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1.    Executive Summary 

This report describes our research on a synthesis approach to parallel Software Engineering. The 
main goal of this project was to develop concepts and generic tools to support the synthesis of par- 
allel algorithms from formal specifications, and to carry out a representative sample of derivations 
for a variety of applications. Our technical approach is based on program transformation technology 
which allows the systematic machine-supported development of software from requirement specifi- 
cations. The development process can produce highly efficient parallel code along with a proof of 
the code's correctness. 

Our approach to developing parallel software involves several stages. The first step is to develop 
a formal model of the problem domain, called a domain theory. Second, the constraints of a par- 
ticular parallel problem are stated within a domain theory as a problem specification. Finally, an 
algorithm is produced semi-automatically by applying a sequence of design tactics and program 
transformations to the problem specification. The tactics and transformations embody program- 
ming knowledge about algorithms, data structures, program optimization techniques, etc. The 
result of the transformation process is executable code that is consistent with the problem specifi- 
cation. 

We focused on three application domains to test our concepts: 

• Batcher's Sort - We developed a tactic for designing divide-and-conquer algorithms in the 
Specware system. We used this tactic to design a well-known sorting algorithm, called 
Batcher's Sort, which is the most commonly used parallel sorting algorithm in current practice. 
Our implementation in Specware used concepts of unskolemization and ladder construction 
that arose from earlier experience with the KIDS system. 

• Scheduling Real-Time Concurrent Processes on Parallel Processors - Flight avionics is an 
example of a critical Air Force software application that has at its core the scheduling of 
real-time concurrent processes on parallel processors. We exploited our experience with high- 
performance scheduling algorithms to synthesize a algorithm for solving this generic problem. 
The algorithm itself is sequential (although see the next item) but it generates a schedule 
of activities running in a parallel environment so that all hard deadlines and periodicity 
constraints are met. 

• Limited Discrepancy Search (LDS) - LDS is a generic tree search strategy developed at 
University of Oregon that aims to quickly find near-optimal solutions. It has the advantage 
that it can also be adapted to searching a tree in parallel. We implemented LDS in KIDS 
as a global search program scheme. As an application, we derived a parallel version of the 
scheduler in the previous item - thus we have a parallel scheduler of parallel processes! 



2.    Introduction 

Advances in parallel hardware technology have far outstripped parallel software development tech- 
nology. As a result, construction of parallel programs still is more of an art than science. The 
increase in computing power has to be supplemented by design methods which enable us to struc- 
ture problems into a form suitable for parallel computation. 

We argue here for a refinement approach to developing parallel software from formal specifications 
of software system requirements. A refinement approach allows automated support which will in 
turn be necessary for constructing large-scale complex parallel software applications. 

We first describe the refinement approach and then list various difficulties with current approaches 
to parallel software engineering and how the refinement approach addresses them. The follow- 
ing steps describe a refinement approach to developing a system to run on a parallel/distributed 
platform. 

1. Domain modeling and acquisition of a requirements specification 

A user gathers and formulates requirements on the functionality, performance, constraints 
on the target language and architecture, and other properties of the desired software. The 
resulting specification is a pre-implementation statement of the nature of the software system 
and some constraints on how it is to be implemented and on what target platforms. It is 
intended to convey as few implementation commitments as possible, giving the maximum flex- 
ibility for choosing software architectures, algorithms, data structures, and target hardware 
architectures. 

2. Initial design and refinement 

During the design phase, the user exploits various taxonomies of design knowledge: tax- 
onomies of software architectures, algorithms [25], datatype theories, etc. A process of classi- 
fication incrementally helps the user to discern the intrinsic structure of the specified problem 
[23, 22]. Exploiting this structure is the key to a well-designed system. The result of this 
stage is a high-level design for the system with maximal parallelism. 

3. Refinement towards particular target architectures 

The user then begins to refine the system design towards a particular target architecture 
(or family of architectures). We envision a taxonomy of parallel architectures that can be 
exploited to incrementally refine high-level designs. The translation of a high-level design to 
an architecture may require the aggregation of virtual processes and optimization of the result; 
also, further committment to the architecture's topology affects the system's data access and 
communication paths. Each architecture may also support some optimizations that are not 
supported by its ancestor in the taxonomy, so optimizations are performed incrementally 
along the way. Each path in the taxonomy results in code for a different architecture. The 
result is a family of implementations, each stemming from (and consistent with) the same 
original specification, but each adapted to and optimized for its own architecture. 

4. System Evolution 

Any change in the user's requirements is reflected in a change to the original specification. 
This change can then be propagated through the family tree of implementations, either by 
reusing the old derivations, or, if the change is radical enough, resynthesizing the codes with 



new design and optimization decisions at many points. Such evolution is inevitable and must 

be supported. 

Machine support for this refinement process is critical because of the tremendous amount of logical 
detail involved at each step. Fortunately, good progress has been made on the formal foundations of 
the refinement approach, thereby enabling such mechanization. The many derivations of sequential 
programs performed using the KIDS system [24] provides some evidence for the ultimate feasibility 
of the refinement approach. 

We now list several aspects of parallel software engineering and how the refinement approach 
addresses them. 

1. Reengineering of Legacy Codes 

A considerable amount of effort has gone into tools for reengineering legacy sequential pro- 
grams for vector processors. There has been limited success, but in general most old codes use 
inherently sequential algorithms, so reengineering can be more trouble than it is worth—it 
cannot fully exploit the potential parallelism, because it is not even implicitly present in the 
legacy code. Also, it is difficult for a reengineering approach to exploit the progress made in 
developing new parallel algorithms for a variety of basic problems in image processing and 
scientific computing, for example. 

Many contemporary parallel programming languages are extensions to established sequential 
languages (e.g. FORTRAN-90, CM-LISP) and are usually designed with a particular archi- 
tecture in mind. Many "parallel programs" are adaptations of previously written sequential 
programs, especially in the scientific programming world. The focus of parallelization efforts 
in numerical computing has been the optimization of inner loops and the identification of 
idiomatic patterns of computation which can be replaced by vector operations. 

Part of the goal of parallel software engineering is to develop a methodology and tool-support 
that allows truly portable (or architecture-independent) program designs. Sequential code 
should emerge from such designs as a special case (i.e., executable code for both parallel and 
sequential architectures should be emittable from translators/compilers). We believe that 
a programming language (in which the programmer lays out an executable design in some 
language) is almost always at too low a level to truly attain the desired goal. 

Only by pulling back to the requirements level can we have information about the desired 
codes that is truly architecture-independent. It is at this abstract level that we can concen- 
trate on the essence of the problem and expose the parallelism which is inherent. Design 
at this level lays out the essential computation that is required to solve the problem. The 
design need not concern itself with the constraints imposed by a particular architecture, e.g., 
boundary conditions, communication topology, etc. These issues are the subject of the rest 
of the development process, whose task is to realize an abstract computation on a concrete 
architecture. 

In short, we believe that the reengineering of legacy systems is an inherently flawed approach 
because the desired parallelism is usually not even implicitly present in the code. Truly 
portable designs will only emerge by (1) starting with architecture-independent requirement 
specifications, then (2) creating a high-level design with maximal parallelism, then (3) refining 
the design towards various target architectures. 

2. Difficulty of Writing Correct Parallel Codes 



Parallel code tends to be much more complex to understand and make correct than sequen- 
tial code. One reason for this phenomenon is that there are only a few control regimes for 
sequential computation: if-then-else, while-do. repeat-until, etc. These idioms are well under- 
stood, and the process of putting together these idioms to produce larger programs (program 
synthesis and transformation) is beginning to be understood. 

For parallel computation, there is more variability in control regimes because they have to be 
connected to the topology of the underlying architecture. Moreover, the proximity of data to 
processors which require it, and the resultant communication costs, are issues which have to 
be considered. Current models of parallel computation do not adequately capture all of these 
factors, thus making parallel programming difficult. 

Even sequential code is a complex composition of information about the application domain, 
the software requirements, software architecture, algorithms, data structures, optimization 
techniques and details of the target platform. The extra complexity of a parallel architecture 
further compounds the problem. The refinement approach provides a design process that sys- 
tematically adds implementation detail to a specification in a way that preserves consistency, 
so that the final code is consistent with the initial specification. Furthermore, we have seen 
examples of machine-generated codes that begin to press the limits of what human program- 
mers can comprehend, and we expect more in the future. Also, the refinement steps provide 
a formal explanation of the code that is useful for subsequent evolutionary steps. 

3. Many Abstract Models of Parallel Computation 

Programming is usually done in terms of a model that abstracts certain details of the underly- 
ing hardware environment. In the parallel domain, there is a diversity of parallel architectures. 
The most common theoretical abstract model of parallel computation is the PRAM. Unfor- 
tunately, PRAM programs tend to perform poorly on existing architectures when translated 
straightforwardly. 

There are abstract models that translate well for various classes of architectures, but using 
these models amounts to a premature commitment to the target architecture (and there is 
the problem of portability). So there's a tradeoff between simple abstract models of paral- 
lelism and performance on particular architectures. The natural tendency in practice is for 
programmers (and theoreticians) to specialize along architectural lines. It may be that there 
is no abstract model of parallel computation that can be automatically compiled onto all 
parallel architectures with acceptable efficiency. 

The refinement approach outlined above finesses this problem by exploiting a taxonomy of 
models (architectures) of parallel computation. Models that are deeper in the taxonomy 
correspond to a smaller class of target architectures and thus they can be more richly struc- 
tured (in terms of processor power and structure, topology and communication costs). The 
refinement process can exploit the taxonomy to incrementally add detail about the target 
architecture to the design. 

In summary, parallel software is much more difficult to construct than sequential software. Auto- 
mated support will be necessary for constructing large-scale complex parallel software applications. 
We believe that software synthesis will prove to be the most economically viable approach to parallel 
software engineering. 

In this project, we explored various aspects of the refinement model and carried out several ap- 
plications using it. In the following sections we first introduce the KIDS system (Section 3) and 



our theoretical model of algorithm design (Section 4). We then describe in detail three parallel 
applications that we generated using KIDS or Specware. 

In Section 5 we describe a tactic for designing divide-and-conquer algorithms in the Specware 
system. We used this tactic to design a well-known sorting algorithm, called Batcher's Sort, which 
is the most commonly used parallel sorting algorithm in current practice. Our implementation 
in Specware used concepts of unskolemization and ladder construction that arose from earlier 

experience with the KIDS system. 

In Section 6, we describe the synthesis a algorithm for scheduling of real-time concurrent processes 
on parallel processors. The algorithm schedules a set of activities running in a parallel environment 
so that all hard deadlines and periodicity constraints are met. 

In Section 7, we describe the synthesis of tree search algorithms using a novel search strategy called 
Limited Discrepancy Search (LDS) which was developed at University of Oregon. 

3.    KIDS model of program development 

KIDS is a program transformation system - one applies a sequence of consistency-preserving trans- 
formations to an initial specification and achieves a correct and hopefully efficient program [24]. 
The system emphasizes the application of complex high-level transformations that perform signif- 
icant and meaningful actions. From the user's point of view the system allows the user to make 
high-level design decisions like, "design a divide-and-conquer algorithm for that specification" or 
"simplify that expression in context". We hope that decisions at this level will be both intuitive to 
the user and be high-level enough that useful programs can be derived within a reasonable number 
of steps. 

The user typically goes through the following steps in using KIDS for program development. 

1. Develop a domain theory - An application domain is modeled by a domain theory (a collection 
of types, operations, laws, and inference rules). The domain theory specifies the concepts, 
operations, and relationships that characterize the application and supports reasoning about 
the domain via a deductive inference system. Our experience has been that distributive and 
monotonicity laws provide most of the laws that are needed to support design and optimization 
of code. KIDS has a theory development component that supports the automated derivation 
of various kinds of laws. 

2. Create a specification - The user enters a problem specification stated in terms of the under- 
lying domain theory. 

3. Apply a design tactic - The user selects an algorithm design tactic from a menu and applies 
it to a specification. Currently KIDS has tactics for simple problem reduction (reducing a 
specification to a library routine), divide-and-conquer, global search (binary search, back- 
track, branch-and-bound), constraint propagation, problem reduction generators (dynamic 
programming, general branch-and-bound, and game-tree search algorithms), and local search 
(hillclimbing algorithms). 

4. Apply optimizations - The KIDS system allows the application of optimization techniques 
such as expression simplification, partial evaluation, finite differencing, case analysis, and 



other transformations. The user selects an optimization method from a menu and applies it 
by pointing at a program expression. Each of the optimization methods are fully automatic 
and, with the exception of simplification (which is arbitrarily hard), take only a few seconds. 

5. Apply data type refinements - The user can select implementations for the high-level data 
types in the program. Data type refinement rules carry out the details of constructing the 
implementation. 

6. Compile - The resulting code is compiled to executable form. In a sense, KIDS can be 
regarded as a front-end to a conventional compiler. 

Actually, the user is free to apply any subset of the KIDS operations in any order - the above 
sequence is typical of our experiments in algorithm design. 

4.    Algorithm Design and Parallelism 

4.1. Problem Theories 

We briefly review some basic concepts from algebra and logic. A theory is a structure (S, S, A) 
consisting of a set of sort symbols S, operations over those sorts S, and axioms A to constrain the 
meaning of the operations. A theory morphism (theory interpretation) maps from the sorts and 
operations of one theory to the sorts and expressions over the operations of another theory such 
that the image of each source theory axiom is valid in the target theory. A parameterized theory 
has formal parameters that are themselves theories [10]. The binding of actual values to formal 
parameters is accomplished by a theory morphism. Theory 7-2 = (52,S2,^42) extends (or is an 
extension of) theory 71 = (Si, Si, Ai) if Si C 62, Si C S2, and A\ C A2. 

Problem theories define a problem by specifying a domain of problem instances or inputs and the 
notion of what constitutes a solution to a given problem instance. Formally, a problem theory B 
has the following structure. 

Sorts D,R 
Operations   I : D -> Boolean 

0 : D x R -> Boolean 

The input condition I(x) constrains the input domain D. The output condition 0(x,z) describes 
the conditions under which output domain value z E R is a feasible solution with respect to input 
x e D. Theories of booleans and sets are implicitly imported. Problems of finding optimal feasible 
solutions can be treated as extensions of problem theory by adding a cost domain, cost function, 
and ordering on the cost domain. 

4.2. Algorithm Theories 

An algorithm theory represents the essential structure of a certain class of algorithms A [25]. Algo- 
rithm theory A extends problem theory B with any additional sorts, operators, and axioms needed 



to support the correct construction of an A algorithm for B. A theory morphism from the algo- 
rithm theory into some problem domain theory provides the problem-specific concepts needed to 
construct an instance of an A algorithm. 

For example, global search theory (presented below in Section 5.3.2.) extends problem theory with 
the basic concepts of backtracking: subspace descriptors, initial space, the splitting and extraction 
operations, filters, and so on. A divide-and-conquer theory would extend problem theory with 
concepts such as decomposition operators and composition operators [18, 21]. 

The key observation in this context is that these basic algorithmic concepts are naturally parallel. 
Divide-and-conquer algorithms work by decomposing a hard problem instance into subproblem 
instances that can be solved independently (and thus in parallel). Global search algorithms work 
by exploring a tree of alternative solution paths - again the tree search can be easily partitioned over 
various processors. Other algorithm paradigms that we have studied are also naturally parallel. 

5.    Scheduling Parallel Tasks with Dependencies in Hard-Real-Time 
Systems 

5.1.    Introduction 

In this section we consider the problem of scheduling real-time tasks to run in parallel on a pool of 
processors. In particular, we focus on the class of such problems encountered in "hard-real-time" 
systems; that is, those in which each given task has a completion deadline that must be stringently 
enforced if the system is to function correctly. One example of such a "hard-real-time" system 
is given by the operational flight program of an avionics computer with multiple CPUs, which 
must perform such tasks as measuring airspeed and altitude periodically. This is in contrast to 
the type of scheduling done, for instance, by the task dispatcher of a multiprocessor operating 
system, where the arrival times and durations of tasks are unpredictable, and where there may be 
inter-task dependencies but no real-time deadlines. Our derived algorithm performs "pre-run-time" 
scheduling, in which all the tasks that must be executed within a given time frame are known in 
advance, together with the amount of execution time that will be required by each task (or at 
least an upper bound if this time cannot be predicted exactly). It is common practice to use run- 
time (dispatch) scheduling algorithms for such problems; however, as Xu and Parnas note in their 
comparison of various approaches to this problem, 

[f]or satisfying timing constraints in hard-real-time systems, predictability of the sys- 
tem's behaviour is the most important concern; pre-run-time scheduling is often the 
only practical means of providing predictability in a complex system. [29] 

Scheduling problems of this type are typically NP-hard ([9], A5.2). A wide variety of strategies 
have been used in algorithms for such problems, including branch-and-bound search [28], heuristic 
algorithms [30], approximation methods [11], and constraint-based temporal reasoning [3]. 

Our approach was to treat this problem as a special case of a more general class of problems: namely, 
that of scheduling a type of resources that we call Asynchronously Shared Resources (ASRs). An 
ASR is a resource that can be shared simultaneously by many users or tasks whose usage patterns 
are not necessarily synchronized.  The resource is assumed to have finite capacity and the tasks 



are assumed to use the resource for finite periods. A typical example of an ASR is an automobile 
parking lot having n parking slots. Users can come and go independently, but a scheduler should 
never assign more than n users to the parking lot at the same time. More generally any pool 
of individual resources can be treated as an ASR: ramp space at airports, machining tools in 
manufacturing, computer processors running in parallel, fleets of transportation vehicles, personnel 
in a skill pool, etc. Note that the concept of an ASR is more general than that of a pool of resources 
typically considered in scheduling problems: for instance, power sources (e.g. generators, batteries) 
provide examples of nondiscrete ASRs. 

There are several novel aspects to this work. To our knowledge we present the first solution to 
ASR scheduling that uses constraint propagation over time windows/bounds (however see [15] for 
a similar solution to the special case of a single/unshard resource). We present several solutions, 
experimental data, and comparative analysis. We found that the data structures necessary to 
support our approach are complex and the propagation control mechanisms are complex. Finally, 
the scheduling and constraint propagation algorithms were machine generated. 

5.2.    The Parallel Task Scheduling Problem 

5.2.1.    Homogeneous processors 

Suppose we are given a set of tasks to be scheduled for execution on a pool of homogeneous 
processors (that is, they are identical as far as characteristics which might affect the schedule are 
concerned). For each task we are given an earliest start time, a latest start time, a duration, and 
a demand. If is A; denotes a task, then let tsk.est, tsk.lst, tsk.dur, tsk. demand denote the earliest 
start time, latest start time, duration, and demand, respectively, of tsk. Furthermore, let tsk.eft 
and tsk.lft denote the corresponding finish times (where tsk.eft = tsk.est + tsk.dur, and so on). If 
we regard the pool of processors as an Asynchronously Shared Resource, the scheduling problem 
can be formulated as follows: given 

1. a set T of tasks 

2. a precedence relation ■< over T (a partial order) 

3. an ASR with capacity c 

find an assignment of start times to each task that satisfies 

1. Precedence Constraint - whenever task a precedes b (written a <b) then a.ft < b.st 

2. ASR Capacity Constraint - at no time does the demand on the ASR exceed its capacity; i.e. 
V(i : time) demand( T, t) < c 

where 
demand(T, t) = \J        tsk.demand 

tsk£T 
te[tsk.st,tsk.ft) 

computes the aggregate or net demand of the tasks in T at time t. 

The ASR scheduling problem is easily formulated as a constraint satisfaction problem: the variables 
are the start times of the given tasks, and the precedence and capacity constraints restrict the 
possible combinations of start times that the tasks can be assigned. 
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Figure 1: Demand Maps 

A schedule is an assignment of start times to tasks. Let tsk.st, tsk.ft denote the start time and 
finish time respectively of task tsk. A schedule is extractable if the start time for each task falls 
within the task's est-lst window. An extractable schedule is feasible if it satisfies the precedence 
and capacity constraints. An extremal extractable schedule is obtained by systematically choosing 
the start time for each task to be its earliest start time (or dually latest start time). 

In the parallel task scheduling problem, the capacity c is integral; and we will assume that task 
demands are unit (i. e., each task requires only one processor to execute). (Except for the strategy 
discussed in Section 5.4.1., our results readily generalize to nonintegral c and nonunit task demands.) 

The aggregate demand that a set of tasks imposes on an ASR is defined in terms of actual start 
times for the tasks. However, during the scheduling process we only have bounds on the start 
times of tasks. Correspondingly, we can define bounds on the aggregate demand which we call the 
definite and possible demands: 

definite—demand(T, t) 

possible—demand(T, t) 

E tsk.demand 
tsk€T 

te[tsk.lst,tsk.eft) 

E tsk.demand 
tskGT 

te[tsk.est,tsk.lft) 

For any schedule that is extractable from a set of tasks T and any time t, we have 

definite-demand(T, t)  < demand(T, t)  < possible-demand{T, t). 

For example, the following table specifies a set of four tasks (with no precedences) and the last 
column gives a feasible schedule for c = 2. 

task est 1st duration st 

A 1 4 6 1 
B 4 6 5 4 

C 2 8 9 7 
D 9 12 5 9 

The corresponding demand maps are shown in Figure 



5.2.2.    Heterogeneous Processors 

In the problem considered in the previous section, we assumed that the pool of processors was 
homogeneous; in particular, that the duration of a task is independent of the processor on which 
it is executed. In this section we consider the problem in the case of heterogeneous processors, 
where the time actually required to execute a task may depend on which processor it is scheduled 
to run. Thus the problem data must now include, for each processor in the pool, the speed of that 
processor; and for each task we are given its nominal duration, that is, the time it would take to 
execute that task on a processor of speed 1. 

As before, for a task tsk, we let tsk.est, tsk.lft, and tsk.dur, denote the earliest start time, latest 
finish time, and nominal duration, respectively, of tsk. In addition, each processor proc in the pool 
has a speed proc.speed. The scheduling problem for parallel tasks on heterogeneous processors can 
then be formulated as follows: given 

1. a set Tof tasks 

2. a precedence relation ^ over T (a partial order) 

3. a set P of k processors 

find an assignment of processors and start times to tasks (that is, tsk.st and tsk.proc for each task 
tsk) that satisfies 

1. Precedence Constraint - whenever task a precedes b (written a •< b) then 
a.ft < b.st 

where 
a.ft = a.st + (a.dur /a.proc.speed) 

2. ASR Capacity Constraint - at no time does the number of tasks being executed exceed the 
number of processors; i.e. 

V(i : time) active(T, t) < c 
where 

active{T, t) = size({tsk ET : t e [tsk.st,tsk.ft]} 

is the number of tasks from T that are scheduled to execute at time t; 

3. Time Window Constraint - for each task a 
a.est < a.st 

and 

a.ft < a.lft 

The following is an example of a parallel task scheduling problem with heterogeneous processors. 
As in the earlier example of scheduling homogeneous processors, we assume that there are two 
processors to be scheduled (which we label 1 and 2); but in this example the processors will have 
unequal speeds, 1.4 and 0.6, respectively. If we redefine the capacity c to be the sum of the speeds 
of the individual processors, we have k = 2 and c = 2.0.   The following table shows the tasks 
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from the previous example (with latest finish times instead of latest start times); the rightmost 
two columns give a feasible schedule for the execution of these tasks on this set of processors. Note 
that a solution now requires the assignment of an individual processor as well as a starting time to 

each task. 

task est 1ft duration St proc 

A 1 10 6 1 1 

B 4 11 5 6 1 

C 2 17 9 2 2 

D 9 17 5 10 1 

Processor heterogeneity adds significantly to the complexity of the scheduling problem. Note, for 
instance, that there is no solution to this problem in which task A is assigned to processor 2 (for 
then the actual duration of A is 10, which exceeds the size of the time window for A, A.lft - A.est. 
For another example, consider the same set of tasks, but with processor speeds of 1.5 and 0.5; even 
though we still have k = 2 and c = 2.0, no feasible solution exists in this case. 

The algorithms that were synthesized for solving these problems utilized several different search 
strategies. All were derived as particular instances of the general theory of global search algorithms. 
Before discussing the problem-specific strategies, we turn to a description of the general theory. 

The problem of finding feasible schedules for a set of tasks assigned to a set of heterogeneous 
processors can be presented as a problem theory via a theory interpretation into the domain theory 

of ASR scheduling:1 

D 
I 
R 
O 

(-4 

set (task) x seq(processor) 
X(tasks,processors) true 
mapiprocessor, seq(reservation)) 
X(tasks, processors, sched) 

Consistent-Task-Processor(sched) 
A Consistent-Earliest-Start-Times(sched) 
A Consistent-Latest-Finish-Times(sched) 
A Consistent-Task-Predecessors(sched) 
A Consistent-Task—Successors(sched) 
A Available-Processors-Used(processors, sched) 
A Scheduled-Tasks(sched) = seq-to-set(tasks) 

5.3.    Theory of Global Search Algorithms 

5.3.1.    Synthesizing a Scheduler 

There are two basic approaches to computing schedules of any kind: local and global. Local methods 
focus on individual schedules and similarity relationships between them. Once an initial schedule is 
obtained, it is iteratively improved by moving to neighboring structurally similar schedules. Repair 
strategies [31, 14, 2, 17], fixpoint iteration [5], and linear programming algorithms are examples of 

local methods. 
xThe domain theory includes definitions for the types of task, processor, reservation (a record comprised of task, 

assigned processor, and start time) and schedule (a map from the set of processors to sequences of reservations). 
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Global methods focus on sets of schedules. A feasible or optimal schedule is found by repeatedly 
splitting an initial set of schedules into subsets until a feasible or optimal schedule can be easily 
extracted. Backtrack, heuristic search, and branch-and-bound methods are all examples of global 
methods. For this problem, we applied global methods. In the following subsections we formalize 
the notion of global search method and show how it can be applied to synthesize a scheduler. Other 
projects taking a global approach include ISIS [8], OPIS/DITOPS [27], and MicroBoss [16] (all at 
CMU). 

5.3.2.     Global Search Theory 

The basic idea of global search is to represent and manipulate sets of candidate solutions. The 
principal operations are to extract candidate solutions from a set and to split a set into subsets. 
Derived operations include various filters which are used to eliminate sets containing no feasible 
or optimal solutions. Global search algorithms work as follows: starting from an initial set that 
contains all solutions to the given problem instance, the algorithm repeatedly extracts solutions, 
splits sets, and eliminates sets via filters until no sets remain to be split. The process is often 
described as a tree (or DAG) search in which a node represents a set of candidates and an arc 
represents the split relationship between set and subset. The filters serve to prune off branches of 
the tree that cannot lead to solutions. 

The sets of candidate solutions are often infinite and even when finite they are rarely represented 
extensionally. Thus global search algorithms are based on an abstract data type of intensional 
representations called space descriptors (denoted by hatted symbols). In addition to the extrac- 
tion and splitting operations mentioned above, the type also includes a predicate satisfies that 
determines when a candidate solution is in the set denoted by a descriptor. Further, there is a 
refinement relation on spaces that corresponds to the subset relation on the sets denoted by a pair 
of descriptors. 

The various operations in the abstract data type of space descriptors together with problem speci- 
fication can be packaged together as a theory. Formally, abstract global search theory (or simply 
gs-4heory) Q is presented in Figure 2, where D is the input domain, R is the output domain, / is the 
input condition, 0 is the output condition, R is the type of space descriptors, I defines legal space 
descriptors, f and s vary over descriptors, top(x) is the descriptor of the initial set of candidate 
solutions, Satisfies(z, r) means that z is in the set denoted by descriptor r or that z satisfies the 
constraints that f represents, and Extract (z, r) means that z is directly extractable from f. 

The relations Split—Arg and Split—Constraint are used to determine and perform splitting. In 
particular, if Split—Arg(x, f,c) then c is information that characterizes (or informs) one branch of 
the split. Split—Constraint(x, f, c, s) means that s results from incorporating information c into the 
descriptor f (with respect to input x). Split-Arg is used to control the generation of children of a 
node in the search tree and Split-Constraint is used to specify one child. Split-Constraint can be 
thought of as a parameterized constraint whose alternative arguments are supplied by Split—Arg. 

The refinement relation f 3 s holds when s denotes a subset of the set denoted by f. Further, R 
together with II forms a bounded semilattice. This structure will play a crucial role in constraint 
propagation algorithms. 

Note that all variables in the axioms are assumed to be universally quantified unless explicitly 
specified otherwise.   Axiom GSO asserts that the initial descriptor top(x) is a legal descriptor. 
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Global Search Theory 

Spec Global-Search 

Sorts D 
R 
R 
6 

input domain 
output domain 
subspace descriptors 
splitting information 

Operations 
I : D —± boolean 
0 : D x R ->■ boolean 
1 : D x R —> boolean 
Satisfies : R x R —)■ boolean 
Split-Arg : D x C x R-* bool 
Split-Constraint : D x R x C 
Extract : R x R -» boolean 
ty : £> x iJx R ->• boolean 
£ : D x R -* boolean 
O, : D x R x R ^ boolean 

top: D -^ R 
bot: R 

input condition 
input/output condition 
subspace descriptors condition 
denotation of descriptors 

ean specifies arguments to split constraint 
x R —>■ boolean    parameterized splitting constraint 

extractor of solutions from spaces 
cutting constraint 
cutting constraint 
refinement relation 
initial space 
inconsistent space 

Axioms 
GSO. All feasible solutions are in the top space 

I(x) A  0(x,z)  => Satisfies[z,top(x)) 
GS1. All solutions in a space are finitely extractable 

I(x) A I{x,f) 
=>•  (Satisfies(z,f)  <=> 3(s) ( Split*(x, f, s) A Extract(z,s))) 

GS2. Specification of Cutting Constraint 
Satisfies(z,f) A  0{x,z)  =» V{x,z,r) 

GS3. Definition of Cutting Constraint on Spaces 
{(x,f)  •<=>• V{z:R){Sat{z,r)  ==> *(i,z,r)) 

GS4. Definition of Refinement 
r 3  s  <=> V(z : R)(Satisfies(z,s)  =>  Satisfies(z,f)) 

GS5. (.ft, 3, n, iop, 6oi) is a bounded meet-semilattice with 6oi as universal lower bound. 

end spec 

Figure 2: Global Search Theory 
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Axiom GS1 asserts that legal descriptors split into legal descriptors and that Split induces a well- 
founded ordering on spaces. Axiom GS2 constrains the denotation of the initial descriptor — all 
feasible solutions are contained in the initial space. Axiom GS3 gives the denotation of an arbitrary 
descriptor f — an output object z is in the set denoted by f if and only if z can be extracted after 
finitely many applications of Split to r where 

Split*(x,r,s)  <=$■ 3(k : Nat)  Splitk(x, f, s) 

and 

and for all natural numbers k 

Split0{x,r,i)  <=> f = i 

Splitk+1{x,f,t) 

3(s : R, i: C) ( Split-Arg(x, f, i) A Split-Constraint(x,f,i,s) A Splitk(x, s, i)). 

Axiom GS4 asserts that if f splits to s then f also refines to s; thus the refinement relation on 
R is weaker than the split relation. We also need the axioms that (R,D,r\) is a semilattice. For 
simplicity, we write f 3 s rather than the correct 3 (x, f, s); and similarly f D s. 

For example, a simple global search theory of parallel task scheduling (homogeneous case) has 
the following form. Schedules are represented as maps from processors to sequences of reservations 
(where each reservation includes a task, earliest-start-time, latest-finish-time, and actual start time). 
The type of schedules has the invariant (or subtype characteristic) that for each reservation, the 
earliest-start-time plus the task duration is no later than the latest-finish-time. A partial schedule 
is a schedule over a subset of the given tasks. 

The initial (partial) schedule is just the empty schedule - a map from the available processors to 
the empty sequence of reservations. A partial schedule is extended by first selecting a task, task, to 
schedule, and then selecting a processor, proc. The tuple (task,proc) constitutes the information c of 
Split—Arg. Split—Constraint, given (task,proc), creates an extended schedule that has a reservation 
for tsk added to the sequence of reservations currently scheduled on proc. The alternative ways 
that a partial schedule can be extended naturally gives rise to the branching structure underlying 
global search algorithms. 

The formal version of this global search theory of scheduling can be inspected in the domain theory 
in Appendix C. 

5.3.3.    Pruning Mechanisms 

When a partial schedule is extended it is possible that some problem constraints are violated in 
such a way that further extension to a complete feasible schedule is impossible. In tree search 
algorithms it is crucial to detect such violations as early as possible. 

Pruning tests are derived in the following way. The test 

3{z) {Satisfies(z,f) A 0{x,z)) (1) 

decides whether there exist any feasible solutions that are in the space denoted by f. If we could 
decide this at each node of our branching structure then we would have perfect search - no deadend 
branches would ever be explored. In practice it would be impossible or horribly complex to compute 
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(1), so we rely instead on an inexpensive approximation to it. In fact, if we approximate (1) by 
weakening it (deriving a necessary condition of it) we obtain a sound pruning test. That is, suppose 

we can derive a test §(x, f) such that 

3{sched) {Satisfies{z,f) A 0(x,z)) =» ${x,r). (2) 

By the contrapositive of (2), if -i$(x, f) then there are no feasible solutions in r, so we can eliminate 
it from further processing. A global search algorithm will test $ at each node it explores, pruning 

those nodes where the test fails. 

More generally, necessary conditions on the existence of feasible (or optimal) solutions below a node 
in a branching structure underlie pruning in backtracking and the bounding and dominance tests 

of branch-and-bound algorithms [19]. 

It appears that the bottleneck analysis advocated in the constraint-directed search projects at CMU 
[7, 16] leads to a semantic approximation to (1), but neither a necessary nor sufficient condition. 
Such a heuristic evaluation of a node is inherently fallible, but if the approximation is close enough 
it can provide good search control with relatively little backtracking. 

To derive pruning tests for the ASR scheduling problem, we instantiate (1) with our definition of 
Satisfies and 0 and use an inference system to derive necessary conditions. The resulting tests 
are fairly straightforward; of the 7 original feasibility constraints, 5 yield pruning tests on partial 
schedules. For example, the partial schedule must satisfy Consistent-Task-Processor, Consistent- 
Separation-on-Processor-EST, Consistent-Separation-on-Processor-LFT, Consistent-Separation-Predecessors, 
Consistent-Separation-Scheduled-Successors, Consistent-Separation-Scheduled-to-Unscheduled-Successors, 
and Consistent-Separation-Unscheduled-to-Unscheduled-Successors. The reader may note that com- 
puting these tests on partial schedules is rather expensive and mostly unnecessary; however, later 
program optimization steps reduce these tests to fast and irredundant form. For example, the 
second test will reduce to checking that, when we assign a task to processor i, the earliest start 
time of the newly assigned task is consistent with the earliest start time of the task on the same 
processor that immediately precedes it. 

For details of deriving pruning mechanisms for other problems see [19, 24, 25, 20]. 

5.3.4.     Cutting Constraints and Constraint Propagation 

Constraint propagation is a more general technique that is crucial for early detection of infeasibility. 
We developed a general mechanism for deriving constraint propagation code and applied it to 

scheduling. 

Each node in a backtrack tree can be viewed as a data structure that denotes a set of candidate 
solutions - in particular the solutions that occur in the subtree rooted at the node (see Figure 3). 
Thus the root denotes the set of all candidate solutions found in the tree. 

Pruning has the effect of removing a node (set of solutions) from further consideration. In contrast, 
constraint propagation has the effect of changing the space descriptor so that it denotes a smaller 
set of candidate solutions. The effect of constraint propagation is to spread information through 
the subspace descriptor resulting in a tighter descriptor and possibly exposing infeasibility. Pruning 
can be treated as a special case of propagation in which a space is refined to descriptor that denotes 

the empty set of solutions. 
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search 
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cutting 
constraints 

Figure 3: Global Search Subspace and Cutting Constraints 

Constraint propagation is based on the notion of cutting constraints which are necessary conditions 
^{x, z, r) that a candidate solution z satisfying f is feasible: 

V(x :D,f:R,z: R) {Satisfies (z, f) A  0(x,z)  ==>  *(x,z, f)) (3) 

See Figures 3 and 4. In order to get a test on spaces that decides whether <£> has been incorporated, 
we make one further definition: 

£(x,r) V{z:R){Satisfies{z,f)  =*■  V(x,z,f)) (4) 

The test £(x, f) holds exactly when all candidate solutions in f satisfy \I>, and we say that f satisfies 

The key question at this point is: Given a descriptor f that doesn't satisfy £, how can we incorporate 
f into r? The answer is to find the greatest refinement of r that satisfies f; we say i incorporates 
£ into f if 

f = maigls \ r"D s A £(x, s)}. (5) 

which asserts that i is maximal over the set of descriptors that refine s and satisfy £, with respect 
to ordering Ij. We want £ to be a refinement of r so that all of the information in f is preserved 
and we want i to be maximal so that no other information than r and f is incorporated into £. 

The next question concerns the conditions under which Formula (5) is satisfiable. Assuming that 
R is a semilattice, we can use variants of Tarski's fixpoint theorem (c.f. [5]): 

Theorem If there is a function / such that 

1. / is monotonic on R     (i.e. s 3 i ==> f(x, s) 3 f(x, i)) 
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Figure 4: Pruning and Constraint Propagation 

2. / is deflationary      (i.e. r ^ f(x,f)) 

3. / has fixed-points satisfying £ (i.e. f(x, f) = f   <=>   £(x, f)) 

then (1) i = max^is \ f 3 s A £(x, s)} exists 
and (2) i is the greatest fixpoint of /; i.e. i can be computed by iteratively applying f to f until a 
fixpoint is reached. 

The challenge is to construct a monotonic, deflationary function whose fixed-points satisfy f.  A 
general construction in terms of global search theory can be sketched as follows. Let 

fin. #\-I f if far) 

The intent is to define / so that it has fixpoints exactly when £(x,r) holds. When £{x,r) doesn't 
hold, then we know (by the definition of £ and the contrapositive of formula (3)) that 

3(z: R){Satisfies{z,f) A -i0(x,z)) 

i.e. there are some infeasible solutions in the space described by f. Ideally ->£(x, r) is a constructive 
assertion, so it provides information on which solutions are infeasible and how to eliminate them. 
In place of the ellipsis above we require a new descriptor that refines f (so / is decreasing on 
all inputs), allows / to be monotone, and eliminates some of the infeasible solutions indicated by 
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~"f (j,0- In general it is difficult to see how to achieve this end without assuming special structure 
to R and f. 

We have identified some special cases for which an analytic procedure can produce the necessary- 
iteration function / from £. These special cases subsume our scheduling applications and many- 
related Constraint Satisfaction Problems (CSP) problems. Suppose that the constraint ( has the 
form 

B{x, f) 3 r (6) 

where B(x, f) is monotonic in f. We say that £ is a Horn-like constraint by generalization of 
Horn clauses in logic. Notice that the occurrence of f on the right-hand side of the inequality has 
positive polarity (i.e. it is monotonic in r), whereas the occurrence(s) of f on the left-hand side 
have negative polarity (i.e. are antimonotonic). If the constraint were boolean (with B and f being 
boolean values and 3 being implication), then this would be called a definite Horn clause. When 
our constraints are Horn-like, then there is a simple definition for the desired function /: 

f{x,f) 

or equivalently 

f if B(x, f) 3 f 
B{x, f) n r if ^B{x, f) 3 f 

f(x, f) — B(x, f) n f. 

It is easy to check that / is monotone in r, deflationary, and has fixed-points exactly when £ holds. 
Therefore, simple iteration of / will converge to the descriptor that incorporates £ into f. However, 
if r is an aggregate structure such as a tuple or map, then the changes made at each iteration may 
be relatively sparse, so the simple iteration approach may be grossly inefficient. We found this 
feature to be characteristic of scheduling and other CSPs. Our approach to solving this problem 
is to focus on single point changes and to exploit dependence analysis. For each component of f 
we define a separate change propagation procedure. The arguments to a propagation procedure 
specify a change to the component. This change is performed and then the change procedures for 
all other components that could be affected by the change are invoked. Static dependence analysis 
at design-time is used to determine which constraints could be affected by a change to a given 
component. 

A program scheme for global search with constraint propagation is presented in Figure 5. The global 
search design tactic in KIDS first instantiates this scheme, then invokes a tactic for synthesizing 
propagation code to satisfy the specification F—split-and-^propagate. 

CSPs with Horn-like constraints 

We now elaborate the previous exposition of propagation of Horn-like constraints arising in CSPs. 
To keep matters simple, yet general, suppose that the output datatype R is map(VAR, VALSET), 
where VAR is a type of variables, and VALSET is a type that denotes a set of values (this implies 
that all the variables have the same type and refinement ordering), and the 3 relation has the 
form: 

f 3 s iff   A f(v) 3 s(v). 
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Global Search Program Theory 

Spec Global-Search-Program (T :: Global-Search) 

Operations 

F-initial-propagate   (x : D \ I{x)) 

returns {i : R | i = max^ {s | top{x) 13 s A I{x,s) A £{x, s)}) 

F-split-and-propagate 

{x :D, r: R, c : C 

\I{x) A I(x,f) A Split-Arg\x,r,c) A £(x,f) A f + bot) 

returns (i: R\i = max-j {s \ f 13 s A I{x, s) 

A Split(x,f,c,s) A £(z,s)}) 

F-gs(x:D, f:R\ I(x) A I(x, r) A $(or,r)) 

returns (z : -R | 0(z. z) A Satisfies{z, f)) 

= if 3(z) (Extract{z, f) A 0(z,z)) 

then some(z) (Extract(z,f) A  0(a;,-z)) 

else some(z) 3(c : C\ i : i?) 

(5p/ii-ylr5(a;,r,c) 

A i = F-split-and-propagate (x, f,c) A t ^ bot 

A 2 = F-gs(x, i)) 

F {x:D\ I{x)) 

returns (z : R \ 0(x,z)) 

= some(z) 3{i) (i = F-initial-propagate(x) 

A *V 6ot 

A z = F-gs(x, i)) 

end spec 

Figure 5: Global Search Program Theory 
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Suppose further that £ is a conjunction of constraints giving bounds on the variables: 

£(x,r)  <^  /\Bv{x,f) 3 r(v) 
V 

where Bv(x,r) is monotonic in f. Under these assumptions, -i£(z,r) implies that the bounding 
constraint on some variable v is violated; i.e. 

-<Bv(x, f) ~3 f(v). 

To "fix" such a violation we can change the current valset of v to 

Bv{x,f)nf(v), 

which simultaneously refines f(v), since 

f(v) 3 Bv(x, r) n f{v) 

and reestablishes the constraint on v, since 

Bv(x,f) =1 Bv(x,f)F\f{v). 

Let 
B{x, f) — {| u ->  i?„(:c, r) n r(u) | u 6 domain(f) |} 

then, define / as: 
/(a;, f) = fn 5(x, r) 

Constraint propagation is treated here as iteration of / until a fixed-point is reached. Efficiency- 
requires that we go farther, since only a sparse subset of the variables in f will be updated at 
each iteration. If we implemented the iteration on a vector processor or SIMD machine, the overall 
computation could be fast, but wasteful of processors. On a sequential machine, it is advantageous 
to analyze the constraints in £ to infer dependence of constraints on variables. That is, if (the valset 
of) variable v changes, which constraints in £ could become violated? This dependence analysis 
can be used to generate special-purpose propagation code as follows. 

For each variable v, let affects(v) be the set of variables whose constraints could be violated by a 
change in v; more formally, let 

affects(v)  =  {u \ v occurs in Bu }. 

We can then generate a set of procedures that carry out the propagation/iteration of /: For each 
variable v, generate the following propagation procedure: 

Propagatev (x : D, f : R, new-ualset: VALSET 
| I{x) A I[x,f) 
A f(v) n new-valset 
A Bv(x,r) D new-^valset) 

= let  (s:R = map—shadow(r,v,neiv-^ualset)) 
if -il(x, s) then bot 
else 
... for each variable u in affects (v)... 
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... generate the following code block ... 
if s = bot then bot 
else (if ->(Bu{x,s) 3 s{u)) 

then s <- Propagateu(x,s, ß„(i,s)ns(u))); 

s 
end 

where map-shadow{f,v:new-valset) returns the map f modified so that f(v) = new^ualset. 

To finish up, if Split(x, f, i, s) has the form 

s{u) = C(x,f,i) 

for some function C that yields a refined valset for variable u, then we can satisfy F-split-and- 

propagate as follows: 

F-split-and-^propagate{x, f, i) = propagateu{f, C{x, r, i)). 

The change to u induced in the call to propagateu will in turn trigger changes to other variables, 

and so on. 

Constraint Propagation for Parallel Task Scheduling 

For parallel task scheduling, each iteration of the Propagate operation has the following form: For 
each processor proc let proc(i) be the i-th reservation on proc, and proc(i).task the task for that 
reservation. Letting esti denote the current value of earliest-start-time for that task and est^ the 
next value of the earliest-start-time for that task (with lft{ and lft'{ defined analogously), we have 

{esti 
esti-i + actual-duratiorii-i (7) 
max{tsk.est + tsk.actual—duration | tsk -<proc(i).task} 

[ Ifti 
Ift'i = min <   lfti+i — actual-duration^ (8) 

[ mm{tsk.lft — tsk.actual—duration \ proc(i).task ^ tsk} 

Here actual-duratiorii-i is the time taken to execute the (i-l)-th task on proc, i. e., nominal - 
durationi/proc.speed. Boundary cases must be handled appropriately. 

After adding a new reservation to some trip, the effect of Propagate will be to shrink the (est, I ft) 
window of each task on the same processor, and possibly also predecessor and successor tasks of the 
newly aded task. (Note that propagation over successors requires that the generated propagation 
code must deal with the unscheduled tasks as well as the partially completed schedule, an example 
of propagation over heterogeneous data types). If the size of the time window becomes negative or 
zero for any task, the partial schedule is necessarily infeasible and it can be pruned. 
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5.4.    Scheduling Strategies 

As noted previously, we treated the parallel task scheduling problem as a special case of the ASR 
problem. There are a variety of strategies for solving ASRs, all based on branch-and-propagate. In 
each subsection below we present Horn-like constraints derived from the ASR capacity constraint 
and describe some data structures and control strategies that can effectively apply them. 

5.4.1.    Discrete strategy - scheduling individual processors 

A discrete strategy assumes that the capacity bound on the ASR is integral and that each task 
consumes one unit of capacity. At each branching point, an unscheduled task is selected, assigned 
to one of the k processors, and finally to some position within the sequence of tasks previously 
assigned to that processor. The main constraint that is propagated asserts that one task must 
finish before the next one on the same processor can start. A data structure that represents a 
map from processors to sequences of reservations facilitates this strategy. The data structure forces 
the satisfaction of the capacity constraint by construction 2; or, from another point of view, the 
residual propagation necessary to satisfy the capacity constraint is precedence between consecutive 
tasks for each processor. 

The derived constraints are as follows. Let m be a map from {1..A;} to sequences of tasks. From 
the basic constraint (expressed over start times) 

V(proc : integer, index : integer) 
(proc G {l..k} 
A index G {l..size(m(proc)) — 1} 

m(proc)(index).ft  < m(proc)(index + l)).st 

we can infer (a indexed collection of) Horn-like propagation constraints over start time windows: 

V(proc : integer, index : integer) 
{proc G {l..k} 
A index G {l..size(m(proc)) — 1} 

m(proc)(index).eft  < m(proc)(index + l).est 
Am(proc)(index).I]H  < m(proc)(index + 1).1st) 

The conjunct 
m(proc)(index).eft < m(proc)(index + l).est 

provides a bound on m(proc)(index + Vj.est: whenever m(proc)(index).eft increases, then the con- 
straint may become invalid; in order to reestablish the constraint, the value of on m(proc) (index + 
l).est can then be increased (by the minimal amount) to m(proc)(index), eft. Note that m(proc)(index).eft 
is monotone under refinement, since the earliest start time of a task can only increase. Corre- 
spondingly, the second conjunct provides an upper bound on m(proc)(index).Ift which decreases 
(monotonically) whenever m(proc)(index + I).1st decreases. 

This, of course, is where we use the simplifying assumption that the ASR capacity is an integer 
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There are several advantages to the discrete approach. First, unlike the aggregate ASR scheduling 
strategy (discussed in 5.4.2.), the discrete strategy applies to both the homogeneous and hetero- 
geneous variants of the problem. Second, partial schedules are clear and definite. And third, this 
constraint has the property that extremal extractable schedules are always feasible (relative to the 
tasks scheduled so far). (We have also used this approach in scheduling parking slots and ground 

crews in airlift scheduling in the ITAS system [4].) 

The main disadvantage is that the branching factor is very high and grows as 0{kn) where n is 
the number of allocated tasks. Nevertheless, good heuristics for choosing a processor and position 
within the schedule for a processor can result in a fast heuristic algorithm producing good results. 
Our synthesized algorithm used two heuristics (incorporated into the global search theory for this 
strategy) to help keep the branching factor at a computationally practical level: First, the next 
task to be scheduled is always appended to the sequence of tasks already scheduled on a processor 
(instead of being inserted at some point within the sequence). Second, the processors are ordered in 
such a way (namely, in decreasing order of processor speed) that (other things being equal) a task 
to be scheduled is more likely to be assigned to a fast processor than a slow one; thus the earlier 
branches of the search tree tend to represent partial schedules in which the fastest processors run 

the most tasks. 

5.4.2.     Aggregate strategies 

In aggregate strategies we treat the scheduling of an ASR as a whole, assuming no internal structure 
to the capacity of an ASR. In the context of the problem under consideration, this means that we 
do not assign a task to a specific processor when it is scheduled; thus an aggregate strategy can only 
be used for the homogeneous variant of the parallel task scheduling problem. At each branching 
point, an unscheduled task is selected, and it is added to the partial schedule constructed so far. 
Its addition may trigger various constraints, in particular a disjunctive constraint which effectively 
does the branching. Data structures that represent possible and definite demand maps facilitate 
this strategy. More details on aggregate strategies may be found in [26]. 

5.5. Experience with generated code 

We used KIDS [24] to synthesize a variety of ASR scheduling algorithms, in particular two discrete 
algorithms called Discrete-1 and Discrete-2, as described in Section 5.4.1.. They differ primarily 
in the variants of problems that they solve: Discrete-1 deals with the homogeneous case with no 
precedence relationships, Discrete-2 allows heterogeneous processors and precedence relationships 
between tasks. Two aggregate algorithms, called Aggregate-1 and Aggregate-2 were also synthesized. 
The aggregate algorithms differ in their strategies for splitting and extracting. 

5.6. Timing experiments 

We ran two sets of experiments with the generated code. In the first set we generated a number 
of random problems of the homogeneous variant with no precedence relationships between tasks, 
and compared the performance of the generated algorithms which solved that case only, namely 
Aggregate-1, Aggregate-2, and Discrete-1. In the second set we determined the time complexity of 
algorithm Discrete-2 on heterogeneous problems with precedence constraints, using the number of 
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Figure 6: Number of failures (homogeneous processors) 

tasks as the problem size. 

Generating random problems - heterogeneous processors,  no inter-task precedence 
relations 

There are several parameters to be varied in generating random ASR problems in this case: 

• c — ASR capacity (10 to 20) 

• n — number of tasks (from 50 to 1000) 

• max task duration — tasks durations are uniformly distributed over the range [1 .. max-task- 
duration]. 

• max window — the width of the est-lst time window is uniformly distributed over the range 
[1 .. max-window] 

• demand density — varies over [0,1] 

The task generation strategy was this: generate n tasks of random duration (over the range [1 .. 
max-task-duration]), then sum up the durations to get an aggregate demand ad. We know that 
ad = cxtdxdd so given c, ad, and dd, we calculate td and then randomly generate earliest start 
times uniformly over the range [1 .. td - tsk.duration] for each task tsk. For example, if c = 20 
and the demand density is dd = 0.5, and aggregate demand is ad = 1000 then the total duration is 
td = 100. 

Experimental results - algorithms Aggregate-1, Aggregate-2, Discrete-1 
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Figure 7: Average case run-time excluding time-outs (homogeneous processors) 

The main variable we explored was the average complexity of each scheduling algorithm as a 
function of demand density. The demand density is the ratio of aggregate task demand to aggregate 
ASR capacity (capacity times total duration) which we varied from 0 to 1. 

As expected, the data shows that the hardest problem instances occur at an intermediate demand 
density (empirically about 0.8). We wanted to show the performance of the algorithms on reason- 
ably hard task sets, but that entails that some are so hard that they take too long to solve. We 
introduced a cutoff time of 30 seconds. Figure 6 shows the percentage of task sets that were un- 
solvable within 30 seconds as function of demand density. Figure 7 compares the average run-times 
for 3 machine-synthesized ASR algorithms where we excluded from the sample the task sets that 

timed out. 

Generating random problems:  heterogeneous processors, inter-task precedence rela- 

tions 

In generating random problems for this variant, additional parameters can be varied: 

• processor speeds, for each of k processors 

• the partial order on T which expresses the precedence relationship between tasks 

A random precedence relationship between tasks was generated by adding predecessors or successors 
to tasks selected at random from the task set of a random non-precedence problem that was 
generated as described above. (The probability that an arbitrary task in the original non-precedence 
problem will be selected is referred to as the precedence density.) Note that the complete partial 
ordering does not need to be reified in the problem structure; it suffices to express the covering 
relationships that were added by the precedence generation process, since the transitive closure of 
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Figure 8:   Average case run-time by number of tasks (heterogeneous processors with inter-task 
precedence relations) 

the covering relationship is (in effect) computed by the code that propagates the predecessor and 
successor constraints. 

Experimental results - algorithm Discrete-2 

For this set of tests we varied the number of tasks, keeping all other variables constant. Figure 
8 shows the rate of increase of time as problem size (expressed as n, the number of tasks in T) 
increases. 

For these runs the other parameters had constant values, as follows: 

• k (number of processors): 5 

• speedy (processors speeds): (2.5,2.0,1.5,1.0,0.75) 

• max task duration: 10 

• max window : 40 

• precedence density: 0.25 

• demand density: 0.3 

(The randomly generated task duration and task window variables are uniformly distributed over 
the ranges [ 1 .. max-task-duration] and [ 1 .. max-window], respectively.) 

Curve fitting of the data in Figure 8 shows that it has an 0{n3) rate of growth (the graph shows 
the data points and the curve y = 0.0000022 * n3 + 2). 
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5.7.    Concluding Remarks 

Our overall experience with these algorithms is that they will either find a schedule quickly or else 
take a very long time to complete. Finding a schedule quickly means that little or no backing up 
occurs during search - mainly descendants and siblings are ever explored. 

From this experience we conclude that the most practical way to exploit these algorithms is to 
modify them to be nonbacktracking heuristic relaxation algorithms. That is, we modify the control 
structure to minimize backtracking, and in the case where no descendant of a search tree node 
survives propagation, then we relax some constraint (typically the latest start time) on a task to 
the minimum degree necessary to allow the algorithm to proceed. If the task in question has a 
hard real-time constraint, then backtracking is necessary. This way we build on the strong, efficient 
constraint propagation techniques and simple control strategy, but obtain an efficient algorithm 
(usually with low-order polynomial time complexity) that will produce feasible schedules to a 

slightly relaxed problem instance. 

The data presented above does not, of course, provide a complete evaluation of the effectiveness 
of the algorithms. It would be desirable to assess the tradeoff between completeness, quality 
of schedule, and runtime, as well as study the effect of varying problem parameters in addition 
to number of tasks and demand density, such as window size relative to task size, precedence 
density, number of processors, and (for the heterogeneous case) distribution of total capacity among 

processors. 

6.    Limited Discrepancy Search 

6.1.    Description and Analysis of LDS 

Limited Discrepancy Search (LDS) is a variant of global search for traversing a search tree in 
an order that is likely to find solutions earlier in the traversal than existing strategies such as 
chronological backtracking. In chronological backtracking, when a failure is encountered, the most- 
recent choice is undone and an alternative choice made; if that fails then the next-most-recent 
choice is revisited and so on. Thus alternatives to choices deep in the tree are explored first, before 
those near the root. However, for many problems the heuristics for making choices improve in 
their accuracy deeper in the tree where the solution- space is more constrained. Thus the choices 
near the root of the tree are more likely to be wrong than those deep in the tree. This is not so 
important if the entire tree can be explored exhaustively, but with reasonable-sized problems this 

is rarely practical. 

The goal of the LDS strategy is to explore paths in the choice tree in the order of likelihood that 
they will succeed. The LDS strategy first takes the path through the tree given by the best local 
choice at each choice-point (as does chronological backtracking). Next it considers the paths of 
discrepancy one: these consist of taking the best local choice at each choice-point except for one 
choice-point where the second-best choice is made. If the tree is of depth n then there are n 
such paths. Next paths of discrepancy two are considered and then discrepancy 3 etc. A path 
of discrepancy two is one where the best choice is taken except at two choice-points where the 
second-best choice is taken. Harvey and Ginsberg only considered trees with binary choices. For 
an nary tree one could also classify a path as being of discrepancy two if it consisted of the best 
choice everywhere but one choice-point where the third-best choice is taken. 
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There are several options to parallelizing the LDS scheme that trade off communication cost against 
the cost of redundant computation. To avoid redundant computation one spawns a new process 
whenever a second-best choice-point is taken. Thus, there is one process initially which always 
takes the best choice at each choice point, but always spawns a new process with the second-best 
choice at that point. Thereafter, the new processes always take the best choice. In spawning the 
new process the complete state of the scheduler must be communicated to the new process, but 
thereafter the processes are independent except when they are finished they need to communicate 
to find which has the best solution. The state of the scheduler can become rather large, so the 
initialization may be significant. Another problem with this parallelization is that initially there is 
only one process and the number of processes grows linearly in the depth of the tree, so early on 
there may be many processors idle. 

An alternative implementation with minimal communication and idle time is to start with n pro- 
cesses each of which explores the tree from its root, with processor i taking the second- best choice 
at choice-point i - 1 and the best choice everywhere else. There is one process that always takes 
the best choice, so for the others, process i is doing redundant work up to choice-point i - 1. If each 
process takes constant time at each level then up to half of the computation done is redundant. If 
the computation at level i is O(i) then up to one third of the computation is redundant. 

The above analysis assumes one processor per process. In practice there are likely to be significantly 
fewer processors than the depth of the tree. If we have m processors then we can give each processor 
the task of computing n/m paths. In this case the redundancy is reduced by approximately the 
same factor. 

6.2.    Experiments with LDS 

We did experiments to test the effectiveness of LDS using randomly generated scheduling problems. 
We chose a problem where we had previous experimental experience, that of Asynchronously Shared 
Resources (ASRs). An ASR is a resource shared simultaneously by many tasks, for example an 
automobile parking lot having n parking slots. 

The main properties we explored were those that varied as a function of demand density. The 
demand density is the ratio of aggregate task demand to aggregate capacity (capacity times total 
duration) which we varied from 0 to 1. The greater the demand density the harder it is to find a 
viable schedule. 

There are several parameters used in generating random ASR problems: 
c = ASR capacity (20) 
n = number of tasks (100) 
dmax = tasks durations are uniformly distributed over the range [1 .. 100] 
wmax = the width of the earliest to latest start time window is uniformly distributed over the 
range [1 .. 100] 
demand density = varies over [0,1]. 

In Figure 9 we show the experimental results for how often the scheduler was able to find a schedule 
for the original method using chronological backtracking and the LDS method with a discrepancy 
of one. These results clearly show that LDS is effective in finding significantly more solutions when 
the scheduling problems become difficult. 
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7.    Parallel Sorting Algorithms 

In this section we apply these ideas to the design of Batcher's Odd-Even sort [1] and discuss 
the derivation of several other well-known parallel sorting algorithms. Most, if not all. sorting 
algorithms can be derived as interpretations of the divide-and-conquer paradigm. Accordingly, we 
present a simplified divide-and-conquer theory and show how it can be applied to design the sort 
algorithms mentioned above. 

7.1.    Derivation of a Mergesort 

7.1.1.    Domain Theory for Sorting 

Suppose that we wish to sort a collection of objects belonging to some set a that is linearly-ordered 
under <. Here is a simple specification of the sorting problem: 

Sort(x : bag(a) \ true) 
returns( z : seq(a) \ x = Seq-to-bag(z) A Ordered(z) ) 

Sort takes a bag (multiset) s of Q objects and returns some sequence z such that the following 
output condition holds: the bag of objects in sequence z is the same as x and z must be ordered 
under <. The predicate true following the parameter x is called the input condition and specifies 
any constraints on inputs. 

In order to support this specification formally, we need a domain theory of sorting that includes the 
theory of sequences and bags, has the linear-order (a, <) as a parameter, and defines the concepts 
of Seq-to—bag and Ordered. The following parameterized theory accomplishes these ends: 

Theory Sorting ((a, <) : linear—order) 
Imports integer, bag(a),seq(a) 
Operations 

Ordered : seq(a) ->• Boolean 

Axioms 
V(S : seq(a)) (Ordered{S) 

«• V(*)(* e {Uength(S) - 1} => S(i) < S(i + 1))) 

Theorems 
Ordered(\\) = true 
V(a : a) (Ordered([a\) = true) 
y{y1 : seq(a),y2 : seq(a)) 

(Orcfered(yi-t+2/2) O Ordered(yi) 
A Seq-to-bag(yi) < Seq—to-bag(y2) 
A Ordered{y2)) 

end—theory 
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Sorting theory imports integer, bag, and sequence theory. Sequences are constructed via 0 (empty 
sequence), [a] (singleton sequence), and A-t+ B (concatenation). For example, 

[1,2,3]-H-[4,5,6] = [1,2,3J4,5,6]. 

Several parallel sorting algorithms are based on an alternative set of constructors which use inter- 
leaving in place of concatenation: the ilv operator 

[1,2,3] ilv [4,5,6] = [1,4,2,5,3,6] 

interleaves the elements of its arguments. We assume that the arguments to ilv have the same 
length, typically denoted n, and that it is defined by 

AilvB = C& V(*)(* G {I--"}  => C2i-i = A» A C2i = B{). 

In Section 7.2. we develop some of the theory of sequences based on the ilv  constructor. 

Bags have an analogous set of constructors: O (empty bag), {a} (singleton bag), and A W B 
(associative and commutative bag union). The operator Seq-to-bag coerces sequences to bags by 
forgetting the ordering implicit in the sequence. Seq-to-bag obeys the following distributive laws: 

Seq-to-bag(\\) =  {} 

V(a : a) Seq-to-bag {[a]) =  {a} 

V(yi : seq(a),y2 : seq{a)) 
Seq-to-bag{yi-Vry2) = Seq-to-bag(yi) IB! Seq-to-bag{y{) 

V(yi : seq{a),y2 : seq{a)) 
Seq-to-bag(y! ilv y2) = Seq-to-bag(yi) ÜU Seq-to-bag{yi) 

In the sequel we will omit universal quantifiers whenever it is possible to simplify the presentation 
without sacrificing clarity. 

7.1.2.    Divide-and-Conquer Theory 

Most sorting algorithms are based on the divide-and-conquer paradigm: If the input is primitive 
then a solution is obtained directly, by simple code. Otherwise a solution is obtained by decom- 
posing the input into parts, independently solving the parts, then composing the results. Program 
termination is guaranteed by requiring that decomposition is monotonic with respect to a suitable 
well-founded ordering. In this paper we focus on divide-and-conquer algorithms that have the 
following general form: 

DC{x0 : D | I(x0)) 
returns( z : R\ O(x0,z)) 
= if Primitive(xo) 

then Directly—Solve(xo) 
else let (xi,x2) = Decompose(xo) 

Compose{DC{xi), DC{x2)) 
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We refer to Decompose as a decomposition operator, Compose as a composition operator, Primitive 
as a control predicate, and Directly —Solve as a primitive operator. 

The essence of a divide-and-conquer algorithm can be presented via a reduction diagram: 

x0 
DC 

Decompose 

V 

A 

(zi,:r2) 
DC x DC 

Compose 

■>  {Z\,Z2) 

which should be read as follows. Given input XQ, an acceptable solution z0 can be found by 
decomposing x0 into two subproblems x\ and x2, solving these subproblem recursively yielding 
solutions z\ and z2 respectively, and then composing zx and z2 to form z0. 

In the derivations of this paper we will usually ignore the primitive predicate and Directly-Solve op- 
erator - the interesting design work lies in calculating compatible pairs of Decompose and Compose 
operators. 

The following mergesort program is an instance of this scheme: 

MSort(bo '■ bag(integer)) 
returns( z : seq(a) \ x = Seq-to-bag(z) A Ordered(z) ) 
= if size(bo) < 1 

then 60 
else let {61,62) = Split(bQ) 

Merge{MSort(bi), MSort{b2)) 

Here Split decomposes a bag into two subbags of roughly equal size and Merge composes two 
sorted sequences to form a sorted sequence. 

The characteristic that subproblems are solved independently gives the divide-and-conquer notion 
its great potential in parallel environments. Another aspect of divide-and-conquer is that the 
recursive decomposition can often be performed implicitly, thereby enabling a purely bottom-up 
computation. For example, in the Mergesort algorithm, the only reason for the recursive splitting is 
to control the order of composition (merging) of sorted subproblem solutions. However the pattern 
of merging is easily determined at design-time and leads to the usual binary tree computation 
pattern. 

To express the essence of divide-and-conquer, we define a divide-and-conquer theory comprised of 
various sorts, function, predicates, and axioms that assure that the above scheme correctly solves a 
given problem. A simplified divide-and-conquer theory is as follows (for more details see [18, 21]): 

Theory Divide—and—Conquer 
Sorts D,R 
Operations 

I: D —)■ Boolean 

domain and range of a problem 

input condition 
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O : D x R ->• Boolean 
primitive : D —> Boolean 
ODecompose ll/Xi/Xi/- 

Ocompose : it X it X it —> 

>- : D x £) —>■ Boolean 
Soundness Axiom 

A 0(a;i,zi) A 0(x2,z2) 
A Ocompose(20>Zl,Z2) 

==> O(a;o,zo) 

output condition 
control predicate 

->• Boolean      output condition for Decompose 
Boolean output condition for Compose 

well-founded order 

end—theory 

The intuitive meaning of the Soundness Axiom is that if input x0 decomposes into a pair of subprob- 
lems (xi, x2), and z\ and z2 are solutions to subproblems xi and x2 respectively, and furthermore 
solutions z\ and z2 can be composed to form solution z0, then z0 is guaranteed to be a solution 
to input x0. There are other axioms that are required: well-foundedness conditions on y and 
admissibility conditions that assure that Decompose and Compose can be refined to total functions 
over their domains. We ignore these in order to concentrate on the essentials of the design process. 

The main difficulty in designing an instance of the divide-and-conquer scheme for a particular 
problem lies in constructing decomposition and composition operators that work together. The 
following is a simplified version of a tactic in [18]. 

1. Choose a simple decomposition operator and well-founded order. 

2. Derive the control predicate based on the conditions under which the decomposition operator 
preserves the well-founded order and produces legal subproblems. 

3. Derive the input and output conditions of the composition operator using the Soundness 
Axiom of divide-and-conquer theory. 

4. Design an algorithm for the composition operator. 

5. Design an algorithm for the primitive operator. 

Mergesort is derived by choosing lüJ _1 as a simple (nondeterministic) decomposition operator. A 
specification for the well-known merge operation is derived using the Soundness Axiom. 

bo 

V 

Sort 
-> ZQ 

A 

Merge 

Sort x Sort 
<bi,b2> ><zi,z2> 

A similar tactic based on choosing a simple composition operator and then solving for the decom- 
position operator is also presented in [18]. This tactic can be used to derive selection sort and 
quicksort-like algorithms. 
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Deriving the output condition of the composition operator is the most challenging step and bears 
further explanation. The Soundness Axiom of divide-and-conquer theory relates the output condi- 
tions of the subalgorithms to the output condition of the whole divide-and-conquer algorithm: 

U Decomposed® ■> x\i %2) 

A0(xi,zi)  A 0(2:2,22) 
A Ocompose(zQ, Zi, Z2) 
=> 0{xQ,zQ) 

For design purposes this constraint can be treated as having three unknowns: O, Ooecompose, and 
OCompose- Given O from the original specification, we supply an expression for ODecompose then 
reason backwards from the consequent to an expression over the program variables ZQ, Z\, and Z2- 
This derived expression is taken as the output condition of Compose. 

Returning to Mergesort, suppose that we choose W _1 as a simple decomposition operator. To 
proceed with the tactic, we instantiate the Soundness Axiom with the following substitutions 

ODecompose     •-»     A(60, 61, 62) &0 = h   IÜJ   62 

O   >->•    A(6, z) b — Seq-to-bag(z) A Ordered(z) 

yielding 

60 = &i W b2 

A 61 = Seq—to—bag{z\) A Ordered(z\) 
A 62 = Seq—to—bag(z2) A Ordered^) 
A OCompose (zo, Z\, Z2 ) 

=> 60 = Seq-to-bag(zo) A Ordered(zo) 

To derive Ocompose(zo,zi,z2) we reason backwards from the consequent b0 = Seq-to~bag(z0) A 
Ordered(z0) toward a sufficient condition expressed over the variables {ZQ, z\, Z2} modulo the as- 
sumptions of the antecedent: 

60 = Seq-to-bag(zo) A Ordered(zo) 

using assumption 60 = &i W &2 

61  IMJ 62 = Seq-to-bag(zo) A Ordered(zo) 

using assumption 62- = Seq-to-bag(zi), i = 1, 2 

Seq-to-bag(zi) ÜJJ Seq—to-bag(z2) = Seq—to-bag(z0) 
A Ordered(zo). 

This last expression is a sufficient condition expressed in terms of the variables {20,^1)^2} and so 
we take it to be the output condition for Compose. In other words, we ensure that the Soundness 
Axiom holds by taking this expression as a constraint on the behavior of the composition operator. 
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The input condition to the composition operator is obtained by forward inference from the an- 
tecedent of the soundness axiom; here we have the (trivial) consequences Ordered{z{) and Ordered{z2). 
Only consequences expressed in terms of the input variables z\ and z2 are useful. 

Thus we have derived a formal specification for Compose: 

Merge{A : seq{integer),B : seq{integer) | Ordered{A) A Ordered{B)) 
returns( z : seq(integer) 

| Seq-to-bag(A) W Seq-to-bag(B) = Seq-to-bag(z) 
A Ordered(z) ). 

Merge is now a derived concept in Sorting theory. We later derive laws for it, but now we proceed 
to design an algorithm to satisfy this specification. The usual sequential algorithm for merging is 
based on choosing a simple "cons" composition operator and deriving a decomposition operator 
[18]. However this algorithm is inherently sequential and requires linear time. 

7.2.    Batcher's Odd-Even Sort 

Batcher's Odd-Even sort algorithm [1] is a mergesort algorithm in which the merge operator itself 
is a divide-and-conquer algorithm. The Odd-Even merge is derived by choosing a simple decompo- 
sition operator based on ilv  and deriving constraints on the composition operator. 

Before proceeding with algorithm design we need to develop some of the theory of sequences based 
on the ilv constructor. Generally, we develop a domain theory by deriving laws about the various 
concepts of the domain. In particular we have found that distributive, monotonicity, and invariance 
laws provide most of the laws needed to support formal design. This suggests that we develop laws 
for various sorting concepts, such as Seq-to-bag and Ordered. From Section 7.1. we have 

Theorem 1. Distributing Seq-to-bag over sequence constructors. 
1.1. Seq-to-bag(\}) =  « 
1.2. Seq-to-bag([a\) =  |aj 
1.3. Seq-to-bag{Si ilv S2) = Seq-to-bag(Si) IM) Seq-to-bag(52) 

It is not obvious how to distribute Ordered over ilv , so we try to derive it. In this derivation let 
n denote the length of both A and B. 

Ordered(A ilv B) 
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by definition of Ordered 

V(*)(i e {1..2n - 1} =* {A ilv B)i < {A ilv B)i+l) 

change of index 

V(;)(i e {l..n} =» (A ilv B)2j-i < (A ilv B)2j) 
A V(j)(; G {l..n - 1}  =*►  (4 »to S)2i < (A ilv B)2j+l) 

by definition of ilv 

V(j)(ie{Ln} =» i4J-<5i) 
A V(j)(; e {l..n - 1}  => 5j < Ai+1). 

These last two conjuncts are similar in form and suggest the need for a new concept definition and 
perhaps new notation. Suppose we define A <* B iff A{ < B{ for i e {1... n}. This allows us to 
express the first conjunct as A <* B, but then we cannot quite express the second concept - we 
need to generalize to allow an offset in the comparison: 

Definition 1. A pair of sequences A and B of length n are pairwise-ordered with offset k, written 
A <*k B, iff Ai < Bi+k for i € {1... n - k}. 

Then the derivation above yields the following simple law 

Theorem 2. Conditions under which an interleaved sequence is Ordered. 
For all sequences A, B, 
Ordered(A ilv B) <=> A<*0B A B <\A. 

Note that this definition provides a proper generalization of the notion of orderedness: 

Theorem 3.    Ordered as a diagonal specialization of <*. 
For all sequences S, 
Ordered(S) 4=> S <J 5 

Other laws are easily derived: 

Theorem 4.  Transitivity of <*. 
For all sequences A, B, C of equal length and integers i and j, 
A<* B A B<*C =* A <*+j C 

As a simple consequence we have 

Corollary 1. Only Ordered sequences interleave to form Ordered sequences. 
For all sequences A. B, 
Ordered(A ilv B) => Ordered{A) A Ordered(B). 
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Proof: 

Ordered(A ilv B) 

by Theorem 2 

A <l B A B <[ A 

applying Theorem 4 twice 

A <\ A A B <\ B 

by Theorem 3 

Ordered{A) A Ordered{B). O 

Theorem 5. Monotonicity of <* with respect to merging. 
For all sequences Au A2, Bi, and B2 and integers i, 

Ax <* A2 A B\ <■ B2 => Merge(Ai,Bi) <2i Merge{A2,B2) 

We can apply the basic sort operation sort2(x, y) = (min{x,y),max{x,y)} over parallel sequences, 
just as we did with the comparator <. 

Definition 2. Pairwise-sort of sequences with offset k. 
Define sort2\{A,B) = (A',B') such that 

(1) for i < k, B'i = Bi 
(2)fovi = l,...,n-k, {A'i,B'i+k) = sort2{AuBl+k) 
(3) for i > n - k, A'{ = Ai 

For example, sori2|([2,3,8,9], [0,1,4,5]) = ([1,3,5,9], [0,2,4,8]). Laws for sort2% can be devel- 

oped: 

Theorem 6. sort2*k establishes <£. 
For all sequences A, B, A', and B', and integer k, 
sort2*k(A,B) = (A',B') =» A' <*k B'. 

This theorem is a trivial consequence of the definition of sort2*k. The following theorems give 
conditions under which important properties of the domain theory (<|, Ordered) are preserved 
under under the sort2*k operation. They can be proved using straightforward analysis of cases. 

Theorem 7. Ordered is invariant under sort2*k. 
For all sequences A, B and integer A;, 
Ordered{A) A Ordered{B) A sort2*k{A,B) = {A',B') 
==>> Ordered{A') A Ordered{B') 
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Theorem 8.    Invariance of A <* B with respect to sort2k(A,B). 
For all sequences A, B and integers i and k, 
A <* B A sort2*k(A,B) = (A',B')  => A' <* B' 

Theorem 9.    Invariance of A <* B with respect to sort2*k(B,A). 
For all sequences A, B and 0 < i < k, 
A <*+k A A B <*+k B A A <* B A B <*+2k A A Sort2l(B, A) = (B',A') 
=> A' <* B' 

With these concepts and laws in hand, we can proceed to derive Batcher's Odd-Even mergesort. It 
can be derived simply by choosing to decompose the inputs to Merge by uninterleaving them. 

Merge 
(AQ,BQ)  > SQ : seq(integer) 

A 

ilv~2 

*                  Merge x Merqe 
((AUBX),(A2,B2)) 

y- > {SUS2) 

where ilv^2 means A0 = Ai ilv A2 and B0 = Bi ilv B2. Note how this decomposition operator 
creates subproblems of roughly the same size which provides good opportunities for parallel com- 
putation. Note also that this decomposition operator must ensure that the subproblems (Ai,Bi) 
and {A2,B2} satisfy the input conditions of Merge. This property is assured by Corollary 1. 

We proceed by instantiating the Soundness Axiom as before: 

A0 = Ai ilv A2 A Ordered(Ao) 
A B0 = B\ ilv B2 A Ordered{B0) 
A Seq-to-bag(Si) = Seq-to-bag{Ai) UU Seq-to~bag{B2) A Ordered{S{) 
A Seq-to-bag(S2) = Seq-to-bag(A2) lä) Seq-to-bag{B2) A Ordered(S2) 
A O Compose {SQ, S\,S2) 

=>  Seq-to-bag(So) = Seq-to-bag(A0) & Seq-to-bag(B0) 
A Ordered(So) 

Constraints on Ocompose are derived as follows: 

Seq-to-bag{S0) = Seq-to-bag(A0) VS Seq-to-bag(B0) A Ordered(S0) 
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by assumption 

Seq-to-bag(So) = Seq-to-bag{Ai ilv A2) 
UU Seq-to-bag{Bi ilv B2) 

A Ordered(So) 

distributing Seq-to-bag over ilv 

Seq-to-bag{So) = Seq-to-bag {A 1) W Seq-to-bag{A2) 
IMJ Seq-to-bag(Bi) W Seq-to-bag {B2) 

A Ordered(So) 

by assumption 

Seq-to-bag{S0) = Seq-to-bag {Si) W Seq-to-bag {S2) 

A Ordered(So)- 

The input conditions on Merge are derived by forward inference from the assumptions above: 

Ao = Ai ilv A2 A Ordered(Ao) 

A B0 - B\ ilv B2 A Ordered{B0) 

AOrdered(Si) A Order ed{S2) 

=> distributing Ordered over  iiu 

Ai <S A2 A A2 <i Ai 
A Bi <S £2 A B2 <J Bi 
A Ordered{Si) A Ordered{S2) 

=> by monotonicity of <*  with respect to Merge 

Si <l S2 A 52 <£ 5i 
A Ordered(Si) A Ordered{S2). 

Thus we have derived the specification 

Merge-Compose{Si : seq{integer), S2 : seq{integer) 
I S1! <5 52 A 52 <2 5i A Ordered(Si) A Ordered{S2)) 

returns( So : seq{integer) 
I Seq-to-bag{So) = Seq-to-bag {Si) IB) Seq-to-bag {S2) 

A Ordered{So) )■ 

How can this specification be satisfied? Theorems 1.3 and 2 suggest ifo   since it would establish 
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the output conditions of Merge-Compose. Theorem 2 requires that we achieve the input con- 
dition 5X <*Q S2 A S2 <\ Si first. But Theorem 6 {sort2*k establishes <*k) enables us to apply 
Sort2*x{S2, Si) in order to achieve the second conjunct. Theorems 7, 8, and 9 ensure that Si <Q S2 

remains invariant. So Merge-Compose is satisfied by ilv • aort2J(52,5i). The final algorithm in 
diagram form is 

bo 

lä) -l 

v 
(6i,62) 

Sori 

Sort x Sort 

—> zo 
A 

Merge 

v 
«^i,5i>,(^2,52)) 

Merge 

Merge x Merge 

 >S0 
A 

2'/Vsor£2*(S2,Si) 

-><Si,S2> 

To simplify the analysis, assume that the input to Sort has length n = 2m.  Given n processors, 
Merge runs in time 

rwerpe(n) = max(TMerge(n/2),TMerge(n/2)) + 0(1) 
= 0(log(n)) 

since the decomposition and composition operators both can be evaluated in constant time and the 
recursion goes to depth 0(log{n)). 

The decomposition operator lüJ -1 in Sort is nondeterministic. This is an advantage at this stage of 
design since it allows us to defer commitments and make choices that will maximize performance. 
In this case the complexity of Sort is calculated via the recurrence 

Tsort(n) = max(TSort{a{n)),TSort(b{n))) + 0{log{n)) 

which is optimized by taking a(n) = b(n) = n/2 - that is, we split the input bag in half. Given 
n processors this algorithm runs in 0{log2{n)) time, so it is suboptimal for sorting. However, 
according to [13], Batcher's Odd-Even sort is the most commonly used of parallel sort algorithms! 

7.3.    Related Sorting Algorithms 

Several other parallel sorting algorithms can be developed using the techniques above. Batcher's 
bitonic sort [1] and the Periodic Balanced Sort [6] are also basically mergesort algorithms. They dif- 
fer from Odd-Even sort in that the merge operation is a divide-and-conquer based on concatenation 
as the composition operator. For example, bitonic merge can be diagrammed as follows: 
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V 

(A,B) 

[id, reverse] 

(A0,B0) 

[halve, halve] ■ sort2*Q 

((A1,Bl),(A2,B2)) 

Merge 
-> So 

BMerge 

id 

->50 

BMerge x BMerge 
> <Si,S2> 

The essential fact about using -B- as a composition operator is that ((Ai,Bi), 
(A2,B2)) must be a partition in the sense that no element of Ax or Bx is greater than any el- 
ement of A2 and B2. The cleverness of the algorithm lies in a special property of sequences 
that allows a simple operation (sort2*0 here) to effectively produce a partition. This property is 
called "bitonicity" for bitonic sort and "balanced" for the periodic balanced sort. (The operation 
(A0,Bo) - {id{A),reverse{B)) establishes the bitonic property and decomposition preserves it). 
The challenge in deriving these algorithms lies in discovering these properties given that one wants 
a divide-and-conquer algorithm based on -H- as composition. Is there a systematic way to discover 
these properties or must we rely on creative invention? Admittedly, there may be other frameworks 
within which the discovery of these properties is easier. 

Another well-known parallel sort algorithm is odd-even transposition sort. This can be viewed as 
a parallel variant of bubble-sort which in turn is derivable as a selection sort (local search is used 
to derive the selection subalgorithm). 

The ilv constructor for sequences has many other applications including polynomial evaluation, 
discrete fast fourier transform, and matrix transposition. Butterfly and shuffle networks are natural 
architectures for implementing algorithms based on ilv [12]. 

7.4.    Concluding Remarks 

The Odd-Even sort algorithm is simpler to state than to derive. The properties of a »/abased 
theory of sequences are much harder to understand and develop than a concatenation-based theory. 
However, the payoff is an abundance of algorithms with good parallel properties. 

8.    Concluding Remarks 

The applications described above span a range of ways in which synthesis technology can support 
parallel software engineering. The Batcher's sort example illustrates the synthesis of a well-known 
high-performance sorting algorithm. The scheduler of real-time concurrent tasks illustrates the 
use of synthesis thechnology to support meta-synthesis: we synthesize a program (scheduler) that 
generates a program (the schedule that actually executes on the parallel hardware). The final 
example of LDS illustrates how parallel search strategy knowledge can be formally captured and 
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applied - furthermore we have applied it to the parallization of a meta-synthesizer by parallelizing 
the scheduler of real-time parallel processes. 
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