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Abstract  

A possible countermunition against kinetic energy (KE) rods is a thin square metal launched 
edge-on so that an edge strikes the rod first followed by the rest of the plate. A properly designed 
coil gun can launch plates edge-on to velocities of several hundred meters per second. The 
proper design of the coil gun depends on knowing the mutual inductance between the coil and 
the plate, which was calculated by assuming that the current distribution in plate can be described 
by a polynomial that has some arbitrary coefficients. These coefficients were determined by 
equating the magnetic induction of the current distribution to the negative of the applied 
magnetic induction of the launch coil at selected points on the plate. This step was aided by the 
fact that all the integrals arising from the Biot-Savart law are analytic. Li the next step, the 
mutual inductance was calculated from the current distribution and the applied magnetic 
induction. The calculation was repeated for various plate positions in the coil. These results 
were used to design the power supply for the launch coil and to calculate the final velocity of the 
plate. 
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1. Introduction 

In previous work in the area of plate-rod interactions, such as in reactive armor [1] and 

momentum transfer armor (MTA) [2,3], explosives were used to launch the plates with a velocity 

in the direction that is normal to the plane of the plate (face-on launch). Launching the plate with 

a velocity in the direction that is in the plane of the plate (edge-on launch) was not considered, 

because a substantial amount of explosive materials would be needed behind a small surface area 

of the plate, and confinement of the high-pressure gases would be difficult There is some evidence, 

however, that plates launched edge-on may be more effective at defeating a kinetic energy (KE) rod. 

Both Hull code calculations [4,5] and an experiment that simulated plates flying edge-on by firing 

a yawed projectile against a stationary target plate set at an angle [6] suggest a preference for edge-on 

orientation. This was confirmed in a series of experiments [7] where plates were launched, 

nonexplosively, by an electromagnetic (EM) launcher and intercepted a subscale rod. There are 

other advantages as well. A plate launched edge-on may be in an aerodynamicaUy preferable 

orientation that can fly the distances required for some applications, and EM launchers do not have 

the special logistics and handling difficulties that are required for explosives. Because of these 

advantages, they appear to be a viable option and warrant continued examination. Accordingly, this 

launch option for KE threats is being studied at the U.S. Army Research Laboratory (ARL). 

An EM launcher, which is well suited for edge-on launch of plates, is the reconnection gun, a 

type of coil gun invented by Cowan [8]. In this launcher, a time varying magnetic induction 

produced in an external launch coil induces a current in the plate to be launched. This action is 

similar to that of a transformer where the primary winding, the external launch coil, induces a current 

in the secondary winding, the plate. The force between the induced current and the external 

magnetic induction accelerates the plate out of the coil. Cowan and colleagues [9] demonstrated that 

high velocities can be achieved by using a number of external coils arranged in-line along a path. 

As a plate was passing through a coil, a current pulse was delivered at the proper time to accelerate 

the plate toward the next coil. This resulted in the launching of a 150-g aluminum plate to a velocity 

of 1.0 km/s. Although this multistage launcher did not use explosives, its use in nonenergetic 

momentum transfer armor (NEMTA) is probably not practical because of its size and weight. 

Therefore, only single-stage launchers are considered here. 
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2. Single-Stage Coil Guns 

The electrical schematic of a single-stage coil gun [10] (Figure 1) is very similar to a series LRC 

circuit Unlike the classic LRC circuit, the inductance associated with the launcher depends on the 

position of the plate within the coil. This dependence is due to the distribution of the magnetic 

induction in the core of the coil and around the plate. The resistor in this figure is not a physical 

resistor. It represents the energy losses within the system that may also vary with time, but it is 

usually assumed to be constant for the purposes of modeling. 

SWITCH RESISTOR 

AAA 

CAP. 
BANK 

Figure 1. Schematic of a Single-Stage Coil Gun. 

hi designing a coil gun for the best performance, it is necessary to calculate the current through 

the coil, the plate's velocity, and the plate's position in the coil. These calculations require that the 

inductance of the coil, and its gradient, be known as functions of the plate's position. The coil's 

inductance is necessary to calculate the coil's current, and the inductance gradient is necessary to 

calculate the acceleration of the plate. Previously, models of proposed launch coil designs were 

made out of aluminum, then their inductances were measured with a Hewlett-Packard model 4263 A 

LRC meter. This meter supplies an alternating voltage to the coil and analyzes the amplitude and 

phase of the current through the coil to determine its inductance. The results are digitally displayed 

on the meter and recorded for each plate position. These data are then used to estimate the 

inductance gradients. This study was tedious because of the number of coils that had to be 

constructed and measured. If it were possible to easily calculate the inductance and the gradient of 



these coils, then a more complete study of various coils with different design parameters and 

geometries could have been performed. This report presents a method to calculate these quantities. 

To illustrate the change in the distribution of the magnetic induction when a conductor is present, 

Figure 2 shows the result of a simple two-dimensional calculation [10]. The shaded area represents 

an aluminum plate in an oscillating magnetic induction, produced by two infinite current sheets, 

located at the thick solid lines to the left and to the right of thealuminum plate. Current in these 

sheets is equal in magnitude, but opposite in direction at all times. The total magnetic induction 

produced by these current sheets and the eddy current in the plate is shown as streamlines, located 

between the current sheets. The direction of the magnetic induction is tangent to these lines, and the 

magnitude is inversely proportional to the distance between neighboring lines. Because the magnetic 

induction produced by the eddy current tends to be equal, but opposite to the magnetic induction of 

the current sheets, their sum is small inside the aluminum plate, except at the left and right edges 

where the streamlines may enter the plate. Thus, the streamlines are bent around the aluminum plate. 

This bending of the streamlines concentrates them in the gap between the back edge of the plate and 

the left current sheet, indicating an area where there is a large magnetic induction and force on the 

plate. This force pushes the plate through the slot in the current sheets to the right and out of the 

coil. As the plate moves out, the streamlines straighten out and eventually become evenly spaced 

vertical lines, when the plate is completely out of the coil. The shape of the streamlines and the 

force on the plate can be easily calculated for this two-dimensional geometry. Unfortunately, two- 

dimensional calculations are not adequate, as has been demonstrated by another more detailed two- 

dimensional calculation [11], where the force on the plate for a transient current in the sheets and 

the heating effects in the plate were included. The plate velocity was calculated to be 140 m/s, but 

the experimental velocity was only 92 m/s. There was better agreement when an "effective 3-D 

correction factor" was introduced. 

3. Eddy Currents 

Three-dimensional eddy current calculations [12] are important in electrical engineering, and 

many publications are available on this subject Most of these calculations can be divided into two 

broad categories. The first category is the quasi-stationary [13] problem, where the magnetic field 
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Figure 2. Magnetic Streamlines Around an Aluminum Plate. 

is harmonically oscillating at a constant frequency and amplitude. The second category is the 

transient [14] problem, where the magnetic field pulse begins at zero, varies with time, and returns 

to zero at some later time. Some publications present computer programs that can solve either 

category of problems for many geometries. These noncommercial computer programs, however, are 

complicated and difficult to use. Furthermore, the utility of these programs is limited, since it is not 

always possible to make simplifying assumptions pertinent to the problem at hand. As an example, 

a general treatment of the subject would include the conductivity of the plate and the time variation 

of the applied magnetic field, but these features may not be necessary for this application. 

These features were not included in a preliminary calculation [15], where it was assumed that 

the eddy current of the plate was distributed only on the surface of the plate and the magnetic field 

was static. To model the eddy current, the plate was covered on the top and the bottom by an array 

of filamentary rectangular loops. To model the condition that the magnetic induction produced by 



the eddy current is equal and opposite to the coil's magnetic induction in the plate, the current in each 

loop was chosen to make the total magnetic induction zero at the center of each loop. Once the 

current in each loop was calculated, the force on each loop was found and summed to give the total 

force on the plate that is dependent on the inductance gradient [10], 

F(x) - £*&. (1) 

where F(x) is the force on the plate, / is the current in the coil, and L'(x) is the inductance gradient 

of the coil. This calculation was repeated for a number of plate positions, and the results were 

compared with the inductance gradient as determined from the inductance-meter measurements. 

This procedure was repeated for a number of plate dimensions, plate materials, and coil designs. The 

calculated inductance gradients compared favorably with the measured inductance gradients in all 

cases, provided that the plate was a good conductor and had a thickness larger than the skin depth. 

These results demonstrate that a current distribution on the surface may be a good approximation 

for the actual current distribution within the plate. Indeed, the actual eddy current distributions 

found in other simpler problems are concentrated within some depth from the surface. If this depth 

is small, compared to the dimensions of the plate, then this approximation can be made. The exact 

definition for the current depth is not known for a rectangular plate, but it can be estimated by 

considering a simpler problem. Let a conductor occupy all the positive x space in the three- 

dimensional Cartesian coordinate frame and the rest of the space be occupied by a harmonically 

oscillating magnetic induction in the y direction, which induces an eddy current in the conductor. 

The analytical solution [16] to this problem shows that the amplitudes of the magnetic induction and 

the eddy current decay exponentially with distance from the surface, with a decay length or "the skin 

depth" 

\ UOG)' 
(2) 

where p is the permeability of the plate, o> is the angular frequency of the magnetic induction, and 

o is the conductivity of the plate. In the present launching systems, the frequency is typically 1 kHz, 

(o = 6282 rad/s, and the plates are aluminum, o = 3.54 x 107 S/m. Consequently, the skin depth is 



2.7 mm. This depth is small, compared to the typical length and width of the plate which are greater 

than 0.10 m, but it may not be small when compared to the typical plate thickness of 6 mm. The 

orientation of the plate relative to the magnetic induction (Figure 2) illustrates that the dimensions 

to be compared to the skin depth are the length or width, and not the thickness. If the skin depth 

were zero, in this figure, the streamlines that enter the plate at the edges would be completely 

expelled. Other than this, the shape of the rest of the streamlines, elsewhere, would change very 

little. 

A zero skin depth will result if either the angular frequency co approaches infinity, "the high- 

frequency limit," or if the conductivity of the material o approaches infinity, "the super-conductor 

limit." In the super-conducting limit, the angular frequency can be zero, which means that the 

magnetic induction field can be static. This also makes the problem easier to solve but raises an 

interesting question: How can eddy currents be produced by a static magnetic induction field? Eddy 

currents are induced in a super conductor in a different manner. Consider a super conductor with 

no eddy currents located in a field-free region, far from the core. Now, bring the super conductor 

into the core where there is a magnetic induction. This motion produces the time varying magnetic 

induction that induces the eddy current Thus, the time variance of the magnetic induction is implied 

by the condition that the magnetic induction, inside the super conductor, is zero, which means that 

it had to be in a field-free region at some time. Furthermore, because work must be performed to 

establish the eddy currents themselves, the super conductor must be pushed into the core and it will 

be expelled out of the core if it were released. Thus, a static magnetic field can launch a super- 

conducting plate, which is the "Meissner effect." 

4. Eddy Current Calculations 

The current loops in the preliminary calculation are now replaced by a continuous current 

distribution, and it is assumed that the rectangular plate has no thickness. The magnetic induction 

produced by an eddy current in this thin plate is given by the Biot-Savart law: 



BAx) - -L-)dx')dy' /(x'-y')X(H,), 0) 
sf     Jf'l3 4«i».i   -J„        I*-* 

where a is half the length and b is half the height of the plate. If the plate has infinite conductivity, 

then this magnetic induction, Be (x), must be equal and opposite to the coil's magnetic induction, Bc (x), 

everywhere on the plate so that the total is zero everywhere in this area. This cannot be done if the 

coil's magnetic induction has a component in the x or y direction on the plate. When x - x' is on 

the x - y plane, the cross product in the numerator has just one component in the z direction, and so ^ (x) 

must also be in this direction. Thus, there cannot be an x or a y component to cancel out the like 

components of the coil's magnetic induction. Fortunately, the plates are positioned so that these 

components of the coil's magnetic induction are small compared to the z component This 

complication would not occur if the plate had a thickness, and the current density on all six faces of 

the plate were included. 

The problem to be solved here is more complicated than the usual magnetostatic problem where 

the current density is given first and one must then find the magnetic induction everywhere. In this 

case, the coil's or the eddy current's magnetic induction is given first and one must then find the 

current density. One way to solve this problem is to assume that the current density may be 

approximated as a sum of terms that are products of a coefficient and a member of a set of linearly 

independent functions. As an example, the x component of the current distribution is assumed to 

be 

Jx(x',y') =   EA.«*'"?""' (4) 

m,n=0 

and the y component of the current distribution is assumed to be 

Jy(x',y') = E Cjkx'Yk. (5) 
j,*=0 



The set of linearly independent functions in this case consists of products of x, raised to an 

integer power, and y, raised to an integer power. When these functions are substituted into 

equation (3), the resulting integrals are analytic, and calculations are simplified (see the Appendix). 

These coefficients must satisfy several conditions. First, the current density that they describe 

must conserve charge everywhere on the plate, or 

a^'oO + dJy(x',y') _ 
8x' dy' U 

for any point on the plate. Second, the current density must not cross the edges, which means that 

no current may enter or leave the isolated plate. Thus, Jx (x' = a, y') must be zero for all points on 

the right edge and Jx (x' = -a, y') must be zero for all points on the left edge. Similar conditions 

apply to the top and bottom edges, Jy (x\ y' = ±b) = 0. The current density vector, however, can be 

parallel to an edge. These conditions make some of the coefficients dependent on each other, 

choosing a value for one coefficient will change the value of another. It is possible to derive the 

relations between the coefficients, but there is another easier method to generate a physically 

meaningful current distribution, hi this method, the current distribution is generated from another 

linear combination of the basic functions: 

nx',y') = (a2-*'2) (b2-y'2) £ T. . *'' y'J, (7) 
i,j=0 

where 

,,(•./>. -z&a, (8) 

and 

w> ■ ^f1- w 



I and / in equation (7) are the maximum powers of x' and y' for the summation. Their exact values 

depend on the desired degree of approximation. For example, / and / were equal to 9 in the results 

that will be presented later. 

To illustrate how equation (7) meets the conditions for a physical current distribution, consider 

a current distribution described by a single term, 

T.tj (*',/) = (a2 - x'2) (b2 - y'2) *"" y'J T. ., (10) 

where 

and 

j <x',y') = 8r"(*',y,) = T.. (a2 - x'2) x'iy'^Ub2-U^)y'2), (11) 
ay 

j {x',y') = - 9TiJ (*'y) = -T.(b2-y'2) ^"-1^(/a2-(i + 2)x'2). (12) 

This current distribution conserves charge and satisfies the boundary conditions at the edges for all 

values for i and ;. Now that each term in equation (7) generates a physical current density 

distribution and their sum will also generate a physical current density distribution, the coefficients 

Tu are independent from each other. When equations (11) and (12) are substituted into the Biot- 

Savart law, equation (3), the magnetic induction everywhere for this current distribution is 

*K ,y' h']     4* I   I ' «x-x')2Hy-y')2+z2)312 

+ L£. }&> }dy> (x-x'Kb2-y2)x«->yHia2-V + 2)x>2) 
4TT   J_a     J_b «x-x')2 + (y-y')2+z2)3'2 

As stated before, all these integrals are analytic and procedures for their evaluation are given in 

the Appendix. The integrals in equation (13) are collected and defined as 



1    4*i    L «x-x'fHy-y')2+z2)312 

+ ZL& /•<&' f^(*-*#)^2-y/2)*fl'I/J(faa-«*2)*12)        (14) 

Thus, if all the coefficients were known, then the z component of the magnetic induction of the eddy 

current everywhere would be 

/./ 
Bz(x,y,z)= £ T.j Iz(x,y,z)itj. (15) 

t,j~o 

Similar expressions may be written for the x and y components, but they are not needed because they 

are zero when z = 0. By choosing a set of field points on the plate, it is possible to find values for 

the coefficients so that the magnetic induction produced by the eddy current, equation (15), is equal 

and opposite to the coil's magnetic induction at these points. As an example, assuming that / = 1 and 

/ = 1, there are four unknown coefficients, T00, 70>1, Tuo, and T1M that are determined by four 

simultaneous equations. These equations result from making Bz (x,y,0) = -Bc (jc,y,0) at four points: 

Bz(xl>yi,0) = -Bc(xuyu0) = T0ß Iz(xuylt0)0ja + I*w /«^„Ofo + Tlfl 1^x^,0)^ + TUI /2(xltyi,0)w, 

Bz(x2,y2,0) = -Bc(x2,y2,0) = r0,0 /2(x2,y2,0)0,0 + T0A lz(x2,y2,0)0<1 + Tli0 /z(x2,y2,0)li0 + T1A /2(x2,y2,0)u, 

5z(x3,y3,0) = -5c(x3,y3,0) = T0J0 /2(x3,y3,0)0,0 + T0tl /2(x3,y3,0)0il + Tlß lz(x3,y3,0)lß + ru /2(x3,y3,0)u, 

£2(x4,y4,0) = -£c(x4,y4,0) = r0>0 72(x4,y4,0)0>0 + T0A /2(x4,y4,0)0il + Tuo /2(x4,y4,0)li0 + Tu /2(x4,y4,0)u.    (16) 

The exact positions of the points are arbitrary, as long as they are not on the plate's edge. Choosing 

the points on a uniform grid, such as the one shown in Figure 3, an example for a higher order of 

approximation (/ = 7 and/ = 7), works well. There are eight rows and columns, because the indices 

/ and j start at 0 and continue up to and including 7, in this illustration. The resulting set of equations 

can be solved by using standard methods in linear algebra to find the coefficients. Because these 
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Figure 3. Grid Points Where the Total Magnetic Induction Is Zero. 

points are fixed on the plate, the integrals do not change when the plate is moved away from the coil. 

Thus, the matrix, whose elements are the integrals, needs to be evaluated and inverted only once. 

The components of the vector that must be multiplied by the inverse matrix, however, are negative 

of the coil's magnetic induction at each point Because these components do depend on the relative 

position between the coil and the plate, they must be reevaluated when the plate's position is 

changed. 

The launch coil that will be used in the following calculations was constructed from two copper- 

beryllium alloy plates 15.24 x 15.24 x 0.64 cm. Each plate was milled into a square helix by a 

0.64-cm-diameter end mill. The milling pattern left a conductor with cross-sectional dimensions of 

0.64 x 0.64 cm in a square helix, with five complete turns. The square helixes were mounted parallel 

to each other, separated by 5.08 cm. The magnetic induction of the coil at the grid points was 

estimated by replacing the conductors with a current-carrying filament, located at the geometric 

center of their cross sections. Although current is actually distributed over the cross section of the 

bars, the magnetic induction of a distributed current approaches that of a current filament at some 

distance from the bar. Thus, the magnetic induction of the current-carrying filaments should be 

approximately the same as the coil, provided that the plate is not too close to a coil's conductor. 
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In Figure 4, the center of a 15- x 15-cm plate was positioned at the center of the coil. The lines 

within the plate are the streamlines for a current density that cancels the coil's magnetic field at 

100 grid points, 1 = 9 and J = 9. These streamlines have the same properties as the magnetic 

streamlines in Figure 2. The direction of the current density is tangent to the line, and the magnitude 

is inversely proportional to the distance between neighboring lines. The same spacing of the 

streamlines at each edge of the plate indicates that the magnitudes of the current density are about 

the same at each edge. Because the magnitudes of the magnetic induction are also about equal at the 

edges, the magnitudes of the force on each edge are about equal. These forces, however, are directed 

toward the center of the plate, and the plate will not be accelerated out of the coil when placed in this 

position. In contrast, Figure 5 shows the streamlines when the plate is half way out of the coil. The 

streamlines are now concentrated along the back edge of the plate, indicating an area where there is 

a large eddy current and force on the plate, which accelerates the plate out of the coil. 

Figure 4. Current Streamlines for a Plate at the Center of the Coil. 
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Figure 5. Current Streamlines for a Plate Half Way Out of the Coil. 

Eddy currents in a plate were evident when the surface temperature distribution of a plate was 

observed just after it was launched in an earlier experiment [10]. The launch coil was made from 

a 10- x 10-cm square tube of aluminum 23-cm long with 3-mm-thick walls. Its sides were slotted 

so that the remaining aluminum formed a square helical coil, with nine turns. The coil was 

supported on the inside and outside by a stack of 5-cm-thick G10 fiberglass rectangles. The spacing 

between one pair of windings was widened in order to permit insertion of the metal plate into its core 

from the side. An aluminum plate was fabricated with a nose section that held a nail oriented along 

the direction of plate motion. In a low-velocity launch, the nail was driven into a plywood barrier 

by the plate. In this manner, the assembly was captured for viewing by an infrared (IR) video camera 

(8-12 urn) immediately after launch. The aluminum plate had a thick anodized coating to increase 

the emissivity of the surface for IR radiation. The IR video image in Figure 6a shows that the top 

surface of the plate was heated along its trailing and side edges. By observing the captured plate for 

some time with the IR video camera, we found that the time for the heat to diffuse from the edges 

was long, compared to the time to launch the plate. Thus, it was concluded that there was negligible 

13 



Figure 6a. IR Video Image. 

heat diffusion during launch. Assuming no heat diffusion, and assuming that the conductivity of the 

material is independent of the temperature, the heating rate is then proportional to the square of the 

magnitude of the current density. The current density was calculated for the plate at its initial 

position inside the coil, because the plate remained close to the initial position during the entire 

current pulse for this low-velocity shot. The shape of the contour lines (Figure 6b), for the heating 

rates and the IR video image, shows that the side edges are heated by large eddy currents generated 

by the proximity of the coil windings. No attempt was made to correlate the heating rate with the 

observed intensity of the IR radiation. 

5. Plate-Coil Mutual Inductance 

After the current density is calculated, the mutual inductance can be found from the general 

expression for the energy to establish a magnetic field, 

14 



Figure 6b. Heating Rate Contour Lines. 

W = 1 fdvf' A + - fdvD I • A, 
2J    c   c 2J    '   ' 

(17) 

where Jc is the current density of the coil, Je is the plate's current density or the eddy current, and A 

is the total magnetic vector potential. The first integral is taken over the volume of the coil, dvc and 

the second is taken over the volume of the plate, dvp. When the plate is a super conductor, the total 

magnetic induction is zero everywhere within the volume of the plate, and the magnetic vector 

potential can be expressed as a gradient of a scalar function, A = grad T. Substituting this into the 

last integral, it is possible to prove that the integral is zero. Thus, the energy of the magnetic field 

is just the first integral, provided that the plate is a super conductor. The next step is to substitute 

the sum for the total magnetic vector potential, 

W ■\I' dv. J„ • A   + \t dv. J. • A. (18) 

15 



Ac is the vector potential produced by the current density in the coil, and Ae is the vector potential 

produced by the eddy current in the plate. It is now possible to replace each term in this equation 

with an equivalent inductive element. First, start with the total magnetic energy W. If the plate is 

placed at some position in the coil %, the coil has some inductance L (x0), and if a current / were 

flowing through the coil, the total energy stored in the coil would be 

W =  ±SL. (19) 

The first integral on the right, in equation (18), represents the magnetic energy stored in the coil itself 

Wt, because it depends only on the coil's current density and geometry. Thus, this integral can be 

replaced with a similar expression, 

Ws-~=\{dVcfrÄc, (20) 

where Ls is the self inductance of the coil. Substituting this into equation (18), the inductance of the 

coil becomes 

L(xo)=Ls + ±fdvcJrÄe. (21) 

The integral in this equation is not in the most convenient form, because the vector potential of the 

eddy current is used. Although it can be calculated, it is possible to rewrite the integral in terms of 

quantities that have already been calculated in the course of finding the eddy current. By using the 

definition of the magnetic vector potential in terms of current density and some vector identities, the 

following identities can be proven for a coil and plate with any solid shape, each having a current 

density distribution: 

fdvc Jc-
Ä

e= jdvp Je'Ac= fdvp Bc • f, (22) 

16 



where J = curl T. The vector T must be either zero or normal to the surface for all points on the 

surface. These general identities and conditions are slightly modified for the present application. 

The vector Thas just one component in the z direction, whose curl reproduces equations (8) and (9), 

and it is zero at the plate's edges. In addition, only the z component of the coil's magnetic induction 

is used. Thus, the inductance of the coil in this application is 

1   a     b 
L(*„) = Ls + ±fdxfdyBc(x,y)T(x,y). (23) 

Because the coil's magnetic induction and the eddy currents are proportional to the coil's current /, 

the inductance of the coil will be independent of I. Thus, L (x0) will depend only on the geometry. 

A procedure to estimate the self-inductance of the coil Ls has been developed and presented in 

detail elsewhere [15], but it will be quickly described here. This procedure first divides the winding 

of the coil into a number of rectangular bars with different lengths and orientations. The self- 

inductance of the coil is then a sum of the self-inductance of each bar, and the mutual inductance 

between each pair of bars. The self-inductance of a bar is approximated by the geometric mean 

distance formula [17]. The mutual inductance between a pair of bars is approximated by replacing 

each bar with a filament, located at the center of the cross section of the bar, and using the exact 

formula for the mutual inductance between two filaments [17]. Using these approximations, and 

taking the appropriate sum, the self-inductance of the launch coil being considered here was 

calculated to be 5.90 uH. Using 5.90 pH for the self-inductance of the coil and calculating the 

integral in equation (23) for various plate positions, the total inductance of the coil as a function, the 

plate's position is shown as the upper curve in Figure 7. The lower curve is the inductance, when 

the measured self-inductance of the coil 5.49 uH is used instead. The diamonds in this figure are 

the measured inductance of the coil for various plate positions. 
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6. Discussion 

The agreement between the lower curve and the experimental measurements in Figure 7 shows 

that this procedure is capable of estimating the mutual inductance between the coil and the plate. 

It also shows that the procedure for calculating the self-inductance of the coil gives a reasonable 

approximation. Therefore, it is now possible to calculate the inductance of a coil as a function of 

the position of a rectangular plate within it. This permits study of various coils to identify what 

design features will improve the efficiency of the single-stage coil gun. The results of this study will 

be presented in future publications. 

3.00 
0.00 0.05 0.10 

X(m) 

0.15 

Figure 7. Calculated Coil Inductance (Solid Lines) and Measured Inductance (Diamonds). 

In practice, it is found that the series expansion of the current streamline function, equation (7), 

is semiconvergent When the mutual inductance of the plate and the coil for a given plate position 
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is calculated for increasing / and / in equation (7), the mutual inductance seems to converge to a 

limit, but diverges when they are made too large. This divergence may be caused by an instability 

in the analysis. Therefore, / and / should be kept small enough to avoid the instabilities but large 

enough to get reasonable results. By repeating the calculation for different "7"s and "7"s and 

observing when the mutual inductances start to diverge, it is possible to decide what their values 

should be. This instability may be indicated by the observations that the coefficients for the higher 

order terms do not approach a limit with increasing / and /, and the absolute values of the 

coefficients increase as the order of their terms increases. These features are contrary to a 

converging series and make it difficult or impossible to assign an error to the results. 

The reason for this semiconvergence may be illustrated by applying this method to a simple 

analytic problem. Let the plate in Figure 3 be an infinitely long ribbon along the x-axis, with a half 

width b, and assume that there is a uniform magnetic field in the z direction at large distances away 

from the ribbon. It can be shown analytically that the current density in the ribbon is 

Jx(y) = — —z—. (24) 
W0 yfb1^ 

where B0 is the magnitude of the magnetic induction. Because the current density is infinite at the 

edges of the ribbon, it is quite possible that there are infinite current densities at some of the edges 

of the rectangular plate. If this is so, polynomials of finite order are a poor approximation for the 

current density near these edges, since they are finite everywhere on the plate. Because the distance 

between these edges and the nearest grid points decreases as / and / are increased, it is possible that 

the higher order approximations for the current density become unstable. Had the plate, however, 

had a finite thickness and conductivity, then the current density should be finite everywhere. These 

polynomials may then be a very good approximation for the current density. Thus, this formalism 

is now being extended for this case, and will be the subject of future reports. 
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7. Conclusion 

This calculation of the eddy currents and the mutual inductance depends on three assumptions: 

(1) the skin depth is zero, (2) the plate has zero thickness, and (3) the eddy-current density 

distribution in the plate can be described by a polynomial. The first assumption was made in a 

preliminary calculation [15] that produced very good agreement with experimental measurements. 

These results indicated that the skin depth may be small, compared to some dimension of the plate. 

After estimating the skin depth and considering the distribution of the magnetic induction around 

the plate, it was concluded that the skin depth should be compared with the length or the width of 

the plate, and not with its thickness. This calculation also demonstrated that there was a small 

variation in the inductance gradient, when the thickness of the plate was varied, and a plate with no 

thickness could be assumed. Although these first two assumptions make the problem easier to solve, 

they may introduce an infinite current density at some of the edges. Stickily speaking, this behavior 

invalidates the third assumption, because a polynomial cannot be infinite at the edges. Despite this 

complication, it is possible to get meaningful results with some testing and precautions. 
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Appendix: 

Recursion Relations for the Integrals 
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Although the integrals in equation (14) are in principle analytic, their explicit expressions quickly 

become long and tedious even for small i and j. In the end, however, it is their values that are 

required to perform the calculations. A procedure to find their values or expressions starts by 

identifying the general form of the integrals that appear in all of these equations, which is: 

F(*ytz\I=}dx'[dy' „   *'*y" , —-. (A-l) 
L   L   «x-x')2Hy-y')2 + z2))3'2 

Equation (14), for example, may be rewritten as 

Iz(x,y,z)u = a2b2JyF(xtytz)IJ.l - a2jy(j+ 2)F(x,y,z)iJ+l 

- btyjFiwzlt.ij-i +y(J + 2)F(x,y,z)i+2J+1 

- a2*2F(x,y,z),.;. + a2V+l)F(x,y,z)iJ+2 

+ b2jF(x,y,z)i+2J - <j+2)F(x,y,z)i+2J+2. (A-2) 

Unfortunately equation (A-l) is not the final integral that must be evaluated, because the first 

step taken to perform the integration is to introduce a change in variables: 

?(W>., - */du7*dv  (*-">'0-v>' , (A-3) 

where u = x - x', du = -dx', v =y - y', and dv = -dy'. Applying the binomial theorem to the 

numerator, 

(x-u)k(y-v)1 = E E I *] I  ' I xk-nyl-m(-\)n+munvm (A-4) 
n=0 m=0 V n) \ m) 
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and defining a new set of integrals, 

'(".v)„,M - Jdu'j dv KV 
2j.,,2 .„2\3/2 *        («   +V   +Z  ) 

equation (A-3) can be rewritten as 

(A-5) 

n=k m=k I »\ 

F(W) = £ E 
n=o m=o \ n) 

11^ ,k-n.,l-m (_\\n+m xK-ny'-m(-irmJ(utv)nn (A-6) 

As an example, if / = 1 and; = 1, then the numerator in equation (A-3) becomes (x - u) (y - v) = 

xy - yu - xv + uv and the integral becomes 

F(.x,y,z)u = xyJ(u,v)00 -yJ(u,v)l0 -xJ(u,v)0l ^J^v^ (A-7) 

in terms of the fundamental integrals. It is implied that these fundamental integrals are evaluated 

at the limits of integration. ID more explicit terms, 

F(.x,y,z)ltl =xy(J(x-a,y-b)Q0-J(x-a,y+b)00-J(x+a,y-b)00+J(x+a,y+b)Q0) 

-y(J(x-a,y-b)l0-J(x-a,y+b)10-J(x+a,y-b\Q+J(x+a,y+b)10) 

-x(J(x-a,y-b)01-J(x-a,y+b)01-J(x+a,y-b)01+J(x+a,y+b)01) 

-(7(x-a,y-lfc)11-/(jr-a,v + fc)11-/(ac+fl,v-^)11+/(^+a,y + fc)11).   (A-8) 

The value of the integral, equation (A-5), for any n and m can be found by using a set of 

recursion relations, which is a relationship between a higher order integral in terms of lower order 

integrals. These recursion relations start with the four lowest order integrals: 
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1                 MV 
J(M,V)00 = -arctan — 

z          zr 
(A-9) 

J(u,v)0l = -ln(w+r), (A-10) 

^(",v)10 = -ln(v + r), (A-ll) 

and 

J(u,v)u = -r, (A-12) 

where r = ^w2 + v2+z2in these equations and the ones following. The recursion relations are for 

n > 0 and m > 2, 

(n+m-l)J(u,v)nm = (m-l)u*+lV(u)m_2-nvM-1U(y)H-(m-l)z ^(">v)B>m _2          (A-13) 

and for n > 2 and m > 0, 

(n+m-l)J(u,v)n>m = {n-\)vm+xU(y)n_2-mun-lV(u)m-{n-\)z2 
^(M'V)„-2 ...         (A-14) 

where U (v)j and V (u)j are the integrals, 

x~a      »t                      y'b     vJ 
U(y)t =   f du— and V(u)j = f dv — . (A-15) 

x+a                                          y+b 

Each of these integrals have a recursion relation: 

' iU(y\ = «'-1r-(i-l)(v2 + z2)t/(v)._2 

and 

(A-16) 

jV(u). = v^r-V-D^+z^VM.^, 
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where the starting integral for U (v\ are U (v)0 = In (w + r) and U (v\ = r, and the starting integrals 

for V (M)J are V (w)0 = In (v + r) and V (u)j = r. These recursion relations can either be used to write 

an explicit expression for equation (A-l), or they can be used to write a computer program, like the 

one listed in the next section, to calculate its value. This program does not calculate the eddy 

currents in the plate, but it does demonstrate how these equations are used. 
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#include <stdio.h> 
#include <math.h> 

/* NMAX is the absolute maximum value for nmax */ 
#define NMAX 20 

/* MMAX is the absolute maximum value for mmax */ 
#define MMAX 20 

struct plate { 
double a; /* The half width of the plate */ 
double b; /* The half height of the plate */ 
double x, y, z; /* The field point coordinates */ 

>P; 

void main () { 

double fxyz (int k, int el, struct plate *p); 

int k, el; 

/* Ask for and receive the half width */ 
printf ("Half width-"); 
scanf ("%le",&(p.a)); 

/* Ask for and receive the half height */ 
printf ("Half heigth - "); 
scanf("%le",&(p.b)); 

/* Ask for and receive the field point */ 
printf ("Field coordinate (x,y,z) - "); 
scanf ("%le %le %le", &(p.x), &(p.y), &(p.z)); 

/* Ask for and receive k */ 
printf ("k-"); 
scanf ("%d",&k); 
/* Test if k is too big */ 
if (k > NMAX) k - NMAX; 

/* Ask for and receive 1 */ 
printf ("1-"); 
scanf ("%d",&el); 
/* Test if el is too big */ 
if (el > MMAX) el - MMAX; 
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printf ("fxyz - %e\n", fxyz (k, el, &p)); 

} /* End of the Main program */ 

/* This procedure calculates the integral, equation Al */ 
double fxyz (int k, int el, struct plate *pd) 
{ 

void juv (double t[][MMAX], int n, int m, double u, double v, double z); 
void poly_pow (double *c, double x, int n); 

double sum; 
double xu[NMAX]; 
double yv[MMAX]; 
double capj[NMAX][MMAX]; 
double temp[NMAX][MMAX]; 

int n, m; 

/* Evaluate juv at the limits of integration */ 
juv (temp, k, el, pd->x - pd->a, pd->y - pd->b, pd->z); 
for (n - 0; n <- k; n++) 

for (m - 0; m o el; m++) capj[n][m] - temp[n][m]; 

juv (temp, k, el, pd->x + pd->a, pd->y + pd->b, pd->z); 
for (n - 0; n <- k; n++) 

for (m - 0; m <- el; m++) capj[n][m] +- temp[n][m]; 

juv (temp, k, el, pd->x - pd->a, pd->y + pd->b, pd->z); 
for (n - 0; n <- k; n++) 

for (m - 0; m <- el; m++) capj[n][m] — temp[n][m]; 

juv (temp, k, el, pd->x + pd->a, pd->y - pd->b, pd->z); 
for (n - 0; n <- k; n++) 

for (m - 0; m <- el; m++) capj[n][m] — temp[n][m]; 

/* capj[n][m] matrix now has the values for all the fundamental */ 
/* integrals, equation A5, needed to find the values for the  */ 
/* integral, equation A3. 

*/ 
sum - 0.0; 
poly_pow ( xu, pd->x, k); /* (x-u)Ak in equation A3*/ 
poly_pow ( yv, pd->y, el); /* (y-v)Al in equation A3*/ 
for ( n - 0; n <- k; n++) 
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for (m - 0; m <- el; m++) sum +- xu[n]*yv[m]*capj[n][m]; 
return sum; 

} 

/* Performs the integral, equation A5 */ 
/* The results are stored in a temporary matrix so that they may be     */ 
/* added or subtracted according to the limit of integration. */ 
void juv (double t[][MMAX], int k, int el, double u, double v, double z) { 

double capu[NMAX]; 
double capv[MMAX]; 

double vz, uz, zsq; 
double r, 
double num, den; 
double up, vp; 
inti,j,n,m; 

zsq-z *z; 
vz - v*v + zsq; 
uz - u*u + zsq; 
r - sqrt (vz + u*u); 

/* The starting values for the recursion relation, equation A16 */ 
if (u > 0.0) capu[0] - log(u+r); 
else capu[0] - log(vz/(r-u)); /* An identity used when u is negative */ 

capu[l] - r, 

/* The recursion relation itself, equation A16 */ 
up - u; /* up is u raised to the i-1 power    */ 
for (i - 2; i <- k; i++) { 

capufi] - (up*r - (i-l)*vz*capu[i-2])/i; 
up *- u; 

> 

/* The starting values for the recursion relation, equation Al 7 */ 
if (v > 0.0) capv[0] - log(v+r); 
else capv[0] - log( uz/(r-v)); /*An identity used when v is negative */ 

capv[l] - r, 

/* The recursion relation itself, equation Al 7 */ 
vp - v; /* vp is v raised to the j-1 power    */ 
for(j-2;j<-el;j++){ 

capvjj] - (vp*r - (j-l)*uz*capv[j-2])/j; 
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vp*-v; 
> 

/* equation A9 */ 
num - u*v; 
den - z * r, 
/* Test if z is close to zero */ 
if (fabs (z) < 1.0e-32) t[0][0] - 0.0; /* The limiting value */ 
else t[0] [0] - atan2 (num, den) / z; 
/* equation A10 */ 
if (u > 0.0) t[0][l] - -log(u+r); 
else t[0][l] - log((r-u)/vz);/* An identity used when u is negative */ 
/♦equationAll */ 
if (v > 0.0) t[l][0] - -log(v+r); 
else t[l][0] - log((r-v)/uz);/* An identity used when v is negative */ 
/* equation A12 */ 
t[l][l]--r, 

/* Use equation A13 to fill out the top row of the matrix */ 
n-0; 
for (m - 2; m <-« el; m++) 

t[n][m] - u*capv[m-2] - zsq*t[n][m-2]; 
/* Use equation A13 to fill out the second row from the top */ 
n-1; 
vp-v; 
up - u*u; 
for (m - 2; m <« el; m++) { 

t[n][m] - ((m-l)*up*capv[m-2]-vp*capu[n]-(m-l)*zsq*t[n][m-2])/m; 
vp*-v; 

> 
/* Use equation A14 to fill out each column of the matrix */ 
vp-v; 
for (m - 0; m <- el; m++) < 

up-u; 
for (n - 2; n <- k; n++) { 

t[n][m] - (n-l)*vp*capu[n-2]-m*up*capv[m]-(n-l)*zsq*t[n-2][m]; 
t[n][m]/-n+m-l; 
up *- u; 

> 
vp *- v; 

> 

} /* End of juv */ 

32 



/* (x-u) raised to the n-th power for a given x value */ 

void poly_pow (double *p, double x, int n) 
< 
/* The index of p[i] is the power of u or v; p[i] means uAi or vAi  */ 
/* The value of p[i] is the coefficient for the term */ 
/* Example: p[0] - 1.0, p[l] - -2.0, and p[2] - 1.0, would represent */ 
/* the polynomial 1.0 - 2.0*u + 1.0*u*u or (l-u)A2 for x - 1        */ 
inti; 

if(n —0){ 
p[0] -1.0; 
return; 

} 

/* -1 raised to the n th power */ 
if (0x0001 &n)p[n]--1.0; 
elsep[n] -1.0; 

for (i - n-1; i >- 0; i~) p[i] - -x * p[i+l] * (i+1) / (n-i); 
} /*Endofpoly_pow*/ 

33 



INTENTIONALLY LEFT BLANK. 

34 



NO. OF NO. OF 
COPIES ORGANIZATION CnPTFS ORGANIZATION 

• 2 DEFENSE TECHNICAL 
INFORMATION CENTER 
DTICDDA 

1 INST FOR ADVNCD TCHNLGY 
THE UNTV OF TEXAS AT AUSTIN 
PO BOX 202797 

* 8725 JOHN J KJNGMAN RD 
STE0944 

AUSTIN TX 78720-2797 

FT BELVOIR VA 22060-6218 1 USAASA 
MOASAI WPARRON 

1 HQDA 
DAMOFDQ 
DENNIS SCHMIDT 

9325 GUNSTON RD STE N319 
FT BELVOIR VA 22060-5582 

400 ARMY PENTAGON 1 CECOM 
WASHINGTON DC 20310-0460 PMGPS  COLS YOUNG 

FT MONMOUTH NJ 07703 
1 DPTY ASSIST SCY FOR R&T 

SARDTT F MILTON 1 GPS JOINT PROG OFC DIR 
RM 3EA79 THE PENTAGON COLJCLAY 
WASHINGTON DC 20310-0103 2435 VELA WAY STE 1613 

LOS ANGELES AFB CA 90245-5500 
1 OSD 

OUSD(A&T)/ODDDR&E(R) 1 ELECTRONIC SYS DIV DIR 
JLUPO CECOM RDEC 
THE PENTAGON JNTEMELA 
WASHINGTON DC 20301-7100 FT MONMOUTH NJ 07703 

1 CECOM 
SP & TRRSTRL COMMCTN DIV 
AMSEL RD ST MC M 
HSOICHER 
FT MONMOUTH NJ 07703-5203 

3 DARPA 
LSTOTTS 
JPENNELLA 
B KASPAR 
3701 N FAIRFAX DR 
ARLINGTON VA 22203-1714 

1 PRTN DPTY FOR TCHNLGY HQ 
USARMYMATCOM 1 US MILITARY ACADEMY 
AMCDCGT MATH SCI CTR OF EXCET J F.NCE 
MHSEITE DEPT OF MATHEMATICAL SCI 
5001 EISENHOWER AVE MDN A MAT DON ENGEN 
ALEXANDRIA VA 22333-0001 THAYERHALL 

WEST POINT NY 10996-1786 
1 PRTN DPTY FOR ACQUSTN HQ 

USARMYMATCOM 1 DIRECTOR 
AMCDCGA US ARMY RESEARCH LAB 
D ADAMS AMSRLCSALTP 
5001 EISENHOWER AVE 2800 POWDER MILL RD 
ALEXANDRIA VA 22333-0001 ADELPHI MD 20783-1145 

1 DPTYCGFORRDEHQ 
USARMYMATCOM 
AMCRD 

1 DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCSALTA 

BG BEAUCHAMP 
5001 EISENHOWER AVE 
ALEXANDRIA VA 22333-0001 

35 

2800 POWDER MILL RD 
ADELPHI MD 20783-1145 



NO. OF 
COPIES ORGANIZATION 

3       DIRECTOR 
US ARMY RESEARCH LAB 
AMSRLCILL 
2800 POWDER MILL RD 
ADELPHI MD 20783-1145 

ABERDEEN PROVING GROUND 

DIRUSARL 
AMSRLCILP(305) 

36 



NO. OF 
COPIES 

42 

NO. OF 
ORGANIZATION COPIES   ORGANIZATION 

INST FOR ADVNCD TCHNLGY AMSRLWMM 
THE UNIV OF TEXAS AT AUSTIN RBOSSOLI 
IANMCNAB S CORNELISON 
SIDPRATAP F PIERCE 
PO BOX 202797 AMSRLWMBD 
AUSTIN TX 78720-2797 P KASTE 

AMSRLWMBE 
ABERDEEN PROVING GROUND GKATULKA 

KWHITE 
DIRUSARL AMSRLWMBC 
AMSRLSER PWEINACHT 

H WALLACE AZTFJJNSKI 
AMSRLSL 

PTANENBAUM 
AMSRLWMT 

W MORRISON 
AMSRLWMTA 

WBRUCHEY 
GFILBEY 
WGHXICH 
T HAVEL 
MKFELF, 

AMSRLWMTC 
RCOATES 
W DE ROSSET 
RMUDD 

AMSRLWMTD 
A DIETRICH 
KFRANK 

AMSRLWMTB 
RFREY 

AMSRLWMTE 
PBERNING 
JCORRERI 
DDAMEL 
CHOLLANDSWORTH 
C HUMMER (5 CP) 
LKECSKES 
TKOTTKE 
KMAHAN 
MMCNEIR 
ANIILER 
J POWELL 
APRAKASH 
S ROGERS 
H SINGH 
CSTUMPFEL 
GTHOMSON 

37 



INTENTIONALLY LEFT BLANK. 

38 



REPORT DOCUMENTATION PAGE 
Form Approved 
OUB No. 0704-0188 

»porting bunt« lor this coWion ol Inlomullon » wtkMMd to «rag* 1 hour p* mpenM. Including II» «m. lor i«ri*wlna l^^^T^^^^^!^' 
Inoind maintaining th»il.ltiio.OM\»*lcoiiiplotlr^ 8^c»rnm«*i»g«lng^^T^^"'^^^!^Z, 

iS^ rt lrHorm«ion. ineluar, «wo«ior» lor «ludr« »I. büTO^. to W 
Cvl.Hlahw^.guH.lttn AHInmnn V« »Xtt-4«».nHtnth.O«lM.olM.nM«n.Ml.nclB..HoM P.n^r>B^<Manftl**ffl^1^ 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 

March 1998 

3. REPORT TYPE AND DATES COVERED 

Final, August 1996 -1997 
4. TITLE AND SUBTITLE 

Mutual Inductance Between a Coil and an Electromagnetically Launched Plate 

6.AUTH0R(S) 

Charles R. Hummer and Paul R. Berning 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN: AMSRL-WM-TE 
Aberdeen Proving Ground, MD 21005-5066 

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 

5. FUNDING NUMBERS 

1L162618AH80 

6. PERFORMING ORGANIZATION 
REPORT NUMBER 

ARL-TR-1643 

10.SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT0tar/flH/m 200 words) 

A possible countermunition against kinetic energy (KE) rods is a thin square metal launched edge-on so that an edge 
strikes the rod first followed by the rest of the plate. A properly designed coil gun can launch plates edge-on to 
velocities of several hundred meters per second. The proper design of the coil gun depends on knowing the mutual 
inductance between the coil and the plate, which was calculated by assuming that the current distribution in plate can be 
described by a polynomial that has some arbitrary coefficients. These coefficients were determined by equating the 
magnetic induction of the current distribution to the negative of the applied magnetic induction of the launch coil at 
selected points on the plate. This step was aided by the fact that all the integrals arising from the Biot-Savart law are 
analytic. In the next step, the mutual inductance was calculated from the current distribution and the applied magnetic 
induction. The calculation was repeated for various plate positions in the coil. These results were used to design the 
power supply for the launch coil and to calculate the final velocity of the plate. 

14. SUBJECT TERMS 

coil gun, inductance calculation, electromagnetic launcher 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

16. NUMBER OF PAGES 

39  
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01 -280-5500 

39 
Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 298-102 



INTENTIONALLY LEFT BLANK. 

40 



USER EVALUATION SHEET/CHANGE OF ADDRESS 

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers 
to the items/questions below will aid us in our efforts. 

1. ARL Report Number/Author ARL-TR-1643 (Hummer) Date of Report    March 1998  

,   2. Date Report Received .  

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will 
♦  be used.) .  

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.). 

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs 
avoided, or efficiencies achieved, etc? If so, please elaborate.  

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, 
technical content, format, etc.)  

Organization 

CURRENT                           Name                                                        E-mail Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old 
or Incorrect address below. 

Organization 

OLD                                    Name 
ADDRESS   

Street or P.O. Box No. 

City, State, Zip Code 

(Remove this sheet, fold as indicated, tape closed, and mail.) 
(DO NOT STAPLE) 



DEPARTMENT OFTHE ARMY 

OFFICIAL BUSINESS 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO 0001.APG.MD 

POSTAGE WILL BE PAID BY ADDRESSEE 

DIRECTOR 
US ARMY RESEARCH LABORATORY 
ATTN AMSRLWMTE 
ABERDEEN PROVING GROUND MD 21005-5066 

NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 


