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SECTION ONE 
TASK OVERVIEW 

This Scientific and Final Technical Report (FINAL) was prepared by Synectics Corporation for 
submission to Rome Laboratory/ERST in accordance with Contract Data Requirements List 
(CDRL) item A003 of the "Molecular Dynamics Simulation Upgrade" task of contract F30602- 
94-D-0028/0009. The performance period for the task spanned four months and encompassed 
the investigation and/or implementation of many technical concepts pertinent to the upgrade. 

The code comprising the simulation is known as MDEM, which is an acronym for the 
"Molecular Dynamics of Electronic Materials." The simulation was created by Rome Laboratory 
(Rome Lab) engineers to study the effects of atomic motion on the useful life of microcircuits. 
Information gleaned from MDEM simulations will be used to help improve the longevity of 
circuits in Department of Defense (DoD) airframe platforms which must remain functional for a 
20-year period. 

1.1   OBJECTIVES OF THE EFFORT 

The scope of the MDEM simulation upgrade was very broad. The objectives of the effort 
encompassed the following areas. 

□ Improvement of performance 

□ Enhancement of "user-friendly" features 

□ General code cleanup 

Performance improvement was primarily focused on the attainment of MDEM processing 
speedup. This was achieved at a low level by examining the existing code structure, as well as at 
a high level by modifying the simulation algorithm. Enhancement of user-friendly features 
included the implementation of a prototype graphical user interface (GUI) and the creation of a 
user's guide for both the command-line and GUI versions of MDEM. Code cleanup involved 
deletion of unnecessary code and comments and reorganization of variables. In addition to this, 
miscellaneous software engineering and development support was provided to Rome Lab on an 
"as required" basis. 



1.2   PURPOSE OF THE REPORT 

In order to meet the objectives of the upgrade, preliminary evaluation of the software by the 
contractor was essential. A substantial familiarization period was required to become 
comfortable with the basic physics concepts underlying MDEM, as well as the code structure 
used to implement these concepts. Given the scope of the effort, individual tasks were assessed 
and prioritized by the contractor and presented to Rome Lab for approval. Preliminary cleanup 
of the code and verification of the simulation output was necessary before attempting major 
software modifications. This early preparatory work established the foundation for proper 
implementation of upgrade enhancements. 

The methods used to improve the MDEM simulation were basically derived from three sources. 

Ü  Rome Laboratory knowledge and guidance 

□ Contractor experience 

□ External information 

Though the high-level objectives of the task were clear, discussions with Rome Lab offered 
further direction regarding Physics concepts, areas of emphasis, feasibility, and data validation. 
Contractor experience in the areas of software engineering and algorithm development provided 
insight required for software performance improvement. External information, such as 
documentation and tools found in textbooks and on the Internet, was used to supplement the core 
knowledge base. 

1.3   SUMMARY OF THE CONTENTS AND ORGANIZATION OF THE REPORT 

This report is intended to present information concerning the research and development 
conducted by the contractor in support of the MDEM simulation upgrade. 

□ Section 2 gives an overview of the MDEM simulation design; this will furnish 
sufficient background for subsequent technical descriptions. 

□ Sections 3 — 6 describe the specific methods of simulation improvement, including 
code optimization, algorithm optimization, user interface implementation, and 
additional software enhancements. 

□ Section 7 presents specific benchmarking information gathered over the course of the 
effort. 

□ Lessons learned from the upgrade are documented in Section 8. 
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□ Many worthwhile enhancements, which could not be implemented due to time 
constraints, have been relegated to Section 9 as recommendations. 

Ü  Appendix A contains a list of acronyms used in this document. 

□ The Software User's Manual is bound as Volume II of this Scientific and Final 
Technical Report (FINAL). 
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SECTION TWO 
MDEM OVERVIEW 

MDEM is the calculation-intensive workhorse at the heart of an end-to-end molecular dynamics 
simulation process. Exhibit 1 shows MDEM interaction with data synthesis and data 
reformatting/visualization components. Data synthesis involves the generation of MDEM- 
compatible atom files, via software or manual methods. Rome Lab engineers use a customized 
tool written in Visual Basic to generate MDEM input data. For output data visualization, Rome 
Lab primarily relies on RasMol, a powerful freeware package which has elaborate data display 
capabilities. An Rome Lab-created software tool is required to reformat MDEM output files for 
compatibility with RasMol. 

The MDEM simulation software is comprised of five major processing components. 

□ Data input 

□ Data validation 

□ Interatomic force calculation 

□ Integration 

□ Data output 

Exhibit 1 is a pictorial view of MDEM and its components. Data input and validation are 
performed once at the start of the simulation. Interatomic force calculation and integration are 
part of an iterative process which continues until the target number of integration steps is 
reached. Data output is performed at user-specified intervals during the integration and also at 
the end of the simulation. The following paragraphs present a brief description of each of 
MDEM's five major components. 

2.1   DATA INPUT 

In MDEM, data input is accomplished via software which reads a formatted atom file. This atom 
file contains header data and atom data. The header data are comprised of both status and control 
parameters. Status parameters provide information on the history of the data contained in the 
file. Items such as progenitor file name and total elapsed simulation time are considered status 
parameters. Control parameters, such as number of integration steps and thermostat data, direct 
the processing flow of the simulation. 



Exhibit 1.      MDEM Functionality in End-to-End Molecular Dynamics Processing 
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Following the header data are the atom data. For each atom, a line of information including 
position, velocity and atom tag is included. The position and velocity are specified in x, y, and z 
components. The atom tag is an encoded value which contains information on atomic number, 
pinning status, grain, and thermostat value. Information is extracted from the atom tag via 
appropriate masks and shifts. Throughout the atom file, predefined keywords are utilized to 
signal the presence of specific data. During the upgrade, an atom pinning capability was 
incorporated in the simulation, thus introducing a new type of input file containing pinning 
points (refer to Section 6.1.1 for additional information). 

2.2   DATA VALIDATION 

The validation component of MDEM examines individual data items for validity, as well as 
checking the dependencies among related data items. For example, the integration time step is 
declared invalid if it is set to zero. An example of data interdependency verification is illustrated 
with the pinning data. If an atom is designated as pinned, then the supporting data, such as 
pinning point and pinning force, are also checked for validity. In MDEM, fatal errors are flagged 
by the validation process and program execution is terminated. 
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2.3   INTERATOMIC FORCE CALCULATION 

When an atom interacts with a neighboring atom, a force is exerted which is dependent upon the 
atom species and the distance between the atoms. The atomic motion resulting from these 
interactions can produce a change in overall system energy, or temperature. MDEM, which 
processes a system of atoms, must calculate and accumulate all the interatomic forces between 
neighboring atoms. In the simulation upgrade software, the Lennard-Jones force model was 
used to calculate interatomic forces. Near the end of the upgrade effort, Rome Lab engineers 
added a Stillenger-Weber force calculation module for additional flexibility. 

The interatomic force calculation is typically the most time-consuming component of a 
molecular dynamics simulation. For large systems, the key to efficient processing lies in the 
method used to pair neighboring atoms. In the MDEM simulation, atom pairing techniques were 
the subject of much investigation. The atom interaction scheme used in the baseline code was 
replaced by a cell-division technique presented in The Art of Molecular Dynamics Simulation by 
D.C. Rapaport (refer to Section 4.1.2.1 for additional details). 

2.4   INTEGRATION 

The integration process produces velocity and acceleration data from the atom positions obtained 
via interatomic force calculation. Atom velocities are used to calculate system kinetic energy. 
Atom accelerations are used to determine total system work. The method of numerical 
integration utilized in MDEM is a second-order Taylor approximation. The processing involved 
in the integration component is minimal compared to that of the force calculation component. 
The number of integration steps controls the main looping mechanism in MDEM. 

2.5   DATA OUTPUT 

There are three types of output resulting from execution of the MDEM simulation. 

Q Console data, which are comprised of status messages and summary information, are 
output to the screen console to inform the user of simulation progress. 

□ Atom files are created at the frequency specified by the user via the write interval 
keyword in the input atom file. An atom file is always written after the last 
integration step has completed, regardless of the number specified by the user. The 
atom output files mirror the format of the atom input files, and can therefore be used 
as input to MDEM for subsequent processing. 
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□ Temperature files are also created during the simulation execution. After each 
integration step, the system temperature, derived from kinetic energy and number of 
atoms, is written to the temperature file. During the upgrade, temperature file 
generation was made optional. 

2.6   THE INITIAL MDEM BASELINE 

The MDEM code received from Rome Lab at the commencement of the task served as the 
software baseline upon which all subsequent versions were built. A total of four data sets were 
received from Rome Lab for the purpose of testing the MDEM software. Two large data sets, 
consisting of 9,758 atoms and 112,423 atoms, were initially used to validate new software 
revisions against the baseline. Two small data sets, consisting of 13 atoms and 2 atoms, were 
later provided to test the algorithm modifications under extreme conditions. Though large data 
sets are typically used in molecular dynamics simulations, the small data sets did reveal 
algorithm weaknesses as well as floating point data related problems. 
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SECTION THREE 
CODE OPTIMIZATION 

For the MDEM simulation upgrade, optimizations resulting in speedup were favored over those 
reducing memory requirements. The speedup achieved by code enhancement is dependent on 
many factors, including coding conventions, processor architecture, compiler quality, and 
compiler optimization switches used. Typically, code must be written for a specific platform in 
order to maximize performance. For the purposes of this effort, the primary target platform for 
the code optimization was the Intel Pentium Pro processor. 

3.1   METHODS EMPLOYED 

The methods used to optimize the MDEM code ranged from basic, intuitive simplification 
techniques, to utilization of recently developed, high-technology tools. The contractor's 
knowledge of efficient coding practices was the starting point for code optimization. This was 
supplemented by the use of documentation aimed specifically at the target simulation platform. 
In general, optimized code is only as good as the compiler which converts it into machine-level 
code. Therefore, a substantial amount of time was devoted to the investigation of various 
compilers and their native optimization switches. Most compilers are available with an 
associated profiling capability, which helps the user pinpoint frequently-executed areas of code 
for optimization. Two profilers were briefly investigated during the upgrade. A state-of-the-art 
code analysis tool, Intel's VTune, was also utilized during the code optimization effort. 

3.1.1   EFFICIENT CODING PRACTICES 

A developer typically acquires knowledge of efficient coding practices either through formal 
training or "on-the-job" experience. However, this knowledge is not always applicable, given 
the vast array of processor architectures available today. Code that is efficient on one processor 
could be totally ineffective on another. Therefore, it is always best to research the target 
processor in order to implement the most efficient code. For the MDEM upgrade, both visual 
inspection and documentation research were used to assess and improve the quality of the code. 

3.1.1.1 VISUAL INSPECTION 

Initial inspection of the MDEM code was performed to reveal areas which could be improved by 
general simplification and/or consolidation. The following list of potential code improvements 
was used as a guideline when inspecting the code. 

-8- 



Q Conversion of divides to multiplies 

□ Elimination of redundant calculations 

□ Elimination of unnecessary variables 

Q Simplification of mathematical expressions 

□ Placement of static code outside loops 

O Replacement of structures with scalars 

□ Simplification of array indexing 

□ Assignment of frequently used variables to registers 

□ Conversion to function inlining 

Q Simplification of data storage types 

The baseline code was found to be fairly well-written with respect to these guidelines. Although 
several modifications were made according to this list, the impact on processing time was 
minimal. The reduction in processing time was greater on the Pentium than on the Pentium Pro 
due to major differences in the processor architectures. Also, today's sophisticated compilers 
often implement these optimizations automatically. It soon became apparent that "traditional" 
code optimization was not sufficient to obtain a significant speedup. 

3.1.1.2 DOCUMENTATION 

The Intel web site was searched for technical memos regarding code optimization for the 
Pentium and Pentium Pro processors. It was discovered that most of these deal with 
implementation at the assembly language level. Due to the complexity of the assembly level 
code and the time constraints of the MDEM upgrade task, these optimizations were not 
considered feasible options. The documentation regarding assembly optimization was noted but 
not utilized. 

A technical memo called, "Optimization Strategies for the Pentium Processor®,"1 briefly 
addresses the restructuring of C code to maximize optimization by the compiler. This memo 
summarizes the unique characteristics of the Pentium processor architecture and provides an 
overview of C-level optimization techniques. The memo states that the four primary coding 
areas which have a significant impact on compiler effectiveness involve: 

1 "Optimization Strategies for the Pentium Processor®", Intel Corporation, 
http://support.intel.com/oem_developer/microprocessors/pentium/7299.HTM 



□ Pointer usage 

□ Global variable usage 

□ Loop implementation 

□ Data type mixing 

A short description of proper coding techniques is given for each of the four areas. It was 
determined that the MDEM baseline code was already following these guidelines. 

Another source of information regarding code performance improvement was found in the 
Microsoft™ Visual C++ "on-line" help utility. A technical memo called "Tips for Improving 
Time-Critical Code"2 describes code efficiency issues from the Microsoft implementation 
perspective. This memo focuses on such areas as cache hits/page faults, sorting/searching, 
shared libraries, and thread implementation. Though geared toward the Microsoft development 
environment, the information contained in this memo is also valuable for general 
implementations as well. 

3.1.2 COMPILERS 

Selecting an appropriate compiler is not a trivial task. The most highly optimized C source code 
must still be translated to machine level by a compiler. The performance of the machine level 
code is directly related to the quality of the compiler, in addition to the compilation optimization 
switches chosen by the user. The two primary C compilers used during the MDEM simulation 
upgrade were DJGPP and Microsoft Visual C++. In addition to these, the Watcom and Intel 
compilers were briefly investigated. 

3.1.2.1  DJGPP 

DJGPP is the C compiler used by Rome Lab engineers to generate MDEM executables. The 
contractor also used DJGPP to generate timing statistics and to verify compatibility of changes 
made to software via Microsoft Visual C++. DJGPP is a freeware compiler used for developing 
32-bit C/C++ software in the MS-DOS environment. DJGPP was created in an attempt to port 
the Unix gcc compiler to MS-DOS, and in the process, C++ capability was added. Although it is 
reported to have widespread distribution in many countries and languages, its usage for official 
applications should be carefully evaluated. There is some technical support for DJGPP; 
however, a user must typically wade through extensive literature in an attempt to find solutions 
to problems.  There is no "help line" available for immediate, thorough support, as is the case 

2 "Tips for Improving Time-Critical Code", Microsoft Visual C++ on-line help 
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with a large company such as Microsoft. DJGPP also lacks a visual development environment as 
well as interface building capabilities. 

The DJGPP compiler flags were tested during the upgrade effort. The following flags were 
exercised in an attempt to generate fast code^ 

Q  Compile flag -01 — reduces code size and execution time of the program. 

□ Compile flag -02 — includes all optional optimization, except loop unrolling and 
function inlining. 

□ Compile flag -03 — includes all -02 optimizations as well as function inlining. 

3.1.2.2 MICROSOFT VISUAL C++ 

The Microsoft Visual C++ compiler was used by the contractor as the primary software 
development tool. This compiler is part of a sophisticated visual support environment which 
eases the difficulties encountered in application development. Makefiles are readily generated 
and maintained; debug and release version folders are automatically created; and source code is 
highlighted in various colors to indicate functionality. Also, development capabilities exist for 
generating Windows-style user interface applications. A knowledgeable support network is 
available to supplement the extensive on-line help utility. 

In Microsoft Visual C++, the compiler optimization switches are set through the "Project 
Settings" menu option. A specific processor architecture is selected from the following options: 
80386, 80486, Pentium, Pentium Pro, and Blend. The "Blend" setting generates instructions 
which are fairly efficient on all processors. There are also optimization switches which fine tune 
program performance. Examples of these include speed maximization, code minimization, 
global optimizations, and improvement of floating point consistency. 

With its default settings, the Microsoft Visual C++ flagged more code warnings than the DJGPP 
compiler. Most of these warnings were the result of data type mismatches which are said to 
result in inefficient code. The problems causing the warnings were corrected. 

3.1.2.3 WATCOM 

Rome Lab engineers requested a brief evaluation of their Watcom C/C++ 10.0 compiler. An 
MDEM executable was generated using this version of Watcom, yet no performance 
improvement was noted upon execution. The most recent version of this compiler, Watcom 
C/C++ 11.0, is touted for its superior code optimization capabilities. It is said to use superscalar 
optimization strategies to generate faster code on Pentium and Pentium Pro processors. Version 
11.0 may far exceed the code optimization capabilities of its predecessor; therefore, it should not 
be discounted entirely. 
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3.1.2.4 INTEL COMPILER PLUG-IN 

The Intel C/C++ compiler plug-in is used to generate machine level code which is highly 
optimized for a target Intel processor. It is still in the Beta phase of development and is available 
to users that have been accepted into the Beta program. The contractor's application for 
admission into the program was accepted by Intel and a Beta copy of the software was 
downloaded. Since the plug-in is designed to be used with the Microsoft Visual C++ Integrated 
Development Environment (DDE), the compiler was installed on a Pentium machine with access 
to the IDE at the contractor's site. The compiler has not been thoroughly tested due to a bug in 
the software. Intel was contacted, and a correction was suggested. Further investigation of the 
compiler is required in order to determine the benefits, if any, to the MDEM simulation. 

3.1.3   PROFILERS 

A profiler is a performance tool which assists a developer in determining which areas of code 
would benefit most from optimization. The profiler accomplishes this by determining the 
frequency of execution of selected areas of code. Typically, a profiler also maintains a record of 
the interrelationships between function calls. Though it is not intended to be a debugging tool, a 
profiler will often discover obscure bugs by exposing areas of unexecuted code which were 
assumed to be executed. Profilers are best used for fine-tuning large applications with many 
lines of code and complex data sets. In the case of MDEM, the number of execution paths is 
fairly manageable. It can be determined, even without the use of a profiler, that most of the 
execution time will be spent in the function "move_atoms", and that the optimization efforts 
should be focused there. However, profilers were briefly investigated to determine their specific 
benefits to MDEM. 

3.1.3.1 DJGPP 

When investigating the DJGPP profiler, it was discovered that a bug in the software made 
profiler operation impossible without the use of a patch. Much time was spent searching the 
DJGPP Mail Archives to locate the appropriate software patching instructions. Implementation 
of the patch required a download of the DJGPP source code and a patch utility 
(v2gnu/pat2 lb/zip). Due to time constraints, it was decided to forgo further investigation of the 
DJGPP profiler, especially in light of the fact that Microsoft Visual C++ tends to produce more 
efficient code. 

3.1.3.2 MICROSOFT VISUAL C++ 

The profiler in Microsoft Visual C++ 5.0 contained a bug in the installation script which prevents 
the supporting software from acknowledging the presence of the profiler. Therefore, Version 
4.2's profiling utility was analyzed instead. The instructions stated that with the proper 
commands, the profiler would examine only specified functions.   However, the profiler was 
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unable to locate the user-specified starting functions, such as move_atoms.  The source of this 
error was undetermined. 

Although the "specified function" feature was not useable, the "function time coverage" option 
did generate the information shown in Exhibit 2. This output confirms that most of the 
processing time is spent in move_atoms. The functions requiring the most processing time are 
high-priority targets for optimization. The "Hit Count" can be used to determine which function 
calls should be inlined to save processing time. This listing shows forceJLJ as having the 
highest hit count. At one point during the upgrade, the force_LJ calls were replaced by the actual 
forceJLJ code to reduce processing time. 

Exhibit 2.      Microsoft Visual C++ Profiler Output 

Program Statistics 

Command line at  1997  Mar 18 13:48: "C:\MSDEV\Projects\Er9-working\mdprof\Debug\mdprof" 
9758.atm 

Total time: 121015.605 millisecond 
Time outside of functions: 15.803 millisecond 
Call depth: 3 
Total functions 30 
Total hit s: 195437 
Function coverage: 63.3% 
Overhead Calculated 8 
Overhead Average 8 

Module Statistics for mdprof.exe 

llise cond Time in module: 120999.801 m: 
Percent c f time in module: 100.0% 
Functions in module: 3 0 
Hits in module: 195437 
Module function coverage: 63. 3% 

Func Func+Child Hit 
Time % Time % Count Function 

65548.840 54.2 107372.319 88.7 20 _move_atoms (mdemutl.obj) 
41408.035 34.2 41408.035 34.2 195160 _force_LJ (mdemutl.obj) 
7071.999 5.8 7075.674 5.8 1 _load_atoms (mdemio.obj) 
6383.855 5.3 6385.610 5.3 1 _write_data (mdemio.obj) 
317.200 0.3 317.200 0.3 20 _ul3tensor (mdemmem.obj) 
102.108 0.1 102.108 0.1 3 _atom_vector (mdemmem.obj) 
89.298 0.1 89.298 0.1 20 _free_ul3tensor (mdemmem.obj) 
30.161 0.0 120999.801 100.0 1 _ma in (mdem. ob j ) 
18.018 0.0 22.291 0.0 1 _get_header_data (mdemio.obj) 
10.088 0.0 10.088 0.0 1 _usi_vector (mdemmem.obj) 
7.948 0.0 7.948 0.0 141 _fgetline (mdemio.obj) 
5.133 0.0 5.133 0.0 20 _uli_vector (mdemmem.obj) 
2.768 0.0 2.768 0.0 20 _free_uli_vector (mdemmem.obj) 
1.103 0.0 1.103 0.0 21 _coord_vector (mdemmem.obj) 
0.917 0.0 0.917 0.0 2 _get_date_time_string (mdemio.obj) 
0.908 0.0 0.908 0.0 1 _get_yr_string (mdemio.obj) 
0.898 0.0 0.898 0.0 2 _get_time_string (mdemio.obj) 
0.417 0.0 0.417 0.0 1 _get_sec_string (mdemio.obj) 
0.106 0.0 0.106 0.0 1 _dbug (mdemutl.obj) 
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3.1.4   INTEL VISUAL TUNING ENVIRONMENT 

The Intel visual tuning environment tool, VTune, is used to assist in the generation of highly 
optimized code targeted for Intel processor architectures. VTune has two basic modes of 
operation: dynamic and static. The dynamic mode is similar to a debugging or profiling 
environment. Capabilities include monitoring the performance of all active software, identifying 
"hot spots," and viewing instruction execution at the machine level. A significant learning curve 
is associated with the dynamic operating mode. However, the basic features of the static mode 
are relatively easy to use. The static mode tabulates information on code features and generates 
coding advice using a feature called the "Code Coach." 

Since VTune is available free of charge for a 30-day trial basis, a copy was downloaded from the 
Internet and installed on a Pentium machine at the contractor's site. Even though the tool was 
not thoroughly exercised due to time constraints, it was still able to provide useful code 
optimization information. Valuable documentation which describes code optimization 
techniques was printed. In addition, the Code Coach was used to generate optimization advice 
for the MDEM modules with the Pentium Pro selected as the target processor. 

The output of the Code Coach is presented in a window from which it is impossible to obtain a 
printout. This makes it difficult to scan and evaluate the advice "bullets" as a group. Much of 
the advice was straightforward, yet some of it was difficult to decipher. As is the case with many 
automated, "intelligent" tools, the user must still use discretion in following the advice. In 
general, references to MMX technology appeared frequently. MMX is Intel's latest technology 
breakthrough which is primarily intended to improve the performance of multimedia 
applications. The use of MMX intrinsics was recommended for array operations by the Code 
Coach. In addition to this, more practical, easily-implemented advice was offered. Some 
examples are: 

□ Elimination of unnecessary data type conversion 

□ Use of the "memset" function to initialize a block of data 

□ Repositioning data to avoid redundant calculations 

□ Changing conditional expressions to reduce the number of conditional branches 

Some of this advice was tested in the move_atoms function, which resulted in a slight speedup 
for a large data set. 
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3.2   SUMMARY OF RESULTS 

The degree of processing speedup attained with these code optimizations varied greatly. The 
most substantial improvement was seen when appropriate compiler optimization flags were used. 
The implementation of efficient coding practices did not result in major performance 
improvement, since the code was fairly clean in this area. Also, the advanced architecture of the 
Pentium Pro reduces some of these optimizations to insignificance. The compiler used to create 
an executable does have an impact on software performance. However, it was determined that 
the performance of the compiler optimization flags was dependent upon the data set and the 
changes made to the code. The executable generated with Microsoft Visual C++ was faster than 
the DJGPP executable for almost every test case. Though the Microsoft Visual C++ version is 
fast, the potential benefit of the evolving Intel compiler plug-in should not be overlooked. The 
profiling tools associated with DJGPP and Microsoft Visual C++ either did not work properly or 
did not contribute significant information. However, Intel's visual tuning environment, VTune, 
does generate useful optimization information. 
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SECTION FOUR 
ALGORITHM OPTIMIZATION 

Optimizing an algorithm for speed generally requires revision of the basic, underlying concepts 
or restructuring of the algorithm implementation framework. In the case of MDEM, reworking 
the foundation might involve implementing different methods of force calculation or integration. 
Thorough knowledge of supporting physics concepts is necessary to evaluate trade-offs. An 
alternative, faster algorithm may produce slightly different results, yet these results may fall 
within acceptable error limits. The other option for algorithm speedup is reassessment of the 
framework which implements the physical concepts. For the MDEM simulation upgrade, the 
software "mechanism" which performs atom pairing is the primary target for optimization. 
Atom pairing is responsible for the bulk of the processing load. 

4.1   METHODS EMPLOYED 

Two approaches were utilized to investigate algorithm optimization and enhancement. One 
involved a search for commercial, "stand alone" software applications which duplicated the 
functionality of the target algorithm, but with greater efficiency. The other area of investigation 
focused on incremental improvement of the algorithm framework to achieve the desired speedup. 

4.1.1    COMMERCIAL SOFTWARE PACKAGES 

An Internet search was performed to determine the availability of alternative, "off-the-shelf 
Molecular Dynamics simulations. In general, the information gleaned from this search varied 
greatly in content. In some cases, the software simulations addressed technical areas outside the 
scope of MDEM, such as biomedical applications. In other cases, the academic community was 
the target audience for simulations which serve as teaching aids. There were, however, some 
packages which appeared to perform processing similar to that of MDEM, but with some 
drawbacks. 

In most of the applicable commercial software, the inherent complexity seemed to extend the 
learning curve significantly. Additional processing features, which are not required for MDEM 
scenarios, constitute extra "baggage" which tend to make these simulations too cumbersome for 
streamlined use. Also, it may be difficult to modify a package to include custom features, since 
source code is not typically provided. When evaluating a commercial package, one must 
consider the reputation of the developer. Some software, such as "public domain," is not 
guaranteed to produce correct results. 
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Although there are initial drawbacks, the commercial packages should not be discounted 
completely. Given enough time to gain experience with a particular package, a user may find 
that it mirrors MDEM functionality while extending processing capability and offering improved 
performance. Table 1 presents a summary of applicable Molecular Dynamics software packages 
that were found during the Internet search. 

Table 1.        Molecular Dynamics Software Packages 

TOOL VENDOR DESCRIPTION COST 

HyperChem 53 Hypercube, Inc. Molecular mechanics / 
Dynamics modeling package 

$595 

HyperChem Lite4 Hypercube, Inc. Subset of HyperChem 5 
capabilities 

$149 

Simulation Kit5 M. Karolewski, 
Nanyang Tech 

Programs for atomic collision 
simulations in solids - public 
domain 

4.1.2 INCREMENTAL ALGORITHM ENHANCEMENT 

The primary source of information for improvement of the MDEM algorithm was The Art of 
Molecular Dynamics Simulation 6 by D.C. Rapaport. This text presents information in a clear 
and organized format which helps the reader incorporate Rapaport's techniques into an existing 
simulation. C-code files which correspond directly to the text are available via Internet for use 
"as is." However, with the incremental improvement approach, it was more convenient to retain 
the MDEM code foundation and simply weave in Rapaport's recommendations where necessary, 
tailoring them to fit MDEM. 

Use of this text had been recommended by Rome Lab engineers during the early stages of the 
project, initially in the context of implementing the "three-body potential" code found in Chapter 
11. Synectics obtained a copy of the text and proceeded to investigate the cell method atomic 
neighboring schemes found in Chapter 3. These innovative algorithms reduce the number of 
atomic interaction computations while still maintaining data integrity. However, as with general 
code optimization, the speedup obtained via algorithm optimization is highly dependent on the 
target processor and compiler. 

3 HyperChem5, http://www.hyper.com/product_desc.html 
4 HyperChem Lite, http://www.hyper.com/product_desc.html 
5 Simulation Kit, http://www.uwo.ca/ssw/archives/jul96/0002.html 
6 The Art of Molecular Dynamics Simulation. D.C. Rapaport, Cambridge University Press, 1995, ISBN 0-521- 
44561-2 
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4.1.2.1 CELL IMPLEMENTATION 

The atomic interaction scheme used in the baseline version of MDEM was a major improvement 
over earlier schemes. However, it still involved many redundant atomic pair calculations. The 
cell method of calculating atomic interactions, presented in Rapaport's text, appeared to have the 
potential to significantly reduce simulation execution time. The cell method is described as 
follows. The three-dimensional space spanned by the atoms is divided into cells, or cubes. Each 
cell has a side dimension which is equal to the atomic cutoff length. The cutoff length defines 
the maximum distance over which two atoms will interact. For each cell, a list is generated 
containing the ID numbers of all atoms that fall into the area covered by the cell. These lists are 
traversed when pairing atoms for the purpose of calculating the force between them. 

Each cell is examined in sequence as the entire atom space is evaluated. First, all the atoms 
within a cell are paired with one another, avoiding redundancy. Secondly, a cell is paired with 
half of its neighboring cells. For each cell pairing, every atom in the first cell is paired with 
every atom in the second cell. If the distance between the two atoms in a pair is less than the 
cutoff distance, then the force is calculated and stored. Each time the force on an atom is 
calculated, the equal and opposite force is stored for the other atom in the pair, thus further 
eliminating unnecessary calculations. The cumulative forces on each atom potentially result in 
atomic motion. To account for atomic motion beyond cell boundaries, the cell lists must be 
rebuilt after each integration step. 

The sample code which appears in Rapaport was tailored to suit the requirements of MDEM. 
Rapaport makes provision for handling periodic boundaries between cells. This is not a 
requirement for the current MDEM simulation. Also, Rapaport assumes that there are at least 
three cells in each dimension. This caused problems when testing small data sets which covered 
less than three cells. Code which handles less than three cells was added to the MDEM 
implementation of the cell method. 

4.1.2.2   NEIGHBOR LIST METHOD 

There are variations of the cell method which might further reduce the processing time needed to 
perform atomic interaction calculations. The neighbor list method, described in Rapaport's text, 
is one such variation. This technique assumes that the atomic motion is small enough so as not 
to incur major changes in the cell list even after several integration steps. The cell size would be 
slightly increased, by Ar, in order to provide adequate coverage of pairs which may interact after 
several integration steps. The method used for determining atom pairs is similar to the cell 
method. 

In the cell method, atoms are paired and forces are immediately calculated if the distance 
between them is less than the cutoff distance. In the neighbor list method, atoms are paired and 
placed in a table (or list) if the separation between them is less than the cutoff distance plus Ar. 
After all potential pairs have been determined, the entire list is traversed and force calculations 
are made if the atoms are within interaction distance.  With this method, it is not necessary to 
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update the neighbor list after every integration step. To determine when to refresh the neighbor 
list, the maximum atom displacement during each integration step is accumulated. When the 
accumulated value exceeds Ar, the list is recreated. 

The contractor briefly experimented with this "infrequent refresh" concept using the cell method 
described in the previous section. With the 9,758 atom data set, the refresh time was negligible 
compared to the time needed to process one integration step. It was also noted that the 
simulation could proceed for at least 20 integration steps without refreshing the list, while still 
yielding valid results. Rome Lab engineers implemented the full neighbor list scheme, but had to 
impose certain constraints. The neighbor list method utilizes very large amounts of memory to 
maintain the listing of potential atom pairs. In order to execute the simulation without running 
out of memory, the cutoff distance was reduced, thus decreasing the potential number of valid 
pairs. On computers with more memory, the neighbor list method may provide significant 
speedup without concessions. However, given the configuration of the current platforms, it 
appears that the neighbor list scheme limits the simulation's flexibility. 

4.2   SUMMARY OF RESULTS 

Few applicable "off-the-shelf molecular dynamics packages were discovered during the 
Internet search. This indicated that effort should be focused on improving the fundamental 
MDEM algorithm. Rapaport's molecular dynamics simulation text provided the information 
necessary to rework the calculation-intensive interatomic force component of the MDEM 
software. The baseline method of pairing atoms was replaced with the cell method, which, in 
addition to substantially reducing processing time, is also conducive to parallel processing 
implementation. 
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SECTION FIVE 
USER INTERFACE 

The baseline version of MDEM was a console application which executed via a command-line 
user interface. If errors in the atom file were flagged, the user was forced to exit the application 
and edit the atom file appropriately. This implementation is sufficient for experienced users, 
such as the Rome Lab engineers, who use the simulation on a daily basis. However, it may 
appear daunting to the uninitiated user. One of the goals of the MDEM simulation upgrade was 
to implement a prototype GUI which would provide a more user-friendly and up-to-date 
environment for the novice. 

5.1    METHODS EMPLOYED 

An Internet search revealed numerous GUI builders which are available commercially. 
Developers of these tools range from large, well-known corporations such as Microsoft, to 
smaller, emerging companies such as XVT Software. The academic community has also 
spawned its own versions of GUI builders, often available as public domain software. The 
quality of the development tools also varies dramatically, from simple and unrefined, to 
elaborate and highly polished. 

There are independent resources, accessible via Internet, which maintain data on the latest GUI 
builders. One such resource, "User Interface Software Tools"7, is a list of current GUI builders 
that is compiled and maintained by Brad A. Myers at Carnegie Mellon University. This list 
provides a very brief summary of over 100 different interface development tools. Another 
resource, "Graphical User Interface Development Systems"8, is the result of research conducted 
by S. Baum at Texas A&M University. Though geared more toward Unix platforms, this listing 
of GUI builders provides useful general information as well. These summaries can serve as the 
starting point for future in-depth GUI builder investigations. 

5.1.1    USER INTERFACE OPTIONS 

The direction of the literature search for GUI builder information was driven by the needs of the 
MDEM simulation.  Currently, MDEM has a small user-base which primarily depends on Intel 

7 "User Interface Software Tools", Brad A. Myers, Carnegie Mellon University, 
http://www.cs.cmu.edu/afs/cs.cmu.edu/user/bam/www/toolnames.html 
8 "Graphical User Interface Development Systems", S. Baum, Texas A&M University, http://www- 
ocean.tamu.edu/~baum/graphics-GUI.html#wxWindows 

-20- 



Pentium machines to host the application. An ideal scenario would involve MDEM accessibility 
on a wide variety of platforms in order to accommodate a large users' group. The current and 
ideal situations differ drastically, thus resulting in very different requirements regarding user 
interface development. Given the current user situation, a platform-specific GUI builder is 
sufficient. Considering future goals, a cross-platform GUI builder is necessary. 

Due to time constraints of the project, it was determined that the best approach would be to focus 
on the current user scenario by using a platform-specific GUI builder for the PC, running 
Windows 95/NT. In this report, information regarding cross-platform builders is also presented 
for future reference. 

5.1.1.1 PLA TFORM-SPECIFIC 

Searching the Internet yielded information on several PC/Windows-based GUIL builder tools. 
There appeared to be more GUI builders available for Unix platforms than for PC platforms. One 
possible explanation might be that the Windows platform is a more recent development. Table 2 
lists just a few of the packages available for use with Windows. 

Table 2.        PC/Windows Platform-specific GUI Development Tools 

TOOL VENDOR DESCRIPTION COST 

Visual C++ Microsoft C/C++ programming environment 
with AppWizard Developer Tool 

$479 

Visual Basic Microsoft Typically used for prototyping 
interfaces 

$469 

GX Series 
Developer's Pak 

Genus Programmer's Toolkit for GUI 
development 

$589 

Rapid Design Emultek Inc. MS Windows, Windows 95 and 
NT visual language 

$6,000 

Microsoft Visual C++ was the primary candidate for GUI implementation since it was also the 
programming tool used by the contractor to implement changes in the command-line version of 
MDEM. A significant learning curve is associated with any GUI builder, but this was kept to a 
minimum due to contractor familiarity with the Microsoft Visual C++ programming 
environment. In addition, GUI building costs were minimized by utilizing a readily available 
tool. Microsoft Visual C++, in conjunction with its resident "AppWizard," helps guide the 
developer by providing features such as the following. 

□ Initial setup of main dialog 

□ Automatic creation of interface "shell" files 
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□ File editing guidance 

□ Structures that are compatible with "Windows" format 

For a realistic assessment of other GUI builders, it would be advantageous for the developer to 
obtain a trial copy of the software before purchase, if possible. Textual descriptions of software 
packages often overestimate actual software quality. 

5.1.1.2 CROSS-PLATFORM TRADITIONAL 

Software tools for cross-platform GUI development are continually evolving to encompass a 
wider range of platforms and enhance performance. Table 3 presents a sampling of the cross- 
platform GUI development tools found as a result of the Internet search. The tools presented 
here support traditional user interface development. 

Table 3.       Cross-platform GUI Development Tools 

TOOL VENDOR DESCRIPTION & .COST 

UIM/X with 
Cross-Platform 

Toolset 

Visual Edge 
Software Ltd. 

Cross-Platform Toolset is an add- 
on to UIM/X 

$7,500 

XVT 
Development 

Solution for C++ 

XVT Software C++ GUI development tool ? 

X-Designer 4 Imperial 
Software 

Technology 

Used with Motif and Windows 
applications 

$3,500 

Galaxy Visix Software 
Inc. 

Virtual Toolkit for Mac, Windows, 
Motif, OpenLook 

$9,600 

PowerBuilder Powersoft PC, Unix, and Mac Interface 
Builder and Database front end 

$2,759 

XFaceMaker/Win Nova Software 
Labs 

Builds native GUIs with consistent 
appearance and behavior among 
Unix, Windows and Macintosh- 
development platform is 
Unix/X/Motif 

? 

Developers have a variety of approaches to cross-platform development. 

□  Binary Emulation emulates the native processor instruction set of the system for 
which the application was developed, allowing a program to be run on different 
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platforms without being recompiled. However, major drawbacks exist. Using binary 
emulation, causes the software to run at significantly slower speeds than native 
applications and requires large amounts of disk space and memory. 

□ Layered Toolkits implement the application in the vendor's API, which then makes 
calls to the underlying API of the target platform. The main advantage to the layered 
toolkit is that the application has the look and feel of a native application. The main 
disadvantage, is that the toolkit only uses the lowest common denominator features of 
all supported platforms. A variation of the layered toolkit is the emulation toolkit, 
which differs from a layered toolkit by emulating the look and feel of the native 
environment. The main disadvantage is that these packages are not built on the native 
API, requiring the vendor to reimplement the native toolkit for each target platform. 

□ Application Frameworks implement a set of C++ classes, much like a layered toolkit. 
Besides the lowest common denominator limits, application frameworks are restricted 
to developing the application in C++. 

□ Ported APIs build on the target platform's native API to provide the full range of 
functionality of the target platform. Ported APIs are considered among the best 
choice for cross-platform development. 

In addition to selecting the approach and, therefore, features and functionality for the ported 
application, there are several other issues to be considered when designing code for cross- 
platform implementation. Some of the more significant issues include: 

□ Processor Architecture — Some processors are limited in the amount of physical and 
virtual memory that they can address. This becomes particularly important when 
large volumes of data are to be processed. Word size and byte ordering ("big-endian" 
as opposed to "little-endian") are also important issues to consider when data 
manipulation is being performed at the bit and byte level. 

□ Operating System — The use of threaded processing, multitasking, memory segment 
addressing, available services, and data protection are all impacted by the operating 
system to which a given application may be ported. 

Q Memory Model — The segmented memory model, utilized in many older (and some 
newer) architectures limits the maximum size of the data structures that can be 
utilized in an application. If portability to an architecture with a segmented memory 
model is required, data structures and data processing techniques must be addressed. 

Furthermore, the use of vendor specific extensions, such as the Microsoft Foundation Classes 
extension to C++, to any programming language effectively reduce the portability of the code. 
Portable code can be developed using ANSI C/C++ and careful programming techniques. 
However, this may lead to memory management issues with the target platform.  Applications 
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developed using inefficient compilers, such as the freeware DJGPP, running on hardware 
insufficient for the task can create the appearance of non-portability. 

Some of these issues are addressed in several articles accessible via the Internet. '   ' n'12 

5.1.1.3 CROSS-PLATFORM BROWSER-BASED 

An alternative cross-platform option is a browser-based interface, which can be crafted in a 
variety of ways. The least expensive way is through use of a text editor, which creates HTML 
page(s). With a web authoring tool, many of which are available commercially or in the public 
domain, a novice can quickly create a basic interface. Combining HTML with CGI programming 
would produce an interface which duplicates or exceeds the capabilities of the prototype 
delivered under this contract. 

The advantages of a browser interface are: 

Q  Platform independence. 

□ Smaller code requirements compared to a traditional cross-platform package. 

□ Networked processing capability. 

□ Common applications on workstations and PCs. 

Q  The ability for each PC or workstation to run its own server or, the designation of a 
single machine to be the network's web server. 

The disadvantages to a browser interface approach are few, but important, and mainly relate to 
the need for a web server. 

□ For the web browser to do anything other than display simple HTML pages, the 
browser requires the presence of a web server. 

Q  The server introduces one more program to be installed, configured, and maintained. 

□ As with any networked application, multiple versions of MDEM running off a single 
server will slow down the execution of the application. 

9 "Windows Without Walls", Denis Haskin, Byte, February 1996, Special Report, 
http://www.byte.com/art/9602/secll/art3.html 
10 "Writing Portable C++ Code", Bristol Technology, Inc., http://www.bristol.com/Bibliography/xplat2.html 
""Serialization and MFC: Extending MFC for cross-platform portability", Bristol Technology's reprint of an article 
from Dr. Dobb's Journal, #229, April 1995, http://www.bristol.com/Bibiography/drdobbs0495.html 
12 "Cross Platform Toolset, Bottom Up or Top Down?", Visual Edge Software Ltd., 
http://www.vedge.eom/prods/cptapp.html#anchorl594767 
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□ With a single server, all instances of MDEM are run on the server platform. The data 
file may or may not be available for use. The hardware may need to be upgraded for 
the additional processing requirements. 

Ü A dedicated server for each machine would require recompilation of the MDEM 
application for each target platform. 

Despite the disadvantages, many computing locations already have a web server in place. 
Inexpensive web servers are available. For example, a package of WebSite 1.1 server, including 
user's manual, was widely available for $60. With such affordable pricing, a research 
environment can host web servers on each PC. WebSite, for example, would require little in the 
way of hardware upgrades to most moderately equipped PCs. 

5.1.1.3.1       Java 

Given the browser-based approach to a GUI, Java presents itself as one possible solution. Java 
is a simple, object-oriented, platform-independent programming language specifically geared 
towards creating small programs, or applets. It can be a standalone program or work in 
conjunction with the web browser. 

Using Java to produce a GUI to MDEM has several advantages. 

□ Java is a bare-bones version of C++. The learning curve, therefore, is similar to that 
of learning to use the C++ libraries in Microsoft Visual C++. 

□ The Java source code is interpreted into byte code which the Java Virtual Machine 
(JVM) runs. The JVM is an integrated part of the web browser. Therefore, Java 
applets are written once, using whatever platform is desired. The applet can then be 
used on any Java supporting browser. 

□ The Java applet code does not interact directly with the MDEM code, leaving MDEM 
available for changes. 

Q With Java development tools the browser interface can be quickly prototyped and 
implemented. 

The disadvantages of a Java interface to MDEM are closely linked to the advantages. 

□ Java is another programming dialect. It introduces another layer of maintenance. 

Ü Currently, the Air Force is hesitant to accept Java due to security concerns. As 
MDEM is a research tool and not a deployable system, security should not be an 
issue. 

Q  What Java gains in portability over C++, it loses in speed. 
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5.1.1.3.2       Java Tools 

Java tools come in a variety of flavors.    Essentially, these tools can be grouped into five 
categories. 

Q Interactive Development Environment (IDE) 

□ Authoring and Animation Tools 

□ Development Tools 

□ Database Connectivity Tools 

□ Miscellaneous 

Java tools also provide "wizards" which let the programmer decide how little or how much of the 
code to actually write. Table 4 represents a small sampling of the various Java tools13. 

Table 4.       Java Developer Tools 

PRODUCT VENDOR DESCRIPTION COST 

Visual Cafe Pro Passport 
Corporation 

IDE that includes visual 
programming tools 

$8,995 

Powerblend CreativeSoft Package provides reusable, 
extensible components that supply 
tool bars, status meters, message 
boxes, combo boxes, etc. 

$250 

Visual J++ 
Professional 

Microsoft GUI language IDE for writing and 
integrating Java 

$99 

Cafe Symantec Builds entire working code or just 
the outline through the use of 
wizards 

$80 

5.1.2 MDEM PROTOTYPE USER INTERFACE IMPLEMENTATION 

A prototype version of the MDEM user interface was created using the Microsoft Visual C++ 
AppWizard. The purpose of the prototype was to demonstrate basic functionality and to generate 
discussion for future enhancements.     Throughout the upgrade,  feasibility analyses  were 

Annual Java Issue. WebDeveloper, May/June 1997 issue, pp. 38-45 
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conducted to determine the practicality and usefulness of proposed interface features. After 
discussions with Rome Lab, it was concluded that the user interface would exhibit only basic 
functionality, but not advanced features, given the time constraints. The prototype user interface 
serves as a model which could be enhanced at a later date when the end-user group expands. 
Exhibit 3 provides a view of the initial screen of the MDEM GUI prototype. 

The GUI version of MDEM contains all of the functionality of the command-line version, in 
addition to features that allow the user to interactively modify input data. The values of all fields 
on the interface, except execution time, system initial temperature, and pinning file name fields, 
can be changed directly on the interface. This provides the flexibility of running simulations 
with minor to major changes in the system parameters, without the need to open the input file to 
change header data. The capabilities of the GUI version are as follows. 

□ Main Functions 

♦ Load Data — Loads the data from any valid *.atm file. Uses the Windows' 
standard Open dialog, allowing the user to traverse the machine's directory. 

♦ Save Data — Saves to a new file the inputs seen on the interface, along with the 
original atom data loaded. Uses the Window's standard Save As dialog. 

♦ Reset Data — Restores the original values for the current data set. Once the data 
has been saved as a new input file, the new input values become the "original". 

♦ Run Mdem — Processes the integration. If any changes to the original values are 
detected, the Save As dialog automatically displays. 

♦ Cancel Mdem — Cancels the current operation. If the integration is in progress, 
Mdem finishes the current integration step and writes out the system data to the 
output file. 

♦ Exit Mdem — Exits the program. 

♦ Help — Displays minimal information on the application. 

□ View Atoms — Displays the number of atoms by type comprising the data set. 

□ View Thermostat Data 1-7 — Displays the values for the seven initial thermostats in 
a pop-up window including xiO, tempjref, temp_step, total work, and temp_stat. 

□ Pinning 

♦ Change Pinning File — Displays the name of the pinning file associated with the 
loaded data set, if any. The user can select this button to display the Open dialog, 
for selecting or changing a pinning file name. 

♦ View Pinning Points — Displays the x, y, and z components of the pinning points 
in a pop-up window. 
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♦ View Pinning Constants — Displays the x, y, and z components of the pinning 
force constants in a pop-up window. 

□  Status Area 

♦ Processing Messages — Displays processing messages such as detection of 
invalid data during the load process, current integration step number, and mean 
compute time per sec of simulation time for a system of "n" atoms. 

♦ Processing Meter — Provides visual confirmation that the system is still working. 

5.2   SUMMARY OF RESULTS 

The GUI created for the MDEM software was intended to be a prototype which would foster 
discussion and definition of future user interface requirements. The prototype was developed 
using Microsoft Visual C++ due to time and budget constraints. However, this is not necessarily 
the best tool for future development, given the wide variety of cross-platform GUI-building 
tools commercially available. 
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Exhibit 3.     MDEM GUI Prototype 
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SECTION SIX 
ADDITIONAL ENHANCEMENTS 

Requirements for the MDEM simulation upgrade evolved as the task progressed. After 
significant speedup improvements had been achieved, work became increasingly focused on 
features which would improve the overall quality and flexibility of the simulation. Also, 
simulation accuracy was scrutinized more closely by observing the results obtained with very 
small data sets. Each interim version of the MDEM upgrade software sparked new discussions 
and requirements analysis. 

6.1   METHODS EMPLOYED 

The additional enhancements incorporated into the MDEM software ranged from major changes, 
which affected many source code functions, to relatively minor, localized modifications. These 
enhancements included: 

□ Atom pinning □   Drag-and-drop input 

□ Double precision conversion □   Optional temperature file output 

□ Atom count message □  User interrupt processing 

The importance of these additions also varied significantly. For example, double precision 
conversion was essential for accurate simulation processing, while drag-and-drop was 
implemented primarily for convenience. 

6.1.1  ATOMIC PINNING FEATURE 

The concept of pinning can be described as "tethering" an atom, as if by a spring, to a point, line, 
or plane in three-dimensional space. The force constant associated with the "spring" is called 
the pinning force constant, and it is in the direction of the point, line, or plane. For a pinning 
point, the spring connects the atom and the point. For pinning to a line or plane, one end of the 
spring is on the atom, and the spring is orthogonal to the line or plane. Pinning to a line or plane 
would eliminate the need to calculate individual pinning points and would simulate a force which 
could affect many atoms in the sample space. However, individual pinning points provide the 
user with greater overall flexibility. 
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The baseline version of MDEM contained references to pinning data, but did not contain 
operational pinning code. In this version, a total of seven pinning planes and seven pinning 
constants were stored in array format. For pinned atoms, this array was indexed by the 
thermostat value. Pinned atoms were identified by an encoded "1" in the atoms tag data. During 
the upgrade effort, Rome Lab engineers decided to have pinning incorporated into the software. 
The requirements specified replacement of the seven pinning planes with potential pinning points 
for each atom. Also, the single pinning force constant was replaced with pinning force x, y, and 
z components. The array format of the pinning constants, indexed by thermostat value, was 
retained. These features offer more flexibility to the user, though data creation is made more 
complicated. 

The contractor implemented the changes needed to incorporate pinning. A keyword was added 
to the atom file header to indicate the presence of a pinning point file. If the keyword is present, 
the text string following it is the name of the pinning point file. The file is assumed to reside in 
the same directory as the atom file. The pinning point file contains one line of data for each atom 
that is pinned. Each line contains the atom sequential identification number, derived from the 
atom file, and the x, y, and z coordinates of the pinning point for that atom. Basic error checking 
is performed when the software reads in the data sets. 

The data in the pinning point file is read into an array which is dimensioned for the entire set of 
atoms. Therefore, if only a subset of the atoms is pinned, this array becomes a sparse array. This 
method of pinning point implementation may require more memory than is necessary, but is 
intended to minimize processing time. An alternative implementation would require usage of a 
pointer to the next pinned atom to be processed, thus eliminating sparse array usage. A 
comparison of the execution times for each method and an assessment of the tradeoffs would be 
necessary in selecting the most appropriate method. A preliminary implementation using the 
sparse array was given to Rome Lab as a working copy for evaluation; it was deemed acceptable 
for this effort. 

6.1.2 DOUBLE PRECISION CALCULATIONS 

During the upgrade effort, Rome Lab engineers noticed that MDEM was erroneously generating 
zero outputs for the 13-atom data set. To assist in finding the problem, the contractor validated 
the neighbor list for each atom, ensuring that all atom pairs were being considered in this small 
set. The atomic pairing mechanism was found to be working properly. Rome Lab suggested that 
the single precision floating point implementation prevalent throughout the simulation might be 
the cause of the problem, since it would obscure very small atomic motion deltas. Therefore, the 
contractor converted all single precision floating point variables to double precision format. 

The change to double precision format corrected the problem of undetectable motion deltas. 
However, the execution time of the double precision version of MDEM is significantly longer 
than that of the single precision version.   Also, when compiled under DJGPP, the resulting 
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executable requires greatly increased amounts of memory to execute. Despite the processing 
time and memory setbacks, the necessity of the conversion is evidenced in the plots of 
temperature data. Exhibit 4 shows a plot of temperature vs. integration step for the single 
precision floating point version of MDEM. There are many linear segments on the curve, 
indicating atomic motion so minuscule that it was undetected. Exhibit 5 is a plot of temperature 
vs. integration step for the double precision version. The resulting curve is smooth, more 
accurately reflecting changes in the atomic motion. 

Exhibit 4.     Output of Single Precision Version of MDEM 
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Integration Steps 

6.1.3 ATOM TYPE MESSAGE 

During execution of the command-line version of MDEM, the atom header data are echoed to 
the console for the user for verification. The atom data (position, velocity, and tag data), due to 
its potential size, is not written to the console. Rome Lab engineers indicated that it would be 
useful to have a summary of the atom data displayed to the user. The contractor implemented a 
feature which displays a message indicating the types of atoms included in the current data set. 
This information is derived from the atomic number which is extracted from the encoded atom 
tag. The number of each type of atom is also displayed. This atom type message allows the user 
to verify, at a high level, that the correct data set has been selected. 
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Exhibit 5.     Output of Double Precision Version of MDEM 
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6.1.4 DRAG-AND-DROP FEATURE 

Rome Lab engineers had suggested that a Windows-style "drag-and-drop" capability would be 
useful for executing the command-line version of MDEM. The drag-and-drop feature would 
allow the user to drag an atom file icon and drop it on the MDEM executable. This action would 
then start program execution. The contractor implemented a drag-and-drop feature, thus 
allowing the user to bypass the typing associated with the command-line interface. However, 
this implementation does not provide a means to write messages to screen during execution. 
Instead, output is automatically placed in a "Windows" directory. 

6.1.5 OPTIONAL OUTPUT OF TEMPERATURE FILE 

With the baseline version of the MDEM code, the temperature file, or *.tm file, was generated 
every time the simulation was executed. At Rome Lab's request, output of the temperature file 
was made optional. 
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6.1.6 USER INTERRUPT PROCESSING 

A user-interrupt handling routine was included in the baseline version of MDEM, but it was not 
functional. Rome Lab suggested that a user interrupt handler be implemented that would allow 
processing to continue through the current integration step and then save the atom data to a file. 
The contractor incorporated this user-interrupt processing in both the command-line and GUI 
versions of MDEM. This feature allows the user to cancel a lengthy simulation without losing 
the state variables of the system. Simulation processing can then resume with the next 
integration step at a later time. 

6.2   SUMMARY OF RESULTS 

The additional software enhancements presented in this section were incorporated to either 
increase MDEM functional capability, provide accurate results, or improve user interaction. 
Their implementation contributed to the overall robustness and user-friendliness of the MDEM 
application. 
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SECTION SEVEN 
BENCHMARKING RESULTS 

Benchmarking occurred after each iteration of MDEM modification, or "build." In addition to 
tracking changes to the code and algorithm, execution times resulting from the various compiler 
optimization flags were also recorded. Table 5 shows the evolution of the MDEM software with 
respect to the incremental builds that were delivered to Rome Lab. The changes made in Mdem2 
degraded performance and were not included in subsequent builds. 

Table 5.        MDEM Build History 

BUILD 

Baseline 

MdemO 

Mdeml 

Mdem2 

Mdem3 

Mdem4 

Mdem GUI 

CHANGE DESCRIPTION 

Original code provided by Rome Lab 

Corrected data type mismatches to prevent potential inaccuracies 

Basic coding optimizations as a result of visual inspection 

Primitive data input as preliminary block I/O implementation, one-time 
atom tag decode   

Cell method of interatomic force calculation, pinning 

Conversion to double precision, drag-and-drop, atom count message, 
user-selectable temperature file  

Graphical user interface 

7.1   METHODS EMPLOYED 

Benchmarking results were recorded for two data sets. The first one consists of 9,758 Nickel 
atoms. The second data set is a box about 70 x 106 x 140 angstroms, filled with 112,423 FCC 
Nickel atoms. Twenty integration steps were executed for both data sets. Table 6 summarizes 
the results obtained on a Pentium Pro machine (200 MZ with 64 MB RAM, running Windows 
NT 4.00.1381). Table 7 summarizes the results obtained on a Pentium machine (75 MZ with 24 
MB RAM, running Windows 95). Both the DJGPP and Microsoft Visual C++ executables were 
used for benchmarking. Some benchmarks are not available for the Pentium processor, due to 
memory limitations of the computer or time constraints of the upgrade effort. 
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Table 6. Pentium Pro Benchmarks 

Compiler Version Optimization 9,758 Atoms 112,423 Atoms 

Total 
(sec) 

integration 
time-step = 

2fs 

Total 
(sec) 

integration 
time-step = 

1 fs 

DJGPP 

baseline unknown 52 2.6000e+00 605 3.025e+01 

MdemO 

-01 38 1.9000e+00 451 2.255e+01 

-02 42 2.100e+00 496 2.480e+01 

Mdeml 

-01 48 2.400e+00 572 2.860e+01 

-02 40 2.000e+00 474 2.370e+01 

Mdem3 

-01 26 1.300e+00 358 1.790e+01 

-02 28 1.400e+00 385 1.925e+01 

Mdem4 

-01 28.63 1.431e+00 396.70 1.984e+01 

-02 20.99 1.049e+00 286.81 1.434e+01 

MVC++ 

MdemO 

BG14 21 1.050e+00 252 1.260e+01 

BM15 21 1.050e+00 252 1.260e+01 

PrG16 20 1.000e+00 234 1.170e+01 

PrM17 20 1.000e+00 236 1.180e+01 

14 BG — Blend, Global 
15 BM — Blend, Maximize Speed 
16 PrG — Pentium Pro, Global 
17 PrM — Pentium Pro, Maximize Speed 
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Table 6.       Pentium Pro Benchmarks (cont'd) 

Compiler Version Optimization 9,758 Atoms 112,423 Atoms 

Total 
(sec) 

integration 
time-step = 

2fs 

Total 
(sec) 

integration 
time-step = 

1 fs 

MVC++       (cont'd) 

Mdeml 

BG 21 1.050e+00 251 1.255e+01 

BM 21 1.050e+00 250 1.250e+01 

PrG 20 1.000e+00 234 1.170e+01 

PrM 20 1.000e+00 236 1.180e+01 

Mdem3 

BG 12 6.000d-01 165 8.250e+00 

BM 12 6.000e-01 163 8.150e+00 

PrG 12 6.000e-01 164 8.200e+00 

PrM 12 6.000e-01 160 8.000e+00 

Mdem4 

BG 14.40 7.200e-01 191.64 9.582+00 

BM 22.26 1.113e+00 304.64 1.523e+01 

PrG 17.03 8.517e-01 228.74 1.144e+01 

PrM 21.40 1.070e+00 292.50 1.463e+01 

Mdem_GUI 

BG 20 1.000e+00 275 1.375e+01 

BM 20 1.000e+00 268 1.340e+01 

PrG 22 1.100e+00 230 1.150e+01 

PrM 16 8.000e-01 321 1.605e+01 
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Table 7. Pentium Benchmarks 

Compiler Version Optimization 9,758 Atoms 112,423 Atoms 

Total 
(sec) 

integration 
time-step = 

2fs 

Total 
(sec) 

integration 
time-step = 

1 fs 

DJGPP 

baseline unknown 101 5.050e+00 1700 8.500e+01 

MdemO 

-01 98 4.900e+00 1638 8.190e+01 

-02 101 5.050e+00 1705 8.525e+01 

Mdeml 

-01 97 4.850e+00 1638 8.190e+01 

-02 100 5.000e+00 1704 8.520e+01 

Mdem3 

-01 59 2.950e+00 1252 6.260e+01 

-02 60 3.000e+00 1186 5.930e+01 

Mdem4 

-Ol 82.31 4.115e+00 — insufficient 
memory 

-02 80.16 4.008e+00 - insufficient 
memory 

MVC++ 

MdemO 

BG 91 4.550e+00 1034 5.170e+01 

BM 91 4.550e+00 1032 5.160e+01 

PG18 88 4.400e+00 1050 5.250e+01 

PM19 88 4.400e+00 1055 5.275e+01 

18 PG — Pentium, Global 
19 PM — Pentium, Maximize Speed 
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Table 7.        Pentium Benchmarks (cont'd) 

Compiler Version Optimization 9,758 Atoms 112,423 Atoms 

Total 
(sec) 

integration 
time-step = 

2fs 

Total 
(sec) 

integration 
time-step = 

1 fs 

MVC++      (cont'd) 

Mdeml 

BG 90 4.500e+00 1030 5.150e+01 

BM 90 4.500e+00 1028 5.140e+01 

PG 92 4.600e+00 1050 5.250e+01 

PM 90 4.500e+00 1047 5.235e+01 

Mdem3 

BG 52 2.600e+00 666 3.330e+01 

BM 52 2.600e+00 664 3.320e+01 

PG 52 2.600e+00 708 3.540e+01 

PM 52 2.600e+00 684 3.420e+01 

Mdem4 

BG 66.07 3.304e+00 1037.82 5.189e+01 

BM 81.62 4.081e+00 1212.92 6.065e+01 

PG 62.50 3.125e+00 1042.65 5.213e+01 

PM 77.22 3.861e+00 1236.93 6.185e+01 

Mdem_GUI 

BG 84 4.200e+00 1169 5.845e+01 

BM 84 4.200e+00 1257 6.285e+01 

PG 76 3.800e+00 1251 6.255e+01 

PM 73 3.650e+00 1220 6.100e+01 
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7.2   SUMMARY OF RESULTS 

Speedup values were calculated from the timing information presented in the previous 
section. Speedup is determined by dividing the execution time of an older build of code 
by the execution time of the new and "improved" build. For the MDEM study, the lowest 
execution time, corresponding to the optimal compiler switch for a build, was used in the 
speedup calculation. The speedup values are interpreted as follows. 

□ Greater than 1 — performance improved 

O  Equal to 1 — performance not affected 

□ Less than 1 — performance degraded 

Tables 8 through 11 present the speedup data for the MDEM simulation upgrade. The 
change in performance is directly related to the processor, data set, compiler, compiler 
switches, and nature of the changes made to the code. (The MDEM build descriptions are 
listed in Table 5.) Speedup for the GUI version of MDEM is not included in the 
following tables. The GUI version is approximately 10 to 20 percent slower than the 
command-line version, due primarily to program interaction with the main dialog. 

Table 8.        Speedup for Pentium Pro, DJGPP Executable 

ATOMS 9,857 112,423 

BUILD 0 1 3 4 0 1 3 4 

baseline 1.37 1.30 2.00 2.48 1.34 1.28 1.69 2.11 

0 - 0.95 1.46 1.81 - 0.95 1.26 1.57 

1 - - 1.54 1.91 - - 1.32 1.65 

3 - - - 1.24 - - - 1.25 

Table 9.       Speedup for Pentium Pro, Microsoft Visual C++ Executable 

ATOMS 9,857 112,423 

BUILD 0 1 3 4 0 1 3 4 

base 2.60 2.60 4.33 3.61 2.59 2.59 3.78 3.16 

0 - 1.00 1.67 1.39 - 1.00 1.46 1.22 

1 - - 1.67 1.39 - - 1.46 1.22 

3 - - - 0.83 - - - 0.83 
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Table 10.      Speedup for Pentium, DJGPP Executable 

ATOMS 9,857 112,423 

BUILD 0 1 3 4 0 1 3 4 

base 1.03 1.04 1.71 1.26 1.04 1.04 1.43 N/A 

0 - 1.01 1.66 1.22 - 1.00 1.38 N/A 

1 - - 1.64 1.21 - - 1.38 N/A 

3 - - - 0.74 - - - N/A 

Table 11.     Speedup for Pentium, Microsoft Visual C++ Executable 

ATOMS 9,857 112,423 

BUILD 0 1 3 4 0 1 3 4 

base 1.11 1.12 1.94 1.52 1.65 1.65 2.56 1.64 

0 - 1.01 1.75 1.38 - 1.00 1.55 0.99 

1 - - 1.73 1.36 - - 1.55 0.99 

3 - - - 0.79 - - - 0.64 
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SECTION EIGHT 
LESSONS LEARNED 

The MDEM simulation upgrade revealed many interesting facts which were not entirely 
known at the start of the task. The following list presents a summary of lessons learned 
during the upgrade. 

□ Code which produces valid results with one compiler may not produce valid 
results with other compilers. 

Ü The use of block I/O to handle atom data does not result in a significant 
speedup given the current ASCII text data format. 

Q  Consolidation of atom tag masks and shifts does not reduce processing time. 

□ In MDEM, algorithm changes account for the most significant speedup, since 
the baseline code was already fairly clean. 

□ The speedup attained via code or algorithm improvements varies significantly 
based on target processor architecture. 

□ Code enhancements for speedup which would have made a significant impact 
on earlier processors, are almost insignificant on the processor architectures of 
today. 

Q The Microsoft Visual C++ implementation of the GUI interface should be 
multithreaded. 
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SECTION NINE 
RECOMMENDATIONS 

During the MDEM simulation upgrade, numerous topics were investigated and many 
software improvements were implemented. Due to time constraints, some very promising 
areas were only briefly examined. Potential areas for future research and development are 
summarized below. 

□ Code Optimization 

♦ Function inlining 

♦ Enhanced error checking 

♦ Flexible pinning file location 

♦ Thorough testing of MDEM code 

♦ Data storage scheme evaluation to avoid the use of exponent and mantissa 
implementation inherent in double precision mode 

♦ Watcom 11.0 evaluation 

♦ Continued investigation of Intel compiler plug-in 

♦ Microsoft Visual C++ purchase for primary development 

♦ VTune purchase and regular usage 

♦ Investigation of MMX technology for speedup 

♦ Reclassification of data in header of *.atm file to list more appropriate data 
under "control" and "status" 

□ Algorithm Optimization 

♦ Improvement of current pinning implementation 

♦ Implementation of pinning to lines and planes 

♦ Incorporation of additional features found in Rapaport's text 

♦ Evaluation of public domain software "Simulation Kit" 

♦ Investigation of parallel processing options using the Rome Lab Paragon 
system 

♦ Investigation of Pentium dual-processor systems 

□ User Interface Enhancement 

♦ Refinement of prototype user interface 

■   improved pinning point display 
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■ improved atom data display 
■ enhanced help utility 

■ "print file" capability 
■ user selection of output file and directory 
■ use of compiler directives to maintain one version of MDEM for 

command line and GUI 

■ multithreaded approach 

♦ Implementation of cross-platform or web browser interface 

♦ Creation of "end-to-end" interface which encompasses data synthesis, 
MDEM processing, and data visualization 

□  Additional Software Enhancements 

♦ Implementation of deposition code which adds atoms to the initial data set 
as the simulation progresses 



SECTION TEN 
CONCLUSIONS 

This simulation upgrade effort has established the foundation for future refinement and 
enhancement of MDEM software. The optimization of an evolving system, such as 
MDEM, is inherently iterative. As new functionality is added to the simulation, the 
underlying code must be inspected for optimal implementation. No hard and fast 
statement can be given regarding which combination of processor/optimization options 
produced the fastest executable. In general though, the processor option "Blend" and the 
optimization "Global" produced the fastest code for both the Pentium and the Pentium 
Pro. MDEM.exe and MDEM_GUI.exe, based on the double precision version (Build 4), 
were delivered using these options. 

In today's rapidly changing technological environment, advances may be made which 
require the reassessment of improvements made during this upgrade. Periodic literature 
and Internet searches should be performed to stay attuned to the latest developments in 
applicable technology. Dedication to continual improvement will ensure the future 
success of the MDEM simulation. 

-45- 



APPENDIX A 
ACRONYMS 

CGI 
GUI 
HTML 
IDE 
MDEM 
MFC 
MVC++ 

Common Gateway Interface 
Graphical User Interface 
HyperText Markup Language 
Integrated Development Environment 
Molecular Dynamics of Electronic Materials 
Microsoft Foundation Class 
Microsoft Visual C++ 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


