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Abstract 

A full 3-D Analysis of super-radiant (bunched electron) free electron harmonic radi- 

ation is presented. A generalized form of the FEL pendulum "equation was derived and 

numerically solved. Both spectral and phasor formulation were developed to treat the 

radiation in the time domain. In space the radiation field is expanded in terms of either a 

set of free space discrete modes or plane waves. The numerical solutions reveal some new 

distinctly 3-D effects to which we provide a physical explanation. 

Introduction 

The subject of this paper is super-radiant emission of radiation from undulated elec- 

trons in either a uniform wiggler (FEL structure) or in an optical klystron structure. The 

super-radiant emission scheme is a method for producing temporally and spatially coher- 

ent undulator radiation without necessarily involving any stimulated emission of radiation 

(lasing) [1]. It thus enables to substantially increase the spectral brightness of incoherent 

undulator harmonic radiation, though the total radiative power emitted by the beam is 

not different than in the incoherent undulator emission. It produces a less bright radiation 

beam than an FEL in which not only the coherence of the radiation is high, but also the 

total power extracted from the beam is substantially enhanced (by the stimulated emission 

process). However, contrary to an FEL no oscillation threshold condition needs to be at- 

tained in order to obtain super-radiant coherent harmonic emission, and consequently this 

scheme may be useful at short wavelengths (V.U.V.) where the FEL oscillation condition is 

hard to satisfy. For obtaining super-radiance, some means for bunching the electron beam 
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must be provided in order to make the electrons emit radiation in phase with each other. 

These means is usually a high intensity external laser which illuminates the electrons in 

the undulator at the fundamental or one of the low order undulator harmonic frequencies. 

Alternatively, the bunching means can be an FEL which operates with the same undulator 

at the fundamental or one of the lower order undulator harmonic frequencies. 

Experimental study of super-radiant harmonic radiation was only reported by a French 

research group based on an optical klystron structure [2]. In many of the recently reported 

FEL experiments (in all of which lasing took place in the fundamental harmonic frequency) 

also intense harmonic emission was observed [3,4]. We assert that this harmonic emission 

was probably super-radiant and consequently coherent. However, the features of this 

radiation were not studied in these experiments. An experimental program is under way in 

Brookhaven National Laboratory, National Synchrotron Light Source where super radiant 

harmonic emission is intended to be studied using a uniform wiggler (FEL) structure and 

an external modulating laser. This experiment is the main motivation and main model for 

the present theoretical analysis. 
To clarify the definitions used in this article we delineate the distinction between the 

three different kinds of undulator based radiation schemes (spontaneous undulator radia- 

tion, super-radiant emission and lasing) by comparatively listing their definitions in Table 

1. We illustrate the two main configurations of super-radiant radiators in Fig. la,b, and 

in Table 2 we list the frequency and linewidth parameters of -the various radiation fields 

involved. 
Fig. la depicts the optical klystron super-radiant emission scheme which was used in 

Orsay[2]. This configuration consists of three sections. In the first "modulation" section 

energy (velocity) modulation of the electron beam takes place when the beam is synchro- 

nized with the ponderomotive force of the modulating laser beam, which is radiating at 

frequency um near the line center frequency of one of the low (m-th) order undulator- 

harmonic frequencies (for example the fundamental - m = 1 harmonic). The laser is 

assumed to have a coherence time or pulse duration (r/oser) which is larger and fully over- 

laps the electron beam pulse (of Tpulse duration). The electrons then pass through the 

second dispersive section, where their energy modulation turns into phase (or density or 

current) modulation (bunching) at the frequency of the modulating laser and its harmonics 

(n). In the last "radiation" section the bunched electrons pass again through an undulator 

where they emit their undulator synchrotron radiation in phase with each other (super- 

radiant emission). As is shown in the third row of Table 2, the super-radiant frequencies 

are at the nm-th harmonic frequencies of the fundamental undulator frequency u>„. The 

incoherent undulator radiation (fourth row) occurs at all odd harmonics (/ = 1,3,5,...) of 
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Fig. 1 Schemes for super-radiant (bunched beam) coherent harmonic generation. 



w„. Since super-radiant radiation can take place only at frequencies in which the electrons 

emit spontaneously, both n and m must be odd as well. Consequently if m # 1 not all the 

undulator radiation frequencies can be excited super-radiantly. For example, for m = 3 

undulator harmonics I = 5,7,11,13,17,... will not radiate super-radiantly (coherently). 

As is evident from the Table, the super-radiant radiation is spectrally different from the 

incoherent harmonic undulator radiation also in its much narrower linewidth (temporal co- 

herence). It can thus be distinguished from the undulator radiation background by means 

of a high resolution spectrometer. 

Fig. lb illustrates an alternative configuration for super-radiant harmonic emission, 

as chosen in the NSLS experiment. It is based on the realization that the modulation, 

density bunching and radiation do not necessarily have to take place in separate sections. 

The basic idea here is that with nowadays technology even a simple uniform wiggler can be 

produced with strong enough magnetic field, so that not only efficient energy modulation 

and radiation will take place in it, but it would also provide sufficient dispersion effect 

to produce a substantial density bunching along the entire wiggler. Energy modulation, 

phase bunching and radiation take place all along the wiggler, however most of the energy 

modulation takes place in the upstream part of the wiggler where the laser beam is tightly 

focused and most intense, the phase bunching takes place mostly in the central part of the 

wiggler, after substantial energy modulation was achieved in the first part; and most of 

the super-radiant radiation takes place in the last downstream part of the. wiggler, after.: 

substantial phase bunching was obtained. This process, is to a large extent, the same as 

the one which takes place in a free electron laser, except that in the FEL we are concerned 

only with the coherent radiation, which is emitted at the same frequency as the modulating 

laser beam and therefore can interfere constructively with it. In the present problem we 

are interested in the coherent emission at the higher harmonics of the laser beam, which 

of course cannot interfere with the laser beam and with each other. 

1.   Definition of the Physical Model and the Mathematical - Numerical 

Problem 

The work, reported in the present publication, consisted of two parts. The first part 

involved the development of a physical model and an appropriate formulation for spread 

characterization of the undulator super-radiant emission problem. In the second part of 

this work, the physical model was reduced into a .mathematical, problem which can be 

readily and efficiently solved by numerical computation. The numerical code developed is 

general enough to account for the non negligible three dimensional features (of both the 

electron beam and the radiation fields) in the real experimental schemes depicted in Fig. 



la,b. 

The physical problem, in its most general expression, essentially consists of solution of 

the coupled Maxwell equations: 

„     ^        dtt - 
V xE = /z^- 

dt (1) 

and the classical force equations: 

„    xx       <9E     _ 

dl-      SvE 
dt mc2 C2i 

f = -e(E + vxB) 

Here we neglect the possibility of space charge effects by ignoring the Poisson equation 

(this was considered elsewhere [5] within the framework of a one dimensional simplified 

model, and its neglect is well justified for all practical experimental parameters in the 

optical regime). Expressing the electromagnetic fields in terms of the vector potentials 

B = VxA ; E = — ^ results in an alternative Hamiltonian formulation a somewhat 

simpler set of classical force equations instead of (2): 

di        e dA. 
—        v 

dt      mc2        dt 

dpc e 
(3) 

VA2 

dt 2m-7 

Here pc = p — eA is the electron canonical momentum, and A = Aw + Am + A.s is the 

total vector potential field, composed of the wiggler, modulating laser beam and generated 

radiation field respectively. 

For practical experimental parameters in the optical regime the detailed 3-D solution 

of the coupled sets of equations can be substantially simplified by two model assumptions: 

(1) The electron trajectories are not effected by the emitted radiation field. 

(2) The electron transverse coordinates (trajectories) are only effected by the wiggler field. 

The first assumption excludes the analysis from the high gain super-radiant emission 

regime. This regime, considered in a 1-D simplified model in [5], is impractical in most 

relevant super-radiant emission experiments in the optical regime. The second assumption 

is also well justified. Of course the transverse coordinates trajectories are unaffected by the 

relatively weak emitted radiation field, which was stated already in the first assumption 

to be too weak to have any effect over the electrons which generated it. But also the 

modulating laser beam field does not affect the transverse trajectories of the electrons; the 

transverse field of the modulating wave only produces very high frequency small amplitude 



transverse quiver, and the longitudinal ponderomotive force, which is the result of the 

beating of the laser field with the wiggler field modulates the axial velocity of the electron 

and affects only its axial coordinate (phase bunching). 

Due to the decoupling of the electron modulation problems (Eq. 2 or 3) from the 

electron radiation problem (Eq. 1), made possible by assumption (l), one can separate 

the physical problem of super radiant undulator radiation into two parts: the modulation 

problem and the radiation problem. These are solved separately in Chapters 2 and 3 

respectively. 

Based on the mathematical formulation of the physical problem on its two parts, a 

computer numerical code was written which solves the force equations to find the trajec- 

tories of electrons which enter the interaction region at arbitrary initial conditions. The 

code consequently computes the required optical parameters of the electrons radiation 

field by performing an appropriate statistical averaging over the initial conditions distri- 

bution of the electron beam. The 3-D features of the code, listed in Table 3, are quite 

extensive in both the electron beam and radiation field parameters. The model allows 

arbitrary dimensions, angular spread and energy spread of the electron beam. Describing 

the various electron distributions in terms of Gaussian functions (which is a particularly 

good approximation for storage ring beams), the model allows separate focusing in the two 

transverse (x,y) dimensions with different beam waist spot sizes ox,oy , and different waist 

positions zWx,zWy. Also the modulating laser beam (taken"to be a fundamental Hermit 

Gaussian mode) can have arbitrary x and y focusing parameters (which can be experimen- 

tally realized with cylindrical optical components). The characterization of the emitted 

radiation was formulated both in terms of free space discrete modes (Hermit Gaussian set) 

and plane waves. Both spectral (partial temporal coherence) and phasor (full temporal 

coherence) formulations were used. In the computations presented in this report we used 

the formulation and notation of phasors and plane wave expansion. 

Though the physical model is more general, we presently applied the the numerical 

solution of the electron trajectories to the uniform wiggler structure of Fig.lb. Straight- 

forward extension is possible to include arbitrary magnet field small variation introduced 

by design or due to manufacturing errors. It can also be similarly extended to describe 

more complex magnetic field structures like in Fig. la. 

2.  THE ELECTRON TRAJECTORIES PROBLEM   

It follows from the introductory discussion that the electron transverse trajectories 

are simply the trajectories of an electron undulating and freely propagating in a uniform 

wiggler in the absence of any radiation fields. The transverse coordinates Xj(t) = Xj{t) + 



xwj{t),     y3\t) = y3{t) + ywj(t), are composed in general of an averaged (over undulation 

periods) motion, and an undulation motion {xwj, yw]). In a planar wiggler yW3 = 0, and: 

Xj = XjQ + cßj0(f>Xj0 [t - tjo) 

xwj = -Zx-rrsin{kwZj(i)) 
lKw (4) 

Vj = VjQ + cßjO^yjoi1 ~ tJo) 

ßwj=^x-^^os{kwz3{t)) 

The transverse average motion is very important in our 3-D modelling. It is responsible 

not only for spread in the longitudinal emission spectrum (as in the 1-D model), but also 

due to the transverse finiteness of the modulating laser beam, the average transverse 

motion may effect substantially the energy modulation (bunching) force experienced by 

the electron. In (4) we took for the average transverse trajectory simple straight line 

propagation, determined by the initial spatial and angular displacements of the electrons 

off the beam axis {xj0, cj>XjQ; yj0,<f>yjo)- This assumption is correct for a transversely uniform 

wiggler, which is a good approximation for a practical storage ring based super-radiant 

emission experiment with a short wiggler. Extension to a wiggler with non-negligible 

transverse gradient of the magnetic field is straightforward by simply replacing the straight 

line average trajectory (4.c) by the appropriate sinusoidal betatron trajectory in the y 

dimension [6]. 

The modulating laser beam field is taken to be a general fundamental Hermit Gaussian 

mode with independent x and y focusing parameters: 

Vm(x,y,z,t) = exE0wxrn{z)wym{z)x 

x Re ^-^M~i£ör)+i*lx'v-')+i^'-ia"t}. 

lwm,     i2       .       y2     ^     1r„_,,„„/2:~ z™*\ ^ „„*„„(*''*"»"       (5) 
$(x v z u   )- i^-f — +      V , J - ^\arctan(—^) + arctan{ ^)] <${X,y,Z,UJm)-  4    c    [Rxm^   ^  Rym(z)} 2l ^    ZRxm    '       ...        _      \ZRym 

RX,y=(z-Zw*j{1+{z_
R™xj2) 

r      I       M Aw0m\x,y 

Note that taking this 3-D model field, already affects even electrons on axis, which now 

experience an electromagnetic wave field with varying amplitude and phase along the 

interaction length. Certainly electrons propagating off axis experience a modulating field 

much different from the 1-D case. 
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Fig. 2 Axial and transverse cross-sectional schematics of the electron beam and the modulat- 
ing radiation beam. 
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Fig. 3 Energy-phase -space diagram of electrons at four different points along the wiggler for 
beam energy tuning to maximum phase bunching 7 = ll\\„z
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Fig. 4 Continuous Energy-phase-space diagrams of electron trajectories along the entire wig- 
gler for beam energy tuning to plan wave resonance condition 7 - lit- -     • 



The longitudinal trajectory of the electron Zj(t) is determined by the combined effect 

of the modulating laser beam and wiggler fields. We have found that by expressing the 

force equations (3) in terms of the relativistic proper time r, it can be reduced exactly 

(without a 7 > 1 approximation) into a pendulum equation for the electron phase [7]: 

^ =  1 ( _ )^eEm{X^{t))aw[J^(u) ~ J-±i (U)}sin[4>mj + imfcjVjZjUn)] 
2 2 

d*l>mj  _ km+mkw       _ _ 
Sr~ — fn       Pz      wrnl 
[Jn-i (u) - Jn+i {u)]umpz - [{km + k,„)Jn-i (u) - {km - kw)Jn+i{u)]mc2~i = constj 

(6) 
timj = {km + mkw)zj{t) - Ut 

=   f*      dt' = proper time 

u — ^  
8fc«, cß2^       4 l + all2 

This set of equations needs to be solved with the initial conditions: Vj(r = 0) = 

tjjjQ = -ujtj0;        IJ{T = 0) = -yyo; Zj{r = 0) = 0 It is basically a pendulum 

equation with slowly varying amplitude and phase, which depend on the electron transverse 

trajectories. The fast longitudinal quiver (which is the essential source of the odd harmonic 

undulator radiation emission when K < 1) was averaged away in the derivation of Eq. 

6 (off the force equations), leaving the various Bessel function factors, and producing the 

average constant of the motion of Eq. (6c) [8]. 

A fast integration numerical solution code called PENTOK was written to solve the 

differential equations (6) using the Gear integration method [9]. The program was run 

on the B.N.L. CDC 7600 computer and we show in Figs 3,4 some exemplary computation 

results based on the parameters of Table 4. The data of the table relates to a uniform 

wiggler structure as shown in Fig. la. The schematic laser beam and electron beam 

focusing parameters are illustrated in Fig. 2. For the sake of simplicity zero spread 

parameters were assumed in this first example. The electron beam propagates on axis 

with diminishing narrow width and no energy spread. The laser beam (at the frequency of 

a doubled Nd-YAG laser) is illuminating the electrons in the wiggler at the third (m=3) 

harmonic of the fundamental undulator frequency. It is assumed to be circularly symmetric 

and focussed at the up-stream part of the wiggler at zw = 30cm. 

Fig. 3 displays the positions in energy-phase space of 36 electrons, initially equi-spaced 

in phase, shown at four points along the wiggler: z=0, 0.5, 1 and 2.2m. The electron beam 

energy tune for this run (q = 785.64) corresponds to maximum bunching at the end of 

the wiggler which was found to be 0.32% higher than the 1-D synchronization energy 

(lR = [l+ä2
w)\w/{2m\m) = 783.14). This 3-D effect is explained in sect. 4. In the first 
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Fig. 5 Mechanical analogue diagram of the Gaussian phase "jolt effect". Only the highly sta- 
ble and unstable particles experience reversal of force direction throughout the process. 



part of the wiggler (up to z=lm) the electrons are modulated mostly in energy, and their 

phases do not change much. Only in the last part of the wiggler phase bunching, induced 

by the dispersive propagation along the wiggler, becomes significant. We also observe that 

in the last part of the wiggler most of the electrons experience a positive phase drift which 

is a result of operating at 1 > 1R 

The synchrotron oscillator period of the electron inside the pendulum potential well 

(the wiggler length at which a well trapped electron would complete a full revolution in 

phase space) was found to be zsync - 7.1m, based on the optimistic assumption that a 

uniform laser beam field equal to the maximum intensity in the waist point can be kept 

along the entire wiggler length. Though the laser beam Rayleigh range (lm) is shorter 

than \Synch/4, substantial phase bunching was obtained because of the highly dispersive 

propagation along the wiggler in the low laser field regions at the end of the wiggler We 

observe in Figs. 3 that in the present example an almost maximal phase bunching takes 

place at the end of the wiggler, but the maximum bunching point was not yet reached. 

Evidently saturation in the super-radiant harmonic emission level would require a slightly 

longer wiggler. 

Fig. 4 illustrates in a continuous line presentation the phase space trajectories of 18 

electrons at beam energy ^ = 1R. Clearly less bunching effect takes place at this energy. 

The continuous line phase space curves presentation of Fig.4 also reveal a curious behavior. 

The electrons near the center of the pendulum potential well ("bucket") first decelerate and 

after some distance along the wiggler they accelerate. The same kind of movement, but in 

the reverse order is exhibited by the electrons in the bucket borders (0 = -.5TT, 1.5TT). The 

center bucket electron trajectories might have been considered erroneously to be a section 

of slightly more than half a period of synchrotron oscillation phase-space revolution. Such 

an hypothesis would be incorrect since the wiggler length (2.2m) is shorter than the lower 

bound estimate of half the synchrotron period (3.55m), and it would not explain the 

behavior of the electron near the bucket borders. This curious behavior is a real 3-D effect 

which we termed "the Gaussian phase shift jolt effect". It is explained in terms of a simple 

mechanical pendulum analogy in Fig. 5. 

The Gaussian phase jolt effect is related to the phase shift $ (Eq. 5) of the Gaussian 

mode of the modulating laser beam. An electron going on axis, starting from a point at 

which the laser beam still converges towards its waist, will experience first a small negative 

temporal phase shift in the pendulum equation force (6a) (as compared to the constant 

phase ponderomotive force produced by an ideal harmonic plane wave whose phase front 

coincides with the Gaussian phase front at the waist point, and shifts by ±TT/2 at ±oo). 

This phase shift turns to be positive after the waist position. The maximum phase shift 



that would take place as the electron moves from-oo to oo is jr. This is a very slow phase 

change, however half of it occurs in the section -zR < z < zR which is smaller in our 

case relative to the synchrotron (pendulum) oscillation period! In the pendulum equation 

time scale the slow Gaussian phase shift looks like a very fast movement of the center of 

oscillation of the pendulum force ("jolt"). This behavior is depicted in the mechanical 

analogue picture of Fig. 5 by three "test particles". The drawing clearly illustrates why 

predominantly the stable point and unstable point particles are most susceptible to the 

jolt effect, which reverses the direction of the force applied on them as they go through 

the zero phase shift (Gaussian beam waist) point. The other particles experience only a 

small relative change in the force applied on them, which at no place reverses the direction 

of the force they experience and the direction of their motion. Though somewhat of a 

mathematical curiosity, we suspect that this 3-D effect may have also practical implication 

in effecting the efficiency of high order super radiant harmonic emission, which is strongly 

dependent on the electron density near the phases of the center and ends of the bucket. 

3. THE ELECTRON RADIATION PROBLEM 

The study of the dynamics of the electrons in the 3-D fields of the wiggler and the 

laser beam produced interesting and expectedly useful results, but our main thrust in this 

work is to study the radiation problem. For analyzing the radiation problem there are two 

kinds of formulations that one can use. One -approach is a spectral formulation -in.which 

the fields and currents are decomposed in frequency domain by a Fourier transform: 

/oo 

E(r,*)e^<ft 
-oo 

/oo 

J(r,0 
-00 

(7) 

dt (8) 

The other approach - the phasor formulation - is based on decomposition of the fields 

and currents into a Fourier series, which consists of a DC term and an infinite sum of 

discrete terms at the external force frequency and all its harmonics: _ _ 

oo 

■E(r,t)=ReYnv,nurn)e-
in"™t (9) 

n=l 

3 = JQ + Ref^3ne-in^t -■   -    (10) 
-n=l 

This formulation is rigorously applicable to any nonlinear response problem which is inde- 

pendent of time (temporal translation symmetric), when a single frequency harmonic force 



is applied to the system. It is a good approximation for the present problem when finite 

pulse effects can be ignored, so that the laser beam can be considered a continuous har- 

monic coherent wave, and the electrons can be modelled by an infinite continuous beam; 

and furthermore , the electrons shot noise (current fluctuation due to the corpuscular 

nature and random spatial distribution of the electron beam) is ignored. 

With either of these formulations we have yet to suggest a formulary bridge between 

the microscopic (single electron) approach used in the previous chapter to characterize the 

electron propagation, and the macroscopic (fluid current or current field) definition used 

in the Maxwell equations (1) and in Eqs. (8),(10). 

We have developed the spectral approach in some detail in a previous publication 

[7]. We consequently will only describe here the main results of this formulation, which 

help to understand the spectral characteristics (temporal coherence) of the super-radiant 

radiation. After the spectral characteristics are understood, it is preferable to use phasor 

the formulation, in order to describe the emitted radiation with minimal parameters, and 

in order to simplify the numerical computation. 
To connect the single electron approach results to the field approach we first express 

the current field as a sum of delta functions: 

N(t) 

J = £-ev;WKr - r>W) (11) 

N(t) is the number of electrons in the system up to time t. In the spectral formulation we 

usually deal with signals of finite duration, and JV would be in the present problem the 

total number of electrons in a pulse. When dealing with random stationary processes, like 

the incoherent undulator radiation emission, N can be taken to be the average number of 

electrons entering the interaction region during a characteristic time of the random process 

statistics. In free electron spontaneous radiation schemes with a continuous electron beam 

(or long pulse), this characteristic time may be taken in single electron interaction problems 

(excluding cooperative interaction regimes like amplified spontaneous emission) to be the 

undulation period 2TT/UU. Eq. (11) can be now substituted in (8) to produce an expression 

for the spectral current of the beam: 

J(r,c) = -eJ2H*± -rii)^*^ <12> 

which can be used in the Fourier transformed formulas of Maxwell equations. 

Even though they are now time independent, the Fourier transformed Maxwell equa- 

tions with the current source term (12) are still a difficult to solve set of 3-D partial 
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differential equations. The problem may be considerably simplified by expanding all the 

fields in terms of an orthogonal complete set of modes of the electromagnetic structure 

(free space in the present problem). Again we have a choice to make, whether to use a 

discrete set of modes (e.g. Hermit-Gaussian modes) or a continuous set (e.g. plane waves). 

The first choice is more favorable if we have reasons to believe that the emitted radiation 

can be well described by a small number of discrete radiation modes We will make this 

choice in the context of the present discussion on the spectral formulation results; but in 

the subsequent phasor formulation discussion and in the numerical computations the other 

choice (plane wave expansion) is taken. 
Substituting in the Fourier transform of the Maxwell equations (l) the general expan- 

sion of the radiation field in terms of an infinite set of discrete orthogonal modes, one can 

derive explicit expressions for the expansion coefficients by taking advantage of the modes 

orthogonality and using the expression for the discrete particles current (11): 

£(r,w) = ]T«<,(w)E,(r) 

N q (13) 

Al&qyM = "e fALW   VIM*»**" ' ^t)dt 

where Eq are the expansion modes and ?q - their normalization powers. 

This general solution of the radiation problem has a simple physical interpretation 

which is illustrated in Fig. 6. The amplitude of each radiation mode in the infinite sum is 

proportional to an infinite sum of contributions to this mode by the different electrons in 

the beam - A"fö • (j = 1, • • •, N). These terms have the dimension of energy but they are 

complex numbers. The real part of A"W„- can be interpreted as the work done by electron ej 

on the mode q during the the electron transit time tj{Lw) -toj. By conservation of energy, 

this work is equal to the energy in the longitudinal wavepacket emitted by the electron jnto 

mode q. Fig. 6 displays two wavepackets emitted by two electrons eyi, ej2, which enter and 

exit the wiggler at different times. The length of each wavepacket is the slippage distance 

along the wiggler - NWXU (considering now emission at the fundamental undulator harmonic 

frequency). In frequency domain the two wavepackets contribute additively to the total 

spectral field of the mode, and their contributions add constructively or destructively if 

the spacing between the two wavepackets (c(tj2(Lw) - *yi (£„,))) is correspondingly an 
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Fig. 6 Schematic illustration of wave packet emission into a transverse radiation mode by- 
single electrons. The diagram depicts an example of a four period wiggler and corre- 
sponding four period optical wavepacket. 



even or odd integral multiple of half the wavelength of the spectral radiation component 

under consideration. The argument of the "complex work" parameter 6^ measures the 

phase of each wavepacket relative to the phase of the radiation mode, so that the algebraic 

sum in (13b) measures the coherent contribution of all electrons to the mode amplitude 

at frequency u. Note that if the phases of the different electrons stay random along the 

entire interaction length this, sum will result in on the average a vanishing contributions 

as expected, only when the electrons get bunched in phase either right at the entrance 

or at least within the interaction region, their spectral radiative contributions can add 

constructively to build a nonvanishing spectral component of the mode amplitude. 

The solution (13) is in fact a complete general solution of the radiation problem, which 

can even give the entire time dependent radiation field at any point in space after an 

inverse Fourier transform is applied to (13a). The complex work elements in (13d) can 

be straightforwardly computed numerically by substituting in it the electrons trajectories 

Tj{t) and velocities v,-(«) which were computed in the first part of the interaction problem 

(previous chapter) and performing the time integration. However such representation of the 

final solution is too general, consumes immense computation time, and is difficult to display. 

More limited and concise representation in terms of a small number of optical parameters 

is necessary in order to make the the solution useful for practical implementation. 

It is costumery in optics to characterize the basic optical properties of a partially 

coherent radiation source in terms of the spectral brightness parameter of the.sourceandi 

other parameters that can be derived from it, like the radiant intensity, the power and the 

corresponding spectral parameters. The spectral energy brightness of a pulsed source can 

be described in general in terms of the Wigner distribution of the fields [10]. When we 

assume that only a single mode is excited (which means also that the radiation is spatially 

coherent) the only parameter left to characterize the spectral properties of the radiation 

is the momentary spectral power in the mode which is expressed in terms of the Wigner 

function Wcq [7]: 

^11 = LlWc(u,t) 
du 7T      C«V ' f14\ 

WCq(u,t) = ^- dÜ(cq(u+ 2)^(^-2 ))«",n*   ■ 
J—00 

This parameter can be calculated once the spectral amplitude of the mode (13b) is com- 

puted for a range of frequencies. 
The spectral brightness computation is described in some more detail in [7]. Fig.7 de- 

scribes qualitatively the on axis radiation spectral brightness distribution in time frequency 

phase space, comparing the incoherent emission limit (Fig. 7a) to the ideal tight bunching 
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limit (Fig 7b) for the example m = 3. The radiation pulse duration is approximately 

equal in both cases to the electron pulse duration T (= Tpuhe) plus the slippage time 

NWTU (which is usually negligible even though in the figure it is exaggeratedly long). How- 

ever the spectral width of the super-radiant radiation substantially shrinks from wu/Nw 

to 2TT/T, which for the parameters of Table 4 and an electron pulse duration T = 0.5nsec 

corresponds to a significant reduction in time-frequency phase space area of 4.3 X 103. 

This number gives some indication on the enhancement in spectral brightness when super- 

radiant emission is set. Note though that in practice, full bunching is never obtained and 

therefors there will always be some incoherent spontaneous emission measured together 

with the coherent super-radiant emission. On the other hand note that Fig. 7 does not 

describe the other four dimensions of phase space, and that in the ideal bunching case the 

spectral brightness improvement factor is even larger (by a factor mNw), because there 

is no emission then at any angle at frequencies different than num The lower frequency 

emission at higher angles within the relativistic radiation cone (of angle 1/^) disappears 

due to destructive interference, and all the emitted photons can be only measured in the 

forward direction (within a diffraction limited radiation cone). The disappearance of the 

/ = 1,5,7,... harmonics in the on axis spectrum is depicted in Fig. 7b by the broken line 

regions. 
The spectral formulation is helpful for a simultaneous description of the (temporally) 

incoherent and coherent radiation and for studying the transition from one limit to the:: 

other, when the emission process becomes more and more super-radiant as the bunching 

is enhanced. However if we are predominantly interested in the coherent radiation, and 

after understanding already that it is emitted in a very narrow bandwidth around the laser 

harmonic frequencies, and that its coherence length is Fourier transform limited by the 

finite duration of the electron beam pulse, it is more convenient to switch over to a phasor 

formulation, neglecting the finite pulse effects, and ignoring the shot noise. In the phasor 

formulation we decompose the fields and currents into an infinite sum of terms oscillating 

at the modulating laser frequency um and its harmonics (9,10). For a discrete charged 

particles current (electron beam) the current phasor components, obtained from periodic 

Fourier series decomposition of (11) are: 
N*™ v. 

NTm 

j   _ _|1 y 6(r± - r^-) —«,"BWm'iW 

(15) 

The use of the electron trajectories rj{t), v,-(0 computed before in the single electron 
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formalism of the previous chapter (including the inverted longitudinal coordinate trajectory 

function t = tj{z)), makes it possible to have an explicit formal expression of the phasors 

current fields (15). In these expressions N{Tm) is the average number of electrons entering 

the interaction length in one optical period of the laser (shot noise fluctuations are ignored). 

The current phasors (15) together with the set of time independent partial differential 

equations obtained by substitution of the fields' phasor decomposition (9) in the Maxwell 

equations (l), form now a well defined mathematical problem of 3-D partial differential 

equations with a source term. 

To proceed on in solving the set of partial differential equations we can expand all the 

fields in terms of either a discrete or a continuous set of orthogonal modes of free space 

(as in the spectral formulation). In fact the spectral formulation solution can be directly 

transformed into a phasor formulation notation by applying the formal substitution - 

N NTm 

.— 1m T~ 
3=1 J=l 

Since we prefer to use in the phasor formulation a continuous mode (plane wave) expan- 

sion, we will not use presently the transformed discrete modes decomposition (13). The 

expansion of the radiation field in terms of plane waves (written already in the phasor 

notation) and the solution for the continuous expansion coefficients are given by 

.2 Mr 
1 /-00 

E=-7—-r^/     rf2g±^c£r(qi,2,.nu;m)£oe(re 
{^1   J-00 a 

cff(q±,2,rwm) = -4Sog   .ggAWq(nu;w) 

~ 1   NTm    ~ 
AWq{nujm) = *r- £ A^q(™™) 

AJyiqK) = -e / i^—t-i^it)^ . Vj(t)dt 

4%eq • e. 

NTm (16) 

where So is the Poynting vector power density normalization of the mode, and the sum- 

mation over a is a summation over two orthogonal polarization states. This solution is 

completely analogous to the discrete mode expansion solution (13).     • 

Using a Wigner distribution in the space dimensions, (16) can be used to compute the 

brightness of the radiation field from which all other radiation parameters can be calculated 

[11]. This would require however evaluation of cq± over a range of q± values involving 

exhaustive numerical computation. At present we limit our optical characterization of 

the emitted radiation to the computation of the less general optical parameter of radiant 
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(18) 

intensity. Anyway, this parameter is the one which is usually measured in the synchrotron 

radiation lab (with a single pin-hole measurement in the far radiation field region), and 

would be most appropriate for comparing to the background incoherent undulator radiation 

which is emitted in the experiment simultaneously with the coherent radiation . The 

radiant intensity is expressed directly in terms of the modulus of the plane wave amplitude 

by _ 
dP  _      COS0     1     /6Q.      ,        ..a (17J 

where |^_j_| = (w/c)sin0 and 0 is the emission direction. 
The continuous expansion coefficients ca{q..) (16b) can be rewritten in a more explicit 

form in terms of the current phasor (15b): 

= _L_^°  f W dze-t*'' f [dxdye-'**^™"»1) • # 
4eqez So y0 J  J 

In the special case of emission on axis (q± = 0) this can be written in the form 

Ij_(z) =  /      dxdyJ±{x,y,z) 

where I±, having dimensions of a current, is a vector parameter which can be interpreted 

as a continuous polarization vector like density. 
Substituting the discrete particles current phasor expression (15b) in (19), using the 

expression of the wiggler quiver velocity (4d) for the transverse velocity of the particle, 

and averaging over the fast longitudinal quiver motion (which produces another Bessel 

function factor), the excitation current I± finally can be expressed in terms of a bunching 

parameter T)n which is simply the Fourier series component of the longitudinal current at 

harmonic frequency n normalized to the DC-current: 

(19) 

^) = hQZZ[JJ]lJ»*?*T,n 

r)n=I-f=2(e-in^)j 

(20) 

where \JJ\t = Ji^(lu0) - J^i(/u0), «o = \^r, and ^mj is defined in (6d). The xßmj 

are the results of the numerical solution of the pendulum equation in the first part of this 

work. The ( }j indicates statistical averaging over the initial conditions of the electrons in 

the beam. 
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The amplitude of the radiation field on axis can now be expressed in terms of an 

integral over the density parameter along the wiggler: 

<>*»>(*) = l^Io^Li-^W J\n(z)dz (21) 

Substituting in(17) we obtain an explicit expression for the radiant intensity expressed in 

terms of a normalized radiation parameter rn: 

V du je=Q   ley to v *«/  v\ij (22) 

rn(z) = \±- f\n(z')dz' 
\Aw Jo 

Clearly the computation of the bunching and radiation parameters is quite simple after 

the phases ^mj are evaluated by the numerical solution of the pendulum equation. Their 

calculation involve only two additional numerical computation steps of statistical averaging 

and integration. 
For the purpose of comparison between the coherent and incoherent radiation parame- 

ters we cite here the corresponding expression for the radiant intensity on axis at harmonic 

/ of the incoherent undulator radiation [12]: 

2 

(dpUR-\       =lx[^.C-^-eI0(^)[JJ}JNw "'—--""-(23) 

We use this expression for the computation of another parameter of interest: the ratio 

between the radiant intensity of the superradiant radiation to the radiant intensity of 

the incoherent harmonic undulator radiation. This parameter determines how much will 

the detector reading go up in the experiment when the laser beam is turned on, and the 

radiation emission turns superradiant. Using (22,23) we find this ratio to be 

dPs.R. 
"du 0=0 

dPu.R. 
dil 0=0 

1 IQ^W   ' 
4   ec   W„ 

rn(L) .--::...:■ (24) 

Note that this ratio is proportional to to the current, since the super radiant emission 

is proportional to J0
2 (field amplitudes add up), while the incoherent radiation is propor- 

tional to J0 (energies add up). Note also that the experimentally measured ratio between 

super-radiant and incoherent emission can be enhanced by taking advantage of the tem- 

poral coherence of the super radiant emission. Installing the detector behind a narrow 

band-pass filter or a spectrometer of bandwidth narrower than the undulator emission 
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bandwidth - uu/{Nw), the factor (24) is enhanced by the ratio between the undulator 

radiation bandwidth to the filter bandwidth. 

4.  RESULTS OF NUMERICAL COMPUTATIONS 

The extended pendulum equation solving code PENTOK, was employed to solve the 

set of equations (6) for a simple example of a cold electron beam with vanishing spread 

parameters and the experimental parameters of Table 4. The beam was modeled by 36 

electrons, equispaced in their initial phases. This ample-electrons number is four times the 

highest order computed harmonic number (n=9), as required by the Nyquist criterion. It 

was confirmed to provide an adequate sampling accuracy, by verifying that doubling the 

sample electrons number did not change the final computed parameters. 

The solutions for the electron phases were used in (20b) and (22b) to compute the 

bunching parameter r)n and the radiation parameter r„. Their dependence on the interac- 

tion length z at harmonics (n = 1,3,5,7,9) are displayed in Figs. 8 and 9 for beam energy 

-y = -yj™* = 783.54 (for which the radiation parameter was maximal at z = Lw = 2.2m). 

The values of the parameters at the end of the wiggler were used to calculate the radiant 

intensity on axis (22a) and its ratio to the incoherent radiant intensity (24). These are 

listed in Table 5 for the different harmonics. 

The bunching parameters at -y = 1™%* w 1* (shown in Fig. 8) are somewhat lower 

than their values at -y = l™nch = 785-64 for which the phase space dia§ram of-Fig-.-3- 
was drawn (about 5%, 12%, and 17% reduction for n = 1,3,5 at the end of the wiggler). 

Still substantial bunching {m = 93%, r?3 = 61%, ^ = 49%) is attained at the lower 

harmonics. The big variation among the harmonics and the small efficiency of high order 

harmonic bunching indicate that maximum phase bunching and radiation saturation were 

not yet attained within the interaction length (as also evident from Fig. 4). 

The big variation among the harmonics is even more pronounced when considering the 

radiation parameter (Fig. 9). The power law dependence on z, which is suggested by the 

linear behavior of the curves in the logarithmic scales, also indicates that over-bunching 

was not yet attained and substantial enhancement (especially at higher order harmonics) 

may be obtained in an example of a longer wiggler or a more intense modulating laser 

field. 

The main measurable data is summarized in Table 5. The table indicates that even 

with a low effective (peak) current of {k)eff = 1mA, the super- radiant emission radiant 

intensity exceeds the spontaneous radiant intensity at laser harmonics as high as n = 9 

(undulator harmonic / = 27). The detectability may be even further enhanced by means 

of a monochromator.  It is, though, a little hard to estimate the value of {I0)eff that in 
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a specific experiment, will fit the simple model of the zero-spread cold-beam example of 

Table 4. Peak currents in storage rings may well exceed the tens of Ampers range, but 

only a small portion of the beam current will fit into the phase space acceptance volume 

for which a no-spread cold beam model can be taken. 

While the simple zero-spread-cold beam example is helpful for understanding the basic 

features of the interaction, for a full quantitative evaluation of a super-radiant emission 

experiment, all the beam-spread parameters must be included in the computation. This 

realistic modelling was indeed implemented in the computer program, but the numerical 

computations were so far carried out only in part, and will not be reported yet in the 

present publication. 

In conclusion of the discussion on the numerical results, we now explain in some more 

detail the 3-D effect which resulted in a maximum bunching energy ^A appreciably 

larger than both the "plane wave" resonance energy qR and the maximum radiation pa- 

rameter energy i™f m TR. The understanding of this 3-D effect has implications of the 

interpretation the experimentally measurable parameters of Table 5. 

Inspection of Eq. (5b) for the Gaussian phase expression reveals that within the 

Rayleigh range region a Gaussian mode behaves like a free-space plane wave with a slightly 

smaller wave number (larger axial wavelength). In a first order expansion in terms of 

\z-zw\/zR (assuming zRs = z^,    zXDx = zWy,    x = y = 0): 

eJJ c dz c z.R 

Correspondingly also the phase velocity of the wave vph = u>/keff is slightly faster than 

the speed of a free space plane wave (c). Consequently, in order to maintain synchronism 

between the electron and the ponderomotive wave within the Rayleigh range region (where 

most of the energy bunching takes place) the speed of the electrons must also be increased 

correspondingly. 

Examination of the resonance condition kejj + mkw = u/vz reveals that the effect of 

the Gaussian wave effective wave number depreciation - l/zR (25) is the same as decreasing 

the wiggler harmonic wave number, mkw, and it leads likewise to a relative increase in the 

resonance energy: 
A~'_     1     )w 

1R      2m zR 

This equation results in Ai/m = 5.3 x 10-3 with the parameters of Table 4. This 

agrees reasonably well with the results of the numerical computations which gave {l^ch ~ 

1R)/IR = 3.2 x 10-3, in support of our interpretation. 

To understand why q™a
d
x ^ l™nch we draw attention to the fact that the stronS Punch- 

ing effect which takes place at 7 = nj%%.h is not very helpful for efficient radiation into a 

18 

AT-    *   A" (26) 



plane wave on axis (which is the parameter measured in (22)). The reason is that the en- 

ergy bunching with the "fast" Gaussian wave {keff < w/c) produces towards the end of the 

wiggler a polarization current with a correspondingly reduced wave number (higher phase 

velocity). This current cannot excite efficiently a coherent harmonic frequency radiation 

plane wave that propagates on axis at the speed of light c with free space wave number 

wn/c. To maximize such an emission, It turned out to be more favorable to operate at 

1 _ ^max _ lR so that synchronization between the electrons and the modulating laser 

beam is attained away from the Rayleigh range region, where the Gaussian phase shift 

diminishes, and it behaves more like a a free space plane wave. The numerical simula- 

tion results indicate that it is preferable to operate off the maximum bunching condition 

7 = iFunch Respite the advantage of efficient energy modulation by the strong field at the 

Gaussian waist region, because one loses then more by the bunching of the electrons at the 

wrong wave number, which results in destructive interference of the generated radiation, 

and consequently reduce the coherent emission on axis. 

A number of practical conclusions may be derived from this interpretation. Some 

simple remedies can be devices in order to enhance the super-radiant emission radiant 

intensity on axis, if this is the desirable parameter. In the first place, it- seems to be 

preferable to focus the laser beam waste at a more forward (up stream) point, so that 

near plane wave energy modulation can take place from the start. Another scheme can 

be to taper the wiggler period towards the end of the wiggler, in "order to phase-match 

the polarization current with a desirable on-axis harmonic frequency plane wave and still 

operate at the conditions of maximum bunching 7 « ^nch- We note' however, that the 

maximization of the radiant intensity is not always the main experimental goal, and if 

other parameters are important, the operative conclusions may be different. 

It can be well appreciated that if the wave number of the harmonic frequency polar- 

ization current is too small to phase match well to a forward going radiation plane-wave, 

it can still match well to an off-axis wave (of axial wave number (w„/c) cos 0). This may 

lead to a conclusion that at 7 = launch the total coherent harmonic radiation in all angles 

is still high, even though the emission on axis is reduced (relative to a gamma « m tuning 

condition). Since the emission from a zero width current source is spatially coherent in 

either case, we may conclude that not only the total power but also the brightness of the 

radiation could be larger at 7 = launch- Since the radiation is still spatially coherent, its 

larger divergence is not necessarily a deficiency if optics is available to collimate or focus 

it to a desirable beam spot. 

We note in conclusion that the observations we have just made, may be modified when 

the coherent radiation is emitted from a beam of a finite width which is larger than the 
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effective coherence width of the zero beam-width super radiant harmonic emitter. In this 

latter case, the diffraction characteristics may be determined by an effective aperture which 

depends on the electron beam size. We conclude that substantial and non-negligible 3-D 

effects are expected in the analysis of the super-radiant emission interaction, and that 

these effects can be studied in the framework of the physical model and computer program 

we developed. We expect to report further numerical computation results on the effects of 

e-beam spread parameters in a future publication. 
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Table 1:  Classical Definitions of Radiation Schemes 
(1) UNDULATOR SYNCHROTRON RADIATION 

(FEL SPONTANEOUS EMISSION): The temporally incoherent radiation ot elec- 
tron entering into a wiggler/undulator at random.   . ,,       i.        * 

(2) SUPERRADIANT FREE ELECTRON RADIATION: the temporally coherent ra- 
diation of bunched electrons oscillating in a wiggler/undulator in phase with each 

(3) FREE ELECTRON LASING: The coherent emission of bunched electrons radiating 
in phase into the same frequency and spatial domain of the radiation field which 
produced the bunching.   __ 

Table 2:  Frequencies Involved 

Notation/Definition 

"»-Jp-Ti 

Frequency 

Fundamental undulator frequency 

Modulating laser frequency 
n-th order coherent harmonic of modulator wn = nwm(« nmuu) 

/-th order incoherent harmonic of wiggler    uui = luu 

u. mu, 

Linewidth 

Ao;u        _L_ 
Wu Nw 

Urn um 

Un W„ 
AUul   _       1 

wuj INw 

Table 3:  3-D Code Model Features 

(1) Initial spatial spread [ax,ay). '-'■--'-       
(2) Initial angular spread {(Txi,ayi,zewx,zewy). 
(3) Initial energy spread & tuning (cr^o)- 
(4) General modulating mode (w0x, zwx ,w0y, zwy). _ 
(5) Excited radiation described in terms of discrete modes (Hermit Gaussian) / plane 

(6) OptkViapframeters:   Power/radiant intensity/brightness and the corresponding - 
spectral parameters. 

(7) Possible extension: Magnet field variation and error.  

Table 4:  No Beam-Spread Example 

A„, = 10cm 
Nw = 22 {Lw = 2.2m) 
aw = 4.31 
\m = 0.5320jum 
ZR — 0.5m 

zw — 0.3m 
Pw = 90MWatt 
m = 3 
n = 1,3,5,7,9        (/=3,9,15,21,27) 
No angular, spatial and energy spread. 
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Table 5: 
Harmonic 

n        (I) 

Wavelength 

(A) 

dP 
dn 

[W/Ster] 

dPs.R./dU 
dPu.R./dü 

1        (3) 5320 1.938 x 10870
2 1.815 x 1016io 

3        (9) 1773 3.905 x 107J0
2 1.058 x 1014io 

5        (15) 1064 1.526 x 107/^ 2.363 x 1015J0 

7        (21) 760 7.507 x 10%2 3.964 x 1015J0 

9        (27) 591 4.182 x 10%2 5.736 x 1015 J0 

r Figure Captions 
Fig. 1 Schemes for super-radiant (bunched beam) coherent harmonic generation. 
Fig. 2 Axial and transverse cross-sectional schematics of the electron beam and the modulat- 

ing radiation beam. . 
-Fig. 3 Energy-phase-space diagram of electrons at four different points along the wiggler for 

beam energy tuning to maximum phase bunching 7 = l™nch- 
Fig. 4 Continuous Energy-phase-space diagrams of electron trajectories along the entire wig- 

gler for beam energy tuning to plan wave resonance condition 7 = TR. 
Fig. 5 Mechanical analogue diagram of the Gaussian phase "jolt effect". Only the highly sta- 

ble and unstable particles experience reversal of force direction throughout the process. 
Fig. 6 Schematic illustration of wave packet emission into a transverse radiation mode by 

single electrons. The diagram depicts an example of a four period wiggler and corre- 
sponding four period optical wavepacket. 

Fig. 7 Time-frequency phase space picture of spontaneous and super-radiant emission into a 
transverse radiation mode. 

Fig. 8 The bunching parameter of various laser harmonics (n) at condition of beam energy 
tuning to maximum coherent radiation on axis 7 = l™d

x ■ 
Fig. 9 The on axis radiation parameter of various harmonics corresponding to the parameters 

of Fig. 8. 
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