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I. GENERAL INTRODUCTION 

The Marangoni phenomenon refers to the fluid motions induced in the vicinity of a surface 
of separation between two different fluids. At this surface, the thermodynamic properties 
(such as density, pressure, composition, ...) undergo rapid variations on a very small scale 
(the interfacial phase thickness). The experimentation on such interfaces in equilibrium 
configurations shows that the result of these rapid variations can be characterised by an 
internal energy per unit area, that is commonly referred to interfacial tension (for liquid/gas 
interfaces, the name surface tension is generally preferred). This allows to consider the 
fluid/fluid interfaces as discontinuities in the above-mentioned variables. Since the interfacial 
tension is in turn a function of intensive thermodynamic variables, interfacial tension 
variations along the surface can be present, provided that gradients of 
temperature/composition exist. These surface tension gradients (tangential stresses) may then 
create motions at the interface, that, due to viscosity, generally extend relatively for into the 
bulk of the adjacent liquids. 

This phenomenon, also called thermocapillary convection (when the driving gradient is 
thermal), or solutocapillary convection (when it is compositional) may result in extremely 
different forms of convective motions, such as stationary motions, oscillations (waves), or 
even turbulent behaviours (interfacial turbulence). These different kinds of motions are 
generally divided into two broad classes, according to the direction of the gradients with 
respect to the interface. 

The first case, called Marangoni convection, occurs when the gradients are parallel to 
interface. Since a stress is created along the interface, at that no counteracting force is 
present when the fluid is at rest, motions set in whatever the intensity of the gradient. A 
steady state is generally reached when the hydrodynamic pressure gradients created by fluid 
motions are able to balance the imposed surface tension stresses. An example of this 
phenomenon occurs when a cylindrical bridge of liquid is confined between two rigid disks 
maintained at different temperatures (this is the half-zone configuration often used in the 
studies of other more complicated techniques directed to the processing of crystals). A 
convective axisymmetric toroidal motion is generally observed (the motion is from hot to 
cold at the surface, provided that the surface tension is decreasing with temperature). For 
higher temperature gradient, other kinds of more complicated (non-axisymmetric) oscillating 
motions can be obtained, and are responsible for poor properties (surface state, composition 
homogeneity, ...) of crystals grown by these techniques. Other technological processes 
stimulating the need for an understanding of Marangoni motions occur in the drying 
technology (where Marangoni motions may at the contrary have a positive role), in the 
coating industry, in the laser processing of compact disks, in heat pipes technology, in 
boiling, ... 

A second situation, called Marangoni-Benard convection, occurs when the driving gradients 
are perpendicular, rather than parallel, to the interface. In this case, no tangential stress is 
created (because the interface is at constant temperature/ composition), and the mechanism 
responsible for convection is intimately associated with the presence of fluctuations 
(thermodynamic, or of external origin) of the intensive properties, coupled with the 
hydrodynamic effects (transport of heat, or of mass). For example, consider a fluid layer 
lying on a heated rigid plate, and open to air. When a small fluctuation of temperature (say 



an increase) occurs at a point on the free surface (it may also originate in the liquid and 
diffuse to the surface), the surface tension 
is slightly lower at that point. This creates 
surface tension gradients along the surface, 
producing motions driving fluid away from 
the  point.   Continuity  of the  fluid then 
requires fluid coming from the bulk phase 
below the point, to the interface. Now, 
since a gradient of temperature is imposed 
by the heating, the fluid arriving at the 
surface is slightly hotter, and this lowers 
the surface tension again, thus amplifying 
the  motions.   This   may  also   result  in 
stationary convective structures, that create 
a tessellation of the layer in an almost 
periodic way (see fig.  1). An important 
difference    exists    between    Marangoni 
convection    and    Marangoni-Benard 
convection. For the former, motions exist 
whatever low is the value of the gradient 
imposed   along   the   interface.   At   the 
contrary, for the latter, a critical value of 
the imposed gradient must be exceeded 
before motions occurs. This is associated 
with    the    presence    of   both    thermal 
diffusivity and viscosity, the first of which 
damps the thermal fluctuations, and the 
second of which damps the fluid motions 
created by surface tension fluctuations. The competition between both these stabilising effects 
and the destabilising effect of surface tension variations is typically expressed through the 
dimensionless Marangoni number 

Figure 1.1: Hexagonal convective structure 
created by heating a thin liquid layer heated 
from below. The fluid moves upwards at the 
centre of an hexagon, and downwards at its 
peripheral. 

Ma = 
-<7rA Th (1.1] 

where 
aT        : surface tension variation with temperature 
h : thickness of the layer 
H : dynamic viscosity 
K : thermal diffusivity 
AT      : temperature difference between the rigid conducting plate and the free 

surface in the absence of convection (AT=/3h, where ß is the 
imposed gradient). 

A theoretical linear stability analysis, such as the one presented in this report, leads to the 
result that convective motions develop in the fluid provided that Ma>Mac=*80 (when the 
free surface Biot number is zero, meaning that the heat flux crossing it stays constant). The 
linear stability analysis also provides the horizontal length scale of the periodic structures 



(size of the hexagonal cells at the threshold) as approximately equal to 3.14 h. 

Thus, the fluid behaviour undergoes a drastic qualitative change when the Marangoni number 
exceeds the critical value, a phenomenon which is called a bifurcation, in the frame of 
nonlinear stability theories. The theoretical interest of the Marangoni-Benard instability relies 
in the fact that it provides a relatively simple and well-controlled example of an 
hydrodynamic instability, that can be studied both theoretically and experimentally. Note that 
in some situations, it is very similar (on the point of view of theoretical techniques used near 
the instability threshold) to the more classical Rayleigh-Benard convection (that occurs in the 
same experimental design, but when the destabilising effect is the density variation with 
temperature, i.e. the buoyancy force). However, important differences exist in other 
conditions (f.ex. when the imposed gradient is increased, and that secondary instabilities and 
transitions to more complex time-dependent situations occur), which justify the analysis of 
Marangoni-Benard convection as an hydrodynamic instability capable of displaying 
phenomena such as pattern formation, defect generation (see the distorted hexagons, 
pentagon-heptagon pairs, ... of fig. 1) and motion, wavelength adjustment mechanisms, effects 
of lateral walls (and other experimental imperfections), influence of symmetries, resonance 
effects, transient phenomena, secondary instabilities and transitions to turbulence. 

An important practical feature of the Benard instabilities is the drastic enhancement of heat 
transfer which is created by convection. This is generally measured by the Nusselt number, 
representing the dimensionless ratio of the total (convective and conductive) heat flux to the 
conductive heat flux : its value is thus always superior or equal to one, and is expected to 
increase with the distance to the threshold (generally measured by e = (Ma-Ma J/Mac). The 
dependency of the Nusselt number on the heating conditions (thus on e) is not well-known 
for high values of the heat flux, and its knowledge is of fundamental importance in all 
domains where thermal energy has to be transported from one place to another through liquid 
phases. In this respect, it has been recognised that Marangoni convection might be a 
determinant factor in the amount of boiling heat transfer under reduced gravity conditions. 
The understanding of this heat transfer mechanism is also of tremendous importance to 
optimise evaporators which are used in large satellites, as capillary pumps (heat pipes) to 
transfer thermal energy from the place where it is dissipated (electronic boxes) towards 
radiators. 

In some problems, the Nusselt number may have to be replaced by other quantities, which 
provide a better measure of the enhancement of heat transfer created by convection. The heat 
flux may for example be fixed as the external parameter, and we will be interested in 
calculating the cooling of the heat dissipating component by convection. This latter approach 
will be adopted in this report, as explained in section III, where a nonlinear analysis of the 
convection problem is presented, leading to estimates of the so-called bulk temperature 
decrease. Other results are obtained concerning the important problem of the selection of the 
wavelength of the steady convective structure at given Marangoni number. In section II, we 
begin by defining the important characteristics of the Marangoni-Benard instability (the 
dimensionless parameters entering the problem), and investigate about the modelling of the 
effect of evaporation and surface deformation. Some classical results will also be recalled, 
and the limits of applications of our model will be determined. Finally, numerical simulations 
(Galerkin method) and comparison with analytical results of section III will be presented in 
section IV. 



II. STATEMENT OF THE PROBLEM - LINEAR STABILITY ANALYSIS 

II. 1. Rate of evaporation in the presence of surface deformation 

Consider a layer of a pure liquid, lying on a heated rigid plate (z=0) and in contact with its 
own vapour at a free interface whose shape is given by z=h(x,t), in which x is the horizontal 
coordinate and t is time. At this interface, evaporation may occur, such that a mass flux 

J = 7."nis allowed (n = (-h',l)/N is the free surface normal pointing to the vapour, 
N=(l+h'2)m is the normalisation factor, and a prime denotes a derivative with respect to 
x). In many studies of evaporating liquid layers, the mass flux / is assumed to obey the well- 
known Hertz-Knudsen equation, derived from the kinetic theory of perfect gases. This is 
valid for a flat interface along which the equality of liquid and vapour temperatures is 
assumed, and reads 

J = ß 
M   \Ps(T)-p0(T)] (2.1) 

2TTRT 

where ß is the constant accommodation coefficient, M is the molecular weight of vapour, 
ps(T) is the saturation pressure at surface temperature T, p0(T) is the vapour pressure just 
beyond the interface, and R is the universal gas constant. 

In this work, in order to start from a more general form of the nonequilibrium mass flux 
equation which should in particular be valid for a moving interface of arbitrary shape (and 
for any form of the vapour state equation), we suggest to use the macroscopic approach, as 
was proposed in [1]. First, note that the Clausius-Clapeyron equation can be derived from 
the equality condition ixv(pv>TJ=t*t(Pi>Ti> between vapour and liquid chemical potentials. 
Developing this formula by the use of classical thermodynamics relations, the Clausius- 
Clapeyron equation gives the slope of the coexistence curve : 

dp =    PJ>£ (2.2) 
dT      (prpv)T 

obtained assuming thermal equilibrium T=Tt(=T), and mechanical equilibriumpv=pt(=p). 
In this relation, pv and p{ are respectively the vapour and the liquid volumic masses, and L 
is the latent heat of evaporation. Since this mechanical equilibrium condition is not valid in 
general, the equality of chemical potentials does not hold anymore. The difference of 
chemical potentials is a generalised thermodynamic force giving rise to a nonequilibrium 
mass flux across the interface. This obviously suggests the use of the thermodynamics of 
irreversible processes [2], through the phenomenological law : 

J = KipfaT) - iiv(pv,T)] (2-3) 

where K is the positive phenomenological coefficient. Note that the hydrodynamic definition 
of the mass flux 7 is  _^ ^ 

J = Pl{vrvz).n = pv(vv-vE).n (2-4) 

where ~v , "vj and ~v£ are respectively the vapour, liquid and interface velocities. 

Note that if the temperature jump is not neglected, then other phenomenological coefficients 
appear, since there exist also a "thermal force" AT=TrTv. We discard this case in the 



presented analysis. 

Let ps(T) be a function defining the equilibrium (saturation) pressure at a given temperature 
T (for example the Clausius-Clapeyron coexistence curve, or any fitting of experimental 
points). Assume that the liquid and vapour state equations are respectively 

pl = p°t(p,T) , pv = p°v(p,T) 

and that the inequalities 

\PrPß) 
PXT) 

< 1 \pv-p,m 
pß) 

< 1 

are valid everywhere along the liquid-vapour interface. Then, using Taylor expansion around 
the point (ps(T),T), at which chemical potentials are equal (by definition of ps(T)), we get a 
linearised form of eq. (3) as 

J = K{T) 

where Pv(T), Pl(T) and K(T) stand for p 

PS(T)-PV    PS(T)-Pl (2.5) 
pJJ) Pl(T) 

'(ps(T),T), p?(ps(T),'D and K(ps(T),T) respectively. 

Note that if pv~pt in eq. (5), we get a form J=K (ps(T)-pJ/pv(T), presenting a formal 
analogy with the Hertz-Knudsen equation (although obtained independently), and leading to 
a rough estimate of thephenomenological coefficient K=ßpv(T) (M/2-KRT)

1
'

2. Of course, only 
experimental measurements of K can lead to satisfactory values. 

However, the approximation pv ~pt is only valid for weakly curved interfaces, and when 
dynamical effects can be neglected in the momentum balance at the interface. A more general 
form of equation (5) can be obtained by considering the Laplace pressure difference 
pv-pt=oH (H is the mean curvature of the interface) in eq. (5), thus leading to the equation 

pfT)-Pv{T) 

0fT)pv(T) 
K(T) pß)-pv-o 

P<J) 

Pfj)-P<j) 
-H (2.6) 

incorporating the effect of surface tension on the rate of phase change. 

Note that eq. (6) is only valid provided \pv-ps(T)\ < \oH\ <ps(T). In pure weightlessness, 
every isothermal liquid-vapour system with an interface of constant curvature H=HQ is in a 
state of mechanical equilibrium. Since no mass flux occurs across the interface, eq. 6 
converts into 

Pv(0) 

where 0 is the constant temperature of the isothermal system, this equation defines a 
connection between the saturation vapour pressure ps(0) at a plane phase interface and the 
vapour pressure pv at an equilibrium interface of curvature H0. In the case of spherical 
interfaces, this is known as the Thomson equation. 



II.2. Calculation of the rate of evaporation in the basic state 

In this section, we compute the rate of evaporation of a liquid layer of depth h lying on a 
heated rigid plate maintained at a constant temperature Tb. The system is assumed as 
unidimensionnal (all the variables only depend on the vertical coordinate z, and the only non- 
zero component of the velocity in both liquid and gas phases is the vertical one, that will be 
noted w). The vapour phase is infinitely deep. The solution of the hydrodynamic equations 
that will be obtained will be called the basic solution (or the reference solution), and its 
stability against hydrodynamic two-dimensional fluctuations will be studied in section II.3 
(Marangoni problem). 

In the presence of evaporation, the relation (4) indicates that if the liquid is at rest (w,=0), 
the interface moves with a vertical velocity wE=-J/p,. The second relation (4) then indicates 
that the vertical velocity of the vapour is wv=J (l/pv-l/p,) = J/pv. This means that the liquid 
depth will decrease, and that it may finally completely evaporate. In order to obtain a steady 
reference solution (and a steady mass flux J), we will assume in the following that fresh 
liquid is injected at the bottom plate z=0, at a rate that exactly matches the rate of liquid 
which is evaporated at the free surface z=h. This is attempted in order to mimic the steady 
regime solution which is obtained in heat exchanging devices such as heat pipes, where liquid 
condensed at the condensor is continuously brought back to the evaporator, such that a steady 
regime may be obtained. The rigid bottom boundary may thus be considered as a porous 
material, through which a velocity wb=J/p, is injected. Now, the whole liquid layer thus 
possesses the velocity w,=wb=J/p, (because the fluid is incompressible, such that dw/dz=0), 
and the relation (4) indicates that wE=0. The interface is thus fixed in space at the location 
z=h. 

The effective rate of evaporation J is given by the relation (5), which is seen to depend on 
the vapour and liquid pressures pv and p on each side of the interface, and on the interfacial 
temperature T. Their value may only be obtained by solving the hydrodynamic equations in 
both liquid and gas phases, with suitable boundary conditions. 

In both phases (indices v and 1 are omitted for simplicity), the full Navier-Stokes 
(conservation of momentum) equations for Newtonian fluids read 

p(—+ (v.V)~v) = pAv- Vp + pg (2-7) 
dt 

where p is the dynamic viscosity (assumed to be independent of temperature), andg= -g lz 

is the gravity vector (lz is the unit vector along the vertical z-direction). As the system is 
unidimensional and the velocities are independent of z and t (steady problem) in both phases 
(the gas is also assumed to be incompressible, which is realistic for the range of velocities 
involved), the equations (7) reduce to an equation for the hydrodynamic pressure 

dp = (2.8) 
dz 



Now, we have to consider the equation governing the temperature distribution in both phases. 
The energy equation reads 

pCp(—+ (vy)T) = \AT (2-9) 

where C is the specific heat at constant pressure, and X is the thermal conductivity, both 
assumed\o be constant in the range of temperatures involved. For unidimensional steady 
transport, the equation (9) reduces to 

w^ = KfI (2-10) 
dz       dz2 

where K=\/pCp is the fluid thermal diffusivity. 

Equations (8) and (10) may be directly integrated, to give the distribution of pressure and of 
temperature in both phases. We obtain 

Pv = -Pvgz + cx (2-11) 

Pi = -Pigz + c2 
(2-12) 

Tv = c3exp[wvz//cv]+c4 (2-13) 

T, = c5exp[w,zl Kt] +c6 (2-14) 

as a function of the 6 integration constants q to be determined from boundary conditions. 

First of all, for z-^oo the temperature in the vapour phase must not diverge, which implies 
c3=0. Thus the temperature is constant in the gas (Tv=c4=Ti i.e. the temperature at the 
interface), and all the thermal energy is propagated by the convective transport of the latent 
heat with velocity wv. Furthermore, we will neglect the barometric pressure variation in the 
gas phase (this is consistent with the assumption of incompressibility of the gas, and is 
justified because p, is small). Thus pv=Ci=pg, and the pressure is constant in the gas phase. 

The boundary condition at the rigid conducting plate (z=0) is T=Tb, implying c5+c6=Tb. 
At the interface z=h, there is no temperature jump, such that T,(z=h)=c5exp[w,h/K,] +c6=Tj. 
From these two relations, we obtain 

c   - Ti~T»    ,     c6 = Tb-c5 (2-15) 
5      exptw/t/zcj] -1 



The constant c2 may be obtained by considering the interfacial balance of normal momentum 
(see f.ex. [3]), which reads 

pv-pl+JVpv = 0 (2-16) 

where the last term accounts for the vapour recoil effect, i.e. the fact that there is a 
difference of velocity (and of normal momentum) between molecules of liquid arriving at the 
interface, and molecules of vapour leaving it. The general form of this momentum balance 
will be given in the section II.3. 

The relation (16) thus gives c2=pg+J2/pv+p,gh. 

Assuming that the gas pressure is given (as it is the case in variable conductance heat pipes), 
we are thus left with two unknowns Tj (the interfacial temperature) and J (the mass flux). 
Note that the fluid velocity w, appearing in eq. 15 is linked to the mass flux J by the relation 
W|=J/p,. 

The conservation of energy at the interface, the full form of which is given in the next 
section, expresses that the jump of normal heat fluxes is equal to the heat used for 
evaporation (latent heat L), plus the heat transformed into kinetic energy of the leaving 
vapour molecules [3] (note that the comparatively small kinetic energy of arriving liquid 
molecules is neglected) : 

\^-\£ =J(L + U) =J(L + hlf) (2.17) v dz        dz 2 2 pv 

This relation allows to compute the interfacial temperature T; as a function of the mass flux, 
by the use of eqs (13) to (15) with C3=0. We obtain 

/ + 1 ( J )2 

T. = Tb- —^-(1 -expt-M^/zc,]) 

The last boundary condition, providing a second relation between the mass flux and the 
interfacial temperature, is the phenomenological relation (5). With the help of eq. (16), this 
may be rewritten 

J.£ pm -p,+£ 
P 

where 1/p, has been neglected with respect to l/pv. 

(2.19) 

10 



Relations (18) and (19) allow us in principle to compute Tj and J, provided we know the 
function ps(T), i.e. the relation between the equilibrium pressure and the interfacial 
temperature. We may for example use the Clausius-Clapeyron relation [4] 

Ps(T)-P0^V[-hi-l)] (2.20) 
K   1     10 

where (p0,T0) is a couple of values lying on the saturation curve (for example T0= 100°C and 
p0=l atm for pure water). For simplicity, we assume that the difference T-T0 is small, and 
we use the linearised form of eq.(20) 

PS(T) =Po+PT(T-To) (2-21) 

where pT=Lp0/RT0
2 ( = 0.036 atm/°K for pure water). 

We may now proceed to the resolution of the system of equations (18), (19) and (21). We 
first replace (18) in (21) 

(L + U-)2) nr>. 
2  p Th (2.22) 

PS(T) -P^Pr pA-(eXp[-77]_1) 
%/ PiKi 

where pb stands for p0+pT(Tb-T0), i.e. the saturation pressure for the temperature of the 
bottom plate. 

In the general case, the analytical resolution of equations (19) and (22) with respect to J and 
T; appears to be impossible. In order to attempt a graphical resolution, we first solve (19) 
with respect to ps(Tj) : 

p{T)=p+^-J-l (2-23) 

and both values of ps(T;), given by eqs (22) and (23), are represented as a function of J in 
the same diagram (fig.2). The solution for J is at the intersection of both curves. 

Now, we may obtain an analytical result for J, provided that its value is not too large. First 
of all, order of magnitude estimates show that it is legitimate to neglect the term (J/pv)

2 with 
respect to L in eq. (22). This amounts to neglect the amount of kinetic energy imparted to 
the molecules of gas leaving the interface, compared to the energy used for evaporation. 
Another simplification is to neglect the effect of vapour recoil, i.e. J2/p, compared to other 
terms in (23). This is valid for the range of values of J considered in this analysis. 

11 



A more restrictive approximation concerns the exponential term in eq. (22). This term may 
be linearised provided that 

Jh      w,h   ^ (224) Pe = 
w.h 

PiKi 

where Pe is the thermal Peclet number, representing the ratio of the velocity of the fluid 
(associated with the rate of phase change) to the characteristic thermal velocity. It may also 
be defined as the ratio of the thermal relaxation time h2/«, to the convective time h/w,. Thus, 
its value will be small provided that the rate of phase change is not too high. More precisely, 
for a water layer of depth h= 1 mm, this approximation is valid if J is at most of the order 
10"3 g/cm2s, representing a heat transport of J.L=2.3 W/cm2. 

p[atm] 

1.25 

0.75 

0.25 ■ 

i    i    i   i    i    i    i   i    i   i    i    i   i    i    i    i    i 

0.0002 0.0004 0.0006 0.0008       J[g/cm2s] 

Figure 2.2: Graphical determination of J. pg=l atm is the vapour pressure, pb=1.5 atm is 
the saturation pressure at the rigid plate temperature Tb=487K (eq. 21). Curves 1 and 2 are 
given by equations (22) and (23), curve 3 is the Clausius-Clapeyron curve (eq.20) in which 
the temperature of the interface is evaluated by eq. 18. All the parameters are those of water 
(T0=473K, p0=l atm), with a depth h=lmm, and an accomodation coefficient /3=0.1. The 
supersaturation is Tb-T0=14°. It is found that J = 2.6 10"4 g/cm2s (J.L=0.6 W/cm2). 

With these approximations, eq. (22) may be written 
Jh pJL 

p.K )=Pb 

PjLJh (2.25) 
ri 

12 



and eq. (23) reads 

PW =pg
+ir 

PyJ (2.26) 

Equalisation of these two relations leads to the mass flux 

Pb ~Pg 

Pv ~^Lh (2-27) 

This relation involves only measurable quantities, at the exception of the phenomenological 
coefficient K. However, as mentioned earlier, K can be roughly estimated by the formula 
K=ßpv(T) (M/2irRT)1/2. For water, this gives K = 6 1010 gs/cm4 (with a value 0.1 of the 
accommodation coefficient/?). Then, since pTLh/X, = 8 108 cm/s> >pv/K= 106cm/s, the first 
term in the denominator of (27) is negligible compared to the second one (quasi-equilibrium 
case), and we get the relation 

J = XtP»~P^ (2.28) 
PjLh 

However, in the following, we will adopt the expression (27) of the reference mass flux J, 
in part because the actual values of K could be quite different from those estimated with the 
help of the Hertz-Knudsen relation. Moreover, the value of the accommodation coefficient 
ß is generally found to be significantly reduced by the presence of impurities on the 
interface, such that it could not be legitimate to neglect non-equilibrium effects (finite K). 

We now turn to a stability analysis of the reference state investigated in this section. 

II.3. Stability of the reference solution versus hydrodynamic fluctuations 

We now have to return to a more general formulation of the problem, which in particular 
allows for two-dimensional fluctuations of velocities, of pressure and of temperature, and 
involves surface tension effects. As explained in the introduction, surface tension gradients 
(caused by gradients of temperature) might be able to destabilise the above-calculated 
solution, provided that the temperature gradient perpendicular to the interface (created by 
evaporation) exceeds a critical value. 

In this section, we define the linear stability problem to be studied. The system of equations 
and boundary conditions will be written under a dimensionless form, and a particular model 
of the problem will be introduced. This is known in the literature as the one-sided model [3], 
for which the dynamics of the gas phase can be decoupled from the dynamics in the liquid 
phase. We may thus solve the problem (with suitable boundary conditions) in the liquid phase 
only. This model requires the assumption that the ratios of volumic masses pv/p{, of thermal 
conductivities Xv/X, and of dynamic viscosities /vVi are small compared to unity, which is 
verified for most liquids in contact with their vapour, far enough from the critical point. It 
will be demonstrated that the effect of evaporation can be modeled (in a first approximation) 

13 



by introducing a free surface dimensionless Biot number Bi (for which a value is derived in 
this section). 

In section II.4, the linear stability problem is solved, and thresholds for the Marangoni- 
Benard instability are provided. The obtained solutions are valid as long as the amplitudes 
of perturbations around the reference solution are small. In section III, the full nonlinear 
Marangoni-Benard problem will be investigated (finite-amplitude solutions) for short waves 
(perturbations located near the interface), after having simplified the problem by considering 
the case of an infinite Prandtl number fluid (which leads to results applicable to the case of 
normal liquids, including water for which Pr=7). 

i) Model equations 

The method used to study the stability of the reference solution (computed in the previous 
section) is general, and proceeds from the definition of stability, i.e. the resistance of the 
basic solution to infinitesimal hydrodynamic fluctuations. The equations governing the 
evolution of infinitesimal perturbations 7 , p' and T of velocity, pressure and temperature 
around their reference state values ~v^, prif and Tref are obtained by inserting v = v^ + v7, 

p=pr(f+p' and T=T^+T' in the incompressibility relation V.v" = 0 and in eqs (7) and (9), 
and by remarking that the reference solution satisfies these equations. We then obtain 

V.v = 0 (2.29) 

p^+Pwripw = ixLw-Dp (2.30) 

pOU+pwJlu^pAu-IJE. (2-31> P dt rer dx 

^I+w DT + wDTrpf = KAT (2-32) 

where the primes have been omitted for simplicity, all second-order terms involving products 
of perturbations have been neglected, both components of the Navier-Stokes equation (7) 

have been separated ("v = u\x + wTz), D denotes the z-derivative, and K=\/pCp is the thermal 
diffusivity. Note that in the following, subscripts v and 1 will be omitted when referring to 
a liquid quantity. 

On the rigid conducting bottom plate z=0, The boundary conditions for the perturbations are 

u = w = T = 0 

because the total temperature is maintained constant at Tb (no perturbation) and the total 

velocity is kept at its reference value V = wr(fTz = ~lzJreflpl (Jref is the reference value of the 
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mass flux, given by eq. 27). 

At the interface z=h+£(x,t), the linearisation of the mass conservation relation (4) leads to 

J  =Jref + J'   =  PlWref + Pl(Wl(Z=Q-WJ 

As Jref=/OiWref, the perturbed mass flux J' is given by 

J' = P,(w/Lz=h)-wz) 
(2-33a) 

and will be denoted by J in the following. Note that an equivalent treatment of the second 
equality in (4) gives 

/' =pvWz=Ä)-wr) (2.33b) 

The general form of the momentum balance at the interface reads [1] 

rr   ,, ^ —x~     -*  --*n       adtldx + tda/dx C2 34") lpav-vz).n)v+pn + T.nl =  V-**' 

where I x 1 stands for the discontinuity xv-x, (v and 1 denote respectively the vapour and the 

liquid), ~n=(-£' X + T )/N and 7= (Tx + £' ~TZ)/N are respectively the free surface normal and 

tangential unit vectors (N=(l+£'2)1/2 is me normalisation factor), a is the surface tension, T 
is the viscous stress tensor with components Ty=-/i(3vi/dXj+övj/dxi). 

Applying the one-sided model approximation (pJpfQ, nJpr+Q), substituting p-*pref+P, 
w^wref+w, and linearising, the projection of (34) on the surface normal reads 

<w„-w*+p, -p, - M-» - § -2¥+"^        <2'35> 

where the relation (33) has been used. This relation must be expressed at z=h+£(x,t). Since 
£(x,t)< < 1, the Taylor series around z=h can be limited to linear terms in £. Using (16) 
at z=h, we obtain 

pv-Pl = -Plgi -2^,-2^ +a™L (2-36) 

We must also project the relation (34) on the surface unit tangent t. This gives, after 
linearisation, 

„(^+^)=ar^ (2-37) 
^ dz      dx T dx 

where aT is the surface tension variation with temperature. We may use the continuity 
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relation (29) to rewrite (37) under the form (expressed at z=h) 

,d2w    d2w, d2T (2.38) 

Note that in deriving eq. (37), we used the no-slip condition 

vr t = vv. t 

whose perturbed and linearised form is 

U[ = uv + 
dx pv 

ref 

(2.39) 

(2.40) 

Now, perturbing eq. 15, and applying the one-sided model approximations, we get the 
perturbed mass flux as 

J = K P-I^+ZDTrif)+?l-?l 
Pv Pi       Pv 

(2.41) 

We may eliminate pv between eqs (36) and (39), and get the following relation for J : 

/ = K 

i ref P„ * Pv Pv Pv PvdX 
(2.42) 

2 
Pv 

Having expressed the conservation of mass and of momentum at the interface, we still have 
to write the general conservation equation for the energy at the interface, which reads (in the 
one-sided model) as [3] 

J{L + Ulf) = -\FLVT, 
2  Pv 

(2.43) 

The perturbed and linearised form is derived in the usual way. We obtain 

■XpTt - \£D2Trif = J(L +|(i0
2) (2.44) 

ii) Dimensionless equations 

The equations and boundary conditions can be put under dimensionless form by using h (the 
unperturbed liquid depth) as unit length, h2/« as unit time, /c/h as unit velocity, and /x/c/h2 as 
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unit pressure (fluid quantities without indices are those of the liquid phase). The temperature 
unit 0 is based on the amplitude of the thermal gradient at the interface in the basic state 
(found from eq. 14,15,18 and 24) : 

hJJL + ^d)2) 
6 = h\DTr<f(z=h)\  = v— 

The dimensionless equations valid in the liquid phase thus read (the same notations are kept 
for dimensionless velocity, temperature and pressure) : 

V.v= 0 (2.45) 

Pr(Aw-Dp) = —+PeDw (2-46) 

Pr(Au-^l) = ^-+PeDu (2-47) 
dx        dt 

AT + wexp[Pe(z-l)] = ?L + PeDT (2.49) 
dt 

where Pr=/*/p* is the Prandtl number of the liquid, and the Peclet number Pe=wrefh//c has 
been defined earlier (eq. 24). 

The boundary conditions are : 

- At the bottom plate (z=0) : 

u . w - T - 0 <250' 

- At the interface fz=l) : 

The mass conservation relation - definition of mass flux (eqs. 33a and 42) : 

/ = Pr^iw-wJ = PrxPeBi {T-H)-^{p-2Dw)+^-ll3^i (2.51) 

In this relation, the Biot number Bi has been defined by 

D.     PT
hL       K 

Bl = TXT J~ (2-52) 

Pv2 

where (Jref/pv)
2 has been neglected with respect to L in the expression of 6 (as for eqs 25-28). 
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Other dimensionless groups appearing in eq. 51 are : 

n3 = 

PiS\ 
J^PjL 

Jrefh
2pTL 

Another boundary condition at z=l is the normal momentum balance (eq. 36) 

Pv-Pl+2DWl = Cr-^-Gat-JL-iw-w,) (2.53) 

where we introduced the density ratio p*=pjpi, the Crispation number 

U.K. 
Cr = Hi 

oh 

which can be viewed as a measure of the free surface deformability, and the Galileo number 

Ga-i* 
viKi 

characterising the influence of gravity on surface deformations. 

We also have the tangential stress condition (eq. 38) 

D2w-^=Ma^I (2-54) 
dx2 dx2 

where   the   Marangoni   number,   characterising   the   destabilising   influence   of   the 
thermocapillary effect, is defined by 

-oT6h      -oTßh2 

Ma = —L— = —  
(IK (IK 

where ß= | DTref(z=h) |  is the temperature gradient amplitude at the interface. 
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The no-slip condition (eq. 40) reads 

«f = «„ + ^ü (2-55) 
'       v    p* dx 

The thermal boundary condition is obtained from eq. 44, by remarking that D2Tref=-Pe0/h2 

Using (42) and the definitions of Bi and II;, i= 1,2,3, we get 

DT-Pe% = Bi -(r-o+n^-^Duo-n^+i^ll (2.56) 

and the last boundary condition is the kinematic condition, whose dimensionless linearised 
form reads 

wE = *£ (2-57) 
E      dt 

The system of equations and boundary conditions (45)-(57) is still not closed, since some 
quantities referring to the vapour phase still appear in boundary conditions (53) and (55). 
However, an important limiting case occurs when the Crispation number is very small (for 
a water layer of depth h=lmm, Cr=1.4 10"6), such that £-K) according to the boundary 
condition (53). It will be shown in the next section that this approximation is valid for 
perturbations with sufficiently small wavelengths, for which surface tension strongly damps 
surface deformations. Note that for large wavelengths, gravity is expected to play an 
equivalent stabilising role (the Galileo number Ga= 105 for 1mm water). Order of magnitude 
estimates also show that 1^ = lOMO4 for the range of mass fluxes considered, such that the 
pressure term may be neglected in eqs. 51 and 56, provided | p-2Dw | /1T | is not larger than 
10"3 (this will be verified a posteriori). 

With these approximations, the system of equations (45) to (49) is unchanged, while the free 
surface boundary conditions 51-57 reduce to : 

w = PeBiT (2.58) 

D2w-^=Ma^I (2-59) 
dx2 dx2 

DT + BiT = 0 (2.60) 

and the system is closed in this limit, since no quantities linked to the gas phase appear in 
these boundary conditions. 

It was also assumed in the last section (eq. 24) that the liquid Peclet number Pe is small 
compared to unity. In the limit Pe-K), the full problem just derived reduces to the problem 
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linearly treated by Pearson [5] (see next section). However, in Pearson's analysis, the value 
of the Biot number Bi is not related to evaporation parameters (because the heat transfer at 
the free surface is described by a classical Newton's cooling law, with a phenomenological 
coefficient whose estimation may be expected to depend on experimental peculiarities, such 
as the gas depth, thermal conductivity, gas convection, ...). In our analysis, the relation (52) 
will be used to evaluate the Biot number. In spite of the fact that this relation also contains 
a phenomenological coefficient K (defined by eq. 5), it can be expected that a satisfactory 
order of magnitude for K can be obtained from the kinetic theory of gases (for water with 
h=lmm, and an accommodation coefficient 0=0.1, we find Bi=103, but this value could 
be significantly reduced by impurities leading to much lower values of the accommodation 
coefficient 0=0.01 or even ,8=0.001), and that this value will be less dependent on 
convection in the gas phase than it is for the Newton's heat transfer coefficient. Furthermore, 
the Biot number computed from eq. 52 will prove to be useful for investigating the influence 
of non-equilibrium effects (finite K). 

II.4. Normal modes analysis 

In the limit Pe-*0, which can be considered as a good approximation for reasonable mass 
fluxes and small liquid depths, the system of eqs (45) to (49) reduces to 

V.v= 0 (2.61) 

dw Aw-Dp=Pr->™ (2.62) 
y dt 

Au-?l=Pr-^ (2-63) 
dx dt 

AT + w = ?l (2-64) 
dt 

with the boundary conditions u=w=T=0 at z=0. At the interface z=h, from eqs 58-60, 

w = 0 (2-65> 

D2w = Ma— (2-66) 
dx2 

DT + BiT = 0 (2.67) 

This problem has been solved by Pearson [5] in the neutral stability case (d/dt=0), and the 
general resolution will now be presented. 

It is possible to reduce the problem (61)-(67) to a problem for w and T only. This is done 
by deriving eq. 63 with respect to x, and adding the result to the z-derivative of eq. 62. 
Using eq. 61, we obtain Ap=0. Now, applying the Laplacian operator A to eq. 62, we 
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obtain a fourth order equation for w : 

A2w Pr-t—Aw 
dt 

(2.68) 

Thus, we only need to solve eqs 68 with eq. 64, and apply the boundary conditions 
w=Dw=T=0 at z=0 (the condition Dw=0 comes from u=0 at z=0 and eq. 61), and 
interfacial conditions 65-67. 

Separation of variables shows that the general solution of the linear problem is the 
superposition of Fourier modes that may be written 

wk(z,t) 

Tk(z,t) 
= exp[akt + ikx] 

wk(z) 

Tk(z) 
(2.69) 

where the parameter k is the wavenumber of the disturbance (the wavelength is 2ir/k). 

By introducing eq. 69 in the above problem, it is seen that each Fourier component (normal 
mode) must satisfy the eigenvalue problem 

(D2-k2)2wk(z) = Pr-lok(D2-k2)wk(z) 

(D2-k2)Tk(z)+wk(z) = okTk{z) 

(2.70) 

(2.71) 

with boundary conditions 

wk(0) = Dwk(0) = Tk(0) = 0 

wk(l) = D2wk(l)+k2MaTk(l) = DTk{\) +BiTk{\) = 0 

(2.72) 

(2.73) 

It is possible (although calculations are not reproduced here for simplicity) to write the 
general solution of the ordinary differential equations 70-71, which depends on 6 constants 
to be determined from the boundary conditions 72-73. This provides a system of 6 
homogeneous equations for the 6 unknown coefficients, which admits a non-trivial solution 
if and only if a compatibility condition (cancelation of the determinant of the matrix of the 
system) is satisfied. This characteristic relation may be written 

A(ok,k,Pr,Bi,Ma) = 0 (2.74) 

and allows to compute the growth constants ak for given k, Bi and Ma. Then, the reference 
state will be stable provided all growth constants ak have negative real part for all k. At the 
contrary, it will be unstable if there exist some values of k for which at least one eigenvalue 
ok has a positive real part (from eq. 69, it is seen that it will grow exponentially in time). In 
practice, we determine the threshold of the instability by substituting ak-^0 (the possibility 
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of oscillatory onset a=ico can be rejected, as shown in [6]) in eq. 74. After simplifying the 
so-called neutral stability relation, we obtain 

Ma = 
16k (kcoshjk) +ff/sinh(A:))(sinh(2fc) -2k) 

sinh(3£) - 3 sinh(£) -4 k3 cosh(£) 
(2.75) 

which is the Pearson's result [5]. Note that this result does not depend on the Prandtl number 
Pr (when ak=0, the problem 70-73 does not depend on Pr anymore). This relation is 
represented on fig. 3 for several values of the Biot number Bi. For given Ma and Bi, it can 
be verified that the reference state (computed in section II.2) is stable against a disturbance 
with wavenumber k, provided the point (k,Ma) lies below the curve for the given Biot 
number Bi. 

100000. 

50000. 

10000. 

5000. 

1000. 

500. 

100. 

Figure 2.3 : Neutral stability curves for various Biot numbers (indicated for each curve), as 
given by eq. 75. The critical Marangoni number is given by the minimum these curves as 
a function of the wavenumber k (dashed line). 

The general solution of the stability problem may be written as the superposition 

w(x,z,t) 

T(x,z,t) 

wk(z) 

Tk(z) 

(2.76) 
=  f dkakexp[(xkt + ikx] 

with arbitrary Fourier coefficients ak. Then, the critical Marangoni number Mac above which 
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convection sets in is determined by the minimum of the neutral stability curve eq. 75. For 
Bi=0 for example, it is found that Mac=79.6 for 1^=1.993. This value is increasing with 
the Biot number, as seen on figs 3 and 4. 

Just above the critical point Ma=Mac, disturbances with wavenumbers lying in a very narrow 
range centred around k=kc will be amplified, while disturbances with wavenumbers outside 
this range will be damped. Thus, after some time, the liquid layer is in a convection regime, 
with a structure that looks like the critical mode with a unique wavenumber k,.. Figure 5 
represents this convection structure, obtained by multiplying the critical mode 

wk(z,t) 

TAz,t) 
= exp[ikx] 

wK(z) 

TAz) 
+ C.C. 

by a reasonable amplitude akc. In reality, the choice of this amplitude is for the moment 
arbitrary, because the linear analysis just performed does not allow its calculation. 

Note that the basic temperature profile (-z in dimensionless form) has been added to the 
temperature disturbance in representing the isotherms of fig. 5. 

n.5. Importance of a nonlinear analysis 

The linear analysis just performed does not allow to determine the amplitudes ak in the 
Fourier decomposition 76. In fact, this is not the only limitation of linear analyses. For 
example, it is seen from eq. 76 that once the threshold of instability is exceeded, some modes 
with positive growth rate will grow exponentially in time, such that their amplitude can be 
expected to grow indefinitely. This unrealistic result is due to the fact that the perturbations 
have been assumed infinitesimal, such that nonlinearities of the basic equations have been 
neglected (see section II.3, eqs 30-32). When Ma>Mac, some perturbations grow and may 
no longer be assumed infinitesimal, such that convective nonlinearities have to be 
reincorporated in the balance equations (see eqs 7 and 9). This will be done in the next 
section, and it will be seen that the amplitudes ak(t) will saturate to some finite-amplitude 
values. 

These nonlinear terms will also lead to couplings between the Fourier modes with different 
wavenumbers k, which are decoupled at the linear stage. More generally, the linear problem 
might have been solved in three dimensions (one vertical direction z, and two horizontal 
directions x and y), and we would have obtained the same equations 64 and 68, with 
boundary conditions 65 to 67 where dVdx2 has to be replaced by the horizontal Laplacian 
operator AT=d2/dx2+d2/dy2. Then, the Fourier integral 76 would have been replaced by 

w(x,z,t) 

T(x,z,t) 
=  { [dkxdkyajeyQ[okt + i(kxx+kyy)} 

wk(z) (2.77) 

However, due to the isotropy in the horizontal directions, we would have obtained the same 
spectral problem 70-73, with the wavenumber k=(kx

2+ky
2)1/2. Then, the linear problem leads 
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Figure 2.4 : Critical Marangoni number Mac (top) and critical wavenumber k,. (bottom) as 
a function of the Biot number Bi. For BH»oo, Mac = 32.1 Bi and k,. = 3.01. 
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Figure 2.5: Critical perturbations (above : streamlines, below: isotherms). Bi=0 (k,. = 2, 
leading to periodic convection with wavelength \=27i7kc = 3.14 in units of the layer depth). 

to the same characteristic relation, and at the critical point, not only one but all the modes 
lying on the critical circle kx

2+ky
2=kc

2 are critical (the problem is thus infinitely 
degenerated). The evolution of the amplitudes a(kx,ky) of these modes is decoupled at the 
linear stage (all grow in time with the same growth constant), but as soon as they leave the 
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Figure 2.6 : Top view of the free surface isotherms, for 3 roll patterns (a,b,c) with 
orientations differing by 60°. Their superposition with equal amplitudes leads to hexagons 
(d). Black regions : cold, white regions : hot. 
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linear domain, nonlinear interactions between them will provide couplings (and competition) 
of   Fourier   modes   (convection   rolls   with   axes   perpendicular   to   the   wavevector 

~k = IcA + fc,T) with different orientations. In section III, the competition between 3 roll 
patterns with wavevectors lying on the critical circle and forming angles of 60° with each 
other will be investigated, as it is known that this leads to the experimentally observed 
hexagonal structures (see fig. 6). 

In addition to this orientational degeneracy of the linear problem, there exist another 
"bandwidth" degeneracy, linked to the fact that at a given supercritical Marangoni number 
Ma, a band of disturbances is amplified (all the wavenumbers lying above the neutral stability 
curve). In this band, there exist a wavenumber possessing the maximal growth rate. Thus, 
at the linear stage, this mode will be amplified more quickly, and will dominate other 
perturbations. Here again, nonlinear couplings between modes with different k will occur, 
and some disturbances will develop at the expense of others, and determine the wavelength 
of the final convective structure, which may then not be determined from the linear analysis. 
This wavelength selection problem will now be examined for two-dimensional perturbations, 
and assuming that the layer of liquid is sufficiently deep (short-wavelength perturbations). 
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II.6. Conclusions of section II 

In this section, we developed a model describing evaporation of a liquid layer in contact with 
its vapour, and lying on a heated plate maintained at constant temperature. For a given 
pressure pg of the gas phase, evaporation occurs if the temperature of the bottom plate is 
superior to the saturation temperature corresponding to the pressure pg (obtained from the 
classical Clausius-Clapeyron equation). If the temperature of the bottom plate is inferior to 
this temperature, then condensation occurs. In order for the system to reach a steady 
(reference) state, we assume that fresh liquid is injected at the bottom plate, at a rate which 
exactly matches the rate of evaporation (or condensation) at the free surface. This is done 
in order to mimic steady states reached in evaporating devices such as heat pipes. A 
graphical determination of the steady mass flux is proposed, together with an analytical result 
based on a linear approximation valid for mass fluxes that are not too large (more rigorously, 
the Peclet number of the liquid needs to be small compared to unity). 

Our model of evaporation includes the possibility of non-equilibrium effects, i.e. the interface 
is not assumed to be in a thermodynamic equilibrium state, for which chemical potentials on 
each side of the interface are equal (the temperature of the interface would then be equal to 
the saturation temperature computed from the Clausius-Clapeyron equation). Instead, the 
difference of these chemical potentials is considered as a generalised force (in the sense of 
irreversible thermodynamics) that generates a mass flux J proportional to it (in the linear 
approximation). The proportionality coefficient K is a phenomenological coefficient similar 
to a diffusion coefficient, or a thermal conductivity, and its value is not presently well 
known. By comparing the expression we obtain for J with the classical Hertz-Knudsen 
equation, rough estimations are obtained for K, which however depend on the value of the 
accommodation coefficient ß, for which large discrepancies exist between theory and 
experiment. We thus considered the coefficient K as a free parameter, the limit K-*oo 
defining the state of thermodynamic equilibrium of the interface, and the limit K=0 
describing the case of an "impermeable" interface (J=0). 

In a second stage, the analysis of the hydrodynamic stability of the computed reference state 
was performed, taking into account surface tension variation with temperature. A system of 
equations and boundary conditions describing a one-sided model of convection (the dynamics 
of the liquid layer is decoupled from the dynamics of the gas) was developed and put under 
dimensionless form. Order of magnitudes estimates of the dimensionless numbers entering 
the problem shows that some effects can be neglected. These are the surface deformation (the 
crispation number Cr is vanishingly small), and the nonlinearity of the basic temperature 
profile created by evaporation (the Peclet number is small compared to unity, especially for 
small liquid depth). It is finally shown that the problem of stability reduces to the case of a 
motionless liquid layer in contact with an inert gas phase at an undeformable interface whose 
surface tension varies with temperature, the basic temperature profile in the layer being linear 
(Pearson's problem). Evaporation is incorporated via the presence of a free surface heat 
transfer coefficient (a Biot number), for which we have obtained a useful formula depending 
on the characteristics of the liquid (latent heat, Clausius-Clapeyron slope, thermal 
conductivity and density) and on the phenomenological coefficient K. As the critical 
Marangoni number (defining the critical value of the thermal gradient, or equivalently of the 
evaporation mass flux) increases with the Biot number (which increases with K), it can be 
concluded that evaporation stabilises the layer with respect to Marangoni convection. 

28 



II.7. References of section II 

1. L.G. Badratinova, P. Colinet, M. Hennenberg and J.C. Legros. 
"On thermocapillary and non-equilibrium effects on boiling", 
submitted to Microgravity Science and Technology 

2. R. Haase, "Thermodynamics of irreversible processes", Dover, New York, 1990. 

3. J.P. Burelbach, S.G. Bankoff and S.H. Davis, "Nonlinear stability of 
evaporating/condensing liquid films", J. Fluid Mech. 195; pp. 463-494, 1988. 

4. I. Prigogine and R. Defay, "Chemical Thermodynamics", Longman, London, 1973. 

5. J. R. A. Pearson, "On convection cells induced by surface tension", 
J. Fluid Mech. 4, 1958, pp 489-500. 

29 



III. FINITE AMPLITUDE REGIMES OF THE SHORT-WAVE INSTABILITY 

In this section, a model of the pure thermocapillary instability in layers of infinite depth is 
developed in the framework of the amplitude equations formalism. We make use of the 
eigenfunctions at a given Marangoni number Ma (as determined in the previous section) as 
a basis for the nonlinear problem, rather than the neutral stability functions (as it is often 
done for weakly nonlinear analyses). It will be shown that third order equations may visibly 
be extrapolated rather far above the threshold. In particular, results will be obtained about 
the wavelength selection problem between fastest growing modes (wavenumbers around 
kmax~Mam for a zero free surface Biot number) and critical modes (kc-*0 and Mac-*0 when 
the layer depth is infinite). Transient numerical integration of the equations reveals an 
unbounded growth of the mean wavelength, thus indicating the absence of an intrinsic 
wavelength for this physical system. This is explained in terms of the mean (horizontally 
averaged) temperature profile distortion by convection. The final steady state of this evolution 
(imposed wavelength) is then approximated analytically. Earlier results about the competition 
between rolls and hexagonal patterns are qualitatively recovered. These solutions are then 
investigated in the limit Ma^oo, where power law relationships are derived for main 
convective quantities. In particular, a saturation behaviour is obtained for a quantity (the bulk 
temperature decrease), which can be considered as a measure of the heat transport increase 
due to convection. 

The contents of this section form the subject of one publication entitled "Finite-amplitude 
regimes of the short-wave Marangoni-Benard convective instability", P. Colinet, J.C. Legros, 
Y. Kamotani, P.C. Dauby, and G. Lebon, to appear in Phys. Rev. E, August 95. 

ULI. Introduction 

When the threshold of the Marangoni-Benard instability is exceeded, various dissipative 
structures are experimentally observed, some of them localised near the interface, in the form 
of small cells eventually embedded in larger convective structures [5], soliton-like 
propagating waves [6], or interfacial turbulence [7]. In other conditions, Marangoni-Benard 
convection is rather similar to the classical buoyancy induced Rayleigh-Benard convection 
[8-11], with patterns extending far into the bulk of surrounding liquids, and actually reaching 
(and influenced by) the boundaries of the experimental vessel. Note that these apparently 
different forms of convection generally result in substantial increases of heat/mass transfer 
through the interface. 

Figure 1 reproduces the neutral stability results of Pearson [13], as well as results obtained 
by Scanlon and Segel [14] in the case of a layer of infinite depth (the length d appearing in 
Ma=-Ojßd2/ixK then represents an arbitrary length). At a given Ma, perturbations with 
wavenumbers in the range lying above the neutral stability curve possess a positive 
amplification rate. There also exists a particular wavenumber kmax in this range which 
possesses the maximal amplification rate. In slightly supercritical conditions {Ma-Ma^, kmax 

is close to the critical wavenumber kc, and does indeed predict the size of convective 
(hexagonal) cells observed experimentally. When Ma is increased, kmax is seen to increase, 
and the prediction of the selected wavelength becomes quite complicated, since it involves 
non-linear competition between modes in the unstable range. Progress has recently been 
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is not the case for the Marangoni-Benard instability (the critical wavenumber in a finite layer 
of depth h scales as 1/h, such as for the Rayleigh-Benard instability). However, we may 
conjecture that this does not rule out the possibility of an intrinsic wavelength, linked to the 
presence of fastest growing modes (as it seems to be the case for the Rayleigh-Taylor 
instability [19]). Note that the finite wavenumber of the fastest growing mode generally 
depends on the driving force amplitude (the thermal gradient in our case). Attempts to 
answer to the question of the preference of such modes at a given supercritical driving force 
obviously have to incorporate nonlinear effects in the analysis. 

After having described the model in section III.2, in which the derivation of weakly nonlinear 
results is also described, we discuss this wavenumber selection problem for a two- 
dimensional geometry (rolls), and in the case where the Prandtl number can be considered 
infinite (the possibility of boundary-layer instabilities [20], although not observed in our 
analysis, is also briefly discussed). This is done in section III.3. Buoyancy effects will be 
neglected, in order to concentrate on the effects of thermocapillarity. Calculations are 
achieved for a semi-infinite system [14] (i.e. ignoring the presence of a rigid lower 
boundary, and thus focusing on interfacial short-wave effects). This simplification allows us 
to obtain approximate analytical results (section III.4) about the convective heat transfer far 
from the threshold, and about other relevant quantities such as interfacial velocities and 
surface temperature variations. We end this section by extending some of these results to 
three-dimensional disturbances, and reconsidering the problem of the competition between 
rolls and hexagonal convective structures. 

III.2. Problem formulation - weakly nonlinear results 

We consider a semi-infinite viscous Boussinesquian incompressible fluid in contact with an 
inert gas phase. The interface is located at the z-0 coordinate plane of a cartesian reference 

frame with unit vectors 1(. (i=x,y,z), and is assumed undeformable (this will allow 
obtention of analytical results, and is justified since interfacial deformation is known to 
primarily affect long-wave modes [21,22]). The fluid is located in the domain z<0, and a 
constant heat flux is injected in the system (a constant temperature gradient -ß is maintained 
at z-»-oo). All equations and boundary conditions are scaled by d (an arbitrary length) for 
length, d2/K for time, ßd for temperature and paid2 for pressure. The Marangoni number 

Ma = -oTßd2ljxK is defined with respect to the length d, instead of the fluid thickness h 

(h/d-^oo). Let V = Vr + W lz be the fluid velocity (Vr is the horizontal velocity), T the 
temperature and p the pressure perturbations with respect to the purely conductive (zero 
velocity) reference solution. A solution vector U will then be defined by 

U(r=xlx+yly,z,t) = 
w 
p 
T 

(3.1) 

which is assumed to belong to a certain set, say E, of sufficiently derivable functions 
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satisfying the boundary conditions of the problem : these are 

Vr,W,DT,p^0     for z- -oo 

W = DT + BiT = 0     forz=0 

(3.2) 

(3-3) 

where D is the dimensionless z-derivative and Bi is the free surface Biot numberBi = adl\ 
(a is the free surface heat transfer coefficient and X the thermal conductivity of the fluid). 

The system of partial differential equations for the solution vector U can be written under the 
general operational form (see eqs 2.7-2.9) 

£(U) = MaM(U) + B(—)+N(U,U) 
dt 

where the linear part $£(U) is given by 

%(U) 

AVr- -V 
AW- -Dp 

DW + v,vr 
AT- f w 

\P VX - 0 
the "evolution part" is defined as 

Q(U) = 

and the "constraint part" by 

M(U) 

Finally, the bilinear form N is expressed as 

N(U.,U2) = 

0 

0 

0 

0 

0 

0 

0 

V^VT^V^T^W.DT, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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q .     3 . . . 

In the above relations, V = 1 — + 1 — is the horizontal gradient, V = V + 1 D is the total 
dx      ydy T      z 

gradient, and A = V   is the Laplacian operator. 

Apart from the fact that pressure is not directly eliminated from the equations, the set (4) of 
equations together with boundary conditions (2-3) is equivalent to the problem formulation 
of Scanlon and Segel [14]. Note also that we have included the Marangoni condition as the 
last component of (4), which has already been shown to simplify the process of deriving 
amplitude equations [14,23-26]. 

i) Derivation of amplitude equations 

We first decompose U into Fourier modes 

U{r,z,t) =  iUj(z,t)exp(i 1.7) dl (3-9) 

so that horizontal Fourier components Uj all belong to E (i.e. fulfil boundary conditions (2- 
3)) and satisfy 

X-k(Uj) = MaMT{UT) + 0j(^) + JNj.jjpiUT.UT.rfdk' (3.10) 

which is obtained by projecting (4) on exp(-ik.r) and by replacing Vr by ik in linear 

operators (this is the meaning of the index k). The bilinear form N is defined in a similar 
way. Each Fourier mode is further decomposed as 

U^z,t) = A^t) Ufa) + Uf(z,t) (3-11) 

where Uj(z) is an eigenvector with eigenvalue ok(k = \ k\) of the linear spectral problem 

^U^-MaM^)=ake^) (3-12) 

The resolution of (12), detailed in appendix 2, shows that for any Ma>0, 0<k<Ma/2 Bi, 
an isolated eigenvalue ok exists (and is such that ak+k2>0). This eigenvalue is the growth 

rate of the corresponding eigenmode U{{z), appearing in eq. (11). For every value of Ma 
and k, there also exists a continuum of solutions of (12) that are bounded for z->-oo (and 
which correspond to eigenvalues o< =-k2). This infinite set of solutions could eventually be 

used to develop the remainder term Uj(z,t) (the superscript!) stands for "damped"), but it 

turns out to be simpler to compute U-f directly, by a method explained in appendix 1. As 
exchange of stability holds in our problem [27], eigenvalues ok are real and satisfy 

Ma = — ( -2ka l + ———— ) l (3.13) 
k Bi + Jo+k2 

The neutral stability condition is found by the limit of equation (13) for a-»0 : 
Mak = Sk(k+Bi) (3.14) 

which is the asymptotic form (k->oo) of the neutral stability condition of Pearson [13], as 
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seen on fig. 1. A relation between the maximal eigenvalue amax, kmax and Ma may be found 
by differentiating (13) at constant Ma, setting da/dk=0. This gives, for Bi=0 for example: 

amax = 2(l+vT)£ix = aMa   with a = 0.086      (Bi = 0) <3-15) 

Although analytical results can also be obtained for Bi^O, they are not reproduced here for 
conciseness. As remarked by Scanlon and Segel [14], the minimum (critical) value of Ma for 
which instability occurs is zero, due to the absence of stabilisation by a rigid lower boundary 
of the modes with increasingly large wavelength. However, due to their large inertia, the 
growth rate of these modes is vanishingly small for all Marangoni numbers. This is depicted 
in fig.2 : it is seen that modes with wavenumbers between 0 and k*=(Ma/8)1/2 (for Bi=0) 
are unstable, so that their amplitude A-rft) in the decomposition (11) should grow 
exponentially in time, as long as nonlinear effects can be neglected. In fact, it is shown in 
appendix 1 that the amplitudes A-ft) obey evolution equations of the form 

= a„Ar+ [Zv.rA-pAr-t.dk' + [ f Z^A^^T'-V dT d~k"       (3-16) 
dAr 
dt k+ \zvi' lk-k' k'k" k'±k"±k"^k-k'-k" 

These equations are strictly valid near threshold. When the Marangoni number is increased, 
higher order terms should be included. Equations (16) may then be considered as resulting 
from a truncated modified Galerkin scheme [15,25]. Another hypothesis underlying the 

derivation of (16) is that the dynamics of damped modes (i.e. of Uj ) is determined by the 

evolution of the "primary" modes A-jß) U{ (this amounts to neglect time derivatives of 
damped modes). This slaving principle [25,26,28], strictly valid near the threshold, is here 
assumed to be qualitatively valid in the strongly non-linear regime. This can be partly 
justified by the fact that damped modes cannot bifurcate (o<-k2), whatever high the value 
of Ma (see also [33]). 

Despite these assumptions, our model is expected to reflect physical reality even far from 

threshold, provided that the eigenmodes Uj are used for the Galerkin basis, rather than the 

neutral stability functions Uj. In order to illustrate the differences between these different 
approaches, we now turn to the derivation of weakly nonlinear results [14, 23-26], for which 
the latter option is sufficient. 

ii) Weakly nonlinear results 

Making use of Uj(z,t) = Ajff) Uj(z) + U~(z,t), instead of eq.ll, and following a procedure 
similar to that described in appendix 1, we are left with amplitude equations identical to 
eq. (16), although with different coefficients. It is obvious that coefficients of the quadratic 
and cubic terms do not depend on Ma. It can also be shown that the coefficient of the linear 
term is the first term of a Taylor expansion of ak(Ma) around Ma=Mak, i.e. 

k{Ma-Mak) 

4(2k+Bi) 
0 _  K(ma-mak) (3.17) 

where a superscript 0 will denote a value of a coefficient computed by using neutral stability 
functions. 
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Figure 3.2 : The growth rate a as a function of the wavenumber k for different Marangoni 
numbers Ma, and for Bi=0. The dotted line represents the locus of the fastest growing 
perturbations, given by eq. (15). 

Note that eq. (17) is an insufficient approximation for low Biot numbers. As an indication, 
the mode k=0 is found to be amplified for Bi=0 and Ma>0 (which differs from the exact 
behaviour of the growth constant, as seen in fig.2). 

From equations (9) and (11), it is seen that a roll mode with wave vector k0 is described by 

Aj = 0^(0<5(k-k0) +al(t)8(k+ k0), where 8 is the Dirac-delta function, and an overbar 
denotes the complex conjugate. Substituting into (16) leads to the Ginzburg-Landau equation 

^i=<a1+(2Z1
0
11+Z.°m)«1|«1|

2 (3-18) 

where Z,0
U and Z°m stand for ZJJJ and Z°IIT respectively. 

Defining a reduced distance to the threshold by 
e = (Ma -Ma. )IMa. (3.19) 

it is seen that at e=0, the rest state a,=0 undergoes a pitchfork bifurcation to the steady 
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amplitude 

\au\ 
32(5/+ 3 V 

i l 
1 (3.20) 

(Bi +k0) (39 Bi2 + 24SBik0 + 353 K) 

obtained after evaluation of the cubic coefficients (see details in appendix 3). 

Although strictly valid near the threshold, the limitations of this weakly nonlinear model for 
large e are well known. Consider for example the temperature perturbation averaged in the 
horizontal direction (i.e. its Ä:=ö Fourier component) : 

(T) = Tgj® = 2\a1\
2T0

D
1(z) = 0(e) (3-21> 

where T£(Z) is the only non-zero component of u£(z) (appendix 3). The total averaged 
temperature profile is obtained by adding the reference profile -z to (21), and is represented 
in fig. 3, for several values of e. It is seen that in a region of depth 0(l/k() below the 
interface, the temperature profile is distorted (and somewhat homogenised) by Marangoni 
convection. It is also seen that unrealistic temperature distributions (strongly negative values 
of the mean temperature, leading to large unrealistic cold spots in steady regimes) are 
obtained for e superior to about 1.5. Defining A as the bulk temperature decrease with 
respect to its value in the conductive rest state, we may compute that 

D 32 (Bi + 3 k„) (5 Bi + lkn) 
A0 = -2 | als |2 lim T°(z) =  - °— °—- e (3.22) 

k0 (39 Bi2 + 248k0Bi + 353 £0
2) 

where the superscript 0 again denotes the weakly nonlinear result. The result (22) of course 
diverges for e-*oo. 

The importance of obtaining a better approximation of the bulk temperature decrease A is 
justified by the fact that it can be considered as equivalent to the classical Nusselt number 
Nu (more exactly to Nu-1, which is also quadratic in the amplitudes). Indeed, for systems 
in which the temperature difference is kept constant (such as Rayleigh-Benard convection 
between conducting boundaries), Nu is defined as the dimensionless ratio of the total to the 
conductive heat flux, and therefore is a measure of the increase of the heat flux due to 
convection. For systems where the heat flux is kept constant (as in the present work), the 
decrease of the temperature difference between bulk and interface may also be perceived as 
an increase of the apparent thermal conductivity of the system, due to Marangoni-Benard 
convection. In the next sections, it is shown that by using eigenvectors (12) instead of neutral 
stability functions, a more realistic description of convective fields for large Ma can be 
obtained, together with interesting power laws for the variation of convective quantities in 
the limit Ma-* oo. 

III.3. Numerical results and physical interpretation 

In this section, we present results obtained by direct numerical integration of the 
set (16), for a two-dimensional domain of lateral length L=2ir/k0 with periodic boundary 
conditions. 
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Figure 3.3 : The total temperature <TT0T> averaged in the horizontal plane as a function 
of the vertical coordinate z, as computed from weakly non-linear results, and for different 
values of e = (Ma-Mac)/Mac. The Biot number is Bi=0, and the basic wavenumber is k0=l. 
The distortion of the averaged temperature profile in the convective region near the interface 
z=0 creates a decrease A0 of the bulk temperature with respect to the purely conductive value 
(dotted line, e=0). A0 is here defined for e=0.5. 

The amplitude of the Fourier modes is given by 
+N 

4r(0 =     E    an(t)8(k-nk0) (3.23) 

with   an(t) = a_n(t),   and   TV   sufficiently   large   to   ensure   numerical   convergence. 
Substituting(23) in relation (16) leads to 

'"    =   °mam   +   Y, Zp,mapam-p   +   £ Zp.,.mflpfl,flm-„-, 
P PA dt 

(3.24) 

where om stands for omKy Zp_m for ZpXm~K and ZPtQiM for Z^^^, which are calculated as 
a function of the Marangoni number Ma. 

In the following, we will take advantage of the fact that the length scale d of the problem is 
still arbitrary. We may thus choose k0=l, which means that the dimensional length of the 
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periodic box is 2-Kd. From eq. (14), the critical Marangoni number is given by 
Mac=Mak=1=8 (1+Bi). 

The system of equations (24) has been integrated for a wide range of Marangoni and Biot 
numbers. Despite the large number of unstable modes in some cases (increasing with Ma), 
and the presence of resonant quadratic terms (which are generally responsible for complicated 
phase coupling effects [29,30]), the long-term behaviour appears to be surprisingly simple: 
a steady state is always reached, which is strongly dominated by the fundamental mode n=l. 
Since the number of modes N needed to ensure convergence is increasing with Ma (see 
fig.2), computer resources limited our investigations to Marangoni numbers of about 
Ma=500 (for Bi=0, and N=20). 

We have also considered a simplified version of the system (24), which allows us to simulate 
the evolution of a larger number of amplitudes. This model is obtained by setting all cubic 
coefficients Zpqm with/?7*m equal to zero. We then obtain 

^l = [a-YS    \a\2]a   +YZ   a a (3-25) %f 
L    m      Z-/     m,q \    q\    J     m JLJ     p,m   p   m-p 

01 9=1 p 

with Sm =-2 Z m. From eq. (25), this quantity is seen to represent the strength with which 
the presence of the mode q lowers the effective growth rate of the mode m. The physical 
mechanism responsible for this stabilising effect consists in the distortion of the mean 
temperature profile by convection (see fig.3), which lowers the destabilising temperature 
gradient. A comparison of the time evolution and of the steady state values predicted by the 
full system (24) and the reduced set (25) reveals that the results differ only slightly (by less 
than 10% on the value of typical convective quantities at steady state, as shown in fig. 6). 
In view of this rather good concordance, the mean temperature profile distortion by 
convection may be considered as a dominating effect in the nonlinear competition between 
unstable modes. Implications for wavelength selection between fastest growing and critical 
modes are discussed later on in this section. 

Since it is legitimate to admit that the simplified system (25), that can be considered as a 
"mean-field" [32] version of the problem, is useful for simulating the interactions of a larger 
number of modes (up to N=75), larger Marangoni number values can also be investigated. 
Again, even for Marangoni numbers as large as 4000 (for Bi=0, i.e. e — 500), the long-term 
behaviour is not modified, independently of the initial conditions (here selected as 
a numerical "white noise", i.e. randomly chosen complex amplitudes of magnitude 10s to 
103) : the final state is still steady and dominated by the fundamental mode. 

A sequence of a typical transient simulation is represented on fig.4. For sufficiently small 
initial perturbations, a convective structure dominated by the fastest linearly growing mode 
(the mode closest to kmax) is observed after a relatively short time. This is the case as long 
as non-linear effects can be neglected. At higher time intervals, this ^-structure is 
progressively replaced by larger and larger wavelength structures, via a complex process of 
coalescence of neighbouring convective cells. This evolution finally tends to the steady state 
with 2 convective cells (1 period) occupying the entire domain, as expected (fundamental 
mode). The properties of this steady state will be investigated in the next section. 
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Figure 3.4 : The evolution of the streamfunction pattern for Ma=3000 (e=374), Bi=0, 
N=75. Solid closed curves correspond to clockwise motion. The initial condition was 
selected as a random noise of amplitude iO"5. The streamfunction is rescaled at each snapshot 
(the reduced time is indicated). The fastest growing perturbation is dominating for times 
t<0.03. A continuous growth of the mean wavelength of the pattern is observed, the later 
stages of which tend to a steady state with two convective cells (1 period) in the simulation 
domain, after a time of order unity (in units L2/4ir2n, where L is the horizontal period). 
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It is interesting to compare fig.4 with the experimental observations made by Linde [5], in 
mass transfer systems. Note that these systems actually correspond to high values of Bi, since 
the diffusion coefficients are generally much larger in the gas than in the liquid phase. 
However, our simulations were not found strongly dependent on Bi for large Ma. Linde 
interpreted the observed growth of the mean wavelength of the convective pattern as an effect 
due to the non-stationary mass transfer occurring in his experiments. Indeed, after that the 
experiment is started by putting in contact a gas phase containing a surface active solute with 
the liquid phase, the diffusion of this solute through the interface creates a growing diffusive 
boundary layer, which induces convective motions in the liquid, with a wavelength that scales 
with the thickness of this boundary layer. 

Since a natural length scale such as this boundary layer thickness is absent in our 
formulation, the wavelength selection observed in fig.4 has to be intrinsically related to the 
non-linear mechanism of heat (or mass) convective transport. This effect was indeed shown 
(see fig.3) to create an homogenisation of the temperature (or concentration) profile in a 
convective region located below the interface. This is also apparent in fig.5, which represents 
the temperature profile averaged along the horizontal direction corresponding to the evolution 
depicted in fig.4. It is seen that the temperature uniformisation due to convection is more 
important at large times, when the penetration depth is large. The growth mechanism can be 
explained by the following considerations : suppose that at one particular instant, the 
convective structure has a given mean wavelength X. Since the convective cells have to 
preserve a certain height/width ratio, temperature is practically homogenised in a region of 
depth X below the interface. Modes with wavelengths smaller than X may be considered as 
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Figure 3.5 : The evolution of the total temperature < TT0T> averaged in the horizontal plane 
as a function of the vertical coordinate z. The Biot number is Bi=0. Several times are 
considered, which correspond to the simulation depicted in fig.4. An homogenisation of the 
temperature in a domain whose depth is growing with time occurs, which results in a growth 
of the bulk temperature decrease A with time (see insert). 

stable, since they see a nearly isothermal environment. At the contrary, modes with 
wavelengths larger than X can penetrate deeply enough into the bulk of the liquid and bring 
hot fluid from the still conductive zone, to the interface. The effective growth rate of these 
modes remains nearly unchanged by the convective structure, so that these modes continue 
to grow (but slower and slower due to their growing inertia), and tend to replace smaller 
wavelength structures. The pattern wavelength X may thus be expected to grow indefinitely, 
at least in an infinite system. In real experiments, the final wavelength will probably be 
determined by the actual depth of the experimental container (thus near the critical 
wavelength), indicating that an intrinsic wavelength is likely to be inexistent for the pure 
Marangoni-Benard problem. Note that on the point of view of wavelength selection, the 
evolution described above presents some similarities with coarsening processes observed 
during spinodal decomposition phenomena in binary mixtures [36]. 

A last remark about fig.5 concerns the temperature profile near the interface. Since the 
vertical velocity is vanishing at the interface, some kind of thermal boundary layer is created 
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there, in which the temperature gradient quickly recovers its bulk value. In Rayleigh-Benard 
convection, boundary layer effects are known to play a decisive role in the mechanisms of 
transition to turbulence (especially for high Prandtl number fluids [20]). However, despite 
the very high values of the Marangoni number, boundary layer instabilities have not been 
observed in our simulations, probably due to the different nature of these boundary layers 
(inparticular the absence of no-slip condition for Marangoni-Benard problems). Furthermore, 
it cannot be rejected that this kind of phenomena could appear for larger driving forces than 
those investigated in this work (up to Ma=4000). Finally, let us mention that a direct 
comparison of the results obtained from the present model (amplitude equations limited to 
third order) with a finite difference resolution of the governing equations is in progress, and 
will be reported elsewhere. Preliminary results exhibit a satisfactory agreement concerning 
the qualitative evolution of the system (i.e. the growth of the mean wavelength up to the final 
steady state with the largest wavelength). This confirms that the most important ingredient 
responsible for this process is indeed the mean temperature profile distortion by convection. 
This in turn indicates that mean-field approximations [32], neglecting all nonlinear effects 
except the change of the mean temperature profile owing to the convective heat transport, 
can lead to satisfactory approximations of highly supercritical behaviours. 

III.4. Analysis of steady states 

i) Bifurcation of rolls 

Since the steady state reached by both full (24) and reduced (25) models is strongly 
dominated by the fundamental mode n=l, we seek for an approximate solution by setting 
to zero all harmonics an with n>l. The set (25) then reduces to the single equation 

^i =[a~Sn\a^]ai (3.26) 

describing a pitchfork bifurcation similar to eq. (18) but where the coefficients are now 

computed from the eigenfunctions U°k, and thus depend on Ma. After computation of these 
coefficients, the steady convective solution of (26) is finally found as 

[/T |2 =   o   „ {Ma-MaeWQ+y/uTf (3 2?) 

5n       (l+5/)2(512(Ma+o2) +Ma(3a-8)(3+/T^T)3) 

where the growth rate a is solution of the dispersion relation (13), and thus also depends on 
Ma. According to eq. (26), the solution (27) is stable provided o>0, which is equivalent to 
Ma>Mac=8(l+Bi) (we have set k0=l). 

The decrease A of the bulk temperature due to Marangoni convection, as represented in figs 
3 and 5, is expressed by 

8 (Ma-Mac) (3 +/Ü7)3 (a-2+—^M^L-) 
A =  Ma(l+^|u7f (3.28) 

512(Ma+a2) +Ma(3o-8)(3+Jl+o )3 

This expression is represented in fig.6, together with results obtained from the integration 
of the full system (24) and of the reduced system (25). Another result found in fig.6 is the 
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expression (22), which reduces to A°=672e/353 for Bi=0 and k0=l. Clearly, this result is 
only valid near the threshold. At the contrary, the expression (28) for A leads to the result 
A=14/5 e near the threshold (which is overestimated, due to the negligence of the stabilising 
coefficient Z_m, see eq.18). Nevertheless, eq. (28) appears to be a better approximation of 
the bulk temperature decrease for large Marangoni numbers (because Z_in becomes negligible 
compared to Z;;i). The corresponding mean temperature profile can also be shown to be more 
realistic, since it does not exhibit cold spots as those appearing in fig.3, but is rather close 
to fig.5. The behaviour at an infinite Marangoni number is given at the end of this section. 

Figure 3.6 : The bulk temperature decrease A as a function of the distance to the threshold 
e = (Ma-MaJ/Mac for Bi=0. Thick full curve : results of the numerical integration of the full 
system (25). Thick dotted curve : numerical integration of the "mean-field" system (24). Thin 
full line : the weakly nonlinear result A°=672e/353. Thin dotted curve : the analytical result 
for A given as eq. 28 of the text. The insert represents a zoom of a region near the origin. 

ii) Competition between hexagons and rolls 

In view of the good agreement between the analytical result (28) and the results of the 
numerical integration of (24), we shall reexamine the problem of the competition between 
three sets of rolls forming angles of 60° with each other. 
We thus consider 

4f a^fjbik-k^ + a2(t)8(k-k2) + a3(t)8(k-k3)- 

äM)8(k+k.) + aAt)8{k+~k2) + aAt)8(k+~k3) 
(3.29) 
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where the ordering of unit vectors k. , \i\ = 1,2,3 is defined by fig.7. 

Figure 3.7 : Definition of the basic wavevectors for the study of the competition between 

rolls and hexagons (| £.|  = 1). 

From eq. (16), the corresponding amplitude equations are 

a{ |ö!1 |z + a2( \a2\
z + |fl3| ) oal + 6a2a3 - 

dt 
da7 
—- = era- 
dt 2 

da3 
—i = da, + <5a,a, - 
dt 

5a:a3 

*lw2 

aj |a2|
2 +a2( |aj2 + |a3|

2) (3.30) 

ai lfl3 -a2(|a1|
2 + |a2|

2) a. 

where 
5 = 2Z 1,2 

a, 

a. 

(2Z1]U + Z_U1) 

"2(^1,1,1  + ^2,1,1  + ^-2,1,1 ) 

(3.31) 

(3.32) 

(3.33) 

and where Z„ „ r stands for ZT T T (symmetry considerations have been used to minimize the 

number of coefficients to be calculated). The discussion of the gradient system (30) is well- 
known     [23-26,37]     :     writing     an = rn     exp[i<pj,     we     obtain     the     equation 

d<p/dt = -8 sin<p (r\r]+rlr]+r\rl)lrxr2r3 (with rn*0) for <p = ip2-<pr<p3, showing that <p=0 
and (p = T are the only possible stationary values of <p. 
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Figure 3.8 : The coefficients 8/(1 +Bi) (upper graph), a/fi +Bi) (lower graph, solid curves) 
and a2/(l +Bi)2 (lower graph, dashed curves) as a function of the distance to the threshold 
e = (Ma-Mac(Bi))/Mac(Bi), for various Biot numbers Bi (indicated on each curve). 
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Then, it is found that qualitatively different fixed points of eqs 30 are (when a=a1+2a2>0): 
- rest solution : r; = r2 = r3 = 0 (3.34) 
- roll solutions : r2 = r3 = 0, rr = (o/aj1'2 (3.35) 
- up-hexagons solutions : <p = 0 , r} = r2 = r3 = (8±(82+4aa)1/2)/2a     (3.36) 
- down-hexagons solutions : <p = w , rt = r2 = r3 = (-8 + (82+4oct)1/2)/2a (3.37) 

The analytical form of the coefficients 8, a}, and a2 (depending on Ma) is not written down 
for conciseness. Rather, fig. 8 presents their variation with the distance to the threshold e for 
various Biot numbers. Bifurcation diagrams are represented on figs 9 and 10. 

-I 1——r- 

R 

U-H : 

D-H— : 

80 € 

Figure 3.9 : The bulk temperature decrease A as a function of the distance to the threshold 
e for Bi=0. R : Rolls, U-H : Up-hexagons, D-H : Down-hexagons. Solid curves represent 
stable states, while dotted curves represent unstable states. The thin solid line represents the 
analytical result given by eq. (28) of the text for the bulk temperature decrease of rolls. 

Figure 9 represents the bulk temperature decrease A as a function of the distance to the 
threshold e, for solutions (35) to (37). As expected, up-hexagons (upflows at the centre of 
the hexagons) are the only stable solutions just above the threshold, and rolls become stable 
only at large e. Down-hexagons (downflow at the centre) are always unstable, because 8>0 
(which is different from the case of very low-Prandtl number fluids [26]). Note that, although 
not apparent on the figure, the first bifurcation to up-hexagons at e=0 is slightly hysteretic: 
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the depth of this subcritical region is 3.3% (for Bi=0) in our model, slightly larger than the 
2.3% value of Scanlon and Segel [14]. This is due to the fact that we have neglected the 
stabilising action of "secondary" modes, i.e. those generated by quadratic interaction of the 
"primary" modes. This is done since it is natural to expect that these modes become 
unimportant for large Ma, as observed in the case of two-dimensional simulations, 
characterised by a strong domination of the fundamental mode n=1 (see section III.3). When 
the amplitudes of these harmonics are included in eq. (29), and finally eliminated using 
adiabatic slaving [25-26, 28], the 2.3% value of the hysteresis is recovered. It is also 
possible to recover the result 0.56% of Bragard and Lebon [24], in the case of a layer of 
finite depth (the calculation of coefficients is then fully numerical). It is also apparent that 
the depth of the subcritical region is increasing with the Biot number. 

An interesting result of the present analysis is that at large Marangoni numbers, the stability 
properties are not qualitatively modified with respect to the results of Scanlon and Segel [14]: 
these authors predict that rolls should become stable above a value ej=64 (our value is 
e;=S.6) of the constraint, while up-hexagons should become unstable above e2=196 (our 
value is e2=37). A bistability region (leading to hysteresis effects between rolls and 
hexagons) thus exists between e1 and e2. This qualitative concordance reinforces the idea that 
this hysteresis region could be a physical reality, although the domain of validity of the 
amplitude equations is not guaranteed for such large values of e. Lastly, we have represented 
the maximal surface velocity for the bifurcating solutions (35) to (37) in fig. 10, showing that 
this quantity is not strongly dependent on the particular planform selected. 
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V        , , , , ■ r T max 

Figure 3.10 : The maximal surface velocity Vmax as a function of the distance to the threshold 
e for Bi=0. R : Rolls, U-H : Up-hexagons, D-H : Down-hexagons. Solid curves represent 
stable states, while dotted curves correspond to unstable states. The thin solid line represents 
the analytical result for the maximal surface velocity of rolls. 

iii) Asymptotic behaviours for Ma-*oo 

It results from the examination of the previous figures that the asymptotic behaviour of the 
relevant convective quantities for Ma-*<x> obey to different power laws than those generally 
derived near the threshold by using classical perturbation methods. In particular, a saturation 
is observed for the bulk temperature decrease A (which, as mentioned earlier, can be 
considered as equivalent to the Nusselt number). The purpose of the following calculations 
is to derive asymptotic results for A, for the maximal surface velocity Vmax, as well as for the 
surface temperature deviation ATsurf, which we define as the difference between maxima and 
minima of temperature on the free surface. 

From the dispersion relation (13), it is straightforward that 

kMa for Ma -> oo (3.38) 
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The asymptotic value of the amplitude of rolls is derived from eq. (27) : 
i 

I    \ROIIS ^       Ma1 (3_39) 
111 i       ! 

2* 3* (1+5/) 

and it is calculated from eq. (28) that the saturation value of the bulk temperature decrease 
for a roll structure is 

^Roiis _* £ Ä 2.66 (3.40) 
3 

independently of the value of the Biot number. This result is confirmed by all the curves of 
fig-6. 

It is readily computed that the maximal surface velocity is 
i 

vT-> 8Ma^  - 3.67Ma^ (3.41) max 1      1 

2*3* 

while the amplitude of the surface temperature variations is given by 
_2 

.nous _^ 32Ma *  ä  14.66Ma'^ (3.42) 
1    1 

2*3* 
A2*rf 1    1 

The corresponding  expressions  for hexagons  (although unstable with respect to roll 
disturbances for Ma-^co) can also be derived analytically. We obtain 

«5-^(1+50 (3.43) 
9 

ai->3(l+502 <3-44> 

a - a, +2a2 -* O04733031 -60445052^) (1 +flf)2 ^  1L56(1+jB/)2     (3.45) 

243(7+4\/3") 

It follows that 
^Hexagons  _>  2.08 (3.46) 

for the bulk temperature decrease of hexagons (both up and down hexagons lead to the same 
value for Ma-^co, as seen from eqs (36) and (37), and in fig.9). This value is inferior to the 
value 8/3 of rolls. However, this should not be taken as a rigorous justification for the 
instability of hexagons, since it well known that the principle of maximisation of the 
convective heat transport, originally proposed by Malkus [31], does not lead to stability 
predictions that are generally valid [32]. 
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Finally, the maximal surface velocity tends to 

V"™gons - 3.29Ma1 (3'47) 

and the amplitude of the surface temperature deviations is 

Hexagons -16.81 Ma'7* (3,48) 

To check the assumptions used in our analysis, it should be interesting to compare the above 
results with a full numerical integration of the problem. Preliminary finite differences 
simulations indicate a slow growth of the bulk temperature decrease, as well as an increase 
of the velocities (although with an exponent larger than 1/3) coexistent with a slow decrease 
of the surface temperature variations. This allows us to place some confidence in our 
analysis. In particular, the exponents 1/3 and -2/3 may be considered as first approximations, 
that could be refined by deriving higher order contributions to the amplitude equations. It 
appears also that the present asymptotic analysis leads to results that are difficult to check 
by finite differences simulations. Indeed, since convergence of results may only be expected 
for very high values of the Marangoni number, numerical difficulties are encountered, mainly 
due to the presence of very steep surface temperature gradients at the cold points, where the 
fluid moves downwards. 

We conclude this section by remarking about an important mathematical aspect of the pure 
Marangoni-Benard instability. A particular feature of this problem is that the neutral stability 
condition provides Ma as a single-valued function of the wavenumber k. This means that 
above the corresponding critical value, one and only one eigenmode is unstable, whatever 
large is the value of Ma. This has to be contrasted [33] with Rayleigh-Benard instabilities, 
where n eigenmodes are linearly unstable above the value Ran=(k?+n2ir2)3/k2 of the Rayleigh 
number (case of pure Rayleigh-Benard convection between stress-free boundaries). Clearly, 
the above analysis would require non-trivial modifications to account for interactions between 
these unstable vertical modes. Physically, this difference between Marangoni-Benard and 
Rayleigh-Benard problems is certainly related to the different natures of the surface and the 
bulk forces. This could also explain why neither boundary layer instabilities, nor subsequent 
transitions to turbulence have been observed in our model, in the range of Marangoni 
numbers investigated. 
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III.5. Conclusions of section III 

Pure thermocapillary instability in layers with non-deformable interface and infinite Prandtl 
number has been studied. The model is based on the assumptions that the dynamics is 
determined by the interactions of the unstable eigenmodes of the linear stability problem, and 
that the evolution equations describing their interactions can be limited to third order in their 
amplitudes. Although strictly valid near the threshold, this model has to be considered as an 
approximation (similar to a truncated modified Galerkin method) far from it. Attention has 
been restricted to short-wave effects, so that the layer has been assumed infinitely deep. 

The first part of the analysis has focused on the two-dimensional wavelength selection 
problem at moderately large Marangoni numbers, for which the wavelength of the fastest 
growing disturbance is much smaller than the critical wavelength. The transient numerical 
integration of third order amplitude equations has shown that, although a structure dominated 
by the fastest growing disturbance can appear at a given instant, it is progressively replaced 
by larger wavelength structures. A steady state is always reached, whose wavelength is equal 
to the size of the (periodic) simulation domain. This is confirmed by a finite difference 
integration of the problem. Although the fastest growing wavelength is a finite quantity, it 
appears that the Marangoni-Benard instability cannot induce stable localised structures with 
intrinsic wavelengths independent of the experiment dimensions (at least up to Ma=4000). 
The physical mechanism responsible for this convective cells growth process is shown to be 
related to the nonlinear convective heat transport, which creates a distortion of the 
temperature field in the region located near the free surface. The distortion of the 
horizontally averaged temperature profile (the cause of the instability) has a stabilising effect 
on short wavelength modes, but leaves the growth rate of large wavelength structures 
relatively unchanged. This produces a growth of the pattern wavelength, which presents some 
resemblance with experimental results of Linde [5], although we have not studied this point 
in details, since transient evolution of the diffusive (boundary layer) profile is not taken into 
account in our analysis. 

Properties of the steady states observed in the convective system have been investigated for 
both rolls and hexagonal structures. Contrary to existing weakly nonlinear theories, our 
method (differing by the use of eigenfunctions, rather than neutral stability functions) appears 
to lead to physically realistic results, at least qualitative, for very large Marangoni numbers. 
This is conjectured from examination of the behaviour of some relevant convective quantities. 
The decrease of the bulk temperature due to Marangoni convection has been found to present 
a saturation when the Marangoni number is increased (while the weakly nonlinear result is 
a linear growth). The velocities are found to grow as Ma1'3 as Ma->oo, while the surface 
temperature variations decrease as Ma2'3. However, due to the assumptions underlying our 
model, these behaviours should be considered as first approximations, that could be refined 
by including higher order interactions in the amplitude equations. The analysis of the 
competition between rolls and hexagons confirms earlier results [14, 23-26], quantitatively 
(near threshold) and qualitatively (far from threshold). At small Marangoni numbers, up- 
hexagons are the only stable solutions (the first bifurcation is slightly hysteretic), while rolls 
are the only stable solutions at very large Marangoni numbers. Down-hexagons are always 
unstable (Pr-» oo). The transition between up-hexagons and rolls is found to be hysteretic, as 
in other problems (f.ex. [34]). However, this transition has been found to occur for lower 
Marangoni numbers than in [14], and with a smaller hysteresis loop. 
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(A.l) 

Appendix 1 : Derivation of amplitude equations 

Using eq. (11), we may write eq. (10) as a differential problem for Uj{z,t): 
dA- 

X^-MaM^U?) = -A^iUD-MaMjiU?)) + -^QJ(UJ) 

+ J dk'AT(NPtJ.T(Ui,U°r) ^.T.r^jp.Vi)) 

where the time-derivative of Uj has been cancelled, as a result of our assumption to neglect 
the own dynamics of the damped modes (slaving principle). Note that because of eq. (11), 

the boundary conditions can only be satisfied if U~ belongs to E. A very rough (and 
insufficient) model could be obtained at this stage by projection of eq. (A.l) on some 

functions (generally the adjoint functions [35]), and assuming U-j- = 0. We would then 
obtain an equation of the form (16), but without stabilising cubic terms. Rather, we will try 

to solve (A.l) for Uj . This can be done only if (A.l) is compatible, which is not the case 
at Ma-Mak (the kernel of the left hand side operator is then not empty), except if the second 
member is orthogonal to the solution of the adjoint neutral stability problem (Fredholm's 
condition). This leads to the amplitude equations 

dAj 
dt        

akAI+\dk!zTTAI'AI-7 

-\dTAv^^l^M (A'2) 

where eq. (12) has been used, and it has been anticipated that the velocity (and pressure) 

components of Uf are zero. This will become apparent later, and is a consequence of the 

linearity of the equations of motion. In (A.2), (V^ , .y denotes the projection on the adjoint 

neutral stability solution (derived in appendix 2), rk = (V- ,QJ(UJ)) is the normalisation 
factor, and the quadratic coefficients are given by 

7      {yi^Vj_T(ui,,ujT)} (A-3) 

Tk 

Now, by inserting the projected part (A.2) into the complete equation (A.l), we obtain 

XAU^-MaMjriUf) d^ATA?_rNFj_T(V$,Ulv) 

' dk'ATN™r_rim,U?v) 
k'"-k-k"-'k' ,k-k'K" k' ' ^ k-k1' (A.4) 

'*'-"t',ü-t'^r' ^ k-k' 

where the "Non-Resonant" part of a term X is defined by Xm = X - T'k
l(v{,x) 9I(f/|), 

such that (Vj ,Xm) = 0 for every X. This ensures that (A.4) is compatible for every Ma. 
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Now, the form of equation (A.4) suggests an iterative series solution, starting with" 

ATAT-V UIk' 
(A.5) U? =  \dk't 

in which U~, is obtained from 

(^-MaMJU^ = N^T(Ui,,UlT) (A.6) 

Substituting this result in the r-h-s of (A.4) leads to higher order corrections (cubic terms for 

ZJj , generating quartic and higher order terms in (A.2), which are not considered in our 

model). We limit the calculation of Uf to (A.5) and (A.6), such that the compatibility 
equations (A.2) reduce to the amplitude equations (16), with quadratic coefficients given by 
(A.3) and cubic coefficients given by 

(vi >^T',I-X'(
C/

T'>
C/

T-T',F)} (A.7) 
^FP'T 

Appendix 2 : Solution of the linear problem 

Starting from eq. (12), the neutral stability problem (ak-0) can be written as 

(P2-k2)V%-iIp! 

(D2-k2)W°k-Dp°k 

DWH + ik.V^ SjiUl) =X-M)-MakMI(U%) 

{D2-k2)T°k+W°k 

DV% + ikMaJ? rk k£k z=0 

= 0 (A.8) 

The solution of this problem which belongs to E (i.e. which satisfies boundary conditions (2) 
and (3)) reads 

vi- 

v°- yrk 

wt 

Pk 

,kz 

-4ik(k+Bi)(\+kz) 

-4k2(k+Bi)z 

-8k2(k+Bi) 

1 - (k+Bi)z + k(k+Bi)z2 

(A.9) 

where k = \k\ , and the normalisation condition has been chosen such that Tk (z=0) = 1. The 
compatibility condition leads to the neutral stability relation Mak=8 k (k+Bi). 
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(A. 10) 

We can now define adjoint vectors 

w* 
p* 
T* 

X* 
belonging to a set E* of adjoint boundary conditions to be defined later on. 

A scalar product is introduced in the usual way (f.ex. [14,24]) by 

-oo 

where S1, i=l,..,5 are the components of (A.8), and the overbar denotes the complex 

conjugate. We also define the adjoint operator Sj of Sj by 

(v^SjiU)) =(sj(V),u) 

for all U belonging to E and V to E*. Integration by parts leads to 

(D2-k2)V* -ikp 

(A. 12) 

Sj(V*) = 
(D2-k2)W* -Dp* +T* (A13) 

DW* + i"k.V* 

(D2-k2)T* 

and the cancellation of the boundary term gives E* as the set of sufficiently derivable 
functions satisfying 

V*, W*,DT*,p*^0     forz^-°° <A-14) 

W*  = DV*  = X* +V* = DT* +BiT* +iMakI.X* = 0    for z=0    (A15) 

The resolution of the adjoint problem Sj (Vj) = 0 (with Vj   6 E*) gives 

ikk-2{\ -kz-k2z2) 

T  T   * ~"' K € 

1   ~ 4(2k+Bi) 

z(l -kz) 

-4(1 +kz) 

-8k 

-ilk'2 

(A. 16) 

where the normalisation (v~ ,QJ(UJ)) = 1 has been adopted. 
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Finally, the eigenfunctions of the spectral problem (12) read 

"l = 
Pi 

n 

-4k2(k+Bi) 

ikk -2ekz(l+kz) 

zekz 

2ekz 

ekz(2 
o2    a 

2ke^+k2)"lz(    X 

k2Ma ^ 

(A. 17) 

where the corresponding eigenvalue a is solution of the dispersion relation (13). Note that 
the derivation of (A. 17) assumes a+k2>0 (which is verified provided that k<Ma/2 Bi, as 
seen from eq. (13)). Otherwise, when o+k^KO, imaginary roots are obtained from the 
characteristic relation, and lead to a continuum of solutions bounded at z-^-oo, but which do 
not satisfy boundary conditions (2). 

Appendix 3 : Calculation of the mean temperature profile 

For the roll mode Aj = afflb (k- k0) + afflö (k + k0) (see end of section III.3), the k=0 
Fourier component of the perturbation vector is found from (A.5) as 

U°0=2\al\
2U0

D
1(z) (A-18) 

where, according to (A.6), u£(z) is the solution of the inhomogeneous problem 

ZoiUfo = N^tftfO (A-19) 

since Mk=0=0, and the resonant part of Nh_j is zero, as Z]0=0 from (A.3). Here again, the 

subscripts refer to the mode number (1 for k0, -1 for -k0). It is computed that the only non- 

zero component of u£(z) is T£(Z), solution of 

D2T0°  = <Z5r?, + V^.-ilj0^ = D(W?T?) (A-19) 

where the neutral stability functions are given by (A.9). Then, the solution belonging to E 
is 

T» = (5Bi2 + 12k0Bi +7£0
2)(e2*°z(-L -z) - -L) + (Bi+k0)

2k0e
u°zz2(5 -2k0z) (A.20) 

2k, 2k, 

The cubic coefficient Zm can then be computed from (A.7) as 

-in 
0    TTDN 

= -(VC ,N.JU?,UoV 
r    *     0,   o £0

2(B/+£n)
2(3£/+5£n) 

J 2(Bi+2k0) 
(A.21) 

A slightly longer but similar computation leads to the expression of the second cubic 

coefficient Z°m, and then finally to eq. (20). Equation (27) is also obtained in this way, but 
by using eigenfunctions (A. 17) instead of the neutral stability functions (A.9). 
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IV. NUMERICAL RESULTS 

IV. 1. Description of the method 

In this section, a full numerical simulation of the nonlinear equations is presented. Details 
on the method are reported in [1], such that we only present here the principles of the 
numerical scheme. The two-dimensional geometry used for calculations is represented on 
figure 1. We will assume insulating and "slippery" lateral walls at x=0 and x=L (where L 
is the aspect ratio of the container), which have already been used to model real rigid walls 
[2]. This is equivalent to the periodic boundary conditions used in section III. Here, we will 
consider a bottom plate at z=0, which is rigid and heat conducting. The free surface at z=l 
is assumed undeformable and insulating (Bi=0). 

The liquid layer is submitted to a linear 
temperature profile, and the evolution of 
perturbations of this reference state is 
studied. The dimensionless equations we 
consider are 

V.V - 0 (4-1) 

. z=i  :   fraa 
undefornable 
Harangoril condition 

DV = Pr(AV - Vp + RaTl7)      (4-2) 

(4.3)     0 

Dt 

DT 

x=0 and *=L atraaa fraa 
iindafornabl« 
Insulating 

Ar + v.i- 
Dt 

^ rigid 
haat conducting 

L X 

where DIDt is the convective derivative Figure 4.1 : Geometry of the studied system. 
DIDt = 81 dt + (V.V) and   V = (U,W), T 
and p are respectively the deviations of velocity, temperature and hydrodynamic pressure 
around the mechanical equilibrium state (see section II). A thermal time scale h2//c is used 
as in the previous sections (h is the depth of the liquid layer). 

Note that the Rayleigh effect, i.e. the buoyancy forces induced by density variations with 
temperature, have been included as the last term of eq. (4.2). The dimensionless number 
quantifying the importance of these forces on the stability of the diffusive state is the 
Rayleigh number Ra=gaßh4/vK (g is the gravity acceleration, a the thermal expansion 
coefficient, ß the imposed thermal gradient, v the kinematic viscosity and K the thermal 
diffusivity). 

The boundary conditions are derived from figure 1 

W = dW/dz = T = 0 at   z=0 

W = dT/dz = 0 
d2W/dz2 -Mad2T/dx2 = 0   at z=l 

U = dT/dx =0     at   x=0,L 

(4.4) 

(4.5) 

(4.6) 
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where the usual notations are used. 

The Galerkin method consists in first expanding the unknown quantities in series of functions 
of x and z with time-dependent coefficients : 

W(x,z,t) = £ AJt)wJx,z) 
(4.7) 

T(x,z,t) = £ Bmn(t)6Jx,z) 
m,n 

We choose the basis functions wmn and 8mn in order to satisfy the boundary conditions (4-6). 
Then the developments are introduced in equations 2 and 3, which are then projected on the 
basis functions. The discretisation of the problem is accomplished by truncating the 
expansions (7) to a finite number of terms. The obtained system is of the following form 

dA_ 

dt 
dBmn mn 

~dT 

FuMv Aj) 

F2mM, Aj) 

(4.8) 

and is well suited for computer resolution. The choice of wmn and Bmn is detailed in [1]. We 
just mention here that trigonometrical functions are used for the horizontal dependency : i.e. 
wmn=cos(mk0x)Wn(z), 6mn=cos(mk0x)Tn(z), which satisfies lateral (periodic) boundary 
conditions at x=0 and x=L=7r/ko. The choice of vertical functions is more delicate, due to 
the complexity of boundary conditions at z=0 and z = l. The computer simulation uses a 
Runge-Kutta method of order 4, with adaptative stepsize control for numerical integration 
given some initial conditions Amn(0), Bmn(0). We always chosen infinitesimal "white noise" 
A„J0) = Bmn(0) = IQ6. 

IV.2. Finite-amplitude regimes of convection - behaviour at large Ma 

The following figures represent convective states obtained for various values of the 
Marangoni number Ma, the Rayleigh number Ra being in all cases equal to zero. We have 
considered four different values of the aspect ratio L of the box : 1.57, 0.785, 0.628 and 
0.524. As the lateral walls can be considered as periodic boundary conditions, these aspect 
ratios correspond respectively to values 2, 4, 5 and 6 of the wavenumber ko of the convective 
field (since one convective cell corresponds to one half of the period, the aspect ratio L and 
the wavenumber ko are related by ko = 7r/L). 

For large values of the wavenumber kg (small values of L), the convection cells are more 
concentrated near the interface, and consequently do not feel the presence of the lower rigid 
plate. Thus, for k^oo, the results obtained here should tend to the results obtained in the 
last section III, where the liquid layer was assumed infinitely deep (short wave effects). This 
provides a way to test the assumptions used in section III, which allowed to obtain analytical 
results. This will be done in section IV.3. 

For each simulation, the following data (steady state) are presented : 

- the streamline pattern (top left figure, the direction of circulation is clockwise) 
- the isotherms (top right figure, on which the dark zones indicate cold regions, while the 
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white zones indicate hot regions) 
- the mean temperature profile, i.e. the temperature field averaged over one horizontal period 
(middle left figure, where the abscissa is the vertical coordinate z, and the ordinate is the 
mean temperature) 
- the free surface temperature as a function of the horizontal coordinate x (middle right) 
- the free surface horizontal velocity as a function of the horizontal coordinate x (bottom left) 

For each figure, numerical values of typical convective quantities are also presented : these 
are 

- the increase of the mean surface temperature (averaged in the horizontal direction) due to 
convection. This convective quantity, denoted as delta, is a measure of the increase of the 
heat transport created by convection, as remarked in section III. For ko-*oo, it should 
correspond to the value of the bulk temperature decrease A of section III (see IV. 3). 
- the amplitude of the surface temperature variations (denoted by delta T), defined as the 
difference between temperature maxima and minima on the free surface. For ko-»oo, it should 
correspond to the value of ATsurf of the section III. 
- the value of the maximal surface velocity Vmax, together with the horizontal position x of 
this maximum. Again, for ko->oo, it should correspond with values of Vmax computed in 
section III. 

Also given on each figure are the Marangoni number Ma, the value of the wavenumber kg, 
the number Nmax of vertical functions, and the number Imax of horizontal trigonometric 
functions in the Galerkin expansions (4.7). 

For each value of ko, the Marangoni number is increased step by step until the point where 
numerical divergences occur. These divergences, due to the insufficient number of trial 
functions in the Galerkin expansion, manifest first in the curve of the free surface velocity 
(bottom left). This will also be apparent on the curves of the free surface maximal velocity 
presented in the section IV.3. However, some of these slightly diverged simulations are 
presented here, and it will be seen in the next section that the values obtained for other 
convective quantities may still be considered as satisfactory. 
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IV.3. Comparison of numerical with analytical results 

In order to compare results of sections III and IV, we first have to remark that the length 
scales used to put the problem under dimensionless form are different. In section III, we 
choosed an arbitrary length d to scale the problem, while in section IV, the depth h of the 
layer was choosed for this purpose. As the analytical results of section III were obtained for 
a value k=l of the dimensionless wavenumber (which means the dimensional value of this 
wavenumber is k*= 1/d), the corresponding value of the dimensionless wavenumber in section 
IV is k\h=h/d=ko (value given for each numerical simulation). 

The velocities were scaled by /c/h in section IV, and by KICL in section III. The dimensional 
value V* of the velocity being independent of the choice of units, we must have 
V*=Vd.K/d=Vh./c/h (where V and Vh stand for dimensionless values of the velocity obtained 
respectively in section III and IV). Thus, the transformation rule between dimensionless 
velocities is Vd=Vh/ko. Similarly, as the Marangoni number Ma is proportional to the square 
of the unit of length, we have the equivalence Mad=Mah/ko2. Finally, the unit of temperature 
being /3d (section III) or ßh (section IV), the temperature equivalence is Td=Th.k0. 

100   Ma 

Figure 4.2 : The increase of the mean surface temperature due to convection (in units of 
/3d=/3/k*), i.e. the bulk temperature decrease as a function of the Marangoni number. Plain 
curves : numerical results (the value of kg is indicated on each curve). Thick dashed curve: 
eq. 3.28, thin dashed curve : the limit of eq. 3.28 for Ma-^-oo, i.e. 8/3 = 2.66. A good 
agreement is obtained for k^00, as in this limit, the convection cells are localised near the 
interface (see previous figures), and the layer can effectively be assumed infinitely deep. 
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Figure 4.2 presents the values of the increase of the mean surface temperature "due to 
convection, expressed in units of section III (thus, values obtained in section III are 
unchanged, while numerical results of section IV have to be multiplied by ko : this gives 
delta.ko), as a function of the Marangoni number Ma=-aTßd2/ixK=-oTß/fiKk*2. The thick full 
curves correspond to numerical results of section IV, corresponding to the values 2,4,5, and 
6 of the wavenumber. The thick dashed line corresponds to the analytical formula (3.28) of 
section III for the bulk temperature decrease (which is equivalent to the free surface 
temperature increase), and the thin dashed horizontal line to the limit of this expression for 
Ma-^oo, i.e. 8/3 = 2.66 (as given by eq. 3.40). It is seen that all the numerical curves seem 
to present a saturation of the surface temperature increase when Ma-»oo, although 
calculations would be necessary at higher Marangoni numbers, but would require a much 
larger computational effort. Furthermore, the numerical curves approach the analytical ones 
when ko is increased, as expected from the discussion at the beginning of section IV.2. In 
fact, the analytical results obtained in section III appear to be quite reliable for computing 
this convective quantity in the limit ko-*00, which is a very satisfactory result taking into 
account the drastic assumptions underlying their derivation (mean-field approximation, 
limitation of amplitude equations to cubic terms and negligence of harmonics of the 
fundamental wavenumber). 

■     i—i- 

20 

15 

10- 

0 

3.6TJ&* 

2^^--^aV^c 

150 200 Ma 

Figure 4.3 : The maximal surface velocity (in units /c/d=/ck*) as a function of the Marangoni 
number Ma=-aTi8/jiiKk*2. Plain curves : numerical results (the value of lq, is indicated on each 
curve). Thick dashed curve : analytical (using 3.27), thin dashed curve : asymptotic 
behaviour for Ma->oo, i.e. 3.67 Ma1/3 (eq. 3.41). Again, a good agreement is obtained for 
ko-»oo, apart from numerical inaccuracies causing a divergence of the curves above Ma=40. 
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The behaviour of other convective quantities with Ma is represented on figs 4.3 (maximal 
surface velocity) and 4.4 (amplitude of surface temperature variations). It is seen that the 
agreement is also quite satisfactory, already for values of ko=4 and 5. 
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Figure 4.4 : The amplitude of the surface temperature variations (in units /3d=/3/k*) as a 
function of the Marangoni number Ma=-orß/pick*2. Plain curves : numerical results (the 
value of ko is indicated on each curve). Thick dashed curve : analytical result (using eq. 
3.27), thin dashed curve : asymptotic behaviour for Ma-»oo, i.e. 14.66 Ma"2/3 (eq. 3.42). 
Again, a good agreement is obtained for ko->oo, already for values of 1^=4 and 5. 
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IV.4. Conclusions of section IV 

In this section, a full numerical integration of the equations governing Marangoni-Benard 
convection in finite idealised boxes has been presented. Although the Galerkin formulation 
includes the effect of buoyancy, the value of the Rayleigh number as been considered as zero 
(microgravity, or layers with small depth). In this first analysis of the problem, the free 
surface Biot number has been set to zero. Extension to non-zero Biot number (e.g. due to 
evaporation) could be achieved in the future. 

The lateral walls of the layer have been assumed slippery (which means that the velocity 
tangential to the wall is not zero, as would be the case for real rigid walls), and insulating. 
This kind of walls, which have often been used in previous studies of the effect of lateral 
walls on nonlinear convection, are known to simplify the mathematical analysis of the 
problem. In particular, they are equivalent to periodic boundary conditions, thus allowing 
straightforward comparison with analytical results of section III. 

Numerical simulations have been presented for values of the wavenumber kg equal to 2,4,5, 
and 6 (corresponding respectively to values L=1.57, 0.785, 0.628 and 0.524 of the aspect 
ratio L=l/h of the box, where 1 and h are respectively the dimensional width and height of 
the box). For each value of k^, the Marangoni number is increased step by step. For each 
step, the following results are presented for the steady convective state reached after transient 
have been damped out: the streamline pattern, the isotherms, the mean temperature profile, 
the free surface temperature, and the free surface horizontal velocity. Numerical values of 
typical convective quantities are also presented : these are the increase of the mean surface 
temperature due to convection (which is equivalent to the bulk temperature decrease A of 
section III, and measures the enhancement of heat transfer due to convection), the amplitude 
of the surface temperature variations, the value of the maximal surface velocity, together 
with the horizontal position of this maximum. 

The results show that the enhancement of heat transfer due to Marangoni convection presents 
a saturation behaviour when the Marangoni number is increased. The free surface velocities 
grow continuously with Ma, and the amplitude of the surface temperature variations 
(difference between hot and cold spots on the free surface) first grows and then decreases 
when Ma is increased. For ko->oo, it is seen that numerical results compare very well with 
analytical results obtained via the amplitude equations analysis of section III, despite the 
drastic assumptions making its realisation possible. This is a proof of the validity of these 
approximations for studying Marangoni-Benard convection far from the instability threshold. 
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V. GENERAL CONCLUSIONS 

In the first part of this work, we first computed the rate of evaporation of a liquid layer lying 
on a heated rigid plate at constant temperature Tb, the free surface of which being in contact 
with a gas phase at constant pressure pg. Evaporation is modelled taking into account 
deviations from equilibrium (existence of a chemical potential difference on both sides of the 
free surface, revealing a deviation of the state of the interface from the Clausius-Clapeyron 
coexistence curve), which may occur for example in the presence of small quantities of 
impurities, imperfect gases, ... resulting in low values of the accommodation coefficient 
appearing in the Hertz-Knudsen law (equivalently, low values of the phenomenological 
coefficient K appearing in our formulation of the problem). This first analysis resulted in the 
determination of a particular solution (the basic state) of the full system of conservation 
equations (mass, momentum and energy) describing the problem. A graphical determination 
of the evaporative mass flux J was proposed, together with an analytical formula, valid 
provided the energy flux (proportional to the mass flux) is not too large (of the order of some 
Watts/cm2 for a 1mm depth of water). 

In a second stage, we determined the conditions under which such a basic state is stable 
against hydrodynamic fluctuations, allowing the surface tension of the liquid to depend on 
temperature. Indeed, evaporation at the free surface creates a temperature gradient inside the 
liquid layer near the interface, such that this situation can become unstable above a certain 
value of this gradient. In the limit of small liquid Peclet numbers (relatively small 
evaporative mass fluxes), the temperature profile is linear in the liquid phase. If furthermore 
the Crispation number is small (and the Galileo number is large), the surface deformation can 
be neglected, and the stability problem is shown to reduce to the classical Pearson's 
problem. The critical value of the Marangoni number Ma (proportional to the value of the 
mass flux and to the surface tension variation with temperature) is determined as a function 
of the Biot number, characterising the effective heat transfer through the free surface, and 
function of the evaporation parameters. In particular, it can be computed that this number 
can be as large as 103 for typical liquids as water. However, this value can be reduced by 
one or two order of magnitudes by the presence of unavoidable impurities on the free 
surface, reducing the values of the accommodation coefficient (in the Hertz-Knudsen 
relation), and accentuating the deviation from the equilibrium limit. The critical Marangoni 
number is found to increase with the Biot number, thus revealing a stabilising influence of 
evaporation. 

A nonlinear analysis of the convection problem was then undertaken in section III, in order 
to determine the enhancement of heat transfer created by convection, when the threshold of 
stability is exceeded. This analysis is based on the assumptions that the dynamics of 
convection can be described by the interactions of the unstable eigenmodes of the problem, 
that the layer can be assumed infinitely deep (this is not contradictory with the assumption 
of a small Peclet number, provided that attention is restricted to short wave effects, localised 
near the free surface), and that the Prandtl number of the liquid can be assumed infinite. It 
was found that thermocapillary convection results in a decrease of the bulk temperature (or 
equivalently in an increase of the free surface temperature), such that the injected thermal 
energy is transported under a smaller temperature difference, due to the additional heat 
transport created by convection. The value of this bulk temperature decrease was found to 
increase with the Marangoni number, and shown to present a saturation behaviour when the 
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Marangoni number tends to infinity. Analytical formulas were obtained, as a function of the 
Biot number. Other convective quantities have also been computed (the maximal surface 
velocity, behaving as Ma1/3 for Ma-^oo, and the amplitude of surface temperature variations, 
decreasing as Ma~2/3 in the same limit). Results were also obtained concerning the nonlinear 
competition between unstable modes : in particular, the wavelength selection problem has 
been investigated on the basis of a numerical transient integration of the system of amplitude 
equations. It was shown that in a first stage, convection always develops from infinitesimal 
perturbations under the form of convective structures having horizontal wavelengths 
determined by the fastest growing perturbations (wavenumbers proportional to Ma1/2 for large 
Ma). When these perturbations become sufficiently large, convective cells begin to coalesce, 
and to form larger and larger wavelength structures. This process becomes slower and 
slower, due to the increasing inertia of the fluid to set in motion, and finally stabilises when 
the size of convection cells becomes comparable to the size of the vessel containing the 
experiment. The bulk temperature decrease is found to increase continuously during this 
process, thus indicating the general tendency of natural convection to increase the heat 
transfer. Other results were obtained about the competition between roll and hexagonal 
structures. It was shown that the hexagonal structures are generally preferred for moderate 
Marangoni numbers, while rolls stabilise for very large Marangoni numbers. This confirms 
earlier results qualitatively, even if the method (and the quantitative results) are significantly 
different. 

Finally, a full two-dimensional numerical simulation of the problem was performed, by the 
use of a Galerkin method. This allowed to incorporate the effect of a finite depth of liquid 
(lower rigid plate). Results were obtained for various aspect ratios of the convective cells by 
varying the aspect ratio of the simulation domain. In particular, a very satisfactory 
(quantitative) agreement has been obtained with analytical results obtained via the amplitude 
equations analysis, when the aspect ratio (width/depth) tends to zero, in which case the 
convective perturbations are effectively located near the interface, and do not perceive the 
presence of an horizontal rigid bottom plate. This rather good concordance is a proof of the 
legitimacy of the above-mentioned assumptions, which should thus be helpful for further 
studies of Marangoni-Benard convection heat transfer characteristics. 
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