3/17/98 Final 9/1/93-8/31/97 THE AND SUMPLE Final 9/1/93-8/31/97 First Principles Calculations Using Linear Response ENDONG NUMBERS Theory for Ferroelectrics Contract No.: AUTHOR(S) Henry Krakauer	REPORT DOCUMENTATION PAGE			0	Form Approved OMB No. 0704-0188	
AGENCY USE ONLY (LASSEFICATION 2. REPORT DATE B. BEFORT TYPE AND DATES COVERED Final 9/1/39-2-8/31/97 THE AND SUBTRIE Final 9/1/39-2-8/31/97 THE AND SUBTRIE S. FUNCTION TATE S. FUNCTION PARTY PERMONED AND SUBTRIE Theory for Ferroelectrics S. FUNCTION PERMONE AND SUBTRIE S. FUNCTION PERMONE AND SUBTRIE AUTHOR(6) Henry Krakauer S. P. O. Box 8795 S. PERFORMING ORGANIZATION NAMES(5) AND ADDRESS(ES) College of William and Mary Department of Physics P. O. Box 8795 S. SPONSORING / MONTORING AGENCY NAMES(5) AND ADDRESS(ES) Office of Naval Research 10. SPONSORING / MONTORING AGENCY NAMES(5) AND ADDRESS(ES) 10. SPONSORING / MONTORING /	gathering and maintaining the data needed, and co	mpleting and reviewing the collection of int	uarters Services Directorate	for Information Operations a	and Reports, 1215 Jeffers	
ITTLE AND SUBTINE 5. FUNDING ANDERSE First Principles Calculations Using Linear Response 6. FUNDING ANDERSE Theory for Ferreelectrics 100014-93-1-1095 AUTHOR(6) 1. SUPPLEMENTAGE Henry Krakauer 2. PERFORMING ORGANIZATION NAMES(6) AND ADDRESS(ES) College of William and Mary Department of Physics P. O. Box 8795 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) Office of Naval Research 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) Office of Naval Research 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS(ES) A. DISTRIBUTION / AVAILABILITY STATEMENT 10. SPONSORING / MONTORING AGENCY NAMES(6) AND ADDRESS (ES)	AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYP	E AND DATES COVER	ED	
Henry Krakauer PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) College of William and Mary Department of Physics P. O. Box 8795 Williamsburg, VA 23187–8795 a SPONSORING / MONTORING AGENCY NAMES(S) AND ADDRESS(ES) Office of Naval Research III. SUPPLEMENTARY NOTES DISTRIBUTION / AVAILABILITY STATEMENT A. DISTRIBUTION / AVAILABILITY STATEMENT III. SUPPLEMENTARY NOTES DISTRIBUTION / AVAILABILITY STATEMENT III. STATEMENT / MARCHARY NOTES III. STABED / D.		ulations Using Line	ear Response	Contrac	t No.:	
PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) College of William and Mary Department of Physics P. O. Box 8795 Williamsburg, VA 23187-8795 Seconstruction of Naval Research Suppresent of Naval Research Suppresent of Naval Research Suppresent of Physics Seconstruction of Naves (S) AND ADDRESS(ES) Office of Naval Research Suppresent of Physics Seconstruction of Naves (S) AND ADDRESS(ES) Office of Naval Research Suppresent of Physics Seconstruction of Naves (S) AND ADDRESS(ES) Office of Naval Research Suppresent of Physics Seconstruction of Naves (S) AND ADDRESS(ES) Seconstruction of Naves (S) AND ADDRESS(ES) Seconstruction of Naves (S) Seconstruction (S)	5. AUTHOR(S)	1				
PERFORMING ORGANIZATION RAMES() AND ADDRESS(S) College of William and Mary Department of Physics P. O. Box 8795 Williamsburg, VA 23187-8795 S. SPONSORING / MONITORING AGENCY NAMES(S) AND ADDRESS(ES) Office of Naval Research 11. SUPPLEMENTARY NOTES DISTRIBUTION / AVAILABILITY STATEMENT II. ABITRACT (Maximum 200 words) First-principles density-functional methods using LAFW and LAPW linear response calculations show structure at 105 K. As a function of vaither linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground sta Although a ferroelectric-type instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure. DTIC QUALITY INSPECT 14. SUBJECT TERMS 15. NUMBER OF Ferroelectrics, first-principles calculations, density functional theory, LAFW method, linear response 16. PRICE CODE <	Henry Krakauer					
College of William and Mary Department of Physics P. O. Box 8795 Williamsburg, VA 23187-8795 SFONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) Office of Naval Research 11. SUPPLEMENTARY NOTES Diffuential Research 12. Supplementary NOTES Distribution FTATEMENT Distribution FTATEMENT Agency Report Number Distribution FTATEMENT Approved for public release Distribution Unlimited 13. ABSTRACT (Maximum 200 words) First-principles density-functional methods using LAPW and LAPW linear response method were applied to study the incipient ferroelectric SFTIG3. Despite ties to Batio3, SFTiG3 remains paralectric down to zero temperature, tran instead to an antiferrodistortive structure at 105 K. As a function of wa the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground sta Although a ferroelectric-type instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure. DITIC QUALITY INSPECT 14. SUBJECT TERMS Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response 15. NUMBER OF 16. PRICE CODE	. PERFORMING ORGANIZATION NAMES	S(S) AND ADDRESS(ES)				
SPONSORING / MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING AGENCY NAMES(S) AND ADDRESS(ES) Office of Naval Research 11. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 1. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 1. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 1. DISTRIBUTION / AVAILABILITY STATEMENT 11. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 1. DISTRIBUTION / AVAILABILITY STATEMENT 11. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 1. ADSTRUCTION / AVAILABILITY STATEMENT 11. SUPPLEMENTARY NOTES 10. SPONSORING / MONITORING AGENCY REPORT NUMBER 13. ABSTRACT (Maximum 200 words) First-principles density-functional methods using LAPW and LAPW linear response reacting a paraelectric down to zero temperature, transitions to structure at 105 K. As a function of ware the linear response calculations show, structure at 105 K. As a function of the R in the Brillouin zone, consistent with this antiferrodistortive ground, sta Although a ferroelectric-type instability was also found near the zone cen BaTiO3, the phase space of this instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure. <td 1<="" td=""><td>Department of Physics P. O. Box 8795</td><td>5</td><td></td><td></td><td></td></td>	<td>Department of Physics P. O. Box 8795</td> <td>5</td> <td></td> <td></td> <td></td>	Department of Physics P. O. Box 8795	5			
Office of Naval Research I. SUPPLEMENTARY NOTES DESTRIBUTION / AVAILABILITY STATEMENT DESTRIBUTION / AVAILABILITY STATEMENT DESTRIBUTION / AVAILABILITY STATEMENT DESTRIBUTION ATATEMENT DESTRIBUTION / AVAILABILITY STATEMENT DESTRIBUTION ATATEMENT Approved for public release Destribution Unlimited A ABSTRACT (Maximum 200 words) First-principles density-functional methods using LAPW and LAPW linear response to study the incipient ferroelectric STIO3. Despite ties to BaTiO3, STFIO3 remains paraelectric down to zero temperature, tran instead to an antiferrodistortive structure at 105 K. As a function of wa the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground sta Although a ferroelectric-type instability was also found near the zone cen BaTiO3, the phase space of this instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive structure. DTIC QUALITY INSPECT 4. SUBJECT TERMS Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response 1. SECURITY CLASSIFICATION 1. SECURITY CLASSIFICATION 2. LIMITATION						
A. DISTRIBUTION / AVAILABILITY STATEMENT A. DISTRIBUTION / AVAILABILITY STATEMENT DETERSOTION FTATEMENT F Approved tor public release Distribution Unlineed A. ABSTRACT (Maximum 200 words) Frist-principles density-functional methods using LAPW and LAPW linear response to study the incipient ferroelectric STTiO3. Despite ties to BaTiO3, STTiO3 remains paraelectric down to zero temperature, transinstead to an antiferrodistortive structure at 105 K. As a function of wat the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground sta Although a ferroelectric-type instability is greatly reduced by comparis Moreover, we find that the antiferrodistortives. In combination, these findings help the absence of a transition to a ferroelectric structure. 14. SUBJECT TERMS Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response 15. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 10. SECURITY CLASSIFICATION 20. LIMITATION				AGENCY	KEPORI NUMBER	
A. DISTRIBUTION / AVAILABILITY STATEMENT DEDTRIBUTION CODE DEDTRIBUTION STATEMENT DEDTRIBUTION STATEMENT DEDTRIBUTION STATEMENT DEDTRIBUTION CODE DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DEDTRIBUTION DETRIBUTION DETRIBUTION DETRIBUTION DETRIBUTION DETRIBUTION	OTTICE OF HAVAT HEBEE					
a. DISTRIBUTION / AVAILABILITY STATEMENT		,				
13. ABSTRACT (Maximum 200 words) First-principles density-functional methods using LAPW and LAPW linear resimethod were applied to study the incipient ferroelectric SrTiO3. Despite ties to BaTiO3, SrTiO3 remains paraelectric down to zero temperature, transinstead to an antiferrodistortive structure at 105 K. As a function of way the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground state Although a ferroelectric-type instability was also found near the zone centre BaTiO3, the phase space of this instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure. 14. SUBJECT TERMS 15. NUMBER OF Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response 15. NUMBER OF 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION		MENT				
First-principles density-functional methods using LAPW and LAPW linear resimethod were applied to study the incipient ferroelectric SrTiO3. Despite ties to BaTiO3, SrTiO3 remains paraelectric down to zero temperature, transinstead to an antiferrodistortive structure at 105 K. As a function of way the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground sta Although a ferroelectric-type instability was also found near the zone cen BaTiO3, the phase space of this instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure.DTIC QUALITY INSPECT14. SUBJECT TERMS Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response19. SECURITY CLASSIFICATION20. LIMITATION	a. DISTRIBUTION / AVAILABILITY STATE	DESTRIBUTION STATE	MENT 8			
method were applied to study the incipient ferroelectric SrTiO3. Despite ties to BaTiO3, SrTiO3 remains paraelectric down to zero temperature, tran instead to an antiferrodistortive structure at 105 K. As a function of way the linear response calculations show structural instabilities along the R in the Brillouin zone, consistent with this antiferrodistortive ground state Although a ferroelectric-type instability was also found near the zone cen BaTiO3, the phase space of this instability is greatly reduced by comparis Moreover, we find that the antiferrodistortive phase is stable, marginally ferroelectric structural distortions. In combination, these findings help the absence of a transition to a ferroelectric structure.Its NUMBER OF14. SUBJECT TERMS Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response19. SECURITY CLASSIFICATION20. LIMITATION17. SECURITY CLASSIFICATION18. SECURITY CLASSIFICATION20. LIMITATION20. LIMITATION	a. DISTRIBUTION / AVAILABILITY STATE	DESTRIBUTION STATE	MENT R			
14. SUBJECT TERMS 15. NUMBER OF Ferroelectrics, first-principles calculations, density 16. PRICE CODE functional theory, LAPW method, linear response 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION	13. ABSTRACT (Maximum 200 words)	DISTRIBUTION STATE Approved for public Distribution Unlim	MENT R release	2. UIS I HIB	UTION CODE	
14. Subject Terms Ferroelectrics, first-principles calculations, density functional theory, LAPW method, linear response 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION	13. ABSTRACT (Maximum 200 words) First-principles den method were applied ties to BaTiO ₃ , SrTi instead to an antife the linear response in the Brillouin zon Although a ferroelec BaTiO ₃ , the phase sp Moreover, we find th ferroelectric struct	Distribution STATE Approved to public Distribution Unlim sity-functional met to study the incipi 03 remains paraelec prodistortive struc calculations show s the, consistent with tric-type instabili pace of this instability at the antiferrodis foural distortions.	hods using L ent ferroeled tric down to ture at 105 l structural in this antifer ity was also ility is grea stortive phas In combinati	APW and LAPW ctric SrTiO3. zero tempera C. As a func stabilities a rodistortive found near th tly reduced b e is stable, on, these fin	linear resp Despite s ture, trans tion of wav long the R- ground stat e zone cent y compariso marginally,	
functional theory, LAPW method, linear response 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION	13. ABSTRACT (Maximum 200 words) First-principles den method were applied ties to BaTiO ₃ , SrTi instead to an antife the linear response in the Brillouin zon Although a ferroelec BaTiO ₃ , the phase sp Moreover, we find th ferroelectric struct	Distribution STATE Approved to public Distribution Unlim sity-functional met to study the incipi 03 remains paraelec prodistortive struc calculations show s the, consistent with tric-type instabili pace of this instability at the antiferrodis foural distortions.	hods using L ent ferroeled tric down to ture at 105 l structural in this antifer ity was also ility is grea stortive phas In combinati	APW and LAPW etric SrTiO3. zero tempera X. As a func stabilities a rodistortive found near th tly reduced b e is stable, on, these fin cture.	linear resp Despite s ture, trans tion of wav long the R- ground stat e zone cent y compariso marginally, dings help	
17. SECONITI CENSINICATION	 13. ABSTRACT (Maximum 200 words) First-principles den method were applied ties to BaTiO₃, SrTi instead to an antife the linear response in the Brillouin zon Although a ferroelec BaTiO₃, the phase sp Moreover, we find th ferroelectric struct the absence of a tra 14. SUBJECT TERMS 	Distribution STATE Approved to public Distribution Unitin sity-functional met to study the incipi 03 remains paraelec rrodistortive struct calculations show so the, consistent with tric-type instability pace of this instability pace of this instability paraelectors. Institute antiferrodistortions.	MENT & release bind hods using L ent ferroeled tric down to ture at 105 h structural in this antifer ity was also lity is great stortive phas In combinati electric stru	APW and LAPW etric SrTiO3. zero tempera (. As a func stabilities a rodistortive found near th tly reduced b e is stable, on, these fin cture. DTIC QUALT	linear resp Despite s ture, trans tion of wav long the R- ground stat e zone cent y compariso marginally, dings help	
	 13. ABSTRACT (Maximum 200 words) First-principles den method were applied ties to BaTiO₃, SrTi instead to an antife the linear response in the Brillouin zon Although a ferroelec BaTiO₃, the phase sp Moreover, we find th ferroelectric struct the absence of a training the absence of a training the struct the absence of a training the struct the absence of a training the struct the struct the struct the absence of a training the struct the stru	Distribution STATE Approved to public Distribution Unlim sity-functional met to study the incipi 03 remains paraelec prodistortive struct calculations show s the, consistent with stric-type instabilition to a ferrodistortions. Insition to a ferrodistortions.	hods using L ent ferroeled tric down to ture at 105 I structural in this antifer ity was also ility is grea stortive phas In combinati electric stru	APW and LAPW etric SrTiO3. zero tempera (. As a func stabilities a rodistortive found near th tly reduced b e is stable, on, these fin cture. DTIC QUALT	linear resp Despite s ture, trans tion of wav long the R- ground stat e zone cent y compariso marginally, dings help TY INSPECTE	

Prescribed by ANISE Sad Z39-18 298-102

Final Report on ONR AASERT Grant N00014-93-1-1095 --- PI: Henry Krakauer, College of William & Mary Page 2

A. Description and Motivation of the Scientific Research Goals

Although it possesses the same high-temperature cubic perovskite structure as ferroelectric materials like BaTiO3 and KNbO3, SrTiO3 exhibits qualitatively different temperature-dependent behavior. It transforms to a non-ferroelectric phase when the temperature is lowered below $T_c = 105$ K, due to a soft-mode antiferrodistortive (AFD) instability at the Rpoint, the Brillouin zone-corner. The atomic motions in this AFD mode are characterized by rotations of the TiO₆ octahedra about a [1 0 0] axis. Below T_c, these octahedra are slightly rotated, with the twist angle about the tetragonal c-axis being the order parameter of the transition. Upon further cooling, the dielectric constant rises in a Curie-Weiss manner until about T = 35 K, where it continues to increase, but in a non-singular manner, and at T = 3 K and below, it saturates to a value of about 10⁴, but a further structural phase transition does not occur. Due to these unusual properties at low temperature, SrTiO₃ has been subjected to extensive studies in the past few decades. In recent years, first-principles density functional theory calculations using the local density approximation (LDA) have achieved remarkable success in determining the physical properties of ferroelectrics, including the equilibrium atomic configurations, lattice vibrational frequencies, and the underlying microscopic mechanisms behind macroscopic behaviors. For instance, our recent first-principles linear response calculations for KNbO3 revealed large planar regions of phonon instabilities in the Brillouin zone. These correspond, in real space, to chains along the [1 0 0] directions of atoms coherently displaced along the chain direction. Subsequent molecular-dynamics simulations of KNbO3 have shown that these chains are dynamic rather than static and that they are preformed even in the high-temperature paraelectric phase. [2] (Note: references in square brackets refer to publications in Section D.) Motivated by this success, we undertook a first-principles study of SrTiO₃ in both cubic and AFD phases to examine the nature of its structural instabilities to explain the its distinctive properties.

B. Significant Results

ά.

Comparing with experimental phonon frequencies obtained with neutron scattering and infrared spectroscopy at high symmetry points in the Brillouin zone, the theoretical phonon frequencies are found to be in good agreement. [1, 3] In addition, we correctly obtain the known instability at the R-point in the Brillouin zone (BZ), which is responsible for the AFD phase transition at 105 K. Moreover, we found that the AFD instability extends along the entire R-M-R line in the BZ, forming a one-dimensional cylindrical tube in the BZ. We also found that this instability competes with a ferroelectric instability centered at q = 0, whose phase space is considerably reduced compared to BaTiO₃ and KNbO₃. Total energy calculations of the AFD instability showed that decreasing the volume enhances the AFD instability, increasing the corresponding double-well depth. The angle characterizing the TiO₆ octahedral rotations was found to be about a factor of three larger than observed, however. This is in agreement with an earlier LAPW calculation, and after extensive tests, we ascribed this quantitative discrepancy to the limitations of the local density approximation. [3]

Even though no further phase transition is observed at low temperatures, the sharp rise in the dielectric constant suggests the possibility of a FE instability that may be suppressed by the

Final Report on ONR AASERT Grant N00014-93-1-1095 --- PI: Henry Krakauer, College of William & Mary Page 3

zero-point motion of the atoms. Such an instability should be revealed by computing the full zone-center dynamical matrix of the AFD structure (10 atoms per unit cell). We focused on investigating the influence of the AFD transition on the ferroelectric instability of the Γ_{15} (with respect to the cubic structure) ferroelectric mode. We imposed the calculated Γ_{15} mode eigenvector distortion along both the c-axis and a-axis in the AFD unit cell (the TiO₆ octahedral rotations are about the c-axis), and setting the twist angle of the TiO₆ octahedra at the 1.4° value measured at 105 K. We found that the AFD structure is stable, marginally, against the imposed distortions. [3] Thus large ferroelectric-like fluctuations might be expected in the AFD structure, leading to the increase of the dielectric function. Since the AFD structure is stable, however, with respect to the ferroelectric Γ_{15} distortions, the crystal never actually transforms to a ferroelectric phase.

C. Impact of this Work on Future Research

٩.

We have shown that while the AFD structure is stable against subsequent ferroelectric distortions, it is only marginally so. Thus ferroelectric-like fluctuations might be expected even at low temperatures, resulting in the observed large dielectric function. It is likely that future work would therefore focus on these fluctuations.

D. List of Publications/Reports/Presentations Under This Grant

Papers Published in Refereed Journals

[1] "Ab Initio Linear Response Study of SrTiO₃," C. LaSota, C.-Z. Wang, R. Yu, and H. Krakauer, *Ferroelectrics* **194**, 109 (1997).

[2] "Precursor Structures in Ferroelectrics from First-Principles Calculations," H. Krakauer, R. Yu, C.-Z. Wang, and C. LaSota, *Ferroelectric*, in press, available in electronic form at Los Alamos National Laboratory physics e-print archive at http://xxx.lanl.gov/abs/cond-mat/9710088.

[3] "First-Principles Study of SrTiO₃ in Cubic and Tetragonal Phases," C. LaSota, C.-Z. Wang, R. Yu, and H. Krakauer, in press.

Presentations - Invited

[1] 4th Williamsburg Workshop on First-Principles Calculations for Ferroelectrics, Feb. 4-7, 1996, Williamsburg, VA. Ab Initio Linear Response Study of SrTiO₃, <u>C. LaSota</u>, C. Z. Wang, R. Yu, and H. Krakauer.

[2] Williamsburg Workshop on Ferroelectrics, Feb. 2-5, 1997, Williamsburg, VA. <u>H. Krakauer</u>, R. Yu, C.-Z. Wang, and C. LaSota.

Final Report on ONR AASERT Grant N00014-93-1-1095 --- PI: Henry Krakauer, College of William & Mary Page 4

惫

E. Participants and Status

f.e

Henry Krakauer - PI, Professor of Physics

Christopher LaSota Graduate Student [supported by this grant], Ph.D. expected 1998.