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THE DIOCOTRON INSTABILITY IN ANNULAR RELATIVISTIC ELECTRON BEAMS 

Michael E. Jones and Michael A. Mostrom 

Intense Particle Beam Theory Group 
Los Alamos Scientific Laboratory 

Los Alamos, New Mexico 87545 

ABSTRACT 

The instability is shown to have a finite k bandwidth with the 

fastest growing mode in the lab frame shifted to nonzero k. The thin 

beam dispersion relation, the appearance of several new parameters, and 

the instability mechanism are discussed. 
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The diocotron instability in nonrelativistic annular electron 

beams has long been utilized for the generation of microwaves in the 

1 2 
crossed field magnetron. '   Allowed to evolve to a nonlinear state, 

3 4 
the instability can disrupt the beam by causing filamentation. '  The 

recent interest in areas employing intense annular relativistic elec- 

tron beams, such as free electron lasers,  multi-gapped accelerators, 

and the Anomalous Intense Driver fusion concept, makes it particularly 

important to understand the diocotron instability in the relativistic 

regime.  The present analysis of the instability provides a means of 

determining constraints necessary for propagation of these beams down 

long conducting drift tubes and for evaluating the feasibility of using 

intense relativistic beams for high-power microwave generation. 

Previous relativistic analyses of the diocotron instability have 

been limited to the special cases where either the wave frequency u> or 

o o 
the axial wavenumber k have been set equal to zero. ' A complete 

relativistic theory must of necessity include w and k both nonzero. In 

the analysis presented here the dispersion relation is calculated in 

the rest frame of the beam. The dispersion relation in the lab frame 

is then obtained by applying a Lorentz transformation: 

mS,  = y(lVkbv)  '  kA = Y(kb+U1bv/c •* (1) 

where the £ and b subscripts denote quantities evaluated in the lab and 

beam reference frames respectively.  The velocity of the beam is v and 

2  2 -\ 
yH(l-v /c ) ^ where c is the speed of light.  From Eqs. (1) it is clear 

that in order to obtain the lab frame quantities it is necessary to 

know u) as a function of k in the beam frame.  Therefore, much of the 

present analysis concerns the extension of the beam frame problem to 

include finite k. 
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The electron beam is assumed to be initially in an azimuthally 

symmetric equilibrium inside a conducting drift tube of radius d as 

illustrated in Fig. 1(a). A large externally applied axial magnetic 

field is required for equilibrium. In the beam frame the only equili- 

brium motion of the electrons is an Exg rotational drift induced by the 

applied magnetic field B  and the radial electric self-field E of the 
z r 

unneutralized beam.  If the azimuthal motion is nonrelativistic, then 

the beam frame problem reduces to the case considered by Levy. 

The electrostatic approximation is used in the beam frame. This 

does not mean that the perturbed magnetic field is zero in the lab 

frame, however, since the Lorentz transformation of the electric field 

of the beam frame will give rise to a magnetic component in the lab 

frame. Using Maxwell's equations and the linearized cold fluid equa- 

tions for the electrons, solutions of the form E(r)exp{i(kz+£0-u)t)} 

yield the following equation 

Y • (e • E) = 0 (2) 

where V denotes the operator e r  (d/dr)r + e„ i£/r + e ik, and £ is 
~ r     ■ r 0        Z=K 

the dielectric tensor whose only nonzero components for u) << w and 

2 2 
(JU- « lu are e  = 1, e „ = -£n = -iw /unu , £__ = 1+tu u)./iu(£u> -tu) x 
0    c     rr   '  r0    0r     p  c'  00     p 0    0 

[(r/iu )d(£n u>2)/dr-2k2r2/£(£w -w) ] ,  and  £  = l+tu2/u)(£u) -w).   The 
c      p U zz     p    0 

plasma frequency of the beam is denoted by tu , and IU is the cyclotron 

frequency associated with the applied magnetic field. The equilibrium 

rotational frequency U)n of the electrons is a function of the radial 

position r. Introducing the electrostatic potential <J> such that 

E = -V4>, Eq. (2) becomes 
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r_1d(rd(t)/dr)/dr - (£2/r2 + k2)4> 

*   [S, \a    d     ,    kV  ) 
  {_ _£  (£n u,2) -    P  } (3) 

v—0 ~, ; 

which reduces to Levy's Eq. (10) for k=0. A similar equation has 

been derived in a study of an instability driven by shear in the axial 

velocity. 

The diocotron dispersion relation is obtained by solving Eq. (3) 

in the three regions shown in Fig. 1(a). The beam density is nonzero 

only in region II (a < r < b). The potential * is required to be 

continuous and to vanish at the outer conductor and at the origin. 

Jump conditions on d*/dr are obtained by integrating the differential 

equation across the vacuum-beam interfaces. 

Before solving for the complete dispersion relation, it is in- 

structive to consider the physical mechanism of the instability. For 

the special case of a step-function radial density profile and k=0, the 

dispersion relation reduces to a quadratic equation in ui corresponding 

to two modes. These waves cause density perturbations only at the 

edges of the beam and hence are surface modes. By considering the even 

more special case in which the outer surface of the beam is in contact 

with the conductor (d=b), one finds that the dispersion relation yields 

2£ 
one mode which corresponds to a wave with frequency Q=l-(a/b) propa- 

gating on the inside surface of the beam. Here Q is the frequency w 

normalized to the diocotron frequency, U)d=U)J^c- Similarly, placing a 

conductor in contact with the inner surface of the beam shorts out 

perturbations on the inner surface and the beam again has only one 
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2 2 
normal mode corresponding to a wave with frequency Q=£(l-a /b )- 

2H       " 2Ü '        ■ ZS, 
[l-(a/b)  ][l-(b/d)  ]/[l-(a/d)  ] which propagates on the outside sur- 

face of the beam. The wave energy-E of these modes is 

a 

E = ^  I r dr {E «aGue )/9u> • E} (4) 

where e is the real part of the dielectric tensor.   From this expres- 
«r r 

sion, it is easy to show that the inside surface wave has positive 

energy and the outside surface wave has negative energy. The disper- 

sion diagram for these modes along with the k=0 diocotron dispersion 

diagram is shown in Fig. 1(b). Thus, it becomes clear that the dioco- 

tron instability results from the coupling of a positive energy wave 

with a negative energy wave in a manner analogous to the mechanism of 

the two-stream instability. 

It has been shown that if a sufficiently large amount of charge 

12 
or current   (which has an equivalent effect as charge in the beam 

frame) is placed inside the annular beam the diocotron modes can be 

stabilized.  The addition of a charge Q increases the difference 

between the frequencies of the outside and inside surface modes by an 

2  -2 -2 
amount AQ=(4£Qe/mu) )(a -b ).  Thus, if these modes are near resonance 

for Q=0, then the addition of a large amount of either positive or 

negative charge results in a frequency shift which precludes the pos- 

sibility of the coupling of the positive energy wave with the negative 

energy wave. 

The right-hand side of Eq. (3) contains resonance terms which make 

the differential equation singular when £u> (r)=u).  By considering only 
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the special case of a step function density profile and k=0, one avoids 

the question of these resonances since the coefficients of these terms 

vanish. However, the solution for this case reveals that the diocotron 

mode frequencies are precisely in the right range of values to be reso- 

nant. It has been shown that for a smoothly varying density profile 

the first term of the right-hand side of Eq. (3) can lead to growth or 

damping depending on the sign of the term. The physical mechanism 

for this process is a wave-particle interaction analogous to Landau 

damping. The second term on the right-hand side cannot be avoided by 

choosing a specific density profile. Because this term is always nega- 

tive, one would expect from the analysis of the contribution of the 

first term that the second term always provides a damping effect for 

finite k. For large k this wave-particle interaction should dominate 

the wave-wave interaction and the instability will be stabilized. Thus, 

the diocotron instability has a finite bandwidth in k. 

An upper bound on the growth rate and bandwidth may be obtained by 

the means of quadratic forms.   Defining t|> by <t>=(£tu()-iu)'
s i|;, multiply- 

■A. 

ing Eq. (3) by ijT and integrating from r = 0 to r = d one obtains 

u).2 < {(£u.072)
2-kV}/{k2+(jJ(,/d)

2} (5) 

where U). is the imaginary part of w, j. is the first zero of the 

ordinary Bessel function of the first kind and order £, and U)^ is the 

derivative of ut evaluated at its largest value. This expression 

demonstrates that the diocotron modes become stabilized if the shear in 

the equilibrium rotation frequency, which provides the free energy for 



the instability, vanishes. Equation (5) also shows that the instability 

must stabilize for large k (the expression is valid only for w. g 0). 

For the step-function beam density profile, Eq. (5) restricts the range 

of k over which instability can occur to values such that AK < 2Ü/X] 

where «ska and n=2tu /u) . 
c P 

In what follows, Eq. (3) is analyzed for the step-function beam 

density profile. The generalization to other density profiles is 

straightforward. It should be pointed out, however, that other pro- 

files may be more or less unstable owing to the Landau damping (or 

growth) contribution of the first term on the right-hand side. In 

regions I and III the right-hand side of Eq. (3) vanishes and the 

eigenfunctions in these regions are expressed in terms of the modified 

Bessel functions I£(x) and K£(x) where xnkr. Tor the step-function 

density profile, tu0=U)d(l-a IT"). Thus, in region II, Eq. (3) has a 

second-order pole at r/a=pQ=£/(£-fi).  Using a change of variables, 

u=£n(r/a), Eq. (3) in region II can be cast in the form of a Schröe- 

2   2 
dinger equation: d */du -V(u)*=0. Because most of the new physics for 

finite k results from the resonance term or pole, V(u) can be approxi- 

mated by expanding about this pole. This expansion should be particu- 

larly good for a thin beam, (b-a)/a«l, since all points in region II 

are then close to the pole. Defining a new variable z=6 J£n(r/ap ), 

then this equation, neglecting terms of 0(z), becomes 

d2*/dz2 + {-%+X/z+(%-|j2)/z2}«D = 0 (6) 

where 6 = 2{je2+K2p2(l-23a2/12)}\ \ B K2p2a2/6,  \i2 = (l-K2p2a2)/4, 

and a2 s i)2/(£,-Q)2  . 
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Equation (6) is Whittaker's equation whose general solution can be 

expressed in terms of the functions W.  (z) and W .  (_z). Application 
A,(j       -A,(J 

of the boundary and jump conditions yields the following dispersion 

relation: 

W[6W^ (za)-hWx (za)]+g[MJ+6V] = 0 (7) 

where ^„V-^^J^./Ä;^> USWX>M
(za)W-X,M(-Zb) 

h=xaIJJ(xa)/I£(xa)-2A/fi and 

gBV\,\s(zbyU WA)(J(zb)/6[Ä(l-a2/b2)-fi] 

„      ,    Sb    Ii(xb)KA(xd)"I£(xd)KA(xb) 

""A^Vö      I£(xb)K£(xd)-I£(xÄ(xb) 

The prime denotes differentiation with respect to the argument. The 

subscripts a, b, and d denote evaluation of x and z at r = a, b, and d, 

respectively. A numerical evaluation of this dispersion relation 

exhibits the finite bandwidth in k discussed earlier, and it is found 

that AK scales as 1/n and is bounded by AK<2£/I"). 

The dispersion relation given in Eq. (7) is for the beam frame. 

To obtain the dispersion relation in the lab frame, the converse rela- 

tion of Eqs. (1) can be used to express Eq. (7) in terms of the lab 

frame quantities.  In dimensionless variables this Lorentz transforma- 

2       -1 tion is fi=y (A^-K^ ßy c/tüja) and K=Y(i<£-ß£ ßy Wja/c), where ß=v/c. 

The effect of this transformation is to shift the band of unstable 



modes to larger K values and to cause an asymmetry of the spectrum 

about the most unstable mode. 

The most unstable mode in the beam frame is the k=0 mode. This is 

true because the damping term in Eq. (3) vanishes. Also, it can be 

argued that the frequency of the k=0 mode is either a maximum or min- 

imum because in the beam frame there is no preferred z-direction and 

the dispersion relation must, therefore, be an even function of k. 

Equation (1) shows that if the most unstable mode occurs at 1^=0, it 

must occur at kp^0.  An approximate expression for u) and k of the most 

unstable mode in the lab frame can be found by expanding Eqs. (1) about 

2 
k =0 and requiring k„ to be real.  Neglecting terms of order [ImCk^)] 

one finds k =yRe(uL )ß/c and u> =yRe(u)b)+iIm(iub)/y.  Because the dioco- 

tron mode frequencies are proportional to the beam density, another 

factor of 1/y enters; i.e., the most unstable mode in the lab frame 

2 
occurs for k_=Re(u) )ß/c and u) =3te(u) )+iIm(w )/y where u) denotes the 

diocotron mode frequency of Levy's quadratic dispersion relation 

evaluated using the lab frame density.  These equations suggest that as 

2 
far as propagation is concerned the instability rapidly (« 1/y ) 

becomes less of a problem as the beam energy is increased. Further- 

more, because the scaling of the real part of the frequency is not 

degraded by increasing y, high frequency microwave generation using 

intense high energy beams appears to be possible. 

It should be noted that the relativistic, finite k analysis pre- 

sented here expands the parameter space of the diocotron instability 

problem. In addition to the mode number £ and the geometrical factors 

b/a and d/a, new parameters now include K, y, r| and u>da/c.  The range 



of K for unstable waves, as mentioned earlier, is determined by r\. The 

parameter u),a/c, which was introduced by requiring (k,iw) to be a 

four-vector, is a measure of how strongly the relativistic effects 

modify the characteristics of the instability. A complete parameter 

study is too involved to be presented in a letter and will be presented 

elsewhere along with the results of particle-in-cell simulations of the 

diocotron instability. 

The authors wish to thank J. R. Cary, B. B. Godfrey, R. J. Faehl, 
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by the United States Department of Energy and the Air Force Office of 

Scientific Research. 
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FIGURE CAPTION 

Fig. 1.   (a) Beam configuration; (b) Real part of frequency vs. 

azimuthal mode number showing surface wave coupling for 

b/a = 1.1, d/a = 1.5, k = 0. 



T3 
3 


