
RL-TR-97-222
Final Technical Report
February 1998

IMPACT OF BISECTION BANDWIDTH CON-
STRAINTS ON SOFTWARE DEVELOPMENT
COSTS

University of Colorado

Sponsored by
Advanced Research Projects Agency
ARPA Order No. B667

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19980324 014
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
ROME RESEARCH SITE

ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (EFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-97-222 has been reviewed and is approved for publication.

APPROVED:
JAMES DAVIS
Project Engineer

&-jtcui—- FOR THE DIRECTOR:
DONALD W. HANSON, Director
Surveillance & Photonics Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory mailing list, or if the addressee is no longer employed by your organization,
please notify AFRL/SNDP, 25 Electronic Pky, Rome, NY 13441-4514. This will assist
us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ALTHOUGH THIS REPORT IS BEING PUBLISHED BY AFRL, THE RESEARCH WAS
ACCOMPLISHED BY THE FORMER ROME LABORATORY AND, AS SUCH, APPROVAL
SIGNATURES/TITLES REFLECT APPROPRIATE AUTHORITY FOR PUBLICATION AT
THAT TIME.

IMPACT OF BISECTION BANDWIDTH CONSTRAINTS
ON SOFTWARE DEVELOPMENT COSTS

Wes C. Berseth
JohnA.Neff

Contractor: University of Colorado
Contract Number: F30602-92-2-0234
Effective Date of Contract: 9 July 1996
Contract Expiration Date: 9 April 1997
Program Code Number: 6Yl 0
Short Title of Work: Impact of Bisection Bandwidth Constraints on

Software Development Costs

Period of Work Covered: Jul96-Apr97

Principal Investigator: Wes Berseth
Phone: (303) 492-7135

AFRL Project Engineer: James Davis
Phone: (315)330-4276

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects Agency
of the Department of Defense and was monitored by James Davis, Air Force
Research Laboratory/SNDP, 25 Electronic Pky, Rome, NY 13441-4515.

REPORT DOCUMENTATION PAGE Form ApprovBd
DMB No. 0704-0188

Puhl:c reporting burden ior this collection of inirrmation is estimated tc average 1 iiour per response, including the time '0' reviewing instructions, searching existing data sources, gathering and maintaining the date needed, and completing and reviewing
the collection cf information. Send comment; regarding this burden estimate or arij- other aspect ol this collection of information, including suggestions far reducing this burden, to Washington Headquarters Services, Directorate lot Information

Operations and Reports, 1215 Jefferson Davs Higltwav. Suite '204. Arlington. Vw 222024302. end !c the Office Df Managemen- and Budget, Paperwork Reduction Project (0704-018B', Washington, 3C 20503

1. AGENCY USE ONLY Heave blank) 2. REPORT DATE

February 1998
3, REPORT TYPE AND DATES COVERED

Final Jul 96 - Apr 97
4. TITLE AND SUBTITLE

IMPACT OF BISECTION BANDWIDTH CONSTRAINTS ON SOFTWARE
DEVELOPMENT COSTS
6. AUTHOR(S)

Wes C. Berseth and John A. Neff

5. FUNDING NUMBERS

C - F30602-96-2-0234
PE -62712E
PR -B667
TA -00
WU-01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES!

University of Colorado
NSF Engineering Research Center
Campus Box 525
Boulder. CO 80309-0525

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

AFRL/SNDP
25 Electronic Pky
Rome NY 13441-4514

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-222

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James L. Davis/SNDP/(315) 330-4276

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report discusses the costs of developing software as a function of bisection bandwidth constraints of hardware
configurations. System development experts were surveyed to obtain data to help quantify effects of developing
software in bandwidth limited applications. A discussion of software cost estimating models is given and a case is
made for including bisection bandwidth in using these models. The advantages of free-space optical interconnects are
enumerated. The report concludes that availability of high-bandwidth interconnects, especially in intensive military
real-time signal processing applications, could lead to substantial savings in system development and maintenance
costs.

14. SUBJECT TERMS

Software development, metrics, cost estimates

15. NUMBER OF PAGES

44
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSD7DED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298{Rev. 2-89) (EG)
PrescritjadbyANSIStd. 239.18
Designed using Perform Pro, WHSfDIOR. Oct 94

Table of Contents

■^

1 Introduction and Background 1
1.1 Software Growth in Real Time Embedded Multiprocessor DSP Applications 1

1.2 Interconnection Networks 1

1.3 Parametric Cost Models for Software Estimation 2

1.4 Impact of Processing and Memory Constraints on Software Productivity 4
6 1.5 Report Overview

2 Methods 7
2.1 Approach 7

2.2 Software Productivity Data 7

3 Impact of Bandwidth Limitations on Software Productivity 9

3.1 Bisection Bandwidth and Software Productivity 9

3.2 System and Application Modifications to Reduce Communication 11

3.3 Algorithm Mapping 11

3.4 Bandwidth Constraints, Processor and Memory Utilization 12

3.5 Software Complexity and Defect Rate 12

3.6 Code Reuse 13

3.7 System Integration and Test 13

3.8 Software Maintenance 13

4 Impact of Connectivity Constraints on Software Productivity 15

5 Advantages of Additional Communication Resources 16
5.1 Savings in Software Development and Maintenance 16

5.2 Shared Memory Architectures Enabled 16

5.3 New Algorithms Implemented 17

6 Conclusions 18

7 List of References 20

8 Appendices 22
Appendix A - Data Questionnaire 22

Appendix B - Software Effort Data 25
Appendix C - List of Credits

i

26

Abstract

Demand for additional functionality in real time embedded multiprocessor applications is
steadily increasing. This, in turn, is causing software complexity and cost to increase.
Consequently, software is comprising a greater proportion of the costs of applications,
accounting for as much as 70-80 % of the total development cost.

The impact of hardware constraints on software productivity is recognized in existing
parametric software cost estimating models. These models, developed for uniprocessors,
consider the effects of processor and memory constraints, but do not consider bandwidth
constraints.

Experts experienced in the development of communication constrained multiprocessor
applications were surveyed to determine the impact of the interconnection network on
software productivity and application development. The general impact of networks on
software development can be captured by determining the impact of bisection bandwidth
constraints since bisection bandwidth and connectivity are related through network
topology. When bisection bandwidth is constrained, software productivity is affected as
much as, or more than, when processing or memory is constrained, and can cause
software development costs to double or triple. This can amount to a substantial increase
in the cost to develop an application; potentially millions of dollars. The capability of the
application must often be reduced and the resulting code is more complex and harder to
debug. Also, the maintenance phase is affected as fixing defects, and adding functionality
becomes more difficult as bisection bandwidth utilization is increased.

These results indicate significant advantages to implementing interconnection networks
with high bandwidth. For large DSP applications substantial savings can be realized in
both software development and maintenance costs. Greater bandwidth can increase
capability by enabling the implementation of algorithms with high communication
requirements, such as high resolution SAR, STAP, and advanced ATR. Also, greater
bandwidth may enable efficient implementation of shared memory architectures which are
easier to program than message passing systems. For these reasons it may be
advantageous to invest in more expensive interconnection networks or in developing
optical interconnection technologies such as free-space optics.

We view this work as providing a basis for extending existing parametric software cost
estimating models to describe real time embedded multiprocessor systems. With such a
model, it would be possible to perform trade analyses between major multiprocessor
hardware components (processing, memory and interconnection network) to optimize
system cost and performance. This would lead to substantial savings in system
development and maintenance costs, better performance and easier upgrades.

Acknowledgments

This work was carried out under the auspices of the Optoelectronic Computing Systems
Center at the University of Colorado and supported by contract F30602-96-2-0234.
managed by Rome Laboratory/OCPC.

A number of people have contributed to this work and are listed in Appendix C. Special
credit goes to Bill Wren, of Honeywell Technology Center, for valuable insights
concerning software estimating models and extending these models to real time embedded
multiprocessor systems, and Jim Otte, of PRICE Systems, for useful discussions on cost
estimation relationships in parametric models and software effort data. We also wish to
acknowledge Barbara Yoon for providing information on application domains to pursue
and people to contact.

All product names, trademarks and registered trademarks are the property of their
respective holders.

in

1 Introduction and Background

1.1 Software Growth in Real Time Embedded Multiprocessor DSP Applications

Radar and imaging are extremely important for military applications such as surveillance,
intelligence and automatic target recognition. These applications have demanding
requirements in computation and communication and often have stringent requirements on
size, weight and power as well. The major trend for these applications, and embedded
applications in general, is the demand to provide greater functionality while reducing costs
and cycle times. This was expressed by many at the Embedded Systems Conference in
San Jose in September, 1996, (e.g. Bunza, 1996). As a consequence, system design and
development are becoming more complex, while users are demanding that systems be easy
to work with and program. The greater functionality, which includes fault tolerance and
security requirements, leads to increased complexity of the system, much of which is
implemented in software (e.g. Bartow, 1995; Bunza, 1996). As a result, software is
becoming the dominant component of an application and, an increasingly greater
proportion of the total development cost (e.g. Bunza, 1996; Douglas, 1996). Discussions
with development experts revealed that software costs are typically greater than hardware
costs and often consume 70-80% of the total development cost. For large DSP
applications software is generally over $1M and can be as high as $3, $4 and $15 M. A
study by Eagle Design Automation revealed that the ratio of software to hardware
engineers is commonly 4:1 and is steadily increasing (Geoff Bunza, pers. comm.). This
trend can severely impact the US military which relies heavily on software for their
capability, investing billions of dollars in software annually. This is evidenced by the fact
that the military software industry employed more than 475,000 of the 2,400,000
software professionals in the United States in 1995 (Jones, 1997).

1.2 Interconnection Networks •

With demands for greater functionality in real time applications increasing, connectivity
and bandwidth requirements are beginning to push the limits of electronic interconnection
networks. This has led to compromised topologies, e.g. Fat Tree, Mesh, n-cube, in which
processors must share available links. Consequently, algorithms that require extensive
communication between distant processors (e.g. 2-D FFT) experience high levels of
contention and latency when the network is heavily loaded resulting in poor performance.
Another problem with conventional electrical networks is a scaling limitation due to
greater link sharing as processor number is increased. For example, as the number of
processors of a NxN mesh is increased, the number of processors that must share each
link also grows by N so bisection bandwidth does not scale. As a consequence of these,
and other, problems a number of industry leaders are convinced that optics will be
required for future backplanes (e.g. Lund, 1996; Bristow, 1996).

An alternative to an electrical network is an optical interconnection network. Optical
networks, such as free-space, offer a number of technical advantages over electronics
including freedom from capacitive loading, higher spatial and temporal bandwidth,
massive parallelism without crosstalk, lower power dissipation, and immunity to
electromagnetic interference. However, for practical implementation of free-space optical
interconnection technology a number of barriers must be overcome. This technology is
relatively immature and improvements in technical issues, such as the alignment of optical
components and the efficiency of devices need to be resolved. Also, before these
networks become affordable, substantial markets need to develop. However, if one
considers the total cost of an application, as opposed to hardware cost only, the costs
related to the constraints imposed by an electrical network may be of considerable
magnitude. This would be the case if software development is made much more difficult,
since software is generally the greatest cost of application development and maintenance.
If the advantages of optics, including greater bandwidth and connectivity, can provide
substantial savings in software, then it may be advantageous to consider investing in free-
space, or other, optical networks.

1.3 Parametric Cost Models for Software Estimation

A number of parametric models have been developed for estimating software
development costs for uniprocessors. With the parametric approach, cost estimating
relationships (CERs), based on design, personnel, application and project parameters, are
used to predict the cost of a software project. The CERs are determined from historical
software data, normally based on industry averages. Accuracy can be improved by
calibrating the models to specific application domains and/or to a specific company.

The first software estimation model to be developed was the Constructive Cost Model,
or COCOMO (Boehm, 1981). With this model, the effort required to produce a software
application in programmer months, PM, is given by the following formula,

PM = cxKLOCk, (1.1)

where KLOC is the number of source lines of code in thousands, k is an exponent greater
than 1.0 reflecting nonlinear growth in effort with code size and c is obtained from the
product of the effort multipliers. The parameters c and k are determined by the following
protocol:

1) First, the nominal effort required is estimated. This is done by determining the
development mode of the project; organic, semidetatched or embedded, the latter of which
is used for real time signal processing applications. This provides nominal values of k and
c which are used to determine the nominal effort required as a function of the 'size' of the

software, usually given in terms of lines of code. For example, the nominal equation for
the embedded development mode has c = 2.8 and k = 1.20 in Eq. (1.1) (Boehm, 1984).

2) Next, the effort multipliers are determined based on 15 cost drivers. The effort
multipliers determine how much the nominal estimate must be multiplied by to account
for various attributes inherent in the project and development process. Effort multipliers
are classified as attributes of the:

• Product, e.g. product complexity and reliability requirements,
• Computer, e.g. memory and processor constraints,
• Personnel, e.g. experience with the application or programming language, and
• Project, e.g. use of modern programming practices and development tools.

For example, the complexity multiplier can range from 0.70 for simple applications to
1.65 for highly coupled, timing dependent applications that utilize machine code (Boehm,
1984). Similarly, reliability requirements multipliers range from 0.75 to 1.40.

3) Once the effort multipliers have been determined, they are used to scale the estimate of
the development effort (c in Eq. 1.1), and related project factors such as schedule length
can be estimated.

This model has been found to provide estimates within 20 % of actual values, 70 % of the
time (Boehm, 1981).

Recently developed software cost estimating models are similar to COCOMO, using a
standard nominal equation and adjustment factors which are determined from cost drivers.
For example, the Revised Intermediate COCOMO, or REVIC, is based on the
COCOMO model and was calibrated with Air Force projects to reflect actual Air Force
experience (REVIC).

The Parametric Review of Information for Costing and Evaluation, or PRICE S, is a
commercially available software estimating tool that automates the estimating process for
software development and life cycle costs (Minkiewicz and DeMarco). It was created to
help managers and estimators compare current projects to previous development efforts,
translating actual software size and character into estimates of cost and schedule
consistent with an organization's demonstrated capabilities. This is a commonly used
tool, as evidenced by its popularity among parametric cost analysts at a meeting of the
International Society of Parametric Analysts in Santa Monica in January 1997, and has
been accepted for use by the Air Force, Office of the Secretary of Defense and the
Defense Contract Audit Agency (Anderson, 1994). Comparisons with actual costs (e.g.
Air Force Avionics Laboratory) indicated this tool to be within 15% of actual costs
(Minkiewicz and DeMarco).

1.4 Impact of Processing and Memory Constraints on Software Productivity

If the specifications of an application impose tight constraints on system resources,
software development costs and life cycle time will be adversely affected. Software
developers need to deal directly with the operating system and hardware, and therefore.
must have detailed knowledge of the machine details. High level development tools are not
useful, and often coding must be done in low-level languages (Minkiewicz and DeMarco).

4T

3-f

m
CO 2

0.1 02 0.3 0.4 0.5 0.6 0.7

Processor Utilization

0.8
—>—i !

0.9 i

Figure 1.1 Relation between processor utilization and relative
software effort, RSE, as determined from the PRICE S
software estimation model (Minkiewicz and DeMarco).

The relationship between processor utilization, UTIL, and relative software effort, RSE,
determined from the PRICE S model, is given by the following equation,

UTIL <.5, RSE = 1.0,

UTIL>.5,RSE = - + -x- l
(1.2)

3 6 I-UTIL'

(Minkiewicz and DeMarco) and is displayed in figure 1.1. The identical relationship is
given for memory utilization and RSE. As processor utilization, defined as the fraction of

available hardware cycle time used, increases above 0.5, the required software effort
increases nonlinearly. Defect rate, defined as the number of errors per thousand lines of
code that are not detected until the maintenance and operations phases, is affected in a
similar fashion, which will reduce the reliability of the system (Fig. 1.2).

IB
ft
O
a>
i*-
a> a

0.1 02 0.3 0.4 0.5 0.6 0.7

Processor Utilization
0.8 0.9

Figure 1.2 Relation between processor utilization and defect
rate. Data courtesy Jim Otte, PRICE Systems.

Parametric cost estimation techniques were used to examine the effects of memory and
processor constraints on the development costs of a UAV SAR processor based on the
RASSP SAR benchmark developed at Lincoln Labs (Anderson, 1995). Processing
(lGflop/s) and memory requirements can just be realized with the minimal hardware of 6
Mercury MCV6 4x4m cards each with 4 40 Mhz Intel I860 processors and 16 Mbytes of
DRAM. In addition, a COTS backplane-mounted processor interconnect crossbar switch,
a Motorola MVME167 system controller card and a custom radar interface card is
required. The resulting processor will have a memory utilization of 86% and processor
utilization of 88% for a total hardware cost of $281,000 (Table 1.1). According to
Anderson, these requirements are not unusual for UAV applications where size, weight
and power must be minimized. However, the software costs and development time
corresponding to the above memory and processor constraints are $2,360,000 and 32
months respectively, as determined by the REVIC software cost estimating model
(Section 1.3). The cost was determined by estimating the code to be 8,750 uncommitted
source lines of code, requiring 155 programmer-months, 152 programmer-hours
/programmer-month and $100/programmer-hour. With this minimum hardware cost
scenario, software development is 89% of the total development expense, $2,640,000.

Hardware Software Total Development
Costs Costs Cost Time

Minimum H/W
Cost $281,000(11) $2,360,000 (89) $2,640,000 32 months
Minimum
Total Cost $432,000 (32) $911,200(68) $1,343,200 28 months

Table 1.1. Comparison of costs and development time for
minimum hardware cost and minimum total cost
scenarios. Percentages are in parentheses. Data
taken from Anderson, 1995.

Minimizing the total system cost can be achieved by adding hardware to reduce the
memory and processor utilization such that there is no effect on software cost. This
occurs when both memory and processor utilization are below 50% (Eq. 1.1). This can be
achieved by increasing the number of Mercury MCV6 4x4m cards from six to eleven with
no change to the rest of the hardware. The result is an increase in hardware costs by a
factor of 1.8 to $432,000 and a decrease in software costs by a factor of 2.59 to $911,200
and development time by 0.88 to 28 months. This example shows how development cost
can be dominated by software and that a greater investment in hardware can reduce overall
system development costs substantially. The net result is a superior product at half the
cost of the minimum hardware product.

1.5 Report Overview

The above example shows how investments in processors and memory can dramatically
decrease software development costs and the overall cost to develop an application. It
seems likely that, in similar fashion, investments in the interconnection network can
decrease the cost of developing software and hence the overall cost of an application. In
this work we consider the impact of bisection bandwidth constraints on software
development effort, modifications to the system to accommodate these constraints and
affects on software complexity and defect rate. Our results show that bisection
bandwidth constraints impact software development as much as, or more than, processor
or memory constraints. Limitations in bisection bandwidth also increase software
complexity and defect rates and often the capability of the system must be reduced. We
discuss potential advantages of additional bandwidth, including cost savings in software
development and maintenance, increased capability and the effective implementation of
shared memory systems.

2 Methods

2.1 Approach

The general approach was to identify application domains in which bandwidth was
constrained and determine the impact of these constraints on software development and
maintenance.

To obtain an understanding of requirements, bottlenecks and development costs of real
time embedded signal processing applications, experts from industrial, academic and
government laboratories were contacted. An initial survey was made via mail, phone, e-
mail, workshops and meetings. Visits were made to select experts to obtain information
on relevant architectural and development issues. Topics of particular interest were
communications and processing bottlenecks, system development processes and costs,
and factors influencing software productivity such as bisection bandwidth and
connectivity constraints. Considerable effort was then spent in follow up in an attempt to
obtain more precise data.

2.2 Software Productivity Data

Initially, the main focus of this study was on the impact of limitations in network
connectivity on software productivity and the potential of global interconnection
networks in reducing software effort. It was hypothesized that DSP applications, which
contain extensive global communications such as cornerturn operations, would benefit
greatly from global interconnections between processors. While some DSP experts
recognized that connectivity limitations increase the effort required to develop software,
most identified bandwidth constraints as the major network parameter affecting
programming. Also, while it seemed possible to determine a quantitative relationship
between bisection bandwidth constraints and software effort, this did not seem possible
for software effort and connectivity constraints. However, bisection bandwidth is related
to connectivity as both depend on network topology; i.e. networks with a greater ratio of
links/processor will have greater bisection bandwidth. Therefore, a relation between
bisection bandwidth constraints and software effort will also capture the general affect of
connectivity constraints, although we are not claiming a one to one relationship since
different algorithms will be compatible to different topologies. Based on these initial
results,we decided to pursue the general relationship between bisection bandwidth
constraints and software productivity to capture the primary impact of the
interconnection network.

During the initial survey a number of people indicated they would provide data pertaining
to communication bandwidth and software productivity. However, while following up to

acquire this data, these people were often reluctant to do so. We believe this to be due to
the following:

1) Software productivity data is proprietär)' information,
2) Data on software productivity and communication resources is rarely recorded, and
3) An individual would be required to expend considerable effort to acquire this data.

This was verified by discussions with experts in the software measurement field,
"including Barry Boehm of the University of Southern California, Bob Giallamboro of

Mitre and Jim Otte of PRICE Systems who all claimed that software productivity data
was very difficult to obtain.

In addition to contacting development experts, parametric software cost estimating
models, such as COCOMO, REVIC and PRICE S were explored. While these models
relate software productivity to some hardware resources (processing and memory), the
impact of communication is not included explicitly. The Space and Missile Systems
Center Software Database was also examined and, as with the parametric models, did not
contain relevant data.

To obtain the desired information, an iterative data acquisition procedure was
implemented. First, a preliminary model relating software productivity to bisection
bandwidth constraints was constructed based on the results of an initial survey. This
model was then sent to various experts who agreed to provide estimates, based on their
experience, to test the model. Accompanying the model was a questionnaire designed to
collect additional information (e.g. modifications made to algorithms, system architecture
and software as a result of bandwidth limitations) and to provide a check on model
estimates (Appendix A). Data was obtained by following up with phone calls when
possible. This method proved to be effective in acquiring the desired data as eight people
provided data for the model and eleven people answered the questionnaire. Given limited
resources and time, combined with the difficulty in obtaining software data, we believe
this was an effective approach to determine the general relationship between bandwidth
constraints and software productivity, reflecting an industry average. Accuracy was
traded for breadth in that the data includes information from many projects and from
different organizations. The alternative was to collect more precise data on a very small
number of programs. We believe this could have severely biased our results due to small
sample size. Also, many factors contribute to software productivity, including size of
project and programming language, making it difficult to compare widely differing
software projects.

We report data and opinions expressed by experts in the real time embedded
multiprocessor and high performance supercomputer domains, but we do not release
specific information related to specific individuals or corporations in respect of the
proprietary nature of this information. Data is supported with literature where possible.

3 Impact of Bandwidth Limitations on Software Productivity

A number of people have recognized that programming multiprocessors is more difficult
when interconnection bandwidth is limited. In the supercomputer domain this has been
expressed in the Accelerated Strategic Computing Initiative (ASCI) PathForward Project
Description in which they state that interconnection performance directly impacts the
ease of programming large supercomputers for high performance (ASCI, 1996). In a
report prepared for the Department of Energy concerning architectural and business
recommendations for achieving petaflop computing, it is stated that additional memory
bandwidth and latency tolerance is required to support locality independence to make
programming easier and load balancing effective (Probst, 1995). Blelloch et al. take the
position that much of the difficulty in programming large parallel computers stems from a
lack of appreciation of the impact of low performance interconnection on software
development (Blelloch et al., 1994). They studied the NAS benchmarks, and claim that
software development costs can be substantial due to multiple man-years required to
obtain benchmark-specific optimizations that are often highly tuned to the particular
distribution of data specified by the benchmark. This sentiment was supported by
personal communications with experts in the supercommputer domain (e.g. Burton Smith
of Tera Computers and Monica Lam of Stanford Computer Science Department).

The above situation was also revealed during interviews with developers of real time
embedded DSP applications (e.g. Vince Zagardo and Dave Sloper of Northrop Grumman,
Craig Lund and Mark Skalabrin of Mercury Computer Systems, Paul Stanton of Alacron,
Bill Wren of Honeywell Technologies, Paul Storaci of Ball Aerospace, Jim Otte of PRICE
Systems and many others). In a report prepared for the 'Investments in avionics and
missiles software technology workshop' distributed computation with limited bandwidth
was identified as one of the 'seven deadly sins' of software engineering (Shrobe, 1995).

3.1 Bisection Bandwidth and Software Productivity

To quantify the relationship between bandwidth constraints and software productivity,
estimates were obtained from eight experts experienced in the development of
multiprocessor applications; seven experienced in real time embedded signal processing
and one in high performance supercomputing. As a measure of bandwidth constraint we
use bisection bandwidth utilization (BBU), defined as the average fraction of available
bisection bandwidth that is utilized during data transfers. We believe this to be a useful
measure, especially for large DSP applications, since bisection bandwidth is the critical
bottleneck when performing global data transfers, such as cornerturn operations, therefore
reflecting the difficulty encountered by a software developer. Also, this measure is
consistent with measures of hardware constraints used in existing PCE models, i.e.
processor and memory utilization (Section 1.4).

As a measure of software productivity, we use relative software effort (RSE) defined as
the effort required to develop software as a result of bandwidth constraints relative to the
effort required if bandwidth was not constrained. A relative measure was chosen to
normalize data and enable pooling from a broad range of application parameters, such as
size of application and programming language, to obtain an industry average.

The relationship between BBU and RSE is given in figure 3.1 (also Appendix B) and
resembles that for memory or processor utilization as given by existing PCE models (Fig.
1.1). The RSE is not affected until BBU reaches 0.3, beyond which RSE increases
nonlinearly. As BBU approaches 1.0, RSE becomes extremely high, although other
factors likely come into effect and the relationship is undefined. Some experts stated that
as software costs begin to increase dramatically, other decisions are made. The program
can be temporarily called to a halt while the organization waits until faster hardware
becomes available or custom hardware may be developed. It is worth noting that three
people, who did not supply detailed numbers for the model, claimed that bandwidth
constraints could cause RSE to double, and two claimed it could triple.

A

3.5-

3-

2.5-

111
OT 2 a:

1.5-

I 1 < > w —-▼

0.5-

n - , i

0 1 0.2 0.3 0.4 0.5

BBU

0.6 0.7 0.8 0.9 i

Figure 3.1 Relation between bisection bandwidth utilization
(BBU) and relative software effort (RSE). See text for
definitions.

10

Comparison to figure 1.1 indicates that BBU has a more dramatic impact on RSE than
does memory or processor utilization. The adverse impact of bandwidth constraints sets
in at a BBU of 0.3, compared to 0.5 for processor or memory utilization, and for BBU
and processor utilization of 0.8 the RSE is 2.2 and 1.5, respectively. This was supported
by the questionnaire as seven often claimed that bisection bandwidth constraints can
affect software development as much as, or more than, memory constraints, and eight of
ten claimed that software development is affected as much as, or more than, when
processing is constrained.

3.2 System and Application Modifications to Reduce Communication

To overcome latency and contention problems associated with limited bandwidth, the
total communication is reduced. A common strategy employed is to change the algorithm
to one that is less communication intensive if the system does not possess sufficient
bandwidth to run the application; i.e. replace one with global communication by one with
local communication. The algorithms selected are ones where memory and computation
can be added to compensate for limited communication. These changes often result in a
simpler algorithm and reduced capability of the application. For example, throughput
restrictions may require reducing the number of bits per pixel, thus reducing the dynamic
range and limiting the capability of applications such as target recognition.

Another way to reduce communication is to reduce message size. This is done with data
compression algorithms which require additional processing and memory resources. High
level communication protocols, such as TCP/IP, have significant overhead, which is the
time spent preparing and receiving a message, associated with them which contributes to
latency. Therefore, it is common to develop low level communication protocols to reduce
overhead latency. This is very difficult to do and involves coding in lower level languages.

3.3 Algorithm Mapping

Once the algorithm has been chosen it must be mapped onto the system. The mapping
process involves decomposing the algorithm and distributing software tasks and data
throughout the system while considering task scheduling as well. To map algorithms
effectively one needs to consider memory, communication and processing as well as the
operating system. This requires detailed knowledge of the system hardware, operating
system and communications protocols. Unfortunately, it is impossible to predict the
optimum data distribution. This procedure must be done by trial and error, and it can take
considerable time to find optimal data placement.

When bandwidth is constrained, the algorithm mapping process can be much more
difficult. It is common to change the way the problem is decomposed and mapped to die

11

architecture. One strategy is to move from data parallelism to task parallelism, which is
more coarse grained and less communication intensive, and use pipelining to get
concurrency. For high performance applications with size and resource restrictions, e.g.
military applications, the standard approach is to make the algorithms Tit' the available
system, often resulting in reduced capabilities. A major issue to consider is contention
during run time which can greatly increase the mapping effort required. Also, the task
scheduling rules become more difficult when bandwidth is limited. This can require
substantial effort, and some have claimed that it can comprise up to 90% of the total
software effort. Applications claimed to be very difficult to map are SAR and STAP due
to high communication requirements.

3.4 Bandwidth Constraints, Processor and Memory Utilization

Ail eleven people surveyed stated that bandwidth constraints affect processor and
memory utilization. A consequence of low bandwidth is that the processors need to wait
for data. A common way to solve this problem is to keep the data nearby the processor,
which implies multiple copies of data and therefore additional memory. Also, reducing
communication with data compression (and uncompressing) adds functionality to the
system, which requires additional processing and memory resources.

3.5 Software Complexity and Defect Rate

Ten of eleven people stated that bandwidth constraints affect software complexity for the
following reasons. As stated above (Section 3.3), when bandwidth is limited, one is often
forced to decompose the problem by task as opposed to by data domains. Task
parallelism is more asynchronous than data parallelism, which introduces a load balancing
problem. This makes synchronization more difficult which also affects communication.
Also, writing low level communication protocols and reducing communication is difficult
(Section 3.2). The code must be made more efficient, which often requires coding in lower
level languages, resulting in complex code that is hard to understand.

It is well known among software experts that error rates, in particular defect rates, are
higher when software becomes more complex (e.g. Jones, 1997). This was supported in
this study as six of six people claimed that bandwidth constraints affect defect rate by
making code more complex. This can have a significant impact on the test and integration
phase of a system (Section 3.7) as errors are more difficult to detect when code is
complex, many of which go undetected until the operation and maintenance phase
(Section 3.8).

12

3.6 Code Reuse

An obvious way to save on software development costs is to reuse code from previous
applications. When asked what proportion of the code is reused when porting software to
new platforms, the responses obtained were very broad depending on application domain,
requirements and platform similarity. However, it was commonly expressed that a major
problem in real time high performance embedded systems development is the difficulty in
porting software to new target platforms. In fact, in many cases porting basically
becomes a reimplementation as code that has been highly optimized for a particular
machine and distribution of data cannot be reused on a different platform. Some claimed
that as little as 5% of the code is reused but the most common response was between 10
to 20 %, consisting largely of utilities software which is easiest to code. Five of seven
people claimed that additional bandwidth could make it easier to reuse code.

3.7 System Integration and Test

Although bandwidth constraints can affect all phases of the development cycle, including
system specification, hardware/software partitioning and design, and coding, the phase
most severely impacted is the integration and test phase. It is during this phase of the
development cycle that the limitations are found. This can be a very long and costly
phase, comprising over 50% of the total development time for a typical project and can
consume 80% for human critical systems (DeMarco, 1994; Bunza, 1996).

Debugging multiprocessing systems is far more difficult than uniprocessors as one must
find both logical errors as well as errors due to interactions between parts of the code.
Standard real-time debugging tools run on a uniprocessor environment and don't reveal
time-related interactions between code sections (Quinnell, 1996). When the code is more
complex due to bandwidth constraints, it is even more difficult to find and fix errors
(Section 3.5). Also, if the bandwidth limitation is not known until the hardware/software
integration phase, it may be necessary to repeat the system specification,
hardware/software partitioning, software design and algorithm mapping phases, which can
increase the development effort substantially.

3.8 Software Maintenance

Software maintenance, which includes fixing defects and upgrading functionality, is
generally the most costly phase of the life cycle (Shrobe, 1995). For example, the cost to
develop 236,000 lines of code for an F16 Fighter system was $85 million, and $250
million to maintain the code (Bunza, 1996). When bandwidth is constrained the
maintenance phase can be impacted in that upgrades are more difficult, and the number of

13

possible udgrades is limited. It is very difficult to upgrade functionality on complex
systems. When part of the system is changed, the effect on the rest of the system must
be determined. This requires considerable testing to ensure that the system is fully
operable. For high reliability systems 75% of the time in an upgrade cycle is spent in
testing and analyses (Shrobe, 1995). Eight often people stated that bandwidth constraints
make the maintenance phase more difficult. The added complexity due to bandwidth
constraints makes it more difficult to test the system (Section 3.7).

Seven of eleven people stated that adding new functionality to a previously developed
application will utilize more bandwidth. The other four said it can, depending on whether
the tasks are scheduled concurrently or not. If an upgrade requires bisection bandwidth
utilization to increase, then software development and testing become increasingly
difficult (Fig. 3.1). Also, it may be necessary to reallocate bandwidth on the original
application to accommodate the new functionality which will require additional software
design and development. If bandwidth is constrained in the original application and
upgrades utilize additional bisection bandwidth, software development will become
increasingly more difficult until upgrades are no longer possible.

14

4 Impact of Connectivity Constraints on Software Productivity

Additional connectivity was not perceived as being as important as additional bandwidth
in making programming easier. This was indicated during both the initial survey and the
questionnaire results. When asked if additional connectivity would make software
development easier, the responses were as follows: yes (2), no (2), sometimes (2),
probably (1), could (1), not necessarily (1), somewhat (1), don't know (1). While these
results indicate that limitations in connectivity can impact software development effort,
there was uncertainty in the responses and in how additional connectivity would help.
The advantages given were that the additional connectivity would provide more data
paths, reducing contention and latency, and task placement would be easier. Also, during
general discussions with DSP development experts, some claimed that additional
connectivity would make programming easier and some expressed a desire for all-to-all
connectivity such as a fully connected, low latency crossbar. A network of this nature
would not only minimize software development costs by providing substantial bisection
bandwidth (Section 2.2), the low latency would provide performance benefits.

15

5 Advantages of Additional Communication Resources

5.1 Savings in Software Development and Maintenance

A common theme with embedded systems experts is that increasing bandwidth on a
constrained system would make programming easier. How much easier it would be to
program would depend on how close the application is to utilizing the hardware
resources and how much that constraint would be reduced by adding communication
resources. Some claimed that greater connectivity would also help by providing more data
paths, reducing contention and latency, but a quantitative relationship could not be
determined.

As an estimate of potential savings in software development costs, we use the RASP
SAR benchmark example of Anderson in which the cost to develop software with no
hardware constraints is $911,200 (Anderson, 1995; Table 1.1). Consider a system in
which the communication requirements and hardware resources are such that developers
are forced to develop software while utilizing 80% of the available bisection bandwidth.
With this level of bisection bandwidth utilization the software development cost,
determined from figure 3.1, will be $2,004,640, a 2.2 fold increase. This does not seem
unrealistic based on discussions with experts who revealed that bisection bandwidth
utilization can become higher than 0.8 and bandwidth constraints can cause software costs
to double or triple (Section 3.1). If an interconnection network is implemented such that
bisection bandwidth utilization is 30%, software development costs are reduced to the
baseline value of $911,200, a savings of $1,093,440. Besides saving in software costs, the
resulting system will have better performance and simpler more reliable code. Also, it will
be easier to debug and upgrade the system during the maintenance phase, and with greater
bandwidth available more upgrades can be accommodated.

5.2 Shared Memory Architectures Enabled

It is widely recognized that shared memory systems are easier to program than message
passing systems. Message passing codes are difficult to parallelize, tightly coupled to
existing data structures, require extensive 'tuning' to achieve optimal performance through
locality and are more difficult to modify than shared memory codes (Probst, 1996). A
shared memory machine, with uniform memory access, does not require the programmer
to be concerned about data locality to achieve optimal performance. However, to
effectively implement locality independence and make dynamic load balancing effective, ä
high bandwidth interconnection network is required (Probst, 1996). It has been estimated
that moving from message passing to shared memory will reduce software development
and maintenance costs by approximately 50%. These savings may be adequate to justify
larger investments in interconnection bandwidth.

16

5.3 New Algorithms Implemented

If sufficient bandwidth is not available, communication intensive algorithms must be
reduced or discarded. This can lead to reduced capability of the algorithms that are
implemented (Section 3.2). Some of the algorithms that were claimed to be limited by
bandwidth include:

1) STAP problems with high numbers of channels,
2) High resolution SAR,
3) ATR with greater than 10 models,
4) Some Kaiman filters with high degrees of adding,
5) Applications with TeraFLOP requirements,
6) Closing track loops in remote sensing.

An obvious advantage of increasing bandwidth is an increase in capability as
communication intensive algorithms are enabled. This could greatly increase radar, remote
sensing and target detection capabilities.

17

6 Conclusions

The results of this study show that bisection bandwidth constraints can lead to a number
of adverse consequences in the resulting application. Algorithms are modified to reduce
communication, requiring processing and memory requirements to increase. This often
leads to a reduced capability of the application. Accommodating limited bandwidth
results in complex software that is difficult to understand and debug, and often requires
coding in lower level languages. As a result of the added complexity, integration and
testing, which comprise over 50% of the development time, is more difficult. The net
result is that bandwidth constraints have a substantial impact on software costs. It is
possible that software development cost can double or triple, consuming millions of extra
dollars if bandwidth is sufficiently constrained. Also, the additional software costs
accumulated during the maintenance phase, which comprise the largest portion of the total
life cycle cost, can be substantial as upgrades consume additional bandwidth resources.

We expect bandwidth constraints will have a greater overall impact on software
development costs with time. As military applications demand greater functionality and
throughput, developers will be forced to utilize more of the available bandwidth while
developing more complex software. This will likely be enhanced by the increasing
disparity between advances in processing speeds and interconnection bandwidth of
electrical networks; i.e. processing speeds are increasing faster than electrical network
speeds (e.g. Stone, 1996).

Although connectivity was not perceived to be as important as bandwidth, we believe
there are advantages to implementing a global all-to-all topology, in agreement with some
of the experts interviewed. The extremely high bisection bandwidth of a network of this
nature will alleviate communication constraints, thus minimizing software development
costs (Section 3.1). Also, latency will be minimized which will contribute to greater
performance and make it easier to implement algorithms with high global communication
requirements.

Given the substantial impact of bandwidth constraints on software development and
maintenance costs, there may be strategic advantages in investing in high bandwidth
interconnection networks, or in developing new interconnection technologies. One such
technology is free-space optics which promises to be compact and low power, which are
important requirements for airborne applications. Also, free-space optics may enable a
global all-to-all topology. It is impossible to predict the magnitude of investment required
to move this technology into the commercial world, or the business advantages in doing
so. This will depend on many factors including market sizes. However, besides providing
direct savings in software costs, additional advantages can be realized by increasing
bandwidth. This includes greater capability in DoD radar and imaging applications, by

18

enabling communication intensive algorithms, and effective implementation of shared
memory systems. The greater capability may have direct impact on mission effectiveness
(i.e. reduced loss of aircraft and life) and therefore national security. Effective
implementation of shared memory systems, with uniform memory access, should make it
easier to reuse code since it will not be locality dependent. The benefits of increased
capability and shared memory implementation may, in fact, provide the biggest payoffs
in the long term.

Discussions with developers of real time multiprocessors have revealed that it would be
desirable to be able to perform trade analyses between major hardware components
(processing, memory and interconnection network) and software productivity to
optimize system performance and cost. To do so would require a software cost
estimation model for real time multiprocessors that explicitly incorporates the impact of
these major hardware components on software productivity. Existing models, developed
for uniprocessors, consider processing and memory constraints but do not consider
parameters unique to multiprocessors such as bisection bandwidth constraints or number
of processors. We have found that bisection bandwidth constraints impact software
development as much as, or more than, processing and memory constraints. For this
reason, the importance of bisection bandwidth should not be overlooked when estimating
software costs for real time embedded multiprocessors. Other factors to consider are 1)
the impact of the number of processors on software effort, and 2) inter-dependencies
between major hardware components since accommodating for bandwidth constraints
requires increasing processor and memory requirements (Section 3.4). A tool of this
nature should be extremely useful for the rapid design and prototyping of cost effective
real time multiprocessing systems. It would enable tradeoff analyses to be made in the
early stages of the development cycle, e.g. conceptualization, and support decisions on
high level issues such as technology choices. It would also be desirable to include the
maintenance phase in a real time embedded software estimating model. This would allow
one to optimize for upgrades and enable trade analyses based on the entire life cycle of
the system. We believe a modeling tool of this nature would produce substantial savings
in costs over the life cycle of an application.

19

7 List of References

Anderson, J. C, 1995. "Projecting RASSP Benefits," Proceedings of the 2nd Annual
RASSP conference, ARPA, Arlington, Virginia, pp. 65-72.

Accelerated Strategic Computing Initiative (ASCI) PathForward Project Description,
December 27, 1996, http://www.llnl.gov/asci-pathforward.

Bartow, J., 1995, "Evolutionary Design of Complex Systems," Investments in avionics
and missiles software technology workshop report, ARPA/SISTO, Software Productivity
Consortium Inc. Report SPC-95068-CMC.

Blelloch, G. E., B. M. Maggs and G. L. Mile, 1994, "The Hidden Cost of Low
Bandwidth Communication," Developing a computer science agenda for high
performance computing, ACM Press, pp. 22-25.

Bristow, J., 1996, "Electrical and Optical Interconnect Issues at the Backplane
/Daughtercard Interface," 1996 IEEE Workshop on interconnections within highspeed
digital systems, May 19-22, 1996, Santa Fe, NM.

Bunza, G. J., 1996, "A Journey Into Parallel Worlds: Exploring Hardware/Software
Systems Integration," Embedded Systems Conference, San Jose, September, 1996, Miller
Freeman.

DeMarco, T., 1994, "Software Integration and Test," PRICE Systems, Mt. Laurel, NJ.

Douglas, B. P., 1996 "Software Estimation and Scheduling," Embedded Systems
Conference, San Jose, September, 1996, Miller Freeman.

Jones, C, 1997, Applied Software Measurement: Assuring Productivity and Quality, 2nd
Ed., McGraw-Hill, New York.

Lund, C, 1996, "The Evolution of a PCI Fabric," 1996 IEEE Workshop on
interconnections within highspeed digital systems, May 19-22, 1996, Santa Fe, NM.

Minkiewicz, A. and DeMarco, T., "The PRICE Software Model," PRICE Systems.

Probst, D. K., 1995, "Architectural Visions versus Business Models: How Soon Will
There Be Enabling Technologies for Petaflops Computing?" Report prepared for Gil
Weiland at DoE/DP-07 [HQ] December 1995.

20

Quinnel, R. A., 1996, "Operating Systems and Development Tools Lighten the Load,"
EDN, July, 1996.

REVIC Users' Group c/o Management Consulting and Research, Inc., Oxnard, CA.

Shrobe, H., 1995, "Evolutionary Design of Complex Software," Investments in avionics
and missiles software technology workshop report, ARPA/SISTO, Software Productivity
Consortium Inc. Report SPC-95068-CMC.

Stone, H., 1996, "Keynote Presentation," 1996 IEEE Workshop on interconnections
within highspeed digital systems, May 19-22, 1996, Santa Fe, NM.

21

8 Appendices

Appendix A - Data Questionnaire

Below is the questionnaire as sent to development experts. It includes a preliminary
software cost model, for experts to test with their estimates, and a questionnaire to obtain
additional information on the consequences of bandwidth constraints and to verify
estimates given for the model.

SOFTWARE/BANDWIDTH COST MODEL - BACKGROUND

Discussions with numerous engineers indicates that when communications bandwidth is
constrained, software development can be severely impacted, especially in real time
embedded DSP applications. As a result: 1) additional planning during the initial design
stage is required, 2) coding must be done at lower levels and 3) the testing and integration
phase is severely complicated.

A model relating relative software effort and development time to bandwidth constraint
(bisection bandwidth utilization) is given below. Please provide estimates to test this
model and answer as many questions as possible. Provide ranges if necessary. ALL
INFORMATION YOU PROVIDE WILL BE KEPT CONFIDENTIAL. AVERAGES
AND RANGES ONLY WILL BE RELEASED. If you would like a copy of the report
when completed, provide a mailing address.

SOFTWARE COST MODEL

Bisection Relative Relative Relative Relative
B/w Util S/W Effort S/W Effort Dev. Time Dev. Time

(Model) (Estimate) (Model) (Estimate)

.1 1.0 1.0

.2 1.0 1.0

.3 1.0 1.0

.4 1.0 1.0

.5 1.0 1.0

.6 1.1 1.0

.7 1.2 1.1

.8 1.5 1.1

.85 1.7 1.2

.9 2.2 1.4

.95 3.8 1.7

22

NOTE: As a measure of bandwidth constraint we use bisection bandwidth utilization,
defined as the average fraction of available bisection bandwidth used during data transfers.
We believe this to be a useful measure for large DSP applications since bisection
bandwidth is the critical bottleneck when performing global data transfers such as
cornerturn operations, therefore reflecting the difficulty encountered by a software
developer. Other possible measures are 1) the ratio of computation to communication and
2) gap, defined as "the average time needed between consecutive message transmissions
by any one processor in order to ensure that the network does not become overloaded".

To what domain(s) does the above data apply? E.G.: Real time embedded DSP - Military,
Airborne, Space; Real time Telecommunications; MIS; Supercomputer; Shared memory,
message passing.

Does the number of processors influence software productivity?

QUESTIONS

1. On average, what proportion of the development cost and effort is due to software?

2. Estimate an average cost for a relative software effort of 1.0 in dollars and lines of code,
if possible.

3. When it is known that bandwidth will be limited, what changes are made to the
system? E.G.: interfaces, drivers, processors, communication protocols, control,
synchronization.

4. For communication intensive applications, what is it about Hardware that makes it
difficult to develop software?

5. When bandwidth is limited, what changes are made to the software?

6. Do bandwidth constraints affect software complexity? Does it affect defect rate?

7. When bandwidth is constrained, does it affect software development as much as, or
more than, when memory or processing is constrained?

23

8. Do bandwidth constraints affect CPU and memory utilization? I. E. Does one have to
battle the network to get CPU and memory utilization up?

9. When bandwidth is limited, what phases in the system development cycle are
impacted?

a) System specification
b) Hardware/Software partition
c) Software design
d) Algorithm mapping
e) Coding
f) Software test and integration
g) System test and integration
h) Maintenance

10. Does adding modes to a previously developed application utilize more bandwidth?

11. Would greater network connectivity help? If so, how?

12. What applications are communication intensive with stringent latency constraints?

13. What applications and/or algorithms cannot be done due to bandwidth constraints?

14. What proportion of code is reused when porting software to new platforms? Can this
also be a problem when porting from the development system to the target?

15. If the bandwidth constraints could be removed, would that:

a) make coding easier,
b) simplify software development (e.g. distribution of tasks),
c) simplify the overall system (e.g. control, synchronization, protocols),
d) enable the implementation of new algorithms,
e) make it easier to reuse software
f) enable new capabilities/applications

24

Appendix B - Software Effort Data

Table B. 1 Summary of data relating bisection bandwidth
utilization (BBU) to relative software effort (RSE)
for sample size (N). Note that as BBU becomes
greater than 0.95 the relationship is undefined.

BBU RSE N

0.1 1 8
0.2 1 8
0.3 1 8
0.4 1.1 8
0.5 1.3 8
0.6 1.4 4
0.7 1.7 6
0.8 2.2 6
0.9 3.8 7

0.85 2.4 4
0.95 4.4 4

25

Appendix C - List of Credits

Hundreds of people were contacted during the course of this study. The following is a list
of people who provided assistance throughout this project. Those who were particularly
helpful are underlined.

Alacron Harvard University
Sgro, Joe Valiant, Leslie
Stanton, Paul

Honeywell Technolc
Army Research Lab Bristow, Julian
Welby, Steve Samson, John

Spaanenburg, Henk
Ball Aerospace Systems Symosek, Peter
Storaci, Paul Wren, Bill

Carnegie-Mellon University JPL
Blelloch. Guy Seigel, Herb

Computing Devices International L. A. Air Force Base
Christofferson, Brett Tinkler, Shirley
Lienberger, Bill

Lincoln Labs
Cygnus Anderson, Jim
Savoye, Robert Martinez, David

Shaw, Gary
DARPA
Husain, Anis Lockheed Martin
Salasin, John Kline, Bill
Shrobe, Howie Pridmore, Jeff
Yoon, Barbara Saultz, James

Eagle Design Automation Los A lamos Nation a
Bunza, Geoff McGhee, John

GDE Systems MCI
Grucza, Jack Reifer, Don

Georgia Tech. MCR Federal Inc.
Madisetti, Vijay Sherry Stukes

26

Mercury Computer Systems
Lund, Craig
Skalabrin. Mark
Vichniac, Gerard

MICOM
Sims, Richard

Mitre Corporation
Games, Richard
Giallamboro, Bob

NASA
Dean, Ed

Sanders
Potter. Stewart
Graybill, Bill

Sandia National Lab
Carlson, Richard
Hale, Art
Stalker, Terry
Williams, Robert
Yee, Mark

Stanford University
Lam, Monica
Goodman, Joseph

Northrop Grumman
Campbell, Mark
Hand, Bruce
Harwick, Tom
Sloper, Dave
Oechsler, Tim
Zagardo, Vince

NRAD
Cottel, Dennis
Partow, Perry

Omeda Medical
Douglas, Bruce

PRICE Systems
DeMarco, Anthony
Otte, Jim
Slocum, George
Tahir, Nina

Rome Labs
Repak, Paul

Sun Microsystems
Papadopoulos, Greg

Tech Works Service Group
Sanford, Walt

Tera Computer Company
Smith, Burton

University of Colorado
Jordan, Harry
Johnson, Kirk

University of Southern California
Boehm, Barry
Prasanna, Victor

Vexcel Corporation
Curlander, Jim

WindRiver Systems
Klein, Ed

SAIC
Guarino, Dave

27

DISTRIBUTION LIST

addresses numbor
of copies

JAMES L. DAVIS
ROME LA80RAT0RY/0CPC
25 ELECTRONIC PKY
ROME MY 13441-4515

UNIVERSITY OF COLORADO AT BOULDER
OFFICE OF CONTRACTS ANO GRANTS
206 ARMORY, CAMPUS SOX 19
BOULDER CO 30309-0019

ROME LABÖRATORY/SUL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

ATTENTION: DTIC-OCC
OEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944
FT. BELVOIR» VA 22060-6218

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

ROME LABORATORY/ERG
ATTN: RICHARD PAYNE
HANSCOM AF3, MA 01731-5000

ROME LA80RAT0RY/E80C
ATTN: JOSEPH P. LORENZO, JR.
HANSCOM AF8, MA 01731-5000

ROME LABORATORV/EROP
ATTN: JOSEPH L. HORNER
HANSCOM AFS, MA 01731-5000

DL-1

ROME LA30RAT0RY/SR0C
ATTN: RICHARD A. SQREF
HAMSCOM AFS, MA 01731-5000

ROME LA80RAT0RY/ERXE
ATTN: JOHN J. LARKIN
HAMSCOM AFB, MA 01731-5000

ROME LABORATORY/SRDR
ATTN: DANIEL J. BURNS
525 BROOKS RO
ROME NY 13441-4505

ROME LABORATORY/IRA?
ATTN: ALBERT A. JAMBERDINO
32 HANGAR RD
ROME NY 13441-4114

ROME LA80RAT0RY/C38C
ATTN: ROBERT L* KAMINSKI
525 BROOKS RO
ROME NY 13441-4505

ROME LA80RAT0RY/OCP
ATTN: MAJOR GARY D* BARMORE
25 ELECTRONIC PKY
ROME NY 13441-4515

ROME LABGRATORY/QCP
ATTN: JOANNE L. ROSSI
25 ELECTRONIC PKY
ROME NY 13441-4515

NY PHOTONIC DEVELOPMENT CORP
MVCC ROME CAMPUS
UPPER FLOYD AVE
ROME, NY 13440

OL-2

