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Abstract 

A fully asynchronous fixed point FFT processor is introduced for low power space 

applications. The architecture is based on an algorithm developed by Suter and Stevens 

specifically for a low power implementation. The novelty of this architecture lies in its high 

localization of components and pipelining with no need to share a global memory. High 

throughput is attained using large numbers of small, local components working in parallel. 

A derivation of the algorithm from the discrete Fourier transform is presented followed by 

a discussion of circuit design parameters; specifically, those relevant to space applications. 

The generic architecture is explained with a survey of the 16-point FFT architecture specific 

to this project. An implementation, which included a test chip fabricated through MOSIS, 

is described. Finally, simulation results based on layout extractions are presented and an 

outline for future work is given. 

xiv 



A SINGLE CHIP LOW POWER IMPLEMENTATION 

OF AN ASYNCHRONOUS FFT ALGORITHM FOR SPACE APPLICATIONS 

I.  Introduction 

1.1 Introduction 

This document presents a multipurposed research effort. In May 1997, Air Force 

Institute of Technology faculty members Bruce W. Suter and Kenneth S. Stevens submit- 

ted a patent proposal for a low power architecture for a Fast Fourier Transform (FFT) 

processor [20]. The first goal of this research was to validate the claims made in the patent 

proposal by implementing the architecture in complementary metal oxide semiconductor 

(CMOS) technology. Because this is a low power architecture, it became attractive for 

space applications so a low power implementation that functions in a radiation-hostile 

environment was also desired. This chapter introduces some important background in- 

formation including the problem statement and research methodology. The final section 

provides an overview to the rest of the document. 

1.2 Problem Statement 

Asynchronous technology is just starting to make a firm impact in the very large 

scale integration (VLSI) design community. Although asynchronous design has a lot of 

potential, researchers admit that not many working commercial-scale designs have been 

fabricated to demonstrate its advantages. The literature review found few single chip FFT 

processor implemented in an asynchronous design. Also, current FFT applications for 

space do not use many low power design techniques. 

The purpose of this research is to determine suitability of the Suter/Stevens algorithm 

for a CMOS implementation. Speed and power metrics will be collected and compared 

to existing DSP applications to aid in this determination. Both speed and power are 

important for validation of the algorithm and architecture.   This research also hopes to 
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demonstrate that the speed and low power benefits extend to space-bound circuits. In a 

space bound system, speed and power are traded off to reach goals that will meet system 

requirements. Lower power architectures will hopefully lead to faster designs. 

1.3 Methodology 

To implement this algorithm in silicon, many design steps are necessary. First of all, 

high level decisions will be made regarding CMOS technology, data type, logic type (i.e., 

static, pre-charge, pass-transistor, hybrid, etc.), point size, etc. Once these are narrowed 

down, there are many futher design decisions to be made at lower levels when each com- 

ponent of the architecture is being built. It is best to use a high level simulation language, 

such as VHDL, to test potential implementations before a lot of time is invested. Decisions 

during the design process will change as there is a convergence toward the "optimal" de- 

sign. When enough designs are complete (i.e., laid out in MAGIC), extractions and tests 

need to be run to determine the likelihood of functionality and performance. 

1.3.1 Constraints and Assumptions. First of all, at least the minimum iteration 

of the Suter/Stevens architecture shall be implemented to prove the concept. Secondly, the 

layouts shall be performed using a radiation tolerant cell library provided by the sponsoring 

organization. Furthermore, additional low-level radiation minded design techniques are to 

be used including, but not limited to, low fanout margin, static storage, and static logic. 

Finally, one or more fabrications shall be made using the MOSIS HP 0.8 pm. fabrication 

facility. 

1.4 Overview 

This document is organized into seven chapters. This first chapter provides an in- 

troduction to the research. Chapter II gives a summary of the currently available VLSI 

Digital Signal Processing circuits for a wide range of applications, specifically those for 

asynchronous designs radiation hardened designs. The conclusion of Chapter II displays 

a chart showing the current DSP application efficiencies with the potential efficiency esti- 

mation for the Suter/Stevens FFT architecture. 
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Chapter III provides a brief background on the three major design areas encompassed 

by this project. Asynchronous design is defined, compared with synchronous design and 

several asynchronous design methodologies are discussed. The second section covers radi- 

ation effects on micro-electronics including ionizing radiation, single event effects, neutron 

radiation, and dose-rate effects. For each type, the causes, parameter changes, and mitigat- 

ing techniques are mentioned. The radiation section concludes with a description of one of 

the standard cells used in the circuit layouts for this project. The final background section 

covers the derivation of the Suter/Stevens FFT algorithm from the discrete Fourier trans- 

form (DFT) and the base-case FFT computational unit, the FFT-4. The FFT-4 comes 

from a radix-2 decimation-in-time FFT algorithm. 

Chapter IV discusses the high level issues surrounding the radiation tolerant design, 

the choice of data type, and the parallelism. Then, the generic Suter/Stevens architecture 

is presented followed by the architecture specific to this research project. Design choices 

and solutions for each component in the architecture are discussed. In some cases more 

than one design is covered to demonstrate the flexibility of the architecture. 

Chapter V contains the low level implementation of each piece of hardware for an 

FFT-16. Circuit designs, block diagrams, and state transition diagrams are included to 

demonstrate how the puzzle pieces interact to complete a working system. 

Chapter VI presents the results of the test chip fabricated during the design process. 

Changes made to the design as a result of the test chip are included showing why the 

signal transition modifications were necessary. Simulation results of extracted layouts are 

presented for the FFT-16 at three different Vdd levels. These simulation results are then 

compared against some of the processors from Chapter II to demonstrate the effectiveness 

of the Suter/Stevens algorithm and architecture. 

Chapter VII wraps up the thesis with major conclusions based on the results from 

Chapter VI. Some lessons learned during the course of the project are also mentioned with 

some guidelines for future work on this project. 

1-3 



i7.  Literature Review 

2.1 Introduction 

The range and complexity of available digital signal processing (DSP) and fast Fourier 

transform (FFT) processors is quite broad. A sampling of all different processors is given 

here because it is likely this project's architecture can compete very well in terms of speed, 

power, and energy efficiency through a broad spectrum of applications. The chips discussed 

here include processors created in academia and industry. A table giving general compar- 

ison of several FFT processors is provided followed by brief sections describing several 

processor characteristics. The chip to follow from this project is the Fully Asynchronous 

Suter/Stevens Transform (FASST). This chapter concludes with a graphical comparison 

of the processors presented in Table 2.1. 

The Figure Of Merit (FOM) used here is the same as in Chapter VI where it will 

be discussed at length. It should be noted that a lower FOM demonstrates better energy 

efficiency. 

2.2 Synchronous Academic FFT Processors 

There are several synchronous FFT processors produced at universities across the 

country. Two published examples include COBRA from the University of Colorado [18], 

and SPIFFEE from Stanford University [1]. 

The COBRA chip can perform up to a 64-point FFT on a single chip but can execute 

a 1024-point FFT in a 16 by 16 chip array with a programmable control unit. COBRA 

is not designed for low power but Table 2.1 indicates it is very fast in the FFT-1024 

computation. 

The Spiffee chip, on the other hand, is designed for low power and high speed. 

Currently there are three versions of the Spiffee processor. Spiffeel has been fabricated 

and functions over a Vdd range from 3.3 V to 1.25 V. It is capable of functioning at 1.1 

V and 1.0 V when a -0.5 Volt n-well bias is used. Spiffee Low Vf and Spiffee ULP have 

not yet been fabricated, but their numbers are shown in Table 2.1 to demonstrate their 

state-of-the-art efficiency. Both of these chips are designed to run at a 0.4 V an Vdd with 
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Table 2.1 Tabular Comparison of FFT Processor Performance 
Processor 
Name 

Dataword 
Format 

Supply 
Voltage 

(Volts) 

1024 pt 
exec, time 

(/JS) 

Power 

(mW) 

Efficiency 

(           nJ           ^ V Unit-Transform ) 
Texas Inst. 
C40 

Float 5.0 1298 4500 5704 

L64280 
LSI 

Float 5.0 26 20000 507 

Texas Mem. 
TM-66 

Float 5.0 65 7000 444 

Dassault 
Electronique 

Block Float 5.0 128 12000 1500 

Array Micro 
DaSP/PaC/Ras 

Block Float 5.0 131 9750 1247 

Plessey 
PDSP16510A 

Block Float 5.0 98 3000 287 

DSP Arch. 
DSP-24 

Block Float 3.3 21 3500 71.8 

COBRA 
Colorado State 

Fixed Point 5.0 9.5 7700 71.4 

FASST 
AFIT 

Fixed Point 5.0 
3.3 
2.2 

192 
256 
425 

2580 
598 
182 

483 
149 
75 

Spiflfeel 
Stanford 

Fixed Point 3.3 
2.5 
1.5 

1.25 
1.1 
1.0 

30 
42 
125 
252 
330 
547 

845 
339 
42 
15 
9.5 
5.2 

24.7 
13.9 
5.1 
3.7 
3.1 
2.8 

Spiffee Low Vt 
Stanford 

Fixed Point 0.4 93 <9.7 0.880 
(projected) 

Spiffee ULP 
Stanford 

Fixed Point 0.4 61 8 0.476 
(projected) 

an estimated power consumption of less than 10mW. Spiffee Low Vt and Spiffee ULP use 

a separately tuned substrate network to get the threshold voltages of the transistor very 

near zero. This enables exceptionally low Vdd and high energy efficiency. 

Since both of these processors operate on fixed point data, their commercial applica- 

tion is limited. COBRA is additionally limited because it requires a large number of chips 

to perform the FFT-1024. Spiffee has the advantage that it is a single chip processor. 

However, its low Vdd and differentially tuned Vt would make wide scale commercial use 

almost unlikely. Neither of these processors can match the commercial DSP processors in 

terms of capability. 
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2.3   Asynchronous Academic DSP/FFT Processors 

Previous works have already brought DSP and asnychronous signaling together. 

However, numbers for throughput, computation time, and power consumption were not 

given. This makes it difficult to compare them to the other FFT or programmable DSP 

processors. Like this Suter/Stevens FFT project, the goal for past works has been to 

develop an architecture well suited to the asynchronous signaling. Each has a different 

approach that is nothing like that implemented in this project. Despite these differences, 

they are discussed here to provide some background data. 

The oldest work comes from the University of California at Berkeley where a fully 

asynchronous digital signal processor was built [10]. This has many of the same functional 

units of the Suter/Stevens architecture but these are arranged in a single, general purpose 

pipeline instead of local pipelines. The functional units are all self-timed as well, demon- 

strating the heirarchical composition of an asynchronous system. It was fabricated at 2.0 

fim N-well technology and employs dynamic CMOS logic. 

The next two designs are both from Flinders University in Australia. The first work 

highlighted an architecture design for DSP custom applications [5]. It is interesting that 

the main feature of this architecture is an asynchronous interconnection network that can 

communicate between multiple functional units. This is exactly the opposite goal of the 

Suter/Stevens architecture where shared, global devices are to be minimized or eliminated 

altogether. Timing, rather than power, was the main issue the researchers were trying to 

solve so the architectural choice may not be completely unacceptable. Another advantage 

of the design presented is flexibility because the functional units can be modified for specific 

applications. 

The last design from Flinders University is a reconfigurable multi-chip FFT [16]. 

This is a very limited example because it operates on only 3-bit input data-words and 

5-bit output data-words. Despite this, the developers took special care to ensure the 

algorithm they chose could work well with asynchronous signaling. A slight variation of 

a radix-2 decimation-in-time algorithm was chosen with an FFT-4 selected for the base 

case. It is a fully pipelined system employing a dynamic CMOS logic scheme. As in the 
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previous Flinders example, the use of wide feedback busses is not avoided. Again we see a 

disregard for a low power architecture. 

2.4 Commercial DSP Processors 

There are a variety of commercial DSP processors available in all dataword formats. 

Typically the commercially available products are application specific processors which 

can do many operations related to DSP rather than just FFTs. These additional functions 

may include digital filtering, matrix multiplication, or multidimensional convolution. This 

increased capability generally makes it difficult for commercial processors to compete with 

the energy efficiency of academic processors designed for that purpose. 

2.5 DSP Processors for Space 

Because this is such a limited area in the DSP realm, it was difficult to attain numbers 

for comparison to other available systems. One current method for DSP applications is 

the use of the RAD6000 microprocessor. It is a rad-hard clone (software equivalent) of 

the IBM R/S6000. Because the RAD6000 is a general purpose machine, there are obvious 

losses in power and speed to perform DSP applications. 

One method of comparison that can be used for the FFTs in space is the Texas 

Instruments C40 architecture. Texas Instruments is currently developing a radiation hard- 

ened version of the C40 architecture for space. The normal C40 architecture is the first 

entry in Table 2.1. Note that it has the worst energy efficiency characteristics of all the 

chips compared here. This definitely leaves the door wide open for better designs for space. 

2.6 Summary 

Figure 2.1 gives a graphical representation of the present technology along with 

probable areas of application for the Suter/Stevens FFT architecture. In this figure, the 

Y axis displays the computation time where the increasing axis represents less time. The 

X axis displays power consumption where the increasing axis represents lower power. The 

best performance is located in the upper right corner where computation time is the fastest 
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and power consumption is the lowest. The worst performance is located in the lower left 

corner where computation time is the slowest and power consumption is the highest. 

3.2 
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Figure 2.1     Comparison of Existing FFT Processors 

Since this is a low power, high performance architecture and not application specific 

for low energy design or a specific data type, we should be able to see the benefits of the 

Suter/Stevens architecture map to fixed point, block float, and floating point applications 

for both Earth and space. 
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III.  Background 

This project combines design principles and techniques from several areas of VLSI de- 

sign. They include asynchronous timing, radiation tolerance, and digital signal processing 

(DSP). Each portion is discussed at a high level of detail. 

3.1   Asynchronous Design 

Synchronous design relies on regular clock pulses that trigger flip-flop circuits to 

progress through the finite states of a sequential circuit. Conversely, asynchronous design 

relies on externally and internally generated signals, or handshaking, to progress through 

the finite states of a sequential circuit. Essentially, asynchronous design is a "self-timed" 

event based protocol scheme rather than a time based protocol scheme. This section 

discusses some advantages and disadvantages of each protocol with an overview of the 

asynchronous methodologies and implementations used in this project. 

3.1.1 Synchronous Versus Asynchronous Design. With any design, there are 

decisions and tradeoffs that need to be made. Many times the decision is clear based on 

the advantages and disadvantages of each choice. For a long time now, most large scale 

manufacturers have chosen a synchronous timing protocol over an asynchronous timing 

protocol for good reason. Clocking a circuit is a good way to eliminate race conditions and 

other circuit hazards since clock cycles can easily be extended to wait for combinational 

logic to settle properly. Because early designers favored the ease of synchronous circuitry, 

that technology matured more quickly than asynchronous circuitry leading to a refined 

library of CAD tools. Recently, the clock has become the problem for other design issues 

like power consumption. 

The following sections discuss some advantages and disadvantages of the asynchronous 

timing protocol choice. 
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3.1.1.1 Asynchronous Design Advantages. Asynchronous design removes 

the global clock from the circuit resulting in many advantages relating to power and area1. 

First of all, the area consumed by large clock drivers and routing is freed up for other uses. 

Because CMOS circuits consume most of their power when switching occurs, asynchronous 

circuits should consume less power because they switch only when useful work is done. A 

global clock will always be switching, even when the circuit is not productive (i.e., waiting 

for a memory read). 

Asynchronous circuits, when properly designed, can run on average case delay or 

data dependent delay. The speed of the system is not bound by the worst case clock cycle 

length so pieces of hardware outside of the critical path do not have to be optimized for 

speed. They could be optimized for low leakage or low power for other reasons. Addition- 

ally, components that lie in the critical path of operation that are slow for certain data 

dependencies will not dramatically impede the overall circuit performance as long as the 

"slow data" occurs infrequently. 

In a synchronous circuit, the setup and hold times of state machines and logic blocks 

dictate the clock frequency affecting the overall system speed. As a result, it is important 

to keep delays through different paths and segments of the circuit fairly constant, even 

if the different paths receive varied amounts of usage. Conversely, asynchronous circuitry 

does not require optimization of slower portions of hardware because the next state of the 

machine waits for a handshake signal after any amount of time. Therefore, rarely used 

portions of the circuit can be left unoptimized without significantly decreasing the overall 

performance. 

The adaptation to parameter changes is a definite advantage that makes asyn- 

chronous systems attractive for this project. As later sections in this chapter show, there 

are parameter changes that take place in a circuit when it operates in a radiation environ- 

ment. The asynchronous signaling can be tailored to adapt to slower performance, reduced 

drive, and other changes associated with radiation effects. 

JThe area advantage is sometimes cancelled by the increased control circuitry required for an asyn- 
chronous system. 
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Asynchronous systems are inherently modular making it easy to combine them into 

larger systems. As long as the data and control interfaces match, integration of asyn- 

chronous systems is easy. There are other asynchronous design advantages but the ones 

mentioned here are the most applicable to this project. 

3.1.1.2 Asynchronous Design Disadvantages. The difficulty of developing 

an asynchronous circuit in an ad hoc fashion is the first major disadvantage. To construct 

synchronous systems, all the designer must do is surround blocks of combinational logic 

with latches and registers. Concerns for timing are resolved by clocking slow enough for 

the longest delay in each stage. In asynchronous technology, the designer must pay more 

attention to the dynamic state of the circuit to ensure there are no race conditions or signal 

glitches that will put the circuit into an unknown, incorrect, or unresponsive state. 

The second major roadblock to asynchronous design is the lack of a well developed 

set of tools. Since clocked circuitry has been the mainstay of VLSI design for the last 

two decades, the CAD tools for synchronous design are well developed and very common. 

Asynchronous design has only recently gained attention in the VLSI domain so the current 

quantity and completeness of CAD tools for asynchronous design are limited at this point. 

Obviously, if asynchronous design proliferates, a well developed tool set will follow. 

3.1.2 Asynchronous Design Methodology. Just as there are many design decisions 

that can be made with synchronous design (i.e., single phase clock, multi-phase clock), 

there are also many ways to asynchronously implement a sequential circuit. In general, 

all asynchronous design methodologies replace a global clock with control and/or data 

handshakes. This means that each progression through the states of the sequential circuit is 

controlled by a handshake between a sender and a receiver rather than rising or falling clock 

edges. Despite similarities in handshaking, delay models used in asynchronous systems vary 

among the different methodologies. 

Before we get into detail on each of the design methodologies, a few definitions and 

acronyms will be covered, the first is an asynchronous finite state machine or AFSM. This 

is simply an asynchronous implementation of the Mealy state machine model [14] without 
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clocking. The event based method used to advance the states is discussed Section 3.1.2.3. 

Completion detection refers to the ability of a self-timed system to indicate to a controller 

that its operation has completed. Sections 3.1.2.1 through 3.1.2.5 outline the methodologies 

used in this project. 

3.1.2.1 Fundamental Mode Bounded-Delay. The simplest and most intu- 

itive way of implementing a circuit asynchronously is the fundamental mode bounded delay. 

A bounded delay refers to assumptions made from simulations that the delay through a 

group of logic gates or wires is bounded to some finite period of time. This delay can 

then be modeled to correctly execute control signaling. Examples of synchronous circuits 

and their bounded-delay asynchronous counterparts are featured in Figure 3.1. The top 

two examples show how standard combinational logic in a pipeline segmenat can be con- 

verted. In the clocked example, it is assumed the length of the clock cycle is long enough 

for all the values to become valid before the clock pulses and the values are latched into 

the next register. In the asynchronous implementation, a delay element greater than or 

equal to the longest delay of the combinational logic is put in parallel with the component 

to delay the input request signal to the next register to ensure that the outputs will be 

valid by the time they are latched. In the bottom two circuits, the latches that control the 

present/next state bits are replaced again with delay elements that delay the next state 

signals for a period greater than or equal to the combinational logic. In the general scheme 

of asynchronous logic, however, this is a poor implementation because the worst case data 

dependence must be modeled rather than an average case data dependence. 

There are some cases where it is difficult to implement completion detection into a 

functional unit or combinational logic block so some bounded delay assumptions must be 

made and built into the circuit to ensure correct performance. In general, though, there 

are better ways to model delays in an asynchronous circuit. 

3.1.2.2 Non-fundamental Mode Bounded-Delay. Still using bounded delay 

assumptions (apart from delay elements) Lee Hollaar developed an application to the 

bounded-delay model that extended it beyond the fundamental mode using a "one-hot" 

architecture [9].  Simply viewed, each state is represented by an RS flip-flop. Figure 3.2 
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Figure 3.1     Synchronous and Bounded-Delay Asynchronous Examples 

contains a simple example of a one-hot sequential state machine segment (left) with the 

gate structure on the right. 

Figure 3.2     One-Hot State Machine Example 

Upon entering a state by an external input (R, S, or T), the current state flip-flop 

is set. The SET line in the RS flip-flop is also the RESET line to the previous state's 

RS flip-flop. After a period of gate delays, the state will settle making only one of the 

state bits high (thus the "one-hot" name). This one-hot row assignment is still limited 

because only one input is allowed to change at a time and proper settling time must be 

allowed. The concept of the one-hot row assingment was very attractive for the regular 
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flow of the FFT computation but instead of simply using the RS implementation for each 

state, burst-mode AFSMs (discussed in the next section) are used for each "state." 

3.1.2.3 Burst-Mode. The burst-mode design methodolgy is used only for 

asynchronous control circuitry. Instead of allowing only one input to change at a time, 

many inputs are allowed to change in any order. When all have changed according to 

the specification, an output burst is released upon the transition to the next state [3]. 

Figure 3.3 shows a simple burst mode AFSM with the transition table on the left and the 

transition diagram on the right. 

sn Sn+1 Input Burst Output Burst 
0 1 A+B+ Y+Z- 
0 2 c+ Z- 
1 4 B-C+ z+ 
2 3 A+C- z+ 
3 4 C+ Y+ 
4 5 A- Y- 
5 0 C- - 

State Transition Table State Transition Diagram 

Figure 3.3     Example Burst-Mode AFSM 

The input bursts follow some simple bounded delay rules. First of all, the inputs may 

arrive in any order and at any time. Second, the state machine must be given adequate 

time to react and settle from an input burst before receiving another. Third, no input burst 

may be a subset of another in any given state. This last rule is important so the order of 

signal arrival will not affect the correctness of the next state. The tools for burst-mode 

AFSM specification tools are some of the better ones developed for asynchronous circuit 

design so far. The burst mode designs originated with Coates, Stevens, and Davis [3] 

who developed the Most Excellent Asynchronous Tool (MEAT) for a project at Hewlett 

Packard. Others have followed including the 3D tool [22] used extensively for the numerous 

AFSMs used in this project. 
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3.1.2.4 Delay Insensitive. The delay insensitive design methodology con- 

siders the delays through wires and gates in the circuit to be indefinite. This is different 

from the bounded-delay models because they assume that signals become valid after a 

certain settling period. 

Because we are concerned with wire delays as well as gate delays, each data line 

must have built in completion detection. This is done using dual rail data where two lines 

are used to represent each bit. Table 3.1 shows how each bit is used to transfer data in a 

return-to-zero (RZ) dual rail data protocol and Figure 3.4 shows how the dual-rail data is 

generated and interpreted. 

Table 3.1 Dual-Rai Data Line Re 
Do Di Condition 
0 0 Data Invalid 
0 1 Logic High 
1 0 Logic Low 
1 1 Error 
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Figure 3.4     Dual-Rail Data Generation and Intpretation 

A non-return-to-zero (NRZ) dual rail scheme may also be used which would simply 

detect a change on either line to indicate a one or zero.   Though this scheme is faster 

3-7 



in terms of transfer because there are fewer transitions, the time savings is easily lost in 

control logic complexity and area [7]. 

Requiring two lines for each data bit results in a huge area cost, especially in a 16- 

or 32-bit architecture. There is additional area overhead because many times, a single 

request signal must be derived from several dual-rail data lines. The gates necessary for 

this consume additional area. Because of these area concerns, the actual occurence of true 

delay-insensitive circuits is very limited. 

S. 1.2.5 Speed Independent. The speed independent timing model is similar 

to the delay insensitive design except delays in wires are ignored. Essentially, we make 

some assumptions about delays as in the bounded-delay models. This project primarily 

uses a speed-independent, four-phase data-bundling timing model. The handshaking and 

data transfer will be discussed in the next couple of paragraphs. 

Data bundling handles valid and invalid data differently than the dual rail data. 

Figure 3.5 shows the request-acknowledge handshaking between a sender and a receiver. 

Note the sender's output data becomes valid causing REQ to go high (1). Once the receiver 

gets the input data, the ACK signal is raised (2). When the sender senses the assertion of 

the ACK signal, it lowers REQ (3) and now processes the next data set, waiting for ACK 

to lower once again. When the receiver lowers ACK (4) the sender knows it may again 

begin the handshake protocol when the new data is ready. 

Figure 3.5     Bundled Data 

3-8 



This is known as four-phase data bundling because for each data transfer segment, the 

REQ-ACK handshake goes through four phases (10, 11, 01, 00). A two-phase handshaking 

method also exists for the data bundling but, like the dual-rail data, it is a bit more complex 

than the four phase handshaking because the hardware must be able to detect high-low 

transitions and low-high transitions. 

3.2   Radiation Effects on Micro-electronics and Other Issues 

This section covers some of the prevailing radiation effects on electronics. The first 

two sections, 3.2.1 and 3.2.2, discuss radiation events that occur mainly in space. The 

last two sections, 3.2.3 and 3.2.4, discuss the radiation effects caused mainly by nuclear 

weapons. Each part contains the source, effects, parameter changes, and countermeasures 

used for each form of harmful radiation. Following this, the cell from the library to be 

used in this project is examined to demonstrate its radiation tolerant2 features. 

3.2.1 Ionizing Radiation. Gamma rays, x-rays, electrons, protons, and heavy 

ions are all causes of ionizing radiation which primarily affects the oxide layers of a CMOS 

circuit. Upon irradiation, electron-hole pairs are generated and evenly distributed through- 

out the SiC>2 layer. Many of these pairs recombine within 100//sec, but some free electrons 

are swept out by the electric field in the gate insulator. The trapped holes that remain 

in the insulator cause a negative shift in the MOSFET threshold voltage. Over time, the 

holes slowly migrate toward the most negative potential within the SKV If this most 

negative potential is the channel (N-FETs), the holes will tend to migrate toward the 

insulator-channel interface decreasing Vt from its pre-rad or initial value. If this most 

negative potential is the gate(P-FETs), then the holes migrate toward the insulator-gate 

interface decreasing Vt from the initial value. After a period of time, the holes are annealed 

out of the Si02, allowing Vt to shift back toward its initial value [11,15]. 

The key parameter changes caused by ionizing radiation is the threshold voltage 

shift. For P-FETS, Vt is shifted negatively at all dose levels because the trapped holes in 

2A radiation tolerant circuit can withstand "100 krad(Si) and still maintain proper function. A rad is a 
unit of absorbed dose equal to 0.01 Joule absorbed per kilogram of any material. 
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the oxide and the interface states work together. For N-FETS, Vt is shifted negatively at 

low dose levels and initially at high dose levels [11]. At high total dose levels, the N-FET 

Vt may eventually shift positively as interface states begin to dominate the trapped holes. 

A thin gate oxide can mitigate the effects of ionizing radiation by allowing fewer 

electron-hole pairs to be formed and reducing the hole lifetime in the oxide. A reentrant 

form of the N-FET prevents the field oxide from interacting with the gate of the transistor, 

thus ensuring the trapped charges in the field oxide will not turn the N-FET on. Figure 3.6 

shows the standard N-FET. There are two edges of the channel exposed to the bulk sub- 

strate where trapped charges in the field oxide can interfere with the threshold voltage. 

The reentrant N-FET (also in Figure 3.6) has no edges exposed to the bulk substrate, 

preventing field oxide trapped charge interference. 

SOURCE SOURCE           III 
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■ 

■ GATE 

GATE |||B|   DRAIN« B 
DRAIN 

Stand* u:d 

LMJ 

Reentrant 

Figure 3.6     N-FET Designs 

3.2.2 Single Event Effects (SEE). Heavy ions, protons, neutrons, and gamma 

rays are all known to cause SEE. In space, heavy ions and protons are the most prevalent 

causes. SEE can be divided into two classes of errors. 

The more severe hard errors for CMOS devices include gate rupture and latch-up. 

Gate rupture occurs when a single ion passes through the gate oxide layer. Gate rupture 

can only happen when there is a high electric field in the oxide. A gate rupture causes 

heating of the dielectric and possible thermal runaway. Latch-up is the product of parasitic 

bipolar-junction transistors forming between opposite diffusion regions, the substrate, and 

one of the wells.   When a trigger voltage is reached (around -0.7 volts), the node will 
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"latch" at a holding voltage and remain there drawing large amounts of current, regardless 

of the inputs or outputs of the node. 

To mitigate the hard errors, a variety of steps must be taken. For instance, the best 

way to counter the latch-up condition is to fabricate the circuit on an insulator to remove 

the parasitic pnpn configuration where latch-up transistors could form. If a silicon-on- 

insulator (SOI) or silicon on saphire (SOS) solution is not feasible due to cost, gate count, 

etc., oppositely diffused material around the n+ and p+ regions (called guard rings) also 

helps reduce the possibility of a latch-up condition. 

The less severe soft errors, or single event upset (SEU), include register or memory 

bit upsets, and transient logic upsets. Each of these topics can be quite in-depth so this 

section will just touch on some of the ways in which SEU can be attenuated. First of all, 

fully static logic is the easiest way to reduce the impact of SEU, especially the soft errors. 

Any kind of dynamic or pre-charge logic could fall as easy prey to a transient value since 

the evaluation period allows circuit nodes to "float." To harden against memory or register 

bit upsets, fully static storage is frequently used. 

These are the main SEE issues relating to this project. Sources such as [15] give a 

much more complete exploration of single event effects and mitigation techniques. 

3.2.3 Neutron Radiation. Neutron radiation is caused primarily by particles 

released from a nuclear fission or fusion reaction. The physical main effect of neutron 

radiation in MOSFETs is that the damage to the silicon crystal structure. The neutrons 

are a heavy subatomic particle releasing much of their energy upon impact. The defects 

that these neutrons create become traps for the majority carriers. 

Channel resistance for both N-FETS and P-FETS increases along with the polysilicon 

trace resistance. The increased resistance is a result of the removal of majority carriers 

leaving a larger percentage of minority carriers. This will lower the gate voltage causing the 

threshold voltage, Vt, to move closer to zero. This will make the transistor easier to turn on 

(more leakage current) but with reduced drive capability because there are fewer majority 

carriers and more leakage current due to the dislocation damage at the Si02 interface. 
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The drive capability of the transistors is further hindered by the increased resistance of 

the polysilicon traces. 

As an example, transistors that are normally off will allow additional leakage current 

to flow turning them slightly on. The transistors that are on have to deal with the addi- 

tional channel resistance creating a voltage divider turning them slightly off. To counter 

these changes, a smaller fanout margin and larger transistor widths should be used to pass 

signals better when a transistor is on. The lowered Vt and increased leakage current may 

require larger Vdd and GND rails to supply the necessary current. 

3.2.4 Dose-Rate Effects. As the name implies, the dose-rate effects apply to a 

circuit that dwells in a short-lived hostile environment. The main effects of dose-rate ra- 

diation are photocurrent generations in the pn junctions, trapped-hole generation followed 

by trapped-hole annealing, latch-up, and upset. The photocurrents are generated by the 

creation of electron-hole pairs in a pn junction (this pn junction can be between the source, 

drain, or bulk material). The trapped-hole generation and annealing in the oxide layers is 

very similar to that of the ionizing radiation (see Section 3.2.1 above). 

A circuit designed to resist the effects of dose-rate radiation should include additional 

power supply current to sink the photo currents, and latch-up prevention measures. The 

additional power supply current could easily be built in by making sure the voltage supply 

can generate more current than necessary in a pre-rad condition. 

3.2.5 The Radiation Tolerant Cell Library. For this project, a cell library con- 

taining many of the radiation countermeasures mentioned in Section 3.2.3 through Sec- 

tion 3.2.2 was used. This radiation tolerant cell library was developed jointly by The Air 

Force Research Laboratory and Mission Research Corporation [12]. The library contains 

only fully static logic. For multiplexors, registers, flip-flops, and latches, this is unique 

because most applications of each involve pass-transistor logic. For both the N-FETS and 

P-FETS, large widths are used to ensure low channel resistance and large drive capability. 

Reentrant N-FET transistors are used to prevent the field oxide that may easily ionize 

from affecting the transistor Vt. To prevent latch-up, n-type ohmic rings surround p+ dif- 
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fusion regions and p-type ohmic rings surround n+ diffusion regions further turning off the 

potential parasitic pnpn transistors. Wide supply and ground rails coupled with frequent 

substrate and diffusion contacts ensure good current supply and even potential across the 

bulk substrate, n-wells, or the large diffusion regions. 

Substrate 
Contacts 

Figure 3.7     AFRL/MRC 2 Input NAND gate 

3.2.6 Summary of Radiation Effects. Some important walk-away knowledge from 

this radiation effects section indicates there is no perfect solution for putting electronics 

into space. Designers can use preventive measures at all different cost levels. Because 

power, area, and speed are all important issues, these designers attempt to get the most 

protection with the least amount of development and fabrication costs while maintaining 

operation within other constraints. Inevitably, trade-offs among radiation hardened3 or 

tolerant characteristics, development time, and other VLSI design issues will always be 

driving factors in the production of space electronics. 

3.3   Digital Signal Processing (DSP) 

DSP is a major application of VLSI circuits. The Fourier transform is a very im- 

portant DSP function due to its wide range of applications throughout engineering and 

3A radiation hardened circuit can withstand "lMrad(Si) and still maintain proper function.   This is 
generally achieved through a hardened fabrication process. 
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physical sciences. This section covers the equations and algorithms behind the DSP archi- 

tecture used in this project. 

3.3.1    The Discrete Fourier Transform (DFT).       The most common form of the 

Fourier transform is the DFT commonly represented by Equation 3.1 

X(m) = £ x{n)e-^ (3.1) 
n=0 

where x(n) consists of N samples of a finite sequence and X(m) consists of N frequency 

components of x(n)'s Fourier transform. Note that there are N complex multiplies (AN 

real multiplies) per frequency evaluation. The number of multiplies needed to calculate 

the DFT for N frequencies is JV x (AN) = AN2 which is 0(N2) operations. Equation 3.1 

can be rewritten using the substitution WN = e~3~N giving 

X(m) = f) x(n)Wr (3.2) 
n=0 

There are two properties of Wjf that enable the calculation of the DFT in less than 0(N2) 

operations. The relationships 

wm(N-n) = w-mn = (yyrnny 

and 
p^(m+iV)7i _ yymn _ yym(N+n) 

demonstrate the complex conjugate4 symmetry of WN and that WN is periodic in both n 

and m respectively. Clever algorithms use these two properties to "divide" the original DFT 

problem into smaller and smaller problems until a base case is reached. Usually this base 

case is small enough so it can be easily "conquered" with a butterfly or some other simple 

arithmetic operation. These divide and conquer algorithms reduce the running time of a 

DFT computation from 0(N2) to 0(Nlog2N) making it a Fast Fourier Transform (FFT). 

\A + jBY = (A-jB) 
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FFT research was largely pioneered by J. W. Cooley and J. W. Tukey in a paper they 

published in 1965 [4] but the FFT was probably first proposed by the mathematician Gauss 

in 1805 [8]. Since 1965, many researchers have accomplished a great deal in developing 

new algorithms for various purposes including prime or near prime length, incomplete 

sequences, sequences not of mod 2 length, etc [13]. 

3.3.2 The Suter/Stevens FFT Algorithm. A wavelet approach was applied by 

Suter and Stevens [21] to create a hardware realization that parallelizes and localizes 

the computations of an FFT in such a way as to reduce the overall power consumption. 

We can represent N from Equation 3.1 as N1N2. Then, by the division theorem for 

integers, let m = m2N\ + m\ and n = n\N2 + n<i where mi, n\ = 0,1, • • •, iVi - 1 and 

T7i2,n2 = 0,1,•••jiVjj - 1. When given a sequence, x(n), its polyphase components [19] 

are defined as xk(Mn + k) where k = 0,1,...,M-1. Now, the original N point FFT 

problem can be divided into equivalence classes where Xmi(rri2) = X(rri2Ni + mi) and 

Xn2(
ni) - x(n\N2 + TI2). Using this polyphase notation of the FFT enables the DFT from 

Equation 3.1 to be written as 

„       ,        s        \^%^ ,      >        ,8ir(m»yi+m,)(niJra+n») 

*mi("»2)=  2^   2s xnAnl)e J N 

«2=0 ni=0 

(3-3) 

With the exponential numerator multiplied out, the result becomes 

W2-IJV1-1 

r»2=0 nj=0 

_ ■ 2xm<2N-[ t»i JV2 .2trm2N^n<j . 2irmi n-\ JVg . 2irroi n% 
N (3.4) 

where the first exponential is equal to unity. Further simplification leads to 

JV2-1 

Xmi{m2) =  ^2 
»12=0 

■ 27rmi n2 
Ni-1 ,2nm-\ ni ■ «mi 7.2    ^—v .    — j—„I 

ni=0 

. 2?TT7l9fl2 
'      N2 (3.5) 

or 
JV2-I 

xmi(m2) = Yl 
H2=0 

JVi-1 

m=0 

"1 Tr/-m2»i2 
rKiV2 (3.6) 
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in WN notation. The motivation behind manipulating the FFT into the form of Equa- 

tion 3.6, and how this maps to a low power implementation will be more clear following a 

discussion of the generic architecture in Section 4.2. 

This algorithm can be implemented hierarchically, allowing the Ni and JVjj blocks to 

be a smaller instantiation of the algorithm. For instance, if N = 1024 where Ni = 16, 

and JV2 = 64, the N\ and JV2 blocks can each be decomposed into Nu = N12 = 4 and 

N21 = N22 = 8. The Derivation of the FFT-4 in Section 3.3.3 demonstrates that four-point 

FFTs can be implemented without multiplication, so a hierarchical decomposition which 

maps the leaf nodes to four-point FFTs is the most efficient realization in terms of area 

and power. Working in the opposite direction, it is easy to see that FFT point sizes that 

are an even power of the base FFT point size work best. 

3.3.3 The Base Case FFT. Using a divide and conquer algorithm like the one 

above, eventually a base case is reached that cannot be divided further. Presented here is 

the derivation of the FFT-4 from the DFT as it is implemented in this project. This is 

a standard decimation-in-time algorithm with a minor modification to eliminate the need 

for a complex-valued multiply. 

Using the relations X(m) = Re{X(m)}+jIm{X(m)}, x{n) = Re{x(n)}+jlm{x(n)}, 

and j x (Re{x} + jlm{x}) = —Im{x) + jRe{x}, the complex DFT is written as 

X(m ) = W4x(n) 

' X(0) ' W40 W4° W4° W40 x(0) 

X(l) w4° wl wl wl x(l) 

X(2) w2 wl w£ wl x(2) 

. *(3) . _ wl wl wl wl _ _x(3) 

(3.7) 

(3.8) 

in matrix form where X(m) represents the output sequence, W4 is the DFT matrix, and 

x(n) is the input sequence. Performing the matrix multiplication, Equation 3.8 can be 

written as 

X(0)   =   x(0)Wl + x(l)Wl + x(2)Wl + x(3)Wl (3.9) 
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X(l)   =   x(0)W% + x(l)Wl+x(2)Wl + x(3)Wi (3.10) 

X(2)   =   x(0)W! + x(l)WZ+x(2)W£ + x(3)W! (3.11) 

X(3)   =   x(0)Wl + x(l)Wl + x(2)Wl + x(3)Wl (3.12) 

Prom Section 3.3.1 we recognize by symmetry that 

W4°   =   -wl 

wl   =   -Wf 

and by periodicity that 

wl = wl 
wl = wl 
wl = wl = -wl 

Expressing all W|» in Equations 3.9 through 3.12 with Wl and W4
X where Wf = 1 and 

Wl = —j renders 

X(0) = x(0) + x(l) + x{2) + x(3) (3.13) 

X(l) = x(0) - jx(l) - x(2) + jx(3) (3.14) 

X(2) = x(0) - x(l) + x(2) - x{3) (3.15) 

X(3) = x(0) + jx(l) - x(2) - jx(3) (3.16) 

If we let a = x(0) + x(2), b = x(l) + x(3), c = x(0) - x(2), and d = x(l) - x(3), where 

a, b, c, and d are complex variables, we can factor the j's and substitute the intermediate 

values into Equations 3.13 through 3.16 giving 

X(0)   =   a + b (3.17) 

X(l)   =   c-jd (3.18) 

X(2)   =   a-b (3.19) 
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X(3)   =   c + jd (3.20) 

This simplified computation is easily visualized in the signal flow graph of Figure 3.8. 

x(0)„ 

x(2)» 

Figure 3.8     Four Point FFT Signal Flow Graph 

Ordinarily, the -j multiplier on the d path in the signal flow graph would require 

a complex-valued multiply. In the realities of the computation, however, the real and 

imaginary components of the intermediate values a, b, c, and d are kept separate so Equa- 

tions 3.13 through 3.16 become 

X(0) = (aÄ+ja7)(l) + (6Ä+i&/)(l) 

X{1) = (cÄ+j'c/)(l) + (dÄ + jd/)(-j) 

X(2) = (aÄ + ia7)(l)-(6H+j6/)(l) 

X(3) = (cÄ+jcj)(l)-(dH+jd/)(-i) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Distributing the - j term and grouping the real and imaginary components together renders 

X(0) = (aÄ + 6Ä)+i(a/ + 6/) 

X(l) = (cÄ + d/)+j(c/-dÄ) 

X(2) = (aÄ-6Ä)+j(aj-6/) 

X(3) = (cÄ-dj)+j(c/ + dB) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 
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The signal flow graph in Figure 3.9 represents the separated real and complex com- 

putations of Equations 3.25 through 3.28. 

Re«0)> „ Re{a> 

Im{x(3)> 

Figure 3.9     Four Point Complex FFT Signal Flow Graph 

Using this rearrangement of values, only 16 addition or subtraction operations are 

required with no multiplication making this ideal for the base case. 

3-4   Summary 

As you can see, this project has married three deep topics, all of which could not be 

exhausted by years of research. It is recommended that the references cited in this chapter 

are explored for more detailed information on asynchronous design, radiation effects on 

micro-electronics, and the fast Fourier transform. 
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IV.  Design 

The purpose of this research is to demonstrate the feasibility of implementing an FFT 

algorithm in a micro-electronic circuit using VLSI. This chapter begins by discussing many 

of the high level design issues that surround this project. Following these issues, the generic 

Suter/Stevens architecture is discussed along with the design decisions regarding each of 

the major components. 

4-1   High Level Design Issues 

This section covers many of the higher level design issues that affect other lower level 

design issues in the actual implementation. 

4.I.I Designing Low Power Space Applications. Solar panels and nuclear gener- 

ators are the only way a satellite can acquire energy. Therefore both peak and standby 

power must be kept to a minimum. 

A common method of reducing power consumption in integrated circuits is to lower 

the supply voltage, yielding a quadratic improvement in power at a linear cost in perfor- 

mance when the transitors are operating in the saturated region. However, scaling the 

voltage of a CMOS circuit allows it to become more susceptible to SEU because the noise 

margin between a logic high and a logic low is reduced. SEU possibilities are further 

acerbated due to the threshold shifts that occur under radiation. Therefore, voltage scal- 

ing must be used judiciously and in general has more restrictions than in Earth-bound 

electronics. 

The power and complexity required to implement many CMOS functions can be 

reduced using circuit techniques such as dynamic, pre-charge, and pass-gate logic. Unfor- 

tunately these techniques are also to be avoided since the single event effects can prey very 

easily on these structures. Design is largely limited to static logic gates. 

Fortunately standard CMOS processes can be used while still achieving radiation 

tolerance. The AFRL/MRC cell library discussed in Section 3.2.5 is specifically designed 

for the MOSIS Hewlett Packard 0.8/im fabrication.   An unfortunate side effect of this 
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convenience is that the radiation requirements result in devices much larger than would be 

used otherwise, consuming more power. For example, the minimum size inverter width5 

in the AFRL/MRC cell library is 50A for the N-FET and 90A for the P-FET! Typically 

the minimum sized transistor for both N and P-FETs is 3A to 5A. With the additional rad 

tolerant characteristics, the total size of the inverter cell is 42A x 119A. 

Architecture becomes the primary means of reducing power in space applications, due 

to constraints to voltage scaling, circuit structure, and device size. This FFT architecture 

implemented using asynchronous circuits significantly reduces the power compared to other 

space worthy designs. The most significant contributions to low power in this architecture 

are twofold. First, the algorithm has been designed to maximize locality, point-to-point 

data pipelining, and hierarchy. The only shared structures in the design is the decimator 

inputs, expander outputs, and pipelined crossbar switch (all discussed in Section 4.2). 

Second, the operating frequency is greatly reduced by decimation allowing devices and 

drivers to be undersized. This can significantly reduce the capacitance of transmitting 

data signals. The asynchronous implementation technology allows the common frequency 

changes to be supported at minimal energy dissipation. 

4.1.2 Data Type. The data type used in this FFT implementation is 32-bit fixed 

point with 16 bits used to represent the real portion of each sample and 16 bits to represent 

the imaginary portion of each sample. Figure 4.1 shows how each of the 16-bit values are 

broken up. 

Ordinate 
1 1 

15 14 
I 

12 «11 0 

L 
Sign Mantissa 

Figure 4.1     16-Bit Fixed Point Representation 

5 A notation is used because CMOS is scaleable.   A is equal to \ the smallest feature size of a given 
CMOS fabrication technology. In this case, A = 0.4/un because 0.8/rai technology is used. 
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The sign bit is the most significant bit, the ordinate (> |1|) occupies the next three 

bits and the mantissa (< |1|) occupies the remaining twelve bits. The signed two's comple- 

ment 16-bit fixed point data works just like signed two's complement integers so the range of 

data representation is 1000.0000 0000 00002 (-8.000 000 000 OOOio) to 0111.1111111111112 

(7.999 755 859 375io). 

Although we need to worry about overflow with addition and subtraction, we must 

also be concerned with the error introduced by the complex-valued multiplier using fixed 

point representation. Keep in mind that the multiply operation in this application can 

only return a magnitude less than or equal to the input. Referring to Equation 3.6, the 

constant multipliers matrix is characterized by W^lW2. For this project (as we will see in 

Section 4.3) N = 16, and mi,n2 = 0,1,2,3 rendering, 

W^1"2 = 

w& w& wft w& 
WPe We W& ^i36 

w?6 ^i26 w£6 wfa 

^1°6 ^136 Wft Wit 

(4.1) 

Using WJV = e-J"w we can determine the approximate decimal value of each matrix element 

resulting in 

Wig1"2 = 

1.0000     1.0000 1.0000 1.0000 

1.0000 0.9239 - jO.3827 0.7071 - jO.7071  0.3827 - j0.9239 

1.0000 0.7071 - jO.7071 0.0000 - jl.0000 -0.7071 - jO.7071 

1.0000 0.3827 - j'0.9239 -0.7071 - jO.7071 -0.9239 +J0.3827 

(4.2) 

Even using decimal representation, error would still be introduced because some of 

the matrix elements are irrational. However, the introduced error is worse for the binary 

representation used in this project. Assuming we have a binary number and a decimal 

number, each with the same number of digits, the binary number will only be able to 

represent log2(n) of the magnitude of a decimal number. Table 4.1 shows how each binary 

representation stacks up to decimal equivalents. 
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Table 4.1     Constant Representation 
Decimal Value 

(15 places) 
Binary 

Representation 
Decimal 

Conversion 
Resultant 
error (%) 

0.38268343236509 0000.0110 0001 1111 0.382568359375 -0.03007 

0.70710678118655 0000.1011 0101 0000 0.70703125 -0.01974 

0.92387953251129 0000.1110 1100 1000 0.923828125 -0.00556 

Table 4.1 shows the error introduced by the 16-bit fixed point representation is min- 

imal using a 12-bit mantissa. Without normalization after each sub-FFT computation, 

the ordinate magnitude increases linearly with each FFT point size increment. Assuming, 

for example, that the input data can fit within a 3-bit ordinate (-8 < n < 7.999...), the 

output ordinate can have a maximum size of that listed in the right column of Table 4.2 

for each point size given. The last row (an FFT-1024) indicates only two bits can be used 

for the mantissa. Two mantissa bits can only be accurate to 0.25IQ! 

Tab: e 4.2     Ordinate Requirements for Fixed Point 
FFT Point Size Maximum Output Ordinate 

4 5 bits 
16 7 bits 
64 9 bits 

256 11 bits 
1024 13 bits 

Data 

Fixed point representation has limitations for larger FFT point sizes unless the input 

magnitude is limited to < |1|. Otherwise, a floating point or a hybrid block floating 

point data type (normalization after each sub-FFT computation) should be used to ensure 

maximal accuracy. 

4.1.3 Parallelism Versus Control Path. The tradeoff between the amount of 

architectural parallelism and the size of the control path became an important high level 

design consideration during the course of this project. A higher degree of parallelism leads 

to faster computation, higher throughput, and less control circuitry at the expense of 

more die area. A lower degree of parallelism (more component reuse) reduces die area but 

increases computation time, reduces throughput, and increases the amount and complexity 

of control circuitry. Since a working circuit that fits on a reasonably sized chip is desired, it 
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is important to find the "middle ground" to get a circuit working with only a fair amount 

of work and still fit onto a chip. 

4-2   Generic Architecture 

There are six major components required to implement the FFT of Equation 3.6. The 

block diagram of Figure 4.2 shows how each of the components fit into the computation. 

First of all, the data is decimated in time into JV2 sequences of length Ni- Then, the FFT of 

each sequence is computed (the interior summation), followed by the multiplication of the 

constants (W^1"2). The complex-valued multiply execution time is critical for the overall 

N- point FFT performance since Ni x (JV2 -1) operations are required. After the complex 

multiply, the partial transformed data is interleaved, as required by the FFT, through a 

pipelined crossbar switch. This pipes a data stream to the iV2-point FFT blocks. Finally 

the data, which is decimated in frequency, goes to an expander to correctly sequence 

each fully transformed element in the output sequence as X(m) and regenerate the input 

frequency. 

4.3   Specific Architecture for This Project 

The focus of this design is to demonstrate the functionality of the algorithm with 

the minimum iteration. Therefore N = 16 was chosen with N\ = iV-j = 4. This allowed 

the basic architecture to reuse the Ni and iV-j blocks, drastically saving on area with only 

a minimum of control overhead. 

Control operates in data-flow pipelines, using data bundling and four-phase hand- 

shaking protocol between each stage. Control of every major component is implemented 

using one-hot encoded state machines [9]. There are 16 unique burst-mode asynchronous 

finite state machines (AFSMs) used in the control structures. Some of the AFSMs are very 

simple like the ones used to control register locking which have 3 states with 2 inputs and 

2 outputs. Others are more complex like the multiplier controller which has 9 states with 

8 inputs and 6 outputs. Sections 4.3.1 to 4.3.5 discuss the design choices made for each 

part of the architecture. 
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m ■Xl("»2) 

TiVi« ]  

»0(^1 -1) 

■ air(Wl-l) 
eJ^Tfei(JVi-l) 

a,(Jf,-i)(Wi-i) 
' w »iv2-i(JVi-1) 

JV2 pt. 
FFT 

Figure 4.2     Generic Block Diagram of the Suter/Stevens FFT Algorithm 

4.3.1 Decimator. The purpose of the decimator is to break down the N input 

values into N2, JVj. value sets. In this case, where N = 16 and Ni = N2 = 4, the first 

sequence includes xo,a;4,X8, and »12, the second sequence includes xi,x$,xg, and Z13, and 

so on. 

Designs Considered. In the synchronous domain, decimation is a bit 

more complex than in the asynchronous domain. Instead of having to insert 0s between 

every nth sample, we simply take only n samples and ignore the rest of the sequence. For 

this project, three different ways to asynchronously decimate a sequence were examined. 

The first is to use a brute-force state machine that will have one request line in and 

N2 request lines out. As a request comes in, the next request out line is raised until the 

cycle repeats. It was found after quick attempts to implement this specification that the 

MEAT [3] and 3D [22] tools produced unwieldy Boolean equations that were to large to 

implement efficiently in CMOS. 
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Another approach is to use a global one-hot sequence. In a global one-hot sequence, 

the request in is routed to the N2 one-hot machines and each one raises its local request 

signal at the appropriate time (more will follow on this in Section 5.2.1). The global 

one-hot approach has the advantage that only one machine delay lies between the global 

request and the local request. 

The last approach pondered for this design is a decimator tree. Instead of specifying 

a decimate-by-JV2, we specified a decimate-by-n where nh = Ni and h is a positive integer. 

Then we formed a tree of the n blocks to compose the full size decimator. There are two 

drawbacks of the decimator tree. First of all, 2^-1 decimator units are required. For long 

input sequences, this is a genuine area concern. Secondly, as the height of the decimator 

tree grows, the delay from a request at the root will experience significant latency (\logh AT]) 

as it propagates to the proper leaf node. 

There are at least two types of decimator trees that can be used. One would contain 

all the request and acknowledge handshaking where the farthest leaf of the tree has to 

acknowledge before it trickles back up the tree so the root decimator can acknowledge 

back to the sender. The other implementation, which is potentially more efficient, uses an 

OR structure to fan-in all of the leaf acknowledge signals and the decimator tree is only 

concerned about the request signals being raised in the proper order. 

Chosen Design. The design used in the VHDL FFT-16 simulation is 

a decimator tree with external acknowledgment. Since the input sample handshake can 

only happen one value at a time, the acknowledgments are all mutually exclusive so there 

is no hazard potential by ORing all iV2 acknowledge signals together. 

4.3.2 FFT-4. Intuitively, the FFT-4 element takes the 4 point FFT of each 

decimated sequence. There are four of these blocks for the 16-point FFT assuming they 

are used for both the iV*i and N2 as in this project. 

Designs Considered. The FFT-4 seems to be the architectural com- 

ponent with the most design flexibility. The initial design direction was to minimize the 

number of registers and ALUs to save on area and because the FFT-4 was not the bottle 
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neck of the data path. Schemes using eight 16-bit registers with two or four ALUs were 

examined initially. Using the burst mode AFSM synthesis tools, it was soon clear the 

asynchronous control units performing the necessary operations for each of these schemes 

were complex and difficult to implement in silicon. Attempts were made to divide up the 

control as much as possible but then integrating the divided state machines became a dif- 

ficult task. Before too long, it was discovered this approach was counterproductive and a 

new design was pursued. 

Chosen Design. For simplicity and ease of implementation, a modified 

data-flow design was used for FFT-4 requiring no register reuse. There are eight 16-bit 

input registers, eight 16-bit intermediate registers, and one ALU. The FFT-4 control is 

divided into three sections. The input stage is responsible for reading in the four 32-bit 

input words, placing them in the eight 16-bit input registers. The intermediate stage is 

responsible for the eight intermediate value computations. Each involves reading data from 

two input registers, performing an ALU operation, and writing the result to an intermediate 

register. The output stage follows the completion of the intermediate stage by producing 

the four output values, one component at a time. These output computations require 

reading from two intermediate registers, performing an ALU operation and forwarding the 

result to the next stage of the FFT-16 computation. 

The ALU used in this project is based on the static dual rail asynchronous adder 

from work done at the University of Manchester [6]. This is a ripple carry adder that has 

a carry bit for both carry out 0 and carry out 1. This is an average case, data dependent, 

ALU with completion detection. This ALU achieves average case performance because 

each slice of the adder can identify a carry generate situation (both inputs are a logic high) 

and a carry kill situation (both inputs are a logic low). In the case of a carry generate, 

the slice can immediately raise the carry out 1 bit regardless of the carry in. Similarly, 

the carry kill case raises the carry out 0 bit regardless of the carry in. If the inputs do not 

indicate either one of these cases, the slice must wait for the appropriate carry in signal 

to be raised before determining the carry out. When a certain slice raises one of its carry 
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out signals, it raises a completion signal that is fed into an AND tree with all the other 

stages. This ALU is used in both the FFT-4 and the complex-valued multiplier. 

4.3.3 Complex-Valued Multiplier. The complex-valued multiplier is responsible 

for multiplying two 32-bit complex values together to produce a third 32-bit value. Nor- 

mally this multiplication would produce a 64-bit complex value but in order to implement 

the hardware properly, the 32 least significant bits (LSBs) of the mantissa are truncated. 

The Booth Multiplication Algorithm. The average case delay charac- 

teristics of the Booth multiplication algorithm make it a prime choice for asynchronous 

design. This benefit, coupled with the significant amount of prior work in this area, led to 

minimal consideration of other designs. 

The average case speed advantage for the Booth multiplier lies in the assumption 

that shifting takes less time than adding or subtracting. By determining whether or not 

an ALU operation is required, and performing one only when necessary will save overall 

computation time. The standard Booth (radix-2) algorithm works by examining the LSB 

of the current multiplier, Xn, as well as the previous (pre-shifted) multiplier LSB, Xn-\ 

(The first two bits examined are XQ and 0). Table 4.3 displays the instruction for each 

combination of decoded bits. 

Table 4 .3     Radix-2 Booth Encoding 
xn Xn-i Operation 

0 0 Shift product right 
0 1 Add multiplicand, then shift 
1 0 Subtract multiplicand, then shift 
1 1 Shift product right 

When employing the standard Booth algorithm, the number of shifts required to 

complete a multiply operation is equal to the length of the multiplier. The worst case 

timing for this radix-2 algorithm will occur when the multiplier is a string of alternating 

ones and zeros. In our incessant desire to make the fast-faster, an improvement was 

made to the standard Booth algorithm where three bits are examined at once instead of 

just two [2].   When operating on three bits at a time, the number of shifts required is 
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halved. However, it is more likely an ALU operation will be required. Table 4.4 shows the 

operations required for each bit combination. Again, the first set of bits examined is X\, 

XQ, and 0. 

r [able 4.4 Radix-4 Booth Encoding 
xn Xn-1 Xn-2 Operation 

0 0 0 Shift product right 
0 0 1 Add 1 x multiplicand, then shift 
0 1 0 Add 1 x multiplicand, then shift 
0 1 1 Add 2 x multiplicand, then shift 
1 0 0 Subtract 2 X multiplicand, then shift 
1 0 1 Subtract 1 x multiplicand, then shift 

1 1 0 Subtract 1 x multiplicand, then shift 
1 1 1 Shift product right 

Previous Work. As a special study at the Air Force Institute of 

Technology, Sam SanGregory undertook the asynchronous multiplier design. He pursued a 

low power design using pass-transistor, dynamic, and pre-charge logic, all of which should 

be avoided for a radiation tolerant design. Nonetheless, many of his designs were translated 

into radiation tolerant implementations and used with only slight modifications in some 

cases. 

Chosen Design.        From Section 3.3.1 we know that a complex-valued 

multiply is actually four simple multiplies with one addition and one subtraction, 

XxY   =   (Xr+jXi)x(Yr+jYi) (4.3) 

=    XrXYr+jxiXrXYi + XiXYj+fxiXiXYj) (4.4) 

=    XrXYr-XiXYi+j(XrXYi + XiXYr) (4.5) 

where the real and imaginary components are kept as separate values. 

We also know from Section 4.2 that the multiply is in the critical path. To make the 

multiplier fast and small, a two-cycle dual multiply scheme was implemented. One way of 

looking at Equation 4.5 is to see that Xr is multiplied by two values and Xi is multiplied 

by the same two values. The chosen design of the FFT-4 element from Section 4.3.2 makes 
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only the real or the imaginary word of each component available at once. Prom this, the 

chosen "multiply2" design decodes the Booth instructions from the FFT-4 data-word and 

operates on both multiplicand components. Following the two cycles, the final subtraction 

and addition operations are performed to complete the complex-valued multiply. 

Time Saving Modifications. In the work performed by SanGre- 

gory [17], some ingenious time saving modifications were pursued. These time saving 

short-cuts were based on the assumption that, for DSP applications, many multiplicands 

would be equal to zero, one, or negative one. When one of these values appear, the multiply 

could finish quickly and save power. Because we are working with an asynchronous design, 

any speed improvements in the critical path are helpful to improve the overall performance 

of the chip. 

Table 4.5     Extra Storage Decode 
Si So Operation 
0 0 Multiply X by 0 
0 1 Multiply X by 1 
1 0 Multiply X by -1 
1 1 Multiply X by Y 

Since the Multiplicands are stored in some kind of memory, it would not be difficult 

to store the additional Si and So bits along with the constant multiplicand. 

The way the complex-valued multiplier is designed for this project (receives only 

the real or imaginary data-word at a time) will not allow for these modifications to work. 

However, the FFT-4 design proposed in Section 7.2.1 would allow the shortcuts to work in 

conjunction with the "multiplier2" design. Because the real and imaginary data-words from 

the FFT-4 would appear simultaneously, the multiply short cut or the Booth instructions 

could be decoded from the multiplicand in memory propagating the product as fast and 

energy efficiently as possible. 

4.3.4 Pipelined Crossbar Switch. The purpose of the pipelined crossbar switch 

is to interleave the partially transformed values after the multiply operation and before 

4-11 



the second FFT. FFT-40 will operate on the first output of each multiplier, FFT-4i will 

operate on the second output of each multiplier and so on. 

The crossbar switch is complex in terms of inputs and outputs, however, its design 

is not that difficult. As you can see from the petri-net diagram of Figure 4.3, it consists of 

eight token loops, each with four token stops. There are four horizontal loops which are 

advanced by each multiplier handshake. The four vertical loops are in a ripple chain and 

are advanced by the acknowledgment from the reused FFT-4 elements. There are four 32 

bit registers, one for each of the multiplier outputs. Since the arrival of values may be out 

of order, a multiplier may have to wait to forward its output. To prevent idle time and 

increase parallelism, one value from each multiplier is latched. If the second value arrives 

before the first is routed, it will not be latched and the multiplier will have to wait. 

Figure 4.3     Pipelined Crossbar Switch Petri-net 

When both tokens are present at a given stop, a tri-state device is enabled and the 

proper value is put onto one of the four output busses to the FFT-4 elements. When 

this tri-state device is enabled a handshake is also commenced with the specified FFT-4 

element.   When the Acknowledge returns from the FFT-4 element, the horizontal loop 
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token advances to the next stop. This process will go on until all 16 data elements proceed 

through the crossbar. 

4.3.5 Expander. The final operation in the algorithm is to compose the final 

output sequence following the N2 point FFT. In hardware, the expander receives XQ, X4, 

X8, and X12 from the FFT-40 block, Xx, X5, X9, and Xi3 from the FFT-4i block, and 

so on. In sequencing these outputs, the expander will closely match the input sampling 

frequency. 

Previous Work. Originally, the same concept used to implement the 

decimator was to be used in implementing the expander. Specifically, the design was to 

have an expander tree put together to complete the JV2 expansions to assemble the correct 

output. A burst-mode specification was developed for this that proved correct as far as 

the control path was concerned but implementing the data path became too complex to 

implement this design. 

Chosen Design. Based on the success of the ripple loop of the crossbar, 

the design for the expander followed suit. In this instance, however, there is only one loop 

of four ripple one-hots. The loop is not allowed to progress unless the proper order of 

requests is maintained. It is possible for the components to become valid before their turn 

but they are ignored until the loop token appears. Figure 4.4 shows how this ordering 

works after some inputs and outputs have been transfered. Note how the token is waiting 

Figure 4.4     Expander Petri-net 

for an output from FFT-42 but FFT-43 already has its output ready. The FFT-43 output 
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will have to wait until FFT-42 produces its output and the token is advanced to the next 

stop. 

4-4    Summary 

This chapter has attempted to highlight all work that has been accomplished to date 

on this project discussing each at a high level. Chapter V will cover detailed implementa- 

tion of each piece of hardware. 

4-14 



V.  Implementation 

This chapter gives an in-depth look at how each part of the FFT-16 system is implemented. 

Included in each section are block diagrams of all different levels, state transition diagrams, 

and actual gate level implementations when necessary. Each sub-system is discussed in 

the order encountered in the calculation of the 16 point FFT. 

5.1   Decimator 

Unlike the theory behind the decimator, its implementation is very simple. Essen- 

tially, the decimator is a router that diverts the input handshake into the proper FFT-4 

block (0-3). Because the data lines are common to all four FFT-4 blocks they are routed 

to all, but the proper values are latched only when one of the blocks receives a hand- 

shake. Figure 5.1 shows the decimate-by-two state machine and Figure 5.2 shows how the 

decimator is implemented as a tree of three 2:1 two cycle decimators. 

GREQ+ 
LREQ0+ 

GREQ- 
LREQ1- 

SO j 

s30 

SI 

S2 

jGREQ- 
LREQO- 

GREQ 
 [> 

5! m o 
Ul o 

LREQO 

LREQ1 

GREQ+ 
LREQ1+ 

Block Diagram State Transition Diagram 

Figure 5.1     Decimate-By-Two State Machine 

With this design, acknowledgment is handled externally. This will be further ex- 

plained in Section 5.2.1. Using this machine, the decimate by four is created by linking 

the even and odd pairs together at the leaf node. This is shown in Figure 5.2. 
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Figure 5.2     Decimate-By-Four Block Diagram 

The only real challenge of the decimator design is to make sure that each of the leaf 

"REQUEST" signals have enough drive to get to each of the FFT-4 blocks. This will be 

handled in the layout. 

5.2   FFT-4 

To abide by the purpose of choosing an N that is a perfect square, the FFT-4 block 

executes both the N\ and N2 point FFT computations. Each of the four FFT-4 blocks 

consist of four major parts as shown in Figure 5.3. 

The first operation reads the four 32-bit input values into the input register bank with 

a series of REQIN/ACKOUT handshakes. When x0,xi, and x2 are read in, the first of the 

intermediate operations may begin by reading two values out of the eight registers in the 

input stage, performing addition or subtraction in the Arithmetic Logic Unit and storing 

the sum or difference in the intermediate register bank. When the eight intermediate 

calculations are complete, the output control stage executes the final eight operations to 

complete the FFT calculation. Each one of these operations begins by reading two values 

out of the intermediate register bank, performing arithmetic on them and concludes with 

releasing one 16 bit value at a time to the next stage. Sections 5.2.1 through 5.2.4 discuss 

each of the four major components at length. 
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Figure 5.3     FFT-4 Block Diagram 

5.2.1 Input Control/Registers. The overall function of the input portion is to 

receive four 32-bit complex values, each with a REQ/ACK handshake with the previous 

stage and store each in a dedicated static register. The input stage also handshakes with 

the intermediate computational block when the necessary input values become available 

to create the intermediate values a, b, c, and d. 

Global One-Hot Encoded AFSM. Each new input value has its own 

register so the control unit needs to write enable the dedicated register at the appropriate 

time. This is accomplished using a global one-hot encoded state machine. Figure 5.4 shows 

the block diagram and state transition diagram for this machine. Each global one-hot will 

assert its LREQ or "Local Request" signal when both GREQ, or "Global Request" and 

GO are high. This implementation becomes useful when many are "chained" together as 

in Figure 5.5. When a repeated GREQ signal is given, the waveforms of Figure 5.6 result. 

Input Control. The function of the input control is to keep track of 

the number of input handshakes so the intermediate control block can be signaled when 
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Figure 5.6     Four Global One-Hot Waveforms 

enough values are present to begin intermediate arithmetic. Figure 5.7 contains the state 

transition diagram which is a single loop of states that handshakes with the intermediate 

stage when XQ and x<i are ready, and when x\ and 2:3 are ready. The actual complexity of 

this state machine is fairly large because there are very few distinguing variables between 

the states. 

Register Cell. Since the main function of the input portion of the 

FFT-4 element is to store data, the most important component is the register cell. Figure 

5.8 shows the typical cell used throughout the entire FFT-16 design in some variation or 

another. 

This register cell is based on a clocked register design contained in the AFRL/MRC 

library. All clocking components have been removed leaving this simple ASFM. The dou- 

ble invert on the WEN, or write-enable, signal is necessary so upon a high-to-low WEN 

transition, the non-data inputs on each of the AND portions of the AND-OR-INVERT 
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IREN 

Figure 5.8     Standard Register Cell 

gate are high for a period of one inverter gate delay, removing the hazard on the gate. If 

only a single inverter was used for the WEN input, upon the same high-to-low transition, 

there would be a logic low on the non-data input of each AND portion for the period of 

an inverter gate delay causing the hold value of of the register cell to be zero regarless of 

its intended value. 

Putting it all Together. Now that all of the components comprising 

the input stage of the FFT-4 have been described, we can take a look at how it all works 

together. Figure 5.9 shows how the IREQ signal from the input control state machine 

becomes the global request to the four one-hot machines. The local request from each 

machine becomes the write enable to each of the registers. One important thing to point 

out is the 4-way fan-in (16 way fan-in internal to the register) for the write acknowledge 

only comes from the imaginary component register in each pair saving area and time. The 

correctness of the delay with only one register fanin for the ACKOUT signal was verified 

using Spice6. 

6Avanti Corp. Hspice version 95.1. 
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Figure 5.10     Nominal ALU Stage 

5.2.2 Arithmetic Logic Unit. Two basic circuits make up the dual-rail carry- 

ripple ALU. Figure 5.10 represents the 16 nominal stages of the ALU. Each slice uses 

an XOR gate on the B input to select inversion if the Function Bit is asserted. Then 

the SUM is computed using the B or B XORed with A followed by an XOR with CIN1. 

The computation of the carry bits can happen in one of two ways. If the A and B inputs 

indicate a carry-kill (00) or a carry-generate (11) condition, the COUT0 or COUT1 bit can 

be raised accordingly. This allows the carry chain to be shorter than the worst case most 

of the time allowing for faster operation. If the input data does not determine the proper 

carry, the stage must wait for one of the carry-in bits to become valid before the appropriate 
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carry bit is raised. The DONE output from each stage is fed into a NOR-NAND tree 7 to 

compose the AACK signal. 

To initiate the ALU operation, the AREQ signal is sent to the special "stage-1" of 

Figure 5.11. Here the carry chain begins by raising the COUTO or COUT1 depending on 

the FNCT input. If there are no carries from this setup stage, the DONE signal becomes 

the completion signal for the ALU (AACK). 

5.2.3 Intermediate Control/Registers. The intermediate operations are the most 

complex in the FFT-4 because they involve reading a 16 bit value from the input register 

file, performing an ALU operation (either addition or subtraction) and then writing the sum 

or difference to one of the eight intermediate registers. This operation cycle repeats eight 

times during the intermediate phase so it is apparent that generating the control signals 

for the ALU and the register banks is quite complex. Much of this complex signaling, 

though, is handled using a new approach of the one-hot architecture. 

Ripple One-Hot Encoded AFSM with Context. Unlike the global one- 

hot sequence, the ripple one-hot sequence works with external signaling only at the begin- 

ning and end of an indefinite length sequence. Figure 5.12 contains the block diagram and 

state transition diagram of the ripple one-hot state machine and Figure 5.13 shows how 

a sequence of these ripple one-hots is linked together. It is important to note that this 

implementation of the ripple one-hot sequence uses two enabling signals for each block, 

the REQ signal and the CONTEXT signal. The CONTEXT signal is raised earlier, to 

allow setup time for the ALU inputs whereas when the REQ signal is raised, the PREQ or 

process request signal is immediately raised and routed to an OR tree to enable the ALU. 

7Normally this would be a NAND-NOR tree to achieve the 17-way AND function but the tree starts 
with DONE instead of DONE. 
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Intermediate State Machine. The intermediate state machine ex- 

changes handshakes with the input state machine for the computation of the intermediate 

values. The intermediate state machine must also know that all output values have been 

completed before the next cycle begins via the OUTRUN signal. 

To start the ripple one-hot sequence, the intermediate state machine of Figure 5.14 

sends the FREQ signal and receives the FACK and LREQ signals. Since it is performing 

PREQOl 
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Figure 5.13     Loop of Ripple One-Hot Machines 
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the one-hot ripple cycle for both the calculation of a and c as well as b and d, it must do 

it twice. 

ACREQ+ OUTRUN- FACK+ LREQ- ACREQ* 
ACACK+FREQ+   FREQ- 

FACK-LREQ+ACREQ- 
ACACK- 

FACK-LREQ+BDREQ- FACK+LREQ-BDREQ* 

BDACK- FREQ- 

BDREQ+ 
BDACK+FREQ+ 

Figure 5.14     Intermediate State Machine 

Putting it Together. When connected in the full architecture of the 

intermediate control, Figure 5.15 results. It is important to point out some key information 

about the intermediate stage block diagram. All blocks labeled "DEC" represent 1:2 

decoders with the BDACK signal acting as the selector. When BDACK is low, the top 

or left signal is selected and when BDACK is high, the bottom or right signal is selected. 

These decoders enable reuse of the four ripple one-hot machines thereby reducing the size 

of the control path. 

The AND-OR-INVERT structure on the input register read enable signals is there 

to make sure the proper register is enabled even after the context signal is lowered. 

Usage of the AND gate on the intermediate register write enable is present to make 

sure the write is enabled only long enough for the valid data to get written. Once the 

PREQ signal goes low, some the outputs of the ALU will change quickly. If the register is 

write enabled too long, the incorrect value will be locked in. The OR-AND structure on 

the PACK or process acknowledge input of each block is necessary to ensure the process 

resets through the ALU and not when PREQ is lowered. If the OR gate were not used 

and the intermediate write enable was simply PREQ AND AACK, the setup time for the 

ALU would be reduced and delay elements could be required. 
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The delay element on the FREQ signal is required since the OR-AND gate is on the 

first context signal. This is used because the context signal looping around from the last 

one-hot to the first is high when the intermediate stage is idle. If this high context signal 

propagates to the register enabling lines, there will be more than one driven value on each 

data path. This delay element is also present in the output state machine but only an 

AND gate is required in the first context signal since only one pass through the one-hot 

sequence completes the operation. 

Re{X(J} im{xo> Re{Xl} lm{Xl} R4X2} lm{X2} Re{X3) lm{X3} 

Re{A} R<*B> lm{A} lm{B} Re{Q R«D} lm{C} lm{D} 

Figure 5.15     Intermediate Block Diagram 

Table 5.1 contains the step-by-step operation of the intermediate stage. The regu- 

larity of the ALU computations allows for the reuse of the ripple one-hot sequence for the 

computation of b & d following the computation of a & c. 
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Table 5.1     Intermediate Stage i Function 
Operation Datapath A Datapath B ALU Write 

1 Re{a;o} Re{:E2} Add Re{a} 

2 Im{a;o} Im{x2} Add Im{a} 

3 Re{a;o} Re{x2} Subtract Re{c} 

4 Im{a;o} Im{a;2} Subtract Im{c} 

5 Re{xi} Re{a;3} Add Re{6} 

6 Im{xi} Im{x3} Add Im{6} 

7 Re{a;i} Re{a;3} Subtract Re{4 
8 Im{a;i} Im{a;3} Subtract Im{d} 

5.2.4 Output Control. Table 5.2 shows that the first output value (X0) requires 

the computation of the intermediate value b indicating the output machine must wait until 

all the intermediate calculations have been completed before it begins. Figure 5.16 shows 

the SO -> SI transition and the SI -»■ S2 transition are dependent on BDACK rising and 

lowering respectively before the output stage may begin operation. 

BDACK+ 

I soT SI ) 
LREQ+      / 

OUTRUN-/ 

\              BDACK- 
\     FREQ+ OUTRUN+ 

(S4 
FACK-LÜEQ+ 

S3 ) 
FACK+ 
FREQ- 

S2J 

Figure 5.16     Output Finite State Machine 

The output block diagram, pictured in Figure 5.17, shows many of the same features 

of the intermediate stage with a few notable exceptions. First of all, there are eight 

ripple one-hot machines in the sequence instead of just four. This is required because the 

ALU operations and operands do not fall into a repeatable pattern as in the intermediate 

operations. Secondly, the OR-AND structure holding the PACK signal high to each one- 

hot is reliant on the ACKIN from the previous stage rather than the AACK signal from 

the ALU. The output stage and the intermediate stage do share the same ALU so even 
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Table 5.2     < Dutput Stage ] •Ymction 
Operation Datapath A Datapath B ALU Write 

1 Re{a} Re{6} Add Re{X0} 
2 Im{a} Im{6} Add Im{X0} 
3 Re{c} Im{d} Add Re{Xi} 

4 Im{c} Re{d} Subtract lm{Xx} 

5 Re{o} Im{6} Subtract Re{X2} 
6 Im{a} Re{6} Subtract Im{X2} 
7 Re{c} Im{4 Subtract Re{X3} 
8 Im{c} Re{d} Add Im{X3} 

though it is not reflected in the two block diagrams of Figures 5.15 and 5.17, the control 

path shown in Figure 5.3 is correct. 

5.3    Complex Multiplier 

Refering to the previous chapter on this subject, a complex multiply of two values 

actually requires four real multiplies followed by one addition and one subtraction. This 

implementation performs two real multiplies in parallel followed by the ALUs dedicated to 

addition and subtraction. Section 5.3.1 describes the implementation of the real multiply 

followed by the data path and control path for the completion of the real multiply. 

5.3.1 Real Multiply. Figure 5.18 contains the control and half of the data path 

of the radix-4 16-bit real multiplier. Starting with the REQIN signal, the first block 

encountered is the loader state machine. The loader puts the multiplier in the X register 

at the appropriate time. A series of state machine loops are performed by the multiplier 

state machine which controls the ALU math and the shifting in the product register. 

When the correct number of shifts have been performed, the real multiplier control unit 

will handshake with the rest of the complex multiplier to compute and store Re{Z} and 

Im{Z} in the crossbar memory element. Notice the dotted line indicating the hardware 

portion that is shared between the parallel real multiplies. 

To understand the two data paths of the real multiplier (hereafter refered to as the 

multiplier2), refer to Figure 5.19. Although all the control in the multiply unit is shared, 

only the control for the ALUs is illustrated to simplify the figure.   Because the Booth 
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decoded ALU instruction will be the same for both multiplies, the AREQ signal is routed 

to both ALUs. A C-element is required to synchronize the AACK signals from each ALU 

because the ALU operating time is data dependent and the real and imaginary constant 

additions will likely complete at different times. Each data path has its own ALU, shift 

register, and constant storage. 

Loader. Continuing with the elements of the multiplier2, we start 

with the loader in Figure 5.20. It is responsible for making sure the multiplier2 is not 

functioning (MULTACK is low) before starting the next multiply operation. Figure 5.18 

shows how the LOADX signal also clears the Z Register. For this reason, the loader must 

wait until the MULTACK signal is low before loading a new value because the final output 

adder and subtractor of the complex multiplier rely on the static storage of each Z Register 

for proper completion. 

Multiplier Register. The next item is the X register or multiplier 

register. The X register holds the 16-bit multiplier with an additional zero in storage as 

X_i. Since this is a radix four Booth algorithm, there are eight shifts required to cycle 

through one real multiply operation. The number of shifts is controled by the counter 

containing nine global one-hot machines in series. The first eight shifts enable the proper 
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three bit set from multiplier while the ninth shift raises the DONE signal to notify the 

multiplier control that instructions have all been decoded. 

The multiplier register is static and the bits do not actually shift from register to 

register. When the XSH signal comes into the counter, each local request turns on tri-state 

buffers for three register bits at a time. The first shift enables b_i, bo, and bi. The second 

shift enables bi, b2, and \>z and so on with the eigth local request enabling bi3, bu, and 

bis- 

Booth Decoder. Once the three bit instruction is sent to the Booth 

decoder shown in Figure 5.21, it will determine whether or not an ALU operation is 

required. If so, the ACKMATH signal will be raised. If not, the ACKSHIFT signal will 

be raised.   Regardless of which acknowledge signal is used, the FNCT8 bit determining 

»n. 0: ALU addition; 1: ALU subtraction. 
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Figure 5.20     Loader State Machine 

addition or subtraction and the X1X29 is selected. This can be done because FNCT and 

X1X2 became don't care bits when the ALU is not required for that operation. An added 

benefit is that it makes the decoding logic much less complex. 

XSH 

AOKSHIFT 

ACKMATH 

Figure 5.21     Radix-4 Booth Decoder 

The DONE signal is inverted and input to the two output AND gates to make sure 

that when DONE is raised, the Booth decoder will not respond with an ACKMATH or 

ACKSHIFT which could alter the data in the product registers. The XSH signal is also 

injected after a delay element to prevent the X2, XI, and X0 line values from decoding 

until the new values become valid. Without the proper delay element used here, the Booth 

90: Select multiplicand x 1; 1: Select multiplicand x 2. 
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decoder has the potential to raise the ACKSHIFT signal and the ACKMATH signal during 

the same XSH cycle. 

After building this design and understanding more about bounded-delay models, 

probably a better approach to the three Booth instruction bits would be to use a dual-rail 

delay-insensitive scheme similar to the carry chain in the ALU. This would clearly be a 

safer implementation because there would be no dependence on delay elements. 

Multiplier Control. Now we get to the heart of the multiplier2 control, 

the multiplier AFSM (multAFSM) of Figure 5.22. Refering once again to Figure 5.18, you 

can see the relative input and output complexity of the multAFSM. The state transition 

diagram, though, shows the operation really is not that complicated with three possible 

loops that the multAFSM can take during operation. Starting in state 0, the multiplier 

control receives the MULTREQ signal, responds by raising the MULTACK, and waits for 

MULTREQ to lower. Once this happens, the first of nine XSH signals is raised. Then, 

depending on the Booth instruction, the control unit can follow the ACKSHIFT loop or 

the ACKMATH loop. There is no shifting in the ACKMATH loop because the outputs of 

the ALU are in a hardwire shift-by-two formation reducing computation time and control 

complexity within the real multiply. After the X vector has been fully decoded by the first 

eight shifts, the ninth XSH pulse will raise the DONE signal and finish the first loop of 

the AFSM by handshaking with the complex portion of the multiplier2. 

Multiplicand Register. The Y register (multiplicand register) is pretty 

basic for the FFT-16 multiplier. Because only four constants are required for the FFT-16, 

local storage of the constants does not use much die area. Using this locality of storage 

concept, the design of Figure 5.23 constitutes the cell used for each bit. In this cell, there 

is a 4:1 multiplexor with two select bits, Ro, and Ri, implemented using two 3-3 AND-OR- 

INVERT gates joined by a two input NAND gate. Also, since there is an option between 

the current bit or the previous bit, an additional 2-2 AND-OR-INVERT gate is used as a 

multiplexor with the X1X2 signal selecting. When X1X2 is low, the current bit is selected 

for output and when X1X2 is high, the previous bit is selected. 
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Figure 5.22     Multiplier State Machine 

Arithmetic Logic Unit. The ALU here in the real multiply is very 

similar to that of the FFT-4 element. The only difference is that it is being fed by two 

dedicated registers so there is less setup time required to begin an operation. Some delay 

is still required because the X1X2 and FNCT bits may change around the same time the 

ACKMATH signal is raised which still requires a delay element on the AREQ signal. As 

was stated earlier, there is no need to shift following an addition or subtraction because 

the sum/difference lines of the adder are already hardwire shifted by two. 

Product Register. The product register or shift register is one of 

the most unique items in the real multiplier. It is implemented as a hardwire shift by 

two element using a two phase pulse. The two phase pulse is generated using cross- 

coupled two input NOR gates with an RC network delay element. Figure 5.24 shows the 

implementation. 

The unique part stems from the usage of a static shift cell implemented with the 

3-2 AND-OR-INVERT gate of Figure 5.25 where the FB signal must turn on and off at 

precisely the right time so the hold value of the register is not lost. This is accomplished by 
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Figure 5.23     Multiplicand Regsiter Cell 

an INVERT-NAND structure fanning out to two 1X2 inverting drivers for the 21 segments 

of the shift register. 

There are a few advantages in using this implementation instead of the four tristate 

inverters or tristate buffers. The first of these is the size. This static implementation uses 

about 40% less area than the dynamic shift register implementation.   There is no need 

to distribute PHI1 or a CLR signal to all the registers since the CLR input into the FB 

NAND GATE can clear out the AOI222 and there is only the positive input on PHI1 (the 

SHIFTIN enable) because it is not driving a tristate device. The PHI2 and PHI2 are both 

required because a tristate device is necessary to isolate the SHIFTOUT from the hold 

value of the register to prevent a shifting value from propagating beyond its designated 

cell. 

Because this shift register uses static storage, the "hold" node can be distributed 

to its outputs without tri-state buffering. This eliminated the need for a read enabling 

signal to be distributed to each stage but it also led to a problem with the latching for the 

input from the ALU and the output to the ALU. The only other disadvantage is the power 

consumption. Because this is a static element, the nodal voltage is constantly charged with 

intermediate results. 
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Figure 5.25     Product Register Bit 

5.3.2 Complex Multiply Completion. Following the two pairs of simple multiplies, 

there is still more to do. Table 5.3 shows the step by step operation of the complex multiply 

operation and how each step corresponds to the data path depicted in Figure 5.26. 

As shown in Figure 5.26, each output of the multiplier2 block connects to one A 

and B input of an adder and subtracter. Each ALU-A input contains a latch to store the 

integer product of the first two multiplications as described in step 2 of Table 5.3. The 

second multiplication result can be passed directly to the adder/subtracter and used with 

the latched value to produce the complex-valued result. Figure 5.26(a) shows the circuit 

after the arrival of Re{X}. The first two partial products have been computed and latched 

in Figure 5.26(b). Since the FFT-4 will likely produce its outputs faster than the multiplier 
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Step 
Table 5.3     Complex Multiplication Operation Steps 

Operation 

Receive Re{X} from FFT-4 
Multiply Re{X} by Re{Y} and Im{Y} 
creating the two partial products XrYr and j * XrYi 
Receive Im{X} from FFT-4 
Multiply Im{X} by Re{y} and Im{Y} 
creating the two partial products j * XiYr and XiYi 
Subtract XiYi from XrYr to produce Re{Z} and 
add j * XrYi and j * XiYr to produce Im{Z} 

Corresponds to ., 

Figure 5.26 (a) 

Figure 5.26 (b) 
Figure 5.26 (b) 

Figure 5.26 (c) 

Figure 5.26 (d) 

can use them, Im{X} will probably arrive early. Despite this, Im{X} will not be used until 

after it is latched in step 3 of Table 5.3. The second multiplication pair has completed in 

Figure 5.26(c) and is held statically on the data lines. The final step of Table 5.3 occurs 

when all four integer multiplication products are present, and the final complex products 

can be computed and latched into the crossbar switch, as shown in Figure 5.26(d). 

The control path for this computation is shown in Figure 5.27. Note how the RE- 

QOUT signal from the real multiply is fed into the decimate-by-two AFSM. On the first 

REQOUT signal, the Dec-By-2 write-enables the register elements and "requests" the 

ALUs on the second REQOUT. The ACKIN signal can come from either the ALU-A 

latches or the crossbar element. Because the two signals are mutually exclusive, they too 

can simply be ORed together to return to the multiplier2. The last item in the complex 

control path, found in Figure 5.28, is the multiplicand counter AFSM. Since there are four 

constant values used in a 16 point FFT calculation, each time the AREQ signal is raised 

(in the context of Figure 5.27 only), the register constant is incremented by one. 

5.4   Pipelined Crossbar Switch 

The pipelined crossbar switch is very big in terms of I/O since all the partially 

transformed data will pass through it during operation. The one-hot encoded sequences 

work very well in the crossbar switch. The petri-net scheme (Figure 4.3) of the crossbar 

shows eight loops for the 4-by-4 crossbar switch. The four horizontal loops use the global 

one-hot in a similar manner to the input stage of the FFT-4. The four vertical loops use 

yet another implementation of the ripple one-hot encoded AFSM. This usage is the same 
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(c) (d) 

Figure 5.26     Complex Multiplier Data Path Operation 

as the one in the intermediate and output stages of the FFT-4 without the context setup. 

The simpler state transition diagram and block diagram is given in Figure 5.29. The four 

horizontal loops use the same global one-hot configuration used in the input stage of the 

FFT-4. 

We will first examine the horizontal loops of the crossbar switch, pictured in Fig- 

ure 5.30, since they are the first encountered by the multiplier outputs. As the last para- 

graph mentioned, the one-hot AFSMs used here are similar to the input stage of the FFT-4. 

Note how the latching of a 32-bit value occurs largely the same way as the multiplier re- 

ceives a 16-bit value. The only difference lies in the addition of the inverted feedback from 

the loader INTREQ line back to an AND gate with the REQIN signal from the multiplier. 

The loader with feedback to the multiplier request signal is present as a pipeline latch so 

the multiplier can produce outputs in parallel with the previous results being forwarded 

across the crossbar switch to the FFT-4 elements.  This latching is essential to the con- 

5-23 



WEN 

REQIN 

Multiply2 

i > 
lYRegj. 

REQOUT 

ACKOUT 

ACKIN 

RO 

R1 

E o 
ui 

<5 
Multiplicand 
Counter 

DONE 

AREQ 

A  ^   B 
(-) 

AACK 

-es 
_c\ 

AACK 

WEN 

D WEN 
 G» 

DONE 

\<T 

SS   i o     * 

DONE 

Figure 5.27     Complex Multiplier Control Path 

AREQ 
RO AREQ- 

AREQ 
R0-«R1 

(so '     S1    j S2 S3 J 

AREQ- AREQ- 

(s7 
AREO 

R0-«R1- 

,     S6j 
AREQ- 

S5 
AREO 

RO 

S4 J 

Figure 5.28     Multiplicand Counter State Machine 

currency in the overall FFT computation. After one value latches through the HOLD 

state machine (to be discussed in Section 5.5), the INTREQ signal may be raised but the 

crossbar row may not immediately raise the INTACK signal if it is waiting for a token. 

Without the inverted INTREQ feedback, the next REQIN rise will start the loading cycle 

before the previous value gets used. This is an unwanted condition that would ruin the 

FFT-16 computation. 

Each register has four read ports, one to drive each column in the crossbar, thus 

more evenly dividing the tri-state buffering and wired-ORs. Note how the LREQ and 

PREQ signals must be high to read enable the proper read port. This is essentially 

saying that both the horizontal and vertical tokens are necessary to move data through 

the switch. Here we can see how the horizontal loops advance. When the vertical ACKIN 
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Figure 5.30     Horizontal Crossbar Switch Loop 

signal arrives, it will assert the appropriate PACK and INTACK signals (governed by the 

OR-AND structure). Since the acknowledgement from the FFT-4 blocks will be mutually 

exclusive in any row, all of the ACKIN signals (routed through the OR-AND structure) 

can be ORed together to form the INTACK signal returning to the loader AFSM. 

The vertical loops are somewhat less complicated because less function is necessary. 

The first PREQ in each loop is high upon a system reset. This effectively means that all 

the tokens are waiting in the top of the loop. Figure 5.31 contains the simplified vertical 

crossbar switch loop. Upon receiving an INTREQ from one of the horizontal loops, the 

PREQ and LREQ signals are ANDed together and routed down to a four-input OR gate. 

This constitutes the REQOUT signal to the FFT-4. When the FFT-4 responds with an 

ACKIN, it is routed to back to each of the ripple one-hot machines. Only the active one- 
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hot will be acknowledged using the OR-AND gates allowing the loop to proceed to the 

next token stop. 
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Figure 5.31     Vertical Crossbar Switch Loop 

5.5   Expander 

The expander is the last major block in the computation of the FFT-16. The main 

functional portion of the expander consists of the last implementation of the one-hot en- 

coded sequence. This loop of four blocks in the middle of Figure 5.32 is the same ripple 

sequence as used in the vertical loops of the crossbar switch. 

Figure 5.32 shows two new state machines that are used to latch the incoming data 

from each FFT-4 element.  For simplicity, only one of the four stages will be examined. 
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A REQO comes in from FFT-40. The decimator then requests the hold state machine 

(Figure 5.33) which will raise WEN going to the real register, wait for DONE to assert, 

lower the WEN signal, wait for DONE to deassert, and finally raise the ACKOUT signal. 

This order of operations ensures that the register will be write-enabled only long enough 

to get a value locked in so there will be no incorrect data latched due to changing bus 

values. 

Similarly, the latchcon state machine ensures the imaginary value is locked before 

proceeding to relinquish the token to the one-hot chain. The latchcon state machine 

receives the request from the decimator and raises WEN for the imaginary register. It will 

then wait for DONE to be raised at which time latchcon will lower WEN. When DONE 

lowers, indicating the value is locked, REQOUT will be raised, effectively passing the token 

to the one-hot chain. 

To advance the one-hot chain, both the REQOUT from the latchcon state machine 

and the corresponding PREQ signal must be high. This combination will read enable both 

the real and imaginary registers and raise the REQOUT signal for the whole FFT-16. 
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When the ACKIN is recieved, the token advances to the next stage and the current stage 

resets. 

5.6   Additional FFT-16 Elements 

This section includes a description of each of the elements required to reuse the FFT-4 

elements and eliminate the need for a Multipliero (defined in 5.6.4). The motivation behind 

the design and use of these components is that the area used by the FFT-4 is quite large 

compared to everything else in the FFT-16. By designing and implementing the following 

components, the four FFT-4 blocks can be reused adding slightly to the timing and control 

overhead but saving tremendously on area. Given the dataflow nature of the FFT-4, input 

data can be received while it is still outputing values to the multiplier so there is no stalling 

in overall FFT-16 pipeline. This feature is something that should be kept in mind when 

designing the new FFT-4 element mentioned in Section 7.2.1. 

Figure 5.35 demonstrates how each component in this section fits around the FFT-4 

to enable its reuse. 

5.6.1 Input Multiplexor. The input multiplexor must allow the proper inputs to 

enter the FFT-4 element.  For the first part of operation, the inputs come from outside 
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Figure 5.35     Additional FFT-4 Reuse Components 

the FFT-16. For the second part of operation, the inputs come from the crossbar switch. 

Since the asynchronous signaling allows values to propagate through the Multipliern and 

the crossbar switch so quickly, it is necessary that the multiplexor transition rapidly after all 

of one set of inputs has been received. This is accomplished using the sequencer discussed 

in Section 5.6.2. The input multiplexor also properly routes the input handshaking signals 

of the FFT-4 block. 

5.6.2   Sequencer.      The sequencer is responsible for selecting the proper input and 

output blocks of the FFT-4 element.   It keeps track of the FFT-4's operation stage by 
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monitoring the OUTRUN signal. The block diagram and state transition diagram are in 

Figure 5.36.  The INSEL output is the selector for the input multiplexor (Section 5.6.1) 
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OUTSEL- 
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OUTRUN- 
OUTSEL- 

Block Diagram 

OUTRUN+ 
INSEL- 

State Transition Diagram 

Figure 5.36     Sequencer State Machine 

and OUTSEL is the selector for the output control unit (Section 5.6.3). Initially, the 

INSEL bit selects the FFT-16 input to the FFT-4 block and the OUTSEL bit selects the 

complex-valued multiplier as the output. As soon as OUTRUN is raised, the input is 

switched from the FFT-16 input to the crossbar switch output. When OUTSEL lowers, 

indicating the first set of outputs is done, the Output selector switches to the expander 

from the multiplier. The last half of the sequencer cycle brings the INSEL and OUTSEL 

bits back to the original settings. 

5.6.3 Output Control Selector. The output controller is simply a grouping of a 

1:2 decoder and an OR gate. As a request signal propagates from the FFT-4 block, the 

output control element will route it to either the multiplier or the expander, depending on 

the condition of the OUTSEL bit. Since the acknowledgements from the multiplier and 

the expander will be mutually exclusive, they are simply ORed together to go back into 

FFT-4. Figure 5.37 shows a simple block diagram of the output control unit. 
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5.6.4 !6:32 Latch. Refering to Section 4.1.2, Equation 4.2 it is apparent that 

all the values used in the first multiplier (Multiplier0) are 1 + jO. Instead of performing 4 

multiplies by 1 (pass a value through), a 16:32 latch is used to compose 32-bit data-words 

from the separate real and imaginary words. Data is received 16 bits at a time. The bits 

are first latched into the "real" register followed by the handshake completion with the 

FFT-4. Then, the second request from the FFT-4 is forwarded to the crossbar switch along 

with the full 32 bits of data, just like the complex-valued multiplier. 

5.7   Summary 

This chapter has discussed each component necessary to compute the FFT-16 for 

this project. Chapter 4 discussed the motivation for each one of these designs. In some 

cases the implementations discussed here were found to be inferior to other designs. These 

new designs are proposed in Chapter 7 for potential future work. 
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VI.  Results 

6.1 Introduction 

The original goal of this project was to implement the Suter/Stevens FFT algorithm 

in silicon using asynchronous and low power design techniques to demonstrate that the 

benefits of both design methodologies could be combined for extreme energy efficiency. 

When this project gained sponsorship from the Space Vehicles Directorate of the Air Force 

Research Laboratory, demonstrating the asynchronous architecture could reduce power 

consumption became the main goal because standard low power design techniques do not 

generally coincide with a radiation tolerant design. 

6.2 FFT-4 Test Chip 

A test chip using the design from Chapter IV and most of the implementation of 

Chapter V was fabricated using the O.fytm HP foundry with MOSIS design rules. The 

data-words were only six bits for the real portion and six bits for the imaginary portion. 

6.2.1 ■ Design of the Test Chip. The test chip contained an FFT-4 implementation 

using the four major components discussed in Sections 5.2.1 to 5.2.4. There were slight 

differences in several parts of the design. A global one-hot sequence that contained internal 

acknowledgement was used instead of the external acknowledge chain used in the current 

design. There were some changes with the intermediate stage as well. Instead of having a 

single state machine, an "ac" AFSM was used in conjunction with a "bd" AFSM. These 

two state machines were synchrononized with a 1:2 decoder on the FREQ and LACK (last 

acknowledge) signal and an OR gate on the FACK and LREQ signals. Both and LREQ 

and LACK were used because there was difficulty in setting up the complete ripple loop 

CONTEXT and request signals. 

Complete working simulations were not attained prior to submittal. However, IR- 

SIM10 simulations indicated the chip could perform the four input reads and the first ALU 

operation. 

10 Berkeley IRSIM v. 9.2. 
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6.2.2 Test Chip Results. The results of the test chip were very negative. Initial 

tests gave no response to the input. When an ACKIN signal was asserted, all of the 

outputs would follow the ACKIN value. Later determinations indicated this was caused 

by a trace incorrectly placed across GND metal. A laser cut was made across this wire 

which should have enabled two output computations to execute correctly, but the results 

were still negative. 

6.2.2.1    Reasons for Failure.       There are several potential reasons for why 

the test chip failed. Some of the results map to known failures, but not all. 

Pull VHDL with a data path was not completed. Because the entire control path 

worked properly in behavioral VHDL, it was assumed the data path would work properly 

as well. The term "data dependence" should have more fervently indicated the need to run 

complete VHDL simulations prior to lower level design work. Sections 6.2.3.1 and 6.2.3.2 

contain discussions on circuit hazards that were detected when the data path was added 

to the behavioral VHDL. 

Line loading was a new concept that did not appear until the four major components 

of the test chip were connected. As an example, consider a metal trace length L and width 

W. We know that the time constant (r) for charging or discharging a node is RC. The 

trace resistance is oc L 4- W and the trace capacitance is oc L x W so 

T = RC   oc   ^x(LxW) 

T   oc   L2 

The time constant of the trace increased according to length squared! When the subcom- 

ponents of the FFT-4 were assembled, the bounded-delay assumptions that were made 

before component integration were suddenly invalid. 

Although there is no evidence to substantiate this, another possibility is the test chip 

was not reseting properly. Since the simulation results indicated that part of the chip was 

functional yet this was not observed raised suspicion that reseting may be the problem. 
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6.2.3 Design Modifications Following Test Chip Fabrication. Initially, it was 

thought that all the added complexity of having two intermediate state machines and the 

internal acknowledgement of the global one-hot sequence along with several other issues 

caused the incompleteness of valid simulations. 

Based on trace loading revelations, much more care was taken to ensure proper drive 

capability on all lengthy traces in the circuit. The architecture is good for keeping signals 

local, but the size of the radiation tolerant cells overwhelms the concept of locality in some 

instances. 

The potential reseting problem has not been addressed because this was not discov- 

ered until after the test chip returned from fabrication. This will be discussed in Chapter 

VII. 

6.2.3.1 Register Read Enabling in the FFT-4. In Figure 6.1, we see the 

problem with register read enabling. The incorrect design of the left block diagram cor- 

responds to the solid wave lines. The correct block diagram on the right corresponds to 

the dashed lines and arrows. With the incorrect design, the ALU input values will change 

before the ALU has the opportunity to fully reset. The addition of the AND-OR structure 

in the top right shifts the transitions of the read enable signals. Now, the current read 

enable signal remains high to ensure that the ALU input values do not change until the 

AACK signal has lowered indicating a full reset. Then, the next read enabling sign is not 

raised until the ALU fully resets ensuring there is no conflict on the data lines. 

Executing behavioral VHDL, including the data path, highlighted this error because 

the AACK signal would go to an 'X' condition even though the correct sum had already 

been issued (exactly what happened in the test chip IRSIM results). It is interesting to 

note that the data should have no effect on the AACK signal because of the "stage -1". 

As soon as AREQ lowers, both carry signals go to zero, raising the DONE signal for that 

stage which deasserts the AACK signal. 

6.2.3.2   Intermediate Register Locking in the FFT-4-      Though present, the 

problem with register locking was not discovered in the test chip simulations because the 
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Figure 6.1     Register Read Enabling 

original test benches were incomplete. The behavioral VHDL again was the key to discov- 

ering that the wrong value was being latched into the intermediate registers. Figure 6.2 

contains the incorrect and correct designs along with the transition shift waveform. The 

key with reseting the PACK signal through the register was so that the ALU completed 

its reset operation before PACK was lowered. The problem was that when the ALU resets 

after AREQ is lowered, the outputs begin to change in most cases. The correct design in 

the upper right still allows the PACK signal to reset through the ALU, but not through 

the register. 

6.2.4 Test Chip Summary. Following the discovery of these design flaws from 

the behavioral VHDL, the simulation results from the test chip were reexamined, and the 

errors observed there were similar to the VHDL simulation results before the modifications 

were made. The conclusion is that, even if the reseting worked properly and the layout 

error had not been made, the test chip still would not have functioned properly. 
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6.3   16-bit FFT-16 Simulation Results 

Some power and timing results based on SPICE simulations on extracted layouts were 

attained. The AFRL/MRC cell library is designed to be maximally radiation tolerant when 

Vdd is 5.0 V. However, 2.2V is customary for many of today's low power designs due to 

the benefits of voltage scaling. The preliminary numbers use a middle-ground Vdd of 3.3 

V. VHDL simulations at this voltage have been projected to the system timing chart of 

Figure 6.3. The results with Vdd of 5.0V and 2.2V have been included along with the 

baseline of 3.3 V to examine the AFRL/MRC operating range as well as to permit closer 

comparisons to other low-power FFT chips. 

Note how the processing delay of all the major components overlap. The actual 

amount of overlap (pipelining) will vary depending on the data but this figure gives a good 
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Figure 6.3     FFT-16 System Timing 

timing estimate. The asterisk by the Mult(O) line in Figure 6.3 indicates this is not actually 

a multiplier. The constants for the 0th sequence are all equal to 1 + jO so no multiplication 

is required. In place of a multiplier, the 16:32 latch discussed in Section 5.6.4 is used so a 

full 32-bit complex value is sent to the crossbar switch. Based on empirical SPICE data, 

system and component timing can be extrapolated to Vdd = 5.0 V and Vdd = 2.2 V. 

Table 6.1 shows the timing comparison between the three Vdd levels. 

Table 6.1      Processing Delay by Element (ns) 
Vdd Decimator FFT-4 Multiplier Crossbar Expander FFT-16 

5.0 V 240 480 480 510 390 1200 
3.3 V 320 640 640 680 520 1600 
2.2 V 531 1062 1062 1129 863 2656 

The actual SPICE power numbers for each component running at the frequencies 

in Table 6.1 can project power consumption for the FFT-16. The component and system 

power consumption numbers are given in Table 6.2. 

Table 6.2 Power Consumption by Element (mW 
Vdd Decimator FFT-4 Multiplier Crossbar Expander FFT-16 

5.0 V 5.8 182 350 114 74 1076 
3.3 V 1.1 45 86 25 18 264 
2.2 V 0.6 11 22 9 5 67 
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In order to compare these results to prior work, we need to extend the timing and 

power figures to larger point sizes. We know that the time to compute an FFT increases 

according to Nlog2N. The power and energy computations are a little trickier because 

the number of components increases along with the size of the decimator, crossbar switch, 

and expander. Table 6.3 gives the extrapolated computation times and Table 6.4 give the 

extrapolated energy numbers. 

Table 6.3     Extrapolation of Timing Measurements (fis) 
Vdd FFT-16 FFT-32 FFT-128 FFT-256 FFT-1024 

5.0 V 1.2 3.0 16.8 38.4 192.0 
3.3 V 1.6 4.0 22.4 51.2 256.0 
2.2 V 2.7 6.6 37.2 85.0 425.0 

Table 6.4     Extrapolation of Energy Consumption (pJ) 
Vdd FFT-16 FFT-32 FFT-128 FFT-256 FFT-1024 

5.0 V 1.29 3.29 26.2 68.0 494.9 
3.3 V 0.422 1.07 8.4 21.6 153.25 
2.2 V 0.178 0.455 3.7 9.9 77.5 

Since these numbers are very rough estimates, direct comparisons against current 

FFT chips are not that conclusive. These comparisons are still drawn to show that, de- 

spite using a power hungry cell library and disregarding many known power reduction 

techniques, similar power efficiency numbers can be achieved with architecture and asyn- 

chronous design techniques. 

Table 6.5 Energy Efficiency Comparison 
Chip Vdd 

(V) 
Power 
(mW) 

Time 
M 

Energy/unit-transform 
(nJ) 

FASST 
Plessey 
PDSP16510A 

5.0 
5.0 

2578 
3000 

192 
98 

483 
287 

FASST 
Spiffeel 

3.3 
3.3 

599 
845 

256 
30 

149 
24.7 

FASST 
Spiffeel 

2.2 
2.5 

182 
339 

425 
42 

75 
13.9 

Table 6.5 gives a rough comparison among FASST, the SPIFFEE project at Stanford 

University, and a commercial FFT processor (The Plessey PDSP 16510A). It is fair to point 
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out that the Plessey DSP chip uses a block-float data format instead of fixed point which 

accounts for some of the additional energy required. The figure-of-merit used here, that 

of energy consumed per unit transform, compares the energy efficiency of the architecture 

in generating a result and is independent of the frequency of execution. We must also 

point out that the sample frequency of this asynchronous design is considerable faster 

than that of any of the comparison processors. The numbers for this project will remain 

fairly constant for larger point sizes due to the hierarchical nature of our FFT algorithm. 

However, as the point-size grows, additional hierarchical layers are required which will 

result in increased power consumption. 

The 2.2 V Vdd FASST entry in Table 6.5 probably could not be used in space because 

of the single event effects discussed in Section 3.2.2. It is presented here to show how the 

efficiency FOM scales between the different Vdd levels. 

6.4   Summary 

Despite the multiple test chip failures for only six-bit data, the simulation results for 

the 16-bit designs and the extrapolations to larger FFT point sizes show a lot of promise. 

It seems all of the known errors regarding the test chip have been corrected and future 

designs should work. The recommendations for continuation of this project outline how 

this project should be continued. 
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VII.   Conclusions and Future Work Possibilities 

7.1 Project Conclusions 

It was not certain at the beginning of this design that the power reduction originally 

intended could still be attained using the radiation tolerant standard cells. Even if the sim- 

ulation results from Chapter VI are off by 10-15%, this project has still demonstrated that 

an asynchronous architecture alone can limit power consumption to a point competitive 

with Earth-bound low power devices. 

This point alone is reason enough to continue the work in this area. Refering once 

again to Figure 2.1, it is conceivable, even probable, that the success of this low power 

architecture will map to high speed designs using low power techniques or even a more 

complex data type although the size of these circuits would likely become a concern. 

7.2 Potential Future Designs 

In the course of design, many times the success of an implementation is not deter- 

mined at the higher levels of design. For instance, it was not determined that the early 

attempts of the FFT-4 design which reused registers were too complex to use until they 

were mostly laid out. This became the case with the FFT-4 implementation discussed 

in Chapters IV and V. It was thought that the division of the control and the data flow 

would work well but the control complexity became overwhelming in addition to the un- 

wanted addition of data busses for the ALU. These design frustrations lead to a new way 

to implement the FFT-4. 

7.2.1    New FFT-4 Element. Toward the end of this project, a new idea for 

the FFT-4 element was proposed but little actual work has been done to demonstrate its 

effectiveness or advantages. When the FFT-4 element that was actually used was finally 

laid out, it was very easy to see the complexity of control and register files was greater than 

what was desired. Also, the use of data busses should be avoided because of the constant 

charging and discharging. The new design would use 16 adder and subtracter units because 

each one would have dedicated, known inputs. The control would be minimal because the 
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parallelism would be a maximum. The area would not be too much greater than the 

current design because of the large number of registers and the complexity of the control 

logic. 

Re{x(0)}    Re{x(2)}    lm{x(0)}    lm{x(2)}    Re{x(1)}    Re{x(3)}    lm{x(1)}    lm{x(3)} 

_1 1 i 4 i 4 i 4- 

Re{X(0)}   Re(X(2)}   lm{X(0)}    lm{X(2)}    Re{X(1)}   Re{X(3)}   lm{X(3)}    lm{X(1)} 

Figure 7.1     Proposed FFT-4 Datapath 

The data path of this new implementation could look something like Figure 7.1 where 

the addition and subtraction operations are separate in each block. There are obviously 

many ways to actually implement this. One way could reduce the number of ALUs to 

eight, using each one for one addition and one subtraction. Using static latches in a 

similar manner to the complex addition and subtraction in the multiplier. 

7.2.2 FFT-8 Implementation. For FFT point sizes of 128 points or 1024 points, 

either an FFT-2 or an FFT-8 implementation will be required. Dr. Suter developed a 

potential FFT-8 implementation using two complex multiplies up front followed by com- 

putations similar to the current FFT-4 design (complex control signaling). From the 

previous section, it should be understood that these designs implemented with complex 

control units lead to a lower probability of sucess and are more difficult to design and 

implement. It is recommended that the FFT-2 implementation of Figure 7.2 be used as 

the four Appoint FFTs with the two iVi-point FFTs to be an FFT-4 design. 

Additionally, this FFT-8 would require a decimate-by-two, one complex-valued mul- 

tiplier, a four by two crossbar switch, and an expand-by-four. Each of these designs could 
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Figure 7.2     FFT-2 block diagram 

easily be borrowed from the existing FFT-16 design and modified for the FFT-8.   The 

FFT-2fsm state machine specification is contained in Section A.8 of Appendix A. 

7.3   Recommendations for Continuation 

This project has a lot of potential for future improvements. When work continues on 

this project, it is recommended that further work on this project use the FFT-4 presented in 

Section 7.2.1. This should be built to ensure the full complex data-word becomes available 

to the multiplier at the same time so the modifications in Section 4.3.3 can be used in 

conjunction with the 2 cycle dual multiply. Making the entire data word available will also 

reduce the complexity of the expander making it more area conscience. 
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Other design changes should be considered for the shift register and booth decoder. 

Currently, bounded delay models have been built and verified with SPICE. However, there 

are better ways to implement each design. 

Before this project gets too ambitious, it is recommended that a working FFT-16 

design be the highest goal of a masters' thesis. The background information on this project, 

especially the asynchronous logic portion, is very involved and much time should be spent 

to understand it before moving into the design phase of a thesis. 
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Appendix A.   3D ASFM Specifications and Boolean Equations 
This appendix contains all the burst-mode ASFM specifications used in the FFT-16 design 
in addition to some extras for future consideration. 

A.l    Global One-Hot Specifications 

A. 1.1   Nominal Stage. 

Oat«: 22 July 1887 

Vsrsionl  1 

Author! Brae* Villiam Hunt 

Filanamal abconahot .noune 

Description!  Thii ia tho baharioral specification of an asynchronous 

flnita »tat» machine designed to be synthosisad uiing 3D. 

Function: Ihia is tha nominal itaga in a global ona-hot sequence with 

axtarnal acknowledgement. 

input yih 0 

Input go 0 

output «nab 0 

output next 0 

Currant I.lt Input Burst 1 Output Burst 

Stata Stata 

0 1 y»h+ 

1 0 yah- 

0 2 go+ 

2 3 ysh+ 1 snab+ 

3 4 ysh- go- 1 naxt+ 

4 6 ysh+ 1 naxt- anab- 

5 0 jrsh- 

ft  Equations) 

•nab ■ 

yih go + 

ysh' «nab + 

•nab tTOO' 
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next ■ 

juh*  go' «nab 

•TOO - 

n«rt + 

yih ITOO + 

jrih' go1 «nab 

A. 1.2   Final Stage. 

sir 

nr 

iii 

in 

in 

in 

in 

Hi 

in 

in 

in 

Hi 

Data:  22 July 1997 

Tars ion t  1 

Author i  Bruca Villiam Hunt 

Filanana: donahot .nonnc 

Doierlptiont Thia is tba bahavioral apaciflcation oi an asynchronous 

finita atata oachina daaignad to ba aynthaaizad using 3D. 

Function: This is ths last ataga in a global ona-hot saquanca »itb 

axtarnal acknowladgamant. 

input yah 0 

input go 0 

output anab 0 

output nazt 1 

1; j Currant faxt Input Burst 1 Output Burst 

1||  Stata Stata 

0 1 yah+ 1 noxt- 

1 2 yah- 

2 4 go+ 

2 3 ysh+ 

3 2 ysh- 

4 5 ysh+ 1 anab+ 

S 0 yah- go- 1 anab- naxt4 

III 

III  Equations: 

III 

1 

; anab ■ 

1  yah go + 
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yah «nab + 

go «nab 

naxt ■ 

yah' go' tT00> 

«TOO - 

go' tTOO + 

yah go' «nab1 

A.2   Ripple One-Hot Specifications With Context 
A.2.1   Nominal Stage. 

;      Datai 17 Jnna 1997 

t    Tarlion: 1 

I     Authori Bruca Villiam Hunt 

;   Filanana: ronahot.nounc 

; Daieriptiont Thii if tha bahavioral .»pacification of an aiynchronoui 

finita atata machina daaignad to b« aynthaaixad using 3D. 

■   Function: Iba function of thia component ia to function paacafully 

with ita rippling naighbora to accompliih raal work. 

input req 0 

input nnext 0 

input puck 0 

input rack 1 

output uek 0 

output context 0 

output preq 0 

output rreq 0 

t i t Currant loxt Input Burat 1 Output Burat 

;;;  State Stat« 1 

0 1 rack- nnaxt+ 1 
1 2 raq+ 1 preq* 

2 3 pack+ 1 ack+ 

3 4 nnaxt- req- 1 praq- ack- contoxt-f 

4 5 pack- I rreq+ 

6 0 rackt 1 context- rreq- 
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,,,  
III 

III  Equation!! 

Ill 

111  

,,,  
I 

; ack - 

I  raq pack + 

I  nnaxt pack 

I 

I contaxt ■ 

I  rack' contaxt + 

I  raq* nnaxt* pack 

I P»q - 

I  raq + 

I  nnaxt pack 

I 

I rraq - 

I  pack' rack' context 

III- 

l!i- 

A.2.2   Final Stage. 

j      Data i 15 July 1907 

I    Vtraion: 1 

;     authori Bract Villiam Hunt 

j   Filanamai droaehot.nounc 

1 Description! Thia ii tha bahavioral ^pacification of an aiynchronoui 

finita itat« machina daaignad to ba aynthaaizsd using 3D. 

1   Functioni Tha is tha laat ona-hot in a rippla aaquanca of ona-hoti 

with contaxt. 

input raq 0 

input nnaxt 0 

input pack 0 

input rack 0 

output ack 0 

output contaxt 1 

output praq 0 

output rraq 1 

j 11 Currant  faxt Input Burit I Output Bur«t 

11;  Stata   Stata 1 

I contaxt- rraq- 
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1     2 rack' 1 

2     3 nnext* 1 

3     4 req+ I pr«q+ 

4     6 pack+ 1 ack+ 

5     0 nnoxt- req- 1 proq- ack- eontoxt+ 

6     0 pack- I prtq+ 

ill 

II)  Equation!I 

1 ack ■ 

;  req pack + 

1  nnext pack 

; context ■ 

;  rack' context + 

1  req' nnext' pack 

; proq * 

1  req + 

1  nnext pack 

1 rreq « 

1  pack* rack' contort 

A.3   Ripple One-Hot Specifications Without Context 
A.3.1   Nominal Stage. 

1      Dato: 4 October 1997 

;    Toriion: 1 

1     AuthorI Bruce William Hunt 

1   Filonamo: onehotS.nounc 

I Doscription: This ia the behavioral specification of an asynchronous 

finite state machine designed to be synthesized using 3D. 

j   Function: This is the nominal one-hot component in a ripple seqence 

with no context 

input req 0 
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inpnt pack 0 

input rack 0 

ontput ack 0 

output praq 0 

output rreq 0 

i;; Currant (art Input Burst 1 Output Burst 

jii  State Stata 1 

0 1 raq+ 1 praqt 

1 2 pack-» 1 ack+ 

2 3 req- 1 praq- ack- 

3 4 pack- 1 rraq+ 

4 6 rack+ 1 rreq- 

S 0 raek- 1 

III  

III 

HI  Equation! i 

I ack ■ 

i      raq pack 

I 

I praq • 

I      raq 

I 

I rraq - 

I      pack' rack' «TOO 

I 

I  »TOO - 

I      raq' pack + 

I      rack'  «00 

I 

III  

III  

A.3.2   Final Stage. 

ig.  

HI  

III Datet 4 October 1097 

I11 Varaiom 1 

III 

ID Authori Bruca William Bunt 

III 

III Filanama: onahot4.noune 

III 

111 Dascriptiont This is tha behavioral spacification of an asynchronous 

HI finite stata machine designed to be synthesized using 3D. 

Ill 

III   Function: This is tha final one-hot component in a ripple saqence 

111 with no context. 

II! 

111  
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input raq 0 

input pack 0 

input rack 0 

output ack 0 

output praq 0 

output rraq 1 

[} | Currant (art Input Burst 1 Output Burit 

;[j  Stata Stata 1 

0 1 rack+ 1 rraq- 

1 2 rack- 1 
2 S raq+ 1 praq+ 

3 4 pack* 1 ack+ 

4 6 raq- I praq- ack- 

6 0 pack- 1 rraq+ 

II! 

1i|  Equation!: 

III 

1 

1 ack ■ 

1  raq pack 

1 praq - 

1  raq 

1 rraq - 

1  raq* pack' rack' «T001 

I «100 - 

I  rack + 

1  raq1 IT00 

1 

111 

A4   FFT-4 
These three AFSM specifications are unique to the FFT-4 element. 

A.4-1   Input Stage Control. 

Datat  17 Juna 1897 

Taraion: 3 

Author: Bruca William Bunt 

A-7 



t i |   Filanamai  input fim.nounc 

;;; Dcicription: This it th« behavioral «pacification of an aiynchronona 

HI            finit« atata nachina d«sign«d to bo aynthaiized using SD. 

HI   Function:  Tha function of thia atata machina i« to govarn tha' 

1;|           operation of tha input global on«-hot saquanca that filia 

111           tha input r«gi«t«rs and handshak«« with tha intorf ML whan 

1|)            anough valuas ara praiant to begin tha intarmodiata 

jt j           computation«. 

input roq   0 

input acack 0 

input bdaek 0 

output ack   0 

output acroq 0 

output bdraq 0 

111 Currant  I«xt    Input Burit    1 Output Burit 

HI  St at«   Stata                 1 

0      1     raq+          1 ack+ 

1     2     raq-         1 ack- 

2      3      r«q+           1 ack+ 

3     4     r«q-         1 ack- 

4     6     raq+          1 ack+ 

5     0     raq-          t ack- acr«q+ 

6     7     r«q+ acack*    t *ck+ acraq- 

7     8     raq- acack-    1 ack- bdr«q+ 

8     0     bdaek+ r«q*    1 bdr«q- 

9              1     bdack- raq+    I ack+ 

J} J 

HI   Equation« i 

;;i 

1 ack ■ 

I  r«q acack + 

1  acack ack + 

I  r«q bdack' acraq' bdraq* 

I aeraq ■ 

I  acack1 acraq + 

1  r«q' bdack' »TOO $T04 »T06» 

t bdraq ■ 

1  bdack' bdraq + 

;  raq' acack' bdack' $T05 

I  »TOO - 
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1  req bdack' bdreq' + 

1  bdack' »100 

! tTOl - 

;  bdack + 

1  req' »101 + 

1  req »T02 + 

;  »TOI (T02 

; »T02 ■ 

i  bdack' »T02 + 

;  req' bdack' »TOO 

1 »T03 » 

;  bdack' »T03 + 

1  req' »T01 »T04> 

! »T04 - 

1  bdack + 

;  req »T03 + 

!  nq' »T04 + 

|  »T02 »T04 

i »T05 - 

j  req acack + 

1  bdmck' (T05 

A.4.2   Intermediate Stage Control. 

;;;                Date: 4 August 1997 

Hi    Version:  1 

HI     Author: Bract William Bunt 

111   Filename: intorfsa.nounc 

III Description:  This if the behavioral specification of an asynchronous 

111           finite state machine designed to b« synthesized using 3D. 

111   Function: The function of thii atat« machine ii to control the 

111           computation of the intermediate FFT-4 valuei a, b, c, and d. 

III      lotos: f denotee the firet one-hot component and 1 denotes the 

111            last one-hot component. 

input acroq   0 

input bdreq   0 

Input fack    0 

input Iraq    1 

input outrun  i 
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output «click   0 

output bdack   0 

output fraq    0 

1; f Current  laxt Input Burst 1 Output Burit 

Iti      Stata   Stat« 

0     1 acraqt outrun- 1 acack+ fraq+ 

1     2 lraq- fack+ acraq* 1 fraq- 

2     3 lraq+ fack- acraq- 1 aeaek- 

3     4 bdraq+ j bdack* fraq+ 

4     5 Iraq- fack+ bdraq* 1 fraq- 

5     0 lraq+ fack- bdraq- 1 bdack- 

0     0 outrun+ 

111 

1ij  Equation!: 

tit 

/ 

; acack ■ 

1  acraq outrun' + 

;  lack acack + 

1  Iraq' acack + 

;  acack fraq 

I 

1 bdack ■ 

I  bdraq + 

1  fack acack' + 

;  Iraq' acack' + 

I  bdack fraq 

1 

i fraq * 

j  fack' fraq + 

;  Iraq fraq + 

;  bdraq fack' (TOO' + 

f  acraq fack' outrun' noi 
1 

1 (TOO - 

;  bdraq (TOO + 

1  fack (TOO + 

;  lr«q' (TOO + 

;  fack Iraq' acack' 

1 

J (T01 - 

I  outrun 4 

[  fack' $101 + 

t   Iraq (T01 + 

i      bdraq fack' (TOO' 

1 
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A.4-3   Output Stage Control. 

*** 

Hi               Date: 15 July 1007 

t;;          Veriiom 2 

1[i     Authori Bruce William Hunt 

11 i   Filename t outputfim.nounc 

Hi Description! Thia ii the behavioral specification of an asynchronous 

finite itat» machina doiignad to bo synthesixed using 3D. 

j;;   Function: Th« function of thii itat« machine ii to control the 

computation of the 8 output values and the handihaking 

with the next stage of the FFT-16 (the multiplier or the 

expander). 

input bdack 0 

Input ack 0 

input Iraq 1 

output outrun 0 

output raq 0 

JI; Currant I.It Input Burst 1 Output Burat 

1j;  Stata Stata 1 

0 1 bdack* 1 
1 2 bdack- 1 raq+ outrun* 

2 3 uck+ 1 raq- 

3 4 aek- Iraq- 1 
4 0 Iraq* I outrun- 

outrun ■ 

ack + 

Iraq1 + 

(TOO + 

bdack' *T0i 

raq - 

bdack' ack' »T01 

»TOO - 

ack + 

Iraq »TOO 
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♦TOI - 

bdaek + 

ack'  «TOI 

A.5   Multiplier 

These two AFSM specifications are unique to the multiplier. 

A.5.1   Multiplier Control 

Data. 24 July 1007 

Versioni  2.03 

Authort Bruce William Hunt 

Filename: multfsm.nounc 

Descriptions  Thii is the behavioral specification of an asynchronous 

finite state machine designed to ba synthesized using 3D. 

Function: Tha function of this stata machine Is to control th« raal 

intagar multiply process.  Tha multfsm intarfacas with tha 

loader» x register, booth decoder, ALU, shift register, and 

the complex control unit (a deeby2). 

input nultraq 0 

input mckihift 0 

input ackmath 0 

input tack 0 

input ldzack 0 

input ■shack 0 

input dona 0 

input ackl 1 

output noltack 0 

output ysh 0 

output Ifh 0 

output araq 0 

output loads 0 

output raqo 0 

i;; Currant lazt Input Burst 1 Output Burst 

III Stata Stata 1 

0 1 multraq+ acki- 1 nultack-t 

1 2 multraq- 1 ysh+ 

2 3 ackshtttt 1 jrsh- nh+ 

3 4 ackshift- nhack+ 1 ysh+ ish- 
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4     2 zshack- 1 
3     6 ackmath+ 1 ar«q+ 

5     0 aack+ I loadz+ 

6     7 ldzack+ 1 araq- yah- loadz- 

7     2 aack- ackmath- ldzack- 1 y»h+ 

2     8 done+ I yah- r«qo+ 

8     0 acki+ dona- 1 raqo- moltack- 

f II 

;;;  Equation«: 

;;t 

; 

; moltack ■ 

j  don« + 

;  multraq acki' + 

}  acki' moltack 

t 

I yth ■ 

t        ackahift' »hack + 

i   ackahift» Idzack' dona' yah + 

1   multraq' ackihift' ackmath' aack' Idzack' dona' acki' moltack zah' raqo' 

! 
1 z«h ■ 

t      ackihlft + 

1  zshack* zsh 

I 

; araq ■ 

;  ackmath Idzack' yah 

( loadz ■ 

;  aack Idzack' yah 

[ raqo ■ 

;  don« + 

I  ackln' raqo 

J 

A.5.2   Multiplicand Counter. 

tl Data: 12 Augoat 1997 

;( Taraiont  1 

If 

\\ Anthort Bruc« Vllllam Hunt 

If 

I j Filanama: yconnt .nonnc 

II 

Ü Description: This li th« behavioral «pacification of an asynchrononi 

II finit« atata machina daalgnad to bo aynthaaisad using 3D. 

Ii Function*  Th« function of thi« «tat« aachin« ia to incramant tha 
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11) conatant usad from tha multiplicand ragiatar daring an 

HI FFT-10 oparation. 

;;; 
, j,  

inpnt axaq 0 

output rO 0 

output rl 0 

tij Currant laxt    Input Burst    I Output Burat 

;;;  Stata Stata I 

0 1 araq+ 1 r0+ 

1 2 araq- 1 
2 3 araq+ 1 rO- ri+ 

3 4 araq- 1 
4 6 axaq+ 1 r0+ 

S 8 araq- 1 
e 7 axaq-f 1 rO- xl- 

7 0 araq- 1 

rO - 

axaq rO + 

axaq »TOO' »T01' + 

rO «TOO1 ♦roi' 

rl - 

araq rl + 

rl »TOO1 + 

axaq »T01 

»TOO - 

axaq »TOO + 

rO »TOO + 

axaq rO xl 

»T01 - 

axaq »T01 + 

rO »T01 + 

axaq' xO xl' 

A-14 



A.6   Smaller, General AFSMs 

These state machines are used in a variety of applications throughout the FFT architec- 
ture. The expand-by-two is not actually used but is included since it is mentioned in 
Section 4.3.5. 

A.6.1   Decimate-By- Two. 

Datei 12 Auguat 1997 

Versiont  1 

Authort Brae« William Hunt 

Filename*  decby2.nounc 

Description:  Thii is the behariorel specification of an asynchronous 

finite atata machine designed to bo synthesized using 3D. 

Pnnetion: Tho function of thia atato machina ia to decimate an input 

handshake sequence by two. 

input reqin  0 

output reqO   0 

output reql   0 

;il Current Bert Input Burst I Output Burst 

;;;  State State I 

0 1 reqin+ I reqO-f 

1 2 reqin- I reqO- 

2 3 reqin+ I reql+ 

3 0 reqin- I reql- 

II  Equations! 

II 

JJ  

fl   

reqO ■ 

reqin »TOO' 

reql ■ 

reqin «TOO 

♦TOO - 

reqin (TOO + 

reqin» |T01 + 

«TOO IT01 

•T01 - 
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reqO + 

reqin WOO» + 

reqin» $T01 

A.6.2   Loader. 

Data: 13 September 1097 

Versiont 1 

Author: Bntc« Villiam Hunt 

Filename: loader.nonne 

Description:  This is the behavioral specification of an asynchronous 

finite state machine designed to be synthesized using 3D. 

Function: The function of this state machine is to perform stage 

latching of input data to allow pipelined-like execution. 

input extreq 0 

input intaek 1 

output loadval 0 

output intreq 0 

iii Current  lext    Input Burst 

I|[  State   State 

I Output Burst 

I 

0 1     extreq+ multack- I loadval* 

1 2     extreq-        I loadval- intreq* 

2 0     intaek*        I intreq- 

ii  Equations: 

II 

loadval ■ 

extreq intaek' 

intreq ■ 

extreq1 Intaek' *T00 

•TOO - 

extreq intaek' * 

intack1 $T00 
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A.6.S Hold. 

;;; Dato: 6 October 1997 

iff VOM ion i 1 

in Authori Bruce William Hunt 

in Filename t hold.nounc 

in 

tu Description: Thii is the behavioral specification of an aaynehrononi 

III finite state machine designed to be irnthaaiaad using 3D. 

II! Function) The function of this state machine is to vrite enable a 

tit 16 bit register only long enough for tha nav Tain« to ba 

;;; written to prevent the incorrect value from being locked. 

in 

input vanin 0 

input don«  0 

output wonout 0 

output ack   0 

f 11 Currant  Vert    Input Burit 1 Output Burst 

State   St at« i 

0     1 wenin+ 1 vanout* 

1     2 done+ 1 wanont - ack+ 

2     0 venin- done- 1 ack- 

!!! 
Ii! Equation!i 

I!) 

I wanont ■ 

I vanin dona* ack 

\  ack ■ 

1 dona + 

1 

1 

wanin ack 

A.64 Latch Controller. 
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Datst 3 October 1997 

Torsion: 1 

Anthort Brae« William Hunt 

Filsnama i  latchcon.nounc 

Description*  Tbii is ths boharioral specification of an asynchronous 

finite state machine designed to be synthesized using 3D. 

Function! Th« function of this stats machine is to ensure that a 

a Talus has bssn fully latchsd into a latch or registsr 

bsfor* it will ba raad by a later operation in a soqnsne«. 

input latchin 0 

output latchout 0 

output loadt 0 

input loadtack 0 

lit Currant laxt Input Burat 1 Output Burst 

III Stat« Stata 1 

0 1 latchin* 1 loadt* 

1 a loadtack* 1 loadt- 

2 3 loadtack- 1 latchout* 

S 0 lntchin- 1 latchout- 

Equation!i 

latchout ■ 

latchin loadtack' «TOO 

loadt - 

latchin loadtack' »TOO1 

»TOO - 

loadtack + 

latchin «TOO 

A.6.5   Expand-By-Two. 

Datat 5 Octohor 1»7 
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Version:  1 

Author: Bruce William Bunt 

Filename t erpby2 .nonnc 

Description:  This if th« behavioral specification of an asynchronous 

finite stat» machin« designed to be synthesized using 3D. 

Function: Th« function of this stats machin« is to upsampl« an input 

i«qu«nc« by two. Th« stat« machine has to tak« special 

car« to order th« data properly sine« th« asynchronous 

architecture can allow th« 1st element to request before 

th« Oth. 

input reqinO 0 

input reqinl 0 

input aefcin  0 

output ackoutO 0 

output ackoutl 0 

output raqout 0 

[;i Currant l«rt Input Burst 1 Output Burst 

1||  Stat« Stat« 1 

0 1 reqinO+ reqinl* I ackoutO* reqout-f 

1 2 reqinO- ackin+ reqinl* I ackoutO- reqout- 

2 3 reqinl* ackin- reqinO* t ackoutl+ reqout+ 

3 4 reqinl- aekin+ reqinO* 1 ackoutl- reqout- 

4 1 r«qin0+ ackin- reqinl* 1 ackout0+ reqout+ 

III 

HI  Equations: 

III 

ackoutO * 

reqinO ackoutO + 

ackin* ackoutO + 

reqinO ackin1 |T01* 

ackoutl ■ 

reqinl ackoutl + 

ackin' ackoutl + 

reqinl ackin' $101 

reqout ■ 

reqinO ackoutO + 

reqinl ackoutl + 

ackin' reqout + 

reqinl ackin1 (T01 + 
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raqinO ackin» |T01' 

♦TOO - 

ackoutl + 

raqinO» *T00 + 

ackin $T00 + 

raqini ackin» tTOl 

♦T01 ■ 

raqini $T01 + 

ackin' *Y01 + 

•TOO' IT01 + 

raqinO» ackin WOO' 

A.7   Sequencer Control 

This is the sequencer control to reuse the FFT-4 element in the computation of the FFT- 
16. Keep in mind this is unique to the current design of the FFT-4 and will not work if 
modifications are made. 

111-   

Datai  0 October 1997 

Varaiom  1 

Author: Bruca William Hunt 

Pilanamai  aaquanear.nounc 

Daicriptiont  Thia ii tha bahayioral ipacificatios of an asynchronous 

finita itata machina designed to ba synthesized using 3D. 

Function!  Tha function of this atata machina ia to select tha proper 

input to and output from tha rauiad FFT-4 blockt. 

input outrun 0 

output insel 0 

output outsal 0 

;;t Currant  lext    Input Burst    I Output Burst 

I i i  Stata   Stata I 

0 1 outrun* 

1 2 outrun- 

2 S outrun* 

3 0 outrun- 

I insel+ 

I outsel+ 

I insel- 

I outsal- 
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Iff 

111  Equation«! 

Iff 

,,,  

I 

t iniol ■ 

; outrun' intol + 

j outran outul' + 

t iniol outt«l' 

I 

t oati«l ■ 

1 outrun' iniol + 

I outrun outi«l + 

I iniol out1*1 

f 

, .,  

II f  

A.8   FFT-2 Controller 

in 

in 

Datai  10 Vovaabar 1997 

Varaiom  2 

III 

III 

III 

III 

■ II 

III 

III 

III 

III 

III 

III 

III- 

Ill- 

Author t  Brae« Villiam Hunt 

Filananat fft2faa.nounc 

Daacription: Thia ia tha bahavioral apaeificatloa of an aajnchronoua 

finito atato machino daaignad to ba aynthaaiaad uaing 3D. 

Function!  Tha function of thia atata machine la to control tha 

computation of tha fft-2. It aaaumaa full latching In 

tha axpand-by-four for tha completion of tha FFT-8 

input go 0 

inpnt aack 1 

Input ackin 1 

output araq 0 

output fnet 0 

output raqout 0 

111 Currant 

111  Stata 

0 

1 

2 

3 

4 

laxt 

Stata 

1 

2 

3 

4 

5 

Input Burat I Output Burat 

I 

go+ ackin- wick- I a»q+ outrun+ 

go* aack+ i r«qout+ 

go- ackin+ I raqout- aroq- fnct+ 

ackin- aack- | ar«q+ 

aack+ I roqouti 
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t roqout- araq- fnct- outrun- 

..j  

U,  

tt;  Bqnationai 

III 

U!  
,,,  

i araq - 

I  go + 

I  ackin' araq + 

I  adeln' fnct 

I fnct * 

I aack' fnct + 

I ackin' fnct + 

I  go' »ekln ITOO' 

| raqont ■ 

; go aack raqout + 

; aack ackin'  araq 

I 

: «TOO - 
I  aack (TOO + 

I  ackin (TOO + 

|  aack ackin' fnct 

I 

111  

! 11  
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Appendix B.  Project Files 

3D /projects/fasst/3D 

MEAT /projects/fasst/meat 

VHDL /projects/fasst/vhdl 

MAGIC /projects/fasst/layout 

IRSIM /projects/fasst/irsim 

HSPICE /projects/fasst/hspice 
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