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PREFACE 

Over the past two decades, scientists and public health policy professionals have 
developed a process to assess the extent of risk to human health and the environment at 
thousands of government and privately-owned contaminated sites throughout the country. Of 
particular interest, the U.S. Environmental Protection Agency's (USEPA's) Comprehensive 
Environmental Response, Compensation, and Liability Act (CERCLA, or "Superfund") 
program requires an assessment of risk as one component in the remedial decision-making 
process. 

As the knowledge base for human health risk assessment increases, the USEPA is placing 
continued effort on performing Agency risk assessments using the best science possible. 
USEPA is currently in the process of developing guidance for preparing and reviewing risk 
assessments based on the use of probabilistic techniques. A probabilistic risk assessment 
would be selected for a site as part of a tiered approach that progresses from a simpler (e.g., a 
screening level risk analysis), to a more quantitative (e.g., deterministic), and finally a more 
complex (e.g., probabilistic) risk assessment as the risk management situation requires. 

As the risk assessor progresses through the risk assessment tiers, uncertainty associated 
with the risk assessment would be reduced, but the same level of health protection maintained. 
The deterministic risk assessment expresses human health risks as single numerical values, or 
"single-point" estimates of risk, and provides little information about the level of uncertainty 
and variability surrounding the risk estimate. The deterministic estimates also rely on 
reasonable maximum exposure (RME) assumptions to estimate a high-end risk descriptor. A 
high-end risk descriptor is defined as one which characterizes risk to an individual at the 
upper end of the risk distribution (i.e., the RME is the highest exposure that is reasonably 
expected to occur at a site). 

Advancing to the probabilistic technique will allow for a quantitative analysis of 
uncertainty and variability and present the risk manager with ranges of risk instead of the 
high-end, single-point risk estimate. By showing the distribution of health risk, a more 
realistic picture of the actual risk posed to potential receptors will be provided. The key 
benefits of probabilistic risk assessments are that they are more informative and provide more 
relevant information upon which the risk manager can base decisions and identify more 
cost-effective solutions. 

The purpose of this document is to provide an introductory handbook for the Air Force 
remedial project manager (RPM) for identifying the appropriate use of probabilistic 
techniques for a site, and the methods by which probabilistic risk assessments can be 
performed. Example calculations showing results of both deterministic and probabilistic risk 
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assessments are provided for illustration.    This handbook emphasizes the Monte Carlo 
probabilistic method and the exposure assessment step of the risk assessment process. 

This introductory handbook assumes that the Air Force RPM is somewhat familiar with 
the basics of the risk assessment and risk management decision processes as implemented in 
hazardous site remediations. This includes the techniques and methodology as provided in the 
USEPA's "Risk Assessment Guidance for Superfund" (RAGS). 

Numerous background documents and technical publications, including supplemental 
guidance to RAGS, are available from the USEPA and other state or research organizations. 
In addition to references cited in the text of this handbook, references for further reading are 
listed in Appendix A. For questions or further information on the use of probabilistic risk 
assessments, the RPM can also contact the following Air Force resources: 

AF Surgeon General: Health Risk Assessment Branch 
Det 1, HSC/OEMH 
2402 E Drive 
Brooks AFB, Texas 78235-5114 
DSN 240-2063; (210)536-2063 
FAX (210)536-1130/2315 

AF Civil Engineering: Risk Assessment Consultants 
HQ AFCEE/ERC 
Building 532 
3207 North Road 
Brooks AFB, Texas 78235 
DSN 240-5244; (210)536-5244 
FAX (210)536-5989 
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SECTION 1 

INTRODUCTION 

1.1  BACKGROUND 

Most environmental remedial programs, including U.S. Environmental Protection 
Agency's (USEPA's) Comprehensive Environmental Response, Compensation, and Liability 
Act (CERCLA, or "Superfund") and Resource Conservation and Recovery Act (RCRA) 
programs, have a statutory mandate to protect human health and the environment. Initial 
considerations for determining the potential for adverse effects may include comparisons of 
site-detected concentrations of contaminants in different environmental media (e.g., 
groundwater, surface water, soil) to applicable or relevant and appropriate requirements 
(ARARs), such as maximum contaminant levels (MCLs) for chemicals detected in 
groundwater. Comparisons to background levels, represented by samples taken from media 
unaffected by waste management or industrial activities, may also be initially evaluated to 
determine possible environmental impact from site-related contaminants. 

In recent years, the development and use of refined risk-based remedial action levels has 
gained substantial support among environmental regulators, responsible parties, and the 
public. These refined remediation levels are based on an assessment of risk to human and 
ecological receptors where, if it is determined that an unacceptable risk is present for a 
particular receptor, remedial cleanup levels or other remedial options (e.g., institutional 
controls such as capping or fencing) are developed to mitigate the risk. These levels may 
consider criteria and factors relating to the potential for exposure, uncertainty in the risk 
assessment, as well as technical feasibility of cleanup. At many sites, a combination of 
strategies (e.g., background levels, ARARs, risk-based levels, and institutional controls) may 
be used to develop an acceptable remedial strategy. 

The use of risk assessment as a tool in remedial decision-making has been a key 
component of the Air Force's environmental Installation Restoration Program (IRP) since the 
program's inception in 1984. Air Force risk assessments have generally followed the lead of 
the Federal Superfund Program and have relied on that Program's guidance, protocols, and 
policies. 

As the science of human health risk assessment advances, and methodologies, policies, 
and guidance evolve, the Air Force is committed to staying current with these developments, 
and to remaining a leader in the application of new tools that can enhance the cost-effective 
mitigation of risks associated with ha2ardous waste sites.   This commitment includes an 
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assurance that remedial project managers (RPMs) have at their disposal the full range of state- 
of-the-art tools to support the decision-making process as it affects site restoration at Air 
Force facilities. A tiered approach, starting with a risk-based screening comparison, and 
advancing to a quantitative deterministic risk assessment, followed by a probabilistic risk 
assessment, as necessary, is essential to managing Air Force resources. For certain sites, the 
use of probabilistic techniques can provide relevant information to support more cost-effective 
risk management decisions. 

1.2      PURPOSE AND SCOPE 

This introductory handbook has been developed to illustrate the importance and 
usefulness of probabilistic approaches in estimating potential human health risks. The 
probabilistic techniques are discussed for use as part of a higher stage of a tiered approach in 
the evaluation of potential health risk associated with contaminants at a site. The probabilistic 
analysis would follow the more simplistic, yet health-protective, screening and/or quantitative 
deterministic risk assessment steps. This handbook has been developed for the Air Force 
RPM to help identify the appropriate need for such an analysis. It is also intended for use by 
the Bioenvironmental Engineer who provides risk assessment expertise in support of the Air 
Force RPM. 

This document, which focuses on human health risk assessment rather than ecological 
risk assessment, reviews the most commonly used probabilistic methods. In particular, Monte 
Carlo simulation techniques are presented. The key feature of probabilistic methodologies - 
quantitatively assessing uncertainty and variability - is reviewed with emphasis on how such 
analyses can affect and enhance the results of the risk assessment. In addition, the advantages, 
disadvantages, and practical applications of using such statistical methods in risk-based 
decision-making is discussed. 

More specifically, the primary objectives of this handbook are to: 

• Describe a tiered approach in the evaluation of potential human health risk associated 
with contaminants at a site, and identify when and how probabilistic risk assessments 
can be performed using this approach; 

• Summarize the current state of the science, including a description of deterministic 
and probabilistic risk assessment approaches, and how to decide which is the most 
appropriate tool to use; 

• Summarize sources of uncertainty and variability in estimating human health risks 
and outline methods to quantify and distinguish between the two, with emphasis on 
the exposure assessment step of the risk assessment process; 

• Illustrate the types of information that can be generated to support more rational, 
cost-effective risk management decisions, remedial designs, and remedial actions; 
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• Show how these more advanced tools complement the tiered risk-based corrective 
action (RBCA) methodologies; and 

• Supplement forthcoming Air Force risk assessment guidance on state-of-the-art risk 
assessment techniques. 

In addition, the difference between risk assessment and risk management is reviewed. 
Emphasis is placed on how risk managers (i.e., the Air Force RPMs) can use the results of 
quantitative uncertainty and variability analysis in risk-based decision-making. 

1.3      TIERED APPROACH 

The tiered approach to risk assessment commonly uses two main levels for evaluating the 
potential health risk associated with contaminants at a site, the first level (Tier 1) involving a 
screening comparison of chemical-specific site concentrations to risk-based concentrations, 
and the second level (Tier 2) involving a quantitative deterministic risk assessment. At the 
present time, deterministic risk assessments are most commonly used at hazardous waste sites 
to estimate potential health risks and establish cleanup standards. The deterministic method is 
generally based on use of high-end point values as input factors (i.e., variables) in the risk 
assessment calculations (e.g., exposure, intake, and toxicity factors used in the equations), 
thereby providing reasonable maximum estimates of potential risk. The third level to the 
tiered approach, a probabilistic analysis, takes into account the uncertainty and variability 
associated with these input factors. 

Specifically, probabilistic risk assessment methodologies use distributions as inputs into 
the risk assessment equations, rather than just high-end point values as used in the determinis- 
tic risk assessment. An appropriate statistical technique is then applied (e.g., Monte Carlo 
simulation) and a distribution of risk (rather than a high-end point estimate) is calculated. 
Using this approach, a quantitative analysis of uncertainty and variability is provided. (For 
example, variations in the receptor population's actual exposure patterns are accounted for 
quantitatively.) 

By showing the distribution of health risk, results of the probabilistic risk assessment 
provide a more realistic picture of the actual risk posed to potential receptor populations. The 
key benefits of probabilistic risk assessments are that they are more informative and provide 
more relevant information upon which the RPMs can base their risk management decisions. 

1.3.1      Variability vs. Uncertainty 

In addition to providing a single-point value risk estimate for a hypothetical, maximum- 
exposed individual (deterministic risk assessment), estimates may need to be prepared to 
better inform decision-makers about the realistic nature of the risk. As noted above, one way 
to do this is to perform a quantitative analysis of the uncertainty and variability of the risk for 
the population of exposed individuals. Throughout this handbook, such a quantitative 
analysis will simply be referred to as a "quantitative uncertainty analysis" since uncertainty 
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and variability are often both referred to as "uncertainty" (albeit different forms of uncertainty 
as discussed below). 

The term variability represents true heterogeneity in characteristics within a population. 
Variability cannot be reduced by taking more samples. Uncertainty, on the other hand, means 
a lack of knowledge about characteristics within a population and may be reduced with 
additional study. For example, in residential exposure to contaminated drinking water, 
USEPA's deterministic method has historically assumed that an individual resident drinks 
2 liters of water per day (2 L/day), based on total water intake. However, water intake rates 
vary from person to person, and taking more measurements is not going to change that fact. 
In other words, the individuals in the population exhibit variability in their water intake rates 
and this variability is not reducible through additional measurement. 

It should be noted that when measuring a variable range, the measurements may not 
always be sufficient. Two common reasons are (1) use of an inaccurate measuring device, 
and (2) inconsistent use of a measuring device. Thus, the result could be a measured range of 
water intake rates that is uncertain. Unlike variability, the uncertainty about the water intake 
range can be reduced if a more accurate measuring tool is used or if consistent and correct 
techniques are practiced. Thus, unlike variability, it is possible to reduce uncertainty by 
taking more measurements. 

It is important to understand that while probabilistic risk assessment allows for a 
quantitative analysis of uncertainty and variability, this issue is not entirely ignored in the 
current USEPA deterministic process. The deterministic paradigm has always provided for an 
evaluation of the potential variabilities and uncertainties inherent in any estimate of health 
risk.1 These uncertainty evaluations are generally qualitative in nature. 

Such qualitative evaluations of uncertainty and variability are important for all risk 
assessments, including probabilistic. These evaluations, usually based on inherent uncertain- 
ties associated with the risk assessment process and best professional judgment of the analyst, 
may not have a tangible, quantifiable basis. Generally, these evaluations include qualifying 
statements about potential sources of uncertainty and/or variability in the measured data or in 
the assumptions used to estimate potential exposure and risk. For example, the risk assessor 
might point out, without quantifying the statements, that potential human exposures could 
deviate from those used in the risk assessment equations through differences in exposure 
frequencies, contact rates, absorption efficiencies, exposure durations, body weight, and life 
span, and how each of these factors has a degree of uncertainty associated with it which could 
over- or underestimate risk. 

1.3.2      Selecting a Risk Assessment Tier 

The inclusion of a quantitative uncertainty analysis in the risk evaluation process 
typically will increase the complexity of the assessment. In many cases, the degree to which 
uncertainty and variability are quantitatively addressed will depend largely on the scope of the 
assessment and the resources available.2   As such, the RPM should view probabilistic risk 
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assessment as one of a set of appropriate tools in which the relevance and usefulness will 
depend on a number of factors. Most hazardous site risk assessments do not begin with the 
complicated, resource-intensive probabilistic assessment. A number of more simple, yet 
conservative screening and/or quantitative steps are relied upon initially to evaluate whether 
an unacceptable risk potentially exists. The initial step (Tier 1) may include a screening risk 
analysis involving comparisons of site contaminant concentrations to risk-based screening 
levels of concern (maximum detected concentrations and/or statistically representative 
concentrations of the contaminants are compared to generic and/or site-specific screening 
levels). The second step (Tier 2) may include a quantitative deterministic risk assessment. 
Only at that point, if the situation warrants further analysis, would the RPM consider a more 
complex evaluation using advanced techniques. This third step (Tier 3) may include a 
probabilistic risk assessment. 

Such a tiered approach is helpful in prioritizing and managing risk. Also to be considered 
are the costs associated with the effort. Figure 1.1 illustrates the hypothetical relationship 
between protectiveness, uncertainty, and cost for each of the risk assessment tiers. As the risk 
assessor progresses through the risk assessment tiers, uncertainty associated with the risk 
assessment is reduced, but the same level of health protection is maintained. As the 
uncertainty is decreased, it is likely that the remediation costs required to maintain the same 
level of health protection would be reduced. 

An example of how the tiered approach can reduce the area of remediation by reducing 
the uncertainty associated with the risk assessment is shown on Figure 1.2. A risk assessment 
attempts to calculate the unknown true risk associated with a site. However, due to the 
uncertainty inherent in the risk assessment, the estimated risk, to be protective of health, is 
chosen to be at the highest end of the risk range. Using the tiered approach, the uncertainty 
can be reduced and the unknown true risk can be more accurately represented by the estimated 
risk. Uncertainty analysis can change the number of contaminants which may require 
remediation, change the media to be remediated, refine the area to be remediated, help 
determine the method of remediation, or otherwise affect the cost of the remediation. 
(Reduction in the size of an area to be cleaned up to reach an acceptable risk level is provided 
as an example in Figure 1.2.) 

The total cost of a project should be viewed as the sum of the cost of the risk assessment 
and the potential cost of the remediation. The RPM should choose a risk assessment tier 
which will result in the lowest total project cost. Therefore, a forward-looking consideration 
of the required remediation should be included in the determination of the risk assessment tier 
to be performed. In some cases, the progression to a higher risk assessment tier (e.g., from a 
Tier 2 deterministic risk assessment to a Tier 3 probabilistic risk assessment) may not be 
justified, because the cost of the remediation effort will not be reduced to a level that would 
justify the increased cost. 
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Figure 1.1 
HYPOTHETICAL RELATIONSHIP BETWEEN PROTECTIVENESS, 
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Figure 1.2 

EXAMPLE OF TIERED APPROACH FOR REDUCING AREA OF CLEANUP * 
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The costs associated with a probabilistic risk assessment may include additional early 
scoping and regulatory negotiation, collection of sufficient data, increased data manipulation 
and discussion requirements, enhanced graphics, possibly longer review times, and refined 
risk communication approaches. These costs and other planning requirements may be 
appropriate if it will allow the RPM to justify a more limited, cost-effective remedy/solution. 
For example, only in the probabilistic paradigm can sensitivity analysis be used to identify the 
input variables that are most responsible for the shape and form of the risk distribution output. 
Once the most sensitive variables are identified, the risk manager can decide whether the cost 
of collecting additional data to reduce uncertainty in those variables outweighs the potential 
extra remediation costs if such data are not collected. Under the deterministic paradigm, such 
a potential cost saving alternative is not available. 

As a rule of thumb, quantitative uncertainty analysis is generally most appropriate when: 

• Screening-level assessments and deterministic risk assessments indicate a potentially 
unacceptable problem; 

• Remediation options under consideration may result in high costs; or 

• It is necessary to establish the relative importance of site-related contaminants and 
exposure pathways in the risk estimates.3 

Another "cost" of using the probabilistic tool is that it may be viewed by regulators and 
the public as a method to delay action or confuse stakeholders since the results of the 
assessment are generally more complicated to interpret and use as a decision-making tool. If 
the probabilistic route is taken, RPMs will need to be especially aware of these issues and take 
more time to educate stakeholders.4 It is also worth restating that by deciding not to use the 
probabilistic approach, decisions based on more simplified techniques could result in the 
implementation of a remedial solution beyond the level required for adequate protection of 
human health. 

1.3.3     Emerging Perspectives 

In recent years, USEPA has acknowledged the need to incorporate quantitative 
uncertainty analysis into estimates of potential health risks.5-6'7-8'9,10'11 Quantitative uncertainty 
analysis is now being recognized by USEPA as a useful approach to improving the 
decision-making process. The USEPA's Risk Assessment Forum recently approved a new 
agency policy on conducting human health risk assessments that incorporates a quantitative 
analysis of uncertainty and variability.10 

The Risk Assessment Forum's endorsement of the use of Monte Carlo analysis should 
prompt all USEPA Regions to reevaluate the applicability of probabilistic risk assessment 
methods in remedial programs. Several USEPA Regional offices have also published 
guidance on the use of methods to quantify uncertainty and variability.12'13 These regional 
policies allow for the preparation of a probabilistic assessment to be used in conjunction with 
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a deterministic assessment; generally, however, the results of the deterministic assessment are 
currently recommended for remedial decision-making. 

1.4      DOCUMENT ORGANIZATION 

This document is organized as follows. Section 1 provides an introduction to the 
handbook, giving an overview of the objectives and a brief discussion on the use of a tiered 
approach for estimating the potential risk or hazard associated with contaminants at a site. 

Section 2 presents a brief review of basic risk assessment principles and current 
regulatory perspectives for performing a probabilistic risk assessment. Understanding 
regulatory perspectives is important when determining whether to pursue a quantitative 
uncertainty analysis. As regulatory expectations for risk assessment change, Air Force RPMs 
will need to decide when it may be appropriate to prepare risk information for planning 
purposes that reflects uncertainty and variability. 

Section 3 focuses on uncertainty and variability in estimating human health risks. This 
section reviews the primary sources of uncertainty and variability that should be considered, 
with particular emphasis on the exposure assessment step in the risk assessment process. 
Section 3 also reviews some of the principal published sources of exposure information that 
may be relevant when incorporating uncertainty and variability into human health risk 
assessments. 

Fundamental methods that RPMs, statisticians, and risk analysts may need in anticipation 
of a quantitative uncertainty analysis are introduced in Section 4. A familiarity with this 
information will be valuable when writing requests for proposals (RFPs) and scopes of work 
(SOWs) and when providing technical direction. Section 4 of this handbook also reviews 
how probabilistic analysis is conducted, with emphasis on completing a Monte Carlo 
evaluation as part of a human health risk assessment. 

Section 5 presents a simple example of using probabilistic techniques to estimate risk. 
The output of this evaluation is compared to that obtained from a deterministic approach in 
which uncertainty and variability are not quantitatively considered. Recommendations on 
how best to assemble this information for review by all types of stakeholders (e.g., regulators 
and the public) are provided. 

Section 6 concludes with a basic overview of how RPMs can incorporate probabilistic 
risk estimates into the decision-making process. Recommendations on early scoping and 
planning considerations, obtaining regulatory consensus, and facilitating effective communi- 
cation of more detailed risk information are provided. 

Several appendices are also provided in this handbook. Appendix A provides a list of 
references for further reading; Appendix B provides a glossary of common risk assessment 
terms; and Appendix C provides copies of four USEPA reference documents, including an 
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example of Monte Carlo simulation to supplement the example given in Section 5 of the 
handbook. 
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SECTION 2 

RISK ASSESSMENT APPROACHES 

This section provides a basic overview of deterministic and probabilistic techniques in 
estimating human health risk. Included in this discussion is a review of the principles upon 
which most risk assessments are based, including the points at which different methodologies 
diverge. Also included is a historical perspective of the evolution of the risk assessment 
process. 

2.1       OVERVIEW OF RISK ASSESSMENT 

Based in part on recommendations made by the National Academy of Sciences (NAS) in 
1983,1 scientists and public health policy professionals have developed a process to assess the 
extent of risk to human health at hazardous sites including the Federal Superfund and other 
remedial oriented programs (e.g., RCRA Corrective Action Program).2 The risk assessment 
process, as used by USEPA in these programs, is based on scientific information and public 
health policy considerations, and is intended to promote the development of risk assessments 
that are technically consistent and protective of human health. The USEPA has qualified the 
risk assessment process by stating that it (1) is not exact and continues to evolve as more 
information is gathered about the effects of various chemicals (man-made and/or naturally 
occurring),2 and (2) was developed to "produce protective, rather than best, estimates of 
risk."3'4 

The primary risk assessment methodology traditionally used and required by USEPA for 
decision-making purposes is called deterministic or single-point evaluation of risk. Such risk 
assessments are predicated on reasonable maximum exposure (RME), or "high-end" assump- 
tions and criteria which are used as input factors in the risk calculations. USEPA has required 
development of RME input values to facilitate standardized and conservative (high-end) 
assessments for risk-based remedial decision-making. This methodology was clearly 
described in 1989 with the advent of the Superfund risk assessment process and the 
publication of USEPA's "Risk Assessment Guidance for Superfund" (RAGS). 

Since then, however, two important USEPA risk assessment guidance documents have 
placed additional emphasis on principles that promote, in addition to the RME single-point 
estimates, other descriptors of risk (e.g., exposure and dose information, such as how many 
cases of a particular effect might be probabilistically estimated in a population during a 
specific time period, or what percentage of the population is above a certain exposure, dose, or 
risk level).5-6 Another related principle adopted by the USEPA4 (and based on NAS1 

recommendations) requires that risk assessment be free of any subjective input-variable 
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manipulation or bias aimed at ensuring one particular outcome or result versus another. These 
three key principles are summarized below: 

• Key scientific data and methods and their uncertainties should be identified in the risk 
characterization, and a statement of confidence should be included that identifies all 
major uncertainties along with comment on their influence on the assessment; 

• Information on the range of exposures derived from exposure scenarios and on the use 
of multiple risk descriptors should be presented; and 

• Risk assessment information must be clearly presented separate from any non- 
scientific risk management considerations. 

Because single-point (deterministic) risk assessments focus on the high-end estimate at 
the upper end of an exposure and dose distribution and not the range of possible outcomes, 
they do not quantitatively address or incorporate exposure and dose descriptors into the risk 
assessment process. Specifically, deterministic methods provide little information about 
uncertainty and variability surrounding the estimated high-end risks.3 It has been common 
practice to use such "high-end" risk values without the benefit of a more realistic picture of 
the true nature of risk (i.e., risk as a range of possible outcomes). Even if the high-end 
exposure scenario is chosen as the decision-making endpoint, it is advantageous to compare 
the single-point value to other estimates of risk. The high-end of the distribution in the 
deterministic risk assessment conceptually means above the 90th percentile of the population 
distribution. The probabilistic analysis could be used to provide additional information on the 
percentage of the population above a particular exposure, dose, or risk level. 

Prohibiting subjectivity in the risk assessment and separating risk assessment information 
from risk management information is often difficult. Risk assessors may use varying assump- 
tions regarding analytical data, exposure scenarios, or toxicity-related information. Although 
these assumptions are based on scientific literature and use best professional judgement, 
differences in the selection of assumptions and input variables may result in very different 
characterizations of risk. Risk managers, on the other hand, should take the information 
provided by the risk assessment and subsequently ask "What is the best plan or course of 
action for dealing with the risks?" In making such decisions, the risk manager will have to 
factor in not only scientific, but economic, social, political, and other considerations. 

It should be noted that, even though the goal is to separate risk assessment from risk 
management, in the real world the two often overlap. For example, it is often the case that 
risk estimates exceed USEPA7 acceptable risk levels (e.g., an estimated cancer risk greater 
than lxl0"4). Evaluation of the same site by a different risk assessor using different 
assumptions and input factors, however, might result in an estimate of risk that is within 
acceptable bounds. This is especially true if the uncertainty and variability inherent in the 
estimates are relatively high. Thus, a risk assessor can introduce a certain amount of risk 
management into the process via the subjective selection of various risk assessment 
assumptions and input factors.3,4 One solution to this problem is to provide risk managers 
with more information such as a range of possible risk outcomes, along with information 
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relating to the probability of each outcome occurring and the limitations of the estimates. 
This lessens the opportunities for risk assessors to act as risk managers, whether on purpose or 
not. 

2.2      RISK ASSESSMENT BASICS 

Given the three principles described above as a backdrop, this section provides a brief 
summary of current USEPA risk assessment components, and discusses USEPA-required 
deterministic and supplemental probabilistic risk assessment methodologies, highlighting 
some advantages and disadvantages with respect to the evaluation of variability and 
uncertainty. These comparisons are intended to show how risk assessment conclusions and 
recommendations from the two approaches can be used by Air Force RPMs to the fullest 
extent possible in the decision-making process. (It should be noted that risk assessment 
should be treated as a tool, not as an end in itself as has often been the case in the past. 
Limited resources should be focused on generating information that helps risk managers 
choose the best possible course of action among the available options.)6 

The term "risk assessment" is defined as the objective process by which scientific data are 
analyzed to describe the form, dimension, and characteristics of risk (i.e., the likelihood of 
harm to humans or the environment).1'8 It is primarily a scientific effort in which data from 
toxicology, epidemiology, and exposure studies are used to estimate the nature and probability 
of risk at a given site. 

Risk assessment estimates the magnitude of the risk, but makes no judgment concerning 
the applicability of that risk. In other words, risk assessments cannot determine whether 
adverse health effects have actually occurred or will occur in the future. Risk assessments 
also cannot identify particular individuals likely to suffer health problems because of contami- 
nation at a site.2 Risk assessment is most useful when those who rely on it to inform the risk 
management process understand its nature and limitations and can successfully explain those 
concepts to the risk manager. 

Risk assessment and risk management are closely related but, as discussed above, are 
theoretically discrete processes - one supposedly objective (risk assessment), and the other 
more subjective (risk management). Specifically, risk management is the process by which 
decisions are made using all available information (including, but not limited to, the results 
and recommendations of the risk assessment).5'8 

Put another way, risk management is primarily a policy-making process in which govern- 
ment officials and the public use the risk assessment as the foundation for making a value 
judgment about whether the risks are acceptable and, if not, how to manage and reduce such 
risks. Risk management takes the process from the realm of objective science into the realm 
of subjective policy, cost-benefit analysis, and value judgment. USEPA has described risk 
assessment as asking the question "How risky is this situation" while risk management 
subsequently asks "What shall we do about it?"9 
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As shown on Figure 2.1, human health risk assessment is defined as consisting of four 
subdisciplines or fields of analysis:l'9 

1) Data collection and evaluation to identify chemicals of potential concern (COPCs); 

2) Toxicity assessment; 

3) Exposure assessment; and 

4) Risk characterization. 

It should be noted that each of these four steps are performed in both deterministic and 
probabilistic methodologies. Differences arise due to the form the data take (e.g., single 
high-end point values versus distributions of values), the way the data are handled 
statistically, and the way the outputs are evaluated. The components of these four steps of the 
risk assessment process are described below. 

Data collection and evaluation is the initial process of evaluating historic uses and 
potential releases of chemicals at a site and collecting and analyzing samples of environmental 
media (and in some instances, biological samples) to determine concentrations present in 
media of concern. The collected data are then evaluated to identify chemicals that may be of 
potential concern (i.e., the COPCs). A conservative risk-based screening method is often 
initially applied to the data to develop the list of COPCs (i.e., to reduce the number of 
chemicals to a subset that is likely to be of most concern). Of all chemicals detected, the 
COPCs are generally the only chemicals that are carried through the remaining steps of the 
risk assessment.2 

Toxicity assessment requires an identification of the adverse effects associated with 
exposure to a specific chemical and the development of toxicity factors to describe the 
relationship between the dose of chemical an organism receives and the expected response. 
Such toxicity data and factors are based both on epidemiological studies of actual human 
exposures and on experimental animal studies.2 The adverse health effects identified are 
classified as either a carcinogenic response or a noncarcinogenic response. Some chemicals 
cause both type of effects. 

Generally, toxicity factors are obtained from USEPA's Integrated Risk Information 
System (IRIS) or Health Effects Assessment Summary Tables (HEAST). These references 
are useful resources for point estimates of toxicity factors. However, these references do not 
provide a complete list of chemicals, only a limited subset for which there are sufficient data 
to calculate a toxicity factor. Therefore, mere are a large number of compounds for which risk 
is generally not evaluated, since there is not enough information to derive toxicity factors. 
Additionally, there is considerable uncertainty associated with the toxicity factors based on 
the study methodology, interspecies extrapolation (animal to human), and intraspecies 
extrapolation (sensitive subpopulations). While uncertainty in toxicity factors is present, 
point estimates are generally used because of their widespread acceptance among regulatory 
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agencies. Toxicity assessment is constantly evolving, with toxicity factors for additional 
compounds being derived, and existing toxicity factors being changed. To perform the risk 
assessment, the RPM should verify that the appropriate toxicity factors are being used. 

Exposure assessments are performed to estimate the type and magnitude of receptor 
exposure to the chemicals detected at a site. The exposure assessment answers questions such 
as: "Under what scenarios are people exposed, how often, by what pathways, and to what 
concentrations?" Other relevant factors addressed in the exposure assessment include the 
physical characteristics of the receptor populations, such as body weights and age structure, 
and contaminant fate and transport. A conceptual site model (CSM), in the form of a table or 
figure, is generally developed to show the results of the exposure assessment. The CSM may 
include identification of the contamination sources, affected media, release mechanisms, 
migration pathways, exposure routes, potential receptors, land-use assumptions, potential for 
exposure, and whether or not an exposure pathway is potentially complete. 

The USEPA considers exposure to sensitive subgroups of populations as applicable in the 
risk assessment Superfund program and has been estimating individual risk corresponding to 
the RME.10 RAGS9 defines the RME as the highest exposure that is reasonably expected to 
occur at a site and in practice is estimated by combining 90th and 95th percentile values for 
some but not all exposure variables. Additionally, to promote consistency in the evaluation of 
RME when site-specific data are missing, the USEPA has released supplemental guidance 
describing standard default exposure factors for use in quantitative risk assessments.10'11 The 
standard default values presented in these documents provide a description of the high-end 
portion (the RME) of the exposure distribution. Using these standard exposure values 
provides an estimate of exposures in the upper range of the distribution. Conceptually, this 
would be above the 90th percentile of the population distribution, but not higher than an 
individual who may potentially have the highest exposure. 

Generally, the risk assessment considers currently exposed populations and populations 
that may be present under reasonably anticipated future uses of the site. For example, an Air 
Force base may currently have a worker population, but if closed and converted to residential 
land use in the future, other exposures, such as childhood exposures, may become relevant. 

The combination of data collection/evaluation and the exposure evaluation provides an 
understanding of who is exposed to which hazardous chemicals and what doses those recep- 
tors are estimated to receive (e.g., how often they are exposed, how the exposures occur, and 
the chemical concentrations to which they are exposed). At this point in the risk assessment 
process, no conclusions, either qualitative or quantitative, have yet been made regarding the 
potential risk to the receptors. 

Risk characterization, the last step of the risk assessment, combines the dose estimate 
results from the exposure assessment with information developed in the toxicity assessment to 
make quantitative statements about risk.8 Typically, the end result of the risk characterization 
(both deterministic and probabilistic) is a set of chemical-specific numerical risk estimates. 
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In the deterministic paradigm, these quantitative estimates are presented as cumulative 
cancer risk estimates for a receptor (e.g., cancer risk of lxlO"5) and cumulative hazard 
quotients (termed a "hazard index" or HI). The values derived are generally compared to 
"acceptable" levels of risk (a range of usually lxlO"4 to lxlO"6 for carcinogens, and an HI of 
1.0 for noncarcinogens.) Because the deterministic values represent the RME individual, the 
deterministic estimates of risk are generally high-end risk descriptors. 

The probabilistic paradigm, on the other hand, can evaluate a population in a variety of 
ways (rather than focusing on one highly exposed individual). For example, a population of 
workers at an Air Force base might be considered together. The exposure descriptors 
(e.g., inhalation rate, body weight, exposure duration) might be described by realistic ranges 
rather than high-end point values. The output of the probabilistic analysis is a distribution of 
risk for the entire worker population. This technique presents a clearer picture of the 
uncertainty and variability in the risk estimates and how that impacts the potential risk posed 
to facility workers. 

In addition to making quantitative statements about the level of risk present, the risk 
characterization also identifies the limitations of the information collected in preceding steps 
and makes statements about uncertainty and variability in the risk estimates.12 In the case of 
deterministic risk assessment, this takes the form of a qualitative discussion of uncertainty and 
variability and how these factors may cause the risk estimate to be over- or underestimated. 
In probabilistic methodologies, more quantitative evaluations of these two characteristics can 
be made. A basic understanding of uncertainty and variability inherent in risk estimations can 
help clarify assumptions and limitations. Consequently, Air Force RPMs may be able to 
make more informed remedial decisions utilizing this information. 

2.3      DETERMINISTIC RISK ASSESSMENTS 

As noted above, deterministic methods are generally used to produce RME single-point 
risk estimates. This method is currently recognized as the standard approach for quantifying 
risks to human health. This approach is consistent with the National Oil and Hazardous 
Substances Pollution Contingency Plan (NCP), which requires that RME scenarios be used 
"in the remedial decision in evaluating what is necessary to achieve protection against risk to 
human health."5-13 

2.3.1      Advantages 

There are several advantages to using a deterministic risk assessment approach. The 
deterministic approach: 

• 

• 

Uses relative straightforward calculations; 

Is the most widely-accepted and standard approach used by regulators and responsible 
parties; 
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• Provides an estimate of potential risk that may potentially occur to a small but 
definable high-end segment of the receptor population; 

• Is useful for determining that a site or an exposure scenario at a site is not of concern; 

• Provides a level of consistency for comparability between risk assessments (e.g., to 
prioritize response actions at Air Force facility sites based on potential relative risk)- 
and 

• Is easier to explain and understand (i.e., facilitates risk communication). 

2.3.2      Disadvantages 

There are also several disadvantages associated with the deterministic risk assessment 
approach. Some disadvantages are that the approach: 

• Often results in estimates of risk that are biased high relative to the mean values of the 
uncertainties they represent; 

• May portray a false degree of precision of the risk assessment process - "a single- 
point value is the actual risk;" 

• May place the risk assessor in an inappropriate risk management role (i.e., different 
assumptions can result in different estimates of risk depending on interpretation and 
use of appropriate input values);2 

• Provides little or no information to decision-makers regarding the distribution of 
possible risks, the magnitude of underlying uncertainties, or any quantitative 
indication of the key sources of uncertainty; and 

• May result in unreasonable cleanup goals beyond what is necessary to protect human 
health, and which may not be technologically attainable or cost-effective, thereby 
reducing the amount of funding available for other risk reducing opportunities.14'15 

2.4      PROBABILISTIC RISK ASSESSMENTS 

In order to assess the full range of risk possibilities, Air Force RPMs can utilize 
probabilistic statistical analyses to develop a more realistic picture of risk posed to an exposed 
population. The most frequently used and perhaps best understood of the tools used to 
perform this statistical analysis is called Monte Carlo analysis and is generally run with the 
aid of software developed for this purpose. Probabilistic statistical techniques allow risk 
estimation to incorporate most of the potential exposure and dose scenarios rather than those 
associated with upper-end, conservative assumptions only.3-4 

As used in probabilistic risk analysis, Monte Carlo simulation is a statistical technique by 
which a risk equation is solved numerous times (perhaps tens of thousands of iterations). The 
inputs to the risk equation, rather than conservative point values, are some combination of 
point values and distribution functions that more clearly define the variability and/or 
uncertainty associated with the variable.   Each calculated risk estimate has an associated 

2-9 



Air Force Technical Report on Methods to 
<&rtinn ? Quantify Uncertainty in Human Health 
Slsessment Approaches Risk Assessment (Drafi Final) 

likelihood of occurrence. The multiple results, when plotted graphically, represent a 
cumulative frequency that is useful in understanding the probability of hypothetical outcomes. 
This technique will be discussed more fully in Chapter 4. 

In contrast to the deterministic analysis, probabilistic risk assessments use statistical 
simulation techniques to generate probability distributions of risks. This provides not only 
more information, but higher quality data to risk managers and the public than that provided 
by standard point estimates. Probabilistic risk assessments provide an explicit, quantifiable 
characterization of risk and uncertainty.16 

A probabilistic risk assessment is a valuable tool for quantifying uncertainty because: 

• The risk equation is solved numerous times to generate a range of possible answers 
(see Section 4); 

• Each calculated risk value has an associated probability of occurrence; and 

• The output of the analysis reflects the full distribution of the potential risk, not just 
the high-end, single-point estimate. 

2.4.1      Overview of Probabilistic Risk Assessments 

The basic goal of a probabilistic risk assessment is to conduct the assessment of exposure 
or risk in a "realistic manner" for a given assessment endpoint by accounting for all of the 
available information and the lack of knowledge. The realism is introduced through the 
language of probability - the probability of occurrence of an event in light of what is known 
and not known. Quantitative characterization of uncertainty and variability are tools to 
accomplish the goal. 

Some general conditions where probabilistic methods are most appropriate for a site 
include the following: 

• When it is necessary or desirable to characterize uncertainty and variability in the 
estimates of risk (i.e., whenever a more detailed, realistic risk estimate is needed); 

• When results of more simplistic risk assessment methods (e.g., a tiered approach, 
such as a risk-based screening comparison and a deterministic single-point risk 
analysis) show that the potential risk from exposure at the site is above risk levels of 
concern.17 

• When distributions of values are available or can be estimated for any type of variable 
used to develop the risk estimate;15 and 

• When the cost of regulatory or remedial action is high and the potential health risk 
associated with exposure is expected to be marginal. 

There are two primary types of probabilistic risk assessments.   The first, and most 
common, is based on the assumption that certain parameters used to evaluate exposure or risk 
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can vary in a population, but are constant over time. In this type of analysis, the distribution 
of risks in a population based on that variability is estimated. The second type of probabilistic 
risk assessment is based on the assumption that certain parameters used to evaluate exposure 
or risk vary in a population and over time. This type of analysis is more complex, resulting in 
an estimate of the distribution of risks for a population based on a lifetime exposure 
assessment for thousands of individuals. Both probabilistic methods are more detailed and 
require more training and expertise than deterministic methods. This handbook addresses the 
first, most common type of probabilistic risk assessment. 

In addition to the discussions in this handbook, the following USEPA references should 
be used for further direction on risk assessment, and perspective on the use of probabilistic 
methods for assessing uncertainty and variability: 

• The 1989 Superfund Risk Assessment Guidance,9 

• The 1992 Guidance on Risk Characteri2ation for Risk Managers and Risk Assessors,4 

• The 1992 Exposure Assessment Guidelines,5 and 

• The 1995 Policy for Risk Characterization.18 

2.4.2 Role of Probabilistic Risk Assessments 

Probabilistic methods are very powerful and can be used for multiple applications, such 
as human health exposure assessments and risk characteri2ations (the focus of this handbook), 
ecological risk assessments, and pharmacokinetic models (the study and modeling of the 
disposition of chemicals in the body). Thus, a quantitative approach to uncertainty analysis 
can help decision-makers address many types of questions in a more robust way. 

Probabilistic methods, such as Monte Carlo analysis, are viable statistical tools for 
probabilistic risk assessment.16 There are also numerous other probabilistic techniques 
available for the Air Force RPM to choose from, including (1) analytic techniques such as 
variance propagation models, (2) response surface modeling, and (3) differential analysis. As 
previously stated, this handbook focuses on the Monte Carlo technique because it is one of the 
most commonly used and easily understood probabilistic methods. 

2.4.3 Emerging Regulatory Notice of Probabilistic Approaches 

The USEPA is placing continued effort in the process of developing guidance covering 
the use of probabilistic techniques in Agency risk assessments.19 The USEPA Risk Assess- 
ment Forum was established to promote scientific consensus on risk assessment issues, 
including recommendations to advance the development of guiding principles on how to 
prepare and review an assessment based on use of probabilistic techniques, specifically Monte 
Carlo analysis.20 USEPA Regions III and VIII have recently decided to accept Monte Carlo 
simulations, submitted as uncertainty and variability analyses, as part of baseline human 
health assessments.3,21 For example, the Region VIII guidance states that: 
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"When compared with alternative approaches for assessing parameter uncertainty or 
variability (e.g., analytical uncertainty propagation or classical statistical analysis), 
the Monte Carlo technique has the advantages of very general applicability, no 
inherent restrictions on input distributions or input-output relationship, and relatively 
straight-forward computations. In its application to risk assessment, Monte Carlo 
simulation not only generates results mat can be expressed in a more easily 
understood graphical format, but it also permits the degree of conservativeness to be 
specified quantitatively (i.e., the Reasonable Maximum Exposure (RME) can be 
defined as the upper 90th or 95th percentile of output results). Furthermore, risk 
results are more easily justified statistically, and the uncertainty underlying them can 
be discussed quantitatively. In general, this approach can satisfactorily address the 
goals of uncertainty analysis outlined in recent EPA guidance." 

The stipulation in both regional guidances is that all risk assessments must still include 
the single-point RME risk estimates prepared under current USEPA guidance (i.e., Monte 
Carlo-based risk analyses cannot act as a substitute for the currently accepted deterministic 
paradigm). In general, Monte Carlo simulations are only accepted as an optional addition to, 
not substitute for, current risk assessment methods. Furthermore, simulations are not accepted 
that are not approved beforehand or that do not adhere to guidelines. 

The USEPA Risk Assessment Forum's recently published document on the guiding 
principles for Monte Carlo Analysis, "Summary Report for the Workshop on Monte Carlo 
Analysis," provides the conditions for an acceptable risk assessment that uses probabilistic 
analysis techniques.20 The document presents USEPA's position that probabilistic techniques, 
such as Monte Carlo analysis, can be viable statistical tools for analyzing uncertainty and 
variability in risk assessments and establishes conditions that are to be satisfied by risk 
assessments that use such techniques. Specifically, the conditions relate to good scientific 
practices of clarity, consistency, transparency, reproducibility, and the use of sound 
methods.19-20 

2.5      WHEN TO USE A PROBABILISTIC RISK ASSESSMENT 

Because Monte Carlo analysis can be a resource-intensive activity, the level of 
sophistication should be appropriately tailored to the goals of the analysis. There are several 
potential advantages to using a probabilistic risk assessment approach, depending on the 
circumstances particular to a given site. Figure 2.2 illustrates the importance of weighing the 
pros and cons when considering coupling probabilistic risk assessments with a deterministic 
assessment. To systematically discern the most appropriate level of analysis, Air Force RPMs 
should follow a decision tree such as the one presented in Figure 2.3. This decision tree is 
intended to help RPMs implement a tiered approach. This figure also illustrates the additional 
steps involved in using a probabilistic approach once the RPM determines that the standard 
deterministic approach does not provide sufficient information. 
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Figure 2.3 
RISK ASSESSMENT DECISION TREE 1 

Perform risk assessment using 
standard deterministic approach 

Monte Carlo 
simulation 

unnecessary 

No Identify exposure routes and 
chemicals that significantly 

contribute to cancer risk and/or 
noncancer hazard 

Monte Carlo 
simulation not 

worthwhile 

No 
If necessary, use sensitivity 

analysis to select those 
input parameters that 

contribute most to 
uncertainty 

Yes 

Revise plan or 
forego Monte 

Carlo simulation 

No EPA approval of Monte Carkr 
simulation work plan? 

Yes 

Perform Monte Carlo simulation of 
risks/hazards using selected PDFs 

Prepare analysis of 
uncertainty/variability; include graphs, 

tables, and PDF descriptions; compare 
to deterministic estimates 

Figure modified from Use of MONTE CARLO Simulation in Risk Assessments, USEPA Region VIII 
Superfund Technical Guidance, September 1995.21 

PDF A probability density function is a statistical tool used to determine the distribution of values for a random variable, each value having a specific 
probability of occurrence. PDFs may be selected from available literature ("standard" data distributions that are not influenced by site-specific 
conditions) or may be developed if published distributions are not applicable to the site. (Refer to Section 4 of this handbook.) 
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For sites that do not fall clearly under CERCLA or RCRA jurisdiction (such as petroleum 
release sites), Monte Carlo analysis may be incorporated into standard tiered approaches to 
risk assessment that progress from simpler (i.e., screening level analysis) to more complex 
analyses as the risk management situation requires.16 Tiered approaches such as the American 
Society for Testing and Materials (ASTM's) risk-based corrective action models,22 are gaining 
wide acceptance by States, Federal agencies, and industry as cost-effective strategies for 
environmental site management. 

For example, a Tier 1 evaluation may simply require a comparison of maximum detected 
site concentrations of contaminants for a particular environmental media (e.g., soil) to generic 
(i.e., non-site specific) risk-based screening criteria. The outcome of this lower tier 
comparison typically helps the Air Force RPM determine whether additional study is 
required. Typically, the level of sophistication inherent in probabilistic risk assessments 
reflects an advanced tier level, such as ASTM's Tier 3.22 

The higher Tier 3 level evaluation may be beneficial after early decision "tiers" indicate 
the necessity for further evaluation. The following documents should be referenced for more 
information on tiered approaches: 

• ASTM's Risk-Based Corrective Action Program,22 and 

• USEPA's Soil Screening Methodology.23-24 

Because the level of complexity increases as the risk evaluation progresses, the impacts 
on budgets and levels of understanding by the regulators and public must be carefully 
considered. Advantages derived from the application of good science does not necessarily 
correlate with public or regulatory acceptance. 

The decision of whether and when to introduce probabilistic methods is critical. If 
complicated topics are introduced at the preliminary stages of the process, stakeholders have a 
chance to develop scientific-based opinions about the cost/benefits associated with more 
complex techniques. Introducing these techniques too late in the process may cause 
regulators and the public to view the use of probabilistic methods as an attempt to delay or 
misrepresent the results. 
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SECTION 3 

UNCERTAINTY AND VARIABILITY IN ESTIMATING RISK 

This section discusses the differences between uncertainty and the different but related 
concept of variability and provides a discussion of the basic sources of uncertainty and 
variability in estimating risk. The section then briefly reviews how uncertainty and variability 
are introduced into risk estimates through data evaluation, exposure assessment, toxicity 
assessment, and risk characterization. 

There are numerous exposure parameters which are combined mathematically to estimate 
risk to an exposed population using either the deterministic or probabilistic paradigms. As 
noted in the introduction, these parameters can vary from person to person due to environ- 
mental, lifestyle, and genetic differences. As such, it is important to identify available data 
distributions for specific exposure assessment parameters in order to perform a probabilistic 
assessment. This section will discuss these sources of information. 

In addition, it is often the case in the probabilistic paradigm that adequate data 
distributions are not available. This section also addresses the elicitation of expert judgment 
in the absence of established distributions or sufficient information to develop distributions 
from scientific literature. Expert judgement can be used to fill in data gaps in order for the 
probabilistic risk assessment to proceed. 

3.1      UNCERTAINTY 

Uncertainty, as used in this document, refers to lack of knowledge. At least in theory, 
this lack of knowledge can be reduced through further data collection. In practice, the 
additional cost, time constraints, or minimal impact of the uncertainty may make further data 
collection impractical, unnecessary, or even impossible. 

3.1.1      Sources of Uncertainty 

During the risk assessment process, it is often desirable to assess the level of uncertainty 
incorporated into a determination of risk. The first step in this process is to identify the 
various sources of uncertainty. 

Potential sources of uncertainty can be divided into two broad categories: uncertainties 
associated with model form and uncertainties associated with assigning values to the 
parameters of the model. Parameter uncertainty stems primarily from errors such as: 
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• Imprecision of analytical devices or historical information used to quantify a specific 
parameter; 

• Sampling (random) error caused by making inferences from a limited database; 

• Extrapolation and use of subjective information; and 

• Systemic errors that can be interjected into the risk analysis process through flawed 
data gathering processes.1 

In contrast, model uncertainty stems from using a model or mathematical formula to 
describe a physical process or to use measured data from one system as a surrogate for another 
system.2 A prime example of the latter case is the use of animal cancer potency data to 
estimate human cancer potency potential. Parameter uncertainty and model uncertainty are 
discussed in more detail below. 

3.1.2     Parameter Uncertainty 

3.1.2.1 Measurement Error 

Many data sets representing populations, particularly site characterization data, reflect 
both variability within the population and any additional uncertainty due to measurement 
errors. Distinguishing measurement-induced uncertainty from population variability may be 
important when making costly decisions based on conservative risk estimates. 

Measurement error is due to the imprecision of the measurement device. The effects of 
measurement error can be reduced by taking repeated measurements. Measurement error is 
particularly common in the exposure assessment step of the risk assessment process, 
especially with regard to establishing average concentrations for site-related chemicals. The 
potential for repeated measurement (i.e., sampling and analysis) at this stage may be limited 
by practical and cost considerations. Standard sampling procedures such as taking duplicate 
or split samples can give some indication of the amount of measurement error likely in the 
data analysis. 

3.1.2.2 Random Error 

Random error is another potentially important source of uncertainty. Random error can 
play a significant role when attempting to establish a single-point value or a probability 
density function (PDF) from a limited number of samples (see Section 4 for a detailed 
discussion of PDFs). 

Random error arises when a sample is used to represent the true, but unknown, 
distribution. For example, the sample average of a group of laboratory results can be used to 
estimate the true population mean. A new sample, however, might provide a different 
estimate. The difference between the estimates is known as random error and creates 
uncertainty about the knowledge of the true mean. In general, the larger the sample size, the 
lower the uncertainty due to random error (assuming there is no bias in the sampling method). 
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However, in most situations the number of samples is limited and uncertainties due to random 
error may play an important role in estimating risk. 

Another area where random error can be significant is in the determination of cancer risk 
based upon a limited number of observations. For example, animal bioassays used to develop 
cancer potency factors are generally based on a relatively small number of test animals per 
study group.1 

The effect of random error on the input PDF of a parameter will vary greatly. For some 
parameters, such as body weight, the data sets used are very large. The corresponding 
estimate of the true PDF is good because the random error is small. PDFs based on a limited 
data set, on the other hand, can be an unreliable estimate of the true PDF. Thus, in this type of 
situation, it would be important to quantify the amount of uncertainty. 

3.1.2.3       Systematic Error 

Systematic errors, also known as non-random errors or bias, are another source of 
uncertainty in risk assessment. Systematic errors arise through an inherent flaw in the data 
collection process.1 Depending on the direction of the bias, the mean value of the sample data 
will be either consistently higher or lower than the true mean. Because the error is introduced 
due to some flaw in the data collection process, increasing the number of samples or the 
amount of information gathered generally will not reduce the uncertainty due to systematic 
errors. Systematic error can only be corrected by changes in the data collection or analytical 
methods. 

Use of a surrogate measure to represent the parameter of interest can introduce systematic 
error if the surrogate and the parameter do not behave similarly under the same conditions, or 
if incorrect assumptions are made in order to infer the parameter of interest from the 
surrogate. An example of this problem is the "healthy worker effect".1 In the "healthy worker 
effect," the extrapolation of risks determined for exposed workers to the general population 
are performed. This is an example of the potential for systematic error that can be generated 
when the population sampled is not representative of the population being modeled. A similar 
example is the use of data gathered on the general population to represent a subpopulation that 
differs in some significant way (e.g., a subpopulation more or less susceptible to a given 
chemical). 

3.1.3      Model Uncertainty 

The structure of mathematical models employed to represent scenarios and phenomena of 
interest is often an important source of uncertainty. Risk assessors generally use mathemati- 
cal models to represent the interaction between parameters, and also to estimate the values of 
parameters that cannot be measured directly. 

Models are simplified, idealized representations of physical processes that may be too 
complicated to express in any other way.1  Simplifications are often an important part of the 
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assumptions upon which a model is based and insufficiently complex models may fail to 
capture important relationships among input parameters. 

Generally, models are selected on the basis of physical principles, for their ability to 
describe or make sense of a limited set of observations, or for both of these reasons.1 Often 
there may be more than one model to explain or characterize a given phenomenon. If the 
models are based on goodness-of-fit to some set of data, the differing models may fit the data 
equally well. However, these models may provide different results when applied to other 
situations. Thus, selection of a particular model can have a profound impact on the final risk 
distribution. 

An example is USEPA's use of the "linearized multistage model" to assess cancer risk. 
This model extrapolates the risk from high doses used in animal bioassays to the risks from 
low doses typical of environmental exposures. Several other models have been proposed that 
fit the animal data equally well. Depending on the specific model used, the estimated risk at 
low doses can vary by several orders of magnitude. 

3.1.3.1 Surrogate Variables 

Problems can arise when a model uses information for a variable that is not exactly the 
same as the variable under study. For example, toxicity assessments of the dose-response 
relationship using rodents as surrogates to represent humans is very common. The uncertainty 
about the differences between humans and rodents (e.g., differences in how they metabolize 
the same chemical) could give rise to the false presumption that toxicity in rats equals toxicity 
in humans for a given chemical. As it turns out, this is the generally accepted presumption, 
even though any given chemical could induce very different responses in different species.1 

In theory, one can minimize the problems introduced by surrogate variables by increasing 
the complexity of the equation that relates the modeled variable (risk) to the input variables. 
For example, if the dose-response model could be made to account for all the differences 
between rodents and humans, in terms of the toxic effects of chemical exposure, then the use 
of rodents as surrogates would no longer introduce potential error into the calculation. 
Unfortunately, the information often does not exist to allow this increased complexity of the 
model. In fact, this is usually the reason the surrogate must be used in the first place. 

3.1.3.2 Excluded Variables 

In general, models cannot include all of the factors that influence the output of interest 
(risk). There is an inherent trade-off between keeping a model manageably simple and yet 
including as many variables as possible. Analysts therefore take the chance that by making 
their models manageably simple, they will miss one or more important variables. 

Assessment of the potential for error due to excluded variables can be difficult. If a 
simplified model is being used because the information is not available to develop more 
complex models, then quantitative estimates of model error may be impossible.     If 
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information exists for a more complex model, then the output for the simpler model can be 
compared to the output from the more complex model.1 

A variable also may be excluded merely because the variable is not thought to be 
important. This type of error is difficult to identify. If the model is developed using observed 
data, the importance of the excluded variable may not be apparent if none of the observed data 
indicate that the model is incomplete. In other words, if the observed data set is in some way 
limited, or not representative, it may give no indication that there is an additional variable that 
should be included.1 

Consider a human health risk assessment in which there may be hundreds of potential 
input variables. Developing PDFs for each of these in a Monte Carlo-based risk assessment 
would be difficult and unnecessary. To limit the number of variables, the analyst must decide 
which factors to model probabilistically with input distribution. PDFs should be developed 
only for those input factors that are both uncertain and influential to the output risk value. A 
"sensitivity analysis" performed on the simulation results could be used to identify which 
input factors meet these criteria and the relative importance of the variables to each other. 
This presents a problem, however, since it requires defining the parameter in question as a 
PDF and performing the simulation (i.e., it does not help in the initial selection of a variable 
which should be modeled as a PDF at the start of the simulation). An approach to overcome 
this problem is to use "bounding" estimates of the PDFs for all input parameters that might be 
important and then perform the simulation and sensitivity analysis. PDFs for those input 
parameters shown to be important could then be refined; for non-influential parameters, point 
values could be used. 

3.1.3.3 Extreme Events 

Because models are simplified and combine representations of complicated processes, it 
is often difficult to determine how applicable they are to extreme events (i.e., unusual or 
aberrant conditions). In risk assessment, this is of particular concern if a distribution contains 
a "tail" that includes a small but significant portion of the population that may not be well 
characterized by the distribution. For practical purposes, ignoring possible extreme events is 
equivalent to building a model but excluding one or more variables.1 

3.1.3.4 Incorrect Model Form 

If the model involves multiple predictor (i.e., input) variables, additional uncertainty may 
be created through incorrectly modeling potential interactions among the variables. Failure to 
account for interdependence, or correlation, among variables is an example of this type of 
modeling problem. Correlation occurs when two or more variables vary in tandem; for 
example, extremely high levels of one variable are only seen with extremely low levels of 
another. In this situation, the variables are not statistically independent. 

One potential means of addressing parameter correlation is through the use of correlated 
data distributions for receptor-related distributions.3 An example of this type of correlation 
would prevent use of a large adult's body weight with a small adult's dermal surface area. 

3-5 



Air Force Technical Report on Methods to 
Section 3 - Uncertainty and Quantify Uncertainty in Human Health 
Variability in Estimating Risk Risk Assessment (Draft Final) 

3.1.4      Understanding Uncertainty 

Understanding the sources of uncertainty in estimating risk is critical to guiding 
additional, meaningful data collection or evaluation. Understanding the relative contribution 
of each source of uncertainty on the final risk estimate is also important in deciding when 
further data collection and analysis is not cost effective. If the source of uncertainty that 
dominates the final risk estimate for any given site is reducible and may result in a significant 
change in the decision, RPMs are encouraged to investigate means to reevaluate remedial 
decisions with new data and/or new tools. Inclusion of new data does not necessarily mean 
that the decision will radically change; however, such information can only foster more 
well-informed decisions and priority setting. 

3.2 VARIABILITY 

As noted previously, uncertainty and variability are usually mixed together in an 
environmental data set. Additional collection of data may reduce uncertainty. Variability, on 
the other hand, represents the inherent, natural heterogeneity of the population. Although 
further data collection may improve understanding of the variability in the population (and 
therefore may improve the ability to accurately incorporate variation into the risk estimate), it 
will not reduce the differences that exist in the population. 

Any group of exposed or potentially exposed individuals will almost certainly display 
variation in most parameters. For instance, they will have different body weights, will be 
present at the exposure point for different periods of time, and will engage in different 
activities that promote or inhibit their exposure potential. 

As an example, even if every potentially exposed individual in a population was weighed, 
giving complete information on the distribution of body weights, this would in no way change 
the fact that individuals in the population had different body weights (or, in fact, that each 
individual's body weight is subject to change over time). Similarly, if it was possible to 
perfectly characterize the levels of soil contamination throughout a site, this would not change 
the fact that "hot spots" have higher contaminant concentrations than less contaminated areas. 

3.3 UNCERTAINTY AND VARIABILITY IN THE KEY STEPS OF RISK 
ASSESSMENT 

As discussed in Section 2, deterministic risk assessments generally only involve qualita- 
tive estimates of uncertainty and variability. The inherent strength of probabilistic risk 
assessment techniques is that they provide a means to quantitatively incorporate and assess 
the impact of both uncertainty and variability on the final output (estimated risk to a human 
receptor). 
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3.3.1      Data Evaluation 

As noted in Section 2, the data evaluation step in risk assessment involves examination 
and compilation of all data gathered for the site. The primary objective of this step in the risk 
assessment process is to develop a list of chemicals that will be quantitatively considered in 
the risk analysis, specifically by estimating the chemical-specific exposure-point concentra- 
tions. The primary source of variability in the data evaluation step arises from the temporal or 
spatial variation in the levels of the chemical contaminants in environmental media. 

Because contaminant concentrations factor heavily into determining an individual's 
intake, it is imperative that the sampling data be representative of the environmental matrices 
(e.g., soil, groundwater, surface water) for the exposure pathways of concern. Often times, 
though, the analyst is forced to rely on data that have been generated for a completely 
different purpose, namely to identify the nature and extent of contamination. 

Nature and extent sampling schemes are often biased and emphasize the sampling of 
expected areas of contamination (e.g., potential hot spots and potential release points). This 
biased sampling strategy is not designed to provide an accurate representation of the average 
contaminant levels at the site. This sampling methodology may tend to underestimate the 
variability within a site, and overestimate site-related concentrations. 

Often, a sampling scheme designed to meet a specific objective (e.g., nature and extent 
determinations) will not necessarily meet the data needs of the risk assessor. As such, it is 
imperative that the risk assessor be initially included in development of work and sampling 
plans to characterize the site. Otherwise, the resulting data could have serious implications to 
data quality objectives of the risk assessment results. 

Once sufficient chemical data are identified, current USEPA guidance stipulates that a 
single exposure-point concentration term (C-term) representative of the average site concen- 
tration be estimated.4 This point estimate is then to be used to develop both the average and 
RME risk estimates. The USEPA Superfund Program has defined the C-term as the 
95-percent upper confidence limit (UCL) of the arithmetic mean of the site characterization 
data. The USEPA further recommends that the maximum detected site concentration be used 
as the C-term in cases where sampling has been insufficient to calculate a 95-percent UCL or 
where the calculated 95-percent UCL exceeds the maximum detected site concentration (often 
the case when the sample size is small or when the proportion of nondetects is high and 
numerical values associated with the nondetects are greater than the maximum detected 
concentration). In either case, whether the C-term is the 95-percent UCL or the maximum 
detected concentration, this results in the use of a single-point estimate representing chemical 
contamination both spatially and temporally throughout the site. 

Other authors who have completed a theoretical comparative analysis using a point 
estimate and a PDF to represent site contamination characteristics suggest that the single-point 
C-term may moderately overestimate the representative "average" site concentration of a 
given contaminant.5   The impact of using a PDF to represent contaminant concentrations 
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rather than a single-point parameter estimator will vary considerably depending on the actual 
contaminant levels, the target environmental media, and the potentially complete exposure 
pathways used to estimate risk. 

During the data evaluation process, natural or anthropogenic variability should not be 
confused with uncertainty. Specifically, contamination levels may vary either spatially or 
temporally due to anthropogenic or natural influences. For example, areas characterized by 
elevated contamination ("hot spots") may be attributable to past site activities. 

In contrast to variability, several significant sources of uncertainty also exist that can 
complicate developing a point estimate or PDF which is representative of site contamination. 
For example, as previously discussed, sampling bias due to poor or inaccurate sampling plans, 
accidental contarnination of samples during field sampling or laboratory analysis, and random 
error introduced during the sampling process are sources of uncertainty.6 

Much of the potential uncertainty in the data evaluation process can be minimized 
through use of proper sampling techniques, well-designed sampling plans, and rigorous 
analytical procedures that minimize positive-detect biases.6 Consequently, any proposed site 
sampling and analysis plans that will be used to collect data for use in risk and uncertainty 
analysis should clearly identify where uncertainty could be introduced into the end-use data 
set. 

3.3.2     Exposure Assessment 

The exposure assessment step involves estimating the types and magnitudes of chemical 
exposures to the potential receptors at a specific site. Potentially exposed populations and the 
pathways by which the exposure might occur are usually scoped out in a conceptual site 
model (CSM). The CSM is then used to select the mathematical models to describe the 
exposures for the site. There are a wide range of potential input parameters associated with 
this process which can loosely be grouped into two broad categories: 

• Receptor parameters that describe the receptor and how the receptor interacts with the 
environment; and 

• Environmental parameters that describe the source of exposure and the environmental 
media (site characterization data). 

Receptor parameters are those which describe some physical characteristic of the 
individual. Body weight, inhalation rate, rate at which a chemical is excreted from the body, 
or other physical characteristics of how the receptor behaves, are examples of parameters that 
will vary among the individuals of a population. Environmental parameters, on the other 
hand, are those that describe some physical attribute of the environment that will introduce 
variability into the amount of contaminant that the individual potentially receives. 
Distribution of a contaminant throughout a site or throughout a soil-depth interval are 
examples of environmental parameters. 
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The "Exposure Factor Sourcebook"7 and "Exposure Factor Handbook"8 present numerous 
distributions for many of the common parameters used in the exposure assessment process. 
Both sources also discuss the research and data sets used to develop the distributions. RPMs 
are encouraged to use this information to the greatest extent possible since it increases the 
likelihood of regulatory acceptance of the approach. If more information is needed, there are 
other distributions presented in the technical literature which RPMs can use to supplement or 
question USEPA-recognized distributions. If a variable is identified for which a distribution 
is required, but for which one cannot be found in the technical literature, solicitation of expert 
judgment should be considered (see Section 3.4). USEPA's policy on Monte Carlo analysis 
pledges that more distributions will be developed in the future.7'8 

Common input parameters for which distributions have been developed are listed below. 
Examples of the distributions, recommended point estimates for calculation of the RME, and 
summary statistics for several of these parameters are presented in Figure 3.1. It should be 
noted that one would still need to determine the appropriate use of the parameter distributions 
and understand how they may be modified for site-specific conditions. The input parameters 
include: 

Adult Body Weight 

Child Body Weight 

Total Skin Surface Area 

Body-Part Specific Surface Area 

Inhalation Rates 

Exposure Duration - Adult Resident 

Exposure Duration - Child Resident 

Exposure Duration - Job Tenure 

Exposure Duration - Time/Activity Patterns 

Exposure Frequency - Showering 

Water Ingestion Rates 

Soil Ingestion Rates - Adult 

Soil Ingestion Rates - Children 

Fruit/Vegetable Ingestion Rates 

Fish Consumption Rates 

Soil Adherence Factors 
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Figure 3.1 Example Distributions for Exposure Parameters 
Adult Water Ingestion Distribution 

Cumulative Distribution 
Median 1.13 L/day 
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Distribution of Years in One Residence - All Households 
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Figure 3.1, cont. 
Adult Body Weight Distribution - Both Sexes 
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In addition to describing the inter-individual variability inherent in the population, it 
should also be noted that many of the distributions for the above-listed parameters may 
include uncertainty. For example, distributions may be based on models using small data sets 
Therefore, the distributions have a high potential for random error to be important in 
determining the distribution shape. 

Several of the distributions are derived using mathematical models to relate the parameter 
of interest to the parameter actually measured, and thus incorporate potential problems with 
surrogacy. For example, information on current residency time was used to derive the 
distribution for total adult residency time.9 Also, some parameters are inherently difficult to 
measure (e.g., soil adherence) and therefore measurement error may be important in 
determining the distribution shape. 

A hypothetical example of how the exposure input parameters are incorporated into the 
risk assessment process, and comparison of point estimate-based risk estimates to 
probabilistically-based risk estimates is presented in Section 5. 

3.3.3      Toxicity Assessment 

The toxicity assessment in human health risk assessment generally requires an identifica- 
tion of whether the chemical causes an adverse effect and a dose-response evaluation. 
Potential adverse health effects include carcinogenic or noncarcinogenic effects. Generally, 
incorporating toxicity parameters described by a distribution into a probabilistic risk 
assessment is not pursued because it introduces a high level of complexity into the assess- 
ment. Rather, a point-value is selected for the toxicity value. It should be noted, however, 
that the level of complexity does not justify the use of a point value. Uncertainties in the 
toxicity values can be incorporated into the risk assessment without including the entire 
toxicity assessment. Experts in the field can perform uncertainty analysis for the 
dose-response and pharmacokinetic (also called toxicokinetic) models. The results can then 
be incorporated into a probabilistic risk assessment as distributions of toxicity values. 

One of the goals of the uncertainty analysis is to improve the state of knowledge about 
key input parameters that contribute to the uncertainties in the risk estimates so that they can 
be reduced. It is possible that explicit inclusion of uncertainty in toxicity estimates may 
identify toxicity parameters as a key source of uncertainty (via sensitivity analysis) and justify 
additional research towards reducing the uncertainty. 

3.3.3.1       Dose-Response Models 

The dose-response evaluation step involves quantitatively evaluating the toxicity 
information for a specific compound and characterizing the relationship between the dose of 
the contaminant administered or absorbed, and the incidence of adverse health effects in the 
exposed population. From the dose-response information, toxicity values are derived and 
used in the risk characterization step to estimate the likelihood of adverse effects occurring in 
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potential receptors.   Cancer slope factors (CSFs) are derived for carcinogenic effects, and 
reference doses (RfDs) are derived for noncarcinogenic effects. 

Although the dose-response step may represent an important source of uncertainty and 
variability in the final risk estimate, CSFs and RfDs are conventionally calculated as point 
estimates. The USEPA defines the CSF as a "plausible upper-bound estimate of the 
probability of a response per unit intake of a chemical over a lifetime." The RfD is an 
estimate of the daily exposure that is unlikely to cause appreciable risk of adverse noncarcino- 
genic health effects during a lifetime.10 

The use of a point estimate for the CSF or RfD does not reflect the expected variability in 
how individuals will respond to a given dose of a toxicant. Toxicodynamic variation is the 
different susceptibility of target tissues to toxic insult in different individuals. The variation 
in response by different individuals can be based on a number of toxicokinetic factors. 
Factors that would be expected to display inter-individual variation include: (1) rate at which 
a compound is absorbed from the gastrointestinal track into the blood stream, (2) rate at which 
compounds are detoxified, (3) rate at which non-toxic compounds are converted into toxic 
intermediates, and (4) rate at which compounds are excreted from the body. 

The study and modeling of these four factors are encompassed by the field of pharmaco- 
kinetics. The specifics of a pharmacokinetic model will be dependent on the particular 
chemical or class of chemical. Information on a particular chemical, when available, can be 
found in the technical literature. An example is presented in the next section showing why 
use of a point value for a toxicity factor can cause significant problems in the risk assessment 
output. 

3.3.3.2       Pharmacokinetic Models 

The potential for variability among individuals has been concisely illustrated by a 
pharmacokinetic model developed for metabolism of the carcinogen 4-aminobiphenyl 
(ABP).11 ABP was of interest because it has been recognized as causing cancer in both 
humans and a number of animal species. Also, the pharmacokinetics of ABP has been studied 
in animals. 

The pharmacokinetic model developed for humans assumed lognormal distributions to 
describe several steps in the absorption, distribution, metabolism, and excretion of ABP. The 
model used one of the primary variability propagation techniques (i.e., Monte Carlo 
simulations) to predict the amount of ABP that would bind to deoxyribonucleic acid (DNA) in 
a particular theoretical individual. The results indicated a four-order-of-magnitude difference 
among the highest and lowest individuals, and a two order-of-magnitude difference between 
the 5th and 95th percentile of the population.11 

The exact relationship between number of ABP molecules bound to DNA and the 
increased risk of developing cancer is not known. However, given the probable involvement 
of DNA lesions in the carcinogenicity of ABP, it is likely that large differences in 

3-13 



Air Force Technical Report on Methods to 
Section 3 - Uncertainty and Quantify Uncertainty in Human Health 
Variability in Estimating Risk Risk Assessment (Draft Final) 

DNA-binding of ABP among individuals corresponds to large inter-individual differences in 
cancer susceptibility. 

Adequate data are limited for most other chemicals to support analysis of this type. But 
clearly, accounting for the impact of this type of inter-individual variability could dramati- 
cally change the focus and conclusions of human health risk assessments. 

3.3.4      Risk Characterization 

The risk characterization process involves the combination of information from the data 
evaluation, the exposure assessment and the toxicity assessment to develop risk estimates. In 
general, for each exposure pathway for each receptor, compound-specific estimates of 
carcinogenic and noncarcinogenic risk are developed. These compound-specific risks are then 
summed to provide a pathway-specific total carcinogenic and noncarcinogenic risk for each 
receptor. When appropriate, risks from different pathways are also summed to give a total 
carcinogen and noncarcinogenic risk for each receptor. 

In the probabilistic risk assessment paradigm, Monte Carlo techniques are used to 
combine the exposure parameter distributions along with any single-point values selected 
(e.g., toxicity factors). The result is a distribution of potential risks that reflects the 
information and assumptions concerning the exposed population. See Sections 4 and 5 for 
additional information. 

The spread of this distribution will be determined, in part, by the amount of variation 
found in the various parameters used in the risk calculation and, in part, by uncertainties in the 
parameters. As noted previously, analysis can be performed to determine which input 
variables have the greatest impact on the resulting risk distribution. Techniques have also 
been developed to distinguish the amount of spread in the risk distribution that is due to 
variation, and the amount that is due to uncertainty. 

The potential for correlation among input variables to influence the risk estimates and 
uncertainty analysis must also be considered. Two parameters that vary together are said to 
be correlated. There are specific situations in which correlation could be important, and 
would need to be accounted for in the risk assessment. The impact will be most pronounced 
when there is strong correlation among several sensitive parameters. Sensitive parameters are 
those that have the most influence on the risk distribution. Correlation also becomes more 
important when one is concerned with extreme values (i.e., with the tails of a distribution).12 

Section 4 discusses methods to explore correlation and how to incorporate correlation into the 
risk estimation process. 

3.4      ELICITATION OF EXPERT JUDGMENT 

The model used to describe the pharmacokinetics of ABP carcinogens (discussed above) 
incorporated parameter distributions for which there were limited data. This raises the issue 
of what action is to be taken if a parameter for which there is not an established distribution, 
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or sufficient information to develop a distribution, is identified as important to the risk 
calculation. A related situation arises when the site-specific population is thought to vary in 
some important aspect from the population upon which an established distribution is based. 
In these and similar situations, it may be necessary to estimate uncertainty and variability in 
one or more input parameters in the model. 

An expert is someone who (1) has training and experience in the subject area resulting in 
extensive knowledge of the field, (2) has access to relevant information, (3) has an ability to 
process and effectively use the information, and (4) is recognized by his or her peers or those 
conducting the study as qualified to provide judgments about assumptions, models, and model 
parameters at the level of detail required.13 In performing a probabilistic risk assessment, an 
expert might be called upon to develop key parameters about which insufficient data are 
available as subjective PDFs. 

Generally, a distinction is made between informal and formal solicitation of expert 
judgment. Informal solicitation may include self-assessment, casual solicitation from an 
expert, brainstorming, and group discussions by staff or available experts. 

If the above informal criteria do not apply (i.e., if the potential impact is large or the 
results are likely to undergo intense scrutiny) the formal solicitation process should be 
pursued. Formal solicitation methods have a predetermined structure for selecting and 
training experts and for eliciting, processing, and documenting expert judgments and their 
rationales. Some of the advantages of using a formal approach include: 

Improved quality of expert judgments, 

Reduced likelihood of critical mistakes, 

Improved accountability, 

Improved consistency of procedures, 

Enhanced communication, and 

Reduced chance of unexpected delay.13 

Formal methods of eliciting expert judgments are more costly and time consuming than 
informal methods. 

A process for formal solicitation of expert judgment has been developed based on 
methodology developed by the Nuclear Regulatory Committee to obtain expert opinion on 
uncertainty of off-site risk for nuclear power plants. The process consists of ten steps 
designed to elicit unbiased judgment from a panel of experts. 

The process is accomplished through preparation of complete background information on 
the issue in question, and presentation of this information to the experts. The experts, either 
separately or in groups, will then analyze and discuss the issue, and render a judgment. If 
separate judgments are elicited from each expert, the judgments should be consolidated. All 
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judgments should be reviewed and the results should be communicated to risk management 
decision-makers and other stakeholders. A more detailed discussion of this subject is made in 
the NCRP Commentary No. 14 "A Guide for Uncertainty Analysis in Dose and Risk 
Assessments Related to Environmental Contamination."13 
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SECTION 4 

PRINCIPAL METHODS OF PROBABILISTIC ANALYSIS 

The purpose of this section is to provide Air Force RPMs with an introduction to the 
statistics necessary to understand the development, selection, and use of probability 
distributions in probabilistic human health risk assessments. The RPM should have a fairly 
strong background concerning relevant statistical methods in order to understand the analysis 
incorporated into a risk assessment and to be able to interpret the results. 

This section presents several recommended statistical methods for characterizing 
information, selecting and/or developing input distributions, and interpreting the results of a 
probabilistic risk assessment. These include: 

Types of distributions commonly used to model parameters in human health risk 
assessments; 

Methods to establish distributions from data; 

Graphical methods to assess how well data fit a theoretical distribution; 

Traditional "goodness-of-fit" tests; 

Summary statistics used to describe distributions; 

Issues related to developing distributions for site characterization; and 

Methods for assessing uncertainty and variability in PDFs and how this propagates 
through the risk assessment. 

4.1       PROBABILITY FUNCTIONS 

A probability distribution is the set of outcomes of a random variable and their 
corresponding probabilities. Two commonly used functions to mathematically describe the 
probability distribution of a continuous random variable are the PDF and the cumulative 
distribution function (CDF). The PDF describes the probabilities of occurrence of particular 
outcomes. For example, a PDF could be used to describe the range of body weights in an 
adult population and their relative likelihood of occurrence. The CDF gives the cumulative 
probability of all outcomes at or below a specific value. For example, from a CDF, one could 
determine the probability of cancer risk due to exposure to chemicals at a hazardous waste site 
being less than a certain value, such as less than an acceptable cancer risk level of one in ten 
thousand (lxlO"4). 
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PDFs and CDFs are used to incorporate variability and uncertainty into the probabilistic 
risk assessment. Either function is a valid way of mathematically specifying the statistical 
distribution in probabilistic techniques. In Monte Carlo simulations, PDFs are used for 
specific input variables that are combined with appropriate point estimates to produce an 
output distribution for risk. 

Monte Carlo simulations are very sensitive to the shape of the input distributions. 
Therefore, to ensure as accurate an estimate of risk as possible, it is important to have input 
PDFs that accurately represent an input variable. As discussed below, statistical methods are 
used to summarize and characterize the data to allow determination of a distribution which 
"best" represents that data. Statistical methods can also be used to determine how well data fit 
a theoretical distribution. 

Sensitivity analysis is used to measure how the uncertainty and inherent variability of the 
PDFs used as input variables propagate through the risk equations to the risk output. 
Depending on the specifics of the risk calculation, different input parameters will have 
different levels of impact on the output parameter (risk). Determining which inputs "drive" 
the output is critical in determining which parameters should be modeled as distributions and 
how important it is to have an accurate distribution. 

4.2      DISTRIBUTION CHARACTERIZATION 

Distributions are a set of numbers collected from a well-defined universe of possible 
measurements arising from a property or relationship under study. Understanding what a 
distribution is and selecting appropriate input distributions is one of the most crucial aspects 
of Monte Carlo simulation since it is very sensitive to the shape of the input distributions and 
their interaction in the risk calculation. However, there is not universal agreement on one 
approach for developing these distributions or even the types of theoretical distributions that 
should be considered. 

4.2.1      Distribution Types 

Probability distributions can be assigned to data via graphical interpretation (the preferred 
method) or formal statistical tests. Once sample data are categorized based on all available 
information, inferences regarding variability inherent in the populations (e.g., body weights, 
ingestion rates, etc.) can be approximated and input into the risk calculation. 

There are a variety of theoretical distributions used to represent populations and data sets. 
Use of these distributions is an appropriate way to represent the uncertainty and/or variability 
in the population. The distributions most commonly seen in human health risk assessments 
are the normal, lognormal, triangular, beta, uniform, and empirical distributions. Examples of 
some of these distributions are described below. 

4-2 



Section 4 - Principal Methods 
of Probabilistic Analysis  

Air Force Technical Report on Methods to 
Quantify Uncertainty in Human Health 
 Risk Assessment (Draft Final) 

4.2.1.1 Normal Distribution 

The normal distribution is frequently used to describe natural populations and phenomena 
and is described by the well-known "bell-shaped" curve. An example is shown below. The 
normal curve is a convenient PDF because many physical measurements (such as depth to 
groundwater) as well as "additive processes" have distributions that are bell shaped. The 
normal distribution is also applied in inferential statistics. For example, the normal 
distribution can sometimes be used to describe the distribution of the mean of a population.1 

The entire shape of a normal curve can be described by two summary statistics: the mean 
and the variance (see Section 4.4.1). 

Normal Distribution 

si 
a 
o 

48.15 72.00 95.85 

Adult Body Weight 

4.2.1.2       Lognormal Distribution 

The lognormal distribution is similar to the normal distribution, except that the log- 
transformed values (i.e., logarithm of the values) are normally distributed. As shown in the 
example below, the shape of the distribution of the untransformed values is skewed 
(i.e., tapered) to the right. In general, "multiplicative" processes can follow a lognormal 
distribution, (e.g., laboratory analytical error). The lognormal distribution is often also used 
to represent natural phenomenon (e.g., concentrations of a contaminant in soil). 

There are three ways to specify the statistical parameters of the lognormal distribution: 
(l)the mean and the variance, (2) the mean and variance in the log scale, and (3) the 
geometric mean and geometric variance. It is important to describe which set of these 
parameters are being used when the data are reported. There are also a variety of methods 
appropriate for estimating these parameters depending on different statistical conditions of the 
data set. For example, under some circumstances, the sample average is a good estimate of 
the true, but unknown population mean for a lognormal distribution. Evaluating the tail of the 
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distribution is often important in environmental applications, such as when one is interested in 
the characteristics of the high end of concentrations of a contaminant. 

Lognormal Distribution 

1.18 4.56 7.94 11.32 

Background Metal Concentrations (theoretical) 

< 
14.70 

4.2.1.3       Triangular Distribution 

As its name suggests, the triangular distribution has a triangular shape. Often this 
distribution is used to represent natural populations or phenomenon which are not well 
characterized. The triangular distribution tends to overestimate the portion of the distribution 
found in the tails, for a population which is actually normally distributed. Thus, it is often 
used as a "conservative" estimator (although a beta distribution may be more appropriate in 
some cases). 

The triangular distribution can be fully described by its niinimum, maximum, and most 
likely values. The distribution is bounded by its maximum and niinimum values. 

Triangular Distribution 

► 
64.80 68.40 72.00 75.60 

Adult Body Weight 

< 
79.20 
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4.2.1.4       Empirical (Cumulative) Distribution 

Monte Carlo methods allow relatively easy use of empirically derived distributions. 
These distributions are often based on site-specific data which do not "fit" any of the standard 
theoretical distributions. The shape of each distribution is different. Usually these distribu- 
tions will be described by listing percentiles of the population for which a given percent of the 
population is below a specified value.2'3 

4.3      DERIVING DISTRD3UTIONS 

There are a number of ways to include a set of data, or a population parameter, as a 
distribution in the risk assessment. Many parameters which describe natural populations, 
body weight, or inhalation rate for example, have already been modeled, and distributions are 
published in the technical literature or in a number of sources which have compiled this 
information. If however, the distribution will be applied to site-specific data, such as 
sampling results, or if site-specific conditions indicate that previously published distributions 
are not applicable, it will be necessary to determine if the site-specific data follow one of the 
theoretical distributions (e.g., a normal distribution), and if not, to develop a distribution 
which accurately represents the data. 

4.3.1 Standard Data Distributions 

Several authors in the literature have called for "standard" data distributions for input 
variables that are not significantly influenced by site-specific conditions. The goal is to use 
existing knowledge to support probabilistic descriptions of exposure variables. This will 
enable the development of standard distributions wherever possible and appropriate. Finley 
has proposed several distributions that can be considered standard for most settings.4 

Examples of standard distributions include residency time and body weight. 

4.3.2 Deriving Distributions from Adequate Environmental Data 

When standard data distributions are not applicable to an exposure scenario at a site, 
classical statistical methods (e.g., measures of central tendency, skewness, and precision) 
should be used to derive an appropriate input distribution from the environmental sampling 
results. (Descriptions of classical statistical methods are described in Section 4.5.) In 
particular, a graphical analysis of environmental data should be performed to determine if the 
data adequately fit a normal or lognormal distribution. 

4.3.3 Deriving Distributions with Lack of Knowledge 

Two approaches are recommended to deriving a statistical distribution for an input 
variable when little information is known. The first method is referred to as an informal 
approach to deriving defensible distributions based on a priori knowledge of the nature of the 
stochastic (i.e., random) variable. The second method is a formal approach to eliciting expert 
judgment. Both methods are based on the scientific method. A more detailed discussion of 
the two approaches is presented in Section 3.4. 
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Determining data distributions (such as uniform or triangular) on the basis of "not 
knowing very much" or that it is a "conservative" approach is not recommended.5 These 
arguments are not statistically justifiable and often reflect inadequate research into the given 
input variable. The uniform and triangular distributions make assumptions that often go 
overlooked in their applications. However, they are sometimes acceptable for "data poor" 
situations. In general, selection of PDFs should follow a careful process of formulating a 
more "realistic" distribution from the current state of knowledge coupled with a sensitivity 
analysis (see Sensitivity Analysis Methods, Section 4.7). The beta distribution is recom- 
mended for developing "customized" distributions because its shape is very flexible and can 
assume a wide variety of forms by adjusting its statistical parameters.6 The beta distribution 
is also bounded by its maximum and minimum values. 

4.4      GRAPHICAL ANALYSIS 

Statistical tools can be used to assess how well a set of data is represented by a particular 
distribution. It is recommended that graphical analyses be performed because the graphical 
techniques are often superior to more traditional statistical techniques in assessing a 
distribution for use in a probabilistic risk assessment. A "picture" of the data is simple to 
prepare yet can be more informative than a series of statistical computations. 

Graphical displays provide a means for deterrnining the distribution of the data, 
identifying outliers, and selecting appropriate statistical methods and tests. This process is 
often referred to as exploratory data analysis (EDA). 

Graphs also provide a more complete picture of the data and convey information far 
beyond that of summary statistics (see Section 4.5.1 for a discussion of summary statistics). 
They are an invaluable tool for understanding the statistical characteristics of the data and 
presenting results. 

Four types of graphs are presented in this discussion to describe the distribution of data: 
histograms, boxplots, quantile-quantile (Q-Q) plots (e.g., normal probability plots), and 
density estimation plots that describe the empirical PDFs. These graphs should be evaluated 
together to determine if a data set adequately follows a theoretical distribution (e.g., the 
normal distribution). 

4.4.1      Boxplots 

The boxplot is a very useful tool that gives a general overview of the data, regardless of 
its distribution. Boxplots show the location, spread, skewness, tail length, and outlying data 
points of the data in a compact form. It consists of a center line as representing the median 
(i.e., 50th percentile) of the data splitting a rectangle defined lengthwise by the 25th and 75th 
percentiles. The length of the box is the difference between the 25th and 75th percentiles and 
is called the interquartile range (IQR). "Whiskers" are drawn extending outside the box to 
show the tails of the distribution. Potential outliers are plotted as points beyond the whiskers. 
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Because the median and IQR are resistant measures of the data, the boxplot is particularly 
attractive for exploratory data analysis of environmental data. 

Boxplots of Arsenic Data 
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4.4.2     Q-Q Plots 

The Q-Q plot is one of the best means for assessing if the data are normally or 
lognormally distributed. The Q-Q plot portrays the quantiles (percentiles divided by 100) of 
the sample data against the quantiles of another data set or theoretical distribution 
(e.g., normal distribution). By comparing the data to a theoretical distribution with a straight 
line, departures from the distribution are more easily perceived.7 The diagonal line indicates a 
perfect fit. 

The lognormal Q-Q plot shown below has been modified for environmental data. The 
points plotted as a "plus" indicate the result was a nondetect (in this example, it is clear how 
elevated detection limits affect the distribution of the sample). The extent, pattern, and 
locations of nondetects can be visually assessed. If the detected values appear to be 
approximately normally distributed, and the main departures from the line are nondetects, a 
normal distribution assumption may be reasonable and appropriate surrogate values that fit the 
distribution can be substituted for the nondetect results.8,9 
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Lognormal Q-Q Plot of Thallium 
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4.43      Histograms 

Histograms are used to display the general shape of the data distribution. A histogram 
breaks the range of values of a variable into intervals and displays the count (or percent) of the 
observations that fall into each interval. They approximate the shape of the PDF, but have 
one deficiency: their visual impression depends on the number of categories (i.e., vertical 
bars) selected for the plot. Varying the number of categories can have a remarkably large 
effect on the shape of the distribution.10 

Histogram of Log Arsenic 
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4.4.4      Empirical Probability Density Functions 

The density plot is a smoothed estimate of the distribution shape and does not have the 
category-width problems of a histogram. This "smoothing" technique can give a much clearer 
view of the distribution, and attempts to compromise between smoothing insignificant 
"bumps" in the data while not obscuring real peaks.10 

Empirical PDF for Log Arsenic 
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4.4.5      Graphs vs. Formal Normality Tests 

Formal statistical tests of normality alone are not recommended for assessing the 
distribution of the data. Unlike graphical analyses, these tests generally do not distinguish 
between the causes of departures from normality (e.g., substitutions of one-half the reporting 
limit for nondetects) and, more importantly, do not provide information on the pattern of the 
departures. If, however, a formal normality test is being used to supplement a graphical 
analysis, the Shapiro-Wilk test is recommended.11 The Shapiro-Wilk test can be augmented 
with the Shapiro-Francia test for testing normality when more than fifty samples are being 
evaluated.11 Alternative "goodness-of-fit" tests include the chi-square,6 D'Agostino,12 and 
Kologorov-Smirnov.13 
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4.5      CLASSICAL STATISTICAL METHODS 

Classical statistical methods refers to traditional statistical theory and basic assumptions 
about a set of data (e.g., independent data points, random sampling, etc.). The assumptions 
which underlie classical statistical methods should, to the extent possible, be the goal of the 
risk assessor and the RPM. These assumptions include: 

• Data are collected using random sampling techniques; 

• Data represent the area or process being evaluated; 

• Spatial and temporal dependencies have been accounted for or are not significant; 

• Field sampling techniques and laboratory procedures are the same for data combined 
into the same group or for groups of data being compared; and 

• Data are excluded only if they were shown to be in error and not solely on the basis of 
statistical outlier tests. 

For environmental sampling data, it is often the case that many of the assumptions listed 
above do not apply. Commonly, the analyst cannot change or improve the sampling plan or 
results, but must work with the available data and acknowledge the limitations (e.g., small 
sample size, non-random methods of sample collection). Several classical statistical parame- 
ters, and their assumptions and limitations, are discussed below. 

4.5.1      Summary Statistics 

Summary statistics supply important information pertaining to a data set. They provide 
measures of central tendency (e.g., mean, median, and mode), skewness (e.g., coefficient of 
variation), and precision (e.g., variance, standard deviation, and percentiles) that are useful in 
describing the shape of a PDF. For many of the common distributions, the shape of the entire 
curve can be described with only a few parameters. For those data that are described by a 
parametric distribution, all of the information about the data can be conveyed simply by 
giving the distribution type and two or three key parameters. For example, if one wanted to 
model body weight with a distribution, and that distribution were normally distributed, the 
mean and standard deviation of the distribution would be used in the risk calculation. 
Summary statistics are required for use in the commercially available software packages 
which actually perform the Monte Carlo analysis. They are also used to describe PDFs in the 
technical literature, and in documents that summarize current information on exposure 
variables.2,3 Therefore an understanding of these statistics is necessary to interpret the 
information presented. Commonly used summary statistics are discussed below. 

It is first helpful to create a table of basic summary statistics (e.g., mean, median, 
standard deviation, etc.) for each data set to be used for the probabilistic analysis. Table 4.1 
provides an example of the summary statistics for a hypothetical environment data set. 
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Table 4.1 Example Summary Statistics by Compound 

Compound       n     % nd range of SQLs min max mean median s MAD CV 

Aluminum 119      0 NA - NA 2920 29900 9790 8420 4980 3230 0.509 
Antimony 55       0 NA - NA 1.54 6.46 2.74 2.11 1.26 0.756 0.46 
Arsenic 119      0 NA - NA 0.642 26.3 2.94 2.18 2.9 0.964 0.986 
Barium 119      0 NA - NA 13.9 252 65.3 58.5 34 17.5 0.521 
Beryllium 119      0 NA - NA 0.171 1.88 0.482 0.43 0.249 0.141 0.517 
Cadmium 119    16.8 0.408 - 0.443 0.0417 0.668 0.184 0.193 0.109 0.083 0.594 
Calcium 119       0 NA - NA 1310 169000 12800 4810 25100 3450 1.96 
Chromium 119      0 NA - NA 1.61 63.3 9.94 6.65 8.62 3.08 0.867 
Cobalt 119      0 NA - NA 0.814 13.9 4.88 4.14 2.79 1.72 0.572 
Copper 119       0 NA - NA 1.77 34.8 10.4 7.54 6.83 3.34 0.66 
Chromium VI 59     96.6 0.218 - 1 0.109 0.62 NA NA NA NA NA 
Iron 119      0 NA - NA 3710 42100 12400 11400 5600 3320 0.453 
Lead 119       0 NA - NA 0.988 9.49 3.83 3.72 1.41 1.26 0.369 
Magnesium 119       0 NA - NA 1140 13900 3850 3090 2380 1350 0.619 
Manganese 118       0 NA - NA 80.3 402 203 200 66.2 65.2 0.326 
Mercury 119    95.8 0.169 - 0.445 0.0587 0.39 NA NA NA NA NA 
Molybdenum 15        0 NA - NA 1.15 3.5 1.87 1.66 0.777 0.593 0.416 
Nickel 119      0 NA - NA 1.34 35.9 8.24 7.1 5.94 3.65 0.721 
Nitrate/Nitrite 119     6.7 0.228 - 0.458 0.114 10.8 1.27 0.843 1.56 0.589 1.23 
Phosphorus 119       0 NA - NA 110 1320 329 303 163 136 0.495 
Potassium 119      0 NA - NA 716 11700 2870 2200 2000 1200 0.697 
Sodium 119       0 NA - NA 46.9 4730 600 247 902 166 1.5 
Thallium 83     49.4 3.47 - 3.83 0.702 2.05 NA NA NA NA NA 
Vanadium 119       0 NA - NA 5.98 166 25.6 18.9 22 6.97 0.856 
Zinc 119      0 NA - NA 15.6 79.2 29.2 26.4 11.3 7.41 0.385 

Notes: 

n = Number of samples. 

%nd = Percentage of samples reported as nondetects. 

range of SQLs (sample quantitation limits) = Range of reporting limits. 

min = Minimum detected value 

max = Maximum detected value. 

s = Standard deviation. 

MAD = Median absolute deviation. 

CV = Coefficient of variation. 

*  Per USEPA guidance,20 one-half the SQL used to calculate summary statistics 
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4.5.1.1 Measures of Location 

The arithmetic mean (or average) is the classical measure of location of a data set. The 
mean is the sum of all the observations divided by the number of observations. It can be very 
sensitive to the magnitude of a small number of extreme points. More often the median is 
preferred for cases with outlying observations. The median is the 50th percentile of the 
ordered values; half the data points are above the median and half are below. The median is 
"resistant" to outlying observations because it is based only on the ranks of the data and not 
on their magnitude. The two statistics can be compared for each compound to help identify 
possible outliers and skewed data. When the data are symmetric, the mean and median will 
be equal. 

4.5.1.2 Measures of Spread 

Measures of spread indicate how much variability is in a data set or distribution. The 
variance is the classical measure of variability. However, the standard deviation, is more 
commonly reported because it has the same units as the original data or variable - it is the 
square root of the variance, which is in squared units. The variance is the average of the 
squared distance of each point from the mean. It is important to note that both of these 
measures of variability are very sensitive to extreme values or outliers. 

Alternative measures of dispersion are available that are less sensitive to outlying data. 
Two examples are the IQR (Section 4.4.1) and the median absolute deviation (MAD). These 
are called "robust" estimates of variability because they are "resistant" to the influence of 
outliers. These statistics would be appropriate to use if outliers were significantly inflating 
the traditional estimates of variability, and this influential effect was not desired. 

The coefficient of variation (CV) is another useful measure of variability. It equals the 
ratio of the standard deviation to the mean of a data set. It is thought of as a "relative" 
standard deviation, because it allows one to compare the variability between data sets. It is 
also sometimes used as a measure of skewnessI4 of a data set that has a lower bound of zero 
(i.e., a data set with no negative values such as chemical concentration data) (Section 4.5.1.3). 
Generally, for these data, a CV value greater than 0.33 indicates that the data are sufficiently 
skewed to affect the estimates of the mean and standard deviation,15 and a CV greater than 1.0 
indicates a highly skewed data set. 

4.5.1.3 Measures of Skewness 

Skewness indicates asymmetry about the center of a data set or statistical distribution. 
The distribution of chemical concentration results is often positively skewed or skewed to the 
right (i.e., a longer right tail). The lognormal distribution is often chosen to model this 
characteristic of the data. 

Similar to the variance, skewness is defined as the average of the cubed deviations from 
the mean. The ratio of this value divided by the standard deviation cubed is called the 
coefficient of skewness and is unitless value ranging from zero to one. 

4-12 



Air Force Technical Report on Methods to 
Section 4 - Principal Methods Quantify Uncertainty in Human Health 
of Probabilistic Analysis Risk Assessment (Draft Final) 

4.5.1.4 Percentiles 

Percentiles, or quantiles, simply represent a percentage of the data set above or below 
some specified point. For example, if one was to calculate a 95th percentile, that value is 
equal to 95 percent of the sample points contained in the data set. As presented above, the 
median is a special case of a percentile or quartile, with half of the sample points above and 
the other below this value. Quartiles (a form of a percentile) represent the 25th, 50th, and 
75th percentiles. 

4.5.1.5 Outliers 

Outliers are individual observations far removed from the pattern set by the majority of 
the data. Outliers are mainly due to gross errors like transcription errors, laboratory mistakes, 
etc., and legitimate extreme observations.16 Outliers are usually influential observations, that 
when excluded from the data set, cause significant changes in summary statistics, confidence 
intervals, and even the outcome of a statistical test. 

A careful evaluation of outlier influence is always warranted. For example, if outliers are 
related to the data analyses (e.g., aberrantly high reporting limits for nondetect results, also 
known as censored data) they can be excluded from the data set. Three main options are 
available to evaluate outliers: (1) allow the outliers to drive the statistical analysis, 
(2) exclude the outliers and allow the remaining data to drive the analysis, or (3) moderate the 
influence of the outliers with the use of specialized statistical methods designed for this 
purpose. Exclusion of outliers that cannot be explained as gross error is not appropriate. 

Specialized methods to evaluate outliers include the "nonparametric" and "robust" 
statistical methods. Nonparametric methods are based on the ranks of the data, not their 
magnitude. Robust methods refer to a family of non-traditional statistical procedures 
specifically designed for censored data. When the proportion of nondetects is equal to or 
greater than 20 percent, robust methods should be considered. There are many robust 
statistical methods available which can be evaluated for applicability to a data set when the 
proportion of nondetects is high. For example, the "bootstrap" method is a robust method 
appropriate for handling nondetects when the proportion is greater than 50 percent. The 
following references provide detailed descriptions on the use of several robust methods: 
Gibbons;12 Gilliom and Helsel;17 Helsel and Gilliom;18 Helsel and Conn;9 and Haas and 
Scheff.19 

4.5.1.6 Sample Size 

Sample size is an important attribute in assessing an environmental data set. As the 
sample size approaches the true population size, sample statistics performed on the data 
become more accurate (i.e., closer to the true population values). As an example, if one was 
to sample 10 percent of the possible surface soils at hazardous waste site for a given 
contaminant and calculate an average concentration, this value would be closer to the absolute 
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(but unknown) true concentration than would be the average calculated from samples 
collected from 5 percent of the possible surface soils. Although not feasible, if one were to 
sample all of the surface soil, the sample statistic would equal the true concentration. 

Likewise, with all else being equal, larger sample sizes yield more "powerful" statistical 
tests. The power of a test refers to its ability to find a statistically significant result when one 
truly exists. The sample size necessary to yield a more powerful result will depend on the 
statistical method and the characteristics of the data set (e.g., variability, percent nondetects). 

4.5.1.7       Nondetect Results 

High percentages of nondetects in environmental sample analyses (also referred to as 
censored data) complicates estimates of summary statistics (e.g., arithmetic mean, median, 
standard deviation, coefficient of variation, etc.) and the characterization of distributions. 
There is considerable controversy regarding the appropriate methods for incorporating 
censored data. Different methods are appropriate depending on the percentage of nondetects, 
the pattern of nondetects in the data distribution, and whether or not multiple laboratory 
reporting limits exist. The issue of how to handle nondetects is complex and beyond the 
scope of this handbook. Risk assessors should work with the appropriate regulatory agency 
and reference documents for guidance.20'21 

4.5.2 Estimators and Population Parameters 

As previously discussed, the analyst does not generally have access to an entire 
population and must rely on a sample to draw inferences about the true but unknown 
population characteristic. This process uses "estimates" of the unknown population parame- 
ters (e.g., mean, standard deviation, etc.) derived from the sample data. Obviously, it is 
important to estimate the "true" value as accurately as possible based on the data available. 
Statistical techniques like confidence intervals (discussed in Section 4.5.3), give an idea of the 
uncertainty in the estimate of the population. 

Statistical theory offers two principal approaches for developing estimates for population 
parameters. They are known as the method of moments and the method of maximum 
likelihood. Their descriptions and uses can be found in many statistics texts.6 Statistical 
estimates for the mean and different percentiles of a distribution and intervals for quantifying 
their uncertainty are discussed below. 

4.5.3 Confidence Intervals 

Confidence intervals are one of the most common types of statistical inference. 
A statistical confidence interval expresses a level of "confidence" in how closely the estimator 
approximates the true unknown population parameter. As an example, suppose a value for the 
true, but unknown population mean of soil arsenic concentrations is desired for input into a 
risk assessment calculation. A set of samples is collected and the average of the data is 6.5 
milligrams per kilogram (mg/kg). The question is asked how accurately 6.5 mg/kg estimates 
the population mean.   A 90-percent confidence interval would provide this information. 
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Suppose this interval was calculated as 3.2 to 9.8 mg/kg. The upper bound of this interval or 
95-percent UCL of 9.8 mg/kg could be selected as a conservative estimate of the true, but 
unknown population mean for arsenic at the site. 

4.5.4 Random Sampling 

Probabilistic sampling techniques are employed to ensure the collected sample has the 
"random" character required by the theory of statistics to draw inferences about the unknown 
population. Each member of the population has a specified (usually equal) probability of 
being sampled. Extreme caution is warranted if biased, non-random sampling results 
(e.g., screening with a photoionization detector (PID), hot-spot searches, etc.) are being used 
for developing input distributions representing the population of site concentrations or the 
average site concentration for input into a probabilistic risk assessment. Justifying this 
approach based on it being "conservative" is not defensible and risk characterizations can be 
invalid and misleading. 

4.5.5 Correlation 

One important aspect of correctly performing a Monte Carlo simulation is correlating the 
input variables when required. Failure to account for this aspect of the model can yield 
misleading results. Correlation is a measure of the strength of the linear association of two 
quantitative variables.22 Correlation often is expressed as a dimensionless value between 
-1 and 1 inclusive, called the correlation coefficient. This concept is addressed again later in 
this section as to how to determine when correlation needs to be explicitly accounted for in 
the simulation. 

4.6  UNCERTAINTY PROPAGATION METHODS 

4.6.1      Monte Carlo and Other Uncertainty Propagation Methods 

A variety of methods exist for quantifying the uncertainty associated with probabilistic 
risk assessments. These methods cover a broad range of complexity. A few of the more 
common approaches are: (1) analytic techniques such as variance propagation models, 
(2) response surface modeling, and (3) differential analysis.23'24,25'26 

This handbook focuses on the appropriate use of Monte Carlo simulation for 
characterizing uncertainty, with emphasis on the exposure assessment step of the risk 
assessment process. Monte Carlo is a primary method of interest because it is considered by 
Agency sources to be more straightforward and easier to use than other probabilistic 
methods.27 The Monte Carlo method also has the advantage of allowing the analyst to 
account for relationships between input variables and of providing the flexibility to investigate 
the effects of different modeling assumptions. In addition, the application of Monte Carlo and 
other probabilistic techniques for human health risk assessments has primarily been limited to 
exposure assessments. Current USEPA policy is not intended to apply to other evaluations 
(e.g., dose-response evaluations) until the application of probabilistic analysis has been further 
studied and refined.28'29 Before dealing with dose-response uncertainties, USEPA questions 
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concerning interspecies and low-dose extrapolation issues will also need to be addressed.27 

However, as previously discussed in Section 3.3.3, this is a field that is currently being 
researched; uncertainty analysis for the dose-response and pharmacokinetic models are being 
performed by experts in the field. 

The Monte Carlo simulation provides a numerical method for performing uncertainty 
analysis through computer simulation. This method is based on empirically estimating the 
uncertainty in the output variable or variables of the model by randomly sampling the 
uncertain input variables and performing deterministic model runs many times. This method 
is performed as follows. One value is randomly sampled from each uncertain input 
distribution and the corresponding risk result is calculated with the algebraic risk equation. 
This process is repeated many times to obtain risk results based on the different input values 
sampled from the input distributions. The end result is a probability distribution for the risk 
results. Statistics can then be calculated from the output risk distribution for making decisions 
that quantitatively account for uncertainty. 

4.6.2      Simulation Techniques 

Monte Carlo allows a direct simulation of the output variable(s) from the developed input 
distributions. The principal advantages of this technique for modeling the propagation of 
uncertainty are (1) its general applicability to models with even the most complex forms, and 
(2) the ease of which confidence intervals and other results can be calculated from the model 
output. Its disadvantages for application to risk assessment include a strong sensitivity to 
assumptions about the input distributions. 

4.6.2.1 Sampling Methods 

The probabilistic distributions developed for the input variables of a Monte Carlo risk 
assessment need to be sampled in some manner to perform each simulation run. Two 
common sampling approaches are called simple random sampling (SRS) and Latin hypercube 
sampling (LHS). A SRS procedure specifies that the probability of sampling a particular 
value is only determined by the shape of the PDF. LHS can be thought of as a stratified SRS 
procedure. It is usually employed when the cost of performing the many simulation runs 
required by SRS is high and a minimal number of simulation runs is desired. It attempts to 
retain the random nature of SRS, but forces equal coverage of each input PDF that might not 
otherwise be achieved with a small number of samplings. LHS divides each input distribution 
into non-overlapping intervals and randomly samples one value from each interval. The 
sampled values from the different input distributions are then randomly paired to form input 
data sets for each simulation run. The Monte Carlo analysis is then completed accordingly. 
One disadvantage of LHS compared to SRS is a greater possibility for inducing undesirable 
pairwise correlations among input variables.23 

4.6.2.2 Computer Simulation 

There are a number of commercially available programs which can perform Monte Carlo 
simulations. Some of the more commonly used include: Crystal Ball®, @RISK, and RiskQ. 
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(Note that this is not intended to provide an endorsement for any particular software package, 
nor is this meant to be a complete listing of all available software.) These software packages 
work in conjunction with standard commercially available spreadsheets such as Microsoft 
Excel or Lotus 1,2,3. The specifics of each software package differ; however, each input 
parameter is generally specified within the spreadsheet. 

The formula relating the input parameters to the output parameter is also specified in the 
spreadsheet. The simulation software then allows distribution types to be specified, including 
those commonly used in risk assessment (e.g., normal, lognormal, triangular, empirical). It is 
possible to run a simulation with a combination of distributions and point estimates as input 
parameters. The simulation software then iteratively runs the specified number of simulations 
to develop the final risk distribution. 

During each simulation run, the software randomly selects a value for each parameter 
based on the distribution specified for that parameter. The selected values are used to 
calculate the output parameter (risk). The level of risk calculated during each run is recorded, 
and all individual outputs are combined to develop the final risk distribution. 

A Monte Carlo simulation will generally consist of several thousand iterations. The 
software also generally provides several additional functions such as sensitivity analysis. It 
should be noted that reliance on functions, such as sensitivity analysis, without an understand- 
ing of specifically how they are calculated and whether the calculation method is appropriate, 
is not recommended. 

4.6.2.3       Inducing Correlation 

One of the most important aspects of correctly setting up a Monte Carlo simulation is 
determining whether or not the input variables are correlated (i.e., interdependent), and if so, 
are the correlations important in the model. If significantly high correlations exist between 
input variables that play a large role in defining the variability of the output, then their 
correlation must be accounted for in the Monte Carlo simulation. Alternatively, if (1) the 
dependency is high, but the output is relatively insensitive to those variables, or (2) the 
variables are important, but the dependencies are small, their correlation can be ignored 
without much effect. The NCRP guide for uncertainty analysis gives some good examples of 
when correlations are important.24 Correlations become more important if the stakeholders 
are interested in values occurring in the extreme tails of the distribution. 

Correlated variables can be identified based on (1) a conceptual understanding of how the 
risk factors interact or (2) the physical scenario from which the uncertain distribution was 
derived. For example, one would expect body weight and body height to be correlated. 
A literature review can provide correlation information for many of the obvious cases. 
Alternatively, correlation can be estimated from empirical data or subjective information. In 
any case, if the correlation between variables can be quantified, a correlation coefficient can 
be used to account for it in the simulation.    This will prevent sampling inappropriate 
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combinations of values from the correlated input distributions - for example, pairing a 
sampled body weight of 250 pounds with a body height of 5 feet in the same simulation run. 

An alternative approach to minimizing errors due to interdependence of input 
distributions is to recognize that many correlated distributions have a strong age-related 
component. Using "age-specific" distribution functions based on different age groups can 
alleviate some of these concerns.4 Specifically, the interdependent variables are linked by age 
group to reduce correlations in the model. This can be extremely important, for example, 
when calculating risk estimates for children. 

4.7      SENSITIVITY ANALYSIS METHODS 

Decisions concerning allocating future resources to reduce lack-of-knowledge should take 
into consideration the most influential input factors in the model and the cost of gaining new 
information about these factors. Sensitivity analysis is used to identify which input factors are 
most important in the model. Input variables are considered important if they contribute 
significantly to the spread of the output risk distribution. 

An input variable is considered to contribute significantly to the output risk distribution if 
it is both highly variable and the variability propagates through the algebraic risk equation to 
the risk result. Sensitivity analysis determines how this input variability propagates to the 
output risk distribution. 

Once sensitivity analysis has identified an input variable as being important, the source of 
its spread or distribution should be determined. If an input variable has a significant 
uncertainty component, further research and/or data collection can be invested to reduce this 
uncertainty. This would, according to sensitivity analysis, reduce the spread of the output risk 
distribution. On the other hand, the output spread cannot be reduced if the sensitive input 
distribution represents inherent variability (e.g., inherent variability in the distribution of body 
weights of American adults cannot be reduced). 

4.7.1      Graphical Techniques 

Simple scatterplots of the simulated risk against the simulated uncertainty parameters 
from the Monte Carlo calculations can be used to qualitatively determine important lack-of- 
knowledge factors. A "tight" scatterplot suggests much influence in the total-risk uncertainty. 
An example scatterplot is shown on the following graph. 
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Scatterplot: Variable 1 and Model Results 
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4.7.2 Regression Techniques 

A statistical technique called multiple regression is a more formal approach to sensitivity 
analysis. Regression using either the simulated values30 or their ranks25 can be used to identify 
influential lack-of-knowledge factors. An index of sensitivity for the contribution of each 
input variable can be developed from multiple regression using the simulated values. This 
index quantifies the increase in the proportion of variability explained from the regression 
model by adding a selected factor to the model when all other factors are already being used. 
Spearman's Rank Correlation Coefficient can be used for the regression models based upon 
ranks. In either of these techniques, caution should be used in interpreting the individual 
contribution for factors that are explicitly correlated in the Monte Carlo simulations. 

4.7.3 Analytic Techniques 

There are several analytic approaches to sensitivity analysis.25 The first approach, 
"differential sensitivity," requires deriving the partial derivatives of the risk function with 
respect to the uncertainty factors. Typically, these partial derivatives can become a 
computation problem in themselves, and hence are usually computationally expensive and/or 
computer code-development intensive. The second approach uses a functional analysis of 
variance decomposition of the total risk variability. That is, the total risk uncertainty is 
decomposed into the sum of individual contributions from each factor, plus the sum of pair- 
wise contributions. In practice, the computation of these individual parts can be expensive. 

Another method of performing a sensitivity analysis is based on the first-order Taylor's 
series expansion of the risk model.   Taylor Series are mathematical expressions used to 
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approximate certain algebraic functions and the associated error of the approximation. This 
"expansion" of the algebraic risk formula is used to decompose the total uncertainty of the 
model output into the contributions from each input variable. Each of these components can 
be approximately decomposed into additive components for each factor, plus pair-wise 
contributions. Rai, Krewski, and Bartlett present a technique that decomposes the model 
output uncertainty into components due to lack-of-knowledge and inherent variability.31 Iman 
and Helton discuss a slightly less sophisticated use of Taylor's series approximations they call 
"differential analysis."23 

4.8 NUMERICAL STABILITY 

Results of the Monte Carlo simulation depend on performing calculations on computer- 
generated random numbers of the specified input distributions. As such, there can be some 
differences in the results strictly due to the computer modeling itself. This "artificial" source 
of uncertainty is referred to as "simulation noise." The effects of this error on the results is 
called numerical stability. Numerical stability is a function of multiple aspects of the 
simulation process including (1) the algebraic structure of the risk model, (2) the distributional 
forms of the input variables, and (3) the number of simulation runs or iterations performed. 
Also, the tails of the output distribution are more unstable than the middle. As such, the upper 
tail is usually evaluated because it is of greatest concern when evaluating risk. 

The nonparametric bootstrap method is appropriate for assessing the numerical stability 
of the output distribution from a simulation.32 Specifically, the nonparametric bootstrap 
method for estimating the root mean square errors (RMSEs) is recommended.33 The RMSE 
combines bias and variability, and is often used as the measure of the "goodness" of an 
estimator. The lower the RMSE, the better. An alternative approach is to calculate bootstrap 
confidence intervals for a particular statistic of interest of the output risk distribution. These 
methods provide a means of selecting or justifying a particular number of iterations to 
perform in the Monte Carlo simulation. 

4.9 COMMUNICATING RESULTS 

As discussed in more detail in Section 6, effective communication is an important step in 
the risk analysis. Graphical presentation of the results is recommended as the primary means 
of communicating simulation results. A review of the ability of graphical plots to 
communicate risk results was performed by Ibrekk and Morgan.34 The study found that semi- 
technical and non-technical persons had significant difficulty discerning the mean risk 
estimate from a graph of all possible risk values output from the simulation. The study 
recommended clearly marking the mean or other important risk values on the graphs. 

The two graphs commonly used to present simulation results are empirical PDFs and 
cumulative distribution functions (CDFs). "Empirical" is used to distinguish PDFs and CDFs 
using real data from those corresponding to theoretical statistical distributions (e.g., normal, 
uniform, etc.). 
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For an empirical CDF (ECDF), the results for each simulation run are ordered from high 
to low and plotted on the x-axis. The probability of each result is equally likely, so the 
cumulative probability of the ordered results is plotted on the y-axis. An example ECDF is 
presented below. The figure shows an ECDF of the simulation results with the median and 
95th percentile marked in bold. 

ECDF of Model Ouptut 
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Model Results 

In addition, the curves should be accompanied by the results of the sensitivity analysis 
described earlier in this section to allow the end-users to make informed decisions. See 
Section 5 for examples of PDFs, CDFs, and sensitivity analysis graphics. 

4.10    SUMMARY 

Statistics provide the Air Force RPM or analyst with a powerful means for assessing 
uncertainty and variability. Although the statistical tools highlighted in this section are not 
without limitations, one can infer much about important risk-related issues (e.g., ingestion 
rates, representative soil concentrations for a given area, etc.) by statistically evaluating 
available sample data. Without statistics, uncertainty and variability in the risk estimation 
could not be quantitatively assessed and the RPM would be limited to making cleanup 
decisions using qualitative evaluations. 
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SECTIONS 

EXAMPLE PROBABILISTIC AND DETERMINISTIC 

RISK CALCULATIONS 

This section presents sample calculations for both a deterministic and probabilistic risk 
estimate using a hypothetical data set. The hypothetical data set includes three contaminants 
frequently detected at Air Force facilities - arsenic, benzene, and vinyl chloride. Each 
contaminant is modeled using both deterministic and probabilistic methods to illustrate the 
two approaches to estimating risk. 

The purpose of this example is to: 

• Demonstrate the use of the two risk estimation methods described by this handbook; 

• Illustrate the resulting outcomes of each to highlight the differences between the 
methods (graphical presentations are included); and 

• Further an understanding of how the use of the outcomes could impact the decision- 
making process. 

Due to the cross-referencing of figures presented in this example, all tables and figures 
are presented at the end of Section 5. To enhance illustration of this approach, an additional 
published example of Monte Carlo simulation-based risk assessment is provided in 
Appendix C of this handbook. (The example was taken from USEPA Region VIII guidance.1) 

It should become apparent that the probabilistic technique using Monte Carlo simulation 
can be a powerful risk tool. It should also be noted, as previously discussed, that a risk-based 
screening comparison and a deterministic analysis are usually performed first (the first two 
levels of a tiered approach), prior to the probabilistic assessment (the third level of a tiered 
approach). The derived single-point value of the deterministic assessment will generally be 
explicitly included on the probabilistic range of risk for comparison. 

A simplified risk assessment calculation is used in this example which includes two 
different exposure scenarios: (1) incidental ingestion of contaminated soil by an adult worker 
(Scenario I); and (2) ingestion of contaminated groundwater by an adult resident (Scenario II). 
Each of these scenarios are used to illustrate how a deterministic point estimate of risk 
compares to the probabilistic distribution of risks. 
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The intake equations used for these two scenarios are presented in Table 5.1 and are tiie 
standard Ingestion algorithms for soil and groundwater recommended by USEPA. Single- 
valued inputs into the equations represent reasonable maximum exposure (RMb) 
assumptions. As previously described, RME assumptions describe the highest exposure and 
dose that is reasonably expected to occur for a site.2-3 This high-end nsk descriptor is 
estimated by combining upper-bound (90th to 95th percentile) values for some but not all of 
the exposure variables. These exposure variables for each scenario reflect those recom- 
mended by USEPA supplemental guidance to RAGS.3'4'5 Variables used for Scenario I are 
representative of a soil Ingestion pathway for a non-intrusive facility worker (e.g., a worker 
who does not perform soil invasive activities), and variables for Scenario II are representative 
of a groundwater Ingestion pathway for a residential adult. The point estimate values and 
distribution parameters used in the calculations are shown in Table 5.2 for Scenario I and 
Table 5 3 for Scenario II.1,6 (Graphical representations of the distribution parameters for 
both the soil and groundwater exposure variables are also presented at the end of this section.) 

5.1      DETERMINISTIC RISK ESTIMATES 

Recognized single-point estimates for specific variables were used as the input 
assumptions to develop a deterministic risk estimate. The exposure-point concentrations for 
each of the chemicals in soil and groundwater were assumed to be the 95-percent UCL on tiie 
sample data arithmetic mean. This is the method currently recommended by USEPA 
guidance for calculating a representative average value for site contamination. 

Results of the deterministic risk calculations are presented in Tables 5.4 and 5.5 for 
Scenario I and in Tables 5.6 and 5.7 for Scenario II. Information is given for both cancer and 
noncancer' effects. Benzene and vinyl chloride are classified as carcinogens and were 
evaluated for carcinogenic risk. Arsenic is capable of producing both carcinogenic and 
noncarcinogenic effects, each of which is evaluated separately. The carcinogenic nsk 
estimate and noncarcinogenic hazard were estimated using the equations as illustrated in 
Table 5 1. The input variables used in the equations, including averaging times, cancer slope 
factors (CSF) for each chemical, and the noncancer reference dose (RfD) (for arsenic), were 
shown in Tables 5.2 and 5.3. 

A carcinogenic risk estimate is derived by developing an estimate of the total dose 
averaged over an entire lifetime multiplied by the CSF (in this case, for soil and groundwater 
ingestion an "oral" CSF). For exposures to multiple carcinogens for a given pathway, nsk is 
calculated for each chemical and then summed to derive the total pathway cancer nsk. Cancer 
risks from multiple exposure pathways are also assumed to be additive, provided the risks are 
summed for the same receptor and period of exposure. Under the USEPA National Oil and 
Hazardous Substances Pollution Contingency Plan (NCP), the target nsk range for 
carcinogenic risk associated with a CERCLA Superfund site is one in ten thousand (1x10 ) to 
one in one million (lxlO"6). Risks are considered acceptable within or below this range and 
unacceptable if above 1x10 .8 
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The potential for an adverse noncarcinogenic effect, known as the hazard quotient (HQ), 
is calculated by dividing the chemical-specific average daily dose (intake) by the chemical- 
specific RfD (specifically, to calculate the ingestion pathway, an "oral" BSD). The hazard 
index (HI) is the sum of the results for all noncarcinogenic chemicals in the pathway (pathway 
HI), or the sum of the chemicals from various exposure pathways, as long as the pathways are 
for the same receptor and period of exposure (total exposure HI). An HI less than 1.0 
indicates a very low threat of adverse health effects, whereas an HQ or HI in excess of 1.0 
indicates that potential noncancer health effects may exist. 

5.1.1 Scenario I Results 

Based on the deterministic point-estimate results for carcinogenic effects (Table 5.4), the 
decision-maker(s) may conclude that some type of risk reduction is required to address the 
arsenic and vinyl chloride in soil. Although the predicted sum total carcinogenic risk estimate 
(2.33E-05) falls within the USEPA CERCLA acceptable risk range of lxlO"4 (1E-04) to 
lxl0"6 (1E-06), the fact that arsenic and vinyl chloride are categorized by USEPA as Class A 
(known human) carcinogens, may prompt a decision to require some level of remedial action. 
At this point, it is suggested that the RPM consider using a tiered approach to determine if 
risk reduction is necessary. The RPM can either accept the cumulative risk estimate or pursue 
the next "tier" by using probabilistic techniques (such as Monte Carlo) to recalculate the risk 
estimate. As illustrated in Table 5.4, Monte Carlo simulation results showed the mean, 90th, 
and 95th percentiles of the output risk distribution to be less than the deterministic point 
estimate. 

As previously discussed, arsenic is the only compound contributing to the 
noncarcinogenic HI. The point estimate for the HI is 0.0636 (see Table 5.5). Further action is 
usually only considered if the HI is above 1.0. Since the deterministic risk estimate (high-end 
point estimate) indicates that there is no noncancer health threat due to the incidental ingestion 
of arsenic in soil, Monte Carlo simulation was not performed. 

5.1.2 Scenario II Results 

Given the results presented in Table 5.6, it is likely that some type of risk reduction 
would be required to address groundwater contamination. Action may be required because 
the predicted summed carcinogenic risk estimate (1.04E-03) exceeds the upper limit of the 
USEPA CERCLA acceptable range of lxlO"4 to lxlO"6. In addition, all three chemicals are 
categorized by USEPA as Class A (known human) carcinogens. When the risk estimate was 
recalculated using a Monte Carlo simulation, the cumulative risk estimate decreased by nearly 
one order of magnitude but still exceeded the upper limit of the acceptable range as defined by 
the USEPA. 

The deterministic point estimate for noncarcinogenic risk (2.37) exceeded 1.0 and may be 
indicative that a noncancer health effect exists for this scenario (Table 5.7). As a result, 
further action may be considered to address noncarcinogenic arsenic in groundwater. At this 
point, before corrective action is taken, the RPM may decide to proceed with the next 
decision-making tier and recalculate the noncarcinogenic risk estimate using probabilistic 
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techniques.   As illustrated in Table 5.7, the Monte Carlo simulation resulted in estimates 
ranging from 0.5 to 2.06. 

5.2      MONTE CARLO SIMULATION 

The Monte Carlo simulation was completed using the same equations as the deterministic 
approach. However, some of the input parameters were defined as PDFs instead of 
single-point values. The sources of these PDFs include site-specific data (hypothetical in this 
example), published information, and professional judgment.9'10 As previously discussed in 
this handbook, PDFs incorporate both variability and uncertainty, which are not reflected in 
the single-point estimates. 

Tables 5.2 and 5.3 describe the PDFs used in this example Monte Carlo simulation. Each 
PDF is listed as a distribution type with an associated mean and standard deviation (e.g., the 
distribution for body weight is given as "Normal (72, 15.9)," indicating that the actual 
distribution of adult body weight is modeled using a normal distribution with a mean of 
72 kilograms (kg) and a standard deviation of 15.9 kg (see Section 4 for additional informa- 
tion about summary statistics and PDFs). 

Output statistics from the Monte Carlo simulations are presented in Tables 5.8 and 5.9. 
Selected summary statistics and percentiles are shown for the risk distribution for each 
chemical. Selected percentiles are also presented in Tables 5.4 through 5.7 for comparison 
purposes. The figures corresponding to each distribution (Figures 5.1 and 5.2 for Scenario I 
and Figures 5.3 through 5.6 for Scenario II) give a better idea of the shape and location of the 
distribution. (These figures are presented at the end of this section.) The figures are labeled 
with the corresponding RME point estimate for comparison purposes. 

5.2.1      Sensitivity Analysis 

Figures 5.1(c) and 5.2(c) present the sensitivity analysis for Scenario I. Based on this 
analysis, the risk estimates for all chemicals are sensitive to two input variables: exposure 
duration and ingestion rate. 

Figures 5.3(c) through 5.6(c) present the sensitivity analysis for Scenario II. Based on 
this analysis, the risk results for all chemicals are sensitive to both exposure duration and 
concentration of the chemical in the media. It should be noted that the sensitivity of a PDF is 
dependent on how the PDFs of input variables are defined and the algorithm used to estimate 
risk. 

The risk estimates for each scenario were calculated using the Monte Carlo simulation 
software program, Crystal Ball® version 4.0. The program can be used to measure the 
sensitivity of the simulation output (i.e., risk) to the input variables by estimating the 
contribution of each input variable to the total variability of the output. This is important in 
determining which input variables have a large effect on the output variable. Sensitivity is 
calculated by computing the rank correlation coefficients between each PDF and the model 
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output while the simulation is running.    Correlation coefficients provide a meaningful 
measure of the degree to which PDFs and model results change together. 

If an input PDF and the model output have a high correlation coefficient, it means that the 
PDF has a significant impact on the model (both through its uncertainty and its model 
sensitivity). A positive coefficient indicates that an increase in the input PDF relates to an 
increase in the model output. A negative coefficient implies the reverse. The greater the 
absolute value of the correlation coefficient, the stronger the relationship. 

Changes to the distribution of a variable with a high sensitivity could have a profound 
impact on the risk estimate, whereas even large changes to the distribution of a low sensitivity 
variable may have minimal impact on the final distribution. This is important when trying to 
decide if gathering additional information for a variable is worthwhile. If the variable has a 
major impact on the final risk distribution (i.e., is sensitive and has a high uncertainty), then 
the additional expense of better defining the variable may be warranted. 

While sensitivity analysis has been specifically studied in this example, a site-specific 
study would also consider other factors such as parameter correlation and numerical stability 
(see Section 4). 

5.3      COMPARISON OF DETERMINISTIC AND PROBABILISTIC RISK 
ESTIMATES 

Deterministic risk assessments use a combination of conservative point estimates and 
average values as inputs into the risk equation. The selection of these values is subjective and 
could vary for identically-scoped risk assessments performed by different professionals for the 
same site. As previously discussed, the deterministic approach generally yields a high-end 
risk estimate which may be unrealistic based on site-specific conditions. This problem is 
illustrated in Scenarios I and II where each point estimate is above 95 percent of its 
corresponding simulated risk distribution. 

On the other hand, the point estimate derived from the deterministic risk assessment 
approach may underestimate risk. It is difficult for the RPM to know if the calculated point 
estimate potentially over- or underestimates risk without performing a quantitative uncertainty 
analysis. Hence, this is one of the main benefits of performing a Monte Carlo-based risk 
analysis. 

5.3.1      Scenario I Comparison 

In Scenario I, the RME point estimates correspond to locations in the risk distributions 
above the 95th percentile. In other words, more than 95 percent of the distribution of risk is 
below the RME point estimate. For both arsenic and benzene, the RME point estimates are 
approximately two times greater than the values corresponding to the 95th percentile of the 
risk distribution. This indicates that the point estimates may overestimate risk associated with 
the site, and the probabilistic risk estimates provide a more realistic description of the risk. 
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5.3.2     Scenario II Comparison 

In Scenario II, the RME point estimates correspond to locations in the risk distributions 
above the 95th percentile. As with Scenario I, the results demonstrate that the vast majority of 
the risk distribution is below the RME point estimate. 

It should be noted that pharmacokinetic factors were not modeled as distributions. The 
CSFs and the RfDs were modeled as point estimates because there is limited information 
concerning inter-individual variability concerning these factors. However, individuals can 
show considerable variation in pharmacokinetics. The incorporation of chemical-specific 
CSF and RfD distributions into the risk calculation, when they become available, could 
significantly affect the output. 

5.4      CONCLUSIONS 

The Monte Carlo simulations provided a range of risk estimates that represent all possible 
risk outcomes and their associated likelihood of occurring Therefore, the final risk 
distribution is likely to bound the true risk at the facility. The range of values produced by 
Monte Carlo analysis provides more information to use in the decision-making process. 
Monte Carlo analysis is a more dynamic tool for the RPM because it does not limit the RPM 
to a single-point risk estimate. Put another way, Monte Carlo analysis allows the RPM to 
make better informed decisions by seeing more of the "risk picture" than if only a single-point 
estimate were used. 

By using the Monte Carlo simulation, it is possible to see that the uncertainty and 
variability which are incorporated into the deterministic risk estimate, but not explicitly 
accounted for, could be causing "unreasonable" and "unlikely" results when compared to the 
distribution of possible outcomes. Use of single-point estimates of risk, therefore, could 
possibly lead to the unnecessary expenditure of funds for remediation at the facility. 

When the acceptable level of risk falls between the middle- and upper-end of the 
"acceptable" risk distribution, the concepts of variability and uncertainty can be important. As 
discussed earlier, variability is due to inherent differences in a population and cannot be 
reduced through collection of more data. Uncertainty, on the other hand, can presumably be 
reduced. In Scenarios I and II presented in this section, variability and uncertainty are mixed 
together in the simulation. For example, the concentration distribution represents the 
uncertainty in the true average concentration of the exposure area from collecting a limited 
number of samples. The body weight distribution, however, came from a large study and is, 
therefore, mostly composed of variability. The spread of the output risk distribution, 
therefore, is a convolution of both of these sources of input variation. 

To better illustrate this, consider the following example. The 95th percentile of the risk 
distribution is compared to a "not-to-exceed" regulatory threshold and is slightly below the 
threshold value. If more data were collected, and a new simulation performed, would the new 
95th percentile be below the regulatory limit?   The answer depends on whether there is 
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"enough" uncertainty in the output risk distribution that would be reduced by including 
additional data. If so, the source of the uncertainty would need to be identified to decide if 
collecting more data is cost effective. In this example, the sources of uncertainty can only be 
identified qualitatively with professional judgment. Alternatively, more sophisticated simula- 
tions could be developed that explicitly model uncertainty and variability separately. More 
information on these types of models, known as "two-stage" simulations, can be found in "A 
Guide for Uncertainty Analysis in Dose and Risk Assessment Related to Environmental 
Contamination."11'12 
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TABLE 5.1 

EQUATIONS USED IN EXPOSURE MODELS 

Intake equation for soil ingestion: 

Intake = IR*FI*EF*ED*CF*Cs 

BW*AT 

Intake equation for groundwater ingestion: 

Intake = *«BF*ED*(*W 

BW*AT 

Calculation of potential carcinogenic risk and noncarcinogenic health effects: 

Risk = Intake * CSF (carcinogenic) 

Hazard Quotient = Intake (noncarcinogenic) 

Where: 

IR   = Ingestion Rate 

FI   = Fraction Ingested 

EF  = Exposure Frequency 

ED = Exposure Duration 

CF = Conversion Factor 

Cs  = Contaminant Concentration in Soil 

BW  = Body Weight 

AT   = Averaging Time 

AT (carcinogens) = 70 years (lifetime) * 365 days/year 
AT (noncarcinogens) = ED x 365 days/year 

Cgw = Contaminant Concentration in Groundwater 

CSF = Carcinogenic Slope Factor 

RfD = Reference Dose 
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TABLE 5.4 
Estimates of Carcinogenic Effects for Scenario I 

Contaminant Point Estimate Mean 90th Percentile 95th Percentile 
Arsenic 1.02E-05 1.14E-06 2.44E-06 4.50E-06 
Benzene 1.97E-07 NA* NA* NA* 
Vinyl Chloride 1.29E-05 1.44E-06 3.10E-06 5.70E-06 
Cancer Risk (ICR): 2.33E-05 2.58E-06 5.54E-06 1.02E-05 

" A Monte Carlo simulation was not performed given the point estimate was less than the USEPA 
criteria of 1E-06. 

TABLE 5.5 
Estimates of Noncarcinogenic Effects for Scenario I 

Contaminant Point Estimate Mean 90th Percentile     95th Percentile 
Arsenic 
Hazard Index (HI): 

6.36E-02 
6.36E-02 

NA* 
NA* 

NA* 
NA* 

NA* 
NA* 

* A Monte Carlo simulation was not performed given the point estimate was less than the USEPA 
criteria of 1. 

TABLE 5.6 
Estimates of Carcinogenic Effects for Scenario II 

Contaminant Point Estimate Mean 90th Percentile 95th Percentile 
Arsenic 4.56E-04 9.72E-05 2.23E-04 3.97E-04 
Benzene 8.82E-06 1.88E-06 4.31 E-06 7.68E-06 
Vinyl Chloride 5.78E-04 1.23E-04 2.82E-04 5.03E-04 
Cancer Risk (ICR): 1.04E-03 2.22E-04 5.09E-04 9.08E-04 

TABLE 5.7 
Estimates of Noncarcinogenic Effects for Scenario II 

Contaminant Point Estimate Mean 90th Percentile     95th Percentile 
Arsenic 
Hazard Index (HI): 

2.37E+00 
2.37E+00 

5.00E-01 
5.00E-01 

1.16E+00 
1.16E+00 

2.06E+00 
2.06E+00 
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TABLE 5.8 
MONTE CARLO SUMMARY STATISTICS FOR SCENARIO I 

Noncarcinogenic Vinyl 
Arsenic Arsenic Benzene Chloride 

Summary Statistics37 

Trials 5000 5000 5000 5000 
Mean NAb/ 1.14E-06 NAb/ 1.44E-06 

Median NAb/ 3.92E-07 NAW 4.97E-07 
Standard Deviation NAb/ 2.95E-06 NAb/ 3.74E-06 

Coeffecient of Variability NAW 2.60E+00 NAb/ 2.60E+00 
Range Minimum NAb/ 1.92E-09 NAb/ 2.43E-09 

Range Maximum NAb/ 8.89E-05 NAb/ 1.13E-04 

Percentiles 

0.0% NAb/ 1.92E-09 NAb/ 2.43E-09 
5.0% NAb' 3.62E-08 NAb/ 4.58E-08 

50.0% NAW 3.92E-07 NAb/ 4.97E-07 
95.0% NAb/ 4.50E-06 NAb/ 5.70E-06 

100.0% NAb' 8.89E-05 NAb/ 1.13E-04 

See discussion in Section 3. 
' A Monte Carlo simulation was not performed given the point estimate was 
less than the USEPA criteria of 1 for noncarcinogens and 1.0E-06 for 
for carcinogens. 

TABLE 5.9 
MONTE CARLO SUMMARY STATISTICS FOR SCENARIO II 

Noncarcinogenic Vinyl 
Arsenic Arsenic Benzene Chloride 

Summary Statistics* 
Trials 5000 5000 5000 5000 
Mean 5.00E-01 9.72E-05 1.88E-06 1.23E-04 

Median 1.70E-01 3.29E-05 6.35E-07 4.16E-05 
Standard Deviation 1.19E+00 2.29E-04 4.43E-06 2.90E-04 

Coeffecient of Variability 2.36E+00 2.36E+00 2.36E+00 2.36E+00 
Range Minimum 0.00E+00 4.39E-09 8.48E-11 5.56E-09 

Range Maximum 2.91 E+01 5.61 E-03 1.08E-04 7.11 E-03 

Percentiles 
0.0% 0.00E+00 4.39E-09 8.48E-11 5.56E-09 
5.0% 1.00E-02 1.61E-06 3.11E-08 2.04E-06 

50.0% 1.70E-01 3.29E-05 6.35E-07 4.16E-05 
95.0% 2.06E+00 3.97E-04 7.68E-06 5.03E-04 

100.0% 2.91 E+01 5.61 E-03 1.08E-04 7.11 E-03 

* See discussion in Section 3. 
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Figure 5.1 PDF, CDF, and Sensitivity Analysis for Carcinogenic Arsenic in Soil 

Figure 5.1a 
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Figure 5.2 PDF, CDF, and Sensitivity Analysis for Vinyl Chloride in Soil 
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Figure 5.3 PDF, CDF, and Sensitivity Analysis for 
Carcinogenic Arsenic in Groundwater 
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Figure 5.4 PDF, CDF, and Sensitivity Analysis for Benzene in Groundwater 
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Figure 5.5 PDF, CDF, and Sensitivity Analysis for Vinyl Chloride in Groundwater 
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Figure 5.6 PDF, CDF, and Sensitivity Analysis for Noncarcinogenic Arsenic in Soil 
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Figure 5.7 Graphical Representation of Distribution Parameters for 
Soil Exposure Variables 
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Figure 5.8 Graphical Representation of Distribution Parameters for 
Groundwater Exposure Variables 
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SECTION 6 

RISK MANAGEMENT 

6.1      INCORPORATING PROBABILISTIC RISK ESTIMATES INTO RISK 
MANAGEMENT DECISIONS 

The previous sections of this handbook have summarized the need for and basic 
approaches to developing risk estimates that quantitatively incorporate both uncertainty and 
variability. This information is critical to the decision-making process for Air Force RPMs 
because it provides: 

• A better understanding of the possible distribution of risks; 

• A means to identify what additional information or action could be taken at a site to 
reduce uncertainty and develop a more realistic picture of the actual risk posed to 
potential receptors; 

• A clearer understanding of when a tiered approach would be selected for a site as the 
risk management situation requires; 

• More relevant information upon which decisions can be based and more cost-effective 
solutions identified; and 

• A means to effectively communicate and justify the decision made to any stakeholder. 

Because an Air Force RPM is responsible for ensuring that work at a site progresses 
according to the priorities and objectives established during scoping and project planning, the 
RPM facilitates interactions between numerous involved parties, including Air Force 
personnel and their subcontractors, appropriate state and federal regulators, and the public. 
Air Force RPMs routinely act as a filter between the various stakeholders. 

Air Force RPMs or other health professionals, such as the Bioenvironmental Engineer, 
may be required to explain what is known and unknown about human health risks at a 
particular site to different types of audiences. The purpose of doing probabilistic risk 
assessments is to provide more information about the nature of the risk estimate. Armed with 
the results of a probabilistic risk assessment, an Air Force RPM may be better equipped to 
demonstrate that the decision of choice was appropriate, and based on good science. This 
information can be used to more effectively communicate the scientific and policy basis for 
remedial decisions to different audiences. 

6-1 



Air Force Technical Report on Methods to 
Section 6 Quantify Uncertainty in Human Health 
Risk Management Risk Assessment (Draft Final) 

In particular, probabilistic risk assessments can provide valuable input into the remedial 
decision-making process in a number of areas. For example, this methodology is useful in 
baseline risk assessments, ASTM Tier 3 evaluations,1 comparative remedial alternatives 
evaluations, risk communication, and revision of Record of Decisions (RODs). 

This final section of the handbook is not intended to exhaustively explain how risk 
information can be incorporated into the decision process. Rather, this section has been 
included to highlight how best to incorporate probabilistic risk assessments into different 
stages of the remedial planning process. 

6.2  EARLY PLANNING AND SCOPING 

Project scoping is the initial phase of the remedial planning process. Scoping activities 
typically begin with the collection of existing site characterization data, including any data 
from previous investigations. On the basis of this information, site management planning is 
undertaken to identify: 

• Boundaries of the study area; 

• Possible regulatory requirements and remedial action objectives; 

• Need for any immediate interim action; and 

• Other site management strategy concerns (e.g., address site as a single area or as 
several subsites). 

Once an overall management strategy has been approved, specific plans for appropriate 
remedial planning documents are developed. This level of scoping activity can involve: 

• Determining the types of decisions to be made and identifying the data and other 
information needed or desired to support those decisions; 

• Assembling a technical advisory committee or closure team to assist in the review of 
initial project strategy through final remedial recommendations and implementation; 
and 

• Preparation of technical scopes of work (SOWs) and any applicable workplans to 
guide data collection and analysis activities. 

Understanding the basic data and analysis requirements of a probabilistic risk assessment 
is key to developing clear SOWs and early workplans for regulatory review and approval. As 
part of the early planning process, an Air Force RPM needs to define how uncertainty will be 
factored into the risk estimation step. As noted in previous sections of this handbook, a 
quantitative uncertainty analysis is not always warranted or recommended. However, if an 
Air Force RPM plans to potentially incorporate uncertainty into the risk management process 
at a specific site, a quantitative uncertainty analysis should be scoped as part of the risk 
estimation step of the project. 
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This scoping effort will have to take into account the existing regulatory perspectives on 
uncertainty analysis in risk assessments. Air Force RPMs are encouraged to openly discuss 
the need for and technical requirements of a quantitative uncertainty analysis or probabilistic 
risk assessment with all involved parties prior to even establishing the types of decisions to be 
made at a particular site. As described in Section 2, the results of a probabilistic risk 
assessment are not likely to be relied upon as stand-alone documents by decision-makers. 
Such information is currently primarily used to supplement deterministic risk estimates. 
Consequently, probabilistic risk estimates may be of the greatest use to Air Force RPMs in 
those cases where deterministic risk estimates have or may prompt costly "across-the-board" 
solutions. This supplemental information could provide the scientific and technical 
cornerstone for dialogues on how to cost-effectively manage risk. 

When planning to include probabilistic risk estimates in the remedial decision process, an 
Air Force RPM needs to: 

• Identify the measure of acceptable risk for a site (e.g., when the cost of regulatory or 
remedial action is expected to be high and the potential health risk is expected to be 
marginal); 

• Specify the component variables of the risk measure that will be included in the 
analysis (e.g., exposure assessment step only); 

• Identify acceptable sources of information to account for variability and uncertainty 
(e.g., USEPA references, expert judgment); 

• Determine how uncertainty will be assessed (e.g., Monte Carlo simulation); and 

• Define how the results will be included in the technical report, briefing materials, and 
the decision-making process. 

These elements should be clearly discussed in early site strategy development meetings 
and referenced in any SOW written to solicit technical support to develop probabilistic risk 
estimates. 

It should also be noted that an Air Force RPM will need to carefully balance the costs 
associated with obtaining credible information to complete a quantitative uncertainty analysis 
with the costs of not having such information (i.e., the cost of not being able to account for 
uncertainty and variability in the risk estimate). As this handbook illustrates, uncertainty in 
risk estimates is rarely caused wholly or even in large part by a single factor. Consequently, 
efficient allocation of resources among different uncertainty reductions becomes crucial. In a 
real sense, the RPM acts as a risk manager even in the early stages by determining the value 
of information. 

6.3      OBTAINING EARLY CONSENSUS 

Securing early consensus from all involved parties may also play a significant role in how 
well probabilistic risk estimates can be incorporated into the decision process at a specific site. 
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The RPM should point out that the goal of this type of supplemental information is to provide 
better information on the state of knowledge about potential risks than that which is 
traditionally provided by deterministic risk estimates. 

In order for such information to be meaningfully incorporated into the decision process, 
however, an Air Force RPM should strive to facilitate a common understanding among 
involved parties about the objectives and goals of such information. All involved parties 
should be encouraged to bring their interests and concerns to the group for consideration 
throughout the decision process. Reaching early consensus facilitates group acceptance and 
approval of how best to use this information to make better informed decisions. 

The following general issues should be considered as starting points for establishing 
group consensus: 

• Identify goals and objectives of probabilistic risk estimates, with special emphasis on 
the potential technical, political, social, and economic ramifications of basing a 
decision on such information; 

• Define the level of complexity of the effort, specifically in terms of increasing data 
analysis and review requirements and public communication requirements; 

• Develop the data analysis approach, including the statistical methodology and the 
intended use of the results; and 

• Determine how the data collection program may need to be amended to meet 
established project objectives and the requirements of the data analysis approach(s). 

6.4      PRESENTING RESULTS TO VARIOUS AUDIENCES 

Throughout the remedial decision process, an Air Force RPM acts as a liaison between 
technical analysts, regulators, and the public. Once probabilistic risk estimates have been 
developed, an Air Force RPM must decide how best to communicate a range of possible risk 
estimates from the already confusing activity of communicating summary information about 
deterministic risk estimates. There is more to risk communication than simply conveying 
information about potential harm. RPMs are typically required to direct dialogue about the: 

• Type and associated probability of potential risks; 

• Degree of voluntariness of the risk; 

• Costs and feasibility of mitigating potential risks; and 

• State of knowledge and confidence in predictions about risk. 

With a probabilistic risk assessment, an Air Force RPM is better able to explain the state 
of knowledge and, therefore, to include information about the trade-offs that may be 
acceptable to different parties. For example, probabilistic risk estimates summarize the 
likelihood of certain risks occurring at a site.  With this information, the group can jointly 
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debate and decide if the likelihood of unacceptable risk justifies implementation of certain 
costly remedies. Additionally, these data can add to the credibility of the presentation of risk 
information. The uncertainty analysis may not change the final decision, but it can increase 
the confidence that all involved parties have in making any particular decision. 

There are various verbal, mathematical, and pictorial methods available to communicate 
the results of a quantitative uncertainty analysis. The scope of the uncertainty analysis will 
drive the verbal and mathematical methods used in summarizing risk information. However, 
the best pictorial method for depicting uncertainty analysis results is the same regardless of 
the scope of the analysis.2 To facilitate discussions about both variability and probability, the 
PDF should be plotted directly above the CDF on the same horizontal scale to facilitate 
comparisons (see Figures 5.1 through 5.6 in Section 5). The mean of the distribution should 
be clearly indicated on both plots. Ideally, the following information could be included on or 
associated with these graphs: 

Description of the shape of the distribution; 

Median; 

Mean; 

Mode of the distribution; 

Value of the 5th and 95th percentile; 

Percentile location of the mean; and 

Estimate of the standard deviation or the CV. 

Once these pictorial descriptions have been prepared to support discussions, an Air Force 
RPM should follow the basic four-step iterative process for communicating risk information:3 

• Facilitate open-ended elicitation of people's beliefs about risk, allowing expression of 
both accurate and inaccurate concepts (i.e., first allow them to discuss their concerns 
about the proposed action or inaction); 

• Develop structured questionnaires designed to determine the prevalence of these 
beliefs and current level of knowledge (e.g., ask specifically what they would do to 
address those concerns, with emphasis on state of knowledge about risk and cost); 

• Refine approach to describing "pictorial" results based on what people need to know 
to make an informed decision and an assessment of their current beliefs (e.g., revisit 
the graphs to emphasize the results in terms of their concerns); and 

• Summarize important information using both open-ended and closed form deliveries 
(e.g., ask for feedback on how they would use such information to make an informed 
decision). 
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6.5      CONCLUSION 

The basic requirements for incorporating quantitative uncertainty analysis into human 
health risk assessments have been provided in this handbook. This type of analysis would be 
selected for a site as part of a tiered approach that progresses, as the risk management situa- 
tion requires, from a simpler to a more quantitative evaluation. The probabilistic analysis is 
presented as the highest tier of such an approach. 

This handbook provides an overview of the use of probabilistic methods to estimate 
potential risks and a base for directing Air Force RPMs to additional resources for further 
information. Additional references for more detailed guidance or technical direction are 
provided as an attachment in Appendix A. 
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1 American Society for Testing and Materials. 1995. Standard Guide for Risk-Based 
Corrective Action Applied at Petroleum Release Sites. Annual book of ASTM Standards. 
E1739-95. 

2 Finkel, A.M. 1990. Confronting Uncertainty in Risk Management: A Guide for 
Decision-Makers. Center for Risk Management, Resources for the Future, Washington, 
DC. 

3 Morgan, M. Granger, Fishhoff, Baruch, Bostrom, Ann, Lave, Lester, and Atman, Cynthia 
J. 1992. Communicating Risk to the Public. Risk Analysis. 26(ll):2048-2056. 
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GLOSSARY 

ABSORBED DOSE 

ACCEPTABLE DAILY 
INTAKE (ADI) 

The amount of a substance penetrating the exchange 
boundaries of an organism after contact. Absorbed dose is 
calculated from the intake and the absorption efficiency. It 
usually is expressed as mass of a substance absorbed into the 
body per unit body weight per time (e.g., mg/kg-day). 

The daily intake of chemical which, during a lifetime, appears 
to be without appreciable risk. An estimate similar in concept 
to the RfD, but derived using a less strictly defined 
methodology. RfDs have replaced ADIs as the Agency's 
preferred values for use in evaluating potential 
noncarcinogenic health effects resulting from exposure to a 
chemical. 

ACCEPTABLE INTAKE FOR 
CHRONIC EXPOSURE (AIC) 

ACCEPTABLE INTAKE FOR 
SUBCHRONIC EXPOSURE 
(AIS) 

ADMINISTERED DOSE 

BAYESIAN APPROACH 

BETA DISTRIBUTION 

An estimate similar in concept to the RfD, but derived using a 
less strictly defined methodology. Chronic RfDs have 
replaced AICs as the Agency's preferred values for use in 
evaluating potential noncarcinogenic health effects resulting 
from chronic exposure to a chemical. 

An estimate similar in concept to the subchronic RfD, but 
derived using a less strictly defined methodology. Subchronic 
RfDs have replaced AISs as the Agency's preferred values for 
use in evaluating potential noncarcinogenic health effects 
resulting from subchronic exposure to a chemical. 

The mass of substance given to an organism and in contact 
with an exchange boundary (e.g., gastrointestinal tract) per 
unit body weight per unit time (e.g., mg/kg-day). 

The Bayesian or subjective view is that the probability of an 
event is the degree of belief that a person has, given some state 
of knowledge, that the event will occur. 

A flexible, bounded PDF described by two shape parameters. 
It is commonly used when a range of the random variable is 
known. 

BOXPLOT Graphical representation showing the center and spread of a 
distribution, along with a display of outliers. 
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C-TERM Concentration term used in risk calculations. Per USEPA 
guidance, this is the 95-percent UCL of the mean sample 
concentrations. 

CANCER SLOPE FACTOR 

CARCINOGENESIS 

A plausible upper-bound estimate of the probability of a 
response per unit intake of a chemical over a lifetime. The 
slope factor is used to estimate an upper-bound probability of 
an individual developing cancer as a result of a lifetime of 
exposure to a particular level of a potential carcinogen. 

The production of cancer. 

CENTRAL LIMIT THEOREM 

CHRONIC DAILY INTAKE 
(CDI) 

CHRONIC REFERENCE 
DOSE (RfD) 

COEFFICIENT OF 
VARIATION 

For a relatively large sample size, the random variable x (the 
mean of the samples) is normally distributed, regardless of the 
population's distribution. 

Exposure expressed as mass of a substance contacted per unit 
body weight per unit time, averaged over a long period of time 
(as a Superfund program guideline, 7 years to a lifetime). 

An estimate (with uncertainty spanning perhaps an order of 
magnitude or greater) of an exposure level for the human 
population, including sensitive subpopulations, that is likely to 
be without an appreciable risk of deleterious effects during a 
lifetime. Chronic RfDs are specifically developed to be 
protective for long-term exposure to a compound (as a 
Superfund program guideline, 7 years to lifetime). 

Estimate of relative standard deviation. Equals the standard 
deviation divided by the mean. 

CONFIDENCE INTERVAL 

CONTACT RATE 

CORRELATION 

The range within which one has a given level of confidence 
that the range includes the true value of the unknown 
parameter (e.g. a 95-percent confidence interval for a parame- 
ter means that 95 percent of the time the true value of that 
parameter will be within the interval). 

The amount of a substance given to an organism, especially 
through dermal contact. 

Simultaneous increase or decrease in value of two numerically 
valued random variables. 
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CUMULATIVE 
DISTRIBUTION 
FUNCTION (CDF) 

DATA COLLECTION 
(FOR RISK ASSESSMENT) 

DATA QUALITY 
OBJECTIVES (DQOS) 

DENSITY PLOT 

A cumulative distribution function (CDF) is a commonly used 
function to mathematically describe a random variable. The 
CDF gives the cumulative probability of all outcomes of the 
random variable at or below a specific value. 

Component of the risk assessment process entailing 
identification of chemicals of potential concern, through 
evaluation of historic uses and potential release/disposal of 
chemicals, and data collection and evaluation. 

Qualitative and quantitative statements to ensure that data of 
known and documented quality are obtained during an RI/FS 
to support an Agency decision. 

An empirical estimate of the PDF from sample data. 

DETECTION LIMIT (DL) 

DETERMINISTIC 
APPROACH 

The lowest amount that can be distinguished from the normal 
"noise" of an analytical instrument or method. Often used 
synonymously for "quantitation limit" or the lowest concentra- 
tion that can be routinely quantified under specified limits of 
precision and accuracy. 

An approach which uses single values for each variable to 
estimate the risk. 

DISTRD3UTION The pattern of variation of a random variable. 

DOSE-RESPONSE 
EVALUATION 

The process of quantitatively evaluating toxicity information 
and characterizing the relationship between the dose of a 
contaminant administered or received and the incidence of 
adverse health effects in the exposed population. From the 
quantitative dose-response relationship, toxicity values are 
derived that are used in the risk characterization step to 
estimate the likelihood of adverse effects occurring in humans 
at different exposure levels. 

B-3 



Glossary 

Air Force Technical Report on Methods to 
Quantify Uncertainty in Human Health 
 Risk Assessment (Draft Final) 

DOUBLE LOOP APPROACH 

EXPERT 

EXPERT JUDGMENT 

EXPOSURE 

EXPOSURE ASSESSMENT 

An application of stochastic analyses where both variability 
and uncertainty are being represented with probability 
distributions. In such analyses, uncertainty and variability 
distributions for input variables are applied to characterize the 
distribution of variability in the population and to estimate 
uncertainty bounds for this distribution. It is "double loop" in 
the sense that in computer programs for stochastic analysis, the 
values of the uncertain parameters are selected first in the 
"outer loop" of the code and then the "inner loop" of code 
treats these values as fixed quantities and generates an estimate 
of the population distribution under these. The population 
statistics corresponding to multiple "outer loop" parameter 
values are then compiled to represent uncertainty in the 
estimates of the population distribution conditions (i.e., 
variability calculations are "nested" within uncertainty 
calculations). 

Someone who (l)has training and experience in the subject 
area resulting in extensive knowledge of the field, (2) has 
access to relevant information, (3) has an ability to process and 
effectively use the information, and (4) is recognized by his or 
her peers or those conducting the study as qualified to provide 
judgments about assumptions, models, and model parameters 
at the level of detail required 

A qualitative or quantitative inference or evaluation based on 
an assessment of data, assumptions, criteria, models and 
parameters in response to questions posed in the expert's area 
of expertise. 

Contact of an organism with a chemical or physical agent. 
Exposure is quantified as the amount of the agent available at 
the exchange boundaries of the organism (e.g., skin, lungs, 
gut) and available for absorption. 

The determination or estimation (qualitative or quantitative) of 
the magnitude, frequency, duration, and route of exposure. A 
process that integrates information on chemical releases, 
environmental measurements, human behavior, and human 
physiology to estimate the exposure levels of doses of 
chemicals received by humans. 
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EXPOSURE EVENT 

EXPOSURE PATHWAY 

An incident of contact with a chemical or physical agent. An 
exposure event can be defined by time (e.g., day, hour) or by 
the incident (e.g., eating a single meal of contaminated fish). 

The course a chemical or physical agent takes from a source to 
an exposed organism. An exposure pathway describes a 
unique mechanism by which an individual or population is 
exposed to chemicals or physical agents at or originating from 
a site. Each exposure pathway includes a source or release for 
a source, an exposure point, and an exposure route. If the 
exposure point differs from the source, a transport/exposure 
medium (e.g., air) or media (in cases of intermedia transfer) 
also is included. 

EXPOSURE POINT 

EXPOSURE ROUTE 

EXTRAPOLATE 

GOODNESS-OF-FIT TEST 

HAZARD IDENTIFICATION 

HAZARD INDEX (HI) 

HAZARD QUOTEENT 

A location of potential contact between an organism and a 
chemical or physical agent. 

The way a chemical or physical agent comes in contact with an 
organism (i.e., by ingestion, inhalation, dermal contact). 

To make use of a regression line or other model outside the 
range of the data to which the model is fitted. 

A formal way to verify that the chosen distribution is 
consistent with the sample data. 

The process of determining whether exposure to an agent can 
cause an increase in the incidence of a particular adverse 
health effect (e.g., cancer, birth defect) and whether the 
adverse health effect is likely to occur in humans. 

The sum of more than one hazard quotient for multiple 
substances and/or multiple exposure pathways. The HI is 
calculated separately for chronic, subchronic, and shorter- 
duration exposures. 

The ratio of a single substance exposure level over a specified 
time period (e.g., subchronic) to a reference dose for that sub- 
stance derived from a similar exposure period. 
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HEALTHY WORKER 
EFFECT 

HISTOGRAM 

Potential bias introduced when applying information gathered 
in industrial settings to the general population. The bias is 
based in the fact that the working population is generally 
healthier than the general population. Most often this is 
encountered in epidemiological studies. 

A plot of the range of values of a variable into intervals and 
displays only the count of the observations that fall into each 
interval. 

INTAKE 

INTERQUARTILE RANGE 

(IQR) 

A measure of exposure expressed as the mass of a substance in 
contact with the exchange boundary per unit body weight per 
unit time (e.g., mg chemical/kg-day). Also, termed the 
normalized exposure rate; equivalent to administered dose. 

Difference between the third quartile (75th percentile) and the 
first quartile (25th percentile). 

KRIGING 

LATIN HYPERCUBE 
SAMPLING (LHS) 

A statistical interpolation method that chooses the best linear 
unbiased estimate for the variable in question. 

A technique that uses random sampling within equal intervals 
of the distribution. 

LIFETIME AVERAGE 
DAILY INTAKE 

Exposure expressed as mass of a substance contacted per unit 
body weight per unit time, averaged over a lifetime. 

LOGNORMAL 
DISTRIBUTION 

MAXIMUM 

MEAN 

A frequency distribution for a set of variable data where the 
log values are normally distributed (data are transformed using 
Y = lnX). 

Highest value that a parameter can have. 

The sum of all the observations divided by the number of 
observations. 

MEASUREMENT ERROR 

MEDIAN 

Error   introduced  through   imperfections   in   measurement 
techniques or equipment. 

That value above which and below which half the population 
lies. 

MINIMUM The minimum is the smallest value of a data set or process. 

B-6 



Glossary 

Air Force Technical Report on Methods to 
Quantify Uncertainty in Human Health 
 Risk Assessment (Draft Final) 

MODEL UNCERTAINTY 

MONTE CARLO 
SIMULATION 
(MONTE CARLO ANALYSIS) 

NONDETECTS 

NONPARAMETRIC 
APPROACH 

NORMAL DISTRIBUTION 

PARAMETER 

PARAMETRIC APPROACH 

PERCENTH.ES 

Uncertainty created through the use of a mathematical model 
to represent physical processes or phenomenon. 

A method of calculating the probability of an event using 
values randomly selected from sets of data, repeating the 
process many times and deriving the probability from the 
distributions of the aggregated data. 

Chemicals that are not detected in a particular sample above a 
certain limit, usually the quantitation limit for the chemical in 
that sample. 

One that does not depend for its validity upon the data being 
drawn from a specific distribution, such as the normal or 
lognormal. A distribution-free technique. 

A frequency distribution for a set of variable data represented 
by a bell-shaped curve symmetrical about the mean. 

The constants and independent variables which define a 
mathematical equation or model. 

A method of probabilistic analysis in which defined analytic 
probability distributions are used to represent the random 
variables, and mathematical techniques (e.g., calculus) are 
used to get the resultant distribution for a function of these 
random variables. 

The value that exceeds X percent of the observations. 

PHARMACOKINETICS/ 
TOXICOKINETICS 

The study and modeling of the disposition of chemicals in the 
body. The principle purpose of pharmacokinetic modeling is 
to predict the concentration of chemical at the target site and 
describe the relationship between exposed dose and target 
dose. 

POPULATION 

POSITIVE DATA 

PROBABILISTIC 
APPROACH 

The total collection of observations that is of interest. 

Analytical   results   for   which   measurable   concentrations 
(i.e., above a quantitation limit) are reported. 

An approach which uses a group of possible values for each 
variable to estimate risk. 
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PROBABILITY DENSITY 
FUNCTION (PDF) 

Distribution of values for a random variable, each value having 
a specific probability of occurrence. 

QUANTILE-QUANTDLE 
(Q-Q) PLOT 

QUANTITATION LIMIT (QL) 

RANDOM ERROR 

The Q-Q plot portrays the quantiles (percentiles divided by 
100) of the sample data against the quantiles of another data 
set or theoretical distribution (e.g., normal distribution). By 
comparing the data to a theoretical distribution with a straight 
line, departures from the distribution are more easily 
perceived. 

The lowest level at which a chemical can be accurately and 
reproducibly quantitated. Usually equal to the instrument 
detection limit multiplied by a factor of three to five, but varies 
for different chemicals and different samples. 

Error caused by making inferences from a limited database. 

REASONABLE MAXIMUM        The highest exposure that is reasonably expected to occur at a 
EXPOSURE (RME) particular site. 

RECEPTOR 

REGRESSION ANALYSIS 

RISK 

The person, whether real or theoretical, that is exposed to a 
chemical. 

Derivation of an equation which can be used to estimate the 
unknown value of one variable on the basis of the known value 
of the other variable. 

The likelihood of injury, disease, or death. 

RISK ASSESSMENT The objective process by which scientific data are analyzed to 
describe the form, dimension, and characteristics of risk. 

RISK CHARACTERIZATION    Component   of   the   risk   assessment   process   entailing 
summarization and interpretation of information gathered in 
previous steps (data evaluation, exposure assessment, toxicity 
assessment). 

RISK MANAGEMENT 

SCATTERPLOT 

The process by which regulatory decisions are made using all 
available information (including, but not limited to, the results 
and recommendations of the risk assessment). 

Diagram that plots each data point as a distinct point on the 
plot. 
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SENSITIVITY ANALYSIS 

SIMPLE RANDOM 
SAMPLING (SRS) 

An analysis that attempts to provide a ranking of the model's 
input parameters with respect to their contribution to model 
output variability or uncertainty. 

Sampling procedure by which each possible sample is equally 
likely to be the one selected. 

SKEWNESS The measure of asymmetry of a frequency distribution of data. 

STANDARD DEVIATION (s) 

SLOPE FACTOR (SF) 

STOCHASTIC 

A measure of dispersion which is expressed in the same units 
as the measurements. The positive square root of the variance. 

A plausible upper-bound estimate of the probability of a 
response per unit intake of a chemical over a lifetime. The 
slope factor is used to estimate an upper-bound probability of 
an individual developing cancer as a result of a lifetime of 
exposure to a particular level of a potential carcinogen. 

Term referring to a process involving a random variable. 

SUBCHRONIC DADLY 
INTAKE (SDI) 

SURROGATE 

SYSTEMIC ERROR (BIAS) 

TOXICITY ASSESSMENT 

TOXICITY VALUE 

Exposure expressed as mass of a substance contacted per unit 
body weight per unit time, averaged over a portion of a 
lifetime (as a Superfund program guideline, 2 weeks to 7 
years). 

A variable or parameter that is used to model the variable one 
actually needs to measure. Usually the surrogate variable is 
one which can be more easily measured than the variable it is 
replacing. 

Non-random error introduced through flaws in the data 
gathering process. 

Component of the Risk Assessment process entailing an 
extensive review of the adverse (known or suspected) effects 
associated with exposure to a specific chemical, and the dose 
required to induce the effect. 

A numerical expression of a substance's dose-response 
relationship that is used in risk assessments. The most 
common toxicity values used in Superfund program risk 
assessments are reference doses (for noncarcinogenic effects) 
and slope factors (for carcinogenic effects). 
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TRIANGULAR 
DISTRIBUTION 

UNCERTAINTY 

Distribution with a triangular shape. It is characterized by its 
minimum, maximum and mode (most likely) values. It is 
often used to represent a truncated log-normal or normal 
distribution if the there is little information available on the 
parameter being modeled. 

Arising from lack of complete information about contaminant 
levels and exposure factors that may be reducible through 
further measurements. 

UNCERTAINTY ANALYSIS       See Monte Carl° analysis. 

UPPER CONFIDENCE 
LIMIT (UCL) 

VARIABLE 

An upper confidence limit (UCL) is an upper bound on an 
unknown statistical parameter with a specified probability. 
This expression describes the outcome of any one sample. For 
example, the 95 percent UCL on the mean, computed from a 
sample of data, is the value at which the true (but unknown) 
mean is less than with 95 percent confidence. 

A quantity capable of assuming any of a set of values. 

VARIABILITY Represents true heterogeneity in contaminant levels and 
human exposure factors and cannot be reduced by additional 
data collection. 

WEIGHT-OF-EVD3ENCE 
CLASSIFICATION 

An USEPA classification system for characterizing the extent 
to which the available data indicate that an agent is a human 
carcinogen. Recently, USEPA has developed weight-of- 
evidence classification systems for some other kinds of toxic 
effects, such as developmental effects. 
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POLICY FOR USE OF PROBABILISTIC 
ANALYSIS IN RISK ASSESSMENT 

at the U.S. Environmental Protection Agency 

May 15,1997 

Guiding Principles for Monte Carlo Analysis (EPA/630/R-97/001) 

INTRODUCTION 
The importance of adequately characterizing variability and uncertainty in risk assessments has been 
emphasized in several science and policy documents. These include the 1992 U.S. Environmental 
Protection Agency (EPA) Exposure Assessment Guidelines, the 1992 EPA Risk Assessment Council 
(RAC) Guidance, the 1995 EPA Policy for Risk Characterization, the EPA Proposed Guidelines for 
Ecological Risk Assessment, the EPA Region 3 Technical Guidance Manual on Risk Assessment, the 
EPA Region 8 Superfund Technical Guidance, the 1994 National Academy of Sciences "Science and 
Judgment in Risk Assessment," and the report by the Commission on Risk Assessment and Risk 
Management. As part of the implementation of the recommendations contained in these reports, the 
Agency is issuing guidance on the appropriate use of an application for analyzing variability and 
uncertainty in Agency risk assessments. 

This policy and the guiding principles attached are designed to support the use of various techniques for 
characterizing variability and uncertainty. Further, the policy defines a set of Conditions for Acceptance. 
These conditions are important for ensuring good scientific practice in quantifying uncertainty and 
variability. In accordance with EPA's 1995 Policy for Risk Characterization, this policy also emphasizes 
the importance of clarity, transparency, reasonableness, and consistency in risk assessments. 

There are a variety of different methods for characterizing uncertainty and variability. These methods 
cover a broad range of complexity from the simple comparison of discrete points to probabilistic 
techniques like Monte Carlo analysis. Recently, interest in using Monte Carlo analysis for risk 
assessment has increased. This method has the advantage of allowing the analyst to account for 
relationships between input variables and of providing the flexibility to investigate the effects of 
different modeling assumptions. Experience has shown that to benefit fully from the advantages of such 
probabilistic techniques as Monte Carlo analysis, certain standards of practice are to be observed. The 
Agency is issuing, therefore, this policy statement and associated guiding principles. While Monte Carlo 
analysis is the most frequently encountered probabilistic tool for analyzing variability and uncertainty in 
risk assessments, the intent of this policy is not to indicate that Monte Carlo analysis is the only 
acceptable approach for Agency risk assessments. The spirit of this policy and the Conditions for 
Acceptance described herein are equally applicable to other methods for analyzing variability and 
uncertainty. 

POLICY STATEMENT 
It is the policy of the U.S. Environmental Protection Agency that such probabilistic analysis techniques 
as Monte Carlo analysis, given adequate supporting data and credible assumptions, can be viable 
statistical tools for analyzing variability and uncertainty in risk assessments. As such, and provided that 



statistical tools for analyzing variability and uncertainty in risk assessments. As such, and provided that 
the conditions described below are met, risk assessments using Monte Carlo analysis or other 
probabilistic techniques will be evaluated and utilized in a manner that is consistent with other risk 
assessments submitted to the Agency for review or consideration. It is not the intent of this policy to 
recommend that probabilistic analysis be conducted for all risk assessments supporting risk management 
decisions. Such analysis should be a part of a tiered approach to risk assessment that progresses from 
simpler (e.g., deterministic) to more complex (e.g., probabilistic) analyses as the risk management 
situation requires. Use of Monte Carlo or other such techniques in risk assessments shall not be cause, 
per se, for rejection of the risk assessment by the Agency. For human health risk assessments, the 
application of Monte Carlo and other probabilistic techniques has been limited to exposure assessments 
in the majority of cases. The current policy, Conditions for Acceptance and associated guiding principles 
are not intended to apply to dose response evaluations for human health risk assessment until this 
application of probabilistic analysis has been studied further. In the case of ecological risk assessment, 
however, this policy applies to all aspects including Stressor and dose-response assessment. 

CONDITIONS FOR ACCEPTANCE 
When risk assessments using probabilistic analysis techniques (including Monte Carlo analysis) are 
submitted to the Agency for review and evaluation, the following conditions are to be satisfied to ensure 
high quality science. These conditions, related to the good scientific practices of transparency, 
reproducibility, and the use of sound methods, are summarized here and explained more fully in the 
Attachment, "Guiding Principles for Monte Carlo Analysis." 

1. The purpose and scope of the assessment should be clearly articulated in a "problem formulation" 
section that includes a full discussion of any highly exposed or highly susceptible subpopulations 
evaluated (e.g., children, the elderly). The questions the assessment attempts to answer are to be 
discussed and the assessment endpoints are to be well defined. 

2. The methods used for the analysis (including all models used, all data upon which the assessment 
is based, and all assumptions that have a significant impact upon the results) are to be documented 
and easily located in the report. This documentation is to include a discussion of the degree to 
which the data used are representative of the population under study. Also, this documentation is 
to include the names of the models and software used to generate the analysis. Sufficient 
information is to be provided to allow the results of the analysis to be independently reproduced. 

3. The results of sensitivity analyses are to be presented and discussed in the report. Probabilistic 
techniques should be applied to the compounds, pathways, and factors of importance to the 
assessment, as determined by sensitivity analyses or other basic requirements of the assessment. 

4. The presence or absence of moderate to strong correlations or dependencies between the input 
variables is to be discussed and accounted for in the analysis, along with the effects these have on 
the output distribution. 

5. Information for each input and output distribution is to be provided in the report. This includes 
tabular and graphical representations of the distributions (e.g., probability density function and 
cumulative distribution function plots) that indicate the location of any point estimates of interest 
(e.g., mean, median, 95th percentile). The selection of distributions is to be explained and 
justified. For both the input and output distributions, variability and uncertainty are to be 
differentiated where possible. 

6. The numerical stability of the central tendency and the higher end (i.e., tail) of the output 
distributions are to be presented and discussed. 

7. Calculations of exposures and risks using deterministic (e.g., point estimate) methods are to be 
reported if possible. Providing these values will allow comparisons between the probabilistic 
analysis and past or screening level risk assessments. Further, deterministic estimates may be used 
to answer scenario specific questions and to facilitate risk communication. When comparisons are 
made, it is important to explain the similarities and differences in the underlying data, 
assumptions, and models. 

8. Since fixed exposure assumptions (e.g., exposure duration, body weight) are sometimes embedded 
in the toxicity metrics (e.g., Reference Doses, Reference Concentrations, unit cancer risk factors), 
the exposure estimates from the probabilistic output distribution are to be aligned with the toxicity 
metric. 



LEGAL EFFECT 
This policy and associated guidance on probabilistic analysis techniques do not establish or affect legal 
rights or obligations. Rather, they confirm the Agency position that probabilistic techniques can be 
viable statistical tools for analyzing variability and uncertainty in some risk assessments. Further, they 
outline relevant Conditions for Acceptance and identify factors Agency staff should consider in 
implementing the policy. 

The policy and associated guidance do not stand alone; nor do they establish a binding norm that is 
finally determinative of the issues addressed. Except where otherwise provided by law, the Agency's 
decision on conducting a risk assessment in any particular case is within the Agency's discretion. 
Variations in the application of the policy and associated guidance, therefore, are not a legitimate basis 
for delaying action on Agency decisions. 

IMPLEMENTATION 
Assistant Aclministrators and Regional Administrators are responsible for implementation of this policy 
within their organizational units. The implementation strategy is divided into immediate and follow-up 
activities. 

Immediate Activities 
To assist EPA program and regional offices with this implementation, initial guidance on the use of one 
probabilistic analysis tool, Monte Carlo analysis, is provided in the Attachment, "Guiding Principles for 
Monte Carlo Analysis" (EPA/630/R-97/001). The focus of this guidance is on Monte Carlo analysis 
because it is the most frequently encountered technique in human health risk assessments. Additional 
information may be found in the "Summary Report for the Workshop on Monte Carlo Analysis" 
(EPA/63 O/R-96/010). This report summarizes discussions held during the May 1996 Risk Assessment 
Forum sponsored workshop that involved leading experts in Monte Carlo analysis. 

Follow-Up Activities 
To prepare for the use and evaluation of probabilistic analysis methods, including Monte Carlo analysis, 
within the next year, EPA's Risk Assessment Forum (RAF) will develop illustrative case studies for use 
as guidance and training tools. Further, the RAF will organize workshops or colloquia to facilitate the 
development of distributions for selected exposure factors. EPA's National Center for Environmental 
Assessment (NCEA) will develop an Agency training course on probabilistic analysis methods, 
including Monte Carlo analysis for both risk assessors and risk managers which will become available 
during Fiscal Year (FY) 1997 or FY 1998. Also, NCEA will develop detailed technical guidance for the 
quantitative analysis of variability and uncertainty. 

In the longer term, various Regions, Programs and the Office of Research and Development (ORD) may 
need to modify existing or develop new guidelines or models to facilitate use of such techniques as 
Monte Carlo analysis. Also, the NCEA will revise or update the Exposure Factors Handbook to include 
distributional information. ORD's National Exposure Research Laboratory 

(NERL) has formed a modeling group that may provide assessment and analysis advice to Program and 
Regional Offices. The issue of using probabilistic techniques, including Monte Carlo analysis in the 
dose response portion of human health risk assessments requires further study. NCEA will conduct 
research in this area and additional guidance will be provided if necessary. 

Fred Hansen 

Deputy Administrator 
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PREFACE 

The U.S. Environmental Protection Agency (EPA) Risk Assessment Forum was 

established to promote scientific consensus on risk assessment issues and to ensure that this 

consensus is incorporated into appropriate risk assessment guidance. To accomplish this, the Risk 

Assessment Forum assembles experts throughout EPA in a formal process to study and report on 

these issues from an Agency-wide perspective. For major risk assessment activities, the Risk 

Assessment Forum has established Technical Panels to conduct scientific reviews and analyses. 

Members are chosen to assure that necessary technical expertise is available. 

This report is part of a continuing effort to develop guidance covering the use of 

probabilistic techniques in Agency risk assessments. This report draws heavily on the 

recommendations from a May 1996 workshop organized by the Risk Assessment Forum that 

convened experts and practitioners in the use of Monte Carlo analysis, internal as well as external 

to EPA, to discuss the issues and advance the development of guiding principles concerning how 

to prepare or review an assessment based on use of Monte Carlo analysis. The conclusions and 

recommendations that emerged from these discussions are summarized in the report "Summary 

Report for the Workshop on Monte Carlo Analysis" (EPA/630/R-96/010). Subsequent to the 

workshop, the Risk Assessment Forum organized a Technical Panel to consider the workshop 

recommendations and to develop an initial set of principles to guide Agency risk assessors in the 

use of probabilistic analysis tools including Monte Carlo analysis. It is anticipated that there will 

be need for further expansion and revision of these guiding principles as Agency risk assessors 

gain experience in their application. 

IV 



Introduction 
The importance of adequately characterizing variability and uncertainty in fate, transport, 

exposure, and dose-response assessments for human health and ecological risk assessments has 

been emphasized in several U.S. Environmental Protection Agency (EPA) documents and 

activities. These include: 

• the 1986 Risk Assessment Guidelines; 

• the 1992 Risk Assessment Council (RAC) Guidance (the Habicht memorandum); 

• the 1992 Exposure Assessment Guidelines; and 

• the 1995 Policy for Risk Characterization (the Browner memorandum). 

As a follow up to these activities EPA is issuing this policy and preliminary guidance on 

using probabilistic analysis. The policy documents the EPA's position "that such probabilistic 

analysis techniques as Monte Carlo analysis, given adequate supporting data and credible 

assumptions, can be viable statistical tools for analyzing variability and uncertainty in risk 

assessments." The policy establishes conditions that are to be satisfied by risk assessments that 

use probabilistic techniques. These conditions relate to the good scientific practices of clarity, 

consistency, transparency, reproducibility, and the use of sound methods. 

The EPA policy lists the following conditions for an acceptable risk assessment that uses 

probabilistic analysis techniques. These conditions were derived from principles that are 

presented later in this document and its Appendix. Therefore, after each condition, the relevant 

principles are noted. 

1. The purpose and scope of the assessment should be clearly articulated in a "problem 

formulation" section that includes a full discussion of any highly exposed or highly 

susceptible subpopulations evaluated (e.g., children, the elderly, etc.). The questions 

the assessment attempts to answer are to be discussed and the assessment endpoints 

are to be well defined. 

2.  The methods used for the analysis (including all models used, all data upon which the 

assessment is based, and all assumptions that have a significant impact upon the 

results) are to be documented and easily located in the report. This documentation is 



to include a discussion of the degree to which the data used are representative of the 

population under study. Also, this documentation is to include the names of the 

models and software used to generate the analysis. Sufficient information is to be 

provided to allow the results of the analysis to be independently reproduced. 

(Principles 4, 5,6, and 11) 

3. The results of sensitivity analyses are to be presented and discussed in the report. 

Probabilistic techniques should be applied to the compounds, pathways, and factors of 

importance to the assessment, as determined by sensitivity analyses or other basic 

requirements of the assessment. (Principles 1 and 2) 

4. The presence or absence of moderate to strong correlations or dependencies between 

the input variables is to be discussed and accounted for in the analysis, along with the 

effects these have on the output distribution. (Principles 1 and 14) 

5. Information for each input and output distribution is to be provided in the report. This 

includes tabular and graphical representations of the distributions (e.g., probability 

density function and cumulative distribution function plots) that indicate the location 

of any point estimates of interest (e.g., mean, median, 95th percentile). The selection 

of distributions is to be explained and justified. For both the input and output 

distributions, variability and uncertainty are to be differentiated where possible. 

(Principles 3,7, 8,10,12, and 13) 

6. The numerical stability of the central tendency and the higher end (i.e., tail) of the 

output distributions are to be presented and discussed. (Principle 9) 

7. Calculations of exposures and risks using deterministic (e.g., point estimate) methods 

are to be reported if possible. Providing these values will allow comparisons between 

the probabilistic analysis and past or screening level risk assessments. Further, 

deterministic estimates may be used to answer scenario specific questions and to 

facilitate risk communication. When comparisons are made, it is important to explain 

the similarities and differences in the underlying data, assumptions, and models. 

(Principle 15). 



8.   Since fixed exposure assumptions (e.g., exposure duration, body weight) are 

sometimes embedded in the toxicity metrics (e.g., Reference Doses, Reference 

Concentrations, unit cancer risk factors), the exposure estimates from the probabilistic 

output distribution are to be aligned with the toxicity metric. 

The following sections present a general framework and broad set of principles important 

for ensuring good scientific practices in the use of Monte Carlo analysis (a frequently encountered 

tool for evaluating uncertainty and variability). Many of the principles apply generally to the 

various techniques for conducting quantitative analyses of variability and uncertainty; however, 

the focus of the following principles is on Monte Carlo analysis. EPA recognizes that quantitative 

risk assessment methods and quantitative variability and uncertainty analysis are undergoing rapid 

development. These guiding principles are intended to serve as a minimum set of principles and 

are not intended to constrain or prevent the use of new or innovative improvements where 

scientifically defensible. 

Fundamental Goals and Challenges 
In the context of this policy, the basic goal of a Monte Carlo analysis is to chatacterize, 

quantitatively, the uncertainty and variability in estimates of exposure or risk. A secondary goal is 

to identify key sources of variability and uncertainty and to quantify the relative contribution of 

these sources to the overall variance and range of model results. 

Consistent with EPA principles and policies, an analysis of variability and uncertainty 

should provide its audience with clear and concise information on the variability in individual 

exposures and risks; it should provide information on population risk (extent of harm in the 

exposed population); it should provide information on the distribution of exposures and risks to 

highly exposed or highly susceptible populations; it should describe qualitatively and 

quantitatively the scientific uncertainty in the models applied, the data utilized, and the specific 

risk estimates that are used. 

Ultimately, the most important aspect of a quantitative variability and uncertainly analysis 

may well be the process of interaction between the risk assessor, risk manager and other 

interested parties that makes risk assessment into a dynamic rather than a static process. 

Questions for the risk assessor and risk manager to consider at the initiation of a quantitative 

variability and uncertainty analysis include: 



• Will the quantitative analysis of uncertainty and variability improve the risk 
assessment? 

• What are the major sources of variability and uncertainty? How will variability 
and uncertainty be kept separate in the analysis? 

• Are there time and resources to complete a complex analysis? 

• Does the project warrant this level of effort? 

• Will a quantitative estimate of uncertainty improve the decision? How will the 
regulatory decision be affected by this variability and uncertainty analysis? 

• What types of skills and experience are needed to perform the analysis? 

• Have the weaknesses and strengths of the methods been evaluated? 

• How will the variability and uncertainty analysis be communicated to the public 
and decision makers? 

One of the most important challenges facing the risk assessor is to communicate, 

effectively, the insights an analysis of variability and uncertainty provides. It is important for the 

risk assessor to remember that insights will generally be qualitative in nature even though the 

models they derive from are quantitative. Insights can include: 

• An appreciation of the overall degree of variability and uncertainty and the 
confidence that can be placed in the analysis and its findings. 

• An understanding of the key sources of variability and key sources of uncertainty 
and their impacts on the analysis. 

• An understanding of the critical assumptions and their importance to the analysis 
andfindings. 

• An understanding of the unimportant assumptions and why they are unimportant. 

• An understanding of the extent to which plausible alternative assumptions or 
models could affect any conclusions. 

• An understanding of key scientific controversies related to the assessment and a 
sense of what difference they might make regarding the conclusions. 



The risk assessor should strive to present quantitative results in a manner that will clearly 

communicate the information they contain. 

When a Monte Carlo Analysis Might Add Value to a 
Quantitative Risk Assessment 

Not every assessment requires or warrants a quantitative characterization of variability and 

uncertainty. For example, it may be unnecessary to perform a Monte Carlo analysis when 

screening calculations show exposures or risks to be clearly below levels of concern (and the 

screening technique is known to significantly over-estimate exposure). As another example, it 

may be unnecessary to perform a Monte Carlo analysis when the costs of remediation are low. 

On the other hand, there may be a number of situations in which a Monte Carlo analysis 

may be useful. For example, a Monte Carlo analysis may be useful when screening calculations 

using conservative point estimates fall above the levels of concern. Other situations could include 

when it is necessary to disclose the degree of bias associated with point estimates of exposure; 

when it is necessary to rank exposures, exposure pathways, sites or contaminants; when the cost 

of regulatory or remedial action is high and the exposures are marginal; or when the consequences 

of simplistic exposure estimates are unacceptable. 

Often, a "tiered approach" may be helpful in deciding whether or not a Monte Carlo 

analysis can add value to the assessment and decision. In a tiered approach, one begins with a 

fairly simple screening level model and progresses to more sophisticated and realistic (and usually 

more complex) models only as warranted by the findings and value added to the decision. 

Throughout each of the steps in a tiered approach, soliciting input from each of the interested 

parties is recommended. Ultimately, whether or not a Monte Carlo analysis should be conducted 

is a matter of judgment, based on consideration of the intended use, the importance of the 

exposure assessment and the value and insights it provides to the risk assessor, risk manager, and 

other affected individuals or groups. 



Key Terms and Their Definitions 
The following section presents definitions for a number of key terms which are used 

throughout this document. 

Bayesian 

The Bayesian or subjective view is that the probability of an event is the degree of belief 

that a person has, given some state of knowledge, that the event will occur. In the classical or 

frequentist view, the probability of an event is the frequency with which an event occurs given a 

long sequence of identical and independent trials. In exposure assessment situations, directly 

representative and complete data sets are rarely available; inferences in these situations are 

inherently subjective. The decision as to the appropriateness of either approach (Bayesian or 

Classical) is based on the available data and the extent of subjectivity deemed appropriate. 

Correlation, Correlation Analysis 

Correlation analysis is an investigation of the measure of statistical association among 

random variables based on samples. Widely used measures include the linear correlation 

coefficient (also called Has product-moment correlation coefficient or Pearson's correlation 

coefficient), and such non-parametric measures as Spearman rank-order correlation coefficient, 

and Kendall's tau. When the data are nonlinear, non-parametric correlation is generally 

considered to be more robust than linear correlation. 

Cumulative Distribution Function (CDF) 

The CDF is alternatively referred to in the literature as the distribution function, 

cumulative frequency function, or the cumulative probability function. The cumulative 

distribution function, F(x), expresses the probability the random variable X assumes a value less 

than or equal to some value x, F(x) = Prob (X <> x). For continuous random variables, the 

cumulative distribution function is obtained from the probability density function by integration, or 

by summation in the case of discrete random variables. 

Latin Hypercube Sampling 

In Monte Carlo analysis, one of two sampling schemes are generally employed: simple 

random sampling or Latin Hypercube sampling. Latin hypercube sampling may be viewed as a 

stratified sampling scheme designed to ensure that the upper or lower ends of the distributions 



used in the analysis are well represented. Latin hypercube sampling is considered to be more 

efficient than simple random sampling, that is, it requires fewer simulations to produce the same 

level of precision. Latin hypercube sampling is generally recommended over simple random 

sampling when the model is complex or when time and resource constraints are an issue. 

Monte Carlo Analysis, Monte Carlo Simulation 

Monte Carlo Analysis is a computer-based method of analysis developed in the 1940's that 

uses statistical sampling techniques in obtaining a probabilistic approximation to the solution of a 

mathematical equation or model. 

Parameter 

Two distinct, but often confusing, definitions for parameter are used. In the first usage 

(preferred), parameter refers to the constants characterizing the probability density function or 

cumulative distribution function of a random variable. For example, if the random variable W is 

known to be normally distributed with mean u and standard deviation o, the characterizing 

constants u and a are called parameters. In the second usage, parameter is defined as the 

constants and independent variables which define a mathematical equation or model. For 

example, in the equation Z = aX + ßY, the independent variables (X,Y) and the constants (a,ß) 

are all parameters. 

Probability Density Function (PDF) 

The PDF is alternatively referred to in the literature as the probability function or the 

frequency function. For continuous random variables, that is, the random variables which can 

assume any value within some defined range (either finite or infinite), the probability density 

function expresses the probability that the random variable falls within some very small interval. 

For discrete random variables, that is, random variables which can only assume certain isolated or 

fixed values, the term probability mass function (PMF) is preferred over the term probability 

density function.  PMF expresses the probability that the random variable takes on a specific 

value. 

Random Variable 

A random variable is a quantity which can take on any number of values but whose exact 

value cannot be known before a direct observation is made. For example, the outcome of the toss 



of a pair of dice is a random variable, as is the height or weight of a person selected at random 

from the New York City phone book. 

Representativeness 

Representativeness is the degree to which a sample is characteristic of the population for 

which the samples are being used to make inferences. 

Sensitivity, Sensitivity Analysis 

Sensitivity generally refers to the variation in output of a mathematical model with respect 

to changes in the values of the model's input. A sensitivity analysis attempts to provide a ranking 

of the model's input assumptions with respect to their contribution to model output variability or 

uncertainty. The difficulty of a sensitivity analysis increases when the underlying model is 

nonlinear, nonmonotonic or when the input parameters range over several orders of magnitude. 

Many measures of sensitivity have been proposed. For example, the partial rank correlation 

coefficient and standardized rank regression coefficient have been found to be useful. Scatter 

plots of the output against each of the model inputs can be a very effective tool for identifying 

sensitivities, especially when the relationships are nonlinear. For simple models or for screening 

purposes, the sensitivity index can be helpful. 

In a broader sense, sensitivity can refer to how conclusions may change if models, data, or 

assessment assumptions are changed. 

Simulation 

In the context of Monte Carlo analysis, simulation is the process of approximating the 

output of a model through repetitive random application of a model's algorithm. 



Uncertainty 

Uncertainty refers to lack of knowledge about specific factors, parameters, or models. 

For example, we may be uncertain about the mean concentration of a specific pollutant at a 

contaminated site or we may be uncertain about a specific measure of uptake (e.g., 95th percentile 

fish consumption rate among all adult males in the United States). Uncertainty includes parameter 

uncertainty (measurement errors, sampling errors, systematic errors), model uncertainty 

(uncertainty due to necessary simplification of real-world processes, mis-specification of the 

model structure, model misuse, use of inappropriate surrogate variables), and scenario 

uncertainty (descriptive errors, aggregation errors, errors in professional judgment, incomplete 

analysis). 

Variability 

Variability refers to observed differences attributable to true heterogeneity or diversity in a 

population or exposure parameter. Sources of variability are the result of natural random 

processes and stem from environmental, lifestyle, and genetic differences among humans. 

Examples include human physiological variation (e.g., natural variation in body weight, height, 

breathing rates, drinking water intake rates), weather variability, variation in soil types and 

differences in contaminant concentrations in the environment. Variability is usually not reducible 

by further measurement or study (but can be better characterized). 

Preliminary Issues and Considerations 
Defining the Assessment Questions 

The critical first step in any exposure assessment is to develop a clear and unambiguous 

statement of the purpose and scope of the assessment. A clear understanding of the purpose will 

help to define and bound the analysis. Generally, the exposure assessment should be made as 

simple as possible while still including all important sources of risk. Finding the optimum match 

between the sophistication of the analysis and the assessment problem may be best achieved using 

a "tiered approach" to the analysis, that is, starting as simply as possible and sequentially 

employing increasingly sophisticated analyses, but only as warranted by the value added to the 

analysis and decision process. 



Selection and Development of 
the Conceptual and 
Mathematical Models 

To help identify and select plausible 

models, the risk assessor should develop 

selection criteria tailored to each assessment 

question. The application of these criteria 

may dictate that different models be used for 

different subpopulations under study (e.g., 

highly exposed individuals vs. the general 

population). In developing these criteria, the 

risk assessor should consider all significant 

assumptions, be explicit about the 

uncertainties, including technical and 

scientific uncertainties about specific 

quantities, modeling uncertainties, 

uncertainties about functional forms, and 

should identify significant scientific issues about which there is uncertainty. 

At any step in the analysis, the risk assessor should be aware of the manner in which 

alternative selections might influence the conclusions reached. 

Selection and Evaluation of Available Data 
After the assessment questions have been defined and conceptual models have been 

developed, it is necessary to compile and evaluate existing data (e.g., site specific or surrogate 

data) on variables important to the assessment. It is important to evaluate data quality and the 

extent to which the data are representative of the population under study. 

Some Considerations in the Selection of Models 

. appropriateness of the model's assumptions vis-ä-vis 
the analysis objectives 

. compatibility of the model input/output and linkages to 
other models used in the analysis 

. the theoretical basis for the model 

. level of aggregation, spatial and temporal scales 

. resolution limits 

. sensitivity to input variability and input uncertainty 

. reliability of the model and code, including peer review 
of the theory and computer code 

. verification studies, relevant field tests 

. degree of acceptance by the user community 

. friendliness, speed and accuracy 

. staff and computer resources required 
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Guiding Principles for Monte Carlo Analysis 
This section presents a discussion of principles of good practice for Monte Carlo 

simulation as it may be applied to environmental assessments. It is not intended to serve as 

detailed technical guidance on how to conduct or evaluate an analysis of variability and 

uncertainty. 

Selecting Input Data and Distributions for Use in Monte Carlo 

Analysis 
1.   Conduct preliminary sensitivity analyses or numerical experiments to identify model 

structures, exposure pathways, and model input assumptions and parameters that make 

important contributions to the assessment endpoint and its overall variability and/or 

uncertainty. 

The capabilities of current desktop computers allow for a number of "what if scenarios to 

be examined to provide insight into the effects on the analysis of selecting a particular model, 

including or excluding specific exposure pathways, and making certain assumptions with respect 

to model input parameters. The output of an analysis may be sensitive to the structure of the 

exposure model. Alternative plausible models should be examined to determine if structural 

differences have important effects on the output distribution (in both the region of central 

tendency and in the tails). 

Numerical experiments or sensitivity analysis also should be used to identify exposure 

pathways that contribute significantly to or even dominate total exposure. Resources might be 

saved by excluding unimportant exposure pathways (e.g., those that do not contribute appreciably 

to the total exposure) from full probabilistic analyses or from further analyses altogether. For 

important pathways, the model input parameters that contribute the most to overall variability and 

uncertainty should be identified. Again, unimportant parameters may be excluded from full 

probabilistic treatment. For important parameters, empirical distributions or parametric 

distributions may be used. Once again, numerical experiments should be conducted to determine 

the sensitivity of the output to different assumptions with respect to the distributional forms of 

the input parameters. Identifying important pathways and parameters where assumptions about 

distributional form contribute significantly to overall uncertainty may aid in focusing data 

gathering efforts. 
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Dependencies or correlations between model parameters also may have a significant 

influence on the outcome of the analysis. The sensitivity of the analysis to various assumptions 

about known or suspected dependencies should be examined. Those dependencies or correlations 

identified as having a significant effect must be accounted for in later analyses. 

Conducting a systematic sensitivity study may not be a trivial undertaking, involving 

significant effort on the part of the risk assessor. Risk assessors should exercise great care not to 

prematurely or unjustifiably eliminate pathways or parameters from full probabilistic treatment. 

Any parameter or pathway eliminated from full probabilistic treatment should be identified and the 

reasons for its elimination thoroughly discussed. 

2. Restrict the use of probabilistic assessment to significant pathways and parameters. 

Although specifying distributions for all or most variables in a Monte Carlo analysis is 

useful for exploring and characterizing the full range of variability and uncertainty, it is often 

unnecessary and not cost effective. If a systematic preliminary sensitivity analysis (that includes 

examining the effects of various assumptions about distributions) was undertaken and 

documented, and exposure pathways and parameters that contribute little to the assessment 

endpoint and its overall uncertainty and variability were identified, the risk assessor may simplify 

the Monte Carlo analysis by focusing on those pathways and parameters identified as significant. 

From a computational standpoint, a Monte Carlo analysis can include a mix of point estimates and 

distributions for the input parameters to the exposure model. However, the risk assessor and risk 

manager should continually review the basis for "fixing" certain parameters as point values to 

avoid the perception that these are indeed constants that are not subject to change. 

3. Use data to inform the choice of input distributions for model parameters . 

The choice of input distribution should always be based on all information (both 

qualitative and quantitative) available for a parameter. In selecting a distributional form, the risk 

assessor should consider the quality of the information in the database and ask a series of 

questions including (but not limited to): 

• Is there any mechanistic basis for choosing a distributional family? 

• Is the shape of the distribution likely to be dictated by physical or biological 
properties or other mechanisms? 

• Is the variable discrete or continuous? 
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• What are the bounds of the variable? 

• Is the distribution skewed or symmetric? 

• If the distribution is thought to be skewed, in which direction? 

• What other aspects of the shape of the distribution are known! 

When data for an important parameter are limited, it may be useful to define plausible 

alternative scenarios to incorporate some information on the impact ofthat variable in the overall 

assessment (as done in the sensitivity analysis). In doing this, the risk assessor should select the 

widest distributional family consistent with the state of knowledge and should, for important 

parameters, test the sensitivity of the findings and conclusions to changes in distributional shape. 

4. Surrogate data can be used to develop distributions when they can be appropriately 
justified. 

The risk assessor should always seek representative data of the highest quality available. 

However, the question of how representative the available data are is often a serious issue. Many 

times, the available data do not represent conditions (e.g., temporal and spatial scales) in the 

population being assessed. The assessor should identify and evaluate the factors that introduce 

uncertainty into the assessment. In particular, attention should be given to potential biases that 

may exist in surrogate data and their implications for the representativeness of the fitted 

distributions. 

When alternative surrogate data sets are available, care must be taken when selecting or 

combining sets. The risk assessor should use accepted statistical practices and techniques when 

combining data, consulting with the appropriate experts as needed. 

Whenever possible, collect site or case specific data (even in limited quantities) to help 

justify the use of the distribution based on surrogate data. The use of surrogate data to develop 

distributions can be made more defensible when case-specific data are obtained to check the 

reasonableness of the distribution. 

5. When obtaining empirical data to develop input distributions for exposure model 

parameters, the basic tenets of environmental sampling should be followed. Further, 
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particular attention should be given to the quality of information at the tails of the 

distribution. 

As a general rule, the development of data for use in distributions should be carried out 

using the basic principles employed for exposure assessments. For example, 

• Receptor-based sampling in which data are obtained on the receptor or on the 
exposure fields relative to the receptor; 

• Sampling at appropriate spatial or temporal scales using an appropriate 
stratified random sampling methodology; 

• Using two-stage sampling to determine and evaluate the degree of error, 
statistical power, and subsequent sampling needs; and 

• Establishing data quality objectives. 

In addition, the quality of information at the tails of input distributions often is not as good 

as the central values. The assessor should pay particular attention to this issue when devising data 

collection strategies. 

6.  Depending on the objectives of the assessment, expert1 judgment can be included either 

within the computational analysis by developing distributions using various methods or 

by using judgments to select and separately analyze alternate, but plausible, scenarios. 

When expert judgment is employed, the analyst should be very explicit about its use. 

Expert judgment is used, to some extent, throughout all exposure assessments. However, 

debatable issues arise when applying expert opinions to input distributions for Monte Carlo 

analyses. Using expert judgment to derive a distribution for an input parameter can reflect bounds 

on the state of knowledge and provide insights into the overall uncertainty. This may be 

particularly useful during the sensitivity analysis to help identify important variables for which 

additional data may be needed. However, distributions based exclusively or primarily on expert 

judgment reflect the opinion of individuals or groups and, therefore, may be subject to 

considerable bias. Further, without explicit documentation of the use of expert opinions, the 

1 According to NCRP (1996), an expert has (1) training and experience in the subject area resulting in 
superior knowledge in the field, (2) access to relevant information, (3) an ability to process and effectively use the 
information, and (4) is recognized by his or her peers or those conducting the study as qualified to provide judgments 
about assumptions, models, and model parameters at the level of detail required. 
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distributions based on these judgments might be erroneously viewed as equivalent to those based 

on hard data. When distributions based on expert judgement have an appreciable effect on the 

outcome of an analysis, it is critical to highlight this in the uncertainty characterization. 

Evaluating Variability and Uncertainty 
7. The concepts of variability and uncertainty are distinct. They can be tracked and 

evaluated separately during an analysis, or they can be analyzed within the same 

computational framework. Separating variability and uncertainty is necessary to 

provide greater accountability and transparency. The decision about how to track 

them separately must be made on a case-by-case basis for each variable. 

Variability represents the true heterogeneity or diversity inherent in a well-characterized 

population. As such, it is not reducible through further study. Uncertainty represents a lack of 

knowledge about the population. It is sometimes reducible through further study. Therefore, 

separating variability and uncertainly during the analysis is necessary to identify parameters for 

which additional data are needed. There can be uncertainty about the variability within a 

population. For example, if only a subset of the population is measured or if the population is 

otherwise under-sampled, the resulting measure of variability may differ from the true population 

variability. This situation may also indicate the need for additional data collection. 

8. There are methodological differences regarding how variability and uncertainty are 

addressed in a Monte Carlo analysis. 

There are formal approaches for distinguishing between and evaluating variability and 

uncertainty. When deciding on methods for evaluating variability and uncertainty, the assessor 

should consider the following issues. 

• Variability depends on the averaging time, averaging space, or other dimensions 
in which the data are aggregated. 

• Standard data analysis tends to understate uncertainty by focusing solely on 
random error within a data set. Conversely, standard data analysis tends to 
overstate variability by implicitly including measurement errors. 

• Various types of model errors can represent important sources of uncertainty. 
Alternative conceptual or mathematical models are a potentially important source 
of uncertainty. A major threat to the accuracy of a variability analysis is a lack of 
representativeness of the data. 
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9. Methods should investigate the numerical stability of the moments and the tails of the 

distributions. 

For the purposes of these principles, numerical stability refers to observed numerical 

changes in the characteristics (i.e., mean, variance, percentiles) of the Monte Carlo simulation 

output distribution as the number of simulations increases. Depending on the algebraic structure 

of the model and the exact distributional forms used to characterize the input parameters, some 

outputs will stabilize quickly, that is, the output mean and variance tend to reach more or less 

constant values after relatively few sampling iterations and exhibit only relatively minor 

fluctuations as the number of simulations increases. On the other hand, some model outputs may 

take longer to stabilize. The risk assessor should take care to be aware of these behaviors. Risk 

assessors should always use more simulations than they think necessary. Ideally, Monte Carlo 

simulations should be repeated using several non-overlapping subsequences to check for stability 

and repeatability. Random number seeds should always be recorded. In cases where the tails of 

the output distribution do not stabilize, the assessor should consider the quality of information in 

the tails of the input distributions. Typically, the analyst has the least information about the input 

tails. This suggest two points. 

• Data gathering efforts should be structured to provide adequate coverage at the 
tails of the input distributions. 

• The assessment should include a narrative and qualitative discussion of the 
quality of information at the tails of the input distributions. 

10. There are limits to the assessor's ability to account for and characterize all sources of 

uncertainty. The analyst should identify areas of uncertainty and include them in the 

analysis, either quantitatively or qualitatively. 

Accounting for the important sources of uncertainty should be a key objective in Monte 

Carlo analysis. However, it is not possible to characterize all the uncertainties associated with the 

models and data. The analyst should attempt to identify the full range of types of uncertainty 

impinging on an analysis and clearly disclose what set of uncertainties the analysis attempts to 

represent and what it does not. Qualitative evaluations of uncertainty including relative ranking of 

the sources of uncertainty may be an acceptable approach to uncertainty evaluation, especially 

when objective quantitative measures are not available. Bayesian methods may sometimes be 
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useful for incorporating subjective information into variability and uncertainty analyses in a 

manner that is consistent with distinguishing variability from uncertainty. 

Presenting the Results of a Monte Carlo Analysis 
11. Provide a complete and thorough description of the exposure model and its equations 

(including a discussion of the limitations of the methods and the results). 

Consistent with the Exposure Assessment Guidelines, Model Selection Guidance, and 

other relevant Agency guidance, provide a detailed discussion of the exposure model(s) and 

pathways selected to address specific assessment endpoints. Show all the formulas used. Define 

all terms. Provide complete references. If external modeling was necessary (e.g., fate and 

transport modeling used to provide estimates of the distribution of environmental concentrations), 

identify the model (including version) and its input parameters. Qualitatively describe the major 

advantages and limitations of the models used. 

The objectives are transparency and reproducibility - to provide a complete enough 

description so that the assessment might be independently duplicated and verified. 

12. Provide detailed information on the input distributions selected. This information 

should identify whether the input represents largely variability, largely uncertainty, 

or some combination of both. Further, information on goodness-of-fit statistics 

should be discussed. 

It is important to document thoroughly and convey critical data and methods that provide 

an important context for understanding and interpreting the results of the assessment. This 

detailed information should distinguish between variability and uncertainty and should include 

graphs and charts to visually convey written information. 

The probability density function (PDF) and cumulative distribution function (CDF) graphs 

provide different, but equally important insights. A plot of a PDF shows possible values of a 

random variable on the horizontal axis and their respective probabilities (technically, their 

densities) on the vertical axis. This plot is useful for displaying: 

• the relative probability of values; 

• the most likely values (e.g., modes); 

• the shape of the distribution (e.g., skewness, kurtosis); and 
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• small changes in probability density. 

A plot of the cumulative distribution function shows the probability that the value of a random 

variable is less than a specific value. These plots are good for displaying: 

• fractiles, including the median; 

• probability intervals, including confidence intervals; 

• stochastic dominance; and 

• mixed, continuous, and discrete distributions. 

Goodness-of-fit tests are formal statistical tests of the hypothesis that a specific set of 

sampled observations are an independent sample from the assumed distribution. Common tests 

include the chi-square test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. 

Goodness-of-fit tests for normality and lognormality include Lilliefors1 test, the Shapiro-Wilks' 

test, and D'Agostino's test. 

Risk assessors should never depend solely on the results of goodness-of-fit tests to select 

the analytic form for a distribution. Goodness-of-fit tests have low discriminatory power and are 

generally best for rejecting poor distribution fits rather than for identifying good fits. For small to 

medium sample sizes, goodness-of-fit tests are not very sensitive to small differences between the 

observed and fitted distributions. On the other hand, for large data sets, even small and 

unimportant differences between the observed and fitted distributions may lead to rejection of the 

null hypothesis. For small to medium sample sizes, goodness-of-fit tests should best be viewed as 

a systematic approach to detecting gross differences. The risk assessor should never let 

differences in goodness-of-fit test results be the sole factor for determining the analytic form of a 

distribution. 

Graphical methods for assessing fit provide visual comparisons between the experimental 

data and the fitted distribution. Despite the fact that they are non-quantitative, graphical methods 

often can be most persuasive in supporting the selection of a particular distribution or in rejecting 

the fit of a distribution. This persuasive power derives from the inherent weaknesses in numerical 

goodness-of-fit tests. Such graphical methods as probability-probability (P-P) and quantile- 

quantile (Q-Q) plots can provide clear and intuitive indications of goodness-of-fit. 

18 



Having selected and justified the selection of specific distributions, the assessor should 

provide plots of both the PDF and CDF, with one above the other on the same page and using 

identical horizontal scales. The location of the mean should be clearly indicated on both curves 

[See Figure 1]. These graphs should be accompanied by a summary table of the relevant data. 

13. Provide detailed information and graphs for each output distribution. 

In a fashion similar to that for the input distributions, the risk assessor should provide 

plots of both the PDF and CDF for each output distribution, with one above the other on the 

same page, using identical horizontal scales. The location of the mean should clearly be indicated 

on both curves.   Graphs should be accompanied by a summary table of the relevant data. 

14. Discuss the presence or absence of dependencies and correlations. 

Covariance among the input variables can significantly affect the analysis output. It is 

important to consider covariance among the model's most sensitive variables. It is particularly 

important to consider covariance when the focus of the analysis is on the high end (i.e., upper 

end) of the distribution. 

When covariance among specific parameters is suspected but cannot be determined due to 

lack of data, the sensitivity of the findings to a range of different assumed dependencies should be 

evaluated and reported. 

15. Calculate and present point estimates. 

Traditional deterministic (point) estimates should be calculated using established 

protocols. Clearly identify the mathematical model used as well as the values used for each input 

parameter in this calculation. Indicate in the discussion (and graphically) where the point estimate 

falls on the distribution generated by the Monte Carlo analysis. Discuss the model and parameter 

assumptions that have the most influence on the point estimate's position in the distribution. The 

most important issue in comparing point estimates and Monte Carlo results is whether the data 

and exposure methods employed in the two are comparable. Usually, when a major difference 

between point estimates and Monte Carlo results is observed, there has been a fundamental 

change in data or methods. Comparisons need to call attention to such differences and determine 

their impact. 

In some cases, additional point estimates could be calculated to address specific risk 

management questions or to meet the information needs of the audience for the assessment. Point 

estimates can often assist in communicating assessment results to certain groups by providing a 
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scenario-based perspective. For example, if point estimates are prepared for scenarios with which 

the audience can identify, the significance of presented distributions may become clearer. This 

may also be a way to help the audience identify important risks. 

16.   A tiered presentation style, in which briefing materials are assembled at various levels 

of detail, may be helpful. Presentations should be tailored to address the questions 
and information needs of the audience. 

Entirely different types of reports are needed for scientific and nonscientific audiences. 

Scientists generally will want more detail than non-scientists. Risk managers may need more 

detail than the public. Reports for the scientific community are usually very detailed. Descriptive, 

less detailed summary presentations and key statistics with their uncertainty intervals (e.g., box 

and whisker plots) are generally more appropriate for non-scientists. 

To handle the different levels of sophistication and detail needed for different audiences, it 

may be useful to design a presentation in a tiered format where the level of detail increases with 

each successive tier. For example, the first tier could be a one-page summary that might include a 

graph or other numerical presentation as well as a couple of paragraphs outlining what was done. 

This tier alone might be sufficient for some audiences. The next tier could be an executive 

summary, and the third tier could be a full detailed report. For further information consult Bloom 

et al., 1993. 

Graphical techniques can play an indispensable role in communicating the findings from a 

Monte Carlo analysis. It is important that the risk assessor select a clear and uncluttered graphical 

style in an easily understood format. Equally important is deciding which information to display. 

Displaying too much data or inappropriate data will weaken the effectiveness of the effort. 

Having decided which information to display, the risk assessor should carefully tailor a graphical 

presentation to the informational needs and sophistication of specific audiences. The performance 

of a graphical display of quantitative information depends on the information the risk assessor is 

trying to convey to the audience and on how well the graph is constructed (Cleveland, 1994). The 

following are some recommendations that may prove useful for effective graphic presentation: 

• Avoid excessively complicated graphs. Keep graphs intended for a glance (e.g., 
overhead or slide presentations) relatively simple and uncluttered. Graphs 
intended for publication can include more complexity. 

• Avoid pie charts, perspective charts (3-dimensional bar and pie charts, ribbon 
charts), pseudo-perspective charts (2-dimensional bar or line charts). 
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Color and shading can create visual biases and are very difficult to use effectively. 
Use color or shading only when necessary and then, only very carefully. Consult 
references on the use of color and shading in graphics. 

When possible in publications and reports, graphs should be accompanied by a 
table of the relevant data. 

If probability density or cumulative probability plots are presented, present both, 
with one above the other on the same page, with identical horizontal scales and 
with the location of the mean clearly indicated on both curves with a solid point. 

Do not depend on the audience to correctly interpret any visual display of data. 
Always provide a narrative in the report interpreting the important aspects of the 
graph. 

Descriptive statistics and box plots generally serve the less technically-oriented 
audience well. Probability density and cumulative probability plots are generally 
more meaningful to risk assessors and uncertainty analysts. 
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Appendix:   Probability Distribution Selection Issues 

Surrogate Data, Fitting Distributions, Default Distributions 
Subjective Distributions 

Identification of relevant and valid data to represent an exposure variable is prerequisite to 
selecting a probability distribution  However, often the data available are not a direct measure of 
the exposure variable of interest. The risk assessor is often faced with using data taken in spatial 
or temporal scales that are significantly different from the scale of the problem under 
consideration. The question becomes whether or not or how to use marginally representative or 
surrogate data to represent a particular exposure variable. While there can be no hard and fast 
rules on how to make that judgment, there are a number of questions risk assessors need to ask 
when the surrogate data are the only data available. 

Is there Prior Knowledge about Mechanisms? Ideally, the selection of candidate probability 
distributions should be based on consideration of the underlying physical processes or mechanisms 
thought to be key in giving rise to the observed variability. For example, if the exposure variable 
is the result of the product of a large number of other random variables, it would make sense to 
select a lognormal distribution for testing. As another example, the exponential distribution 
would be a reasonable candidate if the stochastic variable represents a process akin to inter-arrival 
times of events that occur at a constant rate. As a final example, a gamma distribution would be a 
reasonable candidate if the random variable of interest was the sum of independent exponential 
random variables. 

Threshold Question - Are the surrogate data of acceptable quality and representativeness to 
support reliable exposure estimates? 

What uncertainties and biases are likely to be introduced by using surrogate data? For 
example, if the data have been collected in a different geographic region, the contribution of 
factors such as soil type, rainfall, ambient temperature, growing season, natural sources of 
exposure, population density, and local industry may have a significant effect on the exposure 
concentrations and activity patterns. If the data are collected from volunteers or from hot spots, 
they will probably not represent the distribution of values in the population of interest. Each 
difference between the survey data and the population being assessed should be noted. The 
effects of these differences on the desired distribution should be discussed if possible. 

How are the biases likely to affect the analysis and can the biases be corrected? The risk 
assessor may be able to state with a high degree of certainty that the available data over-estimates 
or under-estimates the parameter of interest. Use of ambient air data on arsenic collected near 
smelters will almost certainly over-estimate average arsenic exposures in the United States. 
However, the smelter data can probably be used to produce an estimate of inhalation exposures 
that falls within the high end. In other cases, the assessor may be unsure how unrepresentative 
data will affect the estimate as in the case when data collected by a particular State are used in a 
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national assessment. In most cases, correction of suspected biases will be difficult or not possible. 
If only hot spot data are available for example, only bounding or high end estimates may be 
possible. Unsupported assumptions about biases should be avoided. Information regarding the 
direction and extent of biases should be included in the uncertainty analysis. 

How should any uncertainty introduced by the surrogate data be represented? 

In identifying plausible distributions to represent variability, the risk assessor should examine 
the following characteristics of the variable: 

1. Nature of the variable. 
Can the variable only take on discrete values (e.g., either on or off; either heads or tails) or is 

the variable continuous over some range (e.g., pollutant concentration; body weight; drinking 
water consumption rate)? Is the variable correlated with or dependent on another variable? 

2. Bounds of the variable. 
What is the physical or plausible range of the variable (e.g., takes on only positive values; 

bounded by the interval [a,b]). Are physical measurements of the variable censored due to limits 
of detection or some aspect of the experimental design? 

3. Symmetry of the Distribution. 
Is distribution of the variable known to be or thought to be skewed or symmetric? If the 

distribution is thought to be skewed, in which direction? What other aspects of the shape of the 
distribution are known? Is the shape of the distribution likely to be dictated by physicaLtriological 
properties (e.g., logistic growth rates) or other mechanisms? 

4. Summary Statistics. 
Summary statistics can sometimes be useful in discrirninating among candidate distributions. 

For example, frequently the range of the variable can be used to eliminate inappropriate 
distributions; it would not be reasonable to select a lognormal distribution for an absorption 
coefficient since the range of the lognormal distribution is (0,°°) while the range of the absorption 
coefficient is (0,1).   If the coefficient of variation is near 1.0, then an exponential distribution 
might be appropriate. Information on skewness can also be useful. For symmetric distributions, 
skewness = 0; for distributions skewed to the right, skewness > 0; for distributions skewed to the 
left, skewness < 0. 

5. Graphical Methods to Explore the Data. 
The risk assessor can often gain important insights by using a number of simple graphical 

techniques to explore the data prior to numerical analysis. A wide variety of graphical methods 
have been developed to aid in this exploration including frequency histograms for continuous 
distributions, stem and leaf plots, dot plots, line plots for discrete distributions, box and whisker 
plots, scatter plots, star representations, glyphs, Chernoff faces, etc. [Tukey (1977); Conover 
(1980); du Toit et al. (1986); Morgan and Henrion, (1990)]. These graphical methods are all 
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intended to permit visual inspection of the density function corresponding to the distribution of 
the data. They can assist the assessor in examining the data for skewness, behavior in the tails, 
rounding biases, presence of multi-modal behavior, and data outliers. 

Frequency histograms can be compared to the fundamental shapes associated with standard 
analytic distributions (e.g., normal, lognormal, gamma, Weibull). Law and Kelton (1991) and 
Evans et al. (1993) have prepared a useful set of figures which plot many of the standard analytic 
distributions for a range of parameter values. Frequency histograms should be plotted on both 
linear and logarithmic scales and plotted over a range of frequency bin widths (class intervals) to 
avoid too much jaggedness or too much smoothing (i.e., too little or too much data aggregation). 
The data can be sorted and plotted on probability paper to check for normality (or log-normality). 
Most of the statistical packages available for personal computers include histogram and 
probability plotting features, as do most of the spreadsheet programs. Some statistical packages 
include stem and leaf, and box and whisker plotting features. 

After having explored the above characteristics of the variable, the risk assessor has three 
basic techniques for representing the data in the analysis. In the first method, the assessor can 
attempt to fit a theoretical or parametric distribution to the data using standard statistical 
techniques. As a second option, the assessor can use the data to define an empirical distribution 
function (EDF). Finally, the assessor can use the data directly in the analysis utilizing random 
resampling techniques (i.e., bootstrapping). Each of these three techniques has its own benefits. 
However, there is no consensus among researchers (authors) as to which method is generally 
superior. For example, Law and Kelton (1991) observe that EDFs may contain irregularities, 
especially when the data are limited and that when an EDF is used in the typical manner, values 
outside the range of the observed data cannot be generated. Consequently, when the data are 
representative of the exposure variable and the fit is good, some prefer to use parametric 
distributions. On the other hand, some authors prefer EDFs (Bratley, Fox and Schräge, 1987) 
arguing that the smoothing which necessarily takes place in the fitting process distorts real 
information. In addition, when data are limited, accurate estimation of the upper end (tail) is 
difficult. Ultimately, the technique selected will be a matter of the risk assessor's comfort with the 
techniques and the quality and quantity of the data under evaluation. 

The following discussion focuses primarily on parametric techniques. For a discussion of the 
other methods, the reader is referred to Efron and Tibshirani (1993), Law & Kelton (1991), and 
Bratley et al (1987). 

Having selected parametric distributions, it is necessary to estimate numerical values for the 
intrinsic parameters which characterize each of the analytic distributions and assess the quality of 
the resulting fit. 

Parameter Estimation. Parameter estimation is generally accomplished using conventional 
statistical methods, the most popular of which include the method of maximum likelihood, 
method of least squares, and the method of moments. See Johnson and Kotz (1970), Law and 
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Kelton (1991), Kendall and Stewart (1979), Evans et al. (1993), Ang and Tang (1975), 
Gilbert (1987), and Meyer (1975). 

Assessing the Representativeness of the Fitted Distribution. Having estimated the 
parameters of the candidate distributions, it is necessary to evaluate the "quality of the fit" 
and, if more than one distribution was selected, to select the "best" distribution from among 
the candidates. Unfortunately, there is no single, unambiguous measure of what constitutes 
best fit. Ultimately, the risk assessor must judge whether or not the fit is acceptable. 

Graphical Methods for Assessing Fit Graphical methods provide visual comparisons 
between the experimental data and the fitted distribution. Despite the fact that they are non- 
quantitative, graphical methods often can be most persuasive in supporting the selection of a 
particular distribution or in rejecting the fit of a distribution. This persuasive power derives 
from the inherent weaknesses in numerical goodness-of-fit tests. Commonly used graphical 
methods include: frequency comparisons which compare a histogram of the experimental data 
with the density function of the fitted data.; probability plots compare the observed cumulative 
density function with the fitted cumulative density function. Probability plots are often based 
on graphical transformations such that the plotted cumulative density function results in a 
straight line; probability-probability plots (P-P plots) compare the observed probability with 
the fitted probability. P-P plots tend to emphasize differences in the middle of the predicted 
and observed cumulative distributions; quantile-quantile plots (Q-Q plots) graph the ith- 
quantile of the fitted distribution against the ith quantile data. Q-Q plots tend to emphasize 
differences in the tails of the fitted and observed cumulative distributions; and box plots 
compare a box plot of the observed data with a box plot of the fitted distribution. 

Goodness-of-Fit Tests. Goodness-of-fit tests are formal statistical tests of the hypothesis that 
the set of sampled observations are an independent sample from the assumed distribution. 
The null hypothesis is that the randomly sampled set of observations are independent, 
identically distributed random variables with distribution function F. Commonly used 
goodness-of-fit tests include the chi-square test, Kolmogorov-Smirnov test, and Anderson- 
Darling test. The chi-square test is based on the difference between the square of the 
observed and expected frequencies. It is highly dependent on the width and number of 
intervals chosen and is considered to have low power. It is best used to reject poor fits. The 
Kolmogorov-Smirnov Test is a non-parametric test based on the maximum absolute 
difference between the theoretical and sample Cumulative Distribution Functions (CDFs). 
The Kolmogorov-Smirnov test is most sensitive around the median and less sensitive in the 
tails and is best at detecting shifts in the empirical CDF relative to the known CDF. It is less 
proficient at detecting spread but is considered to be more powerful than the chi-square test. 
The Anderson-Darling test is designed to test goodness-of-fit in the tails of a Probability 
Density Function (PDF) based on a weighted-average of the squared difference between the 
observed and expected cumulative densities. 
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Care must be taken not to over-interpret or over-rely on the findings of goodness-of-flt tests. 
It is far too tempting to use the power and speed of computers to run goodness-of-fit tests 
against a generous list of candidate distributions, pick the distribution with the "best" 
goodness-of-fit statistic, and claim that the distribution that fit "best" was not rejected at some 
specific level of significance. This practice is statistically incorrect and should be avoided 
[Bratley et al, 1987, page 134]. Goodness-of-fit tests have notoriously low power and are 
generally best for rejecting poor distribution fits rather than for identifying good fits. For 
small to medium sample sizes, goodness-of-fit tests are not very sensitive to small differences 
between the observed and fitted distributions. On the other hand, for large data sets, even 
minute differences between the observed and fitted distributions may lead to rejection of the 
null hypothesis. For small to medium sample sizes, goodness-of-fit tests should best be 
viewed as a systematic approach to detecting gross differences. 

Tests of Choice for Normality and Lognormality. Several tests for normality (and 
lognormality when log-transformed data are used) which are considered more powerful than 
either the chi-square or Komolgarov-Smirnoff (K-S) tests have been developed: Lilliefors' 
test which is based on the K-S test but with "normalized" data values, Shapiro-Wilks test (for 
sample sizes <. 50), and D'Agostino's test (for sample sizes 2: 50). The Shapiro-Wilks and 
D'Agostino tests are the tests of choice when testing for normality or lognormality. 

If the data are not well-fit by a theoretical distribution, the risk assessor should consider the 
Empirical Distribution Function or bootstrapping techniques mentioned above. 

For those situations in which the data are not adequately representative of the exposure 
variable or where the quality or quantity of the data are questionable the following approaches 
may be considered. 

Distributions Based on Surrogate Data. Production of an exposure assessment often 
requires that dozens of factors be evaluated, including exposure concentrations, intake rates, 
exposure times, and frequencies. A combination of monitoring, survey, and experimental 
data, fate and transport modeling, and professional judgment is used to evaluate these factors. 
Often the only available data are not completely representative of the population being 
assessed. Some examples are the use of activity pattern data collected in one geographic 
region to evaluate the duration of activities at a Superfund site in another region; use of 
national intake data on consumption of a particular food item to estimate regional intake; and 
use of data collected from volunteers to represent the general population. 

In each such case, the question of whether to use the unrepresentative data to estimate the 
distribution of a variable should be carefully evaluated. Considerations include how to express 
the possible bias and uncertainty introduced by the unrepresentativeness of the data and 
alternatives to using the data. In these situations, the risk assessor should carefully evaluate 
the basis of the distribution (e.g., data used, method) before choosing a particular surrogate or 
before picking among alternative distributions for the same exposure parameter. The 
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following table indicates exposure parameters for which surrogate distributions may be 
reasonable and useful. 

Table 1 Examples of exposure parameters for which 
distributions based on surrogate data might be reasonable 

Receptor Physiological 
Parameters 

body weight 
height 
total skin surface area 
exposed skin - hands, forearms, head, upper 
body 

Behavioral 

Receptor 
Time-Activity 

Patterns 

residency periods - age, residency type 
weekly work hours 
time since last job change 
showering duration 

Receptor 
Contact Rates 

soil ingestion rates 
soil adherence 
food ingestion - vegetables, freshwater finfish, 
saltwater finfish, shellfish, beef 
water intake - total water, tapwater 
inhalation rates 

Rough Characterizations of Ranges and Distributional Forms.  In the absence of 
acceptable representative data or if the study is to be used primarily for screening, crude 
characterizations of the ranges and distributions of the exposure variable may be adequate. 
For example, physical plausibility arguments may be used to establish ranges for the 
parameters. Then, assuming such distributions as the uniform, log-uniform, triangular and 
log-triangular distributions can be helpful in establishing which input variables have the 
greatest influence on the output variable. However, the risk assessor should be aware that 
there is some controversy concerning the use of these types of distributions in the absence of 
data. Generally, the range of the model output is more dependant on the ranges of the input 
variables than it is on the actual shapes of the input distributions. Therefore, the risk assessor 
should be careful to avoid assigning overly-restrictive ranges or unreasonably large ranges to 
variables. Distributional assumptions can have a large influence on the shapes of the output 
distribution. When the shape of the output distribution must be estimated accurately, care and 
attention should be devoted to developing the input distributions. 

Distributions Based on Expert Judgment One method that has seen increasing usage in 
environmental risk assessment is the method of subjective probabilities in which an expert or 
experts are asked to estimate various behaviors and likelihoods regarding specific model 
variables or scenarios. Expert elicitation is divided into two categories: (1) informal 
elicitation, and (2) formal elicitation. Informal elicitation methods include self assessment, 
brainstorming, causal elicitation (without structured efforts to control biases), and taped 
group discussions between the project staff and selected experts. 
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Formal elicitation methods generally follow the steps identified by the U.S. Nuclear 
Regulatory Commission (USNRC, 1989; Oritz, 1991; also see Morgan and Henrion, 1990; 
IAEA, 1989; Helton, 1993; Taylor and Burmaster; 1993) and are considerably more elaborate 
and expensive than informal methods. 
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Figure la. Example Monte Carlo Estimate of the PDF for Lifetime Cancer Risk 
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Figure lb: Example Monte Carlo Estimate of the CDF for Lifetime Cancer Risk 
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Figure 2: Example Box arid Whiskers Plot of the Distribution of Lifetime Cancer Risk 
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SUMMARY 

EPA's current risk assessment methods express health risks as single numerical values or 
"single-point" estimates of risk. This technique provides little information about uncertainty and 
variability surrounding the risk estimate. Recent EPA guidance (EPA, 1992a) recommends 
developing "multiple descriptors" of risk to provide more complete information to Agency decision- 
makers and the public. Monte Carlo simulation can be an effective way to produce these multiple 
risk descriptors. This document recommends guidelines under which Region VIII risk assessors 
may accept the optional use of Monte Carlo simulation to develop multiple descriptors of risk. The 
Region will continue to require RME and Central Tendency single-point risk estimates, 

prepared under current national guidance, in conjunction with optional Monte Carlo 

simulations. 
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SINGLE RISK ESTIMATES VS. MULTIPLE 
DESCRIPTORS 

EPA designed its human health risk assessment 
guidance (e.g., EPA, 1991, 1989a and 1989b) to 
produce protective, rather than best, estimates of 
risk. EPA is aware that true risks are probably less 
than its estimates, but has chosen a regulatory policy 
of giving the benefit of uncertainty surrounding the 
risk assessment to the exposed public. 

These protective risk estimates sometimes create 
difficulty for Agency decision-makers and the public. 
Site-specific Regional risk assessments usually 
present risk as a single number, or single-point 
estimate, accompanied by a qualitative discussion of 
uncertainty. The public tends to focus on the single- 
point estimate and to overlook the uncertainty, which 
may span several orders of magnitude. EPA risk 
managers, though aware of the uncertainty, must still 
justify their decision to either accept or reduce the 
single-point risk. If the risk is close to the maximum 
acceptable level, it is likely that different assumptions 
would have produced a different risk number, leading 
to a different decision. In this way, single-point risk 
assessment methods place the risk assessor in an 
inappropriate risk management role. 

Recent EPA guidance on risk characterization (EPA, 
1992a) discusses this problem in depth and 
recommends the use of multiple risk descriptors in 
addition to protective, single-point risk estimates. 
Inclusion of these additional risk descriptors provides 
the public with more complete information on the 
likelihood of various risk levels and risk managers 
with multiple risk-based cleanup goals from which to 
choose. This guidance, based in large p in upon that 
developed for EPA Region III by Dr. R )y L. Smith, 
concerns the use of Monte Carlo simulation as an 
effective source of multiple risk descriptors. 

MONTE CARLO SIMULATION 

Monte Carlo simulation is a statistical technique that 
can be used to simulate the effects of study 
variability and informational uncertainty that often 
accompany many "real world" situations. It is a 
process whereby an outcome is calculated repeatedly 
for many "what if" scenarios, using in each iteration 
randomly selected values, within the probability 
density function of the variable, for each of the 
variable or uncertain input values. Information on the 
range and likelihood of possible values for these 
parameters is contained in mathematical expressions 
termed Probability Density (or Distribution) Functions 
(PDFs). For risk assessment applications of Monte 
Carlo simulation, PDFs are typically normal, 
lognormal,  uniform  or triangular in  nature  (Smith 

1994, Thompson et al. 1992, Whitmyer et al. 1992). 
Although the simulation process is internally complex, 
commercial computer software (e.g., @Risk from 
Palisade Corporation and Crystal Ball from 
Decisioneering Inc.) performs the calculations as a 
single operation, presenting results in simple graphs 
and tables. These results approximate the full range 
of possible outcomes and the likelihood of each. 
When Monte Carlo simulation is applied to risk 
assessment, risk can be displayed as a frequency 
distribution graph that is similar in appearance to the 
familiar bell-shaped curve, a form more intuitively 
understood by nonstatisticians. 

When compared with alternative approaches for 
assessing parameter uncertainty or variability (e.g., 
analytical uncertainty propagation or classical 
statistical analysis), the Monte Carlo technique has 
the advantages of very general applicability, no 
inherent restrictions on input distributions or input- 
output relationships, and relatively straight-forward 
computations (EPA 1992b). In its application to risk 
assessment, Monte Carlo simulation not only 
generates results that can be expressed in a more 
easily understood graphical format, but it also permits 
the degree of conservativeness to be specified 
quantitatively (i.e., the Reasonable Maximum 
Exposure (RME) can be defined as the upper 90th or 
95th percentile of output results). Furthermore, risk 
results are more easily justified statistically, and the 
uncertainty underlying them can be discussed 
quantitatively. In general, this approach can 
satisfactorily address the goals of uncertainty analysis 
outlined in recent EPA guidance (EPA 1992a). 

Monte Carlo-type distributional simulations also have 
some limitations that have to date restrained EPA 
from accepting it as a preferred risk assessment tool. 
These concerns are briefly noted below, as are a 
number of relevant comments intended to provide 
additional perspective. 

1. Available software cannot distinguish between 
variability and uncertainty. Some factors, such as 
body weight and rates of food and water 
ingestion, evidence natural inter-individual 
differences that may be described by relatively 
well known population distributions, and are 
referred to as "variability" or "stoichasticity." 
Other factors, such as frequency and duration of 
trespassing or the true mean contaminant 
concentrations to which individuals are exposed, 
can often simply be unknown. This lack of 
knowledge is called "uncertainty." In specific 
instances some parameters may reflect both 
variability and uncertainty. Current Monte Carlo 
software   treats   uncertainty   as   if   it   were 
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variability, which is of concern because it could 
lead to misleading conclusions. Other types of 
mathematical models are available, such as 
Multiple Objective Decision Support Systems 
(MODSS) to deal with subjective uncertainty. 

Knowledge uncertainty is potentially reducible by 
additional research and measurement, and does 
not reflect an inherent population characteristic of 
variability that, in this case, contributes to the 
true distribution of risks experienced by 
population members. One way of at least 
partially managing this problem is to employ a 
"two-phase Monte Carlo sampling structure", 
whereby true parameter variability is modeled 
repetitively under different scenarios of 
uncertainty (Macintosh et al. 1994). This 
approach generates a family of distributions, one 
for each uncertainty scenario (e.g., one each at 
the 5th, 50th and 95th percentiles of total 
estimated uncertainty), and thus conceptually and 
visually segregates stochastic variability from 
knowledge uncertainty. In the context of 
portraying risk distributions as a part of site- 
specific, clean-up decision making, EPA Region 
VIII prefers that variability and uncertainty be 
treated separately to the extent possible. 

2. Ignoring correlations among exposure variables 
can bias or distort Monte Carlo calculations (e.g., 
an iteration using both a very high body weight 
and a very low body surface area is not realistic), 
yet information on possible correlations is often 
lacking. 

To some degree this problem can be ameliorated 
by using site-specific data and the associated 
correlations that become evident. Specified 
correlations can then be taken into account by 
the computer software package. The adverse 
consequences of neglecting parameter 
correlations also may be somewhat mitigated by 
the presence of other random-input parameters 
that have similar or greater levels of uncertainty/ 
variability (Smith et al. 1992). Furthermore, 
practices such as using multiple age groups to 
represent chronic or lifetime exposures can 
substantially reduce the negative effect of not 
determining the degrees of correlation among 
interdependent parameters (Finley and 
Paustenbach 1994). 

3. Exposure factors developed from short-term 
studies with large populations may not accurately 
represent long-term conditions in small 
populations. 

It is difficult to generalize about the degree to 
which this concern could impact a given risk 
assessment, but maximizing the collection and 
use of site-specific data is one tactic that should 
lessen the problem. Furthermore, standard RME 
calculations are potentially susceptible to the 
same type of difficulties. 

4. The tails of Monte Carlo risk distributions, which 
are of the greatest regulatory interest, are the 
most sensitive to the particular "shape" of the 
input distributions. 

This presents a significant concern in some cases; 
in others it does not. The exact shape of the PDF 
has been reported to exert only a "minimal" effect 
on the tail values (e.g., the 90th or 95th 
percentiles) when the mean and variance of the 
PDF's data were held constant (Finley and 
Paustenbach 1994, Hoffman and Hammonds 
1992). It has been EPA Region Vlll's experience 
that the PDF shape can significantly affect the 
distribution of risk outcome when the variable in 
question is a substantial "driver" of risk 
variability. Such variables can be identified by 
performing a sensitivity analysis of the risk 
equation after PDF parameters have been defined. 
In the occupational human health examples 
discussed in Appendix 2, negligible changes in 
risk distri-bution were observed when the shape 
of the body-weight PDF was changed from 
lognormal to normal. This is not surprising, given 
that sensitivity analysis indicated that the body- 
weight parameter contri-buted only 0.6 percent to 
risk variability under the example conditions 
(Simulation 2). In contrast, changing the shape 
of the PDF for contaminant concentration in soil 
(a 44 to 76 percent contributor to risk variability. 
Simulations 2 to 4) resulted in significant 
alterations in risk distribution in the 90 to 100th 
percentile range. Furthermore, in this example, 
while the mean risk level was affected by less 
than 10 percent, the median (50th percentile) risk 
changed by a factor of over 11 (Simulation 2 
versus Simulation 4). Further discussion and 
comparative data are provided in Appendix 2. 

Because of reservations concerning these practical 
issues, Region VIII cannot at this time recommend 
Monte Carlo simulation as the sole, or even principal, 
risk assessment method. Nevertheless, Monte Carlo 
simulation provides certain advantages over the 
qualitative procedures currently used to analyze 
uncertainty and variability. For baseline risk 
assessments at NPL sites, Region VIII recommends 
that uncertainty and variability surrounding single- 
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point risk estimates rely on multiple descriptors of risk 
(EPA 1992a). Monte Carlo simulation can be an 
acceptable method for developing these multiple 
descriptors. 

GUIDELINES FOR USING MONTE CARLO 
SIMULATION 

Region VIII risk assessors believe that Monte Carlo 
simulation requires more development before it can 
serve as the primary risk assessment method, for 
reasons described above. However, the technique 
has clear advantages over the qualitative analyses of 
uncertainty and variability currently in use. Region 
VIII will accept Monte Carlo simulations submitted as 
uncertainty/variability analyses in risk assessments, 
under the following guidelines: 

1. Submit a work plan for EPA review before doing 
the Monte Carlo simulation, to ensure the work 
will be acceptable to EPA. The workplan should 
describe the software to be used, the exposure 
routes and models, and input probability 
distributions and their sources. An issue often of 
particular concern is how to most appropriately 
model contaminant concentrations in soil. EPA 
expects that peer-reviewed literature and site- 
specific data will be used whenever possible. A 
partial list of references, not necessarily reviewed 
or endorsed by EPA Region VIII, that provide 
example PDFs, PDF selection guidance and 
related information is presented in Appendix 1. 
When established PDFs are not available or 
appropriate, professional judgement and 
consideration of all relevant information may be 
used to select candidate PDFs for EPA review. 
Describe how correlations among input variables 
will be handled. If reasonable PDFs cannot be 
produced then default or site-specific point 
estimates for inputs should be used. 

2. Include only exposure variables in the Monte 
Carlo simulation. Enter reference doses and slope 
factors as single numbers, except for specific 
contaminants for which the EPA Office of 
Research and Development has approved 
frequency distributions. 

3. include only significant exposure scenarios and 
contaminants in the Monte Carlo simulation. 
First, calculate RME risks for all exposure routes 
under current guidance. In general, Monte Carlo 
simulation is most appropriate when total RME 
cancer risk exceeds 1E-06, the noncarcinogenic 
hazard index exceeds 1.0, or for environmental 
receptors,   when   exposures   exceed   relevant 

. toxicity reference values. Only those exposure 
routes that contribute significantly to the total 
risk or hazard under consideration need be 
modeled. Include only contaminants that 
contribute 1 % or more of the total RME risk or 
hazard index. 

4. Use Monte Carlo simulation only to analyze 
uncertainty and variability, as a "multiple 
descriptor" of risk. Remember to discuss with 
EPA Region VIII the complex issue of variability 
versus uncertainty before performing Monte Carlo 
analysis, and where possible to model the two 
separately. Include standard RME and average 
exposure risk estimates in all graphs and tables of 
Monte Carlo results. Generate deterministic risks 
using current EPA national guidance (EPA 1992a, 
1991, 1989a and 1989b). 

5. Include graphs and tables showing and describing 
each input distribution, distributions of risk for 
each exposure route, and distributions of total 
risk (summed across exposure pathways and age 
groups, as appropriate under current guidance). 
Sensitivity analyses should also be included to 
help focus on the major contaminants and 
pathways of exposure. 

6. Although the use of Monte Carlo simulation in risk 
assessment has received greater attention with 
respect to human receptors, under appropriate 
conditions of sufficient data and valid PDFs, this 
guidance may also be applied to environmental 
receptors (see example in Appendix 3). 

SUMMARY 

Region VIII will accept Monte Carlo simulations that 
conform to the guidelines in this document (illustrated 
in the flow chart in Figure 2), as part of baseline 
human health or environmental risk assessments. 
The most important guideline is that all risk 
assessments must include single-point RME and 
average exposure risk estimates prepared under 
current EPA national guidance. The Region will 
accept Monte Carlo simulation only as an optional 
addition to, not a substitute for, current risk 
assessment methods. 
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Perform risk assessment using 
standard RME approach 

Monte Carlo 
simulation 

unnecessary 

Identify exposure routes and 
chemicals that significantly 
contribute to excess risk or 

hazard index 

If necessary, use sensitivity 
analysis to select those 
input parameters that 

contribute most to 
uncertainty 

Revise plan or 
forego Monte 

Carlo simulation 

i Perform Monte Carlo simulation of 
I risks/hazards using selected PDFs 

I Prepare analysis of 
! uncertainty/variability; include graphs. 
! tables and PDF descriptions; compare 

with RME estimates 

FIGURE 1   FLOW CHART FOR THE USE OF MONTE CARLO SIMULATION TO 
CHARACTERIZE UNCERTAINTY/VARIABILITY IN RISK ASSESSMENT ESTIMATES 
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APPENDIX 1 
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APPENDIX 2 
MONTE CARLO SIMULATION:  DETAILED HUMAN HEALTH EXAMPLE 

To illustrate the use of Monte Carlo simulation in human 
health risk assessment, as compared with the standard 
deterministic approach (Risk Assessment Guidance for 
Superfund (RAGS) Part A, EPA, 1989), a simplified 
excess cancer risk assessment calculation is used here 
as an example. There are seven input parameters 
needed to solve for risk, as shown in the equation 
below: 

Risk Cs x IR x 1E-06 x EF x ED x SF 
BWxAT 

(1) 

Where: 

Cs   = 

IR 
EF 
ED 
SF 

BW 
AT 

1E-06 

Concentration   of   benzene   in   soil   (mg 
benzene/kg soil) 

= Ingestion rate (mg soii/day) 
= Exposure frequency (days/year) 
= Exposure duration (years) 
= Slope factor for benzene (mg benzene/kg 

BW-day)"1 

= Body weight (kg) 
= Averaging time (days) 
=■' Mg-to-kg conversion factor 

In this example, a future adult worker is assumed to be 
potentially exposed to a single chemical (benzene), 
contained in a single medium (soil), by a single route 
(ingestion). It is further assumed that the future worker's 
potential exposure will be confined to a site having a 
relatively small area, all portions of which will be 
contacted equally by the worker over time. Under such 
assumptions, which are essentially the same as those 
typically assumed for residential scenarios, it is 
appropriate to utilize a determinate value based on the 
mean of soil sample data. To retain a certain degree of 
conservativism (especially when sample size is small or 
contaminant concentration is highly variable), it is 
recommended that the UCL95 of the arithmetic mean 
generally be used (assuming a lognormal distribution, 
the same approach used for the RME scenario). When 
this value is associated with a high degree of 
uncertainty, collection of additional samples should be 
considered by the risk manager. When a site is very 
large and/or the contact behavior of individual members 
of the (potentially) exposed population is such that a 
given individual's contact with soil is not equal across 
the site when integrated over time, then it is reasonable 
to consider distributing the Cs term through the use of 
an appropriate PDF (see the alternate simulations 

discussed below). This issue of how, or whether or not 
to, distribute the "Cs" term should be discussed in 
advance with EPA Region VIII. 

For the sake of simplicity, a number of other parameters 
used in estimating risk (for example, bioavailability of 
benzene from soil, fraction of soil ingested which is 
contaminated, etc.) have been omitted. 

Calculation of Risk Using a Deterministic Approach 

Selected standard or typical RME values for the input 
parameters in Equation No. 1 are listed below. 

Cs = 

IR = 
EF = 

ED = 

SF = 

BW = 
AT = 

1,000 mg/kg soil (based on the following 
hypothetical set of sample concentrations (mg 
benzene/kg soil): 0.1, 0.1, 0.1, 0.5, 1.0, 5.0, 
10.0, 15.0, 20.0, 23.0, 25.0,27.0, 28.0,30.0,35.0, 
40.0, 50.0, 75.0, 150, 400 and 1,000; sample 
arithmetic mean = 96.7, and the upper 95th 
confidence limit (UCL95) of this mean = 4,587 
(assuming a lognormal distribution); since this 
value exceeds the maximum hit, the maximum 
hit value of 1,000 was selected as the RME 
concentration value). 
100 mg soil/day 
250 days/year (assuming 2 weeks vacation and 
5 work days/week) 
25 years (upper 95th percentile value for years 
worked at the same location, as reported by the 
U.S. Bureau of Labor Statistics 1990) 
2.9E-02 (mg/kg-day)    (upper 95th confidence 
limit of the dose-response curve) 
70 kg (mean value) 
70 years or 25,550 days 

Based on these RME assumptions, excess cancer risk 
from the ingestion of soil contaminated with benzene is 
estimated to be 1.0E-05. As directed by EPA (1992a), a 
central tendency (AVG) risk descriptor is also calculated 
for this example. The values for Cs, IR, EF and ED can 
be represented by more average values as follows: 

Cs = 
IR = 

EF = 

ED = 

96.7 mg/kg (sample arithmetic mean) 
50 mg soil/day 
219 days/year (average of both full- and part- 
time workers, U.S. Bureau of Labor Statistics, 
1991) 
5 years 

The resulting excess cancer risk estimate is 8.6E-08. 
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However, there are several limitations inherent in this 
approach. For example, by using upper percentiles or 
confidence limits for at least three of the seven input 
parameters, the resulting estimate may be overly 
conservative. Burmaster and Harris (1993) have noted 
that the result generated from a calculation containing 
three values at their respective upper 95th confidence 
limits is itself at the upper 99.78th confidence limit. Also, 
by using a somewhat arbitrary mixture of mean and 
upper confidence limit/percentile values in the 
calculation, uncertainty and variability in the risk estimate 
cannot easily be discussed quantitatively. 

Caiculation of Risk Using Monte Carlo Simulation 

As previously noted, when compared with alternative 
approaches for assessing parameter uncertainty (e.g., 
analytical uncertainty propagation or classical statistical 
analysis), the Monte Carlo technique has the advantages 
of very general applicability, no restrictions on input 
distributions or input-output relationships and relatively 
straightforward computations (EPA, 1992b). 

The same equation used to calculate risk by the 
standard approach (Equation 1) is used in Monte Carlo 
simulation. The major difference in this approach is that 
four of the seven input parameters are now defined by 
PDFs instead of discrete values. There are several 
sources of PDFs, including site-specific data, published 
information such as that included in Appendix 1, and as 
a last resort, estimation based on professional judgment. 
The PDFs selected for this example as input into 
Equation 1, expressed in terms of "distribution type 
(mean, standard deviation), restrictions,'' are listed as 
follows: 

Cs = 1,000 mg/kg soil (the same as the determinate 
RME Cs assumption) 

IR = Lognormal (50, 50) (the "standard'' central 
tendency value of 50 mg/kg was taken as the 
mean, and professional judgment was used to 
select the lognormal shape; the selected 
standard deviation results in 90th and 100th 
percentile values of approximately 100 and 
1,000 mg/kg, respectively) 

EF = Triangular (minimum = 125 (half-time, or 5 
days/week, 25 weeks/year), best = 219 (as 
above); maximum = 300 (6 days/week. 50 
weeks/year) 

ED = Lognormal (7.3, 12.0), truncated at 0 and 50 
years (arithmetic mean taken from Finley et al. 
1994, citing U.S. Bureau of Statistics 1992; 
professional judgment was used to select the 
lognormal shape, and the standard deviation 
was selected to approximate 50th and 95th 
percentile values from the same U.S. Bureau of 
Statistics data) 

SF =   Determinate value   (2.9E-02   [mg/kg-day]   ), 
upper 95th % confidence limit of the dose- 
response curve 

BW =   Lognormal (71.0, 15.9), truncated at 40 and 150 
kg (derived from Brainard and Burmaster 1992) 

AT = Determinate value (25,550 days), assumed 
lifetime in SF calculations 

Based on these assumptions, the mean risk was 
calculated (rounded to two significant figures) to be 
1.2E-06.(a) 

This value is about 14-fold higher than the central 
tendency (AVG) estimate calculated previously, but still 
significantly below the standard RME risk. In this 
example, the 90th and 95th percentile risk estimates (2.8 
and 4.4E-06, respectively) were also somewhat below 
the calculated RME risk of 1.0E-05, which was in fact 
virtually equivalent to the 99th percentile estimate of 
1.1E-05. The Monte Carlo risk distribution is highly 
skewed, with the obviously improbable 100th percentile 
scenario having an estimated risk of 5.8E-05. 

To illustrate the effects that precise PDF shape can have 
on output distribution, the above example (simulation 1) 
was run three additional times under somewhat varying 
conditions. The mean and several benchmark percentile 
values for each of these simulations are presented in the 
table shown below. In simulation 2, Cs was represented 
by a lognormal PDF having a mean of 282 mg/kg soil 
and a standard deviation of 5,315 mg/kg soil, with 
truncations at 0 and 10,000 mg/kg soil (based upon the 
same soil concentration data set used above); as would 
be expected, most values are lower than in the original 
simulation. In simulation 3, the BW distribution was 
changed from lognormal to normal (as is suggested in 
some references), while in simulation 4 the Cs 
distribution was changed from lognormal to normal (with 
the BW PDF returned to lognormal). The mean and 
several benchmark percentile risk values for all four 
simulations are compared below: 

(a) Monte Carlo simulation was conducted using Crystal Ball from Decisioneering, Inc.  Results were based on 10,000 
iterations using Latin hypercube sampling (100 divisions) and a burst mode option of 5. 
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Simulation 
Percentile 

Mean 
50th 
90th 
95th 

=99th 
100th 

1 

1.16E-06 
4.46E-07 
2.81 E-06 
4.41 E-06 
1.07E-05 
5.78E-05 

2.19E-07 
6.56E-09 
2.28E-07 
5.88E-07 
3.85E-06 
1.08E-04 

2.16E-07 
6.48E-09 
2.25E-07 
5.78E-07 
3.79E-06 
1.05E-04 

2.64E-07 
7.46E-08 
6.18E-07 
1.08E-06 
3.03E-06 
2.34E-05 

References 

Brainard J, Burmaster DE. 1992. Bivariate distributions 
for height and weight of men and women in the 
United States.  Risk Analysis 12:267-275. 

Burmaster DE, Harris RH. 1993. The magnitude of 
compounding conservatism in superfund risk 
assessments. Risk Analysis 13:131-134. 

As can be seen, changing the "non-driver" body-weight 
variable (a 0.6 percent contributor to risk variability in 
Simulation 2, see page A2-8) from a lognormal to a 
normal PDF had only negligible effect. However, when 
the same PDF shape change was tried with the conce'n- 
tration-in-soil (Cs) variable, which is a major contributor 
to risk variability (approximately 44 to 76 percent in 
Simulations 2 to 4), the resulting changes in risk 
distribution were much more substantial (Simulation 2 
versus Simulation 4). While alterations in "RME- 
representatfve" 90th and 95th percentile risks were 
significant (2 to 3 fold), changes in the median and 
upper bound (50th and 100th percentiles, respectively) 
risks were in this case more dramatic (5 to 11 fold). The 
results illustrate the importance of giving attention to the 
selection of PDF shape, especially for those variables 
that are drivers of risk distribution. Significant changes 
in risk output may be expected in many cases with shifts 
from uniform to triangular to normai/lognormal PDF 
shapes, particularly when the input data have widely 
dispersed values. 

A typical Crystal Bali output report (minus the actual 
frequency counts) of this example (Simulation 1) is 
presented on the following pages for illustration 
purposes.'3' This includes a sensitivity analysis, a 
summary description and statistics of the simulation, an 
output frequency distribution chart of the calculated 
excess cancer risk probabilities, risk values for specified 
percentiles and the numerical descriptors and 
distribution shapes for each of the variable input 
parameters. Results of the RME approach can be 
added to these Crystal Ball output figures and tables for 
comparative purposes. 

EPA. 1992a. U. S. Environmental Protection Agency. 
Guidance on risk characterization for risk managers 
and risk assessors. Washington, DC: U. S. 
Environmental Protection Agency, Office of the 
Administrator, memorandum from F. Henry Habicht 
on 26 February 1992. 

EPA. 1992b. U.S. Environmental Protection Agency. 
Guidelines for exposure assessment (final). Fed. 
Reg. 57(104)22887-22938. 

EPA. 1989. U.S. Environmental Protection Agency. 
Office of Emergency and Remedial Response. Risk 
assessment guidance for Superfund. Volume I. 
Human health evaluation manual (Part A). Interim 
final. Washington, DC: U.S. Environmental 
Protection Agency. EPA/540/1-89/002. 

Finley B, Proctor D, Scott P, Harrington N, 
Paustenbach D, Price P. 1994. Recommended 
distributions for exposure factors frequently used in 
health risk assessment. Risk Analysis 14:533-553. 

U.S. Bureau of Statistics. 1992. Employee tenure and 
occupational mobility in the early 1990s. U.S. 
Department of Labor, Bureau of Labor Statistics, 
Washington, DC, USDL92-386. 

(a) The report presents results calculated by Crystal Bail using its "exact statistics" option. This takes about 12% longer 
(under these run conditions) on an IBM PS/2 Model 70 20 MHZ computer than using the "approximate statistics" 
option. Use of a 16 MHZ computer with a math coprocessor appeared to speed up exact calculations by about 14- 
18%, but approximate calculations by only 2 to 3%. Run conditions can substantially affect computation time (e.g., 
on this system, using a "burst mode" size of 50 required twice-as much time as a burst mode of only 5). This 10,000 
iteration run on the coprocessor machine required about 25 minutes: Employing the "sensitivity analysis" option did 
not appear to significantly increase run time. Several runs were performed on a 486DX66 MHZ computer, and run 
times were drastically reduced to just over 3 minutes. 
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OCCUPATIONAL HUMAN HEALTH EXAMPLE 
(SIMULATION 1) 

Crystal Ball Report 
Simulation started on 9/10/95 at 21:54:53 

Simulation stopped on 9/10/95 at 22:00:53 

Sensitivity Chart 

Target Forecast CANCER RISK 

Exposure Duration 

Soil Ingestion Rate 

Body Weight 

Exposure Frequency 

62.9% 

33.8% 

2.2% 

1.0% I 

0%               25%                50%               75%              100% 

Measured by Contribution to Variance 
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OCCUPATIONAL HUMAN HEALTH EXAMPLE 
(SIMULATION 1) 

Forecast: CANCER RISK 

Summary: 
Display Range is from O.OOE+0 to 1.1OE-5 
Entire Range is from 2.33E-9 to 5.78E-5 
After 10,000 Trials, the Std. Error of the Mean is 2.34E-8 

Statistics: 
Trials 
Mean 
Median 
Mode 
Standard Deviation 
Variance 
Skewness 
Kurtosis 
Coeff. of Variability 
Range Minimum 
Range Maximum 
Range Width 
Mean Std. Error 

Value 
10000 

1.16E-06 
4.46E-07 

2.34E-06 
5.48E-12 

7.78 
111.57 

2.02 
2.33E-09 
5.78E-05 
5.78E-05 
2.34E-08 

CellFIl 
.063 

Forecast CANCER RISK 

Frequency Chart 

JQ 
O 

.047   .. 

.031 

.016   .. 

.000 

O.OOE+O 2.75E-6 5.50E-6 8.25E-6 

9,905 Trials Shown 
620 
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OCCUPATIONAL HUMAN HEALTH EXAMPLE 
(SIMULATION 1) 

Forecast: CANCER RISK (cont'd) 

Percentiles: 

Percentile 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 
55% 
60% 
65% 
70% 
75% 
80% 
85% 
90% 
95% 

100% 

Value 
2.33E-09 
4.17E-08 
7.19E-08 
1.05E-07 
1.39E-07 
1.76E-07 
2.16E-07 
2.60E-07 
3.16E-07 
3.81 E-07 
4.46E-07 
5.31 E-07 
6.43E-07 
7.75E-07 
9.43E-07 
1.17E-06 
1.50E-06 
1.97E-06 
2.81 E-06 
4.41 E-06 
5.78E-05 

End of Forecast 
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OCCUPATIONAL HUMAN HEALTH EXAMPLE 
(SIMULATION 1) 

Assumptions 

Assumption: Soil Ingestion Rate 

Lognormal distribution with parameters: 
Mean 50.00 
Standard Dev. 50.00 

Selected range is from 0.00 to 1,000.00 
Mean value in simulation was 49.88 

1 
1.11 t09»! üflJT KJ.01 

—r 

Assumption: Exposure Frequency 

Triangular distribution with parameters: 
Minimum 125.00 
Likeliest 219.00 
Maximum 300.00 

Selected range is from 125.00 to 300.00 
Mean value in simulation was 214.67 

IK.« IM.» V.7M IM.M MO.« 

Assumption: Exposure Duration 

Lognormal distribution with parameters: 
Mean 7.30 
Standard Dev. 12.00 

Selected range is from 0.00 to 50.00 
Mean value in simulation was 6.40 

Assumption: Body Weight 

Lognormal distribution with parameters: 
Mean 71.00 
Standard Dev. 15.90 

Selected range is from 40.00 to 150.00 
Mean value in simulation was 71.19 

End of Assumptions 
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OCCUPATIONAL HUMAN HEALTH EXAMPLE 
(SIMULATION 2) 

Crystal Bali Report 
Simulation started on 2/22/95 at 23:46:27 

Simulation stopped on 2/22/95 at 23:48:42 

Sensitivity Chart 

Target Forecast CANCER RISK 

Concentration in Soil 

Exposure Duration 

Soil Ingestion Rate 

Body Weight 

Exposure Frequency 

76.3% HHMHI^rt^^rt 
14.8% ■1 
7.9% ■ 
0.6% 

i i      :      :      : 
0.4% i 

0% 25% 50% 75% 

Measured by Contribution to Variance 

100% 

Note- In this alternate simulation, Cs (concentration in soil) was changed from a determinate value of 
1 000 mg/kg to a lognormal PDF having a mean of 282 mg/kg, a standard deviation of 5,315 mg/kg and 
a truncated range of 0 to 10,000 mg/kg. The Cs data set is the same as that used for the primary simulation 
and the RME/AUG calculations. 
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APPENDIX 3 
MONTE CARLO SIMULATION:  ECOLOGICAL EXAMPLE 

A simple food chain transfer from a prairie dog to a bald 
eagle was used to illustrate the use of Monte Carlo 
simulation in an environmental or ecological evaluation. 
For illustration purposes, a hazard quotient (HQ) 
equation was used as follows: 

HQ PI 
TRV 

(1) 

FR = CR x EF 
BW 

(3) 

Available data for this exercise also included the fraction 
of a bald eagle's diet that was comprised of medium 
mammals (FMM) and the portion of this medium 
mammal diet that was prairie dog (PPD). These 
variables define the FPD, as follows: 

Where: 

Dl Daily   Intake   of   a   specific   chemical 
contaminant (mg/kg-day) 

TRV    =   Toxicity Reference Value (mg/kg-day) 

The toxicity reference value (TRV) is a species-specific 
(i.e., bald eagle) and chemical-specific toxicity factor 
analogous to a reference dose (RfD) for wildlife. The 
daily intake (Dl) (i.e., the average amount of the 
chemical at the body's exchange boundary) is described 
by the following equation: 

Where: 

FMM 
PPD 

FPD = FMM x PPD 

kg medium mammals/kg food 
kg Prairie Dog/kg medium mammals 

(4) 

Additionally, it was assumed that the exposure duration 
equaled the averaging time (i.e., ED = AT). Equation 
No. 2 therefore was modified to allow for these available 
input variables and assumptions, as follows: 

Dl C x CR x EF x Fl x FPD x ED 
BWx AT 

(2) HQ = C x FR x Fl x FMM x PPD 
TRV 

(5) 

Where: 

C 

CR 

EF 
Fl 

FPD = 

ED = 
BW = 
AT = 

Contaminant Concentration (mg/kg Prairie 
Dog tissue) 
Contact Rate (kg food /day), the amount of 
food ingested on a daily basis by a bald 
eagle 
Exposure Frequency (365 days/year) 
Fraction Ingested (unitless), the portion of 
the diet that comes from the contaminated 
area 
Fraction of a bald eagle's diet that is prairie 
dog (kg Prairie Dog tissue/kg food) 
Exposure Duration (years or days) 
Bald eagle's Body Weight (kg) 
Averaging Time (years or days) 

In this example the concentration term (C) reflects the 
level of contaminant (dieldrin) in prairie dog. 

Data available for this evaluation included information on 
a bald eagle's feed rate (FR), defined as the amount of 
food ingested daily by a bald eagle per unit of body 
weight: 

Calculation of a Hazard Quotient Using a Deterministic 
Approach 

Point estimate hazard quotients were calculated for both 
average (AVG) and reasonable maximum exposures 
(RME), analogous to the risk descriptors for human 
health evaluations. Assumed values for the input 
parameters in Equation No. 5 are listed below: 

C = 3.74E-01 mg dieldrin/kg prairie dog (upper 
95th confidence limit of the arithmetic mean 
of 126 measured values, calculated using 
one-half the reported detection limit for 
nondetects and the measured value for 
detected results) (ESE 1988). 

FR = 12.3E-02 kg/kg (for RME, maximum value, 
equal to the 93rd percentile of data cited in 
USFWS 1992); 8.91 E-02 (for AVG, arithmetic 
mean of data cited in USFWS 1992) 
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Fl    =1.0  (for RME, assumes all  prairie dogs 
ingested are from the contaminated area); 
0.5 (for AVG, assumes one-half of all prairie 
dogs ingested are from the contaminated 
area) 

FMM     =    0.936 (value cited in USFWS 1992) 
PPD    =    0.706 (calculated from data in USFWS 1992) 
TRV    =    1.10E-03 (Ford et al. 1992) 

Based on these assumptions, the hazard quotients for a 
bald eagle due to the ingestion of a prairie dog food 
source contaminated with dieldrin are estimated to be 
2.8E+01 (RME) and 1.00E+01 (AVG). 

Calculation of Hazard Quotient Using Monte Carlo 
Simulation 

The same equation (Equation 5) used to calculate a 
point estimate of the hazard quotient is used in Monte 
Carlo simulation. The major difference is that most of 
the six input parameters can be defined by probability 
distribution functions (PDFs) instead of discrete values. 
For this example, PDFs were readily available for two 
variables in Equation No. 5, the concentration and feed 
rate terms. For the remaining input parameters, PDFs 
were estimated or assumed or discrete values were 
used. Each input variable selected for this example, 
expressed in terms of "distribution type (mean, standard 
deviation), restrictions," is listed below. 

C = Lognormal (3.634E-01, 1.368E + 00). 
truncated at 0 mg/kg (the concentration of 
dieldrin cannot be a negative number; 
arithmetic mean and standard deviation 
were calculated from 126 measured values, 
using one-half the reported detection limit 
for nondetects and the measuied value for 
detected results) 

FR = Normal (8.913E-02.2.689E-02) (values cited 
in USFWS 1992), truncated at 4.45E-02 
kg/kg-bw/day (professional judgment) 
because it was assumed that a bald eagle 
consuming less food than one-half the 
arithmetic mean would either starve to death 
or become so weakened as to become 
vulnerable to predation 

Fl    =    Uniform: minimum = 0.01, maximum = 1.0 
(professional judgment) 

FMM     =    Determinate value: 0.936 (value cited  in 
USFWS 1992) 

PPD    =    Determinate value: 0.706 (calculated from 
data in USFWS 1992) 

TRV    =    Determinate value: 1.10E-03 (Ford et al. 
1992) 

Based  on these assumptions, 
calculated to be l.04E+01(a). 

the mean HQ was 
An HQ of less than 

1.0E+00 indicates a nonhazardous situation. The Monte 
Carlo evaluation provides additional statistical 
information. For example, examination of the distribu- 
tion of hazard quotients calculated by the Monte Carlo 
simulation indicates that approximately 60 to 65% of the 
bald eagle population would exceed the benchmark 
value of 1.0E+00. Additionally, the results predict that 
50% of the bald eagle population would exhibit a HQ 
greater than 2.05E+00 and for 15 to 20% of the bald 
eagle population the HQ would be expected to exceed 
the calculated mean HQ value. The 90th and 95th 
percentiles for the hazard estimate were 2.06E+01 and 
3.86E+01, respectively. The 100th percentile of this 
highly skewed distribution is 2.01 E+03, which represents 
a very unlikely scenario. 

A typical Crystal Ball output report of this example 
problem is presented on the following pages for 
illustration purposes.' ' This includes a summary 
description and statistics of the simulation, an output 
frequency distribution chart of the calculated hazard 
quotient probabilities, hazard quotient values for 
specified percentiles, and the numerical descriptors and 
distribution shapes for each of the variable input 
parameters. 

References 

ESE. 1988. Litigation technical support services. Rocky 
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study, winters 1986-1987, 1987-1988, final report. 
Contract DAAK11-84-D-0016. September 1988. 

(a) Monte Carlo simulation was conducted using Crystal Ball from Decisioneering, Inc. Results were based on 
10,000 iterations using Latin hypercube sampling (100 divisions) and a burst mode option of 5. 

(b) The report presents results calculated by Crystal Ball using its "exact statistics" option. This takes about 12% 
longer (under these run conditions) on an IBM PS/2 Model 70 20 MHZ computer than using the "approximate 
statistics" option. Use of a math coprocessor appeared to speed up exact calculations by about 14-T8%, but 
approximate calculations by only 2 to 3%. Run conditions can substantially affect computation time (e.g., on 
this system, using a "burst mode" size of 50 required twice as much time as a burst mode of only 5). This 
10,000 iteration run on the coprocessor machine required about 25 minutes. 
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Superfund '92 Proceedings. Washington, DC: 
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USFWS. 1992. U.S. Fish and Wildlife Service. The 
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Crystal Ball Report 
Simulation started on 11/29/94 at 15:04:23 
Simulation stopped on 11/29/94 at 15:28:38 

Forecast Hazard Quotient 

Summary: 
Certainty Level is 98.81% based on Entire Range 
Certainty Range is from -Infinity to 1.25E+2 
Display Range is from 0.00E+0 to 1.25E+2 
Entire Range is from 1.66E-3 to 2.01 E+3 
After 10,000 Trials, the Std. Error of the Mean is 0.44 

Statistics: DisDlav Ranae 
Trials 9881 
Mean 7.09E+00 
Median (exact) 1.99E+00 
Mode (exact) 1.66E-03 
Standard Deviation 1.41E+01 
Variance 2.00E+O2 
Skewness 4.01 
Kurtosis 22.59 
Coeff. of Variability 1.99 
Range Minimum O.O0E+OO 
Range Maximum 1.25E+02 
Range Width 1.25E+02 
Mean Std. Error 1.42E-01 

Entire Range 
10000 

1.04E+01 
2.05E+00 
1.66E-03 

4.36E+01 
1.90E+03 

(unavailable) 
(unavailable) 

4.19 
1.66E-03 

2.01 E+03 
2.01 E+03 
4.36E-01 

C6IIJ15 
.21   -r- 

.16    J_. 

to 
xa 
e 

.10 

.05   i.. 

Forecast: Hazard Quotient 
Frequency Chart     9881 Trials Shown 

2.061 

. 515 

s   i 
re 
9 
3 

.00 

0.00E+0 3.13E+1 6.25E+1 9.38E+1 1.25E+2 

:. 0 
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Forecast Hazard Quotient (cont'd) 

Percentiles for Entire Range: 

Percentile 
0% 
5% 

10% 
15% 
20% 
25% 
30% 
35% 
40% 
45% 
50% 
55% 
60% 
65% 
70% 
75% 
80% 
85% 
90% 
95% 

100% 

Hazard Quotient fexacn 
1.66E-03 
7.41 E-02 
1.60E-01 
2.69E-01 
3.98E-01 
5.53E-01 
7.52E-01 
9.87E-01 
1.26E+00 
1.60E+00 
2.05E+00 
2.56E+00 
3.23E+00 
4.21 E+00 
5.45E+00 
7.07E+00 
9.30E+00 
1.32E+01 
2.06E+01 
3.86E+01 
2.01 E+03 

End of Forecast 
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Assumptions 

Assumption: Concentration in Prairie Dog 

Lognormal distribution with parameters: 
Mean 
Standard Oev. 

3.634E-01 
1.368E+00 

Selected range is from 0.000E+O to +lnfinity 
Mean value in simulation vas 3.663E-1 

Assumption: Feed Rats 

Normal distribution with parameters: 
Mean 8.913E-02 
Standard Dev. 2.689E-02 

Selected range is from 4.450E-2 to +lnfinity 
Mean value in simulation was 9.197E-2 

Assumption: Fraction Ingested 

Uniform distribution with parameters: 
Minimum 
Maximum 

Selected range is from 0.01 to 1 00 
Mean value in simulation was 0.50 

0.01 
1.00 

End of Assumptions 
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Does the use of Monte Carlo Methods in risk 
assessment add value? A case study of the 
Sangamo-Weston/Lake Hartwell site. 

by Ted W. Simon, Ph.D., D.A.B.T., Toxicologist 
U.S. Environmental Protection Agency 

Probabilistic methods in risk 
assessment such as Monte Carlo have been 
touted in many quarters as a preferred 
alternative to the presently used deterministic 
methods. Many believe these deterministic 
methods lead to cleanup levels that are 
excessively health protective and more costly 
to achieve. The health protectiveness or 
"conservative" nature of present methods in 
risk assessment stem from an appropriate 
desire by regulators in the face of often 
considerable uncertainty to give the benefit 
of the doubt to the potentially exposed 
public.   This article presents a case study of 
a Superfund site at which a Monte Carlo 
analysis was used in the risk assessment. 

As will be seen, the Monte Carlo risk 
assessment formed a small but important part 
of the set of decision criteria used at the 
Sangamo site. Although the Monte Carlo 
risk assessment did not drive the decision, its 
value was to provide additional information 
or perspective for risk managers. 

The Sangamo-Weston Site, Pickens, 
South Carolina 

The Sangamo plant manufactured 
capacitors that used polychlorinated 
biphenyls (PCBs) as their dielectric 
substance from 1955 to 1977. During that 
time, waste water containing PCBs was 
discharged into Town Creek. The PCBs 
migrated downstream where they were 
deposited into the sediment of Twelve Mle 

Creek and Lake Hartwell. Sediment samples 
taken from Lake Hartwell in 1991 and 1992 
showed that over 700 acres of lake bottom 
were contaminated with PCB-containing 
sediments. Fish tissue collected from Lake 
Hartwell by the South Carolina Department 
of Health and Environmental Control 
(SCDHEC) in 1991 and 1992 revealed 
concentrations of PCBs in largemouth and 
hybrid bass, channel catfish and bluegill. 

Lake Hartwell is renowned for the 
quality of its fishing throughout the south. 
The larger migratory hybrid bass are prized 
as game fish. Many people living in 
northeast Georgia and western South 
Carolina depend on the lake for their living - 
fishing guides, bait shop operators, etc. 
Fishing restrictions at the lake affect them 
profoundly. 

Fish Tissue Sampling Data and the 
Distribution in Game Fish 

PCBs were found in 100% of the fish 
sampled. In largemouth and hybrid bass, the 
concentrations ranged from 0.5 to 19.7 
mg/kg with a mean of 5.4 mg/kg. The 
acceptable level for the Food and Drug 
Administration for PCBs in fish tissue for 
occasional consumption (e.g. fish bought in 
the grocery store) is 2 mg/kg. For the 
Monte Carlo risk assessment, a lognormal 
distribution was used to model the 
uncertainty in fish tissue concentrations in 
fish from Lake Hartwell. The corresponding 



deterministic Exposure Point Concentration 
for fish in the Twelve Mile Creek arm was 
7.0 mg/kg, calculated as the 95th percent 
upper confidence limit on the mean. 

Exposure Assessment 
Exposure distributions were obtained 

from the Lake Hartwell and Twelve Mile 
Creek Recreational Angler Survey performed 
in 1992 by the South Carolina Wildlife and 
Marine Resources Department (SCWMRD). 
Almost 900 survey responses were available 

and were used to evaluate risk associated 
with fish consumption lake wide. Survey 
respondents answered questions regarding 
typical meal sizes and the number of 
individuals who might share the angler- 
caught fish, i.e. Ingestion Rate (IR). The 
number of meals and individual would eat in 
a month, i.e. the Exposure Frequency (EF) 
was also determined. 

One would expect meal sizes to be 
correlated with age, body weight and gender; 
however, the information needed to effect 
these correlations in the Monte Carlo 
simulation was not included in the survey. 
The results of the survey for meal size may 
be biased upwards. The geometric mean of 
this survey was more than two times higher 
than the geometric mean of a USD A survey 
(120 g/meal) performed in the '70's. 

Exposure Duration (ED) was 
assumed to be equal to enure of residence. 
Body weights (BW) were taken as the mean 
value for males and females within ten year 
age spans from age 25 to age 75 with an 
additional age group of 18-24 years. 

The distribution of lifetime PCB 
intakes was determined by random sampling 
from the concentration, EF and ED 
distributions using Latin Hypercube 
sampling. Once complete, the distribution of 
intakes was multiplied by the upper bound 
cancer slope factor for PCBs to obtain a 
distribution of risks. 

Distribution of Risks from Fish 
Consumption at Sangamo-Weston/Lake 
Hartwell 

The deterministic risk from fish 
consumption calculated using reasonable 
maximum exposure (RME) assumptions to 
be lxl0"2.   From the Monte Carlo risk 
assessment, the 90th percentile risk was 
7x10"3, and the 95th percentile was lxl 0'2, 
the same as the RME risk. 

Cleanup Goals for Fish in Lake Hartwell 
The FDA tolerance level of 2 ppm 

was selected as the preliminary remediation 
goal. Using EPA's risk assessment methods, 
a cancer risk of lxl0"4 is associated with a 
fish tissue concentration of 0.036 ppm. This 
level was based on a receptor consuming 357 
grams offish per meal, 60 meals per year 
over a 30 year period. Achieving this low 
concentration in fish tissue was determined 
to be technically impracticable. 

Sedimentation Study 
As a part of the Remedial 

Investigation, a modeling study of sediment 
deposition was 
performed for the 
Twelve Mile Creek 
arm. The study 
showed that 
sediment is 
continually being 
transported from 
upstream locations 
and deposited in 
Lake Hartwell. 

The study also showed that the PCB- 
contaminated sediment would be completely 
covered by upstream sediment within 30 
years. 

Combining the sediment deposition 
model with a model for accumulation of 
PCBs in fish from sediment showed that the 
risks from fish consumption would continue 

Time Risk 
Present lxlO"2 

1 year 4x10-4 

10 years 6x10"5 

20 years 6x10"6 

27 years lxl 0"6 

Risk Reduction in time 
due to sediment 
deposition 



to decrease. The table shows the modeled 
reduction in risk with time assuming that 
clean sediment was being deposited in the 
lake. 

Remedial Alternatives 
The nine evaluation criteria for 

Superfand remedies are specified in the 
National Contingency Plan 40 CFR 
300.430(e)(9). These nine criteria are: 

1) Overall protection of human health 
and the environment 

2) Compliance with Applicable or 
Relevant and Appropriate 
Requirements 

3) Long-term Effectiveness and 
Permanence 

4) Reduction of Toxicity, Mobility or 
Volume 

5) Short-term Effectiveness 
6) Implementability 
7) Cost 
8) State Acceptance 
9) Community Acceptance 

There were five proposed remedial 
alternatives: (1) No action; (2) Institutional 
Controls, including fish and sediment 
monitoring and public education; (3) Fishery 
Isolation, consisting of a semi-permanent 
"fish fence" at a bridge to prevent migratory 
hybrid and striped bass from entering the 
Twelve Mile Creek arm; (4) Capping with a 
Sediment Control Structure, consisting of 
placing clean sediment over the PCB 
contaminated sediment in the lake and 
constructing a weir to reduce the flow of 
contaminated sediment from upstream 
locations; and (5) Confined Disposal, a plan 
to rechannel the Twelve Mile Creek arm, 
dredging approximately 1.3 million cubic 
yards of sediment into a near shore landfill 
and stabilization of the dredge spoils with 
cement-based additives. 

EPA chose Fishery Isolation as its 
preferred alternative. The community 
around Lake Hartwell did not accept this 
alternative (criterion 9). Instead, the 
community preferred Institutional Controls. 
It was felt that the "fish fence" would 
interfere with boating. The cost for 
alternatives 4 and 5 was significantly greater 
than any of the others with alternative 4 
priced at between 30 and 50 million dollars 
and alternative 5 at about 600 million dollars. 

The exact role of the Monte Carlo 
assessment was 
equivocal. The 
point estimate of 
risk for fish 
consumption in 
the Twelve Mile 
Creek arm is 
lxl0"2 as shown 
in the table. This 
risk level is far above the upper end of the 
risk range of lxl0"4 discussed in the NCP. 
However, the possible upward bias in the 
fish ingestion estimates indicated that the 
risks estimated from the distribution could 
be overestimates. The magnitude of 
overestimation of risk is unknown. Despite 
the fact the both the high end risk estimate 
from the Monte Carlo analysis and the RME 
point estimates were outside the acceptable 
risk range, the sedimentation study, cost and 
community acceptance were the basis for the 
remedial decision. 

You may contact Ted W. Simon for 
information at simon.ted@epamail.epa.gov. 

Percentile 
RME (point Est.) 
90 (High End) 
50 (Central Tendency) 
20 (Approx. Mode) 

Risk Level 
1x10 
7x10": 

lxl 0": 

5x10^ 

,-2 

Risks from fish consumption at 
Lake Hartwell in 1992 


