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I. Introduction 

Problems of hypervelocity impact attract attention of 
scientists during the last thirty years and occupy a significant 
part in scientific literature. The urgency of investigations of 
these problems follows from the practice. It concerns, for 
example, evaluation of effectiveness of spacecraft debris 
shields, analysis of asteroid impact events, problems of atomic 
power stations safety and so on. From the other side the 
possibility of numerical simulations of these phenomena becomes 
real owing to progress in theoretical and experimental high 
pressure high temperature physics. The success of numerical 
simulation of hypervelocity impact depends on two factors: 
physical model (including mechanical, kinetic,thermodynamic, 
etc. properties of matter) and numerical methods for integration 
of governing equations. The second, part of the problem will be 
discussed below. As to the first^one, the review of various 
substances models is given, for example, in [1, 2]. 

The most widespread numerical methods for hypervelocity 
impact (HVI) simulation are based on langrangian and particle 
techniques [ 3-7 3. Huge experience has been stored up to now in 
this area. It becomes clear, that the main drawback of 
Lagrangian codes is the restriction on deformations of- flow and 
that of for the PIC codes is the necessity of keeping of 
"superfluous" information about flow parameters in additional 
numerical grid cells into which substance can get. Of course, 
these difficulties are algorithmic and can be overcome by some 
additional measures. For example, a usual procedure for 
Lagrangian techniques is reinterpolation of flow parameters 
into a new grid, when the grid deformations become large [8]. As 
to Eulerian techniques, one can mention about tracking methods- 
[91, that are used to increase the accuracy of calculations near 
matter-vacuum and contact boundaries and to restrict the domain 
of computations. Unfortunately Eulerian codes have .one more 
disadvantage associated with mass dispersion problems, that 
makes it difficult to calculate debris cloud evolution. The are 
several ways to decrease this dispersion. For example in [101 
both the projectile and the shield were proposed to have nonzero 
initial velocities moving towards each other to minimize 



advection .öf materials between cells in the Eulerian mesh. In 
order to decrease dispersion in Eulerian computations high-order 
accurate advection schemes also were used [11, 12]. 

As both pure Lagrangian and Eulerian codes have their own 
drawbacks, it is naturally to develop arbitrary Lagrange-Euler 
(ALE) codes combining the advantages of these approaches. 
Following this idea, numerical simulation of penetration of a 
hypervelocity projectile through multi-plate shield was done 
[13] using two codes: one for computing of penetration stage 
(Eulerian) and another (Lagrangian) for debris cloud transport 
calculation. In recent years, some algorithms of computation 
of real matter dynamics (including elasto-plastic and damaged 
matter ) developed previously only for Lagrangian frame have 
been extended to the Eulerian frame of reference [12, 14, 15]. 
This opens new possibilities for HVI simulations using more 
flexible ALE codes. 

In the present work we used Godunov's scheme for 
computations [16]. Godunov's method in moving grids provides 
great possibilities and includes both Lagrangian and Eulerian 
approaches as partial cases. It should be marked that this 
scheme has been intensively explored for simulations of 
aerodynamics problems, where high accuracy of calculations is 
necessary. 

In 1968 S.K.Godunov, A.V.Zabrodin and G.P.Prokopov [17] 
formulated a programmatic approach to numerical integration of 
nonsteady Euler equations on moving grids. During several years 
the authors of this report have being working on realization of 
this approach. Results of this activity are resented below. 
For simplicity the consideration is given for the Euler 
equations omitting of strength effects. Applications of this 
approach to the problems of high velocity impact illustrate 
possibilities of 2D code developed. As distinct from the most- 
illustrations of possibilities of this method given in [17], the 
problems of hypervelocity impact are characterized by strong 
deformations of matter and wide range of matter state 
parameters: from initially shock-compressed or strongly heated 
condensed state to finally expanding gaseous or spalled 
substance. Large variations of density lead to an enormous 
increase of geometrical sizes of computed fields occupied by 
the substance. Contacts separating the substance from vacuum are 



the physical boundaries of computational region. Therefore the 
choice of Lagrangian meshes seems to be a preferable strategy 
for simulations of this class of problems. Unfortunately 
Lagrangian meshes crash, when the deformations become large, 
because the cells deform, twist and finally get tangled. The 
first factor leads to great restrictions on calculation time 
step and the second makes further calculations impossible. As to 
the Eulerian grid the marked above uncertainty in computational 
region leads to the necessity of keeping additional grid sells 
and to corresponding increase of computational time. The other 
problem of Eulerian techniques is the problem of contacts 
between substances. 

Methods based on the use of computational regions with 
moving boundaries and generation inside of these regions of 
grids connected only with the boundaries seems to unify 
the advantages of Eulerian and Lagrangian meshes allowing to 
overcome their drawbacks. In the most examples given below the 
emphasis is placed on demonstration of possibilities of 
application of moving grids for treating the flows with strong 
deformations. Thus, for example, simulations of impact problems 
presented in this report have been performed on moving grids 
with fitting all contacts between different media including the 
boundaries with vacuum. During the process of interaction the 
structure and configuration of boundaries change: segments of 
contacts can disappear,for example because of rebound, and new 
segments can originate due to involving of new bodies into the 
process of Interaction. The flow region under consideration can 
be subdivided into several subregions. Boundaries of subregions 
can be both as original flow singularities (characteristics, 
boundary between substance and vacuum, the contact boundary 
between two substances, the axis (plane) of symmetry, the shock 
wave) and so moving in accordance with their physical nature.- 
They can be also inserted for some computational reasons. 

As it was mentioned above, the basic attention is paid to 
computational aspects of simulation. Nevertheless, the algorithm 
developed makes it possible using of different physical models 
in the frame of Godunov's scheme. It concerns, for example, the 
Riemann problem solver, designed for the case of arbitrary EOS. 
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II. Physical model 

Governing Equations 

One fluid one temperature hydrodynamic model Is used In 
simulations. Governing Euler equations are written in the form 
of conservation laws of mass, momentum, energy and porous 
volume, what is necessary for Godunov's method. The conservative 
form of the motion equations allows to describe both as 
continuous and so discontinues flows. 

+ vpu =0, 

g§H +vpu x u= _vp(1_Vp), 
J|^ + vpuh= -vpu(1-Vp) (2.1) 

gfp + vpuVp= pcj). 

Here p- density, u- mass velop'dty, h-total specific energy, 
p- pressure, . V - porous volume per unit volume, ty- porous 
growth rate. For (p we use semiempirical spall damage kinetic 
built on the base of free surface motion registration [1]. 
Nevertheless this model of spall fracture is valid only for 
small (up to several percents) porosity. When the porosity of 
matter becomes greater then some value, the substance' does not 
resist to expansion. In this case the volume occupied by the 
solid component are not changed anymore and the porosity grows 
with the increase of specific volume of matter. 

Equations of state 

Semiempirical wide-range equations of state (EOS) are used 
[1.8] to determine the pressure, the temperature and the sound ' 
velocity as functions of internal energy per unit mass e and 
the density of solid component po connected with density p as 
po=p/(I-V ). These equations are built on the base of 
available Hugoniot data and provide for correct asymptotes in 
the cases of extremely high energies and small densities. 



III. Algorithm of computations 

1. Scheme of integration on the moving grid 

Eqs.(2.1) are integrated on the moving grid by Godunov's 
procedure [19]. The scheme of the algorithm is shown in Fig. 1. 
In comparison with the traditional one ([17]) this algorithm 
enables a possibility of the numerical region division into many 
subregions with independent grid generation in every subregion. 
An important problem which should be solved by that is 
interaction between the boundaries belonged to different 
subregions. 

2. Movement of boundaries 

The first step of the algorithm is the displacement of 
subregion's boundaries. The boundary of each subregion is 
represented as a coordinate arra$- of nodes. Any boundary 
between adjacent subregions represents a unification of nodes 
belonging to boundaries of these subregions. The coordinates of 
nodes are also stored in special arrays establishing the 
sequence of nodes. Nodes corresponding to the beginning and to 
the end of different segments of boundaries are also marked. It 
means that each boundary segment is represented as a sequence of 
points belonging to the boundaries of different subregions and 
that of special end-points of boundaries. The total number of 
nodes representing boundary exceeds, generally speaking, the 
number of cells being in contact from the side of adjacent 
subregions. 

To determine velocity of a boundary rib, . the Riemann 
problem with flow parameters from adjacent cells being in 
contact along every link is solved. In case the Riemann solver- 
yields a negative pressure a rebound along the link is supposed 
to be happened. This fact is taken into account by inserting 
some new special boundary points in the array. In more complex 
physical model the coupling force can be prescribed to the 
contact and a rebound can be inserted when the tense strengths 
exceeds the value of this force. 



Initial data input 

Riemann problem solution along the boundaries 

Displacement of    boundaries 

Interaction of the boundaries belonged to different 

subregions, changing the types of the boundaries ribs 

3 times 

Grid generation in subregions 

Correction of the boundary nodes location 

-k- 
Determination of  fluxes through the boundaries 

Riemann problem solution for inner cells, flow parameters 

calculation for upper time level 

Time step determination 

Fig.1 Block-scheme of the algorithm 



The velocities of nodes can be calculated after solving of 
Riemann problem at the rib connecting the nodes. In the 
Godunov's method the flow parameters; velocity, density,energy 
are.assumed to be uniform inside the meshes. For example, one 
should take flow parameters from the meshes A and1 B to calculate 
velocity U and so from the meshes A and C to calculate velocity 
U , see fig.2 There may be different ways of nodes velocities 
interpolation. The linear interpolation proposed by Godunov 
[17] gives the formula 

u 1 ^u 1 
12+21 

u=   ( 3.1 ) 
1 +1 

1   2 

How it's seen from (3.1) the shorter the rib is, the more 
contribution gives it in the node velocity. (For example, if 
l >>i2 then u = u2) From another .fpoint of view, if we want to 
minimize the middle-square deviation between the boundary 
displacement obtained from the Riemann problem solution, when 
every rib moves with an appropriate "big" velocity, and the 
boundary displacement determined by the nodes movement one 
should use the following formula (how it has been shown in 
[20]) 

U 1  .11 1 
*      11+22 

u =   (3.2) 
1 +1 

1   2 

In present algorithm We use an average way of interpolation 
between (3.1 ) and (3.2 ) , which leads to a simple formula 

u=0.5*(u +V)=0.5'*(ui+u2) (3.3 ) 

The formula (3.3) combines the advantage of (3.3) with 
simplicity. 
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RE G I ON 1 

Fig.2 Boundary between the different subregions (solid line) 
U , U -"big" velocities obtained from the Riemann 
12       '-' 

problem solution between the meshes A (region 1) and B 
(region 2) and so A and C, 1 
the ribs 

!, - 
the lengths of 

3. Boundary's type checking 

Using of moving grid makes it much more easier setting of 
boundary condition in comparison with Elerian grid. In 
accordance with the boundary condition some type of boundary has 
been assigned to every rib belonged to the boundary. There are- 
five boundary types that have been considered: "free boundary" 
(boundary with vacuum), "contact" (boundary with another 
matter), "axes" (axes of symmetry), "hard wall" and so called 
"special boundary" through which a matter can flow. I^'s clear, 
that the type of the boundary can be changed from one time step 
to another. Therefore a procedure checking the boundary type at 
each time step has been developed. 



4. Nodes distribution along the boundary and grid 
generation technique 

Experience of the numerical simulation on the moving grid 
shows that some procedure of the nodes distribution along the 
boundary is required to generate a good grid inside of the 
region. Interpolation of the boundary plays an important role 
for displacement of nodes along the boundary. How it has been 
noticed [19], the sharp angels of the boundary are smoothed 
from one time step to another, when the nodes move along the 
straight lines connecting them. To prevent this smoothing on the 
boundary, we approximate it by arcs linking the boundary nodes. 

In the case of strong deformations of numerical region the 
law of nodes distribution along the boundary influences in a 
great power on the grid generated inside the region. Previously 
[20] the law of the nodes distribution along the boundary was 
chosen anytime in accordance with the specifics of the problem 
to be solved. Such a way required,'^t least several attempts to 
find the appropriate law of nodes distribution for problem 
considered. 

c 

v 

Fig.3 The scheme of the grid mapping 



In this version of moving grid code a procedure of boundary 
node location correction is proposed, which allows to generate 
orthogonal grids in subregions. For this purpose, boundary nodes 
are displaced along the boundary at any time step to ensure 
orthogonality between the boundary and correspondent inner grid 
line. Nodes shut is limited by settled maximum ratio between 
adjacent the node rib's lengths. In our calculations the 
maximum ratio was 1.1. In order to not distort the shape of 
numerical region during nodes distribution the node is shifted 
along smooth curve line which approximates the boundary. The 
curvature of the line is changed from node to node using 
line interpolation formula for curvature radius. After nodes 
displacement new grid is generated in subregions. 

Grid generation algorithm is based on a univalent mapping 
of a rectangular region at a parametric plane (£,n) onto a 
subregion under consideration at physical plane (x,y) of flow. 
The problem can be formulated mathematically in a following way. 
The flow region at plane (x,y) is considered to be a curvilinear 
quadrangle with tops A, B, C, D (fig.3). The univalent mapping 
of this quadrangle onto the rectangular A',B',C,D' is 
determined by solution of a system of elliptical equations 

.^xx+^r°     ^xx+V=0 (3'4) 

It can be easily proved that this mapping is univalent, 
for example considering the principle of maximum of harmonic 
function. In reality, to solve the system of equations 
relative to x, y as independent variable parameters is more 
convenient 

a x^ - 2b x^ + g x^ =0   (3.5) 
ay^ - 2by^ + g y^ =0 

a = x^ + y *    b = x^ + y^ 

using the following boundary conditions: 
x(0=x(e,T]1)    y(ü=y(e,T)1) 
x(T))=x(£d,Ti)    y(T))=y(£d,T)) 
x(£)=x(£,r)r)    y(£)=y(£sT)r) 
x(T))=x(gu,T))    y(T))=y(£u,Tp 

where 

g : ■ x| + n 

at AB  1 :3.§) 
at BC 
at CD 
at DA 



ed < i < eu   \ < Ti < T]r 

The transition to discrete analog of boundary conditions for 
this system of quasilinear elliptical equations can be 
performed easily. If the the grid nodes are given 

^=1 1=1,...,n (3.T) 

.T).j=3 3=1,...,m 
then the boundary conditions are (3.8) 

x(i)=x(i,1) y(i)=y(i,1) at AB 
x(J)=x(1,3) y(J)=y(l,d) at BC 
x(i)=x(i,m) y(i)=y(i,m) at CD 
x(3)=x(n,3)    y(3)=y(n,3)  at DA 

Different algorithms have been proposed in [IT] for 
solving this problem. Iterations considered to be the most 
efficient algorithm. We modified this algorithm treating 
solution of corresponding equations_ as a result of relaxation 
of solutions of nonsteady equations. For this purpose "non- 
steady" terms dx/dt and dy/dt are'inserted into the right sides 
of equations for x and y correspondingly [21]. The resulted 
parabolic system is solved by the method of variable directions 
At the first half time step terms containing derivatives over h 
are considered to be given. At the second half time step 
derivatives over x are taken from calculations at ' the first 
stage. The problem at the each stage is similar to the 
one-dimensional heat transport problem. This consideration is 
similar to iterations, but as any relaxation method it provides 
more possibilities for the choice of "time-step" or, what is the 
same, of relaxation parameter. In particular, it can be changed 
from one grid node to another to accelerate the convergence of 
the method. The proposed algorithm has demonstrated its 
reliability. Nevertheless it fails for boundaries of a. 
complex configurations. In order to overcome problems associated 
with a grid generation the algorithm foresees the possibility of 
subdividing the flow region into subregions with reasonably 
regular boundaries. 



5. Riemann problem solution and   flow parameters 
recalculation for next time level 

The basic point of numerical integration of governing 
equations is the Riemann problem, which is not self similar if 
any kinetics phenomena is considered (for example, stress 
relaxation or microporous growth). In the model used the porous 
growth is also included into consideration. Therefore we take it 
to be "frozen" when the time of the fracture kinetics tk is 
much more than the time step At and on the contrary. Hugoniot 
adiabates and isoentrops for solid matter are taken for solving 
Riemann problem in the first case and those for porous matter 
are used in the second case. Thlsrapproach has been previously 
used [22] in calculations of visco-elastic flows by Godunovs 
method. 

•.* 

UG 
PG 

contact 

. EG ■ BG 

I   mesh boundary 

i        / right wave 

Fig.4 Discontinuity decay: 1 and 2 designate undisturbed 
regions, 1' and 2/ - regions behind the wayes, 
dashed line - contact discontinuity 



PG 

U 
US 

Fig.5 U-P plane. Points 1 and 2 designate initial How 
parameters from the lefty.and from the right side 
of the rib. U means the'normal to rib velocity. 

Unlike the perfect gas, in the case of an arbitrary EOS 
the Riemann problem can't be solved exactly by iteration scheme 
without numerous EOS evaluations. One should mention here about 
some approximate Riemann solvers [23,24] that can be useful also 
for the problems considered. Initial flow discontinuity decays 
into the contact discontinuity, the left wave and the right 
wave, those may be the shock wave or rarefaction wave depending 
on the initial parameters (see Fig.4). The mass velocities and 
the pressures behind the right wave (2-2') are equal those 
behind the left wave (1-1'). These so called "big parameters" 
(PG and UG) can be determined as intersection of left and right 
wave velocities functions in U-P plane (Fig.5 ). 

Densities and energies in the regions r and 2' can be 
calculated if velocity UG and pressure PG are known. Velocity 
functions FL and FR are built using a real equation of state. To 
build the simple wave velocity function (2'-2) sound velocity as 
a function of pressure and density is sufficient. In the case of 
the shock wave (1-1') the energy as a function of pressure and 
density is necessary. In order to calculate the fluxes of mass, 
energy, porous volume and momentum the rib velocity has to be 



known. Then, the fluxes can be determined choosing the How 
parameter from the region where the rib velocity is located 
(region 2' in the case shown in Fig.4 ). The velocity of the rib 
v can be determined if the locations of the rib at the 
neighboring time levels are known (see Fig.6). Generally 
speaking, the surface covered by the rib during it's movement is 
not the plane. For simplicity we replace it by the plane 
following the way proposed by Godunov [17]. In accordance with 
this method the normal component of the rib velocity is 
calculated as 

abb' a' 

v= 
t+At/2 

(3.9) 
ab 

Here A - is the area covered by the rib ab during the time 
step At in the plane XY, Lab-the length of the rib at the time 
t+At/2. 

>A 

, t=t0 +At 

Fig.6 Determination of rib velocity 



6. Conclusion remark 

Naturally the description of the algorithm given above Is 
at least schematic and except of some modifications and details 
represents only the Interpretation of ideas [171. However we 
considered the program approach as being already given and the 
main problem Is to put It Into practice for specific problems of 
physics. On this way one can face with a lot of concrete 
problems of various extent of complexity: mathematical, 
physical, algorithmic. One of the most Important points Is an 
experience of working with given complex of program. We are sure 
that the difficulties connected with realization of the approach 
will be rewarded by Its huge possibilities. The method allows at 
least in principle to fit flow singularities : shocks , 
contacts, characteristics. From this point of view the method 
unifies main advantages of characteristics methods with the 
advantages of uniform computational schemes. A promising future 
we see In Integration of this method with analytical methods of 
gas dynamics. This method provides a possibility to determine 
dependence and influence domains and to perform calculations at 
this minimal domains area. From this point of view it can be 
called economic. 

Last years are being marked by the intense activity in 
developing of high order accuracy modifications of Godunov's 
methods. Review of these methods can be found for example in 
[25]. These modifications as a rule can easily be included into 
•the body of the original Godunov's algorithm. Modifications 
concern the Riemann problem procedure and formulae for 
recalculation of flow parameters for the new time step. 
Development of high order resolution schemes in moving grids 
fitting flow singularities is of great importance [263. They will 
be considered more detaily in the next report. 



IV. Demonstrative examples. 

1. TEST Jfe 1: impact of a plane aluminum plate onto a 
semiinfinite aluminum target 

The simplest test problem for 2D code Is an Impact of a 
plane projectile on a semiinfinite target. In this case the 
problem becomes to be one-dimensional and if Hugoniot adiabates 
of materials are known the pressure and the shock velocity can 
be easily calculated. The time when rarefaction wave from the 
back side of the projectile reaches the shock front can be also 
determined. Results of a plane aluminum- on- aluminum impact 
with 8 km/s velocity are shown in Fig. 7-8. Region of 
computations consists of two subregions corresponding to the 
target and the impactor. Left boundary of the target moves 
initially with a characteristic velocity (sound speed) inside 
aluminum target. Then shock from contact reaches this boundary 
and it becomes moving as shock discontinuity (see fig. 8). This 
transition from sound to shock regime of boundary movement is 
automatic because the velocity of the boundary is obtain from 
Riemann problem solution algorithm. As it can be easily proved, 
numerical result is agreed well with the analytical calculation 
of the shock pressure and velocity. 

2. TEST )l° 2:  influence of the grid refinement on the 
results of numerical simulation of penetration 
proolems 

Calculation with different levels of accuracy were 
performed for aluminum sphere of 1 cm diameter penetrating 
aluminum plate of 2 mm thickness at 10.1 km/s. Numerical grids, 
and levels of constant pressure corresponding the time moment of 
710 ns are shown in fig.9-11. In the case presented in fig. 11 
accuracy was two times more than that in the fig. 10 and four 
times more than in the fig.9. It is seen that the higher the 
accuracy, the better is shock front resolution in the 
projectile. More fine grid allows also to resolve the low 
density vaporized matter blowing off the target during impact. 
At the following stage of penetration shown in fig. 12-13 fine 



grid gives less thickness of the target's substance 
surrounded debris of the projectile. And of course as a 
consequence of higher pressure there is a higher expansion 
velocity of debris cloud in this case. 

3. Interaction of spherical projectile with two layered 
aluminum target 

Result of computation of spherical aluminum projectile 
interaction with a spaced two layered aluminum target is 
presented in fig.14. Impact velocity for the problem considered 
is 8 km/s. One should note that not more than 1000 meshes is 
used in this computation. The number of meshes grows during 
computation to ensure some fixed level of accuracy. Criteria for 
grid refinement is not pure geometric. When pressure gradient 
and density of matter decrease some coalescence of meshes takes 
place. , 

Using moving grids demonstrates a substantial economy of 
reserved computer memory in comparison with a fixed eulerian 
grid. One can calculate that about 30 000 - 40 000 meshes is 
required to perform computation of this problem using eulerian 
grid with the same accuracy. 

4. Hypervelocity impact of iron projectile on a target 
with a conical hole 

This example demonstrates possibilities of moving grid 
adaptations to region's form in the case of strong deformations. 
In the beginning of interaction shock pressure of about 0.5 Mbar 
is generated in PMMA disk, while pressures in iron target reach 
about 2 Mbar. Then two jets of liquid PMMA are formed moving 
along the walls of conical channel (fig. 16). Collision of the- 
jets on the axis leads to cumulation effect. Pressure behind the 
projectile reaches to 2 Mbar (fig.17). After impacting with the 
iron projectile these jets breach between the projectile and the 
walls of the channel accelerating projectile (fig.18).^ 
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Introduction 

In this report we present applications of previously described moving grid Godunov code to 

several hypervelocity impact problems. This method employs the exact solution of Riemann 

problem, therefore it is well suited for construction of "nonhomogeneous" computational 

algorithms fitting flow singularities. It is clear, that to fit all singularities, which can arise in the 

flow is rather difficult algorithmic problem esspecially in multidimentional case. That is why the 

most of widespread computational methods of shock wave dynamics are based on 

homogeneous algorithms treating in the same fashion both continuos and discontinues domains 

of flow. 

To better resolve discontinuities so called high resolution shock-capturing schems are used. 

Most of them are second order modifications of Godunov scheme [1], which use approximate 

Riemann problem solvers [2-5]. One should mention in this context so called ENO schemes 

(essentially non-oscillatory schemes) which allows one to increase the order of accuracy up to 

fourth or even more [6-7]. Of course, the higher is the order of accuracy, the more 

complicated is the computational algorithm. For example, as it was found in [8], the cost of the 

third-order ENO scheme is four times that of the second-order one. It may appear the second 

order schemes to be more profitable when using refined mesh than the fourth-order ones. 

We have chosen another approach to construction of high resolution shock-wave codes, 

namely, Godunov scheme on a moving grid. The main principles of this approach were 

described in [9-10] and in the previous HEDRC report. Note that in the framework of moving 

grid code shock waves, contacts between different materials and matter-vacuum boundaries, 

can be easily fitted . By that the grid boundaries coinsided with these discountinuities are 

moved in accordance with the solution of Riemann problem. 

In the present report we demonstrate the advantages of moving grid approach for solving 

four different problems. 

The first one is an impact of thin plane projectile on a thin screen. A great difference of 

longituidal and transverse dimentions leads to a great number of zones when using a 

Lagrangian grid, which covers all the projectile and the target. Our method allows one to 



compute only those domains where the flow is two-dimentional, that gives a substantional 

economy of computer s resources. 

The second example is the numerical simulation of penetration of a cosmic body moving with 

hypervelocity into gaseous atmosphere with exponentionally increasing density. The typical 

feature of this problem is the presence of various space scales. For examples, the size of the 

body is much larger than the thickness of compressed gas layer at the face side of the body and 

on the other side it is much less than the distance which this body passes before it explodes. 

The third problem is a debris cloud simulation produced by ball-plate impacts. In this 

problem the ball and the plate have thicknesses of the same order, that makes it difficult to 

employ any Lagrangian code because of the great deformations of material. On the other side, 

it is known that Eulerian codes give a great dispersion of mass due to averaging of flow values 

over the fixed zone intervals. Application of the moving grig code in which the computational 

grid moves with material near the boudaries and has a minimal advection error in the central 

grid region allows one to overcome these difiuculties. 

The last example is a numerical simulation of detonation of charges of finite diameters. It is 

well known, that a steady detonation can exist only if the size of the explosive is greater than 

some minimum value. To find this size for a charge of some specified geometry numerous 

numerical computations are required. When this size is close to the critical one the time which 

is nessesary for setting up a quasi steady detonation regime is very long. It means the we must 

be able to track the propagation of the front over a long distance. As the region of 

computation increases with time, a grid refinement is required to maintain some specified level 

of computation accuracy. 

Numerical simulation of impact of projectiles with a great D/L ratio 

Impactors with a great D/L ration (where D is the diameter and L is the thickness) are used 

in shock-wave experiments in order to simplify their interpretation reducing the last one to ID 

case. Nevertheless, the flow becomes two dimentional when the rarefaction waves 

from the periphery reach the center of the projectile. To account 2D effects at the late stages of 

interaction 2D simulation is nessesary. In the present report we demonstrate one example of 



application of moving grid to effective solution of such a problem. In fig. l(a-d) numerical grid 

and levels of constant density are presented for high velocity impact of 1mm thick aluminum 

disk on 2mm thick aluminum foil at 8 km/s velocity. The diameter of the disk is 4 cm 

In the beginning of computation we specify two small numerical regions. One of them 

represents the edge of the disk and the other corresponds to the fragment of the foil, which is 

in contact with this edge. Then we move the boundary segment separating the ID and 2D flow 

regions with characteristics velocity towards to the axis of simmetry. The other fragments of 

the boundary are: free boundaries (back sides of the disk and the foil), contact between the 

disk and the foil and the front of the shock wave runing away from the center. Rarefaction 

waves coming from the back surfaces of the projectile and the target lead to an expantion of 

shocked material and to generation of tensile stresses. That is why the contact between the disk 

and the target disappears . The type of the boundary segments is changed automatically from 

contact boundary to free one (fig. lb) For the later times the size of the flow under 

consideration is much more than initial one (see fig. Id). The straight line fragment of the 

boundary separates the flow region where the transversal rarefaction waves are important. 

In addition to this example one should note, that there is a lot of problems containing 

different time and space scales which could be effectively solved using moving grid code, for 

example, investigation of thin foil acceleration with laser and ion beams, perforation of 

multilayered spaced shields and so on. 

Computation of large asteroid penetration in Jupiter's atmosphere 

The problems of asteroid hazard are of great interest, because the number of ateroids moving 

in vicinity of Earth is increasing with time. An impact of pereodic comet Shoemaker-Levy 9 

on Jupiter took place recently (in July 1994). The consequences of this impact were observed 

both from the Earth and space sattelits. In this report we demonstrate an example of numerical 

simulation of the penetration of one comet fragment of 1 km diameter into Jupiter's 

atmosphere. The asteroid was approximated by a spherical incompressible body moving with a 

velocity of 60 km/s. Due to its high velocity it passses a distance much more than its diameter 

before it explodes. As the density of the atmosphere grows with distance the flow is unsteady. 



Extremly high velocity of impact leads to heating and ionization of a gas flow after shock 

compression. Since the flow behind the shock front is responsible for ionization and luminosity 

of gas, which can be observed an accurate resolution in this region is required. It is clear, that 

application of Eulerian codes to this problem will lead to a great diffusion of shock front and 

contact interfaces. Eulerian computations also require a great number of computational zones 

to cover the regions in which the asteroid moves. That is why Eulerian computations of this 

problem were performed in 'reverse ballistic' sense using an atmosphere moving towards an 

initially stationary fragment [11]. 

To avoid computations in undisturbed domains we surrounded the asteroid region by a thin 

region of the gas, whose boundary moves with the characteristics velocity. The size of the gas 

region grows in time but we can exclude from consideration those parts of the gas region, 

which are far from the asteroid and are not of our interest. The results of computation are 

shown in fig.2-4. In the beginning (fig.2) of penetration the gas detaches from the back side of 

asteroid and a gas jet appears moving in the opposide direction. Then we cut off the part of gas 

region corresponding to this jet (fig.3). Fig.4 presents the results of simulation for the time 

when the asteroid has passed about 80 km in atmosphere. The pressures at the frontal surface 

of the asteroid become about 0.3-0.5 kbar, that are close to the strength of material. Further 

computations require to account for the fracture of matterial. In accordance with [12], 

fragmentation of the asteroid leads to a growth of the heat flux inside it, because of signifficant 

increase of the effective surface area. This gives rise to the rapid transformation of the asteroid 

material from the condensed to gaseous state. If we suppose, that the fracture and 

fragmentation of asteroid is due to the stress gradient at its surface, we obtain the distance of 

about 100 km, where the explosion takes place. This agrees with recent observations. 

Numerical simulation of propagation of debris cloud produced by 

ball-plate impact. 

The results of a computation of a 20 g spherical lead projectile striking a lead plate is 



presented in Fig.5(a,b). The impact velocity for this problem is 6.6 km/s. Fig.6 represents the 

experimental X-ray photograph of the same problem at the time moment 30 u. m presented in 

[13]. Simulation results are in accordance with the experiment. The number of zones used 

grows during the computation to ensure some specified level of accuracy. The criteria for grid 

refinement are not purely geometric. When the pressure gradient and the density decrease 

some coalescence of zones takes place. 

Using moving grids demonstrates a substantial economy of required computer memory in 

comparison with a fixed Eulerian grid. One can estimate that about 10 000 - 20 000 meshes 

is required to perform computation of this problem using Eulerian grid with the same 

accuracy. 

Simulation of detonation in high explosive charges of finite diameter. 

The failure detonation problem is the problem of minimal explosive charge diameter when 

a self-sustained detonation can exist. We present below an example of determination of this 

diameter using numerical simulation. The flow is described by Euler equations. The only 

difference with hypervelocity impact problem is the appearance in the energy equation of a 

source term which is responsible for heat release. To check whether the detonation becomes 

steady or not it is necessary to calculate the evolution of detonation process along the distance 

of at least several (perhaps tens) diameters. As the downstream flow behind the shock is 

determined by the chemical reaction kinetics and, in particular, by the value of energy 

release, the shock must be calculated accurately. 

The following computational strategy is chosen in accordance with the problems listed above. 

The computational region represents a curvelinear quadrangle. The sides of the quadrangle are: 

the leading shock, the segment of contact between detonation products and vacuum, the 

segment of axis of symmetry, and the forth one is a segment of straight line between the free 

surface and the axis of symmetry, which is perpendicular to the axis of symmetry. The velocity 

of this side is assumed to be directed along the axis and to be equal to max (u+a,D), where D 

is the shock velocity at the axis of symmetry and u+a is the velocity of characteristic 



surface moving along the axis and calculated using parameters of the cells adjacent to this 

side. It means that the boundary moves relative to the matter ahead of it at least with the sonic 

velocity. Therefore the flow parameters, which determine the fluxes of mass, momentum 

and energy throughout this side are taken from internal cells. A pressure of 200 kbar, normal 

density and zero velocity were taken as an initial data for calculations. It was found from 

simulations, that the critical diameter is somewhere between 2.4 and 3 mm. Results of 

simulations corresponding to these two cases are shown in Fig.7(a,b) In the case of 2.4 mm 

diameter detonation decays. Calculations for this diameter were performed with different 

initial pressures. In all the cases a steady detonation was not obtained. This fact allows to 

draw a conclusion that the failure diameter of TNT lies within the interval 2.4 and 3 mm. 

This also agrees with the experiment [14]. 

CONCLUSIONS 

We have demonstrated the robotness and flexibility of developed 2D code 
for hypervelocity problem computations. The main advantage of this code 
in comparison with Eulerian high-order accuracy hydrocodes is an accurate 
treatment of multimaterial interfaces. On the other side, arbitrary 
Lagrangian-Eulerian methods (ALE), which utilize lagrangian motion of 
interfaces and permit an arbitrary mesh motion inside the computation 
region are not always adapted to dynamically evolving interface shape. It is 
the main reason to develope ALE codes on unstructured grids [15]. 
We overcome these difficulties with the help of decomposition of numerical 
region onto subregions. This decomposition is provided automatically during 
the computation. By that one can govern this process excluding from 
computations the regions which are not of our interest. 
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Introduction 

One of the most important problem of numerical solution of nonlinear 

hyperbolic conservation equation is to obtain high accuracy of the solution in 

both discontinous and continuos regions. In recent years, a lot of so called 

high resolution schemes have been proposed, for example, second order TVD 

scheme of Roe [1,2] and Sweby [3]; upwind TVD of Harten [4] and Yee et 

al. [5]; symmetric TVD of Chakravarthy and Osher [6]; ENO scheme of Harten 

et al. [7,8], FCT scheme of Zalesak [9] McDonald and Ambrosiano [10]; 

MUSCL schemes of van Leer[11], Goodman and LeVeque [12], Davis [13], 

Colella [14], and PPM of Colella and Woodward [15]. The most of schemes 

mentioned above were originally derived for the case of perfect gas and for 

1D geometry (or 2D for fixed Eulerian grids). For numerical simulations of 

hypervelocity impact problems, when realistic physical models are used, we 

face with additional problems. This is, for example, a variety of matter 

properties in different phase states (solid, liquid, gas, plasma) , when the 

compressibility of matter differs up to several orders of magnitude. This 

difference often gives some unphysical values of variables appearing due to 

errors of numerical approximation (negative internal energy or density), which 

lead to a failing of numerical scheme. As it was found in [16], some of 

Godunov-type second order methods based on approximate Riemann solver 

are not positively conservative or positively conservative under certain 

conditions. They can produce non-physical states with negative density or 

internal energy in rarefaction waves. We based our code on the Godunov's 

method of numerical integration of Euler equations on a time dependent (so 

called moving) grid [17]. As it was shown in [16], this scheme is positively 

conservative for at least in the case of ideal gas EOS. 

Let us remind the main principles of this code. In the framework of this 

approach only the boundaries of numerical grid are moved in Lagrangian 

fashion. The location of interior grid nodes are determined during grid 

generation procedure by using of coordinates of boundary nodes. As the 

material flows through the grid cells there is some diffusion error as well as in 

any Eulerian method. Nevertheless there exist several possibilities to reduce 

such errors by generating "near-Lagrangian" grids. In the present version of 

2D hydrocode we utilize decomposition of numerical region onto subregions 

with Lagrangian boundaries, in which grids are generated independently 

using conformal mapping procedure. This decomposition is provided 

automatically during the computations. When every subregion consist of only 



one cell. This approach resembles Lagrangian method on unstructured 

quadrilateral mesh. On the other side, such a grid enables all advantages of a 

regular grid. It is known that the numerical approximation of solution on an 

orthogonal grid is always better than that one on an arbitrary disturbed grid 

[17]. The grid generation procedure can be governed by moving the 

boundary nodes along the boundary. Using such a redistribution of the 

boundary nodes orthogonal grids are generated in subregions. The other 

advantage of orthogonal grids is a possibility to simplify a second order 

extension of Godunov's scheme. 

In the present report we consider a second order extension of moving grid 

code and compare results of calculations of hypervelocity impact problems 

with shock-fitting calculations. The strategy of shock fitting grids was 

described in the previous report. Unfortunately, the application of this 

approach is not possible inside of numerical subregions. It means, that the 

description of shock wave propagation and interaction inside of disturbed 

subregion can not be done using shock fitting grids. That is the reason why 

the second order extension of Godunov's scheme is very important. 

3.NUMERICAL   ALGORITHM 

In this report we describe algorithm of computations only briefly. More 

detailed description one can find, for example, in [18], as well as in the first 

report. As we have already mentioned, the numerical region is divided into 

several subregions with Lagrangian boundaries during the computations. Let 

us consider the main steps of computational algorithm for one subregion. 

The first step of computations is the displacement of the boundary of 

subregion. After shifting the boundary to a new position some segments of 

the boundary can change their type due to interaction with boundaries of the 

other subregions. The boundary type determines the boundary condition 

(what is necessary for Riemann problem initial data) and the law of motion of 

the boundary. For example, a shock-front boundary moves according to 

Hugein's principle, rigid wall boundary does not move and so on. 

The second step is an iterative procedure of orthogonal grid generation 

inside of subregion. This procedure is based on the distribution of the 

boundary nodes. This distribution is performed several times until the grid 

generated with conformal mapping becomes orthogonal. 

The third step is a solution of Riemann problems for inner zones and 

calculation of fluxes between the neighboring zones. One should remark here, 



that for an arbitrary equation of state the Riemann problem can be solved 

only numerically. Nevertheless, we employ an exact solver of this problem 

only in vicinity of flow discontinuity. The most of Riemann problem 

computations are done either in isentropic or in acoustic approximation. 

Second order extension of Godunov's scheme can be obtained if we 

assume a piecewise linear distribution of flow parameters inside of the grid 

cells. To conserve the monotonicity property of Godunov's scheme we use 

the "minimum derivative principle" proposed in [19]. The main idea of this 

principle is to choose the minimum possible derivative when interpolating the 

values from the zone center to the boundary with the neighboring zone, 

where the Riemann problem must be solved. If the grid is orthogonal, 

derivatives only in one direction (either along the grid rows, or along the grid 

columns) are important when interpolating cell-centered values to the 

boundaries of the cells. This simplifies the realization of "minimum derivative 

principle". 

4.EXAMPLES OF CALCULATIONS 

In the present paper we consider an application of our 2D code to 

hypervelocity impact problem. One of the most difficult task for any 2D 

Lagrangian code is to compute hypervelocity penetration of projectile into a 

thick target. We consider two different approaches to numerical simulation of 

hypervelocity impact of iron projectile moving with 10 km/s velocity on a 

thick aluminum target . 

First one concludes in a usage of "near-Eulerian" grid, which covers the 

region of the target where the shock wave propagates. 

The second one is fitting of this shock wave by moving the boundary of the 

grid with shock front velocities obtained by Riemann solver. The second 

method in fact, is more accurate to resolve the shock front and is more 

economic, because it does not require a grid in undisturbed regions. On the 

other hand the shape of numerical region is more complicated and, as a 

consequence of that, the grid generated is not so orthogonal as in the first 

case. The results of computations corresponding to these cases together with 

numerical grids are shown in Fig. 1. There were two subregions used in the 

case of shock-fitting grid. One of them corresponded to the projectile, the 

other one covered the disturbed region in the target. In the other case (near- 

Eulerian grid) three subregions were used in computations. 



TIME(NS) =7657 

Pressure  levels   (kbar) 

Fig. 1 Numerical grid and pressure levels for hypervelocity impact calculations 

using shock fitting grid (above the axis) and "near-Eulerian" grid (below the 

axis). 

It is known, that first order Godunov's scheme is a very dissipative one. 

Our experience shows, that this scheme smears out weak discontinuities in the 

case of realistic EOS much stronger than in the case of perfect gas. 

Moreover, this dissipation grows in time. Results of computation of 

hypervelocity impact of iron projectile on aluminum target shown in fig.2-3 

confirms this fact. In contrast to the first order scheme, second order 

calculations exibit nearly constant width of shock front smoothing. 
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Fig.2 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 

Pressure levels   (kbar) 

Fig.3 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 



As it has been shown in [20] for the case of steady gas flow, the second 

order extension of Godunov's scheme is not so sensitive to distortions of 

numerical grid as it's first order counterpart. We demonstrate below (Fig.4-5) 

the results of simulation of hypervelocity impact obtained using the first and 

the second order Godunov scheme both on the shock fitting grid and on the 

near-Eulerian grid. Our results generally confirm the conclusions obtained in 

[20]. For the second order scheme (Fig.5) the difference between the results 

obtained on the different grids is negligible, while for the first order scheme 

there is a big difference in the amplitude of the shock wave calculated on the 

shock fitting and on near-Eulerian grid. It is naturally, that the shock front 

dissipation is much pronounced in the case of the first order scheme than in 

the case of the second order one. 

first order scheme  tirae=7706 ns 

-1.5 -0.0 1.5 

Fig.4 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

"near-Eulerian" grid. First order scheme. 



Second order scheme  tiroe=7749 ns 

1.5 -0.0 1.5 

Fig.5 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

near-Eulerian grid. Second order scheme. 

CONCLUSIONS 

We have considered an application of Godunov's scheme on the moving 

grids and it's second order extension (Kolgan scheme) on the example of 

hypervelocity impact calculation. We have shown that this scheme coupled 

with the algorithm of decomposition of numerical region onto subregions 

shows a good robustness and flexibility for multimaterial problems of 

computational fluid dynamics with large distortions. The other advantage of 

decomposition of numerical region of complicated shape is a possibility to 

generate orthogonal grids in subregions 

We have developed second order Godunov's scheme applying Kolgan's 

algorithm of "minimal derivative". It has been found that Kolgan's scheme is 

not so sensitive to the form of the moving grid as original Godunov's scheme. 

The results of second order calculations are much closer to more accurate 

shock-fitting calculations. 
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Brief description of the code 

The language of the code is standard F77 FORTRAN. So it can be easily 
installed on any computer with f77 compiler. The code consists of the 
following program modules: 

Module: Function: 

STARTT - input of initial data and transformation 
of these data into file NAM.tmp for 

continuation of calculations by module BIG2T 

BIG2T- carries out calculations, renews data for 
continuation of calculations (file NAM.tmp) 
and records results of the calculation 

REPT- modification of the task (possibility to 
add or delete subregions ). The changed data 
are rewritten into the file NAM.tmp 

UNFTOF- transformation of NAM.tmp from binary file to 
ASCII file and back (it may be useful for 
transmission of calculation results from one 
computer to other one with different binary 
data presentation) 

This version of 2D hydrocode operates with tabulated equations of state 
(TABEOS format) as well as with perfect gas analytical EOS. The code 
loads four EOS tables :ENER*.TAB,PRES*.TAB,SND*.TAB, 
PHYS*.TAB, DATA*.MAN (* - from 1 to 4), which are energy, pressure, 
sound velocity, index of state and information about table limits for 1- 
aluminum, 2-Nickel, 3- tantalum, 4- tungsten correspondingly. If it is 
required to include another TABEOS tables in computations one need to 
change the normal densities for substances 1-4 in subroutine readtab 
(urst.for) in accordance with the tables used. 

Installation of the code 

To create  object modules 

1) copy all files *.FOR and *.INC to 
one directory on a hard disk 
REMARK: all *.INC files must be with capital characters 

2) compile all *.FOR files 



* before compilation probably may be necessary: 

A) to set function which determines CPU time in seconds in 
SUBROUTINE ETIME in the file PC.FOR. (to decomment 
correspondent string may be sufficient) 

B) to change parameters in the file BIGPAR.INC 
(dimensions of arrays) 

3) create loading module  STARTT, using object files: 

startt.o, blocka.o, adi.o, arct.o, big.o, contw.o, univer.o, datO.o, 
dattst.o, disto.o, jup.o, pc.o, shr.o, spect.o, urst.o 

4) create loading module  BIG2T, using object files: 

basica.o, blocka.o, mainxt.o, spect.o, tnew2a.o, urst.o, adi.o, arct.o, 
big.o, buil.o, builO.o, buill.o, build.o, contw.o, datO.o, del.o, disto.o, 
god2.o, grnew.o, jup.o, pc.o, ref.o, shr.o, split.o, splitl.o, univer.o 

5) create loading module  REPT, using object files: 

rep.o, blocka.o, spect.o, urst.o, adi.o, arct.o, big.o,  contw.o, datO.o, 
del.o, jup.o, pc.o, ref.o, shr.o, split.o, splitl.o, univer.o 

*Note that modules mentioned above (STARTT, BIG2T, REPT) can be 
created using makefile. To generate first order accuracy code (BIG1T), 
one should replace tnew2a.* by tnewla.* in the makefile. 

Generation of a new initial data ßle 

1) Chose one of the existing initial data files from the 
file list below 

TST2.DAT 
VRB2.DAT 
VRB3.DAT 

2) Copy the chosen file into file NAM.dat, where NAM is 
any name consisting of 1-4 symbols 

(the names of all the files created during the computation 
of this problem will include NAM as a root word) 

3) Correct contents of the file NAM.dat with text editor 
using description of initial data file presented 
below 



Description of the structure of initial data file NAM.dat 

The initial data file consists of two parts: 
First part contains control information.This part has the same format for all 
files of this type. Let us consider an example shown below, where the 
fist part of initial data file TST.DAT is presented. 

AL/AL U=10.1KM/C 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

0      1      1      2      1    00      1      0 
NBL--MI-ID1-ID2--IK-IGR-ILENPARIVSP 

9900    1   10   10 300   10 -10    6    0 
--CMM-: H3—-:—-HDEL—:—-T :—STABL—: 

-1.00000E-03 0.00075E-00 0.01000E+00 1.10000E+05 0.50000E+00 

The first string is comment. This is usually short 
information about the problem. (Here this is 10.1 km/s impact 
of aluminum on aluminum). The next strings consist of 
title_strings and contents_strings. The titlestrings show the 
names of variables. The contentsstrings are values of these 
variables. The assignment of the variables is shown in the table 

TABLE 

variables: meaning: 
ispr     controls rebound of different boundary segments 

0- calculations without rebound 
1- rebound for "contact" type boundaries only 
2- rebound for "contacts and rigid walls" type 

boundaries 
3- rebound for all boundary types 

los       1- cyllindrical symmetry 
0- plane symmetry 

1st      1- there are rigid walls 
0- rigid walls are absent 

ird      0- to ignore isp 
1- to continue calculations from the restart data 
2- to correct in dialog regime the number of time steps 

after which the splitting of numerical regions into 
subregions will be switched on 

isp       1- to change in dialog regime the type of" contact " 
between subregions 

0- to do nothing 



ira      energy source (for impact problems ira is equal to 0) 

icm      1-  automatical choice of time step 
0 time step = abs(cmm) * stabl 
(cmm,stabl see below.) 

nbl      is the number of time steps to do before copying of all 
flow parameters to output file. 

mi        1- to search the optimum location of 4 angle tops of 
rectangular subregion along the boundary 

idl,id2 are the numbers of time steps to do before the 
data record for restart(idl- before the first record) 

ok       is the maximum number of time steps to do. 

igr      is the number of time steps to do before printing packed 
information about all subregion's boundaries. 

ilen     is the number of time steps to do before the next graphic 
data record. 
If ilen less 0 then data for the graphics will be 
written in time step=abs(ilen*cmm) in nanoseconds, 
(cmm parameter described below) 

par      is the number of flow parameters which must be written for 
graphics data, (from 5 to 7 parameters) 

ivsp     if ivsp is not equal to 0 then ivsp is input parameter for 
subroutine AUTOSP, which changes types of" contact " 
between subregions automatically . 
This automatical regimes must be programmed by user for the 
concrete task in subroutine AUTOSP. 

cmm      is parameter which determines time step (stt) 
stt = cmm * stabl if cmm>0. 
If cmm<0. then cmm will be read from restart or 
cmm= abs(cmm) in case of initial data. 

h3        space precision.(H3 equals to 0.1 of cell size) 
H3 is widely used in the code as character space size. 

hdel 
The boundary section with length < hdel* (cell size) will be 
combined with neighboring one. 

time cpu limit in seconds 



stabl   stability coefficient stt= cmm * stabl 

The second part of the initial data file 
includes an information about geometric configurations of the 
problem to be solved. The information may be prepared 
using so caUed UNIVERSAL INPUT. In this case the first string 
in the second part of the initial data file must be 
UNIVER  
One Universal input starting with UNIVER..and finishing with 
UNIEND specifies only one subregion (numerical block). 
To specify several subregions one must use this block of 
input strings several times. 
The boundaries of numerical subregion are specified in 
accordance with the following rules: 

1) If the problem contains the rigid walls and shock fronts 
they must be specified right after the string UNIVER.... 
For example, in the case of rigid wall the input looks like 
this 

UNIVER.. 
RIGIDRD 
IWALL,    INW, ITP ,AW, BW, CW; STRAIGHT LINE:F= =INW*(AW*X+BW*Y-CW)= =0 

1,-1, 1, o. , 1., 0. 
-1      ,-1, 1, o. , 1., 0. 

Here the second string (after UNIVER) starting as RIGIDRD indicates 
to the beginning of wall specification, which is finished when the first 
parameter (IWALL) equals to some negative value (-1 in this example). In 
the example presented above the rigid wall specified is the straight line 
(ITP=1) and input parameters are the coefficients which determine it's 
orientation. 

To specify the front one must put the string starting as FRNTREAD 
either after the UNIVER... or after the rigid wall specification. The front 
specification looks like the following 

FRNTREAD 
cl — read of front information 
ifr,ityp, | thenumberoffront, thetypeoffront 
icont, | the_number_of_contour 
a,b,c, | the contour is straight line a*x+b*y-c=0 ! icont=nomco+l 
ibeg_end,| l-begin,2-end 

-1 

Here the expressions on the right from | are comments. The front 
input is finished when ifr equals to some negative value (-1 in this 
example). The beginning and the end of the front move   along the stright 



lines (called contour). There are not more than two contours corresponding 
to the same front. The sequence of the numbers of the contours specified 
must be increasing. Every contour corresponds either to the beginning of 
the front (ibeg_end=l) or to the end. Using such an input several fronts 
can be specified. There are several front types considered 
(thetypeoffront). The main of them are 

1- shock front in undisturbed solid media 
2-shock front in undisturbed porous media 

Specification of all fronts and walls must be closed by the string 
END  

2) The next two strings 

5., 0., 0.,::--USRT--,~-VSTR— ,VPOL 
12,::-NUMBER OF URS 

give the velocity components (USRT, VSTR), porosity of the subregion 
(VPOL) and number of material (EOS). Then the boundary segments 
must be specified. Boundary orientation is counter-clockwise. The boundary 
segment can be straight line, circle or some other arbitrary curve specified 
in the table form. The next string gives the  coordinates  of the first point 
of the boundary. 

0., 0.,: :X0, Y0   - THE LOCATION OF THE FIRST POINT FOR A BOUNDARY (CM) 

If the first boundary segment is a straight line, then the next 
two strings are 

STRAIGHT     1 
0.,1., XE,YE,:: IS COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

If the next segment is a fragment of a circle then must be 

CIRCLE 
XC,YC,ALF,:: IS THE CENTER OF THE CIRCLE(CM),ANGLE (0-360 grad) 

The boundary segment can be any arbitrary curve. In this  case it 
is specified using the table input 

TABLE 
XE,YE,:: IS THE NODES COORDINATES 
.......  , TABLE INPUT UNTIL INPUT ERROR OCCURES 
END OF THE TABLE 

The specification of the boundary of a subregion is closed by 
the string 

REGEND 



The four angles of subregion must be determined for the purpose of grid 
generation, when the boundary of the subregion is specified. The angles 
input looks like this 

1—2—3— 4 ANGLES LOCATION 
11,12,13,14,;; TO FIND 4 ANGLES OF THE RECTANGULAR REGION USING 

CORRESPONDENT BOUNDARY SEGMENTS NUMBERS 11,12,13,14 

In the example of input shown below 

the ANGLES with numbers 1,2,4 are determined automatically and the 
angle 3 is found in the beginning of the boundary segment number 5. 
Initially all the boundary segments have the type of "FREE BOUNDARY". 
If one needs to assign some other boundary type to the boundary segment 
the following strings are necessary: 

BOUNDARY TYPE INPUT 
Then depending on the boundary type can be: 
a)in the case of rigid wall 

RIGID ,;CHANGES "FREE" TYPE BY "RIGID" 

IREG,IRG ,; IREG-NUMBER OF BOUNDARY SEGMENT 
IRG-NUMBER OF RIGID WALL 

b)in the case of shock front 

FRONT ,;CHANGES "FREE" TYPE BY "FRONT" 

IREG,IFR ,; IREG-NUMBER OF BOUNDARY SEGMENT 
IFR-NUMBER OF FRONT 

c) in the case of contact discontinuity 

CONTACT ,;CHANGES "FREE" TYPE BY "CONTACT" 
IREG,N1,IREG1,; IREG-NUMBER OF BOUNDARY SEGMENT FOR CURRENT SUBREGION, Nl- 
NUMBER OF SUBREGION WHICH IS IN CONTACT, IREG1-NUMBER OF BOUNDARY 
SEGMENT FOR Nl SUBREGION 

The input of data for the current subregion is closed by 

UNIEND 

Remark: 
We have described UNIVERSAL INPUT in the text above.  If there are 
special program for more simple input for concrete configuration then the 
name of this program is the first string in the second part of the input data. 
For example: 
DATST1   ; -NAME OF THE PROGRAM WHICH TREATS INPUT DATA 



How to run the code 

1) Run the module STARTT in the directory containing file 
NAM.dat 

2) Type NAM when the question "ENTER DATA NAME" appears 

module STARTT will create the files: 
NAM.tmp-        for following calculations 
NAM000.dat-     first file for graphics 
NAM.cfg-  file containing some parameters (if this file does not 

exist) 
An example of CFG file is presented below 
 VRB2.CFG  

0.7654392     , PLIM [bar] line 1 
2.7104001E-08, ROM [G/(CM**3)]    line 2 
13.93920     , EPSGAS [M/C] line3 
278.7840     , EPSCON [M/C] line4 

9.9999998E-03, ALMIN line5 
0.3000000     , SINCOND line6 
2.0000000E-02, ALMN line7 
9.9999998E-03, SHISAMI line8 
5.0000001E-02, SHISAMA line9 
0.07000000     , TET linelO 
0.000000     ,ADP linell 

In this file the first two strings are minimal pressure and density, the next 
two strings are accuracy of calculation of wave velocities for the cases of gas 
EOS and table EOS correspondingly. Parameters ALMIN, SINCOND 
(SINCOND is changing from 0 to 1), ALMN are responsible for the 
movement of boundary nodes on the boundary of "special" type. SHISAMI 
and SHISAMA are minimum and maximum shift of the boundary nodes 
during the procedure of boundary node distribution (in relative units). TET 
is a parameter determining the convergence of grid generation (TET>0) 
and ADP is a level of grid adaptation to solution. In the present version of 
the code adaptation in not included (ADP=0) 

When the STARTT finishes its work the following message appears 

THE NUMBER OF PICTURE =0 

3) Run the module BIG2T (or BIG1T) to continue calculations 
4) Reply the questions appearing on the screen 

To avoid the grid tangle in the cases of large deformations to split the 
numerical regions into subregions is recommended. The most frequently 
appearing question concerning that is 

IF YOU DON'T WANT TO SPLIT SUBREGION * 



ENTER number of steps without splitting analysis 

Enter 0 on this question if you want to split subregion, which the program 
suggests to split. Then press enter to continue computations. 

The question ENTER N,M ACCORDING TO THE STENCIL means 
that you can change the type of contact between subregions N and M. 
Enter -1,1 to ignor this (and -1,1 for the next question) 

The program periodically creates the files NAMxxx.dat for graphics and 
renews file NAM.tmp for restart. 

When the program has done the calculations it starts the dialogue 
from the beginning (asking "ENTER DATA NAME"). To continue 
the computations of the same problem enter the same name NAM. 

5) Analyze the results of computation using graphics 
modules.  For this purpose created graph files 
NAM***.dat (and kNAM***.dat) must be copied to IBM PC 
Then they can be depicted on the screen using and 
written in TIF file using GR.EXE 
(See the manual for GR.EXE) 

6) Continue calculations (point 3) if it is necessary 

7) Change configuration of the task,if it is necessary 
if you want to change configuration you must create 
the file dNAM.dat (see description of the file) 
and run the program REPT 

Brief manual for GR.EXE 

Executing module GR.EXE shows the results of computation on the 
screen of IBM PC (DOS is required) and writes the pictures shown on the 
screen in TIF format. Besides the resulting files ROOT_*.DAT to be 
shown, on more file K_ROOT.DATis necessary to determine the h'mits of 
the picture. This file can be created anytime by coping akeady existing files 
of such type. After running GR.EXE one need to answer the questions in 
the dialog. 
1) Type the ROOT name of *.DAT files to be plotted 
2)Enter the number of picture N (file ROOT_N.DAT will be plotted) 
3)Choose the flow parameter to be plotted (1-density, 2-pressure,3- 
porosity, 4,5-velocities, 6-energy) 
4)Choose the type of picture (I-levels of constant values and numerical 
grid, I2-levels of constant values for two different flow parameters, DY- 
cross sections along the axis of symmetry, DX- perpendicular to the axis) 



5) When the picture is shown on the screen one can plot over this picture 
another pictures (if the axes are not plotted yet). For this purpose enter 
negative number -N (where N is the number of picture to be plotted) 
6) To finish plotting enter any character (for example '.') and axes will be 
shown. Then type enter, the name of the TIF file where this picture will 
be saved and CTRL-C to leave the program. 
7) REMARK: When using DY or DX options (plotting cross sections) use 
CTRL-Z to return back for plotting pictures after the question 
1=   INPUT Y/X COORDINATE FOR SECTION. 

Example of initial data files 

Let us consider some demonstrative examples of initial data generation 
for hypervelocity impact problems 

EXAMPLE 1: initial data file VRB3.DAT 

Impact of W projectile on Al target 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

1     1     1    2    1   00    1    0 
NBL--MI-ID1-ID2--IK-IGR-ILENPARIVSP 

9900    1   30   30 300   30-500    6    0 
 CMM—: H3-—:—-HDEL—:-—T :—STABL—: 

-1.00000E-03 0.02000E-00 0.06000E+00 1.10000E+05 0.60000E+00 
UNIVER        ,; -NAME OF PROGRAM WHICH TREATS INPUT DATA 

RIGIDRD      , ; READING AXIS AND RIGID WALLS 
C IWALL, INW, ITP, AW ,   BW,   CW     ;STRAIGHT LINE: F=AW*X+BW*Y-CW=0. 

1    , -1 ,   1,  0.   ,   1.,    o. 
-1    , -1 ,   1,   0.   ,   1.,    0.    exit,A,A,A,A 

END 
-5.,     0.,      0.,::--USRT-,— VSTR—,VPOL 
44,::-NUMBER OF EOS 
0., 0.,::   XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
l.,0.,   XE,YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT    2 
l.,4.,    XE,YE,::   COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      3 
0.,4.,   XE,YE,::   COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      4 
0.,0.,   XE,YE,::   COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

REGEND 
c-1-2-3-4 
1,2,3,4, 
BOUNDARY TYPE INPUT 
RIGID ,;CHANGING "FREE" TYPE BY "RIGID" 

1,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF RIGID WALL 

UNIEND       1 
UNIVER 



END 
0.,     0.,      0.,::-USRT-,—VSTR—,VPOL 

41,   ::— NUMBER OF EOS 
-8.5,0.,::    XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
0.,0.,   XE.YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

TABLE 1 
0.,0., 
0.,8.5, 
0.,8.5, 
-8.5,8.5, 
-8.5,8.5, 
-8.5,0., 
-8.5,0., 
END OF TABLE 
REGEND 

1—2—3—4 

1,2„, 
BOUNDARY TYPE INPUT 
RIGID 
1,1, 

UNIEND       2 
ENDINPUT 

subregion 2 

■7.5 -5.(1 
z. a\ 

3 -tf 

subregion 1 

contact 

Fig.l Initial configuration for initial data file VRB3.DAT 

EXAMPLE 2: initial data file VRB2.DAT 

IMPACT with shock fitting 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

1      1      1     2     1   00     1     0 



NBL-MI-ID1-ID2--IK-IGR-ILENPARTVSP 
9900    1   30  30 300  30-500    6   0 
—-CMM—: H3—-:—-HDEL—:—-T :—STABL—: 

-1.00000E-03 0.02000E-00 0.06000E+00 1.10000E+05 0.60000E+00 
UNIVER ,',  -NAME OF PROGRAM WHICH TREATS INPUT DATA 

FRNTREAD 
Cl — read of the front information 
1,1, ;c2 ifr,ityp ,: the_number_of_front, the_type_of_front 
1, ;c3 icont,: the_number_of_contour 
l.,0.,0.,        ;c4 a,b,c,: the contour is straight line a*x+b*y-c=0 ! 

icont=nomco+l 
1, ;c5 ibeg_end,: l-begin,2-end 
-1, ;c6 end 

RIGIDRD       ,   j  READ OF AXIS AND RIGID WALLS 

C IWALL, INW, FTP, AW,  BW,  CW    ;STRAIGHT LINE: F=AW*X+BW*Y-CW=0. 

1    , -1 ,   1,  0.  ,   1.,    0. 
-1    , -1 ,   1,  0.  ,   1.,    0.    exit,A,A,A,A 

END 
-5.,     0.,       0.,::-USRT-,— VSTR— ,VPOL 
44, ::-NUMBER OF EOS 
0., 0.,    ::    XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
1 .,0.,   XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT    2 
l.,4.,  XE,YE,:: ARE COORDINATES OF THE END OF THE 
STRAIGHT SEGMENT (CM) 
STRAIGHT      3 
0.,4.,    XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      4 
0.,0.,    XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

REGEND 
i—2—3—4 ANGLE LOCATION 

1,2,3,4, 
BOUNDARY TYPE INPUT 
RIGID ,;YOU WILL CHANGE "FREE" TYPE ON "RIGID" 
1,1,5 IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF RIGID WALL 

UNIEND       1 
UNIVER ,;   -NAME OF PROGRAM WHICH TREATS INPUT DATA 

END 
0.,        0., 0.,::--USRT-,—VSTR—,VPOL 

41,   ::--NUMBER OF EOS 
-0.25, 0., I:   X0Y0  - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
0.,0.,    XEYE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT     2 
0.,4.1, XEYE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

TABLE 3 
0.,4.1, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 



XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM), 

XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

XE.YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0..4.1, 
-0.25,3.0, 
-0.25,3.0, 
-0.25,0., 
-0.25,0., 
END OF TABLE 
REGEND 

i.^2—3—4 ANGLE LOCATION 
1,2,3,, 

BOUNDARY TYPE INPUT 
RIGID ,;YOU WILL CHANGE "FREE" TYPE ON "RIGID" 
1,1,; IREG-NUMBER OF BOUNDARY SEGMENT.IRG-NUMBER OF RIGID WALL 

FRONT 
3,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF FRONT 

UNIEND       2 
ENDINPUT 

shock 

'^, 0 0 

^ shock front 

subregion 1 

I 
M 
P 
A 
C 
T 
0 
R 

Z. DM 
contact between subregions 

Fig.2 Initial configuration for initial data file VRB2.DAT 
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Introduction 

One of the most important problem of numerical solution of nonlinear 

hyperbolic conservation equation is to obtain high accuracy of the solution in 

both discontinous and continuos regions. In recent years, a lot of so called 

high resolution schemes have been proposed, for example, second order TVD 

scheme of Roe [1,2] and Sweby [3]; upwind TVD of Harten [4] and Yee et 

al. [5]; symmetric TVD of Chakravarthy and Osher [6]; ENO scheme of Harten 

et al. [7,8], FCT scheme of Zalesak [9] McDonald and Ambrosiano [10]; 

MUSCL schemes of van Leer[11], Goodman and LeVeque [12], Davis [13], 

Colella [14], and PPM of Colella and Woodward [15]. The most of schemes 

mentioned above were originally derived for the case of perfect gas and for 

1D geometry (or 2D for fixed Eulerian grids). For numerical simulations of 

hypervelocity impact problems, when realistic physical models are used, we 

face with additional problems. This is, for example, a variety of matter 

properties in different phase states (solid, liquid, gas, plasma) , when the 

compressibility of matter differs up to several orders of magnitude. This 

difference often gives some unphysical values of variables appearing due to 

errors of numerical approximation (negative internal energy or density), which 

lead to a failing of numerical scheme. As it was found in [16], some of 

Godunov-type second order methods based on approximate Riemann solver 

are not positively conservative or positively conservative under certain 

conditions. They can produce non-physical states with negative density or 

internal energy in rarefaction waves. We based our code on the Godunov's 

method of numerical integration of Euler equations on a time dependent (so 

called moving) grid [17]. As it was shown in [16], this scheme is positively 

conservative for at least in the case of ideal gas EOS. 

Let us remind the main principles of this code. In the framework of this 

approach only the boundaries of numerical grid are moved in Lagrangian 

fashion. The location of interior grid nodes are determined during grid 

generation procedure by using of coordinates of boundary nodes. As the 

material flows through the grid cells there is some diffusion error as well as in 

any Eulerian method. Nevertheless there exist several possibilities to reduce 

such errors by generating "near-Lagrangian" grids. In the present version of 

2D hydrocode we utilize decomposition of numerical region onto subregions 

with Lagrangian boundaries, in which grids are generated independently 

using conformal mapping procedure. This decomposition is provided 

automatically during the computations. When every subregion consist of only 



one cell. This approach resembles Lagrangian method on unstructured 

quadrilateral mesh. On the other side, such a grid enables all advantages of a 

regular grid. It is known that the numerical approximation of solution on an 

orthogonal grid is always better than that one on an arbitrary disturbed grid 

[17]. The grid generation procedure can be governed by moving the 

boundary nodes along the boundary. Using such a redistribution of the 

boundary nodes orthogonal grids are generated in subregions. The other 

advantage of orthogonal grids is a possibility to simplify a second order 

extension of Godunov's scheme. 

In the present report we consider a second order extension of moving grid 

code and compare results of calculations of hypervelocity impact problems 

with shock-fitting calculations. The strategy of shock fitting grids was 

described in the previous report. Unfortunately, the application of this 

approach is not possible inside of numerical subregions. It means, that the 

description of shock wave propagation and interaction inside of disturbed 

subregion can not be done using shock fitting grids. That is the reason why 

the second order extension of Godunov's scheme is very important. 

3.NUMERICAL   ALGORITHM 

In this report we describe algorithm of computations only briefly. More 

detailed description one can find, for example, in [18], as well as in the first 

report. As we have already mentioned, the numerical region is divided into 

several subregions with Lagrangian boundaries during the computations. Let 

us consider the main steps of computational algorithm for one subregion. 

The first step of computations is the displacement of the boundary of 

subregion. After shifting the boundary to a new position some segments of 

the boundary can change their type due to interaction with boundaries of the 

other subregions. The boundary type determines the boundary condition 

(what is necessary for Riemann problem initial data) and the law of motion of 

the boundary. For example, a shock-front boundary moves according to 

Hugein's principle, rigid wall boundary does not move and so on. 

The second step is an iterative procedure of orthogonal grid generation 

inside of subregion. This procedure is based on the distribution of the 

boundary nodes. This distribution is performed several times until the grid 

generated with conformal mapping becomes orthogonal. 

The third step is a solution of Riemann problems for inner zones and 

calculation of fluxes between the neighboring zones. One should remark here, 



that for an arbitrary equation of state the Riemann problem can be solved 

only numerically. Nevertheless, we employ an exact solver of this problem 

only in vicinity of flow discontinuity. The most of Riemann problem 

computations are done either in isentropic or in acoustic approximation. 

Second order extension of Godunov's scheme can be obtained if we 

assume a piecewise linear distribution of flow parameters inside of the grid 

cells. To conserve the monotonicity property of Godunov's scheme we use 

the "minimum derivative principle" proposed in [19]. The main idea of this 

principle is to choose the minimum possible derivative when interpolating the 

values from the zone center to the boundary with the neighboring zone, 

where the Riemann problem must be solved. If the grid is orthogonal, 

derivatives only in one direction (either along the grid rows, or along the grid 

columns) are important when interpolating cell-centered values to the 

boundaries of the cells. This simplifies the realization of "minimum derivative 

principle". 

4.EXAMPLES OF CALCULATIONS 

In the present paper we consider an application of our 2D code to 

hypervelocity impact problem. One of the most difficult task for any 2D 

Lagrangian code is to compute hypervelocity penetration of projectile into a 

thick target. We consider two different approaches to numerical simulation of 

hypervelocity impact of iron projectile moving with 10 km/s velocity on a 

thick aluminum target . 

First one concludes in a usage of "near-Eulerian" grid, which covers the 

region of the target where the shock wave propagates. 

The second one is fitting of this shock wave by moving the boundary of the 

grid with shock front velocities obtained by Riemann solver. The second 

method in fact, is more accurate to resolve the shock front and is more 

economic, because it does not require a grid in undisturbed regions. On the 

other hand the shape of numerical region is more complicated and, as a 

consequence of that, the grid generated is not so orthogonal as in the first 

case. The results of computations corresponding to these cases together with 

numerical grids are shown in Fig. 1. There were two subregions used in the 

case of shock-fitting grid. One of them corresponded to the projectile, the 

other one covered the disturbed region in the target. In the other case (near- 

Eulerian grid) three subregions were used in computations. 



TIME(NS) =7657 

Pressure  levels   (kbar) 

-7.5 -6.0 -H'. 5 "3.0 
Z.   CM 

-1.5 -0.0 

Fig. 1 Numerical grid and pressure levels for hypervelocity impact calculations 

using shock fitting grid (above the axis) and "near-Eulerian" grid (below the 

axis). 

It is known, that first order Godunov's scheme is a very dissipative one. 

Our experience shows, that this scheme smears out weak discontinuities in the 

case of realistic EOS much stronger than in the case of perfect gas. 

Moreover, this dissipation grows in time. Results of computation of 

hypervelocity impact of iron projectile on aluminum target shown in fig.2-3 

confirms this fact. In contrast to the first order scheme, second order 

calculations exibit nearly constant width of shock front smoothing. 



öS? 

i 

i 

time=3157 ns 

Second order scheme 

first order scheme 

time=3043 na 

Pressure levels (kbar) 
1 -   152.H5S 
2 - 308.892 
3 - H65.329 
H - 621.766 
5 - 778.203 

"7.5      -6.0      -H.5      -3.0      "1.5      "0.0 
I, CM 

Fig.2 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 

ssure levels   (kbar) 

Fig.3 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 



As it has been shown in [20] for the case of steady gas flow, the second 

order extension of Godunov's scheme is not so sensitive to distortions of 

numerical grid as it's first order counterpart. We demonstrate below (Fig.4-5) 

the results of simulation of hypervelocity impact obtained using the first and 

the second order Godunov scheme both on the shock fitting grid and on the 

near-Eulerian grid. Our results generally confirm the conclusions obtained in 

[20]. For the second order scheme (Fig.5) the difference between the results 

obtained on the different grids is negligible, while for the first order scheme 

there is a big difference in the amplitude of the shock wave calculated on the 

shock fitting and on near-Eulerian grid. It is naturally, that the shock front 

dissipation is much pronounced in the case of the first order scheme than in 

the case of the second order one. 

first order scheme  time=7706 ns 

Fig.4 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

"near-Eulerian" grid. First order scheme. 



Second order scheme  time=7749 ns 

Fig.5 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

near-Eulerian grid. Second order scheme. 

CONCLUSIONS 

We have considered an application of Godunov's scheme on the moving 

grids and it's second order extension (Kolgan scheme) on the example of 

hypervelocity impact calculation. We have shown that this scheme coupled 

with the algorithm of decomposition of numerical region onto subregions 

shows a good robustness and flexibility for multimaterial problems of 

computational fluid dynamics with large distortions. The other advantage of 

decomposition of numerical region of complicated shape is a possibility to 

generate orthogonal grids in subregions 

We have developed second order Godunov's scheme applying Kolgan's 

algorithm of "minimal derivative". It has been found that Kolgan's scheme is 

not so sensitive to the form of the moving grid as original Godunov's scheme. 

The results of second order calculations are much closer to more accurate 

shock-fitting calculations. 
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I. Introduction 

Problems of hypervelocity impact attract attention of 
scientists during the last thirty years and occupy a significant 
part in scientific literature. The urgency of investigations of 
these problems follows from the practice. It concerns, for 
example, evaluation of effectiveness of spacecraft debris 
shields, analysis of asteroid impact events, problems of atomic 
power stations safety and so on. From the other side the 
possibility of numerical simulations of these phenomena becomes 
real owing to progress in theoretical and experimental high 
pressure high temperature physics. The success of numerical 
simulation of hypervelocity impact depends on two factors: 
physical model (including mechanical, kinetic,thermodynamic, 
etc. properties of matter) and numerical methods for integration 
of governing equations. The second part of the problem will be 
discussed below. As to the first one, the review of various 
substances models is given, for example, in [1, 21. 

The most widespread numerical methods for hypervelocity 
impact (HVI) simulation are based on Langrangian and particle 
techniques [ 3-7 ]. Huge experience has been stored up to now in 
this area. It becomes clear, that the main drawback of 
Lagrangian codes is the restriction on deformations of flow and 
that of for the PIC codes is the necessity of keeping of 
"superfluous" information about flow parameters in additional 
numerical grid cells into which substance can get. Of course, 
these difficulties are algorithmic and can be overcome by some 
additional measures. For example, a usual procedure for 
lagrangian techniques is reinterpolation of flow parameters 
into a new grid, when the grid deformations become large [81. As 
to Eulerian techniques, one can mention about tracking methods 
[9], that are used to increase the accuracy of calculations near 
matter-vacuum and contact boundaries and to restrict the domain 
of computations. Unfortunately eulerian codes have one more 
disadvantage associated with mass dispersion problems, that 
makes it difficult to calculate debris cloud evolution. The are 
several ways to decrease this dispersion. For example In [10] 
both the projectile and the shield were proposed to have nonzero 
initial velocities moving towards each other to minimize 



■advection of materials between cells in the Eulerian mesh. In 
order to decrease dispersion in eulerian computations high-order 
accurate advection schemes also were used [11, 12]. 

As both pure Lagrangian and Eulerian codes have their own 
drawbacks, it is naturally to develop arbitrary Lagrange-Euler 
(ALE) codes combining the advantages of these approaches. 
Following this idea, numerical simulation of penetration of a 
hypervelocity projectile through multi-plate shield was done 
[13] using two codes: one for computing of penetration stage 
(Eulerian) and another (Lagrangian) for debris cloud transport 
calculation. In recent years, some algorithms of computation 
of real matter dynamics (including elasto-plastic and damaged 
matter ) developed previously only for Lagrangian frame have 
been extended to the Eulerian frame of reference [12, 14, 15]. 
This opens new possibilities for HVI simulations using more 
flexible ALE codes. 

In the present work we used Godunov' s scheme for 
computations [16]. Godunov's method in moving grids provides 
great possibilities and includes both Lagrangian and Eulerian 
approaches as partial cases. It should be marked that this 
scheme has been intensively explored for simulations of 
aerodynamics problems, where high accuracy of calculations is 
necessary.    \ 

In 1968 S.K.Godunov, A.V.Zabrodin and G.P.Prokopov [17] 
formulated a programmatic approach to numerical integration of 
nonsteady Euler equations on moving grids. During several years 
the authors of this report have being working on realization of 
this approach. Results of this activity are resented below. 
For simplicity the consideration is given for the Euler 
equations omitting of strength effects. Applications of this 
approach to the problems of high velocity impact illustrate 
possibilities of 2D code developed. As distinct from the most 
illustrations of possibilities of this method given in [17], the 
problems of hypervelocity impact are characterized by strong 
deformations of matter and wide range of matter state 
parameters: from initially shock-compressed or strongly heated 
condensed state to finally expanding gaseous or spalled 
substance. Large variations of density lead to an enormous 
increase of geometrical sizes of computed fields occupied by 
the substance. Contacts separating the substance from vacuum are 

I 

\y 
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the physical boundaries of computational region. Therefore the 
choice of Lagrangian meshes seems to be a preferable strategy 
for simulations of this class of problems. Unfortunately 
Lagrangian meshes crash, when the deformations become large, 
because the cells deform, twist and finally get tangled. The 
first factor leads to great restrictions on calculation time 
step and the second makes further calculations impossible. As to 
the Eulerian grid the marked above uncertainty in computational 
region leads to the necessity of keeping additional grid sells 
and to corresponding increase of computational time. The other 
problem of Eulerian techniques is the problem of contacts 
between substances. 

Methods based on the use of computational regions with 
moving boundaries and generation inside of these regions of 
grids connected only with the boundaries seems to unify 
the advantages of Eulerian and Lagrangian meshes allowing to 
overcome their drawbacks. In the most examples given below the 
emphasis is placed on demonstration of possibilities of 
application of moving grids for treating the flows with strong 
deformations. Thus, for example, simulations of impact problems 
presented in this report have been performed on moving grids 
with fitting all contacts between different media including the 
boundaries with vacuum. During the process of interaction the 
structure and configuration of boundaries change: segments of 
contacts can disappear,for example because of rebound, and new 
segments can originate due to involving of new bodies into the 
process of interaction. The flow region under consideration can 
be subdivided into several subregions. Boundaries of subregions 
can be both as original flow singularities (characteristics, 
boundary between substance and vacuum, the contact boundary 
between two substances, the axis (plane) of symmetry, the shock 
wave) and so moving in accordance with their physical nature. 
They can be also inserted for some computational reasons. 

As it was mentioned above, the basic attention is paid to 
computational aspects of simulation. Nevertheless, the algorithm 
developed makes it possible using of different physical models 
in the frame of Godunov's scheme. It concerns, for example, the 
Riemann problem solver, designed for the case of arbitrary EOS. 
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II. Physical model 

Governing Equations 

One fluid one temperature hydrodynamic model Is used In 
simulations. Governing Euler equations are written in the form 
of conservation laws of mass, momentum, energy and porous 
volume, what Is necessary for Godunov's method. The conservative 
form of the motion equations allows to describe both as 
continuous and so discontinues flows. 

|§ + vpu =0, 

^|H +Vpu x u= -vp(1-V ), 

J^ + vpuh= -vpud-V^ (2.1) 

gf^P + vpuVp= p<j>. 

Here p- density, u- mass velocity, h-total specific energy, 
p- pressure, V - porous volume per unit volume, <f>- porous 
growth rate. For <p we use semiempirical spall damage kinetic 
built on the base of free surface motion registration [11. 
Nevertheless this model of spall fracture is valid only for 
small (up to several percents) porosity. When the porosity of 
matter becomes greater then some value, the substance does not 
resist to expansion. In this case the volume occupied by the 
solid component does not change anymore and the porosity grows 
with the increase of specific volume of matter. 

Equations of state 

Semiempirical wide-range equations of state (EOS) are used 
[18] to determine the pressure, the temperature and the sound 
velocity as functions of internal energy per unit mass e and 
the density of solid component po connected with density p as 
p0=p/(I-Vp). These equations are built on the base of 
available Hugoniot data and provide for correct asymptotes in 
the cases of extremely high energies and small densities. 

H 



III. Algorithm of computations 

1. Scheme of integration on the moving grid 

Eqs .(2.1) are Integrated on the moving grid by Godunov' s 
procedure [19]. The scheme of the algorithm is shown in Flg.1. 
In comparison with the traditional one ([171) this algorithm 
enables a possibility of the numerical region division into many 
subreglons with independent grid generation in every subregion. 
An important problem which should be solved by that is 
interaction between the boundaries belonged to different 
subreglons. 

2. Movement of boundaries 

The first step of the algorithm is the displacement of 
subregion's boundaries. The boundary of each subregion is 
represented as a coordinate array of_ nodes. Any boundary 
between adjacent subreglons represents a unification of nodes 
belonging to boundaries of these subreglons. The coordinates of 
nodes are also stored in special arrays establishing the 
sequence of nodes. Nodes corresponding to the beginning and to 
the end of different segments of boundaries are also marked. It 
means that each boundary segment is represented as a sequence of 
points belonging to the boundaries of different subreglons and 
that of special end-points of boundaries. The total number of 
nodes representing boundary exceeds, generally speaking, the 
number of cells being In contact from the side of adjacent 
subreglons. 

To determine velocity of a boundary rib, the Riemann 
problem with flow parameters from adjacent cells being in 
contact along every link is solved. In case the Riemann solver 
yields a negative pressure a rebound along the link is supposed 
to be happened. This fact is taken into account by Inserting 
some new special boundary points in the array. In more complex 
physical model the coupling force can be prescribed to the 
contact and a rebound can be inserted when the tense strengths 
exceeds the value of this force. 

.V' 



Initial data input 

Riemann problem solution along the boundaries 

Displacement of    boundaries 

Interaction of the boundaries belonged to different 

subregions, changing the types of the boundaries ribs 

J7~ 3 times 

Grid generation in subregions 

Correction of the boundary nodes location 

Determination of fluxes through the boundaries 

Riemann problem solution for inner cells, flow parameters 

calculation for upper time level 

Time step determination 

Fig.1 Block-scheme of the algorithm 
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,The velocities of nodes can be calculated after solving of 
Riemann problem at the rib connecting the nodes. In the 
Godunov's method the flow parameters; velocity, density,energy 
are assumed to be uniform inside the meshes. For example, one 
should take flow parameters from the meshes A and B to calculate 
velocity Ul and so from the meshes A and C to calculate velocity 
U2, see fig.2 There may be different ways of nodes velocities 
interpolation. The linear interpolation proposed by Godunov 
[17] gives the formula 

U 1   U 1 
12+21 

u=   ( 3.1 ) 
1 +1 

1   2 

How it's seen from ( 3.1) the shorter the rib is, the more 
contribution gives it in the node velocity. (For example, if 
i1»i2 then u s u2) From another point of view, if we want to 
minimize the middle-square deviation between the boundary 
displacement obtained from the Riemann problem solution, when 
every rib moves with an appropriate "big" velocity, and the 
boundary displacement determined by the nodes movement one 
should use the following formula (how it has been shown in 
[20]) 

U 1 _,U 1 
*      11+22 

u =   (3.2) 
1 +1 

1   2 

In present algorithm we use an average way of interpolation 
between (3.1 ) and (3.2 ) , which leads to a simple formula 

u=0.5*(u +u*)=0.5*(u +u ) (3.3 ) 

The formula (3.3) combines the advantage of (3.3) with 
simplicity. 



In this version of moving grid code a procedure of boundary 
node location correction is proposed, which allows to generate 
orthogonal grids in subregions. For this purpose, boundary nodes 
are displaced along the boundary at any time step to ensure 
orthogonality, between the boundary and correspondent inner grid 
line. Nodes shift is limited by settled maximum ratio between 
adjacent the node rib's lengths . In our calculations the v> 
maximum ratio was 1.1. In order to not distort the shape of 
numerical region during nodes distribution the node is shifted 
along smooth curve line which approximate5the boundary. The \s 
curvature of the line is changed from node to node using 
line interpolation formula for curvature radius. After nodes 
displacement new grid is generated In subregions. 

Grid generation algorithm is based on a univalent mapping 
of a rectangular region at a parametric plane (£,n) onto a 
subregion under consideration at physical plane (x,y) of flow. 
The problem can be formulated mathematically in a following way. 
The flow region at plane (x,y) is considered to be a curvilinear 
quadrangle with tops A, B, C, D (fig.3). The univalent mapping 
of this quadrangle onto the rectangular A',B',C,D' is 
determined by solution of a system of elliptical equations 

W^yy=°     ^xx+V=0 (3*4) 

It can be easily proved that this mapping is univalent, 
for example considering the principle of maximum of harmonic 
function. In reality, to solve the system of equations 
relative to x, y as independent variable parameters is more 
convenient 

a x^    -   2b x^ +   g^j =0 (3.5) 
ayg|    -   2byer)+   g y^ =0 

a = x^ +   y^ b = x^ +   y^y g = x^ + y^ 

using the following boundary conditions: 
x(e)=x(e,n1)     y(e)=y(e,T)1) at AB (3.6) 
x(r))=x(£d,r))     y(T))=y(£d,T)) at BC 
x(£)=x(£,T)r)     y(£)=y(£,r)r) at CD 
x(T))=x(£u,T))     y(T))=y(£u,T)) at DA 

where 

? 



ed < e < eu   T)X < T) < r)r 

The transition to discrete analog of boundary conditions for 
this system of quasilinear elliptical equations can be 
performed easily. If the the grid nodes are given 

^=1   1=1 n       (3.7) 

then the boundary conditions are (3.8) 
x(I)=x(i,1)     y(i)=y(i,1) at AB 
X(3)=X(1,J)    y(J)=yd,J) at BC 
x(I)=x(i,m)    y(i)=y(I,m) at CD 
x(J)=x(n,J)    y(d)=y(n,J) at DA 

Different algorithms have been proposed in [17] for 
solving this problem. Iterations considered to be the most 
efficient algorithm. We modified this algorithm treating 
solution of corresponding equations as a result of relaxation 
of solutions of nonsteady equations. For this purpose "non- 
steady" terms dx/dt and dy/dt are inserted into the right sides 
of equations for x and y correspondingly [21]. The resulted 
parabolic system is solved by the method of variable directions 
At the first half time step terms containing derivatives over h 
are considered to be given. At the second half time step 
derivatives over x are taken from calculations at the first 
stage. The problem at the each stage is similar to the 
one-dimensional heat transport problem. This consideration is 
similar to Iterations, but as any relaxation method it provides 
more possibilities for the choice of "time-step" or, what is the 
same, of relaxation parameter. In particular, It can be changed 
from one grid node to another to accelerate the convergence of 
the method. The proposed algorithm has demonstrated its 
reliability. Nevertheless it fails for boundaries of a 
complex configurations. In order to overcome problems associated 
with a grid generation the algorithm foresees the possibility of 
subdividing the flow region into subregions with reasonably 
regular boundaries. 



REGION 2 

REGI ON 1 

Fig.2 Boundary between the different subregions (solid line) 
Ui, U2 -"big" velocities obtained from the Riemann 
problem solution between the meshes A (region 1) and B 
(region 2) and so A and C, 13 
the ribs 

12 -the lengths of 

3. Boundary's type clwcking 

Using of moving grid makes it much more easier setting of 
boundary condition in comparison with Elerian grid. In 
accordance with the boundary condition some type of boundary has 
been assigned to every rib belonged to the boundary. There are 
five boundary types that have been considered: "free boundary", 
(boundary with vacuum), "contact" (boundary with another 
matter), "axes" (axes of symmetry), "hard wall" and so called 
"special boundary" through which a matter can flow. It's clear, 
that the type of the boundary can be changed from one time step 
to another. Therefore a procedure checking the boundary type at 
each time step has been developed. 
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4. Nodes distribution along the boundary and grid 
generation technique 

Experience of the numerical simulation on the moving grid 
shows that some procedure of the nodes distribution along the 
boundary is required to generate a good grid inside of the 
region. Interpolation of the boundary plays an important role 
for displacement of nodes along the boundary. How it has been 
noticed [18], the sharp angels of the boundary are smoothed 
from one time step to another, when the nodes move along the 
straight lines connecting them. To prevent this smoothing on the 
boundary, we approximate it by arcs linking the boundary nodes. 

In the case of strong deformations of numerical region the 
law of nodes distribution along the boundary influences in a 
great power on the grid generated inside the region. Previously 
[20] the law of the nodes distribution along the boundary was 
chosen anytime in accordance with the specifics of the problem 
to be solved. Such a way required at least several attempts to 
find the appropriate law of nodes distribution for problem 
considered. 

v 

B' 

V 

J' 

■e 
• " 

c 

D' 

Fig.3 The scheme of the grid mapping 
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5. Riemann problem solution and   flow parameters 
recalculation for next time level 

The basic point of numerical integration of governing 
equations is the Riemann problem, which is not self similar if 
any kinetics phenomena is considered (for example, stress 
relaxation or microporous growth). In the model used the porous 
growth is also included into consideration. Therefore we take it 
to be "frozen" when the time of the fracture kinetics t  is 

k 

much more than the time step At and on the contrary. Hugoniot 
adiabates and isoentrops for solid matter are taken for solving 
Riemann problem in the first case and those for porous matter 
are used in the second case. This approach has been previously 
used [22] in calculations of visco-elastic flows by Godunovs 
method. 

VG 
PG 

contact 

I 
left wave 

£G   HG 

mesi boundary 

rfgit ware 

Fig.4 Discontinuity decay: 1 and 2 designate undisturbed 
regions, 1• and 2' - regions behind the waves, 
dashed line - contact discontinuity 



PG 

U 
UG 

Fig.5 U-P plane. Points 1 and 2 designate initial flow 
parameters from the left and from the right side 
of the rib. U means the normal to rib velocity. 

Unlike the perfect gas, in the case of an arbitrary EOS 
the Riemann problem can't be solved exactly by iteration scheme 
without numerous EOS evaluations. One should mention here about 
some approximate Riemann solvers [23,24] that can be useful also 
for the problems considered. Initial flow discontinuity decays 
into the contact discontinuity, the left wave and the right 
wave, those may be the shock wave or rarefaction wave depending 
on the Initial parameters (see FIg.4). The mass velocities and 
the pressures behind the right wave (2-2') are equal those 
behind the left wave (1-T). These so called "big parameters" 
(PG and UG) can be determined as intersection of left and right 
Wave velocities functions in U-P plane (Fig.5 ). 

Densities and energies in the regions r and 2f can be 
calculated if velocity UG and pressure PG are known. Velocity 
functions FL and FR are built using a real equation of state. To 
build the simple wave velocity function (2'-2) sound velocity as 
a function of pressure and density is sufficient. In the case of 
the shock wave (1-T) the energy as a function of pressure and 
density is necessary. In order to calculate the fluxes of mass, 
energy, porous volume and momentum the rib velocity has to be 
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known. Then, the fluxes can be determined choosing the flow 
parameter from the region where the rib velocity is located 
(region 2' in the case shown in Fig.4 ). The velocity of the rib 
v can be determined if the locations of the rib at the 
neighboring time levels are known (see Fig.6). Generally 
speaking, the surface covered by the rib during it's movement is 
not the plane. For simplicity we replace it by the plane 
following the way proposed by Godunov [17]. In accordance with 
this method the normal component of the rib velocity Is 
calculated as 

V=- 
abb' a' 

t +At/2 
Jab 

(3.9) 

Here A - is the area covered by the rib ab during the time 
step At In the plane XY, Lab-the length of the rib at the time 
t+At/2. 

X 

t=tn +At 

Fig.6 Determination of rib velocity 



6. Conclusion remark 

Naturally the description of the algorithm given above is 
at least schematic and except of some modifications and details 
represents only the interpretation of ideas [17]. However we 
considered the program approach as being already given and the 
main problem is to put it into practice for specific problems of 
physics. On this way one can face with a lot of concrete 
problems of various extent of complexity: mathematical, 
physical, algorithmic. One of the most important points is an 
experience of working with given complex of program. We are sure 
that the difficulties connected with realization of the approach 
will be rewarded by its huge possibilities. The method allows at 
least in principle to fit flow singularities : shocks , 
contacts, characteristics. From this point of view the method 
unifies main advantages of characteristics methods with the 
advantages of uniform computational schemes. A promising future 
we see in integration of this method with analytical methods of 
gas dynamics. This method provides a possibility to determine 
dependence and influence domains and to perform calculations at 
this minimal domains area. From this point of view it can be 
called economic. 

Last years are being marked by the intense activity in 
developing of high order accuracy modifications ofGodunov's 
methods. Review of these methods can be found for example in 
[25]. These modifications as a rule can easily be included into 
the body of the original Godunov's algorithm. Modifications 
concern the Riemann problem procedure and formulae for 
recalculation of flow parameters for the new time step. 
Development of high order resolution schemes in moving grids 
fitting flow singularities is of great importance [26]. They will 
be considered more detaily in the next report. 
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, IV. Demonstrative examples. 

1. TEST Jfc 1: impact of a plane aluminum plate onto a 
semi infinite aluminum target 

The, simplest test problem for 2D code Is an Impact of a 
plane projectile on a semiinfinite target. In this case the 
problem becomes to be one-dimensional and if Hugoniot adiabates 
of materials are known the pressure and the shock velocity can 
be easily calculated. The time when rarefaction wave from the 
back side of the projectile reaches the shock front can be also 
determined. Results of a plane aluminum- on- aluminum impact 
with 8 km/s velocity are shown in Fig. 7-8. Region of 
computations consists of two subregions corresponding to the 
target and the impactor. Left boundary of the target moves 
initially with a characteristic velocity (sound speed) inside 
aluminum target. Then shock from contact reaches this boundary 
and it becomes moving as shock discontinuity (see fig. 8). This 
transition from sound to shock regime of boundary movement is 
automatic because the velocity of the boundary is obtain from 
Riemann problem solution algorithm. As it can be easily proved, 
numerical result is agreed well with the analytical calculation 
of the shock pressure and velocity. 

2. TEST Jfe 2: influence of the grid refinement on the 
results of numerical simulation of penetration 
problems 

Calculation with different levels of accuracy were 
performed for aluminum sphere of 1 cm diameter penetrating 
aluminum plate of 2 mm thickness at 10.1 km/s. Numerical grids 
and levels of constant pressure corresponding the time moment of 
710 ns are shown In fig.9-11. In the case presented in fig. 11 
accuracy was two times more than that in the fig. 10 and four 
times more than in the fig.9. It Is seen that the higher the 
accuracy, the better is shock front resolution In the 
projectile. More fine grid allows also to resolve the low 
density vaporized matter blowing off the target during impact. 
At the following stage of penetration shown in fig.12-13 fine 
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grid gives less thickness of the target's substance 
surrounded debris of the projectile. And of course as a 
consequence of higher pressure there is a higher expansion 
velocity of debris cloud in this case. 

3. Interaction of spherical projectile with two layered 
aluminum target 

Result of computation of spherical aluminum projectile 
interaction with a spaced two layered aluminum target is 
presented in fig.14. Impact velocity for the problem considered 
is 8 km/s. One should note that not more than 1000 meshes is 
used in this computation. The number of meshes grows during 
computation to ensure some fixed level of accuracy. Criteria for 
grid refinement is not pure geometric. When pressure gradient 
and density of matter decrease some coalescence of meshes takes 
place. 

Using moving grids demonstrates a substantial economy of 
reserved computer memory in comparison with a fixed eulerian 
grid. One can calculate that about 30 000 - 40 000 meshes is 
required to perform computation of this problem using eulerian 
grid with the same accuracy. 

4. Hypervelocity impact of iron projectile on a target 
with a conical hole 

This example demonstrates possibilities of moving grid 
adaptations to region's form in the case of strong deformations. 
In the beginning of interaction shock pressure of about 0.5 Mbar 
is generated in PMMA disk, while pressures in iron target reach 
about 2 Mbar. Then two jets of liquid PMMA are formed moving 
along the walls of conical channel (fig. 16). Collision of the 
jets on the axis leads to cumulation effect. Pressure behind the 
projectile reaches to 2 Mbar (fig.17). After Impacting with the 
Iron projectile these jets breach between the projectile and the 
walls of the channel accelerating projectile (fig.18). 
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Introduction 

One of the most important problem of numerical solution of nonlinear 

hyperbolic conservation equation is to obtain high accuracy of the solution in 

both discontinous and continuos regions. In recent years, a lot of so called 

high resolution schemes have been proposed, for example, second order TVD 

scheme of Roe [1,2] and Sweby [3]; upwind TVD of Harten [4] and Yee et 

al. [5]; symmetric TVD of Chakravarthy and Osher [6]; ENO scheme of Harten 

et al. [7,8], FCT scheme of Zalesak [9] McDonald and Ambrosiano [10]; 

MUSCL schemes of van Leer[11], Goodman and LeVeque [12], Davis [13], 

Colella [14], and PPM of Colella and Woodward [15]. The most of schemes 

mentioned above were originally derived for the case of perfect gas and for 

1D geometry (or 2D for fixed Eulerian grids). For numerical simulations of 

hypervelocity impact problems, when realistic physical models are used, we 

face with additional problems. This is, for example, a variety of matter 

properties in different phase states (solid, liquid, gas, plasma) , when the 

compressibility of matter differs up to several orders of magnitude. This 

difference often gives some unphysical values of variables appearing due to 

errors of numerical approximation (negative internal energy or density), which 

lead to a failing of numerical scheme. As it was found in [16], some of 

Godunov-type second order methods based on approximate Riemann solver 

are not positively conservative or positively conservative under certain 

conditions. They can produce non-physical states with negative density or 

internal energy in rarefaction waves. We based our code on the Godunov's 

method of numerical integration of Euler equations on a time dependent (so 

called moving) grid [17]. As it was shown in [16], this scheme is positively 

conservative for at least in the case of ideal gas EOS. 

Let us remind the main principles of this code. In the framework of this 

approach only the boundaries of numerical grid are moved in Lagrangian 

fashion. The location of interior grid nodes are determined during grid 

generation procedure by using of coordinates of boundary nodes. As the 

material flows through the grid cells there is some diffusion error as well as in 

any Eulerian method. Nevertheless there exist several possibilities to reduce 

such errors by generating "near-Lagrangian" grids. In the present version of 

2D hydrocode we utilize decomposition of numerical region onto subregions 

with Lagrangian boundaries, in which grids are generated independently 

using conformal mapping procedure. This decomposition is provided 

automatically during the computations. When every subregion consist of only 



one cell. This approach resembles Lagrangian method on unstructured 

quadrilateral mesh. On the other side, such a grid enables all advantages of a 

regular grid. It is known that the numerical approximation of solution on an 

orthogonal grid is always better than that one on an arbitrary disturbed grid 

[17]. The grid generation procedure can be governed by moving the 

boundary nodes along the boundary. Using such a redistribution of the 

boundary nodes orthogonal grids are generated in subregions. The other 

advantage of orthogonal grids is a possibility to simplify a second order 

extension of Godunov's scheme. 

In the present report we consider a second order extension of moving grid 

code and compare results of calculations of hypervelocity impact problems 

with shock-fitting calculations. The strategy of shock fitting grids was 

described in the previous report. Unfortunately, the application of this 

approach is not possible inside of numerical subregions. It means, that the 

description of shock wave propagation and interaction inside of disturbed 

subregion can not be done using shock fitting grids. That is the reason why 

the second order extension of Godunov's scheme is very important. 

3.NUMERICAL   ALGORITHM 

In this report we describe algorithm of computations only briefly. More 

detailed description one can find, for example, in [18], as well as in the first 

report. As we have already mentioned, the numerical region is divided into 

several subregions with Lagrangian boundaries during the computations. Let 

us consider the main steps of computational algorithm for one subregion. 

The first step of computations is the displacement of the boundary of 

subregion. After shifting the boundary to a new position some segments of 

the boundary can change their type due to interaction with boundaries of the 

other subregions. The boundary type determines the boundary condition 

(what is necessary for Riemann problem initial data) and the law of motion of 

the boundary. For example, a shock-front boundary moves according to 

Hugein's principle, rigid wall boundary does not move and so on. 

The second step is an iterative procedure of orthogonal grid generation 

inside of subregion. This procedure is based on the distribution of the 

boundary nodes. This distribution is performed several times until the grid 

generated with conformal mapping becomes orthogonal. 

The third step is a solution of Riemann problems for inner zones and 

calculation of fluxes between the neighboring zones. One should remark here, 



that for an arbitrary equation of state the Riemann problem can be solved 

only numerically. Nevertheless, we employ an exact solver of this problem 

only in vicinity of flow discontinuity. The most of Riemann problem 

computations are done either in isentropic or in acoustic approximation. 

Second order extension of Godunov's scheme can be obtained if we 

assume a piecewise linear distribution of flow parameters inside of the grid 

cells. To conserve the monotonicity property of Godunov's scheme we use 

the "minimum derivative principle" proposed in [19]. The main idea of this 

principle is to choose the minimum possible derivative when interpolating the 

values from the zone center to the boundary with the neighboring zone, 

where the Riemann problem must be solved. If the grid is orthogonal, 

derivatives only in one direction (either along the grid rows, or along the grid 

columns) are important when interpolating cell-centered values to the 

boundaries of the cells. This simplifies the realization of "minimum derivative 

principle". 

4.EXAMPLES OF CALCULATIONS 

In the present paper we consider an application of our 2D code to 

hypervelocity impact problem. One of the most difficult task for any 2D 

Lagrangian code is to compute hypervelocity penetration of projectile into a 

thick target. We consider two different approaches to numerical simulation of 

hypervelocity impact of iron projectile moving with 10 km/s velocity on a 

thick aluminum target . 

First one concludes in a usage of "near-Eulerian" grid, which covers the 

region of the target where the shock wave propagates. 

The second one is fitting of this shock wave by moving the boundary of the 

grid with shock front velocities obtained by Riemann solver. The second 

method in fact, is more accurate to resolve the shock front and is more 

economic, because it does not require a grid in undisturbed regions. On the 

other hand the shape of numerical region is more complicated and, as a 

consequence of that, the grid generated is not so orthogonal as in the first 

case. The results of computations corresponding to these cases together with 

numerical grids are shown in Fig. 1. There were two subregions used in the 

case of shock-fitting grid. One of them corresponded to the projectile, the 

other one covered the disturbed region in the target. In the other case (near- 

Eulerian grid) three subregions were used in computations. 
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Fig.1 Numerical grid and pressure levels for hypervelocity impact calculations 

using shock fitting grid (above the axis) and "near-Eulerian" grid (below the 

axis). 

It is known, that first order Godunov's scheme is a very dissipative one. 

Our experience shows, that this scheme smears out weak discontinuities in the 

case of realistic EOS much stronger than in the case of perfect gas. 

Moreover, this dissipation grows in time. Results of computation of 

hypervelocity impact of iron projectile on aluminum target shown in fig.2-3 

confirms this fact. In contrast to the first order scheme, second order 

calculations exibit nearly constant width of shock front smoothing. 
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Fig.2 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 
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Fig.3 Grid boundaries and levels of constant pressure for the first (below the 

axis) and second order accuracy calculations of hypervelocity impact of iron 

projectile (on the right) on an aluminum target. 



As it has been shown in [20] for the case of steady gas flow, the second 

order extension of Godunov's scheme is not so sensitive to distortions of 

numerical grid as it's first order counterpart. We demonstrate below (Fig.4-5) 

the results of simulation of hypervelocity impact obtained using the first and 

the second order Godunov scheme both on the shock fitting grid and on the 

near-Eulerian grid. Our results generally confirm the conclusions obtained in 

[20]. For the second order scheme (Fig.5) the difference between the results 

obtained on the different grids is negligible, while for the first order scheme 

there is a big difference in the amplitude of the shock wave calculated on the 

shock fitting and on near-Eulerian grid. It is naturally, that the shock front 

dissipation is much pronounced in the case of the first order scheme than in 

the case of the second order one. 

first order scheme  time=7706 ns 

-1.5 -0.0 1.5 

Fig.4 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

"near-Eulerian" grid. First order scheme. 



Second order scheme  time=7749 n.s 

1.5 -0.0 1.5 

Fig.5 Grid boundaries and pressure levels (in kbars) for shock fitting grid and 

near-Eulerian grid. Second order scheme. 

CONCLUSIONS 

We have considered an application of Godunov's scheme on the moving 

grids and it's second order extension (Kolgan scheme) on the example of 

hypervelocity impact calculation. We have shown that this scheme coupled 

with the algorithm of decomposition of numerical region onto subregions 

shows a good robustness and flexibility for multimaterial problems of 

computational fluid dynamics with large distortions. The other advantage of 

decomposition of numerical region of complicated shape is a possibility to 

generate orthogonal grids in subregions 

We have developed second order Godunov's scheme applying Kolgan's 

algorithm of "minimal derivative". It has been found that Kolgan's scheme is 

not so sensitive to the form of the moving grid as original Godunov's scheme. 

The results of second order calculations are much closer to more accurate 

shock-fitting calculations. 
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Introduction 

In this report we present applications of previously described moving grid Godunov code to 

several hypervelocity impact problems. This method employs the exact solution of Riemann 

problem, therefore it is well suited for construction of "nonhomogeneous" computational 

algorithms fitting flow singularities. It is clear, that to fit all singularities, which can arise in the 

flow is rather difficult algorithmic problem esspecially in multidimentional case. That is why the 

most of widespread computational methods of shock wave dynamics are based on 

homogeneous algorithms treating in the same fashion both continuos and discontinuos domains 

of flow. 

To better resolve discontinuities so called high resolution shock-capturing schems are used. 

I Most of them are second order modifications of Godunov scheme [1], which use approximate 

Riemann problem solvers [2-5]. One should mention in this context so called ENO schemes 

(essentially non-oscillatory schemes) which allows one to increase the order of accuracy up to 

fourth or even more [6-7]. Of „course, the higher is the order of accuracy, the more 

complicated is the computational algorithm. For example, as it was found in [8], the cost of the 

third-order ENO scheme is four times that of the second-order one. It may appear the second 

order schemes to be more profitable when using refined mesh than the fourth-order ones. 

We have chosen another approach to construction of high resolution shock-wave codes, 

namely, Godunov scheme on a moving grid. The main principles of this approach were 

described in [9-10] and in the previous HEDRC report. Note that in the framework of moving 

grid code shock waves, contacts between different materials and matter-vacuum boundaries, 

can be easily fitted . By that the grid boundaries coinsided with these discountinuities are 

moved in accordance with the solution of Riemann problem. 

In the present report we demonstrate the advantages of moving grid approach for solving 

four different problems. 

The first one is an impact of thin plane projectile on a thin screen. A great difference of 

longituidal and transverse dimentions leads to a great number of zones when using a 

Lagrangian grid, which covers all the projectile and the target. Our method allows one to 



compute only those domains where the flow is two-dimentional, that gives a substantioi 

economy of computer's resources. 

The second example is the numerical simulation of penetration of a cosmic body moving w 

hypervelocity into gaseous atmosphere with exponentionally increasing density.The typic 

feature of this problem is the presence of various space scales. For examples, the size of tl 

body is much larger than the thickness of compressed gas layer at the face side of the body ai 

on the other side it is much less than the distance which this body passes before it explodes. 

The third problem is a debris cloud simulation produced by ball-plate impacts. In th 

problem the ball and the plate have thicknesses of the same order, that makes it difficult to 

employ any Lagrangian code because of the great deformations of material. On the other sid 

it is known that Eulerian codes give a great dispersion of mass due to averaging of flow valu 

over the fixed zone intervals. Application of the moving grig code in which the computation 

grid moves with material near the boudaries and has a minimal advection error in the cent 

grid region allows one to overcome these difficulties. 

The last example is a numerical simulation of detonation of charges of finite diameters. It 

well known, that a steady detonation can exist only if the size of the explosive is greater th; 

some minimum value. To find this size for a charge of some specified geometry numeroi 

numerical computations are required. When this size is close to the critical one the time whi< 

is nessesary for setting up a quasi steady detonation regime is very long. It means the we mu 

be able to track the propagation' of the front over a long distance. As the region i 

computation increases with time, a grid refinement is required to maintain some specified lev 

of computation accuracy. 

Numerical simulation of impact of projectiles with a great D/L ratio 

Impactors with a great D/L ration (where D is the diameter and L is the thickness) are usec 

in shock-wave experiments in order to simplify their interpretation reducing the last one to II 

case. Nevertheless, the flow becomes two dimentional when the rarefaction waves 

from the periphery reach the center of the projectile. To account 2D effects at the late stages 

interaction 2D simulation is nessesary. In the present report we demonstrate one example of 



application of moving grid to effective solution of such a problem. In fig. l(a-d) numerical gri 

and levels of constant density are presented for high velocity impact of 1mm thick aluminum 

disk on 2mm thick aluminum foil at 8 km/s velocity. The diameter of the disk is 4 cm 

In the beginning of computation we specify two small numerical regions. One of them 

represents the edge of the disk and the other corresponds to the fragment of the foil, which is 

in contact with this edge. Then we mov« the boundary segment separating the ID and 2D flo\ 

regions with characteristics velocity towards to the axis of simmetry. The other fragments of 

the boundary are: free boundaries (back sides of the disk and the foil), contact between the 

disk and the foil and the front of the shock wave runing away from the center. Rarefaction 

waves coming from the back surfaces of the projectile and the target lead to an expantion of 

shocked material and to generation of tensile stresses. That is why the contact between the di 

and the target disappears . The type of the boundary segments is changed automatically from 

contact boundary to free one (fig. lb) For the later times the size of the flow under 

consideration is much more than initial one (see fig. 1 d). The straight line fragment of the 

boundary separates the flow region where the transversal rarefaction waves are important. 

In addition to this example one should note, that there is a lot of problems containing 

different time and space scales which could be effectively solved using moving grid code, for 

example, investigation of thin foil acceleration with laser and ion beams, perforation of 

multilayered spaced shields and so on. 

Computation of large asteroid penetration in Jupiter's atmosphere 

The problems of asteroid hazard are of great interest, because the number of ateroids movn 

in vicinity of Earth is increasing with time. An impact of pereodic comet Shoemaker-Levx 

on Jupiter took place recently (in July 1994). The consequences of this impact were observe 

both from the Earth and space sattelits. In this report we demonstrate an example of numeric?. 

simulation of the penetration of one comet fragment of 1  km diameter into Jupiter's 

atmosphere. The asteroid was approximated by a spherical incompressible body moving with a 

velocity of 60 km/s. Due to its high velocity it passses a distance much more than its diameter 

before it explodes. As the density of the atmosphere grows with distance the flow is unsteady 



Extremly high velocity of impact leads to heating and ionization of a gas flow after shock 

compression. Since the flow behind the shock front is responsible for ionization and luminosity 

of gas, which can be observed an accurate resolution in this region is required. It is clear, thai 

application of Eulerian codes to this problem will lead to a great diffusion of shock front and 

contact interfaces. Eulerian computations also require a great number of computational zones 

to cover the regions in which the asteroid moves. That is why Eulerian computations of this 

problem were performed in 'reverse ballistic' sense using an atmosphere moving towards v.n 

initially stationary fragment [11]. 

To avoid computations in undisturbed domains we surrounded the asteroid region by a tli 

region of the gas, whose boundary moves with the characteristics velocity. The size of the L> 

region grows in time but we can exclude from consideration those parts of the gas region, 

which are far from the asteroid and are not of our interest. The results of computation arc 

shown in fig.2-4. In the beginning (fig.2) of penetration the gas detaches from the back side of 

asteroid and a gas jet appears moving in the opposide direction. Then we cut off the part of gas 

region corresponding to this jet (fig.3). Fig.4 presents the results of simulation for the time 

when the asteroid has passed about 80 km in atmosphere. The pressures at the frontal surface 

of the asteroid become about 0.3-0.5 kbar, that are close to the strength of material. Further 

computations require to account for the fracture of matterial. In accordance with [12 L 

fragmentation of the asteroid leads to a growth of the heat flux inside it, because of signifficam 

increase of the effective surface area. This gives rise to the rapid transformation of the asteroid 

material from the condensed to gaseous state.  If we suppose,  that the fracture ai 

fragmentation of asteroid is due to the stress gradient at its surface, we obtain the distance < 

about 100 km, where the explosion takes place. This agrees with recent observations. 

Numerical simulation of propagation of debris cloud produced by 

ball-plate impact. 

The results of a computation of a 20 g spherical lead projectile striking a lead plate is 



presented in Fig.5(a,b). The impact velocity for this problem is 6.6 km/s. Fig.6 represents the 

experimental X-ray photograph of the same problem at the time moment 30 u. m presented in 

[13]. Simulation results are in accordance with the experiment. The number of zones used 

grows during the computation to ensure some specified level of accuracy. The criteria for grid 

refinement are not purely geometric. When the pressure gradient and the density decrease 

some coalescence of zones takes place. 

Using moving grids demonstrates a substantial economy of required computer memory in 

comparison with a fixed Eulerian grid. One can estimate that about 10 000 - 20 000 mesh 

is required to perform computation of this problem   using   Eulerian grid with the sai; 

accuracy. 

Simulation of detonation in high explosive charges of finite diameter. 

The failure detonation problem is the problem of minimal explosive charge diameter when 

a self-sustained detonation can exist. We present below an example of determination of this 

diameter using numerical simulation. The flow is described by Euler equations. The only 

difference with hypervelocity impact problem is the appearance in the energy equation of a 

source term which is responsible for heat release. To check whether the detonation becomes 

steady or not it is necessary to calculate the evolution of detonation process along the distanc 

of at least several (perhaps tens) diameters. As the downstream flow behind the shock is 

determined by the chemical reaction kinetics and, in particular, by the value of energy 

release, the shock must be calculated accurately. 

The following computational strategy is chosen in accordance with the problems listed above. 

The computational region represents a curvelinear quadrangle. The sides of the quadrangle are: 

the leading shock, the segment of contact between detonation products and vacuum, the 

segment of axis of symmetry, and the forth one is a segment of straight line between the free 

surface and the axis of symmetry, which is perpendicular to the axis of symmetry. The velocity 

of this side is assumed to be directed along the axis and to be equal to max (u+a,D), where !) 

is the shock velocity at the axis of symmetry and u+a is the velocity of characteristic 



surface moving along the axis and calculated using parameters of the cells adjacent to this 

side. It means that the boundary moves relative to the matter ahead of it at least with the sonic- 

velocity. Therefore the flow parameters, which determine the fluxes of mass, momentum 

and energy throughout this side are taken from internal cells. A pressure of 200 kbar, normal 

density and zero velocity were taken as an initial data for calculations. It was found from 

simulations, that the critical diameter is somewhere between 2.4 and 3 mm. Results of 

simulations corresponding to these two cases are shown in Fig.7(a,b) In the case of 2.4 mm 

diameter detonation decays. Calculations for this diameter were performed with different 

initial pressures. In all the cases a steady detonation was not obtained. This fact allows to 

draw a conclusion that the failure diameter of TNT lies within the interval 2.4 and 3 mm. 

This also agrees with the experiment [14]. . 

CONCLUSIONS 

We have demonstrated the robotness and flexibility of developed 2D code 
for hypervelocity problem computations. The main advantage of this code 
in comparison with Eulerian high-order accuracy hydrocodes is an accurate 
treatment of multimaterial interfaces. On the other side, arbitrary 
Lagrangian-Eulerian methods (ALE), which utilize lagrangian motion of 
interfaces and permit an arbitrary mesh motion inside the computation 
region are not always adapted to dynamically evolving interface shape. It is 
the main reason to develope ALE codes on unstructured grids [15]. 
We overcome these difficulties with the help of decomposition of numerical 
region onto subregions. This decomposition is provided automatically during 
the computation. By that one can govern this process excluding from 
computations the regions which are not of our interest. 
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Brief description of the code 

The language of the code is standard F77 FORTRAN. So it can be easily 
installed on any computer with f77 compiler. The code consists of the 
following program modules: 

Module: Function: 

STARTT - input of initial data and transformation 
of these data into file "NAMM.TMP for 

continuation of calculations by module BIG2T 

BIG2T- carries out calculations, renews data for 
continuation of calculations (file "NAM".TMP) 
and records results of the calculation 

REP- modification of the task (possibility to 
add or delete subregions ). The changed data 
are rewritten into the file "NAM".TMP 

UNFTOF- transformation of "NAM".TMP from binary file to 
ASCII file and back (it may be useful for 
transmission of calculation results from one 
computer to other one with different binary 
data presentation) 

Installation of the code 

To create  object modules 

1) copy all files *.FOR and *.INC to 
one directory on a hard disk 
REMARK: all *.INC files must be with capital characters 

2) compile all *.FOR files 

* before compilation probably may be necessary: 

A) to set function which determines CPU time in seconds in 
SUBROUTINE ETIME in the file PC.FOR. (to decomment 
correspondent string may be sufficient) 

B) to change parameters in the file BIGPAR.INC 
(dimensions of arrays) 



3) create loading module  STARTT, using object files: 

startt.o, blocka.o, adi.o, arct.o, big.o, contw.o, univer.o, datO.o, 
dattst.o, disto.o, jup.o, pc.o, shr.o, spect.o, urst.o, coef.o 

4) create loading module  BIG2T, using object files: 

basica.o, blocka.o, mainxt.o, spect.o, tnew2a.o, urst.o, adi.o, arct.o, 
big.o, buil.o, builO.o, buill.o, build.o, contw.o, datO.o, del.o, disto.o, 
god2.o, grnew.o, jup.o, pc.o, ref.o, shr.o, split.o, splitl.o, univer.o, 
coef.o 

5) create loading module  REP, using object files: 

rep.o, blocka.o, spect.o, urst.o, adi.o, arct.o, big.o,  contw.o, datO.o, 
del.o, jup.o, pc.o, ref.o, shr.o, split.o, splitl.o, univer.o 

*Note that modules mentioned above (STARTT, BIG2T, REP) can be 
created using makefile.  To generate first order accuracy code (BIG1T), 
one should replace tnew2a.* by tnewla.* in the makefile. 

Generation of a new initial data ßle 

1) Chose one of the existing initial data files from the 
file list below 

TST2.DAT 
VRB1.DAT 
VRB2.DAT 
VRB3.DAT 

2) Copy the chosen file into file "NAM".DAT, where NAM is 
any name consisting of 1-4 symbols 

(the names of all the files created during the computation 
of this problem will include "NAM" as a root word) 

3) Correct contents of the file  "NAM".DAT with text editor 
using description of initial data file presented 
below 

Description of the structure of initial data file NAM.dat 

The initial data file consists of two parts: 
First part contains control information.This part has the same format for all 
files of this type. Let us consider an example shown below, where the 
fist part of initial data file TST.DAT is presented. 



AL/AL U=10.1KM/C 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

0      1      1      2      1    00      1      0 
NBL-MI-ID1-ID2-IK-IGR-ILENPARIVSP 

9900    1   10   10 300   10 -10    6    0 
 CMM—: H3—-:—-HDEL—:-—T :—STABL—: 

-1.00000E-03 0.00075E-00 O.OlOOOE+00 1.10000E+05 0.50000E+00 

The first string is comment. This is usually short 
information about the problem. (Here this is 10.1 km/s impact 
of aluminum on aluminum). The next strings consist of 
titlestrings and contents_strings. The titlestrings show the 
names of variables. The contentsstrings are values of these 
variables. The assignment of the variables is shown in the table 

TABLE 

variables: meamng: 
ISPR     controls rebound of different boundary segments 

0- calculations without rebound 
1- rebound for "contact" type boundaries only 
2- rebound for "contacts and rigid walls" type 

boundaries 
3- rebound for all boundary types 

LOS       1- cyllindrical symmetry 
0- plane symmetry 

LST      1- there are rigid walls 
0- rigid walls are absent 

IRD      0- to ignore isp 
1- to continue calculations from the restart data 
2- to correct in dialog regime the number of time steps 

after which the splitting of numerical regions into 
subregions will be switched on 

ISP      1- to change in dialog regime the type of" contact " 
between subregions 

0- to do nothing 

IRA      energy source (for impact problems ira is equal to 0) 

ICM      1-  automatical choice of time step 
0 time step = abs(cmm) * stabl 
(cmm,stabl see below.) 



NBL      is the number of time steps to do before copying of all 
flow parameters to output file. 

MI        1- to search the optimum location of 4 angle tops of 
rectangular subregion along the boundary 

ID1,ID2 are the numbers of time steps to do before the 
data record for restart(idl- before the first record) 

IK       is the maximum number of time steps to do. 

IGR      is the number of time steps to do before printing packed 
information about all subregion's boundaries. 

ILEN     is the number of time steps to do before the next graphic 
data record. 
If ilen less 0 then data for the graphics will be 
written in time step=abs(ilen*cmm) in nanoseconds, 
(cmm parameter described below) 

PAR      is the number of flow parameters which must be written for 
graphics data, (from 5 to 7 parameters) 

IVSP     if ivsp is not equal to 0 then ivsp is input parameter for 
subroutine AUTOS P, which changes types of" contact " 
between subregions automatically . 
This automatical regimes must be programmed by user for the 
concrete task in subroutine AUTOSP. 

CMM      is parameter which determines time step (stt) 
stt = cmm * stabl if cmm>0. 
If cmm<0. then cmm will be read from restart or 
cmm= abs(cmm) in case of initial data. 

H3        space precision.(H3 equals to 0.1 of cell size) 
H3 is widely used in the code as a characteristic size. 

HDEL 
The boundary section with length < hdel*(cell size) will be 
combined with neighboring one. 

T        time cpu limit in seconds 

STABL   stability coefficient stt= cmm * stabl 

The second part of the initial data file includes an information about 
geometric configurations of the problem to be solved. The information may 



be prepared using so called UNIVERSAL INPUT. In this case the first 
stringin the second part of the initial data file must be 
UNIVER  
One Universal input starting with UNIVER..and finishing with 
UNIEND specifies only one subregion (numerical block). 
To specify several subregions one must use this block of 
input strings several times. 
The boundaries of numerical subregion are specified in 
accordance with the following rules: 

1) If the problem contains the rigid walls and shock fronts 
they must be specified right after the string UNIVER.... 
For example, in the case of rigid wall the input looks like 
this 

UNIVER.. 
RIGIDRD 
rWALL,    INW, ITT ,AW, BW, CW;STRAIGHTLINE:F=INW*(AW*X+BW*Y-CW)=0. 

1      , "I  , 1, o. , 1-, 0. 
-1      ,-1, 1, o. , 1., 0. 

Here the second string (after UNIVER)   starting  as   RIGIDRD indicates 
to the beginning of   wall specification, which is finished when the first 
parameter (IWALL) equals to some negative value (-1 in this example). In 
the example presented above the rigid wall specified is the straight line 
(ITP=1) and input parameters are the coefficients which determine it's 
orientation. There are following types of walls 
ITP=1 -rigid wall specified by the straight line 
ITP=2-rigid wall specified by the circle 
ITP=3- "transparent" wall (matter can flow out through this wall) 

To specify the front one must put the string starting as FRNTREAD 
either after the UNIVER... or after the rigid wall specification. The front 
specification looks like the following 

FRNTREAD 
cl — read of front information 
ifr,ityp, | the_number_of_front, the_type_of_front 
icont, | thenumberofcontour 
a,b,c, | the contour is straight line a*x+b*y-c=0 ! icont=nomco+l 
ibeg_end,| l-begin,2-end 

-1 

Here the expressions on the right from | are comments. The front 
input is finished when ifr equals to some negative value (-1 in this 
example). The beginning and the end of the front move along the stright 
lines (called contour). There are not more than two contours corresponding 
to the same front. The sequence of the numbers of the contours specified 
must be increasing. Every contour corresponds either to the beginning of 



the front (ibeg_end=l) or to the end. Using such an input several fronts 
can be specified. There are several front types considered 
(thetypeoffront). The main of them are 

1- shock front in undisturbed solid media 
2-shock front in undisturbed porous media 
3- front of onedimensionality 

Specification of all fronts and walls must be closed by the string 
END  

2) The next two strings 

5., 0., 0.,::--USRT~,~-VSTR— ,VPOL 
12,::-NUMBER OF URS 

give the velocity components (USRT, VSTR), porosity of the subregion 
(VPOL) and number of material (EOS). Then the boundary segments 
must be specified. Boundary orientation is counter-clockwise. The boundary 
segment can be straight line, circle or some other arbitrary curve specified 
in the table form. The next string gives the coordinates of the first point 
of the boundary. 

0.,0.,::X0,Y0   - THE LOCATION OF THE FIRST POINT FOR A BOUNDARY (CM) 

If the first boundary segment is a straight line, then the next 
two strings are 

STRAIGHT     1 
0.,1., XE/YE,:: IS COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

If the next segment is a fragment of a circle then must be 

CIRCLE 
XC,YC,ALF,:: is THE CENTER OF THE CIRCLE(CM),ANGLE (O-36O grad) 

The boundary segment can be any arbitrary curve. In this case it 
is specified using the table input 

TABLE 
XE,YE,:: IS THE NODES COORDINATES 
.......   , TABLE INPUT UNTIL INPUT ERROR OCCURES 
END OF THE TABLE 

The specification of the boundary of a subregion is closed by 
the string 

REGEND 



The four angles of subregion must be deteraiined for the purpose of grid 
generation, when the boundary of the subregion is specified. The angles 
input looks like this 

1___2—3—4 ANGLES LOCATION 
11,12,13,14,;; TO FIND 4 ANGLES OF THE RECTANGULAR REGION USING 

CORRESPONDENT BOUNDARY SEGMENTS NUMBERS 11,12,13,14 

In the example of input shown below 

the ANGLES with numbers 1,2,4 are determined automatically and the 
angle 3 is found in the beginning of the boundary segment number 5. 
Initially all the boundary segments have the type of "FREE BOUNDARY". 
If one needs to assign some other boundary type to the boundary segment 
the following strings are necessary: 

BOUNDARY TYPE INPUT 
Then depending on the boundary type can be: 
a)in the case of rigid wall 

RIGID ,;CHANGES "FREE" TYPE BY "RIGID" 

IREG,IRG ,; IREG-NUMBER OF BOUNDARY SEGMENT 
IRG-NUMBER OF RIGID WALL 

b)in the case of shock front 

FRONT ,;CHANGES "FREE" TYPE BY "FRONT" 

IREG,IFR ,; IREG-NUMBER OF BOUNDARY SEGMENT 
IFR-NUMBER OF FRONT 

c) in the case of contact discontinuity 

CONTACT       ,; CHANGES -FREE- TYPE BY -CONTACT- 
IREG Nl IREG1,; IREG-NUMBER OF BOUNDARY SEGMENT FOR CURRENT SUBREGION, Nl- 
NUMBER OF SUBREGION WHICH IS IN CONTACT, IREG1-NUMBER OF BOUNDARY 
SEGMENT FOR Nl SUBREGION 

The input of data for the current subregion is closed by 

UNIEND 

Remark: 
We have described UNIVERSAL INPUT in the text above.  If there are 
special program for more simple input for concrete configuration then the 
name of this program is the first string in the second part of the input data. 
For example: 
DATST1   ; -NAME OF THE PROGRAM WHICH TREATS INPUT DATA 



How to run the code 

1) Run the module STARTT in the directory containing file 
"NAM".DAT 

2) Type  "NAM" when the question "ENTER DATA NAME" appears 

module STARTT will create the files: 
"NAM".TMP-        for following calculations 
"NAM"000.DAT-     first file for graphics 

"NAM".CFG- file containing some parameters (if this file does not exist) 

An example of CFG file is presented below 

1.                 , PLIM [bar] line 1 
2.7104001E-05, ROM [G/(CM**3)]    line 2 
13.93920     , EPSGAS [M/C] line3 
278.7840     , EPSCON [M/C] line4 

9.9999998E-03, ALMIN line5 
0.3000000     , SINCOND lineö 
2.0000000E-02, ALMN line7 
9.9999998E-03, SHISAMI line8 
5.0000001E-02, SHISAMA line9 
0.7000000     , TET line 10 
0.000000     , ADP Knell 

In this file the first two strings are minimal pressure and density, the next 
two strings are accuracy of calculation of wave velocities for the cases of gas 
EOS and table EOS correspondingly. Parameters ALMIN, SINCOND 
(SINCOND is changing from 0 to 1), ALMN are responsible for the 
movement of boundary nodes on the boundary of "special" type. SHISAMI 
and SHISAMA are minimum and maximum shift of the boundary nodes 
during the procedure of boundary node distribution (in relative units). TET 
is a parameter determining the convergence of grid generation (TET>0) 
and ADP is a level of grid adaptation to solution. In the present version of 
the code adaptation in not included (ADP=0) 

When the STARTT finishes its work the following message appears 

THE NUMBER OF PICTURE =0 

3) Run the module BIG2T (or BIG1T) to continue calculations 
4) Reply the questions appearing on the screen 

To avoid the grid tangle in the cases of large deformations to split the 
numerical regions into subregions is recommended. The most frequently 
appearing question concerning that is 

IF YOU DON'T WANT TO SPLIT SUBREGION * 



ENTER number of steps without splitting analysis 

Enter 0 on this question if you want to split subregion, which the program 
suggests to split. Then press enter to continue computations. 

The question ENTER N,M ACCORDING TO THE STENCIL means 
that you can change the type of contact between subregions N and M. 
Enter -1,1 to ignor this (and -1,1 for the next question) 

The program periodically creates the files "NAM"xxx.DAT for graphics 
and renews file "NAM".TMP for restart. 

When the program has done the calculations it starts the dialogue 
from the beginning (asking "ENTER DATA NAME"). To continue 
the computations of the same problem enter the same name NAM. 

5) Analyze the results of computation using graphics 
modules.  For this purpose created graph files 

"NAM"***.DAT (and k"NAM"***.DAT) must be copied to IBM PC 
Then they can be depicted on the screen using and 
written in TIF file using GR.EXE 
(See the manual for GR.EXE) 

6) Continue calculations (point 3) if it is necessary 

7) Change configuration of the task,if it is necessary 
if you want to change configuration you must create 
the file D"NAM".DAT (see description of the file) 
and run the program REP 

Brief manual for GR.EXE 

Executing module GR.EXE shows the results of computation on the 
screen of IBM PC (DOS is required) and writes the pictures shown on the 
screen in TIF format. Besides the resulting files "NAME"***.DAT to be 
shown, one more file K"NAME".DATis necessary to determine the limits 
of the picture. This file can be created anytime by coping already existing 
files of such type. After running GR.EXE one need to answer the questions 
in the dialog. 
1) Type the root name of *.DAT files to be plotted ("NAME") 
2) Enter the number of picture N (file "NAME'N.DAT will be plotted) 
3) Choose the flow parameter to be plotted (1-density, 2-pressure,3- 
porosity 4,5-velocities, 6-energy) 
4) Choose the type of picture (I-levels of constant values and numerical 
grid, I2-levels of constant values for two different flow parameters, DY- 
cross sections along the axis of symmetry, DX- perpendicular to the axis) 



5) When the picture is shown on the screen one can plot over this picture 
another pictures (if the axes are not plotted yet). For this purpose enter 
negative number -N (where Nis the number of picture to be plotted) 
6) To finish plotting enter any character (for example '.') and axes will be 
shown. Then type enter, the name of the TIF file where this picture will 
be saved and CTRL-C to leave the program. 
7) REMARK: When using DY or DX options (plotting cross sections) use 
CTRL-Zto return back for plotting pictures after the question 
1=   INPUT Y/X COORDINATE FOR SECTION. 
There is an example ofGR.EXE execution presented on the picture below 
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Figure .1 An Example of GR. EXE plot 

Example of initial data files 

Let us consider some demonstrative examples of initial data generation 
for hypervelocity impact problems 

EXAMPLE 1: initial data file VRB3.DAT 

Impact of W projectile on Al target 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

1     1     1    2    1   00    1    0 
NBL--MI-ID1-ID2--IK-IGR-ILENPARTVSP 

9900    1   30   30 300   30-500    6    0 
--CMM-: H3 :—- HDEL—:—-T :—STABL—: 

-1.00000E-03 0.02000E-00 0.06000E+00 1.10000E+05 0.60000E+00 
UNIVER        ,; -NAME OF PROGRAM WHICH TREATS INPUT DATA 

RIGIDRD      , ; READING AXIS AND RIGID WALLS 
C IWALL, INW, ITP, AW,  BW,  CW    STRAIGHT LINE: F=AW*X+BW*Y-CW=0. 

1    , -1 ,   1,   0.   ,   1.,    0. 



-1    , -1 ,   1,  0.   ,   1.,    0.    exit,A,A,A,A 
END 
-5.,    0.,      0.,::--USRT-,— VSTR— ,VPOL 
44,::--NUMBER OF EOS 
0.,0.,::   XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
l.,0.,   XE,YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT     2 
l.,4.,   XE,YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      3 
0.,4.,   XE,YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      4 
0.,0.,   XE,YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

REGEND 
c-1-2-3-4 

BOUNDARY TYPE INPUT * 
RIGID ,;CHANGING "FREE" TYPE BY "RIGID" 

1,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF RIGID WALL 

UNIEND        1 
UNIVER , -NAME OF PROGRAM WHICH TREATS INPUT DATA 

END 
0.,     0.,      0.,::--USRT--,—VSTR—,VPOL 

41,   ::--NUMBEROFEOS 
-8.5,0.,::    XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
0.,0.,   XE.YE,::  COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

TABLE 1 
0.,0., 
0.,8.5, 
0.,8.5, 
-8.5,8.5, 
-8.5,8.5, 
-8.5,0., 
-8.5,0., 
END OF TABLE 
REGEND 

1—2—3—4 

1J2„, 
BOUNDARY TYPE INPUT 
RIGID 
1,1, 

UNIEND       2 
ENDINPUT 
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Fig.l Initial configuration for initial data file VRB3.DAT 

EXAMPLE 2: initial data file VRB2.DAT 

IMPACT with shock fitting 
JSPR-LOS-LST-IRD-ISP-IRA-ICM-AIR 

1     1     1     2     1   00     1     0 
NBL--MI-ID1-ID2--IK-IGR-ILENPARIVSP 

9900    1   30  30 300  30-500    6   0 
--CMM-: H3—-:—-HDEL—:—-T :---STABL—: 

-1.00000E-03 0.02000E-00 0.06000E+00 1.10000E+05 0.60000E+00 
UNFVER ,',  -NAME OF PROGRAM WHICH TREATS INPUT DATA 

FRNTREAD 
Cl — read of the front information 
1,1, ;c2 ifr,ityp ,: the_number_of_front, the_type_of_front 
1, ;c3 icont,: the_number_of_contour 
l.,0.,0.,        ;c4 a,b,c,: the contour is straight line a*x+b*y-c=0 ! 

icont=nomco+l 
1, ;c5 ibegend,: l-begin,2-end 
-1, ;c6 end 

RIGIDRD     , ; READ OF AXIS AND RIGID WALLS 

C IWALL, INW, ITP, AW ,  BW,  CW    ;STRAIGHT LINE: F=AW*X+BW*Y-CW=0. 

1    , -1 ,   1,  0.  ,   1.,    0. 
-1    , -1 ,   1,  0.   ,   1.,    0.    exit,A,A,A,A 

END 
-5.,     0.,       0.,::--USRT--,— VSTR---,VPOL 
44, ::-NUMBER OF EOS 
0., 0.,    ::    XO,YO - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
1 .,0.,    XE.YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT    2 



1,4, XE,YE,:: ARE COORDINATES OF THE END OF THE 
STRAIGHT SEGMENT (CM) 
STRAIGHT      3 
0,4,   XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT      4 
0,0,   XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

REGEND 
1—2—3—4 ANGLE LOCATION 

1,2,3,4, 
BOUNDARY TYPE INPUT 
RIGID ,;YOU WILL CHANGE "FREE" TYPE ON "RIGID" 
1,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF RIGID WALL 

UNIEND       1 
UNIVER ,',  -NAME OF PROGRAM WHICH TREATS INPUT DATA 

END 
0,     0,      0,::--USRT-,—VSTR—/VPOL 

41,  ::--NUMBER OF EOS 
-0.25, 0, I:   X0,Y0  - THE LOCATION OF THE FIRST POINT FOR THE BOUNDARY (CM) 

STRAIGHT     1 
0,0,   XE.YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

STRAIGHT     2 
0,4.1, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

TABLE 3 
0,4.1, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0,4.1, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0.25,3.0, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0.25,3.0, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0.25,0, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

-0.25,0, XE,YE,:: ARE COORDINATES OF THE END OF THE STRAIGHT SEGMENT (CM) 

END OF TABLE 
REGEND 

1—2—3—4 ANGLE LOCATION 
1,2,3,, 

BOUNDARY TYPE INPUT 
RIGID ,;YOU WILL CHANGE "FREE" TYPE ON "RIGID" 
1,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF RIGID WALL 

FRONT 
3,1,; IREG-NUMBER OF BOUNDARY SEGMENT,IRG-NUMBER OF FRONT 

UNIEND       2 
ENDINPUT 

Note: Boundary specified by TABLE is considered as one boundary 
segment !!! 
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Fig.2 Initial configuration for initial data file VRB2.DAT 

Strategy of computations and some useful details 

Grid splitting 
To prevent the code failure in grid generation, please, avoid numerical 

subregion being of complicated shape. In the most of cases when it is 
necessary, the program analyses the form of regions and offers the ways of 
dividing them into subregions. Nevertheless, one can split any numerical 
region running module REP. OUT This module requires the data file 
D"name".DAT, where action is specified. In the case ofspHtting the first 
two strings in D'name".DAT must be 
SPLSUB 
ENDINPUT 
Then running REP. OUT one should answer the following equations: 
1) Enter the number of the region to be sph't 
2) Enter option to refine the grid in the subregion (0-no refinement, 1- 
refinement along i- index, 2-along j index, 3- along both) 
3) Enter option to make the grid rough (answers are similar as for 2)) 
4 ) Enter 1-to sph't along i grid Hne, 2-to sph't along j grid line, 0- 
no splitting. 
If you put 1 or 2 on the question 4) there will be one more question: 
5) Enter the number ofi(orj) line along which the region will be sph't. 
To leave dialog enter any negative number of the region. 



Removal of numerical region N 

Sometimes it is desirable to delete the numerical region which is not 
interesting. To do this put the following four strings into the file 
D"name".DAT: 
DELSUB 
N 
-1 
ENDINPUT 
where N- is the number ofsubregion to be deleted. 
Then run REROUTagain. 

Addition of a new numerical subregion 

The code allows one to include into consideration additional numerical 
regions as soon as it is required (for example in the case of an impact on 
multilayered spaced target). To do this put all information about these 
regions into D"nam".dat according to initial data format (starting from 
UNTVER 
and ending with 
ENDINPUT. 
Then run REROUT and a new TMP file will be generated. After that 
proceed with doing computations with BIG2T.OUT 

Changing boundary type. 
Sometimes it is necessary to change the type of boundary between 
subregions. For example, newly appearing subregions (after splitting 
procedure) have so called "special" type of boundaries between each other. 
To change this boundary into contact type is possible running BIG2TOUT 
.For this purpose: 
1) Put IRD=1 and ISP=1 in "NAME'.DAT 
2) Run BIG2T.OUTand enter the following answers on the questions: 

■N1,N2 
N1,N2,M 
N2,N1,M 
-1,1 
-1,1 
Here Nl and N2 are the numbers of subregions where the boundary type is 
to be changed from current type to contact (ifM=0) or to "special" 
boundary (ifM=4). 



~4 

What does it mean and What to do if 

Output print: ???CHANGE CM??? - one of the mesh rows (or columns) 
becomes too thin to satisfy the Courant stability condition. In this case 
program blocks this row with the neighboring one during the flow 
parameter recalculation to the next time step. 

Output print: DJCO(2) - This output usually occurs after splitting 
procedure. One should stop computations and repeat it once again by 
BIG2T without splitting of subregion at the same moment. One can do it 
several steps later. 

Output print: CATCH STOP - something is happened. Press enter to 
continue computations. 

GENERAL RECOMMENDATIONS 

A. Do not split subregions without necessity !! 

B. Changing parameters SHISAMI and SHISAMA one can influence the 
grid generation. You can do the grid more orthogonal making them greater 
and more uniform making them less. If you have some problems with the 
grid, for example, in the case when the grid has strongly different cell 
dimensions in different parts of the numerical region, please, decrease these 
parameters to generate more uniform grid. 

C. Please, look pereodically at your results using graphics 
If you use PC computer you can run CINEMA. EXE in the directory 
where are your graphic files NAME*.DAT are. 

GOOD LUCK 


