
'r:z:: L.VäT-.^.V-T

DlcrfcnfcTir\ar> üiükclted

19980311 170 tfrrc
^ilTTr^

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

AFIT/GCS/ENG/97D-08

A SINGLE CHIP LOW POWER

IMPLEMENTATION OF AN ASYNCHRONOUS FFT

ALGORITHM FOR SPACE APPLICATIONS

THESIS
Bruce William Hunt

Second Lieutenant, USAF

AFIT/GCS/ENG/97D-08

Approved for public release; distribution unlimited

The views expressed in this thesis axe those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

AFIT/GCS/ENG/97D-08

A SINGLE CHIP LOW POWER IMPLEMENTATION

OF AN ASYNCHRONOUS FFT ALGORITHM FOR SPACE APPLICATIONS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Bruce William Hunt, B.S.E.E.

Second Lieutenant, USAF

December 1997

Approved for public release; distribution unlimited

AFIT/GCS/ENG/97D-08

A SINGLE CHIP LOW POWER IMPLEMENTATION

OF AN ASYNCHRONOUS FFT ALGORITHM FOR SPACE APPLICATIONS

Bruce William Hunt, B.S.E.E.

Second Lieutenant, USAF

Approved:

^^^^^u. J V/is0<j j 7
Maj Don S. Gelosh Date
Thesis Advisor

A*WA&A f* A/Of/ ? 7

Lt Col David M. Gallagher Date
Committee Member^

Dr. Kenneth S. Stevens Date
Committee Member

1Jr. Bruce W. Suter Date
Committee Member •

Maj Charles P. Brothers y^ Date
Committee Member

Acknowledgements

Out of the depths of knowledge darkness I have risen to know and understand many new

things making the completion of this thesis possible. For this, I have many people to

thank. First of all, my advisor, Major Don Gelosh for providing the VLSI instruction

necessary and his strong support despite numerous administrative responsibilities. I must

also thank my two remote committee members, Major Charles Brothers who, doubling

as my sponsor, traveled to attended many of my design reviews and was always quick

to answer my numerous questions about radiation and space. Also I am grateful to Dr.

Kenneth Stevens for the hours I spend on the phone with him, even into the early morning

hours on many occasions to get the asynchronous synthesis tools to function properly. Dr.

Stevens is also worthy of thanks for his many reviews of my papers and the raw instruction

in the area of asynchronous systems. Dr. Suter was also helpful to me in the area of signal

processing, especially in understanding the unique algorithm at the root of this project.

Finally, I must thank Lt Col David Gallagher for helping me out at the start of this project

and occasionally making me step back to realize what I really learned.

This acknowledgements section would not be complete without thanking the other

"slaves" that I have spent my time with here at AFIT. This especially goes to Mr. Steve

Parmley and 1 Lt Georgre Roelke for all the lunch and dinner breaks including deep

conversation about anything not related to VLSI. Additionally, I must mention each of

those I have worked with here in the lab: Capt Joe Bouchard, Capt Glen Kading, Capt

John Ortiz, Capt Randy Whitman, 2 Lt George Harrison, 2 Lt Paul Kladitis, and Greg

Richardson, our illustrious administrator.

The most important event during my AFIT stint has to be the marriage to my wife,

Amber. Despite our geographical separation, I always feel her near to my heart as she

has been a huge source of encouragement and support to complete a good thesis despite

constant frustration. I think she is the only person that will be happier than I when this

experience is over.

Above all, I must thank my God who, through his Holy Book, has told me "I can

do all things through Christ which strengtheneth me" (Phillipians 4:13). A special thanks

in

must go here to Capt Randy Whitman who also provided me with some inspiration as a

fellow Christian engaging in many discussions during our late evenings in the VLSI lab.

Bruce William Hunt

IV

Table of Contents

Page

Acknowledgements iii

List of Figures x

List of Tables xiii

Abstract xiv

I. Introduction 1-1

1.1 Introduction 1-1

1.2 Problem Statement 1-1

1.3 Methodology 1-2

1.3.1 Constraints and Assumptions 1-2

1.4 Overview 1-2

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Synchronous Academic FFT Processors 2-1

2.3 Asynchronous Academic DSP/FFT Processors 2-3

2.4 Commercial DSP Processors 2-4

2.5 DSP Processors for Space 2-4

2.6 Summary 2-4

III. Background 3-1

3.1 Asynchronous Design 3-1

3.1.1 Synchronous Versus Asynchronous Design 3-1

3.1.2 Asynchronous Design Methodology 3-3

3.2 Radiation Effects on Micro-electronics and Other Issues ... 3-9

Page

3.2.1 Ionizing Radiation 3-9

3.2.2 Single Event Effects (SEE) 3-10

3.2.3 Neutron Radiation 3-11

3.2.4 Dose-Rate Effects 3-12

3.2.5 The Radiation Tolerant Cell Library 3-12

3.2.6 Summary of Radiation Effects 3-13

3.3 Digital Signal Processing (DSP) 3-13

3.3.1 The Discrete Fourier Transform (DFT) 3-14

3.3.2 The Suter/Stevens FFT Algorithm 3-15

3.3.3 The Base Case FFT 3-16

3.4 Summary 3-19

IV. Design 4-1

4.1 High Level Design Issues 4-1

4.1.1 Designing Low Power Space Applications 4-1

4.1.2 Data Type 4-2

4.1.3 Parallelism Versus Control Path 4-4

4.2 Generic Architecture 4-5

4.3 Specific Architecture for This Project 4-5

4.3.1 Decimator 4-6

4.3.2 FFT-4 4-7

4.3.3 Complex-Valued Multiplier 4-9

4.3.4 Pipelined Crossbar Switch 4-11

4.3.5 Expander 4-13

4.4 Summary 4-14

VI

Page

V. Implementation 5-1

5.1 Decimator 5-1

5.2 FFT-4 5-2

5.2.1 Input Control/Registers 5-3

5.2.2 Arithmetic Logic Unit 5-7

5.2.3 Intermediate Control/Registers 5-8

5.2.4 Output Control 5-12

5.3 Complex Multiplier 5-13

5.3.1 Real Multiply 5-13

5.3.2 Complex Multiply Completion 5-21

5.4 Pipelined Crossbar Switch . 5-22

5.5 Expander 5-26

5.6 Additional FFT-16 Elements 5-28

5.6.1 Input Multiplexor 5-28

5.6.2 Sequencer 5-29

5.6.3 Output Control Selector 5-30

5.6.4 16:32 Latch 5-31

5.7 Summary 5-31

VI. Results 6-1

6.1 Introduction 6-1

6.2 FFT-4 Test Chip 6-1

6.2.1 Design of the Test Chip 6-1

6.2.2 Test Chip Results 6-2

6.2.3 Design Modifications Following Test Chip Fabrication 6-3

6.2.4 Test Chip Summary 6-4

6.3 16-bit FFT-16 Simulation Results 6-5

6.4 Summary 6-8

vii

Page

VII. Conclusions and Future Work Possibilities 7-1

7.1 Project Conclusions 7-1

7.2 Potential Future Designs 7-1

7.2.1 New FFT-4 Element 7-1

7.2.2 FFT-8 Implementation 7-2

7.3 Recommendations for Continuation 7-3

Appendix A. 3D ASFM Specifications and Boolean Equations A-l

A.l Global One-Hot Specifications A-l

A.l.l Nominal Stage A-l

A.1.2 Final Stage A-2

A.2 Ripple One-Hot Specifications With Context A-3

A.2.1 Nominal Stage A-3

A.2.2 Final Stage A-4

A.3 Ripple One-Hot Specifications Without Context A-5

A.3.1 Nominal Stage A-5

A.3.2 Final Stage A-6

A.4 FFT-4 A-7

A.4.1 Input Stage Control A-7

A.4.2 Intermediate Stage Control A-9

A.4.3 Output Stage Control A-ll

A.5 Multiplier A-12

A.5.1 Multiplier Control A-12

A.5.2 Multiplicand Counter A-13

A.6 Smaller, General AFSMs A-15

A.6.1 Decimate-By-Two A-15

A.6.2 Loader A-16

A.6.3 Hold A-17

vni

Page

A.6.4 Latch Controller A-17

A.6.5 Expand-By-Two A-18

A.7 Sequencer Control A-20

A.8 FFT-2 Controller A-21

Appendix B. Project Files B-l

Bibliography B13"1

Vita VTTA-1

IX

List of Figures

Figure Page

2.1. Comparison of Existing FFT Processors 2-5

3.1. Synchronous and Bounded-Delay Asynchronous Examples 3-5

3.2. One-Hot State Machine Example 3-5

3.3. Example Burst-Mode AFSM 3-6

3.4. Dual-Rail Data Generation and Intpretation 3-7

3.5. Bundled Data 3-8

3.6. N-FET Designs 3-10

3.7. AFRL/MRC 2 Input NAND gate 3-13

3.8. Four Point FFT Signal Flow Graph 3-18

3.9. Four Point Complex FFT Signal Flow Graph 3-19

4.1. 16-Bit Fixed Point Representation 4-2

4.2. Generic Block Diagram of the Suter/Stevens FFT Algorithm 4-6

4.3. Pipelined Crossbar Switch Petri-net 4-12

4.4. Expander Petri-net 4-13

5.1. Decimate-By-Two State Machine 5-1

5.2. Decimate-By-Four Block Diagram 5-2

5.3. FFT-4 Block Diagram 5-3

5.4. Global One-Hot State Machine 5-4

5.5. Loop of Global One-Hot Machines 5-4

5.6. Four Global One-Hot Waveforms 5-5

5.7. Input Control State Machine 5-6

5.8. Standard Register Cell 5-6

5.9. Input Block Diagram 5-7

Figure PaSe

5.10. Nominal ALU Stage 5-7

5.11. ALU Setup Stage 5-8

5.12. Ripple One-Hot State Machine With Context 5-9

5.13. Loop of Ripple One-Hot Machines 5-9

5.14. Intermediate State Machine 5-10

5.15. Intermediate Block Diagram 5-11

5.16. Output Finite State Machine 5-12

5.17. Output Block Diagram 5-14

5.18. Real Multiply Partial Block Diagram 5-15

5.19. Multiplier2 Block Diagram 5-16

5.20. Loader State Machine 5-17

5.21. Radix-4 Booth Decoder 5-17

5.22. Multiplier State Machine 5-19

5.23. Multiplicand Regsiter Cell 5-20

5.24. Two Phase Pulse Generator 5-21

5.25. Product Register Bit 5-21

5.26. Complex Multiplier Data Path Operation 5-23

5.27. Complex Multiplier Control Path 5-24

5.28. Multiplicand Counter State Machine 5-24

5.29. Ripple One-Hot AFSM Without Context 5-25

5.30. Horizontal Crossbar Switch Loop 5-25

5.31. Vertical Crossbar Switch Loop 5-26

5.32. Expand-By-Four Block Diagram 5-27

5.33. Hold State Machine 5-28

5.34. Latchcon State Machine 5-29

5.35. Additional FFT-4 Reuse Components 5-29

5.36. Sequencer State Machine 5-30

XI

Figure Page

5.37. Output Control Selector 5-31

6.1. Register Read Enabling 6-4

6.2. Intermediate Register Locking 6-5

6.3. FFT-16 System Timing 6-6

7.1. Proposed FFT-4 Datapath 7-2

7.2. FFT-2 block diagram 7-3

Xll

List of Tables

Table Page

2.1. Tabular Comparison of FFT Processor Performance 2-2

3.1. Dual-Rail Data Line Representation 3-7

4.1. Constant Representation 4-4

4.2. Ordinate Requirements for Fixed Point Data 4-4

4.3. Radix-2 Booth Encoding 4-9

4.4. Radix-4 Booth Encoding 4-10

4.5. Extra Storage Decode 4-11

5.1. Intermediate Stage Function 5-12

5.2. Output Stage Function 5-13

5.3. Complex Multiplication Operation Steps 5-22

6.1. Processing Delay by Element (ns) 6-6

6.2. Power Consumption by Element (mW) 6-6

6.3. Extrapolation of Timing Measurements (ps) 6-7

6.4. Extrapolation of Energy Consumption (/xJ) 6-7

6.5. Energy Efficiency Comparison 6-7

xin

AFIT/GCS/ENG/97D-08

Abstract

A fully asynchronous fixed point FFT processor is introduced for low power space

applications. The architecture is based on an algorithm developed by Suter and Stevens

specifically for a low power implementation. The novelty of this architecture lies in its high

localization of components and pipelining with no need to share a global memory. High

throughput is attained using large numbers of small, local components working in parallel.

A derivation of the algorithm from the discrete Fourier transform is presented followed by

a discussion of circuit design parameters; specifically, those relevant to space applications.

The generic architecture is explained with a survey of the 16-point FFT architecture specific

to this project. An implementation, which included a test chip fabricated through MOSIS,

is described. Finally, simulation results based on layout extractions are presented and an

outline for future work is given.

xiv

A SINGLE CHIP LOW POWER IMPLEMENTATION

OF AN ASYNCHRONOUS FFT ALGORITHM FOR SPACE APPLICATIONS

I. Introduction

1.1 Introduction

This document presents a multipurposed research effort. In May 1997, Air Force

Institute of Technology faculty members Bruce W. Suter and Kenneth S. Stevens submit-

ted a patent proposal for a low power architecture for a Fast Fourier Transform (FFT)

processor [20]. The first goal of this research was to validate the claims made in the patent

proposal by implementing the architecture in complementary metal oxide semiconductor

(CMOS) technology. Because this is a low power architecture, it became attractive for

space applications so a low power implementation that functions in a radiation-hostile

environment was also desired. This chapter introduces some important background in-

formation including the problem statement and research methodology. The final section

provides an overview to the rest of the document.

1.2 Problem Statement

Asynchronous technology is just starting to make a firm impact in the very large

scale integration (VLSI) design community. Although asynchronous design has a lot of

potential, researchers admit that not many working commercial-scale designs have been

fabricated to demonstrate its advantages. The literature review found few single chip FFT

processor implemented in an asynchronous design. Also, current FFT applications for

space do not use many low power design techniques.

The purpose of this research is to determine suitability of the Suter/Stevens algorithm

for a CMOS implementation. Speed and power metrics will be collected and compared

to existing DSP applications to aid in this determination. Both speed and power are

important for validation of the algorithm and architecture. This research also hopes to

1-1

demonstrate that the speed and low power benefits extend to space-bound circuits. In a

space bound system, speed and power are traded off to reach goals that will meet system

requirements. Lower power architectures will hopefully lead to faster designs.

1.3 Methodology

To implement this algorithm in silicon, many design steps are necessary. First of all,

high level decisions will be made regarding CMOS technology, data type, logic type (i.e.,

static, pre-charge, pass-transistor, hybrid, etc.), point size, etc. Once these are narrowed

down, there are many futher design decisions to be made at lower levels when each com-

ponent of the architecture is being built. It is best to use a high level simulation language,

such as VHDL, to test potential implementations before a lot of time is invested. Decisions

during the design process will change as there is a convergence toward the "optimal" de-

sign. When enough designs are complete (i.e., laid out in MAGIC), extractions and tests

need to be run to determine the likelihood of functionality and performance.

1.3.1 Constraints and Assumptions. First of all, at least the minimum iteration

of the Suter/Stevens architecture shall be implemented to prove the concept. Secondly, the

layouts shall be performed using a radiation tolerant cell library provided by the sponsoring

organization. Furthermore, additional low-level radiation minded design techniques are to

be used including, but not limited to, low fanout margin, static storage, and static logic.

Finally, one or more fabrications shall be made using the MOSIS HP 0.8 pm. fabrication

facility.

1.4 Overview

This document is organized into seven chapters. This first chapter provides an in-

troduction to the research. Chapter II gives a summary of the currently available VLSI

Digital Signal Processing circuits for a wide range of applications, specifically those for

asynchronous designs radiation hardened designs. The conclusion of Chapter II displays

a chart showing the current DSP application efficiencies with the potential efficiency esti-

mation for the Suter/Stevens FFT architecture.

1-2

Chapter III provides a brief background on the three major design areas encompassed

by this project. Asynchronous design is defined, compared with synchronous design and

several asynchronous design methodologies are discussed. The second section covers radi-

ation effects on micro-electronics including ionizing radiation, single event effects, neutron

radiation, and dose-rate effects. For each type, the causes, parameter changes, and mitigat-

ing techniques are mentioned. The radiation section concludes with a description of one of

the standard cells used in the circuit layouts for this project. The final background section

covers the derivation of the Suter/Stevens FFT algorithm from the discrete Fourier trans-

form (DFT) and the base-case FFT computational unit, the FFT-4. The FFT-4 comes

from a radix-2 decimation-in-time FFT algorithm.

Chapter IV discusses the high level issues surrounding the radiation tolerant design,

the choice of data type, and the parallelism. Then, the generic Suter/Stevens architecture

is presented followed by the architecture specific to this research project. Design choices

and solutions for each component in the architecture are discussed. In some cases more

than one design is covered to demonstrate the flexibility of the architecture.

Chapter V contains the low level implementation of each piece of hardware for an

FFT-16. Circuit designs, block diagrams, and state transition diagrams are included to

demonstrate how the puzzle pieces interact to complete a working system.

Chapter VI presents the results of the test chip fabricated during the design process.

Changes made to the design as a result of the test chip are included showing why the

signal transition modifications were necessary. Simulation results of extracted layouts are

presented for the FFT-16 at three different Vdd levels. These simulation results are then

compared against some of the processors from Chapter II to demonstrate the effectiveness

of the Suter/Stevens algorithm and architecture.

Chapter VII wraps up the thesis with major conclusions based on the results from

Chapter VI. Some lessons learned during the course of the project are also mentioned with

some guidelines for future work on this project.

1-3

i7. Literature Review

2.1 Introduction

The range and complexity of available digital signal processing (DSP) and fast Fourier

transform (FFT) processors is quite broad. A sampling of all different processors is given

here because it is likely this project's architecture can compete very well in terms of speed,

power, and energy efficiency through a broad spectrum of applications. The chips discussed

here include processors created in academia and industry. A table giving general compar-

ison of several FFT processors is provided followed by brief sections describing several

processor characteristics. The chip to follow from this project is the Fully Asynchronous

Suter/Stevens Transform (FASST). This chapter concludes with a graphical comparison

of the processors presented in Table 2.1.

The Figure Of Merit (FOM) used here is the same as in Chapter VI where it will

be discussed at length. It should be noted that a lower FOM demonstrates better energy

efficiency.

2.2 Synchronous Academic FFT Processors

There are several synchronous FFT processors produced at universities across the

country. Two published examples include COBRA from the University of Colorado [18],

and SPIFFEE from Stanford University [1].

The COBRA chip can perform up to a 64-point FFT on a single chip but can execute

a 1024-point FFT in a 16 by 16 chip array with a programmable control unit. COBRA

is not designed for low power but Table 2.1 indicates it is very fast in the FFT-1024

computation.

The Spiffee chip, on the other hand, is designed for low power and high speed.

Currently there are three versions of the Spiffee processor. Spiffeel has been fabricated

and functions over a Vdd range from 3.3 V to 1.25 V. It is capable of functioning at 1.1

V and 1.0 V when a -0.5 Volt n-well bias is used. Spiffee Low Vf and Spiffee ULP have

not yet been fabricated, but their numbers are shown in Table 2.1 to demonstrate their

state-of-the-art efficiency. Both of these chips are designed to run at a 0.4 V an Vdd with

2-1

Table 2.1 Tabular Comparison of FFT Processor Performance
Processor
Name

Dataword
Format

Supply
Voltage

(Volts)

1024 pt
exec, time

(/JS)

Power

(mW)

Efficiency

(nJ ^ V Unit-Transform)
Texas Inst.
C40

Float 5.0 1298 4500 5704

L64280
LSI

Float 5.0 26 20000 507

Texas Mem.
TM-66

Float 5.0 65 7000 444

Dassault
Electronique

Block Float 5.0 128 12000 1500

Array Micro
DaSP/PaC/Ras

Block Float 5.0 131 9750 1247

Plessey
PDSP16510A

Block Float 5.0 98 3000 287

DSP Arch.
DSP-24

Block Float 3.3 21 3500 71.8

COBRA
Colorado State

Fixed Point 5.0 9.5 7700 71.4

FASST
AFIT

Fixed Point 5.0
3.3
2.2

192
256
425

2580
598
182

483
149
75

Spiflfeel
Stanford

Fixed Point 3.3
2.5
1.5

1.25
1.1
1.0

30
42
125
252
330
547

845
339
42
15
9.5
5.2

24.7
13.9
5.1
3.7
3.1
2.8

Spiffee Low Vt
Stanford

Fixed Point 0.4 93 <9.7 0.880
(projected)

Spiffee ULP
Stanford

Fixed Point 0.4 61 8 0.476
(projected)

an estimated power consumption of less than 10mW. Spiffee Low Vt and Spiffee ULP use

a separately tuned substrate network to get the threshold voltages of the transistor very

near zero. This enables exceptionally low Vdd and high energy efficiency.

Since both of these processors operate on fixed point data, their commercial applica-

tion is limited. COBRA is additionally limited because it requires a large number of chips

to perform the FFT-1024. Spiffee has the advantage that it is a single chip processor.

However, its low Vdd and differentially tuned Vt would make wide scale commercial use

almost unlikely. Neither of these processors can match the commercial DSP processors in

terms of capability.

2-2

2.3 Asynchronous Academic DSP/FFT Processors

Previous works have already brought DSP and asnychronous signaling together.

However, numbers for throughput, computation time, and power consumption were not

given. This makes it difficult to compare them to the other FFT or programmable DSP

processors. Like this Suter/Stevens FFT project, the goal for past works has been to

develop an architecture well suited to the asynchronous signaling. Each has a different

approach that is nothing like that implemented in this project. Despite these differences,

they are discussed here to provide some background data.

The oldest work comes from the University of California at Berkeley where a fully

asynchronous digital signal processor was built [10]. This has many of the same functional

units of the Suter/Stevens architecture but these are arranged in a single, general purpose

pipeline instead of local pipelines. The functional units are all self-timed as well, demon-

strating the heirarchical composition of an asynchronous system. It was fabricated at 2.0

fim N-well technology and employs dynamic CMOS logic.

The next two designs are both from Flinders University in Australia. The first work

highlighted an architecture design for DSP custom applications [5]. It is interesting that

the main feature of this architecture is an asynchronous interconnection network that can

communicate between multiple functional units. This is exactly the opposite goal of the

Suter/Stevens architecture where shared, global devices are to be minimized or eliminated

altogether. Timing, rather than power, was the main issue the researchers were trying to

solve so the architectural choice may not be completely unacceptable. Another advantage

of the design presented is flexibility because the functional units can be modified for specific

applications.

The last design from Flinders University is a reconfigurable multi-chip FFT [16].

This is a very limited example because it operates on only 3-bit input data-words and

5-bit output data-words. Despite this, the developers took special care to ensure the

algorithm they chose could work well with asynchronous signaling. A slight variation of

a radix-2 decimation-in-time algorithm was chosen with an FFT-4 selected for the base

case. It is a fully pipelined system employing a dynamic CMOS logic scheme. As in the

2-3

previous Flinders example, the use of wide feedback busses is not avoided. Again we see a

disregard for a low power architecture.

2.4 Commercial DSP Processors

There are a variety of commercial DSP processors available in all dataword formats.

Typically the commercially available products are application specific processors which

can do many operations related to DSP rather than just FFTs. These additional functions

may include digital filtering, matrix multiplication, or multidimensional convolution. This

increased capability generally makes it difficult for commercial processors to compete with

the energy efficiency of academic processors designed for that purpose.

2.5 DSP Processors for Space

Because this is such a limited area in the DSP realm, it was difficult to attain numbers

for comparison to other available systems. One current method for DSP applications is

the use of the RAD6000 microprocessor. It is a rad-hard clone (software equivalent) of

the IBM R/S6000. Because the RAD6000 is a general purpose machine, there are obvious

losses in power and speed to perform DSP applications.

One method of comparison that can be used for the FFTs in space is the Texas

Instruments C40 architecture. Texas Instruments is currently developing a radiation hard-

ened version of the C40 architecture for space. The normal C40 architecture is the first

entry in Table 2.1. Note that it has the worst energy efficiency characteristics of all the

chips compared here. This definitely leaves the door wide open for better designs for space.

2.6 Summary

Figure 2.1 gives a graphical representation of the present technology along with

probable areas of application for the Suter/Stevens FFT architecture. In this figure, the

Y axis displays the computation time where the increasing axis represents less time. The

X axis displays power consumption where the increasing axis represents lower power. The

best performance is located in the upper right corner where computation time is the fastest

2-4

and power consumption is the lowest. The worst performance is located in the lower left

corner where computation time is the slowest and power consumption is the highest.

3.2

10

I Lowest Energy/Unit Transform
i (Best Performance)
i i
i i

-^-Applications!
"<i For Earth i

CO
T5
C

E 32

CD
E

.1 100
to *-*
3
Q.
E o
O 320

1000

•v COBRA

i +

ocb

Q.

"7"
I
I
I
I
I

.-1.

3200

i ©C40
Highest Energy/Unit Transform
(Worst Performance)

1 Spiffeef

100000 10000

+: Floating Point

1000 100
Power Consumption (mW)

o: Block Float

10

*: Fixed Point

Figure 2.1 Comparison of Existing FFT Processors

Since this is a low power, high performance architecture and not application specific

for low energy design or a specific data type, we should be able to see the benefits of the

Suter/Stevens architecture map to fixed point, block float, and floating point applications

for both Earth and space.

2-5

III. Background

This project combines design principles and techniques from several areas of VLSI de-

sign. They include asynchronous timing, radiation tolerance, and digital signal processing

(DSP). Each portion is discussed at a high level of detail.

3.1 Asynchronous Design

Synchronous design relies on regular clock pulses that trigger flip-flop circuits to

progress through the finite states of a sequential circuit. Conversely, asynchronous design

relies on externally and internally generated signals, or handshaking, to progress through

the finite states of a sequential circuit. Essentially, asynchronous design is a "self-timed"

event based protocol scheme rather than a time based protocol scheme. This section

discusses some advantages and disadvantages of each protocol with an overview of the

asynchronous methodologies and implementations used in this project.

3.1.1 Synchronous Versus Asynchronous Design. With any design, there are

decisions and tradeoffs that need to be made. Many times the decision is clear based on

the advantages and disadvantages of each choice. For a long time now, most large scale

manufacturers have chosen a synchronous timing protocol over an asynchronous timing

protocol for good reason. Clocking a circuit is a good way to eliminate race conditions and

other circuit hazards since clock cycles can easily be extended to wait for combinational

logic to settle properly. Because early designers favored the ease of synchronous circuitry,

that technology matured more quickly than asynchronous circuitry leading to a refined

library of CAD tools. Recently, the clock has become the problem for other design issues

like power consumption.

The following sections discuss some advantages and disadvantages of the asynchronous

timing protocol choice.

3-1

3.1.1.1 Asynchronous Design Advantages. Asynchronous design removes

the global clock from the circuit resulting in many advantages relating to power and area1.

First of all, the area consumed by large clock drivers and routing is freed up for other uses.

Because CMOS circuits consume most of their power when switching occurs, asynchronous

circuits should consume less power because they switch only when useful work is done. A

global clock will always be switching, even when the circuit is not productive (i.e., waiting

for a memory read).

Asynchronous circuits, when properly designed, can run on average case delay or

data dependent delay. The speed of the system is not bound by the worst case clock cycle

length so pieces of hardware outside of the critical path do not have to be optimized for

speed. They could be optimized for low leakage or low power for other reasons. Addition-

ally, components that lie in the critical path of operation that are slow for certain data

dependencies will not dramatically impede the overall circuit performance as long as the

"slow data" occurs infrequently.

In a synchronous circuit, the setup and hold times of state machines and logic blocks

dictate the clock frequency affecting the overall system speed. As a result, it is important

to keep delays through different paths and segments of the circuit fairly constant, even

if the different paths receive varied amounts of usage. Conversely, asynchronous circuitry

does not require optimization of slower portions of hardware because the next state of the

machine waits for a handshake signal after any amount of time. Therefore, rarely used

portions of the circuit can be left unoptimized without significantly decreasing the overall

performance.

The adaptation to parameter changes is a definite advantage that makes asyn-

chronous systems attractive for this project. As later sections in this chapter show, there

are parameter changes that take place in a circuit when it operates in a radiation environ-

ment. The asynchronous signaling can be tailored to adapt to slower performance, reduced

drive, and other changes associated with radiation effects.

JThe area advantage is sometimes cancelled by the increased control circuitry required for an asyn-
chronous system.

3-2

Asynchronous systems are inherently modular making it easy to combine them into

larger systems. As long as the data and control interfaces match, integration of asyn-

chronous systems is easy. There are other asynchronous design advantages but the ones

mentioned here are the most applicable to this project.

3.1.1.2 Asynchronous Design Disadvantages. The difficulty of developing

an asynchronous circuit in an ad hoc fashion is the first major disadvantage. To construct

synchronous systems, all the designer must do is surround blocks of combinational logic

with latches and registers. Concerns for timing are resolved by clocking slow enough for

the longest delay in each stage. In asynchronous technology, the designer must pay more

attention to the dynamic state of the circuit to ensure there are no race conditions or signal

glitches that will put the circuit into an unknown, incorrect, or unresponsive state.

The second major roadblock to asynchronous design is the lack of a well developed

set of tools. Since clocked circuitry has been the mainstay of VLSI design for the last

two decades, the CAD tools for synchronous design are well developed and very common.

Asynchronous design has only recently gained attention in the VLSI domain so the current

quantity and completeness of CAD tools for asynchronous design are limited at this point.

Obviously, if asynchronous design proliferates, a well developed tool set will follow.

3.1.2 Asynchronous Design Methodology. Just as there are many design decisions

that can be made with synchronous design (i.e., single phase clock, multi-phase clock),

there are also many ways to asynchronously implement a sequential circuit. In general,

all asynchronous design methodologies replace a global clock with control and/or data

handshakes. This means that each progression through the states of the sequential circuit is

controlled by a handshake between a sender and a receiver rather than rising or falling clock

edges. Despite similarities in handshaking, delay models used in asynchronous systems vary

among the different methodologies.

Before we get into detail on each of the design methodologies, a few definitions and

acronyms will be covered, the first is an asynchronous finite state machine or AFSM. This

is simply an asynchronous implementation of the Mealy state machine model [14] without

3-3

clocking. The event based method used to advance the states is discussed Section 3.1.2.3.

Completion detection refers to the ability of a self-timed system to indicate to a controller

that its operation has completed. Sections 3.1.2.1 through 3.1.2.5 outline the methodologies

used in this project.

3.1.2.1 Fundamental Mode Bounded-Delay. The simplest and most intu-

itive way of implementing a circuit asynchronously is the fundamental mode bounded delay.

A bounded delay refers to assumptions made from simulations that the delay through a

group of logic gates or wires is bounded to some finite period of time. This delay can

then be modeled to correctly execute control signaling. Examples of synchronous circuits

and their bounded-delay asynchronous counterparts are featured in Figure 3.1. The top

two examples show how standard combinational logic in a pipeline segmenat can be con-

verted. In the clocked example, it is assumed the length of the clock cycle is long enough

for all the values to become valid before the clock pulses and the values are latched into

the next register. In the asynchronous implementation, a delay element greater than or

equal to the longest delay of the combinational logic is put in parallel with the component

to delay the input request signal to the next register to ensure that the outputs will be

valid by the time they are latched. In the bottom two circuits, the latches that control the

present/next state bits are replaced again with delay elements that delay the next state

signals for a period greater than or equal to the combinational logic. In the general scheme

of asynchronous logic, however, this is a poor implementation because the worst case data

dependence must be modeled rather than an average case data dependence.

There are some cases where it is difficult to implement completion detection into a

functional unit or combinational logic block so some bounded delay assumptions must be

made and built into the circuit to ensure correct performance. In general, though, there

are better ways to model delays in an asynchronous circuit.

3.1.2.2 Non-fundamental Mode Bounded-Delay. Still using bounded delay

assumptions (apart from delay elements) Lee Hollaar developed an application to the

bounded-delay model that extended it beyond the fundamental mode using a "one-hot"

architecture [9]. Simply viewed, each state is represented by an RS flip-flop. Figure 3.2

3-4

Inputs

■H
Comb.
Logic •H>

Outputs

Pipeline
Segment

Inputs

t Req

Comb.
Logic ■H

Clock
Ack

Outputs

Inputs

 *■

Synchronous

Outputs

Bounded-Delay
Asynchronous

Present M

State I-P
II 3

Inputs

Next Finite State
Machine

Present Kl

State I-P "la n
-TKCD<HJ

Outputs

Clock

Figure 3.1 Synchronous and Bounded-Delay Asynchronous Examples

contains a simple example of a one-hot sequential state machine segment (left) with the

gate structure on the right.

Figure 3.2 One-Hot State Machine Example

Upon entering a state by an external input (R, S, or T), the current state flip-flop

is set. The SET line in the RS flip-flop is also the RESET line to the previous state's

RS flip-flop. After a period of gate delays, the state will settle making only one of the

state bits high (thus the "one-hot" name). This one-hot row assignment is still limited

because only one input is allowed to change at a time and proper settling time must be

allowed. The concept of the one-hot row assingment was very attractive for the regular

3-5

flow of the FFT computation but instead of simply using the RS implementation for each

state, burst-mode AFSMs (discussed in the next section) are used for each "state."

3.1.2.3 Burst-Mode. The burst-mode design methodolgy is used only for

asynchronous control circuitry. Instead of allowing only one input to change at a time,

many inputs are allowed to change in any order. When all have changed according to

the specification, an output burst is released upon the transition to the next state [3].

Figure 3.3 shows a simple burst mode AFSM with the transition table on the left and the

transition diagram on the right.

sn Sn+1 Input Burst Output Burst
0 1 A+B+ Y+Z-
0 2 c+ Z-
1 4 B-C+ z+
2 3 A+C- z+
3 4 C+ Y+
4 5 A- Y-
5 0 C- -

State Transition Table State Transition Diagram

Figure 3.3 Example Burst-Mode AFSM

The input bursts follow some simple bounded delay rules. First of all, the inputs may

arrive in any order and at any time. Second, the state machine must be given adequate

time to react and settle from an input burst before receiving another. Third, no input burst

may be a subset of another in any given state. This last rule is important so the order of

signal arrival will not affect the correctness of the next state. The tools for burst-mode

AFSM specification tools are some of the better ones developed for asynchronous circuit

design so far. The burst mode designs originated with Coates, Stevens, and Davis [3]

who developed the Most Excellent Asynchronous Tool (MEAT) for a project at Hewlett

Packard. Others have followed including the 3D tool [22] used extensively for the numerous

AFSMs used in this project.

3-6

3.1.2.4 Delay Insensitive. The delay insensitive design methodology con-

siders the delays through wires and gates in the circuit to be indefinite. This is different

from the bounded-delay models because they assume that signals become valid after a

certain settling period.

Because we are concerned with wire delays as well as gate delays, each data line

must have built in completion detection. This is done using dual rail data where two lines

are used to represent each bit. Table 3.1 shows how each bit is used to transfer data in a

return-to-zero (RZ) dual rail data protocol and Figure 3.4 shows how the dual-rail data is

generated and interpreted.

Table 3.1 Dual-Rai Data Line Re
Do Di Condition
0 0 Data Invalid
0 1 Logic High
1 0 Logic Low
1 1 Error

Representation

Request
i ^

)

* Dual-rail data w
imbedded valid

■
•

•
Single-rail

S data bits
E
N •

D • i

i—

i—

/ *

ty :

■
■

Single-rail R
data bits E

• C

• E

1

 ; V

E
R

E L

R In (^

Gener ate Inl er pr

"\ Request

J -
St

Figure 3.4 Dual-Rail Data Generation and Intpretation

A non-return-to-zero (NRZ) dual rail scheme may also be used which would simply

detect a change on either line to indicate a one or zero. Though this scheme is faster

3-7

in terms of transfer because there are fewer transitions, the time savings is easily lost in

control logic complexity and area [7].

Requiring two lines for each data bit results in a huge area cost, especially in a 16-

or 32-bit architecture. There is additional area overhead because many times, a single

request signal must be derived from several dual-rail data lines. The gates necessary for

this consume additional area. Because of these area concerns, the actual occurence of true

delay-insensitive circuits is very limited.

S. 1.2.5 Speed Independent. The speed independent timing model is similar

to the delay insensitive design except delays in wires are ignored. Essentially, we make

some assumptions about delays as in the bounded-delay models. This project primarily

uses a speed-independent, four-phase data-bundling timing model. The handshaking and

data transfer will be discussed in the next couple of paragraphs.

Data bundling handles valid and invalid data differently than the dual rail data.

Figure 3.5 shows the request-acknowledge handshaking between a sender and a receiver.

Note the sender's output data becomes valid causing REQ to go high (1). Once the receiver

gets the input data, the ACK signal is raised (2). When the sender senses the assertion of

the ACK signal, it lowers REQ (3) and now processes the next data set, waiting for ACK

to lower once again. When the receiver lowers ACK (4) the sender knows it may again

begin the handshake protocol when the new data is ready.

Figure 3.5 Bundled Data

3-8

This is known as four-phase data bundling because for each data transfer segment, the

REQ-ACK handshake goes through four phases (10, 11, 01, 00). A two-phase handshaking

method also exists for the data bundling but, like the dual-rail data, it is a bit more complex

than the four phase handshaking because the hardware must be able to detect high-low

transitions and low-high transitions.

3.2 Radiation Effects on Micro-electronics and Other Issues

This section covers some of the prevailing radiation effects on electronics. The first

two sections, 3.2.1 and 3.2.2, discuss radiation events that occur mainly in space. The

last two sections, 3.2.3 and 3.2.4, discuss the radiation effects caused mainly by nuclear

weapons. Each part contains the source, effects, parameter changes, and countermeasures

used for each form of harmful radiation. Following this, the cell from the library to be

used in this project is examined to demonstrate its radiation tolerant2 features.

3.2.1 Ionizing Radiation. Gamma rays, x-rays, electrons, protons, and heavy

ions are all causes of ionizing radiation which primarily affects the oxide layers of a CMOS

circuit. Upon irradiation, electron-hole pairs are generated and evenly distributed through-

out the SiC>2 layer. Many of these pairs recombine within 100//sec, but some free electrons

are swept out by the electric field in the gate insulator. The trapped holes that remain

in the insulator cause a negative shift in the MOSFET threshold voltage. Over time, the

holes slowly migrate toward the most negative potential within the SKV If this most

negative potential is the channel (N-FETs), the holes will tend to migrate toward the

insulator-channel interface decreasing Vt from its pre-rad or initial value. If this most

negative potential is the gate(P-FETs), then the holes migrate toward the insulator-gate

interface decreasing Vt from the initial value. After a period of time, the holes are annealed

out of the Si02, allowing Vt to shift back toward its initial value [11,15].

The key parameter changes caused by ionizing radiation is the threshold voltage

shift. For P-FETS, Vt is shifted negatively at all dose levels because the trapped holes in

2A radiation tolerant circuit can withstand "100 krad(Si) and still maintain proper function. A rad is a
unit of absorbed dose equal to 0.01 Joule absorbed per kilogram of any material.

3-9

the oxide and the interface states work together. For N-FETS, Vt is shifted negatively at

low dose levels and initially at high dose levels [11]. At high total dose levels, the N-FET

Vt may eventually shift positively as interface states begin to dominate the trapped holes.

A thin gate oxide can mitigate the effects of ionizing radiation by allowing fewer

electron-hole pairs to be formed and reducing the hole lifetime in the oxide. A reentrant

form of the N-FET prevents the field oxide from interacting with the gate of the transistor,

thus ensuring the trapped charges in the field oxide will not turn the N-FET on. Figure 3.6

shows the standard N-FET. There are two edges of the channel exposed to the bulk sub-

strate where trapped charges in the field oxide can interfere with the threshold voltage.

The reentrant N-FET (also in Figure 3.6) has no edges exposed to the bulk substrate,

preventing field oxide trapped charge interference.

SOURCE SOURCE III

g
■

■ GATE

GATE |||B| DRAIN« B
DRAIN

Stand* u:d

LMJ

Reentrant

Figure 3.6 N-FET Designs

3.2.2 Single Event Effects (SEE). Heavy ions, protons, neutrons, and gamma

rays are all known to cause SEE. In space, heavy ions and protons are the most prevalent

causes. SEE can be divided into two classes of errors.

The more severe hard errors for CMOS devices include gate rupture and latch-up.

Gate rupture occurs when a single ion passes through the gate oxide layer. Gate rupture

can only happen when there is a high electric field in the oxide. A gate rupture causes

heating of the dielectric and possible thermal runaway. Latch-up is the product of parasitic

bipolar-junction transistors forming between opposite diffusion regions, the substrate, and

one of the wells. When a trigger voltage is reached (around -0.7 volts), the node will

3-10

"latch" at a holding voltage and remain there drawing large amounts of current, regardless

of the inputs or outputs of the node.

To mitigate the hard errors, a variety of steps must be taken. For instance, the best

way to counter the latch-up condition is to fabricate the circuit on an insulator to remove

the parasitic pnpn configuration where latch-up transistors could form. If a silicon-on-

insulator (SOI) or silicon on saphire (SOS) solution is not feasible due to cost, gate count,

etc., oppositely diffused material around the n+ and p+ regions (called guard rings) also

helps reduce the possibility of a latch-up condition.

The less severe soft errors, or single event upset (SEU), include register or memory

bit upsets, and transient logic upsets. Each of these topics can be quite in-depth so this

section will just touch on some of the ways in which SEU can be attenuated. First of all,

fully static logic is the easiest way to reduce the impact of SEU, especially the soft errors.

Any kind of dynamic or pre-charge logic could fall as easy prey to a transient value since

the evaluation period allows circuit nodes to "float." To harden against memory or register

bit upsets, fully static storage is frequently used.

These are the main SEE issues relating to this project. Sources such as [15] give a

much more complete exploration of single event effects and mitigation techniques.

3.2.3 Neutron Radiation. Neutron radiation is caused primarily by particles

released from a nuclear fission or fusion reaction. The physical main effect of neutron

radiation in MOSFETs is that the damage to the silicon crystal structure. The neutrons

are a heavy subatomic particle releasing much of their energy upon impact. The defects

that these neutrons create become traps for the majority carriers.

Channel resistance for both N-FETS and P-FETS increases along with the polysilicon

trace resistance. The increased resistance is a result of the removal of majority carriers

leaving a larger percentage of minority carriers. This will lower the gate voltage causing the

threshold voltage, Vt, to move closer to zero. This will make the transistor easier to turn on

(more leakage current) but with reduced drive capability because there are fewer majority

carriers and more leakage current due to the dislocation damage at the Si02 interface.

3-11

The drive capability of the transistors is further hindered by the increased resistance of

the polysilicon traces.

As an example, transistors that are normally off will allow additional leakage current

to flow turning them slightly on. The transistors that are on have to deal with the addi-

tional channel resistance creating a voltage divider turning them slightly off. To counter

these changes, a smaller fanout margin and larger transistor widths should be used to pass

signals better when a transistor is on. The lowered Vt and increased leakage current may

require larger Vdd and GND rails to supply the necessary current.

3.2.4 Dose-Rate Effects. As the name implies, the dose-rate effects apply to a

circuit that dwells in a short-lived hostile environment. The main effects of dose-rate ra-

diation are photocurrent generations in the pn junctions, trapped-hole generation followed

by trapped-hole annealing, latch-up, and upset. The photocurrents are generated by the

creation of electron-hole pairs in a pn junction (this pn junction can be between the source,

drain, or bulk material). The trapped-hole generation and annealing in the oxide layers is

very similar to that of the ionizing radiation (see Section 3.2.1 above).

A circuit designed to resist the effects of dose-rate radiation should include additional

power supply current to sink the photo currents, and latch-up prevention measures. The

additional power supply current could easily be built in by making sure the voltage supply

can generate more current than necessary in a pre-rad condition.

3.2.5 The Radiation Tolerant Cell Library. For this project, a cell library con-

taining many of the radiation countermeasures mentioned in Section 3.2.3 through Sec-

tion 3.2.2 was used. This radiation tolerant cell library was developed jointly by The Air

Force Research Laboratory and Mission Research Corporation [12]. The library contains

only fully static logic. For multiplexors, registers, flip-flops, and latches, this is unique

because most applications of each involve pass-transistor logic. For both the N-FETS and

P-FETS, large widths are used to ensure low channel resistance and large drive capability.

Reentrant N-FET transistors are used to prevent the field oxide that may easily ionize

from affecting the transistor Vt. To prevent latch-up, n-type ohmic rings surround p+ dif-

3-12

fusion regions and p-type ohmic rings surround n+ diffusion regions further turning off the

potential parasitic pnpn transistors. Wide supply and ground rails coupled with frequent

substrate and diffusion contacts ensure good current supply and even potential across the

bulk substrate, n-wells, or the large diffusion regions.

Substrate
Contacts

Figure 3.7 AFRL/MRC 2 Input NAND gate

3.2.6 Summary of Radiation Effects. Some important walk-away knowledge from

this radiation effects section indicates there is no perfect solution for putting electronics

into space. Designers can use preventive measures at all different cost levels. Because

power, area, and speed are all important issues, these designers attempt to get the most

protection with the least amount of development and fabrication costs while maintaining

operation within other constraints. Inevitably, trade-offs among radiation hardened3 or

tolerant characteristics, development time, and other VLSI design issues will always be

driving factors in the production of space electronics.

3.3 Digital Signal Processing (DSP)

DSP is a major application of VLSI circuits. The Fourier transform is a very im-

portant DSP function due to its wide range of applications throughout engineering and

3A radiation hardened circuit can withstand "lMrad(Si) and still maintain proper function. This is
generally achieved through a hardened fabrication process.

3-13

physical sciences. This section covers the equations and algorithms behind the DSP archi-

tecture used in this project.

3.3.1 The Discrete Fourier Transform (DFT). The most common form of the

Fourier transform is the DFT commonly represented by Equation 3.1

X(m) = £ x{n)e-^ (3.1)
n=0

where x(n) consists of N samples of a finite sequence and X(m) consists of N frequency

components of x(n)'s Fourier transform. Note that there are N complex multiplies (AN

real multiplies) per frequency evaluation. The number of multiplies needed to calculate

the DFT for N frequencies is JV x (AN) = AN2 which is 0(N2) operations. Equation 3.1

can be rewritten using the substitution WN = e~3~N giving

X(m) = f) x(n)Wr (3.2)
n=0

There are two properties of Wjf that enable the calculation of the DFT in less than 0(N2)

operations. The relationships

wm(N-n) = w-mn = (yyrnny

and
p^(m+iV)7i _ yymn _ yym(N+n)

demonstrate the complex conjugate4 symmetry of WN and that WN is periodic in both n

and m respectively. Clever algorithms use these two properties to "divide" the original DFT

problem into smaller and smaller problems until a base case is reached. Usually this base

case is small enough so it can be easily "conquered" with a butterfly or some other simple

arithmetic operation. These divide and conquer algorithms reduce the running time of a

DFT computation from 0(N2) to 0(Nlog2N) making it a Fast Fourier Transform (FFT).

\A + jBY = (A-jB)

3-14

FFT research was largely pioneered by J. W. Cooley and J. W. Tukey in a paper they

published in 1965 [4] but the FFT was probably first proposed by the mathematician Gauss

in 1805 [8]. Since 1965, many researchers have accomplished a great deal in developing

new algorithms for various purposes including prime or near prime length, incomplete

sequences, sequences not of mod 2 length, etc [13].

3.3.2 The Suter/Stevens FFT Algorithm. A wavelet approach was applied by

Suter and Stevens [21] to create a hardware realization that parallelizes and localizes

the computations of an FFT in such a way as to reduce the overall power consumption.

We can represent N from Equation 3.1 as N1N2. Then, by the division theorem for

integers, let m = m2N\ + m\ and n = n\N2 + n<i where mi, n\ = 0,1, • • •, iVi - 1 and

T7i2,n2 = 0,1,•••jiVjj - 1. When given a sequence, x(n), its polyphase components [19]

are defined as xk(Mn + k) where k = 0,1,...,M-1. Now, the original N point FFT

problem can be divided into equivalence classes where Xmi(rri2) = X(rri2Ni + mi) and

Xn2(
ni) - x(n\N2 + TI2). Using this polyphase notation of the FFT enables the DFT from

Equation 3.1 to be written as

„ , s \^%^ , > ,8ir(m»yi+m,)(niJra+n»)

*mi("»2)= 2^ 2s xnAnl)e J N

«2=0 ni=0

(3-3)

With the exponential numerator multiplied out, the result becomes

W2-IJV1-1

r»2=0 nj=0

_ ■ 2xm<2N-[t»i JV2 .2trm2N^n<j . 2irmi n-\ JVg . 2irroi n%
N (3.4)

where the first exponential is equal to unity. Further simplification leads to

JV2-1

Xmi{m2) = ^2
»12=0

■ 27rmi n2
Ni-1 ,2nm-\ ni ■ «mi 7.2 ^—v . — j—„I

ni=0

. 2?TT7l9fl2
' N2 (3.5)

or
JV2-I

xmi(m2) = Yl
H2=0

JVi-1

m=0

"1 Tr/-m2»i2
rKiV2 (3.6)

3-15

in WN notation. The motivation behind manipulating the FFT into the form of Equa-

tion 3.6, and how this maps to a low power implementation will be more clear following a

discussion of the generic architecture in Section 4.2.

This algorithm can be implemented hierarchically, allowing the Ni and JVjj blocks to

be a smaller instantiation of the algorithm. For instance, if N = 1024 where Ni = 16,

and JV2 = 64, the N\ and JV2 blocks can each be decomposed into Nu = N12 = 4 and

N21 = N22 = 8. The Derivation of the FFT-4 in Section 3.3.3 demonstrates that four-point

FFTs can be implemented without multiplication, so a hierarchical decomposition which

maps the leaf nodes to four-point FFTs is the most efficient realization in terms of area

and power. Working in the opposite direction, it is easy to see that FFT point sizes that

are an even power of the base FFT point size work best.

3.3.3 The Base Case FFT. Using a divide and conquer algorithm like the one

above, eventually a base case is reached that cannot be divided further. Presented here is

the derivation of the FFT-4 from the DFT as it is implemented in this project. This is

a standard decimation-in-time algorithm with a minor modification to eliminate the need

for a complex-valued multiply.

Using the relations X(m) = Re{X(m)}+jIm{X(m)}, x{n) = Re{x(n)}+jlm{x(n)},

and j x (Re{x} + jlm{x}) = —Im{x) + jRe{x}, the complex DFT is written as

X(m) = W4x(n)

' X(0) ' W40 W4° W4° W40 x(0)

X(l) w4° wl wl wl x(l)

X(2) w2 wl w£ wl x(2)

. *(3) . _ wl wl wl wl _ _x(3)

(3.7)

(3.8)

in matrix form where X(m) represents the output sequence, W4 is the DFT matrix, and

x(n) is the input sequence. Performing the matrix multiplication, Equation 3.8 can be

written as

X(0) = x(0)Wl + x(l)Wl + x(2)Wl + x(3)Wl (3.9)

3-16

X(l) = x(0)W% + x(l)Wl+x(2)Wl + x(3)Wi (3.10)

X(2) = x(0)W! + x(l)WZ+x(2)W£ + x(3)W! (3.11)

X(3) = x(0)Wl + x(l)Wl + x(2)Wl + x(3)Wl (3.12)

Prom Section 3.3.1 we recognize by symmetry that

W4° = -wl

wl = -Wf

and by periodicity that

wl = wl
wl = wl
wl = wl = -wl

Expressing all W|» in Equations 3.9 through 3.12 with Wl and W4
X where Wf = 1 and

Wl = —j renders

X(0) = x(0) + x(l) + x{2) + x(3) (3.13)

X(l) = x(0) - jx(l) - x(2) + jx(3) (3.14)

X(2) = x(0) - x(l) + x(2) - x{3) (3.15)

X(3) = x(0) + jx(l) - x(2) - jx(3) (3.16)

If we let a = x(0) + x(2), b = x(l) + x(3), c = x(0) - x(2), and d = x(l) - x(3), where

a, b, c, and d are complex variables, we can factor the j's and substitute the intermediate

values into Equations 3.13 through 3.16 giving

X(0) = a + b (3.17)

X(l) = c-jd (3.18)

X(2) = a-b (3.19)

3-17

X(3) = c + jd (3.20)

This simplified computation is easily visualized in the signal flow graph of Figure 3.8.

x(0)„

x(2)»

Figure 3.8 Four Point FFT Signal Flow Graph

Ordinarily, the -j multiplier on the d path in the signal flow graph would require

a complex-valued multiply. In the realities of the computation, however, the real and

imaginary components of the intermediate values a, b, c, and d are kept separate so Equa-

tions 3.13 through 3.16 become

X(0) = (aÄ+ja7)(l) + (6Ä+i&/)(l)

X{1) = (cÄ+j'c/)(l) + (dÄ + jd/)(-j)

X(2) = (aÄ + ia7)(l)-(6H+j6/)(l)

X(3) = (cÄ+jcj)(l)-(dH+jd/)(-i)

(3.21)

(3.22)

(3.23)

(3.24)

Distributing the - j term and grouping the real and imaginary components together renders

X(0) = (aÄ + 6Ä)+i(a/ + 6/)

X(l) = (cÄ + d/)+j(c/-dÄ)

X(2) = (aÄ-6Ä)+j(aj-6/)

X(3) = (cÄ-dj)+j(c/ + dB)

(3.25)

(3.26)

(3.27)

(3.28)

3-18

The signal flow graph in Figure 3.9 represents the separated real and complex com-

putations of Equations 3.25 through 3.28.

Re«0)> „ Re{a>

Im{x(3)>

Figure 3.9 Four Point Complex FFT Signal Flow Graph

Using this rearrangement of values, only 16 addition or subtraction operations are

required with no multiplication making this ideal for the base case.

3-4 Summary

As you can see, this project has married three deep topics, all of which could not be

exhausted by years of research. It is recommended that the references cited in this chapter

are explored for more detailed information on asynchronous design, radiation effects on

micro-electronics, and the fast Fourier transform.

3-19

IV. Design

The purpose of this research is to demonstrate the feasibility of implementing an FFT

algorithm in a micro-electronic circuit using VLSI. This chapter begins by discussing many

of the high level design issues that surround this project. Following these issues, the generic

Suter/Stevens architecture is discussed along with the design decisions regarding each of

the major components.

4-1 High Level Design Issues

This section covers many of the higher level design issues that affect other lower level

design issues in the actual implementation.

4.I.I Designing Low Power Space Applications. Solar panels and nuclear gener-

ators are the only way a satellite can acquire energy. Therefore both peak and standby

power must be kept to a minimum.

A common method of reducing power consumption in integrated circuits is to lower

the supply voltage, yielding a quadratic improvement in power at a linear cost in perfor-

mance when the transitors are operating in the saturated region. However, scaling the

voltage of a CMOS circuit allows it to become more susceptible to SEU because the noise

margin between a logic high and a logic low is reduced. SEU possibilities are further

acerbated due to the threshold shifts that occur under radiation. Therefore, voltage scal-

ing must be used judiciously and in general has more restrictions than in Earth-bound

electronics.

The power and complexity required to implement many CMOS functions can be

reduced using circuit techniques such as dynamic, pre-charge, and pass-gate logic. Unfor-

tunately these techniques are also to be avoided since the single event effects can prey very

easily on these structures. Design is largely limited to static logic gates.

Fortunately standard CMOS processes can be used while still achieving radiation

tolerance. The AFRL/MRC cell library discussed in Section 3.2.5 is specifically designed

for the MOSIS Hewlett Packard 0.8/im fabrication. An unfortunate side effect of this

4-1

convenience is that the radiation requirements result in devices much larger than would be

used otherwise, consuming more power. For example, the minimum size inverter width5

in the AFRL/MRC cell library is 50A for the N-FET and 90A for the P-FET! Typically

the minimum sized transistor for both N and P-FETs is 3A to 5A. With the additional rad

tolerant characteristics, the total size of the inverter cell is 42A x 119A.

Architecture becomes the primary means of reducing power in space applications, due

to constraints to voltage scaling, circuit structure, and device size. This FFT architecture

implemented using asynchronous circuits significantly reduces the power compared to other

space worthy designs. The most significant contributions to low power in this architecture

are twofold. First, the algorithm has been designed to maximize locality, point-to-point

data pipelining, and hierarchy. The only shared structures in the design is the decimator

inputs, expander outputs, and pipelined crossbar switch (all discussed in Section 4.2).

Second, the operating frequency is greatly reduced by decimation allowing devices and

drivers to be undersized. This can significantly reduce the capacitance of transmitting

data signals. The asynchronous implementation technology allows the common frequency

changes to be supported at minimal energy dissipation.

4.1.2 Data Type. The data type used in this FFT implementation is 32-bit fixed

point with 16 bits used to represent the real portion of each sample and 16 bits to represent

the imaginary portion of each sample. Figure 4.1 shows how each of the 16-bit values are

broken up.

Ordinate
1 1

15 14
I

12 «11 0

L
Sign Mantissa

Figure 4.1 16-Bit Fixed Point Representation

5 A notation is used because CMOS is scaleable. A is equal to \ the smallest feature size of a given
CMOS fabrication technology. In this case, A = 0.4/un because 0.8/rai technology is used.

4-2

The sign bit is the most significant bit, the ordinate (> |1|) occupies the next three

bits and the mantissa (< |1|) occupies the remaining twelve bits. The signed two's comple-

ment 16-bit fixed point data works just like signed two's complement integers so the range of

data representation is 1000.0000 0000 00002 (-8.000 000 000 OOOio) to 0111.1111111111112

(7.999 755 859 375io).

Although we need to worry about overflow with addition and subtraction, we must

also be concerned with the error introduced by the complex-valued multiplier using fixed

point representation. Keep in mind that the multiply operation in this application can

only return a magnitude less than or equal to the input. Referring to Equation 3.6, the

constant multipliers matrix is characterized by W^lW2. For this project (as we will see in

Section 4.3) N = 16, and mi,n2 = 0,1,2,3 rendering,

W^1"2 =

w& w& wft w&
WPe We W& ^i36

w?6 ^i26 w£6 wfa

^1°6 ^136 Wft Wit

(4.1)

Using WJV = e-J"w we can determine the approximate decimal value of each matrix element

resulting in

Wig1"2 =

1.0000 1.0000 1.0000 1.0000

1.0000 0.9239 - jO.3827 0.7071 - jO.7071 0.3827 - j0.9239

1.0000 0.7071 - jO.7071 0.0000 - jl.0000 -0.7071 - jO.7071

1.0000 0.3827 - j'0.9239 -0.7071 - jO.7071 -0.9239 +J0.3827

(4.2)

Even using decimal representation, error would still be introduced because some of

the matrix elements are irrational. However, the introduced error is worse for the binary

representation used in this project. Assuming we have a binary number and a decimal

number, each with the same number of digits, the binary number will only be able to

represent log2(n) of the magnitude of a decimal number. Table 4.1 shows how each binary

representation stacks up to decimal equivalents.

4-3

Table 4.1 Constant Representation
Decimal Value

(15 places)
Binary

Representation
Decimal

Conversion
Resultant
error (%)

0.38268343236509 0000.0110 0001 1111 0.382568359375 -0.03007

0.70710678118655 0000.1011 0101 0000 0.70703125 -0.01974

0.92387953251129 0000.1110 1100 1000 0.923828125 -0.00556

Table 4.1 shows the error introduced by the 16-bit fixed point representation is min-

imal using a 12-bit mantissa. Without normalization after each sub-FFT computation,

the ordinate magnitude increases linearly with each FFT point size increment. Assuming,

for example, that the input data can fit within a 3-bit ordinate (-8 < n < 7.999...), the

output ordinate can have a maximum size of that listed in the right column of Table 4.2

for each point size given. The last row (an FFT-1024) indicates only two bits can be used

for the mantissa. Two mantissa bits can only be accurate to 0.25IQ!

Tab: e 4.2 Ordinate Requirements for Fixed Point
FFT Point Size Maximum Output Ordinate

4 5 bits
16 7 bits
64 9 bits

256 11 bits
1024 13 bits

Data

Fixed point representation has limitations for larger FFT point sizes unless the input

magnitude is limited to < |1|. Otherwise, a floating point or a hybrid block floating

point data type (normalization after each sub-FFT computation) should be used to ensure

maximal accuracy.

4.1.3 Parallelism Versus Control Path. The tradeoff between the amount of

architectural parallelism and the size of the control path became an important high level

design consideration during the course of this project. A higher degree of parallelism leads

to faster computation, higher throughput, and less control circuitry at the expense of

more die area. A lower degree of parallelism (more component reuse) reduces die area but

increases computation time, reduces throughput, and increases the amount and complexity

of control circuitry. Since a working circuit that fits on a reasonably sized chip is desired, it

4-4

is important to find the "middle ground" to get a circuit working with only a fair amount

of work and still fit onto a chip.

4-2 Generic Architecture

There are six major components required to implement the FFT of Equation 3.6. The

block diagram of Figure 4.2 shows how each of the components fit into the computation.

First of all, the data is decimated in time into JV2 sequences of length Ni- Then, the FFT of

each sequence is computed (the interior summation), followed by the multiplication of the

constants (W^1"2). The complex-valued multiply execution time is critical for the overall

N- point FFT performance since Ni x (JV2 -1) operations are required. After the complex

multiply, the partial transformed data is interleaved, as required by the FFT, through a

pipelined crossbar switch. This pipes a data stream to the iV2-point FFT blocks. Finally

the data, which is decimated in frequency, goes to an expander to correctly sequence

each fully transformed element in the output sequence as X(m) and regenerate the input

frequency.

4.3 Specific Architecture for This Project

The focus of this design is to demonstrate the functionality of the algorithm with

the minimum iteration. Therefore N = 16 was chosen with N\ = iV-j = 4. This allowed

the basic architecture to reuse the Ni and iV-j blocks, drastically saving on area with only

a minimum of control overhead.

Control operates in data-flow pipelines, using data bundling and four-phase hand-

shaking protocol between each stage. Control of every major component is implemented

using one-hot encoded state machines [9]. There are 16 unique burst-mode asynchronous

finite state machines (AFSMs) used in the control structures. Some of the AFSMs are very

simple like the ones used to control register locking which have 3 states with 2 inputs and

2 outputs. Others are more complex like the multiplier controller which has 9 states with

8 inputs and 6 outputs. Sections 4.3.1 to 4.3.5 discuss the design choices made for each

part of the architecture.

4-5

x(n)
0. JV3

so("l)

\Ni Constants!

FPT

INa
»i("i)

pVl Constants!

FPT

Lra^-'t"'',
\N\ Constants!

FFT

*o(0)

xi (0)

(0)

*o(l)

'*-! (1)

S' '// *w--l(l)

AT2 pt.
FFT

*(m) TJVi
JCp(m2)

iV2 pt.
FFT

m ■Xl("»2)

TiVi«]

»0(^1 -1)

■ air(Wl-l)
eJ^Tfei(JVi-l)

a,(Jf,-i)(Wi-i)
' w »iv2-i(JVi-1)

JV2 pt.
FFT

Figure 4.2 Generic Block Diagram of the Suter/Stevens FFT Algorithm

4.3.1 Decimator. The purpose of the decimator is to break down the N input

values into N2, JVj. value sets. In this case, where N = 16 and Ni = N2 = 4, the first

sequence includes xo,a;4,X8, and »12, the second sequence includes xi,x$,xg, and Z13, and

so on.

Designs Considered. In the synchronous domain, decimation is a bit

more complex than in the asynchronous domain. Instead of having to insert 0s between

every nth sample, we simply take only n samples and ignore the rest of the sequence. For

this project, three different ways to asynchronously decimate a sequence were examined.

The first is to use a brute-force state machine that will have one request line in and

N2 request lines out. As a request comes in, the next request out line is raised until the

cycle repeats. It was found after quick attempts to implement this specification that the

MEAT [3] and 3D [22] tools produced unwieldy Boolean equations that were to large to

implement efficiently in CMOS.

4-6

Another approach is to use a global one-hot sequence. In a global one-hot sequence,

the request in is routed to the N2 one-hot machines and each one raises its local request

signal at the appropriate time (more will follow on this in Section 5.2.1). The global

one-hot approach has the advantage that only one machine delay lies between the global

request and the local request.

The last approach pondered for this design is a decimator tree. Instead of specifying

a decimate-by-JV2, we specified a decimate-by-n where nh = Ni and h is a positive integer.

Then we formed a tree of the n blocks to compose the full size decimator. There are two

drawbacks of the decimator tree. First of all, 2^-1 decimator units are required. For long

input sequences, this is a genuine area concern. Secondly, as the height of the decimator

tree grows, the delay from a request at the root will experience significant latency (\logh AT])

as it propagates to the proper leaf node.

There are at least two types of decimator trees that can be used. One would contain

all the request and acknowledge handshaking where the farthest leaf of the tree has to

acknowledge before it trickles back up the tree so the root decimator can acknowledge

back to the sender. The other implementation, which is potentially more efficient, uses an

OR structure to fan-in all of the leaf acknowledge signals and the decimator tree is only

concerned about the request signals being raised in the proper order.

Chosen Design. The design used in the VHDL FFT-16 simulation is

a decimator tree with external acknowledgment. Since the input sample handshake can

only happen one value at a time, the acknowledgments are all mutually exclusive so there

is no hazard potential by ORing all iV2 acknowledge signals together.

4.3.2 FFT-4. Intuitively, the FFT-4 element takes the 4 point FFT of each

decimated sequence. There are four of these blocks for the 16-point FFT assuming they

are used for both the iV*i and N2 as in this project.

Designs Considered. The FFT-4 seems to be the architectural com-

ponent with the most design flexibility. The initial design direction was to minimize the

number of registers and ALUs to save on area and because the FFT-4 was not the bottle

4-7

neck of the data path. Schemes using eight 16-bit registers with two or four ALUs were

examined initially. Using the burst mode AFSM synthesis tools, it was soon clear the

asynchronous control units performing the necessary operations for each of these schemes

were complex and difficult to implement in silicon. Attempts were made to divide up the

control as much as possible but then integrating the divided state machines became a dif-

ficult task. Before too long, it was discovered this approach was counterproductive and a

new design was pursued.

Chosen Design. For simplicity and ease of implementation, a modified

data-flow design was used for FFT-4 requiring no register reuse. There are eight 16-bit

input registers, eight 16-bit intermediate registers, and one ALU. The FFT-4 control is

divided into three sections. The input stage is responsible for reading in the four 32-bit

input words, placing them in the eight 16-bit input registers. The intermediate stage is

responsible for the eight intermediate value computations. Each involves reading data from

two input registers, performing an ALU operation, and writing the result to an intermediate

register. The output stage follows the completion of the intermediate stage by producing

the four output values, one component at a time. These output computations require

reading from two intermediate registers, performing an ALU operation and forwarding the

result to the next stage of the FFT-16 computation.

The ALU used in this project is based on the static dual rail asynchronous adder

from work done at the University of Manchester [6]. This is a ripple carry adder that has

a carry bit for both carry out 0 and carry out 1. This is an average case, data dependent,

ALU with completion detection. This ALU achieves average case performance because

each slice of the adder can identify a carry generate situation (both inputs are a logic high)

and a carry kill situation (both inputs are a logic low). In the case of a carry generate,

the slice can immediately raise the carry out 1 bit regardless of the carry in. Similarly,

the carry kill case raises the carry out 0 bit regardless of the carry in. If the inputs do not

indicate either one of these cases, the slice must wait for the appropriate carry in signal

to be raised before determining the carry out. When a certain slice raises one of its carry

4-8

out signals, it raises a completion signal that is fed into an AND tree with all the other

stages. This ALU is used in both the FFT-4 and the complex-valued multiplier.

4.3.3 Complex-Valued Multiplier. The complex-valued multiplier is responsible

for multiplying two 32-bit complex values together to produce a third 32-bit value. Nor-

mally this multiplication would produce a 64-bit complex value but in order to implement

the hardware properly, the 32 least significant bits (LSBs) of the mantissa are truncated.

The Booth Multiplication Algorithm. The average case delay charac-

teristics of the Booth multiplication algorithm make it a prime choice for asynchronous

design. This benefit, coupled with the significant amount of prior work in this area, led to

minimal consideration of other designs.

The average case speed advantage for the Booth multiplier lies in the assumption

that shifting takes less time than adding or subtracting. By determining whether or not

an ALU operation is required, and performing one only when necessary will save overall

computation time. The standard Booth (radix-2) algorithm works by examining the LSB

of the current multiplier, Xn, as well as the previous (pre-shifted) multiplier LSB, Xn-\

(The first two bits examined are XQ and 0). Table 4.3 displays the instruction for each

combination of decoded bits.

Table 4 .3 Radix-2 Booth Encoding
xn Xn-i Operation

0 0 Shift product right
0 1 Add multiplicand, then shift
1 0 Subtract multiplicand, then shift
1 1 Shift product right

When employing the standard Booth algorithm, the number of shifts required to

complete a multiply operation is equal to the length of the multiplier. The worst case

timing for this radix-2 algorithm will occur when the multiplier is a string of alternating

ones and zeros. In our incessant desire to make the fast-faster, an improvement was

made to the standard Booth algorithm where three bits are examined at once instead of

just two [2]. When operating on three bits at a time, the number of shifts required is

4-9

halved. However, it is more likely an ALU operation will be required. Table 4.4 shows the

operations required for each bit combination. Again, the first set of bits examined is X\,

XQ, and 0.

r [able 4.4 Radix-4 Booth Encoding
xn Xn-1 Xn-2 Operation

0 0 0 Shift product right
0 0 1 Add 1 x multiplicand, then shift
0 1 0 Add 1 x multiplicand, then shift
0 1 1 Add 2 x multiplicand, then shift
1 0 0 Subtract 2 X multiplicand, then shift
1 0 1 Subtract 1 x multiplicand, then shift

1 1 0 Subtract 1 x multiplicand, then shift
1 1 1 Shift product right

Previous Work. As a special study at the Air Force Institute of

Technology, Sam SanGregory undertook the asynchronous multiplier design. He pursued a

low power design using pass-transistor, dynamic, and pre-charge logic, all of which should

be avoided for a radiation tolerant design. Nonetheless, many of his designs were translated

into radiation tolerant implementations and used with only slight modifications in some

cases.

Chosen Design. From Section 3.3.1 we know that a complex-valued

multiply is actually four simple multiplies with one addition and one subtraction,

XxY = (Xr+jXi)x(Yr+jYi) (4.3)

= XrXYr+jxiXrXYi + XiXYj+fxiXiXYj) (4.4)

= XrXYr-XiXYi+j(XrXYi + XiXYr) (4.5)

where the real and imaginary components are kept as separate values.

We also know from Section 4.2 that the multiply is in the critical path. To make the

multiplier fast and small, a two-cycle dual multiply scheme was implemented. One way of

looking at Equation 4.5 is to see that Xr is multiplied by two values and Xi is multiplied

by the same two values. The chosen design of the FFT-4 element from Section 4.3.2 makes

4-10

only the real or the imaginary word of each component available at once. Prom this, the

chosen "multiply2" design decodes the Booth instructions from the FFT-4 data-word and

operates on both multiplicand components. Following the two cycles, the final subtraction

and addition operations are performed to complete the complex-valued multiply.

Time Saving Modifications. In the work performed by SanGre-

gory [17], some ingenious time saving modifications were pursued. These time saving

short-cuts were based on the assumption that, for DSP applications, many multiplicands

would be equal to zero, one, or negative one. When one of these values appear, the multiply

could finish quickly and save power. Because we are working with an asynchronous design,

any speed improvements in the critical path are helpful to improve the overall performance

of the chip.

Table 4.5 Extra Storage Decode
Si So Operation
0 0 Multiply X by 0
0 1 Multiply X by 1
1 0 Multiply X by -1
1 1 Multiply X by Y

Since the Multiplicands are stored in some kind of memory, it would not be difficult

to store the additional Si and So bits along with the constant multiplicand.

The way the complex-valued multiplier is designed for this project (receives only

the real or imaginary data-word at a time) will not allow for these modifications to work.

However, the FFT-4 design proposed in Section 7.2.1 would allow the shortcuts to work in

conjunction with the "multiplier2" design. Because the real and imaginary data-words from

the FFT-4 would appear simultaneously, the multiply short cut or the Booth instructions

could be decoded from the multiplicand in memory propagating the product as fast and

energy efficiently as possible.

4.3.4 Pipelined Crossbar Switch. The purpose of the pipelined crossbar switch

is to interleave the partially transformed values after the multiply operation and before

4-11

the second FFT. FFT-40 will operate on the first output of each multiplier, FFT-4i will

operate on the second output of each multiplier and so on.

The crossbar switch is complex in terms of inputs and outputs, however, its design

is not that difficult. As you can see from the petri-net diagram of Figure 4.3, it consists of

eight token loops, each with four token stops. There are four horizontal loops which are

advanced by each multiplier handshake. The four vertical loops are in a ripple chain and

are advanced by the acknowledgment from the reused FFT-4 elements. There are four 32

bit registers, one for each of the multiplier outputs. Since the arrival of values may be out

of order, a multiplier may have to wait to forward its output. To prevent idle time and

increase parallelism, one value from each multiplier is latched. If the second value arrives

before the first is routed, it will not be latched and the multiplier will have to wait.

Figure 4.3 Pipelined Crossbar Switch Petri-net

When both tokens are present at a given stop, a tri-state device is enabled and the

proper value is put onto one of the four output busses to the FFT-4 elements. When

this tri-state device is enabled a handshake is also commenced with the specified FFT-4

element. When the Acknowledge returns from the FFT-4 element, the horizontal loop

4-12

token advances to the next stop. This process will go on until all 16 data elements proceed

through the crossbar.

4.3.5 Expander. The final operation in the algorithm is to compose the final

output sequence following the N2 point FFT. In hardware, the expander receives XQ, X4,

X8, and X12 from the FFT-40 block, Xx, X5, X9, and Xi3 from the FFT-4i block, and

so on. In sequencing these outputs, the expander will closely match the input sampling

frequency.

Previous Work. Originally, the same concept used to implement the

decimator was to be used in implementing the expander. Specifically, the design was to

have an expander tree put together to complete the JV2 expansions to assemble the correct

output. A burst-mode specification was developed for this that proved correct as far as

the control path was concerned but implementing the data path became too complex to

implement this design.

Chosen Design. Based on the success of the ripple loop of the crossbar,

the design for the expander followed suit. In this instance, however, there is only one loop

of four ripple one-hots. The loop is not allowed to progress unless the proper order of

requests is maintained. It is possible for the components to become valid before their turn

but they are ignored until the loop token appears. Figure 4.4 shows how this ordering

works after some inputs and outputs have been transfered. Note how the token is waiting

Figure 4.4 Expander Petri-net

for an output from FFT-42 but FFT-43 already has its output ready. The FFT-43 output

4-13

will have to wait until FFT-42 produces its output and the token is advanced to the next

stop.

4-4 Summary

This chapter has attempted to highlight all work that has been accomplished to date

on this project discussing each at a high level. Chapter V will cover detailed implementa-

tion of each piece of hardware.

4-14

V. Implementation

This chapter gives an in-depth look at how each part of the FFT-16 system is implemented.

Included in each section are block diagrams of all different levels, state transition diagrams,

and actual gate level implementations when necessary. Each sub-system is discussed in

the order encountered in the calculation of the 16 point FFT.

5.1 Decimator

Unlike the theory behind the decimator, its implementation is very simple. Essen-

tially, the decimator is a router that diverts the input handshake into the proper FFT-4

block (0-3). Because the data lines are common to all four FFT-4 blocks they are routed

to all, but the proper values are latched only when one of the blocks receives a hand-

shake. Figure 5.1 shows the decimate-by-two state machine and Figure 5.2 shows how the

decimator is implemented as a tree of three 2:1 two cycle decimators.

GREQ+
LREQ0+

GREQ-
LREQ1-

SO j

s30

SI

S2

jGREQ-
LREQO-

GREQ
 [>

5! m o
Ul o

LREQO

LREQ1

GREQ+
LREQ1+

Block Diagram State Transition Diagram

Figure 5.1 Decimate-By-Two State Machine

With this design, acknowledgment is handled externally. This will be further ex-

plained in Section 5.2.1. Using this machine, the decimate by four is created by linking

the even and odd pairs together at the leaf node. This is shown in Figure 5.2.

5-1

REQIN

REQO 5!
CO o
Ul a 5!

CO
Ü
LU
Q

REQ2

REQ1 2
CO
Ü
Ul a REQ3

Figure 5.2 Decimate-By-Four Block Diagram

The only real challenge of the decimator design is to make sure that each of the leaf

"REQUEST" signals have enough drive to get to each of the FFT-4 blocks. This will be

handled in the layout.

5.2 FFT-4

To abide by the purpose of choosing an N that is a perfect square, the FFT-4 block

executes both the N\ and N2 point FFT computations. Each of the four FFT-4 blocks

consist of four major parts as shown in Figure 5.3.

The first operation reads the four 32-bit input values into the input register bank with

a series of REQIN/ACKOUT handshakes. When x0,xi, and x2 are read in, the first of the

intermediate operations may begin by reading two values out of the eight registers in the

input stage, performing addition or subtraction in the Arithmetic Logic Unit and storing

the sum or difference in the intermediate register bank. When the eight intermediate

calculations are complete, the output control stage executes the final eight operations to

complete the FFT calculation. Each one of these operations begins by reading two values

out of the intermediate register bank, performing arithmetic on them and concludes with

releasing one 16 bit value at a time to the next stage. Sections 5.2.1 through 5.2.4 discuss

each of the four major components at length.

5-2

INPUT

STAGE

i
INPUT

STAGE

INTER

STAGE

1«*>. "*r>

INTER

STAGE

OUTPUT

STAGE

V

OUTPUT

STAGE

Control Path Data Path

Figure 5.3 FFT-4 Block Diagram

5.2.1 Input Control/Registers. The overall function of the input portion is to

receive four 32-bit complex values, each with a REQ/ACK handshake with the previous

stage and store each in a dedicated static register. The input stage also handshakes with

the intermediate computational block when the necessary input values become available

to create the intermediate values a, b, c, and d.

Global One-Hot Encoded AFSM. Each new input value has its own

register so the control unit needs to write enable the dedicated register at the appropriate

time. This is accomplished using a global one-hot encoded state machine. Figure 5.4 shows

the block diagram and state transition diagram for this machine. Each global one-hot will

assert its LREQ or "Local Request" signal when both GREQ, or "Global Request" and

GO are high. This implementation becomes useful when many are "chained" together as

in Figure 5.5. When a repeated GREQ signal is given, the waveforms of Figure 5.6 result.

Input Control. The function of the input control is to keep track of

the number of input handshakes so the intermediate control block can be signaled when

5-3

GLOBAL
ONE-HOT

Block Diagram

GREQ

GO

f so]
GREQ-

S1) V
S2J

GREQ-
IGREQ
ILREQ

(SV GREQ \
NEXT-

QA L 4
**^ /GREQ~*GO~\

\^__^/ LREQ- * NEXT"
S3J

State Transition Diagram

Figure 5.4 Global One-Hot State Machine

GLOBAL
ONE-HOT

GLOBAL
ONE-HOT

LREQ2A

GLOBAL
ONE-HOT

GLOBAL
ONE-HOT

QREQ

Figure 5.5 Loop of Global One-Hot Machines

5-4

GLOBAL ONE-HOT TEST BENCH
97/09/07 16l04l«1

V L
0 I
L N
T

V L
0 I
L N
T

V L
0 I
L N
T

¥ L
0 I
L N
T

V L
0 I
L N
T

1.0

2.0

0.

1.0

a.o

0.

" i—i r~| n rr I— r~i ; |— I] "
E \ j E
l^ , I .J L.I.. _J..i.. ^_ ..J... J_ ..i.. ' ' • _■_ „J.JLü

n 1—i—i—i—i—I—i—i—i—i—I—n—i I i ■ r ■ I-

4.o r

a.o r

o. - l l' i—r—i—i i l' i i i i" i i i i' i I-1

_ TESTTB.TR0
— GREO

A

TESTTB.TR0
LREQO

TESTTB.TRO
LREQl

1—r i r i—hi—i—lA

4.0 r f

a.o r f

0 . r-?—i—i—r—I r i—r—i—I T—r~\—n—n—I—i—m—i—I—i

- TESTTB.TRO
..- LREQ2

- A

■i"iH—I—i—i—IA

4.0 r"

2.o r"

-i—i—i—hi—i—i—i—I—i i" i i i I i i i i I i

Z TESTTB.TRO
— LREQ3

- A

 .--vi-i»
60.ON 100.ON ISO.ON 200.ON 250.ON 300.ON

0. TIME CLIN1 335.ON

Figure 5.6 Four Global One-Hot Waveforms

enough values are present to begin intermediate arithmetic. Figure 5.7 contains the state

transition diagram which is a single loop of states that handshakes with the intermediate

stage when XQ and x<i are ready, and when x\ and 2:3 are ready. The actual complexity of

this state machine is fairly large because there are very few distinguing variables between

the states.

Register Cell. Since the main function of the input portion of the

FFT-4 element is to store data, the most important component is the register cell. Figure

5.8 shows the typical cell used throughout the entire FFT-16 design in some variation or

another.

This register cell is based on a clocked register design contained in the AFRL/MRC

library. All clocking components have been removed leaving this simple ASFM. The dou-

ble invert on the WEN, or write-enable, signal is necessary so upon a high-to-low WEN

transition, the non-data inputs on each of the AND portions of the AND-OR-INVERT

5-5

y \ REQ
f N. ACK

REQ-
ACK-

f so V—*■
\ S1 /

/S2V

BDACK-»REQ/
ACK /

(s9 S8
'BDACK'REQ«^

BDREQ-
/REQ- • ACACK-V

ACK- • BDREQ

REQ-
ACK-

S3 S4

S7 S6

REQ
.ACK

S5
REQ- « ACACK
ACK • ACREQ-

REQ-
ACK- * ACREQ

Figure 5.7 Input Control State Machine

IREN

Figure 5.8 Standard Register Cell

gate are high for a period of one inverter gate delay, removing the hazard on the gate. If

only a single inverter was used for the WEN input, upon the same high-to-low transition,

there would be a logic low on the non-data input of each AND portion for the period of

an inverter gate delay causing the hold value of of the register cell to be zero regarless of

its intended value.

Putting it all Together. Now that all of the components comprising

the input stage of the FFT-4 have been described, we can take a look at how it all works

together. Figure 5.9 shows how the IREQ signal from the input control state machine

becomes the global request to the four one-hot machines. The local request from each

machine becomes the write enable to each of the registers. One important thing to point

out is the 4-way fan-in (16 way fan-in internal to the register) for the write acknowledge

only comes from the imaginary component register in each pair saving area and time. The

correctness of the delay with only one register fanin for the ACKOUT signal was verified

using Spice6.

6Avanti Corp. Hspice version 95.1.

5-6

o
=1
58

G1H G1H G1H G1H

I
Re{XO} lm{XO}

J. 1
Re{X1}

Li
lm{X1}

3
Re{XZ}

E£
lm{X2)

1
Re{X3} lm{X3}

Figure 5.9 Input Block Diagram

FNCT

BIN

AIN »

0->>-

L^»-
H>-

Figure 5.10 Nominal ALU Stage

5.2.2 Arithmetic Logic Unit. Two basic circuits make up the dual-rail carry-

ripple ALU. Figure 5.10 represents the 16 nominal stages of the ALU. Each slice uses

an XOR gate on the B input to select inversion if the Function Bit is asserted. Then

the SUM is computed using the B or B XORed with A followed by an XOR with CIN1.

The computation of the carry bits can happen in one of two ways. If the A and B inputs

indicate a carry-kill (00) or a carry-generate (11) condition, the COUT0 or COUT1 bit can

be raised accordingly. This allows the carry chain to be shorter than the worst case most

of the time allowing for faster operation. If the input data does not determine the proper

carry, the stage must wait for one of the carry-in bits to become valid before the appropriate

5-7

FNCT »-

REQ»-
-o-

CIN1 • • CINO

C>-t>—'
Figure 5.11 ALU Setup Stage

carry bit is raised. The DONE output from each stage is fed into a NOR-NAND tree 7 to

compose the AACK signal.

To initiate the ALU operation, the AREQ signal is sent to the special "stage-1" of

Figure 5.11. Here the carry chain begins by raising the COUTO or COUT1 depending on

the FNCT input. If there are no carries from this setup stage, the DONE signal becomes

the completion signal for the ALU (AACK).

5.2.3 Intermediate Control/Registers. The intermediate operations are the most

complex in the FFT-4 because they involve reading a 16 bit value from the input register

file, performing an ALU operation (either addition or subtraction) and then writing the sum

or difference to one of the eight intermediate registers. This operation cycle repeats eight

times during the intermediate phase so it is apparent that generating the control signals

for the ALU and the register banks is quite complex. Much of this complex signaling,

though, is handled using a new approach of the one-hot architecture.

Ripple One-Hot Encoded AFSM with Context. Unlike the global one-

hot sequence, the ripple one-hot sequence works with external signaling only at the begin-

ning and end of an indefinite length sequence. Figure 5.12 contains the block diagram and

state transition diagram of the ripple one-hot state machine and Figure 5.13 shows how

a sequence of these ripple one-hots is linked together. It is important to note that this

implementation of the ripple one-hot sequence uses two enabling signals for each block,

the REQ signal and the CONTEXT signal. The CONTEXT signal is raised earlier, to

allow setup time for the ALU inputs whereas when the REQ signal is raised, the PREQ or

process request signal is immediately raised and routed to an OR tree to enable the ALU.

7Normally this would be a NAND-NOR tree to achieve the 17-way AND function but the tree starts
with DONE instead of DONE.

5-8

PREQ»

RIPPLE
ONE-HOT
(w/ Context)

RACK'

RACK

CONTEXT

Block Diagram

PREQ- • ACK- • CONTEXT

State Transition Diagram

Figure 5.12 Ripple One-Hot State Machine With Context

Intermediate State Machine. The intermediate state machine ex-

changes handshakes with the input state machine for the computation of the intermediate

values. The intermediate state machine must also know that all output values have been

completed before the next cycle begins via the OUTRUN signal.

To start the ripple one-hot sequence, the intermediate state machine of Figure 5.14

sends the FREQ signal and receives the FACK and LREQ signals. Since it is performing

PREQOl

RIPPLE

ONE-HOT

(w/ Context)

RIPPLE

ONE-HOT

(w/ Context)

RIPPLE

ONE-HOT

(w/ Context)

RIPPLE

ONE-HOT

(w/ Context)

LREQ

Figure 5.13 Loop of Ripple One-Hot Machines

5-9

the one-hot ripple cycle for both the calculation of a and c as well as b and d, it must do

it twice.

ACREQ+ OUTRUN- FACK+ LREQ- ACREQ*
ACACK+FREQ+ FREQ-

FACK-LREQ+ACREQ-
ACACK-

FACK-LREQ+BDREQ- FACK+LREQ-BDREQ*

BDACK- FREQ-

BDREQ+
BDACK+FREQ+

Figure 5.14 Intermediate State Machine

Putting it Together. When connected in the full architecture of the

intermediate control, Figure 5.15 results. It is important to point out some key information

about the intermediate stage block diagram. All blocks labeled "DEC" represent 1:2

decoders with the BDACK signal acting as the selector. When BDACK is low, the top

or left signal is selected and when BDACK is high, the bottom or right signal is selected.

These decoders enable reuse of the four ripple one-hot machines thereby reducing the size

of the control path.

The AND-OR-INVERT structure on the input register read enable signals is there

to make sure the proper register is enabled even after the context signal is lowered.

Usage of the AND gate on the intermediate register write enable is present to make

sure the write is enabled only long enough for the valid data to get written. Once the

PREQ signal goes low, some the outputs of the ALU will change quickly. If the register is

write enabled too long, the incorrect value will be locked in. The OR-AND structure on

the PACK or process acknowledge input of each block is necessary to ensure the process

resets through the ALU and not when PREQ is lowered. If the OR gate were not used

and the intermediate write enable was simply PREQ AND AACK, the setup time for the

ALU would be reduced and delay elements could be required.

5-10

The delay element on the FREQ signal is required since the OR-AND gate is on the

first context signal. This is used because the context signal looping around from the last

one-hot to the first is high when the intermediate stage is idle. If this high context signal

propagates to the register enabling lines, there will be more than one driven value on each

data path. This delay element is also present in the output state machine but only an

AND gate is required in the first context signal since only one pass through the one-hot

sequence completes the operation.

Re{X(J} im{xo> Re{Xl} lm{Xl} R4X2} lm{X2} Re{X3) lm{X3}

Re{A} R<*B> lm{A} lm{B} Re{Q R«D} lm{C} lm{D}

Figure 5.15 Intermediate Block Diagram

Table 5.1 contains the step-by-step operation of the intermediate stage. The regu-

larity of the ALU computations allows for the reuse of the ripple one-hot sequence for the

computation of b & d following the computation of a & c.

5-11

Table 5.1 Intermediate Stage i Function
Operation Datapath A Datapath B ALU Write

1 Re{a;o} Re{:E2} Add Re{a}

2 Im{a;o} Im{x2} Add Im{a}

3 Re{a;o} Re{x2} Subtract Re{c}

4 Im{a;o} Im{a;2} Subtract Im{c}

5 Re{xi} Re{a;3} Add Re{6}

6 Im{xi} Im{x3} Add Im{6}

7 Re{a;i} Re{a;3} Subtract Re{4
8 Im{a;i} Im{a;3} Subtract Im{d}

5.2.4 Output Control. Table 5.2 shows that the first output value (X0) requires

the computation of the intermediate value b indicating the output machine must wait until

all the intermediate calculations have been completed before it begins. Figure 5.16 shows

the SO -> SI transition and the SI -»■ S2 transition are dependent on BDACK rising and

lowering respectively before the output stage may begin operation.

BDACK+

I soT SI)
LREQ+ /

OUTRUN-/

\ BDACK-
\ FREQ+ OUTRUN+

(S4
FACK-LÜEQ+

S3)
FACK+
FREQ-

S2J

Figure 5.16 Output Finite State Machine

The output block diagram, pictured in Figure 5.17, shows many of the same features

of the intermediate stage with a few notable exceptions. First of all, there are eight

ripple one-hot machines in the sequence instead of just four. This is required because the

ALU operations and operands do not fall into a repeatable pattern as in the intermediate

operations. Secondly, the OR-AND structure holding the PACK signal high to each one-

hot is reliant on the ACKIN from the previous stage rather than the AACK signal from

the ALU. The output stage and the intermediate stage do share the same ALU so even

5-12

Table 5.2 < Dutput Stage] •Ymction
Operation Datapath A Datapath B ALU Write

1 Re{a} Re{6} Add Re{X0}
2 Im{a} Im{6} Add Im{X0}
3 Re{c} Im{d} Add Re{Xi}

4 Im{c} Re{d} Subtract lm{Xx}

5 Re{o} Im{6} Subtract Re{X2}
6 Im{a} Re{6} Subtract Im{X2}
7 Re{c} Im{4 Subtract Re{X3}
8 Im{c} Re{d} Add Im{X3}

though it is not reflected in the two block diagrams of Figures 5.15 and 5.17, the control

path shown in Figure 5.3 is correct.

5.3 Complex Multiplier

Refering to the previous chapter on this subject, a complex multiply of two values

actually requires four real multiplies followed by one addition and one subtraction. This

implementation performs two real multiplies in parallel followed by the ALUs dedicated to

addition and subtraction. Section 5.3.1 describes the implementation of the real multiply

followed by the data path and control path for the completion of the real multiply.

5.3.1 Real Multiply. Figure 5.18 contains the control and half of the data path

of the radix-4 16-bit real multiplier. Starting with the REQIN signal, the first block

encountered is the loader state machine. The loader puts the multiplier in the X register

at the appropriate time. A series of state machine loops are performed by the multiplier

state machine which controls the ALU math and the shifting in the product register.

When the correct number of shifts have been performed, the real multiplier control unit

will handshake with the rest of the complex multiplier to compute and store Re{Z} and

Im{Z} in the crossbar memory element. Notice the dotted line indicating the hardware

portion that is shared between the parallel real multiplies.

To understand the two data paths of the real multiplier (hereafter refered to as the

multiplier2), refer to Figure 5.19. Although all the control in the multiply unit is shared,

only the control for the ALUs is illustrated to simplify the figure. Because the Booth

5-13

«-*■

lm{A} mm
~K

V
FNCT T . \y

Re(C} Re{D} lm{C) lm{D}

A v B

ALU /*REa <5

-O " •-

Figure 5.17 Output Block Diagram

5-14

MOM
(EXTREGftj

Loader

MULTREQ
IWTRIO)

MULTACK
(WTACK)

JfLOADVAL)

X Register

Counter

-*—t Multiplier

Control

Z Register

Shared Portion 1
Figure 5.18 Real Multiply Partial Block Diagram

decoded ALU instruction will be the same for both multiplies, the AREQ signal is routed

to both ALUs. A C-element is required to synchronize the AACK signals from each ALU

because the ALU operating time is data dependent and the real and imaginary constant

additions will likely complete at different times. Each data path has its own ALU, shift

register, and constant storage.

Loader. Continuing with the elements of the multiplier2, we start

with the loader in Figure 5.20. It is responsible for making sure the multiplier2 is not

functioning (MULTACK is low) before starting the next multiply operation. Figure 5.18

shows how the LOADX signal also clears the Z Register. For this reason, the loader must

wait until the MULTACK signal is low before loading a new value because the final output

adder and subtractor of the complex multiplier rely on the static storage of each Z Register

for proper completion.

Multiplier Register. The next item is the X register or multiplier

register. The X register holds the 16-bit multiplier with an additional zero in storage as

X_i. Since this is a radix four Booth algorithm, there are eight shifts required to cycle

through one real multiply operation. The number of shifts is controled by the counter

containing nine global one-hot machines in series. The first eight shifts enable the proper

5-15

I
Shin Reg

Multiplier

Control

a.
x

-\—>

ACKMATH [I ACKSHIFT

FNCT

\^<^>

X1X2

FROM FFT-4

1« 17
TM>

TO OUTPUT
ADDER & SUBTRACTOR

Shift Res

Figure 5.19 Multiplier2 Block Diagram

three bit set from multiplier while the ninth shift raises the DONE signal to notify the

multiplier control that instructions have all been decoded.

The multiplier register is static and the bits do not actually shift from register to

register. When the XSH signal comes into the counter, each local request turns on tri-state

buffers for three register bits at a time. The first shift enables b_i, bo, and bi. The second

shift enables bi, b2, and \>z and so on with the eigth local request enabling bi3, bu, and

bis-

Booth Decoder. Once the three bit instruction is sent to the Booth

decoder shown in Figure 5.21, it will determine whether or not an ALU operation is

required. If so, the ACKMATH signal will be raised. If not, the ACKSHIFT signal will

be raised. Regardless of which acknowledge signal is used, the FNCT8 bit determining

»n. 0: ALU addition; 1: ALU subtraction.

5-16

Loader

INTACK+
INTREQ-

VLOADVAL

Block Diagram

EXTREQ+ INTACK-
LOADVAL+

EXTREQ-
LOADVAL-INTREQ+

State Transition Diagram

Figure 5.20 Loader State Machine

addition or subtraction and the X1X29 is selected. This can be done because FNCT and

X1X2 became don't care bits when the ALU is not required for that operation. An added

benefit is that it makes the decoding logic much less complex.

XSH

AOKSHIFT

ACKMATH

Figure 5.21 Radix-4 Booth Decoder

The DONE signal is inverted and input to the two output AND gates to make sure

that when DONE is raised, the Booth decoder will not respond with an ACKMATH or

ACKSHIFT which could alter the data in the product registers. The XSH signal is also

injected after a delay element to prevent the X2, XI, and X0 line values from decoding

until the new values become valid. Without the proper delay element used here, the Booth

90: Select multiplicand x 1; 1: Select multiplicand x 2.

5-17

decoder has the potential to raise the ACKSHIFT signal and the ACKMATH signal during

the same XSH cycle.

After building this design and understanding more about bounded-delay models,

probably a better approach to the three Booth instruction bits would be to use a dual-rail

delay-insensitive scheme similar to the carry chain in the ALU. This would clearly be a

safer implementation because there would be no dependence on delay elements.

Multiplier Control. Now we get to the heart of the multiplier2 control,

the multiplier AFSM (multAFSM) of Figure 5.22. Refering once again to Figure 5.18, you

can see the relative input and output complexity of the multAFSM. The state transition

diagram, though, shows the operation really is not that complicated with three possible

loops that the multAFSM can take during operation. Starting in state 0, the multiplier

control receives the MULTREQ signal, responds by raising the MULTACK, and waits for

MULTREQ to lower. Once this happens, the first of nine XSH signals is raised. Then,

depending on the Booth instruction, the control unit can follow the ACKSHIFT loop or

the ACKMATH loop. There is no shifting in the ACKMATH loop because the outputs of

the ALU are in a hardwire shift-by-two formation reducing computation time and control

complexity within the real multiply. After the X vector has been fully decoded by the first

eight shifts, the ninth XSH pulse will raise the DONE signal and finish the first loop of

the AFSM by handshaking with the complex portion of the multiplier2.

Multiplicand Register. The Y register (multiplicand register) is pretty

basic for the FFT-16 multiplier. Because only four constants are required for the FFT-16,

local storage of the constants does not use much die area. Using this locality of storage

concept, the design of Figure 5.23 constitutes the cell used for each bit. In this cell, there

is a 4:1 multiplexor with two select bits, Ro, and Ri, implemented using two 3-3 AND-OR-

INVERT gates joined by a two input NAND gate. Also, since there is an option between

the current bit or the previous bit, an additional 2-2 AND-OR-INVERT gate is used as a

multiplexor with the X1X2 signal selecting. When X1X2 is low, the current bit is selected

for output and when X1X2 is high, the previous bit is selected.

5-18

ACKI+DONE-
REQO-MULTACK-

AACK+

f SO V -/ S8 j ' S5 \
LOADZ+

(S6)

\ DONE+ \ /A.CKMATH+
\ / AREQ+

/ LDZACK+
MULiKEytAUU- \ XSH-REOO+

MULTACK+ \
/ AREQ- XSH- LOADZ-

f \ MULTREQ-

(S2)
\ C S7 J

ACKSHIFT+
XSH-ZSH+/ ZSHACK-

^ _ AACK-ACKMATH-LDZAC3C-
XSH+

(S3) ^S4)
ACKSHHT-ZSHACK+

XSH+ZSH-

Figure 5.22 Multiplier State Machine

Arithmetic Logic Unit. The ALU here in the real multiply is very

similar to that of the FFT-4 element. The only difference is that it is being fed by two

dedicated registers so there is less setup time required to begin an operation. Some delay

is still required because the X1X2 and FNCT bits may change around the same time the

ACKMATH signal is raised which still requires a delay element on the AREQ signal. As

was stated earlier, there is no need to shift following an addition or subtraction because

the sum/difference lines of the adder are already hardwire shifted by two.

Product Register. The product register or shift register is one of

the most unique items in the real multiplier. It is implemented as a hardwire shift by

two element using a two phase pulse. The two phase pulse is generated using cross-

coupled two input NOR gates with an RC network delay element. Figure 5.24 shows the

implementation.

The unique part stems from the usage of a static shift cell implemented with the

3-2 AND-OR-INVERT gate of Figure 5.25 where the FB signal must turn on and off at

precisely the right time so the hold value of the register is not lost. This is accomplished by

5-19

X1X2 • fINPREV

M3 •—

M2

M1

MO

RO <

< i

I
R1

I

1

DATAOUT

OUTNEXT

Figure 5.23 Multiplicand Regsiter Cell

an INVERT-NAND structure fanning out to two 1X2 inverting drivers for the 21 segments

of the shift register.

There are a few advantages in using this implementation instead of the four tristate

inverters or tristate buffers. The first of these is the size. This static implementation uses

about 40% less area than the dynamic shift register implementation. There is no need

to distribute PHI1 or a CLR signal to all the registers since the CLR input into the FB

NAND GATE can clear out the AOI222 and there is only the positive input on PHI1 (the

SHIFTIN enable) because it is not driving a tristate device. The PHI2 and PHI2 are both

required because a tristate device is necessary to isolate the SHIFTOUT from the hold

value of the register to prevent a shifting value from propagating beyond its designated

cell.

Because this shift register uses static storage, the "hold" node can be distributed

to its outputs without tri-state buffering. This eliminated the need for a read enabling

signal to be distributed to each stage but it also led to a problem with the latching for the

input from the ALU and the output to the ALU. The only other disadvantage is the power

consumption. Because this is a static element, the nodal voltage is constantly charged with

intermediate results.

5-20

LOADZI ,

4>^>-

Figure 5.24 Two Phase Pulse Generator

> SHIFTIN

DATAOUT

A SHIFTOUT

Figure 5.25 Product Register Bit

5.3.2 Complex Multiply Completion. Following the two pairs of simple multiplies,

there is still more to do. Table 5.3 shows the step by step operation of the complex multiply

operation and how each step corresponds to the data path depicted in Figure 5.26.

As shown in Figure 5.26, each output of the multiplier2 block connects to one A

and B input of an adder and subtracter. Each ALU-A input contains a latch to store the

integer product of the first two multiplications as described in step 2 of Table 5.3. The

second multiplication result can be passed directly to the adder/subtracter and used with

the latched value to produce the complex-valued result. Figure 5.26(a) shows the circuit

after the arrival of Re{X}. The first two partial products have been computed and latched

in Figure 5.26(b). Since the FFT-4 will likely produce its outputs faster than the multiplier

5-21

Step
Table 5.3 Complex Multiplication Operation Steps

Operation

Receive Re{X} from FFT-4
Multiply Re{X} by Re{Y} and Im{Y}
creating the two partial products XrYr and j * XrYi
Receive Im{X} from FFT-4
Multiply Im{X} by Re{y} and Im{Y}
creating the two partial products j * XiYr and XiYi
Subtract XiYi from XrYr to produce Re{Z} and
add j * XrYi and j * XiYr to produce Im{Z}

Corresponds to .,

Figure 5.26 (a)

Figure 5.26 (b)
Figure 5.26 (b)

Figure 5.26 (c)

Figure 5.26 (d)

can use them, Im{X} will probably arrive early. Despite this, Im{X} will not be used until

after it is latched in step 3 of Table 5.3. The second multiplication pair has completed in

Figure 5.26(c) and is held statically on the data lines. The final step of Table 5.3 occurs

when all four integer multiplication products are present, and the final complex products

can be computed and latched into the crossbar switch, as shown in Figure 5.26(d).

The control path for this computation is shown in Figure 5.27. Note how the RE-

QOUT signal from the real multiply is fed into the decimate-by-two AFSM. On the first

REQOUT signal, the Dec-By-2 write-enables the register elements and "requests" the

ALUs on the second REQOUT. The ACKIN signal can come from either the ALU-A

latches or the crossbar element. Because the two signals are mutually exclusive, they too

can simply be ORed together to return to the multiplier2. The last item in the complex

control path, found in Figure 5.28, is the multiplicand counter AFSM. Since there are four

constant values used in a 16 point FFT calculation, each time the AREQ signal is raised

(in the context of Figure 5.27 only), the register constant is incremented by one.

5.4 Pipelined Crossbar Switch

The pipelined crossbar switch is very big in terms of I/O since all the partially

transformed data will pass through it during operation. The one-hot encoded sequences

work very well in the crossbar switch. The petri-net scheme (Figure 4.3) of the crossbar

shows eight loops for the 4-by-4 crossbar switch. The four horizontal loops use the global

one-hot in a similar manner to the input stage of the FFT-4. The four vertical loops use

yet another implementation of the ripple one-hot encoded AFSM. This usage is the same

5-22

(c) (d)

Figure 5.26 Complex Multiplier Data Path Operation

as the one in the intermediate and output stages of the FFT-4 without the context setup.

The simpler state transition diagram and block diagram is given in Figure 5.29. The four

horizontal loops use the same global one-hot configuration used in the input stage of the

FFT-4.

We will first examine the horizontal loops of the crossbar switch, pictured in Fig-

ure 5.30, since they are the first encountered by the multiplier outputs. As the last para-

graph mentioned, the one-hot AFSMs used here are similar to the input stage of the FFT-4.

Note how the latching of a 32-bit value occurs largely the same way as the multiplier re-

ceives a 16-bit value. The only difference lies in the addition of the inverted feedback from

the loader INTREQ line back to an AND gate with the REQIN signal from the multiplier.

The loader with feedback to the multiplier request signal is present as a pipeline latch so

the multiplier can produce outputs in parallel with the previous results being forwarded

across the crossbar switch to the FFT-4 elements. This latching is essential to the con-

5-23

WEN

REQIN

Multiply2

i >
lYRegj.

REQOUT

ACKOUT

ACKIN

RO

R1

E o
ui

<5
Multiplicand
Counter

DONE

AREQ

A ^ B
(-)

AACK

-es
_c\

AACK

WEN

D WEN
 G»

DONE

\<T

SS i o *

DONE

Figure 5.27 Complex Multiplier Control Path

AREQ
RO AREQ-

AREQ
R0-«R1

(so ' S1 j S2 S3 J

AREQ- AREQ-

(s7
AREO

R0-«R1-

, S6j
AREQ-

S5
AREO

RO

S4 J

Figure 5.28 Multiplicand Counter State Machine

currency in the overall FFT computation. After one value latches through the HOLD

state machine (to be discussed in Section 5.5), the INTREQ signal may be raised but the

crossbar row may not immediately raise the INTACK signal if it is waiting for a token.

Without the inverted INTREQ feedback, the next REQIN rise will start the loading cycle

before the previous value gets used. This is an unwanted condition that would ruin the

FFT-16 computation.

Each register has four read ports, one to drive each column in the crossbar, thus

more evenly dividing the tri-state buffering and wired-ORs. Note how the LREQ and

PREQ signals must be high to read enable the proper read port. This is essentially

saying that both the horizontal and vertical tokens are necessary to move data through

the switch. Here we can see how the horizontal loops advance. When the vertical ACKIN

5-24

REQ+
PREQt

PACK+

RIPPLE

ONE-HOT
(w/o Context)

RACK+ PACK-

Block Diagram

RREQ- RREQ-

State Transition Diagram

Figure 5.29 Ripple One-Hot AFSM Without Context

LoaderO

LOADöJ

G1H

RegisterO
!r<3:

G1H

E
::-E

So
AACKINA

R1H

TT

G1H

^E j::^

SL R1H

AACKINB TT

G1H

*£
So

•F
R1H

ÄACKINC TT

IPRBI

So
I ^ PACK

AACKINE

R1H

TT

Figure 5.30 Horizontal Crossbar Switch Loop

signal arrives, it will assert the appropriate PACK and INTACK signals (governed by the

OR-AND structure). Since the acknowledgement from the FFT-4 blocks will be mutually

exclusive in any row, all of the ACKIN signals (routed through the OR-AND structure)

can be ORed together to form the INTACK signal returning to the loader AFSM.

The vertical loops are somewhat less complicated because less function is necessary.

The first PREQ in each loop is high upon a system reset. This effectively means that all

the tokens are waiting in the top of the loop. Figure 5.31 contains the simplified vertical

crossbar switch loop. Upon receiving an INTREQ from one of the horizontal loops, the

PREQ and LREQ signals are ANDed together and routed down to a four-input OR gate.

This constitutes the REQOUT signal to the FFT-4. When the FFT-4 responds with an

ACKIN, it is routed to back to each of the ripple one-hot machines. Only the active one-

5-25

hot will be acknowledged using the OR-AND gates allowing the loop to proceed to the

next token stop.

BeniuA '—' L
LoadaiO

G1H

s
ReglsterO

BCfflfcH I—"
LoadeM

IS- R1H

*-}

^.r^r-är-o-

Reglsterl

Loader2

\rvrft-»-

Register^

Loader3

Reglster3

Figure 5.31 Vertical Crossbar Switch Loop

5.5 Expander

The expander is the last major block in the computation of the FFT-16. The main

functional portion of the expander consists of the last implementation of the one-hot en-

coded sequence. This loop of four blocks in the middle of Figure 5.32 is the same ripple

sequence as used in the vertical loops of the crossbar switch.

Figure 5.32 shows two new state machines that are used to latch the incoming data

from each FFT-4 element. For simplicity, only one of the four stages will be examined.

5-26

RDATA.OUr MOOUTi YACWN

HOLD

Re
"♦ REG

Ml REG
16

LATCH-
CON

I HO HOLD

Im
•"WREO

Re
■WREQ

IDATA.OUT'

Re
REO
18

Im
REG
1«

HOLD "-[

H>
LATCH-
CON

Im
REO fH|
16

Re
REQ h>

LATCH-
CON

m
HOLD —'

Figure 5.32 Expand-By-Four Block Diagram

A REQO comes in from FFT-40. The decimator then requests the hold state machine

(Figure 5.33) which will raise WEN going to the real register, wait for DONE to assert,

lower the WEN signal, wait for DONE to deassert, and finally raise the ACKOUT signal.

This order of operations ensures that the register will be write-enabled only long enough

to get a value locked in so there will be no incorrect data latched due to changing bus

values.

Similarly, the latchcon state machine ensures the imaginary value is locked before

proceeding to relinquish the token to the one-hot chain. The latchcon state machine

receives the request from the decimator and raises WEN for the imaginary register. It will

then wait for DONE to be raised at which time latchcon will lower WEN. When DONE

lowers, indicating the value is locked, REQOUT will be raised, effectively passing the token

to the one-hot chain.

To advance the one-hot chain, both the REQOUT from the latchcon state machine

and the corresponding PREQ signal must be high. This combination will read enable both

the real and imaginary registers and raise the REQOUT signal for the whole FFT-16.

5-27

DONE

REQIN
J_

REQIN-*DONE-
ACKOUT-

REQIN+
WEN+

HOLD
WEN

ACKOUTY

Block Diagram

DONE+
WEN- * ACKOUT+

State Transition Diagram

Figure 5.33 Hold State Machine

When the ACKIN is recieved, the token advances to the next stage and the current stage

resets.

5.6 Additional FFT-16 Elements

This section includes a description of each of the elements required to reuse the FFT-4

elements and eliminate the need for a Multipliero (defined in 5.6.4). The motivation behind

the design and use of these components is that the area used by the FFT-4 is quite large

compared to everything else in the FFT-16. By designing and implementing the following

components, the four FFT-4 blocks can be reused adding slightly to the timing and control

overhead but saving tremendously on area. Given the dataflow nature of the FFT-4, input

data can be received while it is still outputing values to the multiplier so there is no stalling

in overall FFT-16 pipeline. This feature is something that should be kept in mind when

designing the new FFT-4 element mentioned in Section 7.2.1.

Figure 5.35 demonstrates how each component in this section fits around the FFT-4

to enable its reuse.

5.6.1 Input Multiplexor. The input multiplexor must allow the proper inputs to

enter the FFT-4 element. For the first part of operation, the inputs come from outside

5-28

REQIN+
WEN+

SO SI
REQOUT, ,

REQIN-
ACKOUT-

S3 S2

1DONE+
WEN-

REQIN
 1> LATCH-

CON
 >-

WEN

DON

DONE-
ACKOUT+

Block Diagram State Transition Diagram

Figure 5.34 Latchcon State Machine

X(m)
NSEL

SEQ
OUTSEL

EXP
;

' ' TOUTR Ul J ' '
mj£

/
32

1
x(n) ,

32
X

c 32
FFT-4

Out-
Con

*l '— -e>

MULT
32

Cbar

/ "

1
16

;

32

Figure 5.35 Additional FFT-4 Reuse Components

the FFT-16. For the second part of operation, the inputs come from the crossbar switch.

Since the asynchronous signaling allows values to propagate through the Multipliern and

the crossbar switch so quickly, it is necessary that the multiplexor transition rapidly after all

of one set of inputs has been received. This is accomplished using the sequencer discussed

in Section 5.6.2. The input multiplexor also properly routes the input handshaking signals

of the FFT-4 block.

5.6.2 Sequencer. The sequencer is responsible for selecting the proper input and

output blocks of the FFT-4 element. It keeps track of the FFT-4's operation stage by

5-29

monitoring the OUTRUN signal. The block diagram and state transition diagram are in

Figure 5.36. The INSEL output is the selector for the input multiplexor (Section 5.6.1)

OUTRUN+

INSEL
SEQ

OITTSEL OUTRUN
OUTSEL-

OUTRUN

OUTRUN-
OUTSEL-

Block Diagram

OUTRUN+
INSEL-

State Transition Diagram

Figure 5.36 Sequencer State Machine

and OUTSEL is the selector for the output control unit (Section 5.6.3). Initially, the

INSEL bit selects the FFT-16 input to the FFT-4 block and the OUTSEL bit selects the

complex-valued multiplier as the output. As soon as OUTRUN is raised, the input is

switched from the FFT-16 input to the crossbar switch output. When OUTSEL lowers,

indicating the first set of outputs is done, the Output selector switches to the expander

from the multiplier. The last half of the sequencer cycle brings the INSEL and OUTSEL

bits back to the original settings.

5.6.3 Output Control Selector. The output controller is simply a grouping of a

1:2 decoder and an OR gate. As a request signal propagates from the FFT-4 block, the

output control element will route it to either the multiplier or the expander, depending on

the condition of the OUTSEL bit. Since the acknowledgements from the multiplier and

the expander will be mutually exclusive, they are simply ORed together to go back into

FFT-4. Figure 5.37 shows a simple block diagram of the output control unit.

5-30

vOUTSEL

REQIN

ACKOUT
Uv <£

EXPREQ
 e—
EXPACK

MULTREQ

MULTACK

Figure 5.37 Output Control Selector

5.6.4 !6:32 Latch. Refering to Section 4.1.2, Equation 4.2 it is apparent that

all the values used in the first multiplier (Multiplier0) are 1 + jO. Instead of performing 4

multiplies by 1 (pass a value through), a 16:32 latch is used to compose 32-bit data-words

from the separate real and imaginary words. Data is received 16 bits at a time. The bits

are first latched into the "real" register followed by the handshake completion with the

FFT-4. Then, the second request from the FFT-4 is forwarded to the crossbar switch along

with the full 32 bits of data, just like the complex-valued multiplier.

5.7 Summary

This chapter has discussed each component necessary to compute the FFT-16 for

this project. Chapter 4 discussed the motivation for each one of these designs. In some

cases the implementations discussed here were found to be inferior to other designs. These

new designs are proposed in Chapter 7 for potential future work.

5-31

VI. Results

6.1 Introduction

The original goal of this project was to implement the Suter/Stevens FFT algorithm

in silicon using asynchronous and low power design techniques to demonstrate that the

benefits of both design methodologies could be combined for extreme energy efficiency.

When this project gained sponsorship from the Space Vehicles Directorate of the Air Force

Research Laboratory, demonstrating the asynchronous architecture could reduce power

consumption became the main goal because standard low power design techniques do not

generally coincide with a radiation tolerant design.

6.2 FFT-4 Test Chip

A test chip using the design from Chapter IV and most of the implementation of

Chapter V was fabricated using the O.fytm HP foundry with MOSIS design rules. The

data-words were only six bits for the real portion and six bits for the imaginary portion.

6.2.1 ■ Design of the Test Chip. The test chip contained an FFT-4 implementation

using the four major components discussed in Sections 5.2.1 to 5.2.4. There were slight

differences in several parts of the design. A global one-hot sequence that contained internal

acknowledgement was used instead of the external acknowledge chain used in the current

design. There were some changes with the intermediate stage as well. Instead of having a

single state machine, an "ac" AFSM was used in conjunction with a "bd" AFSM. These

two state machines were synchrononized with a 1:2 decoder on the FREQ and LACK (last

acknowledge) signal and an OR gate on the FACK and LREQ signals. Both and LREQ

and LACK were used because there was difficulty in setting up the complete ripple loop

CONTEXT and request signals.

Complete working simulations were not attained prior to submittal. However, IR-

SIM10 simulations indicated the chip could perform the four input reads and the first ALU

operation.

10 Berkeley IRSIM v. 9.2.

6-1

6.2.2 Test Chip Results. The results of the test chip were very negative. Initial

tests gave no response to the input. When an ACKIN signal was asserted, all of the

outputs would follow the ACKIN value. Later determinations indicated this was caused

by a trace incorrectly placed across GND metal. A laser cut was made across this wire

which should have enabled two output computations to execute correctly, but the results

were still negative.

6.2.2.1 Reasons for Failure. There are several potential reasons for why

the test chip failed. Some of the results map to known failures, but not all.

Pull VHDL with a data path was not completed. Because the entire control path

worked properly in behavioral VHDL, it was assumed the data path would work properly

as well. The term "data dependence" should have more fervently indicated the need to run

complete VHDL simulations prior to lower level design work. Sections 6.2.3.1 and 6.2.3.2

contain discussions on circuit hazards that were detected when the data path was added

to the behavioral VHDL.

Line loading was a new concept that did not appear until the four major components

of the test chip were connected. As an example, consider a metal trace length L and width

W. We know that the time constant (r) for charging or discharging a node is RC. The

trace resistance is oc L 4- W and the trace capacitance is oc L x W so

T = RC oc ^x(LxW)

T oc L2

The time constant of the trace increased according to length squared! When the subcom-

ponents of the FFT-4 were assembled, the bounded-delay assumptions that were made

before component integration were suddenly invalid.

Although there is no evidence to substantiate this, another possibility is the test chip

was not reseting properly. Since the simulation results indicated that part of the chip was

functional yet this was not observed raised suspicion that reseting may be the problem.

6-2

6.2.3 Design Modifications Following Test Chip Fabrication. Initially, it was

thought that all the added complexity of having two intermediate state machines and the

internal acknowledgement of the global one-hot sequence along with several other issues

caused the incompleteness of valid simulations.

Based on trace loading revelations, much more care was taken to ensure proper drive

capability on all lengthy traces in the circuit. The architecture is good for keeping signals

local, but the size of the radiation tolerant cells overwhelms the concept of locality in some

instances.

The potential reseting problem has not been addressed because this was not discov-

ered until after the test chip returned from fabrication. This will be discussed in Chapter

VII.

6.2.3.1 Register Read Enabling in the FFT-4. In Figure 6.1, we see the

problem with register read enabling. The incorrect design of the left block diagram cor-

responds to the solid wave lines. The correct block diagram on the right corresponds to

the dashed lines and arrows. With the incorrect design, the ALU input values will change

before the ALU has the opportunity to fully reset. The addition of the AND-OR structure

in the top right shifts the transitions of the read enable signals. Now, the current read

enable signal remains high to ensure that the ALU input values do not change until the

AACK signal has lowered indicating a full reset. Then, the next read enabling sign is not

raised until the ALU fully resets ensuring there is no conflict on the data lines.

Executing behavioral VHDL, including the data path, highlighted this error because

the AACK signal would go to an 'X' condition even though the correct sum had already

been issued (exactly what happened in the test chip IRSIM results). It is interesting to

note that the data should have no effect on the AACK signal because of the "stage -1".

As soon as AREQ lowers, both carry signals go to zero, raising the DONE signal for that

stage which deasserts the AACK signal.

6.2.3.2 Intermediate Register Locking in the FFT-4- Though present, the

problem with register locking was not discovered in the test chip simulations because the

6-3

5^

Re{X0} lm{X0}

E

ENX02RJ
A

ENX13R /•>

ENX02I

ENX13I

\
DATA PATH A

Re{X0} lm{X0}

A A A A

AREQ

AACK

ENX02I

ENX1M

DATA PATH A

AAAA A AACK

INCORRECT CORRECT

RENX02R
i r-1

-i
i -li -1

RENX02I
l

-»1
__|

;1

: i

! 1
-6J

Figure 6.1 Register Read Enabling

original test benches were incomplete. The behavioral VHDL again was the key to discov-

ering that the wrong value was being latched into the intermediate registers. Figure 6.2

contains the incorrect and correct designs along with the transition shift waveform. The

key with reseting the PACK signal through the register was so that the ALU completed

its reset operation before PACK was lowered. The problem was that when the ALU resets

after AREQ is lowered, the outputs begin to change in most cases. The correct design in

the upper right still allows the PACK signal to reset through the ALU, but not through

the register.

6.2.4 Test Chip Summary. Following the discovery of these design flaws from

the behavioral VHDL, the simulation results from the test chip were reexamined, and the

errors observed there were similar to the VHDL simulation results before the modifications

were made. The conclusion is that, even if the reseting worked properly and the layout

error had not been made, the test chip still would not have functioned properly.

6-4

PACK

-d <"^-
AACK

WEN

JG *

lm{C} lm{D}

INCORRECT CORRECT

PREQ

AREQ

AACK

WEN

PACK

Figure 6.2 Intermediate Register Locking

6.3 16-bit FFT-16 Simulation Results

Some power and timing results based on SPICE simulations on extracted layouts were

attained. The AFRL/MRC cell library is designed to be maximally radiation tolerant when

Vdd is 5.0 V. However, 2.2V is customary for many of today's low power designs due to

the benefits of voltage scaling. The preliminary numbers use a middle-ground Vdd of 3.3

V. VHDL simulations at this voltage have been projected to the system timing chart of

Figure 6.3. The results with Vdd of 5.0V and 2.2V have been included along with the

baseline of 3.3 V to examine the AFRL/MRC operating range as well as to permit closer

comparisons to other low-power FFT chips.

Note how the processing delay of all the major components overlap. The actual

amount of overlap (pipelining) will vary depending on the data but this figure gives a good

6-5

Time (ns) 0 320 640 960 1280 1600

Decimator
i i i i

FFT-4{0)

FFT-4{1)

FFT-4{2)

FFT-4(3)

Mult(O)*

Mult(l)

Mult(2)

Mult(3)

i i i i

i i i i

Crossbar
i i i i

Expander

Figure 6.3 FFT-16 System Timing

timing estimate. The asterisk by the Mult(O) line in Figure 6.3 indicates this is not actually

a multiplier. The constants for the 0th sequence are all equal to 1 + jO so no multiplication

is required. In place of a multiplier, the 16:32 latch discussed in Section 5.6.4 is used so a

full 32-bit complex value is sent to the crossbar switch. Based on empirical SPICE data,

system and component timing can be extrapolated to Vdd = 5.0 V and Vdd = 2.2 V.

Table 6.1 shows the timing comparison between the three Vdd levels.

Table 6.1 Processing Delay by Element (ns)
Vdd Decimator FFT-4 Multiplier Crossbar Expander FFT-16

5.0 V 240 480 480 510 390 1200
3.3 V 320 640 640 680 520 1600
2.2 V 531 1062 1062 1129 863 2656

The actual SPICE power numbers for each component running at the frequencies

in Table 6.1 can project power consumption for the FFT-16. The component and system

power consumption numbers are given in Table 6.2.

Table 6.2 Power Consumption by Element (mW
Vdd Decimator FFT-4 Multiplier Crossbar Expander FFT-16

5.0 V 5.8 182 350 114 74 1076
3.3 V 1.1 45 86 25 18 264
2.2 V 0.6 11 22 9 5 67

6-6

In order to compare these results to prior work, we need to extend the timing and

power figures to larger point sizes. We know that the time to compute an FFT increases

according to Nlog2N. The power and energy computations are a little trickier because

the number of components increases along with the size of the decimator, crossbar switch,

and expander. Table 6.3 gives the extrapolated computation times and Table 6.4 give the

extrapolated energy numbers.

Table 6.3 Extrapolation of Timing Measurements (fis)
Vdd FFT-16 FFT-32 FFT-128 FFT-256 FFT-1024

5.0 V 1.2 3.0 16.8 38.4 192.0
3.3 V 1.6 4.0 22.4 51.2 256.0
2.2 V 2.7 6.6 37.2 85.0 425.0

Table 6.4 Extrapolation of Energy Consumption (pJ)
Vdd FFT-16 FFT-32 FFT-128 FFT-256 FFT-1024

5.0 V 1.29 3.29 26.2 68.0 494.9
3.3 V 0.422 1.07 8.4 21.6 153.25
2.2 V 0.178 0.455 3.7 9.9 77.5

Since these numbers are very rough estimates, direct comparisons against current

FFT chips are not that conclusive. These comparisons are still drawn to show that, de-

spite using a power hungry cell library and disregarding many known power reduction

techniques, similar power efficiency numbers can be achieved with architecture and asyn-

chronous design techniques.

Table 6.5 Energy Efficiency Comparison
Chip Vdd

(V)
Power
(mW)

Time
M

Energy/unit-transform
(nJ)

FASST
Plessey
PDSP16510A

5.0
5.0

2578
3000

192
98

483
287

FASST
Spiffeel

3.3
3.3

599
845

256
30

149
24.7

FASST
Spiffeel

2.2
2.5

182
339

425
42

75
13.9

Table 6.5 gives a rough comparison among FASST, the SPIFFEE project at Stanford

University, and a commercial FFT processor (The Plessey PDSP 16510A). It is fair to point

6-7

out that the Plessey DSP chip uses a block-float data format instead of fixed point which

accounts for some of the additional energy required. The figure-of-merit used here, that

of energy consumed per unit transform, compares the energy efficiency of the architecture

in generating a result and is independent of the frequency of execution. We must also

point out that the sample frequency of this asynchronous design is considerable faster

than that of any of the comparison processors. The numbers for this project will remain

fairly constant for larger point sizes due to the hierarchical nature of our FFT algorithm.

However, as the point-size grows, additional hierarchical layers are required which will

result in increased power consumption.

The 2.2 V Vdd FASST entry in Table 6.5 probably could not be used in space because

of the single event effects discussed in Section 3.2.2. It is presented here to show how the

efficiency FOM scales between the different Vdd levels.

6.4 Summary

Despite the multiple test chip failures for only six-bit data, the simulation results for

the 16-bit designs and the extrapolations to larger FFT point sizes show a lot of promise.

It seems all of the known errors regarding the test chip have been corrected and future

designs should work. The recommendations for continuation of this project outline how

this project should be continued.

6-8

VII. Conclusions and Future Work Possibilities

7.1 Project Conclusions

It was not certain at the beginning of this design that the power reduction originally

intended could still be attained using the radiation tolerant standard cells. Even if the sim-

ulation results from Chapter VI are off by 10-15%, this project has still demonstrated that

an asynchronous architecture alone can limit power consumption to a point competitive

with Earth-bound low power devices.

This point alone is reason enough to continue the work in this area. Refering once

again to Figure 2.1, it is conceivable, even probable, that the success of this low power

architecture will map to high speed designs using low power techniques or even a more

complex data type although the size of these circuits would likely become a concern.

7.2 Potential Future Designs

In the course of design, many times the success of an implementation is not deter-

mined at the higher levels of design. For instance, it was not determined that the early

attempts of the FFT-4 design which reused registers were too complex to use until they

were mostly laid out. This became the case with the FFT-4 implementation discussed

in Chapters IV and V. It was thought that the division of the control and the data flow

would work well but the control complexity became overwhelming in addition to the un-

wanted addition of data busses for the ALU. These design frustrations lead to a new way

to implement the FFT-4.

7.2.1 New FFT-4 Element. Toward the end of this project, a new idea for

the FFT-4 element was proposed but little actual work has been done to demonstrate its

effectiveness or advantages. When the FFT-4 element that was actually used was finally

laid out, it was very easy to see the complexity of control and register files was greater than

what was desired. Also, the use of data busses should be avoided because of the constant

charging and discharging. The new design would use 16 adder and subtracter units because

each one would have dedicated, known inputs. The control would be minimal because the

7-1

parallelism would be a maximum. The area would not be too much greater than the

current design because of the large number of registers and the complexity of the control

logic.

Re{x(0)} Re{x(2)} lm{x(0)} lm{x(2)} Re{x(1)} Re{x(3)} lm{x(1)} lm{x(3)}

_1 1 i 4 i 4 i 4-

Re{X(0)} Re(X(2)} lm{X(0)} lm{X(2)} Re{X(1)} Re{X(3)} lm{X(3)} lm{X(1)}

Figure 7.1 Proposed FFT-4 Datapath

The data path of this new implementation could look something like Figure 7.1 where

the addition and subtraction operations are separate in each block. There are obviously

many ways to actually implement this. One way could reduce the number of ALUs to

eight, using each one for one addition and one subtraction. Using static latches in a

similar manner to the complex addition and subtraction in the multiplier.

7.2.2 FFT-8 Implementation. For FFT point sizes of 128 points or 1024 points,

either an FFT-2 or an FFT-8 implementation will be required. Dr. Suter developed a

potential FFT-8 implementation using two complex multiplies up front followed by com-

putations similar to the current FFT-4 design (complex control signaling). From the

previous section, it should be understood that these designs implemented with complex

control units lead to a lower probability of sucess and are more difficult to design and

implement. It is recommended that the FFT-2 implementation of Figure 7.2 be used as

the four Appoint FFTs with the two iVi-point FFTs to be an FFT-4 design.

Additionally, this FFT-8 would require a decimate-by-two, one complex-valued mul-

tiplier, a four by two crossbar switch, and an expand-by-four. Each of these designs could

7-2

IDATAJN

HOLD <K

REQINI ACKOUTA

DECBY2 Ö
3-e

X

RDATAJN

_SL-
t> x,R _l

#> HOLD

3~
AACK u

IDATAJDUT, ,

FNCT

GO

"OR

B V A
ALU

FFT-2FSM

[AREQ

OUTRUN

REQOUTY ACKIN RDATA_OUT

Figure 7.2 FFT-2 block diagram

easily be borrowed from the existing FFT-16 design and modified for the FFT-8. The

FFT-2fsm state machine specification is contained in Section A.8 of Appendix A.

7.3 Recommendations for Continuation

This project has a lot of potential for future improvements. When work continues on

this project, it is recommended that further work on this project use the FFT-4 presented in

Section 7.2.1. This should be built to ensure the full complex data-word becomes available

to the multiplier at the same time so the modifications in Section 4.3.3 can be used in

conjunction with the 2 cycle dual multiply. Making the entire data word available will also

reduce the complexity of the expander making it more area conscience.

7-3

Other design changes should be considered for the shift register and booth decoder.

Currently, bounded delay models have been built and verified with SPICE. However, there

are better ways to implement each design.

Before this project gets too ambitious, it is recommended that a working FFT-16

design be the highest goal of a masters' thesis. The background information on this project,

especially the asynchronous logic portion, is very involved and much time should be spent

to understand it before moving into the design phase of a thesis.

7-4

Appendix A. 3D ASFM Specifications and Boolean Equations
This appendix contains all the burst-mode ASFM specifications used in the FFT-16 design
in addition to some extras for future consideration.

A.l Global One-Hot Specifications

A. 1.1 Nominal Stage.

Oat«: 22 July 1887

Vsrsionl 1

Author! Brae* Villiam Hunt

Filanamal abconahot .noune

Description! Thii ia tho baharioral specification of an asynchronous

flnita »tat» machine designed to be synthosisad uiing 3D.

Function: Ihia is tha nominal itaga in a global ona-hot sequence with

axtarnal acknowledgement.

input yih 0

Input go 0

output «nab 0

output next 0

Currant I.lt Input Burst 1 Output Burst

Stata Stata

0 1 y»h+

1 0 yah-

0 2 go+

2 3 ysh+ 1 snab+

3 4 ysh- go- 1 naxt+

4 6 ysh+ 1 naxt- anab-

5 0 jrsh-

ft Equations)

•nab ■

yih go +

ysh' «nab +

•nab tTOO'

A-l

next ■

juh* go' «nab

•TOO -

n«rt +

yih ITOO +

jrih' go1 «nab

A. 1.2 Final Stage.

sir

nr

iii

in

in

in

in

Hi

in

in

in

Hi

Data: 22 July 1997

Tars ion t 1

Author i Bruca Villiam Hunt

Filanana: donahot .nonnc

Doierlptiont Thia is tba bahavioral apaciflcation oi an asynchronous

finita atata oachina daaignad to ba aynthaaizad using 3D.

Function: This is ths last ataga in a global ona-hot saquanca »itb

axtarnal acknowladgamant.

input yah 0

input go 0

output anab 0

output nazt 1

1; j Currant faxt Input Burst 1 Output Burst

1|| Stata Stata

0 1 yah+ 1 noxt-

1 2 yah-

2 4 go+

2 3 ysh+

3 2 ysh-

4 5 ysh+ 1 anab+

S 0 yah- go- 1 anab- naxt4

III

III Equations:

III

1

; anab ■

1 yah go +

A-2

yah «nab +

go «nab

naxt ■

yah' go' tT00>

«TOO -

go' tTOO +

yah go' «nab1

A.2 Ripple One-Hot Specifications With Context
A.2.1 Nominal Stage.

; Datai 17 Jnna 1997

t Tarlion: 1

I Authori Bruca Villiam Hunt

; Filanana: ronahot.nounc

; Daieriptiont Thii if tha bahavioral .»pacification of an aiynchronoui

finita atata machina daaignad to b« aynthaaixad using 3D.

■ Function: Iba function of thia component ia to function paacafully

with ita rippling naighbora to accompliih raal work.

input req 0

input nnext 0

input puck 0

input rack 1

output uek 0

output context 0

output preq 0

output rreq 0

t i t Currant loxt Input Burat 1 Output Burat

;;; State Stat« 1

0 1 rack- nnaxt+ 1
1 2 raq+ 1 preq*

2 3 pack+ 1 ack+

3 4 nnaxt- req- 1 praq- ack- contoxt-f

4 5 pack- I rreq+

6 0 rackt 1 context- rreq-

A-3

,,,
III

III Equation!!

Ill

111

,,,
I

; ack -

I raq pack +

I nnaxt pack

I

I contaxt ■

I rack' contaxt +

I raq* nnaxt* pack

I P»q -

I raq +

I nnaxt pack

I

I rraq -

I pack' rack' context

III-

l!i-

A.2.2 Final Stage.

j Data i 15 July 1907

I Vtraion: 1

; authori Bract Villiam Hunt

j Filanamai droaehot.nounc

1 Description! Thia ii tha bahavioral ^pacification of an aiynchronoui

finita itat« machina daaignad to ba aynthaaizsd using 3D.

1 Functioni Tha is tha laat ona-hot in a rippla aaquanca of ona-hoti

with contaxt.

input raq 0

input nnaxt 0

input pack 0

input rack 0

output ack 0

output contaxt 1

output praq 0

output rraq 1

j 11 Currant faxt Input Burit I Output Bur«t

11; Stata Stata 1

I contaxt- rraq-

A-4

1 2 rack' 1

2 3 nnext* 1

3 4 req+ I pr«q+

4 6 pack+ 1 ack+

5 0 nnoxt- req- 1 proq- ack- eontoxt+

6 0 pack- I prtq+

ill

II) Equation!I

1 ack ■

; req pack +

1 nnext pack

; context ■

; rack' context +

1 req' nnext' pack

; proq *

1 req +

1 nnext pack

1 rreq «

1 pack* rack' contort

A.3 Ripple One-Hot Specifications Without Context
A.3.1 Nominal Stage.

1 Dato: 4 October 1997

; Toriion: 1

1 AuthorI Bruce William Hunt

1 Filonamo: onehotS.nounc

I Doscription: This ia the behavioral specification of an asynchronous

finite state machine designed to be synthesized using 3D.

j Function: This is the nominal one-hot component in a ripple seqence

with no context

input req 0

A-5

inpnt pack 0

input rack 0

ontput ack 0

output praq 0

output rreq 0

i;; Currant (art Input Burst 1 Output Burst

jii State Stata 1

0 1 raq+ 1 praqt

1 2 pack-» 1 ack+

2 3 req- 1 praq- ack-

3 4 pack- 1 rraq+

4 6 rack+ 1 rreq-

S 0 raek- 1

III

III

HI Equation! i

I ack ■

i raq pack

I

I praq •

I raq

I

I rraq -

I pack' rack' «TOO

I

I »TOO -

I raq' pack +

I rack' «00

I

III

III

A.3.2 Final Stage.

ig.

HI

III Datet 4 October 1097

I11 Varaiom 1

III

ID Authori Bruca William Bunt

III

III Filanama: onahot4.noune

III

111 Dascriptiont This is tha behavioral spacification of an asynchronous

HI finite stata machine designed to be synthesized using 3D.

Ill

III Function: This is tha final one-hot component in a ripple saqence

111 with no context.

II!

111

A-6

input raq 0

input pack 0

input rack 0

output ack 0

output praq 0

output rraq 1

[} | Currant (art Input Burst 1 Output Burit

;[j Stata Stata 1

0 1 rack+ 1 rraq-

1 2 rack- 1
2 S raq+ 1 praq+

3 4 pack* 1 ack+

4 6 raq- I praq- ack-

6 0 pack- 1 rraq+

II!

1i| Equation!:

III

1

1 ack ■

1 raq pack

1 praq -

1 raq

1 rraq -

1 raq* pack' rack' «T001

I «100 -

I rack +

1 raq1 IT00

1

111

A4 FFT-4
These three AFSM specifications are unique to the FFT-4 element.

A.4-1 Input Stage Control.

Datat 17 Juna 1897

Taraion: 3

Author: Bruca William Bunt

A-7

t i | Filanamai input fim.nounc

;;; Dcicription: This it th« behavioral «pacification of an aiynchronona

HI finit« atata nachina d«sign«d to bo aynthaiized using SD.

HI Function: Tha function of thia atata machina i« to govarn tha'

1;| operation of tha input global on«-hot saquanca that filia

111 tha input r«gi«t«rs and handshak«« with tha intorf ML whan

1|) anough valuas ara praiant to begin tha intarmodiata

jt j computation«.

input roq 0

input acack 0

input bdaek 0

output ack 0

output acroq 0

output bdraq 0

111 Currant I«xt Input Burit 1 Output Burit

HI St at« Stata 1

0 1 raq+ 1 ack+

1 2 raq- 1 ack-

2 3 r«q+ 1 ack+

3 4 r«q- 1 ack-

4 6 raq+ 1 ack+

5 0 raq- t ack- acr«q+

6 7 r«q+ acack* t *ck+ acraq-

7 8 raq- acack- 1 ack- bdr«q+

8 0 bdaek+ r«q* 1 bdr«q-

9 1 bdack- raq+ I ack+

J} J

HI Equation« i

;;i

1 ack ■

I r«q acack +

1 acack ack +

I r«q bdack' acraq' bdraq*

I aeraq ■

I acack1 acraq +

1 r«q' bdack' »TOO $T04 »T06»

t bdraq ■

1 bdack' bdraq +

; raq' acack' bdack' $T05

I »TOO -

A-8

1 req bdack' bdreq' +

1 bdack' »100

! tTOl -

; bdack +

1 req' »101 +

1 req »T02 +

; »TOI (T02

; »T02 ■

i bdack' »T02 +

; req' bdack' »TOO

1 »T03 »

; bdack' »T03 +

1 req' »T01 »T04>

! »T04 -

1 bdack +

; req »T03 +

! nq' »T04 +

| »T02 »T04

i »T05 -

j req acack +

1 bdmck' (T05

A.4.2 Intermediate Stage Control.

;;; Date: 4 August 1997

Hi Version: 1

HI Author: Bract William Bunt

111 Filename: intorfsa.nounc

III Description: This if the behavioral specification of an asynchronous

111 finite state machine designed to b« synthesized using 3D.

111 Function: The function of thii atat« machine ii to control the

111 computation of the intermediate FFT-4 valuei a, b, c, and d.

III lotos: f denotee the firet one-hot component and 1 denotes the

111 last one-hot component.

input acroq 0

input bdreq 0

Input fack 0

input Iraq 1

input outrun i

A-9

output «click 0

output bdack 0

output fraq 0

1; f Current laxt Input Burst 1 Output Burit

Iti Stata Stat«

0 1 acraqt outrun- 1 acack+ fraq+

1 2 lraq- fack+ acraq* 1 fraq-

2 3 lraq+ fack- acraq- 1 aeaek-

3 4 bdraq+ j bdack* fraq+

4 5 Iraq- fack+ bdraq* 1 fraq-

5 0 lraq+ fack- bdraq- 1 bdack-

0 0 outrun+

111

1ij Equation!:

tit

/

; acack ■

1 acraq outrun' +

; lack acack +

1 Iraq' acack +

; acack fraq

I

1 bdack ■

I bdraq +

1 fack acack' +

; Iraq' acack' +

I bdack fraq

1

i fraq *

j fack' fraq +

; Iraq fraq +

; bdraq fack' (TOO' +

f acraq fack' outrun' noi
1

1 (TOO -

; bdraq (TOO +

1 fack (TOO +

; lr«q' (TOO +

; fack Iraq' acack'

1

J (T01 -

I outrun 4

[fack' $101 +

t Iraq (T01 +

i bdraq fack' (TOO'

1

A-10

A.4-3 Output Stage Control.

Hi Date: 15 July 1007

t;; Veriiom 2

1[i Authori Bruce William Hunt

11 i Filename t outputfim.nounc

Hi Description! Thia ii the behavioral specification of an asynchronous

finite itat» machina doiignad to bo synthesixed using 3D.

j;; Function: Th« function of thii itat« machine ii to control the

computation of the 8 output values and the handihaking

with the next stage of the FFT-16 (the multiplier or the

expander).

input bdack 0

Input ack 0

input Iraq 1

output outrun 0

output raq 0

JI; Currant I.It Input Burst 1 Output Burat

1j; Stata Stata 1

0 1 bdack* 1
1 2 bdack- 1 raq+ outrun*

2 3 uck+ 1 raq-

3 4 aek- Iraq- 1
4 0 Iraq* I outrun-

outrun ■

ack +

Iraq1 +

(TOO +

bdack' *T0i

raq -

bdack' ack' »T01

»TOO -

ack +

Iraq »TOO

A-ll

♦TOI -

bdaek +

ack' «TOI

A.5 Multiplier

These two AFSM specifications are unique to the multiplier.

A.5.1 Multiplier Control

Data. 24 July 1007

Versioni 2.03

Authort Bruce William Hunt

Filename: multfsm.nounc

Descriptions Thii is the behavioral specification of an asynchronous

finite state machine designed to ba synthesized using 3D.

Function: Tha function of this stata machine Is to control th« raal

intagar multiply process. Tha multfsm intarfacas with tha

loader» x register, booth decoder, ALU, shift register, and

the complex control unit (a deeby2).

input nultraq 0

input mckihift 0

input ackmath 0

input tack 0

input ldzack 0

input ■shack 0

input dona 0

input ackl 1

output noltack 0

output ysh 0

output Ifh 0

output araq 0

output loads 0

output raqo 0

i;; Currant lazt Input Burst 1 Output Burst

III Stata Stata 1

0 1 multraq+ acki- 1 nultack-t

1 2 multraq- 1 ysh+

2 3 ackshtttt 1 jrsh- nh+

3 4 ackshift- nhack+ 1 ysh+ ish-

A-12

4 2 zshack- 1
3 6 ackmath+ 1 ar«q+

5 0 aack+ I loadz+

6 7 ldzack+ 1 araq- yah- loadz-

7 2 aack- ackmath- ldzack- 1 y»h+

2 8 done+ I yah- r«qo+

8 0 acki+ dona- 1 raqo- moltack-

f II

;;; Equation«:

;;t

;

; moltack ■

j don« +

; multraq acki' +

} acki' moltack

t

I yth ■

t ackahift' »hack +

i ackahift» Idzack' dona' yah +

1 multraq' ackihift' ackmath' aack' Idzack' dona' acki' moltack zah' raqo'

!
1 z«h ■

t ackihlft +

1 zshack* zsh

I

; araq ■

; ackmath Idzack' yah

(loadz ■

; aack Idzack' yah

[raqo ■

; don« +

I ackln' raqo

J

A.5.2 Multiplicand Counter.

tl Data: 12 Augoat 1997

;(Taraiont 1

If

\\ Anthort Bruc« Vllllam Hunt

If

I j Filanama: yconnt .nonnc

II

Ü Description: This li th« behavioral «pacification of an asynchrononi

II finit« atata machina daalgnad to bo aynthaaisad using 3D.

Ii Function* Th« function of thi« «tat« aachin« ia to incramant tha

A-13

11) conatant usad from tha multiplicand ragiatar daring an

HI FFT-10 oparation.

;;;
, j,

inpnt axaq 0

output rO 0

output rl 0

tij Currant laxt Input Burst I Output Burat

;;; Stata Stata I

0 1 araq+ 1 r0+

1 2 araq- 1
2 3 araq+ 1 rO- ri+

3 4 araq- 1
4 6 axaq+ 1 r0+

S 8 araq- 1
e 7 axaq-f 1 rO- xl-

7 0 araq- 1

rO -

axaq rO +

axaq »TOO' »T01' +

rO «TOO1 ♦roi'

rl -

araq rl +

rl »TOO1 +

axaq »T01

»TOO -

axaq »TOO +

rO »TOO +

axaq rO xl

»T01 -

axaq »T01 +

rO »T01 +

axaq' xO xl'

A-14

A.6 Smaller, General AFSMs

These state machines are used in a variety of applications throughout the FFT architec-
ture. The expand-by-two is not actually used but is included since it is mentioned in
Section 4.3.5.

A.6.1 Decimate-By- Two.

Datei 12 Auguat 1997

Versiont 1

Authort Brae« William Hunt

Filename* decby2.nounc

Description: Thii is the behariorel specification of an asynchronous

finite atata machine designed to bo synthesized using 3D.

Pnnetion: Tho function of thia atato machina ia to decimate an input

handshake sequence by two.

input reqin 0

output reqO 0

output reql 0

;il Current Bert Input Burst I Output Burst

;;; State State I

0 1 reqin+ I reqO-f

1 2 reqin- I reqO-

2 3 reqin+ I reql+

3 0 reqin- I reql-

II Equations!

II

JJ

fl

reqO ■

reqin »TOO'

reql ■

reqin «TOO

♦TOO -

reqin (TOO +

reqin» |T01 +

«TOO IT01

•T01 -

A-15

reqO +

reqin WOO» +

reqin» $T01

A.6.2 Loader.

Data: 13 September 1097

Versiont 1

Author: Bntc« Villiam Hunt

Filename: loader.nonne

Description: This is the behavioral specification of an asynchronous

finite state machine designed to be synthesized using 3D.

Function: The function of this state machine is to perform stage

latching of input data to allow pipelined-like execution.

input extreq 0

input intaek 1

output loadval 0

output intreq 0

iii Current lext Input Burst

I|[State State

I Output Burst

I

0 1 extreq+ multack- I loadval*

1 2 extreq- I loadval- intreq*

2 0 intaek* I intreq-

ii Equations:

II

loadval ■

extreq intaek'

intreq ■

extreq1 Intaek' *T00

•TOO -

extreq intaek' *

intack1 $T00

A-16

A.6.S Hold.

;;; Dato: 6 October 1997

iff VOM ion i 1

in Authori Bruce William Hunt

in Filename t hold.nounc

in

tu Description: Thii is the behavioral specification of an aaynehrononi

III finite state machine designed to be irnthaaiaad using 3D.

II! Function) The function of this state machine is to vrite enable a

tit 16 bit register only long enough for tha nav Tain« to ba

;;; written to prevent the incorrect value from being locked.

in

input vanin 0

input don« 0

output wonout 0

output ack 0

f 11 Currant Vert Input Burit 1 Output Burst

State St at« i

0 1 wenin+ 1 vanout*

1 2 done+ 1 wanont - ack+

2 0 venin- done- 1 ack-

!!!
Ii! Equation!i

I!)

I wanont ■

I vanin dona* ack

\ ack ■

1 dona +

1

1

wanin ack

A.64 Latch Controller.

A-17

Datst 3 October 1997

Torsion: 1

Anthort Brae« William Hunt

Filsnama i latchcon.nounc

Description* Tbii is ths boharioral specification of an asynchronous

finite state machine designed to be synthesized using 3D.

Function! Th« function of this stats machine is to ensure that a

a Talus has bssn fully latchsd into a latch or registsr

bsfor* it will ba raad by a later operation in a soqnsne«.

input latchin 0

output latchout 0

output loadt 0

input loadtack 0

lit Currant laxt Input Burat 1 Output Burst

III Stat« Stata 1

0 1 latchin* 1 loadt*

1 a loadtack* 1 loadt-

2 3 loadtack- 1 latchout*

S 0 lntchin- 1 latchout-

Equation!i

latchout ■

latchin loadtack' «TOO

loadt -

latchin loadtack' »TOO1

»TOO -

loadtack +

latchin «TOO

A.6.5 Expand-By-Two.

Datat 5 Octohor 1»7

A-18

Version: 1

Author: Bruce William Bunt

Filename t erpby2 .nonnc

Description: This if th« behavioral specification of an asynchronous

finite stat» machin« designed to be synthesized using 3D.

Function: Th« function of this stats machin« is to upsampl« an input

i«qu«nc« by two. Th« stat« machine has to tak« special

car« to order th« data properly sine« th« asynchronous

architecture can allow th« 1st element to request before

th« Oth.

input reqinO 0

input reqinl 0

input aefcin 0

output ackoutO 0

output ackoutl 0

output raqout 0

[;i Currant l«rt Input Burst 1 Output Burst

1|| Stat« Stat« 1

0 1 reqinO+ reqinl* I ackoutO* reqout-f

1 2 reqinO- ackin+ reqinl* I ackoutO- reqout-

2 3 reqinl* ackin- reqinO* t ackoutl+ reqout+

3 4 reqinl- aekin+ reqinO* 1 ackoutl- reqout-

4 1 r«qin0+ ackin- reqinl* 1 ackout0+ reqout+

III

HI Equations:

III

ackoutO *

reqinO ackoutO +

ackin* ackoutO +

reqinO ackin1 |T01*

ackoutl ■

reqinl ackoutl +

ackin' ackoutl +

reqinl ackin' $101

reqout ■

reqinO ackoutO +

reqinl ackoutl +

ackin' reqout +

reqinl ackin1 (T01 +

A-19

raqinO ackin» |T01'

♦TOO -

ackoutl +

raqinO» *T00 +

ackin $T00 +

raqini ackin» tTOl

♦T01 ■

raqini $T01 +

ackin' *Y01 +

•TOO' IT01 +

raqinO» ackin WOO'

A.7 Sequencer Control

This is the sequencer control to reuse the FFT-4 element in the computation of the FFT-
16. Keep in mind this is unique to the current design of the FFT-4 and will not work if
modifications are made.

111-

Datai 0 October 1997

Varaiom 1

Author: Bruca William Hunt

Pilanamai aaquanear.nounc

Daicriptiont Thia ii tha bahayioral ipacificatios of an asynchronous

finita itata machina designed to ba synthesized using 3D.

Function! Tha function of this atata machina ia to select tha proper

input to and output from tha rauiad FFT-4 blockt.

input outrun 0

output insel 0

output outsal 0

;;t Currant lext Input Burst I Output Burst

I i i Stata Stata I

0 1 outrun*

1 2 outrun-

2 S outrun*

3 0 outrun-

I insel+

I outsel+

I insel-

I outsal-

A-20

Iff

111 Equation«!

Iff

,,,

I

t iniol ■

; outrun' intol +

j outran outul' +

t iniol outt«l'

I

t oati«l ■

1 outrun' iniol +

I outrun outi«l +

I iniol out1*1

f

, .,

II f

A.8 FFT-2 Controller

in

in

Datai 10 Vovaabar 1997

Varaiom 2

III

III

III

III

■ II

III

III

III

III

III

III

III-

Ill-

Author t Brae« Villiam Hunt

Filananat fft2faa.nounc

Daacription: Thia ia tha bahavioral apaeificatloa of an aajnchronoua

finito atato machino daaignad to ba aynthaaiaad uaing 3D.

Function! Tha function of thia atata machine la to control tha

computation of tha fft-2. It aaaumaa full latching In

tha axpand-by-four for tha completion of tha FFT-8

input go 0

inpnt aack 1

Input ackin 1

output araq 0

output fnet 0

output raqout 0

111 Currant

111 Stata

0

1

2

3

4

laxt

Stata

1

2

3

4

5

Input Burat I Output Burat

I

go+ ackin- wick- I a»q+ outrun+

go* aack+ i r«qout+

go- ackin+ I raqout- aroq- fnct+

ackin- aack- | ar«q+

aack+ I roqouti

A-21

t roqout- araq- fnct- outrun-

..j

U,

tt; Bqnationai

III

U!
,,,

i araq -

I go +

I ackin' araq +

I adeln' fnct

I fnct *

I aack' fnct +

I ackin' fnct +

I go' »ekln ITOO'

| raqont ■

; go aack raqout +

; aack ackin' araq

I

: «TOO -
I aack (TOO +

I ackin (TOO +

| aack ackin' fnct

I

111

! 11

A-22

Appendix B. Project Files

3D /projects/fasst/3D

MEAT /projects/fasst/meat

VHDL /projects/fasst/vhdl

MAGIC /projects/fasst/layout

IRSIM /projects/fasst/irsim

HSPICE /projects/fasst/hspice

B-l

Bibliography

1. Baas, Bevan M. "An Energy-Efficient Single-Chip FFT Processor." Symposium on
VLSI Circuits. 164-165. June 1996.

2. Bewick, Gary and Michael J. Flynn. Binary Multiplication Using Partially Redundant
Multiples. Technical Report CSL-TR-92-528, Stanford University, June 1992.

3. Coates, William S., et al. "Automatic Synthesis of Fast Compact Self-Timed Control
Circuits." IFIP Working Conference on Design Methodologies. 193-208. April 1993.

4. Cooley, James W. and John W. Tukey. "An Algorithm for the Machine Calculation
of Complex Fourier Series," Mathematics of Computation, i0:297-3Ol (April 1965).

5. Fan, Xingcha and Neil Bergmann. "Architecture Design of a Fully Asynchronous
VLSI Chip for DSP Custom Applications." International Symposium on Circuits and
Systems5. 2112-2115. 1992.

6. Farnsworth, Craig, et al. "Utilising dynamic logic for low power consumption in asyn-
crhonous circuits." International Symposium on Advanced Research in Asynchronous
Circuits and Systems. 186-194. November 1994.

7. Hauck, Scott. "Asynchronous Design Methodologies: An Overview," Proceedings of
the IEEE, £3(l):69-93 (January 1995).

8. Heideman, Michael T., et al. "Gauss and the History of the Fast Fourier Transform,"
IEEE Acoustics, Speech, and Signal Processing, 1-.14-21 (October 1984).

9. Hollaar, Lee A. "Direct Implementation of Asynchronous Control units," IEEE Trans-
actions on Computers, C-5i(12):1133-41 (December 1982).

10. Jacobs, Gordon M. and Robert W. Brodersen. "A Fully Asynchronous Digital
Signal Processor Using Self-Timed Circuits," IEEE Journal of Solid-State Circuits,
g5(6):1526-1536 (December 1990).

11. Jr., Charles. P. Brothers. Rapid and Accurate Timing Simulation of Radiation-
Hardened Digital Microelectronics Using VHDL. PhD dissertation, Air Force Institute
of Technology (AU), March 1994.

12. Jr., Charles P. Brothers, et al. "Radiation Hardeneing Techiniques for Commercially
Produced Microelectronics for Space Guidance and Control Applications." 20th Annual
American Astronautical Society Guidance and Control Conference. February 1997.

13. Loan, Charles Van. Computational Frameworks for the Fast Fourier Transform.
Philadelphia, PA: Society for Industrial and Applied Mathematics, 1992.

14. Mano, M. Morris. Digital Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

15. Messenger, George C. and Milton S. Ash. The Effects of Radiation on Electronic
Systems. New York, NY: Van Nostrand Reinhold, 1992.

BIB-1

16. Morton, Shannon V., et al. "An Event Controlled Reconfigurable Multi-chip FFT." In-
ternational Symposium on Advanced Research in Asynchronous Circuits and Sustems.
144-153. November 1994.

17. SanGregory, Sam L. "A 16-bit Asynchronous Multiplier." An AFIT CSCE-699 Project,
June 1996.

18. Sunada, Glen, et al. "COBRA: An 1.2 Million Transistor Expandable Column FFT
Chip." ICCD. 546-550. 1994.

19. Suter, Bruce W. Multirate and Wavelet Signal Processing. San Diego, CA: Academic
Press, 1997.

20. Suter, Bruce W. and Kenneth S. Stevens, "Low Energy Consumption, High Perfor-
mance Fast Fourier Transform." U. S. Patent Number: 08/863,239, May 1997.

21. Suter, Bruce W. and Kenneth S. Stevens. "Low Power, High Performance FFT De-
sign." IMACS Workd Congress on Scientific Computation, Modeling, and Applied
Mathematics, edited by A. Sydow. 99-104. June 1997.

22. Yun, Kenneth Y. Synthesis of Asynchronous Controllers for Heterogeneous Systems.
PhD dissertation, Stanford University, August 1994.

BIB-2

Vita

Second Lieutenant Bruce W. Hunt was born on 4 November 1974 in Ottawa, Illinois.

He graduated from high school in Stillman Valley, Illinois in 1992. He then attended

Northern Illinois University in DeKalb, Illinois for a period of one year before receiving the

wonderful opportunity to attend college in the city of Chicago. Prom the Illinois Institute of

Technology, he received a B.S.E.E. with honors in 1996 and a commission through the Air

Force Reserve Officers' Training Corps, Detachment 195 the same year. Upon graduation,

he attended the Air Force Institute of Technology to pursue a master of science degree in

computer systems.

Permanent address: 402 North Street
P O Box 186
Monroe Center IL 61052-0186

VITA-1

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the coiiection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

A SINGLE CHIP LOW POWER IMPLEMENTATION OF AN ASYN-
CRONOUS FFT ALGORITHM FOR SPACE APPLICATIONS

6. AUTHOR(S)

Bruce W. Hunt, Second Lieutenant, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Major Charles P. Brothers
Space Vehicles Directorate, Air Force Research Laboratory
3550 Aberdeen Ave SE, Bldg 887 Kirtland AFB, NM 87117-5776

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/GCS/ENG/97D-1

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION AVAILABILITY STATEMENT

Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A fully asynchronous fixed point FFT processor is introduced for low power space applications. The architecture
is based on an algorithm developed by Suter and Stevens specifically for a low power implementation. The
novelty of this architecture lies in its high localization of components and pipelining with no need to share a
global memory. High throughput is attained using large numbers of small, local components working in parallel.
A derivation of the algorithm from the discrete Fourier transform is presented followed by a discussion of circuit
design parameters specifically, those relevant to space applications. The generic architecture is explained with a
survey of the 16 point FFT architecture specific to this project. An implementation, which included a test chip
fabricated through MOSIS, is described. Finally, simulation results based on layout extractions are presented
and an outline for future work is given.

14. SUBJECT TERMS

VLSI, Asynchronous, Rad Tolerant, FFT

15. NUMBER OF PAGES

126
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Re
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WH

