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SIMULATION STUDIES EXAMINING POSSIBLE MECHANISMS OF
TRICHLOROETHYLENE CARCINOGENICITY

EXECUTIVE SUMMARY

Objective
There has been much recent interest regarding methods of evaluating potential human cancer
risks associated with trichloroethylene (TCE). Stochastic biologically based dose-response
(BBDR) models, along with physiologically based toxicokinetic (PBTK) models, offer possible
means of reducing uncertainties associated with these risks. BBDR models have been used to
evaluate the effects of cancer initiators and promoters at a cellular level. This report examines
the sensitivity of the Moolgavkar-Venzon-Knudson (MVK) 2-stage model to variations in model
parameters, and the ability of the model to distinguish between initiating and promoting activity
of TCE. Maximum-likelihood estimation is used to fit parameters to simulated data sets
assuming different carcinogenic mechanisms for TCE, and assuming different dose-response
functions for net cell proliferation. Monte Carlo simulations are used to simulate experimental
variability. Thcsé analyses provide information regarding uncertainties associated with
carcinogenic mechanisms of TCE, and provide possible hypotheses for laboratory-based
toxicological evaluations.

Summary of Results

¢ This simulation exercise demonstrates the range of uncertainties that result from different
model assumptlons apphed to rodent toxicity data and demonstrates critical data needs.

* Promotlon may be a more important contributor to tumor hazard than genotoxicity over a
lifetime of chronic exposure in mice. In these simulations, a doubling of initiation rate
resulted in a 5-fold increase in tumor hazard at day 730, whereas a doubling in promotion rate
resulted in a 15-fold increase in tumor hazard at day 730.

¢ The MVK 2-mutation model fit to TCE data is highly sensitive to net cell proliferation rate
(a—P).

¢ The model was not able to discriminate well between the respective contribution to tumor

risk ffom initiating vs. promoting action using standard published rodent data applied to a

chronic exposure scenario.



¢ Improvements in discrimination resulted from simulating early sacrifices (56-500 days), as
indicated by decreased correlation coefficients between initiation and promotion parameters.

¢ Use of a linear model results in implausible parameter fits and overestimates of risk (~3
orders of magnitude at the median) if the true dose-response relationship in cell proliferation
is quadratic.

¢ Reductions in uncertainty would likely result from collection of intermediate foci data and
other mechanistic information, as well as incorporating toxicokinetic and metabolite toxicity

information into the TCE model.

INTRODUCTION

This work was performed in support of development of risk based human health standards to be
applied to trichloroethylene (TCE) under the United States Air Force and GeoCenters Inc

Contract N00014-95-D-0048, DO 0003 and Subcontract GC-2994-03-96-004. The focus of this
work was to evaluate uncertainties associated with possible carcinogenic dose-response of TCE.

The Statement of Work associated with this contract (as of 11/7/96) includes the following

analyses:

1. Evaluation of existing TCE toxicity data (discussed under TCE Toxicology);

2. Evaluation of physiologically based toxicokinetic (PBTK) models for TCE (discussed under
TCE Toxicokinetics);

3. Quantitative uncertainty analysis and sensitivity analysis to identify important data gaps
within PBTK and biologically based dose-response (BBDR) models (discussed under
Simulations);

4. Comparisons of appropriate BBDR models (discussed under Simulations).

BACKGROUND

Biologically-Based Cancer Models

Carcinogenic potencies of xenobiotics are estimated by modeling data from epidemiological

studies, animal toxicology experiments, and in vitro investigations. There are a number of



models that have been used for this purpose; ranging from simple statistical data fits to
mechanistic biologically based dose-response (BBDR) models. Existing BBDR models have
evolved from the original multistage model of Armitage and Doll (1957) (AD model).
Sophisticated variants of the AD model (Kopp-Schneider & Portier 1991), as well as the
Moolgavkar-Venzon-Knudson (MVK) 2-mutation clonal expansion model (Moolgavkar &
Luebeck 1990) allow incorporation of cellular-level mechanistic events such as dose-response in
cell proliferation, and therefore allow exploration of carcinogenic mechanisms. The MVK model

is explored here as the basis for simulations.

Figure 1 is a graphical depiction of the MVK model. Briefly, the MVK model simulates cancer
as a 2-mutation stochastic process, incorporating rates of mutation and cell proliferation. The
MVK model has been applied to a number of experiments designed to investigate carcinogenic
mechanisms. For example, the model has been applied to experimental data describing the
growth kinetics of enzyme-altered liver foci in rats treated with phenobarbital and o-
hexachlorocyclohexane (Luebeck et al. 1995), as well as data describing initiation with
diethylnitrosamine and subsequent promotion with 2,3,7,8-tetrachlorodibenzo-p-dioxin or
1,2,3,4,6,7,8-heptachlorodibenzo-p-dioxin (Moolgavkar et al. 1996). The model can be applied
to appropriate human data; for example, interactions between tobacco smoking and radon
exposures in humans have been explored in an analysis of the Colorado Uranium miners cohort

(Moolgavkar et al. 1993).

Simulation exercises using variants of the AD and MVK models have been conducted in order to
explore the behavior of these models. For instance, Kopp-Schneider and Portier (1991) found
that the ability to discriminate between different models applied to actual and simulated tumor
incidence data is limited. Portier and Edler (1990) found that two-mutation model simulations
were unable to clearly distinguish between promotion and initiation mechanisms at low doses.
These and other simulation exercises have pointed out the problematic nature of using
information from current experimental designs in mechanistic models. However, simulations are

useful in terms of positing hypotheses for improved experimental design and data collection.
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Figure 1: Moolgavkar-Venzon-Knudson (MVK) 2-mutation clonal expansion model. This is a
simplification of the model form, which can be found in Moolgavkar and Luebeck (1990).

TCE Toxicology

There is debate regarding the specific mechanisms of action of TCE that may relate to human
cancer risk (IARC 1995). TCE has a wide range of toxic effects in humans, mainly manifested at
high doses. Exposures to TCE at concentrations above about 200 ppm can cause intoxication,
headaches, and neurological problems. Long-term chronic health effects to humans from lower-
dose exposures are uncertain. TCE is currently considered by the International Agency for
Research on Cancer as "probably carcinogenic to humans" (classification 2A), based on "limited”

evidence in humans and "sufficient” evidence from rodent carcinogenicity assays (IARC 1995),



but it is by no means certain that this endpoint is appropriate in terms of risk assessment and

management. EPA is currently reviewing its position on TCE's possible carcinogenicity.

TCE (1000 mg/kg by gavage, lifetime exposure) appears to cause liver cancer in mice, but not in
rats; and perhaps kidney tumors in rats, but not in mice (NTP 1988, 1990). Increases in lung
tumors have been seen in mice inhaling 300 and 600 ppm chronically for a lifetime (Maltoni
1986, 1988). The weight-of-evidence suggests that TCE's hepatic and perhaps renal
carcinoécnicity is largely attributable to two metabolites: dichloroacetic acid (DCA) and
trichloroacetic acid (TCA). Differences in metabolism likely explain inconsistencies in tumor
risk across species (IARC 1995). Humans appear to metabolize TCE in a manner more akin to
rats than mice; furthermore, peroxisomal proliferation does not appear to occur in human
hepatocytes as opposed to rodent hepatocytes upon TCA exposure (Elcombe 1985, Green 1990).
The weight-of-evidence suggests that TCE (including metabolites) may act as a mitogen in
rodent liver, causing increased cell proliferation; and that genotoxicity is a minor or nonexistent
mode of action (Klaunig et al. 1991, Dees & Travis 1993). The appendix (page 36) summarizes
the current state-of-knowledge regarding TCE, DCA, and TCA mechanisms of toxicity. Based
on this information, it is difficult to draw conclusions as to the human carcinogenicity of TCE at
levels likely to be found in the occupational or general environment. A number of investigators
have used toxicokinetic modeling approaches to perform interspecies extrapolations for the
purpose of risk assessment of TCE (e.g. Bogen & G:)1d 1997, Cronin et al. 1995), however, these
studies have not explored cellular-level mechanistic considerations.

TCE Toxicokinetics

TCE is metabolized by microsomal P450 enzymes (CYP 2El) to chloral hydrate (CH) and by
cytosolic enzymes to dichloroacetic acid (DCA) and other minor metabolites. CH is then
oxidized to trichloroacetic acid (TCA) and trichloroethanol. These metabolites are then subject
to further degradation and oxidative/reductive metabolism, as well as glutathione and
glucuronide conjugation. Minor intermediate metabolites include possible TCE epoxides,
dichlorovinylcysteine (DCVC), dichloroacetyl chloride, chloroform, and DCA. The major

metabolic urinary excretion products of TCE across species are TCA and glucuronide-conjugated



trichloroethanol (TCOG), although there are species differences in fractional amounts. Mice
show higher rates of biotransformation compared to rats. Additionally, mice appear to
metabolize TCA to DCA, which appears' as 1-2% of total urinary metabolite; whereas rats
produce less DCA. Humans have lower rates of metabolism than mice or rats. DCA has not
been detected in appreciable amounts as a human excretion product. TCA and DCA appear to be
the metabolites that are most important in terms of mammalian liver toxicity (Daniel 1963,

Dekant et al. 1986, Green & Prout 1985, Larson & Bull 1992a,b, Templin et al. 1993).

The earliest published multi compartment physiologically based toxicokinetic (PBTK) models
for TCE were relatively simple, first-order models using three to five compartments (Fernandez
etal. 1977, Sato et al. 1977, Andersen et al. 1987). The Andersen (1987) model was structurally
based on Gargas’ generic five-compartment PBPK model (1986), and fit to Fischer 344 rat
experimental data. One major goal of that initial work was to describe the overall rate of TCE
metabolism. A number of subsequent publications included modifications and applications of
this model (Fisher et al. 1989, Fisher et al. 1991, Allen and Fisher 1993, Fisher and Allen, 1993).
One such modification extended the model to include simple one-compartment models for the
metabolite TCA, in order to track the body burden of this compound. Alternate TCE models
were also proposed, such as a four-compartment model (Bogen 1988) with saturable Michaelis-

- Menten metabolism, which was based on an earlier model for styrene (Ramsey and Andersen

1984).

All TCE models published after 1993 appear to be modifications or extensions of Fisher and
Allen’s work published in that year. The work by Bogen and Gold (1997) relies on steady-state
and pseudo-steady state (for regularly repeated bolus doses such as dietary exposure) solutions to
the Fisher-Allen 1993 PBPK model, and demonstrates the application of these solution to cancer
risk assessment. This model is advantageous in that it proposes a simplified form of the model
that only requires minimal computational effort. However, the assumption of steady state
exposure is only applicable to a narrow set of possible exposure scenarios, such as proposed
maximum chronic doses. Most authors have taken the opposite approach, expanding the Fisher-

Allen model to increase its flexibility. The expansions include work by a number of authors



(Clewell et al. 1994, Clewell et al. 1995, Clewell 1996, Cronin et al. 1995, Fisher 1997). Cronin
et al.’s model is essentially identical to the Fisher-Allen 1993 model, although it is unique in

terms of the ability to propagate parameter variability by means of Monte Carlo simulation.

Substantial differences exist between the current model forms. Fisher’s model, for example,
utilizes multiple compartments to model the circulation of each of TCE’s metabolites, while
Clewell chooses single-compartment models for all metabolites except TCOG. The use of more
compartments (i.e., Fisher’s model) is likely more realistic, and allows the model greater
flexibility in simulating observed data;, however, it requires more computational time which may
not be necessary or fully justified by the available amount of data. There are also numerous
differences between the models in terms of rate constants, physiologic parameter values, and
metabolism pathways. These differences reflect the impact of experimental variation and
incomplete knowledge on model development, and are not easy to reconcile. A comparison of
predicted concentration vs. time curves between models under a variety of exposure conditions
would prove useful for evaluating the impact of these model differences on toxicokinetic

outcomes of interest.

Our current efforts are targeted toward linking one of the PBTK models with the MVK model in
order to provide dose- and time- dependent e/stimatcs of risks posed by TCE metabolites. It may
be possible to model the effects of key TCE metabolites and their interactions on cellular
initiation and promotion rates in the MVK model. While this information is not currently
available, hypothesized models (e.g., constant, linear, quadratic) and interaction effects (e.g.,
additive, multiplicative) of the impact of metabolite doses could be used, and then tested against
existling TCE dose-response data. This exercise should help identify likely mechanisms of TCE
carcinogenicity. Continuing efforts will also identify the value of incorporating TCE metabolite
mechanistic iﬁformation into the MVK model. A summary of this information appears in

Appendix.



METHODS

Hypothetical Experimental Design

Data are limited regarding oral liver carcinogenicity of TCE. Furthermore, tumor incidence data
are not ideal for mechanistic modeling. However, it is still possible to explore mechanistic
possibilities using the MVK model for the purpose of hypothesis generation. Therefore,
simulation exercises were conducted using the MVK model applied to an existing TCE animal
toxicology experiment (NTP 1990). This study followed standard National Toxicology Program
lifetime carcinogenicity bioassay protocols. The species of interest was the male B6C3F1 mouse
(female mice did not have a strong tumor response in this experiment). The organ of interest was
the liver. Hepatocellular carcinoma was the endpoint of interest. Extrapolations to the human

species would require integration of toxicokinetic differences, and were not evaluated here.

Model Form

The mathematical and biological bases of the MVK model are well-described elsewhere
(Moolgavkar & Luebeck 1990, Heidenreich et al. 1997), and for brevity's sake are not repeated
here. A semi-stochastic version of the model was used in which the growth rate of normal cells
is assumed to be constant, and the growth rate of altered cells is assumed to be stochastic. Figure
1 is a graphical depiction of the model and basic parameters. The Kolmogorov equation-derived
exact solution for piecewise constant parameters was used to calculate the tumor hazard function

in a variety of scenarios.

Fitting parameters of the MV'K model from experimental data is problematic in that not all
biological model parameters can be determined from tumor incidence data. Additional
information, such as cell kinetic parameters or locus specific mutation rates often need to be
obtained from other sources. However, useful parameterizations can still be constructed using
the method of Heidenreich et al. (1996, 1997) or the method of Sherman and Portier (1997), thus
addressing this nonidentifiability problem. The method of Heidenreich et al. (1996, 1997) was

used here.



Data Sources

Data from the National Toxicology Program (NTP) 2-year TCE carcinogenicity assay (NTP
1990) were used to fit model parameters. Treated animals received doses of 1000 mg/kg TCE by
gavage, control animals were given corn oil (vehicle). Exposures started at age 8 weeks.

Hepatocellular carcinomas were analyzed here.

For male mice, the control group consisted of 48 animals, with 8 animals developing carcinomas;
and the dosed group consisted of 50 animals, with 31 animals developing carcinomas. In an
initial analysis, it was assumed that the tumors were either all fatal (i.e. caused immediate death)
or all incidental (i.e. did not cause death of the animals) for likelihood constructions. Results
obtained for the incidental scenario wére in better agreement with experimentally observed locus
specific mutation rates (see below). The incidental tumor assumption is also supported by
statistical tests provided in the NTP report (NTP 1990).

Model Parameterization

The following parameter combinations were used (see Heidenreich et al. 1996, 1997), due to the

parameter nonidentifiability problem mentioned earlier:

Parameter 1: p; = o0——U

Parameter 2: p, = vXu

Parameter 3: p3 = a,/ u/vx

where:

a = cell division rate per day

B = cell death/differentiation rate per day -
v = first mutation rate (initiation) per day
X = number of susceptible cells

) = second mutation rate (malignant conversion) per day.



Cell division rates can change over time. Therefore, in addition to these parameter combinations,
the ratio of cell division rates 0/(t; across the change point at, say, time #; = 56 days is also
necessary to calculate the hazard function. This can be determined, at least in principle, from the
tumor data. However, preliminary analyses showed that the likelihood was very insensitive to p3
and to the ratio o/oy. Therefore, p; was fixed at a plausible value (see below) and the ratio of

the as fixed. This choice improved the convergence of the maximum likelihood estimation.

It is reasonable to assume that the second mutation rate Ll is very small compared to a—f3;
therefore p; approximately equals the net cell proliferation, and reflects the chronic promotion
rate. Parameter p; is the product of the mutation rates, times the number of normal susceptible
cells, and reflects the chronic initiation rate. The last parameter, p3, has no particular biological
meaning, but is proportional to the cell division rate o. This parameter is of particular interest

for the risk assessment of TCE, which is believed to be mitogenic.

It is assumed that X, the number of normal susceptible cells, equals the total number of
hepatocytes in the mouse liver, approximately 108 cells (Luebeck et al. 1997). It is further

assumed that v = |, i.e. equality of the first and second mutation rates. Then,

D3 = a/ﬁ

Thus, if o is known, then ps is known. A labeling index-derived cell division rate is available for
hepatocellular foci in B6C3F1 mice (Klaunig 1993). The labeling index for control mice in this
experiment (approximately 0.2) was converted into an estimate of o by means of the method of
Moolgavkar and Luebeck (1992); thus p; was approximated as 3 X 10°. This value was used to

obtain the maximume-likelihood estimates of model parameters shown in Table 1.

10



male B6C3F1 mouse data.

Male mice, fatal tumor assumption

TABLE 1: Maximum-likelihood estimates of MVK model parameters, fit from NTP (1990)

Parameter* Estimates 95% LCL 95% UCL

2 0.5259 x 10° | 0.4188x 10 | 0.6600 x 10

1 (c) 02840x 10" | 02150x10" | 0.3751 x 10

pi (d) 0.3466 x 10" | 02754 x10" 0.4362 x 10

Male mice, incidental tumor assumption

Parameter* Estimates 95% LCL 95% UCL
P2 0.1950x10° | 0.1177x10° | 0.8313x10°
p1(c) -0.3143x 102 | -0.8543x 1072 | 0.2228x 10"
P (d) 0.5926 x102 | 0.5121x10° 0. 6852 x 10™

* p)(c)= p, in controls, p,(d)= p, in dosed animals.

These analyses demonstrate an increase in net cell proliferation. However, it is possible that

TCE increases p,, and not p;.

As mentioned above, the incidental tumor scenario yields plausible estimates of background

mutation rates. Because v = ,/ p2l X,

Veaal = 2.3 % 10 per day

Vincidemal = 1.4 X 107 per day.

SIMULATIONS

Three sets of simulations were performed. The first examiﬁes the sensitivity of the output of the
MVK model to different sets of assumptions regarding the values of p; and p,. The second
examines the effect of different experimental design protocols on the ability of the model to
distinguish the contribution to tumor hazard made by p; vs. p,. The third examines the effects on

excess risk estimates by different assumptions regarding dose-response in net cell proliferation.



Sensitivity of Model Results to Parameter Assumptions

The effect of changes in chronic initiation rate p; (2%, 4%, and 10X the background rate fit from

the NTP data) on tumor hazard are shown in Figure 2. An increase of initiation rate of 10X over

background results in approximately the same increase in tumor hazard. The effect of changes in

chronic promotion rate p;, relative to the fitted value for TCE (0.5x and 2X the TCE rate), are

shown in Figure 3. A doubling of the promotion rate as fit from the TCE data results in a 1.5

order-of-magnitude increase in tumor hazard at the end of the experiment. Therefore, as can be

seen from a comparison of these figures, relatively small changes in the promotion parameter

result in larger increases in tumor hazard over the lifetime of animals as compared to increases in

initiation rate. Therefore, in a "mixed" promoter/initiator mechanistic scenario, the MVK model

indicates that the promotional mechanism may have a larger impact than the initiation

mechanism on lifetime risk.

1E-01
1E-02 - -
1IE-03 1 et eeem e
-E ________ -
g S
=
1E-04
1E-05
IE-% 1 L { 1]
10 210 410 610
Age (Days)
— — —  Initiation2X) .. Initiation (10X)
_____ Initiation (4X) Spontaneous

Figure 2: Sensitivity of tumor hazard to varying model parameters. Values of p, (initiation)
were assumed to be 0.5%, 1.0%, and 2.0x the background initiation rate of
50[day]", with no changes in chronic promotion rate (p,).
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Figure 3: Sensitivity of tumor hazard to varying model parameters. Values of p; (promotion) were
assumed to be 2%, 4%, and 10x the fitted values from the NTP data (0.005 [day]"), with no
changes in chronic initiation rate (p,).

A difficulty arises, however, when an attempt is made to evaluate the contribution to total hazard
in a mixed-mechanism scenario from the individual components. Figure 4 illustrates this
problem. This figure depicts the "individual” contribution to tumor hazard from the parameters
fit from the NTP data, from an increase in background initiation rate of 4x, and from the
combined mechanisms. It is not possible to differentiate the relative contribution to hazard from
the components. Statistical tests were not employed here since hypothetical rather than data-

based changes in parameters were made. ,
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Figure 4: Sensitivity of tumor hazard to varying model parameters. Independent contribution to
tumor hazard from fitted values of p, (promotion) and p, (initiation) fit from the NTP
data are plotted. Additionally, tumor hazard that is associated with the joint effect of
the fitted value of p, and 4X the fitted value of p, are plotted. Note that it is difficult
to separate independent initiation and promotion effects.

Effect of Different Experimental Designs
In order to examine the effect of changes in experimental design on the ability of the model to
discriminate mechanisms, Monte Carlo simulation was used to generate 1000 experiments within

a particular design. The designs are summarized as:

1) n=50 each-group (control and dosed), time of sacrifice=365 to 730 days (standard NTP
design),
2) n=50 each group (control and dosed), time of sacrifice=56 to 500 days,

3) n=100 each group (control and dosed), time of sacrifice=56 to 500 days.
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Sacrifice time points were generated by uniform random deviates in the respective time intervals.
Parameters of the model were fit as described earlier; p; and p, were fit using maximum-

likelihood estimation, and p; was calculated from published data .

Pearson correlation coefficients (r) were calculated between p; as an indication of promotional
action, and p; as an indication of initiating action. As can be seen in Table 2a, a high degree of
correlation is demonstrated between estimates of p; (promotion) and p- (initiation) based on

1000 Monte Carlo simulations of the experiment under the standard NTP design.

TABLE 2: Correlation coefficient matrices for parameters of the MVK model; calculated
under different experimental design assumptions using the NTP (1990) male B6C3F1
mouse data (High correlation coefficients indicate the inability of the model to
discriminate between parameters)

a) n=>50, time of sacrifice=365 to 730 days

i

p; (control) | p, (dosed) | p,(control) | p,(dosed)
P (control) 1.00 0.88 -091 -0.93
p) (dosed) 0.88 1.00 -0.88 -0.89
p- (control) -0.91 -0.88 1.00 0.93
p> (dosed) -0.93 -0.89 0.93 1.00

b) n=>50, time of sacrifice=56 to 500 days

p; (control) | p; (dosed) | p,(control) | p, (dosed)
p) (control) 1.00 0.59 -0.69 -0.67
p1 (dosed) 0.59 1.00 -0.68 -0.81
p- (control) -0.69 -0.68 1.00 0.66
p- (dosed) -0.67 -0.81 0.66 1.00

¢) n=100, time of sacrifice=56 to 500 days

p: (control) | p; (dosed) p> (control) | p, (dosed)
p, (control) 1.00 0.77 -0.78 -0.85
p; (dosed) 0.77 1.00 -0.81 -0.87
p- (control) -0.78 -0.81 1.00 0.79
P> (dosed) -0.85 -0.87 0.79 1.00

Discrimination between the individual mechanisms is improved by increasing the time over
which interim sacrifices are performed, as in Table 2b. The correlations are reduced appreciably

due to information available at earlier time points when the differential behavior of the initiator
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and the promotor is more pronounced. The correlations increase again if the number of

experimental animals is increased, as in Table 2c.
Model Misspecifications using Dose-Response Assumptions

This analysis explored the effects of model misspecification on excess risk estimates. Since
detailed dose-response information was not available for the oral route of exposure, tumor
incidence data were simulated in hypothetical experiments that involved 4 dose groups of
animals with 200 animals in each group, where doses are defined as divisions of the NTP dose
(1000 mg/kg/d over lifetime) as a reference. All doses were assumed to start on day 56. Early -
deaths (other than tumor related) and sacrifices were assumed to be randomly distributed
between 365 and 730 days. Tumors were assumed to be incidental. Assumed doses were:

1) controls (0 mg/kg/d)

2) low dose (10 mg/kg/d)

3) medium dose (100 mg/kg/d)

4) high dose (500 mg/kg/d)
The generalized model parameterization for the data generation was assumed to be as follows:

p1=8+8D + 8§D’

where:

& =0 [i.e. no net cell proliferation in controls]

81,8,=0.02

D =dose
Additionally, the following were set according to the previous analysis:

o =0.03 [fixed]

p2=50X 10°® [set at an equivalent level regardless of dose; i.e. no dose-response in mutation

rates].
The value of 0.02 for & and &, was obtained by assuming a quadratic function and adjusting the

net cell proliferation rate (p, for treated male mice, incidental tumors) to reflect a maximum dose

of 500 mg/kg/d, and to reflect the tumor incidence seen at 1000 mg/kg/d in the NTP experiment.
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Note that the value of p, chosen reflects the results of a high-dose experiment; thus may
overestimate the possible initiation rate at lower doses.

Under these assumptions 1000 experiments were generated using Monte Carlo simulation
with observations at time points that represent sacrifices or times of death from other causes as
described above. Hypothetical incidental tumors were sampled directly from the probability of
tumor. The generated incidence time is the time to the appearance of the first malignant cell in
the tissue (according to the MVK model). That time is then compared with the random time for
death (sacrifice or death from other causes) and the status of the animal as tumor bearing or not
tumor bearing is determined according to whether the incidence time is smaller or larger the time
of death. Each experiment was analyzed using likelihood maximization, with 3 different model
parameterizations:

Model A: quadratic dose-response in net cell proliferation ("correct” underlying model as
defined)

pia = & + 8;x0 +8,D°

Model B: linear dose-response in net cell proliferation
P18 = 6 + 8,D + 8,x0
Model C: linear-quadratic dose-response in net cell proliferation

pic=& + 8D +§D°

Thus, Model A is correct, Model B is misspecified, and Model C is "overspecified" in terms of

describing the simulated dose-response relationship in a parsimonious manner.

/

Table 3 presents the parameter estimation results under the simulated dose-response model
assumptions. The parameter medians obtained from Model A closely coincide with the “true”
values used for the underlying model, which provides a reliability check for the simulation.
However, the considerable variance and skewness of the distributions obtained for & and 9,
indicate that a wide variety of biologically implausible numerical combinations are possible.
This is also observed for Model B. For Model C more symmetric distributions for 8, and 6, were
obtained, although & is still highly asymmetric. Excess risks (probability of tumor in treated

animals minus probability of tumor in control animals at 1.0 mg/kg/d) associated with the three
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models are represented in Figure 5, where it can be seen that the median excess risk as estimated

by the linear model (Model B) is overestimated by approximately 3 orders of magnitude relative

to the median excess risk estimated by the quadratic model (Model A). Negative values evident

in Figure 5 (Model C) are the result of the large variance of 0s.

TABLE 3: Simulated MVK model parameter values under different net cell proliferation
dose-response assumptions. Model A incorporates the defined hypothetical dose-response
function. Models B and C are misspecified.

& o 0, D2
Model A (quadratic)
Mean -9.0x10™ NA 2.2x10° 6.3x10"!
Standard Error 2.5x10% NA 6.2x10* 3.0x10%
Median -1.7x107 NA 2.0x1072 4.9x10""
Standard Deviation 5.3x10° NA 1.3x107 6.4x10"
Sample Variance 2.8x10° NA 1.7x10™ 4.0x10%
Skewness -5.0x10* NA 6.4x10*° 6.7x10"°
Model B (linear)
Mean 9.8x10™ 1.2x1072 NA 6.0x10"!
Standard Error 2.5x10% 3.2x10* NA 2.7x10%
Median 8.9x107 1.0x102 NA 4.7x10*
Standard Deviation 5.3x10° 6.7x10° NA 5.7x10"
Sample Variance 2.8x10° 4.5x10° NA 3.2x10%
Skewness 4.4x10*° | 5.8x10% NA 5.3x10*°
Model C (linear-
quadratic)
Mean 82x10* | -1.1x10° | 2.5x102 6.1x10"!
Standard Error 2.1x10* 1.4x10° | 2.8x102 2.3x10%°
Median 4.1x10° 6.9x10* | 2.0x102 4.9x10"!
Standard Deviation 4.0x107 2.7x10% | 5.3x107 4.4x10"
Sample Variance 1.6x10° 7.5x10* | 2.8x10° 1.9x10*
Skewness -1.5x10%° | -5.8x10" | 1.1x10% 2.3x10%°

NA= not applicable
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Figure 5a: Model A - Net Cell Proliferation Modeled
as Quadratic (Correct Underlying Model)
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Figure 5b: Model B - Net Cell Proliferation Modeled as Linear
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Figure 5c: Model C - Net Cell Proliferation Modeled as Linear-Quadratic
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Figure 5: Simulated excess risk for TCE dose of 1 mg/kg/d (underlying model assumption
= quadratic dose-response in net cell proliferation).

DISCUSSION

There are limitations on the interpretation of the results of this study that illustrate the difficulties
involved with mechanistic modeling of carcinogens. The model was not fit to the results of an
experiment designed for elucidation of mechanisms; rather, a combination of previously
published data was used. As such, the results should be interpreted as an exploratory exercise,

rather than a risk assessment.

Effects such as stimulation of cell proliferation and cell killing were not addressed here. The
model results reflect tumor hazard in experimental mice, and numerdus extrapolations with a
great deal of associated uncertainty (including toxicokinetics) would be necessary to evaluate
human risks. The model was not able to discriminate well between the respective contribution to
tumor risk from initiating vs. promoting activity using standard published data applied to a

chronic exposure scenario. It is clear that the majority of information available from typical
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experimental designs is not adequate for mechanistic modeling. Experiments have been
performed where preneoplastic liver foci have been quantified (Luebeck et al. 1995, Moolgavkar
et al. 1996); it is expected that this type of information will be valuable for mechanistic modeling
of TCE and its metabolites. Increasing the number of early sacrifices in experiments may also

improve this information.

The results for the incidental analysis of the NTP data for TCE-induced tumors were compatible
with the results in a similar study of tetrachloroethylene (Luebeck et al. 1997), which may have
similar carcinogenic mechanisms as TCE. The MVK model did not appear to discriminate as to
the relative importance of initiating or promoting activity when the TCE data were analyzed,
although an analysis (not shown here) that assumed "pure” initiation did not yield plausible
values for parameters (statistical tests were not employed here since the changes in parameter
values were hypothetical). However, the data still provide useful mechanistic information if
considered together with plausible biological information. For instance, the analysis that
assumed incidental tumors yielded a mutation rate that was consistent with experimental values.
Also, the incidental scenario is consistent with negative or zero net growth of intermediate
lesions when not "promoted”. The net cell proliferation rate can be assumed to be zero for the
background, but seems to be elevated for exposed animals. It is not clear from the analysis
whether this increase is due to an increase in o or a decrease in B, although the former is perhaps
more biologically plausible. This information, considered along with other studies (Klaunig et
al. 1991, Dees & Travis 1993), implicate a mitogenic mechanism in TCE carcinogenicity.
Promotion as a result of TCE exposure may be a more important contributor to tumor hazard

than genotoxicity over a lifetime of chronic exposure.

The results of the model misspecification simulation exercise suggest that it is difficult to reliably
discern the underlying biological dose-response relationship (specified here as a quadratic
threshold in the net cell proliferation) even at a relatively large sample size (800 animals). Note,
however, that we assumed that the tumors were incidental; thus time-to-tumor information was

not available, which reduces the potential available information.

21




A comparison of the excess risk values generated by the different models also reveals a strong
dependence on the assumed mechanism. If a threshold or quadratic cell proliferation dose-
response is appropriate for TCE, then only the explicit incorporation of this behavior into the
dose-response function will reliably represent the excess risk at low doses. Our results also show
that a linear-quadratic model fails to provide an unbiased estimate of the excess risk at low doses.
The distribution is skewed toward the left, possibly allowing for negative excess risks (protective
effects) for which there‘ are minimal biological evidence. The linear modél is grossly
misspecified, and overpredicts the risk (as predicted by the correct underlying quadratic model)
by approximately 3 orders of magnitude. Therefore, if TCE exhibits threshold behavior in cell

proliferation at low doses, the use of a linear dose-response model will overpredict risks.

In summary:

¢ This simulation exercise demonstrates the range of uncertainties that result from different
model assumptions applied to rodent toxicity data and demonstrates critical data needs.

¢ Promotion may be a more important contributor to tumor hazard than genotoxicity over a
lifetime of chronic exposure in mice. In these simulations, a doubling of initiation rate
resulted in a 5-fold increase in tumor hazard at day 730, whereas a doubling in promotion rate
resulted in a 15-fold increase in tumor hazard at day 730.

¢ The MVK 2-mutation model fit to TCE data is highly sensitive to net cell proliferation rate
(o).

¢ The model was not able to discriminate well between the respective contribution to tumor
risk from initiating vs. promoting action using standard published rodent data applied to a
chronic exposure scenario.

¢ Improvements in discrimination resulted from simulating.early sacrifices (56-500 days), as
indicated by decreased correlation coefficients between initiation and promotion parameters.

¢ Use of a linear model results in implausible parameter fits and overestimates of risk (~3
orders of magnitude at the median) if the true dose-response relationship in cell proliferation

is quadratic.
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¢ Reductions in uncertainty would likely result from collection of intermediate foci data and

other mechanistic information, as well as incorporating toxicokinetic and metabolite toxicity

information into the TCE model.
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