
Osculant:
A Multiprocessor Self-Organizing

Task Scheduler

Final

Project Report
Contract Number: N00039-94-C-0163

te?5 QUALITY IMSPEGTIP *EGTED &

Dr. Fred J. Taylor

High-Speed Digital Architecture Laboratory
Department of Electrical and Computer Engineering

University of Florida
February 17, 1998

19980325 059

Contents
1 Introduction 1

2 Overview of Osculant Scheduler 4

3 Comparisons Between Top-down Scheduling Schemes and Bottom-up 7
Schemes

4 Osculant Job Profile Generator 11
4.1 Design Principles and Algorithms 12

4.1.1 Function Result Type Tables 13
4.1.2 Granularity 15

4.1.3 Supporting Mechanisms 16
4.1.4 Algorithm Issues 17

4.1.5 Implementation 19

4.2 Result Analysis 22
4.2.1 Under Estimate The Computation Load 24
4.2.2 Over Estimate The Computation Load 24

4.3 Job Profile Retrospective 25
4.4 Job Profile Generator Conclusions 26

5 Jobpost Distribution Protocol 28
5.1 Limited Flooding Techniques 28
5.2 Other Jobpost Distribution Techniques 30
5.3 Optimal Jobpost Distribution 31

6 Dynamic Bidding Strategies 35
6.1 Performance-based Bidding Method 35
6.2 Energy-based Bidding Method 37
6.3 Dynamic Jobpost Model 38

6.3.1 Static Jobpost and Job Auction Model 40
6.3.2 Simulated Annealing Jobpost and Job Auction Model 40

6.4 Resource Contractor Bidding Model 42
6.5 Comparisons Among The Bidding Strategies 45

6.5.1 System Throughput Rate 46
6.5.2 Average CPU Time Consumption 48
6.5.3 Average Job Resource Transmission Time 49
6.5.4 Average Job Energy Consumption 50
6.5.5 Average Jobpost Coverage and Jobpost/Bidding Delay 52
6.5.6 Cache Efficiency 54

7 Resource Management Schemes 55
7.1 Resource Forwarding and Caching 56
7.2 Resource Distribution Control via Cache Validations 57

8 Osculant Simulator 60

9 Osculant Shell 62

9.1 Structure and Implementation of Osculant Shell 62
9.1.1 Osculant Job Profile Generator 63
9.1.2 File Transfer Unit 63
9.1.3 Configuration Unit 65
9.1.4 Load Monitoring Unit 65
9.1.5 Osculant Function Profile Modification Unit 66
9.1.6 Bidding Algorithms 66
9.1.7 Computation Engine 66
9.1.8 Steward Process 67

9.2 Future Developments 68

10 Future Developments of Osculant Scheduler 70
10.1 Task Organizer and Optimal Scheduling 70

11 Conclusions 74

Appendix A. Simulation Configuration 77
Appendix B. Example of Function Result Size Table 80
Appendix C. Example of Osculant Function Profile 81
Appendix D. Function Result Type Tables (FRTT) Example. 82
Appendix E. Structure of the Variable Back Tracing (VBT) Engine 83
Appendix F. Main Procedure of Osculant Profile Generator 85
Appendix G Example of the Osculant Simulator User Interface 86
Appendix H. "Characterization of Multicomputer Interconnection Network 89

Performance Under Real-Time and Non-Real-Time Traffic",
Dr. Ahmad Reza Ansari

Appendix I. References 90

Acknowledgement 92

HI

L

Osculant1: A Multiprocessor Self-Organizing Task Scheduler

Project Report

High-Speed Digital Architecture Laboratory
Department of Electrical and Computer Engineering

University of Florida
Gainesville, FL 32611

February 17,1998

1 Introduction

Heterogeneous network computing is now ubiquitous and is found in virtually every

major computing environment. Heterogeneous computing is known to be cost-effective,

robust, and scaleable. With Moore Law [Schaller 1997] driving technological

improvements, the entire field of heterogeneous computing is undergoing a

metamorphosis. Nevertheless, within this dynamically changing landscape, there is a need

to provide management of these computational resources. Computer engineers

unknowingly have, for some time, been introducing market driven philosophies into their

design strategies. These include organization theory (e.g., shared resources), recycling

(e.g., cache), commodity investment (e.g., speculative computing), to name but a few.

Current studies have indicated that market driven concepts can, in fact, be integrated

formally into a resource management paradigm for heterogeneous computing systems.

What is important to realize, is that network computing suffers from the same set of

restrictions that govern supply-side economics in terms of access to resources and

services and hierarchical control. These system-level attributes and resources, which are

Osculant = Intermediate in character between two related or similar taxonomic groups, closely joined.

Osculant: A Multiprocessor Self-Organizing Task Scheduler

important to the conducted study, relate to:

• Bandwidth and latency: It is self-evident that network bandwidth restrictions can

seriously impair timely execution tasks. Another performance limiting observation is

that network latency (i.e., the time required to receive requested information) is not

directly correlated to communication bandwidth when the message lengths are small.

• Localized information and service providers: In order to avoid unnecessary network

traffic congestion, information storage should be distributed, or duplicated, in a

prudent manner. In this way, a balance is achieved between system performance and

system cost.

These observations point out that task and resource scheduling will play an

important role in improving the performance of virtually any network-based computing

environment. A new bottom-up resource scheduling paradigm, call Osculant, was

proposed as an innovative facilitating technology. Osculant was developed under contract

NAVY 00039-44-C-0163 and is reported under this cover.

Many studies can be related to the developed Osculant paradigm. Load balancing

and resource allocation are key topics in designing efficient multiple-node system. Classic

load balancing algorithms [Goscinski 1991] as well as other novel approaches, such as

the microeconomic load balancing algorithm by Ferguson [Ferguson 1988], focus on

closely-coupled or homogeneous computing systems and generally concentrate on the

task processing time. Shin et al. [Shin 1988 & 1995] proposed a resource allocation

policy which uses buddy sets to reduce the state-collection overhead in a multicomputer

configuration similar to the target environment. In Osculant, conversely, we exploit the

state-probing approach with self-regulating task announcement processes [Smith 1980]

HSDAL University of Florida 2

Osculant: A Multiprocessor Self-Organizing Task Scheduler

and aggressive bidding [Ramamritham 1989], [Smith 1980], [Ni 1985] strategies.

Ramamritham [Ramamritham 1994], Blake [Blake 1991], and Liu [Liu 1973] studies

motivate the development of bidding strategies in the Osculant. These task scheduling

schemes, however, are restricted to hard-real time environments where most of task and

resource requirements are well known prior to the scheduling time. Osculant, on the other

hand, relates to a general-purpose distributed computing where execution time constraints

are not critical and new tasks are allowed to enter the system. Other related topics include

job profile extraction techniques [Puschiner 1989], [Park 1991 & 1993], [Shaw 1989] and

task announcement distribution designs [Chow 1996], [Goscinski 1991], [Shin 1995].

The final report is organized in the following manner: Section 2 describes the basis

of the Osculant scheduler. Section 3 presents comparisons between top-down and bottom-

up scheduling schemes. In Section 4, a review of job profile generation techniques are

presented. Section 5 discusses the Osculant jobpost distribution protocols. In Section 6,

various bidding strategies are explained and some results are presented. Section 7

discusses the resource management schemes in an Osculant system. Section 8 and 9

describe the developments and designs of Osculant Simulator and Osculant Shell. Section

10 discusses the future works, research topics of the Osculant scheme. Finally, in Section

11, the conclusions are presented.

HSDAL University of Florida

Osculant: A Multiprocessor Self-Organizing Task Scheduler

2 Overview of The Osculant Scheduler

Osculant differs from existing task and resource scheduling paradigms in that it is

bottom-up and self-organizing. Experimental studies have led to the conclusion that

Osculant is: (1) architecturally robust, (2) capable of internalizing the management of

system assets and, (3) able to dynamically alter the system ethos to range from a real-time

operation, to maximize bandwidth, to minimize latency, to minimize energy dissipation.

The Osculant paradigm can be motivated as follows:

• An Osculant system consists of a collection of possibly dissimilar autonomous

information systems (e.g., capabilities, instruction set, local storage, I/O) which may

or may not be connected by a network with an arbitrary topology and time- and

space-varying behavior.

• Executed programs send messages to a higher level entity, called the steward, which

interprets these requests in terms of executable objects and posts them on a job board

along with salient information about data location, resource requirements, job

priority, and so forth.

• When a job is posted, aU processors bid on that job in a manner which maximizes

their profit (measured in terms of tangibles such as net number of cycles per unit

time). Job bids are a function of processor resources, locality of data, I/O costs, job

priority, existing local job queue, and so forth. Processors have no knowledge of

other bids and operate autonomously. The steward receives bids and awards tasks to

the processor with the best bid.

• Any processor can play one of the three following roles:

HSDAL University of Florida 4

Osculant: A Multiprocessor Self-Organizing Task Scheduler

1. User: A user node issues j obs.

2. Steward: A steward node manages jobs authorized by other users or assigned by

stewards.

3. Participant: A participant node bids jobs and executes the job once assigned by

the steward.

• Role assignments of nodes are based on individual jobs and circumstances . Hence, a

node can play one or more roles at the same time for different jobs.

Participant

Bid

User

Generate
Job Profile

Steward

Post Job

Participant

Bid

Participant

Bid

Partcipant/Steward/Worker

Bid/Job Post/Execute Job

Participant

Bid

Participant

Bid

Participant

Bid

Figure 2.1 Overview of the Osculant scheduling scheme.

Figure 2.1 shows an example of the basic operations of the Osculant scheduler and

the related study areas. It should be noted that Figure 2.1 only shows the logical

HSDAL University of Florida 5

Osculant: A Multiprocessor Self-Organizing Task Scheduler

hierarchical structure of the Osculant system. In reality, the connection scheme can be

graph, ring, tree, or a combination of them.

The basic market-driven philosophy underlying an Osculant system is a competitive

bidding scheduling scheme. The key to successful bidding is to estimate accurately and

efficiently the cost-complexity of a posted job. This is the role of the job profile generator

(JPG). Job profiles are first generated from the information provided by the tasks which

are distributed among participating nodes. Upon receiving the job profiles, the distributed

heterogeneous nodes calculate the completion cost of a task based on their interests,

ethos, biases, and capabilities. A job will be assigned to the node by the steward (which is

re-locatable) with best bid.

HSDAL University of Florida

Osculant: A Multiprocessor Self-Organizing Task Scheduler

3 Comparisons Between Top-down and Bottom-up Schemes

The Osculant is a bottom-up scheme that is capable of assimilating the most up-to-

date system information and, therefore, achieves optimal scheduling performance.

Performance optimization is attained with the possible overhead expense associated with

a relatively long time period spent in jobpost/bidding process. In this section, the

characteristics of jobpost/bidding delay on the system performance are studied.

In order to show the effects of jobpost/bidding delays, three top-down schemes are

compared to the Osculant bidding scheme:

• Round robin: Jobs are assigned to working nodes in a sequential order among

working nodes.

• Random: Jobs are distributed randomly among the working nodes.

• Well informed top-down scheduler: The scheduler has complete knowledge about the

capabilities of all working nodes but does not have information about the load

generated locally at the nodes. This scheme also serves as the an ideal comparison

counterpart to the bidding scheme because it accurately estimates working node

information without any jobpost/bidding delay if there is a lack of local activity at

every processor.

The results shown in this report are retrieved from a sequence of simulations. In the

simulator, a collection of jobs are generated and fed into the scheduler with various local

loads (jobs that are generated by local users which are unpredictable to the top-down

scheduler) and system parameters (which are known to the schedulers). Jobs are

characterized by job size, and by similarities between jobs and job generation rate.

The first simulation shown in Figure 3.1 assumes a homogeneous system with four

HSDAL University of Florida 7

Osculant: A Multiprocessor Self-Organizing Task Scheduler

identical processors. Local job are added gradually to one of the working processors

while they keep the local load of other nodes constant. The results show that the

performance gain of random scheduler remains random; the round robin scheduler and

the well informed top-down scheduler have approximately the same performance; the

Osculant scheduler gradually performs better as the level of unbalanced load increased.

These results show that the Osculant scheme can adapt effectively to the current

processor status under this condition. The effect of post/bidding overhead also can be

observed from this figure: When the homogeneous system is well balanced and lightly

loaded, both the round robin scheduler and the well informed top-down scheduler out-

perform the bidding scheme.

The same simulation is also performed in a heterogeneous system of four processors

with different service rate (1:2:3:4 in this example). Simulation is achieved by

manipulating the local job load as in the homogeneous case. As shown by the results, the

advantage of the Osculant scheme becomes more prominent. In this case, both the

random and round-robin schedulers have worse performance while the Osculant

scheduler generally outperforms the well-informed top-down scheduler by around 20%.

This is mainly because the bidding scheme can retrieve more accurate local information

than the top-down schemes. When the well-known top-down scheduler distributes a job

to a heavily loaded processor, the performance penalty to the system is more severe in a

heterogeneous system than in a homogeneous system.

HSDAL University of Florida

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Speed Gain: Unbalanced Local Load, All Node kJenllal

2.4

2.3

2.2

I 2.1

1.9

1.8

1.7

' i i i i i i

-
^SsT~~"~--»^

-\. /\ssCr~^"'"~--~-—.
-

\ ^**%5=^
y^\^___ BW*ifl - random ■

round robin .
-

"■*«B__^ \ Topdown _
| i

3 4 5
Number of Local Jobs at Node «3

Speed Gain: Unbalanced Local Load, Various Node Speed 1 '
5.5 - " " -"———-—-_ -

 Bidding

4.5 r""""' ~~~~~—-——__
4

3.5
Topdown

3 -
——-——■—

__ ■- —____ _____—-——

2
i i i i i 1—

random

i >

2 3 4 5
Number of Local Jobs at Node #3

Figure 3.1 Comparisons between top-down schedulers and the bidding scheme. In these
results, the bidding scheme outperforms the top-down schemes when the system load
becomes unbalanced. The bidding scheme has more prominent performance advantages
when the system contains processors with diverse service rate.

Effect of Job Granularity on Speed Gain (No local Load)

9

25 30
Job Granularity

Figure 3.2 The effect of job granularity on the performance of bidding scheme. The
performance of the top-down scheduler is an ideal case counterpart if the
jobpost/bidding delay is not present.

The simulation reported in Figure 3.2 investigates how the jobpost/bidding

overheads affect the overall system performance. In this simulation, the well informed

top-down scheduler has accurate knowledge of the working node status and lacks a local

job load in the working nodes. Under this condition, the quality of job distribution by the

HSDAL University of Florida 9

Osculant: A Multiprocessor Self-Organizing Task Scheduler

host processor is comparable to the bidding scheme but lacks bidding overhead.

Therefore, the well-informed top-down scheduler serves as an ideal case for the Osculant

scheduler. The other parameter under control is the job granularity. Here, a job is

partitioned into different sizes and the overall completion time is measured. From the

results, as job granularity increases, performance of bidding scheme gradually approaches

the ideal top-down scheduler. Conversely, large job granularity will result in low

performance gain because of low degree of parallelism.

These studies suggest that Osculant can perform as well as the best top-down

scheduler, as well as offering its unique properties and attributes.

HSDAL University of Florida 10

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4 Osculant Job Profile Generator

The basic market-driven philosophy underlying Osculant is one of competitive

bidding. The key to successful bidding is to estimate accurately and efficiently the cost-

complexity of a posted job. This is the role of the Osculant Job Profile Generator (JPG).

Job profiles must be generated first from the information provided by the tasks which are

distributed among participating nodes. Upon receiving the job profiles, distributed

heterogeneous nodes calculate the completion cost of a task based on their interests,

ethos, biases, and capabilities. The job will be assigned to the node by the steward with

the best bid. The quality of JPG directly affects the bid accuracy and scheduling

performance. The Osculant JPG differs from known real-time task profile generators

[Shaw 1989], [Park 1993], [Shin 1988] in a number of important ways. The JPG has been

designed to be platform independent for use in a dynamically changing and/or fault

vulnerable real-time environment.

Meeting deadlines is critical in real-time applications. A desired condition is to

assimilate new tasks into the computation environment without altering the systems

ethos. Conceptually, it is important to develop a methodology for producing both reliable

and deterministic task timing and resource requirement predictions directly from high-

level application code. From the generated profile, the distributed computational nodes

are able to estimate the task completion cost based on the JPG and knowledge of then-

local state.

HSDAL University of Florida 11

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4.1 Design Principles and Algorithms

A JPG is responsible for creating job profiles that act as a unidirectional bridge

between tasks and announce their presence to the distributed heterogeneous computing

resources found within a networked system. The basic elements in the task domain

include:

• Priori execution job profiles: The job profiles of announced tasks will be made

available to a heterogeneous system prior to the job execution phase. In the case of

Osculant, profiles are created prior to the bidding phase. Numerous studies and

commercial products generate program profiles during or after the execution phase.

The reported JPG, in contrast, generates profiles prior to the job execution phase.

• Inputs space: It is assumed that sufficient task information resides at the source code

level in order to quantify the complexity and the data needs of a job. The profile

generator itself may need to integrate other profiles into the JPG production process.

Bidding process will also utilize the JPG data as well as the information concerning

data locality and network health to develop a bid.

• Architectural specifics: In a heterogeneous computing environment, nodes can have

different configurations, memory capacities, I/O capabilities, processing unit

combinations, and designated roles to play within a system. The job profiles should

carry relevant architectural information about job specification and execution

constraints. The profiler must allow diversified nodes to calculate the job completion

cost and to accommodate node capabilities and ethos.

From this information space, a bidding processor, or node, must interpret the job

profile of a task that requests service to create a bid. The bid, in turn, is defined in terms

HSDAL University of Florida 12

Osculant: A Multiprocessor Self-Organizing Task Scheduler

of the estimated resource requirements, state of scalar control variables, data

organization, plus other attributes supplied by the JPG. Regardless of the details, the

profile database must be kept as small as possible. This rationale is based on the fact the

job profiles will be transmitted to bidding nodes distributed within a network. Secondly,

the JPG database should not be highly invasive at the compute-server side. Otherwise, the

resources required to bid and/or manage multiple jobs would become too expensive.

4.1.1 Function Result Type Tables

Function Result Type Tables (FRTT) store information regarding system functions.

In some cases, entries in FRTT are functions that are previously profiled. Functions listed

in the FRTT will be processed faster than from their source code once they are properly

characterized. The FRTT can be modified during run-time and improve the estimation

accuracy and execution efficiency. FRTT contains two libraries what are (1) the Function

Result Size Table (FRST) and (2) Osculant Function Profile (OFP). The format of FRST

is:

Function Name Rule 1 Confidence | Number of Inputs | Group

The entries are as follows:

• Function Name: Label of a function or service.

• Rule: Methods applied to determine the size of output variables. These rules defined

include SAME, MAX, GEN and 10.

• Confidence: A number that represents the confidence in the estimate of output

variable size determined by the rule and input variables. A confidence of 1 means the

HSDAL University of Florida 13

Osculant: A Multiprocessor Self-Organizing Task Scheduler

output size is determined completely by the rule and the inputs. A confidence of 0

means the output is scalar. The initial confidence values in FRST are chosen

heuristically.

• Group: Group introduces cross-referencing capabilities to the profile generator. This

is required since some functions may behave differently when coupled with other

functions. In some cases, the rule and confidence of some functions can be

determined by a previously profiled function. This cross-reference capability

simplifies profile modification and enhances search efficiency.

For example, in a MATLAB environment, FRST record of the expectation function

meanO is "mean SAME 0.1 1" which is interpreted to mean that: "Function mean needs

one input variable. Outputs of this function are of the same size as the input variable with

confidence of 0.1." The expectation function in MATLAB can take 1-D or 2-D matrix as

inputs. Therefore, the results can also be a scalar or a 1-D array. Appendix B shows

examples of FRST for MATLAB version 4.0.

While FRST concentrates on the variable size estimation, the Osculant JPG focuses

on estimating the function execution time. The OFP for MATLAB, for example,

estimates the number of floating point operations (flops) using polynomial curve fitting

method [MATLAB 1992]. Polynomials coefficients are computed using pairs of inputs

(size of input variables) and outputs (flops) so that the mean-square errors are minimized.

The format of the Osculant Function Profile (OFP) is as follows:

Function Name Polynomial Coefficients Previous Execution Results

HSDAL University of Florida 14

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Some execution times from previously executed functions are stored in the OFP.

Therefore, the polynomial coefficients of a function can be constantly calibrated to

improve accuracy. The current implementation of OFP uses a polynomial of degree 4 and

stores 20 previous flops parameters. The present design of OFP assumes a linear model in

estimating computation load. This model is simple, but it does not hold for certain

functions. Further discussions will be presented in Section V. Appendix C provides an

example of the OFP for MATLAB version 4.0.

The design of FRTT is based on a fuzzy estimation scheme where the result can be

determined from several serial (dependent) or/and parallel (independent) estimates.

During a variable back tracing process, it is possible to have several ancestor variables

directly or indirectly referenced by the target variable. If an estimate has a confidence

value of 1, then the value or size of the target variable will be accepted on aprimafacia

basis. Otherwise, the target variable will be estimated by the Location Information

Adjustment method (explained in Section 4.1.3). An example provided in Appendix D.

4.1.2 Granularity

It is found that the computation load for many classes of functions are not linear with

the size of input variables space. The estimation of the computation load at the bidding

nodes will, in these cases, need to be synthesized with some care. A possible solution is

to implement a multi-mode, or high resolution Osculant Function Profiler (OFP), that is

based on statistics of input variables for all function calls. It is impractical to send detail

variable size information in job profiles since this would consume too much network

HSDAL University of Florida 15

Osculant: A Multiprocessor Self-Organizing Task Scheduler

bandwidth. For the JPG, the simplest measure of granularity is used where the granularity

function is represented by the number (granularity index) of individual calls. The results

obtained to date (shown in Section 6) are promising and take small estimation errors. The

problem of nonlinear computation load will be further discussed in Section 4.2.

4.1.3 Supporting Mechanisms

Several supporting mechanisms have been implemented to improve estimation

accuracy and efficiency. Most of these processes are application or language independent.

• Location Information Adjustment (LIA): In the assumed programming style, values

and size of variables are related to other variables which have previously appeared or

been referenced. It is possible, however, that there are multiple references for the

target variable. The LIA process uses normalized weighted sum according to the

proximity to the target variable to determine the result. An interesting development of

the LIA method is lifting the backward reference requirement. It is found that, by

referencing the variables appearing after the target variable, the scope of the tracing

process is increased. However, the limited improvement in estimation accuracy does

not justify the longer tracing time (tracing time of a variable is constant regardless of

its location in the program).

• Variable Dimension Adjustment: In many cases, only a portion of a data matrix is

used in an operation. The adjustment process utilizes the information extracted by the

filtering process and modifies (reduces, in most cases) the variable size. For example,

parentheses are good indicators for matrix size reductions. In some cases, a sequence

HSDAL University of Florida 16

Osculant: A Multiprocessor Self-Organizing Task Scheduler

of program calls may provide some information that can be used to correct estimation

error. In another example, by matching input and output parameters between the

parent and child processes, errors can be reduced in estimating the contents of parent

process.

Inline Scalar Evaluation: The process will evaluate an instruction line that contains

only scalars. It is observed that most scalars are either used to carry important size

information or to act as control variables. Evaluating the scalar instruction line will

improve estimation accuracy. This process is done by cross-referencing the original

program expressions and the estimated results from the Variable Back Trace process.

Only scalar results will be returned.

Cache Design: A simple cache system is implemented to improve variable back

tracing efficiency. Experiences show that a variable will be repeatedly referenced or

traced in a single variable back trace process. Storing previous execution results will

greatly reduce the running time. The same mechanism is also implemented in the

Profile Generator where the estimated profiles of subroutines are stored.

4.1.4 Algorithm Issues

For modern structured programming languages, correctly tracing nested loops and

branches are axiomatic. The SAMGenerator pre-processor encodes level of nests before

executing the main profile generator. With simple stack operations, the previous function

statistics can be retrieved and stored correctly.

The heart of the profile generator is the Variable Back Tracing (VBT) engine (see

HSDAL University of Florida 17

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix E). The VBT recursively traces the variables referenced by the target variable.

The stop condition of recursions mostly are input parameters and explicitly defined

variables in the program. The FRST, Location Information Adjustment, and Inline Scalar

Evaluation method work cooperatively to find the final estimate of the target variable.

The next step is to categorize the functions such that they can be traced properly. The

first stage of classification determines the types of the called functions based the FRTT.

Functions that are not in the FRTT will be considered as customer functions. The second

stage of classification names types of operators and traces input parameters. Memory

occupancies of tasks are mostly determined at this stage.

The main JPG program (see Appendix F) maintains and accesses the cache storage.

If a cache miss is encountered, the function will call the nest handling process and

function classification processes. The profiles of subroutines and functions can be

combined to form the final result. The conclusion of loops and branches need more

attention. First, for the worst case design principle, the block with the highest

computation load in a branch is always taken. Second, iteration numbers of un-

deterministic loops are found by referencing the size of the control variables. The overall

computation load of a loop is the product of the estimated iteration number and the local

computation load. Finding memory occupancy, compared to the calculation of

computation load, is much easier. The memory requirements for a job is the maximum

amount of memory occupancy during tracing.

HSDAL University of Florida 18

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4.1.5 Implementation

Filter Remove comments, blank spaces and

tabs.
2. SAM Generator: Branch coding, variable/

function name extraction and causality tracing.

VIT Generator
1. Variable Information Table Generator

2. Unknown Variable Finder.
3. Variable Back Trace Deadlock Eliminator.

^* t *z.-' **
Raw Computation
Estimator .

Variable Back Trace
Run-Time Image
Generator i

t
i
i

"A
Memory Requirement
Estimator

Function
Statistics

Variable Size /
Estimation /Run-Time

Job
Profile

Profile Generator

Figure 4.1 Osculant Job Profile Generator structure.

Figure 4.1 shows the structure of the JPG. The individual functions of each block are:

Filter: This process separates operands and operators. It also eliminates undesired

information such as strings.

SAM Generator: This process performs branch coding, variable extraction, and

function name extraction.

VIT Generator: This process generates the Variable Information Table (VIT) which is

a cross-reference table between the variables and functions. An important role of this

process is to remove variable back tracing deadlocks. These deadlocks exist in many

situations, such as in recursive function calls.

HSDAL University of Florida 19

Osculant: A Multiprocessor Self-Organizing Task Scheduler

• Job Profile Generator: The Variable Back Tracing engine estimates the value of and

the size of variables. In order to determine the value and the size of a variable, it may

need to search recursively among one or several Variable Information Tables. The

main process follows the program structure and generates job profiles. The JPG is a

one-pass process and operates several stacks and lists in order to collect program

information.

JPG outputs contain

(1) Estimated computation requirements in flops,

(2) Function statistics with granularity information,

(3) Run-time image,

(4) Memory requirement, and

(5) Profile generator execution statistics.

Figure 4.2 shows an example of the job profile for a test sample. Most of the job profiles

are in integer format, are sparse, and can be compressed and efficiently transmitted. The

resulting job profile, therefore, not only provides essential information of tasks, but is

easily computable, and can be readily implemented in hardware. The current version of

the Osculant Profile Generator is implemented in C language and MATLAB 4.0.

HSDAL University of Florida 20

Osculant: A Multiprocessor Self-Organizing Task Scheduler

0)
N
»20
-O

110
r>
a.
C QllVYYYYTTTWTimgatimffi

'S 0 20

Function Statistics

TO

i n t ir i inmiiiitmiiiiimilllB! immte säBS^&sam-'
140

140

20 40 160 180 200 60 80 100 120 140
Job Profile of detmax.m (wavelet)

Figure 4.2 Example of job profile from the Osculant Job Profile Generator.

HSDAL University of Florida 21

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4.2 Result Analysis

Real flops (—) vs. Estimated flops (oo) vs. Bidding Est (-.)

§3
Q.
E
O 2

H
2
~ 1 "

® _
to 0

4 6 8 10 12 14
Task id

Error rate: Estimated flops (-) vs. Bidding Est. (bar)

111

CO
w ^n^ ■i-* ii: i~ OJ

8 10 12
Task id

14 16 18 20

Figure 4.3 Estimation of computation load of 51 MATLAB sample jobs. The estimated
number of floating point operations (flops) and bidding estimates are compared to the real
computation load.

Figure 4.3 shows the results from the JPG on estimating computation loads for

various tasks. Three types of results are shown in the figure, namely:

1. Real Flops: The real flops numbers are recorded after jobs are executed.

2. Estimated Flops: The estimated flops values are calculated by the JPG running at the

user node. In this case, the generator knows the size and values of all input variables

when functions are called. Some of the size and values of inputs are known or

explicitly defined in the jobs such as user inputs and constants.

3. Bidding Estimates: Bidding estimates are calculated at the bidding node. Because it is

impractical to include detailed information of input parameters for every function call

HSDAL University of Florida 22

Osculant: A Multiprocessor Self-Organizing Task Scheduler

in the job profile, only granularity indices (see Section 4.1.2) are embedded in job

profiles. Therefore, participating nodes need to estimate the computation load based

on function statistics and granularity indices. It is less accurate than estimated flops

from user nodes.

The program/job samples used in this studies contains 51 MATLAB user functions

that are partitioned in the following categories:

1. One-dimensional digital filter designs in lattice, DCT, DHT, fixed-point

arithmetic (81%),

2. Wavelet applications on speech recognition (6.2%), and

3. Two-dimensional digital filter designs and application on image processing

(12.5%).

For most jobs, the error rate varies from 2% to 90% with respect to the actual

computation load. The normalized error rate, which is found by normalizing errors with

respect to real flops, gives a better indication for the overall quality of the Osculant JPG.

The normalized error rate for estimated flops and bidding estimates are 10.78% and

45.46%, respectively. When it was recorded, these estimations are made without actually

executing the programs. The error rates are considered acceptable for the purpose of

preliminary or first-time bidding. Once tasks become familiar with system. A profile

generator can be performed also by an artificial neural network (ANN).

HSDAL University of Florida 23

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4.2.1 Under Estimation of the Computation Load

In most cases, the JPG is optimistic in estimating computation resource requirements

because of the worst case selection in the processes. Some job profiles generated by the

JPG violate this principle because:

1. Some I/O functions contribute to computation loads. Some examples are spectrum

plots and alignments;

2. JPG has limited capabilities in estimating the number of iterations in loops.

3. There are some problems in designing the Osculant Function Profile (OFP).

Currently the OFP is simple and covers only a small range in input variables: The

current version of OFP uses a 4th order polynomial in estimating the computation

load. When the input variable is beyond the pre-defined range, results may be flawed.

Furthermore, some functions have separate algorithms for different input variable

sizes (e.g., radix-2 and radix-4 FFT). A simple solution to this problem is to have

separate profiles for this types of functions.

4.2.2 Over Estimation of the Computation Load

The profile generator intentionally produces an optimistic estimate on the

computation load and job specifications. Optimistic estimates not only provide excess

information of the tasks, but also is more suitable for real-time applications. Some

improvements, such as a more sophisticated OFP design, may be considered so that larger

input variable range can be covered.

HSDAL University of Florida 24

Osculant: A Multiprocessor Self-Organizing Task Scheduler

4.3 Job Profile Retrospective

In an Osculant system, generating job profiles is the first step in the execution of a

job. Typically, inaccurate job profiles normally will neither seriously degrade the overall

system performance, nor produce incorrect results. Inaccuracy can be corrected or

compensated for possibly in latter stages of job processing. For example, the bidding

process itself can correct the errors in job profiles. Furthermore, Osculant scheme

contains close-loop feedback that can correct errors as well. Figure 4.4 shows the life

cycle of jobs in Osculant scheme based on the viewpoint of job profiles. Function

category faults in generating profiles, for example, results in job rejections before job

executions. Function profile inaccuracy results in degraded performance. These concerns

can be easily corrected by adjusting the FRTT. A very sophisticated profile generator

design, however, may not be worth the tradeoff for a decrease in generality and

efficiency.

HSDAL University of Florida 25

Osculant: A Multiprocessor Self-Organizing Task Scheduler

No bidding?
(Node domain error)

(Function category error)

Path of job profiles

 *■ Path of error feedback

Fail to generate? '
(Source error) > Work Node #1

» ; *

Profile

Generator Steward
job profile

user
A A

jobpost

jobpost

i Run out of resource?
i

\(FRST misaligned)

Work Node #2

jobpost
job assignment

Miss deadline?
(OFP misaligned)

Resource not available?
(source error)

(FRTT outdated)

Execution error?

(Category error)
(Source error)

Work Node #n

Bidding «*„

Resource

Collection

Execution

, Job profile from

'error-prone node?

(Bid adjustment)

Figure 4.4 The figure shows the Osculant Job Profile Generator in the Osculant scheme.
The accuracy and quality of job profiles can be fed back to the origin of the job profile
from different stages of job executions.

4.4 Job Profile Generator Conclusions

The Osculant Job Profile Generator is designed to extract vital information from

various tasks. The quality of job profiles greatly affects scheduling performance. The

format of the resulting job profiles is defined so that job profiles can be utilized by

various computation devices in a heterogeneous computing environment in order to

estimate possible completion costs. Because of the heterogeneous and versatile nature of

Osculant/network computing, the basic design of the profile generator is surprisingly

simple and general. As a result, it can be adapted easily to other platforms and languages.

The design of Function Result Type Table provides a capability to estimate results of

functions in a flexible manner. Finally, results indicate that the estimates are accurate in

HSDAL University of Florida 26

Osculant: A Multiprocessor Self-Organizing Task Scheduler

the designed framework and possess a great potential for post-processing calibrations.

The application domain, to which the profile generator technology is applicable, is

broad and includes real-time applications. Traditional hard real-time environments

require all tasks to be profiled fully before scheduling them into the system. Historically,

this limits the number of applications that can be accepted by a system and results in poor

resource utilization. With job profiles, network computing systems is not only more

efficient, but it also is more fault-tolerant because job profiles can be examined prior to

actual executions. This technology can also be applied to a software engineering domain

where the programming quality and productivity are verifiable.

HSDAL University of Florida 27

Osculant: A Multiprocessor Self-Organizing Task Scheduler

5 Jobpost Distribution Protocol

Jobpost distribution protocols are designed to distribute to participating nodes small

packets which contain job profiles, resource locations, and execution specifications.

Major concerns in designing the protocol are topology independence and jobpost

efficiency because:

1. the Osculant scheduler is designed for a distributed, heterogeneous computing

environment; and

2. jobpost efficiency directly affects the capability of the scheduler to probe, to search,

and to gather information in the system.

Two parameters control and indicate the performance of jobposting: jobpost

constraint and jobpost coverage. The former limits the distance how far jobposts can go

and controls the jobpost/bidding delays, where the later determines the range which

jobposts reached in a system. It also represents the optimization that a job achieves in the

system.

5.1 Limited Flooding Techniques

Flooding broadcast [Chow 1996] forms the basis of our jobpost distribution

protocol. This technique guarantees that all nodes which meet the defined distribution

rule will receive jobposts even when there are failures in the system:

Flooding Broadcast Distribution Rule: A node is either: susceptible (nodes never hears

the jobpost) or infectious (nodes know the jobpost). When a susceptible node receives a

jobpost, it becomes infectious and relays the jobpost to its neighbors. When an infectious

HSDAL University of Florida 28

Osculant: A Multiprocessor Self-Organizing Task Scheduler

node receives a jobpost that has been seen before, it does not react.

Multilayer Multicast Jobpost Protocol (MMJP): MMJP contains three major

components:

1. A flooding broadcast is used to distribute jobposts in a single jobpost/bidding layer;

2. A jobpost constraint, in the unit of communication hubs, limits the range of jobpost

distributions in a jobpost/bidding layer, and

3. In multilayer jobpost/bidding, the winner of current layer repeats the MMJP until a

node wins in consecutive jobpost/bidding layers.

MMJP satisfies the goals of topology-independent jobposting, balancing and regulating

jobpost/bidding delay, controlling the level of optimization, and self-organizing in the

Osculant scheme. An example is shown in Figure 5.1.

y. "pry

Q-

SuKtptWt Mod« UHt^mm*

o—0
Fnt Bidding Wimr Htct'mt Nod«

, Second
1 Bidding

Wimr

Ö t-o

" Bttfing
ffinntr

ö—ö—-o—ö—o o—o
 Jobpost Constraint: Hub=1 Jobpost Constraint: Hub=2

Figure 5.1 This figure shows an example of multilayer multicast jobpost/bidding. It
indicates that 25 processors are connected by a mesh structure. With the jobpost
constraint in the unit of hub number equals 1, as shown in the left figure, there are 5
levels of jobpost/bidding processes with a jobpost coverage of 60% and with 16
messages. If the constraint is increased to 2, it requires only 3 jobpost/bidding levels to
have a jobpost coverage of 84% (21/25), and it needs to pass 34 messages.

Being an anomalous distribution protocol, MMJP is convergent, given that

infectious nodes will neither re-post nor re-bid previous jobs. However, later studies

HSDAL University of Florida 29

Osculant: A Multiprocessor Self-Organizing Task Scheduler

remove this restraint (see Section 6). Convergence of MMJP then is enforced by bidding

strategies.

Balancing between jobpost/bidding overheads and level of optimization is an

important aim in designing a distributed scheduler. A flat jobpost structure, which has

loose job constraints, generally has higher jobpost coverage and, therefore, produces

more optimal results. But this structure also is more vulnerable to high jobpost/bidding

overheads because of either failures in nodes or in communication channels. Moreover,

there will be a greater message overhead burden (sending jobposts to infectious nodes).

Conversely, distributions with restricted jobpost constraints normally have quicker

jobpost/bidding process, but possess a more narrow scope in the system status.

Consequently, such systems are inclined to be trapped in local optimums. Our studies

indicate that small jobpost constraints (2 or 3 hubs) have sufficient jobpost coverage plus

low overheads. Section 5.3 shows more results.

5.2 Other Jobpost Distribution Techniques

In some cases, such as in military applications, the number of messages traveled in

the system must be minimized so that the probability of being detected/intercepted is

reduced. In an computing environment where customers will be charged for using

communication channels, it also is very desirable to reduce the number of messages in

order to reduce cost. Therefore, by relaxing the requirement that all processors should

receive jobposts, the number of messages transmitted in a system can be reduced. The

candidates under studies contain epidemic algorithm [Chow 1996], or anti-entrophy

HSDAL University of Florida 30

Osculant: A Multiprocessor Self-Organizing Task Scheduler

algorithm.

In most applications, it is not strictly required that all active processors receive

jobposts and bid for jobs. Tasks can be completed as long as bidding participants can

provide required system services. The number of bidding participants only represents the

level of optimization that can be obtained. For the example in a network computing

scenario with many resource suppliers in the system, it is not necessary that every active

agent joins the jobpost/bidding process. Jobs still can be completed because resources are

duplicated at many locations. The differences will be only cost and, possibly, service

quality. Another distributed computing example is that accuracy of executing jobs can be

guaranteed by setting appropriate read/write quorums to system functions. For example,

suppose an updated system function or routine is required to be duplicated in more than

half of the servers. When a user requests a job that calls this function, it needs only half of

the servers in the system to participate in the jobpost/bidding process, and then the job

can be guaranteed to be processed correctly.

5.3 Optimal Jobpost Distribution

The optimization criteria of jobpost distributions depends on the system

configuration and job requirements. In this section, the criteria under investigation are

message efficiency, jobpost coverage, and jobpost/bidding levels. The quality of a jobpost

distribution method is determined by the ratio that it successfully reaches the best node,

or the ratio of overall execution time from actual case to ideal case. The ideal case has a

jobpost distribution with 100% jobpost coverage and a uniform jobpost/bidding delay

HSDAL University of Florida 31

Osculant: A Multiprocessor Self-Organizing Task Scheduler

from any two processors in the system.

The example shown in Figure 5.1 displays the effect of jobpost constraints on

jobpost distribution quality. In this section, the jobpost distribution is studied on a mesh

structure. Jobposts are distributed by using the flooding broadcast method with jobpost

constraints in hub number. The bidding algorithm applied here is the performance based

bidding method (Details in Section 6). Jobs are generated with the same processing time

and I/O time, but with resources uniformly distributed in the system. The experiments

show that:

• Jobpost coverage and message efficiency: As shown in Figure 5.2, the growth rate in

the number of messages is greater than that of the jobpost coverage with increasing

hub number constraints. As hub number increases, redundant messages transmitted in

the system increases. The multi-layer flooding broadcast method only suppresses the

number of nodes between the new and old stewards to multicast old jobposts, and

this method cannot trace nodes that already knew the jobpost which is not on the

path. The epidemic method will achieve better message efficiency performance than

the flooding broadcast method.

• Number of jobpost/bidding layers: The number of jobpost/bidding layers decreases

steadily as the hub number constraint increases (Figure 5.2(b)). Job auction process

in a steward is hold once all bids are received or once a pre-defined time-out period

is reached. In general, a time-out period will be used only when there are failures in

the system. So, in the system is in a normal state, the auction delay is determined by

the longest bidding delay between steward and the child nodes. If the logical

structure of an Osculant system is close to the under-lying physical structure, i.e.

HSDAL University of Florida 32

Osculant: A Multiprocessor Self-Organizing Task Scheduler

small hub numbers is equivalent to short bidding delays, more jobpost/bidding layers

may have the advantage in better message efficiency while providing sufficient

jobpost coverage.

(a) Jobpost Coverage & Ideal Ratio & Msg/Job (b) Number of Jobpost/Bldding Layers
10, . . .—

3 4

"0 5 10 15
Hub Number, Mesh Slze=10x10

(c) Optimal Hub Number vs. Bidding Delays

"0 5 10 15
Hub Number, Mesh Size=10x10

(d) Hub Number Required for 100% Coverage & Ideal Nodes
12

■§10r'

% of Bidding Delays

Figure 5.2 Simulation results and optimal jobpost constraints in hub number.

• Resource distribution: For jobs with fixed resource servers, or for systems with large

centralized resource servers, it is optimal to have small hub number constraints

because the cost surface is mostly monotonically decreasing toward the optimal node

from any processor in the system. Small hub numbers will have highest message

efficiency and the greatest scheduling quality.

• Optimal jobpost constraints in hub number: The optimal hub number can be

achieved in two ways. First, a system with long bidding delays will prefer to have

small hub number constraints. This relation is shown in Figure 5.2(c); the optimal

hub number is generally a floor function of the bidding delays. For example, if the

HSDAL University of Florida 33

Osculant: A Multiprocessor Self-Organizing Task Scheduler

bidding delay is between 1% to 4.5% of the average job processing time, the optimal

hub number constraint is 7. If the bidding delay exceeds 5.5%, the optimal value will

drop to 1. The second way is observed from the jobpost coverage and ideal ratios.

Figure 5.2(d) indicates that the relation between the 100% jobpost coverage and the

100% ideal ratio is practically linear. It is sufficient to use a jobpost constraint, which

is about 75% of the full jobpost coverage constraints, so that the optimal system

performance can be achieved. Figure 5.2(a) shows the example that, in a 10x10

mesh, a hub number constraint of 5 is sufficient to reach the optimal system

performance while the constraint for a 100% jobpost coverage is 12.

HSDAL University of Florida 34

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6 Bidding Strategies

As stated in Section 2, participating nodes submit bids which represent the status,

intention or profit they can achieve from posting jobs. With additional considerations of

the underlying computing environment, bidding processes are to be designed with the

following purposes:

• Locally calculated bids: Participating nodes should calculate bids based on the

information provided in the jobposts and system status available locally. The

intention is to reduce the network traffic and to establish a loose, distributed and

bottom-up scheduling style.

• Simple job auction process: The function of steward node is to distribute jobposts, to

collect bids, and to designate winning nodes in an Osculant system. Stewards should

be kept as simple as possible. As a virtue of bottom-up and distributed system design,

vital information must be kept locally. Therefore, the failure of a steward node, or

any part in the system, will not represent a severe threat. In addition, the designed

computing system can be easily reconfigured by choosing other nodes to serve as a

steward at any moment.

6.1 Performance-based Bidding Method

A performance-based bidding method is the most basic bidding method. The

objective is to balance loads - both on processing units and on the network traffic

connecting participating nodes. A good load-balanced system will generally have better

performance because of reduced network congestion. With top-down scheduling

HSDAL University of Florida 35

Osculant: A Multiprocessor Self-Organizing Task Scheduler

schemes, load balancing can be achieved rather easily in a homogeneous, master-slave

style computing system. Otherwise, load balancing is hard to achieve, given the

difficulties in collecting local node status, and in being aware of non-scheduled local

events. In this model, bids are calculated locally by participating nodes which reflect the

cost of completing jobs. Three key components of the performance-based bidding method

are as follows:

• Resource collection time estimation: An estimate of the resources, which is required

to process jobs and may be distributed among the system, is needed to define a

rational bid. Prior to job execution, the required resources must be verified and

possibly transmitted over the network. The resource transmission time is governed by

the size of resources, network traffic condition and cache storage status. Of the three

factors, only resource sizes and cache availability is known locally and thus can be

correctly estimated. Because of various network traffic condition, the transmission

time will be estimated by the number of hubs between resource servers and bidders.

• Task execution time estimation: Local schedulers calculate the task execution time.

For single-bidding strategies, a first-in-first-out (FIFO) scheduling scheme is

employed. It is assumed that tasks are executed when all resources were received and

previously assigned tasks were finished. Therefore,

Task Execution Time = Max(I/0 time, Completion Time of Last Task)

+ (Task CPU Time)

• Bid suppression: Bid suppression methods play an important role in the Osculant

HSDAL University of Florida 36

Osculant: A Multiprocessor Self-Organizing Task Scheduler

scheduler design. First, bid suppression is used to justify errors made in previously

bidden jobs. Previous bidding errors are used to adjust bids applied to current jobs.

Second, bid suppression can be used as a "buffer" or "cushion" to resist clusters of

task assignments. Clustering task assignments occurs when tasks enter the system in

blocks during a short time period. The reasons for clustering job assignments are:

(1) nodes do not update their states (CPU, I/O and network load) until they receive

job assignments, and

(2) there are time lapses among jobposting, bidding, and receiving task assignments.

Therefore, job assignments for these tasks will be sent to the same node. The

observed load diagrams for nodes without bid suppression generally have a "saw-

tooth" shape. Short-term scheduling performance will also be degraded. Thus, the

design of bid suppressor contains two factors, namely the previous bidding errors and

the number of jobs which are bided but not be assigned.

Suppressed Bid = Current Bid

* H+ RirMino prrnr\
MAX(LenEthofJobQueue'NumberofJobsBidedButNotAssiSned)

6.2 Energy-based Bidding Method

This method assumes that when there is information transmission between two

nodes, two parties will be required to be active for the same time period. Therefore, the

overall energy consumed by the jobs is modeled to be:

HSDAL University of Florida 37

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Bid = (Task processing time) + (Estimated resource transmission time)*2

This is the simplest bidding algorithm in our studies since there is virtually no

involvement of local or global scheduling in calculating the bids. Task processing time is

derived from the job profiles. Similarly, resource transmission time is estimated from the

cache status and raw communication bandwidth.

6.3 Dynamic Jobpost Model

Jobposts are continuously updated or modified during the jobpost/bidding phase.

Ideally, the information stored in the jobposts becomes more localized as they approach

the final working node. Also in this model, bids calculated by the participating nodes will

become more and more "specific" because of less "estimating" on the global system

status. This model also provides the capability of resource forwarding. Resource

forwarding scheme grants the rights to servers which keep valid copies of resources to

distribute the resources to others. In this design, original resource servers will no longer

supply all the file services to other nodes, but perform more "selective" tasks, like

providing new resources to the system, managerial tasks, cache validations, and resource

distribution management. The work load and network traffic at resource nodes will be

greatly reduced. Figure 6.1 illustrates the resource forwarding in the Osculant.

HSDAL University of Florida 38

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Steward

Node 5
IMT «(job I

Node 2
Krmr o(job 2

Node 9
hnram

Steward

Node 5

Node 2
mrafjobl

Node 9

-job!

J^J/

pbT

At/
0 1 2 3 4 5 6 7 8 9 10

dato 1 job 1 usage = 7

data 1 job 2 usage = 6

data 1 data 1 usage = 6

Node Usage Without Cache Forward

job 1 job 2

Total usage = 19

M/ AL£
0123456789 10

Overhead due to

data 1 job 1 I
fl»i usage = 7.5

data 1 job 2 usage = 6

/ Verify

data usage = 3.5

Node Usage With Cache Forward
Total usage = 17

Figure 6.1 Example of resource forwarding in the Osculant.

The resource caching mechanism forms the basis of the this model. There are two

bids that participating nodes need to calculate at the same time: the task processing bid

and the resource supply bid. There is also two winners at each round of job auction

process. The winner of the resource supply bidding updates the jobpost according to the

local cache status and sends it to the task processing bidding winner. Then, the next round

of jobpost/bidding or job execution proceeds. Cache verifications are performed before

modifying the jobposts in order to ensure the correctness of jobposts.

Two jobpost and job auction methods are implemented. The following sections

describe them in detail.

HSDAL University of Florida 39

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.3.1 Static Jobpost and Job Auction Model

This model is the same as single-bid models. The winner of resource supply bidding

and task processing bidding modifies the job profile. The winner of task processing

bidding then distributes the new job profile to the next jobpost/bidding level.

6.3.2 Simulated Annealing Jobpost and Job Auction Model

Single-bidding and static jobpost method are problematic because final winners are

mostly the local "best" bidders. Since the scope of bidding is limited by the jobpost

constraints, job profiles commonly are bid in a few levels and trap in a local minimum

node. Furthermore, the winning node and resources are determined statically as well as

locally. As a result, the final winners of tasks and locations of resource duplications tend

to form clusters. Clustering does not necessarily lower the system performance, but

certainly reduces the reliability of the entire system.

The simulated annealing (SA) technique [Rutenbar 1989] is introduced to improve

this situation. The choice of simulated annealing is based on the following points:

1. Global optimization with few restrictions: SA is capable of achieving global

optimization by re-configuring the system structure. The initial system normally

begins with a chaotic setup. Similarly, the states of nodes in a distributed computing

environment are, generally, difficult to synchronize and to collect. Consequently,

optimal scheduling is extremely difficult to achieve. Thus, the states of nodes can be

treated as chaos as in most SA problems. While few restrictions exist in applying SA

techniques, SA is considered suitable for various network topologies and node

HSDAL University of Florida 40

Osculant: A Multiprocessor Self-Organizing Task Scheduler

configurations formed in a distributed computing environment.

2. Distributed control: SA process is governed by locally collected information and by

the temperature of cooling schedule. There is neither global traffic nor overall re-

configurations. The only global parameter in SA is temperature, which can be easily

carried by jobposts.

3. Progressive processing: SA is a progressive optimization method whose results are

retrievable at any time during optimization. The level of optimization is proportional

to SA execution time. Additionally, the level of optimization can be controlled by

altering the components in simulated annealing.

The four key components of simulated annealing algorithm are:

1. Move: Moves change system configurations. In Osculant, a move is defined as the

sending of job assignments to the winning node.

2. Cost function: The purpose of a cost function is to calculate the differences between

moves. A positive cost difference means that the system is moved to a higher energy

state, and thus becomes more unstable. The cost function for the SA job auction

process is the multiple-bid bidding algorithm.

3. Stop condition: Stop condition is a condition in which the steward node is the winner

of the current jobpost/bidding level and all tried moves are failed.

4. Cooling schedule: The cooling schedule gradually lowers the temperature so that the

system configuration becomes more stable in time. The temperature is:

Temperature = (1 - Jobpost Coverage)/F(Number of Successful Moves)

HSDAL University of Florida 41

Osculant: A Multiprocessor Self-Organizing Task Scheduler

where F is an incremental function and successful moves are moves that lower the

costs.

Job Auction Simulated Annealing(job, time)
{ Collect bids();

MinBid = min(bids);
Default Winner «= Node_with_MinBid;

if (Steward~=Default Winner)
{ Send Job Assignment(Node with_MinBid);

Prev Minbid = MinBid;
Num Succ Move++;

els e
{ flag = 0;

for (Node.Bid>MinBid)
{ Cost Diff - C(Node.bid - MinBid);

Temp = (1 - Job Coverage)/F(Num_Succ_Move);
SA Threshold = exp(-l*Cost Diff/Temp);
if (rand()<SA_Threshold)
{ Prev_MinBid = Node.bid;

Send Job Assignment(Node_with_MibBid);
flag = 1;

}
}
if (falg==0)

}
}

Assign_Job(Steward);

Figure 6.2 Simulated annealing job auction process.

Figure 6.2 shows the pseudo code for simulated annealing job auction process. The

current version of function F is log2, and function C is logio.

6.4 Resource Contractor Bidding Model

Similar to the dynamic jobpost. model, there are two bidding stages. The winning

nodes in the resource supply bidding become the resource contractors which take the

responsibility of collecting resources for jobs. Upon collecting resources, the contractor

node forwards them to the winner of task processing bidding. The motivation behind this

model is that the winning resource supply nodes usually have more local resources and

HSDAL University of Florida 42

Osculant: A Multiprocessor Self-Organizing Task Scheduler

also have better channels (high bandwidth) to access remote resources. For the task

processing bidders, they solely need to estimate the network traffic condition toward the

resource contractor and the local job completion costs. These arrangements will result in

better bidding accuracy and local scheduling capability. This model also better suits the

conventional configurations of local area network (LAN) connected nodes. In an LAN

configuration, there are generally only a few nodes which serve as local resource servers

with better network and file service performance. Under the contractor bidding model,

these local servers autonomously become resource contractors and satisfy most local

needs. Additionally, failures in local resource servers will only degrade performance

(resources will host remotely or migrate to less-capable nodes in the LAN), but do not

halt services as in conventional systems. Furthermore, resource distribution management

can be conveniently performed in the resource supply bidding phase.

The resource contractor strategy is implemented by the two-stage bidding model

plus a cache information exchange session. They are described as follows:

• Resource supply bidding: Participating nodes calculate bids which represent the cost

of collecting all required resources. The single-bidding job auction model is applied

in this stage. Winners of this stage become the steward of second stage bidding. The

final winners provide information in the jobposts of second stage bidding about:

(1) the identification of the resource supplier node,

(2) the expected completion time to collect all resources, and

(3) the estimated I/O load after the completion of collecting resources.

• Task processing bidding: Participating nodes calculate the task processing bids by

using information provided by the first stage winner. Because contractor nodes

HSDAL University of Florida 43

Osculant: A Multiprocessor Self-Organizing Task Scheduler

provide estimated resource waiting time, all required resources will be transmitted

from only one node. Normally, the contractor node locates locally. More accurate and

aggressive local scheduling schemes can be applied. In the current implementation,

task processing bidding is held immediately after the assignment of resource

. contractor node. Bidders calculate their bids according to the current cache status

(speculative estimation; no cache verification), traffic condition toward the contractor

node, and local CPU schedule.

• Cache information exchange: In order to reduce communication overhead between

the resource contractor and task processing node, a cache information exchange

session is performed right after the contractor node retrieves all resources from

various servers. A packet with job resource list and current version number will be

sent to the task process node in order to determine the types of resources to be

transmitted.

• Out-of-order Local Scheduling (Q3LSV 03LS becomes a possible solution to further

improve system performance after the realization of two-stage bidding scheme.

Contractor bidding model provides better bounded information about the availability

of future expected resources. Therefore, local nodes can make better estimates and

utilize the system's resources better. 03LS is currently applied on the local CPU time

planning with non-preemptive scheduling techniques.

HSDAL University of Florida 44

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5 Comparisons Among The Bidding Strategies

Next Level /

Jobpost/

Bidding

i Gereration f \

/ 1 Assign failed

V (Post
/^hidding /

___- (Assign)

/•^Assign success

(Transfer)
\^Contractor Collect Resources

Resource \

Transmission \ (TransferContractor)

Completion JT Contractor -> Working Node

Job Execution^* ,
End

Figure 6.3 State diagram of jobs in Osculant.

Experiments were conducted using the Osculant Simulator (see Section 8) with the

job state diagram shown in Figure 6.3. The results shown in this session is retrieved by

using the configuration in Appendix A.

HSDAL University of Florida 45

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.1 System Throughput Rate

Perf(o) Random(+) Roundf) Dyna(x) Dyna_SA(—) Contractl (*-.) Contract2(+—) Energy(o:) 9/9
2500 r

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.4 System throughput rate results.

System throughput rate (Fig 6.4) illustrates the capability of the scheduling scheme

to utilize the system's resources. Various bidding models show their strength and

weakness in different system configuration and job combinations. In general, multiple-

bidding models outpace single-bidding methods, especially in a CPU-intensive

computing environment. Dynamic jobpost models have the best throughput rate if

average I/O load of tasks range below 10%. Resource contractor model performs well

over job I/O ratios ranging from 10% to 50%. The advantages of contractor bidding

scheme gradually gives way to dynamic jobpost methods, or performance-based bidding

methods, as more I/O intensive jobs enter the system. Weak performance of contractor

model in the low and high I/O load regions comes from excessive bidding stage and

resource transmission session. In an environment where timing and task execution

HSDAL University of Florida 46

Osculant: A Multiprocessor Self-Organizing Task Scheduler

sequencing are enforced, the complexity of implementing contractor model will be of

concern. With average I/O load exceeds 50%, energy-based bidding method behaves

surprisingly well. Tasks are mostly assigned to nodes near resource servers. Depending

on job composition, the overall performance of these bidding methods varies. Assuming

distributions of job generation locations and compositions (in CPU time and I/O load) are

uniform, system throughput rate improved by 74%, 147%, 125% and 177% over the

random method for performance-based models, dynamic jobpost models, resource

contractor models, and energy-based bidding models, respectively.

HSDAL University of Florida 47

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.2 Average CPU Time Consumption

Perf(o) Random(+) Round(*) Dyna(x) Dyna_SA(—) Contractl (*-.) Contract2(+—) Energy(o:) 9/9
140r

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.5 Average task CPU time consumption.

The results in Figure 6.5 show the adaptability of bidding schemes. The sample jobs

have mean CPU processing time ranging from 100 (no I/O) to 5 (95% I/O time) time

units (shown in dotted line in Figure 6.5). The nodes, on the other hand, have a mean

CPU processing power of unity. The bidding schemes are efficient in scheduling jobs to

high-computing power nodes. Furthermore, bidding schemes in Osculant are immune

from performance degradation caused by system configuration alterations and by load

fluctuations in top-down scheduling methods.

HSDAL University of Florida 48

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.3 Average Job Resource Transmission Time

Perf(o) Random(+) Round(*) Dyna(x) Dyna_SA(—) Contract^*-.) Contract2(+—) Energy(o:) 9/9
4500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.6 Average task resource transmission time.

Communication time of tasks is a major factor in determining the overall

performance of a distributed computing system. The system throughput performance of

various bidding models is mostly determined by transmission time. As illustrated in

Figure 6.6, energy-based bidding scheme has the lowest I/O transmission time, although

its job assignment distribution performance is poor in low I/O rate region. Resource

contractor model and dynamic bidding model have a significantly lower transmission

time than performance bidding model. Interestingly enough, most of the bidding schemes

achieve a constant resource transmission time during a broad I/O ratio range. Increases in

network transmission time are counter-balanced by efficient task assignments and by

resource distributions in the Osculant.

HSDAL University of Florida 49

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.4 Average Job Energy Consumption

Perf(o) Random(+) Roundf) Dyna(x) Dyna_SA(—) Contract^*-.) Contract2(+—) Energy(o:) 9/9
9001 1 1 1 1 1 —r -i r

"0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.7 Average job energy consumption.

Energy consumption rate (shown in Figure 6.7) is defined as the time period that

nodes need to be active because of assigned jobs. Overlaps in the communication time of

newly assigned jobs and the processing time of previous jobs contribute to energy

savings. Compared to system throughput rate, these results are very different among

various bidding schemes. The contractor bidding method shows a relatively high average

energy consumption rate because of its two resource transmission sessions. Overlaps in

the resource contractor session are relatively small because the contractor rarely receives

task processing assignments. In contrast, the energy-based bidding model demonstrates

the lowest energy consumption rate for almost all ranges. In summary, average job energy

consumption reduction from the bidding methods are significant. With the same job

distribution in the throughput rate section, completed jobs utilize 48%, 35%, 70% and

HSDAL University of Florida 50

Osculant: A Multiprocessor Self-Organizing Task Scheduler

22% of power consumed by jobs in the random method for the performance-based

scheme, dynamic jobpost scheme, resource contractor scheme, and energy-based bidding

scheme, respectively.

HSDAL University of Florida 51

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.5 Average Jobpost Coverage and Jobpost/bidding Delay

Perf(o) Random(+) Roundf) Dyna(x) Dyna_SA(—) Contracfl (*-.) Contract2(+—) Energy(o:) 9/26

Osle—sie—sie—*—*—sie—*—SK—äk—*—*—*—*—*—*—*—*—*—*—*-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.8 Level of jobpost/bidding.

Perf(o) Random(+) Round(*) Dyna(x) Dyna_SA(—) Contractl (*-.) Contract2(+—) Energy(o:) 9/26
0.6 r

0*—sie—*—sie—sie—*—*—sis—sie—sie—sie—sie—sie—sie—sie—sie—sie—sie—sie—sc-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.9 Jobpost coverage.

As discussed in Section 5, jobpost constraints and the number of jobpost/bidding

HSDAL University of Florida 52

Osculant: A Multiprocessor Self-Organizing Task Scheduler

levels control the degree of optimizations that jobs can find in the system. This statement

is argumentatively correct for single bidding schemes. These experiments show that

resource contractor model has the highest jobpost coverage and the greatest level of

jobpost-bidding because of the two stages of bidding involved in this model. Dynamic

jobpost models have relatively high number in jobpost/bidding levels, but a low jobpost

coverage, which suggests the effectiveness of dynamic jobpost modifications in this

model. Unfortunately, dynamic jobpost modifications also increase the possibility of

being trapped in a local sub-optimal location. This correlation may explain the unsatisfied

performance of this model in the mid-high job I/O load range. The energy-based bidding

model has a surprisingly low number in jobpost/bidding levels, which results in low

bidding delay, and moderate jobpost coverage performed best in mid-high job I/O load

range. In the I/O intensive environment, jobs are better assigned to resource servers, or to

their neighborhood, in order to reduce the communication overhead. This is the role of

the energy-based bidding model. The simulation results are shown in Figure 6.8 and 6.9.

HSDAL University of Florida 53

Osculant: A Multiprocessor Self-Organizing Task Scheduler

6.5.6 Cache Efficiency

Perf(o) Random(+) Round(*) Dyna(x) Dyna_SA(—) Contract! (*-.) Contract2(+—) Energy(o:) 9/9

p * ,,<? o

 ;...V'ö/--; >Hv-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
I/O load (Load=100% (CPU+IO), (Full Load=98) for 49 nodes system)

Figure 6.10 Cache efficiencies.

Experimental results in cache efficiencies (Figure 6.10) suggest the advantages of

contractor bidding and of energy-based bidding models. In the Osculant, the transient

resource allocations are autonomous and are driven by demands. Thus, they are flexible

and adaptive. Resources which are vital to system operations, or are in high demands, can

be hosted in more nodes. Otherwise, a minimum number of duplications are maintained

to reserve storage space. Moreover, controlling the number of duplications improves the

variety of replicated resources, which contributes to the reliability of the system.

HSDAL University of Florida 54

Osculant: A Multiprocessor Self-Organizing Task Scheduler

7 Resource Management Schemes

According to Goscinski [Goscinski 1991], resources are reusable and relatively

stable hardware or software components of a computer system that are useful to system

users or to their processes. Because of their usefulness, they are requested, used, and

released by processes during their activities. Resources also can be grouped as low-level

resources and high-level resources. Low-level resources can be used directly by the

distributed system and users. However, high-level resources, which are built upon several

low level resources, are more commonly utilized in the system. Hardware resources are

generally static, permanent, and limited in quantity. Management of physical resources

are comparatively simpler than logical resources because the latter may be varied

temporally and quantitatively.

Software resources can be pre-defined by the system or composed by the users. They

can also be active (so that they can change states), or static. Furthermore, advances in

network computing and in software engineering bring both new opportunities and

problems to the management of logical resources. For instance, software components will

be required to be properly managed in a heterogeneous system with differences in

suitability for the underlying platforms and in service quality. In other words, multiple

software versions and locations may exist that that the can be used and/or retrieved to

complete the task with differing costs and functionality. Additionally, as purchasing and

maintenance of software becomes more dominant in the overall operation cost of

computing systems, licensing and revision control will become an important topic in the

future resource management.

HSDAL University of Florida 55

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Software industry has begun to adapt "thin clients", "component software" and,

"just-in-time applications" concepts. "Fat clients" are difficult to manage, and they add to

network congestion. On the other hand, in the "thin clients" environment, applications are

stored and managed centrally on servers. Appropriate executables and data files (logical

resources) are sent and stored in local caches when needed. Additionally, some

observations justify "thin clients" and "just-in-time download" concepts:

(1) 80% of users access only 20% features which are implemented in an application,

and

(2) most applications can start with a relatively small portion of the whole packages.

Castanet [Thomas 1997], by Marimba Corp., and ALTiS [Goulde 1997], by EPiCON

Corp., are two pioneer systems built on the thin client concepts to distribute Java

applications. Corel Corp. tried and demonstrated some of the WordPerfect suite {Corel

Office JV) in their JAVA implementation so that applications can be launched and

executed from web browsers on different platforms. ComponentWare [ComponentWare

1997], by I-Kinetics Inc., is a design based on Common Object Request Broker

Architecture (COBRA) that integrates customer applications from pre-fabricated software

components. These trends suggest that software resources are changing. Existing

scheduling and resource management methods may be inefficient to handle them.

7.1 Resource Forwarding and Caching

The current development of the Osculant scheduler is to introduce a new and

integrated resource management scheme to further improve the system performance. It is

HSDAL University of Florida 56

Osculant: A Multiprocessor Self-Organizing Task Scheduler

evident that proper resource allocations are essential to improve system performance.

Moreover, while more copies of same resources improves the performance of some tasks,

it is also desired to have more types of resources duplicated and distributed so that the

designed system can be more robust and balanced. In Osculant, the resource distribution

scheme is implemented by various file caching and forwarding techniques. The resource

management scheme is driven in a bottom-up manner and grants the responsibility of

resource allocation, cache coherence maintenance, and distribution pattern enforcement.

7.2 Resource Distribution Control via Cache Validations

User

Node

Winning

Node

Steward = Self

Steward

Node

Job

Post Participating ■ .

Node

Bidding

^'

Resource
Server

Cache

Validation

\ Winning

Node \ Steward

Node »• Receive

Assignment/

Modify

Jobpost

j Job

Auction

A

false

true

Winning

Node

Job
Execution

Figure 7.1 Cache validation process in the Osculant scheme.

Cache validation processes used by the Osculant is shown in Figure 7.1. Nodes will

issue cache verification requests to resource servers upon receiving jobposts. In order to

reduce the bidding delays, bids are calculated before knowing the verification results

(speculative bidding). It is possible that a node receives job assignments based on expired

HSDAL University of Florida 57

Osculant: A Multiprocessor Self-Organizing Task Scheduler

cached copies. This type of error is treated as bidding errors and generally does not repeat

itself in the next bidding. Bidding errors do not affect the correctness of job executions

because the cache verification results are required prior to the job execution phase.

Normally, cache validation process is completed earlier than the combined time length of

bidding and job auction processes. After integrating the cache verification and bidding

processes, there will be no extra overhead introduced in this section.

Currently, two resource management models are implemented:

• Plain Model: Based on First-In-First-Out (FIFO) principle, when a new node holds a

copy of the resource, the oldest node in the list is flushed. From the experiments, it is

shown that:

(1) This method is simple and introduces the lowest network traffic load for cache

message exchanges.

(2) Trashing affects the performance because useful resources might be replaced or

flushed by any newly requested resources.

• Request Frequency Model: In this model, updates of resource entries are based on the

frequency of validation requests. Resource servers maintain several counters which

record the number of validation request from other nodes. The counter also

decreases periodically according to the real-time clock. Simulation results indicate

that this method is more efficient in reducing network traffic among nodes.

Preliminary results are shown in Table 7.2. However, this model cannot control the

geology distribution of resources.

HSDAL University of Florida 58

Osculant: A Multiprocessor Self-Organizing Task Scheduler

P erf DynaJP DynaJP SA Re sContl Re sCont2 E nergy

Average CPU Time -0 0882 -0.1886 -0.1863 -0 0234 -0 0144 -0 1705

Average I/O Time -0 2000 -0.4273 -0.3843 -0 4655 -0 3202 -0 6296

Energy Consumption -0 2033 -0.3971 -0.3933 -0 4681 -0 3496 -0 4309

Cache Hit Rate 2 8018 1.3488 1.5173 0 6177 0 8525 0 4181

Throughput Rate 0 3228 0.6848 0.6818 1 2414 0 8620 0 6377

I/O Ridding Error -0 0734 -0.1207 -0.1413 -0 0968 -0 0454 -0 1180

Processing Time Error -0 1502 0.8488 0.8320 -0 1863 -0 1200 -0 5517

Overall utilization 0 0557 0.0365 0.0365 -0 2077 -0 1616 -0 3921

Server Utilization -0 0610 -0.1007 -0.0927 -0 1738 -0 1247 -0 2660

Table 7.2 Performance comparisons between the Plain Model and Request
Frequency Model.

HSDAL University of Florida 59

Osculant: A Multiprocessor Self-Organizing Task Scheduler

8 Osculant Simulator

Clock
Job Generation

Bidding Strategise

Performance Bidding

Energy Bidding

Dynamic Jobpost Bidding

Contractor Bidding

Jobpost Strategies

Limited Flooding

Epdimedic

Job Auction Strategies

Job Assign
Job Assign w/ Multiple Bids

Job Assign w/ Simu. Annealing

/ 4

Job Completion

Job Status Collection
Performance Evaluation

Node Status Logging

Job Board

Job ID

Job Content

Job Processing Log

Node Board
Node Configuration *"

Node Status

Figure 8.1 Structure of the Osculant Simulator.

The Osculant Simulator is designed to study the Osculant scheduling scheme by

simulating various types of computing environment and external conditions. The current

version of Osculant Simulator is capable of simulating job generation, dynamic jobpost,

bidding, and performance evaluation.

The structure of the Osculant Simulator is illustrated in Figure 8.1. There are five

major modules in the simulator: job generation, bidding strategies, jobpost strategies, job

auction strategies, and job completion module. Each module contains a selection of

algorithms and subroutines that operate each module. Each module accesses the Job

Board and the Node Board for job contents, node configuration, and current system

status.

HSDAL University of Florida 60

Osculant: A Multiprocessor Self-Organizing Task Scheduler

The Osculant Simulator is implemented with the time-advance concept which scans

all modules for events at each time step. Initial events, which contain job generation time,

locations, resource requirements, and resource locations, node configurations, and

network bandwidth, are generated using a MATLAB program with user-defined

statistical models. Internal states of jobs and nodes are created and are inserted by the

simulator during run-time. State diagram of jobs is shown in Figure 6.3.

The current version of Osculant Simulator is implemented by using C language and

is executed on UNIX environments (tested on SUN OS, HP-UX, and LINUX). Appendix

G illustrates the Osculant Simulator user interface. The user interface allows users to

change a wide range of system parameters such as:

• job contents,

• node configurations,

• network configurations,

• bidding strategies,

• jobpost protocols,

• resource management schemes, and

• system parameters.

HSDAL University of Florida 61

Osculant: A Multiprocessor Self-Organizing Task Scheduler

9 Osculant Shell

Osculant scheduling studies were conducted by simulations, and implemented using

a custom UNIX Osculant Shell. The Shell connects, monitors, bids, and distributes

MATLAB jobs and executable objects among a collection of HP and SUN workstations.

The studies also utilized a custom Osculant Job Profile Generator implemented in

MATLAB script and C language. These two software systems define the Osculant

experimental environment.

9.1 Structure and Implementation of Osculant Shell

Osculant Shell Structure

Load Monitoring
Unit Configuration Unit

»iticrtPfW/lfcMiBwMai

Osculant
Function Profile
Modification Unit

File Transfer Unit

User Interface

Job Profile
Generator

Bidding Algorithm

(f Processor J) C Memory Computation Engine Steward Process

teojuxi. «au. IMWWIIJ it nww. I

Fig 9.1 Structure of Osculant Structure.

Figure 9.1 shows the structure of Osculant Shell. The Osculant Shell consists a

collection of modules interconnected by various communication channels. Modules

independently process information that run simultaneously in the background. The shell

is implemented in C language and Berkeley Sockets. The design of the Osculant

HSDAL University of Florida 62

Osculant: A Multiprocessor Self-Organizing Task Scheduler

environment is based on the consideration of portability and compatibility among other

UNIX systems. The functions of modules is described below:

9.1.1 Osculant Job Profile Generator

The Osculant Job Profile Generator (JPG) produces job profiles for a task at the

user's node. Job profiles are generated when users submit jobs for processing. JPG

generates job profiles at run-time. Details of JPG are presented in Section 4.

9.1.2 File Transfer Unit

The File Transfer Unit (FTU) transfers data among nodes. In Osculant, data and job

files can be distributed within several different nodes and transmissions can occur at any

time. Performing multiple file transmission sessions will improve the performance of and

the efficiency of communications. The FTU generates an individual process for each file

transmission session.

File transmissions can be either active or passive, depending on what initiates the

file transmission. In the active file transmission mode, the assigned node sets up the

communication channels to the resource (e.g. data and job files) holders and "retrieves"

the required data. This model is simple and fast, but is considered impractical and

insecure. On the other hand, in the passive mode, a node receives a job assignment, and

sends the request to resource holders, and then the resource holder initiates the

transmission. Data is "sent" or "pushed" to the assigned node. The passive model requires

one extra message passing stage but is more secure and practical than the first method

HSDAL University of Florida 63

Osculant: A Multiprocessor Self-Organizing Task Scheduler

because the resource holders are mostly the file servers of a system.

Messages transmitted among nodes can take one of the following forms:

• jobpost,

• job assignment,

• acknowledgement,

• status checking,

• bid,

• user input,

• data, and

• job files.

In order to correctly and effectively operate the Osculant scheduler, messages and data

will must be handled in a proper order. An FTU module has two message receiving and

message transmission queues. One pair of receiving/transmission queues are dedicated to

the transmission of data and job files as first-in-first-out (FIFO) queues. The other

message queues are priority queues. The priorities of messages are:

(1) Status Request (highest priority)

(2) Status Reply

(3) Job Completion

(4) Job Deletion

(5) Job Assignment Acknowledgement

(6) Job Assignment

(7) Bid

HSDAL University of Florida 64

Osculant: A Multiprocessor Self-Organizing Task Scheduler

(8) Jobpost

(9) User Input (lowest priority)

9.1.3 Configuration Unit

Configuration Unit (CU) dynamically changes the system configuration based on the

system status or user demands. It also provides a transparent view of the system to the

user. The CU, however, is not implemented in the early version of Osculant Shell. Main

functions of CU contain:

• Connect/disconnect nodes: Disconnect failed nodes in order to reduce bidding delays

and to re-connect recovered nodes to the system.

• Add/delete nodes: Accept new nodes to the system or delete nodes from participating

list.

• Calibrate system parameters.

9.1.4 Load Monitoring Unit

The Load Monitoring Unit (LMU) provides local node information for the purpose

of bid generation. LMU adjusts the local node performance parameters to adapt to the

local load requirements set by the local owners as if these nodes are privately owned. The

module is not implemented in the early version of Osculant Shell. The main functions of

this LMU are:

• Modified "Ping" function, which probes the network status.

HSDAL University of Florida 65

Osculant: A Multiprocessor Self-Organizing Task Scheduler

• Idle node hunter which estimates the computation resource of a subsystem.

• Algorithmtic estimates of communication channel bandwidth and throughput

stability.

9.1.5 Osculant Function Profile Modification Unit

As described in Section 4, the Osculant Function Profile (OFP) stores information

about system functions and provides the basis for calculating bids. The module modifies

the contents of OFP in order to improve the bidding accuracy after completing all

assigned jobs. Details of modification algorithms are discussed in Section 4.

9.1.6 Bidding Algorithms

The bidding module utilizes information from other support units and calculates bids

for each job. Various bidding strategies have been studied and are reported in Section 6.

9.1.7 Computation Engine

The computation engine of current version of Osculant Shell is MATLAB. The

cooperation of Osculant Shell and MATLAB is established by using MATLAB External

Interfaces [MATLAB 1993]. The External Interface Library is MATLAB's application

programming interface (API) and is called from the C language within the Osculant Shell.

The interface routines will create two pipes so that data and commands are transmitted

and executed by the MATLAB engine. The MATLAB External Interface Library

HSDAL University of Florida 66

Osculant: A Multiprocessor Self-Organizing Task Scheduler

provides a platform for heterogeneous computing environment while running on SUN,

HP, and other systems. The current version of Osculant Shell also accepts executable

binary objects to be scheduled and executed by the system. These jobs can, however, only

be executed in homogeneous systems.

9.1.8 Steward Process

Since processors perform their bidding autonomously, and the steward has the full

authority to award job assignments to any working node based on bids, some top-down

capabilities can be implemented in the Osculant scheduler to achieve certain goals like

fast job assignments or improving the overall scheduling performance. In Osculant, the

steward performs the following functions: job auction, status checking, fault handling and

node training.

Job auction processes are discussed in Section 6. The steward also performs status

checking for the system. Normally, the steward has responsibility to check the status of

its child nodes. Faults are handled by redoing jobpost/bidding process among active

neighboring processors. The Osculant scheduler also provides top-down control over the

system in training and monitoring of working nodes. The steward can log and evaluate

the bidding performance of its neighbors. Top-down training can be accomplished by

duplicating job assignments and by sending them to the node with best bid and to the

nodes that need further training. Therefore, training nodes can have more chances to

calibrate their bidding components.

An additional feature of steward is its ability to perform reliable job processing. To

HSDAL University of Florida 67

Osculant: A Multiprocessor Self-Organizing Task Scheduler

perform reliable computing for an unreliable distributed system, the steward can

duplicate job assignments and send them to working nodes without sharing resources.

Failures caused by crackdowns in any single resources, therefore, can be greatly reduced.

Compared to other fault tolerance schemes, this method is the simplest to implement.

This method also provides higher guarantee level in processing critical tasks in a real-

time system.

9.2 Future Developments

The current version of the Osculant Shell is used for evaluation and demonstration

purposes. The scheduling overhead is considered to be too high for serious commercial

applications. To move Osculant to the next level, some key developments and

improvements are needed. They are described below:

• The current version of Osculant Shell is implemented at the user level. This results in

many limitations that inhibit the scope and the capability of the scheduler. For

instance, the shell can neither directly and efficiently observe the system status nor

change or control the processes running foreground or background. Figure 9.2 shows

the position of current version of Osculant Shell.

HSDAL University of Florida 68

Osculant: A Multiprocessor Self-Organizing Task Scheduler

.i ..4....

Osculant Shell

Matlab Kernel Communication Module Communication Module

start

Osculant

 j

start

Osculant

System

 1

System

 1

Figure 9.2 Location of the current version of Osculant Shell.

• The process-based Osculant Shell is currently inefficient because it creates processes

in the UNIX environment which consumes a substantial amount of resources in

memory and CPU time. Furthermore, communications among processes remain

inefficient because the current Osculant Shell uses message passing based protocols

and mechanisms. It is better for the Osculant Shell to be implemented by thread-

based structure.

The repositioning of the Osculant Shell in an operation system requires additional

planning: As mentioned above, the shell should be located in a lower level of a system to

improve the performance. However, implementing the Osculant Shell in a very low level

reduces the possibility of porting it to other heterogeneous systems. To implement the

Osculant Shell in a way that balances the need for performance and for portability, a good

location for the Osculant Shell is between the command shell and the system kernel.

HSDAL University of Florida 69

Osculant: A Multiprocessor Self-Organizing Task Scheduler

10 Future Development of Osculant Scheduler

10.1 Task Organizer and Optimal Scheduling

In a computing system, resources are mostly requested in the high level format, e.g.,

system services comprised several low level resources. In general, end-users or system

processes have simple and abstract "goals" with regards how they schedule their jobs.

Scheduling in the context of these "simple" goals is straightforward, but not likely to be

optimal in performance. Furthermore, trends change in the future infrastructure of

computing environment (e.g., network computing, modulated software applications,

execution while downloading, and multiple agents), task scheduling and resource

management should evolve themselves with considerations of these ideas.

Motivations for such studies are based on the observation that task execution

constraints can be refined, determined or even defined on the scheduling (or execution)

time. As found in previous Osculant studies, it is possible that a systematic and

autonomous scheduling scheme can be developed so that the task completion cost can be

minimized.

HSDAL University of Florida 70

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Jobl Job 2 Job 3

Figure 10.1 Example of task clustering and optimal scheduling.

Figure 10.1 illustrates the processing of three jobs that execute small tasks by a

distributed system. It is assumed that users wish these jobs to be completed at about the

same time. Generally, the definition of system service quality is difficult to quantified, but

can be heuristically qualified in terms of: quick response, short overall completion time,

and low job completion cost in network traffic and CPU time. For this example, Task 1

and Task 9 containing interface modules will be better to be grouped in the first cluster

and with highest priority to be scheduled for quick response. Tasks 3, 4 and 6 can be

considered to form a cluster because there is high network traffic among them (for lower

communication cost). For the next group, Task 12 has a longer expected processing time

than Task 10 and 11. Thus, the scheduler can either give the Task 12 cluster higher

priority (short completion time) or lower the scheduling priority of the cluster with Task

10 and 11. The latter approach will offer the scheduler more flexibility to arrange these

HSDAL University of Florida 71

Osculant: A Multiprocessor Self-Organizing Task Scheduler

two tasks so that they can be processed with lower cost without affecting overall

completion time.

Consider a free-market analogy to the optimal scheduling problem. In a common

U.S. city, large retail market, like Wal-Mart and Target, and small retail stores, like 7-11

chain stores, coexist (multi-agent). Assume that they are all profitable. It is a common

sense that the same product is available in both stores but is less expensive in Wal-Mart

than in 7-11. Wal-Mart also has more variety of products to choose from. Why would

customers shop in both types of stores? The reasons are obvious, namely:

(1) 7-11 is closer to most customers;

(2) Traffic condition and parking space availability are unknown toward Wal-Mart;

(3) 7-11 has more local goods and neighborhood information, and

(4) Customers do not care about the quality of some products because they are too

simple or general.

Timely completion, up-to-date information and confidence in estimating construct the

major part in decision-making as well as in defining the system service quality. From the

discussion, the proposed task clustering and optimal scheduling scheme will contain the

following components:

• Multiple mode task scheduler: The example above shows that, in order to acquire

performance, the backbone scheduling scheme should be capable of operating in

several modes simultaneously. The Osculant scheme has been shown to be flexible

and versatile in performing multiple mode scheduling. Jobpost constraints, bidding

strategies, and resource management methods can be tailed to accommodate system

status and job specifications. In the wake of the development of task organizer

HSDAL University of Florida 72

Osculant: A Multiprocessor Self-Organizing Task Scheduler

technologies, the refinement of task specifications can further improve the system

and cost efficiencies.

• Minimum cut algorithms: Our previous studies indicate that clustering or partitioning

of tasks are required in order to improve performance because of limitations in

communication bandwidth. Based on the amount of data transmission among tasks,

systematic partitioning can be implemented by modifying min-cut algorithms

[Fiduccia 1982], [Tragoudas 1996]. By reducing overall wire length in the system,

min-cut algorithms optimize circuit placement problems. Similar to the task

organizer problem, blocks and connections in the system are weighted and directed.

Min-cut problems have been shown to be a NP-hard. Therefore, heuristic methods

are commonly used in this field.

• Progressive optimization: Osculant has been designed for an on-line scheduling

system. Preferably, tasks can be scheduled and executed continually or with a

constant waiting time. Thus, a task organizer with progressive output will be ideal.

Among many optimization methods, a good candidate is simulated annealing (SA)

[Rutenbar 1989]. Simulated annealing method accepts inputs with great temporal and

spatial flexibility without seriously affecting results. Furthermore, results form the

simulated annealing are retrievable at any moment because of its progressive

processing nature. It also means that the organizer waiting time, which is controlled

by the cooling schedule in SA, can be used as a control variable in determining the

desired level of optimization for the current set of jobs.

HSDAL University of Florida 73

Osculant: A Multiprocessor Self-Organizing Task Scheduler

11 Conclusions

Improving scheduling performance requires developments and cooperation in

several domains. The approaches and directions for the studies are as follows:

• Specification space: Resource specifications must be defined, extracted and arranged

so that the system and users can effectively locate and utilize resources. The Osculant

Job Profile Generator (JPG) presents the form with which we confront this challenge.

• Self-regulated and flexible scheduling platform: The states of distributed computing

systems are difficult to collect. It is even more difficult to synchronize nodes in a

heterogeneous system. Osculant jobpost distribution technique presents our approach

to balance the state-probing scope and overhead problems. Experimental results

show that the system's ethos and performance can be effectively altered and

improved by various bidding strategies.

• Efficient resource management: In order to reduce network traffic and system

reliability, resources must be properly distributed and replicated in the system. A

distributed, self-organized resource management scheme is desired for the target

computing environment. The resource forwarding and caching scheme described will

be further studied and developed.

• Task organizer: With the arrival of thin-client and component software, high level

resources and tasks should be appropriately arranged and scheduled to reduce the

operating cost. The task clustering and optimal scheduling explained in Section 10

will be developed in the future.

The anticipated outcomes derive from these research activities are as follows:

HSDAL University of Florida 74

Osculant: A Multiprocessor Self-Organizing Task Scheduler

• Performance improvement: As stated in the previous sections, achieveing high

performance in a distributed computing environment requires cooperation in many

fields. Current studies of the Osculant scheduler have developed a prior-execution

job profile generator, a self-regulated job announcement process (MMJP) and a very

flexible task scheduling scheme with aggressive bidding strategies. With the

proposed research topics in the developing task organizer and optimal scheduling

techniques, it is anticipated that:

(1) System load distribution will be further improved. Previous and current load

balancing studies focus on distributing system load on a macro (jobs as a whole)

and on-demand bases. The proposed studies will explore a new dimension in

intra-task scheduling. In other words, the system load will be further distributed

in the time axis.

(2) Job completion cost can be reduced. As mentioned above, the studies of optimal

scheduling scheme will refine, determine, or define scheduling parameter of

tasks on the run-time. A systematic and self-regulated mechanism will be

developed to reduce job completion cost without the intervention of end-users.

• System reliability improvement: The preliminary results of resource management

schemes in the Osculant show a major performance enhancement in system

throughput and job energy consumption rate. The structure and style of resource

management also suggest the high potential of employing Osculant scheme in a

cache-based distributed computing system. Future studies will focus on the design of

distributed resource management schemes that combines the bottom-up and top-

down approaches in order to maintain and to replicate logical resources. It is

HSDAL University of Florida 75

Osculant: A Multiprocessor Self-Organizing Task Scheduler

anticipated that the resulting system will be more reliable by tolerating partial system

faults.

Pending future studies include a formal proposal to the NFS to develop a prototype

system, and to the Texas Instruments to adapt Osculant for use with their new VLIW-base

DSP processors.

HSDAL University of Florida 76

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix A. Simulation Configuration

In Section 6.5, the simulation results reported were retrieved from the Osculant

Simulator with the following configuration:

• 49 nodes in a square mesh topology.

• Node specifications: Node processing power is determined by random using normal

distribution with both mean and standard deviation equal to 1. Each node has a

communication bandwidth 1 to its neighbors. Bandwidth between two nodes decays

at the rate of 5% as the distance (Manhattan distance) increases. That is, Bandwidth =

Q 95(distance-i) yj^ actual bandwidth between two nodes is affected by network traffic

condition which will be discussed later in this section. All nodes have a cache storage

with the size of 10 units. Also, resource servers maintain cache validation tables for

all resource that they host. The cache validation table records up to 10 different

locations.

• Resource types and locations: Locations of resource servers are chosen randomly

(uniform distribution). The resources are generated with two parameters: overall size

and granularity. A job may need a number (which equals to the granularity value) of

resources from servers but the overall size of resources will be constant. In the

experiments, there are 6 original resource servers. The average resource granularity of

jobs is 3.

• Resource servers take 0.05 time units to perform one cache verification transaction.

System maintenance messages (for example, cache validations, jobposts and job

assignments) are handled in separate communication channels. Various priority

HSDAL University of Florida 77

Osculant: A Multiprocessor Self-Organizing Task Scheduler

values are assigned to system messages in order to enforce the correctness and

performance of scheduling.

• Task specification: Jobs are generated with two parts using various statistical models:

Task processing time is normally distributed with a user specified mean value and a

standard deviation of 2. The job generation time interval is 2 time units. This

indicates that the system will be saturated with jobs with overall processing time of 98

units in ideal cases.

• In the experiments, job characteristics were changed from CPU intensive to I/O

intensive by altering the I/O loads and CPU load of tasks. 2000 tasks are injected into

the system with a total simulation time of 5000 units.

• Random and round-robin scheduling are implemented as comparison counterparts. In

these two models, there will no jobpost/bidding processes and, therefore, no bidding

overheads are introduced.

• Jobpost/bidding constraints: Jobpost constraint is 2 hubs. The deadline for collecting

bids in a jobpost/bidding level is 1 time unit.

• Network topology and communication channel: Connection topology determines the

number of neighboring nodes and communication channels which nodes can use to

access resources. In a point-to-point connection scheme, network load will be added

to the source and destination nodes. In a mesh structure, most nodes have 4 neighbors

and channels. A through traffic will generally occupy 2 channels but without

possessing any I/O ports of nodes on the routing path. Augmented network I/O load to

these intermediate nodes will be determined by the number of channels occupied by

the traffic and by the amount of transmission traffic passing them.

HSDAL University of Florida 78

Osculant: A Multiprocessor Self-Organizing Task Scheduler

• Routing: Routes of transmitting resources are determined dynamically in the

simulator. It is assumed that packet stream will travel using the shortest path. In a

mesh structure, there are multiple shortest paths. The choice of routing path is

determined on single transmission-session basis with uniform distribution over all

possible shortest paths.

• The experiment results were retrieved using mesh structure and through network

traffic contributed to the network load of the intermediate nodes.

HSDAL University of Florida 79

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix B. Example of Function Result Size Table

for CNTRL 1 0
remez GEN 1 3 rente z
freqz MAX 0.7 1 reduce2
max SAME 0.2 1
flipud SAME 1 1
filter MAX 1 3 filter
cov SAME 0.2 1
randn GEN 1 1 gen
mean SAME 0.1 1
pow SAME 0.1 1 square2
inv SAME 1 1 square
fft SAME 1 1
mul MAX 0.5 2 mul
or MAX 0.1 1
edge SAME 0.9 1 square
size GEN 0 1

HSDAL University of Florida 80

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix C. Example of Osculant Function Profile

add -7.68545e-28 6.69121e-23 -1.12671e-18 1 -1.50834e-12
25 81 289 1089 4225 16641 66049
25 81 289 1089 4225 16641 66049

edge 1.56092e-14 -1.46552e-09 3.20962e-05 31.7973 589.345
25 81 289 1089 4225 16641 66049
1396 3164 9766 35258 135400 533060 2115578

fft -8.97307e-12 1.30193e-06 0.012162 220.605 -505.292
25 81 289 1089 4225 16641 66049
2184 8504 80448 251144 1244288 12350024 271991328

mul 6.20275e-ll -2.0626e-06 0.030444 35.2622 -1037.29
1 36 256 1024 3136 7744 16900
1 432 8192 65536 351232 1362944 4394000

HSDAL University of Florida 81

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix D. Function Result Type Table (FRTT) Example.

Segment of a MATLAB program is shown below:

% IMAGE is an n-by-n matrix
x = mean (IMAGE)'*mean(IMAGE); % An n-by-1 matrix multiplied by
its

transpose form

x = fft(IMAGE); % Take FFT of matrix IMAGE

x = x + 1; % Elements of x are increased by 1

Estimate of the first reference for variable x is assigned a confidence between 0.1

(mean) and 0.5 (multiplication). The second estimate has a full confidence because of

FFT function. The third one has a confidence value of 0.5 because of the operator

overload feature in MATLAB. Therefore, the size of variable x will be determined by the

second reference. The design of FRTT also allows convenient human knowledge

intervention. User experiences can be easily adopted into the profile generator.

HSDAL University of Florida 82

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix E. Structure of the Variable Back Tracing (VBT) Engine

function [V, Vsize, Confid]=varbtrac(Variable_Name,VIT_File,User_Command)
if (isnumber) % if a number, return immediately

return V, Vsize, 1;
else

while (not eof(VIT_File))
READ(VIT_File);
if (Output_Variable==Variable_Name)

[Rule,Rconfid,match] = Search_FRST(Function_Type);
% Rule #1: Input Parameters
if (Function_Type==INPUT_PARAM) % Rule#l: Input Parameters

[Output,Input] = Parsing(User_Command);
[V, Vsize] = mapping(Input);

% Rule#2: Explicitly defined variables
elseif (Function_Type=EXP_ASSIGN)

while (not empty(Input_Variable))
tok = Parsing(InputVariable);
[val, vsize, vline] = varbtrac(tok,VarIFile,User_Command);
[V, Vsize] = Variable_Dimension_Adjustment(val,vszie);

end while;
elseif (RULE=GEN) % Rule#3: Generating functions

[V, Vsize] = GEN_Trace(Function_Type,Input_Variable);
elseif (RULE=CALL) % Rule#4: Call subroutines

while (not empty(InputVariable)) % Trace all inputs
tok = Parsing(Input_Variable);
[LV,LVsize] = varbtrac(tok,VIT_FILE,User_Command);
[Vlist,VsizeList] = append(LV,L Vsize);

end while;
[V, Vsize] = varbtrac(Vlist,VIT_FILE,User_Command);
% Rule#5: Size of its relative/predecessor variables
% Rule#6: Functions that produce the variables
elseif (match=l)

while (not empty(InputVariable))
tok = Parsing(InputVariable);
[LV,LVsize] = varbtrac(tok,VIT_File,User_Command);
[Vlist,VsizeList] = append(LV,L Vsize];

end while;
if (VsizeList=l) % All inputs are scalar, evaluate the expr.
[V, Vsize] = sceval(Vlist,Original_Program_Expression);

elseif (RULE=MAX)
Vsize = max(L Vsize);

end if;
end if;

end if;
[Value,Var_Size,Var_Confid] = append(V,Vsize,Ronfid);

end while;
if (sum(Rconfid=l)==l) % only one full confidence estimate

candidate = index(Rcond==l);
return Value(candidate), VarSize(candidate), 1;

else % Apply Location Information Adjustment (LIA) Method
[N_Vsize,N_Confid] = LIA(Var_Size,Variable_Location,Var_Confid);
if (N_Vsize>l) % if the final estimate is matrix

HSDAL University of Florida 83

Osculant: A Multiprocessor Self-Organizing Task Scheduler

return 1, NVsize, NConfid;
else % if the final estimate is scalar

return max(Value, 1), l,N_Confid;
end if;

end if;
end if;

HSDAL University of Florida 84

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix F. Main Procedure of Osculant Profile Generator

function [Job_STAT]=rc 1 (samfhame,CMAD,DataSize);
PGInitialization;
while (not eof) do

x = READ(samfhame);
Parsing(x);
NestConclusion; % Handling loop and branch conclusions
FunctionClassification; % Apply function type decision rules
ProfileStagel; % Processing scalar/simple operation types
case OpType % Process according to structures & functions

Simple_Matrix:Update_Job_Statistics;
LOOP: Push_Loop_Stack(Loop_Parameters);

Push_BRANCH_Stack(LOOP);
UpdateJobStatistics;

BRANCH: if (is_if)
Initialize_Branch_Load_Array;
Push_Branch_Stack(IF);

elseif (iselseifelse)
Append_Branch_Load_Array(deltaSTAT);

else if (isend)
BranchType = PopBranchStack;
if(BranchType=IF)

Update_Job_Statistics(max(Branch_Load_Array));
UpdatememoryStatistics;

else if (BranchType=LOOP)
delta = Pop_Loop_Stack;
Update_Job_Statistics(delta*deltaStat);

end if;
end if;

Simple_Scalar:Update_Job_Statistics;
10: Update_IO_Statistics;
Complex_Matrix:Update_Job_Statistics;
CALL: while (Parsing(Call_List))

ConstructPseudoInstructionLine;
% Recursively construct subroutine profile
[LocalJobStatistics] = rcl(newsamfname,cmd,DataSize);
UpdateJobStatistics;
Update_Memory_Statistics;
UpdatelOStatistics;
UpdateBranchStatistics;

end while;
end case;

end while;
JobSTAT = [Job_Statistics,Memory_Statistics,IO_Statistics,Branch_Statistics];

HSDAL University of Florida 85

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix G Example of the Osculant Simulator User Interface

MAKE . CFG

% This is a sample of config file which gives the full ability to
% set up an approprate enviroment of simulator.

% All the parameters are idenitically in the name domain. The order
% of the inputs does not affect the simulator. BUT, UNFORTUNATELY
% WE ALLOCATE MEMORY AFTER THE VALUE OF 'NODENUM* AND 'JOBNUM'.
% THEREFORE, WE HAVE TO DEFINE 'JOBNUM* AND 'NODENUM' BEFORE GIVE
% ANY OTHER PARAMETERS. IF WE USE THE DEFAULT 'NODENUM' AND 'JOBNUM'
% WE HAVE TO DECLARE 'DEFAULT NUMBER' AT THE BEGINNING.

% Use the default job number and node number.
% Default Number

% The number of jobs that generated from simulator.
Job Number=

j obnum.dat

% The number of nodes that involved in the simulation.
Node Number=

nodnum.dat

% Size of cache validation table at resource server
Cache Table Size=

cachetsz.dat

% Job's resources information. This part of information is
% quit different from other parts. It requires two parameters
% The first one is the number of resources, and the second
one
% is the filename which contains the I/O load according to
the
% resources index. The default one is that only one resourrce
% located at node 41 with I/O load of 40.

Job Resource 1/0=
resio.dat

% The number of cash at each node.
Cash Number At Each Node=

cache.dat

% Simulation time during which all the results are
% computed.

Simulation Time=
simtim.dat

% The time out constrain in the posting algorithm.
% One can set the time constrain to the total
% simulation time so that simulator will apply
% repliable posting algorithm in the 23 bits computers.
% If one set the time up to a number, the posting will
% not be accepted after that period of delay.

Posting Time Constrain=
poscons.dat

HSDAL University of Florida 86

Osculant: A Multiprocessor Self-Organizing Task Scheduler

The mutilayer constrain in the posting algorithm.
One can set the layer constrain so that no job posting
will reach the nodes with a hub distance greater than
the layer constrain in one post.

Posting Layer Constrain=
layer.dat

Location of jobs. We offer a data file name which
contains the location (Node index) of where jobs
generated.
The file is the location of the the where jobs
generated according to the index order of jobs.
File data are store in ASCII form.

Job Location=
jobloc.dat

Job's generation time. Everything is defined above.
Job Generated Time=

jobgen.dat

Job's computation time.
Job Computation Load=

jobcpu.dat

Job's memory requirement.
Job Memory Requirement=

jobmem.dat

Job's I/O location which we give the main resources
index at location where the job's data is located on.

Job I/O Location=
resloc.dat

Job's profile size.
Profile Size=

Node's CPU speed.
CPU Speed=

jobprf.dat

cpu.dat

% Node's memory capacity.
Memory=

mem.dat

% Node's I/O speed (Bandwidth).
I/O Speed=

io.dat

% Node's local load generator. This file is a
% little different from others. It offers two
% parameters of pdf of Gaussian.
% Local Load=
% loclod.dat

% In this file, we supply a masking a logical
% link matrix. '1* and '0' presents the connection
% between any two nodes. The connection matrix is
% a NodeNum by NodeNum matrix.

Network communication Link Matrix=

HSDAL University of Florida 87

and

Osculant: A Multiprocessor Self-Organizing Task Scheduler

loglin.dat

Physical links between any two nodes which is
defined above.

Physical Link Matrix=
phylin.dat

Bidding strategies
1: Bid_On_Completion_Time
2: Bid_On_Utilization_&_Completion_Time
3: Random bid
4. Round-robin scheduling
5. Multiple bid strategy: Dynamic job profile model

Future extention: Nodes can apply different bidding strategies

the strategies can vary in time.
Bidding Strategy=

bidstrgy.dat

Job Predict Error=
jobperr.dat

Simulated Annealing Auction=
simannau.dat

Node Battery Life Time=
batltime.dat

Resource Distribution Managament Method
1: Plain Method
2: Request Frequency Method

Resource Distribution Management=
resdistm.dat

Network Load Model
0: Point-to-point Model
1: Ethernet Model

Network Load Model=
netloadm.dat

HSDAL University of Florida 88

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix H. Osculant Supported Ph.D. Dissertation

Author: Ansari, Ahmad Reza

Title: "Characterization of Multicomputer Interconnection Network

Performance Under Real-Time and Non-Real-Time Traffic"

Ph.D. Thesis, University of Florida, 1995

Please refer to the attachment.

HSDAL University of Florida 89

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Appendix I. References

[Blake 1991]

[Chow 1996]

[ComponentWare
1997]

[Ferguson 1988]

[Fiduccia 1982]

[Gagliano 1995]

[Goscinski 1991]

[Goulde 1997]

[Klingerman 1986]

[Liu 1973]

[MATLAB 1992]

[MATLAB 1993]

[Ni 1985]

[Park 1989]

[Park 1993]

[Puschiner 1989]

[Ramamritham

B.A. Blake, K. Schwan, "Experimental Evaluation of a Real-Time Scheduler for a
Multiprocessor System", IEEE Tran. Software Engineering, vol. 17, no. 1, Jan.
1991.pp. 34-44.

R.Y. Chow and T. Johnson, Distributed Operating Systems and Algorithms,
Addison-Wesley, 1996.

"ComponentWare: Component Software for the Enterprise", I-Kinetics Inc., April
1997.

D. Ferguson, Y. Yemini, and C. Nikolaou, "Microeconomic Algorithms for Load
Balancing in Distributed Computer Systems", IEEE 1988, pp. 491-499.

CM. Fiduccia and R.M. Mattheyese, "A Linear-Time Heuristic for Improving
Network Partitions", IEEE 19th Design Automation Conference, 1982, pp. 175-181.

R.A. Gagliano, M. Fräser and M. Schaefer, "Auction, Allocation of Computing
Resources", Comm. of ACM, vol. 38, no. 6, June 1995.

A. Goscinski, Distributed Operating System The Logical Design, Addison-Wesley,
1991.

M.A. Goulde, "Searching for the Networked Computer", Patricia Seybold Group,
May 1997.

E. Klingerman and A.D. Stoyenko, "Real-Time Euclid: A language For Reliable
Real-Time Systems", IEEE Tran, on Software Engineering, Vol. 12, No. 9, Sep.
1986, pp. 941-949.

C.L. Liu and J.W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment", J. of ACM, 20, Jan. 1973,46-61.

MATLAB Reference Guide, The Mathworks Inc., 1992.

MATLAB External Interface Guide, The Mathworks Inc., 1993.

L.M. Ni, C.W. Xu, and T.B. Gendreau, "A Distributed Drafting Algorithm For Load
Balancing", IEEE Trans, on Software Engineering, Vol. 11, No. 10, Oct. 1985,
1153-1161.

C.Y. Park and A.C. Shaw, "Experiments with a Program Timing Tool Based on
Source-Level Timing Schema", IEEE Computer, May 1991,48-57.

C.Y. Park, "Predicting Program Execution Times by Analyzing Static and Dynamic
Program Paths", J. of Real-Time Systems, May 1993,31-62.

P. Puschiner and C.H. Koza, "Calculating The Maximum Execution Time of Real-
Time Programs", J. of Real-Time Systems, 1,159-176(1989).

K. Ramamritham, J.A. Stankovic, and W. Zhao, "Distributed Scheduling of Task

HSDAL University of Florida 90

Osculant: A Multiprocessor Self-Organizing Task Scheduler

1989]

[Ramamritham
1994]

[Rutenbar 1989]

[Schaller 1997]

[Shaw 1989]

[Shin 1988]

[Shin 1995]

[Smith 1980]

[Thamas 1997]

[Tragoudas1996]

[Wu 1997]

[Wu 1997]

[Wu 1997]

with Deadlines and Resource Requirements", IEEE. Tran, on Computers, Vol. 38,
No. 8, August 1989, pp. 1110-1123.

K. Ramamritham, and J.A. Stankovic, "Scheduling Algorithms and Operating
Systems Support for Real-Time Systems", Proceeding of IEEE, Vol. 82, no. 1, Jan.
1994, pp. 55-67.

R.A. Rutenbar, "Simulated Annealing Algorithms: An Overview", IEEE Circuit
And Device Magazine, January 1989.

R.R. Schaller, "Moore Law: Past, Present, and Future", IEEE Spectrum, June 1997.

A.C. Shaw, "Reasoning About Time in Higher-Level Language Software", IEEE
Tran, on Software Engineering, Vol. 15, No. 7, July 1989, 875-889.

K.G. Shin and Y. Chang, "Load sharing in distributed real-time systems with state
change broadcasts", IEEE Trans, on Computer, Vol. 38, No. 8, Aug. 1988, 1124-
1142.

K.G. Shin and Y. Chang, "A Coordinated Location Policy for Load Sharing in
Hypercube-Connected Multicomputers", IEEE Trans, on Computers, Vol. 44, No.
5, May 1995, 669-682.

R.G. Smith, "The contract net protocol: High-level communication and control in a
distributed problem solver", IEEE Trans, on Computers, Vol. 29, No. 12, Dec.
1980,1104-1113.

W. Thomas, "Castanet: A New Way to Deliver Software and Content", Netscape
Communication Corp., 1997.

S. Tragoudas, "Min-Cut Partitioning on Underlying Tree and Graph Structure",
IEEE Trans, on Computers, Vol. 45, No. 4, April 1996, pp. 470-474.

H. Wu, C. Chen and F.J. Taylor, "Osculant: A Multiprocessor Self-Organizing Task
Scheduler", Proceeding of IEEE Performance, Computing and Communication
Conference, Phoenix AZ, Feb. 1997, pp. 35-41.

H. Wu and F.J. Taylor, "Osculant: A Self-Organizing Scheduling Scheme in a
Network Computing Environment", HSDAL, Department of Electrical and
Computer Engineering, University of Florida, Dec. 1997. Submitted for review at
IEEE Trans, on Parallel and Distributed Systems, Jan. 1998.

H. Wu and F.J. Taylor, "Osculant Job Profile Generator: Extracting Job Profile in
Source Code Level", HSDAL, Department of Electrical and Computer Engineering,
University of Florida, Aug. 1997, Submitted for review at IEEE Trans, on Software
Engineering, Sep. 1997.

HSDAL University of Florida 91

Osculant: A Multiprocessor Self-Organizing Task Scheduler

Acknowledgments

Osculant is being developed under DOD sponsorship [NAVY 00039-44-C-0163,

http://www.hsdal.ufl.edu] with a major contribution from Hewlett Packard.

HSDAL University of Florida 92

ATTACHMENT

CHARACTERIZATION OF MULTICOMPUTER INTERCONNECTION
NETWORK PERFORMANCE UNDER

REAL-TIME AND NON-REAL-TIME TRAFFIC

By

AHMAD REZA ANSARI

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

1995

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii

LIST OF FIGURES viii

ABSTRACT ix

CHAPTERS

1 INTRODUCTION I

1.1 Motivation I
1.2 Interconnection Networks \
1.3 Real-time Applications and their Communication Requirements 6
1.4 Dissertation Outline and Summary 8

2 BACKGROUND II

2.1 Topology II
2.1.1 Terminology 12
2.1.2 VLSI Constraints 14
2.1.3 Generalized Hypercubes : 15
2.1.4 fc-ary n-cubes 18
2.1.5 WK- Recursive Networks 21

2.2 Flow Control 24
2.3 Routing 27

2.3.1 Deadlock Avoidance 29
2.4 The Software Messaging Layer 31
2.5 Failure Handling ■'. . . . 33

3 EVALUATION FRAMEWORK 35

3.1 Evaluation Model 36
3.2 The Simulator 38
3.3 Performance Measurement 40
3.4 Performance Metrics 41

IV

4 DEVELOPMENT OF THE ANALYTICAL MODELS . |.|

4.1 Network Architectural Parameters 14
4.1.1 The Model for Effective Latency \-j
4.1.2 Analysis of Latency in fc-ary n-cubes >{
4.1.3 Analysis of Latency in Generalized Hypercubes 69
4.1.4 IWv-Recursive with Deterministic Routing 76

4.2 Routing $i
4.3 Communication Locality jj-j

5 SINGLE-MODE TRAFFIC COMMUNICATION S7

5.1 Average Latency 3g
5.2 Predictability 90

6 SUPPORT FOR MULTIPLE CLASSES OF TRAFFIC 92

6.1 Architecture g.>
6.2 Arbitration , g,{
6.3 Control of the Guaranteed Traffic 96

< CONCLUSION . . . 9g

7.1 Research Contributions . gg
7.2 Future Directions 102

APPENDICES

A THE RSIM SIMULATOR l04

B ADAPTIVE ROUTING ALGORITHMS 112

B.l Adaptive Routing in Generalized Hypercubes H2
B.2 Adaptive Routing in WK-Recursive Networks 117

REFERENCES l22

BIOGRAPHICAL SKETCH l25

LIST OF FIGURES

2.1 A 4 x 3 x 2 GHC structure 16

2.2 Different hypercube networks, (a) GHC with n = 2 and k = 4: (b)
Binary 2-cube - ^

2.3 WA-Recursive topologies, (a) k = 2. (= 2. N = 4: (b) k = 4. I = 2.
;V = 16 22

2.4 The routing from node 03 to node 23 in a network with k = 4. and
1-2 24

2.5 Latency of store-and-forward routing (top) versus wormhole routing
(bottom). . 26

2.6 Load distribution under different routing schemes, (a) Deterministic:
(b) Adaptive -8

2.7 Failure handling under different routing schemes, (a) Dimension-order:
(b) Adaptive 29

2.8 Breaking deadlock by adding virtual channel, (a) Original: (b) Dead-
lock free 31

3.1 The model of a node in the simulator 37

3.2 The user interface on the Windows version of the simulator 39

4.1 Model for a switching node. . 48

4.2 Average latency vs dimension using cut-through switching with no
physical constraints. L = 250 bits 55

4.3 Average latency vs dimension using store-and-forward switching with
no physical constraints. L — 250 bits 55

4.4 Pin density vs dimension assuming constant T\W 57

VI

4.5 Average latency vs dimension using cut-through switching with con-
stant 7 and constant delay. -){j

».6 Average latency vs dimension using store-and-forward switching with
constant 7 and constant delay. 59

1.7 Average latency vs dimension using cut-through switching with con-
stant 7 and linear wire delay. gn

1.8 Average latency vs dimension using cut-through switching with con-
stant 7 and logarithmic wire delay. 51

4.9 Switching probabilities on an input channel 6.1

4.10 Comparing the model with the simulation under virtual cut-through
switching. Dashed line correspond to the simulation results. 68

4.11 Comparing the model with the simulation under store-and-forward
switching. Dashed line correspond to the simulation results. 68

4.12 Studying the impact of the packet size on the latency. Comparison
of the model with the simulation under virtual cut-through switching.
Dashed line correspond to the simulation results 69

4.13 Studying the impact of the packet size on the latency. Comparison
of the model with the simulation under store-and-forward switching.
Dashed line correspond to the simulation results 70

4.14 GHC average latency vs dimension using cut-through switching with
constant £ -^

4.15 GHC pin density vs dimension assuming constant qw 73

4.16 Packets transferred through each link if each node sends messages to
all the other nodes in a (3,3)-WKR 77

4.17 Switching probabilities of the channel 79

4.18 Effect of locality on communication bandwidth and latency on a Jt-ary
n-cube with n = 2, k = 32, and B = 4 under cut-through switching.
Dashed lines correspond to model predictions 35

4.19 Effect of locality on communication bandwidth and latency on a k-
ary n-cube with n = 2t k » 32, and B = 4 under store-and-forward
switching. Dashed lines correspond to model predictions 85

5.1 Average latency on a packet transfer 33

Vll

5.2 Latency coefficient of variation on a hop 90

5.3 Latency standard diviation on a hop 91

6.1 Effect of packet switching load on wormhole average latency Oil

6.2 Effect of wormhole load on store-and-forward average latency. 95

6.3 Effect of wormhole load on store-and-forward latency standard deviation. 96

6.4 Average wormhole latency using a priority-based arbitration scheme. 97

B.l An example of routing using GHC-P algorithm on a 4 x 3 x 2 GHC.. 113

B.2 Algorithm GHC-P - Adaptive routing algorithm to be used by each
node of a GHC only with the information on its own links 115

B.3 (a) Deadlock: (b) Breaking the deadlock using a north-bound virtual
channel for east-bound packets moving north-bound 117

B.4 Adaptive routing in a WK~Recursive network with k — 4 and L = \

and four faulty or congested links 119

B.5 Algorithm WKR - Adaptive routing algorithm to be used by each
node only with the information on its own links 121

vm

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy

CHARACTERIZATION OF MULTICOMPUTER INTERCONNECTION-
NETWORK PERFORMANCE UNDER

REAL-TIME AND NON-REAL-TIME TRAFFIC

By

Ahmad Reza Ansari

August 1995

Chairman: Dr. Fred J. Taylor
Major Department: Electrical Engineering

Future multicomputer networks have to satisfy the diverse performance re-

quirements of the parallel real-time and multimedia applications. These applications

usually generate multiple traffic classes which demand different performance require-

ments. This mixture of loads typically consists of a guaranteed class whose packets

require bounds on latency or throughput and a best-effort class which requires good

average performance.

In this dissertation we start off by examining closely the assumptions and re-

quirements of multicomputer network design and reevaluate their parameters to see

how they could deliver the high performance required by these diverse applications.

IX

We analytically model the latency in ifc-ary n-cubes. generalized hypercubes. and Wf\-

Recursive networks, under cut-through and store-and-forward switching schemes,

with or without contention. The network analysis under no contention presents the

base network latency and allows us to study the effect of various types of wire and

switch delays on the network performance. We develop closed form expressions for la-

tency and its variance under contention in bufFered direct networks. The contention

models are merged with the base network results to obtain the complete latency

models for the multicomputer networks.

To verify the validity of the models a network simulator is developed. This

simulator allows evaluating the interconnection topology, interprocessor routing, and

communication flow control. The data collected from the simulator were used to test

the developed models and also served as the primary source whenever it was difficult

to derive accurate analytical models.

Finally, the dissertation establishes a paradigm for the efficient and reliable

mixing of guaranteed and best-effort traffic in multicomputer networks. Unlike the

previous work in this area, we propose architectural features which exercise efficient,

fine-grain control over the interaction of packets. In order to optimize for the per-

formance requirements of each class, the architecture employs different routing and

switching strategies to manage the two traffic classes. We bound the intrusion of

each traffic class on the other by low-level bandwidth allocation. The software or

the higher level hardware can utilize these bounds to provide the quality of service

required by the different application.

CHAPTER t
INTRODUCTION

I.I Motivation

With the advent of parallel real-time and multimedia applications which de-

mand high levels of performance and dependability, the design requirements of su-

percomputers are being rewritten. Massively parallel machines of the future will not

merely be engaged in highly computation-intensive scientific applications. Recent

real-time applications, such as on-demand multimedia services and interactive tele-

vision, require a level of performance which is produced only by large concurrent

computers. The predictability required by real-time applications makes it essential

for the systems to possess efficient and predictable interprocessor communication

networks which are highly fault-tolerant.

The network may connect the processing nodes of a message-passing multi-

computer [6J. or the processors and memories of a shared-memory multiprocessor (9j.

In either case, the performance of the parallel computer depends heavily on the net-

work latency and its throughput. Furthermore, the network accounts for a large

fraction of the cost and power dissipation of the machine.

The focus of this research is on the message-passing concurrent computers,

also known as multicomputer, such as the nCUBE [37|, which consist of many com-

puting nodes that interact with one another by sending and receiving messages over

communication channels between the nodes . The nodes in a multicomputer can be

laid out in apace using different topologies which possess different routing and fault-

tolerance characteristics. A good interconnection structure in general should havr

a low number of links per node, a small internode distance, and a large number of

alternate paths between a pair of nodes for fault-tolerance.

Although multicomputer network design has traditionally emphasized pro-

viding low-latency communication, modern parallel applications require additional

services from the interconnection network (10|. Multimedia and real-time applica-

tions, such as scientific visualization and process control, necessitate control over

delay variance and throughput, in addition to low average latency [22]. These appli-

cations usually generate two distinct classes: guaranteed and best-effort traffic, which

possess different communication requirements. Guaranteed traffic, such as control or

audio/video, may necessitate explicit performance guarantees and mandate deter-

ministic or probabilistic bounds on throughput or end-to-end delay, while best-effort

traffic, such as data transfer, may tolerate more variability in delay, at the cost of

improved average latency.

The performance of a multicomputer network is directly affected by the choice

of the routing and switching schemes. The majority of the contemporary multi-

computers employ oblivious routing schemes which guarantee deadlock freedom (38|.

However, since oblivious routing policies prevent full utilization of the network, in

large multicomputer, these routing algorithms are not able to provide the desired

network performance. In these machines, the average message traffic, which is at

least a linear function of the total number of nodes, grows faster than the bisection

area of the network which, due to the 3D construction of the machine, grows only as

iV7'3, where N is the number of nodes. This creates local congestion at certain parts

of the network [Uj.

To improve the „«work performance of these highly parallel machine. ,l,o

routing mechanic has to bo able to diffuse the local congestions by adap.ively

utilizing the available resource, in the network. In contrast with the oblivious routing

in »hich the message trajectories are unique. i„ an idap[ive routing schme (|]ey

are continuously perturbed based on the condition of the network. However, «his

adaptivity contradicts the predictability retirement which is essential for a real-

time system.

On the other hand, most modem multicomputer networks try to reduce the

average communication latency by implementing certain switching techniques which

avoid the unnecessary de.ay a. the intermediate »odes. These low-latency technique

often impinge on control over packet scheduling which further complicates the effort

«o provide predictableor guaranteed service. In particular, wormhole and cut-through

-itching [301 decentralize bandwidth allocation and packet scheduling by allowing

a« incoming packet to proceed directly to the next node in its route if a suitable

outgoing link is available.

Handling a mixture of disparate traffic classes affects the suitability of archi-

tectural features in molticomputer rou.en. While the router alone cannot satisfy

application performance requirements, design decisions should not preclude the sys-

temfrom providing necessary guarantees. Servicing guaranteed traffic requires con-

trol over network access time and bandwidth allocation. The router should bound

the inHuence best-effort packet, have on these parameters. The software or higher

level hardware can utilize these bounds to provide «he quali.y-of-service requirements

through packet scheduling and resource allocation for communicating «asks. Addi-

tionally, the design should not unnecessarily penalize «he performance of bes.-effort

packets by allocating the entire resources to the guaranteed traffic.

1.2 Interconnection Networks

Concurrent computers can be grouped into two major categories, shared-

memory multiprocessors and message-passing multicomputers. In shared-memory

multiprocessors a single memory address space is shared by all the processors and

they communicate with one another through this shared space. To provide an equal

distance between any processor and any memory, most contemporary multiproces-

sors liave adopted multistage interconnection networks which display this equidis-

tance property [25. 39J. In multistage networks, which are also referred to as indirect

networks, the communication between any pairs of nodes occurs through multiple

stages of the network. In contrast, message-passing multicomputers do not provide a

global address space and their memory is distributed across the processing nodes. In

multicomputers. processors can only access their local memory directly and access to

remote memories is through messages sent to the node which contains the memory.

Today's multicomputers predominantly use direct networks represented by grids and

meshes [17. 42].

Although the topological equidistance of the indirect networks makes them

suitable for shared memory multiprocessors, in general, these networks are not very

attractive for massively parallel systems (103 to 106 processors). As the number

of processors in these networks increases, the distance between any two nodes will

increase which diminishes the performance benefits of scaling. On the other hand,

the inherent locality of the direct networks, unequal distance between nodes, can be

exploited to make the system scalable to large numbers of processors. Due to their

scaleability, direct networks have gained more acceptance in multiprocessors which

was once dominated by indirect networks. Examples of multiprocessors using direct

networks are Tera Computer's TERA machine [2j, and MIT's Alewife.

Different schemes have been employed to improve the latency and throughput

of multicomputer networks. One approach is to reduce the frequency of communi-

cation through the network by using local caches for each processor [33J. Another

method is to hide the latency by overlapping the communication time with useful

work. Different approaches to this method have been used by several groups. The

MIT J-machine uses context switching [17| and DASH [33j employ multithreading to

complement memory access due to cash miss.

While caches and multithreading improve some of the problems associated

with nonsdeal networks, they introduce new problems, using caches requires cache

coherency techniques which are complex and costly. Furthermore, despite the fact

that using caches reduces the amount of data traffic in the network, the cache co-

herency protocol introduces new traffic which increases the overall network commu-

nication. Also, some applications such as FFT and matrix transpose display poor

communication locality which limits the benefits of having caches. Multithreading

also involves the overhead of context switching and is limited by the amount of par-

allelism available in applications. Finally, the uncertainty of cache hit/miss causes

unpredictable memory access delay, which in turn makes the system less predictable

and consequently less desirable for real-time applications.

Research in Local or Wide Area Networks (LAN/WAN) considers techniques

for the effective mixing of multiple traffic classes in a communication fabric [7. 4}.

However, the design trade-offs for parallel machines differ significantly from those in

a heterogeneous, distributed environment. AH muiticomputers, and fine-grain ma-

chines in particular, possess rather limited hardware resource per node which limits

the amount of internal message buffer that each node can devote to routing. In these

machines, router design trade-offs reflect the large network size and the tight coupling

between nodes. Speed and area constraints motivate single-chip solutions, including

designs that integrate the processing core and the communication subsystem (17).

Also, these networks are usually very tightly coupled physically. This creates a low

signal propagation delay across their networks which necessitates the use of hard-

ware, rather than software, support for message transport, routing, and buffer man-

agement. The hardware mechanisms allow simple and efficient cycle-by-cycle flow

control schemes. On the other hand, this fast channel speed requires fast routing cir-

cuitry which in turn limits the amount of information that the routing algorithm can

afford. In much the same way. the multicomputer networks, unlike geographically

distributed networks, are usually installed in well-protected environments. Hence,

the signal transmission error rate across a channel is extremely small and generally

negligible. Finally, multicomputer networks almost always employ very regular net-

work topologies for their connections which allows one to define simple algorithmic

routing procedures that eliminate the requirements to store routing tables.

1.3 Real-time Applications and their Communication Requirements

In a real-time system the correctness of an operation depends not only on

its logical correctness, but also on its timeliness. A real-time application is usually

comprised of a group of cooperating tasks which are invoked in a periodic or aperiodic

manner. Each task must finish its execution within a specified time, called deadline.

Two important characteristics of real-time systems are predictability and reliability.

The definition of predictability may vary among different tasb. Hard real-time tasks

require a 100% guarantee that their constraints will be satisfied. Some other tasks

require probabilistic or run-time deterministic guarantees [43j. To satisfy any kind of

deadline guarantee, the complete characteristics of the tasks such as their execution

and arrival times must be known a priort. In practice, it is very difficult to know the

exact values of these parameters and usually the worst-case values which are derived

through simulation and testing are used. For a real-time system to operate properly,

all aspects of the system such as the architecture of the node, the communication

subsystem, the operating system, and the programming languages have to support

the notion of deadline guarantee at every level of abstraction.

The architecture of real-time computers can be studied at two different levels:

the node level and the system level. At the node level, the system has to provide

predictability in instruction execution, interrupt handling and communication with

the outside of the node. For example, using virtual memory or cache degrades the

predictability of the node (43J. At the system level, predictability is achieved by

studying internode communication and fault-tolerance.

In the earlier real-time systems, the interconnection network was usually based

on a broadcast bus which, due to its inherent bottle-neck, cannot deliver the per-

formance and reliability required by recent real-time applications. Point-to-point

interconnections are prime candidates for these applications due to their intrinsic

fault-tolerance and high bandwidth. However, it is more difficult to achieve pre-

dictability in.multihop point-point networks. This is mainly due to the fact that in

multihop networks the characteristics of the various traffic streams can change as

they pass through the network. For example, if the input to the system is generated

according to a Poisson process, while it traverses through the network it may not

generate inputs with the same distribution on the intermediate nodes. This causes

even more problems when both real-time and nonreal-time traffic exist in the net-

work. Although the traffic patterns generated by nonreal-time applications normally

follow a Poisson distribution, real-time traffic such as voice or video is usually bursty.

The influence of the two traffics on one another causes the nonreal-time traffic to

become bursty, as well. Although in nonreal-time communication, the focus of the

communication protocol is on the aggregate, rather than on each individual packet,

and the mean message delivery is the parameter of interest, the dependence on the

real-time traffic makes the analysis of the nonreal-time traffic more difficult.

The performance requirements of real-time communications are usually ex-

pressed by the clients in terms of the delay, throughput, or reliability. These require-

ments are normally specified in terms of deterministic or statistical bounds. Deter-

ministic bounds can be viewed as statistical bounds that are satisfied with probability

one (22J. The delay requirements can be specified as bounds on the delay or bounds

on the delay jitter. Throughout our study, we use average latency to determine

the performance of nonreal-time communication and latency standard deviation or

coefficient of variation, to evaluate the predictability of real-time communication.

1.4 Dissertation Outline and Summary

In this dissertation, we investigate the effect of architectural and load param-

eters on the communication of traffic in multicomputer networks. We demonstrate,

through analytical modeling and simulation, how different network architectures can

accommodate different performance requirements. We also present a new paradigm

for communication of two general classes of traffic in multicomputer networks. These

classes consist of a time-sensitive guaranteed and time-insensitive best-effort class.

The remainder of this dissertation is organized as follows.

Chapter 2 serves as the background and presents the material which will act

as a foundation for the dissertation. It will describe different variables influencing

the communication in a multicomputer network and reviews the previous work in

the area. The chapter describes the network topology focusing on fc-ary n-cubo.

Generalized HyperCube (CHC), and WK-Recursive structures. The optimal topol-

ogy depends critically on a variety of design constraints. The network topologies

suggested in the literature are reviewed. The chapter also discusses various com-

munication techniques developed for multicomputer networks including switching

techniques, routing functions and virtual channel flow control.

Chapter 3 presents a simulation model for studying the impact of routing and

switching on interconnection network performance. This simulator allows evaluating

the interconnection topology, interprocessor routing, and communication flow control.

The data collected from the simulator are used to test the developed models and also

serves as the primary source whenever it was difficult to derive accurate analytical

models. Using the simulator model, we investigate how switching schemes affect the

networks ability to service multiple traffic classes.

In Chapter 4, through analytical modeling and simulations, we examine closely

the assumptions and requirements of multicomputer network design and reevaluate

their parameters to see how they could achieve the high performance requirements.

We model the latency in *-ary n-cube, generalized hypercubes. and WK- Recursive

networks under cut-through and store-and-forward switching schemes with or without

contention. The network analysis under no contention presents the base network

latency and allows us to study the effect of various types of wire and switch delays

on the network performance. We develop closed form expressions for latency and its

variance under contention in buffered direct networks. The contention models are

merged with the base network results to obtain the complete latency models for the

multicomputer networks.

10

In Chapter 5. we evaluate the ability of wormhole. virtual cut-through, and

store-and-forward »witching to accommodate different performance requirements. Wo

investigate, based on simulation results, how each switching scheme can affect the

performance and the predictability of a single class of traffic.

In Chapter 6. we establish a paradigm for the efficient and reliable mixing

of guaranteed and beat-effort traffic in message-passing multiprocessors. We propose

architectural features which exercise efficient fine-grain control over the interaction of

packets. To optimize for the performance requirements of each class, the architecture

employs different routing and switching strategies to manage the two traffic classes.

We provide tight bounds on the intrusion of best-effort traffic on guaranteed packets

by the low-level control of the network access time and bandwidth allocation.

In Chapter 7. we conclude the dissertation with a summary of the research

results presented.

ter system

CHAPTER 2
BACKGROUND

The interconnection network is an essential part of a multicomput

which directly affects its performance, reliability, and programmability. Due to the

technological advancements in processor design, the computing power of individual

processors has improved substantially and there is more need than ever to provide a

communication network which does not become the bottleneck in the multicomputer

system. Also, to provide the astronomical computation power requirements of some

applications, the number of nodes in these systems have to increase which elevates

the requirements for failure resiliency in the systems. On the other hand, the qualitv

of services (QOS) imposed on the network by different applications are complete!

distinct and the network has to satisfy these services efficiently. Finally, the efficiency

of the interconnection network determines the granularity level of the system and

directly dictates to the programmer how to structure his code to utilize the system

maximally.

This chapter presents background material which will act as a foundation for

the remaining chapters. We will describe different variables influencing the commu-

nication in a multicomputer network and review the previous work in the area.

2.1 Topology

In this section, we will analyze multicomputer networks from a topologicai

point-of-view and examine how certain design decisions affect the performance and

itv

V

II

VI

reliability of the entire network. We will analyze three groups of interconnection

networks, generalized hypercubes. £-ary n-cubes. and WK-Recursive structures.

LU TgpninoloKY

One of the most natural and widely used models to represent a multicomputer

network is through a strongly connected, directed graph. .V = G(N.C). The vertices

of M are a set of nodes. .V. which physically correspond to the multicomputer nodes

each containing a computation unit, a communication unit and local memory. The

edges are a set of uni-directional links or channels. C C ;V x .V which represent the

physical connectivity of the network. A channel (ni,n2) is bi-directional if (rti.ni) €

C => (n2, nx) € C. Interconnection topologies are evaluated in terms of the following

metrics:

Symmetry: A network is symmetric if there exists a homomorphism which

maps any node in the network onto any other node (40). All the nodes in a sym-

metric network have identical view of the rest of the network. A ring and a tree are

examples of symmetric and asymmetric networks, respectively. Symmetric networks

simplify many resource management problems such as load balancing. On the other

hand, asymmetric networks are shown to be ill-suited for general purpose multicom-

puter networks [41t 48|. The inherent topological bottlenecks in asymmetric networks

usually limit the interprocessor communication in the network. For example, the root

of a tree is much more subject to saturation than any other nodes and it becomes

a bottleneck. The only exception to this case, are special purpose architectures in

which the pattern of internode communication matches the network topology.

Network Connectivity and Bisection Width: The efficiency and fault-tolerance

of a network is directly a function of its connectivity. By definition, connectivity is

the minimum number of nodes or links which must fail to partition the network into

two or more disconnected subnets.

If a system possesses high link or node connectivity, it is more resilient to

failures. Of course, this is true as long as the network provides some mechanism,

such as adaptive routing, to take advantage of the extra connections. Furthermore,

greater connectivity improves performance by reducing the paths from a source to a

destination.

The Bisection Width or the Channel Bisection. 7. of a network is the minimum

number of channels that has to be cut to partition the network into two equal parts.

Bisection width determines the rate at which communication can take place between

different halves of a computer (bisection bandwidth). A low bisection bandwidth is

an indicator that bottlenecks may arise in some section of a network [47).

Network Degree: The number of links incident on a node is referred to as the

degree of the network and is represented by d. The network degree directly determines

the number of pins on each node which is limited by the technology. This constraint

affects the maximum connectivity of the networks and also restrains the maximum

data rate into and out of a network.

Network Diameter: In a network of n nodes, the diameter is defined as D =

max{dij I I < i.j < N], where rfy is the distance between nodes 1 and ; along the

shortest path. Diameter of a network is used by many as the Figure Of Merit (FOM)

for the network. This is one reason for popularity of dense networks such a binary

n-cubes which possess large number of nodes and relatively low diameters.

There is usually a trade-off between the node degree and the diameter of a

network. A structure with a low degree has a large diameter and one that has a
1

low diameter usually possesses a large node degree. The completely-connected and

II

single loop structures represent the two extremes. The fully connected topology with

n nodes has unit diameter but 0(n2) links: however, a ring structure has 0{n) links

and O(n) diameter. The cost function defined as the product of the diameter and the

node degree (f=Dx d) is therefore a good criterion to measure the performance of

a structure.

2.1.2 VLSI Constraints

In a general-purpose multicomputer, every node communicates with all the

other nodes by sending messages through the network. Ideally, the more connections

the network possesses, the more efficient the communication will be. However, due

to the constraints imposed by the technology, a highly connected network, except for

small number of nodes, would be impractical.

As the number of connections increases, the node degree and the channel

bisection, q, of the network will increase. In practice, these two parameters are

restricted by the node size and the wire bisection bandwidth, respectively. A node

with degree d and channel width W. requires Wd connections. Practically, there is

a limit to the number of pins on a chip or connections on a board. Also, a direct

network is constrained by the cost of its wire bisection. A network's wire bisection

width, fa, is defined as the minimum number of wires to be cut to divide the network

into two equal parts. The wire bisection width is limited by wiring density and the

total system size, each of which is determined by layout technology, system cost, and

power dissipation, respectively. Hence, the wire bisection, 17«^, is a good measure of

the cost of the network and should be held constant when comparing networks.

In our analyses, we assume that these two parameters are bounded and change

the other parameters of the network, such as the channel width, to find the optimal

1*1

configuration. This is in contrast with the traditional analysis of networks under con-

stant channel bandwidth which favors networks with high dimensionality, such as the

binary n-cube over low dimensional networks such as tori. The constant bandwidth

assumption is not consistent with the properties of VLSI technology. Networks with

high number of dimensions require more and longer wires and more pins which make

them cost more and run more slowly than low-dimensional networks.

The Wire Length is another parameter which is important in the evaluation

of a multicomputer network. The wire length in a network puts an upper bound

on the speed and power dissipation of the network, [f wires are sufficiently short,

their propagation delay is usuaJIy modeled as logarithmically dependent on the wire

length. On the other hand, for long wires the delay will be limited by the speed of

light and is normally assumed a linear function of the channel length [13]. In other

words, if the wire length is (.

fl+log£ forsmalU
Tprop^l (2.1)

11 for large I

We will assume constant, linear, and logarithmic models for the wire delay, when we

investigate the base network latency in chapter 4.

2.1.3 Generalized Hypercubes

A Generalized HyperCube (GHC) is a structure with an arbitrary number of

nodes which is obtained by a complete generalization of the hypercube networks,

allowing them to have different number of nodes in each dimension. GHCs are more

cost-effective than regular hypercubes and possess very good fault-tolerance [3|.

(BO #"

000 «f

321

• Ml

Figure 2.L: A 4 x 3 x 2 GHC structure.

.Vfixed Radix Representation

If an n-dimensional GHC possesses fc, nodes in its i-th dimension, the total

number of nodes in the GHC will be.

iV = kh x fcn_, x ... x kx

Each processor X between 0 and <V - I is expressed as an n-tuple (x„x„_t. ..x,) for

0 < x, < [hi - I). Associated with each x, is a weight u;,, such that £"_t Xi.Wi - .Y.

where wi = Ujl\ kj - Jt,_t x Ar,_t x ... x frt for all 1 < i < n.

Description of GHC Structure

Each processor X = (xnx„_i ...x.+tx.x^i ...xt) will be connected to proces-

sors (x^Xn-t ...x,+ix<Xi_, ...xt) for all 1 < i < n where x^ takes ail integer values

between 0 to (it* -1) except xt- itself. A4x3x2GHCis shown in Figure 2.1. For the

sake of clarity, the connections in this figure are not shown for the nodes represented

by white circles. Figure 2.2-a also depicts a 4 x 4 GHC.

The GHC structure consists of n dimensions with k, number of nodes in the

i-th dimension. A node in a particular axis is connected to all other nodes in the

same axis. Therefore, from any node there are (Jfc,- - I) links in the t-th .direction,

hence degree of a node d = E^iO. - I). Each link is connected to two processors,

therefore the total number of links in GHC structure is (;V/2) Z?=l{k, - I). Hamming

distance between two nodes differing in their addresses only in the j-th coordinate is

unity, and the Hamming distance between any two nodes is the sum of the number

of coordinates in which the addresses differ. The addresses can differ at maximum n

coordinates. Thus, the diameter of the structure, D = n.

There are d {d = degree of a node) alternate paths between any two nodes of

the GHC. For less than d faults in the system, the worst case distance between two

connected nodes is n + I. There are h disjoint paths of equal length h between any

two nodes separated by the Hamming distance A.

Deterministic Routing in Generalized Hypercubes

To route messages in GHCs. at each node, the destination address is compared

to the node address. If the addresses match, the node accepts the message. If they

do not. the node transmits the message along the direction of the first differing digit.

The process continues until the destination is reached. As the message gets closer

to the destination, it moves into subcubes of successively smaller dimension in which

the destination node resides. Using the above scheme, it is obvious that the path

from node i to / is not commutative. In Figure 2.1, a message is routed from node

021 to node 300 in a 4 x 3 x 2 GHC.

IS

w W

Figure 2.2: Different hypercube networks, (a) GHC with n = 2 and k = 4: (b) Binary
2-cube.

2.1.4 £-ary n-cubes

A &-ary n-cube has tV = kn nodes. We refer to n as the dimension and to

k as the radix of the cube. Each node is connected to 2n neighbor nodes and each

dimension contains k nodes linearly connected. A node in the fc-ary n-cube can be

identified by n-digit radix k address. <x0, an_,. The i-th digit of the address, a,.

represents the node position in the i-th position. Figure 2.2-b shows a binary 2-cube.

An interesting issue regarding &-ary n-cube networks is how to choose k and n

for given N nodes to achieve the best performance. Without considering any imple-

mentation constraints, high-dimensional networks appear to perform better because

of their lower diameter. A smaller diameter implies reduced latency and, more im-

portantly, much less channel contention.

However, the optimal choice of k and n critically depends on a variety of design

constraints. For i-ary n-cube networks with wraparounds (torus), the bisection width

is

q = 2kn~l =
„_, 2N 2N

tfN (2.2)

I!)

If the wraparound connection» do not exist (torus), q is halved. For a fixed-size

network (fixed N). as network dimension n grows. 7 increases superiinearly. Since the

width of each channel is derived as W = a*, the channel width. W. decreases rapidly

as the dimension n grows. For a given message length, narrow channels increase

message latency, overwhelming the advantages of high-dimensional networks. In a

comparative study based on normalized channel width on the assumption of constant

wire bisection. Dally [131 showed that networks with two or three dimensions provide

better performance than high-dimensional networks. In addition. low-dimensional

networks are preferred because wire lengths increase with network dimension. The

significance of increased wire length is discussed extensively by Aggarwal [lj.

Wire bisection is not the only constraint that applies to network implementa-

tion. In practical systems, channel width may be constrained by node sizes rather

than wire bisection [I4j. Under the node size constraint, moderate (3, 4 or 5)-

dimensional networks are more attractive. Since the number of pins is limited by

the node size, channel width decreases as the network dimension increases. How-

ever, when compared to the constant wire bisection limitation, node size limitation

decreases channel widths much more slowly. As the network dimension increases,

the advantages of high-dimensional networks overwhelm the reduced channel width.

Consequently» under pin limitation, two-dimensional networks give much worse per-

formance than do networks of moderate dimensions especially under heavy loads.

An analytical comparison under the pin limitation was done by Agarwal [lj. He also

showed that the optimal dimension is highly sensitive to system parameters such as

packet length.

There are two alternative ways to implement *-ary n-cube networks, with

(torus) or without (mesh) wraparound channels. Torus networks are symmetric in

JO

the sense that the network topology is identical when viewed from any node. The

symmetry allows even utilization of network resources. The wraparound paths of

torus networks also provide a smaller network diameter, reducing channel congestion

as well as average distance. Using bidirectional channels, the average distance in the

torus network is n£, which is much shorter than the mesh network's distance, n*. for

high radix (it). On the other hand, torus networks require more complicated routers.

Since the wraparound channels introduce an additional possibility of deadlock, more

resources are needed to prevent deadlock. Because mesh routers are much simpler,

most existing multicomputers use mesh rather than torus networks. In addition,

mesh networks allow channels twice as wide as those of torus networks under constant

wire bisection limitation. Mesh networks also allow easy connection of I/O devices

through edges which are not connected to any neighbor nodes. Through the edges.

I/O devices can be easily connected. On the other hand, the primary drawback of

mesh networks is that they utilize network channels unevenly.

Dally [I4j introduced the express cube, an extension of low-dimensional fr-ary

n-cube networks. An express cube network consists of a hierarchy of mesh or torus

networks superimposed on each other. The idea behind the express cube is to provide

shortcuts for messages traveling long distances. Express cubes are embedded into

basic mesh or torus networks, but the higher levels are much more sparsely populated.

A message destined to a far node is routed through high-level channels instead of being

routed through all of the intermediate nodes. The average latency may be reduced

significantly by using the express cube network. However, express cubes seem to

introduce a new problem, reduced bisection bandwidth. Many messages moving

from a node in one half of a network to a node in the other half must get through the

express cubes. The sparsely located express cubes may not provide enough bisection

bandwidth, which may reduce sustainable peak throughput. Due to the limited

bisection bandwidth, the performance of express cube networks is highly sensitive

to the locality of applications. Express cube networks are motivated for pin-limited

networks rather than wire-limited networks. For such networks, higher-dimensional

networks are also interesting.

2.1.5 Wk'-Recursive Networks

The performance of an interconnection network is inversely proportional to its

diameter. However, as mentioned earlier, there is a trade-ofF between the diameter

and the degree of a network. Furthermore, due to technological limitations, the

degree of a node which is the number of links branching off from the node has to

be small (few units) and is fixed. This means that the scaleability of the network

has to be independent of the node degree. In this section, we introduce a family of

hierarchical interconnection networks. WA-Recursive, which have fixed node degree

and are highly scalable [4ol.

Topolotry Description

A network of k nodes each of degree k can be fully connected still having k

free links which can be viewed as being virtually similar to each component node

of degree k. This structure can be used as a building block to construct larger

structures recursively. In particular, a fully connected configuration composed of k

of these virtual nodes (i.e. k x k real nodes) again offers k free links and reproduces,

at a higher abstraction level, the virtual node structure. By recursively applying

this technique, we can get a family of highly scalable, regular topologies, called WK-

Recursive {46j.

•>•>

(o) 03)

Figure 2.3: WA'-Recursive topologies, (a) k = 2. (= 2. .V = 4: (b) k = 4.1 = 2. .V
- 16.

In a WA'-Recursive network, if iV signifies the number of real nodes, k the

node degree, and I the expansion level, we have

t = log* X (2.3)

Figure 2.3 illustrates two examples of the topology with different values of N. k. and

L The above expression permits to simply define indices for characterizing topologies

belonging to the WA-Recursive class. For example, the diameter of the network is

given by

0 = 2'-1 (2.4)

As we can see, the diameter depends only on the expansion level and is inde-

pendent of the degree of the network. However, the bisection width of the network tj

is
_ rt/2

~l(Jt2-

for k = even

l)/2 for k = odd
(2.5)

and is independent of (. This is a major disadvantage for W-Recursive networks

because it prevents the designer from trading off the width of a channel against the

diameter of the network. However, if compare a H7\-recursive network with it = 4

and a *-ary 2-cube. although both have 4 links per node, the diameter of the WK-

recursive network is smaller than that of the Jt-ary 2-cube. If .V « power of 4 for both

networks, the diameter of the W/wecursive network is half as much as the diameter

of the *-ary 2-cube. which is very attractive.

Deterministic Routing In WR\Recursive Networks

The routing scheme devised here, is a very simple algorithm which is valid

for the whole class of WA-Recursive topologies since it does not depend on either

the node degree or the expansion level of the structure. If we consider a first level

W-wide virtual node, we can give each real node an index n0 6 {0.1 W - I}.

Likewise, each of the first-level virtual nodes constituting a second-level virtual node

is given an index n,. In a network expanded at level I composed of ;V real nodes

each of them is characterized by an Muple (n0,n, n,.,). If we assign a weight

to each index according to the expression.

n = T?iZontW resulting n € {0 iV- 1}

each node will be uniquely identified by a node number n which can be regarded as

the decimal coding of the W-ary number nw = n(...n2nt.

Each real node has k bi-directional links through which communications take

place. Since k = W, k - I of the links are used to connect the node with the

remaining W - 1 nodes in the first level and one is left free. The k - I links are

numbered according to the value of the index n0 of the node they are connected to.

and the link which is left free is given the number equal to the value of the index n0

Figure 2.4: The routing from node 03 to node 23 in anetwork with k = 4. and ? = 2.

of the node it belongs to. Figure 2.4 shows the routing from node 03 to node 23 in a

network with k = 4. and I = 2.

When a message is sent from a node to another, the address of the destination

node is included in the message in the W-ary notation dtf = d(. ..d-id^. If the message

arrives at a transit node I the routing takes place as follows:

if(tvv = dw)

the message has reached the destination

else

forward the message through the link whose number is equal

to the most significant digit of dw which is different from tw

endif

2.2 Flow Control

Flow control is the resource management policy that is used to allocate com-

munication resources (i.e. wires and buffers) to information units, messages, packets,

and flits. Communication between nodes is performed by sending messages. A mes-

sage may be broken into one or more packets for transmission. A packet is the

smallest unit of information that contains routing information. A packet contains

one or more flow control digits or flits. A flit is the smallest unit on which flow

control is performed.

In multicomputer networks, if the source and destination of a message are not

directly connected, the message is routed via other connected nodes. Among different

switching models, stort-and-forward or packet-switching is the most commonly used

model. In this model, a packet is completely buffered before being passed to the next

node. The communication latency of this model is a linear function of the number of

hops the message has to traverse. In a network with channel bandwidth B. the latency

of a message of length L traveling a distance of D hops using store-and-forward can

be expressed as.

T,f=(L/B)D (2.6)

Newer multicomputer use wormhole routing, where wires and buffers are allo-

cated to Hits significantly smaller than an entire packet. The header Bit or flits con-

tains the routing information and the other flits just follow the header in a pipeline

fashion. The communication latency of this model can be expressed as.

r—(T)0^ <">

where lh is the length of the header flit.

Performing flow control on units smaller than packets reduces latency, as shown

in Figure 2.5. In store-and-forward routing, the total latency is the product of the

length of the packets and the number of hops the packet has to travel. In wormhole

routing, the total latency becomes instead the sum of the two quantities. The latency

is reduced substantially for messages that traverse more than one channel and their

i ; , ; I i

E

! ; ■ i ■ i j i ■ |

I | I l l i i i i I |

(Ti Mil-

IIM«

Figure 2.5: Latency of store-and-forward routing (top) versus wormhole routing (bot-
tom).

lengths are long compared to the message distances. If the message length is very-

long, the latency becomes relatively insensitive to the distance which reduces the

importance of message locality. It allows nonlocal communication to be used without

incurring much degradation in message latency in an environment that operates under

moderate traffic density [11. 49).

A hybrid strategy, cut-through [30j, allocates storage buffers to packets as in

store-and-forward. but pipelines the transmission of flits as in wormhole. In wormhole

routing, the head of a packet will be immediately forwarded along its route whenever

there is no conflict in channel access, or when the channel becomes idle. When a

channel access conflict occurs, the packet is blocked behind the busy channel, waiting

for it to become available. The body of the packet occupies the channels along its

route, whereas the tail of the packet releases these occupied channels as it makes

its way toward the destination. In cut-through routing, packets behave exactly as

they do in the wormhole technique, as long as no channel access conflict occurs.

However, when the requested channels are busy, the entire packet will be stored in

the intermediate node at the collision spot.

In addition to buffering and blocking methods just explained, other schemes

have also been proposed. One of these methods is dropping that is implemented on

the BBN butterfly in which the second packet is aJIowed to continue advancing, but

its flits are not stored as they arrive at the node. Another method is misrouting in

which the other packet is routed to an idle but incorrect channel and from there is

sent to the destination f.'

2.? Routjpg

Routing is the method implemented to guide a message from a source to a

destination in a network. A routing algorithm is a routing function R: .V x :V — C

that maps the current node nc and destination node nd to the channel c„ on the route

from ne to n4, R(nc.nrf) = c„. Routing algorithms can be classified as deterministic,

oblivions, or adaptive.

Most existing multicomputer networks [27, 29. 42J use deterministic routing.

With deterministic routing, the path followed by a packet is determined solely by

its source and destination. If any channel along this path is heavily loaded, the

packet will be delayed. If any channel along this path is faulty the packet cannot be

delivered. A common deterministic routing algorithm is dimension-order routing for

k-ary n-cubes, where the packet is routed in one dimension at a time, arriving at the

proper coordinate in each dimension before proceeding to the next dimension.

In an oblivious routing, the algorithm may choose different paths through the

network, but may use ao information about the network state in choosing the path.

Randomized routing is an instance of oblivious routing in which each message is

sent to a randomly chosen node, which then forwards it to its final destination. One

K

n::i::: i yj :::■:

♦ '■ •' T T T T i T
^rTJTTTJTT T Til III"'

CO «3)

Figure 2.6: Load distribution under different routing schemes, (a) Deterministic: (b)
Adaptive.

important disadvantage of randomized routing is that it does not preserve the locality

of communications which limits the system scaleability.

Adaptive routing uses information about the state of the network to route

the message. In this scheme, packets are detoured to other available paths as local

congestion occurs in the network. Adaptive routing will eliminate hot-spots in the

network traffic by distributing the load throughout the entire network. To illustrate

how adaptive routing can improve the performance of an interconnection network.

Figure 2.6 shows an 8x8 mesh in which the node at (t.O) sends a packet to the node at

(7, i) for j € [0.7J. With dimension-order deterministic routing [Figure 2.6 (a)], seven

of the eight packets must traverse the channel from (6.0) to (7,0). Thus, only one of

these seven packets can proceed at a time. With adaptive routing [Figure 2.6(b)J all

of the packets can proceed simultaneously using alternate paths.

Furthermore, adaptive routing enhances the reliability of the system by taking

advantage of the inherent path redundancy in the richly-connected multicomputer)

and circumventing faults in the network. Figure 2.7 demonstrate the advantage of

adaptive routing to dimension-order-routing in handling failures.

•J<)

ou

X.IH
3 LH_r—L_—_

03)

Figure 2.7: Failure handling under different routing schemes, (a) Dimension-order:
(b) Adaptive.

2.3.1 Deadlock Avoidance

The flow control discipline must allocate resources to packets in a manner that

avoids deadlock. Deadlock can occur when there is a cyclic dependency for resources.

If two packets each hold resources required by the other to move, both packets will

be blocked indefinitely. To avoid deadlock, the resources for which the packets are

competing, have to be identified and a mechanism has to be introduced for breaking

cyclic dependencies on the resources. There are different methods to approach this

problem:

Structured Buffer Pools: These deadlock-free routing algorithms have been

developed for store-and-forward computer communications networks [23, 26. 44. 45|.

In these algorithms the message buffers in each node of the network are partitioned

into classes, and the assignment of buffers to messages is restricted to define a partial

order on buffer classes.

Turn Model: The algorithms employing this method [24] break the cyclic de-

pendencies in the network graph by disallowing certain combinations of turns in the

routing. For example, in one of these protocols called Negative-first, the turns from

positive to negative directions (north to west and east to south) are made illegal. A

10

big disadvantage of this protocol is its inefficiency in utilizing the entire network even

when there is no deadlock.

Virtual Channels: In this method, each physical channel, c, 6 C . in the

network is composed of one or more virtual channels. c,; 6 C. the virtual channels

associated with a single physical channel share physical channel bandwidth, allocated

on a flit-by-flit basis. However, each virtual channel contains its own queue and is

allocated on a packet-by-packet basis independently of the other virtual channels.

Each virtual channel is considered logically a separate channel.

The use of virtual channels to construct deadlock-free routing functions is mo-

tivated by the definition of a routing function that maps C x .V to C. rather than

the conventional definition of a routing function that maps ;V x N to C (IS]. By

including C in the domain of the routing function, we explicitly define the dependen-

cies between channels. These dependencies are represented by a Channel Dependency

Graph D.

Definition I A channel dependency graph D for a given interconnection network I

and routing function R. is a directed graph. D = G(C, E). The vertices of D are the

channels of I. The edges of D are the pairs of channels connected by R:

E = {fa, Cj) | R(c, n) = Cj for some n 6 iV}

Since channels are not allowed to route to themselves, there are no l-cycles

in D. A necessary and sufficient condition for deadlock-free routing is that D be

acyclic (18]. Figure 2.8 illustrates the application of virtual channels to a 4-Ioop.

Since there is only one way to route around the network, a cycle exists in the channel

dependency graph. The existence of this cycle makes it possible for the network to

:U

fiterean-KKJa i <aa*< OeoenoancvQcm

Figure 2.8: Breaking deadlock by adding virtual channel, (a) Original: (b) Deadlock
free.

deadlock. To eliminate this cycle, we remove the 3-tuplets (c3,/ii,co) : i = 1.2 which

removes the edge (c3.co) from the dependency graph. To reconnect the network, we

add two new virtual channels c& and c7,. These channels are in parallel and share

physical channels with CQ and ct.

2.4 The Software Messaging Laver

The performance of a parallel machine critically depends on the end-to-end

cost of communication mechanism which is a combination of the routing time, the

time to get messages into and out of the network, and software protocol overhead.

Despite the advances in software messaging techniques, the software overhead still

contributes the most to this total cost.

Messaging layers provide high-level communication abstractions required by

the user applications which are not provided by the underlying network hardware.

These communication services provided by the messaging layer releave the user from

■VI

explicit network management. The most important services provided by the mes-

saging layers are message delivery, message ordering, deadlock/overflow safety, and

reliable delivery [28]-

Future parallel machines will present certain characteristics such as arbitrary

delivery order, finite buffering, and fault-detection (not fault-tolerance) which will

have significant impact on the software messaging layers. Arbitrary delivery order of

messages is usually caused by multipath routing (adaptivity) [20j. virtual channels

[16.24]. and time-sharing and process migration, (n multipath routing different parts

of the message take different routes and might reach the destination out of order. In

timesharing the network state is swapped and later resumed in a state which may

not preserve the delivery order. Finite buffering necessitates flow control to avoid

deadlock by ensuring that there is always enough space at the nodes to store packets.

Finally, lack of error-correction requires very reliable message delivery.

A messaging layer accommodates the services required by the user which are

not supplied by the network. To provide message ordering in a network, which does

not preserve delivery order, the messaging layer generally sequences and reorders

the packets with a sequence number and buffering out-of-order packets. To provide

deadlock and overflow safety in a machine with finite buffering the messaging layer

preallocates storage for transmission of packets. Finally, the messaging layer intro-

duces fault-tolerance into the network by source-buffering of message data and also

requiring acknowledgments from destination to manage the finite buffers.

A study by Karamcheti and Chien (28) shows that even in a very efficient

messaging layer, such as the Active Messages Layer on the CM-5, upto 50-70% of

the software cost of the messaging can be attributed to providing end-to-end flow

control, in-order delivery, and reliable transmission services.

:i:i

2.5 Failure Handling

The fault-tolerance of a network depends directly on the number of alternate

paths between its nodes, as long as there exists a routing algorithm which can take

advantage of these multiple paths. A connected network with faulty links and/or

nodes is called an injured network. To enable communication between non-faulty

nodes, in an injured network, the information on component failures has to be made

available to non-faulty nodes so as to route around the faulty components. This

information can be kept at each node, or be added to the message. Clearly, if a

node is equipped with the information about all the faulty components, it can easily

route the message to the destination through the shortest distance. However, it is very

costly, both in space and time, to provide the information on all the faulty components

to every node on the network. Therefore, it is essential to develop routing schemes

which can route messages in injured networks with the minimum information.

The fault-diagnosis in a multiprocessor system can be local or global. In global

schemes, the information about the faulty components has to be distributed among

the processors in the network. For example. Armstrong and Gray [5j propose an

efficient algorithm for broadcasting the failure news to all the nodes in a hypercube.

We present two adaptive routing algorithms for GHCs and W/v-Recursive net-

works which assume local fault-diagnosis. To make a node in the system capable of

performing this diagnosis, we can use Asynchronous Communication Protocol be-

tween the neighboring nodes in which the sender waits for an acknowledgment from

the receiver. A watch-dog timer generates a time-out interrupt, if the acknowledg-

ment is not received after certain period. At this point, the sender can either try

again, or just assume that the link to the neighbor is faulty and try to route the mes-

sage through another link. Since a link in müiticomputere connects only two nodes

:i-l

(no buses) assuming a link is faulty or assuming that the neighbor itself is faulty arc

equivalent.

Using asynchronous communication protocol between neighboring nodes in a

multicomputer system has the advantage of making the fault-diagnosis transparent

to the routing algorithm. The routing algorithm can simply assume that each node

is aware of the status of its own (inks.

CHAPTER 3
EVALUATION FRAMEWORK

The performance of a network can be evaluated through analytical modeling

or simulation. Contrary to common belief, these two methods do not replace each

other and provide complementary means to understand and evaluate the network

behavior.

Throughout this dissertation, whenever possible, we model networks analyti-

cally and use the developed models to investigate the effect of different parameters

on the network performance. Derivation of an analytical model allows us to gain an

in-depth understanding of the behavior of the network, and also observe the system

response to specific conditions quickly and easily. We use simulation to inspect the

validity of our analytical models. Although simulation does not present the behav-

ioral patterns of the network as well as the analytical modeling does, it represents an

accurate demonstration of the network behavior under a specific configuration.

However, certain network architectures, such as networks implementing worm-

hole switching or adaptive routing, are very difficult or even impossible to characterize

analytically. The strong channel interactions and coupled event transitions of worm-

hole switching and the state dependent behavior of adaptive routing makes analysis

of these networks impossible unless major simplifications and approximations are in-

troduced. Unfortunately, in many cases, these simplifications eliminate the critical

performance characteristics of the network. Consequently, we use simulation as the

principal tool to evaluate the performance of these networks.

35

16

This chapter describes the framework in which we evaluate the performance

of the interconnection networks. In section 3.1. we present the network node model

which we have adopted throughout our study. The node architecture in the simulator

is developed based on this model. In section 3.2. we describe the RSIM simulator de-

veloped at the High-Speed Digital Architecture Laboratory (HSDAL) which realizes

the network model in detail. Section 3.3 discusses some of the assumptions we made

for simple but fair comparison of the network simulations. This section also describes

the various traffic loads we created to verify our analytical models with the simulation

results. In section 3.4. we present some of the most important performance metrics

u-ed to evaluate multicomputer networks. In the next chapters, we will provide and

discuss results of the simulations.

3.1 Evaluation Model

The performance of a network depends heavily on the resource arbitration

policies such as routing, switching, and queueing adopted by the network architecture.

Support for multiple classes of traffic at a low architectural level requires careful

analysis of the influence of these policies on the interaction between traffic classes.

To evaluate the design options for the network, requires the ability to vary low level

architectural parameters in a single unified framework.

Figure 3.1 presents the model of a node in the network. The model contains

a computational unit and a communication unit. Although the simulator is capable

of simulating both units, in this study, our focus is on the latter. When a message is

initiated at a node, it is stored as a collection of packets in the message buffer. Each

node has only a single message buffer which holds all the messages initiated from that

node. The router inspects the messages in the buffer, based on a specified order, and

CPU

Memory

Swttfi

CrontMr Switch
Router

Communication
Unit

7~T
•MnnuOimai

Figure 3.1: The model of a node in the simulator.

routes the packets through different channels. Each channel contains multiple virtual

channels which are multiplexed at a granularity of one flit. Every virtual channel

has a send and a receive packet buffer which hold the packets at the source and the

destination, respectively. The packet flits are buffered in the channel queues while

they pass through intermediate nodes. The number of flits stored in the channel

queues depends on the adopted switching policy.

When a node receives the header flits of a packet, it decides whether to buffer

the packet in the receive packet buffer, to forward the packet to the channel queue on

the next node, or stall the packet. This decision is based on the destination address,

the routing algorithm, the switching scheme, and the state of the buffers and the

queues. By treating outbound virtual channels as individually reservable resources,

the model can invoke a variety of routing and switching schemes through flexible

control over reservation policies. The routing algorithm selects candidate outgoing

virtual channels, while the switching scheme determines whether or not an incoming

packet waits to acquire a selected outgoing virtual channel or buffers. Once a packet

.18

reserves an outgoing virtual channel, it competes with other virtual channels for

access to the physical link, through an arbitration policy. The model includes several

arbitration policies, including round-robin and priority-driven scheme.

3.'2 The Simulator

The network model is evaluated using the RSIM simulator. RSIM is a simu-

lation environment for studying different aspects of multicomputer networks. RSIM

which is implemented in C++ allows evaluating the interconnection topology, in-

terprocessor routing, communication flow control, application partitioning, and job

allocation.

RSIM simulates different topologies such as. hypercube. mesh, torus. WK-

Recursive, and user-defined structures. Each node has a communication unit and

a computation unit operating simultaneaously. A Multiple-Program-Multiple-Data

(MPMD) execution model is provided by allowing different jobs to run on different

nodes. Nodes Communicate by passing messages through the channels in the in-

terconnection network. The simulator supports wormhole, virtual cut-through, and

store-and-forward. as well as hybrid schemes, each under a variety of routing al-

gorithms. Each physical channel can contain multiple virtual channels which are

multiplexed based on user-specified schemes. This feature allows simulation of rout-

ing algorithms which use virtual channels to prevent deadlock. Different channel

widths, queue sizes, and number of virtual channels for each individual link can be

assigned in the simulation.

The router in the communication unit is a separate unit which can use different

adaptive, deterministic, and random routing routines to direct the messages from a

source to a destination. The communication can be simulated in flit- or packet-level

39

Figure 3.2: The user interface on the Windows version of the simulator.

applying user-defined flit or packet sizes. Permanent and transient failures of nodes

and channel links can be easily simulated. Different loads such as uniform-random

destination, bit-reversal, and transpose using exponential or uniform random inter-

arrival times, are simulated by running predefined jobs on the nodes which generate

such loads.

During the simulation, the necessary data is stored dynamically in a very

efficient manner. The simulator can use this data to animate the simulation and also

present histograms and graphical representations of the desired performance metrics,

such as throughput and latency, after the simulation. Both graphical menu-driven

and command-line user interfaces are implemented to allow the user to input different

configurations for the system. The results of the simulation can be observed through

graphs or files (Figure 3.2).

10

A parser is implemented to parse the configuration commands from a command

file. Using a high-level specification language, the user can define the network topol-

ogy and its configuration, the routing and flow-control policies, the traffic patterns

generated by each node, and also the simulation control parameters. Appendix A

describes the format of this command file.

To evaluate traffic mixing, the simulator associates each traffic class with a

particular routing algorithm and switching scheme on a set of virtual channels. The

tool includes an extensible set of routing-switching algorithms that interact with the

router model through a well-defined set of instructions. This enables the specification

of the routing-switching schemes to be separate from the router model. The algo-

rithms can formally query the status of the router in order to execute state-dependent

routing and switching decisions.

3.3 Performance Measurement

The workloads that we use to evaluate interconnection networks can vary in

four dimensions: traffic patterns, message size distribution, generation distribution.

and deadline distribution. Traffic patterns are the pairs of nodes that communicate

and are described by message sources and destinations. We use uniform random des-

tination selections for most of our simulation unless when we study the network under

locality consideration. Message size distributions determine the size of each commu-

nication. The effect of varying message sizes can be as great as that of the traffic

pattern. To show the effect of message size on the performance of the network, we try

different constant message sizes in the simulation. Generation distribution, or arrival

distribution, is the probability of a new message being injected into the network at

(I

each simulation cycle and i3 often normalized as a fraction of network bisection band-

width. In most cases we use Poisson distribution for the message injection. We also

study the network performance under bursty message injections. The interarrival

time between bursts is exponentially distributed. The Deadline distribution is used

to evaluate real-time systems and is the distribution of message deadlines, [n most

of our simulations we assume a constant laxity or a constant deadline distribution for

the messages. We also examine the performance of the networks under exponentially

distributed laxities,

To produce meaningful results, we allow simulations, using pseudo-random

generation, to gather statistics over multiple runs, using different seeds for the random

number generator. We try our best to gather statistics when the network is in steady

state.

In most of the simulations performed for this research, unless stated otherwise,

the simulator generates 2000 initial packets and then generates Buff packets until all

the 2000 packets are collected. At this point, the system has usually reached a stable

state and 5000 packets are generated which will be used to collect the performance

data. Fluff packets are generated until all the 5000 packets are collected.

3.4 Performance Metrics

The penetration of parallel systems into on-line transaction processing and

multi-media applications increases the importance of a variety of performance met-

rics. Network performance under load can be characterized by different performance

metricst latency, throughput, and loss ratio. Latency is measured from the time a

message is generated to the time that the tail flit of the message is delivered at the

destination node. If. due to resource conflicts, a generated message cannot be in-

jected into the network immediately, the message is queued and the waiting time in

the source queues is included in the latency. We report the average latency, latency

standard deviation, and latency coefficient of variation. The former is traditionally

used for best-effort traffic. The last two are often used to evaluate performance of

the network under guaranteed or real-time traffic.

Throughput is another important metric of network performance and is defined

as the total number of messages the network can handle per unit time. One method

of estimating throughput is to calculate the capacity of the network. [\ which is

the total number of messages that can exist in the network at the same time. The

maximum throughput of the network is typically some fraction of its capacity. The

network capacity per node is the total bandwidth out of each node divided by the

average number of channels traversed by each message.

While throughput at saturation is typically reported, other throughput mea-

sures are also relevant. First, throughput beyond saturation is an important charac-

teristic for network stability. Ideally, throughput should be maintained even if the

network is overloaded. Second, throughput fairness both over time, and spatially over

different points in the interconnect can be essential to good performance. For exam-

ple, one of the problems of the mesh network is that even with fair local arbitration

at each router, it is much more difficult to get throughput going across the center

of the mesh, than going away from it. Finally, to ensure timely completion of com-

munication, supporting real-time or fault-tolerant computation, nodes may require a

guarantee of throughput. Thus, the ability to provide such guarantees, absolute or

statistical, is an important performance attribute of networks.

I.I

Two most important performance metrics of real-time systems arc loss ratio

and guarantee ratio. Loss ratio is the fraction of the number of lost packets over

the number of total arrivals. Guarantee ratio is the ratio of the number of accepted

packets to the number of acceptable packets. In real-time systems, the main objective

of the scheduler is to ensure that the time requirements of the packets are met. or to

guarantee this statistically by ensuring that the packets meet their deadlines with a

high bounded probability. A real-time scheduling algorithm is often called optimal if

its guarantee ratio is one. i.e.. it can find a feasible schedule whenever such schedule

exists. Algorithms like rate monotonic [35J, earliest deadline first (EDF) [19|. and

minimum laxity first (ML) [I9j are shown to be optimal in this sense. However, in

designing real-time systems, we are particularly interested in minimizing the long-

term loss ratio [50J.

CHAPTER 4
DEVELOPMENT OF THE ANALYTICAL MODELS

The communication in multicomputer networks is directly affected by the

availability of communication resources, channels and buffers, and how these re-

sources are being managed. The variables which affect this resource management

either belong to the architecture of the network or are the characteristics of the load

which is applied to the network. The architectural variables are the channel switch-

ing scheme, number of virtual channels, channel arbitration scheme, routing, and

network physical characteristics such as. dimension, channel width, node and wire

delay. The load characteristics are the message inter-arrival time distribution, the

message length and the communication locality. In this chapter, we develop analyti-

cal models which reflect the effect of these variables on the latency and throughput

of the network.

4.1 Network Architectural Parameters

The performance of a multicomputer network depends heavily on the design

constraints such as limits on the channel width, node size, and bisection width. As

indicated in Chapter 2, the node size constraint is caused by the physical limit on

the number of pins or connections to the chip or the board which contains the node,

and the limit on bisection width is caused by the area constraint.

In this section, we will analyze networks comparatively based on the above

constraints. We will find closed-form expressions for the network latency under each

{.")

switching scheme considering the effects of switch and wire delays, as well as the

contention. We will use these models to find the effective latency for the special cases

of fc-ary n-cube. generalized hypercube. and WK-Recursive networks. These models

will be validated through comparisons with the simulation results. We will use the

models to study the effect of other architectural and load parameters on the network

performance.

•t.l.l The \fodel for Effective Latenry

The latency of a packet through a network is not only affected by the adopted

switching scheme, but it also depends directly on the network physical parameters

and the load characteristics. The network physical parameters include the cycle time

of a channel transfer. Tchan, and the channel-width. W. The load is characterized by

the message length. L. the number of hops the message has to travel. nhops. and the

message arrival rate, A. The latency through a network employing store-and-forward

switching can be expressed as

T,f (£, A) = Tcu* (nhops (— + w,f) J (4.1)

where w,f is the waiting time for a packet due to contention in a node and itself is

a function of the load characteristics, the routing, and the topology. Similarly, the

latency of a cut-through packet is

M M) = T«*.. (nhopt (f± + u,d) + llii) (4.2)

with L\ signifies the header length. When the network approaches saturation, the

w term in both equations dominate the remaining terms and the latency basically

16

becomes nhop, x w. In the cut-through switching, the waiting time. it?, depends on the

buffer size, and as the buffer size grows, u? approaches the waiting time exhibited by

the store-and-forward switching. In virtual-cut-through which employs buffers larger

than the size of a packet, w« = wt/ and as we will observe in the next chapter, as

the throughput is increased, due to the dominance of the tt? terms, the latency curves

for the store-and forward and virtual-cut-through merge.

Setting w,f and u;ct equal to zero yields the zero load latency for each switching

which reflects the effect of the switch and wire delays on the overall latency. The

length of a channel transfer can be minimally set equal to the sum of the switch delay

and the delay through the longest wire in the network. In the past, wire delays have

usually been ignored, due to their lower magnitude compared to the switch delays.

However, the advances in technology are improving the delay in switches while wire

delays have stayed almost constant. Soon, switches and wires with similar dimensions

will have comparable delays [lj.

Although we assume the clock cycle is equal to the sum of the switch delay and

the longest wire delay, it is important to note that, the influence of long wires on the

clock cycle can be mitigated by introducing multiple clock transmissions on longer

wires or, as it is done in wide area networks, allowing multiple bits to be in flight on

the wire at any given time. In this case, the channel propagation delay, 7^, will

be a function of the wire length, while the channel transmission cycle. 7^«,,, will be

less than 7^ and stays constant. In equation 4.2, Tprop will be the coefficient of the

first term in the bracket and 7^,, will be the coefficient of the second term. In our

analysis we assume 7^ = 7^; however, the effect of T^ £ 7^ can be easily

studied by changing the message length by a factor £*"«•
prop

Since networks are embedded in a two or maximum three dimensional space,

networks of higher dimension create uneven wire lengths. In a network, the ratio

of the longest wire to the shortest wire. a,„. is usually a function of the network

topology. In our analysis, we assume the delay of the shortest wire to be unity. We

also let the switch delay be greater than this delay by a constant factor, a,.

If D*vg signifies the average distance a packet has to travel, the equations for

the average latencies become

r,/(£.A) = (a. +Qtu)^D«vg(—+W,f^ (4.3)

rrt (£. A) = (a. + a,u) (j)mvt (^ + wjj + ~^-) (4.4)

As noted before, in both store-and-forward and virtual cut-through, which possess

packet-sized or larger channel queues, the contention parameter of the delay, w.

is basically the same. On the other hand, in networks implementing cut-through

switching with smaller than packet-sized queues, such as wormhole. a blocked packet

occupies multiple channels and contributes to the contention on all those channels

simultaneously which creates a completely different type of waiting time distribution.

Therefore, depending on whether the size of the channel queue is larger than the size

of a packet or not, two different approaches have to be adopted to find the distribution

of the waiting time.

Initially, we will find a model for the traffic in direct networks with larger than

packet-sized queues. We start by deriving an expression for the delay in a switching

node considering flit-sized packets. We are assuming the size of a flit is equal to the

width of a channel; consequently, a flit is transferred in one cycle over the channel.

Although, the assumption on flit-sized packets makes the communication indifferent

18

I - i
^7 II'

2 ■ ►'

•
•

•

f •
•

•
•

•

0,

-^cr^^

< ■■ 1 !

Injection Pact 1
W\J

Reception Pott

Switching Node

Figure 4.1: Model for a switching node.

to the switching scheme, later, we will extend the analysis to include larger packets

which makes the waiting time depend on how the packets are switched in the network.

For our analysis, we also assume that each node has ne network inputs and ne network

outputs. In direct networks, each node also has an input port and an output port

connected to the processor in that node. We refer to the former as the injection port

and to the latter as the reception port (Figure 4.1).

Kruskal and Snir in (32] derived a model for the contention in buffered multi-

stage interconnection networks. An important difference between these networks and

direct networks, which we are considering, is that the packet arrivals at a switching

node in a multistage interconnection network have a simple binomial distribution.

However, in direct networks the distribution of packet arrivals depends on the topol-

ogy and the routing. In our analysis we follow some of the steps that they took to

derive the latency model. We assume that a queue of unbounded capacity is asso-

ciated with each output port and in each cycle a flit-sized packet leaves the queue.

We assume that the network is synchronous, so that packets can be sent only at the

end of each cycle. We signify the number of packets arrived at each output queue in

I!)

a cycle n with i/„. Since at each node there are ne network inputs and one injection

port, for a total of ne + I inputs, in each cycle, upto nc + 1 packets can join each

output queue, [f we let the random variable qn represent the number of packets in a

queue in a cycle n. we will have

{qn - I + f„+t for qn > 0
(4.5)

fn+i for qn = 0

It is important to notice that even when the queue is completely empty, an incoming

packet has to get queued for . at least, one cycle, [n other words, the service time is

a part of the queueing time: and to find the waiting time, we have to subtract the

service time (in our case I) from the queueing time.

Equation 4.5 resembles the recurrence equation which describes the number

of customers in an M/G/l queue [31|. To find the average number of customers in

an M/G/l queue, the well-known Pollaczek-Khintchine (P-K) mean value formula

is used. We follow the path taken by Kleinrock [3tJ to derive the P-K formula

and diverge when he includes the assumption on a Markovian arrival distribution.

Additionally, we derive the second moment for the distribution of the number of

packets in an output queue which will be used to derive the variance of the waiting

time for a packet in an output queue. We are interested in the variance of the waiting

time distribution to evaluate the predictability of the system.

We use the shifted discrete step function defined as

(I for k > 0
U* = \ (4.6)

10 for it < 0

■so

and by applying it to Equation 4.5 we can express the number of packets in an output

buffer with a single recurrence equation.

«M-i = qn + «VM ~ Uin (■»■")

Taking the expectation of both sides of the equation, we will have

£[ff«+il = E[qn + un+l - Uu\ = E[qn\ + £K+,| - E[U,n\ (4.8)

If q signifies the^ limiting distribution of the random variable qn and the system is

ergodic (36) (a reasonable assumption.) the jth moment of qn exists in the limit as

n —» oo and is expressed as

lim ßfoil = Em (4.9)

Applying this to equation 4.8 yields the limiting distribution, namely.

E[q\ = E[q\ + E[v\-E[Ui\ (4.10)

or

m = E[Ut\ (4.11)

Now, if we square both sides of equation 4.7, we have

?n+i = ql + "*+l + üJL + 2?„f„+, - 2?n^n - 2t/n+l^,B (4.12)

#£, = U<tn and ?nC/,„ = ?* and also qnVn+i and fn+t^„ are products of two indepen-

dent variables. Applying these to equation 4.12 and forming expectations of both

."»I

sides, we get

E[<l2n+l\ = E[ql] + E[ujl+l\ + E[ü\n\+2E[qn\EWn+l]--lE{qn\-2E[un^\E[U1n\ (4.i:J)

Using equation 4.9. in the limit as n —* oc. we have

E[q2} = E\e\ + E[ü7\ + E[U& + 2£:{flI£W - -lE[q\ - 2E[Ui\E[v\ (-»-14)

Applying equation 4.11 and the equality V'ar(i>| = £[£2] — E[u\2 to the above equation,

we get

2E[q\(l- E[u\) = Var[v\ + E[v\ - E\v\2 (4.1.5)

Therefore, the average number of packets in an output buffer will be

Ffil - VwW . EW (4 16)
^"ad-ßWJ + T- (4a6)

To find the variance of the packet watting time in an output buffer we have to find

the second moment of q. In order to find E[q2]. we cube both sides of equation 4.7.

-3?X + *q.Ul ~ 3^+ltf,„ + 3„„+lC£ (4.17)

We form the expectations of both sides of equation 4.17 considering U*n = (f£n =

Uq„ and qnUqn = qn and also ?„"n+t and vn+ilfqn are products of two independent

variables. We will have

%n+t3] = E[qn
3\ + E[un^\ - E[UU\ - 6E[qn]E[vn+lj +

:)E[qn\ -1E{vn+l
l\E{UJ + :\E[un+l\E[UJ (4.18)

To get the limiting distribution, we allow n -♦ oo. Applying 1.9 and 4.11. we get

E[?\ = £fa*3j + W3\ ~ £1*1 " ^[q\E[ü\ + :J£(?21E[^1 +

3£[<7l£[*2l - 3£[<72] + 3£föj - :i£[*2]£[«>I + 3£(*|* (4.19)

Simplifying the above equation yields

Ft *i EW ~ EW ~ 3gftWl + 3g[PP + gffl(3 + 3£[^| - 6E[Ü\)
%I = 3d-£W) (0)

If we know the first and the second moments of the packet arrival distribution, v. we

can use equations 4.16 and 4.20 to obtain the values for E[q\ and E[q2\.

Now that we have derived the first and second moments for the number of

packets in an output queue, we can use this information to get the first and the

second moments of a packet queueing time distribution. By Little's Law. the average

number of customers in a queueing system is equal to the average arrival rate of

customers times the average time each customer spends in the queue. In our case,

the average arrival rate of packets to an output buffer is E[ü\, and also, based on our

assumption, the service time for each packet, x is one cycle. As mentioned before,

the service time is included in the queueing time, s; therefore, the average waiting

time for a packet in an output buffer will be

..«H-w-i-a-.-apg^-i <**>

").{

To determine the second moment of the queueing time distribution, we look more

closely at how the expectations for queueing time distribution and the queue length

distribution are evaluated. The waiting time is in terms of the channel cycle time

and the values that it takes can only be integer multiples of the channel cycle time.

Since, the service time of a packet, x. is one cycle, the number of packets in a queue

can directly correspond to the waiting time of the packets. However, the number of

packets in a queue is evaluated throughout the entire time while the waiting time is

only defined when the queue is not empty. In an empty queue, there is no packet and

waiting time has no meaning. We know that in a single-queue output, the channel

utilization, p = £[£J.J. is the probability that the channel is busy. Since 2 » I. E[i>\

signifies the percentage of the time that there is a packet in the queue keeping the

channel busy. We can use this to find a relation between the expectations of q and

the time spent in the queue..».

EW]--m (4-22)

As we can see. equation 4.22 for ; = I yields the same result obtained by the Little's

Law in equation 4.21. Since the service time is constant, its variance will be zero.

Consequently, the variance of the queueing time for a packet will be equal to the

variance of the packet waiting time. So, we have

Therefore, if the first and the second moments of the packet arrival distribution. P,

are known, we can derive E[q] from 4.16 and Sfö2] from 4.20 and use equation 4.23

to obtain the variance of the waiting time of a packet in an output channel queue.

*>l

To determine the average of the packet delay and its variance, wc have to

know the distribution of the random variable v. the number of arrived packets in an

output queue during a cycle. Unlike indirect networks [321. in our networks 0 does

not have a simple binomial distribution and depends directly on the topology and the

adopted routing algorithm. In the following sections we determine this distribution

for fc-ary n-cubes. generalized hypercubes. and IWv-Recursive networks using both

deterministic or adaptive routing.

4.1.2 Analysis of Latency in fr-arv n-cubes

In a i-ary n-cube, with randomly chosen message destinations, the average

number of hops a message has to travel, Dav9 = n^. where k4 is the average distance

a message must travel in each dimension. In a torus with unidirectional channels

kd — (k — l)/2. If the torus implements bidirectional channels, kj = k/-\ for even k.

and (k — l/fc)/4 for odd k. In a mesh, which lacks the end-around wraps of a torus.

fc = (*-l/*)/3.

Latency under Zero Contention

An important issue regarding ifc-ary n-cube networks is how to choose it and

n for a network with a given number of nodes, N. to achieve the best performance.

Without considering any implementation constraints, high-dimensional networks ap-

pear to perform better because of their lower diameter. A smaller diameter implies

reduced latency and, more importantly, much less channel contention. Figures 4.2

and 4.3 show the latency graphs under no physical constraints for three different Jfc-

ary n-cubes using cut-through and store-and-forward switching, respectively. These

graphs do not address the effect of the wire length on the latency.

■)•■>

•«-JMnodM. -»-lejMno»«. — t.048.578 nxM

0 2 4 a 8 10 12 t4 16 18 a

Figure 4.2: Average latency vs dimension using cut-through switching with no phys-
ical constraints. L = 250 bits.

ISOO
-•-JSSnam. -o-lOJMnodM. —- 1.048376noM

1000-

r
3
*
i

soo-

0 2 4 6 6 10 12 14 16 18 20

Figure 4.3: Average latency vs dimension using store-and-forward switching with no
physical constraints. I — 250 bits.

")6

However, the optimal choice of k and n critically depends on a variety of design

constraints. One of these constraints is the limit imposed by the wire density in the

network. As noted earlier, this limit can be represented by the network wire bisection

width. 7a,. For fc-ary n-cube networks with wraparounds (torus), the bisection width

is

•>;V *>V
^•.n) = 2P-=^r = -~ (4.24)

If the wraparound connections do not exist (mesh). 7 is halved. For a fixed-size

network (fixed .V). as network dimension n grows. 7 increases superlinearly. Since

the width of each channel is derived as W = ^, for a fixed qw, the channel width.

W. decreases rapidly as the dimension n grows. For a given message length, narrow

channels increase message latency, overwhelming the advantages of high-dimensional

networks.

For a binary n-cube. k = 2 meaning 7n,(2.n) = \VN. In order to compare

different fc-ary n-cube networks under constant wire bisection width, we set 7„, equal

to iV to normalize to a binary n-cube with unit-width channels. W{k.2) - I. There-

fore, the channel width W(k. n) of a fc-ary n-cube with the same bisection width will

be

l^(M)-2=|22£.| (4.25)

Under this assumption, each processing node connects to 2n channels, each it/2 bits

wide. Thus, the number of pins per node is d^, — nk. Figure 4.4 is the plot of the

pin density as a function of dimension for &-ary n-cubes with three different numbers

of nodes. Under the assumption of constant 7„,t low-dimensional networks have the

disadvantage of possessing more pins per node. However, with the increase in n. the

)l

«00
-«-ISSnodM. -o-lUMnod«. -»1.04&S78 noOM

Figure 4.4: Pin density vs dimension assuming constant qw.

number of nodes decreases very rapidly. This plot can be used to inspect if a network

which yields low latency also possesses a reasonable number of pins per node.

Substituting Datt} for a torus and equation 4.25 into equation 4.4 and assuming

a header length equal to the width of the channel, the zero-contention latency on a

torus under cut-through switching will be

r<t(M).= (a. + Q.)(2erJi + ^-iJ (4.26)

If the switching delay of the network dominates the wire delay, we can assume Tchan

as not being a function of the topology and being constant. Substituting k = iV«

into 4.26 and assuming Tehan = L, we get the latency equation under the switch delay

dominance,

rrt(L,0)^"(iV"9"
I)+2/:iV^ (4.27)

Figure 4.5 shows the average latency as a function of the dimension, assuming no

contention, for the previous Ar-ary n-cubes. For these plots, we assume L = 256 bits

Figure 4.5: Average latency vs dimension using cut-through switching with constant
rj and constant delay.

and constant wire delay which represents the case when the switch delay dominates

the wire delay.

As we can see from the plots, low dimensional networks achieve lower latency

than higher dimensional networks. The minimum is generally achieved when the

two terms of the latency are almost equal, or Daog ss £. For networks with few

dimensions, the latency due to the distance dominates. As n is increased, latency

is reduced until distance and aspect ratio, £. are equal. Beyond that point, the

fe component of the latency dominates. This is in contrast with the latency curves

under no physical constraints (Figure 4.2).

Following the same path, but using equation 4.3 instead of equation 4.4, we

can write the zero-load latency equation under the store-and-forward switching. The

average latency for store-and-forward under constant wire delay will be

Ttf{L,Q) = nL{l-N^-) (4.28)

-><)

«-a«nod»«. -o_ iajB4nodM. — t.04tsnoam

Figure 4.6: Average latency vs dimension using store-and-forward switching with
constant 7 and constant delay.

Figure 4.6 shows the average latencies using the store-and-forward switching. In this

case, the latencies monotonically increase as the network dimension increases and

the networks with the fewest dimensions, due to their largest channel width, have

the lowest latencies. This is in contrast with the latency curves under no physical

constraints (Figure 4.3).

If a i-ary n-cube is embedded in a plane, n/2 dimensions of the network are

laid out in each of the two physical dimensions. Since the total number of nodes

iV = fc\ each additional dimension contributes to y/k factor increase in the number

of nodes in each physical dimension. This increase results in a y/k increase in the

length of the longest wire. In other words, assuming planar mapping and linear Wire

delay, the ratio of the longest wire to the shortest wire in a Jt-ary n-cube will be the

same as aw and is given by

Q„ = (y/k)n-2 = /V<H±> (4.29)

«0

-<-2SAnodM. ^-UJ54nodM. — MV«J78

0 2 4 8 (10 12 M 16 It 20

Figure 4.7: Average latency vs dimension using cut-through switching with constant
q and linear wire delay.

Substituting 4.29 into equation 4.26 and simplifying the result will give us the equa-

tion for zero-load latency under cut-through switching for a A-ary n-cube with linear

wire delay.

rrt(^0) = (a, + ^-i))f^i -I)
+ 2LN^ (4.30)

Figure 4.7 shows the average network latency as a function of dimension for the

previous fc-ary n-cubes, assuming linear wire delay and a message length. L = 256.

and Q, = 0. In this case, a two-dimensional network always gives the lowest latency.

Under the linear delay assumption, latency is determined solely by the bandwidth

and by the physical distance traversed; and a two-dimensional network offers the

highest channel bandwidth and the most direct physical route.

As it was noted in chapter 2, for very short wires, the wire delay is a logarithmic

function of its length, or Tprop oc I + log a«,. Substituting this into 4.26 and some

simplifications yields the equation for zero-load latency under cut-through switching

•«-SanodM. -o-KJMnodM. — t.fl*lS7» nod«

0 2 4 « 8 10 !2 M I« 16 20

Figure 4.8: Average latency vs dimension using cut-through switching with constant
n and logarithmic wire delay.

for a Ar-ary n-cube with logarithmic wire delay.

rd <">-(-+('+G4M)(S,£T
-i)

+ 2LN* (4.31)

Figure 4.8 shows the latency results for cut-through switching under logarithmic wire

delay.

An important point we have noticed so far is that physical limitations favor

low-dimensional networks. However, this is true even when there is no bisection

width or node size constraint. This is due to the rapid increase in the wire length

the number of dimensions is increased.

as

Assertion 1 In a k-ary n-cube with a fixed number of processors, N, if the number

of dimensions is increased from n to n+c, the wire length increases by a factor of

Proof: Wc know that £ = :Vj"i where T? is the length of the longest wire in an

n-dimensional fc-ary n-cube. Therefore.

T£t± ..i-
'«+<: _ •) _ _ = V«"^ = V****«»

Analysis of Latency under Contention

If the Jt-ary n-cube implements dimension-order routing, the message moves

towards the destination from one dimension to another in a fixed order. This causes

the packets from different input channels at a node to be routed to an output channel

with different probabilities. This effect becomes more important for networks with

large index and consequently large hd. In these networks, a message has to travel a

longer distance in a dimension before switching to another dimension. This means

that a message continues, on the average, more on the same channel than switching

to other channels.

It is important to note again that since we assumed unit-sized packets with

single cycle channel transmission, the probability of a packet arriving at an incoming

channel (the arrival rate) will be the same as the channel utilization which signifies

the probability of finding the channel busy. In other words

p=E[0\.x=E[i>] (4.32)

If the probability of a network request from a processor in a given cycle (the average

injection rate) be A,n> and each message on the average has to travel Davg hops, for

rt.'l

Injection Pact Reception Port

Switching Node

Figure 4.9: Switching probabilities on an input channel.

a node with nc uni-directional channels, the channel utilization will be

tic
(4.33)

The network bandwidth per node, or the message rate for which the network reaches

saturation is obtained when p = I. At this point, the throughput of the network

reaches the network capacity, [\ defined in the previous chapter. For a *-ary n-cube.

Daug — nkj, and nc = n: therefore the channel utilization will be

P "— = A,nj^ (4.34)

We assume the routing probability of an incoming packet at a channel in a

given dimension is nonnegiigible only for the continuing channel in that dimension,

and for the channel corresponding to one lower dimension. The larger the index of a

network is, the more accurate this assumption will be. However, even for low index

values it will generate acceptable results. We also assume that the injected packets

at a node are steered to output ports randomly. Obviously, under dimension-order

()l

routing, this assumption is inaccurate and the probability that a packet is injected

into a channel depends on the dimension of the channel. However, this assumption

prevents the model to become too complex and. on the average, yields reasonably-

good results. Figure 4.9 shows the model of a node switch. The packet probability

p in a channel along a given dimension is composed of three components. /?,. p». and

pe. pi corresponds to the packets injected into a dimension from the processor at the

node, or the packets received by the processor from that dimension, p, signifies the

packets that switch to a dimension. And finally. pc corresponds to the packets which

continue along the same dimension. As defined before, the probability a packet is

injected by the processor at the node is \in]. and the probability this packet is routed

to a given output channel in the node is l/n. Therefore, p, = \tnj/n = plnkd. p{

also signifies the probability a packet exits the network at a node.

Since a packet switches dimensions on the average once every k* hops, the

probability it will switch to one lower dimension in any given cycle is p, ~ {p -

Pi)/kt = P(l - ^/nkd){i/kd). A packet which stays in the network and does not

switch has to continue in the same dimension, and therefore. pe = {p—Pi){ I -1 Av) =

p{l-[/nkd)(l-l/kd).

Assuming the three above probabilities for a packet at a switch, we can write

the distribution for v as

f(i-w)U-/».)(i-*) * = °

(I -p,-)(l -p,)Pe +(L -Pi)p,{\ -Pc) +Pi(l -P,)tt ~Pc) V = I

P{&) = { (I - pi)p,Pc + PipM ~ Pc) + P.-(l - PM)PC V-2 ("t-35)

PiPtPc V ~ 3

I 0 v > 3

().->

We find the expectation of this distribution as

E[u\ = £,i>p(ü)
1=1

= Pi + P.+Pe

= P (4.36)

which matches with our previous result of equation 4.32. Also, the second moment

of the distribution will be

a
£[**! = Z*

2
PV»

•?=!

= P + ZpcP.+'ip.pi + lpiPe (4 37)

= P+T-H + t/n) - %(t + 2/n + l/nJ) + %{2/n + l/n2) - -^ K* *-d *3 tin ̂

and since f ar(i/j = E[v7\ - £[tf, the variance of v can be approximated as

Var{0\ a ^ -p2 + 2^(1(1 + l/n) - 1(1 + 2/n)] (4.38)

Substituting equations 4.36 and 4.38 in 4.21. we get

Er=(r^)(^(1+1/n)-i(I+'-/")i («9»

Similarly, the third moment of the distribution will be

E[»3} = X>3p(*)

— p + 6pep, 4- 6p,pi + 6p,77c + 6piptpe

«6

= P+T-(1 + t/n) - ^-(1 + 2/n + l/n2) + %(2/n + l/n') -

6p* 6£3

^n2 + nk\
+ -~(I - I/** - 'linkt + :l/n'*2 - l/"J*3) (1,10)

Now that we have derived the first three moments of the arrival distribution

of a k-axy n-cube. we can use the relations in the previous section and calculate the

mean and the variance of the packet waiting time. However, upto this point, we

assumed unit-sized packets and single-cycle packet transfers. We now extend the

model to include packets of arbitrary size L. Each new packet takes fe cycles to

transfer through a single link, or x = ^. where W is the width of the channel. To

reflect this increase in the service, we increase the delay through the switch by a

factor ^, namely

*=ü7<T^(1 + 1/"|-;I<1+2/">I (w"

On the other hand, the increase in service time will also increase the channel utiliza-

tion represented by equation 4.32 by a factor £. The new channel utilization will

be

P = %^ (4.42)

To get the new relation for the variance of the waiting time, we use the relation

Var(Bw) = B2Var{w), where B ~ £.

Validation of the Model

To verify our delay model we tested it through simulations against several

network types and a variety of workload parameters. Our simulator generates packets

of length L at every node with poisson distribution with a specified average rate. We

t)<

configure the simulator to use dimension-order routing to steer the generated packets

to randomly chosen destinations. The simulator collects the data to generate the

required statistics such as the average latency, throughput, and channel utilization.

To be able to compare the model with the simulation results, we have to use

the constant wire and node delay model, using a constant cycle time of T<.h<in = I.

and D*og = nkj the relation for the average latency under both switching times will

be

rrt = nki (fr + ^[£(1 + 1/n) - £(l +2/n)|) + ^ (4.43)

7./-«^& + flfe[i(l + l/«)-£(l+2/n)l) (4,14)

We assume Lh = W = I which makes the packet length be I channel-widths. Fig-

ures 4.10 and 4.11 compare the network latency predicted by the model and through

simulation for an 8 x 8 torus using packets with length L = 16 under both switching

schemes. We can see that the latency predicted by the models are very close to the

actual latency measured through the simulation. Both models underestimate the la-

tency slightly at high loads which can be attributed to the adopted dimension-order

routing which causes packets through higher dimension channels suffers higher than

average delays.

To verify the assumption we made on the impact of the packet size on the

latency, we ran simulation with different packet sizes on networks with different di-

mensions and radices. To focus on the effect of the packet size, we kept the injection

rate at a constant level which yielded a channel utilization of 0.5. Figures 4.12

and 4.13 show the comparison of the results obtained from the simulation and the

to

Cut-moup Snaoing on t ran«

aom 0.004 aoos aoos aot ooiz oot4 oote aois
annul iniKaonRai

Figure -4.10: Comparing the model with the simulation under virtual cut-through
switching. Dashed line correspond to the simulation results.

■00
Stov-tret-Foiwiri SHNCNK} on ■ Ton«

'o 0.002 aoo< aoos aoos aot aot2 <um oois aois
Ounwl teuton RM

Figure 4.11: Comparing the model with the simulation under store-and-forward
switching. Dashed line correspond to the simulation results.

(i!)

Cn . -~ai -«-1< -o-ll ---1.4
K

M :
1

n> •
■

m

fM ■ >

V a

r ■
*

(1
0

0
0

•
.40 >^r "»

L
^"o

0

*

« * H

X *

20

-■"St

« X

10

n

<^*■"* '

0 2 4 s s 10 12 14 t«
Ptckac 9a (Fni

)anson Figure 4.12: Studying the impact of the packet size on the latency. Compa..^..
of the model with the simulation under virtual cut-through switching. Dashed line
correspond to the simulation results.

models for each switching scheme. The depicted results demonstrate that the as-

sumption we made, on the linearity of the latency with the packet size, was in fact

an acceptable assumption.

Ü3—Analysis of Latency in Generalize Hvpercubes

In an n-dimensionai generalized bypercube signified with the set of radices

{*" *«)' the «umber of nodes, iV = ftf^ A*, under randomly chosen message

destinations, the average number of hops a message has to travel, Dava = £n_ fc\

where k'd is the average distance a message must travel in the i-th dimension. Since

in a single dimension, using bi-directional channels, the distance between any two

distinct nodes is one, the overall average distance in a dimension i will be- *i = **=*■

Therefore, the average distance in a GHC with bi-directional channels is

(4.45)

70

*J1 ■ — «Jfc -'- UJfc -«- O; -O-1J

Figure 4.13: Studying the impact of the packet size on the latency. Comparison
of the model with the simulation under store-and-forward switching. Dashed line
correspond to the simulation results.

Latency under Zero Contention

The wire bisection width of a GHC with W-vride channels is

Ytt'Jfc.
nut==r,xW=-— f-^U-^J (4.46)

where kmin is the radix with the smallest magnitude. For simplicity, we assume

that all the radices are even and equal. Under this assumption, Daug = ,k an<*

7u/ = ^^rp- We will analyze the zero-load latency in a GHC with only linear wire

delay under different constraints and switching schemes.

Similar to the fc-ary n-cube, if a GHC is embedded in a plane, n/2 dimensions

of the network are laid out in each of the two physical dimensions and each additional

dimension contributes to y/k factor increase in the number of nodes in each physical

dimension. This increase results in a \A increase in the length of the longest wire. In

other words, assuming planar mapping and linear wire delay, the ratio of the longest

wire to the shortest wire in a GHC will also be the same as aw and is given bv

a.„ = (v/t)n-, = .V(i-i) (.U7)

Considering cut-through switching and using the results above with the assumption

of unit header length the latency equation is

rrt (1.0) = (a, + ,**-*») (n(I - ,V*) + A) (.U8)

Let us initially analyze the network performance, assuming no contention and no

physical constraint, such as wire density or pin numbers. With that assumption we

allow a constant channel width over networks of all dimensions. We are aware that

assuming a constant channel width. W. over all dimensions indirectly means that the

size of the system can grow without any physical constraint bounding this growth

which is something completely impractical. However, this study will allow us to study

the effect of the signal propagation alone on the overall average latency.

Figure 4.14 shows the latency under the constant channel width constraint

when & a 24.

Since for a binary n-cube with bi-directional channels qm = %&■. to compare

different GHC networks under constant wire bisection width, we set TJW equal to £

to normalize to a bianry n-cube with unit-width channels, W = I.

writ. \ 4j7„,(2,n) 2
W{k-n)—m—k <U9>

Under this assumption, each processing node connects to n(k - I) channels, each

2/k bits wide. Thus, the number of pins per node is dw = !^ii: Figure 4.15 is the

-«-SOnodM. -o-16 J84 nod«. — «««78

0 2 4 t 8 10 12 M «6 «« M

Figure 4.U: GHC average latency vs dimension using cut-through switching with
constant ft.

plot of the pin density as a function of dimension for GHCs with the three different

numbers of nodes. As we can see from the figure, under the assumption of constant

qw, the number of pins per node monotonically increases as n increases. This is in

contrast with the results obtained for the fc-ary n-cubes. This plot can be used to

inspect if a network which yields tow latency, under the constant wire bisection width

assumption, also possess a reasonable number of pins per node.

Analysis of Latency under Contention

In a GHC with dimension-order routing, the message moves towards the desti-

nation from one dimension to another in a fixed order. This causes the packets from

different input channels at a node to be routed to an output channel with different

probabilities. Despite this similarity with the fc-ary n-cubes, in GHCs a message

travels an entire dimension in maximum one hop. On the contrary, in fc-ary n-cubes.

a message has to travel a longer distance in a dimension before switching to another

-i-ZMnodtt. -o-IBM* ram. — i wa.378 nodM

Figure 4.15: GHC pin density vs dimension assuming constant qu

dimension causing a message to continue, on the average, more on the same channel

than switching to other channels.

In our analysis for the fc-ary n-cubes, we ignored all except three routing prob-

abilities of an incoming packet at a channel in a given dimension. This assumption

which was mainly made to simplify the derived contention model, was more accurate

for networks with large indices. However, in a GHC, a similar assumption will be

invalid, because no matter how large the network index is. the entire dimension will

be traversed in one hop.

In this section, we will find a model for the packet latency in a GHC considering

the routing probabilities through all the channels. Again, initially we assume unit-

sized packets and later extend the model to include larger packets. Due to the

unit-sized packets and single cycle channel transmission, the probability of finding

a channel busy (the channel utilization) is the same as the probability of a packet

arriving at an incoming channel (the arrival rate).

We assume the traffic from each node is generated by a poisson process with

arrival rate A,n;. Also, assuming the message destinations are uniformly distributed

and independent, the average distance that a message has to travel will be "1 "'•

hops. Since each node has n{k-1) bi-directional channels, the overall average channel

utilization will be

9 n(Jt-l) it-

Later, we will prove that in fact the average utilization of each channel, independent

of its dimension, is '•£*-.

If you recall, in our analysis of &-ary «-cubes, we assumed that the injected

packets at a node are steered to output ports randomly. Obviously, under dimension-

order routing, this assumption is not completely accurate and the probability that

a packet is injected into a channel depends on the dimension of the channel. Here.

we abandon that assumption and find the exact routing probability of an injected

message into each dimension.

When a packet is injected by a processor into the network, the packet is routed

in the first dimension, unless both the source and the destination lie in the same

coordinate at that dimension (£ probability). In other words, the probability that

the message is routed into the first dimension is ^-. Since the node has k— I channels

connected in each dimension, the probability of a message being routed into one of

the channels is \. In general, the probability that an injected message by a node is

routed to a specific channel in the <f-th dimension is p.

Since GHC is a symmetric topology, under uniform destination selection, we

can model one of the nodes as a representative of all the nodes in the network. On

this representative node, if p\ signifies the probability of packet arrivals at the i-th

I)

output channel in dimension d. signified by Q where I < i < fc - I. we will prove

that p'd is equal to the overall average channel utilization, p. obtained by equation

1.30.

Assertion 2 In an n-dimensional GHC with index k. if the probability that a node

injects a packet into the network is Am;. the average probability of packet arrival at

any output channel is '-^J-.

Proof: We consider one of the k - I output channels in dimension d. say channel Q.

Assuming the routing is done from low to high dimensions, the packets arrived at

this output channel can come from any of the (</- I){k - t) input channels connected

to the node in the first d - I dimensions or from the injection channel in that node.

In other words, v. the number of packets arrived at an output queue, can acquire

values ranging from 0 through (d - l){k - I) + I. If the packet injection rate from

the processor is A,n;. the probability that an injected packet is routed to channel Q

Is ^L. Similarly, the probability that a packet from any of the k - I channels, say

channel Cj\ in dimension j, where j < d, is routed to channel Q is pj^-. where p)

is the packet arrival probability at the f-th input channel in dimension j. Since pj

for all I < i' < Jt - I is the same, we show this probability by pj which represents the

packet probability in only one of the channels in the ;-th dimension. Therefore, the

overall packet arrival probability for our output channel is

.*-^+<*-l>|ji£r (4-3"

Again, pd represents the packet arrival probability at only one of the k - I output

channels in dimension d. We prove that if p, = -*§*■ for \- < j < I, then pt = '-J^L.

70

Using this and the fact that px = ^. we can prove that p4 = £ = p for all </.

Prf

i i_l i ' i

*■ m=l * m=2 *•

& + it A*'
fl !_!

(4.52)

Using equations 4.50 and 4.52, we have proved that pi- p for any output channel.

This is an important result meaning that the average packet arrival probability of all

the channels are the same and equal to LjL.

4.1.4 tWv-Recursive with Deterministic Routing

In symmetric networks such as tori, under randomly chosen message destina-

tions, all the channels are utilized uniformly. In the previous section, this uniformity

allowed us to model one node as a representative for all the nodes in the network. In

WÄ-Recursive networks, if message destinations are chosen randomly, different links

will have different throughput. Figure 4.16 depicts the number of packets transferred

through each link in a (3,3)-WKR when each node sends messages to all the other

nodes. As the figure shows, with identical channels, the unbalance of traffic creates

bottlenecks in the network. In a (W, £)-WKR these bottlenecks happen at the links

which connect the (W, L - l)-WKR clusters. These links convey the largest amount

of traffic and are highlighted in Figure 4.16. The ratio of the messages passed through

these links to total messages passed through all channels is

Figure 4.16: Packets transferred through each link if each node sends messages to all
the other nodes in a (3.3)-WKR.

a =
WL-\ x WL-l ^ W1L-2

:V x :V x D, a v<3 .V*D,
(4.53)

a eg

where jV = WL is the total number of nodes. To find the average distance a message

travels in a W7\-Recursive network under uniform random destination of messages.

we find a closed form expression for the recursive equation presented in (21] which

yields the average message distance. If D[W, L) represent the diameter of a (W. L)-

WKR. H{W,L) be the average distance between any two nodes, H'{W. L) be the

average distance between two nodes that lie in two distinct (W.L — L)-WKR clusters,

and H"(W, L) be the average distance between two nodes of a (W, £)-WKR such that

one node is the corner node of the {W, L)-WKR, the following equations hold

iw-i)j[r(w,L-i) + D{w,L-i) + i) + trWL-i)
H {w,L) = — :— ff ~—

H'(W,L) = 1H"{W,L-\) + \

//(w.z;) = jjT

Solving the above difference equations we derive the closed form solution for each

parameter

H"{W.L) = (l^i)(2t-t)for/:>0 (4.54)

(W _ I \ *> — IV
J2L-L) 2* + '-fir- for t > 0 (4.55)

[n this section we find a closed-form expression for the waiting delay a packet

incurs in a link between the two (W.L- 1)-WKR clusters of a (H\ £)-WKR network.

Under random destination of messages this waiting time is the worst among all the

links and is a good representation of the network condition. In section 4.3 we study

the effect of communication locality on this delay. Again we assume that a queue

of unbounded capacity is associated with each output port and in each cycle a unit-

sizea packet leaves the queue, this causes the probability of a packet arriving at an

incoming channel be the same as the channel utilization, p. If the probability of a

message injection by a node in a cycle is Ainj, the probability of a message arriving

at a specific channel connecting two (W. L - l)-WKR clusters is

p = A,n>iVDa„aa = \injW
L-2 (4.57)

Figure 4.17 shows the model of a node switch. The packet probability, p, in

the channel of interest is composed of k (or W) components, pi, p\, upto pk-\- Pi

corresponds to the packet injected into the channel by the processor or received from

Injection Port Reception Port

rCl TC,

Figure 4.17: Switching probabilities of the channel.

the channel by the processor. As before, we assume that the injected packets at a

node are directed to output ports with equal probability: therefore. />* = Xinj/W =

p/WL~l. Also, it through pk-i correspond to the packets steered into the remaining

channels on the node from the channel of interest. We can see from Figure 4.16

that the ratio of the messages passed through each of the channels to total messages

passed through all channels is

3 =
WL'1 x(l + W + ... + WL-2)

iVx/Vx D, avj

WL x /V x 0,
WL~l - 1

NW[W - l)Dava

ttvg

so

Therefore, the probabilities of a message arriving at each of the remaining channels

on the node are equal, called pe. and is

C-l.58)

Substituting for Ain/ from equation 4.57 yields

Pc = (W-l)
(4.59)

Using the above information, we write the distribution for v as

f(l-p,)(l-Pc)*-1

Pi(l - Pc)k~l + {k - 0(1 - P<)Pc(l ~ Pc)*"'

(it - l)Pi/>c(l - Pc)
k-2 + (*-l)(l - P,)p?0 ~ Pc) lfc-3

p(*) = < (4.60)

PiPc

U v > k

We find the expectation of this distribution which will be

k

E[0\ - £>p(*)

= Pi+(k-l)pc

= P (4.61)

S[

and the variance of the distribution will be

Vat\v\ = E[u2} - E[ü\2

k

■= T.^PW-P* (4.62)

4.2 Routing

Under dimension-order routing, packets from different input channels at a

node are routed to an output channel with different probabilities. This effect can be

mitigated if adaptive routing is employed. Since, under adaptive routing, the packets

do not traverse the dimensions in a specific order, we can assume that packets route

to each dimension at random. This causes the packet arrivals to an output queue to

have a binomial distribution.

Considering the £-ary «-cube, in one cycle, an output queue in a dimension can

accept upto n - I packets from the input channels in the remaining dimensions and

one packet from the injection port for a total of n packets. At each cycle, a packet

arrives at an output channel with the probability p where p - A'"'^"f. [f we assume

a minimal adaptive routing, under which a packet travels the same distance as in

dimension-order-routing, Daog = nkd. Thus, the probability of packet arrivals to an

output channel will be, p = Xinjkd. Under adaptive routing, all the input channels

contribute equally to this traffic. Therefore, the probability that a packet is arrived

at an output channel from any input channel, or the injection port, will be A,nj.

If we again assume that v is the number of packets joining a fixed output

queue, we can see that v has a simple Bernoulli distribution b(.;n; A,nj/n). The

s->

expected number of arrivals will be

E[*\ = n(\in,/n) = \tn) H.63)

and the variance of v will be

Var[v\ = n(AiB|/n)(l - A,-»,/«) = Am;(t - \in,/n) (4.64)

Plugging the above equations in 4.21, we get the average waiting time in a fc-ary

n-cube under minimal adaptive routing

(l-t/rz)Atn; (46.}

2(t-A,„;)

Several adaptive routing algorithms have been proposed _for fc-ary n-cubes.

Chalasani and Boppana compare a few of these algorithms in [8j. Appendix B of

this thesis presents two adaptive routing algorithms for generalized hypercubes and

WR-Recursive structures.

4.3 Communication Locality

In most of our analyses, we assumed that the message destinations were ran-

domly chosen from all the nodes in the network. Despite several software practices

such as memory interleaving and uniform distribution of parallel data structure which

tend to spread accesses uniformly over all nodes, this type of distribution rarely hap-

pens in practice. Majority of software practices attempt to decrease the communi-

cation overhead by increasing the locality of message destinations. Communication

.S:i

locality improves the performance of the network by decreasing the base network

latency and also limiting the network bandwidth required by the application.

One major advantage of direct networks over indirect networks is that they

can take advantage of the locality in parallel applications. Informally, we say that

communication locality exists when the likelihood of communication to various nodes

decreases with distance. Packets destined for neighboring nodes not only travel fewer

hops, but also consume a smaller fraction of the network bandwidth. In this section,

we include the effect of communication locality on the latency models we developed

previously.

We can extend our models to account for communication locality by intro-

ducing a simple locality model. We define the locality fraction I as the fraction of

all processors that are potential candidates to receive a message from a source node.

Furthermore; for a given source node, we allow the message destinations be randomly

chosen from a subdivision with a smaller diameter than the entire network. In fc-ary

«-cubes and GHCs this subdivision can be an n-dimensional subcube with N x f

nodes centered at the source node. In a {W. £)-WKR. a (W. £')-WK*R. where V < I

and contains the source can bound the message destinations.

Focusing on the fc-ary n-cubes, let us consider a two-dimensional iV-processor

torus in which nodes are represented by their x and y coordinates. Given a locality

fraction I, destination nodes for messages originating from source node (ij) are

randomly chosen from the set of nodes with coordinates (x 11 < x < i + y/ltf - l.y |

j <y <j + y/lN- 1). Other forms of communication locality could also be realized

by using some probability function to represent higher than average access likelihoods

to nearby nodes, or to favor straight through paths over paths that require turns.

SI

With the above locality model, a packet travels an average distance of k«

in each dimension, for a total of nkji hops from source to destination, (."rider two-

dimensional mapping, the average distance traversed in a dimension can be expressed

as

k« = ((W- - D/2 = ((l/nk - 0/2 (4.66)

The average latency can be derived by replacing k* in equations 4.43 and 4.44 with

fa. The same substitution is necessary in 4.42 to compute the channel utilization, p.

Destinations chosen randomly over the entire machine correspond to (= I.

Locality affects the network performance by decreasing the latency and in-

creasing the effective throughput of the network. Ideally, the network reaches full

capacity when all channels are fully utilized, that is, when p = Lx'^kd = I. The peak

network throughput is messages per cycle per node is ^. where B - ^: or is £ in

flits per cycle per node. However, when communication locality exists, the through-

put increases to j*- flits per cycle per node. Similarly, the base network latency of

nki + B hops under cut-through switching decreases to nkdi + B when locality exists.

Under store-and-forward. the base network latency decreases from nkjB to nkMB.

In other words, locality increases throughput by a factor A-, and decreases the base

network latency by the same factor (under cut-through switching, when nkd » B).

Locality improves latency because it reduces both the number of hops per

packet and average contention delays. As displayed in Figures 4.18 and 4.19, with a

light load of A,n> = 0.001, latency reduction is largely due to the fewer number of hops.

At light loads, latency is linearly related to k« or to 0ln. which is clear from 4.43 and

4.44 when the contention component is ignored. For example, when Atnj = 0.001, for

a LK-node machine (n = 2 and it = 32), the average latency for randomly selected

•SO

«mo» ■ — O.OIS; -*-O.Ol£ -«-OOOt

Figure 4.18: Effect of locality on communication bandwidth and latency on a *-ary
n-cube with n = 2. k = 32, and B = 4 under cut-through switching. Dashed lines
correspond to model predictions.

3S0

300

kunWi. —0.015; -'-0.012: -»-aOOl

Figure 4.19: Effect of locality on communication bandwidth and latency on a fc-ary
n-cube with n = 2, k = 32, and B = 4 under store-and-forward switching. Dashed
lines correspond to model predictions.

S6

destinations is roughly 35. When the average distance in a dimension decreases by

10% (iin = 0.9), the latency decreases by the same factor to :ll.

The impact of locality is much more significant when contention is high. In

this case, the latency reduction due to locality is largely due to a reduction in the

bandwidth requirement. The latency at high loads is proportional to ,_\J;S^- For

example, the average latency drops by over 25% (from 67 to 50) for the higher load

of AIBi = 0.012. when 0n = 0.9. Of this decrease, over 19% is due to the reduced

bandwidth consumed, while less than 6% is due to the fewer number of hops. Thus, we

see that communication locality has a much stronger effect on network performance

through reducing the consumed bandwidth than through reducing the base network

latency. The proportional impact of locality is even more significant at higher loads.

When communication locality exists, low-dimensional networks outperform

networks with higher dimensions. Although low-dimensional networks have shorter

wires and smaller bisections, their lower available bandwidth and higher base la-

tencies reduce their effectiveness. Locality mitigates these negative aspects of low-

dimensional networks by reducing the effective distance a message travels, conse-

quently decreasing bandwidth requirements and the base latency.

CHAPTER ö
SINGLE-MODE TRAFFIC COMMUNICATION

Future multicomputers will run a broad group of applications which require

distinct qualities of service from the multicomputer network. The coexistence of

real-time and non-real-time applications in these systems necessitates a fresh look

on the parameters of these networks and a reevaluation of their design criteria. The

exhibited quality of services depend not only on the network properties, such as

channel width, diameter, node delay, wire delay, switching technique, and routing,

but on the load characteristics, such as the message inter-arrival time distribution,

the message length, and the degrees of the communication locality. In the previous

chapter, we investigated the effect of these architectural and load parameters on the

performance of the network through analysis and simulation. In this chapter, we focus

on the switching schemes and compare their average performance and predictability

through simulations.

In a multicomputer network, the switching scheme controls the flow of pack-

ets through the network by exercising different resources at nodes along a packet's

route. This section evaluates the ability of wormhole, virtual cut-through, and store-

and-forward switching to accommodate different performance requirements. Each

switching scheme is best-suited for certain traffic classes with particular character-

istics and performance requirements. The method each switching scheme employs

to allocate buffer and link resources determines the average packet latency and its

variance and also affects the influence of in-transit packets on other network traffic.

87

SS

A««i9i PKM U«ncv tar Off««ni S«*Mng Sefwim

O.O0S 0.01 OOtS Q.02 OCÖ
Otar«»Ti»ougnoui(p«*««*vö«».vcT. x. WH.-*- SF.—

Figure 5.1: Average latency on a packet transfer.

•?.l Average Latency

Store-and-forward switching scheme requires an arriving packet to buffer com-

pletely before transmission to a subsequent node can begin. In contrast, cut-through

methods, such as virtual cut-through [30| and its special case, wormhole switch-

ing, [12], try to forward an incoming packet directly to an idle output link. If the

packet encounters a busy outgoing channel, virtual cut-through switching buffers the

packet, while a blocked wormhole packet stalls in the network pending access to the

link.

To perform a comparative study on the three switching schemes we ran a series

of simulations on an 8 x 8 mesh network with one virtual channel per physical link and

carrying 16-flit packets using dimension-ordered routing. Each node generates packets

with exponentially-distributed interarrival times and uniform random selection of

destination nodes. Figure 5.1 shows the average end-to-end packet latency for the

three switching schemes as a function of average offered throughput per node which is

the average number of packets generated in a single cycle by a node. As we can see in

.S«)

the figure, both wormhole and virtual cut-through switching perform well at low loads

by avoiding unnecessary packet buffering at intermediate nodes: however, wormhole

performance degrades abruptly with an increase in traffic. At high loads, virtual

cut-through and store-and-forward performance gradually merge, as high network

utilization decreases the likelihood that an in-transit packet encounters an idle output

link.

Virtual cut-through and store-and-forward consume network bandwidth pro-

portional to the offered load by removing blocked packets from the network. On

the other hand, a blocked wormhole packet stalls in the network, effectively dilating

its length until its outgoing channel becomes available. As a result, wormhole net-

works typically utilize only a fraction of the available network bandwidth (15. 38].

as seen by the early saturation of the wormhole plot in Figure 5.1. At higher loads,

this effect enables store-and-forward to outperform wormhole switching, even though

store-and-forward introduces buffering delay at each hop in a packet's route. As we

will see later, if virtual channels are used in conjunction with wormhole switching,

the effect of blocking can be mitigated to some extent: however, channel contention

still creates dependencies amongst packets spanning multiple nodes.

The sensitivity of wormhole networks to slight changes in load, including short

communication bursts (16), complicates the use of wormhole switching for guaran-

teed traffic. We will delve into this effect later. In spite of this sensitivity, wormhole

switching is particularly well-suited to best-effort packets, due to its low latency and

minimal buffer space requirements. While flow-control costs limit the utility of worm-

hole switching in distributed systems, parallel machines and multicomputer networks

can dynamically transfer or stall wormhole flits without complicating buffer allocation

for other traffic. In the next chapter, we will describe how, with effective flow-control

<)0

UMTCV CMACMM <* Vtnmon Of Moa tar OAOTW SKtnmj Sammm

"o aoos aoi aois o.<s ftas
OI*t»d Through« (p«cfc««tre»«l.ver« JL. WM«-O- $F.—-

Figure 5.2: Latency coefficient of variation on a hop.

and arbitration schemes, best-effort packets can employ wormhole switching without

compromising the performance of the guaranteed traffic.

3.2 Predictability

Although best-effort communication requires low average latency, guaranteed

communication demands predictable network delay and throughput. A good measure

of predictability is the coefficient of variation which is the ratio of the standard

deviation to the mean [34|. Figure 5.2 shows the coefficient of variation for packet

latency for the three switching schemes. Since latency characteristics vary depending

on the distance between source-destination pairs, the graphs present the changes in

coefficient of variation for latency per hop.

Across all loads, store-and-forward incurs the least variability since packets

deterministically buffer at intermediate nodes. Coupled with static routing, a store-

and-forward transfer utilizes deterministic buffer and channel resources at fixed nodes

and links along the route. This greatly simplifies the allocation and scheduling of

!)l

200
UMiicy SUMM OMtaoo lor MMrant Smfcang 3cn«mM

o 0008 oot dots aca
OMrtälliraugncutlpKtaWctcMl.vcT« JL. WH.-«- SF--

oozs

Figure 5.3: Latency standard diviation on a hop.

resources throughout the interconnection network. In contrast, virtual cut-through

imparts variable load on memory resources at intermediate nodes by basing the buffer-

ing decision on the status of the output links. At high loads, virtual cut-through and

store-and-forward merge, as in Figure 5.1. due to the decreasing likelihood of packet

cut-throughs.

On the other hand, in wormhole switching a packet is never buffered and

consumes unpredictable amounts of channel bandwidth by stalling in the network. In

Figure 5.2, wormhole latency variation increases dramatically with rising load, even

under a moderate injection rate below saturation throughput. Below the saturation

load, wormhole switching results in a low average latency, as seen in Figure 5.1. but

a portion of the traffic incurs larger delay due to pockets of channel contention. In

addition to a large coefficient of variation, wormhole traffic suffers a large standard

deviation of packet latency, as shown in Figure 5.3.

CHAPTER 6
SUPPORT FOR MULTIPLE CLASSES OF TRAFFIC

Best-effort and guaranteed traffic have conflicting performance goals that com-

plicate interconnection network design. The effective mixing of guaranteed and best-

effort traffic hinges on controlling the interaction between these two classes. In partic-

ular, best-effort packets cannot consume arbitrary amounts of link or buffer resources

while guaranteed packets await service.

fi.l Architecture

As seen in Chapter 5. wormhole and packet switching exercise complementary

resources in the interconnection network, with wormhole switching reserving virtual

channels and packet switching consuming buffers in the router. Hence, the combina-

tion of wormhole switching for best-effort traffic and packet switching for guaranteed

communication enables effective partitioning of router resources. However, since the

traffic classes share network bandwidth, the router must regulate access to the phys-

ical links to control the interaction between the two classes.

Assigning the best-effort and guaranteed packets to separate virtual networks

can regulate this interaction between the traffic classes. The router divides each

physical link into multiple virtual channels, where some virtual channels carry best-

effort packets and the rest accept only guaranteed traffic. Virtual channels provide

an effective mechanism for reducing the interaction between packets while still allow-

ing traffic to share network bandwidth. Several router architectures utilize virtual

92

!):$

(PSlOM'QOQ). ••-(PSLotd«0.011. — (PSUM«0.021

2 3 4 s a
OUTKl Wortrt«H Thgugnput (paekaueycMI

r »
.10'

Figure 6.1: Effect of packet switching load on wormhole average latency.

channels to separate packets into classes, such as control and data, where the classes

employ the same routing and switching scheme [17J. Exporting the virtual channel

abstraction to the injection and reception ports further prevents intrusion between

packets at the network entry and exit points.

By tailoring the routing, switching, and ßow-control policies for each virtual

network, multicomputer routers can support traffic classes with conflicting perfor-

mance requirements. Packets on separate virtual networks interact only to compete

for access to the physical links and ports. This bounds network access time for guar-

anteed packets, independent of the amount or length of best-effort packets. The

communication software, or hardware, can then build on this underlying abstraction

to provide various services, such as connection-oriented communication with latency

or bandwidth guarantees. Fine-grain flow control on the wormhole virtual network

enables best-effort flits to capitalize on slack link bandwidth left unclaimed by guar-

anteed packets.

'II

6.2 Arbitration

Figures 6.1. 6.2. and 6.3 evaluate the effect of increasing best-effort load on

the performance of both best-effort and guaranteed traffic in this router architec-

ture. In these experiments, the router interleaves two virtual channels on each link,

with one virtual channel allocated to best-effort packets for wormhole routing and

one dedicated to guaranteed traffic using store-and-forward. Each curve shows the

impact of changing best-effort load in the presence of a fixed rate of injection for

guaranteed packets. The router employs round-robin arbitration amongst the active

virtual channels contending for each link.

Figure 6.1 shows the average latency for the best-effort, wormhole packets,

under three different injection rates for the store-and-forward or packet-switched

(PS) traffic. Note that the curve for zero packet-switched load corresponds to the

wormhole latency data in Figure 5.1. As the amount of wormhole traffic increases,

best-effort packets incur larger latency due to increased channel contention within the

best-effort virtual network. Even with fairly heavy packet-switching load, the best-

effort packets maintain low average latency until reaching the saturation throughput.

The presence of packet-switched traffic does not significantly limit this achiev-

able best-effort throughput, since the wormhole virtual network saturates due to

virtual channel contention, not a shortage of network bandwidth.

As seen in Figures 6.2 and 6.3, both the average latency and predictability of

the guaranteed packets are largely unaffected by the best-effort traffic, due to fine-

grain arbitration amongst the virtual channels. For both packet-switched loads, the

mean and standard deviation of end-to-end latency closely match the corresponding

values in Figures 5.1 and 5.3, even as the wormhole traffic exceeds its sustainable

load. Channel contention on the best-effort virtual network does not impede the

').")

■•- (M lotd . OOII. -9- <P3 UMd • 0 02)

1 4 S « 7
Q/Hmt Wormhcta nmugnpu (pac*atifty<i«|

8 9

Figure 6.2: Effect of wormhole toad on store-and-forward average latency.

forward progress of guaranteed packets, since blocked wormhole packets temporarily

stall in their own virtual network instead of depleting physical link or buffer resources.

Demand-driven arbitration ensures that either class of traffic can improve throughput

by capitalizing on the available link bandwidth.

While the separate virtual networks limit the interaction between the traffic

classes, the arbitration for access to the physical link still permits active best-effort

virtual channels to increase delay for the guaranteed packets. This is manifested in

Figures 6.2 and 6.3 by the slight increase in packet-switching latency and standard

deviation in the presence of a heavier load of wormhole traffic. More significantly

for the guaranteed traffic, fair arbitration amongst the virtual channels varies the

service rate afforded both traffic classes, providing slower guaranteed service under

increasing best-effort load.

%

I «Of

140

120

too

ao

-(PSLMklaO.OI). -o-(PS Load «0021

3
S r
L

3 4 ■ $ e r
Oflared Worn*»* Throughout (pKHaMCvd«)

8 t

«IQ"*

Figure 6.3: Effect of wormhole load on store-and-forward latency standard deviation.

6.3 Control of the Guaranteed Traffic

The router can further minimize intrusion on guaranteed traffic by imposing

priority arbitration between the virtual networks, where guaranteed packets always

win arbitration over the best-effort packets. For a guaranteed packet, this effectively

provides flit-level preemption of best-effort traffic across its entire path through the

network. Unlike the results in Figures 6.2 and 6.3. assigning priority to guaranteed

traffic removes any sensitivity to the best-effort load. Priority arbitration enables

a guaranteed packet to travel at the same rate through each link in its journey,

independent of the number of active best-effort virtual channels. This abstraction

enables the scheduler to allocate resources based only on the worst-case requirements

of the guaranteed traffic, while still enabling best-effort traffic to dynamically consume

unused link bandwidth.

However, priority arbitration can exact a heavy toll on the best-effort packets,

particularly at higher loads, as illustrated by Figure 6.4. This graph shows the average

PS UM » ••- aoii — ooto-. -«• a ooo

o aooi oooa aoo3 aow aoos ooos aoor ooos aoao oot
«CpMWanrtwMt^MrNMilPKttttCvcftl

Figure 6.4: Average wormhole latency using a priority-based arbitration scheme.

latency of best-effort wormhole packets in the presence of three different packet-

switching loads under priority arbitration for the physical links, unlike Figure 6.1.

Figure 6.4 shows significant degradation of the performance of best-effort packets,

since the strict priority-based scheme restricts their forward progress. Even in the

absence of livelock, lengthy blocking of wormhole flits increases contention delays in

the best-effort virtual network.

Priority arbitration varies the service rate for the best-effort packets depend-

ing on the load of guaranteed traffic. To reduce contention, the best-effort virtual

networks could employ adaptive routing to enable these packets to circumvent links

and nodes serving a heavy bad of guaranteed packets. Alternatively, the router could

aid the forward progress of best-effort packets by ensuring predictable access to the

physical link, even in the presence of guaranteed packets. The router can allow up to

or best-effort flits to accompany the transmission of a guaranteed packet. Since the

guaranteed traffic employs packet switching, a guaranteed packet holds the physical

link for a bounded time proportional to its packet length L In effect, this dilates

«)S

each guaranteed packet to a service time of at most (+ a cycles, while dissipating

contention in the best-effort virtual network. When no guaranteed packets await

service, pending best-effort flits have free access to the outgoing link.

This permits forward progress for best-effort, packets while still enforcing a

tight bound on the intrusion on guaranteed traffic, without restricting packet size.

Such a credit-based scheme preserves necessary delay abstractions for the scheduling

of guaranteed traffic. For additional flexibility, a writeable register in each router

would allow the system to set a when downloading tasks to the processing nodes. For

example, the compiler could test the schedulability of the guaranteed communication

under several candidate a values, selecting an a that does not disrupt the delay or

bandwidth bounds for the guaranteed packets. This enables the compiler to determine

the appropriate trade-off between the best- effort performance and the admission of

guaranteed traffic for a given application.

CHAPTER 7
CONCLUSION

la this chapter we review the contributions of this dissertation, and allude to

the possible extensions and future research for the work presented.

7.1 Research Contributions

In this dissertation, we examined closely the assumptions and requirements of

multicomputer network design and reevaluated their parameters to see how they could

deliver the diverse performances required by modem applications. We investigated

how the conflicting performance goals of best-effort and guaranteed traffic affect the

suitability of routing, switching, and flow control schemes in the network.

As part of the work, we created a general evaluation framework which allowed

us to characterize the performance of multicomputer networks as a wide range of pa-

rameters are varied. We developed a simulation environment, called RSIM. which is

programmable to the network topology, the network size, the routing algorithm, the

switching scheme, the number of virtual channels, the allocation of virtual channels

to subnetworks, the message generation distribution, the message destination distri-

bution, the message length, and the types of evaluation metrics. The data collected

from the simulator were used to test the developed models and also served as the

primary source whenever it was difficult to derive accurate analytical models.

We modeled the latency in fc-ary n-cubes, generalized hypercubes, and WR-

Recursive networks, under cut-through and store-and-forward switching schemes.

100

with or without contention. The network analysis under no contention presented the

base network latency and allowed us to analyze the relative effect of wire and switch

delays under various constraints such as fixed wire bisection width, fixed channel

widths, and fixed node sizes. We employed constant, linear, and logarithmic wire de-

lay models in our analysis. We also developed closed-form expressions for contention

in buffered direct networks to estimate the effect of network bandwidth. We validated

the models through simulations and demonstrated their robustness over a wide range

of network sizes. The contention models were merged with the base network results

to obtain the complete latency models for the multicomputer networks.

An interesting finding of this analysis was that a relative standing of net-

works was strongly dependent on the constrains chosen and on the expected work-

load parameters. In contrast, the results showed much less variance when bandwidth

considerations were ignored.

We also investigated the effect of communication locality on the performance

of the difect networks. Unlike indirect networks, locality improves both network

throughput and latency. At low loads, communication latency decreases linearly with

the average distance a packet traverses. Under high network load, locality has even

more effect on the latency, mainly due to the reduction in the bandwidth required

by the application. We observed that the effect of communication locality is more

obvious on networks with low number of dimensions. Although these networks have

shorter wires and smaller bisection widths than other networks, their lower available

bandwidth and higher base latencies reduce their effectiveness. Locality mitigates

these negative aspects of low-dimensional networks by reducing the average distance

a message travels. The decrease in the message distance reduces both the network

base latency and the bandwidth requirements of the application.

101

We studied the effect of adaptive routing on the network latency. We modified

the developed network latency models to address this type of routing. Adaptive

routing distributes the load more evenly across the network and results in a better

network bandwidth. The results obtained from the model agreed with this statement.

Next, we examined how different switching schemes satisfy different latency

and predictability requirements. We generated simulation results for average latency,

latency standard deviation, and latency coefficient of variation for each switching

type. We observed that both virtual cut-through and worrnhole switching performed

well at low load by avoiding unnecessary packet buffering at intermediate nodes:

however worrnhole performance degraded abruptly with increasing traffic. The per-

formance of virtual cut-through and store-and-forward switchings merged at high

loads.

From a predictability point-of-view. store-and-forward incurred the least vari-

ability in latency, across all loads, mainly due to its deterministic buffering scheme at

intermediate nodes. In contrast virtual cut-through and worrnhole switching impart

variable amount of load on the memory or channels of intermediate nodes, respec-

tively, they show large variation in latency. The predictability of store-and-forward

switching makes it suitable for real-time applications which require a guaranteed

performance.

Finally, the dissertation establishes a paradigm for the efficient and reliable

mixing of guaranteed and best-effort traffic in message-passing multiprocessors. Un-

like the previous work in this area which has mostly been focused on the software

protocol schemes, we propose architectural features which exercise efficient, fine-grain

control over the interaction of packets. In order to optimize for the performance re-

quirements of each class, the architecture employs different routing and switching

10-.

strategies to manage the two traffic classes. We provide tight bounds on the intru-

sion of best-effort traffic on guaranteed packets by low-level control of the network

access time and bandwidth allocation. The software or the higher level hardware can

utilize these bounds to provide the quality of service required by the application.

7.2 Future Directions

In our simulations, we used synthetic loads because they are simple to pro-

duce and they are storage-efficient as they can be produced using pseudo-random

number generators. The primary deficiency of synthetic workloads is their lack of

communication structure and message correlation that is typical in actual parallel

applications. For example, our workloads did not couple the initiation of messages

with the completion of other messages, a typical program feature.

In the future, we should study the interconnection networks under natural

loads, as well. We can use traces of captured message traffic, or even actual message

traffic. It is also possible to develop a machine with a programmable interconnect

that actually run the application with different network configurations to evaluate the

architecture of the network interconnection in real-time with an application program.

An important point, which can make the simulations easier and more accurate

is to provide a better method of detecting when the system has reached the steady

state, currently, we inject a fixed number of packets before starting the data collec-

tion, just to bring the system into the steady state. Determination of this number

can be a tricky and difficult task. For example, throughput beyond saturation load

can depend on the actual length of the simulation that was run, due to residual traffic

in the source queues. Such dependencies should be avoided, if possible, but reporting

simulation run lengths would at least make such figures detectable.

10:J

As a future extension to this project, we should develop a router architecture

prototype based on the model presented in this dissertation. The router should

initially be designed using a hardware definition language such as VHDL. completely

simulated, and finally be prototyped. The router will be programmable to different

routing and switching schemes and can execute these tasks at the fine level, reducing

the overhead incurred in the software messaging layer.

APPENDIX A
THE RSIM SIMULATOR

RSIM is an object-oriented simulation environment for evaluating multicom-

puter networks. The planned features for RSIM are many, but currently only the

most general have been coded. The program is written as a module that may be

used within a wide variety of other systems.

RSIM contains a user interface that reads commands from a file and runs the

simulation thus defined. The command file is tokenized by a flex program, and parsed

by a yacc program. The basic sections of the command file for RSIM are as follows:

RSIM contains a topology section in which the topology of the network is

defined. The selection can be from a group of predefined topologies - mesh, torus,

hypercube. and WK-Recursive, or it can be defined as a general topology.

TOPOPLOGY = {Mesh. Hypercube. Torus. General):

If a predefined topology is selected, two other fields in the configuration file

define the dimension and the indices of the structure. If the GENERAL option is

used, the complete connectivity has to be specified. In the connectivity section of

the command file, each node has a unique ID number - connections to a node are

specified by associating a source node ID with a destination ID. All of the connections

specified are assumed to be uni-directional, as bi-direction channels can be effectively

simulated by two opposing uni-directional ones. With this method virtually any

topology is possible, but the user must meticulously write in the command file (at

least) the destination ID of every connection. This is unacceptable for systems that

m,i

10")

have a very large number of nodes (hundreds or perhaps thousands), and the user is

encouraged to take advantage of the predefined topologies.

The network architectural and load parameters are completely specified ir. this

file. The format for these parameters is as follows:

XÜMBER-OF.VIRT.CHANS = :

CHAN-WIDTH = {channel width}:

SEND.QJDEPTH = :

RECV.QJDEPTH = :

FLIT.SIZE = :

PACKET.SIZE = :

HEADER-SIZE = :

PEND-PKT-BUF-SZ = :

D — dimension {for non-General}, degree {for WK-Recursive}:

A' = itrf_i,Jtrf-2 *i.**o {For non-General and non WA'-Recursive};

CHAN.Q-SIZE = qd~\,qi-i <Zit<7o {For non-General and non Wv-Recursive}:

Connectivity Table: {if Topology= General)

OF NODES =

Node: Node, Node, ...;

Node: Node, Node,...;

Node: Node, Node,...;

Node: Node, Node,...;

Node: Node, Node, ...;

I Ort

Transient and permanent failures can also be easily simulated by RSIM.

FAILED NODES:

node: (start time, end time).(start time, end time),...:

node: (start time, end time)....:

node: (start time, end time)....:

FAILED LINKS:

source node-dest node: (start time, end time).(start time, end time).

source node-dest node:(start time, end time),...:

The simulator is capable of running multiple loads simultaneously. These loads

can each use different routing algorithms or switching schemes. Each load can also be

generated based on a different generation distribution with different parameters. The

provided distributions are Exponential Uniform Random and Uniform Random with

user specified parameters. The provided routing algorithms are various oblivious and

adaptive routing routines for each topology. User-created routing routines may also

be easily used if it is coded into RSIM and compiled.

The simulation time is made up of clicks, analogous to clock ticks, during

which each node is updated by one granular of time. A step is a collection of ticks

over which the load parameters are held constant. At the beginning of each step the

system load is increased by an amount defined in the command file. The initial load

and number of ticks per step are similarly defined.

1ÜT

Each packet is allocated a unique id when it is sent, so that it may be identified

when it is received. While the packet is in transit (ie: between creation and reception)

information such as source node, destination node, and time initiated are kept. When

the packet is received, this fact is reported to the data collection module, using the

same packet id that was provided by the data collection module when its creation

was reported. The transit information is added to running step totals (including

the transit time histogram) and subsequently forgotten. When the simulation is

complete, sim will report this data for each step.

The remaining fields of the configuration files are as follows:

NUMBER-OF-LOADS = :

LOAD = {UNIFORM-RANDOM. EXP.UNIFORMJIANDOM. ...}:

LOAD-CONTROL = {

TASK-CONTROL 0 = {

ROUTINGJaG = {DIM-ORDER-MESH, ...}:

SWITCHING = { VCT, PACKET};

NÜMBER-OF-PACKETS-PER-STEP = :

IGNORE-PACKETS = :

IGNORE-TICKS = ;

INITJNJECT-RATE = :

INJECT-RATEJNC = ;

HIST_TICK.BASE = ;

HIST-TICK-BLOCK-WIDTH = ;

HIST_TICK_NUMBER-OF-BLOCKS = ;

I OS

HIST-HOP-BASE = :

HIST-HOP-BLOCK.WIDTH = :

HIST-HOP-NÜMBER.OF-BLOCKS

HIST-TPH .BASE = :

HIST-TPH-BLOCK-WIDTH = :

HIST-TPH-NUMBER-OF-BLOCKS

HISTJOB-BASE = :

HISTJOB-BLOCK.VVIDTH = :

HISTJOB.NUMBER-OF-BLOCKS =

HIST.CQO-BASE = :

HIST-CQOJ3LOCK-WIDTH = :

HIST-CQO-NUMBER-OF-BLOCKS

HIST-DLN-BASE = :

HIST-DLN-BLOCK_WIDTH = :

HIST-DLN.NUMBER-OF-BLOCKS

};

TASK-CONTROL t = {

}; .

STOPING-CRITERIA = {STEP-COUNT. ...};

NUMBER-OF-STEPS = :

END;

UM)

EXAMPLE As an example we show the configuration file for a :| x :) mesh

with four virtual channels per physical channels. 32-bit channel widths, and eight-flit

channel queue sizes for both virtual channels. The send and receive buffer sizes are

both 512 bits. The flit size is 32 bits. The packet size and the packet header size are

8 and I flits, respectively. Finally, the pending packet buffer or the source buffer size

is 16 packets.

We run only a single Uniform Random traffic on this network. The initial

average injection rate per node is 0.125 packets/cycle. We increase this rate by

0.0625 packets/cycle after every step. In every step, we ignore the first 64 packets

or 128 cycles (which ever is larger) and then collect 320 packets. We use dimension-

order-routing and virtual cut-through switching. The simulation will run for five

steps.

TOPOLOGY = MESH:

NUMBER-OF.VIRT.CHANS = 4:

CHAN-WIDTH = 32;

SEND.Q.DEPTH = 512:

RECV.Q-DEPTH = 512:

FLIT_SIZE = 32;

PACKET-SIZE = 8;

HEADER-SIZE = 1;

PEND_PKT_BUF-SZ = 16;

D = 2;

K = 3,3;

CHAN-Q-SIZE = 8,8;

HO

NUMBER-OF-LOADS = l:

LOAD = UNIFORM-RANDOM:

LOAD-CONTROL = {

TASKXONTROL 0 = {

ROUTINC-ALG = DIM.ORDER.MESH:

SWITCHING = VCT:

NUMBER-OF-PACKETS-PER-STEP = 320:

IG NO RE.PACK ETS = 64:

IGNORE.TICKS = 128:

INITJNJECTJUTE = 0.125:

INJECT-RATEJNC = 0.0625:

HIST-TICK.BASE = 0:

HIST.TICK-BLOCK-WIDTH = 2:

HIST.TICK-NUMBER-OF-BLOCKS = 50:

HIST-HOP-BASE = 0;

HlST_HOPJ3LOCK_WlDTH = I;

HIST-HOP-NUMBER-OF_BLOCKS = 5;

HIST.TPHJ3ASE = I;

HIST-TPH-BLOCK.WIDTH = I;

HIST-TPH-NUMBER-OF-BLOCKS = 5;

HIST JOB .BASE = 0;

HISTJOBJ3LOCK.WIDTH = I;

11:

HISTJOB.NUMBER.OF.BLOCKS = 5:

HIST.CQO .BASE = 0:

HIST.CQO.BLOCK-WIDTH = 5:

HIST.CQO-NUMBER.OF-BLOCKS = 20:

HISTJ)LiVJASE = -lOO:

HIST-DLV .BLOCK-WIDTH = 10:

HlST_DLN.NUMBER_OF_BLOCKS « 20:

h

}:

STOPING.CRITERIA = STEP.COUNT:

NÜMBER.OF.STEPS = 5:

END:

APPENDIX B
ADAPTIVE ROUTING ALGORITHMS

To improve the network performance of highly parallel machines, the routing

mechanism has to be able to diffuse the local congestion by adaptively utilizing

the available resources in the network. In contrast with the deterministic routing

in which the message trajectories are unique, in an adaptive routing scheme, they

are continuously perturbed based on the condition of the network. In other words,

packets are detoured to other available paths as local congestion or failures occur

in the network. Adaptive routing will eliminate hot-spots in the network traffic

by distributing the load throughout the entire network. Furthermore, by taking

advantage of the inherent path redundancy in the richly-connected multicomputer,

adaptive routing enhances the reliability of the system.

In this section, we present two adaptive routing algorithms. The first routine.

GHC-P, is a progressive routing algorithm for generalized hypercubes. The latter is

an adaptive routine for WÄ'-Recursive structures.

B.l Adaptive Routing in Generalized Hvoercubes

In this section, we will develop an adaptive algorithm to route a message from

one node to another in a generalized hypercube. In order to make the algorithm more

effective in routing via the shortest path, the coordinates of the GHC are ordered in

an increasing order, from right to left. Consequently, the rightmost coordinate will

have the smallest modulus or the lowest number of nodes, and the leftmost coordinate

I 19

li:i

ooo*

Figure B.t: An example of routing using GHC-P algorithm on a 4 x :] x 2 GHC.

will have the largest modulus or the highest number of nodes. The routing is carried

out. from right to left in the coordinates that are different in source and destination

addresses. Following this technique, when the message gets closer to the destination,

there will be more alternate paths in the dimension that the message is going through.

Since a GHC node may have more than one link in every dimension, a link at

a specific node cannot be represented merely by the dimension it is located at. Two

values are required to represent a link at a specific node. The first value represents

the coordinate or dimension in which the link is located at. and the second value

indicates the node to which the link is connected. For example, the link connecting

the two nodes 001 and 002 is represented at node 001 by (1.2), and at node 002 by

(U).

A path in a GHC can be represented by the source node and a pathlist which

contains the links that the message has to traverse at consecutive nodes. For example,

the path from node 021 to 300 of the GHC shown in Figure 2.1, can be represented

by the source 021 and the list [(3,3), (l,0),(2,0)|.

in

Algorithm GHC-P This progressive algorithm requires every node in the

generalized hypercube to be aware only of the condition of its own links. The al-

gorithm is able to route messages between any pair of non-faulty, or non-saturated,

nodes as long as the number of faulty components or bottlenecks is less than d. the

degree of the hypercube.

In Algorithm GHC-P. the pathlist is sent along with the message packet to

indicate the destination of a packet. In addition to the pathlist. a set containing those

nodes on the first coordinate of the pathlist. which have already been visited is also

sent with the packet. This set which is called the oisited.nodelist will clear (becomes

0) whenever the packet is routed into a new dimension. Additionally, each packet is

accompanied with an r-element set lag. The i-th element of tag corresponds to the

i-th coordinate of the GHC and is an mjth-tuple which has one digit corresponding

to every node of the i-th coordinate. The tag keeps track of ''spare dimensions and

links** that are used to bypass faulty or saturated components. All bits in the tag are

reset to zero when the source node begins the routing of a packet. In our notations.

tag(c. n) is the n-th bit of the c-th coordinate, (c-th element) of tag. A packet can

be represented as (k. pathlist, visited^nodelist. message, tag), where k is the length

of the remaining portion of-the path and the entire thing is updated as the message

travels towards the destination. A packet reaches its destination when k = 0. or

pathlist becomes 0.

When a node receives a packet, it will check k to see if the node is the desti-

nation of the packet. If not, the node will try to send the packet along one of those

links specified in the remaining elements of pathlist. The k and pathlist are updated

as the packet travels though the hypercube. Each node will initially attempt to route

messages via shortest paths. If the link in the dimension specified by a pair in pathlist

II")

/* At each node (fc.[(c,.n,).(c2.n2) (<*, nk)\. visited jiodeliM. message, tag) •/
/* In this algorithm. $ denote an append operation «/

if k = 0 then {the destination is reached!}
else
begin

/* Try to send the packet along a dimension in
the remaining coordinate sequence. «/

for ; := l.k do
if (the (Cj.rtj) link is not faulty) then

send(*-l.[(c,,n,).....(c,_,,ni_,).(cJ+,.n;+,) (ck,nk)\.
(8.message.tag) along the (c,.n,) link;

stop; /* Terminate Algorithm GHC-P •/
else if 3(Cj.y)\ (Cj,y) is not faulty and y g oisited-noHelist then

send (*.[(ct, nt). (c2, n2),....[ck, nk)\. visitedjiodelist >? xc;.
message, tag) along the (cj.y) link

/* MOTE: xCi is the c,th digit of the address of the current node «/
stop; /• Terminate Algorithm GHC-P */

endif
end-do

/* If the algorithm is not terminated yet, all dimensions in
the pathtist are blocked because of faulty components
and a spare dimension needs to be used.*/

for j := 1, k do /* Record all blocked
tag(cj,rej):= I; links in tag. «/

end-do
h := cky := n | {tag(c.n) = O&n = min, I < c < d, 1 < n < mckn £ xh)

/* Choose a spare dimension */

tag{h.y):= I; /« update the tag */
send (*+t.((c,,ni),(c2,n2) (<*,»»*), (A, xAp.message.tag)

along the (h,y) link
stop; /• Terminate Algorithm GHC-P ♦/

end-begin

Figure B.2: Algorithm GHC-P - Adaptive routing algorithm to be used by each node
of a GHC only with the information on its own links.

116

is faulty, the algorithm attempts to send the packet through another link in the same

dimension and appends the name of the current node to the msited.nodelist. In this

case, k and pathlist stay the same and are not modified. When the packet is sent

through a new coordinate, cisitcd-nodclist is cleared. However, if all the links in those

dimensions on the pathlist are faulty, the node will use a spare dimension to route the

packet via an alternate path. The tag keeps track of the available spare dimensions

and links. Listing B.2 is a more formal presentation of Algorithm GHC-P.

In the GHC in Figure B.l. the links drawn with dashed lines are faulty or

congested. Suppose a message is routed from A = 021 to B = 300. The packet at

every node on the path will be:

0 021 - (3, [(l.O),(2,O),(3.3)].0. message. [0000.000.00])

q 020 - (2. [(2.0),(3,3)], 0. message. [0000.000.00])

a 010 - (2. [(2.0),(3,3)I, [21, message, [0000.000.001)

a 310 - (L. [(2,0)1, 0, message, [0000,000.001)

9 320 - (I. [(2.0)]. [I], message. [0000,000.00])

Q 321 - (2. [(2,0).(1.0)], 0, message, [0000,001.10])

a 311 «- ■ (2, [(2,0),(1,0)], (2], message, [0000.001.10])

9 301 - (l,[(l,O)l,0, message, [0000,001,10])

§ 300 ♦- (0, 0, 0, message, [0000,001,10])

Flow Control: Due to its progressive nature, GHC-P algorithm can take ad-

vantage of the low latency of the wormhole routing. However, since we have relaxed

the dimension-order routing and have allowed messages to Bow from one dimension to

another in either direction (in contrast with deterministic routings,) we have created

a channel dependency graph that may result in deadlock. For example, in Figure

Ill

(a) (b)

Figure B.3: (a) Deadlock: (b) Breaking the deadlock using a north-bound virtual
channel for east-bound packets moving north-bound.

B.3(a) each of the four packets require the channel occupied by the channel ahead in

the cycle, and the network is therefore deadlocked.

The cyclic dependency can be broken by restricting routing so that east-bound

packets (positive indirection) are not allowed to travel on north-bound (positive in-

direction) channels. With this restriction, deadlock is no longer possible, but the

network has become disconnected. The connectivity can be restored by introducing

a north-bound virtual channel for east-bound messages [Figure B.3(b)j. The resulting

network performs deadlock-free adaptive routing.

To scale this mechanism up to the general case, as each dimension, i. is added

to the network, traffic in the previous dimension is divided into 2'~l groups according

to its directions in the t — L previous dimensions. One direction of travel in the i-th

dimension is then partitioned into 2,_I virtual channels, one for each group.

B.2 Adaptive Routing in WK-Recursive Networks

The recursive structure and low number of links per node in WK-recursive

networks make them ideal candidates for massively parallel computers. Due to the

IS

large number of processors in these machines, adaptive routing algorithms which

implement backtracking ox delay-tables are absolutely impractical. Therefore, there

is a big demand for a progressive adaptive routing algorithm which can route messages

in these networks efficiently and reliably.

Algorithm VVKR This algorithm will route messages in a WK-Recursive

network in the presence of an arbitrary number of failures or bottlenecks, as long

as there is a path from the source to the destination. Each node is only required

to be aware of the condition (faulty congested) of its own links. A messages in this

routing is represented as (d, td. Visited Jiodes. message) in which d is the destination

address, td is a tag word I -1 digits long and each digit corresponds to one of the 2 : I

dimensions of the structure, td stores the temporary destinations that the message

has to go through to bypass a failure or congestion in the network. Visited.Nodes is a

(L - t) x k array which stores the addresses of the visited nodes inside a virtual node.

After the message leaves the virtual node, the components in the array corresponding

to the nodes which are of lower dimension are all cleared. Listing 6.5 is the complete

VVKR algorithm.

Figure B.4 shows a W/f-Recursive network with L = 3 and k = 4. The links

drawn with dashed lines are faulty or congested. Suppose a message is routed from

5 = 002 to D = 202. The transferred packet at every node on the path will be:

NODE - PACKET SENT LINK NUMBER

$ 002 «- (202, XX, [0,01, message) 2

$ 020 — (202, XX, (0,021, message) 2

'§ 022 ♦- (202, IX, [0,2], message) I

a 021 «- (202, 10, (0,2j, message) 2

ll<>

Figure B.4: Adaptive routing in a WK-Recursive network with k — 4 and L = 4 and
four faulty or congested links.

I-JO

4 022 - (202. 10. (0.2|, message) 0

a 020 - (202. 10, [0.2|. message) 0

a. 002 - (202. IX. [0.02j. message) I

a 001 - (202. IX. [0,02j, message) I

a 010 - (202, IX. (0.012], message) I

3 Oil - (202, IX. [0.0121, message) I

'§ 100 — (202. XX, [01.0|, message) 2

3 102 - (202. XX. [01.0|. message) 2

9 120 - (202. XX. [01, 02|. message) 2

a 122 - (202, 3X. [01.2J, message) 3

a 123 - (202, 3X. [01. 2j, message) 3

a 132 «- (202, 3X. [01.23], message) 3

Q 133 - {202, 3X. [01. 231, message) 3

a 311 *- (202. XX. [013, tj, message) 2

ö 312 <- (202, XX. [013, l|, message) 2

a 321 «- (202, XX, [013. I2jt message) 2

a 322 - (202, XX, [013, I2j, message) 2

a 233 «- (202, XX. (0123, 3], message) 0

§ 230 - (202, XX, [0123, 3], message) 0

a 203 - (202, XX, [0123, 03], message) 2

a. 202 <- REACHED DESTINATION

I-Jl

I* CompaxatG«t±Lnk(dest) procedure returns the link number which ia equal to
the most significant digit of deal «hich is different from node address
CNA » Address of the current node •/

receive (d,ld,ViaitedJiodes.message)
if d=CHA then {the destination is reached!}
else
begin

for i = I: L - I
if td(i) ji X then

if td(i) = CiVA(i) then td(i) := A'
break

endJf
endJbr
if td = «then

Link ss ComparetGetXinkC«/)
else

Link := td{i)
endJf
if (.Link is faulty) then

for level = I: L
if CNA{level) £ Link then break

endJbr
for Link = Q:k~ t

if Link £ Visited-Nodes(level) then break
end-for
td(level) := Link
for i — I: level

clear(Vtailed JYodea(i))
endJbr

endJf
for i = 2:L

VisitedJfodea(i) := CNA(i)G Viailcd-Nodes(i)
endJbr
send {d,td,ViaitedJfodes, message) along Link

end-begin

Figure B.5: Algorithm WKR - Adaptive routing algorithm to be used by each node
only with the information on its own links.

REFERENCES

[lj A. Agarwai. Limits on interconnection network performance. IEEE Transactions
on Parallel and Distributed Systems, 2(4):398-U2. October 1991.

(2| G. Alverson. R. Alverson. D. Callahan. B. Koblenz. A. Porterfiled. and B. Smith.
Exploiting heterogeneous parallelism on a multithreaded multiprocessor. In Pro-
ceedings of the 6th ACM International Conference on Supercomputing. 1992.

•[Z\ Ahmad R. Ansari and Fred J. Taylor. ÜF3 - a 4D DSP hypercube with a
robust programming environmment. In Proceedings of International Conference
on Acoustics. Speech, and Signal Processing, volume V. pages 633-636. San
Francisco. California. March 1992.

[4| C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne. Real-time commu-
nication in packet-switched networks. Proceedings of the IEEE. 82(1): 122-139.
January 1994.

(5) J. R. Armstrong and F. G. Gray. Fault-diagnosis in a boolean n-cube array of
microprocessors. IEEE Transactions on Computers. C-30(8):587-590, August
198 L.

[6| W. C. Athas and C. L. Seitz. Multicomputers: Message-passing concurrent
computers. IEEE Computer, 2l(8):9-24, August 1988.

[7] J. J. Bae and T. Suda. Survey of traffic control schemes and protocols in ATM
networks. Proceedings of the IEEE, 79(2): 170-189, February 1991.

[8j R. Boppana and S. Chalasani. A comparison of adaptive wormhole routing algo-
rithms. In Proceedings of international Symposium on Computer Architecture.
pages 351-360, 1993.

[9j R. M. Bryant, H. Y. Chang, and B. S. Rosenburg. Operating system support for
parallel programming on RP3. IBMJ. Res. Develop., 35(5/6):6l7-634. Sep/Nov
1991.

[10| R. Cypher, A. Ho, S. Konstantinidou, and P. Messina. Architectural require-
ments of parallel scientific applications with explicit communication. In Pro-
ceedings of the International Symposium on Computer Architecture, pages 2-13,
May 1993.

100

12: J

(ll| VV. J. Dally. .4 VLSI Architecture for Concurrent Data Structures. Kluwer
Academic Publishers, Boston. MA. 1987.

[l'2j VV. J. Dally. Network and processor architecture for message-driven computers.
In Birtwistle Suaya, editor. VLSI and Parallel Computation, chapter :j. Morgan
Kaufmann. San Mateo. California. 1990.

[13] VV. J. Dally. Performance analysis of i-ary n-cube interconnection networks.
IEEE Transactions on Computers. 39(6):775-785. June 1990.

[14| W. J. Dally. Express cubes: Improving the performance of /t-ary n-cube in-
terconnection networks. IEEE Transactions on Computers. 40(9):1016-1023.
September 1991.

(loj VV. J. Dally. Virtual channel flow control. IEEE Transactions on Parallel and
Distributed Systems. 3(2): 194-205. March 1992.

(16) VV. J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer
networks using virtual channels. IEEE Transactions on Parallel and Distributed
Systems. 4(4):466-475. April 1993.

[17| VV. J. Dally, S. Fiske. J. S. Keen. R. A. Lethin. M. D. Noakes. P. R. Nuth. R. E.
Davidson, and G. A. Fyler. The message-driven processor: A multicomputer
processing node with efficient mechanism. IEEE Micro, pages 23-29. April 1992.

[18| VV. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor
interconnection networks. IEEE Transactions on Computers. C-36(5):547-553.
May 1987.

(■19] Michael L. Dertouzos and Aloysius Ka-Lau Mok. Multiprocessor on-line schedul-
ing of hard-real-time tasks. IEEE Transactions on Software Engineering.
I5(12):l497-I506t December 1989.

(20] J. Duato. A new theory of deadlock-free adaptive routing in wormhole networks.
IEEE Transactions on Parallel and Distributed Systems. 4(12):1320-I33l, De-
cember 1993.

[21] Ronald Fernandes. Recursive interconnection networks for multicomputer net-
works. In Proceedings of the 1992 International Conference on Parallel Process-
ing, volume I, pages 76-79, 1992.

[22] Domenico Ferrari. Client requirements for real-time communication services.
IEEE Communication Magazine, pages 65-72, November 1990.

[23] D. Gelernter. A DAG-based algorithm for prevention of store-and-forward dead-
lock in packet networks. IEEE Transactions on Computers, C-30(10):709-715.
(Mober 1981.

21

(24J C. J. Glass and L. M. Ni. The turn model for adaptive routing, in Proc. 19th Int 7
Symp. Computer Architecture. Los Alamitos. CA. pages J78-287. New York.
1992. IEEE CS Press.

[25j A. Gottlieb. R. Grishman, C. P. Kruskal. K. P. McAuliffe. L. Rudolf, and M. Snir.
The NYU ultracomputer - designing an MIMD shared memory parallel com-
puter. IEEE Transactions on Computers, C-32(2):175-IS9. February 1983.

(26] K. D. Günther. Prevention of deadlocks in packet-switched data transport sys-
tems. IEEE Communication Maganne. COM-29(4):512-524. April 1981.

(27] M. T. Heath. The hypercube: A tutorial overview. In Proceedings of the Second
Conference on Hypercube Multiprocessors. Knoxville. TW. pages 7-10. 1986.

V. Karamcheti and A. A. Chien. Do faster routers imply faster communica-
tion? In Proc. Parallel Computer Routing and Communication Workshop. Seat-
tle. WA. pages t-15. Berlin. 1994. Springer-Verlag.

(29] H. Katseff. Incomplete hypercubes. IEEE Transactions on Computers. C-
37(5):604-608. May 1988.

(30] P. Kermani and L. Kleinrock. Virtual cut-through: A new computer communi-
cation switching technique. Computer Networks. 3(4):267-286. September 1979.

(31] Leonard Kleinrock. Queueing Systems, volume I. Wiley-lnterscience. Mew York.

1975.

[32] Clyde P. Kruskal and Marc Snir."The performance of multistage interconnection
networks for multiprocessors. IEEE Transactions on Computers, C-32(l2):l09l-
1098, December 1983.

[33] D. Lenoski, K. Gharachorloo. J. Laudon, A. Gupta. J. Henessy. M. Horowitz,
and M. Lam. Design of scalable shared-memory multiprocessors: The dash
approach. In Proceedings of COMPCON, pages 62-67, 1990.

[34] Clement H. C. Leung. Quantitative Analysis of Computer Systems. John Wiley
and Sons, New York, 1988.

[35] C. L. Liu and James W. Layland. Scheduling algorithms for multiporgramming
in a hard real-time environment. Journal of ACM, 20(l):46-6l, January 1973.

[36] Michael K. Molloy. Fundamentab of Performance Modeling. Macmillan. New
York, 1989.

[37] NCUBE,919 East Hilldale Boulevard, Foster City, CA. nCUBE 2 Programmer's
Guide, 1992.

[38] J. Y. Ngai. A Framework for Adaptive Routingin Multicomputer Networks. PhD
thesis, California Institute of Technology, Pasadena, 1989. Caltech-CS-TR-89-
09.

39| G. F. Pfister. The IBM research parallel processor prototype (RP3): Intro-
duction and architecture. In Proceedings of the ICPP. pages 764-771. August
1985.

•10] D. A. Reed and R. M. Fujimoto. Multicomputer Networks: Message-Based Par-
allel Processing. MIT Press. Cambridge. MA. 1987.

•tlj D. A. Reed and H. D. Schwetman. Cost-performance bounds for multimicro-
computer networks. IEEE Transactions on Computers. C-32(l):83-95. January
1983.

42] C. L. Seitz. The cosmic cube. Communications of ACM. 28(l):22-33. January
1985.

43] Kang G. Shin and Parameswaran Ramanathan. Real-time computing: A new
discipline of computer science and engineering. Proceedings of the IEEE. 82(l):&-

24, January 1994.

[44] S. Toueg. Deadlock- and livelock-free packet switching networks. In Proc. 12th
ACM Symp. Theory of Computing, pages 94-99. 1980.

45] S. Toueg and J. D. Ullman. Deadlock-free packet switching networks. In Proc.
llth ACM Symp. Theory of Computing, pages 89-98. 1979.

[46] G. Delia Vecchia and C. Sanges. Recursively scalable networks for message
passing architectures. In Parallel Processing and Applications, pages 33-40.
Amsterdam, September 1987. Elsevier Science Publishers B.V.

47] G. V. Wilson. A glossary of parallel computing terminology. IEEE Parallel and
Distributed Technology Magazine. l(l):52-67, February 1993.

[48] L. D. Wittie. Communications structures for large networks of microcomputers.
IEEE Transactions on Computers. C-30(4):264-273. April 1981.

49] X. Zhang. System effects of interprocessor communication latency in multicom-
puter. IEEE Micro, pages 12-L5, 52-55, April 1991.

50] Wenjing Zhu and Sameul T. Chanson. Adaptive threshold-based scheduling for
real-time and non-real-time traffic. In Proceedings of the 12th Real Time System
Symp., pages 125-135, 1992.

