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Abstract 

Demand for additional functionality in real time embedded multiprocessor applications is 
steadily increasing. This, in turn, is causing software complexity and cost to increase. 
Consequently, software is comprising a greater proportion of the costs of applications, 
accounting for as much as 70-80 % of the total development cost. 

The impact of hardware constraints on software productivity is recognized in existing 
parametric software cost estimating models. These models, developed for uniprocessors, 
consider the effects of processor and memory constraints, but do not consider bandwidth 
constraints. 

Experts experienced in the development of communication constrained multiprocessor 
applications were surveyed to determine the impact of the interconnection network on 
software productivity and application development. The general impact of networks on 
software development can be captured by determining the impact of bisection bandwidth 
constraints since bisection bandwidth and connectivity are related through network 
topology. When bisection bandwidth is constrained, software productivity is affected as 
much as, or more than, when processing or memory is constrained, and can cause 
software development costs to double or triple. This can amount to a substantial increase 
in the cost to develop an application; potentially millions of dollars. The capability of the 
application must often be reduced and the resulting code is more complex and harder to 
debug. Also, the maintenance phase is affected as fixing defects, and adding functionality 
becomes more difficult as bisection bandwidth utilization is increased. 

These results indicate significant advantages to implementing interconnection networks 
with high bandwidth. For large DSP applications substantial savings can be realized in 
both software development and maintenance costs. Greater bandwidth can increase 
capability by enabling the implementation of algorithms with high communication 
requirements, such as high resolution SAR, STAP, and advanced ATR. Also, greater 
bandwidth may enable efficient implementation of shared memory architectures which are 
easier to program than message passing systems. For these reasons it may be 
advantageous to invest in more expensive interconnection networks or in developing 
optical interconnection technologies such as free-space optics. 

We view this work as providing a basis for extending existing parametric software cost 
estimating models to describe real time embedded multiprocessor systems. With such a 
model, it would be possible to perform trade analyses between major multiprocessor 
hardware components (processing, memory and interconnection network) to optimize 
system cost and performance. This would lead to substantial savings in system 
development and maintenance costs, better performance and easier upgrades. 
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1    Introduction and Background 

1.1  Software Growth in Real Time Embedded Multiprocessor DSP Applications 

Radar and imaging are extremely important for military applications such as surveillance, 
intelligence and automatic target recognition. These applications have demanding 
requirements in computation and communication and often have stringent requirements on 
size, weight and power as well. The major trend for these applications, and embedded 
applications in general, is the demand to provide greater functionality while reducing costs 
and cycle times. This was expressed by many at the Embedded Systems Conference in 
San Jose in September, 1996, (e.g. Bunza, 1996). As a consequence, system design and 
development are becoming more complex, while users are demanding that systems be easy 
to work with and program. The greater functionality, which includes fault tolerance and 
security requirements, leads to increased complexity of the system, much of which is 
implemented in software (e.g. Bartow, 1995; Bunza, 1996). As a result, software is 
becoming the dominant component of an application and, an increasingly greater 
proportion of the total development cost (e.g. Bunza, 1996; Douglas, 1996). Discussions 
with development experts revealed that software costs are typically greater than hardware 
costs and often consume 70-80% of the total development cost. For large DSP 
applications software is generally over $1M and can be as high as $3, $4 and $15 M. A 
study by Eagle Design Automation revealed that the ratio of software to hardware 
engineers is commonly 4:1 and is steadily increasing (Geoff Bunza, pers. comm.). This 
trend can severely impact the US military which relies heavily on software for their 
capability, investing billions of dollars in software annually. This is evidenced by the fact 
that the military software industry employed more than 475,000 of the 2,400,000 
software professionals in the United States in 1995 (Jones, 1997). 

1.2 Interconnection Networks  • 

With demands for greater functionality in real time applications increasing, connectivity 
and bandwidth requirements are beginning to push the limits of electronic interconnection 
networks. This has led to compromised topologies, e.g. Fat Tree, Mesh, n-cube, in which 
processors must share available links. Consequently, algorithms that require extensive 
communication between distant processors (e.g. 2-D FFT) experience high levels of 
contention and latency when the network is heavily loaded resulting in poor performance. 
Another problem with conventional electrical networks is a scaling limitation due to 
greater link sharing as processor number is increased. For example, as the number of 
processors of a NxN mesh is increased, the number of processors that must share each 
link also grows by N so bisection bandwidth does not scale. As a consequence of these, 
and other, problems a number of industry leaders are convinced that optics will be 
required for future backplanes (e.g. Lund, 1996; Bristow, 1996). 



An alternative to an electrical network is an optical interconnection network. Optical 
networks, such as free-space, offer a number of technical advantages over electronics 
including freedom from capacitive loading, higher spatial and temporal bandwidth, 
massive parallelism without crosstalk, lower power dissipation, and immunity to 
electromagnetic interference. However, for practical implementation of free-space optical 
interconnection technology a number of barriers must be overcome. This technology is 
relatively immature and improvements in technical issues, such as the alignment of optical 
components and the efficiency of devices need to be resolved. Also, before these 
networks become affordable, substantial markets need to develop. However, if one 
considers the total cost of an application, as opposed to hardware cost only, the costs 
related to the constraints imposed by an electrical network may be of considerable 
magnitude. This would be the case if software development is made much more difficult, 
since software is generally the greatest cost of application development and maintenance. 
If the advantages of optics, including greater bandwidth and connectivity, can provide 
substantial savings in software, then it may be advantageous to consider investing in free- 
space, or other, optical networks. 

1.3 Parametric Cost Models for Software Estimation 

A number of parametric models have been developed for estimating software 
development costs for uniprocessors. With the parametric approach, cost estimating 
relationships (CERs), based on design, personnel, application and project parameters, are 
used to predict the cost of a software project. The CERs are determined from historical 
software data, normally based on industry averages. Accuracy can be improved by 
calibrating the models to specific application domains and/or to a specific company. 

The first software estimation model to be developed was the Constructive Cost Model, 
or COCOMO (Boehm, 1981). With this model, the effort required to produce a software 
application in programmer months, PM, is given by the following formula, 

PM = cxKLOCk, (1.1) 

where KLOC is the number of source lines of code in thousands, k is an exponent greater 
than 1.0 reflecting nonlinear growth in effort with code size and c is obtained from the 
product of the effort multipliers. The parameters c and k are determined by the following 
protocol: 

1) First, the nominal effort required is estimated. This is done by determining the 
development mode of the project; organic, semidetatched or embedded, the latter of which 
is used for real time signal processing applications. This provides nominal values of k and 
c which are used to determine the nominal effort required as a function of the 'size' of the 



software, usually given in terms of lines of code. For example, the nominal equation for 
the embedded development mode has c = 2.8 and k = 1.20 in Eq. (1.1) (Boehm, 1984). 

2) Next, the effort multipliers are determined based on 15 cost drivers. The effort 
multipliers determine how much the nominal estimate must be multiplied by to account 
for various attributes inherent in the project and development process. Effort multipliers 
are classified as attributes of the: 

• Product, e.g. product complexity and reliability requirements, 
• Computer, e.g. memory and processor constraints, 
• Personnel, e.g. experience with the application or programming language, and 
• Project, e.g. use of modern programming practices and development tools. 

For example, the complexity multiplier can range from 0.70 for simple applications to 
1.65 for highly coupled, timing dependent applications that utilize machine code (Boehm, 
1984). Similarly, reliability requirements multipliers range from 0.75 to 1.40. 

3) Once the effort multipliers have been determined, they are used to scale the estimate of 
the development effort (c in Eq. 1.1), and related project factors such as schedule length 
can be estimated. 

This model has been found to provide estimates within 20 % of actual values, 70 % of the 
time (Boehm, 1981). 

Recently developed software cost estimating models are similar to COCOMO, using a 
standard nominal equation and adjustment factors which are determined from cost drivers. 
For example, the Revised Intermediate COCOMO, or REVIC, is based on the 
COCOMO model and was calibrated with Air Force projects to reflect actual Air Force 
experience (REVIC). 

The Parametric Review of Information for Costing and Evaluation, or PRICE S, is a 
commercially available software estimating tool that automates the estimating process for 
software development and life cycle costs (Minkiewicz and DeMarco). It was created to 
help managers and estimators compare current projects to previous development efforts, 
translating actual software size and character into estimates of cost and schedule 
consistent with an organization's demonstrated capabilities. This is a commonly used 
tool, as evidenced by its popularity among parametric cost analysts at a meeting of the 
International Society of Parametric Analysts in Santa Monica in January 1997, and has 
been accepted for use by the Air Force, Office of the Secretary of Defense and the 
Defense Contract Audit Agency (Anderson, 1994). Comparisons with actual costs (e.g. 
Air Force Avionics Laboratory) indicated this tool to be within 15% of actual costs 
(Minkiewicz and DeMarco). 



1.4 Impact of Processing and Memory Constraints on Software Productivity 

If the specifications of an application impose tight constraints on system resources, 
software development costs and life cycle time will be adversely affected. Software 
developers need to deal directly with the operating system and hardware, and therefore. 
must have detailed knowledge of the machine details. High level development tools are not 
useful, and often coding must be done in low-level languages (Minkiewicz and DeMarco). 

4T 

3-f 

m 
CO 2 

0.1 02 0.3 0.4 0.5 0.6 0.7 

Processor Utilization 

0.8 
—>—i     ! 

0.9 i 

Figure 1.1 Relation between processor utilization and relative 
software effort, RSE, as determined from the PRICE S 
software estimation model (Minkiewicz and DeMarco). 

The relationship between processor utilization, UTIL, and relative software effort, RSE, 
determined from the PRICE S model, is given by the following equation, 

UTIL <.5, RSE = 1.0, 

UTIL>.5,RSE = - + -x-     l 
(1.2) 

3     6    I-UTIL' 

(Minkiewicz and DeMarco) and is displayed in figure 1.1. The identical relationship is 
given for memory utilization and RSE. As processor utilization, defined as the fraction of 



available hardware cycle time used, increases above 0.5, the required software effort 
increases nonlinearly. Defect rate, defined as the number of errors per thousand lines of 
code that are not detected until the maintenance and operations phases, is affected in a 
similar fashion, which will reduce the reliability of the system (Fig. 1.2). 
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Figure 1.2 Relation between processor utilization and defect 
rate. Data courtesy Jim Otte, PRICE Systems. 

Parametric cost estimation techniques were used to examine the effects of memory and 
processor constraints on the development costs of a UAV SAR processor based on the 
RASSP SAR benchmark developed at Lincoln Labs (Anderson, 1995). Processing 
(lGflop/s) and memory requirements can just be realized with the minimal hardware of 6 
Mercury MCV6 4x4m cards each with 4 40 Mhz Intel I860 processors and 16 Mbytes of 
DRAM. In addition, a COTS backplane-mounted processor interconnect crossbar switch, 
a Motorola MVME167 system controller card and a custom radar interface card is 
required. The resulting processor will have a memory utilization of 86% and processor 
utilization of 88% for a total hardware cost of $281,000 (Table 1.1). According to 
Anderson, these requirements are not unusual for UAV applications where size, weight 
and power must be minimized. However, the software costs and development time 
corresponding to the above memory and processor constraints are $2,360,000 and 32 
months respectively, as determined by the REVIC software cost estimating model 
(Section 1.3). The cost was determined by estimating the code to be 8,750 uncommitted 
source lines of code, requiring 155 programmer-months, 152 programmer-hours 
/programmer-month and $100/programmer-hour. With this minimum hardware cost 
scenario, software development is 89% of the total development expense, $2,640,000. 



Hardware Software Total Development 
Costs Costs Cost Time 

Minimum H/W 
Cost $281,000(11) $2,360,000 (89) $2,640,000 32 months 
Minimum 
Total Cost $432,000 (32) $911,200(68) $1,343,200 28 months 

Table 1.1. Comparison of costs and development time for 
minimum hardware cost and minimum total cost 
scenarios. Percentages are in parentheses. Data 
taken from Anderson, 1995. 

Minimizing the total system cost can be achieved by adding hardware to reduce the 
memory and processor utilization such that there is no effect on software cost. This 
occurs when both memory and processor utilization are below 50% (Eq. 1.1). This can be 
achieved by increasing the number of Mercury MCV6 4x4m cards from six to eleven with 
no change to the rest of the hardware. The result is an increase in hardware costs by a 
factor of 1.8 to $432,000 and a decrease in software costs by a factor of 2.59 to $911,200 
and development time by 0.88 to 28 months. This example shows how development cost 
can be dominated by software and that a greater investment in hardware can reduce overall 
system development costs substantially. The net result is a superior product at half the 
cost of the minimum hardware product. 

1.5 Report Overview 

The above example shows how investments in processors and memory can dramatically 
decrease software development costs and the overall cost to develop an application. It 
seems likely that, in similar fashion, investments in the interconnection network can 
decrease the cost of developing software and hence the overall cost of an application. In 
this work we consider the impact of bisection bandwidth constraints on software 
development effort, modifications to the system to accommodate these constraints and 
affects on software complexity and defect rate. Our results show that bisection 
bandwidth constraints impact software development as much as, or more than, processor 
or memory constraints. Limitations in bisection bandwidth also increase software 
complexity and defect rates and often the capability of the system must be reduced. We 
discuss potential advantages of additional bandwidth, including cost savings in software 
development and maintenance, increased capability and the effective implementation of 
shared memory systems. 



2   Methods 

2.1 Approach 

The general approach was to identify application domains in which bandwidth was 
constrained and determine the impact of these constraints on software development and 
maintenance. 

To obtain an understanding of requirements, bottlenecks and development costs of real 
time embedded signal processing applications, experts from industrial, academic and 
government laboratories were contacted. An initial survey was made via mail, phone, e- 
mail, workshops and meetings. Visits were made to select experts to obtain information 
on relevant architectural and development issues. Topics of particular interest were 
communications and processing bottlenecks, system development processes and costs, 
and factors influencing software productivity such as bisection bandwidth and 
connectivity constraints. Considerable effort was then spent in follow up in an attempt to 
obtain more precise data. 

2.2 Software Productivity Data 

Initially, the main focus of this study was on the impact of limitations in network 
connectivity on software productivity and the potential of global interconnection 
networks in reducing software effort. It was hypothesized that DSP applications, which 
contain extensive global communications such as cornerturn operations, would benefit 
greatly from global interconnections between processors. While some DSP experts 
recognized that connectivity limitations increase the effort required to develop software, 
most identified bandwidth constraints as the major network parameter affecting 
programming. Also, while it seemed possible to determine a quantitative relationship 
between bisection bandwidth constraints and software effort, this did not seem possible 
for software effort and connectivity constraints. However, bisection bandwidth is related 
to connectivity as both depend on network topology; i.e. networks with a greater ratio of 
links/processor will have greater bisection bandwidth. Therefore, a relation between 
bisection bandwidth constraints and software effort will also capture the general affect of 
connectivity constraints, although we are not claiming a one to one relationship since 
different algorithms will be compatible to different topologies. Based on these initial 
results,we decided to pursue the general relationship between bisection bandwidth 
constraints and software productivity to capture the primary impact of the 
interconnection network. 

During the initial survey a number of people indicated they would provide data pertaining 
to communication bandwidth and software productivity. However, while following up to 



acquire this data, these people were often reluctant to do so. We believe this to be due to 
the following: 

1) Software productivity data is proprietär)' information, 
2) Data on software productivity and communication resources is rarely recorded, and 
3) An individual would be required to expend considerable effort to acquire this data. 

This was verified by discussions with experts in the software measurement field, 
"including Barry Boehm of the University of Southern California, Bob Giallamboro of 

Mitre and Jim Otte of PRICE Systems who all claimed that software productivity data 
was very difficult to obtain. 

In addition to contacting development experts, parametric software cost estimating 
models, such as COCOMO, REVIC and PRICE S were explored. While these models 
relate software productivity to some hardware resources (processing and memory), the 
impact of communication is not included explicitly. The Space and Missile Systems 
Center Software Database was also examined and, as with the parametric models, did not 
contain relevant data. 

To obtain the desired information, an iterative data acquisition procedure was 
implemented. First, a preliminary model relating software productivity to bisection 
bandwidth constraints was constructed based on the results of an initial survey. This 
model was then sent to various experts who agreed to provide estimates, based on their 
experience, to test the model. Accompanying the model was a questionnaire designed to 
collect additional information (e.g. modifications made to algorithms, system architecture 
and software as a result of bandwidth limitations) and to provide a check on model 
estimates (Appendix A). Data was obtained by following up with phone calls when 
possible. This method proved to be effective in acquiring the desired data as eight people 
provided data for the model and eleven people answered the questionnaire. Given limited 
resources and time, combined with the difficulty in obtaining software data, we believe 
this was an effective approach to determine the general relationship between bandwidth 
constraints and software productivity, reflecting an industry average. Accuracy was 
traded for breadth in that the data includes information from many projects and from 
different organizations. The alternative was to collect more precise data on a very small 
number of programs. We believe this could have severely biased our results due to small 
sample size. Also, many factors contribute to software productivity, including size of 
project and programming language, making it difficult to compare widely differing 
software projects. 

We report data and opinions expressed by experts in the real time embedded 
multiprocessor and high performance supercomputer domains, but we do not release 
specific information related to specific individuals or corporations in respect of the 
proprietary nature of this information. Data is supported with literature where possible. 



3     Impact of Bandwidth Limitations on Software Productivity 

A number of people have recognized that programming multiprocessors is more difficult 
when interconnection bandwidth is limited. In the supercomputer domain this has been 
expressed in the Accelerated Strategic Computing Initiative (ASCI) PathForward Project 
Description in which they state that interconnection performance directly impacts the 
ease of programming large supercomputers for high performance (ASCI, 1996). In a 
report prepared for the Department of Energy concerning architectural and business 
recommendations for achieving petaflop computing, it is stated that additional memory 
bandwidth and latency tolerance is required to support locality independence to make 
programming easier and load balancing effective (Probst, 1995). Blelloch et al. take the 
position that much of the difficulty in programming large parallel computers stems from a 
lack of appreciation of the impact of low performance interconnection on software 
development (Blelloch et al., 1994). They studied the NAS benchmarks, and claim that 
software development costs can be substantial due to multiple man-years required to 
obtain benchmark-specific optimizations that are often highly tuned to the particular 
distribution of data specified by the benchmark. This sentiment was supported by 
personal communications with experts in the supercommputer domain (e.g. Burton Smith 
of Tera Computers and Monica Lam of Stanford Computer Science Department). 

The above situation was also revealed during interviews with developers of real time 
embedded DSP applications (e.g. Vince Zagardo and Dave Sloper of Northrop Grumman, 
Craig Lund and Mark Skalabrin of Mercury Computer Systems, Paul Stanton of Alacron, 
Bill Wren of Honeywell Technologies, Paul Storaci of Ball Aerospace, Jim Otte of PRICE 
Systems and many others). In a report prepared for the 'Investments in avionics and 
missiles software technology workshop' distributed computation with limited bandwidth 
was identified as one of the 'seven deadly sins' of software engineering (Shrobe, 1995). 

3.1 Bisection Bandwidth and Software Productivity 

To quantify the relationship between bandwidth constraints and software productivity, 
estimates were obtained from eight experts experienced in the development of 
multiprocessor applications; seven experienced in real time embedded signal processing 
and one in high performance supercomputing. As a measure of bandwidth constraint we 
use bisection bandwidth utilization (BBU), defined as the average fraction of available 
bisection bandwidth that is utilized during data transfers. We believe this to be a useful 
measure, especially for large DSP applications, since bisection bandwidth is the critical 
bottleneck when performing global data transfers, such as cornerturn operations, therefore 
reflecting the difficulty encountered by a software developer. Also, this measure is 
consistent with measures of hardware constraints used in existing PCE models, i.e. 
processor and memory utilization (Section 1.4). 



As a measure of software productivity, we use relative software effort (RSE) defined as 
the effort required to develop software as a result of bandwidth constraints relative to the 
effort required if bandwidth was not constrained. A relative measure was chosen to 
normalize data and enable pooling from a broad range of application parameters, such as 
size of application and programming language, to obtain an industry average. 

The relationship between BBU and RSE is given in figure 3.1 (also Appendix B) and 
resembles that for memory or processor utilization as given by existing PCE models (Fig. 
1.1). The RSE is not affected until BBU reaches 0.3, beyond which RSE increases 
nonlinearly. As BBU approaches 1.0, RSE becomes extremely high, although other 
factors likely come into effect and the relationship is undefined. Some experts stated that 
as software costs begin to increase dramatically, other decisions are made. The program 
can be temporarily called to a halt while the organization waits until faster hardware 
becomes available or custom hardware may be developed. It is worth noting that three 
people, who did not supply detailed numbers for the model, claimed that bandwidth 
constraints could cause RSE to double, and two claimed it could triple. 
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Figure 3.1 Relation between bisection bandwidth utilization 
(BBU) and relative software effort (RSE). See text for 
definitions. 
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Comparison to figure 1.1  indicates that BBU has a more dramatic impact on RSE than 
does memory or processor utilization. The adverse impact of bandwidth constraints sets 
in at a BBU of 0.3, compared to 0.5 for processor or memory utilization, and for BBU 
and processor utilization of 0.8 the RSE is 2.2 and 1.5, respectively. This was supported 
by the questionnaire as seven often claimed that bisection bandwidth constraints can 
affect software development as much as, or more than, memory constraints, and eight of 
ten claimed that software development is affected as much as, or more than, when 
processing is constrained. 

3.2 System and Application Modifications to Reduce Communication 

To overcome latency and contention problems associated with limited bandwidth, the 
total communication is reduced. A common strategy employed is to change the algorithm 
to one that is less communication intensive if the system does not possess sufficient 
bandwidth to run the application; i.e. replace one with global communication by one with 
local communication. The algorithms selected are ones where memory and computation 
can be added to compensate for limited communication. These changes often result in a 
simpler algorithm and reduced capability of the application. For example, throughput 
restrictions may require reducing the number of bits per pixel, thus reducing the dynamic 
range and limiting the capability of applications such as target recognition. 

Another way to reduce communication is to reduce message size. This is done with data 
compression algorithms which require additional processing and memory resources. High 
level communication protocols, such as TCP/IP, have significant overhead, which is the 
time spent preparing and receiving a message, associated with them which contributes to 
latency. Therefore, it is common to develop low level communication protocols to reduce 
overhead latency. This is very difficult to do and involves coding in lower level languages. 

3.3 Algorithm Mapping 

Once the algorithm has been chosen it must be mapped onto the system. The mapping 
process involves decomposing the algorithm and distributing software tasks and data 
throughout the system while considering task scheduling as well. To map algorithms 
effectively one needs to consider memory, communication and processing as well as the 
operating system. This requires detailed knowledge of the system hardware, operating 
system and communications protocols. Unfortunately, it is impossible to predict the 
optimum data distribution. This procedure must be done by trial and error, and it can take 
considerable time to find optimal data placement. 

When bandwidth is constrained, the algorithm mapping process can be much more 
difficult. It is common to change the way the problem is decomposed and mapped to die 
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architecture. One strategy is to move from data parallelism to task parallelism, which is 
more coarse grained and less communication intensive, and use pipelining to get 
concurrency. For high performance applications with size and resource restrictions, e.g. 
military applications, the standard approach is to make the algorithms Tit' the available 
system, often resulting in reduced capabilities. A major issue to consider is contention 
during run time which can greatly increase the mapping effort required. Also, the task 
scheduling rules become more difficult when bandwidth is limited. This can require 
substantial effort, and some have claimed that it can comprise up to 90% of the total 
software effort. Applications claimed to be very difficult to map are SAR and STAP due 
to high communication requirements. 

3.4 Bandwidth Constraints, Processor and Memory Utilization 

Ail eleven people surveyed stated that bandwidth constraints affect processor and 
memory utilization. A consequence of low bandwidth is that the processors need to wait 
for data. A common way to solve this problem is to keep the data nearby the processor, 
which implies multiple copies of data and therefore additional memory. Also, reducing 
communication with data compression (and uncompressing) adds functionality to the 
system, which requires additional processing and memory resources. 

3.5 Software Complexity and Defect Rate 

Ten of eleven people stated that bandwidth constraints affect software complexity for the 
following reasons. As stated above (Section 3.3), when bandwidth is limited, one is often 
forced to decompose the problem by task as opposed to by data domains. Task 
parallelism is more asynchronous than data parallelism, which introduces a load balancing 
problem. This makes synchronization more difficult which also affects communication. 
Also, writing low level communication protocols and reducing communication is difficult 
(Section 3.2). The code must be made more efficient, which often requires coding in lower 
level languages, resulting in complex code that is hard to understand. 

It is well known among software experts that error rates, in particular defect rates, are 
higher when software becomes more complex (e.g. Jones, 1997). This was supported in 
this study as six of six people claimed that bandwidth constraints affect defect rate by 
making code more complex. This can have a significant impact on the test and integration 
phase of a system (Section 3.7) as errors are more difficult to detect when code is 
complex, many of which go undetected until the operation and maintenance phase 
(Section 3.8). 

12 



3.6 Code Reuse 

An obvious way to save on software development costs is to reuse code from previous 
applications. When asked what proportion of the code is reused when porting software to 
new platforms, the responses obtained were very broad depending on application domain, 
requirements and platform similarity. However, it was commonly expressed that a major 
problem in real time high performance embedded systems development is the difficulty in 
porting software to new target platforms. In fact, in many cases porting basically 
becomes a reimplementation as code that has been highly optimized for a particular 
machine and distribution of data cannot be reused on a different platform. Some claimed 
that as little as 5% of the code is reused but the most common response was between 10 
to 20 %, consisting largely of utilities software which is easiest to code. Five of seven 
people claimed that additional bandwidth could make it easier to reuse code. 

3.7 System Integration and Test 

Although bandwidth constraints can affect all phases of the development cycle, including 
system specification, hardware/software partitioning and design, and coding, the phase 
most severely impacted is the integration and test phase. It is during this phase of the 
development cycle that the limitations are found. This can be a very long and costly 
phase, comprising over 50% of the total development time for a typical project and can 
consume 80% for human critical systems (DeMarco, 1994; Bunza, 1996). 

Debugging multiprocessing systems is far more difficult than uniprocessors as one must 
find both logical errors as well as errors due to interactions between parts of the code. 
Standard real-time debugging tools run on a uniprocessor environment and don't reveal 
time-related interactions between code sections (Quinnell, 1996). When the code is more 
complex due to bandwidth constraints, it is even more difficult to find and fix errors 
(Section 3.5). Also, if the bandwidth limitation is not known until the hardware/software 
integration phase, it may be necessary to repeat the system specification, 
hardware/software partitioning, software design and algorithm mapping phases, which can 
increase the development effort substantially. 

3.8 Software Maintenance 

Software maintenance, which includes fixing defects and upgrading functionality, is 
generally the most costly phase of the life cycle (Shrobe, 1995). For example, the cost to 
develop 236,000 lines of code for an F16 Fighter system was $85 million, and $250 
million to maintain the code (Bunza, 1996). When bandwidth is constrained the 
maintenance phase can be impacted in that upgrades are more difficult, and the number of 
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possible udgrades is limited. It is very difficult to upgrade functionality on complex 
systems. When part of the system is changed, the effect on the rest of the system must 
be determined. This requires considerable testing to ensure that the system is fully 
operable. For high reliability systems 75% of the time in an upgrade cycle is spent in 
testing and analyses (Shrobe, 1995). Eight often people stated that bandwidth constraints 
make the maintenance phase more difficult. The added complexity due to bandwidth 
constraints makes it more difficult to test the system (Section 3.7). 

Seven of eleven people stated that adding new functionality to a previously developed 
application will utilize more bandwidth. The other four said it can, depending on whether 
the tasks are scheduled concurrently or not. If an upgrade requires bisection bandwidth 
utilization to increase, then software development and testing become increasingly 
difficult (Fig. 3.1). Also, it may be necessary to reallocate bandwidth on the original 
application to accommodate the new functionality which will require additional software 
design and development. If bandwidth is constrained in the original application and 
upgrades utilize additional bisection bandwidth, software development will become 
increasingly more difficult until upgrades are no longer possible. 
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4   Impact of Connectivity Constraints on Software Productivity 

Additional connectivity was not perceived as being as important as additional bandwidth 
in making programming easier. This was indicated during both the initial survey and the 
questionnaire results. When asked if additional connectivity would make software 
development easier, the responses were as follows: yes (2), no (2), sometimes (2), 
probably (1), could (1), not necessarily (1), somewhat (1), don't know (1). While these 
results indicate that limitations in connectivity can impact software development effort, 
there was uncertainty in the responses and in how additional connectivity would help. 
The advantages given were that the additional connectivity would provide more data 
paths, reducing contention and latency, and task placement would be easier. Also, during 
general discussions with DSP development experts, some claimed that additional 
connectivity would make programming easier and some expressed a desire for all-to-all 
connectivity such as a fully connected, low latency crossbar. A network of this nature 
would not only minimize software development costs by providing substantial bisection 
bandwidth (Section 2.2), the low latency would provide performance benefits. 
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5   Advantages of Additional Communication Resources 

5.1 Savings in Software Development and Maintenance 

A common theme with embedded systems experts is that increasing bandwidth on a 
constrained system would make programming easier. How much easier it would be to 
program would depend on how close the application is to utilizing the hardware 
resources and how much that constraint would be reduced by adding communication 
resources. Some claimed that greater connectivity would also help by providing more data 
paths, reducing contention and latency, but a quantitative relationship could not be 
determined. 

As an estimate of potential savings in software development costs, we use the RASP 
SAR benchmark example of Anderson in which the cost to develop software with no 
hardware constraints is $911,200 (Anderson, 1995; Table 1.1). Consider a system in 
which the communication requirements and hardware resources are such that developers 
are forced to develop software while utilizing 80% of the available bisection bandwidth. 
With this level of bisection bandwidth utilization the software development cost, 
determined from figure 3.1, will be $2,004,640, a 2.2 fold increase. This does not seem 
unrealistic based on discussions with experts who revealed that bisection bandwidth 
utilization can become higher than 0.8 and bandwidth constraints can cause software costs 
to double or triple (Section 3.1). If an interconnection network is implemented such that 
bisection bandwidth utilization is 30%, software development costs are reduced to the 
baseline value of $911,200, a savings of $1,093,440. Besides saving in software costs, the 
resulting system will have better performance and simpler more reliable code. Also, it will 
be easier to debug and upgrade the system during the maintenance phase, and with greater 
bandwidth available more upgrades can be accommodated. 

5.2 Shared Memory Architectures Enabled 

It is widely recognized that shared memory systems are easier to program than message 
passing systems. Message passing codes are difficult to parallelize, tightly coupled to 
existing data structures, require extensive 'tuning' to achieve optimal performance through 
locality and are more difficult to modify than shared memory codes (Probst, 1996). A 
shared memory machine, with uniform memory access, does not require the programmer 
to be concerned about data locality to achieve optimal performance. However, to 
effectively implement locality independence and make dynamic load balancing effective, ä 
high bandwidth interconnection network is required (Probst, 1996). It has been estimated 
that moving from message passing to shared memory will reduce software development 
and maintenance costs by approximately 50%. These savings may be adequate to justify 
larger investments in interconnection bandwidth. 
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5.3 New Algorithms Implemented 

If sufficient bandwidth is not available, communication intensive algorithms must be 
reduced or discarded. This can lead to reduced capability of the algorithms that are 
implemented (Section 3.2). Some of the algorithms that were claimed to be limited by 
bandwidth include: 

1) STAP problems with high numbers of channels, 
2) High resolution SAR, 
3) ATR with greater than 10 models, 
4) Some Kaiman filters with high degrees of adding, 
5) Applications with TeraFLOP requirements, 
6) Closing track loops in remote sensing. 

An obvious advantage of increasing bandwidth is an increase in capability as 
communication intensive algorithms are enabled. This could greatly increase radar, remote 
sensing and target detection capabilities. 
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6   Conclusions 

The results of this study show that bisection bandwidth constraints can lead to a number 
of adverse consequences in the resulting application. Algorithms are modified to reduce 
communication, requiring processing and memory requirements to increase. This often 
leads to a reduced capability of the application. Accommodating limited bandwidth 
results in complex software that is difficult to understand and debug, and often requires 
coding in lower level languages. As a result of the added complexity, integration and 
testing, which comprise over 50% of the development time, is more difficult. The net 
result is that bandwidth constraints have a substantial impact on software costs. It is 
possible that software development cost can double or triple, consuming millions of extra 
dollars if bandwidth is sufficiently constrained. Also, the additional software costs 
accumulated during the maintenance phase, which comprise the largest portion of the total 
life cycle cost, can be substantial as upgrades consume additional bandwidth resources. 

We expect bandwidth constraints will have a greater overall impact on software 
development costs with time. As military applications demand greater functionality and 
throughput, developers will be forced to utilize more of the available bandwidth while 
developing more complex software. This will likely be enhanced by the increasing 
disparity between advances in processing speeds and interconnection bandwidth of 
electrical networks; i.e. processing speeds are increasing faster than electrical network 
speeds (e.g. Stone, 1996). 

Although connectivity was not perceived to be as important as bandwidth, we believe 
there are advantages to implementing a global all-to-all topology, in agreement with some 
of the experts interviewed. The extremely high bisection bandwidth of a network of this 
nature will alleviate communication constraints, thus minimizing software development 
costs (Section 3.1). Also, latency will be minimized which will contribute to greater 
performance and make it easier to implement algorithms with high global communication 
requirements. 

Given the substantial impact of bandwidth constraints on software development and 
maintenance costs, there may be strategic advantages in investing in high bandwidth 
interconnection networks, or in developing new interconnection technologies. One such 
technology is free-space optics which promises to be compact and low power, which are 
important requirements for airborne applications. Also, free-space optics may enable a 
global all-to-all topology. It is impossible to predict the magnitude of investment required 
to move this technology into the commercial world, or the business advantages in doing 
so. This will depend on many factors including market sizes. However, besides providing 
direct savings in software costs, additional advantages can be realized by increasing 
bandwidth. This includes greater capability in DoD radar and imaging applications, by 
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enabling communication intensive algorithms, and effective implementation of shared 
memory systems. The greater capability may have direct impact on mission effectiveness 
(i.e. reduced loss of aircraft and life) and therefore national security. Effective 
implementation of shared memory systems, with uniform memory access, should make it 
easier to reuse code since it will not be locality dependent. The benefits of increased 
capability and shared memory implementation may, in fact, provide the biggest payoffs 
in the long term. 

Discussions with developers of real time multiprocessors have revealed that it would be 
desirable to be able to perform trade analyses between major hardware components 
(processing, memory and interconnection network) and software productivity to 
optimize system performance and cost. To do so would require a software cost 
estimation model for real time multiprocessors that explicitly incorporates the impact of 
these major hardware components on software productivity. Existing models, developed 
for uniprocessors, consider processing and memory constraints but do not consider 
parameters unique to multiprocessors such as bisection bandwidth constraints or number 
of processors. We have found that bisection bandwidth constraints impact software 
development as much as, or more than, processing and memory constraints. For this 
reason, the importance of bisection bandwidth should not be overlooked when estimating 
software costs for real time embedded multiprocessors. Other factors to consider are 1) 
the impact of the number of processors on software effort, and 2) inter-dependencies 
between major hardware components since accommodating for bandwidth constraints 
requires increasing processor and memory requirements (Section 3.4). A tool of this 
nature should be extremely useful for the rapid design and prototyping of cost effective 
real time multiprocessing systems. It would enable tradeoff analyses to be made in the 
early stages of the development cycle, e.g. conceptualization, and support decisions on 
high level issues such as technology choices. It would also be desirable to include the 
maintenance phase in a real time embedded software estimating model. This would allow 
one to optimize for upgrades and enable trade analyses based on the entire life cycle of 
the system. We believe a modeling tool of this nature would produce substantial savings 
in costs over the life cycle of an application. 
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8   Appendices 

Appendix A - Data Questionnaire 

Below is the questionnaire as sent to development experts. It includes a preliminary 
software cost model, for experts to test with their estimates, and a questionnaire to obtain 
additional information on the consequences of bandwidth constraints and to verify 
estimates given for the model. 

SOFTWARE/BANDWIDTH COST MODEL - BACKGROUND 

Discussions with numerous engineers indicates that when communications bandwidth is 
constrained, software development can be severely impacted, especially in real time 
embedded DSP applications. As a result: 1) additional planning during the initial design 
stage is required, 2) coding must be done at lower levels and 3) the testing and integration 
phase is severely complicated. 

A model relating relative software effort and development time to bandwidth constraint 
(bisection bandwidth utilization) is given below. Please provide estimates to test this 
model and answer as many questions as possible. Provide ranges if necessary. ALL 
INFORMATION YOU PROVIDE WILL BE KEPT CONFIDENTIAL. AVERAGES 
AND RANGES ONLY WILL BE RELEASED. If you would like a copy of the report 
when completed, provide a mailing address. 

SOFTWARE COST MODEL 

Bisection Relative Relative Relative Relative 
B/w Util S/W Effort S/W Effort Dev. Time Dev. Time 

(Model) (Estimate) (Model) (Estimate) 

.1 1.0 1.0 

.2 1.0 1.0 

.3 1.0 1.0 

.4 1.0 1.0 

.5 1.0 1.0 

.6 1.1 1.0 

.7 1.2 1.1 

.8 1.5 1.1 

.85 1.7 1.2 

.9 2.2 1.4 

.95 3.8 1.7 
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NOTE: As a measure of bandwidth constraint we use bisection bandwidth utilization, 
defined as the average fraction of available bisection bandwidth used during data transfers. 
We believe this to be a useful measure for large DSP applications since bisection 
bandwidth is the critical bottleneck when performing global data transfers such as 
cornerturn operations, therefore reflecting the difficulty encountered by a software 
developer. Other possible measures are 1) the ratio of computation to communication and 
2) gap, defined as "the average time needed between consecutive message transmissions 
by any one processor in order to ensure that the network does not become overloaded". 

To what domain(s) does the above data apply? E.G.: Real time embedded DSP - Military, 
Airborne, Space; Real time Telecommunications; MIS; Supercomputer; Shared memory, 
message passing. 

Does the number of processors influence software productivity? 

QUESTIONS 

1. On average, what proportion of the development cost and effort is due to software? 

2. Estimate an average cost for a relative software effort of 1.0 in dollars and lines of code, 
if possible. 

3. When it is known that bandwidth will be limited, what changes are made to the 
system? E.G.: interfaces, drivers, processors, communication protocols, control, 
synchronization. 

4. For communication intensive applications, what is it about Hardware that makes it 
difficult to develop software? 

5. When bandwidth is limited, what changes are made to the software? 

6. Do bandwidth constraints affect software complexity? Does it affect defect rate? 

7. When bandwidth is constrained, does it affect software development as much as, or 
more than, when memory or processing is constrained? 
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8. Do bandwidth constraints affect CPU and memory utilization? I. E. Does one have to 
battle the network to get CPU and memory utilization up? 

9. When bandwidth is limited, what phases in the system development cycle are 
impacted? 

a) System specification 
b) Hardware/Software partition 
c) Software design 
d) Algorithm mapping 
e) Coding 
f) Software test and integration 
g) System test and integration 
h) Maintenance 

10. Does adding modes to a previously developed application utilize more bandwidth? 

11. Would greater network connectivity help? If so, how? 

12. What applications are communication intensive with stringent latency constraints? 

13. What applications and/or algorithms cannot be done due to bandwidth constraints? 

14. What proportion of code is reused when porting software to new platforms? Can this 
also be a problem when porting from the development system to the target? 

15. If the bandwidth constraints could be removed, would that: 

a) make coding easier, 
b) simplify software development (e.g. distribution of tasks), 
c) simplify the overall system (e.g. control, synchronization, protocols), 
d) enable the implementation of new algorithms, 
e) make it easier to reuse software 
f) enable new capabilities/applications 
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Appendix B - Software Effort Data 

Table B. 1 Summary of data relating bisection bandwidth 
utilization (BBU) to relative software effort (RSE) 
for sample size (N). Note that as BBU becomes 
greater than 0.95 the relationship is undefined. 

BBU RSE N 

0.1 1 8 
0.2 1 8 
0.3 1 8 
0.4 1.1 8 
0.5 1.3 8 
0.6 1.4 4 
0.7 1.7 6 
0.8 2.2 6 
0.9 3.8 7 

0.85 2.4 4 
0.95 4.4 4 
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