to the 
following one-dimensional map: 

a« 
D3a2>0 n 

—: rn : ; I^TUA 2'°     fcj exp (-niT) + exp (-fi2T) + k3 exp (-/i3T)' 

in which 

D3   =   2fc1Ä3/1/3exp((A1 + A3)T) + A;i/1/2exp((A1 + A2)T) 

+£3/2/3 exp ((A2 + A3)T) + (/|/2) exp ((Ax + A3)T), and 

D4   =   ß exp f-| (h exp (AXT) + exp (A2T) + k3 exp (A3T)) a2,0) 
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This equation describes a positive, unimodal map (see, e.g., Rasband, 1990), 
that leads to chaotic population dynamics for certain values of ß, but the 
interesting genetics are already resolved. The genotype frequencies are fixed 
in the ratios kiilik^ everywhere in the domain. The behavior of the map 
in this case is similar to the case discussed below, of a one-mode truncation 
with symmetric, spatially varying selection functions. 

II. Spatially Inhomogeneous Selection 

Two cases of inhomogeneous selection functions were tested: a symmetric 
case, with ^(i) = (x + l)/2, fi2(x) = 1/2 and ^3(x) = (-x + l)/2, and an 
asymmetric case, with ^ = /z2 = (x + l)/2 and /x3 = (-x + l)/2. Symmetric 
selection functions represent a situation in which there is no dominance - 
the fitness of the heterozygote is the average of the homozygotes' fitnesses. 
These asymmetric selection functions represent total dominance - the fitness 
of the heterozygote is equal to the fitness of the AiAi homozygote. 
For these model runs, the domain extended from x = — 1 to a = 1. The 
first three eigenfunctions for each case were calculated numerically, using 
equation (7). Both the selection functions and the eigenfunctions for the 
symmetric case are shown in figure 2. Those for the asymmetric case are 
shown in figure 3. 
With inhomogeneous selection functions, the temporal evolution of the spa- 
tial structure of each genotype depends strongly on the generation time, T. 
In the following discussion, the mathematical importance of the generation 
time is first addressed. Model results for a single-mode truncation with a 
long generation time are then described. Finally, the effects of a short gener- 
ation time are explored in a comparison of results with one- and three-mode 
truncations. All the results are discussed for both symmetric and asymmet- 
ric selection functions, with fa, fa and fa set to 1. Note that the qualitative 
behavior of the model with asymmetric fecundity parameters, fa, fa and fa, 
would be similar to that with asymmetric ms, since the fas and XjS occur 
together in equation (10). 

The Importance of the Generation Time 

With inhomogeneous selection, the behavior of this model depends strongly 
on the generation time, T. At each birth event, all of the eigenmodes are 
present. For a population with a long generation time, the higher eigen- 
modes decay away before the next birth event, so the population structure 
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at the end of a generation is determined entirely by the shapes and am- 
plitudes of the first eigenfunctions. As a result, the model behaves almost 
identically with either a single- or a multiple-mode truncation. 
With shorter generation times, however, the higher order modes do not 
decay completely between generations. The implications for the genetic dy- 
namics of this additional mathematical complexity can be investigated by 
comparing results with single- and multiple-mode truncations. Results of 
such a comparison are discussed below. 
For either a long or a short generation time, the error introduced by a 
single-mode truncation can be estimated by investigating the ratio of the 
amplitudes of the first and second eigenmodes at the end of a generation: 
exp(—(Aj,2 — Atii)T). For the long generation time results discussed below, 
the average value of this ratio is 0.0064, indicating that a single-mode trun- 
cation is a reasonable approximation in this case. 

Long T, Symmetric Selection, One-mode Truncation 

With symmetric /ZjS, the apparently three-dimensional map that results 
from a single-mode truncation (equations (11) - (13)) is in fact only two- 
dimensional, which simplifies the genetic dynamics. A bifurcation diagram 
of aifl versus ß shows a period doubling cascade, indicating that the pop- 
ulation dynamics are chaotic for certain ranges of ß (figure 4). Even for 
values of ß for which the population dynamics are chaotic, however, the 
dynamics of the genetics are quite simple. For example, as shown in figure 
5, aito iterates chaotically for ß = 2.5, so the total population size varies 
considerably from generation to generation. In contrast, the map in figure 6 
indicates that 113,0 is locked to ai,o, even as a^o iterates chaotically. Because 
01,0 and 03,0 are locked to each other, temporal change in allele frequencies 
results from the relative stretching of ipiß and ^3,0 on opposite sides of the 
domain, as a^o and 03,0 vary. An average of the frequency of allele A\ over 
100 generations is shown in figure 7. The spatial structure of this average is 
fixed by the shapes of V'I.O and fop, independent of the value of ß. 
In this simplest inhomogeneous case, the variance in the allele frequencies is 
zero at the center of the domain, because the first eigenfunctions cross and 
/1 = hi so the allele frequencies are always 0.5 (figure 8). At the edges of 
the domain, the variance increases with increasing ß, reflecting the fact that 
chaotic population dynamics increase the variance in allele frequencies at a 
point in space, even if the time-averaged allele frequencies are fixed. 
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Long T, Asymmetric Selection, One-mode Truncation 

With asymmetric fi{S, the map for the a^s produced by a single mode trunca- 
tion is truly three-dimensional (figures 9 and 10). As a result, the dynamics 
of the genetics are more complicated than in the symmetric case, although 
the shape of the cline in allele frequencies is still fixed by the shape of the 
first eigenfunctions. As might be expected, the average frequency of allele 
Ai is lower everywhere in the domain (for all values of ß) in the asymmetric 
than the symmetric case. This result can be understood if one recalls that 
the asymmetric case represents total dominance of the Ai allele - essentially, 
allele A-i has a greater fitness on the side of the domain in which A\ is fa- 
vored, because A-t can "hide" in heterozygous individuals. With increasing 
/?, the average frequency of allele A\ decreases (figure 11), suggesting that 
chaotic population dynamics benefit the recessive allele, even in regions of 
the domain in which the dominant allele is favored. 
In this asymmetric case, the variance of the allele frequencies increases with 
increasing ß. This increase is most pronounced on the right side of the do- 
main, where the recessive allele is favored (figure 12). 

Short T, Symmetric Selection 
Comparison of One- and Three-mode Truncations 

With a long generation time, results with one- or three-mode truncations 
are identical. With a short generation time, however, a three-mode trunca- 
tion allows for more complicated spatial structure of the allele frequencies, 
because the higher order modes do not decay completely before the end of 
each generation. With symmetric selection functions, the genetic dynam- 
ics for a three-mode truncation depend on the value of ß. For low values 
of ß (/3 <~ 2.35), the behavior of the model is similar to that for a one- 
mode truncation. For higher values of ß, though, 03,0 is no longer locked to 
01,0, «uid the shape of the cline in allele frequencies varies temporally. This 
change in the dynamics of 03,0 and aito is obvious in the bifurcation diagram 
shown in figure 13. The time-averaged shape of the resulting cline in allele 
frequencies is shown in figure 14, for several values of ß. Interestingly, as 
the value of ß increases, the slope of the cline decreases, suggesting that for 
a population with a short generation time, chaotic population dynamics can 
erase (or mask) allele frequency clines. 
The variance in frequency of allele Ai is shown in figure 15 for several values 
of ß. As for the simpler cases with longer generation times or single-mode 
truncations, the variance initially increases with increasing ß. To understand 
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the peak in variance obvious at x ~ 0.5 for ß = 3.5, one must examine more 
closely the inter-generational behavior of the system for that value of ß. 
Figure 16 shows the period-two oscillations that occur in p\, pi and p$ for 
ß = 3.5. The reaction-diffusion dynamics are evident: when the population 
is large on the left side of the domain, population growth is slowed in that 
area, and difFusion toward the right is maximized. As a result, in the next 
generation, the population is large on the right side of the domain, popu- 
lation growth is slowed there, and diffusion toward the left is maximized. 
These dynamics are essentially identical for all three genotypes, in spite of 
the differences in the spatial structure of the selection functions. In effect, 
the time scales of diffusion and total population growth are sufficiently short 
that selection plays little or no role in the genetic dynamics; the system is 
physically dominated. 
The odd peak in variance at x ~ 0.5 results from this reaction-diffusion os- 
cillation in the spatial structure of the genotypes. The first and third modes 
of each genotype oscillate out of phase with each other. The third mode has 
a peak on the right side of the domain (visible in figure 2) that is obscured 
when the total population is large in that area but is evident (in alternating 
generations) when the population on the right side of the domain is nearly 
zero. 

Short T, Asymmetric Selection 
Comparison of One- and Three-mode Truncations 

For a short generation time, the results of a three-mode truncation with 
asymmetric selection are extremely similar to those with symmetric selec- 
tion. For low values of ß, the time-averaged cline in gene frequency has the 
same spatial structure as the first eigenfunction. For higher values of ß, the 
average dine flattens and changes shape, as spatial gradients in genotype fre- 
quency are damped, and the higher order modes begin to affect the genetic 
dynamics. As with symmetric selection functions, a peak in the variance in 
the frequency of allele A\ is evident at x ~ 0.5 for ß = 3.5. 

DISCUSSION 

With homogeneous selection, the results from this model are quite straight- 
forward. The ratios among the genotypes become fixed everywhere in space, 
and no spatial cline in genotype frequencies can develop, since no spatial 
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structure is allowed. Genetic diversity can only persist if the fitness of the 
heterozygote is greater than the fitness of either homozygote - i.e. if there 
is overdominance. 
The genetic dynamics with spatially inhomogeneous selection are more in- 
teresting. For a long generation time, with symmetric selection functions 
(i.e. no dominance), the shape of the time-averaged allele frequency cline is 
determined by the shapes of V'I.O and -03,0» and the variance in allele frequen- 
cies at the edges of the domain increases with increasing ß. For a one-mode 
truncation with asymmetric selection functions (i.e. total dominance), the 
structure of the time-averaged allele frequency cline is again determined by 
the first eigenfunctions, but the average frequency of allele A\ is lower than 
in the symmetric case. Also, in the asymmetric case, the average frequency 
of A\ decreases with increasing ß, and the variance in allele frequencies in- 
creases with increasing ß. 
Results with a short generation time have not been fully explored, but some 
of the implications of a short generation time can be seen in a comparison 
of a one- and a three-mode truncation. A three-mode truncation allows 
the time-averaged allele frequency cline to change shape, depending on the 
value of ß. As in the model runs with a long generation time, the slope of 
the cline decreases with increasing ß, and the variance in allele frequencies 
increases with increasing ß. Because the three-mode case allows variability 
in the shape of the allele frequency cline, reaction-diffusion dynamics can 
result in unusual spatial structure in allele frequencies. With a three-mode 
truncation and a short generation time, the model behavior with asymmet- 
ric selection is very similar to that with symmetric selection. 
Possibly the most interesting finding of the model is that, for long generation 
times, results with more than one mode are identical to those with a single 
mode. That is, for large T, the shape of the allele frequency cline is dictated 
entirely by the first eigenfunction of the solution to the selection-diffusion 
equation (1). This may have implications for real populations of organisms 
with long generation times, because it suggests a direct relationship between 
the shape of the selection functions themselves, and the shape of the result- 
ing allele frequency cline. 
Also of importance to natural populations is the implication that chaotic 
population dynamics can damp allele frequency clines for populations with 
short generation times. This finding suggests that to find steep clines in na- 
ture, one may have to sample the entire domain essentially instantaneously. 
To test the implications of this model for natural populations, one would 
need considerable data on the relevant parameters for the real population: 
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the diffusivity, K, the generation time, T, and the death rate, \i. Fairly 
detailed information about the shape of the selection functions would also 
be necessary. Finally, only a population with discrete generations could be 
modeled. 

Future Directions 
An important question about this model is how its behavior differs from that 
of existing models (e.g. Keller, 1984), in which Hardy-Weinberg equilibrium 
is assumed a priori. 
There are also several assumptions built into this model that should be 
corrected. First, the model currently assumes that density dependence af- 
fects the birth rate, but does not influence the death rate. By including a 
density dependent expression in the selection-diffusion equation, (1), (i.e., 
fii(x,pi,p2,pz), one could explore the effects of more realistic density de- 
pendence. This addition would make the eigenfunction solution impossible, 
however. It would also be interesting to investigate the effect of allowing 
reproduction to occur over a short but finite time interval, rather than in a 
discrete pulse. Finally, the results described here pertain to a diffusionally 
dominated regime. Modifications are currently underway to allow investi- 
gation of the model's behavior with very slow rates of diffusion. 
Application of this model to oceanographic questions would require expan- 
sion of the formulation to at least two spatial dimensions and addition of 
advective terms. With these additions, the model would have to be solved 
numerically. The genetics equations could then be included in a physical 
circulation model, to investigate the impact of ocean circulation patterns 
(of various scales) on genetic dynamics. 
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Biology Models 
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Geophysical Fluid Dynamics Summer Program 

Woods Hole Oceanographic Institute 

Summer, 1994 

1     Introduction 

Life in the oceans plays an important role in modulation of carbon dioxide and other gas 
fluxes in the atmosphere. In situ measurement of such life and their effects are impractical on 
the large scales of interest in climate modelling. To determine the role of biology in physical 
processes, simple dynamical models which can be incorporated into somewhat more detailed 
physical models are necessary. In order to intelligently apply these models and interpret the 
results, however, it is necessary to determine the dynamical behavior of these equations in 
isolation. The subject of this project is to examine the dynamical behavior of three similar 
nitrogen-based biological models. The models are then subjected to simple forcing in total 
nitrogen and light intensity which roughly simulates seasonal cycles of these variables. It is 
interesting to determine if such an effect as the spring bloom can be reproduced by these 
models. 

2    Model Descriptions 

The biological models here consist of four coupled ordinary differential equations. The 
four compartments of the model Nutrients (JV), phytoplankton (P), Zooplankton (Z) and 
a detrital pool (D) are the four biological compartments of each model. Each is measured 
in terms of units of nitrogen and the total nitrogen of the ecosystem (JV0) is held constant. 
Figure 1 illustrates the relationship of these compartments to one another. 
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The governing equations for model 1 are 

N   =   -uIP 

P   =   uIP 

N 
(Ks + N) 

N 

+ eD + (l- a)gPZ 

(Ks + N) 

Z   =   agPZ — dZ 

b   =   dZ + sP-eD 

N0   =   N + P + Z + D 

gPZ - sP 

(1) 

representing linkages as shown in Figure 1.   Note that since total nitrogen is conserved, 

Detritus (D) 

Nutrients (N) 

sP 
Phytoplankton (P) 

Zooplankton (Z) 

this set can be reduced to three independent equations. It is instructive, however, when 
analyzing the plots to show the value of nitrogen in each compartment, realizing that the 
total quantity is fixed. In these equations, u is the phytoplankton growth rate; / is the average 
incident photosynthetically active radiation; Ks is the nutrient half saturation constant; e 
is the detrital regeneration rate; a is the assimilation efficiency of the Zooplankton; g is the 
zoolplankton growth rate; s is the photoplankton senescence (death due to aging) rate; and 
d is the Zooplankton death rate. 

The second and third models considered here differ in the treatment of the Zooplankton 
uptake and Zooplankton death rates respectively. The equations for these models are given 
in equations 2 and 3. 

^   =   ~UlP(Ks
N+ N)+tD + {1~ a)gZ{P " Z) 
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P = "IPW^N)-SZ{P-Z)-SP 

Z = agZ(P-Z)-dZ 

t) = dZ + sP-eD 

N0 = N + P + Z + D (2) 

N   =   -uIP      N+       +eD + (l-a)gPZ 

P   =   uIP,„N Ar. -gPZ-sP 

Z   =   agPZ-dZ2 

D   =   dZ2 + sP-eD 

N0   =   N + P + Z + D (3) 

The second model differs from the first in that the grazing term includes a quadratic self- 
inhibition so that the Zooplankton growth is logistic. The third model differs from the first 
in that the Zooplankton death term is quadratic. This is suggested in Steele and Henderson 
(1992) as more accurately representing zooplanktonic competition. For this project, con- 
stant values are used for each of the coefficients. The values used are typical of copepod 
populations. 

The analysis procedure consists of finding the stable states of each model and linearizing 
about these points to determine whether these points are linearly stable or unstable and, if 
stable, to determine the complex rate of relaxation back to the stable state. 

3     Conditions for the Spring Bloom 

As described by Sverdrup (Sverdrup, 1953), the spring bloom is set up when nutrient-rich 
waters are exposed to longer periods of daylight in the spring. High light, high nutrient 
environments are very favorable for phytoplankton growth and a rapid period of growth 
ensues. Eventually, however, much of the nutrients are used up and, despite the favorable 
light field, new production is limited. This signal is very evident in satellite images of ocean 
color, from which an estimate of chlorophyll in the euphotic zone may be obtained. 

In order to understand the conditions for spring bloom, it is useful to examine the growth 
characteristics of a phytoplankton population in the mixed layer. The upper layer of the 
ocean may be considered to be well mixed to a certain depth called the mixed layer depth 
(MLD). The MLD is determined by a balance between stratification effects such as surface 
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warming and precipitation, and destratification effects such as radiative cooling, evapora- 
tion, and wind stress. During summer days, when total light intensity is higher, the mixed 
layer tends to be shallower than during winter. Phytoplankton are generally believed to be 
incapable of controlling their vertical position in the water column and are therefore, like 
physical constituents, well mixed in the mixed layer. Over long enough time scales, they can 
be considered to spend an equal portion of their time at all depths in the mixed layer. This 
leads to the assumption that the average light exposure of the population is the average light 
exposure of the mixed layer. Sverdrup assumed that the phytoplankton respiration is the 
same at any depth. Respiration here means the energy used up by the phyoplankton simply 
by existing in their environment. It includes both normal metabolic processes and the effects 
of grazing. The production depends upon the light intensity which decreases exponentially 
with depth. Figure 2 illustrates the respiration and production rates as a function of depth. 
The respiration rate is shown as the rate at which the biomass would decrease if no pro- 

Figure 1: Effects of Production and Respiration on Phytoplanton Biomass 

dr 

dp 

Compensation Depth 

Critical Depth 

Increase/Decrease of Organic Matter 

duction occurred. The net rate for the mixed layer is the depth-averaged value of the area 
to the left of the dr curve above the mixed layer depth in Figure 2. The production rate 
is the rate at which the biomass would increase if there were no respiration. For a given 
MLD, this corresponds to the area above the dp curve and above the MLD in Figure 2. The 
compensation depth is the depth at which the production rate equals the respiration rate. 
The critical depth is the depth of the mixed layer at which the total respiration is exactly 
balanced by the total production. The phytoplankton biomass will increase if the mixed 
layer is shallower than the critical depth and will decrease if the mixed layer is deeper. 

During the spring bloom, the mixed layer shoals due to surface heating by increased light 
as the days lengthen and the sun rises in the sky.    When the mixed layer is shallower 
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than the critical depth, the phytoplankton take advantage of the high nutrient environment 
established during the winter by both remineralization of non-nutrient nitrogen in the water 
and mixing with deeper, higher nutrient waters when the MLD was greater. 

Sverdrup (1953) presents data from Weather Ship "M" in the Norwegian Sea from March 
to May, 1949.  This is reproduced in Figure 3. The hashed region is the estimated critical 

Figure 2. Results of observations at Weather Ship *M" (66°N., 2°E. Or.)- The symbols 
are explained in the graph, where the following abbreviations have been used:— 

Dia, Diatomaceae; Coc, Coccolithophoridae; Dif, Dinoflagellatae; Nau, Nauplii; 
* and Cop, Copepods. 

depth. This is based on water clarity, insolation and uncertainties about the light extinction 
coefficient. The biology data are classified by phytoplankton (diatoms, coccolithophores and 
dinoflagellates) and Zooplankton (nauplii and copepods). The solid lines indicate measure- 
ments of the mixed layer depth. Until April, it is clear that the mixed layer is generally 
deeper than the critical depth, and the biological signal is low. At the end of April and the 
beginning of May, however, the mixed layer has shoaled sufficiently and the plankton counts 
increase. By late May, the bloom is over; the phytoplankton population is again low, having 
been largely eaten by Zooplankton. The only departure from this general scheme is about 
two weeks of data in early April in which a shallow mixed layer and high phytoplankton 
counts are recorded. This is likely due to advection of a foreign water mass. 

4    Analysis of the Model Equations 

Expressions for the fixed points of the first set of equations were determined analytically. The 
derivatives were set to zero and the values for N, P, Z, and D were calculated algebraically. 
Solutions were obtained for the steady-state values of jV, P, Z and D, but the full analytical 
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solutions in terms of the coefficients of the equations are rather tediously obtained. For the 
first and second equation sets, this portion of the derivation was carried out by the symbolic 
processing program Mathematica. The solutions are recorded in the appendix. For the third 
model, the computation (which involves symbolically solving for a few square roots) is too 
excessive. For this problem, the steady states are determined as needed using a root finding 
program. 

The first and second steady states correspond to coexisting phytoplankton and Zooplankton 
populations and are given by: 

d_ 
ag 

uIN* 

D 

N 

N* 

±uIN* -s + sP 
9 

KSN* 

1-iV* 
N 

Ks + N 

P + Z + i)-N0 

P + Z + D-NQ- K, 

-B ± VB2 - AAC 
2A 

ul     dul 
where   A = 1  

9        e9 
B = -C-A-Ks 

„      AT       d       s      ds       sd ... 
C = N0 + - +  (4) 

ag     g      ag      age 

where N* is an intermediate solution variable used to simplify the notation. 

The third steady state has no Zooplankton population and is given by: 

N0-N* 

1 + f 
K,N* 

N   ■■ 
1-N* 

Z   =   0 
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D 
u        ul—s 

e     1 + f 

The fourth steady state simply contains nutrients: 

N   =   N0 

P   =   Z = D = 0 (6) 

For the second model, a similar set of steady states are solved for: 

N   =   N0-P-Z-D 

P     =     -^rUlN*-S 
ag2 

A   _    uIN*-s 
9 

- dZ A.      s 
D   =   —Z + — 

e ag 

N 
N*   = . (7) 

K, + N 

which results in a lengthy square root (not recorded here) similar to that derived from model 
1. The third steady state is: 

ft =   sK 
ul — s 

p   =    No-^k 
1 + s 

Z   =   0 

D   =   iiVo     "i- (8) 
e     l + ± v' 

and the fourth steady state is: 

N   =   N0 

p   =   z = D = 0 (9) 
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Both the first and second models have 4 fixed points, whereas the third model, with the 
quadratic Zooplankton competition term, has 5 fixed points. The first three steady states 
are too complicated to solve for analytically, and so are computed using a root finding routine 
from the following: 

p 
uIN* -s-gZ 

sd        duIN* 

z = 
ag           ag 

uIN* - s - ± a 

b = 
sP 
e 

N AN3 + BN2 + CN + D = 0 

where A = -92 

B = -2g2Ks + g2N0 + — + gs + — 
a                e        ae 

dul                2dlsu     dlsu     dl2u2 

gul + 
a e ae 

^v 9 T,9        9 T, ,T      2dKss T,        2dKss 
C =   -g2K2 + 2g2KsN0 +  + 2gKss — 

a. e 
2dKss

2     dIKsu 
-\ gIKsu 

ae a 
2dIKssu     dIK.su 

e ae 
2        r,2*r dI<2S „2 dK2 S2 dk2S2 

D=   g2 + K2N0 + —s— + gK2s 2— + ^^ 10 
al e ae 

The fourth steady state is: 

sK„ 
ul- s 

p = 
N0- N 

1 + s 
e 

z = 0 

b = 
sP 

e 

The final steady state is the familiar all-nutrient state: 

(11) 

N   =   N0 

P   =   Z = D = 0 (12) 
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The important thing to notice about the steady state calculations is that in each of the 
models, there are four or five stable points. One is an all nutrient state, in which case 
there is no biology. This indicates an environment in which the phytoplankton are not in 
a sufficiently suitable light and/or nutrient environment, cannot grow and therefore decay 
away at their senescence rate. Another steady-state is a zero- Zooplankton state, in which 
case there is no grazing of the plants. While it is unlikely that Zooplankton populations would 
ever die out in the real world, populations may tend toward this state, and it is retained 
in the analysis. A third is an equilibrium state between phyto- and zooplankters. (Fourth 
and fifth stable points consist of negative values for some of the compartments and are 
unrealizable.) Assuming that the biological constants such as growth rates, etc remain the 
same despite physical forcing, the only externally forced parameters are the total nitrogen, 

No and the average light intensity, L 

For this first study, the models are assumed to represent the state of a bulk mixed layer. 
The light intensity is set to the average light level of the layer and the total nitrogen is the 
nitrogen in the layer. In order to understand the behavior of these equations, it is useful to 
get a feel for the behavior in the state-space of physical forcing: N0 and I. The modulation 
of light intensity may be likened to seasonal light level cycles. The changing N0 to the use 
and subsequent sinking of nitrogen as the summer wears on and the mixed layer becomes 
depleted of nitrogen. In future studies, these changes will be determined by a mixed layer 
code, but in this first look at equation behavior, we will apply a forcing in N0 and /. 

First, however, it is useful to plot the stability of each physically realizable steady state 
versus the environmental conditions. It turns out that for a given forcing in N0 and /, only 
one of the steady states is stable, and therefore that solutions will tend to that state. It is 
also useful to examine the complex decay coefficient to each of these states since both highly 
damped and highly oscillatory paths to the steady state are possible. Here, however, only 
a linear stability analysis about the fixed points is considered, limiting the usefulness of the 
decay coefficient at points not near a stable curve. 

The appropriate stability matrix is computed manually and is illustrated for each of the 
three models. Figure 4 illustrates the stability regimes for the first model. Clearly, if both 
total nitrogen and light intensity are high, both phyto- and Zooplankton may coexist in some 
steady-state. If either variable is too low, life dies out. In between, however, there is a region 
where Zooplankton will die out, but phytoplankton will continue to persist. 

For the second model, a similar plot can be generated. The steady-state boundaries are sim- 
ilar and the same three states: coexistence, no-Zooplankton and all-nutrients, are observed. 

The third model, however, is somewhat different. First, as illustrated here, the N0-I space 
explored is larger. This is to show that the three roots of the coexistence polynomial are all 
stable for different regimes. The interesting feature, however, is that the shape of the steady- 
state nutrient and phytoplankton populations does not betray the location of these basin- 
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Steady-state basins of attraction—Model 1 
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Light Intensity, [Norm to 1.0] 

boundaries. That is to say, only one of the three roots yields physically realizable populations, 
but in the limit as the external forcing approaches the stability-range boundaries, the steady- 
state populations approach the same values. A comparison may be made by examining 
Figure 7, wherein the steady-state nutrient and phytoplankton populations are presented as 
a fraction of total nitrate, No available. 

Examination of Figure 7 indicates that there is little difference between the first two models. 
Steady-state nutrient and phytoplankton levels are almost identical for any given nutri- 
ent/light forcing values. The third model yields distinctly different results. Most noticeable 
is that the no-zooplankton attractor range is not bounded by a curve similar to the all- 
nutrient attractor range. Rather, a definite amount of total nitrogen is necessary in the 
system in order for Zooplankton not to die out. Thus the inclusion of a quadratic com- 
petition in the Zooplankton growth rate equations changes the behavior of the equations 
considerably. 
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Steady-state basins of attraction—Model 2 
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The next step in this line of inquiry will be the analysis of these types of equations in simple 
mixed layer models of upper ocean mixing. Such a study differs from the present case in 
that both the light and nutrient forcing will be different for different levels in a mixed layer 
model and these values will be time-varying. Additional considerations are several. It will be 
necessary to consider how to treat the vertical mixing of the different biological components, 
including independent movement rates of phytoplankton and Zooplankton and the perhaps 
different sinking rates of detrital matter. Also, the response of phytoplankton to a time- 
varying light field must be considered. Is their productivity proportional to the average light 
obtained over a time period, or is the response more nonlinear. Also, how much does the 
spatially nonuniform turbulent mixing of the phytoplankters affect the bulk productivity. 
It will be interesting to consider these questions, especially if data sets which can serve to 
validate these modelling approaches can be obtained. 
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Steady-state basins of attraction—Model 3 
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I model and analyse the interaction between a species and the en- 

vironmental carrying capacity for a continuous array of a species' 

distinguishing features. I find that gradual change interspersed 

with rapid separation into two species is the norm. The model 

shows aspects of both gradualism and the "punctuated equilibria" 

of Eldredge & Gould (1972). 
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1    Introduction and review 

Speciation is the process of a single species breaking up into two distinct 

species with no crossbreeding. Evolutionists suggest there are two main 

views of how this occurs (see figure 1): 

• Gradualism - the neo-Darwinian view that natural selection causes 

species to gradually evolve apart (1930's). 

• Punctuated Equilibria - little change over long periods of time followed 

by abrupt speciation caused by a faster mechanism than just natural 

selection (Eldredge & Gould, 1972). 

i 
m 
e 

Gradualism 
Punctuated 
Equilibria 

species characteristic 

Figure 1: The two views on speciation 

There are many examples where authors support one or other of these views 

and attempt to fit experimental data to them.   Unfortunately, a general 
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consensus has not been reached and none of these attempts has proved con- 

vincing to the opposition. As an example of the ambiguity of the data see 

figure (2) where two independent authors claim that it is evidence for their 

own favorite view. 

The aim of this investigation is to form a consistent model of evolution so 

that both of these views are catered for. They will be obtained as solu- 

tions for different parameter values of the same underlying mathematical 

formulation. It can be argued that a mechanism for causing speciation is 

geographical isolation. This is where a species is split and the two halves are 

now free to gradually evolve according to their independent environments. 

However this is not the only form of genetic isolation. Species can be isolated 

by overcrowding in environmental niches, as I shall show later. Geograph- 

ical isolation is not necessarily evident in the sea or on a small island, but 

speciation still occurs. For the present I will ignore spatial effects. The envi- 

ronment must have an effect but how? Do we prescribe the environment or 

do we allow it to vary in relation to a species taking advantage of it? In this 

paper I opt for coupled environment-species equations. 

In the absence of anything abusing the environment it should be able to grow 

to full capacity, so I arbitrarily choose logistic growth. Further, I say that 

the presence of a particular species using the environment will reduce the 

carrying capacity in a linear fashion. Now I will consider the species. Each 

species is treated as a collection of purely selfish individuals, as advocated 

by Dawkins (1989). There are two paths we can follow here. Either we 

model the genetics as in numerous papers on clines in allele space (Voronka 

& Keller (1975), Ewens (1969), O'Brien (1985) and Spencer & Barakat (1992) 

- to name a few), or we model the phenotype. I opt for the latter model of 

phenotype, thus disregarding a species' genetic makeup. I will extend the 

phenotypic descriptor to a more general characteristic. 
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An example of conflicting interpretations of data from the fossil 

1.30 

A particular animal can have a huge number of identifying characteristics that 

distinguish it from other species. These characteristics could be anything from 

the animals' habitat, mating dance, a length or mass, or just appearance. 

Weiner (1994) presents details of research into the beak shapes of finches on 

the Galapagos Islands and compares qualitative and quantitative field work to 

molecular studies on selection. He suggests that naturalists can measure 

selection as functions of behaviour whereas laboratory work fails to find any 

other than neutral selective adaptation. To simplify matters I will consider 

only one independent characteristic. The environmental capacity for holding a 

particular species will have a comparable distinguishing fea- 
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ture. (See Roughgarden (1972) for a discussion and experimental data). For 

example the species could be giraffes with characteristic height a, and the 

environment could be trees with leaves at a height a. Alternatively, I could 

consider humming birds that eat the nectar of a particular flower and hence 

require the correct beak size and shape. 

To model natural selection I need, at least, to include mating, a death term 

and some form of mutation (or random genetic diffusion) in characteristic 

space. I shall say that the offspring will only survive if the environment can 

support them. The mating term must be able to support a small amount of 

breeding between two animals of slightly different aspect but a larger differ- 

ence in aspect would constitute cross-breeding between species and should 

not be allowed. For this reason an integral representation of the process has 

been used with kernels that represent probability distributions that two in- 

dividuals will mate and produce a particular offspring. I will assume that 

two species will mate with probability as a function of the distance between 

them in characteristic space. Also, I shall assume that if two species mate 

then they will produce an offspring with a characteristic probability density 

function centered on the average of its parents characteristics (as in Rough- 

garden (1972) and utilized by Levin & Segel (1982), but see Slatkin & Lande 

(1976) for a possible improvement). 

2    The model 

Consider a species f(a,t) with characteristic a and an environment e(a,t) 

with niche characteristic a. The equations described above are: 

dte — se(K — e) — aef, (1) 

dtf   =   reJJw(a1,a2)B(^^-c^R(\a1-a2\)f(a1)f(a2)da1da2 
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-   vf(a) + Jm{\a1-a\)f{a1)da1-JM(\a-a2\)f(a)da2,        (2) 

where s is the environmental growth rate, K is the environmental capacity, 

a is.the abuse of the environment by a species, r is the species growth rate, 

v is the species death rate, B is the normalized birth distribution, R is the 

normalized relationship distribution, M is the mutation distribution and W 

is a weighting function. 

W represents physical constraints on reproduction. For instance, W could 

limit reproduction due to choosing one and only one mate in their lifetime 

(eg humans - sometimes) or restrictions due to maximum pregnancies per 

year/lifetime. For convenience I shall investigate circumstances where W = 

1, which corresponds to animals such as plankton or any animal that can lay 

as many eggs as it cares to, so long as they can come into contact with a viable 

mate. In this way the spatial dependence could come into the problem. For 

instance, in the sea, spatially coming into contact with a viable mate could 

present considerable difficulties and an animals reproductive efficiency must 

surely increase with concentration of potential mates, e.g. plankton. Of 

course this reproductivity is limited by the environment, such as nutrients 

and light, but otherwise, over sufficient time, the organism is free to breed at 

will. Hence, I can justify my assumptions in the mating term by the inclusion 

of the feedback mechanism of environmental overcrowding. This is similar 

to that seen with weeds, where they will rapidly increase in number if there 

are many similar weeds around, but will be limited in their reproductivity 

if there are too many weeds using the same resource. In the absence of any 

reproduction, the population exponentially decays due to the death term. 

The mutation is modelled by first considering mutations from characteristic 

a to CKI and then from a2 back to a. If the kernel M is symmetric, which 

means it will mutate in either direction with equal probability, and it decays 

exponentially fast then this term can be expanded (Taylor series or steepest 
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descents) to the usual second order derivative representing diffusion, plus 

higher terms, 

m2f
n + m4f

IV+m6f
VI + ...., (3) 

where the m's are constants depending on the symmetric moments of M. 

This is similar to the classical diffusion term plus higher orders. The actual 

size of the mutation term is unimportant as I can scale the time, characteristic 

and species variables to balance the terms at will. That is to say, there is a 

significant difference between very small diffusion and no diffusion. Scaling 

the environment by K, time by y, a by ^, the species by -^^ and defining 

P = K¥TS2 arid T> = j^ then I have the non-dimensional set of equations 

dte = e(l - e) - pef, (4) 

dtf   =   eJJw(a1,a2)B(jp^^-c^R(\a1-a2\)f(a1)f{a2)da1da2 

-   Vf(a) + Jm{\a1-a\)f(a1)da1-Jm(\a-a2\)f(a)da2,       (5) 

where m is the normalised mutation term and the u's have all been scaled 

with the characteristic space scale. 

I should note here that the term involving p could be replaced with an integral 

over characteristic space such as 

ef<l(\<x-<xi\)fMdciu (6) 

where q is a distribution of species eating the environment at a particular a. 

This could be a better represention of reality, but for simplicity I shall only 

consider the case q(z) = pS(z), where p is a constant. 

3    A First Approach 

This section documents the first attempt at understanding the model. How- 

ever, it failed as it did not fully decribe the behaviour of the solutions. There 
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are four homogeneous equilibrium points for equations   (4) and (5): 

(e,^(0,0),(1,0),(i±ÖlTö). (7) 

Consider an oscillatory perturbation to the non-zero homogeneous equilib- 

rium solutions. 

Then to 0(e) 

(a - 1 + 2e0 + pfo) U - 2f0e0R (-) B{k) - m{k) + m(0) + V j = -fie0p, 

(9) 
where a bar denotes Fourier transform.   Choosing normal distributions for 

R, B and m we get that 

sup<x(jb) = o-(0). (10) 
k 

Hence, consider k = kmax = 0. Then 

.(o) = £^£ J^+vYzVEli. (11) 
Zt Zi 

For a Hopf bifurcation we require 

1. V = e0 

2. (e0 + V)2<ApVf0. 

This gives us the the behaviour of the system in parameter space as in fig- 

ure (3). Around the equilibrium point that exibits the Hopf bifurcation and 

knowing that kmax = 0, we can consider a solution 

/) = (/)   +eJei"ta{k'Uj)dk (12) 
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Figure 3: Parameter space. 

which is equivalent to looking for the particular solution 

+ e 
A(X,T) 

B(X,T) 
e     + c.c. + e' + (13) 

with the long a, X, and long time scale, T. 

The linear evolution equation for the amplitude I J is the Fourier-Laplace 

transform of the dispersion relation given by equation (9), (see Drazin & 

Johnson (1988), Fauve (1985) and Dodd et al. (1982)). By expanding equa- 

tion (9) as a Taylor series this is easily obtained. The form of higher or- 

ders in the evolution equation is fixed by imposing translational invariance 

and considering solvability conditions after making the substitution equation 

(13). One of the first non-linear terms which are translationally invariant is 

\A\2B (and other similar terms) and the factor of proportionality is shown to 

be real by considering space reflective symmetry, (Fauve, 1985).  The signs 
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of these parameters determine the criticality of the bifurcation (ie whether 

sub or super critical — if the bifurcation is subcritical then further terms 

should be sought). This equation is similar to the one dimensional complex 

Ginzberg-Landau equation 

dTA = T)A + vd\A - fj,\A\2A. (14) 

Having derived the complex Ginzberg Landau equation, or similar in two 

variables, we can choose the parameters to obtain the behaviour that we re- 

quire. Figure (4) shows the homoclinic orbit in the conceptual homogeneous 

phase space of e and / associated with a pulse, which is a consequence of 

a limit cycle associated with the Hopf bifurcation colliding with an exter- 

nal equilibrium point. This is described by the complex Ginzberg-Landau 

equation. 

Figure 4: Conceptual phase portrait (2-D). 

Bretherton & Spiegel (1983) describe a "soliton cascade", from the complex 

Ginzberg-Landau equation, which looks dramatically like the speciation of 
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the punctuated equilibria theory (figure 5). Pulses oscillate and suddenly 

split into two. Chate reviews the complex Ginzberg-Landau equation and its 

parameter space in his 1993 paper. 

There is, however, a problem. The pulses exist on a non-zero background 

population. That is to say that there is a non-zero number of species of every 

conceivable characteristic (e.g. giraffes with necks of infinite length). This 

is, perhaps, not very "realistic". Indeed, these solutions only exist when / is 

non-zero at plus and minus infinity, and as this is not realistic we can rule 

out these undesirable solutions. It turns out that the kernels in the original 

equation have a far greater effect than anticipated. They enable trajectories 

to escape from the otherwise stable mainfold at (e, /) = (1,0) and perform 

homoclinic orbits (see later). 

4    Simulation 

Since the kernel distributions are arbitrary, I can choose them to be defined 

on a closed interval as a truncated normal distribution and zero elsewhere. 

Characteristic space is discretized and the time derivative is approximated 

using a Runge-Kutta scheme. (To check the stability of the numerical method 

I also used a crude approximation for the time derivative and obtained very 

similar results. Overall, the behaviour of the system was found to be in- 

sensitive to the numerical scheme used). I then get a finite, implicit set of 

algebraic equations to be calculated at each time step. 

fi 
(t) + Giei-v,..., ei+c, fi_vy..., fi+a; t)8t,       (15) 

*](* + **)   =    f  *   }(t) + (G(ei-„...iei+a,fi_(n...,fi+c,;t) 

275 



Figure 5: Soliton cascade, from Bretherton & Spiegel (1983). 

(16) 

for some function G and some range of the kernels a. I choose a to be 

twice the standard deviation of the normal distributions. Hence, for equal 

distributions for the three kernels, the computer time is proportional to racr3, 

where n is the number of points in the simulation. The initial conditions 

determine the solution for all time. That is to say, by guessing an initial 

distribution of e and /, and if it persists and travels then I have found a 

travelling pulse. The boundary conditions are set up so as not to affect the 

region in characteristic space of interest. That is to say, they are set to 

(e> /) = (1> 0) sufficiently far away from the pulse(s). In figure (6) the initial 
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conditions are shown. The environment is not set to zero in its "anti-pulse" 

but very close to zero, as its growth rate is proportional to itself. The species 

is set up as an exponential curve. Figure (7) shows a contour plot of e and 

1.U 
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0.5 
- 

Environment     : 

0.0 
- 
  

- 

100 200 
characteristic 

300 400 

10 

; / Species            : 

100 200 
characteristic 

300 400 

Figure 6: Initial conditions. 

shows how this pulse persists for all time, with the species eating the fresh 

edge of the environment. Species that stay in the same place soon destroy the 

environment and become extinct. After some time the environment recovers 

back to full capacity. The speed of the pulse is governed by a balance between 

diffusive terms and the environmental holding capacity. By increasing V 

sufficiently the pulse does not persist, but decays to zero. Decreasing V or 

p can increase the pulse height.  There are a number of ways to affect the 

277 



behaviour of the pulses. Increasing the variance of the kernel increases the 

200 
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400 
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Figure 7: A pulse that persists. 

speed of the pulses and makes them smoother, as does increasing the variance 

of the birth kernel. However, increasing the variances of the relationship or 

birth distributions, or decreasing T> or the variance of the mutation, can 

make the pulse split (see for example figure  8). 

If enough species axe left on or have diffused onto the tail end of the pulse 

(even if they are dying out) and the environment starts to recover then they 

can start eating the recovering environment. They will increase in number 

if there are sufficiently many of them to have survived the hard times of low 

environmental capacity but sufficiently few of them not to inhibit the envi- 
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Figure 8: A splitting pulse. 

ronmental recovery. Figure (9) shows an example of multiple splittings, or a 

"speciation tree". For parameter ranges that allow only very low level pulses 

(comparable with the homogeneous solutions) a solution can exist where two 

pulses go left and right but leave behind a homogeneous, non-zero solution 

as described in the previous section. In fact for these parameter ranges (such 

as for relatively large p), this appears to be the preferred solution. In this 

case the oscillatory equilibrium point has become stable and draws in the 

local trajectories in phase space. 

Collisions of pulses are also of interest. These can occur when two groups 

of species both evolve into the same region of characteristic space, and can 
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result in total extinction or a "soliton" phase lag interaction. For this model, 

these collisions are unlikely to be realistic as we are allowing breeding between 

individuals of the same charateristic, regardless of their genetic past. The 

splitting, however, looks remarkably like Eldredge & Goulds' (1972) punctu- 

ated equilibria with a definite gap between the speciating groups. That is, it 

looks like a faster mechanism than natural selection is involved in the speci- 

ation. The speciation is actually caused by a dying population, left behind 

and isolated from the main bulk of a species, that suddenly finds a recovering 

environmental niche to use. 

400 

300 

E   200 

100 

0 100        200        300 
characteristic 

400 

Figure 9: A pulse tree. 
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5    Dynamical system 

Now reconsider the original integro-differential equations. If we assume the 

kernels are normal distributions then we can expand the integrals using the 

method of steepest descents (which boils down to Laplaces' method of ex- 

pansions in Taylor series), to get 

dte = e(l-e)-pef, (17) 

dtf   =   ef2 + E+efd2
af + E-e{daf)

2-Vf + m2dlf + h.o.t.,    (18) 

where Ü?+, E    and m2 are constants determined by the moments of the 

kernels. That is 
f m(z)z"- , ,    , mn = J ~lt~dz> (19) 

R. 
2 

and 
Ü2 

m(z)zn 

t 

E+ =2B2 + ^ (20) 

E- = 2B2 - -f, (21) 

where Rn and Bn are defined in a similar way to mn. 

Assuming adequate exponential drop off we can approximate the infinite 

dimensional system by truncating the expansions. Next, we look for a par- 

ticular type of solution; a travelling wave solution of the form 

/j(a'<)=( / )(a + rf)' (22) 

where c is the pulse speed and e and / are allowed to vary also on a slow 

time scale.   If this time scale becomes too fast then the travelling wave 

approximation breaks down. 

Hence, I get the finite dimensional dynamical system 

e'=-(l-e)-?-fe, (23) 
c c 
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9' 

f'=9, 

Vf + cg- E~eg2 - ef2 

(24) 

(25) 
E+ef + m2 

The-phase portrait for this system is similar to that of the 2-d system (fig- 

ure 10) except that it has an extra dimension, due to the diffusive proper- 

ties of the system, which allows trajectories to escape from the once stable 

manifolds. For the system before truncation, the diffusive properties of the 

equations potentially lead to an infinite number of dimensions in which the 

trajectories can escape from the stable manifolds.   For a set of parameter 

homoclinic 
orbit 

Figure 10: Phase portrait - homoclinic orbit (3-d). 

values there exists a homoclinic orbit from and to the equilibrium point at 

(ej/>flO = (1,0,0) as long as the trajectory avoids the stable manifold of a 

hyperbolic point, as seem in figure (10). Alternatively, if the trajectory ends 

up on the wrong side of the hyperbolic point then it can get pushed away 

from (1,0,0) and a hump can form on the tail end of the pulse, and when 
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this becomes significant, breaks down the travelling wave assumption. If this 

occurs then there is a transition period before two travelling pulse solutions 

are generated, one with speed c and another with speed —c (which can be 

considered as a pulse with speed c under the symmetry x + ct —> —(s + ct)). 

This leads to two homoclinic orbits along the same trajectory, but in opposite 

directions. This explanation is backed up by plotting the numerical results 

on the 3-d phase portrait (figures   11 and 12). 

.0    0.2    0.4    0.6    0.8     1.0     1.2 

Figure 11: Numerical phase portrait - homoclinic orbit. Thicker lines are in 

the foreground. 
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.0    0.2     0.4    0.6     0.8     1.0     1.2 

Figure 12: Numerical phase portrait - the moment of splitting. Thicker lines 

are in the foreground. 

6    Discussion 

I have demonstrated that for a relatively simple model, where the species 

needs and affects a particular part of the environment and with a sufficient 

spread of mutation, even if there are very low levels of beneficial mutation, 

I can get periods of gradual evolution followed by abrupt speciations. In 

fact, these speciations can be triggered by changing the parameters or by the 

manipulation of environmental space, but more importantly, often happen 

by themselves at regular stages in a pulses' life. It is also possible, for the 

correct parameter ranges, to get a more gradual speciation, but this often 
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only happens for symmetric initial conditions. In general, the speciation is 

reminiscient to both the punctuated equilibria of Eldredge & Gould (1972) 

and aspects of gradualism. 

Obviously, a species would normally have many distinguishing characteris- 

tics and may abuse the environment in many different ways. Therefore, an 

extension to the present work would be to consider a higher dimensional 

characteristic space, and possibly to include the effects of geographical isola- 

tion. 

A procedure for analysing the integro-differential equations as a dynamical 

system is presented in this paper which could conceivably be used for other 

similar systems. For our model, the governing equations are of interest in 

their own right, regardless of how they represent reality, and under a fuller 

analysis, could produce even more interesting behaviour. 
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Pattern formation in slime mold aggregation 
Amar Gandhi 

1    Introduction 

In response to stress, Dictyostelium discoideum amoebae signal to each other chemically 
using cyclic adenosine 3', ö'-monophosphate (cAMP). In a field of signaling amoebae spread 
over a surface, pulses of extracellular cAMP travel across the field in form of either expanding 
concentric circular waves or rotating spiral waves (see figure 1). As the waves pass periodi- 
cally through the field of independent amoebal cells, they stimulate a chemotactic movement 
of the amoebae towards the center of the pattern (the origin of the circles or the pivot point 
of the spiral). Eventually all the amoebae within the domain of a single pattern aggregate 
at the center to form a multicellular slug, which goes on to form a fruiting body. The ag- 
gregation phase of Dictyostelium discoideum is often taken as a paradigm for developmental 
biology for we see the development of a spatiotemporal periodic chemical prepattern that 
induces a pattern of morphogenetic movements culminating in the formation of an organized 
multicellular tissue. 

tat??***:* 

Figure 1: Target and spiral patterns in Dictyostelium discoideum. (reprinted from Newell, 
P. C. (1983) by courtesy of Marcel Dekker Inc.) 
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In this paper, we study a model based on molecular mechanism of the cAMP relay re- 
sponse that describes the observed spatiotemporal chemical patterns. The model neglects 
any chemotactic motion of amoebae and so is only valid in the initial stages of aggregation 
when there is still a uniform distribution of amoebae. We proceed as follows. In section 
2, we discuss the reaction-diffusion equation used to model the cAMP waves. In section 3, 
we study the local kinetics by setting the diffusivity to zero. This allows us to understand 
the dynamics occurring locally at a point in absence of coupling from neighboring points. 
In section 4, we include the effect of diffusion and derive the dispersion relation. In section 
5, we derive an amplitude equation to serve as a model for behavior near bifurcation. In 
sections 6 through 8, we take a more heuristic approach and study how the local kinetics are 
affected by coupling with other points through diffusion to give rise to plane waves, target 
patterns and spiral waves respectively. Section 9 presents evidence for subcriticality with 
respect to formation of spiral waves. 

2    Reaction-diffusion equation 

2.1    cAMP chemistry 

When Dictyostelium discoideum amoebae are left to starve on an agar surface, they commu- 
nicate with each other using a chemical messenger, cAMP. Individual cells receive the signal 
by binding extracellular cAMP to a membrane receptor, and this binding stimulates the syn- 
thesis of cAMP within the cell. Newly synthesized cAMP is transported to the extracellular 
medium and in this fashion the chemical signal is amplified. Amplification of the signal is 
limited by the fact that, on prolonged exposure to cAMP, the membrane receptor becomes 
desensitized. In the absence of cAMP synthesis, the concentration of cAMP (both inside 
and outside the cell) decreases by the action of an hydrolyzing enzyme. According to this 
picture of cAMP chemistry, confirmed by Martiel & Goldbeter (1987), the relevant variables 
to explain the spatiotemporal patterns are the fraction of membrane receptors in active form 
(/?), the extracellular cAMP concentration (7), and the intracellular cAMP concentration 
(/3) which vary as follows : 

Rate of change of _ desensitization   resensitization 
active form of receptor of receptor of receptor 

dp/dt = -       h^p       +  /,(7)(1-P) (1) 

Rate of change of _   secretion _ extracellular       random 
extracellular cAMP by the cells hydrolysis diffusion 

&l/dt = (kt/h)ß      - kel +        DA7 (2) 
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Rate of change of _   synthesis secretion intracellular 
intracellular cAMP in the cells by the cells hydrolysis 

dß/dt =       <*(/>, 7)      - ktß - hiß (3) 

D is the diffusion coefficient of extracellular cAMP. The constants kt, ke, q and ki are rate 
constants associated with the metabolism of cAMP, and h is the ratio of extracellular volume 
to intracellular volume. The rate functions 

/l(7) = ^I,  A(7)=»i±ti£I 
1 + 7 1 + C7 

describe the receptor kinetics and 

•<*7)=£4£, y= n 
A2 + y2' 1+7 

describes the cAMP synthesis in cells where the k's, A's and c are constant parameters. 

2.2    Reduction to (p, 7) system 

Following Martiel & Goldbeter (1987) and Tyson et. al. (1989), we rewrite eqns. (1),(2) and 
(3) as : 

%   =   -/i(7V + /2(7)(l-p) (4) 

1 Ö7 kt n D A 

1     dß 
■*{p,l)-ß (6) h + kt dt ki + kt 

Assuming l/(&» + kt) <C l/ke < 1 i.e., ß reacts much faster than p and 7, eqn. (6) becomes 

This allows us to eliminate ß from the model yielding 

%   =   -/i(7> + /a(7)(l-p) (8) 

^   =   ^[s$(/9;7)-7] + DA7 (9) 
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where e = ki/ke and 5 = (qkt)/\hke(ki + kt)). In this 2-variable model, the parameters are 
k\, &2, fc_i, k-2, c, Ai, A2, e, s, and D. We will use this model for the rest of this paper with 
the following parameters fixed : 

Jfei = 0.036, k2 = 0.666, 

fc_i = 0.36, jfc_2 = 0.0033, c = = 10 

Ai = 0.001, A2 = 2.4 

The free parameters are e, s and D. 

3    Reaction kinetics alone — No diffusion 

In this section, we study how the local kinetics depend on the parameters. To do this, we 
set D = 0 which allows us to study a single point in space decoupled from all others. Since 
we are studying the behavior at a single point, p and 7 will only depend on time. Once we 
have understood the behavior of the system locally at a point, we will turn diffusion on in 
the following sections and see the effect of coupling the points together. 

The fixed point (/9o;7o) is at the intersection of the nullclines 

p-nullcline   =    j (p,7) : ^ = 0,p > 0,7 > ol 

7-nullcline   =    UPn) : ^ = 0,/> > 0,7 > ol 

Figure 2 shows the nullclines, the fixed point and some sample trajectories for s = 49, e = 
0.01. For this set of parameters, the system shows excitable behavior — when the system is 
perturbed off the fixed point, it undergoes a wild excursion before returning to it. 

Figure 3 shows the nullclines, the fixed point and some sample trajectories for s = 50, e = 
0.01. For this set of parameters, the system has a limit cycle. The fixed point from the 
previous figure has lost its stability to the limit cycle through a hopf bifurcation. 

To understand behavior around the fixed point (po,7o)> we let 

p(t) = po + p'(t),    7(t) = 70 + 7'(i) 

and substitute into equations (8) and (9). Retaining only the linear terms, we obtain 

Pt 

it 
= A P 

i (10) 

Eigenvalues of A will tell us about the stability properties of the fixed point. 
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0 

Figure 2: System displays excitable behavior for 5 = 49, e = 0.01. 7-nullcline is the dotted 
curve and the /j-nullcline is the dashed curve. 

o 

3 4 
Gamma 

Figure 3: System has a limit cycle for s = 49, e = 0.01. 7-nullcline is the dotted curve and 
the p-nullcline is the dashed curve. 
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3.1     Effect of varying s 

Figure 4 shows the locus of the fixed point while figure 5 shows the locus of the eigenvalues 
of linearization around the fixed point as s is increased from 10 to 300. Figure 6 shows the 
real part of the eigenvalues as a function of s. The eigenvalues start out with negative real 
parts and zero imaginary parts. As s is increased, they move towards each other. Upon 
collision at s ~ 45, they acquire imaginary parts and move towards the positive real half- 
plane. The hopf bifurcation occurs at s ~ 50. Soon after this, they collide again and become 
all real. They begin to move away from each other but then stop and start to move towards 
each other again. At s ~ 60, they collide once more and acquire imaginary parts. They 
move towards the negative real half-plane and another hopf bifurcation takes place around 
s ~ 220. e is taken to be 0.01. 

o 

0.3 0.4 
Gamma 

Figure 4: Locus of the fixed point as s is increased from 10 to 300 in increments of 1. The 
fixed point corresponding to s = 10 is in the upper left-hand corner and it moves towards 
the lower right-hand corner as s is increased, e = 0.01. 

293 



1.5 

1   - 

0.5 

-0.5 

-1.5 

~t 1 r 

0 < ■Meeeeeoooooooooooooo«-» o o o o o o o ©. 

-3.5     -3     -2.5    -2     -1.5    -1    -0.5      0       0.5       1       1.5 
Re 

Figure 5: Locus of the eigenvalues of linearization around the fixed point as s is increased 
from 10 to 300 in increments of 1. e = 0.01. 
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Figure 6: Real part of the eigenvalues of linearization around the fixed point as s is increased 
from 45 to 60 in increments of 0.01. e = 0.01. 
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3.2    Effect of varying e 

Notice that -e is the only parameter that can be varied without affecting the location of 
the fixed point. It does affect the stability of the fixed point, however. Figure 7 shows the 
dependence of the eigenvalues of linearization around the fixed point upon varying e for 
s = 50. We observe that the linear growth rate is zero for e = ec = 0.01129. 

2.5 

1.5 

0.5 

-0.5 

1 
 1  

1 0.5 

- 
0.4 
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■1 0.2 

■\ - 
S 

0.1 

0 

\ ■ 

-0.1 

• y\ - -0.2 

-0.3 

-0.4 

-0.5 
0.005 0.01 0.015 0.02 

e 
0.01 0.015 0.02 

Figure 7: Dependence of the eigenvalues of linearization around the fixed point upon varying 
e for s = 50. 

4    Dispersion relation 

In the previous section we saw that in the absence of diffusion or equivalently for the uniform 
state, the linear growth rate vanishes for e = ec, s = 50. With these parameters, we turn on 
diffusion (by setting D = 0.0001) and perform the linear stability analysis to determine how 
the linear growth rate varies for disturbances with wavenumber k. We let 

/o(x,i) = po + p'exp[ik ■ x + at],    7(x,i) = 70 + 7'exp[ik • x + at],    |k| = k 

and substitute into equations (8) and (9). Retaining only the linear terms, we obtain 

P' ap 
aj' 7' 

+ 
or 

B 
7' 

= 0   where   B = 

0 
-Dk2i 

a 0 
0   a + Dk2 (11) 

Setting the determinant of B to zero will yield the growth rate a. Figure 8 shows the depen- 
dence of the linear growth rate upon k. We see that the most unstable mode corresponds to 
k — 0 and the instability leads to uniform oscillations. 
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Figure 8: Dispersion relation, a(k) for e = ec,s = 50, D = 0.0001. 

5     Complex Ginzburg-Landau Equation 

In this section, we study the behavior close to bifurcation by the amplitude equation. This 
is done using the multiple scale approach. 

5.1     Control parameter and scaling 

Figure 9 shows the change in dispersion relation as e is perturbed off of ec. As e is increased, 
both aTea\(k = 0) and crimag(A; = 0) decrease. 

We define the control parameter 
8 = ec — e. 

For positive values of 8, crreai(A:) curve is lifted up introducing a small band of unstable 

wavenumbers near zero. crreal(fc = 0) is proportional to 8 and since    Q^    .      =0, the number 
fc=0 

of unstable modes will be proportional to y/8. For the perturbative expansion, we define 

£ = sgn(e)|e|2 

where e is the expansion parameter.   Near the bifurcation, i.e., for |e| <C 1, we wish to 
separate fast and slow scales for x and t. We therefore define 

X \e\x,    Y=\e\y,    T = \e\H 
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Figure 9: Dispersion relation, a(k) for 5 = 50, D = 0.0001, e = ec (solid curve), e = ec+0.001 
(dashed curve), e = ec — 0.001 (dotted curve). 

5.2     Preliminaries 

We write equations (8) and (9) formally as 

dtu = F(u)   using   u P 
7 

At the fixed point, 

u = u0 = Po 
7o 

,    ötuo = F(u0) = 0. 

We are interested in studying the behavior near bifurcation and so we pick a fixed point for 
which 6 = 0. Let M represent the linearization of F(u) about such a fixed point i.e., 

M = 
dF(u) 

du =u0 

M has eigenvalues (iuio), (iuJo)* and eigenvectors E, E*. 

The solution of dtu = Mu is u = A exp(iu;oi)E + c.c. Hence, L = (dt — M) has eigenvectors 
E, E* with zero eigenvalues. 

5.3    e-expansion 

We expand 
u = u0 + e ux + e  u2 + 
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and collect orders of |e| : 

O(l) 

which is the fixed point condition. 

0(\e\) 

F(u0) = 0 

has the solution 

0(|£|J) 

has the solution 

0(\e\3) 

Lui =0 

ui = A(X, Y, T) exp(w0i)E + c.c. 

Lu2 = [-]A2 exp(2zo;oi) + c.c. + [~]AA* 

u2    =   B(X, Y, T) exp(iu0t)E + c.c. 

[•■]A2 exp(2iujQt) + c.c. 

[~}AA* 

L113    =   Hexp(2o;oi) + c.c. 

+[••] exp(2i(jJot) + c.c. 

+ [••] exp(Ziu}0t) + c.c. + [••] 

This equation has a nontrivial rhs so the linear operator on the left must be inverted. Since 
this operator has vanishing eigenvalues we must impose a solvability condition, requiring 
that the vector on the right should not drive any eigenvector with zero eigenvalue. Fredholm 
theorem implies that 

where E*, E** are the eigenvectors with zero eigenvalues of the adjoint operator L* = —{pt + 
M*). This yields the complex Ginzburg-Landau equation 

dA 
(sgn(e)a + ßDA)A + fi\A\2A (12) 

dT 

where 

a = — 
da(k = 0) 

,    ß 
1 d2a 

"2 dk2 
k=0 
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Recall that this expansion is done about a fixed point for which S = 0. The fixed point for 
s = 50, e = ec is one such point and the corresponding numerical values for the parameters 
in the complex Ginzburg-Landau equation are 

a   =   13.64 + Ü3.00 

ß   =   0.50 -i0.53 

H   =   1235.93 - i2389.66 

5.4    Local behavior — No diffusion 

Setting D = 0, we obtain for the local behavior 

dA 
dT 

= sgn(e)aA + /z|A|2A (13) 

The fixed points of \A\ as a function of sgn(e)Re(o:) are shown in figure 10. We see that for 
negative values of sgn(e)Re(a), there is a stable fixed point at the origin and an unstable 
limit cycle. As sgn(e)Re(a) increases towards positive values, the limit cycle collapses onto 
the origin and the origin becomes unstable through a subcritical hopf bifurcation. 

0.15 

0.1 

0.05   - 

-0.05 

-0.1 

-0.15 
-20       -15       -10 -5 0 5 10 15 20 

sgn(epsilon)   Re(alpha) 

Figure 10: Fixed points of \A\ as a function of sgn(e)Re(a). 
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6    Plane waves 

In this section, we begin our heuristic study of how the local kinetics (§3) are modified by 
coupling with other points through diffusion. Here, we study the formation and maintenance 
of one-dimensional plane waves. This understanding would be useful when studying circular 
and spiral waves in two dimensions because away from the center these waves have low 
curvature and resemble plane waves. 

We would like to know if there exist any solutions to our system of the form 

p   —   R(x + vt) 

7   =   G(x + vt) 

We proceed by two different methods. First, we integrate the PDE in a; € [0,1] with periodic 
boundary conditions. There is no loss of generality in considering this domain size as the 
diffusivity can be changed to vary the spatial scale. If a traveling wave is found then we have 
a solution of the above form. The second method is to derive a 3-variable ODE by trying 
the above form and studying the induced flow. 

6.1    PDE solution 

For s = 45, e = 0.01 local kinetics are of the excitable type. Figure 11 shows the traveling 
pulse solution obtained by integrating in time the initial condition 7(x) = 0.1, p{x) = x. 
Diffusivity is taken to be 1 x 10-5. The wave speed is v ~ —1/83.4. 

Qualitatively, the situation is as follows. Suppose a point at (po,7o) is yanked in the positive 
7 direction by its neighbor; once excited, locally 7 would increase even more before the system 
returns to equilibrium. This point can in turn excite its other neighbor. The neighbor that 
excited the point is already in the excited state and does not much get affected. This way, 
we get a pulse traveling in one direction. The system returns to equilibrium in the wake of 
the pulse. The periodic boundary condition keeps the pulse in the domain. 

We define xp, the pulse length as the length of the domain where the system is not at 
equilibrium. If xp < 1 as it is in figure 11 we can construct a family of plane wave solutions 
by simply separating the pulses by varying amounts. It is possible that xp — 1 as shown in 
figure 12 where the diffusivity is changed to 1 x 10-3. Here we do not have a distinct pulse 
and so it is not possible to generate a family of solutions. Further, there is a period for the 
oscillations and so we call these periodic solutions. 
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Figure 11: Traveling pulse solution obtained by integrating in time the initial condition 
7(E) = 0.1,p{x) = x in x £ [0,1] with periodic boundary conditions. D = 1 x 10-5. The 
pulse is moving to the left. The picture on the left shows 7(2), p{x). On the right are all the 
points in the domain drawn parametrically in (p, 7)-space with lines connecting neighboring 
points. 
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Figure 12: Periodic solution obtained by integrating in time the initial condition 7(03) = 
0.1, p{x) = x in x E [0,1] with periodic boundary conditions. D = lx 10-3. The oscillation 
is moving to the left. The picture on the left shows 7(2:), p(x). On the right are all the points 
in the domain drawn parametrically in (p, 7)-space with lines connecting neighboring points. 
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6.2    ODE solution 

Inserting p = R{x + vt),-y = G(x + vt) in (8) and (9), we obtain the following 3-variable 
ODE: 

dR _ 1 

dt v 
dG = 

dt 

*L - I 
~dT ~ D 

-fl(G)R + f2(G)(l-R)} 

vP-— (s$(R, G) - G) 
e 

(14) 

The ODE has the fixed point 

R0 = p0,    Go = 7o,    P = 0. 

Homoclinic orbits in the induced flow correspond to traveling pulse solutions whereas closed 
orbits correspond to periodic solutions. Studying this ODE numerically is hard because the 
spectral radius of the linearization around the fixed point is typically quite large making 
accurate integrations of the ODE difficult. 

In conclusion, we say that solving the PDE directly is a superior method for numerically 
obtaining plane wave solutions. Having said that, one must also mention that since the 
PDE picks out only stable solutions, it does not provide complete information. In order to 
study the pulse speed as a function of domain size and the transition from closed orbits to 
homoclinic orbits one must investigate the ODE. 

7    Circular/target patterns — Role of pacemakers 

7.1     1-D analogue 

There is a one dimensional analogue of circular/tar get patterns — a train of pulses emanating 
from the center. In the previous section, we saw that the model admits a pulse moving in one 
direction. It would be quite easy to construct a solution where two pulses move away from 
each other. If no-flux boundary conditions were employed, there would be no mechanism 
to keep these pulses in the domain and once they have left, the system would return to 
equilibrium. Experiments with BZ-reaction have suggested that local chemical impurities 
can serve as pacemakers. It seems likely that this is the case here as well. What could be the 
mechanism ? One possibility is to imagine the value of s being high locally so that in a small 
region the local kinetics have a limit cycle behavior whereas the rest of the domain can have 
excitable behavior. The limit cycle region will act as the pacemaker and be the source of 
waves which will be propagated through the rest of the domain. Figure 13 shows the result 
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of a simulation with no-flux boundary conditions where s(x) = 45 + 20exp 

x £ [0,1]. e = 0.01 and D = 1 x 10~5. 
V   0.05  / 

m 

A  >- 
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0.3 
0       0.1     0.2     0.3     0.4     0.5     0.6     0.7     0.8     0.9 0.5 1.5 2 2.5 
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Figure 13: 1-d analogue of target pattern obtained by employing an inhomogeneous distribu- 
tion of s[x). Waves are generated in the center of the domain where the local kinetics have 
limit cycle behavior. Excitable regions carry the waves to the edge of the domain. 7(x), p{x) 
are displayed on the left. On the right are all the points in the domain drawn parametrically 
in (/?, 7)-space with lines connecting neighboring points. 

7.2    2-D simulations 

Figure 14 shows the result of the two-dimensional simulation with the same parameters. It 
is a radially symmetric version of figure 13. 

7.3    Need for pacemakers 

It is very easy to get target patterns in 3-variable systems such as the Oregonator. It hence 
seems likely that the full model with /3-dynamics will admit target patterns as well. This is 
surely related to the fact that inhomogenous distribution of s(x) can create target patterns as 
well — the distribution of s(x) corrects some of the physics which was removed by assuming 
that /5-dynamics were faster than p and 7-dynamics. 
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Figure 14: Target pattern obtained by employing an inhomogenous distribution of s(x). 
Waves are generated in the center of the domain where the local kinetics have limit cycle 
behavior. Excitable regions carry the waves to the edge of the domain. 7 is displayed on the 
left and p on the right. 

8     Spiral waves — Genesis and evolution 

Spiral waves differ from circular waves in at least two ways. Firstly, there does not seem 
to be a straightforward one dimensional analogue for spiral waves. Secondly, there is no 
need for a pacemaker mechanism for spiral waves to form and sustain. Figure 15 shows the 
formation of a spiral wave. The initial condition is half of a plane wave. The free end curls 
up to form a spiral wave. Parameters are : 5 = 47, e = 0.01, (excitable local kinetics) and 
D = 4x 10~5. No-flux boundary conditions are used. 

Figure 16 shows the formation of a pair of counter-rotating spiral waves. The initial condition 
is a segment of plane wave with two free ends. Each free end curls up to form a spiral wave. 
Notice that when two spiral waves meet, they cancel each other. 

Figure 17 shows the interaction of a spiral wave with two pacemakers emitting circular waves. 
Notice once again that when two waves collide they cancel each other. 
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Figure 15: Formation of a spiral wave. 7 is displayed on the left and p on the right at times 
t = 0, t = 14 and t = 35. 
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Figure 16: Formation of counter-rotating spiral waves. 7 is shown at times t = 0 and t = 35. 

Figure 17: Interaction of spiral and circular waves. 7 is displayed on the left and p on the 
right. 
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9    Evidence for subcriticality 

We saw in §5.4 that the complex Ginzburg-Landau equation has local subcritical behavior. 
Here, we present evidence for subcritical behavior in the full system. Figure 18 summarizes 
the behavior — starting from an initial condition consisting of perpendicular ramps for ^,7, 
we ask what the final pattern is. For 8 > 0, the spatially uniform solution has limit cycle 
oscillations. This solution is not picked out starting from our initial pattern — the final 
pattern for 8 > 0 is a spiral wave. For 8 < 0, however, the situation is different. The 
spatially uniform solution does not vary in time either and this is the final pattern selected 
starting from our initial condition. If we follow the spiral wave solution by slowly decreasing 
8, we find that a spiral wave solution does exist in the regime with 8 < 0 and the way the 
spiral wave solution is lost is by unwinding of the spiral (figure 19). 

Patt :ern 

spiral wave solution 

MM 
W W perpendicular ramp IC 

spatially uniform 
fixed point 

spatially uniform 
limit cycle oscillations 

delta 

Figure 18: Pattern selection as a function of 8 starting from initial condition consisting of 
perpendicular ramps in p,^. 
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Figure 19: Unwinding of spiral wave as e is increased from 0.005 to 0.044. 

308 



Acknowledgements 
Many thanks go to Ed Spiegel for introducing me to pattern formation and guiding much of 
this work with patience and a good sense of humor. I must also thank Danny Grünbaum for 
encouraging me to appreciate the biological aspects of the problem and Neil Balmforth for 
teaching me the mathematical tools. It was an awesome summer where I made a lot of close 
friendships. My thanks to Glenn Flierl and Don Olson for organizing this GFD summer. 

References 

1] CROSS, M. C. & HOHENBERG, P. C. 1993 Pattern Formation outside of equilibrium. 
Reviews of Modern Physics 65, No. 3, Part II, 851-1112. 

2] KELLER, E. F. & SEGEL, L. A. 1970 Initiation of slime mold aggregation viewed as 
an instability. J. Theor. Biol. 26, 399-415. 

3] KELLER, E. F. & SEGEL, L. A. 1971 Model for chemotaxis. J. Theor. Biol. 30, 
225-234. 

4] KURAMOTO, Y. 1984 Chemical Oscillations, Waves, and Turbulence Springer Series in 
Synergetics, vol. 19, Springer-Verlag. 

5] MARTIEL, J. L. & GOLDBETER, A. 1987 A model based on receptor desensitization 
for cyclic-AMP signaling in Dictyostelium cells. Biophys. J. 52, 807-828. 

6] MURRAY, J. D. 1993 Mathematical Biology Biomathematics, vol. 1, Springer-Verlag. 

7] NEWELL, P. C. 1983 Attraction and adhesion in the slime mold Dictyostelium, in 
Fungal Differentiation : A Contemporary Synthesis, edited by J. E. Smith, Micology 
Series 43, Marcel-Dekker Inc., New York, pp. 46. 

8] TYSON, J. J. & MURRAY, J. D. 1989 Cyclic AMP waves during aggregation of Dic- 
tyostelium amoebae. Development 106, 421-426. 

9] TYSON, J. J., ALEXANDER, K. A., MANORANJAN, V. S. & MURRAY, J. D. 1989 
Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D 34, 193-207. 

[10] WlNFREE, A. T. 1974 Rotating chemical reactions. Scientific American 6, 82-95. 

309 



Topographie Effects on the Propagation of Isolated Eddies 

Deborah A. Le Bel 

1 Introduction 

It has become clear over the past decade that isolated rings can transport large amounts of energy, 
heat, and salt. Near biogeochemical fronts, such as the Gulf Stream, they can also be important to 
biochemical fluxes, of both nutrients and organisms (Olson 1990). A better understanding of isolated 
mesoscale features is thus important to our understanding of the ocean as a bio-physico-chemical 
system. 

There exists a body of literature investigating eddy propagation on a ß plane, both numerically 
(McWilliams and Flierl, 1979; Mied and Lindemann, 1979; Chassignet and Cushman-Roisin, 1991) 
and analytically (Flierl, 1977; Nof, 1981, 1983a, 1983b; Cushman-Roisin et al. 1990). Briefly, it is 
noted that an isolated eddy on the ß plane will propagate westward near the long Rossby wave speed 
of the ambient fluid, trailing a Rossby wave wake. Significant nonlinearity damps dispersion and helps 
to modify this speed; it allows a finite meridional speed, not possible in linear theory. While the 
distinction must be made between the center of mass and the vortex center as defined by the potential 
vorticity or displacement extremum (McWilliams and Flierl, 1979; Chassignet, 1989), the latter are 
more difficult to examine analytically. It has also been shown that under weak dispersion, the zonal 
drift of the center of mass is actually a robust proxy for that of the vortex center (McWilliams and 
Flierl, 1979; Chassignet, 1989). 

The inclusion of topography is the next logical step in the theoretical investigation of eddies and 
becomes important when we note that at least two of the energetic ring-producing areas shed vortices 
which subsequently interact with topography. The Gulf Stream rings pass over the New England 
Seamounts and may propagate onto the continental shelf (Cheney and Richardson, 1976), and Agulhas 
rings encounter first the Cape Rise and later the Schmitt-Ott Seamounts (Olson and Evans, 1986). It 
is must be asked what effects topography has on isolated eddy dynamics. 

Topography introduces an effect similar to that of ß; in one case, it is the latitudinal variation of 
the Coriolis parameter that breaks the symmetry around the center of a vortex, and in the other it 
is the variation of water column height. Both are variations in leading order potential vorticity, |j. 
The topographic beta effect can be much more complicated than the planetary beta, however. While 
the planetary effect has a clearly defined direction and a constant amplitude over the space for which 
the ß approximation is valid, the topographic ß can be in any direction and of any amplitude. The 
resulting motion of the eddy cannot be easily predicted for any form other than a simple constant 
slope. 

This work describes the derivation of an expression for the propagation of the center of mass of a 
vortex over generalized topography. The reduced gravity approximation is used for two reasons. First, 
there exists a large body of previous work employing reduced gravity (Nof, 1981, 1983a; Chassignet, 
1989; Cushman-Roisin et al., 1990; for example). Second, the only two analytically tractable approx- 
imations are quasi-geostropby and reduced gravity. Quasigeostrophy imposes its own limitations on 
scales, most notably on the size of the interface displacements relative to the layer in which the vortex 
is embedded. 

One drawback to the present approach is that the physical formulation is somewhat unrealistic; 
most eddies are surface-intensified, while the present one exists in the bottom layer. Nof (1983a) does 
mention a few observed cases of deep eddies, but they are not the norm. In addition, some processes 
are excluded using the reduced gravity approximation; barotropic motion and baroclinic instability 
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(Chassignet and Cushman-Roisin (1990)), specifically. No form drag is introduced by interaction with 
a dynamically active upper layer; this can become important because form drag initially opposes the 
motion of the vortex, it tends to slow the vortex zonally and induce further meridional motion, much 
as the form drag induced by the Rossby wave wake does. Additionally, with the barotropic-equivalent 
formulation, vertical modes are limited to one and modal coupling is restricted to self-interacting. 

Smith and O'Brien (1983) investigated the behavior of a /?-plane vortex in a two layer, primitive 
equation model with topography meant to simulate the continental slope - a down-slope meeting a 
fiat bottom. They found that a layer thickness ratio of 0.25 was sufficiently small to insulate an upper- 
ocean eddy from topographic influences, while a larger ratio of 0.66 showed some transfer of energy 
from the baroclinic to the barotropic mode, as was seen by McWilliams and Flierl (1979) for a flat 
bottom. Barotropic anticyclones developed an eastward propagating vortex pair similar to the modon 
in the flat-bottomed experiment, while cyclones continued to propagate onto topography, evolving into 
an upper-ocean vortex pair; thus there was some evidence that cyclones will be preferentially trapped 
on-shore and indicated the possibility of greater persistence of anticyclones due to the less dispersive 
nature of the eastward-propagating vortex pair. In contrast to the flat-bottomed case (McWilliams 
and Flierl, 1979), some development of baroclinicity was forced. Of particular interest is Smith and 
O'Brien's results with lower-layer eddies. Behavior was much like the barotropic case; anticyclones 
evolved to modon-like structures, and cyclones moved eastward onto the topography and evolved to 
upper-ocean structures. Self-advection speeds were significantly larger than in the barotropic case, 
however. 

The reduced-gravity system results in a barotropic-equivalent vortex. Chassignet and Cushman- 
Roisin (1991) explored the applicability of the reduced gravity approximation and found empirically 
that a ratio of upper to lower layer depths §^ < ^ was sufficiently small to legitimatize the use of 
reduced gravity dynamics. A scaling analysis more formally specified 

H» max [Hi, mi^H^, h0^)] 

where H is the total depth and Lß is the planetary scale. It easy to see that the model used in this 
study did meet these requirements. Unfortunately, it is clear that an unreasonably deep upper layer 
is required - in this case, at least 50 km. 

The layout of the paper is as follows. In section 2, the derivation of an expression for the propagation 
of the center of mass of a vortex over generalized topography is presented. An approximation of 
constantly slope is then made and the results validated with numerical simulations in section 3. Some 
unpredicted behavior of the center of mass will also be discussed. Higher order calculations are 
presented in section 4 to try to explain that behavior. Finally, conclusions are summarized in section 
5. 

2 Derivation of the Center of Mass Translation 

The derivation of an expression for the translation of the center of mass follows that of Cushman- 
Roisin et al. (1990). The equations of motion for a one and a half layer, reduced gravity system 
are 

ut + uux + vuy - fv = -g'r)x 

Vt + uvx + vvy + fu = -g'»Jy 

ht + V • (hu) = 0 

where 
h = H2 + T) - b 
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Figure 1: Diagram of the vertical structure of the theoretical and numerical model. 

A schematic of the system is shown in Figure 1. H2 is the undisturbed bottom layer depth, 77 the 
fluctuating interface between the two layers, which defines the vortex, and b the topography. The 
jo-plane approximation is made, so that the Coriolis parameter is given by f = f0 + ßy- 

The equations are scaled by L, a length scale not constrained to be the Rossby radius; 6R, an 
interface displacement scale not constrained to be <C H2; and T, a time scale not constrained to be 
the advective or inertial time scale, to give 

wut + euux + evuy - v - /?yv = -r)x 

wvt + euvx 4- evvy + u + /?yu = -% 

wqt + sV • u + <rV • (UT?) - 7V • (ub) = 0 

where 
1 

f0T 
time scale 

g'H2 Burger (stratification) number 

g'SH 
fi?L2 Rossby number 
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g'b 
7 = -p^r* topographic effect 

ß = —— beta effect 
to 

The order of the error is given by 

max(w,s,e,7) 

and specifies which effect dominates the dynamics at the next order. Strictly speaking, the Burger, 
Rossby, and topographic numbers given above are truly squared values of the actual ratios. 

Noting that the largest term containing w must be of the same order as the largest term not 
containing w, and that the scaling of H was by 6B. < H, requires e < s, LJ is given by 

max(se, sß, S7) 
max(l,s, 7) 

and the order of the error is reduced to 

6 - max(e, ß, 7) 

for cases with the vortex larger than the radius of deformation (s <1). 

Next, the center of mass is defined as 
X=(x»7) 

Y=<y*7) 

. .       ff •   dx dy 
where (•) = -^ ——     over an infinite domain 

J/IJ   dxdy 

Differentiating yields 
dX 
dT = <X7*> 
dY     /     \ 

Substituting for rjt from above and integrating by parts, the result is 

d2X     dY      sß.    .      eß.      ,     ßn,        X7;L w^tJ - dT = ü(yv>+ f <y7?v> - vMjM- 
d2Y     dX        aß.    ,     cß,      %     ßyn     ,7,      , 

Geostrophic velocities when substituted yield 

d2Y     dX 
dt2 + dt 

~M " V<M ~ %{>>) ~ £&) - <b^> + 0(f,S) (2) 

The formal error is on the order of [max(^-, ^ )] x [ max(6, ^£)]. 
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The results obtained without topography (Cushman-Roisin et al., 1990) 

d2X     dY sß6 

d2Y     dX        sß, .     cß, 2,     ~,sß6. 
W17T + 17 = "77fa " 7V + ° 77") dt''       dt u u> u 

are recovered for b = 0 in (1) and (2). 

Reconverting to dimensional quantities and assuming that u is small enough to justify dropping 
the second derivatives (which it must be to justify a geostrophic scaling), the final expression is: 

dX _ -i JjMby + £(H2 + yby + b)] + |g} dx dy 
dt ffrjdx dy 

dY = ^/Jb^(l-^)dxdy 

dt ffrjdx dy (4) 

A few things are important to note here. First, in the f-plane case, the solution is linear and 
recovers that of Nof (1983a). Nof's solution was for a lens sitting directly on topography of constant, 
linear slope and included an assumption of constant drift speed, which was not made here. Thus, 
Nof's solution is applicable under a wider range of conditions than those for which it was derived. 

The zonal drift speed is proportional to the meridional slope of the topography and is independent 
of the intensity of the eddy: 

dX g'by 
dt ~ fo 

dY 
dt 

= 0 

It is interesting to note that the planetary ß introduces a nonlinearity which gives the solution a 
theoretical dependence on the eddy intensity or amplitude, while the topographic ß, even when linked 
to the planetary ß, has no such nonlinearity nor dependence. 

Second, a non-zero zonal derivative of the topography will induce a meridional drift; however, in 
the absence of a zonal derivative, the meridional drift to leading order is zero. Contrast this to the 
results of Cushman-Roisin et al. (1990), where to first order the meridional drift on a /?-plane was 
always zero. Thus, topography may introduce a finite drift in the y-direction. 

Before going on to the validation of the analytical expression by numerical simulation, it is in- 
structive to examine more closely the terms in the zonal drift equation. Assuming topography with a 
constant meridional slope, it becomes: 

dX        g'/?H2      ß     ,      2g'/?by g' 

■di=—%— 2f7(7?}" ~ir{yv)" ü y 

(a) (b) (c) (d) 
Term a is the long Rossby wave speed for the ambient fluid and is always westward. This is also 

the quasi-geostrophic limit (McWilliams and Flierl, 1979). 
Term b will be negative for anticyclones (77 > 0) and positive for cyclones. 
Term c couples ß and the topography and depends on the sign of the meridional derivative of the 

topography. 
Term d depends on the direction of the slope and thus may enhance or lessen the Rossby wave 

speed. Again, it is independent of eddy intensity and captures the results of Nof (1983a). 
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The size of the drift speed predicted by the center of mass derivation is estimated by substituting a 
Gaussian form for 77 with a 300 m initial amplitude is substituted into the above analytical expression. 
The dominant effect, as also noted in the flat bottom case of Cushman-Roisin et al. (1990), is the 
long Rossby wave speed at —4 cm s-1. Also important is the term involving only the slope, which 
adds another —2 cms"1. The rf term contributes another .4 cm s-1, again with the sign depending 
on the sign of the interface displacement. The last term, coupling ß and topography, is insignificant, 
on the order of 10-7 cm s_1. Thus, theory predicts that cyclones with the above height perturbation 
move at approximately —5.6 cm s-1 and their corresponding anticyclones at —6.4 cms"1. 

3 Model Description 

In order to test this theoretical result, a series of numerical simulations of an isolated vortex over 
sloping topography were performed. The Burger number, comparing the Rossby radius with the size 
of the vortex, was held constant while eddy intensity and bottom slope were varied, f-plane and a few 
simple /?-plane experiments were conducted. Previous work has also examined the velocity contrast 
between layers as a measure of the baroclinicity of the vortex (Mied and Lindemann, 1979; Smith and 
O'Brien 1981 ); with the reduced gravity approximation, the motion remains barotropic- equivalent. 
The model used in this study was an adiabatic, unforced, one and a half layer version of the Miami 
Isopycnic Coordinate Ocean Model (MICOM), also known as the Bleck-Boudra model (1986). This 
model has already been used in a series of vortex experiments (Chassignet, 1989; Chassignet and 
Cushman- Roisin, 1991; Chassignet et al., 1990) 

Briefly, the model domain was 2000 x 2000 km, with a uniform grid spacing of 20 km. The lower 
layer depth, H2, was 1000m, with the ratio of upper to lower layer depth taken to be one thousand 
in order to practically approximate infinity, in accordance with reduced gravity dynamics. Free slip 
boundary conditions were used, although the formulation becomes unimportant for this problem; it 
is the behavior of the isolated feature free of other influences which is under investigation, and the 
dynamics become significantly different once the boundaries begin to influence the vortex. The initial 
topography was a simple meridional slope of 10~4, shallowing to the north. A Laplacian friction 
parameterization was used with a coefficient of 200 x m2 s-1. 

The time step was twenty minutes, with a typical integration time of 200 days. Each integration 

was initialized with a Gaussian height profile h = h0e~2i? centered in the domain at (1000 km, 1000 
km). Here h0, the maximum displacement, varies from 200 to 500; L, the radius of maximum velocity, 
is 50 km; and r is the distance from the center. The Rossby radius of deformation is 45 km. 

The scaling for the numerical eddy is compared to typical values for open ocean rings, Gulf Stream 
rings, and intrathermoclinic eddies in Table 1. Based on Rossby number, none of these features can be 
classified as strictly geostrophic, although the numerical case clearly deviates the farthest. The gentle 
slope incorporated in the model gives a topographic ß effect on the same order as the nondimensional 
planetary ß effect experienced by the numerical ring. 

An alternate comparison may be made for the position in Rossby number— Burger number space. 
If we assume the flow is in gradient balance 

v2 ah 

T+fV = gör- 

we can scale the equation as 

using 

€2 + e: 

V g'6h 
y-j s = v = maximum azimuthal velocity 

L = radius of maximal velocity 
6h. = interface change across ring 

This scaling for the Burger number corresponds to the Rossby number in the center of mass theory 
derivation.   In either case, the Rossby number measures the magnitude of the flow speed relative 
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Table 1: Scaling 

Eddy Open Ocean Gulf Stream Intrathermoclinic 

g' .02 .02 .02 .01 

L 50 km 50 km 100 km 30 km 
H - 1000 m 400 m 500 m 50 m 
6H 300 m 400 m 500 m 50 m 

e Rossby number .24 .08 .10 .11 

s Burger number <H2 .80 .30 .10 .11 

7 Topography 
fe 

.02 

ß Beta effect 
fo 

.01 .01 .02 .006 
U) Time scale f .192 

a typical advective speed set by the vortex length scale and the inertial period; in the theoretical 
derivation, the Burger number compares the "external" deformation radius with the vortex length 
scale, while in the present case it compares the "internal" deformation radius. 

This scaling gives 

e |±-|(l + 4-)* 

with + corresponding to cyclones and - to anticyclones. Note there is a solvability bound at s=- 
.25; there is a limit to where the pressure gradient can be balanced by a positive centripetal force. 
This bound means that cyclones may be more nonlinear and more energetic than their anticyclonic 
counterparts. Figure (2) shows the scaling of many observed rings in addition to that of the 200 m, 300 
m, and 500 m Gaussian eddies used in this study. For this particular choice of reduced gravity, a 500 
m anticyclone cannot exist in gradient balance, while the 300 m is marginally stable. Some adjustment 
to a more stable configuration, as observed in oceanic rings, may occur within the numerical model. 

3.1     Comparison of Analytical and Numerical Results 

It was elected to initialize velocities in gradient balance rather than pure geostrophic balance, 
as it was anticipated that the adjustment process would be gentler. There are two processes at 
work; the first is the growth of the centripetal acceleration term to develop gradient balance, and the 
second is the adjustment to the bottom slope from a flat-bottomed (symmetric) initialization. An 
adjustment similar to this second occurs on a flat-bottomed /?-plane, which is in general initialized 
with f-plane (again symmetric) geostrophy. While it would be preferable to start the vortex in full 
gradient equilibrium, thus also eliminating any adjustment effects from the topography, results of an 
experimental comparison did not significantly differ between the two versions of gradient balance. 
Vortex amplitude changes differed only over the first ten days, and zonal drift speeds were essentially 
identical. 

Figure 3 shows the evolution of the interface perturbation of a 300 m anticyclone on an f-plane 
over the standard 1 x 10-4 slope. The time interval between panels is 40 days and spans t=0 to t=200 
days. The behavior of this particular vortex is quite typical; the anticyclone drifts southwestward, 
decaying as it goes. By the end of the model run, the displacement extremum has been reduced to 
125 m, and the Rossby wave wake, which has appeared in the pressure field by day 40, has obtained 
a maximum amplitude of 15 m. Also, an extension of the leading edge of the vortex is seen, so that 
it is no longer axisymmetric. 

The first set of experiments involved evaluating the analytical prediction of intensity independence 
by comparing a set of model runs with initial amplitudes of 200 m, 300 m, and 500 m.  Velocities 
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Figure 2: Distribution of Rossby (RQ) and Burger numbers (B) of thirty-five observed rings from 
several different energetic regions. Also included are values for vortices examined in this study. A 200 
m, D 300 m, o 500 m. Re-drawn from Olson (1991). 
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Figure 3: Evolution of interface pressure contours for a 300 m anticyclone on an f-plane with the standard 
bottom slope. Time interval is forty days. 
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were calculated in geostrophic balance for this set of experiments, as, again, a 500 meter anticyclone 
in gradient balance is not a viable solution with this choice of parameters. 

Figure 4 presents the zonal drift speeds for the three cases, both cyclonic and anticyclonic in 
circulation. In addition, both center of mass and height extremum estimates are shown. Initial 
center of mass velocities are indeed independent of amplitude but begin to diverge by day 30 for 
the cyclones and day 60 for the anticyclones (possibly reflecting an adjustment process, which is 
expected to "be stronger for cyclones). Cylcones slow, and anticyclones speed up, with the more linear 
(shallower)vortices deviating farther from the predicted —2 cms"1. Drift speeds for the height maxima 
are approximately —1.8 cm s_1, close to the cyclonic center of mass value, and show no differentiation 
based on the sign of circulation. The degree of independence from amplitude is also greater for the 
height maxima. Finally, the most salient feature of this figure is the oscillation with an apparent 
period of twenty days which occurs in both center of mass estimates. It is not as apparent in the 
height maximum estimates, although a hint does appear within the 500 m anticyclone. 

Meridional velocities (fig. 5) show the same qualitative behavior. Again, the 20 day oscillation 
appears in the center of mass speeds; the motion is almost purely oscillatory, although a small average 
speed of about ±0.03 cm s-1 is maintained. The more linear vortices again show larger amplitude. 
The height maximum estimates, an order of magnitude higher than those of the center of mass, decay 
to a value of ±0.2 cm s_1, reminiscent of the finding of McWilliams and Flierl (1979) that a strongly 
nonlinear vortex will eventually decay to the point where linear dynamics once more apply, with a 
zero meridional drift and a Rossby wave speed. Again, any oscillatory motion is not clearly expressed. 

Trajectories are shown in figure 6. What is clear here is that both the center of mass and dis- 
placement extremum show less meridional motion and stronger zonal propagation with increasing 
displacement (nonlinearity). The height maximum estimates show no difference in the propagation 
speed of cyclones and anticyclones, while the center of mass of cyclones clearly move less quickly than 
do that of anticyclones. The 200 and 300 m cyclones show less oscillation than do their corresponding 
anticyclones. 

Figure 7 shows the translation speeds for a 300 m cyclone and anticyclone over a doubled slope of 
2xl0-4. While the center of mass zonal drift initially matches the predicted value of —4 cms"1, both 
vortices show reduced speed, with the cyclone translating at about —2.2 cm s-1 and the anticyclone at 
-3.2. The displacement extrema, however, both start at near —2 cm s-1 and asymptote to —3.5 cm s-1, 
again with no differentiation between cyclone and anticyclone. Both meridional drift estimates are 
approximately doubled. At the end of the experiment, both centers of mass are moving poleward; the 
self-advection has increased in speed so that the vortices have actually impinged upon the western 
wall and begun to slide up-slope. The last sixty days of these experiments do not exhibit true isolated 
vortex dynamics. The appropriate average speeds are —4 ± .2 cm s_1. 

These two sets of experiments confirm the analytical prediction for the center of mass translation 
on an f-plane; results depend linearly on the topographic slope, and results are independent of eddy 
amplitude. While differences do exist, it is hypothesized that these are due to interaction with the 
Rossby wave wake. It should also be pointed out that the error on the analytical expression is quite 
large, about 24%. This is driven mainly by the u term, which if not small produces an inertial 
oscillation. This oscillation is superimposed on the translation but should not affect it. Thus the form 
error of the drift speed prediction is an upper bound for the "true" one. 

A list of the experiments performed, along with average and initial drift speeds, is included in 
Table 2. 

At present, there are four possible explanations for the oscillatory behavior of the center of mass: 

(1) Inertial Oscillation 
Because the w term is not small, the exclusion of the second derivative is not justified. However, 

there is no apparent physical mechanism for exciting inertial oscillations. Cushman-Roisin et al. (1990) 
point out that an initial condition with net momentum is necessary to excite an inertial oscillation. 
In addition, twenty days is not close to the inertial period. 

(2) Interaction with the Rossby wave wake, including a beating with the inertial period. 

(3) An instability process 
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Figure 4: Zonal self-advection speeds for the center of mass and height extrema for 200 m (solid line), 
300 m (dot-dashed line), and 500 m (dotted line) cyclones and anticyclones. 

320 

1 
I 



4« 

SL 0.04 

O  0.02 
« 
§       0 

| -0.02 

Center of Mass Estimate, Cyclones 

- 
1 I \ I 1 1 1 

- 

/ : 
^ 

- -~ 
s ^ y 

^*  V ■ ' f'S- -0\ /s' /s 
•- *^ 

f 
-• \- h- .' 

i I i 

s 

1 I 1 I 1 1 

20 40 60    80   100   120   140   160   180 
Day 

200 

Height Maximum Estimate, Cyclones 

100        120        140        160        180        200 

Center of Mass Estimate, Anticyclones 

20 40 60 80 100        120        140        160        180        200 

Height Maximum Estimate, Anticyclones 

-0.2 
i 

\\ 
- • \\ 

'•. V r-=- 

V 

i            i            >            i            i            i            i            i            i 

^"-0.3 
E 
Ä-0.4 

-0.5 
 1 1 1 L   _   ._             1                           1                           1                           1                           t 

20 40 60 80 100        120        140        160        180        200 

Figure 5: Meridional self-advection speeds, as in Figure 4. 

321 



Height Maximum, 200m 

800 900 1000 
X 

1005 

>1000 

99! 

Center of Mass, 200m 

700        800 
X 

900       1000 

1060 
Height Maximum, 300m Center of Mass, 300m 

1002 _ 

1001 
' ■**. 

1000 

999 
/ 

y 

998 

997 -V/" 

ooe V 

1000 300 700 800 900 1000 

1050 

1000 

950 

Height Maximum, 500m 

700 800 900 1000 

Center of Mass, 500m 

1000 

Figure 6: Trajectories of 200 m (solid line), 300 m (dot-dashed line), and 500 m (dotted line) cy- 
clones and anticyclones on an f-plane and standard sloping topography. Cyclones move poleward and 
anticyclones equatorward. 

322 



Height Maximum Estimate 

100        120        140        160        180        200 
Day 

Center of Mass Estimate 

60   80   100   120   140   160   180   200 

20 

5T Height Maximum Estimate 

£1 i            i             i            i            i            i            i            i            i        ■ " "i "■■ 

na
l D

rif
 

o
 

- 

o 
1-1  1 1 1 !.._..._                 .1                         1                         1                         1                         1                          l 

40 60   80   100   120   140   160   180   200 

1 
I 

40 
E 
Ä0.1 
o 
1    0 
o 

1-0.1 

Center of Mass Estimate 

_ — • 

20 40 60 80 100 120 140 160 180 200 
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Table 2: Summary of Experimental Results 

+200 
-200 
+300 
-300 
+300 
-300 
+500 
-500 
+200 
-200 
+300 
-300 
+300 
-300 
-200 

/?/f-plane        Slope 
f 
f 
f 
f 
f 
f 
f 
f 
ß 
ß 
ß 
ß 
f 
f 
f 

10-4 

io-4 

10-4 

IO"4 

10"4 

10-4 

10~4 

10~4 

0 
0 

io-4 

io-4 

2x  IO"4 

2 x  IO-4 

0 

CM Zonal 
-1.79/-1.98 
-2.27/-2.02 
-1.85/-1.99 
-2.18/-2.01 
-1.86/-1.99 
-2.17/-2.00 
-1.89/-1.99 
-2.11/-2.0 
-3.39/-4.30 
-4.18/-3.75 
-5.62/-6.09 
-5.54/-5.23 
-3.80/-3.98 
-4.20/-4.01 

-9.17/-7.91 x 10"3 

CM Meridional 
1.85/2.29 x IO"2 

-2.82/-4.13 x IO-2 

1.74/.573 x 10~2 

-2.16/-3.12 x 10~2 

1.06/.556 x 10~2 

-1.97/-2.74 x IO"2 

1.0/1.37 x 10"2 

-1.38/-2.88 x IO"2 

4.09/-.419 x IO"2 

-2.26/-8.85 x IO"3 

2.38/22.7 x IO"3 

-3.46/-5.04 x 10-2 
2.49/1.19 x IO-2 

-4.09/-5.73 x IO"2 

-9.19/-10.4 x IO"3 

HM Zonal 
-1.6/-.74 
-1.59/-.74 
-1.70/-.85 
-1.69/-.80 
-1.70/-.95 
-1.71/-.95 
-1.80/-1.14 
-1.82/-1.11 
-3.33/-1.82 
-2.39/-1.27 
-4.79/-3.05 
-4.06/-2.2 
-3.29/-1.94 
-3.27/-1.89 

-3.32 x IO"3 /.14 

HM Meridional 
.33/.41 

-.32/-.16 
.31/.45 

-.31/-.22 
.31/.32 

-.31/-.32 
.26/.44 

-.27/-.41 
.64/.65 

-.86/-.54 
1.12/.96 

-1.04/-.92 
.65/.83 

-.64/-.50 
-1.05/-.828 xl0"; 
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Although baroclinic instabilities are excluded from the reduced gravity system, barotropic insta- 
bilities are possible. Smith and O'Brien (1983) do point out, however, that the Gaussian vortex is a 
stable feature. While the vortex does become distorted as the dispersive field develops, the radial gra- 
dient of the azimuthally-averaged potential vorticity must change sign to meet the necessary condition 
for instability (Carton and McWilliams, 1989). This appears an unlikely development. 

(4) The j(l,l) barotropic basin modes has perhaps been excited. 

(5) Numerical error 
Discrete sampling of the slowly-moving center may result in "jumpy" position values. 

An experiment was run with a 200 m vortex on the /?-plane with no topography. Figure 8 presents 
the results for the zonal and meridional drifts. Again, the height maximum moves faster meridionally 
than the center of mass. As with the doubled-slope f-plane case, the center of mass value decreases 
from about —4 cm s-1, the theoretical value, to near —2 — 3 cm s_1. There is a strong difference 
between cyclones and anticyclones. Note, too, that a reversal occurs as to which moves faster. Both 
centers of mass move northward after about day 150. Again, this is due to wall interaction. 

Figure 9 presents analogous information for an experiment run on an f-plane with a flat bottom. Of 
greatest importance is that the twenty day oscillation occurs here as well. This means that the Rossby 
wave wake mechanism must be ruled out, as there exists in this case no way to produce a Rossby 
wave. This leaves the possibility of an instability, the first basin mode, or numerical error. Also of 
interest, but not easily explained at the moment, is that the zonal velocity of the height maximum is 
initially .14 cm s-1 and asymptotes to zero. 

After Longuet-Higgins (1964), the period for a barotropic mode (m,n) in a basin of size (a x b) is 

T_4TT mV     nV 1/2 

ßK   a2    +   b2  ' 

The first mode has a period of sixteen days, leaving it a reasonable culprit. 
Finally, figures 10-11 show the result of an experiment run with a 300 m cyclone in initial gradient 

balance. The pressure was sampled every ten days for the first sixty days of the model run, after 
which it was increased to every four hours for the duration of the 150-day experiment. It is clear that 
there is indeed an inertial oscillation superimposed upon the topographically-induced translation. The 
amplitude of the oscillation is a much smaller part of the height extremum's meridional drift but does 
dominate the center of mass motion. While as stated above no physical mechanism exists to excite 
an inertial oscillation, there is a strong tendency for numerical models to accumulate energy at the 
inertial frequency, which is a free mode in the system. Also of interest is that within the height 
extremum estimates there appears to be a longer-term oscillation, again of twenty to twenty-five days, 
upon which the inertial oscillation is superimposed. 

Simple spectral analysis of these densely-sampled self-advection speeds is shown in figures 12-13. 
Briefly, an average value was removed from all records except the zonal center of mass, from which a 
linear trend was removed. The records were then split into two pieces and the power density estimates 
at each frequency averaged in order to improve confidence levels. The basin mode frequency (16 day 
period) and the inertial frequency (17 hour period) are marked by circles. Results are somewhat 
inconclusive. The center of mass speeds do show higher power at the lower frequency, although this 
is not the case in the displacement maximum speeds. The 95% confidence level, not shown, would 
indicate that the basin mode frequency does indeed contain higher power; however, this interpretation 
is complicated by the fact that the basin mode frequency is the fourth spectral estimate and thus 
its validity somewhat suspect. It must also be acknowledged that in this case frequency averaging 
would have been preferable to piece-averaging, given the previously observed changes in drift speed 
accompanying vortex evolution. 

4 Corrections to the Center of Mass Translation Expression 

Two second order corrections to the center of mass translation are examined to try to reduce the 
formal error and in hopes of explaining the small but finite meridional drift seen in all the experimental 
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Figure 8: Zonal and meridional drift speeds for the center of mass and height extrema for a 200 m 
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runs, as well as the circulation-dependent asymmetry of the zonal drift speed about the theoretical 
value. These corrections were selected in an attempt to isolate distinct effects; the first evaluates the 
second order effect in the geostrophic calculation, and the second attempts to assess the leading order 
ageostrophic effect. This is assumed to be the centripetal acceleration term of gradient balance flow. 

A      Second Order Geostrophic Corrections 

f-PIane:" 

The second order correction to the geostrophic velocity approximation is derived following Chas- 
signet (1989). 

Take the first order equations 

d2X     , dY .„     . 
^-fo^ = -g'M (5) 

g + fof = -g'<M (6) 

and differentiate with respect to time: 

d3X     r d2Y .,,      . 
dPT-^dt^-8^ W 

d3Y    r d2X ,„_     , 
d^+fod^ = -g(b^} (8) 

Now, substitute the expression for ^f from (7) into (6) and that for ^^ in (8) into (5). 

d3X     „2dX       „   , „     .      „   , ,.  .      „   , 1X . 
+ f0

2 — = g'(-MM> + (bx(uh)x) + (bx(vh)y) 
dt3       ° dt 

d3Y HY 

Now, if w is small enough to warrant dropping ^r and ^f, then the third derivatives, 0(w2) 
should be dropped, leaving the first order equations. Thus, for constant slope, the f-plane equations 
do not change at higher order. 

II. /?-Plane 

^~folT = -s'(M) + /?(hyv) (9) 

7P"+ f°ll = ~S'M + ß{hyn) (10) 

Similar operations yield 

-g'f0{byr7) - 2/?f0(hyu) - /?2(y2hu) + g'[-ß(yhr,y) + (bx(uh)x) + <bx(vh)y>] 

d^X      2dX 
dt3 + ° dt 
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d3Y     „odY 
 l-f— = 
dt3 + ° dt 

g%(bxr,} - 2/?f0(hyv) - /32(y2hv) + g'[(by(uh)x) + (by(vh)y) - ^'(by^)] - /?(huv) 

Again assuming constant slope and negligible third derivatives, these expressions can be compared 
to those of Chassignet (1989), derived in exactly the same manner; new terms due to topography are: 

^ = -^ + £[2<byv> + j(y!bv) - £(yb%) + I(kuv)] 

Now, for a constant slope in y and axisymmetric geometry, integrating in r and 6 gives zero merid- 
ional motion once again. Several terms are left in the zonal equation, but the largest is O(10~5 cm s_1). 
Thus, the second order geostrophic terms do not contribute significantly over an infinite domain. This 
is in keeping with the findings of Chassignet (1989) that the second order terms are important over a 
finite domain (within the vortex) but disappear as the distance from the center becomes large. 

B      Gradient Balance Terms 

The centripetal acceleration of the gradient balance is expected to be the leading order ageostrophic 
term. The total velocity can be written Vtotai = Vg(l + a), where Vg is the geostrophic velocity and 
a the correction to it due to gradient balance terms. 

Note that a will add to cyclones and subtract from anticyclones: 

y _ S/?fr    ,   (g/?fr)2 y-      gV   i    (g/?fr)2 

f rf3 f rf3 

»7r < 0 T/T > 0 

The first term gives the geostrophic velocity, while the second, higher order term gives the cen- 
tripetal acceleration. A straightforward way to evaluate its contribution is to integrate the centripetal 
term over all space, thus obtaining an average correction: 

-rJI 
This gives 

rf3 

// 
Vtotai = Vg+ // ^|^-drdö 

-r2 r       -r2 r 
rj = hoe^L2" T)T = -—h0e^" = _—-q 

/ffe/re^-drdfl 

//fV drd0 £ = 0.08 = a 

The revised estimate of the center of mass translation is 6.48 ± 0.45 cm s_1. Unfortunately, this 
does not account for the nonsymmetric split around the predicted value found between cyclones and 
anticycles seen in the numerical f-plane drift speeds. Also, due to the choice to integrate in r and 
6 rather than x and y, the finite meridional speed cannot be addressed. There is a clear need to 
follow the initial theory development by substituting a gradient balance approximation of the velocity 
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components into the center of mass equations and integrating in Cartesian coordinates if the meridional 
speed is to be calculated. This integration is fairly cumbersome and due to time constraints was left 
for future work. 

5 Conclusions 

It has been found in this study, as in others, that the center of mass is a good representation of 
the eddy center in terms of topographically-induced zonal motion, but that the meridional motion of 
the vortex center as defined by a height extremum significantly differs from that of the center of mass. 
The height extremum's meridionally motion is in general an order of magnitude faster than the center 
of mass'. 

An important finding was that the f-plane case recaptured the result of Nof (1983a) that the 
translation was given by the expression — g■£. Numerical simulation gives a fair match to the analytical 
prediction of a drift speed independent of the eddy intensity (maximum amplitude at the center). 
Initial speeds match it quite well, and later evolution is hypothesized to be driven by interaction with 
the Rossby wave wake. While an experiment with a doubled slope gives average zonal drift speeds 
slightly lower than predicted (about five percent), this is still well within the error estimate on the 
zonal speed, and again, initial speeds match the analytical prediction much better. 

An oscillation with a period of approximately twenty days appears in the numerically simulated 
drift speeds. It is as yet unclear whether this is truly an aliased inertial oscillation or the first barotropic 
basin mode, or simply numerical error related to discrete sampling on a finite grid. 

Future Work 

There exists a rich field for future work. Clearly, ageostrophic effects, mainly the centripetal term, 
should be reconsidered in a more detailed and careful manner, and the nonlinear terms could be 
included. An asymptotic expansion of the dispersion field has been suggested as an additional way of 
including non-axisymmetric effects in the analytical investigation. 

One of the most intriguing questions remains the result of rotating the topographic and the plane- 
tary ß effects out of phase. Variations in the topography are needed as well: seamounts, ridges, shelves, 
and basins are all common within the ocean and easily investigated in the context of a numerical model. 
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1    Introduction 

The typical approximation that a population of organisms disperses through random 
movements according to standard Fickian diffusion is often fine as long as the mean 
free path of an organism is small as compared to the scale of spatial variations in 
the population. If, however, the mean free path of the organism is much larger than 
the scale of variation of the population, this approximation is no longer strictly valid. 
In an effort to account for organisms with long mean free paths, we borrow from 
radiative transfer work (Stein and Spiegel, 1967, Unno and Spiegel, 1966) to derive a 
new dispersion operator and test its effects on a simple one dimensional problem. 

In modelling a spatially varying population of organisms, we often keep track of 
just the number of individuals at a given point. If we call this number of individuals 
n, where n is a function of space x and time t, the rate that this number n changes 
with time can be modelled as a combination of two functions, one function, f(n; x, t), 
representing the population dynamics (birth and death) at point x, and one function, 
g(n;x,t), representing the dispersal of organisms to and from point x. 

dtn = f(n;x,t)+g(n-,x,t) (1) 

The function / can contain a variety of interesting population dynamics. Later, 
this study investigates one of the simplest, logistic growth, but for now this study 
concentrates on the dispersal function g. 
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Figure 1: Organism at point x' moves to point x 

2    The Integral Basis of the Dispersion Operator 

The dispersal function g which describes how individuals in a population spread from 
point to point is most often modelled with Fickian diffusion as expressed by the 
Laplacian operator. This, however, is an approximation of a more general integral 
operator, and may not always be the best approximation for a the way a given popula- 
tion spreads spatially. Working from basic principles we derive the integral dispersion 
operator and then three approximations to it: the regular Laplacian diffusion, a fourth 
order series truncation, and a new rational approximation. 

Given two points in space x and x', let K(x,x') be the chance that an organism 
starting at point x' at one instant will be at point x the next instant as illustrated 
in Figure (1). Although K(x,x') could take many forms to model many different 
behavior patterns, K(x,x') will commonly be some "peaky" function depending on 
the separation of points x and x' where there is a high probability of an organism 
moving between points a short distance apart and a sharply decreasing probability of 
an organism moving between points longer distances apart. A Gaussian distribution 
is a good example of this type of curve. 

For our purposes we assume that, as sketched in Figure (2), this function K{x, x') 
is symmetric such that it depends only the absolute separation distance, that the 
spatial variations in K(x,x') can be described by a length scale I, and that K(x,x') 
has been normalized to have unit integral with respect to x. 

Organisms already at point x disperse as a function of the number of individuals 
at that point. Thus, similar to radiative heat transfer (Stein and Spiegel, 1967), 
neglecting all retardation effects from travel time, the dispersal of organisms to and 
from point x is given by multiplying K(x — x') by the number of individuals at each 
point x', and integrating over all possible points x' to find the number of individuals 
who move to point s, and then subtracting the number of individuals already at point 
x who choose to leave; 
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K(*-x') 

x-x 

Figure 2: An example of a function K(x, x'), the probability of moving from point x' 
to point x. 

/oo 
aK[x — x')n(x' ,i)dx' — an(x,t) 

-oo 
(2) 

where a is a global "activity" constant relating the tendency of individuals to 
move from a point. 

We can define a new spatial variable: 

x = x — x (3) 

simplify our dispersion kernel: 

K(x - x') = K(x - x') - 8{x - x') = K(x) 

and rewrite Eq. (2) 

aK(x)n(x + x, t)dx 
-oo 

Eq. (5) is the exact integral dispersion operator. Given our assumptions on 
K(x,x'), however, we can derive several approximations to this exact operator that 
are more efficient to deal with in most circumstances. If n has a length scale L that is 
much larger than the length scale / of K(x), we can Taylor expand n(x + x,t) around 
n(x,t) 

(4) 

(5) 

n (x + x,t) = n(x, t) + xdxn + ^52^n + ^r3^n + ^xAdA
xn + ... (6) 

Substituting this into Eq. (5) 
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g(x) = jT aK(x)[n(x, t) + xdxn + ±x2d$n + ±x3%n + ~54^n + ••.]<&     (7) 

K(x)dx -f adxn /     xK(x)dx + adjn /     -x2ÜT(x)c?x + ...       (8) 
-OO J — OO J — OO   2i 

If we require the integral of K(x)dx = 0 then the first term on the RHS of Eq. 
(8) integrates to zero. The second term, and likewise all other terms with odd powers 
of x, integrates to zero because of the symmetry of K(x). This leaves only the RHS 
terms with even powers of x in the integrals. 

/OO    1 A TOO      1 A 

-x2K{x)dx + ad*n /     —x*K(x)dx + ... (9) 
-oo 2 j—oo 24 

g(x) = Dd$n + Fd*n + H%n + .... (10) 

where D, F, and H are constants, with D > F > H. Truncating this series after 
the first term gives our first approximation, the normal diffusion operator: 

g(x) « Dd\n (11) 

Truncating series Eq. (10) at fourth order gives our second approximation: 

g{x) « Ddln + F%n (12) 

Rewritting series Eq. (10) as 

g(x) = Ddl[l + £flg + §<£ + ...]n (13) 

and making use of the Pade rational approximation, gives our third approximation: 

</(*) « D—^r-n (14) 

This is our desired new dispersion operator. Generalizing our operator Eq. (14) 
to 2D or 3D gives: 

'(*) * DT=^n (15) 
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3     Comparison of Approximate Dispersion Oper- 
ators 

To examine the properties of our new operator as compared to the other approxi- 
mations and the exact integral operator, look at solutions of dtn = g(n;x,t) with 
n(x,t) = n0e

tkxe~<rt, where k is the spatial wave number and a is the real decay rate. 

• For regular diffusion 

g(x) = dtn « DV2n (16) 

a « Dk2 (17) 

• For a normal series truncation of Eq. (10) at fourth order 

g(x) = dtn w DV2n + FV4n (18) 

a^Dk2- Fk4 (19) 

• For the new approximate dispersion operator 

g(x) = dtn « D—¥-—n (20) 
1 — a\£ 

a « D—¥— (21) 
1 + ak2 

• For the exact expression Eq. (5) 

g(x) = dtn= /    aK{x)n0etk^+^eotdx (22) 
Joo 

dtn = an0e
xkxtat \    K(x)eikxdx = an0e

%kxeatrY{k) (23) 
Joo 

where T(Ar) is the Fourier Transform of K(x). For K{x) = a Gaussian distribu- 
tion: 

K(x) = j^e-% - S(x) (24) 
ly/TC 

T{k) = e-fc24/2 - 1 (25) 

(T = a(l-e-fc24/2) (26) 
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del-2 

del-2 ♦ del"< 

improved 

exact 

Figure 3: Decay rate a vs. spatial wave number k2 for different dispersion approxi- 
mations. 

Figure (3) shows a plot of a vs. k2 for the regular diffusion operator, the truncated 
at fourth order operator, the new approximate operator and for the exact expression 
given a Gaussian kernel. Note that while the decay rates for the regular diffusion op- 
erator and the truncated series approximation both are unbounded as k2 —* oo, those 
for the improved operator and the exact equation go asymptotically to constants. For 
large k2: 

• For the new approximate operator 

For the exact expression 

D 
er ?a — 

a 

a Tu a 

(27) 

(28) 

By choosing — = a the decay rate for the new approximate operator can be made 
to approach the same constant as that of the exact equation for large k2. 

4    Effects of the New Dispersion Operator on a 
Simple Population Model 

The previous section ignored the presence of dynamics such as growth and death 
which maybe affecting the population in order to derive a new dispersion operator. 
In this section we will investigate the effects of the new operator on a population model 
incorporating the dynamics of growth and death.  These dynamics are contained in 
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ri(z) 

Figure 4: Traveling wave front solution to the Fisher Equation, from Murray (1989). 

the function / of Eq. (1). One of the simplest dynamics that leads to interesting 
behavior is logistic growth. Incorporating logistic growth into function / of Eq. (1) 
and using the usual diffusion operator for function g gives an expression known as 
the Fisher Equation: 

dtn = n(l - n) + %n (29) 

Using logistic growth for / and our new dispersion operator for g, we can define 
an expression analogous to the Fisher equation for our new operator: 

dtP = p{l-p)+D \-adl P (30) 

The Fisher Equation is relatively simple and well studied (see Murray, 1989, Mol- 
lison, 1977) but is interesting because it is the prototype equation which exhibits 
traveling wave solutions of the form 

n(x,t) = n(z), z = x — ct (31) 

as shown in Figure (4). 
For solutions of this type 

d      dz d d 
dt      dt dz dz 

• For the Fisher equation, the traveling wave solution gives 

— en' — n(l — n) + n" 

(32) 

(33) 
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• For the analogous expression with the new operator, the traveling wave solution 
gives 

- cp' - p(l - p) + acp'" - a [2pn + 2pp" - p"\ = p" (34) 

While the traveling wave solution to the Fisher equation gives a second order 
nonlinear ordinary differential equation, the traveling wave solution for the analogous 
expression gives a third order nonlinear ordinary differential equation, a much more 
complicated equation to solve. 

For the second order Fisher equation we can define an equivalent system of two 
first order ODE's. With U = n(z), 

U'   =   V (35) 

V'   =   -cU'-U{l-U) (36) 

This system of two first order ODE's has two fixed points, one at (0,0), and the 
other at (1,0). Linear stability analysis about these fixed points gives 

• at (1,0): 
1 

X = ^[-c±VJ+4\ (37) 

One A has negative real part while the other has positive real part, making the 
fixed point (1,0) a saddle point. 

• at (0,0): 

A=2 
-c ± v/c2^4 (38) 

Both A have negative real parts for all positive values of c. For c2 > 4 both A 
have zero imaginary parts, making the fixed point (0,0) a stable node. For c2 < 
4 the A are complex conjugate pairs with non-zero imaginary part, making the 
fixed point (0,0) a stable spiral, see Figure (5). Because a trajectory spiraling 
into (0,0) would lead to negative values of n(z), as a population model the 
Fisher equation requires c > 2 for traveling wave front solutions. 

The traveling wave front solution (for c > 0) is expressed by the conditions 

limn(z)   =   0       and (39) 

lim n(z)   =   1 (40) 
2—► — OO 

This can be visualized in phase space as trying to connect the unstable manifold 
leaving point (1,0) to one of the stable manifolds entering point (0,0) see Figure (6). 
When the full PDE for Fishers equation is integrated from initial step conditions, the 
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Figure 5: Eigenvalues for fixed point (0,0) of the Fisher equation as a function of 
wave speed c. 

Figure 6: The phase plane behavior of the Fisher Equation. The trajectory corre- 
sponding to the wave front solution connects point (1,0) to point (0,0) (from Murray, 
1989). 
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wave front that is formed relaxes to the wave front travelling at c = 2, the minimum 
possible wave speed as decribed in Murray (1989) (see also Mollison, 1977). 

Similar to the Fisher equation, we can define a set of three first order ODE's for 
the third order expression with the new operator. With P = p(z), 

P'   =   Q (41) 

Q'   =   R (42) 

R'   =   -\2Q
2
 + 2PR-R]+— \CQ + P-P

2
 + R] (43) 

c l J      ac L J 

This system of first order ODE's also has two fixed points, one at (1,0,0), and 
the other at (0,0,0). Linear stability analysis about these fixed points gives 

at (1,0,0): 
1 + aA2_IA + i- = 0 (44) 

ac a       ac 

• at (0,0,0): 

A3 _ i^A2 - -X - — = 0 (45) 
ac a       ac 

The roots of these cubic equations indicate the stability of the fixed points of the 
3D system. Roots with negative real parts suggest stability. Roots with positive 
real parts suggest instability. Roots with non-zero imaginary parts imply spirals. By 
looking at how the roots change with varying a and c, we can get some idea of how 
the new operator changes the traveling wave front solutions of the Fisher equation. 

Figures (7) and (8) show the values of the real and imaginary parts of the eigen- 
values for varying c for fixed points (1,0,0) and (0,0,0), repectively. For a = 2 as 
shown in Figure (7), fixed point (1,0,0) has purely real roots, one negative and two 
positive. Figure (8) shows that for a = 2, there is a range of values of c where two 
of the roots of Eq. (45) are complex conjugates with negative real parts. Wave front 
solutions corresponding to trajectories with this range of c would spiral into the the 
origin, giving rise to negative values of p(z). Similar to the Fisher equation, this sets a 
lower bound for the fast wave speed c allowable. However, unlike the Fisher equation, 
for which the fast wave speed c = 2 is the absolute minimum, the new operator offers 
a region where slow waves may exist for small c. 

In 3D phase space the wave front solution amounts to following a trajectory moving 
out one of the unstable manifolds of the fixed point (1,0,0) and connecting with one 
of the stable manifolds running into the fixed point (0,0,0). 

As sketched in Figure (9), this is more complicated in the new 3D case than in 
the 2D Fisher case because the new operator adds an unstable manifold to the fixed 
point (0,0,0) which tends to capture trajectories just slightly off the stable manifold 
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Figure 7: Eigenvalues for fixed point (1,0,0) of the third order system as a function 
of wave speed c, (a = 2). 

> 

to[Uab<la] 

lalluMi] 

Figure 8: Eigenvalues for fixed point (0,0,0) of the third order system as a function 
of wave speed c, (a = 2). 
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Figure 9: The phase plane behavior of the new system of equations. The trajectory 
corresponding to the wave front solution connects point (1,0,0) to point (0,0,0). The 
unstable manifold of the fixed point (0,0,0) tends to capture trajectories just slightly 
off the stable manifold and send them off to infinity. 

and sends them off to infinity. A numerical shooting method was successful at finding 
some trajectories corresponding to wave front solutions as shown in Figure (10) for 
various combinations of c and a. 

Stable wave front solutions were also found numerically by integrating the full 
PDE Eq (30) from initial step conditions and letting the wave front approach its 
asymptotic steady state form and wave speed c. Examples of these solutions are 
shown in Figure (11) for various values of a. Indications are that the wave fronts 
relax to the minimum fast wave speed giving all real roots of Eq. (45) for a specified 
a, but this was not thoroughly investigated. 

5    Conclusion 

The new approximation for the dispersion operator improves on the conventional 
diffusion approximation by more closely matching the behavior of the exact integral 
equation for high wave numbers. Although the new dispersion operator does allow 
travelling wave front solutions to the expression analogous to the Fisher equation, 
these solutions differ from the Fisher equation solutions in that the new operator 
changes the minimum fast wave speed with changes in a. The new operator also 
offers the opportunity for slow wave fronts to exist where they were not possible in 
the Fisher equation solutions; however, these slow waves were not found to evolve 
from initial step conditions when the full PDE Eq (30) was integrated numerically, 
and it is unclear under what conditions these waves would appear. 
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Figure 10: Example wave front solutions found by numerical shooting. 
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Figure 11: Example wave front solutions from integrating the PDE from initial step 
conditions for a variety a between 0.0 (line 1) and 1.0 (line 6). 
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