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1. Background 

Mississippi State University (MSU), in collaboration with members of the National Science 
Foundation Engineering Research Center for Computational Field Simulation at Mississippi 
State University (MSU) has established a collaborative research program funded by AFOSR, 
McDonnell Douglas Corporation, Boeing Company and Teledyne Brown Engineering (TBE) 
Corporation. 

The Broad-based objective of this research project is to improve understanding of fluid 
phenomena associated with complex three-dimensional full configurations under various 
physical environments utilizing hybrid techniques. In particular, the research is placed on: 

• Automatic hybrid (Structured, Unstructured and mixed cells)/generalized grid 
generation. 

• Optimal criteria for the placement of structured, unstructured and mixed cells 

• Efficient data structures and data flow 

• Euler and Navier-Stokes flow solvers for hybrid/generalized grids 

• Training of CFD applications specialists and technology transfer 

The key element of this project is the technology transfer providing one-on-one interactions 
between university personnel and scientists from various aerospace industries. This program 
is a three-year collaborative effort. This report summarizes the accomplishments and 
algorithms developed under this broad based program. 



2. Project Objectives 

The broad-based objective of this research project is to provide a forum through which university 
and industrial researchers can jointly pursue research and development pertinent to the simulation 
of fluid flowfields (steady and unsteady) about complex configurations over a wide range of 
physical conditions utilizing hybrid techniques. Upon completion, this research will significantly 
reduce the "response time" for addressing complex applications and will increase the quality of 
simulation through the improvement of numerical algorithms, surface rendering and grid generation 
schemes, and the manner in which graphical techniques are used to interpret computed solutions. 
Specifically, research focused upon advancing the current state of knowledge regarding the 
following items is being conducted: 

• Grid Generation - Both structured and unstructured methodologies will be explored in 
hybrid development. In particular, the algorithms for refinement, decomposition, 
redistribution, and remapping algorithms developed by the principal investigator during 
the 1990-93 collaborative AFOSR project will be utilized in this development. Software 
allowing generation of both structured and unstructured blocks within a given domain 
decomposition will be developed. Automization, optimal criteria for 
structured-unstructured blocking, and efficient data structures will be explored in this 
hybrid multiblock development. The second objective in the grid generation will be to 
generate hybrid grids of arbitrary element types connected in an unstructured manner 
(now are referred as Generalized Grids). The approach here will be to utilize a 
combination of the structured-unstructured grid generation techniques to generate 
optimal grids for a variety of complex configurations. 

• How Simulation Algorithm - There are numerous flow solution algorithms for 
structured and unstructured grids currently in widespread use around the technical 
community. The objective here will be to develop a finite volume algorithm to solve the 
Navier-Stokes equations on generalized grids. The approach will be to utilize well 
proven structured and unstructured techniques and adapt them for use with generalized 
grids. This development will also include an automatic grid adaptation algorithm for 
generalized grids. 

• Training of CFD Application Specialists - An often overlooked aspect regarding 
"hardcore" CFD applications is in regard to what kind and how much training the 
industrial based "CFD Application Specialist" needs. 

An extremely important aspect of the present research is in regard to training of both university and 
industrial personnel in effectively utilizing newly developed CFD related software using hybrid 
techniques for solving fluid flow problems associated with complex configurations. From a 
day-to-day, working level, people point of view, it is anticipated that this training will tend to occur 
naturally as a by-product of the collaborative nature of the efforts proposed herein. However, 
because it is felt that training issues associated with real world CFD applications are as important 
as the research itself, and because this embraces of the spirit of the Air Force initiative which 
spawned the present proposal, and objective of this effort is to take whatever steps deemed necessary 
to insure that substantial exchange of information and personnel between this institution and its 
collaborative partners take place. 

2 



With the advent and rapid development of supercomputers and high performance workstations, it 
is becoming possible to treat physical field problems of engineering importance on very complex 
regions by the numerical solution of systems of partial differential equations. Computational fluid 
dynamics (CFD), for instance, has progressed to the point where structured or unstructured flow 
solutions about complete aircraft configurations are possible. 

CFD involves: 

• Grid Generation - Creation of a "computational grid," where the spatial region of interest 
is split up, or discretized, into many smaller regions. Two basic strategies multiblock 
(composite, zonal) (structured and unstructured) are widely utilized. A multitude of 
techniques and codes have been developed for both structured and unstructured grid 
generation. However, grid generation is by far the most time (labor) intensive part of the 
overall CFD simulation process. 

• Solution Algorithms - Solving a set of partial differential equations pertinent to fluid 
phenomenon being analyzed. Finite difference, finite volume and finite element 
algorithms with both explicit and implicit formulations have all been used successfully. 
Codes utilizing structured multiblock grids are widely used for Navier Stokes equations 
and they have been validated for a variety of physical conditions and configurations. In 
the last few years, unstructured flow solvers have made considerable progress especially 
in the simulation of inviscid (Euler) flowfields. The applicability of unstructured 
techniques to viscous and turbulent flow simulations is being researched by various 
scientists/engineers. 

• Numerical Flow Visualization - post-processing software designed to allow the 
rendering of a large amount of digital information into graphical or analog descriptions 
of a particular flowfield phenomena. The widely used software systems for post 
processing are FAST (Ref.l) and PLOT3D (Ref. 2). An unstructured capability has 
recently been incorporated within FAST. However, it does not support hybrid grids and 
further development is needed. 

In the spirit of AFOSR's initiative to promote university-industry collaborative research, a project 
entitled, "Numerical flow simulations around complete configuration," was executed during 
1990-93. The broad-based objective of this research project was to provide a forum through which 
university and industrial researchers can jointly pursue research and development pertinent to the 
simulation of fluid flowfields about complete flight vehicles over a wide range of flight conditions. 
This collaborative research effort funded by AFOSR and participating industries (McDonnell 
Aircraft Company, McDonnell Douglas Research and Development and Teledyne Brown 
Engineering Company) has been very fruitful for MSU and the industry at Mississippi State 
University. Significant progress in the basic development of surface grid technology, grid adaptive 
methodology and domain decomposition techniques was realized. 

The collaborative project entitled, "Hybrid CFD techniques," was initiated as a three year project 
(1993-96) 



3. Technical Introduction: Hybrid/Generalized Grid- 
Flow Solvers 

Traditionally, both experimental and theoretical methods have been used to develop 

designs, and analysis for equipment and vehicles involving fluid flow and heat transfer. With 

the advent of the digital computers, a third method, the numerical approach, has emerged. 

Although experimentation continues to be important, especially when the flows involved are 

very complex, the trend is clearly toward greater reliance on computer based predictions in 

practical engineering applications. The development of the high-speed digital computers has 

had a great impact on the way in which principles from the sciences of fluid dynamics and 

heat transfer are applied to problems of design, analysis, and manufacture in modern engineer- 

ing practices. 

Many important physical processes in nature are governed by partial differential equa- 

tions which are usually difficult to solve or possess no analytical solutions. With the help of 

digital computers, these problems can be solved numerically, and the physical phenomena can 

be simulated by computers. The numerical simulations of these equations are referred to as 

Computational Field Simulations (CFS). The CFS process involves numerical grid generation 

(generation of a discrete representation of surfaces or volumes for the physical domain), nu- 

merical solution algorithms (numerical solutions of governing equations of fluid dynamics), 

and scientific visualization (interpretation of flow characteristics of physical domains). 

During the past decade, computational simulation of fluid flow over complex configu- 

rations has progressed significantly, and numerous notable successes have been reported in the 

literature (Lohner [1], Marcum and Weatherill [2], Mavriplis and Jameson [3], Mavriplis and 

Venkatakrishnan [4], Morgon et al. [5], Venkatakrishnan and Mavriplis [6], Whitaker et al. 

[7], Whitfield et al.[8]). However, the generation of a high quality mesh for such problems 

has often been reported as a pacing item. Hence, much effort has been expended to speedup 



this portion of the simulation process, resulting in several approaches to grid generation. The 

generation of high quality meshes for such complex configuration problems is the vital part of 

computation field simulations because the meshes are required to accurately model the physi- 

cal domains and also the mesh concentration is desired in the regions of the domains where 

flow features develop. The quality of the mesh for a practical problem can greatly affect the 

accuracy and efficiency of the solutions of the problem. The solution of the governing equa- 

tions can be greatly simplified and the computational efficiency and accuracy can be improved 

by well-constructed set of points. Usually, the grid generation is the most labor and time con- 

suming part among the whole computational field simulation processes. Two of the most 

common approaches for grid generation are based on structured multi-block (Dannenhoffer 

[9], Shih and Soni [10], Thompson [11]) and unstructured procedures (Kallinderis [12], Kha- 

waja [13], Lohner and Parikh [14], Marcum and Weatherill [15], Mavriplis [16], Mavriplis 

[17], Weatherill [18]). 

In the case of structured grids, the physical domain of interest is decomposed into a 

number of quadrilaterals for two dimensions and hexahedrons for three dimensions. These 

regions, called cells, are numbered in such a way that the neighbors of a particular cell can be 

determined in a trivial manner. The structured grid generation technology has two major ap- 

proaches: algebraic interpolation approach which generates grids directly by interpolation 

with the features of economical, fast, and precise spacing control, and partial differential 

equations approach which generates grids indirectly by solving a set of partial differential 

equations. However the elliptic type Laplacian partial differential equations approach can 

avoid grid line crossing and the elliptic type Poisson partial differential equations can achieve 

grid line orthogonality with spacing controls. 

In the case of unstructured grids, the flow domain is divided into triangular cells for 

two dimensional cases and tetrahedrons for three dimensional cases. The cell numbering does 



not follow any particular pattern. Therefore, the cells that neighbor a given cell are not direct- 

ly deducible. This necessitates the creation of an explicit connectivity table that contains this 

information and results in an overhead for storing the same. However, unstructured grids of- 

fer greater geometric flexibilities. The generalized data structure of an unstructured grid is 

very useful in the refinement or de-refinement of the grid since the data structure has to be 

changed only locally. This helps in adaptation of the grid to the flow features by adding more 

points where the gradients of the flow properties are significant ( Baum, et al. [19], Marcum 

and Weatherill [20], Mavriplis [17]) and removing points from the regions where there are no 

flow features of interest. Therefore, grid adaptation is easier in the case of unstructured grids 

as compared to moving or adding grid points to a structured grid. 

A class of problems of interest to the Computational Fluid Dynamics (CFD) communi- 

ty is the flow simulation over dynamically moving bodies. Chimera or overset grids are the 

primary choice for flow simulation of this type of problems when using structured grid meth- 

odology. In this approach, complex configurations are decomposed into simpler geometric 

entities and structured grids are generated around them. The governing equations are solved 

on these individual grids and the solution variables are transferred appropriately between the 

grids for the next time step. The disadvantage of this approach is that the interpolation be- 

tween the grids may not always be conservative. If there are discontinuities in the flow vari- 

ables near the overlapping grid regions, then there may be spurious oscillations near the grid 

interfaces. 

Flow solvers based on structured grids tend to be computationally more efficient than 

those based on unstructured grids. High aspect ratio cells that are necessary for the resolution 

of the viscous layers can be easily generated for structured grids. The state of the art for struc- 

tured flow solvers, (Cooper and Sirbough [21], Whitfield et al.[8], Thomas, et al.[22]), can 

handle this type of high aspect ratio cells. For complex configurations, the physical domain 



has to be decomposed into different sub-domains (blocks) and the grid has to be generated 

separately for individual blocks. In many cases, grid lines do not exhibit continuity across the 

block interfaces. Even with this relaxation of the continuity of the grid lines at the block inter- 

face, this grid generation process is time consuming. Flow solvers supporting non-contiguous 

interfaces require specialized interpolation procedures which, furthermore, may not ensure 

conservation of the flow variables at the block interface. 

Flow solvers based on an unstructured mesh require more CPU time per grid point. 

Furthermore, the number of grid points necessary to resolve the boundary layers using nearly 

equilateral triangles are enormous, resulting in significantly higher CPU and memory require- 

ments. Recently, success has been reported in generating high aspect ratio unstructured grids 

for viscous simulations using an advancing normal point placement strategy (Marcum [23], 

Pirzadeh [24]). In this case, the triangles inside the boundary layer are very skewed. This 

forces one to avoid the use of a cell-centered finite volume approach, as the truncation error is 

inversely proportional to the sine of the minimum angle of the triangles that form the mesh. 

Consequently, the truncation error will be very high in the cells that are in the boundary layer 

region. For the node centered schemes, the diagonal edges do not contribute to the effective 

flux balance. This results in unnecessary computation of the fluxes crossing the diagonal 

edges. 

Hybrid or generalized element grid generation and solution techniques have been de- 

veloped with the objective of combining the attractive features of both structured and unstruc- 

tured techniques. The Table 1 compares the advantages and disadvantages of different grid 

generation approaches and there is a clear advantage for the hybrid approach. 



Structured Unstructured Chimera Hybrid 

Geometrie Flexibility — + + + 

Grid Adaptation — + — + 

High Aspect Ratio Cells + — + + 

Moving Grids — + + + 

Interpolation — + — + 

Memory + — + ? 

CPU + — + ? 

Table 1 Relative Advantages of Different Grid Generation Approaches 

Nakahashi et al. [25] used a zonal method for the hybrid grid generation. In their ap- 

proach, body fitted structured grid is kept in the boundary layer and finite difference scheme is 

used to solve the Reynolds averaged Navier-Stokes equation in the structured portion of the 

grid. The rest of the domain is filled with unstructured grid and the Euler equations are solved 

in that part. The interface between the structured and unstructured parts are treated as explicit 

boundary condition. Lohner [26] used a combination of semi-structured and unstructured 

grid for getting high aspect ratio cells in the boundary layer. The semi-structured grid in the 

boundary layer is generated using the surface normals. In this approach prisms are generated 

in the boundary layer and are trimmed to avoid the grid crossing. These prisms are subdivided 

into tetrahedra to only work with tetrahedra in the domain. The main disadvantage of the 

method is that the presence of highly skewed tetrahedra in the boundary layer. Kallinderis et 

al. [12], and Sharov and Nakahashi [27] used a semi-structured prisms in the viscous regions 

and tetrahedra in the rest of the domain. In both these cases, they used the marching direction 

as the surface normals to generate the prisms. Sharov and Nakahashi [27] used a Delaunay 

triangulation for the tetrahedra generation while Kallinderis et al. [12] used an advancing front 

method. 



In the approach put forth by Weatherill [28] and Kao and Liou [29], most of the do- 

main is filled with structured elements and the different components of the structured grid are 

connected using unstructured grids. This involves the decomposition of the complex geome- 

tries into a number of simple geometric entities followed by the generation of structured grids 

around them. One of the structured grids is termed the main grid and it contains the remaining 

grids called component grids. The main and component grids are overlaid and a hole is cut in 

the main grid where the structured - grid component has to be placed. The gap between the 

main and the component grids is filled with an unstructured grid. An example of a hybrid grid 

generated using this approach is shown in Figure 3.1. As can be seen from the figure, the 

quality of the grid at the transition between the structured and unstructured grids is not satis- 

factory with the area ratio of the cells varying abruptly across the interface. This leads to a 

higher truncation error during the discretization of the governing equations. 

In the present approach, structured grids are used only near solid bodies and the rest of 

the domain is filled with unstructured grids. The structured grids are generated using an ad- 

vancing layer type method and the quality of the cells at the interfaces is assured by checking 

the aspect ratios of the cell (Huang [30]). The hybrid grids are generated using a combination 

of structured grid generator based on an advancing layer method and an unstructured grid gen- 

erator based on Delaunay triangulation. An example of the hybrid grid around a two element 

airfoil using the present grid generation approach is given in Figure 3.2. One can clearly ob- 

serve the improvement in grid quality in the transition region between Figure 3.1 and 

Figure 3.2. 

The development of a flow solver for generalized grids is a challenging problem, 

since it has to handle cells with arbitrary number of sides. The existing structured and un- 

structured grid algorithms are combined with the flow solver to develop a flow simulation 

system for hybrid grids. 



Figure 3.1 Hybrid Grid for Two Element Airfoil 

Figure 3.2 Hybrid Grid for Two Element Airfoil 
Using New Approach 

In other works related to the flow solvers for hybrid grids, the structured and unstruc- 

tured grids are treated as two different blocks (Mathur [31], Tsug et al. [32], Soetrisno et al. 

[33]) and explicit boundary conditions are used to transfer information between them. This 
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introduces a time lag between the interface of the structured and the unstructured grids result- 

ing in a possible convergence degradation. In the present work, the structured and unstruc- 

tured grids are treated as a single block for the purpose of flow computations. This is achieved 

through a generalized data structure. Another existing hybrid flow solver is due to Parthasara- 

thy et al.[34]. In their approach, they use Lax-Wendroff temporal discretization. 

A cell centered finite volume upwind scheme based on Roe's approximate Riemann 

solver is used for the inviscid flux evaluation. The turbulence viscosity is estimated using the 

Spalart-Allmaras one equation turbulence model (Spalart and Allmaras [35]) while Suther- 

land's law is used for the molecular viscosity. Both explicit and implicit schemes are imple- 

mented and validated with experimental data. The convergence of the implicit scheme using 

approximate analytical Jacobians and numerical Jacobians is studied. The approximate ana- 

lytical Jacobians are calculated assuming the Roe averaged matrix as constant and differentiat- 

ing the numerical flux crossing the cell face. But the numerical Jacobians are evaluated by 

perturbing the the conserved variables by a small amount and estimating the change in the 

numerical flux that cross the cell faces. For dynamically moving bodies, the grid movement is 

computed through a spring analogy and the trajectories of these bodies are determined using 

the laws of classical mechanics. 
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4. Hybrid Grid Generation 
The overall hybrid grid generation procedure can be divided into four basic steps. In 

the first step the complex geometries are decomposed into number of simples geometric enti- 

ties. In the next step structured grid are generated around each of these geometric entities 

using an advancing layer type method. In the third step, the structured grid around all geomet- 

ric entities are kept together and the overlapping regions are trimmed by checking the aspect 

ration. In the final step the void between the trimmed structured grids are filled using unstruc- 

tured grids. These steps are explained in detail in the following sections. 

4.1 Advancing Front Structured Grid Generator 

An advancing front structured grid generator is developed for generating a grid which 

originally marches the front out from the boundary with appropriate packing. This advancing 

front structured grid generator can be either used alone for generating complex geometry grid 

efficiently or coupled in the hybrid grid generation system. 

Two-dimensional advancing front grid equations can be written as Soni[36]: 

r£  •  rv  =  ° 

rv ■ rn  = d2 
(4.1) 

or        |r| x rv |   = A 

or an alternative form as: 

xzxv + y^yn = ° 
(4.2) 

xv
2 + yn

2 = d2 

or      x^yv - y^Xjj = A 

where 
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r  =  (x , y ) Physical space 

(£, r\) Computational space 

d : Distance for marching out 

A: Area for marching out 

From this system of equations, we have already known the object boundary 

points distributions and the distance for marching out in the current level, that 

is, rt and d are known values. We can solve the equations for rv to locate the 

points for another level. By solving this system of equations, the properties of ort- 

hogonality and point distributions in tj direction are obtained. 

Three-dimensional front advancing grid equations can be similarly written as Soni 

[36]: 

(4.3) 

rt r^  =  0 

rv r^ =  0 

rs re  =  d2 

or as: 

xv
xz + yvy$ + zvzs = ° (4.4) 
2 +y2 +z* x,2 + y,2 + z,2  = d2 

where 

r  =  (x , v , z )      Physical space 

(£ J V J C ) Computational space 

d : Distance for marching out 
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The equations described above for two-dimensional and three-dimensional ad- 

vancing front structured grid generator is nothing but a set of hyperbolic partial 

differential equations. An alternative three-dimensional system can be used to 

compute the high level points more efficiently. 

or r^ ■  (r^xrrj)  =  V 

y%zv ~ yyz% ~ xz, 

2g Xfj — Zfj Xg = y^ 

x^2 + y^ + z^  =  d2 

(4.5) 

(4.6) 

or x£yyz£ + x^y^ztj + xrjy^z^ 

~~  x£Vr] z£   ~  xriy^ z£   ~  x^y^zrj   =    * 

where 

r  =  (x , y , z ) Physical space 

( £ , rj, £ ) Computational space 

d : Distance for marching out 

V : Volume for marching out 

Figure 4.1 and Figure 4.2 illustrate how the grid line or grid surface marches out from 

base line or surface to another level. 

14 



rj  = constant 

Figure 4.1 Grid Point Advances to Another Level in Normal Direction 
for Two Dimension Application. 

£, £ =  constant 

rj, £ =  constant 

Figure 4.2 Grid Point Advances to Another Level in Normal Direction 
for Three Dimensional Application. 

4.1.1 Elliptic Smoothing 

The advancing front structured grid generation has properties of orthogonality where 

the grid points march along the normal direction of the previous level of boundary or surface, 

and precise packing distribution which are supplied by known distribution data, but does not 

have guaranty of grid crossing resistant. For a smooth convex boundary, there is no problem 

for generating a perfect grid by utilizing front advancing structured grid generator. But for a 
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concave boundary area, it would cause grid line crossing after several steps of grid line march- 

ing. To resolve this problem, an elliptic PDE grid smoother is employed to smooth the grid at 

every new level to prevent grid line crossing. However, elliptic grid smoother which prevents 

grid line crossing diffuses the grid so that all point concentrations, and line orthogonality are 

lost while solving the elliptic system iteratively. Forcing control functions are introduced to 

accomplish field orthogonality and spacing control by elliptic PDE grid system. Therefore, 

instead of solving the Laplace equations, we solve the Poisson equations to smooth existed 

grids. 

Equations of elliptic system in two-dimensional and in three-dimensional domains 

can be written as: 

£«  +  Zyy   =  P ( £ , V ) 
(4.7) 

rjxx  + Vyy   =   Q ( £ , V ) 

(x , y ) Physical Space (f , rj) Computational Space 

and 

£«   +   Zyy   +   Izz   =   P ( £ , V , t ) 

Vxx  + Vyy  + Vzz  =  Q ( £ , V , £ ) (4.8) 

txx   +   Zyy   +   Kzz   =   R ( £ , V > I ) 

(x , y , z) Physical Space (|, rj, £ ) Computational Space 

When P, Q, and R are all zero, the above equations will reduce to the Laplace 

equations which will guarantee the removal of grid line crossing, grid line ortho- 

gonality and a smooth grid in the field. But the distributions and concentrations 

of the grid will be disturbed. To preserve the grid distribution, control functions 

are introduced where P, Q, and R are not zero. 

The Poisson equations can be rewritten as a form of P and Q (Soni [36]), 
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#22 rg ~ 2Si2r^r, + Surw =   ~ gir^P + rvQ) (4.9) 

or a form of 0 and ip : 

£22 (rg " <t>r^  ~  2Sl2r^r, + guirrjr, - iprv)  =  0       (4.10) 

or an alternative form: 

(4.11) 

+ gii(rm • rv - iprn • r,)  =  0 (4.12) 

where 

£n  =  r§ " r£ '     #12  =  r| " rv   and      #22  =  rrj • rv 

r =  (x,y) 

P=-gf<j>        and Q^-ify 

g =   II rs  x r, ||2 

Thomas-Middlecuff proposed equation (4.13) for the control functions <f> and ip by 

assuming that g12 equals to zero for orthogonality and one dimensional approach for each 

direction. Soni proposed equations (4.14) for the control functions <j> and ip which take con- 

tributions from arc length factor for each direction. Equations (4.13) and (4.14) reveal the for- 

mula of the control functions <p and ip respectively from Thomas-Middlecuff and Soni [37]. 

<j>  =  r-fi and        V  = T1 <4-13) 
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0  = ^-r^A      and        f  = ^-^ (4.14) T it       'p ' r,       • r, 

Soni proposed another form of control functions which can be derived from equations 

(4.15) and (4.16) as following (Soni [38]) 

M\\>1      .      s      o      (gn) 

( #22 )f 

^22(^12)5 2 ^^12) 2— 

+ *u(^-*>(*22)) = 0 

(4.15) 

(4.16) 

These equations can take the contributions both from the arc length distribution 

factor and curvature factor into the control functions with same assumptions for 

orthogonality and one dimensional approach, which are : 

(4.17) 

4>  -   rs  • r%          rr,   '   rfj 

rv   .   rtt ' ri 

Similarly, three dimensional <p and ip form of Poisson equations with assumption of 

orthogonality for grid lines inside can be written as: 

#22#33 (r||   ~   0r|)   +  ^11^33 (rW   ~   Vrr,) 

+ £11 £22 (rK - 6r0  =  ° (4-18) 

Control functions derived from equation (4.18) are 
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<t> -r®' 
rl • rl 

<P  -   r^ ■ rl r£ 

n; - r® ' 
rv • rv 

V        r^ • rS ri 

rwi 

(4.19) 

One of the characteristics of advancing front structured grid generator is that the grid 

may not look good except for the first grid line because all other gird lines are derived from 

the previous line with normal vectors computed in the previous line. So, when we compute the 

forcing control functions from the whole grid, it may result bad control functions if the grid 

lines are crossing in the higher portion of the grid. We can rewrite equations (4.17) and (4.19) 

to prevent the problem by computing the control functions from the first grid line in £ direc- 

tion and from distribution in r\ direction. Equations (4.20) and (4.21) are presented for two- 

dimensional and three-dimensional control functions respectively. The physical meanings of 

terms gn , g22 > anc^ #33 are distances of neighboring points in £ ,r\ , and £ directions re- 

spectively. For hyperbolic grid generation, the grid lines marching out from the original front 

in r] direction in two dimensional generation, and in £ direction in three dimensional genera- 

tion. We have already known g22 , and g33 from the user supplied marching distribution data. 

Thus, we can get precise distribution control by solving Poisson equations with forcing con- 

trol functions supplied in equations (4.20) and (4.21) for two-dimensional and three-dimen- 

sional grid respectively. 
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. 1     (Silk <822>S . 

,     , ,     , (4.20) 

1 (gll)g   _   &22)|   _   te33>g 
0          2 (   ^11 £22 ^33    ^ 

^-2(^ir""iir   ~Jir] (4-21) 

1 . ^33\ _ teii>g _ ^22)5 
2 ^33 *11 #22    ' 

For a free boundary condition type grid, the marching distances at every grid points 

are the same according to the global distribution data. That means (g22^ °f equation (4.20) 

and (g33) t , and ig^v of equation (4.21) are zero. Both the equations could be rewritten as 

equations (4.22) and (4.23). 

1 fen)| 
0  = 2   £11 

(4.22) 
1 ,^22^       teliV 

.        l    fen)f       <*22>*. 0 = 2(Tir""^2F) 

* ~ 2(-g£—s^r) (4-23) 

1 , ^S33\   _   fell)?   _   <£22)£ v 
2 l £33 An £22   ; 
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All control functions are computed from the original grid which may have grid line 

crossing somewhere in the grid. To ensure obtaining good forcing control functions, <p for two 

dimensional grid, and <p and ip for three dimensional grid are computed at every level, but 

ip for two dimensional grid, and 6 for three dimensional grid are only computed at the first 

level. 

Smoothing the grids by solving the Poisson equations preserves orthogonality for grid 

lines inside the grids, and precise grid line concentration, which resolves the problem that con- 

centration of the grid lines would be lost while smoothing the grids by solving the Laplacian 

equations. 

Figure 4.3, Figure 4.4, and Figure 4.5 illustrate the results of front advancing grid gen- 

eration with elliptic smoothing and without elliptic smoothing. Also, phenomena of elliptic 

smoothing with forcing control functions and without forcing control functions are shown 

from Figure 4.6 to Figure 4.13. 

(a) Without Elliptic Smoothing. (b) With Elliptic Smoothing. 

Figure 4.3 Effect of Local Elliptic Solver on Front Advancing Grid 
Generation. 
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(a) Without Elliptic Smoothing. (b) With Elliptic Smoothing. 

Figure 4.4 Effect of Local Elliptic Solver on Front Advancing Grid 
Generation. 

(a) Without Elliptic Smoothing. (b) With Elliptic Smoothing. 

Figure 4.5 Effect of Local Elliptic Solver on Front Advancing Grid 
Generation. 
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Figure 4.6 Rocket Grid With Zero Forcing Functions. 

Figure 4.7 Rocket Grid With Non-Zero Forcing Functions. 
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Figure 4.8 C-Type Airfoil Grid With Zero Forcing Functions. 

Figure 4.9 C-Type Airfoil Grid With Non-Zero Forcing Functions. 
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Figure 4.10 O-Type Airfoil Grid With Zero Forcing Functions. 

K / V /V./ / 7 

Figure 4.11 O-Type Airfoil Grid With Non-Zero Forcing Functions. 
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Figure 4.12 Missile Grid With Zero Forcing Functions. 
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Figure 4.13 Missile Grid With Non-Zero Forcing Functions. 
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4.1.2 Boundary Conditions 

Cut line boundary points are smoothed by two different approaches which are based on 

Bezier curve and liner extrapolation. Bezier curve is used for the boundary where the first 

point and the last point of the same grid line overlap together. Linear extrapolation is used to 

extrapolate the points from inside the grid to the boundary. Without specifying the boundary 

conditions, the concave boundary of the grid could cause the grid line crossing and ruin the 

whole volume grid. 

4.1.2.1 Bezier curve 

A cubic polynomial is written as parametric form in equation (4.24). If we have the 

boundary conditions of a curve as in equation (4.25), we can rewrite the equation (4.24) to 

equation (4.26) which is Bezier curve of 3rd degree. By controlling the boundary conditions 

of the curve, we can easily smooth the points inside the curve for any given location controlled 

by parameter t. 

r(t)  = a + bt + ct2 + dt3 (4.24) 

r(0)  =  Cx 

r(l)  =  C4 

(4.25) 
r'(0)  =  3(C2 -  C±) 

r (1)  =  3 ( C4 - C3 ) 

r{t)  = <p1C1 + <p2C2 + 03C3 + 04C4 (4.26) 

where 
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9l 

02 

03 

04 

(1 - o3 

3*(1 - t)2 

3t2(l - t) 

= t3 

Figure 4.14, and Figure 4.15 show the Bezier curve smoothing effect. 

Figure 4.14 Boundary Conditions Without Smoothing. 

Figure 4.15 Boundary Conditions With Bezier Curve Smoothing. 
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4.1.2.2 Linear Extrapolation 

Linear extrapolation is performed by solving the intersection of a line from inside the 

grid and a boundary surface. The line and surface can be written as equations (4.27) and (4.28) 

respectively. By solving these equations, we can get the point, r, on the boundary surface. 

r - rx  =  mV (4.27) 

(r - r0)  • e  =  0 (4.28) 

where 

r0 :    known point on the boundary surface 

r1 :    known point on the grid line 

e   :    normal vector on the surface 

V :    vector of the grid line 

m :     unknown parameter of line equation 

4.2 Grid Trimming 

Structured grids around the bodies are generated independently. All individual struc- 

tured grids are then supplied to the hybrid grid generation system for trimming the overlapped 

structured grid. Some overlapped structured grids are shown in Figure 4.16 through 

Figure 4.18. Figure 4.16 shows that six cylinder grids are generated and overlap with each 

others. Figure 4.17 and Figure 4.18 show the three element airfoil structured grids and two 

element airfoil structured grids respectively. 

Grids might overlap with others without the control of marching distances of each in- 

dividual process. So overlapping cells removal is the most important concept of this grid trim- 

ming work. For an optimal interface between quadlateral cells and triangular cells, aspect ra- 
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Figure 4.16 Six Cylinder Grids Overlap With Each Other. 

Figure 4.17 Three Element Airfoil Grids Overlap With Each Other. 

tios of quadlateral cells are also checked. The three different steps in trimming the overlapped 

structured grids are the following. First, overlapping cells from different sets of structured 

grids are removed. Second, aspect ratios of remaining cells are checked. Third, boundary 
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Figure 4.18 Two Element Airfoil Grids Overlap With Each Other, 

points are enriched if the distances between two boundaries are not enough for optimal aspect 

ratio cells wrapping around the grids. 

Overlapping cells removal process is based on the comparison of distances between 

nodes of cells from different set of structured grids and solid boundaries. This process is the 

initial step of grid trimming work, which only ensures that all overlapping cells are removed 

and all individual grids are separated from others by a clear area, or a void area. An aspect 

ratio checking process then performs to remove all cells which does have an aspect ratio less 

than unity. High aspect ratio cells are kept around individual solid boundaries for efficient 

viscous and turbulent flow simulations (Marcum [39]). Low aspect ratio cells far away from 

the solid boundaries are removed. Because low aspect ratio cells cause bad grid interface be- 

tween quadlateral and triangular cells, which affect the smooth area transition of the cell in 

structured to unstructured region. 

Boundary points are enriched locally where the distance between two solid boundaries 

is not far enough to have perfect aspect ratio cells wrapping around the boundaries (Marcum 
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[39]). If a region between two boundaries is very narrow, the local flow solution is very criti- 

cal to the global one. Figure 4.19 to Figure 4.22 show the comparison of the grid trimming 

with and without aspect ratio checking. Figure 4.23 and Figure 4.24 illustrate the trimmed 

grids of two-element and four-element airfoils. Boundary point enrichment effect are shown 

in Figure 4.25 to Figure 4.32. 

The void between the trimmed structured grids are filled with triangles.   Delaunay 

triangulation is used to generate triangular cells. 

Figure 4.19 Grid Trimming Without Aspect Ratio Checking. 

Results of two dimensional and three dimensional grids utilizing front advancing and 

elliptic PDE smoothing grid generator are shown below from   Figure 4.33 to Figure 4.40. 

Hybrid grid arounf multiple cylinders and around twoarbitrary geometries hybrid grids 

are shown in Figure 4.41 and Figure 4.42 respectively. Hybrid grids around multi-element 

airfoils of practical importance to aerospace engineering applications are shown in 

Figure 4.43 to Figure 4.45. 
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Figure 4.20 Grid Trimming With Aspect Ratio Checking. 

Figure 4.21 Grid Quality Is Not Good Without Aspect Ratio Checking. 
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Figure 4.22 Grid Quality Is Improved With Aspect Ratio Checking. 

Figure 4.23 Trimmed Grids For Two-Element Airfoil. 
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Figure 4.24 Trimmed Grids For Four-Element Airfoil. 

Figure 4.25 Grid Trimming Without Boundary Point Enrichment. 
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Figure 4.26 Grid Trimming With Boundary Point Enrichment. 

Figure 4.27 Grid Trimming Without Boundary Point Enrichment. 
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Figure 4.28 Grid Trimming With Boundary Point Enrichment. 

Figure 4.29 Grid Trimming Without Boundary Point Enrichment. 
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Figure 4.30 Grid Trimming With Boundary Point Enrichment. 

Figure 4.31 Grid Trimming Without Boundary Point Enrichment. 
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Figure 4.32 Grid Trimming With Boundary Point Enrichment. 

Figure 4.33 3/4 Circle Grid With Forcing Functions. 
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Figure 4.34 O-Type Two-Element Airfoil Grid. 

Figure 4.35 C-Type Two-Element Airfoil Grid. 
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Figure 4.36 Five-Element Airfoil Grid. 

Figure 4.37 Three Dimensional Surface Grid. 
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Figure 4.38 Three Dimensional Missile Grid. 

Figure 4.39 Three Dimensional Arbitrary Geometry Grid. 

42 



Figure 4.40 Three Dimensional Arbitrary Geometry Grid. 

Figure 4.41 Nine Cylinder Hybrid Grid. 
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Figure 4.42 Two Arbitrary Geometries Hybrid Grid. 

Figure 4.43 Two Element Airfoil Hybrid Grid. 
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Figure 4.44 Three Element Airfoil Hybrid Grid. 

Figure 4.45 Four Element Airfoil Hybrid Grid. 
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5. Hybrid Flow Solver 
A hybrid grid is a combination of structured and unstructured grids. The number of 

edges (2D) or faces (3D) that form a cell can vary from one cell to another. The arbitrariness 

in the number of faces for a given cell makes the finite volume method the natural choice for 

solving the governing equations. The finite volume schemes are based on a discretization of 

the integral form of the equations. The governing equations used in the present study are the 

Navier-Stokes equations. The following section presents the Navier-Stokes equations in the 

integral form. 

5.1 Governing Equations 

The non-dimensionalizations are done based on freestream conditions. The character- 

istic velocity is taken as the freestream velocity. Neglecting the body forces, the non-dimen- 

sional form of the Navier-Stokes equations can be written in vector notation as, 

j-f  I   QdQ +  O   F(Q)  • nds  =   J>   F\Q)  • nds (5-D 
JQ JdQ J dQ 

where   F(Q) • nds =  ff  =  (f(Q)i + g(0; + KQ)k) ■ nds (5.2) 

F\Q)  • nds  =  3FV =  (fv{Q)i + g\Q)j_ + h\Q)k)  ■ nds (5.3) 

n  =  nxi + nyi + nzk (5.4) 

The vector n is the outward unit normal to the control surface with nx, ny, and nz 

as the components in x, y, and z directions and ds is the cell face area for 3-dimen- 

sions and the edge length in 2-dimensions. The conserved variables Q, the con- 

vective flux vectors/, g, and h and the viscous flux vectors f, gv, and hv are de- 

fined as, 
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Q = 

g 

r = 

p 
pu 
pv 
pw 
E 

PV 
puV 

pVv + p 
pVw 

V(E+p)-ytp 

0 
*xx 

T'xy 

T'XZ 

f = 

h = 

8 
V     

pU 
pUu + p 

pUv 
pUw 

U(E + p) - xtp 

pW 
puW 
pvW 

pWw + p 
W(E + p) - ztp 

0 
T-xy 
Xyy 

tyz 
UCxy  +   Vtyy   +   Wt yz   ~   qy 

hV   = 

0 
txz 
tyz 

"ZZ 

Mxz + VCyz + Wtzz ~ Qz 

where E is the total energy per unit volume and is defined as, 

E  = pet = ^J-J + p[ (5.5) 
Y - 1       'V 2 

The grid speeds in the x, y, and z co-ordinate directions are a%, yt, and Zf respec- 

tively and the variables U, V and W are defined as, u - xt, v - yt, and w - zt 

respectively. The ratio of specific heats y for standard air is taken as 1.4. 

The components of viscous shear stress tensor xtj represents the shear stress acting in a 

plane of constant / in the direction of j, with i and; as either x, y, or z. The heat transfer by 

conduction in the i direction is represented as #. The components of viscous shear stress ten- 

sor T, and the heat transfer q are defined as, 
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2 CM + Ht) ( n. du  _ dv _ dw 
Xxx 3 ReL     \     dx       dy dz 

2(M +/it) f 9 dv _  du _ dw 
Xyy 3 ReL    \    dy       dx dz 

2(ju + pit) I     dw _  du _ dv 
Tzz 3 ReL     \     dz        dx dy 

(M + Pt) (du   ,    dv 
txy ~      ReL     I dy ^  dx 

Txz "      ReL 

(p+pd ( du 

(ß + Mt)     dv   ,    dw 
Tv7 = —K-  I -^r + 

(du   ,   dw \ 
\ dz dx ) 

yz "      ReL     \dz   '    dy j 

 1 />   ,   Mt\ dT 
qx "       (y- I) Ml Re^Pr     Prrj dx 

 1 />   ,  M dT 
qy (y- I) Ml ReL\Pr     PrJ dy 

 1 (p   .  M dT 
qz (y- I) Ml ReL\Pr     Prfj dz 

where M^ is the freestream Mach number.  The turbulence viscosity m is calcu- 

lated using the Spalart-Allmaras one equation turbulence model ( Spalart and 

Allmaras [35] ). The turbulent Prandtl number Prt is taken as 0.92. 

The nondimensional form of the equation of state for an ideal gas is written as, 

P = PT (5.6) 
yMl 

The nondimensional laminar viscosity coefficient is given by the relation 

(i + c^n (5/7) 

^ T+ c3 

where c3 = -r~ and the reference temperature T« is taken as 300 K. 
Too 
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5.2 Cell Face-Based Data Structure 

Hybrid grids consist of polygons with an arbitrary number of sides. This makes it nec- 

essary to use a generalized data structure to store the grid information. The grid information 

can be stored in two different ways: (i) Cell-based data structure (ii) Cell face-based data 

structure. These two approaches are best explained by an example. 

Consider a two-dimensional grid that consists of two cells, one with five sides and the 

other with three sides (Figure 5.1). The nodes are denoted by Nj, N2,..,Afe, the cells by Cj, C2 

and the edges by ej, e2,.., ej. In the cell-based data structure the grid is represented as shown 

in Table 5.1. The nodes that form a cell are usually ordered in either a clockwise or a counter- 

clockwise direction. In this case, the counter-clockwise ordering of nodes was chosen. 

AT? 

Figure 5.1 Example of Hybrid Grid 

Table 5.1 Cell Based Data Structure 

Cell No. No. of Nodes Nodel Node 2 Node 3 Node 4 Node 5 

Ci 5 Nj N2 N3 N4 N5 

c2 3 N2 N6 N3 

In 2-dimensional cases the cell face-based data structure will change to an edge-based 

one. For the edge-based data structure, every edge has four pieces of information associated 

with it. They are the nodes that form the edge and the cell numbers on either side of the edge. 

For the boundary faces, the boundary condition information is stored in place of the cell num- 

ber on the right side. The left and right sides of an edge (2D) or a face (3D) are defined in the 
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following manner. When one traverses an edge from the first node to the second node, the cell 

on the left hand side is denoted as the left cell and the cell on the other side as the right cell. In 

three dimensions, the nodes that form the cell faces are ordered in such a manner that the num- 

bering is counter-clockwise with respect to one cell and clockwise with respect to the other. 

The cell with respect to which the node numbering is counter-clockwise is taken as the left 

cell. In the edge-based data structure, the grid given in Figure 5.1 is represented as shown in 

Table 5.2. 

Table 5.2 Edge-Based Data Structure 

Edge Number First Node Second Node Cell on left Cell on right 

ei Nj N2 Ci be 

e2 N2 N3 Q c2 

e3 N3 N4 Q be 

e4 N4 N5 Q be 

es N5 Nj Ci be 

*6 N6 N3 c2 be 

e7 N2 N6 c2 be 

In Table 5.2, be represents the index for boundary conditions. 

The advantage of the edge based system is that it is independent of the number of 

edges/faces of the cells. Also, the integration over the control surfaces is made easier by em- 

ploying this type of data structure. This can be better explained by a method for evaluating the 

area of the cells. The area of a cell can be estimated by the simple integral as, 

k 

Area = = <|>    xdy  =   J^dy, (5.8) 

where k is the number of cell edges.  Using the edge-based data structure, the 

above integral can be evaluated for the entire grid using the following procedure. 
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Initialize all areas to zero 

Loop over all edges 

Calculate the average value ofx coordinate, xe 

Calculate the change in y coordinate, dy 

Area of cell on left = Area of cell on left +xe * dy 

Area of cell on right = Area of cell on right -xe * dy 

end loop. 

The same principle can be applied for flux evaluation too.  Once the the flux is 

evaluated for a face, appropriate contributions can be added to the cells on either 

side of the face. 

5.3 Spatial Discretization 

Finite volume (Barth [42], Whitakar [43]) and finite element based schemes (Jame- 

son et al. [44], Marcum and Weatherill [2], Morgon et al. [5] ) are the most common ap- 

proaches used for solving the governing equations on unstructured grids. Finite volume 

schemes are best suited for hybrid grids because a typical hybrid grid is an agglomeration of 

polygons with different number of sides per polygon. There are basically two different ap- 

proaches for storing the conserved variables, one is a node based approach while the other is a 

cell based approach. Figure 5.2 shows the areas (shaded region) that are used for estimating 

the averaged values of the conserved variables for the two different approaches. In the node 

based method the area considered for this averaging is the area around the nodes. This area is 

termed dual area since this is considered a dual to the area of the cell. For two dimensional 

cases this area is taken as the area enclosed by the polygon formed by connecting the cell cen- 

ters of the neighboring cells to the midpoint of the corresponding edges. In the second ap- 

proach, the values stored at the cell center are taken as the cell averaged values. The area for 

the averaging is taken as that of the cell itself. 
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In the present study, the cell centered approach is used for storing the conserved vari- 

ables and for the subsequent solution procedure. The cell averaged flow variables at the cell 

center are calculated as an integral average, i.e., 

» " 4 Ö(Q) = ^     Q(x,y,z)dü 

where Q is the cell number and Vi is the cell volume. 

(5.9) 

(a) Node Based Data (b) Cell Based Data 

Figure 5.2 Areas Considered for Averaging the Conserved Variable 
in Node and Cell Based Schemes 

5.3.1 Discretization of Convective Terms 

The governing equations, equation (5.1), without the viscous terms are, 

QidQt + I 
in. Ja 

j-f |    QtdQi +  <|>   F(Q).nds  =  0 (5.10) 

Using the cell centered finite volume approach, a semi-discretized form of Equa- 

tion (5.10)is 

jj QdQ =- ZEf.njdsj 
JQ j = 1 

(5.11) 
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The indices i andj denote the cell and face numbers respectively and k is the total 

number of faces of the ith cell. The right-hand-side of equation (5.11) represents 

the flux balance for the ith cell. 

The differential form of the equation (5.10) is hyperbolic in time: therefore the flux 

evaluation is based on the direction of propagation of the information. This is done using 

upwinding based on the eigensystem of the governing equations. 

The numerical flux crossing a cell face is calculated as the exact solution of the 

approximate Riemann problem ( Roe [45] ). The Riemann problem is defined as the con- 

servation law together with particular initial data consisting of two constant states separated 

by a single discontinuity (LeVeque [46]). The basic principle behind the Roe's approximate 

Riemann solver is explained below using the one dimensional hyperbolic system of conserva- 

tion laws, 

«2 + ^ = 0 
dt      dx 

with the initial conditions, as given in Figure 5.3. 

qL    x < 0 

(5.12) 

q(x,0) = 

1L 

qR    x > 0 
(5.13) 

4R 

x = 0 

Figure 5.3 Initial Conditions for the Conservation Laws 

The above system of conservation laws can be written as 
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where    a = -r- dq 

Roe's approximate Riemann solver finds the exact solution of the following linear hy- 

perbolic system. 

% + *¥ = 0 (5-15) dt        ox 

where ä is a locally constant matrix and has to satisfy the following properties 

(Roe [45]). 

1) It represents a linear mapping from the vector space q to the vector space/ 

2) As qL -> qR -> q, a(qL> qR) -> a(q) 

3) For any qL, qR, f(qR) -f(qO = ä(qR,qL) .(qR-qL) 

4) The eigenvectors of a are linearly independent. 

The flux vector at x=0 is then given by 

fx=0 = ^(/z. + /*) ~ \}~ü(qL,qR)\ (qR - qL) (5.16) 

In the case of three dimensional Euler equations the Jacobian matrix A is defined as 

A = -^ and the Roe averaged variables appearing in A are evaluated using the following 

expressions (Roe [45]). 

_      I  _     JPL"L + 
U
RJPR 

P = WRPL U
 ~ —r— ,   r— 

4PL + VP/J 

-= Jp~RhL + hRJp~R 

Jp~L + Jp~R 

where h denotes the total enthalpy per unit volume. 
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Using the approximate Riemann solver, the flux through a cell face is given by 

^ij = \[S(QR) + $(Qi) ~ IÄI (QR - Qjj\ (5.17) 

where IA I = T\A\ T~l. T is a matrix whose columns are the right eigenvectors of 

A, T"1 is a matrix with its rows as the left eigenvectors of A, and HI is a diagonal 

matrix whose elements are the absolute values of the eigenvalues of Ä. The ma- 

trix Ä is evaluated using the Roe averaged variables defined earlier. 

The last term of equation (5.17) is separated into three vectors based on the three dis- 

tinct eigenvalues of A. These vectors are given by 

\A\{QR-Qj)  =  \AFX\ +  \AF2M\ +  \AF5\ (5.18) 

\AFl\ 

\AF. 2,3,4 

ü-c\(Ap-2
PJAU 

=  \U\ Ap- 
Ap 

u 
v 
W 
t 

■* 1       ] 
w -  cnx 

V —  cny 

W -  cnz 

H -  cTJ 

+ p 

0 
Au — nxAU 
Av - nyAU 
Aw - nzAU 

üAu + vAv + wAw — ÜAU 

\AF5\ [T7+!AP+pcJU 
\ 2 c2 

" 
1 ** 

u + cnx 

V + cny 

w + cnz 

H + cU 
- /   w 

where U is the velocity normal to the face which is given byU=unic, + vny+wnz 

+ nt. The symbol A represents the jump in the values of the flow variables across 

the face and is defined as A () = ( )R - ()i. The quantities c, and q are the speed of 

sound and total velocity respectively, evaluated using the Roe averaged variables. 
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5.3.2 Higher Order Scheines 

For a first order accurate scheme, the flow variables are assumed to be constant within 

each cell. The states of the flow variables on the left and the right sides of a cell face, for the 

use in the approximate Riemann solver, are taken as the values of the cell averaged data on the 

respective sides. This procedure avoids the creation of local maxima or minima of the flow 

variables and preserves monotonicity (Barth [42]). 

For second order schemes, the flow variables are assumed to be distributed linearly 

within each cell and the linear distribution is reconstructed from the cell averaged values. 

Figure 5.4 shows the distribution of the flow variables for first and second order schemes for 

a one dimensional case. From the figure it is evident that the function can be better repre- 

sented using linear reconstruction than the piecewise constant representation. This in turn im- 

proves the solution accuracy. During the solution process the flow variables at a cell face are 

extrapolated from the cell averaged values using a linear reconstruction procedure (Barth 

[42]). 

(a) Piecewise Constant Data (b) Linear Reconstruction 

Figure 5.4 Distribution of Flow Variables for First and 
Second order Scheme. 
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The piecewise linear reconstruction of the conserved variables from the cell averaged 

data is done using the Taylor's series expansion. The Taylor's series expansion for a function 

of multiple variables can be written as, 

Q(x,y,z) = Q(Xi,yi,zt) + VQ(x{,yi,zt) .Ar+0{ (Ar)2) (5.19) 

where VQ is the gradient of Q and Ar is the vector from the center of the cell (xit yi, 

Zi) to the desired point (x, y, z) and is defined as 

Ar = (x - xt) i + (y-ydi+(z- zt) k (5.20) 

Using the definition of Ar given in equation (5.20), equation (5.19) [neglecting higher 

order terms] can be written as 

Q(x,y,z) = Q(x,y,z) +^(x-xD+^(y- y,) + ^ (z - zt) (5.21) 

The gradient of Q at the cell center is estimated using Green's theorem (Warsi [40]). 

Green's theorem relates the gradients within a control volume to the surface integral as: 

VQ  = yl    Qnds (5-22) 
1 JdQ 

The control volume for integrating equation (5.22) is taken as the volume of the cell 

itself. This necessitates the estimation of the properties at the nodes. The properties at the 

nodes are calculated using the weighted average of the properties within the cells surrounding 

that node. Figure 5.5 shows the cells that are considered for the weighted average of the prop- 

erties at the node Nl. The weight is taken as the inverse of the distance of the node from the 

cell center (Frink et al. [48]). The resulting equation for the properties at the nodes are writ- 

ten as, 
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Qm   = 

2$ 

7=1 

(5.23) 

where AT2 is the node number, cj the neighboring cell number, iy the total number 

of cells surrounding the node Nl, and /)• the distance of the node from the cell cen- 

ter, i.e., 

/)• = J(xc - xj)2 + (yc - y})
2 + {Zc- ZjY (5.24) 

where (%, yc, Zc ) is the cell centroid and  (Xj, y, Zj ) are the co-ordinates of the 

node. 

Figure 5.5 Cells Contributing to Node Nl for the 
Weighted Average 

The discretized form of the equation (5.22), which is used for the gradient calculation, 

can be written in terms of the properties at the nodes as, 

(V0, = f £ ß/Sft** 
' k=i 

(5.25) 
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where % is the number of cell faces for the cell i and Qf is the average value of the 

flow variables at the nodes which forms the cell face k. 

The derivative of the conserved variables in the three co-ordinate directions can be 

explicitly written as (from equation (5.25)), 

l£ = y. 2 Qf^k (5.26) 
1 *=1 

TF = vt 2 Qf{ny)k (5-27) 
it=i 

dQi 1   v^ 
äF = V L üf{Tlz)k (5-28) 

'*=1 

Using equations (5.26H5.28) in equation (5.21), the linear distribution of the 

properties with a cell can be calculated. 

One of the disadvantage of this approach is that the information from the wrong side of 

the cell face also contribute to the weighted averaged values of the conserved variables at the 

nodes. This can be overcome by using upwind biased gradients as discussed by Cabello [49]. 

The higher order calculations based on the upwind biased gradients are not implemented in the 

present study because of the higher memory overheads required to store the information about 

the cells used for the upwind biased gradient calculation and the coding complexity. 

5.3.3 Limiter Functions 

For cell centered schemes, the cell averaged values are stored at the cell center. The 

gradient within a cell is calculated based on the values in the neighboring cells. Using the 

gradients and the cell averaged values, the linear distribution is reconstructed as shown in 

Figure 5.6. From Figure 5.6(a), one can see that local extrema are created at locations A and 

B. At location A the reconstructed value is more than the cell averaged values of the neighbor- 

ing cells. Similarly, at point B the reconstructed value of the variable is lower than that of the 
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neighboring cells. These non-physical values will cause spurious oscillations of the flow 

variables near regions of high solution gradient. This needs to be avoided to preserve mono- 

tonicity and to avoid the development of spurious oscillations near discontinuities. This is 

achieved by the application of a limiter function ( Barth [42]). However it should be noted 

that the limiter function reduces the order of accuracy in those regions. 

(a) Before Applying Limiter Function     (b) After Applying Limiter Function 

Figure 5.6 Effect of Limiter Function on Linear Reconstruction 

The limiter function is applied to the Taylor's series expansion to avoid the creation of 

local minima and maxima. The Taylor's series expansion, given in equation (5.19), is modi- 

fied with the limiter function as, 

Q(x,y,z) = ß(*,-,y,-,Zi) + (p^Qix^y^z^.Ar + 0{ (Ar)2 ) (5.29) 

The limiting function 0, is constructed to satisfy the monotonicity principle and 

has to satisfy the following condition. 

If Qimin = min(Qa,Qadj) 
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Qr^^rnaxiQc^Qadj) 

then     Qi Q(x,y) ^ Qi1 

Ct represents the cell for which the limiter function is being evaluated and the 

subscript adj represents the cells adjoining to Q. Two different limiter functions 

were considered and their effect on the convergence of the numerical scheme were 

studied. The two limiter are discussed below. 

5.3.3.1 Barth's Limiter 

A limiter function was developed by Barth [42] to satisfy the above mentioned proper- 

ties and is defined as 

gmax _ Q > 
min| 1, -^ ^ |    if Qi -  Qu > 0 

<t>tj = mini 1, 

Qt ~ Qtj 

Qfn-Qi/ 
Qt - Qij 

if Qi - Qij < 0 

if Qi - Qij = o 

(5.30) 

and      (j>t = min(0y) 

In the above relations, Qy is calculated using equation (5.19). 

(5.31) 

5.3.3.2 Venkatakrishnan's Limiter 

Even though Barth's limiter gives accurate results for the flow solutions, the conver- 

gence stalls after a few orders of magnitude drop in the residual. To avoid this, Venkatakrish- 

nan [50] proposed another limiter for unstructured grids. This limiter is basically an extension 

of the van Albada limiter, developed for structured grids. The new limiter is defined as 

A, 1 
[A\  + e2)A-  + 2A2-A + 

A\  + 2 A2-  + A-A+  + e2 (5.32) 
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where s2 is taken as (KAx)3 and Ax represents the average edge size of triangles, 

i.e., if the physical domain is covered with same number of equilateral triangles 

of equal size, then Ax is the edge size of those triangles and K is a threshold pa- 

rameter. When K=0.0, the limiter will be active everywhere in the field, whereas 

a very high value of K implies effectively no limiting. Typically K is set to 0.1 to 

0.3. 

The other variables appearing in equation (5.32) are defined as follows, 

A - = Qij - Qi 
'       if   Qij-Qi>0 (5.33) 

A + = Qf™ - Qt 

A- =Qij-Qi 
if   Qij-Qi<0 (5.34) 

A + = ßr " Qi     ' 

In order to avoid division by a small value of ^L in equation NO TAG it is replaced by 

SIGN(A^) (\A_ I + (o) and o) is set to 10~12, where SIGN(x) is the sign of x. Results are 

presented for the effect of these limiters on convergence in Section 6.2. 

One of the drawbacks of the Roe scheme is that it allows the creation of nonphysical 

expansion shocks in some cases. Another drawback (more likely at higher Mach numbers) is 

that it admits spurious solutions along the stagnation line ahead of bow shocks, which is 

known as the carbuncle phenomenon ( Quirck [47]). In order to avoid these phenomena, the 

wave speeds are modified when the absolute value of the eigenvalues of A are less than 0.2. 

This correction to the eigenvalues are applied when the absolute value of the eigenvalues are 

in the neighborhood of zero. The correction is started from 0.2 as a compromise between the 

numerical stability and the accuracy. The modification is defined as a quadratic function, i.e., 

IA'1  = AIAI2 + B (5.35) 
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with the constraints 

IA'1 = 0.2 when m = 0 2 

(d\X'\\ = , (dW\\       = 0 

\d\k\Jk=02 \dW)x=0 

This results in A = 2.5 and B = 0.1. 

5.4 Viscous Flux Calculations 

The viscous fluxes are treated as source terms and are evaluated explicitly. The vis- 

cous flux terms, that involve the components of the viscous stress tensor, are defined in Chap- 

ter II. The viscous stress tensor in turn is a function of velocity and temperature gradients. 

The gradients of velocity and temperature are estimated by the application of Green's 

theorem to a control volume. In this case the control volume is taken as the cell itself. The 

properties at the nodes are computed using the weighted averaging procedure explained in 

Section 5.3.2. 

The viscous stresses at the cell face are taken as the average of those in the cells on 

both sides of the face. The averaging is a good approximation for the viscous stresses, since 

they are diffusive in nature. This gives a second order approximation but the truncation error, 

for the structured part, is proportional to four time the square of the grid spacing. The con- 

tribution of the viscous fluxes to the net flux crossing the control surface are estimated as 

shown for the convective terms given in Section 5.3.1. 

5.5 Time Discretization 

The fully discretized form of equation (5.10) can be written as, 

Qn + \ — Qn k 
vi   '"   At     '   = ~ Z^y • Zjdsj (5.36) 
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The time level at which the right hand side of equation (5.36) is computed results 

in different numerical schemes. The evaluation of the right hand side of equation 

(5.36) at nth time level results in an explicit scheme and at (n+l)th time level will 

result in an implicit scheme. For the explicit scheme the time step is restricted by 

the stability criteria and for the implicit scheme the flux vector has to be linea- 

rized before the calculation of the flux crossing the cell faces. This results in set 

of linear equations that have to be solved to obtain the conserved variables at the 

(n+l)th time level. The detailed description of these methods are given in the fol- 

lowing subsections. 

5.5.1 Explicit Scheme 

For explicit time integration, a four stage Runge-Kutta method is employed (Jameson 

et al. [51]). The flow variables at (n+l)th time step are obtained from the variables at the nth 

time step in four stages. The time integration can be written as 

Q(0) _  Q(N) 

ß(1) = Ö(0) + a,flKß(0)) 

ö(2) = ß(0) + a2^Ä(ß<i>) 

(5.37) 
ß(3) = ß(0) + a3^Ä(ß<2>) 

Q(4) = ß(0) + a44tR{Qm) 
v i 

Q(N+1) _ ß(4) 

where R(Q) is the right hand side of equation (3.29) and the coefficients used are 

ai = 0.15, (Z2 = 0.3275, 03 = 0.57 and 014 = 1.0. These weighting coefficients are 

available in the literature and have been experimentally determined for struc- 

tured upwind codes (Türkei and Van Leer [53]). For steady state problems faster 
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convergence is achieved using local time stepping in which the maximum permis- 

sible time step is used for each individual cells. 

5.5.2 Implicit Scheme 

In the case of implicit schemes the numerical flux crossing the cell face is a function of 

the conserved variables at the (n+l)th time step (Koomullil [52]). For the moving grids the 

cell volume is changing at every time step and has to satisfy the geometric conservation law. 

The detailed description about the problems associated with the moving body problems are 

given in Chapter V. The discretized equations then become 

V^ = -Y n+l-nids: = R?+1 (5.38) 1  At z-i    v        J   J l 

7=1 

A linearization of the RHS about the nth time level results in 

Rl+l =i??+ (^\ AQn (5.39) *?+ (f )''<? 
Substituting equation (5.39) into equation (5.38), yields 

g) V - *? AtlAQ[ -  \^\ AQn = R? (5.40) 

Using the the summation convention over the edges the above system can be written 

as, 

TtIA® +
^[öQ) 

AQn = R> (5-41) 

Utilizing the fact that 9^- is a function of conserved variables on left and right 

sides of each face, the above system of equations is written as, 
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V k   f/dSF-A" /öff-A" 
—    P« #7 (5.42) 

According to the sign convention of the surface normal, the surface normal points 

from left cell to the right cell, the cell number on the left hand side L and the cell 

number i are the same. Then the above equation reduces to, 

At1  + A I BQ. 
V; 

7=1. \ 

AQ1 +  X 
7=1 

Si"« = mf (5.43) 

Qcp.. Bf.. 
The Jacobian matrices -zrpr    and TTT-    can be estimated either by an approximate 

dQi 9QR 

analytic method or by a numerical approach. These are discussed in detail in Sections 3.4.2.2 

and 3.4.2.3. 

5.6 Newton Iterations 

For unsteady calculations, it is important to drive the unsteady residual to zero for bet- 

ter resolution of the physical phenomenon. This can be done by using Newton iterations. The 

basic principle behind Newton's method (Whitfield and Taylor [54], Whitfield [56]) and its 

implementation are given below. 

The implicit form of the discretized governing equations are written as 

%  =   V, 
(nn+l — Qn \ k 

1 At  j + Xw+1> = 0 (5.44) 

The conserved variable vector Qn+1 has to satisfy equation (5.44) to achieve a time 

accurate solution. This system can be written as 3G(ßn+ ) - °. Newton's method for this 

system is given by 

36»(ßit + l,m)(ß«+l,m+l   _   ßn+lfmj   =   -%(<Qn+hm) (&^ 

66 



The prime denotes the derivative with respect to the conserved variable vector Q. 

The above equation can be expanded as 

d% d% ±*LAQn+\,m   +   ^LAQn+\,m   =    _ % ( QH+ \,m ) 

where       AQn+hm =  Qn+l'm+l   - Qn + hm 

(5.46) 

(5.47) 

where j represents the cells the surrounds the cell i. The superscript m in equa- 

tions (5.45)-(5.47) represents the index for Newton iterations. Using equation 

(5.44), equation (5.46) is written as, 

y.        * /ag^A , * /aff,. 
w+l,/n 

^0 ,n + l,m     

V; 
Q n+\,m _ Qn 

At (5.48) 

At the start of Newton iterations, Qn+1, ° is set as Qn and the linear system will reduce 

to 

AV^ (5.49) 
7=1 

This is the same as the imphcit scheme which is used for the steady state calcula- 

tions as given in equation (5.43). As more Newton iterations are used, then 

AQn + ijn approaches zero resulting in time accurate solutions. For more details 

about Newton iterations (Whitfield and Taylor [54]). 

5.7 Approximate Analytic Jacobians 

The flux crossing the cell face is written as, 
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fy = ±(ff(ßÄ) + 9=(ßi) - IA I (ßÄ - Q£>) (5.50) 

The Roe averaged matrix is IÄI is a nonlinear function of the conserved variables 

at left and right sides of the cell face. For simplicity the approximate analytic 

Jacobians are calculated assuming the Roe averaged matrix \A\ as constant 

(Whitfiled [55]). The above equation can be differentiated analytically with re- 

spect to QR and QL resulting 

a-i(^+'")-^+,ii) 

dQL~   l\    dQL 
1AIJ   "   2^        IAI) (5.52) 

Substitution of the above expressions into equation (5.43) will result in a block 

sparse matrix. 

5.8 Numerical Jacobians 

The Jacobians can be calculated from first principles. Each element in the Jacobian 

can written as atj =      '     . The first order form of these quantities can be evaluated using a 

finite difference formula (Whitfiled [55], Vanden [57]). 

atj = {  (5.53) 

where ej is thejth unit vector and h is taken as the square root of machine zero. 

The choice of approximate analytical or numerical Jacobians has a strong influ- 

ence on convergence to steady state 
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5.9 Sparse Matrix System 

Equation (5.43) will result in a linear sparse block matrix system of the form 

Ax = b. The number of non-zero entries in each row of A depends on the number of neigh- 

bors of the cell, whose cell number is the row under consideration. If the cell i has p neigh- 

bors, then the ith row of A will have p+1 non-zero elements. The matrix structure with a 

sample grid is explained in detail in NO TAG. The symbol • in the matrix represents a non- 

zero entry. Each non-zero entry in this matrix will be either a 4x4 block for two dimensional 

cases or 5x5 for three dimensional cases. The resulting sparse matrix is solved using the Gen- 

eralized Minimal RESidual (GMRES) ( Saad and Schultz [58]) method. An incomplete LU 

decomposition is used as the preconditioner. 

6 4 / 

/     5 

1   / 

/ 2 
3 

1 2 3 4 5 6 

1 • • • 

2 • • • 

3 • • • 

4 • • • 

5 • • • 

6 • • • 

Grid Matrix Structure 

Figure 5.7 Sparse Matrix Structure Resulting from Implicit Scheme 

5.10 Time Step Calculation 

The time steps used for the computations of three dimensional problems are based on a 

direct extension of the stability analysis of two dimensional cases. The time step is calculated 

using the relation (Frink, et al. [48]) 
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At-  * CFLA, + BI+C, <6-54) 'I 

where At = (In,-! + c,-) S^ 

Bi = (lvil + ci)SS') 

C, = (lw,l + cf) S« 

Vi is the cell volume, c; the local speed of sound, and S^x\ Sft),   and S^ are the 

projected areas of the cell i along x, v, and z coordinate directions respectively. 

5.11 Boundary Conditions 

The boundary conditions are derived from the sign of the eigenvalues and the principle 

of wave propagation (Whitfield and Janus [60]). Local one dimensional flow is assumed for 

these derivations. The boundary conditions for different flow situations are discussed below. 

5.11.1 Supersonic Inflow or Outflow 

All the eigenvalues have the same sign for the supersonic inflow or outflow condi- 

tions. Therefore, flow variables are specified for the inflow condition and are extrapolated for 

the outflow conditions. 

5.11.2 Subsonic Inflow 

In this case four eigenvalues are of the same sign and the fifth one is of the opposite 

sign. According to the sign convention the direction of the unit normal vector to the control 

surface is always pointing outward from the control surface. Therefore the subsonic inflow 

will always be in a direction opposite to the unit normal. This will result in the following 

conditions at the boundary. 
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Pb = \(P™ + Pi~ Pocoth* ("°° ~ ui) + üy (Vco ~ vi) + "z (w» _ wi) ]) 

,  Pb~P™ 
Hb   ~  H™ 1                2 

c0 

Ufo    =    Moo 
_   P°° ~ Pb 
Hx    Poco 

Vb    =    Voc 
-    Poo  - Pb 

Uy   Poco 

vi;.     =    vi; 
-    Poo   - Pb 

—     »7        

Poco 

where the subscript °° refers to the freestream conditions, L refers to the cell inside the 

domain and b is the point on the computational boundary. 

5.11.3 Subsonic Outflow 

Similar to the subsonic inflow, in this case also four eigenvalues are of the same sign 

and the fifth one is of the opposite sign. Therefore one characteristic variable is specified in 

the form of pressure and the other four are determined from the information within the do- 

main. So the boundary conditions are determined as follows 

Pb   ~~   Pspecified 

n     ,   Pb~ PL 
Pb   =  PL   + r2 

,   -  PL ~ Pb ub  =  uL + nx   /0QCO 

,    -  PL~ Pb 

,   - PL~ Pb 
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5.11.4 Impermeable Wall 

For the impermeable wall, there is no flow across it and so the first three eigenvalues 

are zero. The fourth and fifth eigenvalues have opposite signs. These will result in the fol- 

lowing relations for the boundary values. 

Pb = PL+ PO
C

O (n*uL + nyvL + ü
Z
W

L + ht) 

Pb=PL+ 2 

ub = uL- nx{ üxUL + hyvL + nzwL + nt) 

vb = VL ~ hy ( "X"L + nyvL + nzwL + nt) 

wb = WL ~ "z ( «XML + AVVL + üzwL + *t) 

where L refers to the first cell from the boundary. For the viscous calculations the 

velocity components on the body are set to the local velocity of the body and the pressure and 

density are calculated in the same manner as that of inviscid case. 

5.12 Turbulence Modeling 

Viscosity can be viewed as consisting of two contributions: laminar and turbulent. 

The laminar viscosity, which is a fluid property, is usually a function of temperature and can 

be estimated using Sutherland's formula ( Anderson et al. [41]). The turbulent viscosity, on 

the other hand, is a function of the flow and needs to be evaluated using some model. In this 

study the turbulent viscosity is estimated using the Spalart-Allmaras one equation model 

(Spalart and Allmaras [35]) and the Reynolds stress is modelled using the Boussinisq hypothe- 

sis (Warsi [40]), i.e., it is written in terms of the turbulent viscosity and the gradients of the 

flow variables. Spalart-Allmaras turbulence model is a pointwise model, which makes the 

application of this model for unstructured or hybrid grids easier. This model solves a second 

order partial differential equation for the variable v and the turbulent kinematic viscosity vt is 

estimated from v by multiplying by a damping function^ • 
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After non-dimensionalization, the Spalart-Allmaras one equation turbulence model in 

vector invariant form can be written as, 

3v_ 
dt 

- V.Vv + CblSv + ~^- 
— bl a Re, 

(V . ((v + v) Vv)) 

Cb2    (Vv)2 

a Re Rer (IF (5.55) 

Correspondingly the variables appearing in the above equations will change to, 

— Y- X ~ \> 

fvl  - 
X' 

X3 + c* ' 

/v2 =  1 - 
X 

1+Z/vl' 

vt = vfvX 

S = S + f v2 

fa = 8 

r = 
RßL \SK

2
<P 

8 = r+ Cm2(r
6 - r); 

Cbl = 0.1355 ; a = 2/3 ; Cb2 = 0.622; K = 0.41 

Cb\   ,   1 + Cbl Cm9 = 0.3; C«, = 2.0;       Cvl = 7.1 '«3 vl 

The different terms appearing in equation (5.55) can be divided into convective, pro- 

duction, diffusion, and destruction terms. So the transport equation for the turbulent viscosity 

parameter is written as, 

Time rate of change of viscosity parameter = -Convection + Production + 

Diffusion - Destruction. 
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where the convection is given by V • Vv. Production of the turbulent viscosity is 

due to vorticity and is given by CblSv. The diffusion term is a function of the 

gradient of the viscosity parameter and is defined as 

1     (V . ((v + v) Vv)) + =-£- (Vv)2 

ReL a ReL a 

Neglecting the gradient of laminar viscosity, the diffusion terms can be written 

as, 

i^ (V . «v + v) Vv) ) - ^ (v + v) V¥ 

The destruction term for the turbulent viscosity parameter is taken as inversely 

proportional to the square of the distance to the solid wall and is given by, 

Ccalfa>   (v 'calfto   lv\ 
ReL    UJ 

5.12.1 Integral Formulation of the Turbulence Model 

Equation (5.55) with the simplified diffusion terms can be written as, 

f = - Z.Vv + CblSv + ^±^(V.(<v + *)V*)) 
JLs 

Cb2 
ReL 

_(v + ^-%^(E)2 (5.56) 

Integrating equation (5.56) over a control volume yields 
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\ j^dQ = -       V • VvdQ +       CblSvdQ 
JQ JQ JQ 

+ c2) f 
icLa   JL 

^M    (v + v) V2vdQ 
^°)Q 

'Q JQ JQ 

+    Re ~2'  |   V • ((v + v) Vv) dQ 

'Q 

C(äl   '  *  (^\dQ L'-er ReL )Q    \d) (5.57) 

Using the divergence theorem for the surface integral, equation (5.57) can be 

transformed to, 

\  ^dQ = -       V • VvdQ +       CblSv 
JQ JQ JQ 

SAL 
° T, 

—      (v + v) V2v 
°JQ 

(1 + c2/ , 
+ —5 — d>   (v + v) Vv • n ds 

Re,     , L      IQ 

c <a\ /-a ZAdQ 
RC

L JQ    w (5.58) 

5.12.2 Numerical Procedure 

As in the case of Navier-Stokes equations, equation (5.58) is also solved using a cell 

centered scheme. The values of v, stored at the cell center, are assumed to be cell averaged 

values. The discretized form of equation (5.58) is 

k 
ZTTI + I TJI 
V   At   

V Vi = -  1(U+ v; + U- vn(j)) dsj + Cbl (SV)t Vt 
1 ;=i 

(1 + Chl) X 

7=1 
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-%-(v+v);V2V^. 
a ReL 

v        nil 

(5.59) 

where k is the number of edges of cell i, n is the unit normal to the face, dsj is the 

length of the edge;, KQ) is the cell that shares the jth edge of the cell i, and Vi is the 

cell volume. The variables U+ and U~ are defined as 

U+ =±(U+\U\) 

u- =\(U-\U\) 

where U is the contravariant velocity. The laminar and turbulent viscosity at the 

cell faces are taken as the average values of those on either side of the cell face. 

The gradient of the turbulent viscosity parameter v appear in equation (5.59) in the 

surface integral. So the gradient is calculated on the cell face. The gradient at the cell faces 

are calculated using Green's theorem and a weighted averaging procedure. The value of v at 

the nodes are calculated by a weighted average of v within the cells surrounding the node. The 

weight is taken as inverse of the distance between the cell center and the node. 

1 ha 
Vv  = TT <P   vnds (5.60) 

The gradients at the cell face are calculated based on a control volume surround- 

ing that face. The control volume is taken as the volume enclosed by the nodes 

connecting the face and the cell centers as shown in Figure 5.8 
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Figure 5.8 Control Volume for Edge Connecting Nodes Nl and N2 

5.12.3 Explicit Method 

For the explicit solution of the equation (5.59), a four stage Runge-Kutta method is 

utilized. Denoting the right hand side of equation (5.59) as R(v), the four stage Runge-Kutta 

method can be written as, 

v<°) = v« 

v<i> = vH + alAtR(p<f)y) 

v<2) = vn + a2AtR(y(l)) 

v<3) = vn + a3AtR(v(2)) 

v<4) = ^ + aAAtR{v(:i)) 

where   a1 = 0.0833   a2 = 0.2069   a3 = 0.4265   a4 = 1.0 

5.12.4 Implicit Method 

For the implicit scheme the turbulent viscosity parameter v appearing in the right hand 

side of Equation (5.59) is taken at (n+l)th time level. Equation (5.59) can be written as, 
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Yl^Z}l=c(vn+1) + P(P»+1) + D1(v
w+1) + Z>2(*"+1) (5-61) 

where C, P, Dj, and Z>2 are convective, production, diffusion, and destruction terms 

respectively. Linearization of the convective term yields, 

C( p +1) = C( if1) + |£ 0vt)
n + -&- (Avn(f)r (5.62) 

The Jacobians appearing in the Equation (5.62) can be calculated analytically 

and are given by, 

dC =  U~ (5.64) 

Similarly linearizing the production term, one has, 

P( v"+1) = P( v") + J£ (Avtr (5.65) 

The production is not an explicit function of v, and so the Jacobian is evaluated 

numerically as given below: 

dg = P(v + h)- P(y) (5.66) 
dv h 

where h is the square root of machine zero.  Linearization of the diffusion term 

yields, 

Dl(v
n+i) = D1(v

n)+^- (Avtr + |^ (Avn(J)r (5.67) 

dD,      1 + C 
where °-p- = ^-=P± (Av • «V A- - -^ A% V, (5.68) 

dD1       1 + Cb2 

W^ = ^R7T0v'^dsJ (5-69) 

Linearizing the destruction terms yields 
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D2(v
n+1) = D2(v

n)+-^ (Av,)n (5.70) 

The Jacobian corresponding to the destruction term is also evaluated numerically 

as, 

dD2 = Z)2(v + h) - D2(v) (5 71) 

dv h 

Substituting Equations (5.62), (5.65), (5.67), and (5.70) into (5.61) and simplifying 

yield, 

\Att 

dc     dp     dDi _ dD2\Av 
At: ÖV: ÖV; ÖV; ÖV: Wn® = 

= Civ") + P(V»)  + D^V) + D2(v") (5.72) 

The system of equations represented by Equation (5.72) is a sparse matrix system and 

is solved using the GMRES solver. The GMRES solver is also used for solving the matrix 

system resulting from equation (5.72). 

At the farfield and the inflow boundaries, the value of v is specified such that % = 5 

(Allmaras [61]) and at the solid boundaries the turbulent viscosity is set to zero. 

5.13 Geometric Conservation Law 

The geometric conservation law adds a correction term to the governing equations to 

account for the grid motion (Thomas and Lombard [62], Janus [63]). This preserves the uni- 

form conditions when the grid moves, thereby avoiding the creation of spurious sources and 

sinks in the flow field. The geometric conservation law can be derived from the continuity 

equation as described below. 

Consider a control volume Q with control surface dQ, that moves with speed c with 

respect to a stationary inertial frame. Then the continuity equation can be written in integral 

form as (Warsi [40]), 
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jU  pdÜ+i   p(V-c).nds = 0 (5.73) 
JQ hü 

Assuming uniform conditions everywhere in the field, the above equation reduces to 

j      dQ  =  i   c.nds (5.74) 
JQ J BQ 

Equation (5.74) represents the geometrical conservation law in integral form. 

This relates the rate of change of the control volume to the orientation and veloci- 

ties of the cell faces. 

For dynamic grids, a term, accounting for the changes in the control volume, appears 

in the numerical discretization of governing equations. With this extra term, the semi-discre- 

tized form of the governing equations can be written as, 

V?^ +  ö?4  I    dQ  +   I    F(Q).nds =  0 (5.75) At        *l dt , 
JQ J BQ 

The second term in Equation (5.75) is calculated using the geometric conservation law, 

and is evaluated as 

Q1 i   c ■ nds  =  Ö- X(*'n* + y*ny + z'nz)dsJ        (5'76) 

J dQ j=\ 

The above summation is carried over the cell faces. Since the data structure is 

based on the edges, the above integration is done globally, as in the case of the 

flux summation. 

5.14 Grid Movement 

For flow simulation over moving bodies, the grid has to be regenerated globally at 

each time step or the grid points have to be moved appropriately to retain a body conforming 

grid where grid lines do not cross. Regeneration of grids for each time step is expensive and 
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interpolation has to be done to transfer the data between the grids. The interpolation is usually 

non-conservative and it reduces the accuracy of the flow simulation. In the later approach, 

the grid points are moved using different methods, for example tension spring analogy, poten- 

tial flow analogy, etc. In the present study, the tension spring analogy is used for grid point 

movement (Singh et al. [64]). 

In tension spring analogy, each edge of the grid is assumed to be a tension spring. The 

movement of the interior points are calculated by solving the system of tension springs when 

the boundary points are disturbed. The motion of the boundary points is computed either from 

the external forces acting on them due to the fluid flow or from a prescribed motion. The 

spring stiffness is taken as inversely proportional to square of the length of the edge. The 

spring analogy, by specifying the boundary displacement, will result in a linear system for the 

interior point displacements. This system is written as 

Y.Kij{AXi~AXj)   =   ° (5-77) 

Y,Kij{Ayi~Ayi)  = ° (5-78> 
j 

where Ky is the spring stiffness corresponding to the edge connecting nodes i and 

j, and is defined as Zy~
2, where Zy- is the length of the edge. The summation varies 

over all nodes that are connected to the node i. The sparse matrix system result- 

ing from the Equations (5.77) and (5.78) is solved using GMRES, a sparse matrix 

solver. 

For the situations involving large relative motion of the bodies, the quality of the grid 

will degrade after a few hundred time steps. At this stage a new grid is generated and the 

solution is transferred to the new grid. A first order interpolation is used to transfer the solu- 

tion from old grid to the new one. The time marching is restarted with the interpolated solu- 
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tions on the new grid. Example of the flow simulation over dynamically moving bodies and 

the capability to handle the grid movement are demonstrated in Section 6.5. 

5.15 Rigid Body Movement 

The trajectory of moving bodies is determined by the laws of classical mechanics. It is 

assumed that all moving bodies have six degrees of freedom. These six degrees of freedom 

are the translation along the three coordinate axes and the rotation about the three coordinate 

axes. The movement of the body is determined based on the pressure distribution over the 

body due to the fluid flow and the gravitational force due to the weight of the body (Lohner 

[1], Koomullil et al. [65]). 

The notations used for rigid body motion are shown in Figure 5.9. The position vector 

of any point on the surface of the body is expressed as the vector sum of the position vector of 

the center of gravity and the vector from center of gravity to the corresponding point 

(Figure 5.9) and is written as, 

Now the velocity at the point P is given by, 

t = L + to = Zc + QlXZo 

where r represents the position vectors shown in Figure 5.9. and the • represents 

its derivative with respect to time. The linear velocity and the angular velocity of 

the body are Yc and (o respectively. 
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Figure 5.9 Notations Used for Rigid Body Dynamics 

The balance of forces and moments acting on the body results in the relations for the 

translational and rotational accelerations. These expressions are written as 

mV,. = 2_F = mg — (p   pnds (5.79) 
JdQ 

0 • (b +  I   ((o  • £o) (lo x (o) dQ = ^r0 X F= - d>   pr0X nds    (5.80) 
JQ ha 

where       0 = 
iyy + *zz *xy -I 

lxy    *xx 

xz 

Ixx. + 1-zz *yz 

'xz 'yz     '■xx "■" -«jy JQ 

dQ 

and (b is the angular acceleration vector. 

For two dimensional cases, the second term on the left hand side of equation (5.80) 

vanishes and U) has only one component, which in turn simplifies the equation greatly. For 

two dimensional cases, equation (5.80) reduces to 
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(Ixx + lyy) ö>z = - <b   p ((* - xc) ny - (y - yc) nx] 
JdQ 

ds (5.81) 

As the body moves under the action of the aerodynamic and body forces, the second 

moment of inertia changes. These changes are only due to the rotation of the body, as the 

body is assumed to be rigid. Figure 5.10 shows the co-ordinate axes before and after the rota- 

tion of the body through an angle 6 with respect to the center of gravity. The moments of 

inertia with respect to the new co-ordinate axes are related to that with respect to the old co- 

ordinate axes by (Fletcher [66]), 

* Y 

Figure 5.10 Orientation of Reference 
Axis and Rotated Axis 

Ix,x, = Ixx cos26 + lyy sin26 + 21^ sind cosö 

lyy — Ixx sin20 + lyy cos2 6 — 2Ixy sin 6 cos 6 

Ix, , = (Ixx - lyy) sinö cos0 + 7^(cos2ö - sin20) 

The moments of inertia are updated after each time step. 

(5.82) 

(5.83) 

(5.84) 
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6. Results and Discussions 

6.1 Validation of Two Dimensional Flows 

Two dimensional Euler calculations are validated by computing the flow over the 

NACA0012 airfoil. The results are compared with the experimental data. The grid used 

for this simulation consists of 1961 nodes and 3332 cells (Figure 6.11).  The freestream 

Mach number is 0.63 and the angle of attack is 2.0 degrees. 

The results from the first and second order accurate, inviscid calculations are 

compared with the experimental data (AGARD) in Figure 6.12. This plot shows a notice- 

able improvement in accuracy for the second order calculations compared to the first order 

calculations. The results from the second order computations agree well with the bench- 

mark data. 

Figure 6.11 Hybrid Grid Around NACA0012 Airfoil 

The convergence history associated with the implicit and explicit calculations for 

the testcase described above is given in Figure 6.13. The implicit scheme converges to the 

steady state within 300 time steps, while the explicit scheme takes 25000 iterations to re- 
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Figure 6.12 Cp Distribution Over NACA0012 Airfoil at Freestream 
Mach Number 0.63 and Angle of Attack 2.0 Degrees 

duce the L2 norm of the residual to ten orders of magnitude. The L2 residual is defined as 

^2 || = log 10 

Incells   4 

2 5>ßff>" 
«=i;=i 

Numerical Jacobians are used in the implicit calculations with a CFL of 50 

and the explicit calculations are performed with a CFL of 1.5. The explicit 

scheme takes 12813.76 seconds for 25000 iterations on a single processor of an 

SGI R8000, while the implicit scheme takes 1443 seconds for 300 time steps. 

Thus the time requirement for the simulation can be reduced by an order of 

magnitude by using an implicit scheme. 

The laminar flow calculations are validated using the flow over a flat plate at a 

freestream Mach number of 0.5 and a Reynolds number of 30000. The grid consists of 
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Figure 6.13 Convergence History for Explicit and Implicit Schemes for 
NACA0012 Airfoil at Freestream Mach Number 0.63 and 

Angle of Attack 2.0 Degrees 

2911 nodes and 2800 rectangles. The physical domain includes five plate lengths up- 

stream of the leading edge, four plate lengths downstream of the trailing edge, and five 

units above the plate. The first point off the plate is at a distance of l.OxlO"4. The com- 

puted velocity profile is compared with the Blassius velocity profile (Warsi [40]), and is 

presented in Figure 6.14. The non-dimensional rj axis is defined as, 

rj = y. 
2vx 

The computed velocity profiles are plotted in Figure 6.14 for axial location 0.4, 

0.5, and 0.6 and these profiles are independent of the axial location. There- 

fore, they satisfy the principle of self similar boundary layers (Warsi [40]). 

The turbulent flow simulation is validated using the flow over a flatplate. The 

dimensions of the flow domain are identical to that used for the laminar flow simulation, 

while using a finer distribution of points near the flat plate. The first point of the plate is at 

a distance of l.OxlO-5. The freestream Mach number for this simulation is taken as 0.5 
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Figure 6.14 Laminar Velocity Profile Comparison 
With Theoretical Data 

and a Reynolds number of 2xl06 was used. The computed turbulent velocity profile is 

compared to theoretical results in Figure 6.15. 

The next geometry used for the implementation of the turbulence model is the 

standard NACA0012 airfoil. The flow conditions used were a freestream Mach number of 

0.799, an angle of attack of 2.26 degrees and a Reynolds number 9.0xl06. The grid used 

for this simulation is a structured grid of dimension 290x81 (Figure 6.16) and is converted 

into the hybrid grid data structure before the simulation. A total of 200 points were given 

on the surface of the airfoil. The Mach number contours are shown in Figure 6.17. 

The computed pressure coefficient is compared with the experimental data 

(Baldwin and Barth [67]) and the results from Balwin-Barth computations 

(Baldwin and Barth [67]). This is demonstrated in Figure 6.18. Slight devi- 

ation of the computed results as compared to the experimental values is real- 

ized in the simulation. 
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Figure 6.15 Turbulent Velocity Profile for Reynolds Number 
2.0E+06 Compared with Theoretical Data 

Figure 6.16 Grid Used for Turbulent Flow Over NACA0012 Airfoil 



90 

Figure 6.17 Mach Number Contours for NACA0012 Air- 
foil at Freestream Mach Number 0.799 and 

Angle of Attack 2.26 Degrees 

The memory requirement for double precision calculations is approximately 595 

words per cell for implicit scheme and 102 words per cells for explicit schemes. Not much 

effort has been put towards the optimization of the memory requirements. 

6.2 Effect of Limiter Function on Convergence 

The effect of different limiter functions on the convergence of solutions to steady 

state is discussed in the following section. The geometry considered for this study is a 

scramjet engine (Grimes [68]). The grid used for these calculations is shown in 

Figure 6.19, and consists of 5515 points and 10404 triangles. The freestream Mach num- 

ber and the angle of attack for this testcase were 3.5 and 0 degree respectively. The pres- 

sure distribution inside the scramjet engine, obtained from the simulation, is shown in 

Figure 6.20. 
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Figure 6.18 Pressure Coefficient Comparison over NACA0012 
Airfoil at Freestream Mach Number 0.799 and 

Angle of Attack 2.26 Degrees 

Figure 6.19 Unstructured Grid for Scramjet Like Geometry. 

Convergence history for this simulation with different limiter function options is 

plotted in Figure 6.21. The residual stalls after two orders of magnitude drop in the case 

of Barth limiter. However, residual drops to the machine zero with a higher threshold co- 

efficient K for Venkatakrishnan's limiter. The threshold factor K has a strong influence on 



92 

convergence, as can be seen in Figure 6.21.  For larger values of the coefficient K, the 

limiter function is limited to places with high gradients. By setting the threshold coeffi- 

cient K to zero, the Hmiter is active everywhere. With a proper choice of the threshold 

factor, Venkatakrishnan's limiter gives a better convergence than Barth's limiter. 

Pressure (M = 3.5) 

0.053 0517 0580 0.544 

Figure 6.20 Pressure Distribution in Scramjet Engine for 
Freestream Mach Number 3.5 

The computed skin friction distribution over the flat plat for a Reynolds number of 

2xl06 and a freestream Mach number of 0.5 is compared with the theoretical values in 

Figure 6.22. The theoretical values are calculated using the following expression (Warsi 

[40]). 

The Venkatakrishnan's limiter under predicts the the skin friction, but the 

Barth limiter gives a non-smooth skin friction coefficients. For very high val- 

ues of the threshold parameter (K=50) the distribution of the skin friction 

deviates from theoretical ones. 

The effect of the limiter function on the skin friction coefficient is studied using 

the flow over the NACA0012 airfoil, which is used for the validation of the turbulence 

flow calculation. The skin friction distribution over the airfoil is plotted in Figure 6.23. 
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cf =  0.02628 Re~1/7 

The skin friction distribution does not change with different threshold parameters for Ven- 

katakrishnan's limiter. But Barth limiter gives higher skin friction at the leading edge of 

the airfoil and lower skin friction after the leading edge. After the shock induced separa- 

tion at the upper surface of the airfoil both the limiters gives the same skin friction except 

for K=20. 

6.3 Effect of Approximate and Numerical Jacobians On Convergence 

The scramjet engine geometry, shown in Figure 6.19, is used to study the effect of 

approximate analytical and numerical Jacobians on the convergence of solution to steady 

state. The freestream Mach number of 3.5 and an angle of attack of 0.0 degree were used 

for this simulation. The convergence history for this testcase with different Jacobians is 

plotted in Figure 6.24 and Figure 6.25. Figure 6.24 shows the convergence history for a 

CFL number of 5. It can be seen that there is not much advantage in using the numerical 
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Jacobian compared to the approximate Jacobian. When the CFL number is increased to 

20, the solution converges much faster for the numerical Jacobian compared to the approx- 

imate analytical Jacobian as shown in Figure 6.25. The numerical Jacobian calculations 

take approximately 5% more CPU time per iteration than the approximate analytical Jaco- 

bian. But the total time for the simulation is less for the numerical Jacobians because of 

the faster convergence to the steady state. The memory requirements are the same for both 

the approaches. During the time integration the Jacobians are evaluated at each time level. 

The same behavior is noticed for the subsonic flow over the NACA0012 airfoil. 

The freestream Mach number and angle of attack for this simulation are 0.63 and 2.0 de- 

grees respectively. The convergence history for the implicit scheme with approximate 

analytical and numerical Jacobians are plotted in Figure 6.26. These computations were 
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performed at a CFL of 50.  From Figure 6.26, it is evident that the numerical Jacobian 

gives a better convergence rate than the approximate analytical Jacobian. 

For the Navier-Stokes calculations, the numerical Jacobian does not have a signifi- 

cant advantage over the approximate analytical Jacobian. But the solution process em- 

ploying numerical Jacobians is more stable compared to that using the approximate analyt- 

ical Jacobians. This is demonstrated using the convergence history for the laminar flow 

over the flat plate in Figure 6.27. The implicit scheme with approximate analytical Jaco- 

bian was not stable at a CFL of 20. 

6.4 Examples of Mixed Element Type Grids 

Laminar flow simulations were carried out for a four element airfoil at a free- 

stream Mach number of 0.201 and an angle of attack of 0.0 degree. The Reynolds number 
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Figure 6.26 Convergence History for NACA0012 Airfoil at Freestream Mach 
Number 0.63 and Angle of Attack 2.0 Degrees for CFL 50 

based on the chord length of the main body of the airfoil was taken as 2.0xl05. The grid 

used for this simulation is given in Figure 6.28. It consists of 10445 nodes and 15603 

cells, of which 5274 cells have four sides. The pressure and Mach number distributions 

for this case are given in Figure 6.29. 

The capability of handling the cells with an arbitrary number of sides in the flow 

field is demonstrated using the grid shown in Figure 6.30. This case involves cells with 

four, five, and six sides. It contains 2345 nodes and 2536 cells. Some of the cells have 

hanging nodes, where only two edges are connected to that node. The flow conditions 

taken were a freestream Mach number of 0.30 and an angle of attack 0.0 degree. The 

pressure contours for this simulation along with the grid is shown in Figure 6.31. 

6.5 Unsteady Flow Simulation 

The unsteady calculations are validated using inviscid transonic flow over 

NACA0012 airfoil pitching about the quarter chord.    A structured grid, shown in 
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Figure 6.28 Hybrid Grid for Four Element Airfoil 
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Figure 6.32, with 6000 cells and 6211 nodes is used for this simulation. It is converted 

into the hybrid grid data structure format so that it can be used with the solver developed 

in this study. The unsteady calculations were started from a converged steady state solu- 

tion. 

The movement of the airfoil is prescribed such that the angle of attack varies sinu- 

soidally according to the following relation 

a{i) = am + a0 sin(ct)t) 

where am is the mean angle of attack and is 0.016 degrees and the maximum 

deflection OQ - 2.51 degrees The NACA0012 airfoil is assumed to be pitching 

at a reduced frequency, k, of 0.1628 at a freestream Mach number of 0.755. 

The reduced frequency is defined as, 

where w is the frequency in radians per second, c is the chord length, and V^ is 

the freestream velocity. The computed lift history is plotted in Figure 6.33. 

The results are compared with the experimental data of Landon[69]. The lift 

history attains the periodic nature after half a cycle of oscillation. 

The pressure over the airfoil at two different angles of attack are presented in 

Figure 6.34. Figure 6.34(a) gives the pressure distribution at an angle of attack 0.48 de- 

grees when it is moving up. Figure 6.34(b) plots the pressure distribution at an angle of 

attack 0.98 degrees when the airfoil is pitching down. Even though the angles of attack 

are almost the same, the shock location differs due to the unsteadiness of the flow. 

The residual history is plotted in Figure 6.35. The residual achieves a periodic 

state after 50 iterations. This simulation was done using a CFL of 1000 and is kept 

constant during the simulation and it took 50 minutes of CPU time on a single R4400 SGI 

processor for one period of oscillation. The coefficients of lift and drag generated during 

the pitching of the airfoil along with the angle of incidence are plotted in Figure 6.36. 
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(a) Overall View of the Grid 

(b) Zoomed View at the Interface Between Layers 

Figure 6.30 Generalized Grid Containing More 
Than Four Nodes per Cell 

The above described pitching of the airfoil was also simulated on a hybrid grid 

shown in Figure 6.11. The computed lift history versus the angle of incidence is plotted in 
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Figure 6.31 The Contour Plot of Pressure Distribution Around 
Circular Cylinder at Freestream Mach Number 0.3 
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Figure 6.32 Grid Used for Pitching Airfoil 

Figure 6.37. There is a slight difference between the computed solutions using the hybrid 

and structured grids. This is attributed to the difference in the grid resolution between the 

two grids. Figure 6.33-Figure 6.36 are plotted using the simulation done on the grid 

shown in Figure 6.32. 
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Figure 6.34 Pressure Distribution Around A Pitching 
NACA0012 Airfoil 
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6.6 Example For Bodies in Relative Motion 

Capability to do flow simulations involving bodies in relative motion is demon- 

strated using a missile separation from a solid body. The geometry consists of a flat solid 

surface and a missile. The grid used for this simulation consists of 4824 nodes and 9216 

cells. The freestream Mach number is taken as 2.0. The unsteady simulation is started 

from a steady state solution. The pressure and Mach number distributions for the steady 

state condition are shown in Figure 6.38. The trajectory of the missile is calculated by 

using the aerodynamic forces acting on it and its weight. During each time iteration, the 

position of the body changes and the corresponding changes in the interior grid points are 

calculated using the spring analogy described in Chapter V. The grids are regenerated 

when the cells get too skewed and the solution is interpolated to the new grid. Regenera- 

tion was carried out three different times during the solution process. The grid, pressure 

distribution, and Mach number distribution at two different time levels are shown in 

Figure 6.39 and Figure 6.40. 

6.7 Validation For Three Dimension Flow Simulation 

Flow simulations are performed over an ONERA M6 wing at a freestream Mach 

number of 0.84 and an angle of attack of 3.06 degrees. The Euler calculations are carried 

out on a structured grid of size 97x25x17. Two different views of the grid are shown in 

Figure 6.41. A structured grid is used for this simulation to compare the results with 

those from an existing code (CFL3D (Thomas et al. [22])). The flow simulations are ac- 

complished on the same grid using both the CFL3D code and the present program under 

validation. Then the results of computations are compared with the experimental data in 

Figure 6.42. It shows the Cp distribution over the upper and lower surfaces of the wing at 

45%, 65% and 90% span. The calculated values agree well with the experimental results 

and CFL3D simulation. 
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Figure 6.35 Residual History for Pitching NACA0012 Airfoil 

Flow simulation was performed for a complete F-15 fighter aircraft with faired 

inlet and nozzle. The freestream conditions were a Mach number of 0.9 and an angle of 

attack of 4.84 degrees. The unstructured grid was generated at McDonnell Douglas Aero- 

space, Saint Louis. A coarser distribution of grid points is used for the fuselage and a fine 

distribution over the wing surface (Figure 6.43). The grid consists of 44,272 nodes and 

235,363 tetrahedra with 6404 nodes and 12,669 faces on the surface. 

A four stage Runge-Kutta scheme is used for this simulation because of the un- 

availability of memory in the local machine for the implicit scheme. Four orders of reduc- 

tion in the L2 norm of the residual is taken as the criteria for attaining the steady state 

solution. The convergence history is plotted in Figure 6.44. The pressure distribution on 

the body surface together with the grid on the symmetry plane is shown in Figure 6.45 and 

the Mach number contours on the entire aircraft surface are in Figure 6.46. 



106 

VO 

<n 

O 

0 
Q. 

<N 

O 
"ST 

O o     o     o 
ö     CN     ■* <? 

o 
o 

30U9ppUI JO 9t§UV 

o 
© 

PD 

o o o 
Ö 

Ö Ö 
o 
Ö 

ID 

Ö ? 

Figure 6.36 Coefficients of Lift and Drag Generated During the 
Pitching Motion of the Airfoil 



107 

0.6 

0.4 

0.2 

u 

o.o 

-0.2 

-0.4 
-4.0 

Hybrid Grid 
Structured Grid 

• Experimental (AGARD Data) 

-2.0 0.0 
Angle of Incidence 

2.0 4.0 

Figure 6.37 Lift History for Hybrid and Structured Grids 

The calculated pressure distribution on the surface is compared with the available 

experimental data ( Michal and Halt [70] ). The pressure distributions at 36% and 59% 

span of the wing are plotted together with the experimental data in Figure 6.47. 

6.8 Preliminary Work On Parallelization 

The main drawback of the flow solvers using unstructured algorithms is the high 

memory and CPU requirements. Parallelization of the flow solver provides a means of 

overcoming this disadvantage. Preliminary work has been done towards the paralleliza- 

tion of the hybrid flow solver developed during this study. Initial results show the poten- 

tial benefits of parallelization of the flow solver. 

The partitioning of the grid for parallel processing is done using a public domain 

software, METIS (Karypis and Kumar [71]), for graph partitioning. The graph corre- 

sponding to the grid is given as an input to the software and is divided into a number of 
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Figure 6.38 Steady State Solution For Missile Geometry 
at Freestream Mach Number 2 
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(a) Grid 

(b) Pressure Distribution 

(c) Mach Number Distribution 

Figure 6.39 Grid, Pressure Distribution and Mach Number 
Distribution at t=177.52 
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(a) Grid 

(b) Pressure Distribution 

(c) Mach Number Distribution 

Figure 6.40 Grid, Pressure Distribution and Mach Number 
Distribution at t=243.5836 
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Figure 6.42 Cp Distribution Over ONERA M6 Wing at Mach Number 
0.84 and Angle of Attack 3.06 Degrees 

Figure 6.43 Unstructured Surface Grid Used for Flow Simulations 
Over F-15 Aircraft 
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Figure 6.44 Convergence History for F-15 Aircraft Geometry 

Figure 6.45 Pressure Distribution Over F-15 Aircraft at Mach Number 
0.9 and Angle of attack 4.84 Degrees 
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domains (user specified) with minimum number of edge cutting. The details of the graph 

partitioning algorithms are described in Karypis and Kumar [71]. 

Different blocks of the partitioned grid are assigned to different processors. The 

information across the block boundaries are passed as explicit boundary conditions. Mes- 

sage Passing Interface (MPI Gropp. et al. [72]) is used to communicate between the pro- 

cessors. Results are presented for a three element airfoil at a freestream Mach number of 

0.2 and an angle of attack of 16.2 degrees. An example of the grid partitioned into four 

domains is presented in Figure 6.48. The complete grid contains 29830 cells and is di- 

vided into four blocks, out of which two blocks contain 7458 cells and the other two con- 

tain 7457 cells. The Cp distribution from the sequential and parallel solver, with four 

blocks, is compared in Figure 6.49. It can also be seen from Figure 6.49 that the Cp dis- 

tribution from the sequential and parallel solvers matches well. 

The actual speed up of the parallel solver is compared with the ideal one in 

Figure 6.50. The SGI processor (ANDY) gives a better speed up as compared to the SUN 

(superMSPARC) processor, because the data transfer across the processor is faster for the 

SGI processor. 
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(b) Grid Partitioned into Four Blocks 

Figure 6.48 Grid for a Three Element Airfoil and its 
Partition into Four Blocks 
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7. University-Industry Collaboration 
The broad based objective of the present collaborative project is to provide a fo- 

rum through which university and industrial researchers can jointly pursue research and devel- 
opment pertinent to hybrid techniques in computational fluid dynamic with a concerted effort 
in the development of hybrid/generalized grid generation and flow solver technology. This col- 
laboration has worked out very well for both industry and the university. The collaboration has 
been proven to be very beneficial to participating students. One Ph.D., two masters, and two 
undergraduate students participated in this program. During the rise of this project, the partici- 
pating industry management and researchers have gone through various changes (e.g. Boeing 
merger, leaving of Dr. Rob Rogers from the Teledyne Grown Eng. Corp., changing interests and 
priorities at McDonnell Douglas Sites, etc.) These changes had an impact on the progress of this 
project. However, all the targeted objectives of the project were accomplished after additional 
ten months of no cost extension of this project. 

Grid generation and flow simulation capabilities have been transferred to all in- 
dustrial sites. In particular: 

• HYBGD2D, HYBFL2D-3D and MARCH3D systems are now fully operational at 
the Teledyne Brown Engineering Corporation. The students and faeulty have made 
various trips to Teledyne Brown Engineering to work side-by-side with TBE person- 
nel in validating these systems for TBE applications (Dr. Sonat Praharaj is the new 
contact person at TBE). 

• A completely unstructured grid around complete F15 aircraft was obtained from Boe- 
ing, St. Louis (McDonnell Aircraft Co, contact persons: Timothy Gatzke and Ray- 
mond Cosner) and the hybrid solutions were compared for validation. The modular 
of grid generation technology and flow solvers have been transferred to Boeing-St 
Louis and Boeing, Huntington Beach (McDonnell Douglas Space Systems division, 
contact persons: Dan Parish and Darrin Fricker). 

• The gird generation and hybrid flow simulation capabilities were applied to problems 
of interest at Lockheed-Martin at Marietta (Contact person: David Vaughna). Vari- 
ous helpful suggestions in this development were supplied by Lockheed Co. 

• The simulation capability of the code has been compared with the COBALT system 
(a CHSSI system, under development at Wright Patterson AFB, contact persons: 
Don Kinsey and Bill Strang). These results will be reported as a joint publication at a 
later date. 
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