
AFIT/GM/ENP/98M-03 

REGRESSION ANALYSIS OF RADAR MEASURED 
OPTICAL TURBULENCE WITH SYNOPTIC SCALE 

METEOROLOGICAL VARIABLES 

THESIS 

Diana L. Hajek, Captain, USAF 

AF1T/GM/ENP/98M-03 

Approved for public release; distribution unlimited 

19980409035 



AFIT/GM/ENP/98M-03 

The views expressed in this article are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense or the US 

Government. 

Approved for public release; distribution unlimited 



AFIT/GM/ENP/98M-03 

REGRESSION ANALYSIS OF RADAR MEASURED OPTICAL TURBULENCE 
WITH SYNOPTIC SCALE METEOROLOGICAL VARIABLES 

THESIS 

Presented to the Faculty of the Graduate School of Engineering 

of the Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Meteorology 

Diana L. Hajek 
Captain, USAF 

March 1998 

Approved for public release; distribution unlimited 



AFIT/GM/ENP/98M-03 

REGRESSION ANALYSIS OF RADAR MEASURED OPTICAL TURBULENCE 
WITH SYNOPTIC SCALE METEOROLOGICAL VARIABLES 

Diana L.Hajek,B.S. 
Captain, USAF 

Approved: 

Lt Col Cecilia A. Askue 
Chairman, Advisory Committee 

Date 

TUUdS^ 
Lt Col Michael K. Walters 
Member, Advisory Committee 

6 Mm <\x 
Date 

Member, Advisory Committee 

ProrDaniel R ReynpldsJ 
Member, Advisory i 

^> u^l? 
Date 

Date 



Acknowledgments 

I would like to thank my thesis advisor, Lieutenant Colonel Cecilia A. Askue, and my 

committee members, Lieutenant Colonel Michael K. Walters, Dr. Won B. Roh and 

Professor Daniel E. Reynolds for their advice and support throughout the course of this 

thesis effort. I'd also like to express my appreciation to the thesis sponsor, Air Force 

Research Laboratory, especially Major Michael Johnson, Captain Robert Asbury and Dr. 

Frank Eaton. Their guidance and support enabled the completion of this research project. 

I'd also like to express my appreciation to Major Cliff Dungey who helped with 

understanding physical processes related to optical turbulence. Special thanks goes to our 

weather laboratory technician, Master Sergeant Pete Rahe. His help in understanding how 

to manipulate files in the Unix environment while providing needed space for new data 

was a lifesaver. 

Most importantly, I'd like to express my gratitude to my husband whose patience and 

understanding have allowed me to focus on this project and my entire master's degree 

program. His support and motivation was invaluable to me over the past twenty-two 

months of this program. 

in 



Table of Contents 

Page 

Acknowledgments iii 

List of Figures vii 

List of Tables viii 

Abstract ix 

1. Introduction 1 

1.1 Background 1 

1.2 Significance of the Problem 2 

1.3 Problem Statement 3 

1.4 Benefit from Solving the Problem 3 

1.5 Scope 4 

1.6 General Approach 5 

1.6.1 Data Processing 5 

1.6.2 Multiple Regression Analysis 5 

1.7 Thesis Organization 5 

2. Literature Review 7 

2.1 Early Work 7 

2.1.1 VanZandt and others, 1978 7 

2.1.2 Warnock and VanZandt, 1985 8 

2.1.3 Warnock and others, 1985 9 

IV 



2.1.4 Nastrom and others, 1986 10 

2.1.5 Tsuda and others, 1988 12 

2.2 Recent Work 12 

2.2.1 Frisch and others, 1990 13 

2.2.2 Nastrom and Eaton, January 1993 13 

2.2.3 Nastrom and Eaton, 1995 15 

2.3 Results Expected 15 

3. Methodology 17 

3.1 Theory 17 

3.1.1 Index of Refraction 17 

3.1.2 Refractivity Turbulence Structure Function and Parameter 21 

3.1.3 Refractivity Turbulence Structure Parameter and Radar Reflectivity 22 

3.2 Radar Used to Collect Q,2 Data 24 

3.3 Data Processing 27 

3.3.1 Meteorological Data 27 

3.3.1.1 Ageostrophic Wind 28 

3.3.1.2 Bulk Richardson Number 31 

3.3.2 Optical Turbulence Data 35 

4. Data Description and Analysis 37 

4.1 Data Description 37 

4.1.1 NCEP/NCARReanalysis Data Set 37 



4.1.2 Radar Data 39 

4.2 Data Analysis 40 

4.2.1 Autocorrelation 40 

4.2.2 Normality Check 42 

4.2.3 Graphical Analysis 43 

4.2.4 Regression Analysis 46 

4.2.4.1 Simple Linear Regression 46 

4.2.4.2 Analysis of Variance 48 

4.2.4.3 Goodness-of-Fit Measures 50 

4.2.4.4 Analysis of Residuals 53 

4.2.4.5 Multiple Linear Regression 55 

4.2.4.6 Stepwise Regression 57 

5. Findings and Conclusions 59 

5.1 Results 59 

5.2 Conclusions 66 

5.3 Recommendations for Further Research 68 

6. Bibliography 70 

7. Vita 73 

VI 



List of Figures 

Page 

Figure 1. ABL Concept (GAO, 1997:5) 2 

Figure 2. Grid used in this study 28 

Figure 3. Autocorrelation function for VT at 30° N 107°30'W. 41 

Figure 4. Wilk-Shapiro plot for log (C2) around 10,500 m. 43 

Figure 5. Scatter plot of log (C2) vs. pressure at the max-wind level (PM) 44 

Figure 6. Scatter plot of log (Q,2) vs. zonal wind at the max-wind level (UM) 45 

Figure 7. Scatter plot of log (C2) vs. ageostrophic meridional wind at 925 mb (VAG). 45 

Figure 8. Schematic illustration of simple linear regression (Wilks, 1995:161) 47 

Figure 9. Small MSE indicating a fairly good regression relationship (Wilks, 1995:167).51 

Figure 10. Large MSE showing a poor regression relationship (Wilks, 1995:167) 52 

Figure 11. An example of the F distribution curve (Devore, 1995:397) 53 

Figure 12. Scatter plot of residuals vs. predicted values (Wilks, 1995:172) 55 

Figure 13. Scatter plot of residuals vs. predicted values (32°30'N,107o30,W,12,600 m) .62 

Figure 14. Wilk-Shapiro plot of residuals (32°30'N, 107°30'W, 12,600 m) 63 

Figure 15. F distribution curve for 32°30'N, 107°30'W, 12,600 m. 64 

Figure 16. Predictor variable vs. frequency of occurrence in all regression models 67 

vu 



List of Tables 

Page 

Table 1. Radar parameters used in this study (Nastrom and Eaton, 1993b:2136) 26 

Table 2. Meteorological variables used in this study 29 

Table 3. Time and hours used in to calculate optical turbulence averages 35 

Table 4. Vertical levels used for optical turbulence data averages 36 

Table 5. Classification of synoptic archive variables used in this study 38 

Table 6. Estimated days where radar data was missing or failed QC check 39 

Table 7. ANOVA Table for Simple Linear Regression (Wilks, 1995:166) 50 

Table 8. ANOVA Table for Multiple Linear Regression (Wilks, 1995:177) 56 

Table 9. R2 values for latitude/longitude coordinates vs. averaged vertical level 60 

Table 10. MSE values for latitude/longitude coordinates vs. averaged vertical level 61 

Table 11. ANOVA table for 32°30'N, 107°30'W, 12,600 m 61 

Table 12. F and p-values for latitude/longitude coordinates vs. averaged vertical level.. 65 

Table 13. Number of predictor variables in each regression model 66 

Table 14. Top 10 predominant predictor variables in descending order of frequency 67 

viu 



AFIT/GM/ENP/98M-03 

Abstract 

A key issue to the U. S. Air Force's Airborne Laser (ABL) program is the ability to 

accurately predict the level of optical turbulence that the ABL will encounter at flight 

levels in the upper troposphere and lower stratosphere. The optical turbulence must be 

characterized so that the range and range variation of the ABL can be determined. 

Gravity wave spectra resulting from frontal or jet stream passage are presumed to cause 

layers of optical turbulence; however, exact relationships between optical turbulence and 

synoptic scale meteorological phenomena are unclear. 

This study assesses the statistical relationship between optical turbulence and synoptic 

scale variables through multiple linear regression. The optical turbulence measurements 

were measured by the 50 MHz radar at White Sands Missile Range, New Mexico from the 

discontinuous period between January 1993 to January 1994. Measurements were 

averaged temporally and vertically to coincide with weather data. The synoptic scale 

meteorological data was extracted from the National Center for Environmental 

Prediction/National Center for Atmospheric Research reanalysis database. 

Results from the regression models showed that a linear relationship exists between the 

logarithm of optical turbulence and major synoptic scale variables; however, this 

relationship was a weak one. Based on this, it was concluded that further research was 

needed to define the exact relationship between synoptic scale meteorological variables 

and optical turbulence. 

ix 



REGRESSION ANALYSIS OF RADAR MEASURED OPTICAL TURBULENCE 

WITH SYNOPTIC SCALE METEOROLOGICAL VARIABLES 

1. Introduction 

1.1 Background 

Operation Desert Storm showed that U. S. armed forces have limited capability against 

theater ballistic missiles. The U.S. military's current defense are weapons such as the 

Patriot which destroy missiles near the end of their trajectory. There is no capability to 

defend against missiles shortly after they have been launched~also known as the boost 

phase. To fulfill this need, the U. S. Air Force developed the Airborne Laser (ABL) 

program. This program will involve placing a multimegawatt laser, a beam control 

system, and related equipment on a Boeing 747-400 aircraft, enabling detection and 

destruction of enemy missiles during their powered boost phase of flight (GAO, 1997:1). 

The concept of the ABL system is to detect an enemy missile shortly after its takeoff, 

track the missile's path, and direct a concentrated laser beam on the missile until the beam's 

heat causes the missile's pressurized casing to fracture and explode igniting the remaining 

fuel. This explosion would cause the missile's warhead, in addition to any nuclear, 

chemical or biological agents it may carry, to fall short of its intended target (GAO, 

1997:2). The window of opportunity is only from the time the missile clears the cloud 

tops to its booster burnout, since the missile is under pressure only while burning. The 

window can range from 30 to 140 seconds based on missile type. ABL's concept is shown 

in Figure 1. 
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Figure 1. ABL Concept (GAO, 1997:5) 

1.2 Significance of the Problem 

A key issue to ABL's success is the ability to predict the level of optical turbulence that 

the ABL is expected to encounter at flight levels in the upper troposphere and lower 

stratosphere (GAO, 1997:2). This atmospheric optical turbulence must be characterized 

so the range and range variation for the ABL can be established. Optical turbulence, also 

known as the refractive index structure parameter, is the single most important factor in 

determining the electromagnetic wave propagation characteristics in the troposphere and 

stratosphere (Warnock and VanZandt, 1985:1). The ABL, therefore, must be able to 



compensate for the optical turbulence in order to maximize its range and decrease its 

range variation. 

Gravity wave spectra resulting from activity such as frontal passage or jet stream 

passage are presumed to cause layers of optical turbulence (Nastrom and Eaton, 1993a:l; 

Bluestein, 1993:568). However, exact relationships between optical turbulence and 

synoptic scale meteorological phenomena are unclear, and continuous sets of optical 

turbulence measurements for extended periods of time are rare (Nastrom and Eaton, 

1993b:l). If a strong statistical relationship between optical turbulence and major 

synoptic features can be found, a means of forecasting optical turbulence through synoptic 

scale variables can be established. This statistical relationship is related to the range and 

range variation of ABL technology which will be addressed in the program's Authority to 

Proceed milestone scheduled for summer 1998. 

1.3 Problem Statement 

What statistical relationship exists between radar measured values of optical turbulence 

and major synoptic scale meteorological variables? 

1.4 Benefit from Solving the Problem 

A strong statistical relationship between optical turbulence, characterized by the 

refractivity structure parameter Cn2, and specific synoptic features would enable the ABL 

team to establish trends of C2 anywhere on the globe deriving them from archived 

synoptic scale climatology. A strong relationship would also provide the ABL team with a 

guide as to where to collect C2 data. As mentioned in 1.2, the ability to forecast Cn2 plays 



a major role in demonstrating the ABL's range and range variation. Weak correlation 

between C2 and synoptic variables would still provide useful information to the ABL 

team—it would eliminate one method of forecasting optical turbulence. In this case, the 

ABL team may explore other d2 forecasting methods, possibly based on local or 

mesoscale phenomena, in order to demonstrate the range of the ABL. 

1.5 Scope 

This study was focused on determining what statistical relationship existed between 

optical turbulence measurements taken from the 50 Megahertz (MHz) radar at White 

Sands Missile Range, New Mexico, and corresponding synoptic scale meteorological 

variables extracted from the National Center for Environmental Prediction/National Center 

for Atmospheric Research (NCEP/NCAR) reanalysis database through multiple linear 

regression. Specifically, this study determined the relationship between Cn2 and variables 

associated with fronts, jet streams, the Bulk Richardson Number and the ageostrophic 

wind at the synoptic scale. Details on the data set will be discussed in Chapter 4. 

This study did not specifically correlate turbulence to gravity wave activity using 

indicators such as the variance of vertical velocity (Nastrom and Eaton, 1993b:82). 

However, since some non-convective gravity waves can be generated by frontogenetical 

processes or by air parcels moving through jet streaks, gravity wave activity was 

accounted for in this study (Bluestein, 1993:568). For example, the maximum zonal and 

meridional winds were included as potential predictors in the regression models. Gravity 

waves may be related to these winds; therefore, gravity wave activity was indirectly 

accounted for. 



1.6 General Approach 

This research consisted of two main parts: data processing and multiple regression 

analysis as described below. 

1.6.1 Data Processing. 

The radar measured d2 data and the climatological data from the NCEP/NCAR 

reanalysis database was provided by the thesis sponsor, Air Force Research Laboratory 

(AFRL). Meteorological parameters associated with fronts, jet streams and the bulk 

Richardson Number were extracted from the NCEP/NCAR reanalysis database to 

correspond to the location and dates for which d2 data was collected. Since the 

climatological and d2 data was not simultaneous, the d2 values were averaged in six hour 

increments to coincide with the weather data. The turbulence measurements were also 

averaged vertically in 300 meter increments at altitudes corresponding to tropopause 

heights. 

1.6.2 Multiple Regression Analysis. 

Multiple regression analysis was performed with the d2 value at varying altitudes as the 

dependent variable and the meteorological values as the independent variables. Multiple 

regression analysis was appropriate because it measured the degree of association between 

the turbulence and synoptic scale meteorological values (Tabachnick and Fidell, 1983:86). 

The SAS computer statistics package was used to complete the regression analysis. 

1.7 Thesis Organization 

Chapter 2 discusses past and recent literature related to the problem under 

investigation. It describes methods used to gain an understanding of small scale 



turbulence by studying d2 using measurements from wind profiler radars. It also 

describes some modeling efforts and their comparisons to wind profilers. Finally, it 

provides a synopsis of results expected based on the literature search. 

Chapter 3 provides an overview of the theory of optical turbulence and how it relates to 

radar. It also provides details on the radar at White Sands Missile Range, New Mexico 

used to make the Q2 measurements. Lastly, it describes the data processing method 

which includes an outline of the theory behind some of the meteorological variables 

derived. 

Chapter 4 describes the NCEP/NCAR reanalysis database and the meteorological data 

extracted from it and the d2 data observed using the White Sands Missile Range radar. It 

also explains the statistical tools employed in the data analysis such as multiple linear 

regression. 

Finally, Chapter 5 presents the results and conclusions of this study. Recommendations 

for further research are also given. 



2. Literature Review 

2.1 Early Work 

Understanding small scale turbulence enables us to understand the general circulation of 

the atmosphere including effects on propagation of electromagnetic waves (Nastrom and 

others, 1986:6722; Nastrom and Eaton, 1993b:81). One method to gain an understanding 

of turbulence is to study its parameters, such as the refractivity turbulence structure 

parameter, Q,2. The ability to measure turbulence parameters was enhanced in the 1970s 

and 1980s with use of pulsed radars, called wind profilers, capable of detecting returns 

from the clear air. Measurements by balloon, aircraft or optical techniques were also 

available, but usually limited to short campaigns (Nastrom and others, 1986:6722). 

Finally, modeling also played a major role in estimating turbulence parameters in the late 

1970s and 1980s. 

2.1.1 VanZandt and others. 1978. 

In their research, VanZandt and others compared observations of d2 measured by a 

Doppler radar with results from a theoretical model. The hypothesis of their paper was to 

determine if fluctuations in refractive index measured by radar were close to values of 

optical turbulence calculated by their model. The model they developed calculated C2 

from rawinsonde profiles of wind, temperature and humidity. The radar observations were 

measured by Doppler radar which is located about 15 kilometers west of Boulder, 

Colorado (VanZandt and others, 1978: 819). 



First, VanZandt and others described their radar measured optical turbulence values. 

Measurements were taken every 50 seconds at heights ranging from 5 to 15 kilometers. 

Since the Q,2 observations varied rapidly with time, they averaged their 50-second 

measurements to 22 to 72-minute averages (VanZandt and others, 1978:822). They then 

compared d2 measurements for 8 March 1978, which had light winds, and 19 March 

1978, which had a moderate jet stream. Their results indicated that the magnitude of d2 

increased with increasing vertical shear (VanZandt and others, 1978:823). 

Next, they discussed the model calculations and compared both sets of data for five 

different days. There was a basic agreement between the model and radar observations so 

their calculations strongly supported their hypothesis. Their comparison also indicated 

relative maxima in d2 magnitude in regions of maximum shear above and below the peak 

of the jet stream in both the radar and model values (VanZandt and others, 1978:827). 

The good agreement between radar observations and model calculations denoted that 

both the radar reflectivity and theoretical model were good estimators of the vertical 

profile of optical turbulence. Therefore, since radars have both excellent temporal and 

spatial resolution, measurements will be extremely useful for studying time and space 

variations of Q2 (VanZandt and others, 1978:827). 

2.1.2 Warnock and VanZandt. 1985. 

Warnock and VanZandt described and provided computer code for a modified version 

of the statistical model described in 2.1.1. This version of the model estimated average 

values of Cn2 for layers of atmosphere about 150 meters thick from National Weather 

Service balloon data or a comparable data set. The use of a statistical model was 



appropriate because they believed that the random fluctuations of refractive index and 

other related physical characteristics were best described by statistics. They further 

supported their use of a statistical model by stating that direct calculation of Q,2 required 

precise measurements of the meteorological values and their gradients with a spatial 

resolution of approximately one meter throughout the entire atmosphere. Since this data 

was not available, they relied on measurable large-scale quantities and statistics (Warnock 

andVanZandt, 1985:2). 

They also explained that fine-scale turbulent flows are embedded in the large-scale 

laminar flow in thin, stratified layers. They suggested these local turbulent flows were 

caused by shear instability in areas where the large-scale flow is stable, but where the fine- 

scale flow is unstable (Warnock and VanZandt, 1985:3). They also described thinner 

layers, several tens of meters or thinner, occurring more often, with many in the 

troposphere and stratosphere at any time (Warnock and VanZandt, 1985:4). 

2.1.3 Warnock and others. 1985. 

Warnock and others compared 12 winter and 22 summer profiles of radar-measured 

and model-calculated values of Q,2 from the revised model just described in 2.1.2. For 

each season, large variations in Q2 were encountered, sometimes near two orders of 

magnitude or greater at one specific height. 

Warnock and others found the model's calculations agreed with the radar data. More 

importantly, the model's calculations provided insight into what weather conditions caused 

the C2 fluctuations. During the winter period, they discovered that large increases in wind 

shear accompanying jet-stream passages increased the intensity of turbulence and thus 



produced large increases in d2. During the summer, without strong convection, Q, 

values above 10 kilometers were similar to winter values; however, below 10 kilometers 

the summer values were greater than winter values even under light wind conditions. 

Warnock and others showed that these greater Q,2 values were due to the humidity and 

humidity gradients contributing to the refractive index and were not caused by increased 

turbulence intensity (Warnock and others, 1985:158). 

2.1.4 Nastrom and others. 1986. 

Nastrom and others studied the variability of Q,2 at altitudes of 4 to 20 kilometers 

measured by the Doppler radars at Poker Flat, Alaska, and Platteville, Colorado (Nastrom 

and others, 1986:6722). The data from the Poker Flat radar was taken from September 

1981 to September 1982. Observations from the Platteville radar were taken from April 

1983 to February 1984 (Nastrom and others, 1986:6724). They investigated variations of 

Cn2 over 30 day periods by examining 3-hour medians. Medians were used instead of 

means because they were less sensitive to extreme values due to interference such as 

reflections from airplanes (Nastrom and others, 1986:6725). 

They found that d2 followed a lognormal distribution at all heights they sampled. This 

enabled them to statistically analyze the data assuming a normal distribution 

They first calculated the autocorrelation function for all 9-hour intervals where at least 

85% of the observations remained after data editing was completed. The individual 

functions were then averaged and examined (Nastrom and others, 1986:6727). They 

determined that the autocorrelation function could be modeled as the sum of a random 

process and first order autoregressive process (Nastrom and others, 1986:6733). Since 

10 



the autocorrelation function also estimates the effective time between independent values 

of Cn2, they found the effective time decreased with height from 25 to 45 minutes in the 

troposphere to approximately 18 minutes in the stratosphere. In other words, in the 

stratosphere, a C2 value is no longer related to the Q,2 value measured 18 minutes after it 

(the autocorrelation function is described further in 4.2.1). They also noted that the 

logarithm of C2, abbreviated as log (Cn2), had the largest mean value when the 

autocorrelation value was the largest (Nastrom and others, 1986:6728). 

Second, they computed monthly averages of the 3 hour medians, or monthly means of 

the medians, of log (C2) (Nastrom and others, 1986:6730). The data showed largest 

monthly means in the winter with a secondary maximum in the summer. The winter 

maximum is related to enhanced baroclinic activity such as wind speed, wind shear and 

gravity waves. The summer maximum is related to increased convection (Nastrom and 

others, 1986:6733). 

Finally, they examined the relationship between Cn2 and other variables using 

correlation coefficients. The coefficients indicated that log (C2) at every level was most 

closely correlated with wind speed near the tropopause. They also found that conditions 

near the surface seemed to affect Cn2. Nastrom and others stated that in specific cases, C2 

relied on the synoptic weather picture and not just the wind flow and static stability where 

the turbulence was measured. Furthermore, a strong correlation between Q,2, gravity 

waves and background wind was discovered (Nastrom and others, 1986:6731). 

11 



2.1.5   Tsuda and others. 1988. 

Tsuda and others discussed echoes observed in the troposphere and lower stratosphere 

in September 1986 by the middle and upper (MU) radar site in northern Japan. They also 

touched upon mechanisms that determine refractive index gradients in the atmosphere 

above 10 kilometers or what they referred to as the dry atmosphere. Finally, they 

discussed effects of gravity waves on layers in the dry atmosphere (Tsuda and others, 

1988:655). 

Data was collected at vertical heights ranging from about 5 kilometers to 21 kilometers 

with a vertical resolution of 150 meters and temporal resolution of 74 seconds. The data 

was then averaged over five records to condense the data set. After examining the data, 

they found a thin, concentrated, echoing layer between 9-12 kilometers and moderately 

stratified reflection layers with upward and downward phase progressions in the 

stratosphere (Tsuda and others, 1988:656). They suggested this intense layer between 9 

and 12 kilometers corresponded to a region of large vertical shear, characterizing large 

temperature gradients in both the vertical and horizontal directions. Weaker layers 

observed in the troposphere were also related to areas of strong wind shear (Tsuda and 

others, 1988:659). Finally, they suggested gravity waves affected the reflection layers, 

causing temperature fluctuations in the stratosphere (Tsuda and others, 1988:656-658). 

2.2 Recent Work 

Recent studies of optical turbulence have shifted from wind profiler radars to radars 

with better resolution. In the past few years, scientists have taken advantage of very high 

frequency (VHF) Doppler radars that provide excellent spatial and temporal resolution for 

12 



measuring Q,2. They also provide the capability to obtain Cn2 data sets with observations 

taken on a continuous basis for extended periods of time. 

2.2.1 Frisch and others. 1990. 

Frisch and others calculated monthly mean backscattered power for five years using 

observations from the 50-megahertz (MHz) wind profiler in Fleming, Colorado. Their 

purpose in this study was to better understand variations in the backscattered signals and 

Cn2, since backscattered power is directly proportional to C2. They suggested that 

understanding these variations would provide further insight into atmospheric turbulent 

processes (Frisch and others, 1990:645-646). 

Frisch and others averaged the backscattered power into 2-kilometer intervals and then 

over a thirty-day period (Frisch and others, 1990:647). After reviewing the data, they 

discovered changes of 2 decibels (dB) or larger in the year-to-year variation of Cn2 (Frisch 

and others, 1990:651). They also found a seasonal cycle in Q,2 below the tropopause in 

addition to the year-to-year change. In contrast, they found no seasonal variation above 

the tropopause. They also studied a record of backscattered power from the Stapleton 

aiport wind profiler in Denver, Colorado, and found comparable longer-term trends 

(Frisch and others, 1990:645). 

2.2.2 Nastrom and Eaton. January 1993. 

Nastrom and Eaton studied the winds and turbulence using observations from the 50- 

megahertz (MHz) VHF Doppler radar at White Sands Missile Range (WSMR), New 

Mexico. They demonstrated that under specific conditions, d2 values in the lower 

13 



stratosphere vary by up to an order of magnitude depending on the source of gravity wave 

activity in the lower atmosphere (Nastrom and Eaton, 1993b:81). 

Observations were obtained for 10 days in March and April 1991, providing a 

continuous data set. Inherent in the observations was a variety of synoptic weather 

patterns such as surface cold fronts, surface troughs and ridge axes. Data was available in 

3-minute increments at 150-meter resolution for altitudes from about 3 to 20 kilometers 

(Nastrom and Eaton, 1993b:82). 

Nastrom and Eaton compared mean values of the logarithm of d2 to high and low wind 

speeds at 5.6 kilometers (Nastrom and Eaton, 1993b:84). The wind speed at 5.6 

kilometers was used as an indicator of synoptic weather activity (Nastrom and Eaton, 

1993b:86). They showed that mean values of the logarithm of Cn2 were greater at all 

heights during periods of strong winds than during periods of weak winds. The increased 

values of Cn2 in the lower troposphere were probably due to enhanced moisture present 

during passage of fronts and troughs that were connected dynamically with the strong 

winds at 5.6 kilometers. Larger values of Cn2 at higher altitudes were probably due to 

increases in turbulence (Nastrom and Eaton, 1993b:84). 

Nastrom and Eaton hypothesized that enhanced turbulence in the stratosphere during 

periods of high winds at 5.6 kilometers was due to the breaking of upward-propagating 

gravity waves that were generated by conditions in the lower troposphere related to 

troughs (Nastrom and Eaton, 1993b:86). They concluded that that future models of d2 

should account for the intensity of gravity-wave source mechanisms in addition to 

14 



variables related to the background flow such as mean wind and temperature (Nastrom 

and Eaton, 1993b:87). 

2.2.3 Nastrom and Eaton. 1995. 

Nastrom and Eaton (1995) described the average vertical profiles of winds and 

turbulence and their seasonal and diurnal changes using data measured by WSMR radar 

(Nastrom and Eaton, 1995:2135). The general time period for observations taken for 

their study was from January 1991 to April 1994 (Nastrom and Eaton, 1995:2137). 

First, Nastrom and Eaton found the measurements of the logarithm of Cn2 to be 

normally distributed (Nastrom and Eaton, 1995:2141). Second, their data showed that the 

largest values of Q,2 in the troposphere were found in the summer and were related to 

areas of high humidity. In spring, fall and winter and in the stratosphere, there was little 

•      • • 0 
variation in Q,. This probably occurred because the mean wind shear was fairly constant 

with season, and the mean static stability in the stratosphere changed little with season 

(Nastrom and Eaton, 1995:2143). Finally, they noticed relatively small diurnal variations 

in the logarithm of C2 (Nastrom and Eaton, 1995:2145). The largest diurnal variation 

they did find, however, was in the troposphere during summer and had a range of about 5 

decibels (Nastrom and Eaton, 1995:2147). 

2.3 Results Expected 

Based on the literature summarized above, it seemed reasonable to average Q,2 data 

temporally and spatially for this study's requirements, and to define the relationship 
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between C2 and weather variables statistically. In addition, a strong statistical relationship 

between the logarithm of Q,2 and the following variables was expected: 

(1) Near-tropopause wind 

(2) Ageostrophic wind 

(3) Bulk Richardson number (which is inversely proportional to wind shear assuming 

constant static stability) 
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3. Methodology 

3.1 Theory 

The index of refraction of the atmosphere for electromagnetic waves depends on the 

temperature and humidity of the air (Tatarski, 1961:1). The potential refractivity, derived 

below, can be used to calculate the size of fluctuations in the refractive index caused by 

temperature and humidity changes (Tatarski, 1961:58). The structure function, which 

characterizes the intensity of refractive index fluctuations, and its associated structure 

parameter is also given (Tatarski, 1961:10). Lastly, the relationship between the 

refractivity structure parameter, received power and radar reflectivity is provided. 

3.1.1 Index of Refraction. 

The index of refraction n for radio waves is a function of temperature T (K), pressure/? 

(mb), and vapor pressure e (mb) (Tatarski, 1961:55). This relationship can be shown as: 

679f      4800<A 
n-l = 10-6y|p + ^r-J. (1) 

Any rapid change in the pressure, temperature or humidity can cause rapid changes in the 

refractive index. Since rapid changes in pressure over very small distances are highly 

unlikely, fluctuations in the index of refraction are mostly caused by large temperature and 

humidity irregularities in the air (Rinehart, 1991:148). 

Some properties of the atmosphere can be regarded as conservative quantities or 

quantities that remain constant during certain transformations (Tatarski, 1961:40; 
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Wallace and Hobbs, 1977:69). The variables 7 and e in (1 ) are not conservative; 

therefore, they may affect the dynamics of the turbulence (Tatarski, 1961:40,55). For 

example, when small parcels of air are moved vertically, their pressure undergoes a 

continuous equalization process with the ambient pressure at each altitude. 

These pressure changes create temperature changes which satisfy the following 

equation: 

dT    y -1 dp 
1 y    p 

where 

(2) 

Y=Cp/CV 

Cp = specific heat at constant pressure (J K"1 kg"1) 

cv = specific heat at constant volume (J K"1 kg'1). 

The quantity dp in (2) is related to the change in height dz (m) by the hydrostatic 

approximation: 

dp 

where p is the density of the air (kg/m3) and g is the acceleration due to gravity (9.8 

m/sec2). Using the ideal gas law, one can show that: 

dT      y-\pg y-\   g 

and 
dT       y-\ g        g 

p 
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where Rj is the ideal gas constant for dry air (287 J K'1 kg'1) and ya is the dry adiabatic 

lapse rate (K/km). Integrating ( 5 ) leaves T + yaz = const and when parcels are displaced 

vertically, the expression: 

0=T + yaz (6) 

gives the potential temperature 0(K) which is a conservative quantity. The vapor 

pressure e can also be transformed into a conservative quantity by expressing it in terms of 

specific humidity q (Tatarski, 1961:56): 

e = \.62pq. (7) 

Substituting ( 6 ) and (7 ) into (1) gives an expression with conservative quantities of 0 

and q (Tatarski, 1961:57): 

(H-1)X10
6
 = 

79^  (     7800^ 
0-yaz\     0-yaz) (8) 

This form of the refractive index, however, is not a "good passive tracer" (Hocking, 

1985:1406). This can be explained by the following situation. Suppose an air parcel is 

displaced from level zi to a new level Z2. Suppose at level zi, the parcel was in equilibrium 

with the environment and at this level there was a pressure pi, potential temperature ft 

and specific humidity qi. Suppose at level Z2, the ambient pressure isp2 and the 

environmental potential temperature and specific humidity are 02 and q2, respectively. At 

level Z2, the potential temperature and specific humidity of the parcel can be represented as 

0] and qi, since these are conservative quantities. The pressure of the parcel, however, 

has changed to p2 at level z?. The change in refractive index between the parcel and 

environment at level Z2 can be shown as: 
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A" = nparcel (z2tp2A»9i)- "e™_ (*2 >P2>02,q2) (9) 

or 

(<?« dO    dn dq\ 
Aw = -TT—+ ——~ 

\d0 dz    dq dz) 
Az, (10) 

where Az = Z2 - zi. Equation (10 ) is not just the difference in refractive index at levels zi 

and Z2, which would have been (Hocking, 1985:1407): 

( dn dp    dn 30    dn dq\ 
An = \ - + +  Az. 

\dp dz    dB dz    dq dz) (11) 

Therefore, fluctuations which arise are not proportional to the total gradient of«, shown 

in (11 ), but rather to (10). This actual change is refractive index is referred to as the 

potential refractivity Mshown as (VanZandt and others, 1978:823; Hocking, 1985:1407; 

Nastrom and Eaton, 1993a:23236): 

M = -77.6x10 -6P (12) 

where 

Hx=\ + 
15500q 

1- 

dkiq/ ^ 
1      /dz 
2d\n0y 

dzj 

The value q dominates in the lower troposphere, but is negligible in the stratosphere where 

the average value of 51n^is large (VanZandt and others, 1978:823; Hocking, 

1985:1407). Therefore, in the stratosphere where it is relatively dry, Hi is approximately 

equal to one (Nastrom and Eaton, 1993a:23236). 
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3.1.2 Refractivitv Turbulence Structure Function and Parameter. 

The structure function is a fundamental characteristic of a stationary random process. 

Generally speaking, the value of the structure function describes the intensity of the optical 

turbulence fluctuations (Tatarski, 1961:10). 

The structure function D„ (r) of the atmospheric refractive index for the inertial range 

can be shown as (Tatarski, 1961:58): 

C„2r213 for l0 «r«L 

Dn(r) = 
2 

-.2 ,2/31   r 

CX'\T\       forr«l0 

(13) 

o- 

where 

r = spatial separation (m) 

C„ = refractivity turbulence structure parameter (m~2/3) 

lo = inner scale of turbulence (size of smallest eddies) (m) 

L = outer scale of turbulence (size of largest eddies) (m). 

The inertial range is where large eddies break up into smaller eddies, due to fluid 

dynamic instabilities, and these smaller eddies break down into even smaller ones. This 

cascade of energy from large scales to smaller scales continues until the scale becomes so 

minute that viscosity effects are introduced. At this point, the energy flows out of the 

cascade into the sink of molecular heat (Dewan, 1980:11). The inertial subrange falls 

between the inner scale l0 and outer scale L of turbulence. 
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The refractivity turbulence structure parameter C„2 for the inertial subrange can be 

defined as: 

c;=azaV"Mz , (14) 

where a2 is a universal constant taken to be 2.8 and of is a ratio of eddy diffusivities which 

is close to 1 (VanZandt and others, 1978:823; Ottersen, 1969:1182). Equation (14) is 

valid for homogeneous, isotropic, steady state turbulence. Turbulence is homogeneous 

and isotropic when the structure function, D„ (r), does not depend on direction or location 

of r. Steady state can be interpreted as the amount of energy that flows into the 

turbulence being the same amount of energy dissipated into heat (Dewan, 1980:11). 

3.1.3 Refractivity Turbulence Structure Parameter and Radar Reflectivity. 

A source of clear air return in the atmosphere is from refractive index perturbations. 

When the index of refraction changes considerably over scales which are small compared 

to the radar wavelength, the area containing these small scale fluctuations can return some 

of the incident power back toward the radar. If the radar is sensitive enough, this can 

cause a detectable echo to be displayed on the radar (Rinehart, 1991:147). This 

relationship between the backscattered power and Q2 can be examined by first looking at 

the radar equation. 

The radar equation is given by (Frisch and others, 1990:645): 

P'-lÜ24?i5-,!Gl« *'**!?■ (15) 
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where 

PR = received power, averaged over several independent realizations (W) 

c = speed of light (3 x 108 m/sec) 

Pt = transmitted power (W) 

G = on-axis gain of the antenna 

#, <k = half-power beamwidths of the antenna (rad) 

T= pulse duration (sec) 

A = radar wavelength (m) 

TJ = radar reflectivity (m"1) or radar cross-section per unit volume 

Ran = range from radar (m). 

Equation (15 ) shows that the received power PR, also referred to as the backscattered 

power, is proportional to the radar reflectivity TJ. 

In clear air, the radar reflectivity can be related to refractive index fluctuations with 

spatial scales A/2 through the structure function in ( 13 ) (Ottersen, 1969:1182; Frisch and 

others, 1990:645). If A/2 falls within the inertial subrange of turbulence, then the radar 

reflectivity is directly proportional to Q,2 as shown (Ottersen, 1969:1183; Hocking, 

1985:1411): 

/7*0.38C„2/r1/3. (16) 

Substituting (16 ) into (15 ) and solving for C2 gives the following (Nastrom and others, 

1986:6724): 

C2
n=K^-PR, (17) 

■** 
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where 
18435 

K* 
Ä mG29r £ re 

Thus, Cn2 is directly proportional to the radar backscattered power as well. 

3.2 Radar Used to Collect C,2 Data 

The 50-megahertz (MHz) radar used to collect d2 values for this study is located at the 

Atmospheric Profiler Research Facility (APRF) at White Sands Missile Range, New 

Mexico, 32°24'N, 106°21'W(Hines and others, 1996:1 l;Nastrom and Eaton, 1993b:82). 

The APRF complex is positioned on the floor of the Tularosa basin approximately 1220 

meters above mean sea level and about 10 kilometers east of the San Andres, San 

Augustine and Organ Mountains (Hines and others, 1996:13). 

The 50-MHz profiler, manufactured by Tycho Technology, Inc., contains three antenna 

beams. Each antenna beam takes about 1 minute to make a measurement, so a full cycle 

takes about 3 minutes (Hines and others, 1996:18). One radar beam is pointed toward the 

zenith, while the other two radar beams are pointed 15° from the zenith; one is pointed 

toward the south and the other is pointed toward the west. The antenna has a diameter 

about 150 meters and generates a one-way beamwidth of 2.9° (Hines and others, 

1996:113). 

The radar functions at a central frequency of 49.25 MHz and a transmitted peak power 

of 250 kilowatts (kW) (Hines and others, 1993:113-114). Received power observed for 

one minute along each of three beams is used to calculate a füll Q,2 profile every 3 minutes 

at a 150-meter resolution. In normal mode, 112 range gates are used to sample from 
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about 3 to 20 kilometers above ground level (Hines and others, 1993:113; Nastrom and 

Eaton, 1993b:82). 

The radar equation used to compute C2 from this 50 MHz radar is (Hines and others, 

1993:114): 

,    U2\6AmRan2 PR _„v 

where 

A = radar wavelength (m) 

Ran = range from radar (m) 

PR = received power (W) 

8= range resolution (m) 

Pt = peak power at transmitter (W) 

Lt = total receiver and transmission line loss and antenna efficiency 

Aem = effective antenna area (m2). 

Comparisons between annual mean Q,2 measurements made by the south and west 

beams of the radar showed differences of about 1 dB in the troposphere and 2 dB in the 

stratosphere. It was suggested that this difference may indicate anisotrophy in small-scale 

turbulence (Nastrom and Eaton, 1995: 2144). It was necessary to increase average C2 

values in the west beam to coincide with the average values in the south beam. 

Manufacturer's tests of the 50-MHz wind profiler show that the accuracy of the Q,2 

measurements are within ±1.5 dB. The antenna is calibrated to ± 0.5 dB, but the 

difference between the oblique beams must be included in this uncertainty (Hines and 
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others, 1996:114). The parameters of the WSMR 50-MHz radar used in this study are 

summarized in Table 1. 

Table 1. Radar parameters used in this study (Nastrom and Eaton, 1993b:2136). 

TRANSMITTER 
Central frequency 49.25 MHz 
Wavelength 6m 
Output power 250 kW peak 
Duty cycle 5% 
Pulse width 8 usec 
Type Combination solid state 

preamplifier and tube cavity 
amplifier, three stage 

ANTENNA 
Number of beams 3 
Physical aperture 15,600 m2 

Effective aperture 13,500 m2 

Pointing Zenith and 15° to south and west 
Type Coaxial collinear phased array 
One way beamwidth 2.9° 

RECEIVER 
Type Low noise superheterodyne 
Bandwidth Matched to transmitted pulse 
Receiver noise figure Less than 1 dB 

PERFORMANCE 
Nominal lowest range gate 2 km above ground level 
Range gate spacing 150 m 
Time resolution 1 min per beam (3 min total) 
Number of range gates 112 
Calibrated C2 range 10-2Ü-10-13 m2/3 

Bandwidth 1MHz 
Power aperture product 1 x 108 W/m2 

Error in Cn2 measurements ±1.5 dB 
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3.3 Data Processing 

Both the meteorological and optical turbulence data had to be processed in order to 

complete the multiple regression analysis. The procedures are described below. 

3.3.1 Meteorological Data 

The synoptic scale meteorological data was extracted from the NCEP/NCAR reanalysis 

database and was provided by the sponsor, AFRL, in a non-gridded binary format. Data 

was provided for latitudes between 10° and 65° N and for the entire longitude grid. Since 

the radar site is located at 32°24'N, 106o21'W, a smaller grid was extracted from this grid 

to coincide with the radar location. This grid encloses the area between 30°-35°N and 

102°30'-110°W with the radar site centrally located as shown in Figure 2. The intention 

was to have an area large enough to capture portions of the jet stream near or above the 

radar site. 

The variables used in this data set are shown in Table 2. The levels indicate the number 

of pressure levels that particular variable is available for, with a maximum number of 17 

pressure levels that range from 1000 to 10 millibars. If the variable is only available at one 

vertical level, no level is given. Note that all these variables can be considered related to 

fronts, jet streams or both. Therefore, all variables provided by AFRL were used as 

potential independent variables in the regression analysis with the exception of surface 

geopotential height since it varied little with time or space. 

The ageostrophic wind and bulk Richardson number were derived from the other 

variables in Table 2. The procedures for these calculations are explained below. 
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Figure 2. Grid used in this study. The 50 MHz radar is centrally located at WSMR. 

3.3.1.1 Ageostrophic Wind. 

An initial look at the relationship between the ageostrophic wind and C2 by AFRL 

showed that a correlation may exist. The sponsor requested further investigation; 

therefore, the ageostrophic wind was included as another potential independent variable in 

the regression analysis. 

The ageostrophic wind Vag (where the arrow over V denotes a vector) was calculated 

using the difference between the total wind V and the geostrophic wind V or: 

V   =V-V. (19) 

The total wind components, U (east-west or zonal wind) and V (north-south or meridional 

wind), were given in the NCEP/NCAR data set; however, the geostrophic wind was 
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unknown. Since the geopotential height if was available, the geostrophic wind could be 

computed from the following cross product (Holton, 1992:59): 

fg=-kxVH, (20) 

where/is the Coriolis parameter (sec1), k is the unit vector in the vertical direction, and 

V is the gradient in rectangular coordinates. 

Table 2. Meteorological variables used in this study. 

VARIABLE SYMBOL LEVELS UNITS 

Surface pressure PS Pa 
Temperature at tropopause TT K 
Pressure at tropopause PT Pa 
U-winds at tropopause UT m/sec 
V-winds at tropopause VT m/sec 
Wind shear at tropopause SHT 1/sec 
Surface lifted index LI K 
Best (4-layer) index B K 
Temperature at max wind level TM K 
Pressure at max wind level PM Pa 
U-winds at max wind level UM m/sec 
V-winds at max wind level VM m/sec 
Pressure reduced to mean sea level PR Pa 
Geopotential height H 17 m2/sec 
U-winds U 17 m/sec 
V-winds V 17 m/sec 
Ageostrophic u-winds UAG 17 m/sec 
Ageostrophic v-winds VAG 17 m/sec 
Temperature T 17 K 
Bulk Richardson number BRN 16 unitless 
Pressure vertical velocity W 12 Pa/sec 
Relative humidity RH 8 % 
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Equation (20 ), however, did not account for phenomena such as the shrinking area 

between latitude lines when moving toward the poles. This was compensated for by 

making the gradient and Coriolis parameter a function of latitude. The x and y 

components of the gradient, dx and dy, were made functions of latitude by transforming 

them into spherical coordinates (Holton, 1992:33): 

dx = r. cos(d)dA 

where 

^= latitude (rad) 

A = longitude (rad) 

re = radius of the earth (m). 

The Coriolis parameter was also represented as (Holton, 1992:13,39): 

/ = 2Qsin($fr), (22) 

where Q is the angular frequency of the earth or 7.292 x 10"5 rad/sec. 

Furthermore, the derivatives in the gradient were estimated using finite difference 

approximations or specifically, centered differences of order (Ax)2 (Haitiner and Williams, 

1980:109). The geostrophic wind components were then defined as: 

V 1 H(y + Ay)-H{y-Ay) 

*       f 2Ay 
1 H(x + Ax)-H(x-Ax) 

sy~ f 2Ax 

(23) 

30 



where 

VgX = x component of the geostrophic wind 

Vgy = y component of the geostrophic wind 

Ay = meridional distance between grid points 

Ax = zonal distance between grid points. 

Finally, the difference in Equation (19 ) was computed and ageostrophic winds were 

obtained. Vectors of total wind, geostrophic wind and ageostrophic wind were also 

plotted in the Grad Analysis and Display System (GRADS) to ensure accuracy. 

3.3.1.2 Bulk Richardson Number. 

Theoretical work has shown that the Richardson number, a ratio between buoyancy and 

wind shear, can be used as an indicator of atmospheric turbulence (Stull, 1988:177). 

Since turbulent mixing is thought to cause fluctuations in the refractive index, the 

Richardson number may be an indicator of optical turbulence as well (Warnock and 

VanZandt, 1985:1). 

If the Richardson number is less than about 0.25, then for the possibility for the onset of 

turbulence is high. This work was based only on local observations of the wind shear and 

temperature gradients. Local gradients, however, are seldom known, but estimates of the 

gradients can be made at discrete height intervals using finite differences. These estimates 

are included in a more realistic ratio called the bulk Richardson number. 

The bulk Richardson number, BRN, is defined as (Stull, 1988,177): 

z A0     tsz 
BRN = _rf _.2

V.  _.2l, (24) 
ev[(AU)2

+(AV)2] 
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where 

g = acceleration due to gravity (m/sec2) 

0 v = mean virtual potential temperature (K) 

Az = height interval (m) 

AU = difference in mean zonal wind between two layers (m/sec) 

AV = difference in mean meridional wind between two layers (m/sec). 

The differences in mean winds between two layers were estimated using t/and Ffrom the 

NCEP/NCAR database at two different pressure levels or: 

AU*U(p2)-U(Pl) 

AV*V(p2)-V(Pl) 

whereP2 and/?; are the pressures at the top and bottom layers, respectively. The other 

variables in (24) were derived from variables in Table 2 as shown below. 

The height interval Az was computed using the geopotential height H (List, 1951:218): 

r, H2 re H, 

gre -H2    \^t\-Hx 9&J      l    ^9.8 

where H2 is the geopotential height at the top layer and Hi is the geopotential height at the 

bottom layer. 

To calculate the mean virtual potential temperature dv and the change in mean virtual 

potential temperature A0V, an expression had to be found in terms of known variables. 
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First, the saturated vapor pressure was defined from the Goff-Gratch formula (Duffield 

and Nastrom, 1984:10): 

e  =100(10(a"*"c + rf"e)), (26) 

where 

es = saturated vapor pressure (Pa) 

a = 23.832241 

b = 5.02808 log T 

c = 1.3816(10-7)(101U34-00303998r) 

d= 8.1328(10-3)(103-49149-13028844/r) 

e = 2949.076/T 

T= temperature (K). 

Once the saturated vapor pressure es was calculated, it was substituted into the equation 

for saturated mixing ratio wsat: 

">«*=£—*—, (27) 
P-eg 

where s is equal to 0.622 and p is the pressure (Pa). Third, the mixing ratio w was found 

from (Duffield and Nastrom, 1984:12): 

RH 
w=mw**> (28) 

where RH is the relative humidity in percent. Fourth, w and wsat were put into the virtual 

potential temperature equation. In saturated or cloudy air, the virtual potential 

temperature #> was defined as: 
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0V =0(1 + 0.61^-^), (29) 

where 

0.286 
t r ' 

0-- 

0= potential temperature (K) 

P0 = reference pressure (100,000 Pa) 

WL = liquid water mixing ratio. 

In an unsaturated environment, 0, was defined as (Stull, 1988:7): 

0v=0(l + O.6lw). (30) 

The virtual potential temperature calculated for each layer was used as an 

approximation for the mean virtual potential temperature since meteorological values were 

only available at discrete heights. Similarly, the difference in mean virtual potential 

temperature was estimated by the difference in virtual potential temperature between two 

different heights. Finally, the BRN in equation (24) was calculated. 

Note that an expression for the liquid water mixing ratio in (29) was not defined. 

There was insufficient information to calculate the value and furthermore, the concept of 

the ABL is to fire upon missiles above clouds or above the region where saturated air is 

confined. Therefore, values for the BRN were flagged in regions of saturated air so they 

could be omitted in the final data set to be used in the regression analysis. In addition, 

BRN values were flagged in regions where the difference in mean wind was zero, which 

resulted in an infinite BRN value, so their values could also be deleted from the regression 

data set. 
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3.3.2 Optical Turbulence Data. 

One of the factors needed to compare time series of data in regression analysis is that 

the independent and dependent variables be measured simultaneously. Since the Q, and 

meteorological values were not measured simultaneously, a temporal adjustment was 

made to the d2 data. In addition, spatial changes were made to the C„2 data as described 

below. 

As shown in Table 1, a Q,2 measurement is made every 3 minutes while the 

meteorological data was measured in 6-hour increments. Rather than trying to interpolate 

values for all the variables listed in Table 2, the d2 values were averaged in 6-hour 

increments to coincide with the weather data. First, a quality control check was 

conducted on the measured Cn2 values by the sponsor using a program developed by 

NCAR (Weber and Wuertz, Oct 91). Then, averages were calculated for 06Z, 12Z, 18Z 

and 00Z using data available three hours before and three hours after each time as 

summarized in Table 3. Since many of the Q,2 measurements were missing or did not pass 

the quality control check, consideration was given to the number of observations available 

for each 6-hour time average. Therefore, averages were only calculated where a majority 

of the observations, at least 70%, was available. 

Table 3. Time and hours used in to calculate optical turbulence averages. 

TIME HOURS USED 
IN AVERAGE 

06Z 03Z-09Z 
12Z 09Z-15Z 
18Z 15Z-21Z 
OOZ 21Z-03Z 
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Spatial averages were also computed for the d2 data, after the time averages were 

completed, for brevity in the data set. Samples of the data were vertically averaged at 

different increments and studied to determine an appropriate range. This range could 

smooth some small-scale features while still capturing large-scale features. An increment 

of 300 meters appeared to keep the most interesting features in the data. In addition, 

vertical averages were only computed between altitudes of about 10,000 to 15,000 

meters. This range was chosen so the tropopause level would be included, and therefore, 

the jet stream would be included since it is most often confined to a region near the 

tropopause (Nastrom and Eaton, 1995:2137). The vertical levels used for optical 

turbulence data averages are shown in Table 4. 

Table 4. Vertical levels used for optical turbulence data averages. 

Level Altitudes Averaged (m) 
1 10,122-10,272 
2 10,422-10,572 
3 10,722-10,872 
4 11,022-11,172 
5 11,322-11,472 
6 11,622-11,772 
7 11,922-12,072 
8 12,222-12,372 
9 12,522-12,672 
10 12,822-12,972 
11 13,122-13,272 
12 13,422-13,572 
13 13,722-13,872 
14 14,022-14,172 
15 14,322-14,472 
16 14,622-14,772 
17 14,922-15,072 
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4. Data Description and Analysis 

4.1 Data Description 

The meteorological and optical turbulence data sets used in this study were taken from 

different archives. They are described below. 

4.1.1 NCEP/NCAR Reanalvsis Data Set. 

The basic concept of the NCEP/NCAR reanalysis project used a fixed state-of-the-art 

analysis/forecast system and performed data assimilation using past data from 1957 to the 

present (reanalysis). This analysis/forecast system would then perform data assimilation 

into the future. This would enable climatologists to determine whether current climate 

irregularities are significant when compared to an extended reanalysis without changes in 

the data assimilation system (Kalnay and others, 1996:438). In addition, this 40-year 

reanalysis provides a quality data set appropriate for many studies such as this one. 

The reanalysis archive was designed to be comprehensive, allowing research in budget 

studies, and easily accessible to users in need of extended periods of data. Since it was 

not possible to meet both design requirements in one archive, several archival formats are 

available (Kalnay and others, 1996:448). The meteorological data used in this research 

was taken from the main synoptic archive in a gridded binary format. 
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The main synoptic archive is the most comprehensive archive of the reanalysis. It 

includes analysis and first-guess fields at 00Z, 06Z, 12Z and 18Z on a 2.5° latitude and 

longitude grid (Kalnay and others, 1996:449). The reanalysis gridded fields are also 

categorized into classes, based on their influence by observations and models on the 

gridded variable. Variables extracted from the synoptic archive and their class are 

summarized in Table 5. An A denotes that the variable is strongly influenced by 

observations; therefore, it is the most dependable class. The letter B denotes that both 

models and observations have influence on the variable (Kalnay and others, 1996:448). 

Table 5. Classification of synoptic archive variables used in this study. 

VARIABLE SYMBOL CLASS 

Surface pressure PS B 
Temperature at tropopause TT A 
Pressure at tropopause PT A 
U-winds at tropopause UT A 
V-winds at tropopause VT A 
Wind shear at tropopause SHT A 
Surface lifted index LI B 
Best (4-layer index) B B 
Temperature at max wind level TM A 
Pressure at max wind level PM A 
U-winds at max wind level UM A 
V-winds at max wind level VM A 
Pressure reduced to mean sea level PR A 
Geopotential height H A 
U-winds U A 
V-winds V A 
Temperature T A 
Pressure vertical velocity W B 
Relative humidity RH B 
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As mentioned in 3.3.1, the meteorological data provided by AFRL included latitudes 

between 10° and 65° N and the entire longitude grid. A smaller grid between 30°-35°N 

and 102°30'-110°W was extracted from this grid to coincide with the radar site. Data was 

provided in six hour increments beginning at 00Z for all months in 1991-1996 and for 

January-June 1997. There were no missing database values; however, values of the BRN 

calculated from the database were defined as missing for the reasons discussed in 3.3.1.2. 

4.1.2 Radar Data. 

The measurements made by the WSMR 50-MHz radar were obtained and evaluated 

through a quality control (QC) program conducted by the sponsor. The QC program was 

designed by NCAR (Weber and Wuertz, Oct 91). The logarithm of d2 was provided for 

heights (above mean sea level) between 3,222 meters and 19,722 meters in 150 meter 

increments. The data was temporally and vertically averaged between about 10,000 and 

15,000 meters and as described in 3.3.2. 

The data was available for January-April 1993, July-September 1993 and January 1994. 

Within these dates, there were several missing data values or values that did not pass the 

QC check. Estimated dates for missing values or values that failed the QC check at 

various pressure levels are shown in Table 6. 

Table 6. Estimated days where radar data was missing or failed QC check. 

Jan 93 Feb93 Mar 93 Apr 93 Jul93 Aug93 Sep93 Jan 94 
Days 1-15 16-20 

27-29 
13-30 1-8 

12-15 
18-19 
22-26 

1-8 
10-20 

29-30 4-5 1-3 
9-10 
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4.2 Data Analysis 

Data analysis involved some autocorrelation of the reanalysis database and radar 

measured optical turbulence values. Autocorrelation was not as pertinent to the 

regression analysis as originally thought at the beginning of this study as explained below. 

Analysis also included checking that the variables were normally distributed and studying 

scatterplots of the optical turbulence data versus the reanalysis variables. The focus of the 

data analysis, however, was the multiple linear regression described in detail below. 

4.2.1 Autocorrelation 

Autocorrelation can be defined as the correlation of a variable with itself. In the case of 

temporal autocorrelation, correlations are run on the past and future values of a variable. 

These are also known as lagged correlations. They can be pictured by comparing two 

copies of a sequence of values with one of the sequences shifted by a unit of time. A lag-1 

correlation, shifted one unit of time, is usually calculated to measure persistence; however, 

autocorrelations with lags greater than one can be useful also (Wilks, 1995:52). They can 

be used to help determine when a variable becomes independent or is no longer correlated 

with its past value. They can also be used to determine seasonality in a variable. 

Autocorrelations are computed using the Pearson correlation equation. For a lag k, the 

autocorrelation coefficient rk can be computed from (Wilks, 1995:53): 

n-k\ 

/"/, = 

ni[(Xi-x_)(xi + k-x+)] 

n-ki _   \2n-ki _   \2 ll/2 (31) 
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where x_ and 3c+ denote the sample means from the first and last (n - k) data values, 

respectively. This equation is only valid for 0 < k < n -1. 

The collection of autocorrelations for different lags is known as the autocorrelation 

function. This function is usually displayed graphically with the autocorrelation plotted as 

a function of lag k. Autocorrelations for the data sets were computed with the SAS 

statistics package. An example of the autocorrelation function is shown in Figure 3 for the 

meridional wind at the tropopause, VT, at 30° N 107°30*W using 1993 data. Each lag k 

is a 6 hour increment. It shows a gradual decay toward zero as the lag k increases which 

is expected for most meteorological variables. If the autocorrelation function did not 

decay toward zero after a short period, then accurate long term forecasts would be easy; 

long term forecasts would simply be a slight modification of the observation made several 

days prior (Wilks, 1995:54). Figure 3 also shows that the autocorrelation of VT is near 

zero or that VT is independent around lag 19, which is approximately 5 days. 

rk     0.5 

Figure 3. Autocorrelation function for VT at 30° N 107°30'W. 

The autocorrelation function was used in this study because the original thought was 

that the variables used in the regression could not be serially correlated. However, this is 
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not the case. The variables can be strongly autocorrelated; however, the errors are 

assumed to be random and independent (refer to section 4.2.4.1). Therefore, the 

residuals, estimates of the error, cannot be highly autocorrelated (Wilks, 1995:174). In 

addition, there were several gaps and missing values in the final data sets used for the 

regression, so it did not make sense to perform autocorrelations on them. The final data 

sets were no longer a true time series of data due to missing months and days in the radar 

data and undefined bulk Richardson numbers. As a result, the autocorrelation functions 

produced were not pertinent to the multiple regression analysis and were not used further 

in this study. 

4.2.2 Normality Check. 

Since regression analysis usually assumes that its variables are normally distributed, this 

distribution was checked first. Note that this is not a requirement to complete a regression 

analysis. The Statistix and SAS computer packages used the Wilk-Shapiro measure to 

check for normality in both the optical turbulence and meteorological data. The Wilk- 

Shapiro value ranges from 0 to 1, with 1 representing a perfectly normal distribution. A 

graphical view of the Wilk-Shapiro measure will be a straight line for a value of Wilk- 

Shapiro value of 1. An example of the Wilk-Shapiro plot is shown in Figure 4 for the 

logarithm of d2 representing the average around 10,500 meters. The Wilk-Shapiro value 

shown is 0.9204. In most cases, if the Wilk-Shapiro value is near 0.9, a normal 

distribution can be assumed. 

Wilk-Shapiro values for the logarithm of the Cn2 for heights between about 10,000 and 

15,000 meters mostly fell near 0.9. All values were greater than 0.8, but some were closer 
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to 0.8 than to 0.9. For the purposes of this study, they were assumed to have a normal 

distribution. 

A large sample of the meteorological variables was checked for normality at each grid 

point. The majority of the variables passed the normality check. There were a few 

variables which produced Wilk-Shapiro values near 0.8, such as relative humidity at 

different levels, but were still assumed to have a normal distribution. 

-20.1 - + 

Wilk-Shapiro / Rankit Plot of Log (Ca
2) 

■1 1 0 
Rankits 

Approximate Wilk-Shapiro 0.9204 

Figure 4. Wilk-Shapiro plot for log (Q,2) around 10,500 m. 

4.2.3 Graphical Analysis. 

Scatter plots of the logarithm of Cn2 versus the meteorological data were studied. This 

type of graphical analysis was used to gain initial insight into the linear relationship 

between the logarithm of Q2 and the reanalysis data. 
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Scatter plots for the logarithm of Cn2 averaged around 10,500 meters versus various 

weather variables from January 15 to January 30 of 1993 are shown in Figure 5, Figure 6 

and Figure 7. The approximated regression line is also displayed in the figures. A linear 

relationship is distinguishable in the scatter plot of the logarithm of Q,2 versus zonal wind 

at the max-wind level (UM) depicted in Figure 6. A linear relationship is not as apparent, 

however, in Figure 5 and Figure 7. After studying several scatter plots for different grid 

points, it was determined that there was potential for a linear relationship between the 

synoptic scale weather variables and the logarithm of Q,2. 

Scatter Plot of Log (Ca
a) vs. PM 

9000 14000 19000 24000 
PM 

29000 34000 

Figure 5. Scatter plot of log (Q,2) vs. pressure at the max-wind level (PM). 

44 



-16.6 

-16.2 

■16.8 
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ScatterPlot of Log (C^) vs. UM 

-10 10 30 
UM 

50 70 

Figure 6. Scatter plot of log (Cn2) vs. zonal wind at the max-wind level (UM). 

Scatter Plot of Log (O vs. VAG 

-16.6-f 

-16.2 - 

u 
00 

,3 -17.4 J 

-18.0- 

-18.6- 

-7 
VAG 

Figure 7. Scatter plot of log (Cn2) vs. ageostrophic meridional wind at 925 mb (VAG). 
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4.2.4 Regression Analysis. 

Regression analysis is a powerful statistical tool used to assess the relationship between 

one dependent variable and one or more independent variables. It is also useful because 

the independent variables can be somewhat correlated with one another (Tabachnick and 

Fidell, 1983:86). 

Regression analysis is most easily explained by the case of simple linear regression, a 

special case of multiple linear regression (Wilks, 1995:160). This includes describing the 

analysis of variance, goodness-of-fit measures and the analysis of residuals. Regression 

analysis can then be easily expanded to the general case of multiple linear regression. If 

there are a large number of predictor variables, as in this study, then variable selection for 

the multiple linear regression can be automated using a stepwise technique. 

4.2.4.1 Simple Linear Regression. 

The concept of simple linear regression is to capture the relationship between two 

variables, given as x and y, in a single straight line. By convention, x is used for the 

independent or predictor variable andy is used for the dependent variable or predictand. 

The regression operation selects the line which produces the least error for predictions of 

y, given observations of x (Tabachnick and Fidell, 1983:87; Wilks, 1995:160; Devore, 

1995:475). Least error usually means that the sum of squared errors is minimized. 

Figure 8 depicts the situation. Given a data set of (x, v) pairs, the problem lies in 

determining the straight line which minimizes the vertical distance between the line and the 

data points. The equation for the line can be expressed as: 

y = a + bx, (32) 
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where y is the predicted value of y, a is the least-squares intercept and b is the slope of 

the line. The vertical distances between the data points and line, called residuals or 

estimates of the error, are defined as: 

ei=yi-K^i), (33) 

where there is a different residual e, for each data pair (JC, ,yt) (Wilks, 1995:160; Devore, 

1995:485). It is assumed that the errors are independent, random variables with 2ero 

mean and constant variance. In addition, it is often assumed that the errors follow a 

normal distribution (Wilks, 1995:163). 

YA 

y - a + bx 
Ay 

b = slope=-— 
Äx 

X 

Figure 8. Schematic illustration of simple linear regression (Wilks, 1995:161). 
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Combining equations ( 32 ) and (33 ) gives the regression equation: 

yt =yi+e,=a + bx + en (34) 

which shows that the actual value of the predictand is the sum of the predicted value and 

residual (Tabachnick and Fidell, 1983:87; Wilks, 1995:161; Devore, 1995:477). In order 

to minimize the sum of squared errors, the least-squares intercept a and slope ft in (34 ) 

must satisfy the following analytic expressions (Wilks, 1995:162): 

n n        n 

n ( n      V 

/=1 V/-1    ) 

1 
a = — 

n 

( n n 

Y^yi ~bHxi (36) 

where n is the number of data pairs. 

4.2.4.2 Analysis of Variance. 

In 4.2.4.1, the assumption of zero mean and constant variance in the errors was 

presented. This constant variance can be estimated using the residuals in: 

n~2i=i 

where se is the sum of squared residuals (Wilks, 1995:163). 

Rather than calculating the sample variance from ( 37 ), it is more common to use a 

form based on the relationship: 

SST = SSR + SSE, (38) 
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where SST is the total sum of squares, SSR is the regression sum of squares and SSE is the 

sum of squared errors. SST can be defined as the sum of squared deviations of y around 

the mean ofy or (Wilks, 1995:164): 

SST = fd(yi-yf, (39) 

where y is the mean of y. This is proportional to the estimated variance of y and, 

therefore, measures the overall variability of the predictand. The SSR term is the sum of 

squared differences between the regression predictions and the estimated mean ofy or: 

SSR = Z[y(Xi)-yf. (40) 

This can be related to the regression equation in (34) by: 

SSR=b2X[Xi-x]2 , (41) 

where 3c denotes the mean of x. Finally, SSE is defined as the sum of squared differences 

between the residuals and their mean: 

« 

SSE^ef. (42) 

The estimated error variance can now be shown as: 

s2=- 
1    ,      x       1 

(SST - SSR) =  SSE (43 ) 
n-2 n-2 

The output from many statistical computer packages includes the analysis of variance 

(ANOVA) parameters just described, in an ANOVA table. A generic form of the 
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ANOVA table is shown in Table 7. It includes the source of the variance in column 1, the 

degrees of freedom (DF) in column 2, the sum of squared (SS) values in column 3 and the 

mean squared (MS) values in column 4. The three rows comprise the error, regression 

and total values for each column. Note that error and regression values in the DF and SS 

columns will sum to the corresponding value in the total row (Wilks, 1995:165). The MS 

values are given by the corresponding values of SS/DF. For simple linear regression, there 

is one regression degree of freedom, so SSR is equal to the mean square of regression, 

MSR. Also, it was just shown that sl = SSE/DF, so s] is also equal to the mean squared 

error, MSE. The other value in the MS column, the F ratio, is a measure of the fit of a 

regression. This will be discussed further in 4.2.4.3. 

Table 7. ANOVA Table for Simple Linear Regression (Wilks, 1995:166). 

SOURCE DF SS MS 

Total n-1 SST 
Regression SSR MSR = SSR/l (F = MSR/MSE) 
Error n-2 SSE MSE = s —   „2 

4.2.4.3 Goodness-of-Fit Measures. 

Several measures can be used to determine the fit of a regression, or how well the 

regression line portrays the scatter plot of the data. Three commonly used measures of 

regression fit are the mean squared error, MSE, the coefficient of determination or R2, and 

the F ratio. 
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The MSE is probably the most basic of the three measures since it shows the variability 

of the observed y values around the regression line. Since MSE = s], this shows how the 

residuals will fall around the regression line. If MSE is small, the residuals will be in close 

proximity to the regression line and will most likely provide a good fit as shown in Figure 

9 (Wilks, 1995:166). If MSE is large, they will be spread further from the regression line 

and will be more likely to provide a unsatisfactory regression as illustrated in Figure 10. 

Figure 9. Small MSE indicating a fairly good regression relationship (Wilks, 1995:167). 
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Yi 

Figure 10. Large MSE showing a poor regression relationship (Wilks, 1995:167). 

The second measure of the strength of a regression is the coefficient of determination or 

R2. This can be calculated from: 

R2 = 
SSR _      SSE 
SST SST 

(44) 

R2 is understood to be the proportion of the variability of the predictand that is accounted 

for or explained by the regression (Devore, 1995:489). For a perfect regression, SSR = 

SST, SSE = 0, therefore R2 = 1. For a worthless regression, SSR = 0, SSE = SST, 

therefore R = 0. Figure 10 can also exemplify this poor case of regression as a R value 

close to zero (Wilks, 1995:167). 

The third measure of fit of a regression is the F ratio. As shown in Table 7, F is equal 

to the ratio of MSR to MSE; therefore, F increases with the strength of the regression, 

since a strong relationship between x and y generates a large MSR and small MSE (Wilks, 
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1995:168). It is based upon the F distribution which has two parameters. The first 

parameter is the number of numerator degrees of freedom and the second is the number of 

denominator degrees of freedom. A typical F density curve is shown in Figure 11 with a 

corresponding upper tail critical value, Fc. The area to the right of the critical value under 

the curve represents the significance level, a, of the test usually assumed to be 5% or 0.05. 

In the SAS statistics package, the F ratio is for testing under the null hypothesis that all 

parameters other than the intercept is zero. The alternate hypothesis is that at least one of 

the parameters is not zero. If the F ratio is less than Fc or if the probability value (p-value) 

of F is greater than a, then there is not enough evidence to reject the null hypothesis. 

Therefore, the predictors do not contribute to the regression. 

dECx,«,d3) 1 - 

Figure 11. An example of the F distribution curve (Devore, 1995:397). 

4.2.4.4 Analysis of Residuals. 

Some of the results of statistics software packages can be misleading if the underlying 

assumptions related to errors are not satisfied. As stated in 4.2.4.1, errors were assumed 

to be independent, random variables with zero mean and constant variance, also called 
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homoscedasticity. In addition, the errors were assumed to have a normal distribution. 

These assumptions can be checked using estimators of error or residuals. 

An easy and basic check on residuals can be made by examining a scatter plot of the 

residuals, e, against the predicted values, y (Tabachnick and Fidell, 1983:93; Wilks, 

1995:171). If the residuals give the appearance of a horizontal band around their zero 

mean as illustrated in Figure 12, then the assumption of homoscedasticity is supported 

(Wilks, 1995:172). 

The Wilk-Shapiro measure may be used to determine whether the residuals follow a 

normal distribution. If the Wilk-Shapiro value is near 0.9 with a near linear plot, a normal 

distribution of the residuals can be assumed. 

Finally, the independence of residuals can be checked if the original data was temporally 

correlated. A plot of the residuals as a function of time can be examined. If groups of 

positive and negative residuals tend to bunch together, rather than occurring more 

randomly, then serial correlation can be suspected. The Durbin-Watson test statistic may 

also be used. This test examines the null hypothesis that the residuals are serially 

correlated against the alternate hypothesis that they are consistent with a first-order 

autoregressive process. The Durbin-Watson test statistic, d, can be expressed as: 

H(ei-ei-l) 
d = ^—n  (45) 

2 

This statistic basically calculates the squared differences between pairs of successive 

residuals and divides them by a scaling factor. If the residuals are positively correlated, d 

54 



will be relatively small (Wilks, 1995:173). If the residuals are randomly distributed in 

time, then d will be relatively large. As mentioned in 4.2.1, even though a regression uses 

strongly autocorrelated variables for both predictand and predictors, the residuals will not 

necessarily be strongly autocorrelated themselves (Wilks, 1995:174). 

•  • .    •     * 

Figure 12. Scatter plot of residuals vs. predicted values (Wilks, 1995:172). 

4.2.4.5 Multiple Linear Regression. 

Multiple linear regression is the more general case of linear regression. It is similar to 

simple linear regression where there is a predictand, y, but there is more than one predictor 

variable, JC. The previous discussion of simple linear regression will generalize to the 

situation of multiple linear regression. 
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Let K be the number of predictor variables. Simple linear regression was just the 

special case where K = 1. The prediction equation for multiple linear regression can then 

be given as: 

y = b0+blxl+b2x2 + ...+bKxK, (46) 

where b0 is the intercept, bK is the coefficient, comparable to the slope, for each predictor 

variable xK (Wilks, 1995:176; Devore, 1995:550). 

Equation (33 ) for the residuals still applies; however, the fact that the predicted value 

y is a function of a vector of predictors, JC^ , must be taken into account. If there are two 

predictor variables, K = 2, then the residual can still be pictured as a vertical distance from 

the regression surface, rather than just a line. For more than two predictors, the geometric 

situation is similar, but difficult to picture. 

The (K + 1) parameters are found similarly to simple linear regression by minimizing the 

sum of squared errors. This is done most easily by solving simultaneous equations using 

matrix algebra or by using statistical software packages. The results can also be 

summarized in an ANOVA table for multiple regression as shown in Table 8. Notice that 

the calculations are analogous to those in simple linear regression with the only difference 

being the degrees of freedom. 

Table 8. ANOVA Table for Multiple Linear Regression (Wilks, 1995:177). 

SOURCE DF SS MS 

Total n-1 SST 
Regression K SSR MSR = SSR / K (F = MSR / MSE) 
Error n-K-1 SSE MSE = SSE/(n-K-l)=5e

2 
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4.2.4.6 Stepwise Regression. 

Multiple regression analysis seems to enable an endless number of potential predictor 

variables. An initial list can be multiplied significantly by using mathematical 

transformations such as the square of predictors or products of predictors, called 

interaction terms (Wilks, 1995:177; Devore, 1995:553). In this study, there are 151 

potential predictors (shown in Table 2) with approximately 2.85 x 1045 (2151) combinations 

of models. With such a large number of predictors, explicit examination of all possible 

subsets is impossible, especially within the three months this study was conducted. There 

are however, alternative methods that can be used to identify good regression models 

(Devore, 1995:571). The method chosen for this study was stepwise regression. 

Stepwise regression uses a combination of a forward selection and backward 

elimination method. The procedure starts by adding predictor variables to the model one 

by one. After each addition, the statistics package examines those variables previously 

entered to determine if they are still statistically significant to the model. If they are no 

longer significant, they are eliminated from the model (Devore, 1995:576). In the SAS 

statistics package, predictor variables are examined for addition or deletion based on an F 

statistic at the 0.15 significance level. 

Stepwise regression was chosen for many reasons. First, parsimony where less is more 

in terms of predictors, was a major goal for each model (Cody and Smith, 1991:220). 

Stepwise regression would ensure that each variable provided a significant contribution to 

the model rather than just trying to obtain the largest coefficient of determination with 

insignificant predictors. Since the coefficient of determination increases with the number 
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of predictor variables, this would most likely produce an overfit model (Devore, 

1995:572). Stepwise regression would also ensure that insignificant predictors were 

omitted, unlike either the forward selection or backward elimination procedure. Second, 

with the number of potential predictors, computing processing time would not be a 

problem. A procedure to find the largest coefficient of determination was available; 

however, it finds R2 values for all possible combinations of the model. As mentioned 

previously, this was not an option due to the large number of potential predictors. Finally, 

there is a smaller chance of multicollinearity, or high correlation between predictors which 

can give misleading results when using stepwise regression. 
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5. Findings and Conclusions 

5.1 Results 

Results of the stepwise regression procedure for latitudes and longitudes between 30- 

35°N, 102°30'-110°W indicate a weak linear relationship between the logarithm of C2 at 

various altitudes with different synoptic scale meteorological variables. This was 

confirmed by first validating results through analysis of residuals and then by examining 

the R2 values, the MSE terms and the F ratios. 

Analysis of residuals was conducted by first examining scatter plots of residuals versus 

predicted values, to ensure the assumption of homoscedasticity in the errors was met. 

Analysis of residuals then included testing the assumption of normality using the Wilk- 

Shapiro normality test. The assumptions of homoscedasticity and normality in the errors 

appeared to be supported. The Durbin-Watson test for serial correlation of the data was 

not conducted because the data used in the regression analysis was not a true time series. 

Since testing variables for independence with several gaps in the data did not make sense, 

it was assumed that the errors were independent and random. 

The R2 values for all the regression models are summarized in Table 9. They are 

arranged in latitude and longitude coordinates versus averaged vertical level given in Table 

4. All R2 values are statistically significant at the 0.05 significance level. The values range 

from 0.130 (35°N, 102°30'W, level 16) to 0.682 (32°30'N, 107°30*W, level 9), which is 

relatively distant from the R2 value of 1 indicating a perfect regression; however, the 

majority of the values are near 0.5 indicating a weak relationship. Further examination 

59 



of Table 9 shows that the highest values, where the strongest linear relationship can be 

assumed, fell between levels 7 through 12 or altitudes of about 12,000 to 13,500 meters. 

The three highest R2 values are located between levels 9 and 11 (altitudes of 

approximately 12,600 to 13,200 meters) at 32°30'N, 107°30'W, which is the grid point 

located closest to the radar site at 32°24*N, 106°21'W. Lowest values, indicating the 

weakest relationships, are between levels 16 and 17 or altitudes of about 14,600 to 15,000 

meters, respectively. 

Table 9. R2 values for latitude/longitude coordinates vs. averaged vertical level. 

(°N) 
(°W) 

30 
102.5 

32.5 
102.5 

35 
102.5 

30 
105 

32.5 
105 

35 
105 

30 
107.5 

32.5 
107.5 

35 
107.5 

30 
110 

32.5 
110 

35 
110 

LEVEL 
1 .487 .492 .503 .586 .524 .541 .594 .596 .451 .608 .567 .503 
2 .522 .554 .557 .556 .602 .526 .536 .609 .583 .481 .617 .539 
3 .494 .527 .511 .524 .489 .540 .535 .534 .539 .529 .542 .559 
4 .493 .524 .506 .481 .597 .466 .509 .520 .522 .556 .566 .484 
5 .562 .480 .477 .578 .581 .434 .610 .564 .532 .577 .606 .557 
6 .408 .504 .374 .587 .562 .430 .591 .584 .502 .508 .609 .596 
7 .427 .542 .429 .432 .619 .522 .589 .606 .526 .520 .30 .565 
8 .499 .581 .528 .565 .671 .493 .623 .551 .565 .508 .583 .542 
9 .477 .451 .577 .578 .596 .548 .632 .682 .623 .637 .580 .594 
10 .457 .465 .505 .514 .613 .559 .580 .677 .584 .612 .574 .550 
11 .450 .432 .415 .435 .571 .506 .602 .668 .623 .615 .635 .609 
12 .404 .413 .444 .505 .605 .463 .578 .555 .514 .552 .527 .608 
13 .497 .266 .394 .436 .450 .454 .535 .525 .238 .500 .477 .306 
14 .346 .196 .209 .442 .489 .334 .548 .517 .436 .419 .476 .394 
15 .324 .286 .292 .333 .441 .249 .394 .526 .306 .507 .468 .413 
16 .361 .201 .130 .396 .353 .219 .367 .376 .313 .250 .257 .351 
17 .319 .198 .305 .364 .277 .269 .306 .351 .238 .315 .346 .357 

The MSE values shown in Table 10 range from 0.104 (30°N, 105°W, level 17) to 0.324 

(30°N, 102°30'W, level 7). The MSE terms appear to be relatively small; however, it is 

difficult to visualize the MSE using the distance from the residuals to the regression 
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surfece with so many predictors, so the F ratio was used to test for the linear relationship 

that may exist between log (d2) and the weather variables. 

Table 10. MSE values for latitude/longitude coordinates vs. averaged vertical level. 

(°N) 
(°W) 

30 
102.5 

32.5 
102.5 

35 
102.5 

30 
105 

32.5 
105 

35 
105 

30 
107.5 

32.5 
107.5 

35 
107.5 

30 
110 

32.5 
110 

35 
110 

LEVEL 
1 .265 .263 .260 .224 .250 .244 .230 .223 .269 .225 .242 .262 

2 .255 .243 .255 .244 .219 .256 .253 .224 .221 .282 .222 .262 

3 .259 .253 .271 .241 .269 .247 .257 .251 .242 .252 .252 .246 

4 .244 .246 .258 .256 .210 .271 .258 .238 .239 .235 .235 .262 

5 .203 .247 .246 .206 .197 .258 .196 .209 .203 .202 .200 .213 

6 .291 .256 .320 .216 .234 .274 .226 .226 .238 .256 .215 .218 

7 .324 .262 .317 .314 .226 .262 .247 .223 .254 .273 .218 .240 

8 .275 .236 .255 .229 .196 .264 .216 .238 .240 .260 .229 .259 

9 .243 .256 .206 .193 .195 .213 .179 .160 .183 .178 .204 .200 

10 .223 .221 .201 .194 .172 .177 .178 .139 .174 .160 .176 .189 

11 .235 .244 .251 .230 .201 .209 .184 .151 .169 .177 .168 .184 

12 .231 .222 .215 .192 .169 .197 .175 .191 .183 .176 .187 .170 

13 .202 .263 .229 .212 .209 .204 .187 .195 .280 .191 .195 .262 

14 .240 .283 .286 .209 .203 .250 .185 .199 .219 .221 .206 .233 

15 .218 .236 .229 .191 .191 .215 .212 .188 .204 .173 .188 .204 

16 .135 .162 .186 .139 .128 .159 .142 .143 .136 .155 .154 .137 

17 .117 .134 .112 .104 .123 .114 .120 .113 .137 .114 .109 .118 

The F test shown below was conducted on the regression model with the largest R 

value of 0.682. This model was for the grid point at 32°30'N, 107°30'W at an altitude of 

about 12,600 meters. The ANOVA table for this regression model, which includes the F 

statistic and its corresponding probability value (p-value), is given in Table 11. 

Table 11. ANOVA table for 32°30'N, 107°30'W, 12,600 m. 

SOURCE DF SS MS 

Total 263 115.541 
Regression 34 78.803 2.318 (F = 14.45, p-value = 0) 
Error 229 36.738 0.160 
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The assumptions of homoscedasticity and normality in the errors were checked first to 

ensure that the results from the SAS statistics package were valid for this grid point. The 

scatter plot of residuals versus predicted values of log (d2), plotted using SAS, is shown 

in Figure 13. There appears to be an equal amount of variance above and below zero or 

the expected value of the error. The general shape of a horizontal band around the zero 

line can be seen; therefore, the assumption of homoscedasticity is supported. The Wilk- 

Shapiro plot of the residuals is shown in Figure 14. The plot shows a strong linear fit with 

a Wilk-Shapiro value of 0.9970; therefore, the assumption of normality is strongly 

supported. The model results from the SAS package were then deemed valid and the F 

test was conducted. 

RESIDUAL 1 1 
R 1 + o       ooo + 
e 1 o o oo 00 o o ooo  o o 00 1 
s 1 o o oo oooooooooooooooooo o   o o 1 
i 0 + o  oooooo ooooooooooooooooooooooooooo + 
d 1 oo oc 1 oo oo oooo ooooooooo ooooooooooooo o 1 
u 1 oo o ooo oo 0 ooo ooo o o oo o o   I 
a -1 + o + 
1 1 o 1 

1 

-2 
1 
+ + 

■19. .5 -19.0 -18.5    -18.0 -17.5 -17.0 -16.5 
Predicted Value of LCN PRED 

Figure 13. Scatter plot of residuals vs. predicted values (32°30TST, 107°30'W, 12,600 m). 

The null hypothesis for this F test is that all parameters except for the intercept are 

zero. The alternate hypothesis is that at least one parameter is not zero. The situation is 

illustrated in Figure 15. First, an F distribution curve was plotted using the regression 
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degrees of freedom, 34, as dl and the error degrees of freedom, 229, as d2. Assuming a 

significance level a of 0.05, a critical value of F, denoted Fc, was also computed. Since 

F = 14.45 is larger than Fc = 1.481 or the corresponding p-value = 0 is less than a = 0.05, 

the null was rejected. Therefore, the independent variables contribute to the regression or 

to predicting values of log (G,2). 

Wilk-Shapiro / Rankit Plot of Resid 

0 
Rankits 

Approximate Wilk-Shapiro 0.9970 

Figure 14. Wilk-Shapiro plot of residuals (32°30'N, 107°30'W, 12,600 m). 

F ratios and their corresponding p-values for all regression models are summarized in 

Table 12. Shorthand notation was used for p-values less than zero with E representing the 

power of 10 (for example, 3E-16 = 3 x 10'16). AJ1F ratios are all statistically significant 

assuming a 0.05 significance level. In other words, the meteorological variables contribute 

to the regression or to predicting values of log (Q,2) for all models. 
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dIXMl,<J2:> 1 - 

Figure 15. F distribution curve for 32°30'N, 107°30'W, 12,600 m. 

The number of predictors in each model, summarized in Table 13, varied from 7 up to 

42 variables. Most models with a large number of predictors showed a relatively high R2 

value while models with a small number of predictors showed a low R2 value. The 

number of predictors was the lowest at levels 16 and 17. There was no apparent trend 

between the number of predictors and mean squared error. 

A plot of predictor variables versus their frequency of occurrence in all regression 

models is shown in Figure 16. The last nine predictors have frequencies much greater than 

the first 13 variables because they are available at several different pressure levels. The 

predominant variables were temperature, mid and upper level wind and ageostrophic wind 

components and the bulk Richardson number. A list of the top 10 predictors in 

descending order of frequency is given in Table 14. The total wind, ageostrophic wind 

and bulk Richardson number were expected to be predictors of Q,2 as stated in 2.3. The 

temperature was not expected to be a predictor based on the literature; however, based on 

theory, it is logical that temperature would be a included as a predictor of Q,2 because the 

refractive index depends on temperature for electromagnetic waves. The refractive index 

is also a function of humidity, but near the stratosphere, the humidity can be considered 
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negligible. The wind components at the tropopause did not contribute to most models as 

predicted. This is probably due to the feet that the wind at the tropopause is highly 

correlated with mid and upper level winds. 

Table 12. F and p-values for latitude/longitude coordinates vs. averaged vertical level. 

(°N) 
(°W) 

30 
102.5 

32.5 
102.5 

35 
102.5 

30 
105 

32.5 
105 

35 
105 

30 
107.5 

32.5 
107.5 

35 
107.5 

30 
110 

32.5 
110 

35 
110 

LEV 
1 13.45 

0 
13.19 

0 
17.9 

0 
12.49 

0 
18.11 

0 
14.38 

0 
13.81 

0 
14.82 

0 
17.94 

0 
12.07 

0 
15.98 

0 
13.10 

0 
2 10.93 

0 
11.40 

0 
11.61 

0 
12.10 

0 
13.76 

0 
12.76 

0 
14.59 

0 
13.90 

0 
10.80 

0 
13.57 

0 
14.47 

0 
13.03 

0 
3 12.17 

0 
11.59 

0 
10.26 

0 
11.78 

0 
16.76 

0 
12.51 

0 
12.92 

0 
14.23 

0 
11.71 

0 
14.94 

0 
13.04 

0 
11.18 

0 
4 18.04 

0 
11.23 

0 
9.41 

0 
16.58 

0 
13.06 

0 
11.14 

0 
14.18 

0 
15.18 

0 
12.56 

0 
12.88 

0 
13.42 

0 
11.08 

0 
5 13.00 

0 
10.68 

0 
12.94 

0 
10.64 

0 
13.60 

0 
10.53 

0 
12.55 

0 
13.53 

0 
12.33 

0 
13.58 

0 
11.94 

0 
11.15 

0 
6 10.22 

0 
7.54 

0 
11.26 

0 
10.54 

0 
11.16 

0 
11.16 

0 
11.82 

0 
12.70 

0 
12.54 

0 
13.30 

0 
14.42 

0 
12.14 

0 
7 8.57 

0 
9.83 

0 
8.09 

0 
10.51 

0 
10.32 

0 
11.46 

0 
10.71 

0 
14.85 

0 
12.35 

0 
9.90 

0 
13.09 

0 
14.82 

0 
8 10.62 

0 
11.97 

0 
10.07 

0 
12.33 

0 
12.63 

0 
13.84 

0 
11.93 

0 
15.96 

0 
12.34 

0 
14.35 

0 
13.47 

0 
14.04 

0 
9 8.85 

0 
10.09 

0 
10.09 

0 
11.06 

0 
14.28 

0 
12.41 

0 
13.53 

0 
14.45 

0 
12.97 

0 
11.98 

0 
12.98 

0 
14.69 

0 
10 8.22 

0 
9.44 

0 
7.20 

0 
10.62 

0 
10.66 

0 
10.02 

0 
12.37 

0 
14.65 

0 
11.91 

0 
12.71 

0 
12.88 

0 
15.42 

0 
11 10.45 

0 
9.73 

0 
8.71 

0 
9.50 

0 
11.79 

0 
10.91 

0 
15.08 

0 
14.74 

0 
12.16 

0 
11.04 

0 
14.24 

0 
13.32 

0 
12 7.93 

0 
9.73 

0 
11.25 

0 
8.58 

0 
10.81 

0 
10.41 

0 
11.84 

0 
11.42 

0 
10.50 

0 
11.21 

0 
11.00 

0 
11.47 

0 
13 6.84 

0 
8.88 

2E-13 
6.36 

9E-16 
8.76 

0 
8.73 

0 
7.97 

0 
9.87 

0 
9.73 

0 
11.27 

2E-12 
8.69 

0 
10.88 

0 
13.31 

7E-16 
14 6.68 

1E-14 
5.82 
2E-8 

6.74 
3E-9 

7.58 
0 

7.78 
0 

6.00 
3E-13 

11.02 
0 

9.98 
0 

7.91 
0 

9.26 
0 

8.78 
0 

10.05 
0 

15 6.01 
2E-12 

5.71 
7E-11 

6.19 
2E-11 

5.72 
6E-12 

8.12 
0 

5.32 
3E-9 

8.76 
0 

9.03 
0 

8.49 
3E-13 

8.32 
0 

8.43 
0 

8.07 
1E-15 

16 6.69 
1E-15 

5.29 
2E-8 

5.77 
3E-6 

7.29 
0 

6.80 
2E-15 

5.38 
5E-9 

6.89 
3E-16 

7.13 
4E-16 

5.64 
6E-12 

6.08 
6E-11 

7.03 
1E-11 

8.72 
3E-15 

17 8.63 
3E-16 

8.79 
1E-10 

7.74 
2E-14 

6.45 
2E-15 

9.01 
1E-14 

8.32 
2E-13 

5.95 
6E-13 

7.24 
2E-15 

9.14 
5E-12 

8.01 
IE-15 

8.23 
1E-16 

8.12 
3E-16 
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Table 13. Number of predictor variables in each regression model. 

(°N) 
(°W) 

30 
102.5 

32.5 
102.5 

35 
102.5 

30 
105 

32.5 
105 

35 
105 

30 
107.5 

32.5 
107.5 

35 
107.5 

30 
110 

32.5 
110 

35 
110 

LEVEL 
1 24 25 19 36 20 27 35 31 15 42 27 24 
2 32 35 34 32 35 28 26 34 38 23 35 27 
3 26 31 32 29 19 30 29 25 30 25 29 33 
4 17 30 32 17 34 24 23 21 25 30 29 24 
5 28 25 20 35 29 21 35 26 25 29 35 29 
6 19 36 15 35 31 19 33 29 21 22 29 30 
7 23 31 24 19 39 25 34 26 22 29 33 21 
8 24 29 27 26 39 18 34 19 25 19 26 20 
9 26 21 32 30 26 24 31 34 30 36 26 23 
10 25 23 33 24 35 30 27 32 27 30 25 18 
11 20 20 20 20 28 23 25 31 31 35 29 26 
12 22 19 18 29 35 21 29 26 24 28 25 30 
13 35 11 25 22 24 26 29 27 7 29 21 8 
14 20 11 10 25 30 21 27 25 23 20 25 15 
15 19 17 16 20 23 15 18 27 12 29 24 19 
16 22 13 7 23 21 14 22 21 20 15 13 15 
17 15 8 15 23 12 12 20 19 9 16 17 17 

5.2 Conclusions 

This study has shown that a linear relationship exists between the NCEP/NCAR 

reanalysis database variables and the averaged logarithm of Cn2 values measured at WSMR 

for a discontinuous period between January 1993 to January 1994. The strongest 

relationships found were located closest to the radar site, which was somewhat intuitive. 

The most significant predictors in this study were temperature, total and ageostrophic 

wind components and the bulk Richardson number. This study also showed that although 

a linear relationship exists, this relationship is a weak one with several complicated 

regression models. 

66 



Based on the results, it was concluded that the exact relationship between optical 

turbulence and synoptic scale variables could not be defined at this time; further research 

was needed. Suggestions that may strengthen this relationship is provided next. 

800 
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er 400 

300- 
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w.n.n.n n n n II n.n.n.n.w 
i/3 
OH H     0-     S     >     K     "* HO-P>ftl % % § 

5    >    ffl 
Predictor Variable 

Figure 16. Predictor variable vs. frequency of occurrence in all regression models. 

Table 14. Top 10 predominant predictor variables in descending order of frequency. 

VARIABLE SYMBOL 
Temperature T 
Ageostrophic u-winds UAG 
U-winds U 
Ageostrophic v-winds VAG 
Bulk Richardson number BRN 
V-winds V 
Pressure vertical velocity W 
Relative humidity RH 
Geopotential height H 
Best (4-layer) index B 
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5.3 Recommendations for Further Research 

The results from this study showed that a linear relationship existed between averaged 

optical turbulence values and synoptic scale variables, but it was a weak relationship. The 

limited scope of this study did not permit exploration of other potential predictor variables 

which may strengthen the linear relationship. First, categorizing the data by vertical levels 

may not have been appropriate; mapping synoptic scale meteorological data to its 

suspected source region and using these values as potential predictors may provide better 

results. For example, vertical distance from the tropopause or maximum wind level and 

horizontal distance from jet core could be used as potential predictors. Second, a linear 

regression using time derivatives of specific meteorological parameters may also show a 

stronger relationship. Other potential predictors such as the square of a predictor or the 

product of one or more potential predictors could be used also. In this case, if a strong 

relationship was found, it would indicate a strong non-linear relationship. 

In addition, a follow-on study should examine specific case studies that were available 

in the data sets. Since a weak relationship was found for the discontinuous period 

between January 1993 to January 1994, a stronger relationship may exist for certain 

seasons of the year. It may be advantageous to focus on a specific feature, such as the 

predominant predictor variables in Table 14 or the tropopause height, which migrates with 

season. A linear or non-linear regression for specific periods of the year may provide a 

stronger statistical relationship. 

Although averaging optical turbulence data is common, it may not have best choice. 

For example, time averaging of 3-minute increments to 6 hour increments may have 
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affected the relationship by smoothing out interesting features in the Cn2 data. No 

literature was found that addressed such a problem; however, a study relating Cn2 to 

synoptic scale weather parameters with different time and spatial increments may provide 

better results. 

Finally, synoptic scale variables may not fully explain the fluctuations in optical 

turbulence. Since optical turbulence is usually confined to thin, horizontal layers, synoptic 

scale variables may not be able to distinguish the fluctuations in Q,2. Perhaps a study to 

determine the statistical relationship between C2 and mesoscale meteorological variables 

may be more promising. Such a task will prove difficult, however, since data from 

mesoscale models is not easily accessible and may not be available in areas where the 

Airborne Laser will be deployed. Lastly, if the data is available, a study to determine the 

statistical relationship between optical turbulence and local weather phenomena can be 

pursued. 
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