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Executive Summary 

During the final performance period, from June 14,1996 to June 15,1997 

with no cost extension to October 14,1998, the following accomplishments were 

obtained. These accomplishments are delineated with respect to the research 

participants in the collaboration. 

The coupled, highly nonlinear equations that govern the interaction of 

plasmas with electromagnetic fields yields a rich variety of physical phenomenon 

that are of interest to applications in high energy, nuclear physics, particle 

accelerators, high power microwave generators, and high resolution radar systems. 

The theoretical contributions that are discussed in detail are, i) the stability 

properties of coherently gyrating relativistic electron beams, ii) the chaos of halo 

formation in the propagation of relativistic electrons in a periodically focused, 

solenoidal channel, and iii) the thermodynamic description of the relaxation of two 

dimensional Euler turbulence by using Tsallis Statistics. 

The Vlasov kinetic theory of the stability of the radiation fields generated by 

the interaction of a relativistic plasma with a solenoidal equilibrium field has 

received much study. These studies generally assume randomly isotropic 

distribution in the gyro-phase angle. The work contributed by C. Chen and J. 

Davies of MIT, relaxes this assumption and considers gryroscopically anisotropic 

distribution, of temporally dependent and spatially dependent form. The details of 

this work appears in Appendix I. The resulting coupled integral equations, yield a 

dispersion relation for the electromagnetic modes that describes the propagation and 

growth characteristics of the modes. Using the additionally simplifying 

assumptions of zero thermal components to the electron beam distribution, the 



integral equations for the xtispersion relation can be reduced lo .algehraic equations. 

Specific equilibrium distributions in the canonical coordinates, yields a tenth order 

polynomial dispersion relation that is investigated numerically. If there is no spread 

in energies in the time-dependent equilibrium distribution, then the integral 

equations reduce to three algebraic equations that relate the Fourier components 

E+(k,w), E-(k,w-2wc), Ez(k, w-wc). Therefore, the eigenmode system consists of a 

right handed polarized electromagnetic waves, a left handed polarized 

electromagnetic waves and electrostatic waves. These components have the same 

wave number and the same spatial and temporal growth rates, but they have 

different frequencies. In the .case of no axial spread in momentum, the spatial 

dependent equilibrium yields the following results for the dispersion relation. The 

three coupled eigenmodes are, E-(k,w), E+(k+mw/pz,w), Ez(k+mw/pz,w). Note 

that the modes occur at the same frequency, yet have different wave numbers. This 

research continues, with the aim of analyzing the general integral dispersion 

relation. 

The propagation of relativistic electron beams in a periodic solenoidal 

channel can result in chaotic particle orbits, even if the beam is rms matched to the 

propagation medium. This occurs when the space charge waves are nonlinearly 

coupled to the self consistently generated space charge field of the electron beam. 

For beams that are space charge dominated in their propagation characteristics, this 

nonlinear coupling results in unstable growth of particle orbits that may be 

considered chaotic. These unstable particles occupy a halo region surrounding the 

beam and represent increased emittance and radial transport as compared to the 

non-space charge dominated beam. This work was investigated by C. Chen, W. 

Marable and Y. Fink. The result of this numerical investigation by lest particle 

simulations, concludes that beam distributions that are peaked on axis, result in 



jchaotic orhits that ^re .attributable lo .an nnstahle fixed .point on ihe beam .axis. 

Similarly, a beam distribution that is peaked off axis can yield chaotic orbits that are 

attributable to unstable fixed points on the beam axis, and yields a stochastic layer 

that outside the original beam radius. This halo formation can be as much as 1.8 

times the rms radius of the beam. The details of this investigation are summarized 

in the publication, entitled " Halo formation and chaos in root mean squared 

matched beams propagating through a periodic solenoidal focusing channel, by Y. 

Fink, C. Chen and W. Marable. Found in volume 55, Number 6 of Physical Review 

E, June 1997, pages 7557-7564. 

The orbits from A test particle simulation can he .analyzed to discern whether 

the underlying dynamics can be characterized as chaotic. Work performed by W. 

Marable and M. Lee, investigated the quantifying properties of dynamical systems. 

Mr. Lee, a graduate student at Hampton, successfully defended his Masters' thesis 

entitled " Quantifying Properties of Dynamical Systems". A product of this 

research was the development and refinement of computer algorithms to extract 

fractal dimension and Lyapunov spectra from time series data sets. A summary of 

these programs is found in Appendix n. 

The final research topic to be summarized is the study of two-dimensional 

Euler turbulence with Tsallis Statistics. This work was conducted by J. Wurtele 

and B. Boghosian. The applications of these results are of import to both the fields 

of ideal fluid flow, and to pure electron plasma studies. This work examines and 

rectifies the experimental observations that two-dimensional Euler turbulence can 

relax to a state that does not maximize Boltzmann entropy, but rather seems to 

minimize enstrophy. In the context of the Tsallis axioms, a statistical theory is 

developed and investigated numerically. The results show compatibility with the 



Restricted Minimum Enstrohpy Jheory of Huang .and Driscoll, .and broadens ihe 

application of Tsallis statistics to new fields. 
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Stability Properties of Coherently Gyrating Relativistic Electron Beams 

J. A. Daviesa) and C. Chen 

Plasma Science and Fusion Center 

Massachusetts Institute of Technology 

Cambridge, Massachusetts 02139 

ABSTRACT 

An investigation is made of the effects of nongyrotropic equilibrium distributions in 

the phase angle of p± on the stability properties of a relativistic electron beam propagating 

along and gyrating about an applied uniform magnetic field. Perturbations are assumed 

to vary spatially only in the direction of the applied magnetic field, so that generated 

electromagnetic and longitudinal electric fields propagate parallel to the applied field. The 

two equilibrium distributions considered are the time-dependent distribution /o(pi,Pz,0 

with f = 4> - nct/7 and the axial-dependent distribution fo(p±,pz,Q with C = <t> - 

mSlcz/pz. A Vlasov-Maxwell analysis leads to integral equations relating the field Fourier 

components. These equations reduce to algebraic equations when no spread in 7 is present 

in the time-dependent equilibrium distribution and when no spread in pz is present in the 

axial-dependent distribution. Numerical computations for these special cases show that a 

rich variety of stability properties are obtained by changing the distributions in £ and £. 

a> Permanent Address:   Department of Physics,  Clark University,  Worcester,  Mas- 

sachusetts 01610 
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I. Introduction 

During the past two decades, extensive studies have been made of the stability prop- 

erties of a relativistic electron beam propagating along an applied uniform magnetic field 

Boez. ~ If the beam possesses a population inversion associated with the component 

of momentum perpendicular to the field (p±), then this system may be subject to the 

whistler and cyclotron-resonance maser instabilities, which initiate the process of convert- 

ing electron-beam kinetic energy into coherent electromagnetic radiation. The cyclotron- 

resonance maser instability provides the basis for existing and proposed electronic am- 

plifiers and oscillators such as the gyrotron and the cyclotron autoresonance maser.12-19 

With the inclusion of thermal background electrons in addition to the beam, this insta- 

bility is of interest in such problems in space- and astrophysics20-28 as the generation of 

auroral kilometric and Jovian decametric radiation. 

In this paper, we carry out a stability analysis of this system (exclusive of an ambient 

thermal background) using Vlasov-Maxwell theory. We make the assumption that the 

spatial variation of all quantities is in the ^-direction only; however, the electron beam is not 

assumed to be gyrotropic in the phase angle <j> of the component of the particle momentum 

normal to the z-axis. Most previous analyses of this system assume that the equilibrium 

distribution is of the form fo{p±,pz), i.e. that the beam is gyrotropic. Analyses of the 

nongyrotropic case are limited in number. Using the eikonal approximation, Fruchtman 

and Friedland7'8 have considered the case of a stationary amplifier with a nongyrotropic 

equilibrium distribution of the form /o(pj.,P*,C) = p'J1S(p± -p±o)6(p2 -pz0)g(Q, where 

C = 4> — mücz/pz and fic is the nonrelativistic cyclotron frequency. Kho, et al.,9 using 

the same equilibrium distribution, have dropped the assumption of a stationary amplifier 

but assume that the left-hand polarized perturbed radiation field can be ignored. Chen, et 

al. consider TE modes for the case of a helical relativistic electron beam in a cylindrical 

waveguide. In an application to space plasmas, Freund, et al.22 consider the case of a 

diffuse electron beam propagating in a cold magnetized ambient plasma. The beam is 

coherent in phase, and has a thermal spread in p± but no spread in pz. 

Two equilibrium distributions are introduced in Sec. II. These are the time-dependent 
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distribution /o(px,P.,0 where £ = 4> - *Uh and the spatial-dependent distribution 

/o(p±,P., 0 where ( = <j>- mÜcz/Pz. By manipulating Fourier transforms of the Vlasov- 

Maxwell equations, we obtain sets of equations relating components of the perturbed 

right- and left-hand polarized electromagnetic and the electrostatic fields. For the time- 

dependent equilibrium, these relations are given in Eqs. (26)-(28). The relations for the 

spatial-dependent equilibrium distribution appear in Eqs. (41)-(43). In either case, these 

relations are integral equations, not algebraic equations. Eqs. (26)-(28) reduce algebraic 

equations only if there is no spread in p (i.e., in 7) in the time-dependent equilibrium 

distribution. Moreover, Eqs. (41)-(43) reduce to algebraic equations only if there is no 

spread in pz in the spatial-dependent equilibrium distribution. 

The analysis of these integral equations is the subject of current research and is not 

dealt with further in this paper. Instead, in the remainder of the paper, we deal with cases 

in which the integral equations reduce to algebraic equations. 

Stability properties for the case of the time-dependent equilibrium distribution with 

no spread in p are considered in Sec. III. Most generally, spreads in the pitch angle 

a = t*n-l(px/p2) and the phase angle <j> may be present. In this case, the integral equa- 

tions (26)-(28) reduce to just three algebraic relations presented in Eq. (58) of Sec. III.A. 

The corresponding exact dispersion relation, relating complex frequencies and complex 

wave numbers, is the three by three determinant relation in Eq. (64). In Sec. III.B, we 

consider the more restrictive case of no spread in the pitch angle a in the equilibrium 

distribution. (Then, both p± and pz have definite equilibrium values.) In this case, the 

dispersion relation in Eq. (64) reduces to the tenth-degree polynomial relation in Eq. (69). 

Numerical computations of growth-rate curves (Imw vs. fc, real) and properties of eigen- 

modes of Eq. (58) are presented in Sec. III.C for the case of definite equilibrium px and 

pz and various equilibrium distributions in 4>. 

An analogous treatment is given in Sec. IV for the case of the axial-dependent equi- 

librium distribution with no spread in pz. Spreads in px and 0 are still permitted. For 

this case, it is shown in Sec. IV.A that the integral equations (41)-(43) reduce to the three 

algebraic relations in Eq. (89). The exact dispersion relation for the system is given by 

the three by three determinant equation (95). In Sec. IV.B, the additional condition that 
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there be no equilibrium spread in p± is imposed. Then, (as in the time-dependent case) the 

dispersion relation reduces to the tenth-degree polynomial equation (100) relating the com- 

plex frequency and complex-wave number. Numerical computations of growth-rate curves 

and properties of the eigenmodes of Eq. (89) for this case are presented in Sec. IV.C. 

A summary of our results and conclusions is presented in Sec. V. 
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II. Formulation of the Problem 

A beam consists of relativistic electrons, which propagate along and gyrate about a 

uniform magnetic field Bo = Boez. Initially the beam is in an equilibrium state in which 

temporally and spatially varying electromagnetic fields are absent. The initial growth rates 

of these fields are obtained by regarding them as small perturbations on the equilibrium. 

The system is treated as one-dimensional in the sense that the spatial variation of all 

variables is in the ^-direction only. Consequently, only electromagnetic waves propagating 

parallel or anti-parallel to the uniform field Bo are included in this analysis. Furthermore, 

equilibrium self fields are assumed to be negligibly small, so that results discussed below 

are limited to the case of a small ratio of the plasma frequency to the cyclotron frequency.6 

A. Equilibrium Distributions 

A single-particle momentum p can be described by the components p_|_, pz, and <j>, 

where <f> is the phase angle (as shown in Fig. 1). This paper deals with two systems in 

which the phase angle 4> is not necessarily random in the equilibrium distribution. One 

simple constant of the single-particle motion involving <f> is £ = <$> — Q*-t, where Ctc = 

eBo/mc is the nonrelativistic electron cyclotron frequency, —e and m are the electron 

charge and rest mass, respectively, c is the speed of light in vacuo, t is the time, and 

7 = (l + p2/m2c2)l/ = (l + p2
±/m2c2 + pl/mrc2)1/2 is the relativistic mass factor of the 

electron. An equilibrium distribution of the form 

/o(p,t) = /o(pj.,p„0. (1) 

where 

£ = <*--*, (2) 
7 

corresponds to an equilibrium electron beam that is homogenous in the configuration space 

at any given time. Since the equilibrium distribution (1) is nonstationary in the momentum 

space, we refer to it as the time-dependent equilibrium distribution. 
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Another simple constant of the single-particle motion involving <j> is 

7 vz Pz w 

where v is the electron velocity. Use of C gives rise to an alternative equilibrium distribution 

/O(*,P) = /O(RL,P*,0- (4) 

In this case, the equilibrium distribution is constant in time at any given z. It is analo- 

gous to a typical laboratory situation where the beam is introduced into the interaction 

region at some initial z = 0 with a given distribution in <f>. Then, if interactions with the 

electromagnetic field are excluded, the electrons move along the field lines with constant 

vz and gyrate around them with the constant relativistic cyclotron frequency f2c/7. Con- 

sequently, the phase at any value of z is the phase at z = 0 plus Slcz/~fvz. We refer to this 

distribution as the axial-dependent equilibrium distribution. 

The time- and axial- dependent distributions are illustrated with examples in Fig. 2. 

It is shown in the Appendix that the two distributions in Eqs. (1) and (4) are physi- 

cally different in the sense that neither can be transformed into the other by a Lorentz 

transformation. 

In the remainder of this section, we derive linearized equations relating components 

of the perturbed electromagnetic fields for each of the distributions in Eqs. (1) and (4). 

B. Perturbation Analysis for the Time-Dependent Equilibrium Distribution. 

The equilibrium distribution is of the form in Eq. (1), i.e., f0 (p,t) = /0 (pi,p2,^) = 

/o iPXiPz, <t> — Hct/7). The distribution is assumed to be periodic in f and (for fixed t) in <f> 

with period 2n. Consequently, the normalization of /0 (p±,pz, 4> - 0C*/T) over momentum 

space is time-independent and is defined by 

j^    dpzj     dp±j     d<f)p±folp±,p2,<l)-—t\=l. (5) 

As time progresses, the distribution evolves under perturbations into 

f(z,P,t)=fo(p,t) + f1(z,1p,t), (6) 
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where fx (z, p, t) is considered to be a small perturbation. To first order in the perturbation, 

the time evolution of this quantity is governed by the linearized Vlasov equation, 

dt 

d . . , d , ,        ^     e 

o 
=^/i (*, P, t) + vz—h (z,p, t) - -v x Bo • VPA (z, p, t) 

= e (Ei + V * Bl ) -Vp/o (px,Py,Pz,t), (7) 

where the total time derivative is along a characteristic of the unperturbed motion (i.e., 

z(t + r)=z + VZT, Pz(t + T)=pz,px(t + T)=px,4>(t + T) = <t> + Qcr/gamma, and the 

variable of integration r is in the range from -co to 0). The fields Ej. (z,t) and Bi (z,t) 

are regarded as small perturbations governed by Maxwell's equations, which in the present 

treatment reduce to 

|^(*.*) 41^-<^>=SIJ" <*•<>• (8) 

dE \z 
a     (z,t)=47TPl(z,t), (10) 
oz 
Blz(z,t) = 0. (11) 

In the above equations: 

(14) 

(15) 

El± (z, t) = Elx (z, t) ± iEly (z, t), (12) 

Bl± (z, t) = Bi. (z, t) ± iBly (z, t), (13) 

d3pji(z,p,t) —, 

Pi (z,t) = -en0 / d3p/i (z,p,i), 

p± = 7mi)± = pj_ exp [±i<t>), (1") 

where n0 is the mean electron number density. The fields (Ei-,Bi-) and (J51+,B1+) 

represent right- and left-hand circularly polarized transverse electromagnetic waves, re- 

spectively, whereas the field \EXz,BXz = 0) describes longitudinal (electrostatic) waves. 

Because most of the integration of Eq. (7) along characteristics is standard, not all of 

the details will be given here. We remark that before integrating, it is convenient to express 
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the x- and y-components of the vectors that appear in Eq. (7) in terms of v±, E±, and 

B±. Moreover, df0(px,py,pz,t)/dpx, df0{px,py,pz,t)/dpy, and df0(px,py,pz,t)/dpz 

must be expressed in terms of dfo (p±,pz,0 /dp±, dfo (p±,pz,0 /dpz, dfo (p±,pz,£) /df, 

because the latter partial derivatives are constant on a characteristic. Once these constant 

derivatives are removed from the integral sign, the subsequent calculation of the Fourier 

transform of f\ (z, p, t) is facilitated by rewriting them in terms of dfo {p±,pz, <t>, t) /dp±, 

dfo{p±,Pz,<f>,t) /dpz, dfo(p±,pz,(f),t)/d<f), and dfo (p±,pz,<j)1t) /dt. The expression ob- 

tained for /i (2,p,i) is 

fi{z,P±,Pz,<ß,t) = 
rO 

U (p±,Pz,<f>,t) /      drexipli—-r) Ei-(z + vzr,t + r) 

e       rjsP±^}c   d fu (A 
2€^^)'^^dif0^±'Pzi(f,,t)J_oo 

drrexP^- 

+ V(p±,pz,<j>,t) /      drexp f i—-T) BI_ (z + vzr,t + r) 

+ U* (p±,pz,<f>,t) /      drexp ( -i—-T\ Ex+(z + vzT,t + T) 

+ | exp {-i<t>) ^2^2 ßjh (P±>Pz,fat) I     drr exp I -i—r J E\+ {z + vzr,t + r) 

+ V* {p±,Pz,(ß,t) dTexp(-i—TjBi+(z + vzT,t + T) 

d r° 
+ e—fo(p±,pz,<j>,t) /      drElz{z + vzT,t + r) 

OPz 7_oo 
epznc   d f° 

+ ~3m2c? dd>f°(P±'Pz'<l>>t) I      dTrEiz(z + vzT,t + r). (17) 

In the above equation, 

e /  d i   d \ 
U(p±,pz,<t>,t) = -exp(i<ß)\^^ + ——Jfo(p±,pz,<f>,t), 

,,, .  ,N      eexp(i<£) /   .      d        .      d       p2  d \ , . ,   , 

In order to relate components of the perturbed electromagnetic fields, it is necessary 

to obtain Fourier (or Laplace) transforms of /i (z,p,£) (Eq. (17)) and of Maxwell's equa- 

tions (8)-(ll). The simple assumption that all variables vary as exp [i (kz — vt)] leads to 

AI- 8 



inconsistent results. In general, one cannot assume an infinite series of terms of the form 

exp {i [kz - (u) - nüji) t]} (where n is an integer), because 7 is not defined if /o (p±,pz, 0 

contains an energy spread. In the present analysis, we define the spatial and temporal 

Fourier transforms by 
-| /«OO TOO 

F{k,u>) = — I      dz dtF(z,t)exp[i(ut-kz)], 
2nJ-oo      J-00 

F{Zlt) = ^- dk dwF(k,w)ex.p[i(kz-ut)]. (18) 
27T J_00 J_00 

The calculation of the Fourier transform of /1 (z, p, £), denoted by f\ {kt p, a>), requires use 

of the convolution theorem 
■I /»OO /»OO 

(FXF2) {k, u) = 4- dkl      <*"'*! (*'><"') F2 (k -k',u- a/). (19) 
2TT J_00       J_00 

Then, using Eqs. (17)-(19), together with the Fourier transform of the Maxwell equation 

(9), and assuming that orders of multiple integrals can be interchanged, we obtain (after 

a lengthy calculation) the following expression for the Fourier transform: 

/i(fc,p,w) = 

I    e r+00 ( r r, -1 -1 
v — uJ — kv. 

a 

x 

+ 

fo(P±,Pz,<i>,u') 
u) — LO' — kvz /.   d ^   ^ \      • P-L      °k      & 

u> — u'      \ dpx P±d(pJ       'ymc LO — LO' dpz 

LO-LO' -kvz  s1 oCo^7fo(p±,Pz,<P,u') \El-{k}U)-U}') 
7 J 76mzcz o<p ' 

+5^?expH 
/+00 

duJ < 
-OO 

LO — LO' — kvz -] - 
-1 

X 
w — LO' — kvz (.  d        I   d \     . p±     ck      d 

co — co'      \ dp±     p±d(j)J      'ymc LO — LO' dpz 
fo(p±,pz,<f>,u') 

r     '  /    ,        *V + \LO — LO — kvz H  
L       ■ 7. 

-2 
Px$lc   d 

7>3m2c2 d(j) 
/o (p±,Pz, 0,^') }Ei+ (k,w- LO') 

y/2^ 

/+00 

dio' 
-00 

LO — LO' — kv. 
-1 

+ \u — LO' — kvz 

-2 
pzttc    d 

*«—fo(pi.,Pz,4,o/) opz 

fo.{p±,PzA,u') }Eiz(k,u)-u)') (20) 
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The Fourier transforms of the Maxwell equations (8) and (10) are 

r°°        f°°       r^ 
(u -(?k2)Ei±{k,u)) =4irienouj /     dp± dpz d4> 

JO J—oo JO 

Pi 
7771 

xexp(±t^)/i(fc,pj.,pz,0,w),       (21) 

yoo /»oo f2ir 

kElz (k,u)= 4nien0        dp± dpz d<t>p±fx (k,p±,pz,<f>,u>). (22) 
JO J-oo Jo 

By referring to Eq. (20), it is seen that Eqs. (21) and (22) are a set of integral equations 

(with variable of integration to') relating the Fourier transforms of the fields E1± and Elz. 

Partial derivatives of fo(p±,Pz,<j>,u') appear in the expression for fi(k,p,u) in 

Eq. (20). These derivatives are removed from the integrands in Eqs. (21) and (22) by inte- 

grating by parts with respect top±,pz, and 0, employing the periodicity of /0 (px,pz, <£, u/) 

in <f>. The procedure is straight forward but requires much algebra. 

The periodicity of fo(p±,pz,£) in f (or <f>) has not yet been fully employed in this 

analysis. Expansion of f0 (p±,pz,£) in a Fourier series gives 

1 -4-OQ 

/o(pjL,pz,0 = -y=   Y^  9n(pj_,pz)ex-p{in£), (23) 
n=—oo 

where 

1      f2n 

gn{p±,pz) =-j= I      dtfo(p±,pz,£)exp(-in£). (24) 

Because /0 {p±,pz,0 is real, g^ (p±,pz) = g.n (pj.,p2). From Eq. (23), we see that the 

temporal Fourier transform of /0 (p±,pz, f) = f0 (p±,pz, <f>,t) is given by 

/o (p±,Pz, <!>,&)=   ]P  gn (p±,Pz) exp (in<f>) 6 (u - n— j 
n=—oo \ /   / 

+oo 
/ U:. \ 

(25) 

With the aid of Eq. (25), the integrations over w' can be carried out in Eqs. (21) and 

(22). Moreover, with the aid of the relation ft* d<j> exp (intf>) = 27r<5n0, the integrals over 

<ß can also be completed. In fact, only the n = 0,1, and -1 terms of the infinite series in 

Eq. (25) contribute to the right-hand sides of Eqs. (21) and (22). In the nonrelativistic 

limit of 7 = 1, the integral equations in (21) and (22) reduce to algebraic equations relating 
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the Fourier transforms of the fields E\± and E\z because of the Dirac delta function in 

Eq. (25). However, in the general case, 7 = (p2/m?c? + l)1/2 = [(p2
± + p2

z) /mV + l]l *. 

Consequently, Eqs. (21) and (22) remain integral equations in the two variables p± andpz, 

relating such unknown functions as EX- (k,u + 2Qc/7 (px,Pz)), Eiz (k,u + Qc/i (p±,Pz)), 

and Ei+(k,u). 

Eqs. (21) and (22) can be reduced to a set of integral equations in the single vari- 

able p by replacing the variables p± and pz with the new variables p and a, where 

a = tan-1 (p±/Pz) is the pitch angle shown in Fig. 1. Setting dp±dpz — pdpda in the 

equations obtained from Eqs. (21) and (22), we obtain the following set of simultaneous 

integral equations relating the Fourier transforms of the perturbed fields E\± and E\z: 

D— {k,u,nc) Ei- {h,u>) = /     dpp2x-+(k,u,tic,p)E1+ [^^'ZT^j 

f°° ( Cl 
+ dpp2x-z(k,u,üc,p)Elz \k,u-—■    . V   (26) 

2QC\ 
D++ (k,u>,£lc)Ex+ {k,u) = /     dpp2x+- (k,u,Slc,p)Ei- (k,u> + 

+ J^    dpp2x+z(k,u,Qc,p)Eiz^k,u> + ^j,   (27) 

Dzz(k,u))EXz(k,uj)= dpp2Xz+(k,üJ,Clc,p)Ei+lk,uj--r^rj 

+ J~dpp2Xz-(k,u,nc,p)Ei-(^k,u> + ^y   (28) 

In the above integral equations: 

Icy />00 pit 

D— (fc,u), üc) =u2- c2k2 - ^2~^p /     dp       dapgo (p, a) 

[ 
2psina /       kp cos a\ /       fcpcosa     Q£ 

7      \ 7m   / \ 7m 7 

p3sin3a / o      o,o\ /       fcpcosa     fic
x ~~ ■" 

3   00  (^ - <fk*)    u - — •  y^m^cr  ^ ' \ 7m 7 
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D++{k,(v,nc) = D—(k,u,-nc), (30) 

Dzz (k,w) = 1 - VM2 [    dp [   dap2g0 (p, a) ^^ 
Jo        Jo i 

/      p2cos2oA /       fcpcosoA" .g . 
\       72m2c2 / \ 7m    / 

~     v        V2^2     r ,    2    /      N  sin3a   /       2nc\
_1 

x (a; 2 _ 2a^ _ ^ /   _ fcpcosa _ ft,\ "2 

7 / \        7m       7 y 

X+-(fc,w,ne,p)=^+(**,w*,-as,p), - (33) 

X-2 (fc, w, £2c,p) = ->/27rwnJ /    dappi (p, a) 
./o 

sin2 a 
72T71C 

-2 
/wpcosa       ,\ /        fcpcoso!     ßc\ ,0.N x    ■-£ cfc    ( w - — , (34) 
\   7771c / \ 7m 7 / 

X+z(fc,a;,nc,p)=xIz(fc*,a;*,-nc,p), (35) 

Xz-(fe,w,fic,p) = Y~  P\a; + TJ     7    dapff-i(p,a) 

x 

727nc 
 o 

pcosa /       Oc\       ,1 /       fcpcosa 
 [to + —-    - cfc     a; -  
7mc   \        7 / J \ 7TO 

-2 

Xz+(fc,a;,nc,p) =x:_ (fc*,a;*,-f2c,p). (37) 

Here, Op = (4irnoe2 /m)1/2 is the nonrelativistic plasma frequency. 

Notice that the structure of Eqs. (26)-(28) is a coupling of Ei-(k,u/), 

Ez (k,u' - ^fey), and Ei+ (k,u' - ^) over the range of p for which the equilibrium 

distribution is nonvanishing. 

C. Perturbation Analysis for the Axial-Dependent Equilibrium Distribution. 

The analysis for the case of the equilibrium distribution in Eq. (4), i.e., /o {z,p) = 

/o (p±,Pz, C) — /o (p±,Pz, <t> — mücz/pz) is similar to the analysis of the previous section. 

AI- 12 



The distribution is assumed periodic in £ and (for fixed z) in <f> with period 2TC. Conse- 

quently, the normalization of/o (p±,pz, <f> — m^-z) over momentum space is independent 

of z. It is defined to be 

/     dpz        dpj. d<ppxfolp±,Pz,<(>-m-^zJ=l. (38). 

The linearized Vlasov equation for the system is the same as Eq. (7) except that 

the factor fo (Px,Py,Pz,t) on the right-hand side is to be replaced with fo(z,px,Py,Pz)- 

Maxwell's equations (8)-(16) are applicable without modification. The derivation of in- 

tegral equations relating the Fourier transforms of the perturbed fields involves a great 

deal of algebra but closely parallels that given in Sec. II.B for the spatially-homogenous 

equilibrium distribution. Consequently, we omit the details of the derivation. We remark 

that in the present derivation z plays much the same role as t in the previous derivation 

and k much the same role as u). Periodicity of /o (p_L,p*,C) "i C gives rise to the Fourier 

series expansion 

1      Vs? 
fo(p±,Pz,0 = -T=   J2  hn(P±,Pz)exp(inC), (39) 

where 

1      f 
hn (p±,Pz) = —7= J      dCfo (p±,pz, 0 exp (-inC) • (40) 

For the z-dependent equilibrium distribution fo(p±,pZr<t> — 'mQcz/pz), the integral 

equations are 

D'__(k,u>,nc)El-{k,L>) = J~ dpzrj.+ (k,u,nc,Pz)El+(k+^^,uJ) 
/oo                                                             /         mCf        \ 

dpzT)-z(k,io,Slc,pz)Elz(k + ^w),   (41) 
•oo                                                                 \             Pz J 

D'++(k,u,nc)E1+(k,u) = J°° dPzV+.(k,u,Clc,pz)E^ (k-^^,u?j 

dpzV+z {k,u),nc,pz)Elz (k- ^-^,u>J ,   (42) 

D'zz (k,u) Elz (k,u>) = J~ dpz Vz. (k,u, Clc,pz) Ei-, (k - ^,u,) 

+ J_    dPzV2+(k,u;,nc,Pz)E1+U + ^,u>y(4'3) 

AI-   13 



In the above integral equations: 

D'_-(k,u>,nc)=u2-c?h2-^tfp f°° dPz r dp±h*(p±,Pz)?± 
* J-oo Jo 7 

X 
L   V        ~rm I \        'ym      'v 

-l 

7m      7 

72m2c2 \       7m      7 

-2. 

D'++ (k,co, fic) = D'__ (k,u), -nc), 

/oo />oo 

dpz /     dp±p±/io(p±,P2)7" 
-00 Jo 

) \        im)     ' 
x    1 Pi 

72TO2C2 

/n /-oo 3 

77_+ (fc,o;, nc,pz) = -^-ftp /     cipj. /i2 (p±,Pz) -3-V2 

pi 

?7+_ (/c,w, Slc,pz) = r?l+ (fc*,w*, -nc,pz), 

rj-z(k,w,nc,pz) = V2nClltv dp±ht (p±,pz)   3   2„ 
70 ^  Tfl  Cr 

1 i\ (    kpz   fic\~ x {-u)pz + k^mc )   u) , 
V        jm      7 ) 

r)+z(k,u,nc,pz) = rf_z(k*,u>*,-Q,c,pz), 

T]z- (fc,^, ttoPz) - ~2 jf   /        rfp±/l-l (P±,Pz) -5j£ 3_ 
72mc2 

fcpz  _  c2fc /       mf2c' + 
[7m       w   \ pz 

?72+ (fc,w,nc,pz) = rj*z_ {k*,w*,-nc,pz). 

to — 
kp£ 
7m, 

-2 

(44) 

(45) 

(46) 

P.^^Ä)]^.^.^-2,        (47) 

(48) 

(49) 

(50) 

(51) 

(52) 

The structure of Eqs. (41)-(43) is the coupling of Ei-(k',uj) to E\z{k' + m£2c/pz,a?) 

and Ei+(k' + 1m£lc/pz,ui) over the range of pz for which the equilibrium distribution is 

nonvanishing. 
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D. Some Special Cases. 

In general Eqs. (26)-(28) [Eqs. (41)-43)] couple the right- and left-hand circularly po- 

larized radiation fields E± and the longitudinal, relativistic, plasma wave field Ez. How- 

ever, if g±1(p±,pz) = g±1(j>,a) = 0 [h±1(p±,Pz) = 0], then Eq. (28) decouples from 

Eqs. (26) and (27) [Eq. (43) decouples from Eqs. (41) and (42)) to yield the dispersion re- 

lation for longitudinal plasma oscillations. The radiation fields remain coupled, as is seen 

in Eqs. (36) and (37) [Eqs. (51) and (52)]: From Eq. (24) [Eq. (40)], it is seen that this sit- 

uation occurs whenever the Fourier series for f0 (p±,Pz, <J> - ^t) [f0 (p±lPsi 0 - agL*)] 

contains neither cos 0-nor sin ^-components. 

If 9±2 (p±,p2) = g±2 (p,a) = 0 [h±2 (p±,Pz) = 0] then all three fields (E± and Ez) re- 

main coupled, however the radiation fields couple only through the electrostatic oscillations 

and not directly with each other. From Eq. (24) [Eq. (40)], it is seen that this situation oc- 

curs whenever the Fourier series for f0 (P±,Pz,<fi - SLt) [/o (Px,Pz, <ß - isöc*)] contains 

neither cos 20-nor sin 20-components. 

Finally, if g±l{P±,Pz) = g±2 (p±jft) = 0 [h±l(p±,Pz) = h±2 ^^ = 0]> then 

Eqs. (26)-(28) [Eqs. (41)-43)] decouple completely and reduce to the dispersion relations 

D—{k,u,nc) = o, (53y 

j Dzz(h,v) = 0. (55) 

? 
These dispersion relations are identical to those for the case in which the distribution 

"in * ^uniformly random.   Referring to Eqs. (24) and (40), we see that g0(p±,pz) = 

vfcr ft df/o (P±,Pz,0 and ho (p±,Pz) = -j- J* dVf0 (p±1p,lV). For the case of a uni- 

formly random distribution in 4> (i. e., f0 (p±,Pz)), both of these expressions reduce to 

9o(P±,p2) = ho(p±,Pz) =V2lF/o(p^,pz). For this case either Eqs. (26) and (27) or 

Eqs. (41) and (42) reduce to the dispersion relations for the cyclotron resonance maser 

with random phase obtained by Chu and Hirshfield.1 

The analysis of Eqs. (26)-(28) [(41)-43)] as integral equations is the subject of present 

research and results of the analysis will be presented in a subsequent paper.   However, 
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many important special cases exist in which the equations reduce to algebraic equations 

from which dispersion relations can be derived. Some of these cases will be analyzed in 

the remainder of this paper. 
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III. Dispersion Characteristics for the Time-Dependent Equilibrium Distribu- 

tion without Energy Spread. 

In the previous section, it was noted that, for a uniformly random equilibrium distri- 

bution in <ß, equations (26)-(28) decouple and reduce to the well known dispersion relations 

in Eqs. (53)-(55). In this section it is shown that as long as there is no energy spread in 

the equilibrium distribution in Eq. (1), the integral equations (26)-(28) reduce to algebraic 

relations between the Fourier components of the fields even when the distributions are not 

uniform in 4>. The dispersion characteristics are illustrated with numerical examples for 

the time-dependent equilibrium distribution with no spread in p± or pz. 

A. Analysis 

For a beam with a definite energy 7 (p0) mc2 = 70rac2 = (pic2 + m2cA) the most 

general distribution in Eq. (1) is of the form 

/o (P, a, 0 = -ö(5(p-Po)/o(po, <*,£)> (56) 
P 

where £ = (p — Clct/j. From Eq. (24), the coeficients in the Fourier series expansion of this 

distribution are 

gn (p, a) = -rS {p -po) gn (po, <*), 
P 

(57) 

1    r2*    ~ 
9n (po, a) = -= /     df/o(po,a,f)exP(-wf)- 

V27T Jo 

Substitute Eq. (57) into Eqs. (29)-(37) and then substitute the results into the integral 

equations (26)-(28). After replacing u> with u) — 2Clc/7o hi Eq. (27) and with u — f2c/7o 

in Eq. (28), we obtain three homogeneous algebraic equations relating just three field 

components. Expressed in matrix notation, these equations are 

DE = 0, (58) 
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where 

/       D—(fc,u;,f2c,po) -X-+(fc,<^fic,Po) -X-z{k,u,£le,Po)      \ 

D = 

and 

-X+_(fc,o;-^cync,po)    D++(k,to-ZL,Clc,po)    -X+z (k,u>- ^,Qc,Po) 

K -Xz-{k,u-^,Slc,Po)     -%z+(A:,a;-^,fic,po) Dzz (k,cv - ^,Po)      ) 
(59) 

/      £i_(fc,a;)      \ 

E=    E^+\k^-2^t)    . (60) 
\Elz(k,u-%) ) 

The quantities Xij appearing in the matrix in Eq. (59) are obtained from the corresponding 

quantities in Eqs. (32)-(37) simply by replacing each gn (p,a) with gn (po,ct) and setting 

p = po and 7 = 70. Moreover, from Eqs. (29)-(31), the diagonal matrix elements can be 

expressed as 

£>__ (fc,u;,fic,po) = ^ ~ c2k? - ^nj/* til I    dag0(jpo,ot) 

r2sina; /       fcpocosoA /       kpocosa     fi, 

L   7o     V 1om    ) \ 70™ 7( 

kpo cos a     S7, 

-1 

P0 sin3 a (. .2      „2K2>>  /,, 

c 

70 
-2 

70"i 70, 

D++ (fc,a;,f2c,po) = D— (fc,a;, -ßc,po), 

Dzz (fc, a;, p0) = 1 - ^/2^rCll /    da#0 (Po, a)  
Jo 7o 

(61) 

(62) 

xl 
2      2 Po cosz a 

a; 
fcpocosaN 

\        75m*ci / \ 70m    / 

Recall that, fip = (Aire^no/m)1'2 is the nonrelativistic plasma frequency. 

The dispersion relation for this system is 

detD(fc,o;) =0. 

(63) 

(64) 

From Eq. (60), it is seen that, for a given value of the wavenumber k, the frequency 

u is that of the right-hand polarized wave E\-.   The corresponding frequencies of the 
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left-hand polarized wave E%+ and of the electrostatic wave E\z are u> - 2ftc/7o and u - 

^C/70J respectively. We point out that, once the assumption of one-dimensional spatial 

dependence is made and equilibrium self fields are neglected, the dispersion relation is 

exact for equilibrium distributions of definite energy. 

Again notice why, in the general case, the field components are related by 

integral equations (26)-(28) instead of algebraic equations. If the distribution 

/o (p,a,<i> — Qct/j(p)) is nonvanishing over a continuous range of energies 7(p)mc2, then 

the mode J5?i_ (k,w) will be coupled to a continuum of modes Ei+ (k,u - 2fic/7(p)) and 

£i»(*,u/-fic/7(p)). 

B. Case of Definite p± and pz. 

As numerical examples, we consider equilibria of definite p± = p0 sin a0 and pz = 

pocosao. Consequently, the factor /o (po,a,f) in Eq. (56) is 

/.h«,{)=^»({), (65) 

where $ (£) is a function of period 2?r. From Eq. (5), the normalization condition on $ (£) 

is 

^    <fy* (V - 2^ = jf2* d£$ (0 = 1. (66) 

Moreover, from Eq. (57), 

9n(Po,oc)=   /_   v_;_      'swi (67) 
\/27r     sina 

where 
f2ir 

ST = /      <%$ (£) exp (-in£). (68) 

From Eq. (66), s0 = 1. Also notice that s_n = s*. 

Substituting Eq. (67) into Eqs. (61)-(63) and into Eqs. (29)-(31) with gn (p, a) replaced 

by 9n (p0, a), we can express the dispersion relation in Eq. (64) as the following tenth degree 

polynomial equation (in either Ci or k) with real coefficients: 

M-. (k,L^ M++(k,u^ Mzz (k,<^j = 
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1 /Vx2 

,    /    o \ 2 J 

(69) 

and Ä = cfc/We. Dimensionless velocities are given by Ä, -„/„,, * 

4$* («•-*). ( 

(71) 

J1«-(*.'»)-(fl-«A-l),-4(i-/S). 

The dispersion relation in Eq. (69), which is valid for both complex ß and ,     £ 

is invariant under the transformation C°mP'eX *' 

* —> -**, 

G> —> —(f * 4. o 
(73) 

For the case of the distribution in Pn  /RK\  *t.   i   , 
und.  «,-  ♦       , q' (   }'        behaVi0r °f the eiS^ode E in Eq  (58) 

M^)_ *u (-*%-*•) _ .^^ 
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(75) 

and, if Si 7^ 0, 

El+(k,u-2) E1+(-k*,-u>*) Eu(k,u>) 

Elz(k,u>-l) "^ Eu (-**, -*• +1)     Eu (*. * - l) ' 

£?!_ (jfc, u>) £?i_ (-fc*, -w* + 2)     EJ+ (&, a; - 2) 

Elz(k,Cö-l) ~~* Eu(-k*,-ü* + l)      EJ,(fc,w-l).' 

Equation (69) gives the ten branches of the dispersion relation L)(k). -The behavior of 

u)/hioi large \k\ is easily determined for each of these branches. As \k\ —* 00, u>(k)/k —* +1 

for two branches, C)(k)/k —» —1 for two branches, and Q{k)/k —* /?z for six branches. 

Simple expressions are easily obtained for the large \k\ behaviors of u(k) for all ten 

branches if either si or S2 vanishes in Eq. (68). If sx = 0 and s2 ¥" °> tnen [from E<ls- (57) 

and (67)] g\ (p,a) = 0 and gi (p,a) ^ 0. It follows from the discussion in Sec. II.D that 

the electromagnetic components are coupled and the electrostatic component is uncoupled. 

[Such a situation holds for (but is not exclusive to) the distribution $(£) in Fig. 3(b), 

provided that the parameter a ^ 7T. For this distribution, Si = 0 and 52 = sin a/a] Two 

of the branches pertain to the uncoupled electrostatic waves and obey the exact dispersion 

relations 

ü = kßz + l±^(l-ßl)l/2. (76) 

for sufficiently large |fc|, the remaining eight branches obey the approximate dispersion 

relations 

u,c*Wz + l±±^x(l + \s2\)1/2, (77) 

ä~fo + i±4ÄMi-M)1/a. (78) 
1/2 

(79) 

U). 2 1/2 

u>~2±[k2 + ^)      . (80) 
^c 
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For real k, Eqs. (77) and (78) give two branches with positive Imw provided that |s2| < 1. 

In this case, growth-rate curves (Im& vs. real fc) will show two unstable branches at large 

k. 

If Sl ^ 0 and 52 = 0, then [from Eqs. (57) and (67)] g2 (p, a) = 0 and gx (p, a) # 0. It 

follows from the discussion in Sec. II.D that the transverse electromagnetic waves are cou- 

pled through the longitudinal electrostatic wave. [A nonexclusive example of a distribution 

$(0 having this property (if K ± 0) is presented in Fig. 3(c). Using Eq. (68), we find that 

Sl = -AiK and s2 = 0 for this example.] In this case, the large |fc| approximations for four 

of the ten branches of the dispersion relation are the same as those given in Eqs. (79) and 

(80) for the distribution previous case. Approximations for the remaining six branches are 

V2uc 

* * kßz +1 ± -^K+, <82) 

cD ~ fc/?2 + 1 ± 4=—K-, (83) 
V2LÜC 

w here 

K± 

!? „. \2 .„  ,        _0,  /l 

T(fi-(l-Ä)) + [(^-(l-/«))   +4Ä(l-Ä)(i-|-x 
n' (84) 

[The maximum possible value of K in Fig. 3(c) is 1/2TT, and the corresponding maximum 

value of |Sl| is 2/vr = 0.6366.... It is evident from Eq. (84) that the K± are real and positive 

for all |si| < l/v^ = 0.7071.... Consequently, Eqs. (81) and (83) provide for two unstable 

modes at large values of real fc for the distribution in Fig 4(c).] 

A nonexclusive example of a distribution for which neither sx nor 52 vanishes (unless 

the parameter a = TT or 2TT) is presented in Fig. 3(d). From Eq. (68), it follows that in this 

example 8l = (2/o) exp (-ia/2) sin (a/2) and s2 = (l/a)exp(-m) sin a. If both sx and s2 

are nonvanishing, determining the large \k\ behavior of the dispersion relation in Eq. (69) 

is more difficult than in the previous cases. Four of the large-|fc| branches are given by 

Eqs. (79) and (80). The behaviors of the remaining six branches (including all that may 

show growth at large, real fc) are determined by solving a cubic equation in (w - kßz - 1) . 

Further details will not be given in this paper. 
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Unless Si = «2 = 0, some of the eigenmodes E in Eq. (58) will involve two or more of 

the components ÜL(£,£>), E+(k,u-2), and Ez(k,C)-l). A quantity that will be employed 

to measure the relative importance of E-(k,£)) and E+(k,L> — 2) is the Poynting flux ratio 

defined by 

?+(£,<£>-2) 

(*,*) 

u 

u-2 

E 1+ (fc,^-2) 

E L- (£,&) 
(85) 

This quantity is the ratio of the time-averaged Poynting vectors that the field associated 

with each component would produce in the absence of the other component. A time- 

dependent interference term due to the different frequencies of the components is not 

included. 

C. Numerical Examples. 

In the following numerical examples, k is restricted to be real. Then, Ima> > 0 indicates 

an unstable mode. If k is restricted to be real, then the transformation in Eq. (73) is 

equivalent to inverting a plot of Reu> vs. k (real) through the point (k, Rea>] = (0,1) and 

reflecting a plot of ImcD vs. k (real) through the Imu>-axis. It follows from the invariance of 

the dispersion relation in Eq. (69) under this transformation and from Eqs. (74)-(75) that 

there is no loss of generality if numerical examples are limited to the case of nonnegative 

real k. 

Parameter values in all of the numerical examples below in Figs. 4-7 are u^/u^ = 0.05, 

70 = 2, and c*o = 0.4. In order to ensure that values selected for Si and S2 are realistic 

(i.e., correspond to $(f) > 0 in Eq. (65)), we assume that $(f) has one of the functional 

forms shown in Figs. 3(a)-3(d). 

Example 1: If the distribution $(f) is uniform [see Fig. 3(a)], then s\ = S2 = 0. 

[Such a distribution is also attained with a = IT in Fig. 3(b), K = 0 in Fig. 3(c), or 

a = 2n in Fig. 3(d).] In this case, the dispersion relation in Eq. (69) decouples into 

the three independent relations M— (k,u)\ = 0, M++ (k,ü) = 0, and Mgz (fc,u>) = 

0. These are respectively the dispersion relations for uncoupled right- and left-handed 

circularly polarized electromagnetic waves and for the electrostatic wave. For a given k, 

the frequencies of these waves are tD, CJ — 2, and Co — 1, respectively. Growth-rate curves 

AI-23 



«~«.PH in Fie 4(a) over the interval 0 < fc < 10. 
(Im, vs. fc) for this .uniting csse are present d     Frg   U ^        ^ 

Corresponding plots of R^ vs. * over the rnterva, 0 <    S1A«   P ß 

^„ers on these p.ots designate —ponding —' " *^11*, „ btained 

Md c in Fig. 4(a) —. The growth-rate curve .gments O« and ^ 

from *_ (*.*) = <>, and a corresponding eigenmode B « M^" ^ ^ 
,.             ™~t   The erowth-rate curve segments AB and rw 

a „onvanishmg component. The gro nonvanishing component, 

from M++ (tö) = 0- A eorrespondrng elgenmode has 

name» *(U - *)•. for ^ ^ „^ of the 

The pl0t of K» ~   » »     , O >     then a_(U) ^ ^ 
^„th-rate curves in Frg. 4(a)   If ^ ^ ^ ^ ^ forward 

(P°T    d ht:I     lie, in the bachwsrd (negate) direction. Simdarily, 
is unchanged, however tney u ^^     0 

• .,J with B (k w) is backward travehng tf fc > u ana n 
theelectrostaticwaveassociatedwithE.(fc,u>) consider the segmented 

.•'       rth» use of Fie 4(b) m interpreting Fig. 4(a), consider tne    s 
As an illustration of the use ol tig. <H J „clotron maser insta- 

ll i Rr-, r>r  which rives the growth rate of the cyclotron m 
growth-rate curve A(BC)DG, which g ...WIW-J« 

* Segment AB pertains to S* <*.« ~ 2). From Frg    U, ^ 

tag, „d-traveling, LHP electromagnetic wave, Srn^ly,     g ^ 

. •     „Fit«)   Reference to Fig. 4(b) shows that Real > 0 every 
pertams to £_(*,<■»■ «• to in& forward-travehng, 

that growth-rate curve segme«CDC^ ^P        ^ _ „ for fte 

RHP electromagnet, waves. Smular analys Als0> the 

„fristler instability pertains to forward-travehng, RHP eleriro     g ^ 
„t FF nertains to backward-travelmg LHP waves, ana 6 

growth-rate curve segment FB perta ^ ^ ^ ^ ^   . _ ^ 

meat EJ pertains to forward-travehng LHP waves. Be 

are real no corresponding growth-rate curves appear in Frg. 4(a). ^ 
„M to be in resonance for the cyclotron maser 

Electromagnetic and beam waves are sard to be m reso 
-      i.     j ,-, - fcfl +1  These resonance values of a) and fc are give 

^ability when . = fc and » - % + _ ^ ^ ^„.^ 

-,  -k  -1/(1-A)- In this example, fcr - 4.y4. rig. <*v ; 
Wr_/cr-i/V^    w unconpled system, 
fact that no growth of RHP radiation occurs at fc - kr 
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Finally, it is emphasized that no special relation exists between the LHP and RHP 

waves considered above when «i ■= «2 ■* 0- However, the plots in Fig. 4 will be approached 

by any system using our parameters in the limit in which both Si and «2 approach zero. 

Example 2r. An explicit example of a nonuniform distribution in phase is obtained 

by selecting a = 7r/4 in Fig. 3(b). Then the unperturbed electron beam consists of two 

streams with respective distributions centered about £ = 0 and £ = 7T. Each distribution 

is a water bag of width 7r/4. The corresponding parameters defined in Eq. (68) are sx = 0 

and S2 = 2y/2/it. Because Si = 0, the eigenmodes E in Eq. (58) are of two types. The first 

type of eigenmode has only Eiz(k,u>) as a nonvanishing component. The corresponding 

dispersion relation is Mzz(k,u>) = 0, which does not allow for growth. [See Eq. (76).] 

The second type of eigenmode has two nonvanishing components, namely Ei-{k,u) and 

Ei+(k,& — 2). Some of these eigenmodes are unstable. 

Growth-rate curves for this system for 0 < k < 15 and corresponding plots of Reo> 

vh. k (for 0 < k < 1.5) are presented in Figs. 5(a) and 5(b). As a measure of the relative 

importance of the RHS and LHS electromagnetic waves associated with unstable modes, 

plots of the Poynting flux ratio in Eq. (85) as a function of k (for unstable modes only) are 

presented in Fig. 5(c). Letters show corresponding points on Figs. 5(a)-5(c). By comparing 

Figs. 5(a) and 5(b), we see that the growth-rate curve segments BA, CD, and FE pertain 

U, diodes consisting of a forward-traveling RHP electromagnetic wave (because Re£ > 0) 

and a backward-traveling LHP electromagnetic wave (because Rea> - 2 < 0). All other 

segments of the growth-rate curves pertain to modes consisting of forward traveling RHP 

and LHP electromagnetic waves. 

In the case of a uniform distribution in £ (Example 1), no growth of RHP electro- 

magnetic waves occurs at the resonance wavenumber k = kr = 4.94. [See Fig. 4(a).] 

The growth-rate curve CDH in Fig. 5(a) shows a mode at k = kr = 4.94 which grows 

significantly faster than any mode in Fig. 4(a). From Fig. 5(a), we see that the RHP 

Poynting flux associated with the mode is almost twenty times the LHP Poynting flux. 

Consequently, growth of RHP radiation is now possible at k = kr although it must be 

accompanied by a smaller growing component of LHP radiation. We remark that among 

computations so far carried out those for systems with two-stream distributions in £ (with 
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a phase difference of TT) show the most rapid growth rates at k = kr. 

Referring to Fig. 5(a), we see that there are two unstable branches at large k in 

conformity with Eqs. (77)-(78). From Fig. 5(c), it is seen that, for either branch at large 

k, the RHP Poynting flux is approximately double that of the LHP Poynting flux. Finally, 

note from Fig. 5(c) that for unstable eigenmodes at small k the ratio of the backward 

traveling LHP Poynting flux to the forward traveling RHP Poynting flux depends very 

strongly on the branch of the dispersion relation and varies rapidly with k for a given 

branch. 

Example 3: As a second example of a nonuniform phase distribution, select the form 

of §>(£) in Fig. 3(c) and choose the parameter value K — 1/27T. [Equivalently, we could let 

a = 7T in Fig. 3(d).] Then the equilibrium particle phases are uniformly distributed between 

£ = 0 and £ = 7r, and no particles have phases in the range 7r < £ < 27r. Fourier components 

in Eq. (68) are Si = —li/ix and s<i = 0. Because s<2, = 0, the field components Ei-(k,io), 

and Ei+(k,tb — 2) are indirectly coupled through the electrostatic component E\z{k,Cj— 1). 

Consequently, the eigenmodes E in Eq. (58) will (in general) have three nonvanishing field 

components. Growth-rate curves for this example are presented in Fig. 6(a) for 0 < k < 10, 

and corresponding plots of Reo> vs. k (for the interval 0 < k < 2) are given in Fig. 6(b). 

Plots of the Poynting flux ratio in Eq. (85) are shown in Fig. 6(c). Finally, as a measure 

of the relative importance of the electrostatic component of the unstable eigenmodes, we 

present a plot of 2-^2\E1-(k,ü)/Elz(k,Lb - 1)| vs. k in Fig. 6(d). (The factor of 2"1/2 

appears in the field ratio because 2~l^E± is the proper normalization of coefficients of 

the complex unit vectors for LHP and RHP waves when comparison is to be made with 

Cartesian field components.) Letters show corresponding points in Figs. 6(a)-6(d). 

Reference to Figs. 6(a) and 6(b) shows that the wave associated with the compo- 

nent E\+{k,u) — 2) is left-hand polarized and backwards traveling for eigenmodes on the 

growth-rate curve segments GH, ABC, and DEF. The electrostatic wave associated with 

Eiz{k,u) — 1) is forward traveling for all unstable modes except for those modes on the 

growth-rate curve ABC for which k is very close to zero. All other components of unstable 

eigenmodes represent forward-traveling waves. 

Referring to Fig. 6(a), we see that two unstable branches of the dispersion relation 
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are present at large values of k in conformity with Eq. (81) and (83). From Figs. 6(c) 

and 6(d), it is seen that the RHP Poynting flux exceeds that of the LHP electromagnetic 

wave by a factor of approximately three for both branches at large k. The electrostatic 

contribution to eigenmodes on the upper branch is relatively very small. On the other 

hand, the electrostatic field amplitude in eigenmodes on the lower branch is of the same 

order of magnitude as the LHP electromagnetic field amplitude. 

Two branches, MNO and GHI, show moderate growth rates at the resonance 

k = kr = 4.94.   Reference to Figs. 6(c) and 6(d) shows that the RHP Poynting flux is 

significantly larger than the LHP Poynting flux for the eigenmodes associated with either 

of these branches at k = k\.. Moreover, \Ei-(k,u)/Eiz(k,u> - 1)| > 10 for either branch 

at k = kr. Again, this behavior is in contrast with the case of a uniform distribution in f 

where no growth of RHP electromagnetic radiation takes place at the resonance value of 

k. However, the growth-rates at k = kr in Fig. 6(a) are not large, being slightly less than 

the maximum growth-rates that appear in Fig. 4(a) for the case of a uniform distribution. 

Although the growth-rate peak ABC is very narrow, eigenmodes at points near its 

maximum are the fastest growing modes of this system. Moreover, reference to Fig. 6(c) 

shows that these modes contain a relatively strong backward-traveling, LHP component. 

Example 4: As our final numerical example, we treat the limit of a = 0 for the distri- 

bution in Fig. 3(d). In the limit, the distribution becomes $ (f) = J^ <5 (f - 2mr) with 

*i = S2 = 1. In this case, <j> = uct for all particles in the equilibrium beam. Growth-rate 

curves for the interval 0 < k < 8 and plots of Reu> vs. k for the interval 0 < k < 1.5 appear 

in Figs. 7(a) and 7(b), respectively.  For unstable eigenmodes, plots of the Poynting flux 

ratio in Eq. (85) vs. k and 2-l/2\El-(k,u>)/Elz{k,u>- 1)| vs. k are presented in Figs. 7(c) 

and 7(d), respectively. Letters on these graphs show corresponding points.  Eigenmodes 

belonging to growth-rate curve segments ABC and DE have backward-traveling LHP 

components and forward-traveling RHP and electrostatic components. A tiny growth-rate 

peak appears at G in Fig. 7(a). Reference to Fig. 7(b) shows that its LHP and electro- 

static components are backward traveling. Eigenmodes on all other segments contain only 

forward-traveling components. 

A striking feature of the growth-rate curves in Fig. 7(a) is that no growth occurs 
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for values of fc greater than approximately 6.2. That is, no branches of the dispersion 

relation show growth in the limit of large k. [Suppression of instability in the whistler by 

the electrostatic wave is discussed in Ref. 9.] Also, notice the interval of no growth FH 

(1.4~fc~2). 

Another striking feature is the great height of the growth peak ABC. Prom Fig. 7(c), 

we see that the Poynting flux of the backward-traveling LHP electromagnetic wave ex- 

ceeds that of the forward-traveling RHP electromagnetic wave over most of the interval 

of this growth peak. The amplitude of the forward-traveling electrostatic wave is seen 

[from Figs. 7(c) and 7(d)] to be of the same order of magnitude as the amplitudes of the 

electromagnetic waves. 

Again, we see growth of RHP electromagnetic waves at the resonance wavenumber 

• £ _ jfep = 4.94. In fact, the maximum of the growth-rate curve HIJ in Fig. 7(a) is situated 

very close to the resonance wavenumber, and the growth rate at this maximum exceeds 

any growth rate for the gyrotropic case is Fig. 4(a). From Figs. 7(c) and 7(d), it is seen 

that the largest component for eigenmodes near this maximum is that corresponding to 

forward-traveling RHP electromagnetic radiation. 

To summarize, it is evident that a richness of structure in the growth-rate curves can 

be produced by introducing nonuniform distributions $(£)• Using proper choices of $(£), 

. temporal growth rates near k = kr can be significantly increased and growth rates at large k 

can be on the one hand enhanced or on the other hand completely suppressed. Two-stream 

equilibrium distributions such as that in Example 2 seem to be most effective in enhancing 

growth rates at the resonance k = kr. Gaps of no growth can be introduced at moderate 

values of it. At small values of k where eigenmodes may contain backward-traveling compo- 

nents, growth rates and the properties of eigenmodes can be greatly changed by changing 

$(£). [This latter fact suggests, but does not prove, that absolute instability properties 

may depend strongly on $(£)• However, no pinch-point analyses of these systems have 

been carried out.26"28] 
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IV. Dispersion Characteristics for the Axial-Dependent Equilibrium Distribu- 

tion without Axial Momentum Spread. 

A. Analysis 

Finally, we consider the axial-dependent equilibrium distribution fo(p±,Pz,C) = 

/o (p±>Pz,<t> — mQ,cz/pz) for which the perturbed field components are related by the in- 

tegral equations (41)-(43). Even if the equilibrium distribution is not uniformly random 

in <j>, Eqs. (41)-(43) will reduce to algebraic equations if there is no spread in pz in the 

equilibrium distribution. (Aspread in energy is permitted if it is due only to a spread in 

p±.) The most general equilibrium distribution having this property is 

/o (p±,Pz,Ö=ö(Pz-Pzo)/o (P±,PzO,C) • (86) 

It follows from Eq. (40) that 

where 

hn (p±,Pz) =6{Pz~ Pzo) hn (p±,Pzo), 

1      [2* 
hn (p±,Pzo) = —7= I      dCfo (px,PzO, C) exp (-mC). 

V27T Jo 

(87) 

(88) 

Three homogeneous equations relating just three field components are found using a pro- 

cedure similar to that used in obtaining Eq. (58). In matrix form the equations are 

where 

/ DL-(k,u,nc,pz0) 

D' 

and 

D'E' = 0, 

-f)-+(k,u,£lc,pzo). 

(89) 

-fj-z(k,u,Clc,pzo)       \ 

-fj+.(k + ^,uj,nc,pz0)  D'++(k + ^,u>,nc,Pz0)  -fi+z(k+^,u,nc,VzQ) 

\ -f,z. (k + ^,u,nc,pz0)     -rjz+ (k + *£k ui,ftc,P.o) D'zz (k + ^,",Po)      ) 

I       E^{k,u)       \ 
E' = 

(90) 

(91) 

/ 
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The quantities Tfo- in Eq. (90) axe obtained from the corresponding quantities in Eqs. (47)- 

(52) by replacing hn(p±,pz) with h» (p±,pz)), pz with pz0, and 7 with lf(px,pzo)- The 

remaining quantities in Eq. (90) can be obtained from Eqs. (44)-(46). They are 

DL. (fc,o;,nc>pzo) =u;2 -c2fe2 - ^0» f°° dp±h0(p±,pz0)       P±„   . 
* JO liPliPzO) 

xh(u-    kPz0    \ (u-    kPz0 flc    x~l 

T(p±,pzo)m2c2 '\       nf{P±,Pzo)m     n/{p±,PzO)J    -I 

D'++ (fc,w,nc,pz0) = £l_ (fc,w, -ftc.Pzo), (93) 

£>L (fc> ^>P*o) = 1 - v^fi2 /     dpxPx^o (p±,Pzo) 7_1 (p±,P*o) 
JO 

V      T\P±,Pzo)m2c?J V       lip±,Pzo)mJ 

Once the assumption is made that equilibrium self fields can be neglected, the exact 

dispersion relation for the case of definite pz = pzo is 

detD/(Jfe,o;)=0. (95) 

For a given frequency w, the wavenumber of the right-hand polarized wave E\- is k. The 

wavenumbers of the fields E\+ and E\z are k + 2mQc/pzo and k + m£lc/pZQ, respectively. 

This result shows why integral equations relate the field components if a spread in pz is 

present in fo{p±,Pz, <f>-mticz/pz). Then, J?i_ {k,w) couples to E\+ {k + 2mQ,c/pz,u) and 

to E\z (k + m£lc/pz,u)) over a continuum of values of mQ,c/pz. 

Finally, we emphasize that the eigenmode E in Eq. (60) is of a different nature than 

the eigenmode E' in Eq. (92). The eigenmode E is a composite of three components which 

refer to waves of the same propagation vector but of different frequencies. These frequencies 

differ by fixed real values. On the other hand, the eigenmode E' is a composite of three 

modes which refer to waves of the same frequency but of different,.propagation vectors. 

These propagation vectors differ by fixed real values. In either case, if k is restricted to 

real values, then temporal growth or decay rates are given by ImtD for all components. If 
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CJ is restricted to real values, then spatial growth or decay rates are given by ImA; for all 

components. 

B. Case of Definite p± and pz 

As in Sec. Ill, we present numerical examples for cases in which both pz = p2o and 

Px = Pxo have definite values in the equilibrium distribution. Consequently, the factor 

/o (p±,PzO, C) i*1 Eq. (86) is selected to be of the form 

/o (P±,P*O. C) = -A— -V (0 , 
P± 

(96) 

where ty (£) is a periodic function of C (or 4>) of period 2ir. From Eq. (5), the normalization 

condition on ^ (£) is 

r27T / n        \ /*27T 

/    d^ (<j>-m—zj = f    dC%(C) = 1. 

It follows from Eq. (88) that 

(97) 

r   / %        I   6(p±- P±o) 
n-n (P±,PzO) = —j== wn, 

V2ir        Px 

where 

Wn 
Jo 

(98) 

(99) 

Notice that WQ = 1 and that W-n = tu*. 

With the aid of Eqs. (92)-(94) and Eqs. (46)-(52), we obtain the dispersion relation 

in Eq. (95) for the case of definite pj. and pz. The dispersion relation is 

M__ (k, w) M'++ (k, u>) Mzz (k, u>) = 

i ^J   /?iK|2 I [ßzCo - k)2M'++ (k,u>) + [&Ö - (k + A) M. - (*'*} 

4  3   AN1 -2 -*('+oI Mzz (k,L)J (100) 

1(3 
4 U2 /?i (^2^! + ^-2^) a>-fc   A; + — &w - ( k + 

ßz 
(ßzü - k) 
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Dimensionless frequencies,  wavenumbers,  and velocity components are defined as in 

Sec. III.B, and 

'^-(*+0 (101) 

The quantities M— (fc,&) and Mzx (fc,oM are defined in Eqs. (70) and (72), respectively. 

Like Eq. (69), Eq. (100) is valid for complex CJ and complex k. It is invariant under 

the transformation 

fc —► -fc* - 

U) —* —u 

A' 
(102) 

In analogy with Eq. (74), it follows from the matrix equation (90) that, if either w\ ^ 0 

or W2 T^ 0, then under the transformation in Eq. (102) 

El+ (fc + 2/ßz,u) El+ (-fc*, -£*)        _       E{_ (fc>) 
(103) 

Ex- (fc>) ' EL (-fc* - 2/ßz, -£*)      E{+ (fc + 2/&,w) ' 

Moreover, in analogy with Eq. (75), if W\ ^ 0, then under the transformation in Eq. (102) 

El+ (fc + 2/ßz, w) * E1+ (-fc*, -£*) £*_ (fc>) 

El2(fc + l//?z,a>) £u(-fc*-l/&,-&*)      £*z(fc + l/&,u>)' 

£x_ (fc,u>) J5?x_ (-fc* - 2//3z, -£*)      £?+ (fc + 2/&,u>) 

(104) 

Elz (fc + l//32, a>) Elz (-fc* - 1//5Z, -a)*)       E*lz (fc + 1//3Z, u>) * 

The   ratio   of   the   time-averaged   Poynting   vectors   associated   with   the   individual 

E1+ (k + 2/ßz,u\ and EX- (k,ti\ fields is 

S+(k + 2/ßx,ut) 

?_ (fc>) 

k + 2/ßz 

k 
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Like the dispersion relation in Eq. (69) of Sec. III.B, Eq. (100) is a tenth-degree «' 

polynomial equation in either k or u. The large |fc| behavior oiu)(k)/k given by Eq. (100) 

is the same as that given by Eq. (69), including two branches with u)(k)/k ~ 1, two 

branches with &(k)/k cz —1, and six branches with u{k)/k e* kßz. 

If either w\ or Iü2 vanishes, approximations for u)(k) valid for large values of k are 

readily determined and are found to be very similar to those found in the previous section 

for the case of the time-dependent equilibrium. If w\ = 0 and W2 ^ 0, then the transverse 

electromagnetic components are coupled to each other and the electrostatic component 

is uncoupled. The large \k\ behaviors of the ten branches of the dispersion relation in 

Eq. (100) are similar to those given in Eqs. (76)-(80) for the corresponding case (si — 

0, s2 7^ 0) of the dispersion relation in Eq. (69). Four of the branches now obey Eqs. (76) 

and (79). Four branches obey Eqs. (77) and (78) with s2 replaced by iu2, that is 

ü ~ kßz + 1 ± ~—£± (1 + |K;2|)
1/2

 , (106) 

£üczkß2 + l± -$=-£/?_L (1 - K|)1/2 • (107) 

Finally, Eq. (82) is no longer valid and is replaced by 

ü ~ ± (ic + 2/y2 + 4 
1/2 

(108) 

for the two remaining branches. Growth-rate curves for \w2\ < 1 will show two unstable 

branches of the dispersion relation in Eq. (100) for large values of real k. 

If W\ 7^ 0 and W2 = 0, then the transverse electromagnetic components of an eigen- 

mode are coupled through the longitudinal electrostatic component. The large |£| behavior 

of the dispersion relation in Eq. (100) is similar to that of the dispersion relation in Eq. (69) 

for the analogous case of sx ^ 0 and s2 = 0. Four of the branches obey Eqs. (79) and 

(81). Four additional branches obey Eqs. (82) and (83) with the quantity sx in Eq. (84) 

replaced with wi, that is 

(109) 

(110) 

u cz kßz + 1 ± 

U) C£ kßz + 1 ± 
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where 

<4-{T(Ä-(I-ä)) + [(Ä-(I-ä))W(I-Ä)(5-I».I,)]*}*.(III) 

The remaining two branches obey Eq. (106). At large real k, growth-rate curves will show 

two unstable branches of the dispersion relation in Eq. (100) if \wi\ < l/V%- 

Finally, if neither w\ nor wi vanish, then the large |fc|behaviors of four of the branches 

of the dispersion relation in Eq. (100) are given by Eqs. (79) and (106). The behaviors of 

the remaining six branches are obtained by solving a cubic equation in (a> — kßz — l)2. We 

do not include an analysis of the equation in this paper. 

C. Numerical Examples 

Before the numerical examples are presented, one final point of clarification must 

be made. Throughout this paper, we have followed the usual terminology and referred 

to E\-(k,u>) and E\+(k,io) as components representing RHP- and LHP-electromagnetic 

waves, respectively. However, this nomenclature is proper only if Refc > 0. If Hefe < 0, then 

the roles played by these components are reversed and Ei-(k,ü) and Ei+(k,u)) represent 

LHP and RHP electromagnetic waves, respectively. If (in addition) Reu) > 0, then both 

waves are backward traveling. Moreover, if Reo; < 0, then both waves are forward traveling. 

As in Sec. Ill, the following numerical computations are limited to the case of real 

k. Then, from Eq. (102), Eq. (100) is invariant under the transformation Co —*• — ü* and 

k —*■ —k — 2/ßz. This transformation is equivalent to inverting a plot of Reu> vs. k 

(real) through the point (fc,Reo>) = (-1//3Z,0) and reflecting a plot of Im(tD) vs. k (real) 

through the vertical line k = —l/ßz. Because of Eqs. (103) and (104), no new information 

is obtained from the transformed eigenvectors. Consequently, the region k < —l/ßz is 

omitted from the following plots. 

Parameter values used below are the same as those used in previous numerical ex- 

amples (i.e., ü%/&l — 0.05, 7o = 2, and a0 — 0.4). Functional forms considered for \P(C) 

are chosen as #(£) = $(f), where $(f) is defined in Figs. 3(a)-3(d).' Moreover each of the 

examples below is the analogue (for the axial-dependent distribution) of the example of 

the same number in Sec. III.C (for the time-dependent distribution). 
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Example 1: For wi = W2 = 0, which corresponds to \I>(f) = $(£) shown in Fig. 3(a), 

the dispersion relation in Eq. (100) reduces to the three independent dispersion relations 

M (k,un = 0, M'++ (k,un = 0, and Mzz (k,u\ = 0 for uncoupled right- and left- 

circularly polarized transverse waves and the longitudinal electrostatic wave, respectively. 

For a given frequency, the respective wavenumbers for these waves are k, k + 2/ßz, and 

k + l/ßz. Growth-rate curves are shown in Fig. 8(a) for -l/ßz = -1.254 < k < 10. Plots 

of Red» vs. k for —l/ßz < k < 0 are presented in Fig. 8(b). Letters show corresponding 

points in Figs. 8(a) and 8(b). 

In Fig. 8(a), the growth-rate curve segments GH and HI are obtained from roots of 

M++ [k,u)j, so that the corresponding eigenmodes have a single nonvanishing component 

Ei+ (k + 2/ßz,ü\. Referring to Fig. 8(b), we see that Rew > 0 and k + 2/ßz > 0 on 

both segments. Consequently, both segments represent unstable electromagnetic waves 

that are LHP and forward traveling.   All other growth-rate curve segments in Fig. 8(a) 

are obtained from roots of M [k,u}j =0, so that the corresponding eigenmodes have a 

single nonvanishing component E\- f k,u)j. For all points of the short growth-rate curve 

segment AB, reference to Fig. 8(b) shows that k < 0 and RetD < 0. Consequently, growth- 

rate curve segment AB pertains to unstable, forward-traveling LHP electromagnetic waves. 

Similarily, k < 0 and Reo> > 0 for eigenmodes on growth-rate curve segments BC and 

DE, so that these segments represent unstable backward-traveling, LHP electromagnetic 

waves. The remaining growth-rate curve segments (EF and JK) pertain to unstable 

forward-traveling, RHP electromagnetic waves. As expected, there is no growth of the 

RHP electromagnetic wave at the resonance wavenumber kT — 1/(1 — ßz) — 4.94. The 

eigenmodes obtained from roots of M++ (£,£>) are of course completely decoupled from 

the eigenmodes obtained from roots of M [k,u)j =0. Nevertheless, Fig. 8(a) represents 

the limit approached by any system with our parameters as both W\ and w^ approach zero. 

This example is analogous to Example 1 shown in Figs. 4(a) and 4(b) in Sec. III.C. 

Comparing Figs. 4(a) and 8(a), we see that they differ in two respects. First, the growth- 

rate curve in Fig. 8(a) obtained from M'++ [k,uj =0 has the same form as the growth- 

rate curve in Fig. 4(a) obtained from M++(k,u)) = 0 but is displaced to the left by 

2/ßz = 2.508.   Second, no information is lost in Figs. 4(a) and 4(b) by ignoring the 
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negative fc-axis. However, only k < -l/ßz can be ignored in Figs. 8(a) and 8(b) without 

losing information. 

Example 2: For wi = 0 and w2 = 2\/2/vr, which can be obtained for \P(f) = $(f) 

in Fig. 3(b) with a = 7r/4, the equilibrium beam consists of two streams, each with a 

water-bag distribution in <f> of width 7r/4. One distribution is centered at <t> = mQ,cz/pzo 

and the other at <j> = mClcz/PzQ +n. As z varies, each center rotates about the direction . 

of the applied field lines with a characteristic wavelength of 2irpzo/mQc = 2TTVZQ/U)C. 

Growth-rate curves (for -1.25 < k < 16) and corresponding plots of Rea> vs. k (for 

-1.25 < k < 0) are presented in Figs. 9(a) and 9(b). Plots of the Poynting ratio in 

Eq. (105) vs. k (for -1.25 < k < 16) appear in Fig. 9(c). Letters show corresponding 

points on these plots. The letters have also been chosen to correlate with letters on the 

corresponding plots for Example 2 of Sec. III.C in Figs. 5(a)-5(c), which is analogous 

to the present example. Superficially the plots in Figs. 9(a)-9(c) are very similar to the 

corresponding plots in Figs. 5(a)-5(c). However, it is emphasized that the eigenmodes are 

very different in the two cases. The eigenmodes for Fig. 5 consist of the nonvanishing 

components Ei-(k,cb) and Ei+(k,u) — 2), whereas the eigenmodes for Fig. 9 consist of the 

nonvanishing components E\-(k,<jj) and Ei+(k + 2/ßz,u>). 

By comparing Figs. 9(a) and 9(b), it is easily seen that the eigenmodes belonging to 

the growth-rate curve segments BA, CD, and FE consist of LHP, forward-traveling elec- 

tromagnetic waves [from Ex+(k + 2/ßz,u)] and LHP, backward-traveling electromagnetic 

waves [from Ei-(k,u>)]. [The corresponding modes in Fig. 5 consist of RHP, forward- 

traveling and LHP, backward-traveling electromagnetic waves.] From Fig. 9(c), we see 

that the backward Poynting flux is relatively strong for most eigenmodes on CA and that 

it varies rapidly with k for eigenmodes on CD and FE. The infinity in the Poynting flux 

ratio at the cutoff at k = 0 is due to the factor \(k + 2ßz)/k\ in Eq. (105). All of the 

remaining growth-rate curve segments in Fig. 9(a) pertain to eigenmodes consisting of a 

forward-traveling RHP and a forward-traveling LHP component. Notice that the branch 

CDH of the dispersion relation shows a growth rate at the resonance kr = 4.94 which is 

significantly greater than any growth rate for the uncoupled system in Fig. 8(a). Reference 

to Fig. 9(c) shows that the Poynting.fiux of RHP electromagnetic radiation is dominant in 
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the corresponding eigenmode. [This behavior is similar to that found at k = kr for Exam- 

ple 2 in Sec. III.C] Figs. 5(a) and 9(a) are very similar at large values of k in conformity 

with previous analytic results pertaining to the large k behaviors Eq. (69) when Si = 0 

and Eq. (100) when uii = 0. 

Example 3: The analogue of Example 3 of Sec. Ill [whose stability properties are 

summarized in Figs. 6(a)-6(d)] is obtained by setting Wi = —2i/n and u>2 = 0 in Eq. (98). 

Growth-rate curves for —1.25 < k < 10 are presented in Fig. 10(a). Details of the growth- 

rate curves in the negative k interval (-1.25 < k < 0) are shown in Fig. 10(b). Corre- 

sponding plots of RetD vs. k (for —1.25 < k < 0) are presented in Fig. 11(a). Plots of the 

Poynting ratio in Eq. (105) vs. k appear in Fig. 11(b). The component EXz(k + \jßZiGi) 

will not necessarily vanish for unstable eigenmodes of this system. Consequently, plots of 

Ex-(k,u>)/Eiz(k + l/ßz,u>) vs. k for unstable modes are presented in Fig. 11(c). Letters 

show corresponding points in Fig. 10 and Fig. 11. 

A detailed comparison of Figs. 10 and 11(a) gives the following description of the un- 

stable eigenmodes. The components of an eigenmode pertaining to the short growth-rate 

curve segment DR are two forward-traveling LHP electromagnetic waves [from Ei-(k,u>) 

and Ei+(k + 2/ßz, u)] and a backward-traveling electrostatic wave [from Eiz(k + l/ßz,ü)]. 

The components pertaining to the growth-rate curve segments REF, ABCG, and MN 

are a backward-traveling LHP electromagnetic wave [from Ei-(k,u;)], a forward-traveling 

LHP electromagnetic wave [from Ei+(k + 2/ßz,u>)], and a forward traveling electrostatic 

wave [from Eiz(k + l/ßz,ü)]. All other growth-rate curve segments have eigenmodes con- 

sisting of forward traveling LHP and RHP electromagnetic waves and a forward traveling 

electrostatic wave. 

The most rapidly growing eigenmode of this system is that at point C in Figs. 10(a) 

and 10(b). The components of this eigenmode are a backward-traveling LHP wave, a 

forward-traveling LHP wave, and a forward-traveling electrostatic wave. Reference to 

Figs. 11(b) and 11(c) shows that the backward-traveling component [which arises from 

Ei-(k,u>)] is the largest component both in amplitude and energy transfer. A similar 

situation was found for small \k\ in Fig. 6(a) for the axial-dependent case except that the 

forward-traveling electromagnetic component was found to be RHP. 
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Two branches of the growth-rate curves in Figs. 10(a) and 10(b) (MNO and 

ABCGHI) show moderate growth rates at the resonance wavenumber kr = 4.94. For 

both of these branches, Figs. 11(b) and 11(c) show that the eigenmode at kT = 4.94 has a 

relatively large RHP electromagnetic component. Again we see that this behavior differs 

from that of the uncoupled system in Fig. 8(a), which shows no growth of RHP electromag- 

netic waves at the resonance wavenumber. The growth rates at kr are approximately the 

same in Fig. 6(a) for the time-dependent equilibrium and Fig. 10(a) for the axial-dependent 

equilibrium; however, the electrostatic components of the corresponding eigenvectors are 

of greater relative amplitude in the axial-dependent case than in the time-dependent case. 

[Compare Fig. 11(c) with Fig. 6(d).] 

Finally, at large values of k, Figs. 10(a) and 6(a) approximate each other closely. This 

fact conforms with our previous results giving the large-|fc| behaviors of Eq. (69) for $2=0 

and Eq. (100) for w^ = 0. However, the corresponding eigenmodes [E in Eq. (60) and E' in 

Eq. (91)] are different even in the limit of large k. By comparing Fig. 6(d) with Fig. 11(c), 

it is seen that (at large k) the electrostatic component is relatively much stronger in the 

case of the axial-dependent equilibrium distribution. 

Example 4: To obtain the analogue of Example 4 of Sec. III.C (whose stability prop- 

erties are summarized in Fig. 7), choose iui = w2 = 1. These values are obtained by 

choosing *(C) = IZ-oo^CC _ 2n7r)> so ttat in effect the phase of any particle is given 

by </> = mQcz/pz). Growth-rate curves (for -1.254 < k < 8) and corresponding plots 

of Reu; vs. k (for -1.254 < k < 0) are presented in Figs. 12(a) and 12(b), respectively. 

For unstable branches of the dispersion relation in Eq. (100), plots of the Poynting flux 

ratio in Eq. (105) vs. k and Ei-{k,u;)/Eiz{k + l/ßz,0) vs. k are presented in Figs. 12(c) 

and 12(d), respectively. Letters show corresponding points in these plots. The letters 

correspond only loosely to those in Fig. 7. 

Comparing Figs. 12(a) and 12(b), we see that the components of an eigenmode 

on growth-rate curve segment DN are a backward-traveling LHP electromagnetic wave 

[Ei+(k + 2/ßz,u))}, a forward-traveling LHP electromagnetic wave [Ei-(k,u))], and a 

backward-traveling electrostatic wave [Eiz(k + l/ßz,ü)]. Eigenmodes on growth-rate 

curve segments ACB and NEF consist of a backward-traveling LHP electromagnetic 
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wave [Ei-(k,u))], a forward-traveling LHP electromagnetic wave [Ei+(k + 2/ßz,u))], and a 

forward-traveling electrostatic wave [Elz{k + l/ßz,tb)]. Eigenmodes on all other growth- 

rate curve segments consist of forward traveling RHP and LHP electromagnetic waves and 

a forward-traveling electrostatic wave. 

Some properties of the growth-rate curves in Fig. 12(a) are similar to those in Fig. 7(a). 

Like Fig. 7(a), Fig. 12(a) shows no growth at large values of k. Both sets of curves show 

very large growth rates at small values of |fc|, where backward waves occur [i.e.., near point 

B in Fig. 7(a) and point C in Fig. 12(a)]. The eigenmode at point C in Fig. 12(a) consists 

of a backward-traveling LHP electromagnetic wave [from Ei-(k,u>)}, and forward-traveling 

LHP electromagnetic and electrostatic modes. Reference to Figs. 12(c) and 12(d) shows 

that the backward-traveling component exceeds the other two components in amplitude. 

In Sec. III.C, a similar situation was found to exist at point B in Fig. 7(a), except that 

the forward-traveling electromagnetic component is RHP. Like Fig. 7(a), Fig. 12(a) shows 

a fairly large growth rate at the resonance wavenumber on the branch ACBIJ. Moreover, 

Figs. 12(c) and 12(d) show that the corresponding eigenmode has a relatively strong RHS 

electromagnetic component. 

Finally, notice that no gap appears in the growth-rate curves in Fig. 12(a) to corre- 

spond to the gap between points F and H in Fig. 7(a). 

D. Remarks Concerning Numerical Examples. 

The analysis of the above numerical examples for the axial-dependent equilibrium 

leads to the same general conclusions as those given in Sec. III.C for the time-dependent 

equilibrium. A rich structure of different growth-rate curves and unstable eigenmodes 

can be induced by varying the form of ^(0) *•£., the values of w\ and v>2. A suitable 

choice of ^(C) can significantly increase growth rates of RHP electromagnetic waves at 

the resonance wavenumber k = 1/(1 — ßz) and can significantly increase or reduce growth 

rates at large values of k. At small values of k, where backward-traveling components are 

present, growth rates and the structures of eigenmodes depend strongly on the form of 

^(C). This fact suggests that properties of absolute instabilities may depend strongly on 

ty{C)- However, a study of this conjecture has not been carried out. 
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For the same parameters (ftC57o,ao), growth rate curves for corresponding (si = Wi, 

s2 = W2) time-dependent and axial-dependent systems usually show some resemblance. 

Nevertheless, the eigenmode structures are very different in the two cases. In the time- 

dependent case, unstable eigenmodes for coupled systems consist of two or three compo- 

nents of the same wavenumbers and different frequencies, whereas in the axial-dependent 

case the components have the same frequencies and different wavenumbers. Moreover, 

for small values of k, the handedness and directions of motion of components may differ 

between the two cases.   , 
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V. Conclusions 

We have studied stability properties of a relativistic electron beam propagating along 

an applied magnetic field JBoez, using the Maxwell-Vlasov equations under the constraint 

that spatially dependent quantities are functions of z only. Of particular interest are 

those cases in which the equilibrium distribution is not uniformly random in the electron 

gyro-phase angle <j)< Two equilibrium distributions have been considered. These are the 

time-dependent distribution /o(p±,Pz,f), where f = <£-Qci/7, and the spatial-dependent 

distribution /O(PJ.IP*>C)> where ( = <j) — m£lcz/pz. Since neither of these distributions 

can be converted into the other by a Lorentz transformation, the distributions represent 

two physically different systems. It is found that in general the Fourier components of the 

perturbed electric and magnetic fields are related the integral equations (26)-(28) for the 

case of the time-dependent equilibrium distribution, and by the integral equations (41)-(43) 

for the case of the spatial-dependent equilibrium distribution. In our numerical analysis, 

however, we consider special cases in which the integral equations reduce to algebraic 

equations even though the equilibrium distribution is not uniformly random in phase. 

If there is no spread in electron energies (or equivalently p) in the time-dependent 

equilibrium distribution, then the integral equations (26)-(28) reduce to just three algebraic 

equations [Eq. (58)] relating the Fourier components E\-{k,u))) Ex+(k,v — 2coc), and 

Eiz(k,u) — u>c) of the perturbed fields. Consequently, an eigenmode of the system consists 

of a RHP electromagnetic wave, a LHP electromagnetic wave, and an electrostatic wave. 

These components have the same wavenumber, and the same spatial and temporal growth 

or decay rates, but have different frequencies. [The electrostatic component is decoupled 

if the Fourier coefficient <h(po5 &) hi Eq. (57) vanishes, and all three components decouple 

if 52 (P0)Q) also vanishes.] 

If there is no spread in the axial component of momentum (p2) in the spatial-dependent 

equilibrium distribution, then the integral equations (41)-(43) reduce to just three al- 

gebraic equations [Eq. (89)] relating the perturbed field Fourier components Ei-(k,u), 

Ei+(k + 2mClc/pxo}u)), Eiz(k + mQ.c/pZQ,uj). Therefore, the components of an eigenmode 

are a RHP electromagnetic wave, a LHP electromagnetic wave, and an electrostatic wave. 
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These components have the same frequency, and the same spatial and temporal growth or 

decay rates, but have different wavenumbers. [In analogy with the time-dependent case, 

the electrostatic component is decoupled if the Fourier coefficient hi(p±,pzo) in Eq. (88) 

vanishes, and all of the components decouple if h(p±,Pzo) also vanishes.] 

Numerical computations of stability properties have been carried out for both the time- 

and spatial-dependent equilibrium distributions for the case where no spread is present 

in both p and the pitch angle a (or equivalently in both p± and p2). In this case the 

frequencies and wavenumbers can be normalized to the relativistic cyclotron frequency uc 

by defining Co = u/ue and k = ck/uc. The computations are restricted to real values of k, 

so that Im£ > 0 indicates temporal growth. It is found that (for fixed applied magnetic 

field, energy, and pitch angle) a rich variety of growth-rate curves and eigenmodes can be 

obtained by changing the dependence of the equilibrium distribution on the phase angle. 

Appropriate choices of the phase-angle dependence can significantly increase growth rates 

near the resonance wave number kr = 1/(1 - ßx). Growth rates at large values of k can 

on the one hand be enhanced and on the other hand be suppressed altogether. Moreover, 

finite intervals (in k) of no growth can be produced. Finally, growth rate curves and 

the form of eigenvectors at small values of |fc|, where backward traveling components are 

present, are particularly sensitive to the (/»-dependence of the equilibrium distribution. 

As an important area in our current research, we are analyzing the integral equations 

to determine the structures of eigenmodes in the general case. 
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APPENDIX H 

C    PROGRAM TO COMPUTE CORRELATION DIMENSION FROM DATA SET 
C 
C    INPUT MATRIX (ORBIT TRAJECTORY) FROM FILE 
C    INPUT IDELAY THE TIME DELAY IN THE CONSTRUCTION OF 
PSUEDO-VECTOR 
C    INPUT IMBED THE DIMENSION OF THE PSUEDO-VECTOR 
C    INPUT NUM THE NUMBER OF POINTS FOR WHICH THE CORRELATION 
INTEGRAL 
C     WELL BE PLOTED 

REAL A,C,R,DMAX,DMIN 
DIMENSION A(5000),C(500),R(500) 
INTEGER MBED,EDELAY,NUM 
NAMELIST/INPUT/IMBED,IDELAY,NUM 
OPEN (2,FILE=^-INPUT JMT^STATUS='OLD') 
READ (2,INPUT,ERR=1000) 
WRITE (6,INPUT) 
OPEN (4^ILE=PLOT.DAT,,STATUS=,OLD*) 
OPEN(9,FILE=,CPLOT.DAT',STATUS=,NEW) 
DO 12 1=1,5000 
READ (4,10,IOSTAT=IO) A(I) 
IF (10 .EQ. -1)THEN 
NDATA = 1-1 
GO TO 13 

ENDIF 
12 CONTINUE 
10 FORMAT (:,(E15.6)) 

C FIND THE NUMBER OF DATA POINTS IN THE INPUT FILE 
C NDATA = 0 
C DO 111=1,5000 
C IF (A(I) .NE. 0.0)THEN 
C NDATA = NDATA+1 
C ELSE 
C GO TO 13 
C ENDIF 
11 CONTINUE 
13 CONTINUE 
C 
C    FIND THE MAXIMUM AND MINIMUM DISTANCE BETWEEN ELEMENTS IN 
THE DATA-SET 
C 

CALLMAXMIN(A,NDATA,DMAX,DMIN,IMBED,IDELAY) 
WWTE^^MDATAMINANDMAXVALUES^NDATA,' 'J^MN,' ',DMAX 

C    NOW FIND THE CORRELATION INTEGRAL 
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CALLCORREL(A,NDATAJ)MAX,DMIN,IMBED,IDELAY5NUM,C,R) 

C    NOW WRITE THE CORRELATION DATA TO AN OUTPUT FILE 
DO 22 I=1,NUM 
WRITE(9,20)R(I),C(I),ALOG(R(I)),ALOG(C(I)) 
WRrTE(6,20) R(I),C(I),ALOG(R(I)),ALOG(C(I)) 

20   FORMAT(4(E15.6)) 
22   CONTINUE 

STOP INFORMAL TERMINATION 
1000 STOP "ERROR IN NAMELIST READ' 

END 
SUBROUTINE MAXMIN(A,NLENGTH,DMAX,DMIN,IMBED,1DELAY) 
REAL A(NLENGTH),DMAX,DMN,Z,D,D1 
INTEGER MBED,IDELAY 

C    THIS IS A STATEMENT FUNCTION 
Z(LJ) = A(I+( J-1 )*IDELAY) 
NC = NLENGTH - (IMBED-1)*IDELAY 
DMAX = 0.0 
DMIN=1.0E3 
DO30I=l,NC-l 

DO20K=I+l,NC 
D = 0.0 

DO 10 JJ=1,IMBED 
D1=(Z(I,JJ)-Z(K,JJ))**2 
D = D1+D 

10 CONTINUE 
DMAX = MAX1(DMAX,D) 
DMIN = AMIN1(DMIN,D) 

20       CONTINUE 
30   CONTINUE 

DMAX = SQRT(DMAX) 
DMIN = SQRT(DMIN) 
RETURN 
END 
SUBROUTINE CORREL(A,NDATA,DMAX,DMIN,IMBED,IDELAY,NUM,C,R) 
REAL A(NDATA),DMAX,DMIN,DINC,C(NUM),R(NUM) 
INTEGER IMBED,IDELAY,NUM 

C    THIS IS A STATEMENT FUNCTION 
Z(LJ) = A(I+(J-1)*IDELAY) 
DINC = (DMAX - DMIN)/FLOAT(NUM-1.0) 
DO 10 I=1,NUM 
C(I) = 0.0 
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R(I) = DMIN + (I-1)*DINC 
10   CONTINUE 

NC = NDATA - (IMBED-1)*IDELAY 
DO 40 I=1,NC-1 

DO30K=I+l,NC 
D=0.0 
DO 20 JJ=1, IMBED 
Dl = (Z(I,JJ) -Z(K,JJ))**2 
D = D + D1 

20 CONTINUE 
MM = INT( (SQRT(D) - DMIN)/ DDSfC ) 
DO 25 M1=MM+1,NUM 
C(M1)=1+C(M1) 

25 CONTINUE 
30       CONTINUE 
40   CONTINUE 

DO50L=l,NUM 
C(L) = C(L)/NC**2 

50   CONTINUE 
RETURN 
END 
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C    Program ssvdly.for 
c      PROGRAM TO EVALUATE LYPUNOV SPECTRUM 
C      FROM TRAJECTORY DATA 
c 
c    The trajectory data in this revision, comes from 
c    the psuedo-trajectories generated by the svd 
c    of a single observable time series, svdplotfor 
c 
c MODIFICATION OF CODE BY WOLFE .ET AL 
c These final modification are implemented on this 
c the 16 day of March 1995, and substainially enhances 
c and modifies the results of Wolfe .et. al 
C 

INTEGER DIM,EVOLV,IND,BACKIT,BACKMAX,NPT 
REAL PT,VOUT,VPREV,VOL 
REAL VOLNEW,NORM,duml,dum2 
REAL Z,SUM,ZLYP,test 
REALDOT,dum3,DEX 
Dimension PT(5,5),Vout(5),Vprev(5,5),Vol(5),IND(6) 
Dimension Volnew(5),Duml(5000),dum2(5) 
Dimension Z(5000,5),Sum(5),Zlyp(5),DEX(5000),Dum3(5) 
LOGICAL GOODPT ' 
COMMON/BLK1/ Z,IND,DEX,DIM 

C     THIS PERMITS EMBEDING DIMENSION UP TO 5 
NAMELIST/NAMEIN/ DT,SCALMN,EVOLV,BACKMAX 

zeroeff = 1.0e-5 

C 
OPEN (1 JILE^svdata.dat^STATUS^OLD) 
OPEN^FILE^sdlypJn.datSTATUS^OLD') 
OPEN(5,FILE=,lypdspec.dat,,STATUS=,NEW) 

READ (2,NAMEIN,ERR=4000) 
WRITE(6,NAMEIN) 

C 
C      IND( 1) POINTS TO THE FIDUCIARY TRAJECTORY 
C      IND(2) POINTS TO THE SECOND TRAJECTORY, etc 
C        SUM HOLDS THE RUNNING EXPONENT ESTIMATE SANS 1/ TIME 
C        ITS IS THE TOTAL NUMBER OF PROPAGATION STEPS 

IND(1)=1 
AII-4 



4 

APPENDIXE 

BACKIT = 0 
D0 2J=1,DIM 

SUM(J) = 0.0 
2 CONTINUE 

ITS = 0 
C 
C READ IN THE TIME SERIES 
c 

Read(l,*)NPT,DIM 
D0 4I=1,NPT 
READ( 1 ,*)(Z(I,K),K=1 ,DM) 

4 CONTINUE 
c 
c FIND THE NEAREST NEIGHBOR TO THE FIRST ] 

5 DO1000JDIM=l,DIM 
DO20I=l,NPT 
DO = 0.0 

DO10J=l,DIM 
DO = DO +(Z(I,J) - Z(IND(JDIM),J))**2 

10 CONTINUE 
duml(i) = D0 
DEX(i) = i 
Write(*,*) DEX(i) and i',Dex(i),i 

20 CONTINUE 
c       do 21 iii=l,npt 
c       duml(iii) = d(jdim,iii) 
c       DEX(ni) = FLOAT(ni) 
c21      continue 
c       CALLSORT(duml,INDEX,SCALMN,NPT) 

CALL SORT2(NPT,DUMl,DEX) 

C      THIS WILL RESULT IN AN INDEX OF POINTS OUTSIDE OF THE NOISE 
C        SCALE LENGTH AND IN ORDER OF INCREASING DISTANCE FROM THE 
C        FIDUCIARY POINT 

C        DETERMINE IF A SELECTED POINT IS A GOOD POINT, I.E. IT IS 
C        SEPARATED BY AT LEAST THE SCALE MINIMUM FROM THE ALL 
PREVIOUSLY 
C        SELECTED POINTS 

INEXT=1 
30       DO 50 I=DSfEXT,NPT 

GOODPT = .TRUE. 
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DO40J=l,JDIM 
Call DIST(J,IJDO) 
GOODPT = DO .GT. SCALMN .AND. GOODPT 

40        CONTINUE 
IF(GOODPT)THEN 
INDEX = MX(DEX(I)) 
IND(JDIM+1) = INDEX 

INEXT = 1+1 
GO TO 60 

ENDIF 
50       CONTINUE 
C 
C        THIS LINE OF CODE IS REACHED ONLY IF A CHECK OF ALL NPTS 
YIELD 
C        NO GOOD POINTS 

STOP "NOT ENOUGH DATA 
60       CONTINUE 
C 
C        NOW CHECK THAT THE POINT SELECTED IS NOT DEGENERATED 
C        GIVE THE LOCAL NAME OF THE VECTOR VOUT 

DO 70 II=1,DIM 
VOUT(II) = Z(IND(JDIM+l),n) - Z(IND(1),II) 

70       CONTINUE 

CALL GRAM(VOUT,VPREV,DIM,JDIM-l,test) 
NORM = test 

EF(NORM XT. zeroeff )THEN 
IF(BACKIT .GE. BACKMAX) STOP MAX BACK SUBSTITUTION 

REACHED* 
BACKIT = BACKIT+1 
GO TO 30 

ENDIF 
C        THIS LINE IS REACHED ONLY IF NON-DEGENERATE 
ORTHOGONALIZATION 
C        HAS TAKEN PLACE, AS IS DESIRED 

VOL(l) = NORM 
IF(JDIM .EQ. 1) GO TO 1000 

C        STORE THE COMPONENTS OF WREV IN A DUMMY ARRAY (DUM2) 
C        INORDER TO PASS IS TO THE SUBROUTINE 

DO 71111=1,DIM 
DUM2(III) = VPREV(JDIM,ffl) 
DUM3(ffl) = VPREV(l,m) 
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71       CONTINUE 
CALL VDOT(VOUT,DUM2,DIM,DOT) 

c       VOL(JDIM) = VOL(JDIM-l)*ABS(DOT) 
VOL(JDM) = ABS(DOT) 

c      Compare the results of NORM and DOT, they should have the same values 
c       Write(*,*) 'Jdim and NORM and DOT',JDM, NORM(JDM), DOT 
c      Check the orthogonalization of vectors 

c       CALL VDOT(Dum3,Dum2,Dim,dot) 
c      Write(*,*) 'The dot Product of e-1 and e-JDIM is *,dot 

C 
1000   CONTINUE 

THE COORDINATES OF THE EVOLVED POINTS ARE AS FOLLOWS 

DO1010J=lJ)IM+l 
IF(IND(J)+EVOLV .GT. NPT)STOP END OF FILE REACHED' 

DO 1020 I=1,DIM 
PT(J,I) = Z(IND(J)+EVOLV,I) 

1020   CONTINUE 
1010   CONTINUE 
C 
C        FIND THE VOLUMES OF THE EVOLVED POINTS 

DO2000JDIM=l,DIM 
DO2010II=l,DIM 
VOUT(n) = PT(JDM+1 ,H) - PT( 1,11) 

2010   CONTINUE 
CALL GRAM(VOUT,VPREV,DIM,JDIM-l,TEST) 

NORM = TEST 
VOLNEW(l) = NORM 

IF(JDIM .EQ. 1) GO TO 2000 

C        STORE THE COMPONENTS OF VPREV IN A DUMMY ARRAY (DUM2) 
C        INORDER TO PASS IS TO THE SUBROUTINE 

DO 171 111=1,DIM 
DUM2(ni) = VPREV(JDIM,in) 

171      CONTINUE 

CALL VDOT(VOUT,DUM2,DIM,DOT) 
c       VOLNEW(JDM) = VOLNEW(JDIM-l)*ABS(DOT) 
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VOLNEW(JDM) = ABS(DOT) 
c      Compare the NORM and DOT for the New Volumes 
c       Write(*,*) *New Vols: JDIM and NORM and DOT',JDIM,NORM(JDIM),DOT 
2000   CONTINUE 

C        EVALUATE APPROXIMATE EXPONENTS 
ITS = ITS + 1 
DO 3000 J=1,DM 

SUM(J) = SUM(J) + ALOG(VOLNEW(J)A^OL(J))/(FLOAT(EVOLV) 
. *DT*ALOG(2.0eO)) 

ZLYP(J) = SUM(J)/FLOAT(ITS) 
3000   CONTINUE 

WRITER,*) (ZLYP(J),J=1,DM) 
55       format(il0,2x,3(el6.5)) 
C 
C        FIND THE DIM-NEAREST 'GOOD' NEIGHBORS OF THE EVOLVED 
C        FIDUCIARY POINT 

IND( 1) = IND( 1) + E VOL V 
IF( IND(l) XT. NPT)THEN 
GO TO 5 
ENDIF 
STOP FORMAL EXECUTION' 

4000   STOP "ERROR IN NAMELIST 
END 

SUBROUTINE DIST(I,J,D0) 
INTEGER IND,INDEX,DIM 
REAL Z,D0,DEX 
Dimension IND(6),Z(5000,5),DEX(5000) 
COMMON/BLK1/Z,IND,DEX,DIM 

DO = 0.0D0 
INDEX = IFLX(DEX(J)) 
do5ii=l,DIM 
DO = DO + (Z(IND(I),ii) - Z(INDEX,ii) )**2 

5      continue 
DO = SQRT(DO) 
END 

SUBROUTINE SORT(A,INDEX,SCALMN,NLIST) 
INTEGER NLIST,INDEX,I,IMIN 
REAL A,DUM,D 
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REAL SCALMN 
DIMENSION INDEX(5000),A(5000),Dum(5000) 

c intialize the dummy variable dum 
do 10 ii=l,NLIST 
DUM(ii) = A(ii) 

10       continue 
DO100K=l,NLIST 

D=1.0E10 
DO 50 I=K,NLIST 
IF(DUM(I) .LE. D .AND. DUM(I) .GE. SCALMN)THEN 
D = DUM(I) 
MIN = I 

ENDIF 
50       CONTINUE 

DUM(MIN) = DUM(K) 
DUM(K) = D 
INDEX(K) = MIN 

100     CONTINUE 
RETURN 
END 

SUBROUTINE GRAM(VIN,VPREV,DIM,NPREV,NORM) 
INTEGER DIM,NPREV 

REAL vTN,DUM,GSC,VPREV,NORM,DUM2,test 
Dimension Vin(5),Dum(5),Gsc(5),Vprev(5,5)JJum2(5) 

C 
C INITIALIZE DUM 

DO 10 I=1,DM 
DUM(I) = VIN(I) 

10       CONTINUE 
C 
C        FIND THE COEFFICIENTS 

EF(NPREV .EQ. 0) GO TO 40 
DO 20 J=1,NPREV 

C        STORE THE COMPONENTS OF VPREV IN A DUMMY ARRAY (DUM2) 
C        INORDER TO PASS IS TO THE SUBROUTINE 

DO 71 HI=1,DIM 
DUM2(ni) = VPREV(J,m) 

71       CONTINUE 

CALL VDOT( vTN,DUM2,DIM,test) 
GSC(J) = test 

20       CONTINUE 
DO 30 L=1,NPREV 
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DO30J=l,DM 
DUM(J) = DUM(J) - GSC(L)*VPREV(L,J) 

30       CONTINUE 
40       CALL VDOT(DUM,DUM,DIM,NORM) 

IF(NORM .EQ. 0) RETURN 
NORM = SQRT(NORM) 
DO 50 J=1,DM 
VPREV(NPREV+1 ,J) = DUM(J)/NORM 

50       CONTINUE 
RETURN 
END 

SUBROUTINE VDOT(Vl,V2,DMJX)T) 
INTEGER DM 

REALVl,V2,DOT 
Dimension V1(5),V2(5) 

DOT = 0.0 
DO 101=1,DM 
DOT = DOT + Vl(I)*V2(I) 

10       CONTINUE 
RETURN 
END 
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