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1. Introduction 

The aim of this work was to develop efficient algorithms and 

programs for the solutions of the ionospheric diffraction and 

statistical radiotomography (RT) problems. The diffraction and 

statistical RT problems are related with reconstruction of the 

scattering ionospheric irregularities structure. The use of 

tomographic methods is perhaps an unavoidable stage in evolution 

of nearly all diagnostic systems. At a sufficiently high level of 

development of remote sensing technology and data processing 

resources, it become possible to reconstruct the spatial structure 

of a medium on the basis of tomography. Tomographic approaches 

have already transformed sensing methods in many fields and 

provided fundamentally new results. The major achievements of 

tomography in medicine and molecular biology are widely known. 

Tomographic methods have made it possible to detect previously 

unknown phenomena in geophysics (seismotomography of the Earth and 

acoustic tomography of the ocean). At the present stage, radio 

sounding technology makes it possible to use satellite resources 

to perform ionospheric sounding in a wide range of different 

positions of the transmitting and receiving systems and to use 

tomographic methods. In connection with this, work on RT of the 

ionosphere has began actively in recent years. 

The purpose of this paper is to describe shortly the RT 

methods [1-81 and program developed for reconstruction ionospheric 

Irregularities structures together with some results of computer 

simulation. We are dealing with reconstruction of the 

irregularities of the electron density and of the effective 

collision frequency by scattered radio waves field. Mathematicians 

used very often designations the Inverse problem (IP) or the 



inverse scattering problem (ISP) for such problems of structure 

reconstruction owing to the scattered field. Here we used the 

terms IP or ISP and diffraction tomography as synonims. The 

ionosphere has a rather complex structure; local irregulariries of 

various scales, Including turbulent regions, are present in 

addition to a quasi-stratified background with large scales. 

Therefore, problems of satellite RT of the ionosphere should be 

divided into statistical RT and deterministic RT problems. The 

latter, in turn, are divided into problems of diffraction RT and 

ray RT of large structures, where diffraction effects are not 

significant. 

There is no special reason to provide a strict classification 

of any field of science developing, but certain delimitations and 

explanations of the terminology must be provided so that we will 

not later be reproached for "inventing" new terms unnecessarily. 

In the cases where any projections or "cross sections" of an 

Inhomogeneous object (or a certain transformation of the object, 

such as Fourier transform) are known from remote sensing data and 

the problem is to reconstruct the structure of the object, the 

problem should be considered as a tomographic problem. At present, 

the mathematical foundation for tomography is related to integral 

geometry, where it is necessary to reconstruct an object using 

data on it in the form of integrals with respect to 

small-dimension manifolds. Therefore, the term tomography is 

understood not in narrow Initial sense, as layer-by-layer study of 

the structure of the inhomogeneous objects, but rather in the 

wider sense, as recording of projections or cross-sections of an 

object and subsequent reconstruction of the structure of the 

object from them. The projections of an object are various 

integrals with respect to small-dimension manifolds. The range of 



problems of radio remote sensing of the ionosphere using 

satellites examined in this paper includes reconstruction of the 

structure of ionospheric irregularities from files of various 

tomographic-type data (projections, cross sections), which 

provides the basis for using the term RT of the ionosphere. 

Problems of satellite RT should be divided into deterministic 

and statistical problems. In the case of a deterministic RT 

problem, it is necessary to reconstruct the structure of certain 

large irregularities or a group of irregularities. If a large 

number of irregularities occupies a certain region in space, it is 

unadvised to reconstruct the structure of all realizations 

(generations) of irregularities every moment of time. Here, it 

makes sense to pose the problem of reconstruction of the 

characteristics of full ensemble of irregularities, the structure 

of the statistical characteristics of the irregularities such as 

the correlation function of the electron density, etc. 

We will single out a number of fundamental features of 

problems of RT of the ionosphere or the IP of reconstruction of 

the structure of the inhomogeneous ionosphere. The dimensions of 

the transmitting and receiving systems feasible in practice are 

much less than the distances from them to the irregularities to be 

reconstructed, which are hundreds of kilometers, i.e., the 

aperture angles are small. Since it is extremely difficult and 

expensive to create transmitting and receiving systems with a 

large number of receivers, the necessity for aperture synthesis in 

one coordinate becomes clear. Synthesis apertures can be realized, 

for example, using a moving transmitter on a satellite. We will 

emphase that satellite radio sounding makes it possible in 

practice to obtain files of various tomographic data and to 

actually realize RT of the inhomogeneous ionosphere. In view of 



the small aperture angles, it is advisable to pose the problem of 

reconstruction of the structure of irregularities with dimensions 

singficantly exceeding the wavelength. Therefore, the IP of 

reconstruction of the structure of scatterers which are large in 

compasion with the wavelength will be examined here, but the 

dimensions of the irregularities may be both greater than or less 

than Fresnel zone, and diffraction effects must be considered in a 

number of cases. 

2. Physical and mathematical formulation of the radio tomographic 

sounding problem. 

Radio wave propagation in near-earth space and scattering in 

plasma irregularities in the ionosphere are discribed by a system 

of Maxwell equations with the corresponding material equations 

[93. In the general case, the dielectric permittivity of the 

plasma is a tensor value due to spatial dispersion, even In the 

absence of a magnetic field. However, the spatial dispersion can 

be disregarded for ionospheric irregularities of both natural and 

artificial origin, since the thermal velocities of the electrons 

in the plasma are significantly less then than the speed of light, 

i.e., the approximation of a "cold" plasma is valid. Likewise, the 

velocities of diffusion, mixing and other transport processes, as 

well as the velocity of the transmitting and receiving systems, 

does not exceed 10 km/s (v/c < 3"10~4), therefore , the 

quasistationary approximation is valid; within the framework of 

it, the "slow" time dependence of the characteristics of the 

medium and fields can be considered as a dependence on the 

parameter. 



In place of the equations for the field £(r,t) of a radio 

wave, It is convenient to use equations for the complex amplitudes 

1 of the corresponding monochromatic components, i.e., it is 

advisable to introduce 

2(r,t) = S(r,t)e-iü)t + if (r,t)eiüjt. 

For brevity, the complex amplitudes !Ü(r,t) with a "slow" time will 

be called the field hereafter. Subject to the observations made 

above, within the framework of the quasistationary approximation 

and a "cold" plasma, from the Maxwell equations we have the 

equation for the field 

2 
AE + —p- e E - grad div E = 0, (1 ) 

c 

where e Is the complex dielectric permittivity tensor, f =u/2% is 

the frequency. Analysis of radio wave propagation in an 

inhomogeneous magnetoactive plasma with a tensor dependence of s 

Is a difficult problem. There are no algorithms for calculating 

the parameters of radio signals and the characteristics of the 

scattered fields in the general case of an arbitrary dependense of 

s(r) on the coordinates. Therefore, the statement of the ISP of 

reconstruction of the structure of the tensor characterizing an 

ionospheric irregularity using data on the measured field Is 

unrealistic at present, and hardly advisable In general. The 

non-diagonal elements of the tensor can be disregarded at high 

frequencies, since they do not exceed the square of the ratio of 

the plasma frequency fN to the sounding frequency, i.e., ~ 

N' '    v H' '   s H (fw/f)
2(f„/f)  (fw is the gyrofrequency) [93. For example, the 

6  —3 typical maximum concentration in the ionosphere is NQ ~ 10 cm . 

For it and where f > 50 Mhs, (fN/f)
2(fH/f) ^ 0,001. Likewise, the 



last, "depolarization" term of equation (1), the order of which is 

determined by the ratio of the emission wavelength to the 

characteristic scale of variation of the concentration, can also 

be disregarded at high frequencies. 

Thus, in the case of high sounding frequencies vector 

equation (1 ) decomposes into three scalar equations, and it is 

sufficient to examine the equation for one field component 

A E + k2e(r,k) E = 0, (2) 

4?crN(r) 
where   e(?,u) = 1  - -* e ^ ,    * = 2*f/c    =   w/c    is    the 

•lr(1 + iv(r)/w) 

wave number, r is the classical electron radius, v(r) is 

effective collision frequency, N(r) is the electron concentration; 

"ion" contribution to the dielectric permittivity can be 

disregarded [3]. The relation for e has the same form in both the 

International System of Units (SI) and GGS system; only the 

expression for re changes. 

Then, it will be convinient to introduce the complex function 

q(r,w) = k2(1-s)= 4icreN(r)/(1 + iv(r)/w) and divide it into two 

parts: q -* q0(z,w) + q(r,w), one of which corresponds to the 

regular stratified ionosphere with the dependencies NQ(z) and 

v0(z), and the other of which is related to the three-dimension 

(3D) irregularities on the background of the stratified medium 

N(r) and v(r). The specific and concrete form of relations for 

vQ(z) and v(r) depends on the specifics of the problem [13. By 

reconstructing the structure of the complex function q(r,w), it is 

also possible to reconstruct the structure of these 3D 

disturbances with known information on the regular large scale 

Ionosphere. Therefore we will deal with the two problems: first, 

the problem of reconstruction of the regular large scale 



ionosphere q0(z,u) - ray RT problem; second, the problem of 

reconstruction the 2D or 3D irregularities structure - 

diffractional and (or) statistical RT problem. The introduction of 

q is also justified by the fact that the quantity q ~ (1 - s) 

applies to the generalised susceptibilities [10] characterising 

the response of the medium to the field. Furthermore, the scalar 

Helmholts eguation assumes the form of stationary Schrodinger 

equation, where q is the complex potential: 

AE + k2E - q0(z,w)E - q(r,w)E = ö(r - rQ) (3) 

The delta function in the right side of (3) corresponds to the 

point sounding source in the majority of satellite radio sounding 

experiments, since the wave can be assumed to be spherical within 

the major lobe of the directional pattern of an arbitrary source. 

The dimensional constant AQ in front of the ö-function in equation 

(3) is omitted so that it need not be rewritten in all subsequent 

formulas. The constant is expressed by means of the total power of 

a point source [13. Here, AQ corresponds to the amplitude value of 

the field of a point source, i.e., 

E0(r) = - AQ exp(ikr)/(4%r). 

Hereafter, we can always return to the dimensional field E -* AQE 

when necessary. 

The ISP for equation (3) can be formulated in the following 

manner: it is necessary to reconstruct the structure of the 

irregularities from measurements of the field in a certain limited 

region of a fixed surface in a limited range of frequencies and 

positions of the sounding source. Knowledge of the complex 

function q(r,io) makes it possible to reconstruct the structure of 

both N(r) and v(r). Here q(r,co) is a finite function, 3ince the 
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irregularities of N(r) are confined in space. The regular 

stratified ionosphere is assumed to be known here, i.e., the IP of 

reconstruction of the regular ionosphere is solved by other, 

sufficiently well-developed methods, or its influence can be 

disregarded, for example, as in the UHF/VKF waveband. 

The sheme of the experiments on diffraction and statistical 

RT is presented in Pig.1. The satellite, with a transmitter on 

board moves at altitude z =zQ; the receiving system is located in 

the plane z = zR (on the ground). The receiving system can be a 

transverse array of receivers for diffraction RT or statistical RT 

(or a collection of transverse arrays). Receivers of array 

arranged along (the y-axis) a line transverse to the satellite 

path (the x-axis), arrays being separated by distances of hundreds 

of kilometers. The scatterer (a group of irregularities) is 

located near the altitude z = z . 



3. The solution of the  diffraction radiotomography problem 

(inverse scattering problem). 

Rigorous results of solution of IP (3) for the complex 

potential do not exist. We will emphasize that in the case of 

propagation of waves of various nature in the actual physical 

media the complex nature of the potential q has a fundamental 

character and the corresponding dispersion relations relating the 

real and imaginary parts of the potential can be derived [103. The 

fundamental results on solution of the 3D inverse problem for the 

Schrodinger equation with the real potential q(r) not depend on 

the frequency (where q0(r,w) = o) obtained in [11,12] should be 

noted here. As to the complex nature of the potentials, there no 

rigorous results for the 1D IP, i.e the extension of the familiar 

Gelfand-Levitan-Marchenko algorithm to this case Is unknown, even 

more so for a arbitrary dependence of the potential from the 

energy (frequency o>) [13]. 

Approximate approaches to solution of the 3D ISP are 

therefore of undoubted interest. The approximate approach to 

solution of inverse RT problem Is justified by the properties of 

the regular Ionosphere, the typical scales of essential 

disturbances of which significantly exceed the radio sounding 

wavelength. Therefore, the geometrical optics approximation is 

applicable to description of wave propagation on the background of 

the regulär ionosphere. The scattering in weak irregularities is 

described within the framework of such familiar approximations as 

the Born approximation and Rytov approximation (BA and RA). More 

specialized methods have been used to calculate the scattering in 

strong-scattering irregularities. 

There are many papers connected with the approximate 



approaches to ISP [14-18]. The scattering by weak irregularities 

was described within the BA and RA. The iterative methods were 

used for strong-scattering irregularities. But there are some 

specific features of the ionosphere problems, namely: the size of 

irregularities is very big (it can exceed the probing wavelength 

in 103- 104 times), the ionosphere irregularities can be either 

weak-scattering or strong-scattering. It is very difficult to use 

iterative methods for big size strong-scattering irregularities 

directly. However It is sufficient to use the small-angle 

approximation according to the big size of irregularities or their 

detailes. In what follows we consider the methods of ISP solutions 

only, based on the asymptotic approximation for the forward 

small-angle scattering. It should be noted it is particularly 

interesting for tomographic methods to consider such cases of 

small-angle scattering, when a wavelength of sounding radiation is 

much less compared with the scales of object specific detailes. 

This is necessary condition to reconstruct the complicated 

internal structure of the object. 

In the beginning it is useful to consider the ISP in the 

high-frequency limit i.e. the source field freguency is 

essentially higher than the critical frequency of the regular 

ionosphere. In this case the refraction index is close to unity, 

and the influence of the regular ionosphere may be neglected. 

Then, instead of (1), the following equation should be used: 

AE + k2E - q(r,w)E = ö(T-TQ) (4) 

This differential equation is equivalent to the Lippmann-Schwinger 

integral equation 

E(r) = EQ(r) + f G(r-r') E(r*) q(r*,w) d3r' (5) 
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where G(r)=-(4icr) 1exp(ikr) is the Green's function for a vacuum 

and E0(r)=G(r-r0) is the source field. 

It is necessary to bear in mind that the potential q depends 

on N and v as follows (the usual condition for ionospheric 

radioprobing v « w is taken into account) [13 

q = 4-nr N(r)/(1 + Iv(r)/w) « 4icr_N(r)(1 - iv(r)/u)    (6) 

For the case of small-angle scattering the transmitter, a 

scattering object and the receiver are situated along a straight 

line approximately. Assuming that the direction of this straight 

line is closed to the direction of z-axis one can obtain an 

approximate equation, describing the forward small-angle 

scattering, instead of (5) [1,7] 

U(r) = 1 + f 3?(r,r') U(r') q(r*,Q)) dV =  1 + FUq (7) 

Here U=E/E0.is the normalised field. Under the derivation (7) the 

Presnel's approximation was used for the Green function G either 

as for the.sounding wave field. After some transformations we come 

from (5) to the formula (7), where the kernel P of the equation 

(7) contains coordinates of the transmitter zQ, the finite 

scatterer zs and the receiver zR 

1      k 
F(r,r') = - — exp (i-^p'- s)2), , (8) 

4TCC     ^ 

s = pR(z0 -zB)/(z0 - sR) + p0(zs - zR)/(z0 - zR), 

C= (z0-zs)(zs -zR)/(z0-zR). 

In general case the formulae for s and C have to include the 

integration variable z' instead of zß. But if the object scale is 

less than longitudinal Presnel resolution the varriable z' can be 
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changed on the constant z . 

There is another form of the equation (7), using the complex 

phase $ = In E, ® - ®Q =  In U 

$ - $0 = In (1 + Pq exp($ - $Q)) (9) 

which includes the RA (the first iteration of the non-linear 

equation (9)) 

$ - $0 = In (1 + Pq) « Pq  or  U = exp(Pq)        (10) 

Taking into account (7,10) and making use of the Presnel's 

transformation we have the algorithm for reconstruction of 2D 

cross-section of potential q [1,23 

qz(P» w) = Jq(r,w) dz = (k/2iu02 [ V(s) exp(-Ik(s-p)2/2C)d2s. 

(11) 

The integral projection qz(p) can be obtained after transformation 

of field data. Por case of the BA we have V=-4TCC(E-E0)/E0 and for 

the case of the RA V = -4TCC($-®0) [1,2 3. Changing the direction 

of the sounding wave incident ("turning" the z-axis) one can 

obtain a set of 2D-pro^ections, which makes it possible the 

tomography reconstruction of the 3D structure. 

Determination of the linear potentials q„(p,w) (11) from 

complex potential q(r,w) in the case of forward scattering reduces 

the ISP to a problem of tomographic reconstruction - the problem 

of reconstruction an object from projections. The intensive 

development in the past decade of tomographic methods for studying 

the structure of objects is to a significant extent the result of 

advances in x-ray tomography. The reconstruction algorithms used 

in practical x-ray tomography are based on a linear approximation 

of the ray trajectories. In mathematical respects, such problems 
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reduce to reconstruction of the attenuation function or refractive 

index from group of linear integrals and to reconstruction of an 

object from its small-dimensional projections. In addition to 

x-rays, practically all known types of emissions and waves are now 

used for tomographic purposes. The linear approximation frequently 

does not provide good results in tomographic investigations using 

optical and ultrasonic waves, microwaves and other waves. 

Therefore, methods for reconstruction with consideration of 

reflection and diffraction effects have been developed intensively 

in recent years, and a special term - diffraction tomography - has 

appeared C8-12,4]. 

The solutions of the IP of reconstruction of the structure of 

a scatterer with diffraction considered in the case of "forward" 

scattering obtained above can also be applied to the field of 

diffraction tomography. ISP reduces to the tomographic problem of 

reconstructing a 3D object from 2D projections qz(p,w) (11). By 

rotating the object or rotating the transmitting and receiving 

system in relation to the object (axis s), It is possible to 

obtain a series of linear integrals of qz(p,w), which can be used 

for tomographic reconstruction of the refractive index. However, 

the problem of reconstructing the 2D structure from a set of 

1D "cross sections", i.e., functions measured by one receiver as 

the transmitter on a satellite moves, is also a tomographic 

problem. Furthermore, the physical meaning of the quantities 

measured by one receiver Is of integrals over the cross section of 

the spectrum of the irregularity. A set of such integrals makes it 

possible to reconstruct the 2D cross section of spectrum, which is 

equivalent to reconstruction of 2D integrated projection of 

q (pfu). The set of 2D projections makes it possible to perform 

tomographic reconstruction of the 3D structure. 
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The influence of diffraction reduces to the fact that the 

linear integral (11) is dependent not only on the field "on the 

ray", bur also on the field in vicinity of the intersection point 

of the ray and recording plane (z = zR). If the emission frequency 

is high, then at the limit w -* oo the integral (11) should only be 

dependent on the field on the ray (the eikonal approximation with 

a stright line trajectory). 

Let a plane sounding wave (p0=0, zQ-+ oo) strike the object. 

Then, by calculating the integral (11) at the of high k (kr^/2£»1) 

by the saddlepoint method (assuming that V(s,w) = -4%Cfi^ in 

accordance with smooth perturbation method approximation), we 

obtain 

qz(p,k) a Jq(r,k)dz - (k/27cC)2 V(pR) (2C/k) (-1%)=  2ik^(pR). 

(12) 

To demonstrate, the advance of the complex phase <& at the object 

in the geometrical optics approximation with a linear ray is equal 

to the integral of complex refractive index n(r,o)) = v 1-q/kH 

© = ®n + © + ... = ik J n(r,d)) dz = 

= ik J v 1-q/k2 dz « Ik J (l-q/^k2) dz 

Prom this, for the first approximation of the complex phase of the 

field we have ©., « -iqz/2k, which agrees with (12), I.e., at the 

high-frequency limit linear integrals of type (11) are only 

dependent on the field on the ray. This means that the 

approximation used here also contains the geometrical optics 

approximation with linear trajections at the high-frequency limit. 

The result of the limitation on s of the region where the field is 

recorded is that the function qz(p,ü)) reconstructed from limited 
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data on ^ (a) will be smoothed. The null apace of the equation is 

determined by the parameters of the recording system and defines 

the Rayleigh reaolution limit [13; then qz(p,w) is an integral 

over a ray of finite "thickness". 

To reconstruct the 2D structure of ionospheric irregularities 

according to the transformation (11) we need the information about 

the approximate coordinate of the scatterer zB. let us discuss 

briefly a method for determination of a distance to the scatterer, 

which is essential for irregularities reconstruction by integral 

transformations. If only an approximate value of the distance is 

known then there appear errors in s and £, and hence, the 

reconstructed function is destorted. Let us consider an example 

where a source is placed on board of a satellite and the 

corresponding distortions arising in this case. The distance 

between the satellite and the receivers (zQ - zR) is known quite 

precisely, but in determination the distances "source - scatterer" 

(Zr, - 3 ) and "scatterer - receivers" (zD - zn) a systematic error N O     S B     it 

A is present: z' = z - A. It may be shown that reconstruction 

errors are small for such values of A, which correspond to the 

longitudinal resolution of the measuring system. This conclusion 

is also confirmed by numerical simulations [13. 

It easy to show that when the error A is less than the longi- 

tudinal resolution, A «X   2C2/(max s)2,   the reconstructed 

function is 

%0)  « qz(x/V y/Uy) expdg^ (y
2- x2)),        (13) 

where ux = 1 - A/(zß-zR), Uy = 1 + A/(zQ-zs). This equation makes 

it possible to determine the distance to the scatterer by 

performing reconstruction with different values of A. At the true 

location of the scatterer (A=0) the "phase front" curvature of the 
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function qv under reconstruction changes to the opposite with 

respect to each coordinate. These problems are considered in 

detail in [13 and partly in. [63. There one can find the 

generalization of the method for the ionosphere with the 

stratified background; the method for determination of 

inhomogeneities parameters ("mass", space coordinates, size and 

other moments of potential q) by means of a small number of 

receivers and solutions of IP due to data of back- scattering. 

It is possible to consider the more general case, namely, the 

strong scattering case. For this case in accordance with (7,10) we 

reconstruct the projection Qs of the product of the potential and 

the normalised field Q=qU, namely, 

J qU ds = Qa(p) (14) 

It should be stressed that in general the normalised field U[q3 

depends on the potential and on the direction of the sounding wave 

incident. So it is impossible to solve the problem of the product 

qU reconstruction by means of the direct transformation of a set 

of projections (14). It is possible to suggest Iteration 

procedures of the ISP solution to the equation (14) directly. But, 

if the scale of ionospheric inhomogeneities more than sounding 

wavelength in 103- 104 times, it is even complicated to solve the 

direct scattering problem. So for such cases It is necessary to 

use asymptotic methods. The special asymptotic methods of the 

solution of the ISP for the case of strong and large scatterers 

were developed in [1,183- For example the following asymptotic 

representation of normalised field was obtained 

9, .      *       a2. I a 1 r     ö"q(p+s)      o 
U(p,z) = exp[-   fq(p+s')dz + —=■ (s-s')—^-  ds' + 0(k J)3 

2k i«        4k^ J dp- 
(15) 
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This formula is correct for infinitly smooth potential. The 

corresponding additional terms in the sum (15) will appear in the 

presence of derivatives discontinuities. The formula (15) permits 

us to construct the simple iteration procedure of the ISP 

solution, when it is not necessary to solve numerically neither 

the direct scattering problem, or the ISP. The given first guess 

of the potential q1 (a priori information or transformation under 

the condition of weak-scattering) defines the approximation of the 

normalized field functional UEq13 according to (15). Using this 

approach it is possible to solve the usual tomographic problem of 

the reconstruction q(r) (14) with known "weight" U due to Q (p) 

under the different directions of the sounding wave incident. 

Later on the iteration procedure with the potential approximations 

obtained is repeated. 

The formula representation (15) permits us to formulate the 

conditions of applicatability of the weak-scattering 

approximations. According to this condition the first term ("if1) 

and all successive terms of the expansion (15) have to be small. 

The restriction on the first term gives us the well-known 

condition of the BA applicatability. 

qrm/2k « 1 (16) 

Here q is the typical (mean) value of the potential, r is the 

maximum size of the inhomogeneity. In the case when the wavelength 

of the sounding radiation Ä.=2m and the value of disturbances of 

the ionosphere electron density N " 1011el/m3 the condition (16) 

leads to the inequality rm« 2 km. The disturbances of the 

electron density, scattering radiowaves, have to be measured 

relative to the background of the regular stratified ionosphere. 

So, if the background value N * 1011el/m3 and the disturbances are 
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sufficiently strong (10%), the BA is valid up to the sizes of 

dozens km. But for the case of the main ionosphere maximum (N " 

10 d m~3) the scale restriction is significant and it is necessary 

to take into consideration the first term of (15). The second term 

of (15) for simple scatterers without internal structure is less 

(krm » 1) than the first one. In the case when there are some 

internal details inside the scatterer with the scale a»7i and the 

typical value of the potential q\ the second term can be more 

than the first. Hence the other necessary condition of the BA is 

the condition that the second term with the transverce derivative 

is small 

q*rm/(4k
2a) * 1- (17) 

In many practical cases it is sufficient to take into account 

the first term of (15) only, but the scatterer is not the Bom's 

scatterer according to (16) and the Inequality (17) is valid. Such 

conditions allows us to get the simple analytic formula [1,143, 

which connects the function Qz reconstructed due to the 

experimental data and the projection of the scattering potential 

%  (15). 

Qa(p) = 2ik Eexp(-Iqs(p)/2k) - 13 (18) 

This formula is the basis of the tomography reconstruction for the 

most of ionospheric applications. Really, the inhomogeneities with 

the scale about ten or more kilometers, the deviations of which 

are about 10% with respect to the background, are the strong 

inhomogeneities (the left hand side of (16) is more or 

approximately equal to 6, when k= 2 m), but the inequality (17) is 

valid for the internal details with the scale more than hundreds 

of meters and with the electron density disturbances about 100% 

compared with the background. 
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The uniqueness of solutions of the similar ISP was considered 

many times earlier [1-33. Some exact results are known. For the 

problems in question the uniqueness of the transformation qz (11) 

and the following reconstruction (14,18) of projections can be 

easily proved for the finite volume. 

The results described above allow us to get 2D projections of 

localised ionospheric inhomogeneities with the help of the moving 

satellite transmitter and the transverse arrow of Earth receivers. 

If there are some arrows of receivers separated by distances about 

hundreds kilometers along the line of the satellite flight, it is 

possible to obtain some 2D projections. Having a set of 2D 

projections one can reconstruct the 3D structure also. Such 

experiment (with some arrows of receivers) is rather complicated 

and it was not realized yet. Nowadays experiments connected with 

the reconstruction of the 2D localized inhomogeneities were 

carried out [1,53. This is the tomography problem also because it 

is possible to reconstruct the 2D inhomogeneity projection or the 

2D cross-section of its spectrum after the corresponding 

transformations by means of a set of 1D field records in each 

receiver. 

We will consider the examples of numerical calculations by 

means of eleborated programs. 

Using the first numerical example, we will illustrate the 

necessity for considering diffraction effects in RT reconstruction 

of objects with dimensions rm comparable to the dimensions of the 

Fresnel zone vTC. As was demonstrated above (12), diffraction 

effects are insignificant where kr^/2C » 1 and can significantly 

distort the results where kr^/2C < 1. Fig. 2a shows qz(p), 

consisting of two irregularities - two Gaussians T exp(-p /rf) 



20 

with parameters (iyv A,C = 5, r2/v A,C = 1/3, for the A,=2m, 

C=200km, 2r., = 6.3km, 2r2 = 420m). If we reconstruct the complex 

phase after the emission passes through one large irregularity, 

then according to (12) Im fc, is proportional with a high accuracy 

to the function qz(p) from a large irregularity. However, the 

imaginary part of the complex phase &, (Fig. 2b) from a pair of 

irregularities bears little resemblance to Fig. 2a due to 

diffraction effects in small irregularity. Fig. 3 shows the 

similar picture for the two irregularities with parameters 

(r/vTC = 5, r2/Y~XC = 1/8). The pair of irregularities is 

reconstructed very accurately in the case where the Fresnel 

inversion (11) is used. 

For reconstruction of the structure of ionospheric 

irregularities the questions about sampling data and 

reconstruction procedure are significant. The sounding radio 

signals are always recorded by point receivers. The signal from 

each receiver recording the emission of the moving transmitter on 

the satellite is also sampled by an electronic circuit with a 

fixed interrogation frequency. Moreover, the Integral 

transformations as a result of which the structure of the 

scattering irregularities is reconstructed can be realized 

numerically on a computer only after the appropriate digitization. 

Therefore, both the form of the data recorded and the nature of 

the numerical processing and the reconstruction of the objects 

lead to the necessity for performing purely discrete operations. 

However, in theoretical examination of the solution of the inverse 

scattering problem the immediate switch to discrete formulas is 

hardly advisable in the majority of cases. Usually, the discrete 

analogues to the reconstruction formulas are significantly more 
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cumbersome, and besides the discrete form hinders analysis of the 

results obtained. On the other hand, the switch from continual 

relations to their discrete analogues does not cause difficultes 

in the majority of cases and is performed in a unique manner. So, 

continual formulas can be considered a compact notation of their 

discrete analogues for further practical reconstruction. 

Let us consider the switch to discrete analysis of the 

reconstruction procedure and the questions associated with this 

switch using the transformations (8), (11). It should be noted 

that, the methods for digital processing of signals and fields 

have been developed rather well and covered in the literature 

[19,203. 

First, we switch in (8, (11) to the dimensionless variables P 

= p/v~XC ; S = S/YTC , normalized to the radius of the Fresnal 

zone. Intriducing the quantities 

-  %$)X     iicP2       -  V(s) -i-nS2 
Pn(P) » e     z  F(S)S—-e (19) 

from (11) we obtain the pair of integral Fourier transforms for 

them [1] 

p (P) = X Fv(S) e-
2l7cSP d2S 

"~ (20) 
P (S) = X 3? (P) e+21,IcSP d2P 

By virtue of the definition Pq(P) is a finite function due to 

the finiteness of qz(p). Let the dimensions of the object not 

exceed the limits of the segment [-PQx, P0x3 in axis x and t-P0y, 

P ] in axis y, i.e., the carrier of the function P (P) is 
Oy -* 
contained in a fixed rectangle. Then, PV(S) will be an infinite 
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and analytical function with a finite spectrum F_(P). According to 

the Kotel'nlkov theorem PV(S) can be represented In the form of an 

infinite series in terms of sample functions with the sampling 

intervals ASX = P^/2. ASy = P^:^ 

x"y   "Ox   Oy 

Substituting this representation In (20) and integrating with 

respect to S , S , we obtain the relation 
* ■  (21) 

Using the concept of signals which are really 

Indistinguishable at the level 8 [21], it is advisable to 

introduce a finite function which is really indistinguishable at a 

fixed level from FV(S). Let the carrier of this function be 

contained in the rectangle £-S0z,S0z] x [-S0y,S0y]. Then, 

according to the landau-Pollack theorem [21,22] the approximate 

dimension of the set of all functions F (S) finite at a fixed 

level with a carrier in the rectangle £-S0z,S0z] x t-S0rS0y] and 

with a finite spectrum supp Fq(P) e [-P0x, PQz] * [-P0y, PQy] is 

close to ]yjy = (2S0x*2P0z) x (2SQyx2P0y). m other words, due 

to the finite accuracy in measurement of the signals it can 

assumed that both the signal and its spectrum are finite. The 

limitation on the carrier of the spectrum leads to a finite 

sampling frequency and 

?,<P). APX - 1/2S0x> APy = 1/2Soy, 

here, the number of sampling intervals on the Cartesian axes is 

equal to Nz = = 2SQx/ASz = 2PQz/APz, Ny =2SQy/ASy = 2PQy/APy. 

Prom this, assuming Pz = nzAPz, Py = nyAPy, it is simple to switch 
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from (19),  (20)    to   a pair of   discrete   transformations for Fy = 

P/(APxAPy) H Fq = F( 

mn      mn 

1      
Nx/2-1     Ny/2-l -2ix(-^- + -¥-) 

q * V      Vy  V"Nx/2 V"V2 V 

(22) 

MM "A + W 
Nx/2-1      V2-1      „ -2^X-     TC-> 

"x" Nz/2 V   y/2 

Later on, the fast Fourier transformation algorithms are used in 

the numerical modeling and the numbering of the sums over m^, n^ 

is shifted from 0 to Nx - 1, and likewise for niy, By. 

The dimensions of the reception region SQx, SQy and, 

consequently, the sampling intervals APX, APy also determine the 

resolutions. To demonstrate, the minimum resolvable interval öx in 

x is equal to öx= 7"XC, APX= rW2S0K = = ^C/2Sm. A limitation of 

the reception region always limits the resolution or the sampling 

interval and the function with a finite spectrum. Therefore, 

generally speaking, with a limited reception region it is possible 

to switch immediately from (21) to the finite, discrete Fourier 

transform (22). 

The switch from other continual reconstruction formulas 

containing the Fourier and Fresnel transforms to their discrete 

forms is also made according to this scheme. 

The practical realization of reconstruction of the structure 

is governed to a great extent by the resistance of the 

reconstruction procedure to the various types of noises and 

distortions which unavoidably appear in measurements and 

processing of experimental data. Let us illustrate the influence 
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of noises and distortions on reconstruction of the structure on 

the examples of numerical simulation. Briefly discribe a modeling 

scheme using the example of two-dimensional Fresnel 

reconstruction. 

The modeling scheme 

-» ™ -» 

qz(p) => Fq(P) * FV(S) ■> V(S) => ..... =* qz(p) 
i 
i 

noises, distortions 

The function q (?) characterizing the two-dimensional structure of 

the electron concentration irregularities and the effective 
-» 

collision frequency is defined. Then, the quantity Fq(P) is 

calculated using formula (19). After performing the discrete 

Fourier transform (22) corresponding to (20), FV(S) is obtained 

and, thus, the field V(S) in a discrete grid. This stage of 

modeling is related to the direct scattering problem, where it is 

assumed that the scattering is calculated well within the 

framework of the corresponding approximations. Further, the noise 

can be added to the data on the field obtained, after which the 

inverse discrete Fourier transform (22) corresponding (20) is 

performed, and the result of reconstruction qz(p) is obtained as a 

result. The influence of distortions is modeled in asimilar 

manner: in the inverse transformation stage, the parameters of the 

transformation are changed or "distorted". 

The results of numerical modeling of the influence of noises 

have demonstrated the stability of the reconstruction procedure. 

Fig. 4 shows two actual irregularities of qz(p) - two Gaussians 

with various dimensions on a 64x64 grid. The total size of the 

image frame in units of the scale of the Fresnel zone VTc,  is 
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equal 5x5. After calculating the complex phase of the field 

scattered by these irregularities, the data on V were disturbed by 

noise. Then, reconstruction was performed; the quality of it was 

sufficient even with comparatively large errors in the measured 

field [23]. For example, Pig.5 shows the result of reconstruction 

of these irregularities according to data on fcj with additive 

complex Gaussian noise having a variance of 0.05 of maximum 

amplitude of the change in the real and imaginary parts of complex 

phase of the field. Pig.6. illustrates reconstruction with double 

the noise (a variance level of 0.1). Another numerical example: 

actual irregularities - "cylinder" and "parabola" are represented 

in Pig.7. The result of reconstruction of this model structure 

with additive noise (a variance level of 0.05) is shown in Pig.8. 

Pig.9 illustrates the reconstruction with double noise (0.1). If 

we perform preliminary processing of the data, then even higher 

noise levels will not noticeably influence the results of 

reconstructions. 

Numerical estimation of the level of influence of the noises 

is of interest for practical applications. It is advisable to 

characterize the level of influence of the noises in the metric G 

and L2. In a discrete reconstruction procedure, it Is better to 

use their discrete, normalized analogues, i.e. we will estimate 

the difference between the function f reconstructed from noisy 

data and real function f by the numbers 

„  maxlfi-f-l       m ±  
(fi-fi>  1/2 

p ff.f) = -1  ;  p P(f,f) = [   ]  , (23) 0      maxlf.I     If y f2 
i  x \ ri 

where summation and selection of maximum are performed for all 

increments of recorded function. 
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The dependence of the normalized disturbance of the 

reconstructed two-dimensional structures (i.e., the difference 

between the true real qz(p) and reconstructed qz in the metrics 

p and p2) on the amplitude A of normalized (to the maximum 
L 

amplitude of the change in the field) complex Gaussian noise is 

shown in Tabl.1 for the irregularities in Fig.7. It is clear that 

the normalized deviations of the reconstructed two-dimensional 

structures are comparable to the noise level. The absolute 

disturbances of the real part, although the true function is real. 

Distortions of irregularities reconstructed by radio 

tomographic methods appear due to imprecise determination of the 

distance to the irregularities and, as a result, incorrect 

knowledge of the given parameters of the integral transformations. 

The influence of distortions was modeled by the scheme described 

above. The model in Fig.10 (two irregularities: "cos" and "cosA2" 

ellipse) is the object of reconstruction. The imprecisely 

determined coordinate of the scatterer zg = zs - A with an error A 

was substituted in the parameters of the Fresnel transformation. 

Numerical values zQ - zg = 700 km, zg - zR = 300 km, X = 2 m 

typical for satellite sounding were used in the calculations. The 

dimension of the Fresnel zone here V~XC ** 0,65 km, the frame 

dimension was 6,4x6,4 km and the transverse resolution Ö was of 

the order of a hundred meters. Fig. 11-15 provide reconstructed 

two-dimensional structures with various values of the error in 

determination of the coordinates A measured in kilometers; A is 

successively equal to -10, +20, -20, +30, +40 km. It is clear that 

an error of 10 km has little influence on the reconstruction. 

Errors A of the order of 20 km distort the object, but the 

characteristic details of the object are reconstructed fairly. 
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Only errors exceeding 30-40 km noticeably distort the 

reconstructed Irregularity and may lead to Incorrect conclusions on 

the structure of the object. The values of the errors In 

reconstruction In normalized metrics are shown in Tabl.2. The 

modeling was performed for two Gaussians. The analogy 

dependence of error reconstruction on the A is shown in the graphs 

in [1]. The reconstruction errors have a clearly pronounced 

minimum and are minor te 0,1 + 0,2) within ± (5 - 10)km. We will 

note that dimension of this minimum agrees in order of magnitude 

with the longitudinal resolution öz of the system; here, the 

transverse resolution Ö ~ K/Q " 100 m, the aperture angle 6 ~0,02 

H 5„ ~ V82 ~ 5 km. Therefore, determination of the distance to 

scatterer with accuracy of the order of the longitudinal 

resolution of the recording system is sufficient for high-quality 

reconstruction. The method for determining the distance according 

to the change in the curvature of the "phase" of the reconstructed 

function makes it possible to achieve this accuracy in 

insignificant noises [11. 

On reconstruction of qz using the formula (18) the main 

obstacle is that Qqz is a periodical function of qz, therefore, a 

real part of qz is not unambigiously defined by Qz, which we get 

from experimental data. Since that, making use the formula (18) 

one cannot immediately reconstruct scatterers that exceed 4%k. It 

should be noted here that it's much more than BA-based 

reconstruction procedures are applicable to. Namely, we have found 

using numerical simulations that BA holds for scatterers 

satisfying the inequality 

q_/2k < 0.1. 
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In principle, one can reconstruct more Intensive scatterers, 

assuming that Qz is zero if qz crosses ick level, or if any 

additional information about the scaterer structure is available. 

We have derived an algorithmic procedure for finite 

scatterers, which allows one to reconstruct scatterers exceeding 

4Tuk. We have seen that the main obstacle which restricts this 

procedure capabilities is the finite number of receivers which 

register the scattered field. From the formal mathematical point 

of view, that simply means we get only finite number of Fourier 

expansion terms , i.e. we deal with the truncated Fourier series 

of Qz. 

Thus to obtain q„ we have to derive it from a truncated 

Fourier expansion of Q , which in turn is a nonlinear transcendent 

function of q . This makes us use the numerical simulations to 

investigate the domain of applicability of this procedure, because 

immediate analysis of that algorithm is extremely difficult. 

We have performed such an investigation of this procedure 

applying it to various scatterers. The examples of such numerical 

simulations of reconstruction of 1D projections of 2D scatterers 

are presented on Fig.16-18. The scatterer - receiver distance was 

assumed to be 300 km, the sounding wavelength was 2m. Thick curves 

correspond to initial projections qz which had to be 

reconstructed, thin curves are the reconstructed images of qz 

using the procedure described above. Just for checking, the.Qz 

patterns are also shown (small amplitude fast oscillating curves 

of normal thickness). On the Figure 16, the scatterer is not too 

strong, so two curves simply coincide ( the projection is exactly 

reconstructed ). On the Fig. 17-18, where stronger patterns are 

given, one can see the discrepancy between exact image and 
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reconstruction. One can see very easy that mistakes in the 

procedure work arise mostly on those fragments of scatterers where 

the transverse derivative idqz/dxi = !dQz/dxi is big enough, so 

the oscillations of CL become so fast that CL is no longer 

approximated by the truncated Fourier expansion well enough. They 

may cause the loss of zeros of Qz, which correspond to increments 

or decrements of 4?uk. The numerical simulations using wide variety 

of scatterers have confirmed this conclusion. Moreover, they have 

shown that only the transverse derivative absolute value idqz/dxi 

is critical for the correct reconstruction. Of course, it causes 

the limitation on the maximal intensity of the scatterer, since 

for continuous function qz(x) iqzi < a idqz/dxi. For this reason, 

the problem to calculate this boundary value for idqz/dxi had also 

been posed. The value which we get estimating the supremum of the 

truncated Fourier expansion derivative (it is bounded as a 

derivative of polynom) is much more than actual value. Fig. 19 

shows the normalized derivative value times 2icN plotted versus N, 

where N is the number of terms retained in the Fourier series. We 

assumed that well-approximating reconstruction it that one which 

has the maximal normalized discrepancy between exact and 

reconstructed images less than 0.1. 
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The description of Fortran Programs 

System Requirements 

- Computer:      IBM AT or compatible (with coprocessor) 
Operating System: MS-DOS or PC-DOS version 3.0 and later 

- Memory: 

- Hard Disk Space: 
- Software: 

at least Extended memory 4 Mbytes 
(depends on geometry and type of 
approximation reconstructed function) 

4 Mbytes 
compiler 1.4e and linker 2.2d 
NDP-P0RTRAN-386(c) MicroWay or later 

1. Program <DT_DIR.for> 

This program solves direct problem, namely, determines complex 
field V(3) by means of Past Pourier Transformation (PPT) based on 
the model structure of irregularities. 

Input parameters and files: 
(the determination of the irregularities parameters) 
file <modj?ar.tsk> contains the following parameters: 
« line 1 in file 

•wave length (km):* 0.002 
line 2 
'distance to satellite (km):'       1000. 
line 3 
•distance to irregularities (km):'    300.» 

These parameters you can change in the file. 
NY - number of receivers 
MNY - the degree of 2 for NY (namely, 2AMNY=NY) 
NX - number of discrete intervals on the axis X 
MNX - the degree of 2 for NX (namely, 2AMNX=NX) 
RMN - the radius of the Fresnel zone. 
PX,PY - the limits of segments [-PX/2, PX/2] in axis X and 

[-PY/2, PY/2] in axis Y; object (model structure not 
exceed these limits; variable ?) 

SX,SY - the limits of rectangle [-SX/2, SX/23x[-SY/2,SY/2] 
(variable 3) 

(DLV in program) 

(ZZO in program) 

(Z in program) 
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YR - the size of the receiving system (km) 

X02 - the size of aperture "synthesized" by satellte (km) 
DXX, DYY - the size of frame (km*km) 
NMOD - number of model structure (1-10): 

1 - the gaussians 

2 - "homogeneous" ellipse 
3 - "parabolic" ellipse 
4 - " 2 + 3 " 
5 - " 2 " with absorption 10% 
6 - " 3 " with absorption 20% 
7 - "cos" ellipse 

8 - "cosA2" ellipse 

9 - " 7 + 8 " 
10 - arbitrary 

Nmod is introduced from the screen 
Const5=0.1 (namely,10%) - constant for NM0D=5 
Gonst6=0.2 (20%) - constant for NM0D=6 
Z1,Z2,Z3,UG   

parameters for 

models 

A1,B1,A2,B2,X0,Y0,Y1,A3,FPC,FPS 
AELP.BELP 
APAR.BPAR 

AELP1 .BELP1,APAR1,BPAR1   
RN - complex field 

Subroutine <SMAXMI> calculates min and max of array 
Subroutine <FFT> calculates 1-D Fast Fourier Transformation 

Output files: 
<M0DEL.GRD> - contains the model structure of irregularities and 

the number of the model (NMOD) and constans VMD and 
ZED (for determination of reconstruction's errors) 

<V_real.grd> - the array of real parts of the field RN 
<Y_imag.grd> - the array of imaginary parts of the field RN 
Execution 
f77 dt_dir.for 

RUN 
dt_dir.exp 
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2. Program <DT_INV.for> 
This program solves Inverse scattering problem for weak- 

scattering irregularities In the case when noise is present in the 
measurements of the field and calculates the errors of the 
reconstruction in metric C and 12 in dependence on level of noise. 

Input parameters and files: 
Parameters < NX, MNX, NY, MNY, PX, PY, SX, SY >are similar to same 
parameters of program <DT_DIR.F0R>. 
FILES (from program <DT_DIR.for>): 

<M0DEL.GRD> - input file of model structure. 
<V_real.grd> - the array of real parts of the field RN. 
<Y_imag.grd> - the array of imaginary parts of the field RN. 

Parameter <Error> - the level of noise (0 < error < 1) 
Error is introduced from the screen. 
Const5, Const6 - are similar to same parameters of program 
<DT_DIR.for> 
Subroutine <SMAXMI> calculates min and max of array 
Subroutine <FFT> calculates 1-D Past Pourier Transformation 
Function <RAN> - determinates random values in [0,1]. 
K33 - the constant for function <RAN> 

Output files: 
REC_er.GRD - the reconstruction 
er__rler.dat - contains the errors of reconstruction in metric C 

and 12 
Same errors are shown on the screen. 
Execution 
f77 dt_inv.for 
RUN 
dt_inv.exp 

3. Program <DT_ERR.for> 
This program solves inverse scattering problem for weak- 

scattering irregularities in the case when distortions are present 
in the measurements of the field and calculates the errors of the 
reconstruction in metric C and L2 in dependence on distortions. 
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Input parameters and files: 
Parameters < NX, MNX, NY, MNY, PX, PY, SX, SY > are similar to same 
parameters of program <DT_DIR.F0R>. 
FILES (from program <DT_DIR.for>): 

<M0DEL.GRD> - Input file of model structure. 
<V_real.grd> - the array of real parts of the field RN. 
<V_imag.grd> - the array of imaginary parts of the field RN. 
<mod_par.tsk> is similar the same file in program <DT_DIR.for>. 

Parameter <DEL> - the error of irregularities coordinate in km 
DEL is introduced from the screen. 
Subroutine <FFT> calculates 1-D Past Fourier Transformation 
Output files: 
REC_cr.GRD - the reconstruction 
er_r!cr.dat - contains the errors of reconstruction in metric C 

and 12. 
Same errors are shown on the screen. 
Execution 
til dt_err.for 
RUN 
dt_err.exp 
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4. The solution of the  statistical radiotomography problem 

(statistical inverse scattering problem) 

Rather frequently, the ionosphere contains entire regions 

filled with large numbers of irregularities of various dimensions. 

Such a state is typical for the equatorial and polar regions, 

especially at night. In this case it is advisable not to 

reconstruct individual realization of such disturbed ionosphere, 

but rather to pose the problem of reconstruction of the 

statistical characteristics of the turbulent random ionosphere 

such as correlation function or spectrum of fluctuations. So, such 

reconstruction of random ionosphere statistical properties by the 

measured field statistics it is reasonable to name the statistical 

ISP or the statistical RT problem [24,253. 

We consider the reconstruction of ionosphere electron density 

fluctuations spectrum by means of satellite radioprobing data. 

Integral equations, which relate the measured field to the medium 

structure are probably the most convenient and adequate 

mathematical technique for the tomography. In this paper we shall 

show how to derive such equations. For simplicity it is reasonable 

to use two frames of reference. The first "global" frame of 

reference r=(x,y,z)=(p,z), its origin is related to the receiving 

system as in the previous section (Pig.1). The origin of the 
-*       -* 

second frame of reference K=(X,y,Z)=(V,Z)  is reasonable to locate 

at one of the transmitter positions and the Z  axis to direct to 

the center of the receiving system. As the transmitter moves it is 

convenient to use several such "local" frames with different 

orientations. Such frames are introduced to make derivations 

shorter, because the probing wave scattering in each local frame 

may be treated as "almost forward" small-angle scattering. The 
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lower boundary of the layer of irregularities is zd, the upper - 

z in the global frame r. After performing the Presnel expansions 

of exponents in the (5) for small-angle scattering, we obtain the 

integral equation for Ü (7). This equation is written in the local 

reference frame, S(Z-ZQ) = (27-Z0)» + (Z-Z')R ; D{Z-ZQ) = 

(Z'-Zn)(Z-Zf). For making formulas shorter we assume, that the 

transmitter is located exactly at the local frame origin, i.e. KQ 

=  (Po,Zo)=(0,0,0). 

To reduce calculations and to use known results we transform 

(7) to the parabolic equation in new variables £ = 1/2, o = V/Z, 

£•= 1/2?. Then (S-P' )2/Z> = (a-S'P')2/(r-£) and U satisfies the 

differential equation 

(-21k — + An - r
2q) U(g,o) = 0 (24) 

Equation (24) is derived from (7) by differentiating and making 

use of the following relation for the fundamental solution of the 

Schrodinger operator [241. Having derived the parabolic equation 

we use the methods developed to obtain equations for the first and 

the second moments of U [26,273. Let us assume also that the 

random field q to be Gaussian and ö-correlated along 2, 

B(»1t^)s < q^,^) q(P2,2-2)> = 0(Z2-Z1 ) A^P^ ) (25) 

In the similar way in the variables (o,£) it is possible to derive 

from (24) equations for the second moments of the normalized field 

7(7?) = E(7?)/<E(7e)>, 

r1 Q(P,Z)  = <7(P2,Z) 7tP1,2')> - the first coherence function, 

IV, Q{P,Z) = <7(P2,Z) 7(P1?Z)> - the second coherence function of 
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the second order. As the calculations are described In the papers 

mentioned above, we present only the final result in the variables 

P+ =  (5&|+£2)/2, P = Pp-P^  and for statistically homogeneous layer, 

when the dependence on P+ is absent. 
(26) 

d       V   d 1 
tik(— + - —) + AX + — A (P)i r2>0 = o, r2j0(£,2-u) = 1 

dZ     Z dV 4k 

The integral equation, corresponding to (21), has the form 

-»       i       ^Q ik 
r? n(p,z) = 1 +  I d3/?' rP n(£',2") exp(^(S-^')

2) 

(27) 
The following formula for r1 1 is well known [26,271. 

1 Z Z% 

^ s1 (£,Z) = ezp(—2 J Aq(p-^-) d2" ) (28) 
Z\i 

Eguation (27) follows from (26). The resulting integral equation 

is valid also at VQ * 0, ZQ ? 0. 
The integral equation (27) is the basis of the statistical 

RT. According to (20) A (£) is the correlation function 

projection, X B(P,Z) dZ = kQ{P). Measured wave coherence functions 

allow us to determine projections of the complex potential q 

correlation function by the (27,28). To begin with, let's assume, 

that irregularities occupy a sufficiently extensive layer, oblique 

to the probing wave propagation direction. To reconstruct 

projection A (P)  it's necessary to determine the layer coordinate 

Za.  It may be done by a single receiver. The special procedure for to 

determination of the scattering layer ^-coordinate by equation 

(22) was developed [1,243. 

In many situations randomly inhomogeneous media represent 
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statistically quasi-homogeneous fields with slowly varying 

statistical properties, i.e. such fields, for which the 

correlation radius of the differential argument is essentially 

less than the scale of the variance a. In other words, the 

correlation function is represented as a product B(ftvft2) = 

G2(ft)£(Aft,ft), where ft = (ft.,+ ft2)/2, Aft = ft.,-^. A randomly 

inhomogeneous field with the costant correlation coefficient £(Ar) 

but with varying fluctuations variance a2 (ft) may be called an 

"additive" field, because the electron density changings influence 

only the fluctuations intensity, but the correlation coefficient 

dependence on the summarize argument ft is absent. Assuming the 

field q to be ö-correlated, as was done above, it is possible to 

obtain similar equations by the same technique. The correlation 

function projection A (P) in the integrands should be replaced by 

o2(Z) K(P). Here K(P) = X £(Aft) d(AZ') is the correlation function 

projection. Then formula for r1jt and the equation for r2j0 have 

the form 

r? niP,z)= 1 + — f dV liflE^. r2 0(ft') exp(i^(S-^')
2) 

^»u 167Ck J        u 

(29) 

1 Z    -       Z% 

(30) Tu,iP.Z)  = exp( -?  J od(Z')  K(p 2-) ÖZ') 
Zu 

2. 
The equations (29,30) contain the unknown function o (ft). So, the 

problem of the correlation function reconstruction is divided into 

two ones: the problem of reconstruction of the fluctuations 

variance a2(ft), and the problem of the £(A#) reconstruction given 

the measured projections K(P). 

The formula (30) allows us to determine integrals of <r(Z) 

along the direction (Z axis) of the probing wave propagation. If a 
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set of different integrals is given for a region filled with 

irregularities we arrive at a tomography problem. Usually in the 

experiments there exist a natural limit to the number of 

projections and angular range of probing waves propagation 

directions. Hence, the problem when data are known in the small 

angle range should be solved. A similar problem was solved in the 

ray RT. Information about the fluctuations intensity a2 (ft) 

distribution is sufficient to reconstruct a set of correlation 

function projections given by measured coherence functions. 

Methods of the statistical RT problem solution are similar to the 

discussed above, with the substitution of the product cr(ft)K(£) 

of the known function ac(7?) and the correlation function 

projection K(£) instead of AQ. A set of projections K(P) allows us 

to perform tomography reconstruction of the correlation 

coefficient K(Aft)  or its spectrum. 

With the help of examples we want to illustrate the results 

of programs and numerical pattering. Reconstruction of electron 

concentration fluctuations spectra was made in two steps: 

pattering of environment fluctuation spectra and recovery of the 

power angle spectra of the dispersive environment. 

I. Pattering of environment fluctuation spectra. In the given 

program <ST-DIR.F0R> the account of accidental realisations of 

electron concentration power fluctuation spectra is made. The 

pattering scheme is given of tabl.3. 

1. The sum of three (of five) Gauss lines with defferent width 

and intensivity was taken as a pattern of spectra with a few 

maximums. The location of local maximums and their width depend on 

the dimentions of the area (32*32,64*64,etc.) and were given by 

the quantity of accounts from the beginning of the area.The 

intensivity of local maximums was given in the percent relativity 



jy 

from the intensivity of the center maximum. 

2. The computation of correlation function projections of 

dispersed field r^ is made in polar coordinates for the given 

reception angles in condition with equation (28). The projections 

of environment correlation functions R(p,<|>n) calculated with the 

help of fast Fourier transformation from the spectra ^(p.cj^) for 

every given reception angle in area [0,^/2]. 

3. The form of casual realisations of the dispersed field is 

made in two steps. At first, with the help of linear congruent 

method [28,29] statisticaly independent one-dimentional 

realisations of casual numbers with proportional spectra were 

obtained. Then, with the help of spectra method of reorganization 

[30] the prosess with given correlation function ^(p,^) was 

formed. 

4. The selected (casual) correlation functions of the field 
A; 
r11 (P'V* were calculated from alone realisations of the field. 

5. The selected projections of correlation functions of the 

environment R(p,cf>n) were calculated by logariphmation of the 
iv A; 

function r^Cp.cJ^). The appropriate R(p,<f>n) casual power spectra 

of environment fluctuations ^(p,^) are defined with the help of 

standard procedure fast Fourier transformation. The given model of 

environment spectra (in Decart coordinates) is given as the 

illustration on fig.20,a. Area dimentions are 64*64, width of 

central and local maximums on the level of 0.5 their intensivity 

is 1/8 from linear dimentions of the area. The local maximum 

intensivety is L,=0.3IC (lc means intensivity of central maximum). 

From the fig 20,b one can see casual spectra of environment 

fluctuations, formed from one field realisation for every given 

reception angle. It is easy to see, that for more calculations 

reconstraction of angle spectra ) the same casual function need 
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smoothing, i.e. period of its oscilations is equal to the account 

step [29]. On fig.21 statistically middled (by 50(a) ond 100(b) 

realisations) angle spectra of the intensiv!ty of environment 

fluctuations , took by the given below scheme, are given. 

II. Recovery of the power angle spectra of the dispersive 

environment. 

In program <ST-INV.F0R> the account of reconstructions of 

environment power angle spectra from the information in finit 

reception angle area. For solving the problem of recovery the 

method of function decomposition into Le^andr polynoms is used. 

The system of linear equations, made by this method, is solving by 

Gordon method [30]. On the last step of the account the linear 

interpolation of the function $(p,<J)n) in Decart coordinates is 

made. 

On fig.23 one can see reconstructions of power spectra of 

plasma fluctuations calculated from one realisation of dispersed 

field in each direction of the reciption of the signal. The 

account was made for three-racurs reception system (fig.22,b). It 

was supposed that angle areas makes 0-20°,35-55°,65-85° from 

vertical. On fig.23 the model and reconstruction of its casual 

realisation (the width of central and local maximums is 1/8 and 

1/10 from the linear dimentions of area (64*64),intensiv!ty 

I,=0.31^) is shown. On fig.24 the results of the same account for 
x     C 

the dimentions of local and central maximums of 1/16 and 1/8 is 

shown. Analising the results, we can see that the best 

reconstructions are obtained for the models of sufficiently narrow 

spectra (fig.25-28). In this case (fig.28) the recovery of 

realisation of pattern from 5 local maximums (width is 1/20, 

relativity of intensivity is 1:0.3:0.2) is sufficiently good. On 

fig.29 the reconstruction of realisation of pattern from 5 local 
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maxlmums (width 1/16, relativity of intensivity is 1:0.3:0.2) is 

given.The results of the accounts also show that weak intensive 

local maxlmums (1:0.1) recover sufficiently good (fig. 30). But 

the essential part is played by the width of the spectra.On fig.31 

the reconstruction of model, which appropriate to the experimental 

observations[24]. It is clear, that recovery of the spectra from 

one realisation allow to underline the particularities of its 

structure. Comparison analisys shows that in spectra 

reconstructions the locations of local maxlmums coincide with the 

original but the intensities are differ. 'It future thes 

difference can be overcomed by using of correlative filters. 

The quality of reconstruction very much depend on the 

quantity and width of reception areas. On fig.32,a reconstruction 

of model from fig.24, made by two-racurs scheme (fig. 22), is given. 

Reception angles area - 0^30° and 50^80°.'The same reconstructions 

are made for the experimental model (fig.30). It is clear, that 

3-racurs sceme is prefered. On fig. 33 are given spectra 

reconstructions for three reception areas: 0^10°,40^50°,7o9sO , 

which are in connection with fig.32. It is clear that to give more 

quality to the reconstruction the width of reception area should 

have optimum value. 



M. 

The description of Fortran Programs 

System Requirements 

- Computer:      IBM AT or compatible (with coprocessor) 
- Operating System: MS-DOS or PC-DOS version 3.0 and later 
- Memory:       at least Extended memory 4 Mbytes 

(depends on size of frame and 
namber of rays) 

- Hard Disk Space: 4 Mbytes 
- Software:      compiler 1.4e and linker 2.2d 

NDP-F0RTRAN-386(c) MicroWay or later 

1. Program <ST-DIR.for> 
This program solves direct problem, namely, 

determines the model structure and calculates 
the random realizations of angle power spectrum. 

Input parameters and files: 
M - size of frame 
NM - size of half frame 
JMN - number of rays in [0,"rc/2] range 
KR1 - local maximum size 
KR - central maximum size 
N00 - spectrum coordinate of local maximum 
OTT - level of local maximum power 
array HH - model of angle power spectrum in polar 

coordinates 
array SPAD - correlation function model of scattering field 
Subroutine SMAXMI calculates maximum and minimum of 

one-dimension function 
Subroutine SMAXNI calculates maximum and minimum of 

two-dimension function 
Subroutine SPGEN calculates balance multipliers 
Subroutine RAWPIL calculates random fields (complex) 
Subroutine CORPAT calculates random correlation function 
Subroutine F0RT1 calculates one-dimension Past Pourier 

Transformation 
Function RAN1 calculates uniform random number 
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Output files: 
<RANDSP.GRD> - contains random realization of angle 

power spectrum,size(JMN:M) 

Execution 
111 st-dir.for 
RUN 
st-dir.exp 

3. Program <ST-INV.for> 
This program solves inverse problem for statistical RT, 

namely, calculates reconstructions of power spectrum of electron 
density in Decart coordinates for varios namber of 
receivers. 
Input parameters and files: 
Parameters 
M - size of frame 
NM - half size of frame 
NN - half size of frame +1 
ITER - number of iterations 
JPI - number of reseivers 
JMN - numer of rays in [0,ic/2] range 
JT1, JT2, JT3, JT4,JT5,JT6 - boundaries of angle ranges 

of reception in degrees 
NU - number of rays in angle ranges of reception 
NXX -number of Lejandr cofficient 
FILE <RANDSP.GRD> contains realization of angle power spectrum 

(OUTPUT file of progpam ST-DIR.for) 
OUTPUT FILE: 

< RECONS.GRI» contains the reconstraction of realizations 
angle power spectrum in Decart 
coordinates,size(M:M). 

Execution 
111 st-inv.for 
RUN 
st-inv.exp 
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0 Po PL* 

1*10~2 0.034 0.033 

2*10~2 0.066 0.067 

3*10"2 0.100 0.101 

4*10"2 0.134 0.135 

5*10"2 0.165 0.167 

6*10"2 0.201 0.200 

7*10"2 0.229 0.232 

8*10"2 0.267 0.270 

9*10"2 0.302 0.327 

io-1 0.337 0.332 

Tabl. 1 



w 

A(KM) Po Pr2 IT 

-10 0.154 0.183 

-20 0.345 0.436 

-30 0.439 0.675 

-40 0.672 0.882 

10 0.093 0.101 

20 0.241 0.253 

30 0.468 0.475 

40 0.654 0.717 

Tabl. 2 
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1. Introduction 

The aim of this work was to develop efficient algorithms and 

programs for the solutions of the ionospheric diffraction and 

statistical radiotomography (RT) problems. The diffraction and 

statistical RT problems are related with reconstruction of the 

scattering ionospheric irregularities structure. The use of 

tomographic methods is perhaps an unavoidable stage in evolution 

of nearly all diagnostic systems. At a sufficiently high level of 

development of remote sensing technology and data processing 

resources, it become possible to reconstruct the spatial structure 

of a medium on the basis of tomography. Tomographic approaches 

have already transformed sensing methods in many fields and 

provided fundamentally new results. The major achievements of 

tomography in medicine and molecular biology are widely known. 

Tomographic methods have made it possible to detect previously 

unknown phenomena in geophysics (seismotomography of the Earth and 

acoustic tomography of the ocean). At the present stage, radio 

sounding technology makes it possible to use satellite resources 

to perform ionospheric sounding in a wide range of different 

positions of the transmitting and receiving systems and to use 

tomographic methods. In connection with this, work on RT of the 

ionosphere has began actively in recent years. 

The purpose of this paper is to describe shortly the RT 

methods [1-8] and program developed for reconstruction ionospheric 

irregularities structures together with some results of computer 

simulation. We are dealing with reconstruction of the 

irregularities of the electron density and of the effective 

collision frequency by scattered radio waves field. Mathematicians 

used very often designations the Inverse problem (IP) or the 



Inverse scattering problem (ISP) for such problems of structure 

reconstruction owing to the scattered field. Here we used the 

terms IP or ISP and diffraction tomography as synonlms. The 

ionosphere has a rather complex structure; local irregulariries of 

various scales, including turbulent regions, are present in 

addition to a quasi-stratified background with large scales. 

Therefore, problems of satellite RT of the ionosphere should be 

divided into statistical RT and deterministic RT problems. The 

latter, In turn, are divided into problems of diffraction RT and 

ray RT of large structures, where diffraction effects are not 

significant. 

There is no special reason to provide a strict classification 

of any field of science developing, but certain delimitations and 

explanations of the terminology must be provided so that we will 

not later be reproached for "inventing" new terms unnecessarily. 

In the cases where any projections or "cross sections" of an 

inhomogeneous object (or a certain transformation of the object, 

such as Fourier transform) are known from remote sensing data and 

the problem is to reconstruct the structure of the object, the 

problem should be considered as a tomographic problem. At present, 

the mathematical foundation for tomography is related to integral 

geometry, where it is necessary to reconstruct an object using 

data on It in the form of integrals with respect to 

small-dimension manifolds. Therefore, the term tomography is 

understood not in narrow Initial sense, as layer-by-layer study of 

the structure of the inhomogeneous objects, but ruther in the 

wider sense, as recording of projections or cross-sections of an 

object and subsequent reconstruction of the structure of the 

object from them. The projections of an object are various 

integrals with respect to small-dimension manifolds. The range of 



problems of radio remote sensing of the ionosphere using 

satellites examined in this paper includes reconstruction of the 

structure of ionospheric irregularities from files of various 

tomographic-type data (projections, cross sections), which 

provides the basis for using the term RT of the ionosphere. 

Problems of satellite RT should be divided into deterministic 

and statistical problems. In the case of a deterministic RT 

problem, it is necessary to reconstruct the structure of certain 

large irregularities or a group of irregularities. If a large 

number of irregularities occupies a certain region in space, it is 

unadvised to reconstruct the structure of all realizations 

(generations) of Irregularities every moment of time. Here, it 

makes sense to pose the problem of reconstruction of the 

characteristics of full ensemble of irregularities, the structure 

of the statistical characteristics of the irregularities such as 

the correlation function of the electron density, etc. 

We will single out a number of fundamental features of 

problems of RT of the Ionosphere or the IP of reconstruction of 

the structure of the inhomogeneous ionosphere. The dimensions of 

the transmitting and receiving systems feasible in practice are 

much less than the distances from them to the irregularities to be 

reconstructed, which are hundreds of kilometers, i.e., the 

aperture angles are small. Since it is extremely difficult and 

expensive to create transmitting and receiving systems with a 

large number of receivers, the necessity for aperture synthesis in 

one coordinate becomes clear. Synthesis apertures can be realized, 

for example, using a moving transmitter on a satellite. We will 

emphase that satellite radio sounding makes it possible in 

practice to obtain files of various tomographic data and to 

actually realize RT of the inhomogeneous Ionosphere. In view of 



the small aperture angles, it is advisable to pose the problem of 

reconstruction of the structure of irregularities with dimensions 

singficantly exceeding the wavelength. Therefore, the IP of 

reconstruction of the structure of scatterers which are large in 

compasion with the wavelength will be examined here, but the 

dimensions of the irregularities may be both greater than or less 

than Iresnel zone, and diffraction effects must be considered in a 

number of cases. 

2. Physical and mathematical formulation of the radio tomographic 

sounding problem. 

Radio wave propagation in near-earth space and scattering in 

plasma irregularities in the ionosphere are discribed by a system 

of Maxwell equations with the corresponding material equations 

[93. In the general case, the dielectric permittivity of the 

plasma is a tensor value due to spatial dispersion, even in the 

absence of a magnetic field. However, the spatial dispersion can 

be disregarded for ionospheric irregularities of both natural and 

artificial origin, since the thermal velocities of the electrons 

In the plasma are significantly less then than the speed of light, 

i.e., the approximation of a "cold" plasma is valid. Likewise, the 

velocities of diffusion, mixing and other transport processes, as 

well as the velocity of the transmitting and receiving systems, 

does not exceed 10 km/s (v/c < 3*10 ), therefore , the 

quasistationary approximation is valid; within the framework of 

it, the "slow" time dependence of the characteristics of the 

medium and fields can be considered as a dependence on the 

parameter. 



In place of the equations for the field £(r,t) of a radio 

wave, it is convenient to use equations for the complex amplitudes 

1 of the corresponding monochromatic components, i.e., it is 

advisable to introduce 

2(r,t) = S(r,t)e-iwt + if (?,t)eiwt. 

For brevity, the complex amplitudes 3(r,t) with a "slow" time will 

be called the field hereafter. Subject to the observations made 

above, within the framework of the quasistationary approximation 

and a "cold" plasma, from the Maxwell equations we have the 

equation for the field 

2 -*  or A ->        -»• 
AE + —p- e E - grad div E = 0, (1 ) 

c 

where E is the complex dielectric permittivity tensor, f =W/2TC is 

the frequency. Analysis of radio wave propagation in an 

inhomogeneous magnetoactive plasma with a tensor dependence of s 

is a difficult problem. There are no algorithms for calculating 

the parameters of radio signals and the characteristics of the 

scattered fields in the general case of an arbitrary dependense of 

s(r) on the coordinates. Therefore, the statement of the ISP of 

reconstruction of the structure of the tensor characterising an 

ionospheric irregularity using data on the measured field is 

unrealistic at present, and hardly advisable in general. The 

non-diagonal elements of the tensor can be disregarded at high 

frequencies, since they do not exceed the square of the ratio of 

the plasma frequency fN to the sounding frequency, i.e., ~ 

(f./f)2(fw/f)  (fw is the gyrofrequency) [93. For example, the 
6  —3 

typical maximum concentration in the ionosphere is NQ ™ 10 cm . 

For it and where f > 50 Mhs, (fN/f )2(fH/f) ^ 0,001. Likewise, the 



last, "depolarization" term of equation (1), the order of which is 

determined by the ratio of the emission wavelength to the 

characteristic scale of variation of the concentration, can also 

be disregarded at high frequencies. 

Thus, in the case of high sounding frequencies vector 

equation (1) decomposes into three scalar equations, and it is 

sufficient to examine the equation for one field component 

AE + k2s(r,k) E = O, (2) 

4Tcr0N(r) 
where s(r,d» = 1 - -5 z » k = 2%f/G   = w/c is the 

1T(1 + iv(r )/(*>) 

wave number, r is the classical electron radius, v(r) is 

effective collision frequency, N(r) is the electron concentration; 

"ion" contribution to the dielectric permittivity can be 

disregarded [33. The relation for e has the same form in both the 

International System of Units (SI) and CGS system; only the 

expression for re changes. 

Then, it will be convinient to introduce the complex function 

q(r,03) = k2(1-e)= 4icr N(r)/(1 + iv(r)/w) and divide it into two 

parts: q -* q0(z,w) + q(r,w), one of which corresponds to the 

regular stratified ionosphere with the dependencies NQ(z) and 

vQ(z), and the other of which is related to the three-dimension 

(3D) irregularities on the background of the stratified medium 

N(r) and v(r). The specific and concrete form of relations for 

vQ(z) and v(r) depends on the specifics of the problem [13- By 

reconstructing the structure of the complex function q(r,w), it is 

also possible to reconstruct the structure of these 3D 

disturbances with known information on the regular large scale 

ionosphere. Therefore we will deal with the two problems: first, 

the problem of reconstruction of the regular large scale 



ionosphere q0(s,u) - ray RT problem; second, the problem of 

reconstruction the 2D or 3D irregularities structure - 

dlffractional and (or) statistical RT problem. The introduction of 

q is also Justified by the fact that the quantity q ~ (1 - e) 

applies to the generalized susceptibilities [10] characterising 

the response of the medium to the field. Furthermore, the scalar 

Helmholta eguation assumes the form of stationary Schrodinger 

equation, where q is the complex potential: 

AE + k2E - q0(z,w)E - q(r,w)E = 0(r - rQ) (3) 

The delta function in the right side of (3) corresponds to the 

point sounding source in the majority of satellite radio sounding 

experiments, since the wave can be assumed to be spherical within 

the major lobe of the directional pattern of an arbitrary source. 

The dimensional constant AQ in front of the ö-function in equation 

(3) is omitted so that it need not be rewritten in all subsequent 

formulas. The constant is expressed by means of the total power of 

a point source [1]. Here, AQ corresponds to the amplitude value of 

the field of a point source, i.e., 

EQ(r) = - A0 exp(ikr)/(4icr). 

Hereafter, we can always return to the dimensional field E -* AQE 

when necessary. 

The ISP for equation (3) can be formulated in the following 

manner: it is necessary to reconstruct the structure of the 

irregularities from measurements of the field in a certain limited 

region of a fixed surface in a limited range of frequencies and 

positions of the sounding source. Knowledge of the complex 

function q(r,w) makes it possible to reconstruct the structure of 

both N(r) and aj(r). Here q(r,w) is a finite function, since the 
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irregularities of N(r) are confined in space. The regular 

stratified ionosphere is assumed to be known here, i.e., the IP of 

reconstruction of the regular ionosphere is solved by other, 

sufficiently well-developed methods, or Its influence can be 

disregarded, for example, as in the UHF/VKF waveband. 

The sheme of the experiments on diffraction and statistical 

RT is presented in FIg.1. The satellite, with a transmitter on 

board moves at altitude z =zQ; the receiving system Is located In 

the plane z = zR (on the ground). The receiving system can be a 

transverse array of receivers for diffraction RT or statistical RT 

(or a collection of transverse arrays). Receivers of array 

arranged along (the y-axls) a line transverse to the satellite 

path (the x-axis), arrays being separated by distances of hundreds 

of kilometers. The scatterer (a group of irregularities) is 

located near the altitude z = z_. 



3. The solution of the  diffraction radiotomography problem 

(inverse scattering problem). 

Rigorous results of solution of IP (3) for the complex 

potential do not exist. We will emphasize that in the case of 

propagation of waves of various nature in the actual physical 

media the complex nature of the potential q has a fundamental 

character and the corresponding dispersion relations relating the 

real and imaginary parts of the potential can be derived [103. The 

fundamental results on solution of the 3D inverse problem for the 

Schrodinger equation with the real potential q(r) not depend on 

the frequency (where q0(r,ü>) = 0) obtained in [11,123 should be 

noted here. As to the complex nature of the potentials, there no 

rigorous results for the 1D IP, i.e the extension of the familiar 

Gelfand-Levitan-Marchenko algorithm to this case is unknown, even 

more so for a arbitrary dependence of the potential from the 

energy (frequency w) [133. 

Approximate approaches to solution of the 3D ISP are 

therefore of undoubted interest. The approximate approach to 

solution of inverse RT problem is justified by the properties of 

the regular ionosphere, the typical scales of essential 

disturbances of which significantly exceed the radio sounding 

wavelength. Therefore, the geometrical optics approximation is 

applicable to description of wave propagation on the background of 

the regular ionosphere. The scattering in weak irregularities is 

described within the framework of such familiar approximations as 

the Born approximation and Rytov approximation (BA and RA). More 

specialized methods have been used to calculate the scattering in 

strong-scattering irregularities. 

There are many papers connected with the approximate 
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approaches to ISP [14-183. The scattering by weak Irregularities 

was described within the BA and RA. The iterative methods were 

used for strong-scattering irregularities. But there are some 

specific features of the ionosphere problems, namely: the size of 

irregularities is very big (it can exceed the probing wavelength 

in 103- 104 times), the ionosphere Irregularities can be either 

weak-scattering or strong-scattering. It is very difficult to use 

iterative methods for big size strong-scattering irregularities 

directly. However it is sufficient to use the small-angle 

approximation according to the big size of irregularities or their 

detailes. In what follows we consider the methods of ISP solutions 

only, based on the asymptotic approximation for the forward 

small-angle scattering. It should be noted it is particularly 

interesting for tomographic methods to consider such cases of 

small-angle scattering, when a wavelength of sounding radiation is 

much less compared with the scales of object specific detailes. 

This is necessary condition to reconstruct the complicated 

internal structure of the object. 

In the beginning it is useful to consider the ISP in the 

high-frequency limit i.e. the source field freguency is 

essentially higher than the critical frequency of the regular 

ionosphere. In this case the refraction index is close to unity, 

and the influence of the regular ionosphere may be neglected. 

Then, instead of (1), the following equation should be used: 

AE + k2E - q(r,w)E = ö(r-rQ) (4) 

This differential equation is equivalent to the Lippmann-Schwlnger 

integral equation 

E(r) = EQ(r) + f G(r-r') E(r') q(r',w) dV (5) 
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where G(r)=-(4TCr)~1exp(ikr) is the Green's function for a vacuum 

and E0(r)=G(r-r0) is the source field. 

It is necessary to bear in mind that the potential q depends 

on N and v as follows (the usual condition for ionospheric 

radioprobing v « w is taken into account) E13 

q = 4icr N(r)/(1 + iv(r)/w) « 47creN(r)(1 - iv(r)/u)    (6) 

For the case of small-angle scattering the transmitter, a 

scattering object and the receiver are situated along a straight 

line approximately. Assuming that the direction of this straight 

line is closed to the direction of z-axis one can obtain an 

approximate equation, describing the forward small-angle 

scattering, instead of (5) [1,7] 

U(r) = 1 + [ 3?(r,r') U(r') q(rf,w) dV = 1 + PUq (7) 

Here U=E/E0.is the normalised field. Under the derivation (7) the 

Presnel's approximation was used for the Green function G either 

as for the.sounding wave field. After some transformations we come 

from (5) to the formula (7), where the kernel F of the equation 

(7) contains coordinates of the transmitter zQ, the finite 

scatterer z and the receiver zR 

1      k ,2 (8) F(r,r*) = - — exp (i-ö^p'- ar), 
4TCC     ^ 

3 = PR(Z0 -SS>/(ZO " ZR) + Po(zs " ZR)/(Z0 " ZR>' 

C= (20-ss)(ss " ZR)/(Z0-2R)- 

In general case the formulae for s and C have to include the 

integration variable z' instead of zB- But if the object scale is 

less than longitudinal Presnel resolution the varriable s' can be 
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changed on the constant sg. 

There is another form of the equation (7), using the complex 

phase <& = In E, <& - $0 = In U 

$ - $0 = In (1 + Fq exp(® - $Q)) (9) 

which includes the RA (the first iteration of the non-linear 

equation (9)) 

<D - $0 = In (1 + Fq) « Fq  or  U = exp(Fq)        (10) 

Taking into account (7,10) and making use of the Fresnel's 

transformation we have the algorithm for reconstruction of 2D 

cross-section of potential q [1,2] 

qa(P> w) s Jq(?,(!)) ds = (k/2TCC)2 [ V(s) exp(-ik(s-p)2/2C)d2s. 

(11) 

The integral projection q7(p) can be obtained after transformation 

of field data. For case of the BA we have V=-4TCC(E-E0)/E0 and for 

the case of the RA Y = -4TUC(<[M&0) [1,2], Changing the direction 

of the sounding wave incident ("turning" the z-axis) one can 

obtain a set of 2D-proJections, which makes it possible the 

tomography reconstruction of the 3D structure. 

Determination of the linear potentials q (pfw) (11) from 

complex potential q(r,co) in the case of forward scattering reduces 

the ISP to a problem of tomographic reconstruction - the problem 

of reconstruction an object from projections. The intensive 

development in the past decade of tomographic methods for studying 

the structure of objects is to a significant extent the result of 

advances in x-ray tomography. The reconstruction algorithms used 

in practical x-ray tomography are based on a linear approximation 

of the ray trajectories. In mathematical respects, such problems 
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reduce to reconstruction of the attenuation function or refractive 

index from group of linear integrals and to reconstruction of an 

object from its small-dimensional projections. In addition to 

x-rays, practically all known types of emissions and waves are now 

used for tomographic purposes. The linear approximation frequently 

does not provide good results in tomographic investigations using 

optical and ultrasonic waves, microwaves and other waves. 

Therefore, methods for reconstruction with consideration of 

reflection and diffraction effects have been developed intensively 

in recent years, and a special term - diffraction tomography - has 

appeared C8-12,43. 

The solutions of the IP of reconstruction of the structure of 

a scatterer with diffraction considered in the case of "forward" 

scattering obtained above can also be applied to the field of 

diffraction tomography. ISP reduces to the tomographic problem of 

reconstructing a 3D object from 2D projections qz(p,w) (11)- By 

rotating the object or rotating the transmitting and receiving 

system in relation to the object (axis s), It is possible to 

obtain a series of linear Integrals of qz(p,w), which can be used 

for tomographic reconstruction of the refractive index. However, 

the problem of reconstructing the 2D structure from a set of 

1D "cross sections", i.e., functions measured by one receiver as 

the transmitter on a satellite moves, is also a tomographic 

problem. Furthermore, the physical meaning of the quantities 

measured by one receiver Is of integrals over the cross section of 

the spectrum of the irregularity. A set of such integrals makes it 

possible to reconstruct the 2D cross section of spectrum, which is 

equivalent to reconstruction of 2D integrated projection of 

q (p,w). The set of 2D projections makes It possible to perform 

tomographic reconstruction of the 3D structure. 
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The influence of diffraction reduces to the fact that the 

linear integral (11) is dependent not only on the field "on the 

ray", bur also on the field in vicinity of the intersection point 

of the ray and recording plane (s = zR). If the emission frequency 

is high, then at the limit 0 -> 00 the integral (11) should only be 

dependent on the field on the ray (the eikonal approximation with 

a stright line trajectory). 

Let a plane sounding wave (p0=0, zQ-+ ») strike the object. 

Then, by calculating the integral (11) at the of high k (kr^/2£»1) 

by the saddlepoint method (assuming that V(s,w) = -A%^ in 

accordance with smooth perturbation method approximation), we 

obtain 

qz(p,k) - Jq(r,k)dz - (k/2-rcC)2 V(pR)(2C/k)(-iTU)= 2ik^(pR). 

(12) 

To demonstrate, the advance of the complex phase $ at the object 

in the geometrical optics approximation with a linear ray is equal 

to the integral of complex refractive index n(r,to) = v 1-q/k2 

© = ®0 + $ + ... = ik J n(r,w) dz = 

= ik J v 1-q/k2 dz « Ik J (1-q/2lt?) dz 

Prom this, for the first approximation of the complex phase of the 

field we have ^ « -iq /2k, which agrees with (12), i.e., at the 

high-frequency limit linear integrals of type (11) are only 

dependent on the field on the ray. This means that the 

approximation used here also contains the geometrical optics 

approximation with linear trajections at the high-frequency limit. 

The result of the limitation on s of the region where the field is 

recorded Is that the function q (p,u) reconstructed from limited 
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data on &, (s) will be smoothed. The null space of the equation is 

determined by the parameters of the recording system and defines 

the Rayleigh resolution limit [1]; then qz(p,(i)) is an integral 

over a ray of finite "thickness". 

To reconstruct the 2D structure of ionospheric irregularities 

according to the transformation (11) we need the information about 

the approximate coordinate of the scatterer zg. Let us discuss 

briefly a method for determination of a distance to the scatterer, 

which is essential for irregularities reconstruction by integral 

transformations. If only an approximate value of the distance is 

known then there appear errors in s and C, and hence, the 

reconstructed function is destorted. Let us consider an example 

where a source is placed on board of a satellite and the 

corresponding distortions arising in this case. The distance 

between the satellite and the receivers (zQ - zR) is known quite 

precisely, but in determination the distances "source - scatterer" 

(z~ - z ) and "scatterer - receivers" (z„ - z„) a systematic error x O     S S     tt 

A is present: z* = z - A. It may be shown that reconstruction 

errors are small for such values of A, which correspond to the 

longitudinal resolution of the measuring system. This conclusion 

is also confirmed by numerical simulations [13. 

It easy to show that when the error A is less than the longi- 

tudinal resolution, A «X   2C2/(max s)2,   the reconstructed 

function is 

qz(p) - qaU/V y/Uy) exp(i2C   (y2- x2)),       (13) 

where us = 1 - A/(zB-zR), Uy = 1 + A/(zQ-zs). This equation makes 

it possible to determine the distance to the scatterer by 

performing reconstruction with different values of A. At the true 

location of the scatterer (A=0) the "phase front" curvature of the 
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function q^ under reconstruction changes to the opposite with 

respect to each coordinate. These problems are considered in 

detail in [1] and partly in [63- There one can find the 

generalization of the method for the ionosphere with the 

stratified background; the method for determination of 

inhomogeneities parameters ("mass", space coordinates, size and 

other moments of potential q) by means of a small number of 

receivers and solutions of IP due to data of back- scattering. 

It is possible to consider the more general case, namely, the 

strong scattering case. For this case in accordance with (7,10) we 

reconstruct the projection Qa of the product of the potential and 

the normalized field Q=qU, namely, 

J qU dz = Qs(p) d*> 

It should be stressed that in general the normalized field Utql 

depends on the potential and on the direction of the sounding wave 

incident. So it is impossible to solve the problem of the product 

qU reconstruction by means of the direct transformation of a set 

of projections (14). It is possible to suggest Iteration 

procedures of the ISP solution to the equation (14) directly. But, 

if the scale of ionospheric inhomogeneities more than sounding 

wavelength in 103- 104 times, it is even complicated to solve the 

direct scattering problem. So for such cases It is necessary to 

use asymptotic methods. The special asymptotic methods of the 

solution of the ISP for the case of strong and large scatterers 

were developed in [1,18]. for example the following asymptotic 

representation of normalized field was obtained 

z p -> 
Is 1  r     d^q(p+z)      _o 

U(p,z) = exp[-   Jq(p+z')dz + —=■ (z-z')—-&-     dz* + 0(k D)1 
2k i»        4k^ J^    öp- 

(15) 
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This formula is correct for infinitly smooth potential. The 

corresponding additional terms in the sum (15) will appear in the 

presence of derivatives discontinuities. The formula (15) permits 

us to construct the simple iteration procedure of the ISP 

solution, when it is not necessary to solve numerically neither 

the direct scattering problem, or the ISP. The given first guess 

of the potential q1 (a priori information or transformation under 

the condition of weak-scattering) defines the approximation of the 

normalized field functional U[q13 according to (15). Using this 

approach it is possible to solve the usual tomographic problem of 

the reconstruction q(r) (14) with known "weight" U due to Q (p) 

under the different directions of the sounding wave incident. 

Later on the iteration procedure with the potential approximations 

obtained is repeated. 

The formula representation (15) permits us to formulate the 

conditions of applicatability of the weak-scattering 

approximations. According to this condition the first term ("k"1) 

and all successive terms of the expansion (15) have to be small. 

The restriction on the first term gives us the well-known 

condition of the BA applicatability. 

qrm/2k « 1 (16) 

Here q is the typical (mean) value of the potential, r is the 

maximum size of the inhomogeneity. In the case when the wavelength 

of the sounding radiation A.=2m and the value of disturbances of 

the ionosphere electron density N ~ 1011el/m3 the condition (16) 

leads to the inequality rm« 2 km. The disturbances of the 

electron density, scattering radiowaves, have to be measured 

relative to the background of the regular stratified ionosphere. 

So, If the background value N ** 1011el/m3 and the disturbances are 
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sufficiently strong (10%), the BA is valid up to the sises of 

dozens km. But for the case of the main ionosphere maximum (N ~ 

10 ' m~3) the scale restriction is significant and it is necessary 

to take into consideration the first term of (15). The second term 

of (15) for simple scatterers without internal structure is less 

(krm » 1) than the first one. In the case when there are some 

internal details inside the scatterer with the scale a»X and the 

typical value of the potential q', the second term can be more 

than the first. Hence the other necessary condition of the BA is 

the condition that the second term with the transverce derivative 

is small 

q'rm/(4k
2a) « 1. (17) 

In many practical cases It is sufficient to take into account 

the first term of (15) only, but the scatterer Is not the Bom's 

scatterer according to (16) and the inequality (17) Is valid. Such 

conditions allows us to get the simple analytic formula [1,143, 

which connects the function Qa reconstructed due to the 

experimental data and the projection of the scattering potential 

%  (15). 

Qa(p) = 21k Cexp(-iq3(p)/2k) - 13 (18) 

This formula Is the basis of the tomography reconstruction for the 

most of ionospheric applications. Really, the inhomogeneities with 

the scale about ten or more kilometers, the deviations of which 

are about 10% with respect to the background, are the strong 

inhomogeneities (the left hand side of (16) is more or 

approximately equal to 6, when X= 2 m), but the inequality (17) is 

valid for the internal details with the scale more than hundreds 

of meters and with the electron density disturbances about 100% 

compared with the background. 
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The uniqueness of solutions of the similar ISP was considered 

many times earlier [1-31. Some exact results are known. For the 

problems in question the uniqueness of the transformation qz (11) 

and the following reconstruction (14,18) of projections can be 

easily proved for the finite volume. 

The results described above allow us to get 2D projections of 

localised ionospheric inhomogeneities with the help of the moving 

satellite transmitter and the transverse arrow of Earth receivers. 

If there are some arrows of receivers separated by distances about 

hundreds kilometers along the line of the satellite flight, it is 

possible to obtain some 2D projections. Having a set of 2D 

projections one can reconstruct the 3D structure also. Such 

experiment (with some arrows of receivers) is rather complicated 

and it was not realized yet. Nowadays experiments connected with 

the reconstruction of the 2D localized inhomogeneities were 

carried out [1,5]. This is the tomography problem also because it 

is possible to reconstruct the 2D inhomogeneity projection or the 

2D cross-section of its spectrum after the corresponding 

transformations by means of a set of 1D field records in each 

receiver. 

We will consider the examples of numerical calculations by 

means of eleborated programs. 

Using the first numerical example, we will illustrate the 

necessity for considering diffraction effects in RT reconstruction 

of objects with dimensions rm comparable to the dimensions of the 

Fresnel zone v~K^. As was demonstrated above (12), diffraction 

effects are insignificant where kr^/2C » 1 and can significantly 

distort the results where kr^/2C < 1. Fig. 2a shows qz(p), 

consisting of two irregularities - two Gaussians (~ exp(-p2/r|) 
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with parameters (r/vTC = 5, v^vld, = 1/3, for the A.=2m, 

C=200km, 2r., = 6.3km, 2r2 = 420m). If we reconstruct the complex 

phase after the emission passes through one large irregularity, 

then according to (12) Im fc, is proportional with a high accuracy 

to the function qz(p) from a large irregularity. However, the 

imaginary part of the complex phase fc, (Pig. 2b) from a pair of 

irregularities bears little resemblance to Fig. 2a due to 

diffraction effects in small irregularity. Fig. 3 shows the 

similar picture for the two irregularities with parameters 

(r/vTC = 5, r2/vTC = 1/8). The pair of irregularities is 

reconstructed very accurately in the case where the Fresnel 

Inversion (11) is used. 

For reconstruction of the structure of ionospheric 

irregularities the questions about sampling data and 

reconstruction procedure are significant. The sounding radio 

signals are always recorded by point receivers. The signal from 

each receiver recording the emission of the moving transmitter on 

the satellite is also sampled by an electronic circuit with a 

fixed interrogation frequency. Moreover, the integral 

transformations as a result of which the structure of the 

scattering irregularities is reconstructed can be realized 

numerically on a computer only after the appropriate digitization. 

Therefore, both the form of the data recorded and the nature of 

the numerical processing and the reconstruction of the objects 

lead to the necessity for performing purely discrete operations. 

However, in theoretical examination of the solution of the inverse 

scattering problem the immediate switch to discrete formulas is 

hardly advisable in the majority of cases. Usually, the discrete 

analogues to the reconstruction formulas are significantly more 
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cumbersome, and besides the discrete form hinders analysis of the 

results obtained. On the other hand, the switch from continual 

relations to their discrete analogues does not cause difficultes 

in the majority of cases and is performed in a unique manner. So, 

continual formulas can be considered a compact notation of their 

discrete analogues for further practical reconstruction. 

Let us consider the switch to discrete analysis of the 

reconstruction procedure and the questions associated with this 

switch using the transformations (8), (11). It should be noted 

that, the methods for digital processing of signals and fields 

have been developed rather well and covered In the literature 

[19,203. 
First, we switch in (8, (11) to the dimensionless variables P 

= p/vTC ; S = s/vTC , normalized to the radius of the Fresnal 

zone. Intriducing the quantities 

-  %$)X     iicP2       -  v(s) -inS2 
F (p) s e     H  FV(S)H—-e (19) 

from (11) we obtain the pair of integral Fourier transforms for 

them [1] 
-+-♦ 

p (P) = X FV(S) e-
21%SP d2S 

-* (20) 
FV(S) = J Fq(P) e

+2l7d3P d2P 

By virtue of the definition Fq(P) is a finite function due to 

the flniteness of qz(p). Let the dimensions of the object not 

exceed the limits of the segment t-P0x, P0x3 In axis x and C-P0y, 

p ] in axis y, i.e., the carrier of the function F (P) is 
Oy -> 
contained In a fixed rectangle. Then, FV(S) will be an Infinite 
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and analytical function with a finite spectrum Fn(P). According to 

the Kotel'nikov theorem Fy(S) can be represented in the form of an 

infinite series in terms of sample functions with the sampling 

intervals ASX = PQx/2, ASy = P0y/2:m 

Pv(Sx,Sy) =   Pv(—•, —) sinc^TcP^-^) slnc(27tP0^ -im ) 
Vy       cr0x   ^r0y 

Substituting this representation in (20) and integrating with 

respect to S , S , we obtain the relation 
y (21) 

T, ™     T. , "^  "^  -2iiutP„AS m + P AS m ] 
Pa(P) =    Pv( ,  ) e    x **  y"^ (2P~ 2Pn r

1 
q    m m v 2P ?P N Ox  Oy'. 

"x "V   Ox ^r0y 

Using the concept of signals which are really 

indistinguishable at the level 8 [21], it is advisable to 

introduce a finite function which is really Indistinguishable at a 

fixed level from FV(S). Let the carrier of this function be 

contained in the rectangle [-S0x,SQx] x £-S0y,S0y]. Then, 

according to the Landau-Pollack theorem [21,22] the approximate 

dimension of the set of all functions F (S) finite at a fixed 

level with a carrier in the rectangle C-S0x,S0x] x C-S0y,S0y] and 

with a finite spectrum supp Fq(P) € t-P0x, PQx] * [-PQy, PQy] is 

close to ]yjy = (2S0x*2P0x) x (2SQyx2P0y). In other words, due 

to the finite accuracy in measurement of the signals it can 

assumed that both the signal and its spectrum are finite. The 

limitation on the carrier of the spectrum leads to a finite 

sampling frequency and 

Fq(P), APx = 1/2S0x, APy= 1/2SQy, 

here, the number of sampling Intervals on the Cartesian axes is 

equal to Nx = = 2SQx/ASx = 2PQx/APx, Ny =2SQy/ASy = 2PQy/APy. 

From this, assuming Px = nxAPx, Py = nyAPy, it is simple to switch 
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from (19), (20) to a pair of discrete transformations for Fv = 

F /(AP_AP„) H F = Fn xv   x y   q   Q 

-  Nx/2-1  wy/2-1 -2iic(-¥- " -jj 

Q * V  Vy W2 V"V2     * 
(22) 

Nx/2-1  Ny/2-1 -^^TT"  "N_) 

"af Nx/2 V y/2 

Later on, the fast Fourier transformation algorithms are used in 

the numerical modeling and the numbering of the sums over m_, n_ 

is shifted from 0 to N_ - 1, and likewise for m_, n_. 

The dimensions of the reception region SQ_, SQy and, 

consequently, the sampling intervals APX, APy also determine the 

resolutions. To demonstrate, the minimum resolvable interval ö_ in 

x is equal to 5_= 7~XC, AP_= V~K/2SQx = = A>C/2S_. A limitation of 

the reception region always limits the resolution or the sampling 

interval and the function with a finite spectrum. Therefore, 

generally speaking, with a limited reception region it is possible 

to switch immediately from (21) to the finite, discrete Fourier 

transform (22). 
The switch from other continual reconstruction formulas 

containing the Fourier and Fresnel transforms to their discrete 

forms is also made according to this scheme. 

The practical realization of reconstruction of the structure 

is governed to a great extent by the resistance of the 

reconstruction procedure to the various types of noises and 

distortions which unavoidably appear in measurements and 

processing of experimental data. Let us illustrate the influence 
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of noises and distortions on reconstruction of the structure on 

the examples of numerical simulation. Briefly discribe a modeling 

scheme using the example of two-dimensional Fresnel 

reconstruction. 

The modeling scheme 

qz(p) => F (P) » FV(S) - V(S) =>  ..... * qz(p) 
i 
i 
i 
i 

noises, distortions 

The function qz(p) characterizing the two-dimensional structure of 

the electron concentration irregularities and the effective 

collision frequency is defined. Then, the quantity Fq(P) is 

calculated using formula (19). After performing the discrete 

Fourier transform (22) corresponding to (20), FV(S) is obtained 

and, thus, the field V(S) in a discrete grid. This stage of 

modeling is related to the direct scattering problem, where it is 

assumed that the scattering is calculated well within the 

framework of the corresponding approximations. Further, the noise 

can be added to the data on the field obtained, after which the 

inverse discrete Fourier transform (22) corresponding (20) is 

performed, and the result of reconstruction qz(p) is obtained as a 

result. The influence of distortions is modeled in asimilar 

manner: in the inverse transformation stage, the parameters of the 

transformation are changed or "distorted". 

The results of numerical modeling of the influence of noises 

have demonstrated the stability of the reconstruction procedure. 

Fig.4 shows two actual irregularities of qz(p) - two Gaussians 

with various dimensions on a 64x64 grid. The total size of the 

image frame in units of the scale of the Fresnel zone 7"XC is 
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equal 5x5. After calculating the complex phase of the field 

scattered by these irregularities, the data on V were disturbed by- 

noise. Then, reconstruction was performed; the quality of it was 

sufficient even with comparatively large errors in the measured 

field [23]. For example, Fig.5 shows the result of reconstruction 

of these irregularities according to data on fc, with additive 

complex Gaussian noise having a variance of 0.05 of maximum 

amplitude of the change in the real and imaginary parts of complex 

phase of the field. Pig.6. illustrates reconstruction with double 

the noise (a variance level of 0.1). Another numerical example: 

actual irregularities - "cylinder" and "parabola" are represented 

in Fig.7. The result of reconstruction of this model structure 

with additive noise (a variance level of 0.05) is shown in Fig.8. 

Fig.9 illustrates the reconstruction with double noise (0.1). If 

we perform preliminary processing of the data, then even higher 

noise levels will not noticeably influence the results of 

reconstructions. 

Numerical estimation of the level of influence of the noises 

is of interest for practical applications. It is advisable to 

characterize the level of Influence of the noises in the metric C 

and L2. In a discrete reconstruction procedure, it is better to 

use their discrete, normalized analogues, i.e. we will estimate 
ro 

the difference between the function f reconstructed from noisy 

data and real function f by the numbers 

„  max|f.-f.|       m i (fi-fi>  1/2 

pff.f) = -1  ;  p 2(f,f) = [  ]  , (23) 
°      max|f.|     L2        2 f2 

l J l 

where summation and selection of maximum are performed for all 

increments of recorded function. 
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The dependence of the normalized disturbance of the 

reconstructed two-dimensional structures (i.e., the difference 
IV 

between the true real qz(p) and reconstructed qz in the metrics 

p and p 0)  on the amplitude A of normalized (to the maximum 
c     IT 

amplitude of the change in the field) complex Gaussian noise is 

shown in Tabl.1 for the irregularities in Fig.7. It is clear that 

the normalized deviations of the reconstructed two-dimensional 

structures are comparable to the noise level. The absolute 

disturbances of the real part, although the true function is real. 

Distortions of irregularities reconstructed by radio 

tomographic methods appear due to imprecise determination of the 

distance to the irregularities and, as a result, incorrect 

knowledge of the given parameters of the integral transformations. 

The influence of distortions was modeled by the scheme described 

above. The model in Fig.10 (two irregularities: "cos" and "cosA2" 

ellipse) is the object of reconstruction. The imprecisely 

determined coordinate of the scatterer zs = zs - A with an error A 

was substituted in the parameters of the Fresnel transformation. 

Numerical values zQ - zg = 700 km, zg - zR = 300 km, X  - 2 m 

typical for satellite sounding were used in the calculations. The 

dimension of the Fresnel zone here 7~XC **  0,65 km, the frame 

dimension was 6,4x6,4 km and the transverse resolution Ö was of 

the order of a hundred meters. Fig. 11-15 provide reconstructed 

two-dimensional structures with various values of the error in 

determination of the coordinates A measured in kilometers; A is 

successively equal to -10, +20, -20, +30, +40 km. It is clear that 

an error of 10 km has little influence on the reconstruction. 

Errors A of the order of 20 km distort the object, but the 

characteristic details of the object are reconstructed fairly. 
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Only  errors  exceeding 30-40  km noticeably distort  the 

reconstructed irregularity and may lead to incorrect conclusions on 

the structure of the object. The values of the errors in 

reconstruction in normalized metrics are shown in Tabl.2. The 

modeling was performed for two Gaussians.  The analogy 

dependence of error reconstruction on the A is shown in the graphs 

in [1], The reconstruction errors have a clearly pronounced 

minimum and are minor «0,1 4 0,2) within ± (5 - 10)km. We will 

note that dimension of this minimum agrees in order of magnitude 

with the longitudinal resolution Öz of the system; here, the 

transverse resolution Q ~ A/6 ™ 100 m, the aperture angle 6 ~0,02 

H Ö ~ A/62 ~ 5 km. Therefore, determination of the distance to z 
scatterer with accuracy of the order of the longitudinal 

resolution of the recording system is sufficient for high-quality 

reconstruction. The method for determining the distance according 

to the change in the curvature of the "phase" of the reconstructed 

function makes it possible to achieve this accuracy in 

insignificant noises [11. 

On reconstruction of qz using the formula (18) the main 

obstacle is that Qqz is a periodical function of qz, therefore, a 

real part of qz is not unambigiously defined by Qz, which we get 

from experimental data. Since that, making use the formula (18) 

one cannot immediately reconstruct scatterers that exceed 4uk. It 

should be noted here that it's much more than BA-based 

reconstruction procedures are applicable to. Namely, we have found 

using numerical simulations that BA holds for scatterers 

satisfying the inequality 

q/2k < 0.1. 
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In principle, one can reconstruct more intensive scatterers, 

assuming that Qz is zero if qz crosses iuk level, or if any 

additional information about the scaterer structure is available. 

We have derived an algorithmic procedure for finite 

scatterers, which allows one to reconstruct scatterers exceeding 

4rck. We have seen that the main obstacle which restricts this 

procedure capabilities is the finite number of receivers which 

register the scattered field. From the formal mathematical point 

of view, that simply means we get only finite number of Fourier 

expansion terms , i.e. we deal with the truncated Fourier series 

of Qz. 

Thus to obtain qz we have to derive it from a truncated 

Fourier expansion of Q , which in turn is a nonlinear transcendent 

function of q . This makes us use the numerical simulations to 

investigate the domain of applicability of this procedure, because 

immediate analysis of that algorithm is extremely difficult. 

We have performed such an investigation of this procedure 

applying it to various scatterers. The examples of such numerical 

simulations of reconstruction of 1D projections of 2D scatterers 

are presented on Fig. 16-18. The scatterer - receiver distance was 

assumed to be 300 km, the sounding wavelength was 2m. Thick curves 

correspond to initial projections qz which had to be 

reconstructed, thin curves are the reconstructed images of qz 

using the procedure described above. Just for checking, the Qz 

patterns are also shown (small amplitude fast oscillating curves 

of normal thickness). On the Figure 16, the scatterer is not too 

strong, so two curves simply coincide ( the projection is exactly 

reconstructed ). On the Fig. 17-18, where stronger patterns are 

given, one can see the discrepancy between exact image and 
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reconstruction. One can see very easy that mistakes in the 

procedure work arise mostly on those fragments of scatterers where 

the transverse derivative idqz/dx! = !dQz/dxi is big enough, so 

the oscillations of CL become so fast that Q_ is no longer 

approximated by the truncated Fourier expansion well enough. They 

may cause the loss of zeros of Qz, which correspond to increments 

or decrements of 47ck. The numerical simulations using wide variety 

of scatterers have confirmed this conclusion. Moreover, they have 

shown that only the transverse derivative absolute value idqz/dx! 

is critical for the correct reconstruction. Of course, it causes 

the limitation on the maximal intensity of the scatterer, since 

for continuous function qz(x) !qzi < a idqz/dxi. For this reason, 

the problem to calculate this boundary value for idqz/dxi had also 

been posed. The value which we get estimating the supremum of the 

truncated Fourier expansion derivative (it is bounded as a 

derivative of polynom) is much more than actual value. Fig. 19 

shows the normalized derivative value times 2TEN plotted versus N, 

where N is the number of terms retained in the Fourier series. We 

assumed that well-approximating reconstruction it that one which 

has the maximal normalized discrepancy between exact and 

reconstructed images less than 0.1. 



30 

The description of Fortran Programs 

System Requirements 

- Computer: 
- Operating System: 
- Memory: 

- Hard Disk Space: 
- Software: 

IBM AT or compatible (with coprocessor) 
MS-DOS or PC-DOS version 3.0 and later 
at least Extended memory 4 Mbytes 
(depends on geometry and type of 
approximation reconstructed function) 

4 Mbytes 
compiler 1.4e and linker 2.2d 
NDP-P0RTRAN-386(c) MicroWay or later 

1. Program <DT_DIR.for> 
This program solves direct problem, namely, determines complex 

field V(S) by means of Past Pourier Transformation (PPT) based on 
the model structure of irregularities. 

Input parameters and files: 
(the determination of the irregularities parameters) 
file <mod_par.tsk> contains the following parameters: 
« line 1 in file 

'wave length (km):' 0.002 
line 2 
'distance to satellite (km):»       1000. 
line 3 
•distance to irregularities (km):'    300.» 

These parameters you can change in the file. 
NY - number of receivers 
MNY - the degree of 2 for NY (namely, 2AMNY=NY) ' 
NX - number of discrete intervals on the axis X 
MNX - the degree of 2 for NX (namely, 2AMNX=NX) 
RMN - the radius of the Fresnel zone. 
PX,PY - the limits of segments [-PX/2, PX/23 in axis X and 

[-PY/2, PY/2] in axis Y; object (model structure not 
exceed these limits; variable ?) 

SX,SY - the limits of rectangle [-SX/2, SX/2]x[-SY/2,SY/23 
(variable S) 

(DLV in program) 

(ZZO in program) 

(Z in program) 
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YR - the size of the receiving system (km) 

X02 - the size of aperture "synthesized" by satellte (km) 
DXX, DYY - the size of frame (km*km) 
NMOD - number of model structure (1-10): 

1 - the gaussians 
2 - "homogeneous" ellipse 
3 - "parabolic" ellipse 
4 - " 2 + 3 " 
5 - " 2 " with absorption 10% 
6 - " 3 " with absorption 20% 
7 - "cos" ellipse 
8 - "cosA2" ellipse 
9 - " 7 + 8 " 
10 - arbitrary 

Nmod is introduced from the screen 

Const5=0.1 (namely,10%) - constant for NM0D=5 
Const6=0.2 (20%) - constant for NM0D=6 

Z1.Z2.Z3.ÜG   
parameters for 

models 

A1,B1,A2,B2,X0,Y0,Y1,A3,FPC,FPS 
AELP.BELP 
APAR.BPAR 
AELP1 .HELP1 ,APAR1 ,BPAR1   
RN - complex field 

Subroutine <SMAXMI> calculates min and max of array 
Subroutine <FFT> calculates 1-D Fast Fourier Transformation 

Output files: 
<M0DEL.GRD> - contains the model structure of irregularities and 

the number of the model (NMOD) and constans VMD and 
ZRD (for determination of reconstruction's errors) 

<V_real.grd> - the array of real parts of the field RN 
<V_imag.grd> - the array of imaginary parts of the field RN 
Execution 
f77 dt_dir.for 
RUN 
dt_dir.exp 
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2. Program <DT_INV.for> 
This program solves inverse scattering problem for weak- 

scattering irregularities in the case when noise is present in the 
measurements of the field and calculates the errors of the 
reconstruction in metric C and L2 in dependence on level of noise. 

Input parameters and files: 
Parameters < NX, MNX, NY, MY, PX, PY, SX, SY >are similar to same 
parameters of program <DT_DIR.F0R>. 
FILES (from program <DT_DIR.for>): 

<M0DEL.GRD> - input file of model structure. 
<V_real.grd> - the array of real parts of the field RN. 
<V_imag.grd> - the array of imaginary parts of the field RN. 

Parameter <Error> - the level of noise (0 < error < 1) 
Error is introduced from the screen. 
ConstS, Gonst6 - are similar to same parameters of program 
<DT_DIR.for> 
Subroutine <SMAXMI> calculates min and max of array 
Subroutine <FFT> calculates 1-D Past Fourier Transformation 
Function <RAN> - determinates random values in [0,13. 
K33 - the constant for function <RAN> 

Output files: 
REC_er.GRD - the reconstruction 
er_rJer.dat - contains the errors of reconstruction in metric C 

and L2 
Same errors are shown on the screen. 
Execution 
f77 dt_inv.for 
RUN 
dt_inv.exp 

3. Program <DT_ERR.for> 
This program solves inverse scattering problem for weak- 

scattering irregularities in the case when distortions are present 
in the measurements of the field and calculates the errors of the 
reconstruction in metric C and L2 in dependence on distortions. 



33 

Input parameters and files: 
Parameters < NX, MNX, NY, MNY, PX, PY, SX, SY > are similar to same 
parameters of program <DT_DIR.F0R>. 
FILES (from program <DT_DIR.for>): 

<M0DEL.GRD> - input file of model structure. 
<V_real.grd> - the array of real parts of the field RN. 
<V_imag.grd> - the array of imaginary parts of the field RN. 
<modj?ar.tsk> is similar the same file in program <DT_DIR.for>. 

Parameter <DEL> - the error of irregularities coordinate in km 
DEL is introduced from the screen. 
Subroutine <FFT> calculates 1-D East Fourier Transformation 
Output files: 
REC_cr.GRD - the reconstruction 
er_r!cr.dat - contains the errors of reconstruction in metric C 

and 12 
Same errors are shown on the screen. 
Execution 
111 dt_err.for 
RUN 
dt_err.exp 
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4. The solution of the  statistical radiotomography problem 

(statistical inverse scattering problem) 

Rather frequently, the ionosphere contains entire regions 

rilled with large numbers of irregularities of various dimensions. 

Such a state is typical for the equatorial and polar regions, 

especially at night. In this case it is advisable not to 

reconstruct individual realization of such disturbed ionosphere, 

but rather to pose the problem of reconstruction of the 

statistical characteristics of the turbulent random ionosphere 

such as correlation function or spectrum of fluctuations. So, such 

reconstruction of random ionosphere statistical properties by the 

measured field statistics it is reasonable to name the statistical 

ISP or the statistical RT problem [24,25]. 

We consider the reconstruction of ionosphere electron density 

fluctuations spectrum by means of satellite radioprobing data. 

Integral equations, which relate the measured field to the medium 

structure are probably the most convenient and adequate 

mathematical technique for the tomography. In this paper we shall 

show how to derive such equations. For simplicity it is reasonable 

to use two frames of reference. The first "global" frame of 

reference r=(x,y,z)=(p,z), its origin is related to the receiving 

system as in the previous section CFig.1). The origin of the 
-*       -* 

second frame of reference H=(X,y,Z)=(P,Z)  is reasonable to locate 

at one of the transmitter positions and the Z  axis to direct to 

the center of the receiving system. As the transmitter moves it Is 

convenient to use several such "local" frames with different 

orientations. Such frames are introduced to make derivations 

shorter, because the probing wave scattering In each local frame 

may be treated as "almost forward" small-angle scattering. The 
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lower boundary of the layer of irregularities is zd, the upper - 

z in the global frame r. After performing the Fresnel expansions 

of exponents in the (5) for small-angle scattering, we obtain the 

integral equation for U (7). This equation is written in the local 

reference frame, S{Z-2Q) = (Z'-Z0)ff + {Z-Z'W ; Z>(Z-ZQ) = 

{Z'-Z-){Z-Z'). For making formulas shorter we assume, that the 

transmitter is located exactly at the local frame origin, i.e. KQ 

= (P0,Z0)=(0,0,0). 

To reduce calculations and to use known results we transform 

(7) to the parabolic equation in new variables £ = 1/Z, a = P/Z, 

£■ = 1/Z'. Then (S-P')2/Z> = (ö-g'P' )2/(£ •-£) and U satisfies the 

differential equation 

(-2ik — + An - r
2q) U(g,o) = 0 (24) 

Equation (24) is derived from (7) by differentiating and making 

use of the following relation for the fundamental solution of the 

Schrodinger operator [241. Having derived the parabolic equation 

we use the methods developed to obtain equations for the first and 

the second moments of U [26,273. Let us assume also that the 

random field q to be Gaussian and ö-correlated along Z, 

B(nvnz)^ <  q^.Zj) q(P2,Z2)> = S(ZZ-ZA) \{V2-V^) (25) 

In the similar way in the variables (o,£) it is possible to derive 

from (24) equations for the second moments of the normalized field 
-*    -+   -*■ 

7(7?) = E(7?)/<E(7?)>, 

r1 0(P,Z) = <7(P2,Z) 7tP1fZ)> - the first coherence function, 

-*■ -+ -*■ 

Y0 n(P,Z)  = <7(P2,Z) 7(P1?Z)> - the second coherence function of 
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the second order. As the calculations are described In the papers 

mentioned above, we present only the final result in the variables 

p+ = (Pj+p£)/2, P = f>2~^>\  ^ l0T statistically homogeneous layer, 

when the dependence on P+ is absent. 

(26) 
d       V   d i 

tik(— + - —) + AX + — A (P)i r2j0 = 0, r2>0(P,2u) = 1 
dZ     Z dV 4k 

The integral equation, corresponding to (21), has the form 

i       V^ ik 
rP n(P,Z) = 1 +  | d3fl' r? n(£',2") exp(W3-£')

2) 

(27) 
The following formula for r1 1 is well known [26,27]. 

1 z Z' 
TU^P,Z)  = exp(^ J Aq(p-2-) 7-) dZ') (28) 

Zu 

Eguation (27) follows from (26). The resulting integral equation 

is valid also at VQ ± 0, ZQ t o. 
The integral equation (27) is the basis of the statistical 

RT. According to (20) Aq(£) is the correlation function 

projection, X B(P,Z) ÜZ = k (P). Measured wave coherence functions 

allow us to determine projections of the complex potential q 

correlation function by the (27,28). To begin with, let's assume, 

that irregularities occupy a sufficiently extensive layer, oblique 

to the probing wave propagation direction. To reconstruct 

projection AQ(P)  it's necessary to determine the layer coordinate 

Z0.  It may be done by a single receiver. The special procedure for s 
determination of the scattering layer 2"-coordinate by equation 

(22) was developed [1,24]. 

In many situations randomly inhomogeneous media represent 
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statistically quasi-homogeneous fields with slowly varying 

statistical properties, i.e. such fields, for which the 

correlation radius of the differential argument is essentially 

less than the scale of the variance o. In other words, the 

correlation function is represented as a product B(ft.,,ft2) = 

o2(ft)£(Aft,ft), where ft = (fc,+ ft2)/2, Aft = ftrft2. A randomly 

inhomogeneous field with the costant correlation coefficient £(Ar) 

but with varying fluctuations variance a2 (ft) may be called an 

"additive" field, because the electron density changings influence 

only the fluctuations intensity, but the correlation coefficient 

dependence on the summarize argument ft is absent. Assuming the 

field q to be ö-correlated, as was done above, it is possible to 

obtain similar equations by the same technique. The correlation 

function projection A (P) in the integrands should be replaced by 

o2(Z) K(P). Here K(P) = X £(Aft) d(AZ') is the correlation function 

projection. Then formula for r1f1 and the equation for r2>0 have 

the form 

i  r q  a
2(Z')K(P')    -      k,*=*.,2v 

r? n(P,Z)= 1 +   f d3ft' r2 0(ft') exp{lw(Z-P'f) 

(29) 

(30) ^ f 1 (P,Z)  = exp( ^ J o2^') K(p 2-) ÜZ*) 
Zu 

The equations (29,30) contain the unknown function o^ft). So, the 

problem of the correlation function reconstruction is divided into 

two ones: the problem of reconstruction of the fluctuations 

variance o^ft), and the problem of the £(A#) reconstruction given 

the measured projections K(P). 

The formula (30) allows us to determine integrals of <r(Z) 

along the direction (Z axis) of the probing wave propagation. If a 
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set of different integrals is given for a region filled with 

irregularities we arrive at a tomography problem. Usually in the 

experiments there exist a natural limit to the number of 

projections and angular range of probing waves propagation 

directions. Hence, the problem when data are known in the small 

angle range should be solved. A similar problem was solved in the 

ray RT. Information about the fluctuations intensity a2 (ft) 

distribution is sufficient to reconstruct a set of correlation 

function projections given by measured coherence functions. 

Methods of the statistical RT problem solution are similar to the 

discussed above, with the substitution of the product cfi(R)K(P) 

of the known function crCR) and the correlation function 

projection K(P) instead of Aq. A set of projections K(P) allows us 

to perform tomography reconstruction of the correlation 

coefficient £(A#) or its spectrum. 

With the help of examples we want to illustrate the results 

of programs and numerical pattering. Reconstruction of electron 

concentration fluctuations spectra was made in two steps: 

pattering of environment fluctuation spectra and recovery of the 

power angle spectra of the dispersive environment. 

I. Pattering of environment fluctuation spectra. In the given 

program <ST-DIR.F0R> the account of accidental realisations of 

electron concentration power fluctuation spectra is made. The 

pattering scheme is given of tabl.3. 

1. The sum of three (of five) Gauss lines with defferent width 

and intensivity was taken as a pattern of spectra with a few 

maximums. The location of local maxlmums and their width depend on 

the dimentions of the area (32*32,64*64,etc.) and were given by 

the quantity of accounts from the beginning of the area.The 

intensivity of local maximums was given in the percent relativity 
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from the lntensivity of the center maximum. 

2. The computation of correlation function projections of 

dispersed field r^ is made in polar coordinates for the given 

reception angles in condition with equation (28). The projections 

of environment correlation functions R(p,<t^) calculated with the 

help of fast Fourier transformation from the spectra $(pt(L^) for 

every given reception angle in area [0,^/2]. 

3. The form of casual realisations of the dispersed field is 

made in two steps. At first, with the help of linear congruent 

method [28,29] statisticaly independent one-dimentional 

realisations of casual numbers with proportional spectra were 

obtained. Then, with the help of spectra method of reorganization 

[30] the prosess with given correlation function r^Cp.c^) was 

formed. 

4. The selected (casual) correlation functions of the field 

r-j-jtp,^) were calculated from alone realisations of the field. 

5. The selected projections of correlation functions of the 
rv 

environment R(p,(f>n) were calculated by logariphmation of the 
ft/ A/ 

function T^(p,<pn). The appropriate R(p,$n) casual power spectra 

of environment fluctuations ©(p.c^) are defined with the help of 

standard procedure fast Fourier transformation. The given model of 

environment spectra (in Decart coordinates) is given as the 

illustration on fig.20,a. Area dimentions are 64*64, width of 

central and local mazimums on the level of 0.5 their intensivity 

is 1/8 from linear dimentions of the area. The local maximum 

lntensivety is I-j=0.3Ic (Ic means intensivity of central maximum). 

From the fig 20,b one can see casual spectra of environment 

fluctuations, formed from one field realisation for every given 

reception angle. It is easy to see, that for more calculations 

reconstraction of angle spectra ) the same casual function need 



HO 

smoothing, i.e. period of its oscilations is equal to the account 

step [293. On fig.21 statistically middled (by 50(a) ond 100(b) 

realisations) angle spectra of the intensiv!ty of environment 

fluctuations , took by the given below scheme, are given. 

II. Recovery of the power angle spectra of the dispersive 

environment. 

In program <ST-INV.F0R> the account of reconstructions of 

environment power angle spectra from the information in finit 

reception angle area. For solving the problem of recovery the 

method of function decomposition into Lejandr polynoms is used. 

The system of linear equations, made by this method, is solving by 

Gordon method [30]. On the last step of the account the linear 

interpolation of the function $(p,<|>n) in Decart coordinates is 

made. 

On fig.23 one can see reconstructions of power spectra of 

plasma fluctuations calculated from one realisation of dispersed 

field in each direction of the reciption of the signal. The 

account was made for three-racurs reception system (fig.22,b). It 

was supposed that angle areas makes 0-20°,35-55°,65-85° from 

vertical. On fig.23 the model and reconstruction of its casual 

realisation (the width of central and local maximums is 1/8 and 

1/10 from the linear dimentions of area (64*64), intensivity 

I]=0.3IC) is shown. On fig.24 the results of the same account for 

the dimentions of local and central maximums of 1/16 and 1/8 is 

shown. Analising the results, we can see that the best 

reconstructions are obtained for the models of sufficiently narrow 

spectra (fig.25-28). In this case (fig.28) the recovery of 

realisation of pattern from 5 local maximums (width is 1/20, 

relativity of intensivity is 1:0.3:0.2) is sufficiently good. On 

fig.29 the reconstruction of realisation of pattern from 5 local 



«r 

maxlmums (width 1/16, relativity of lntensivity is 1:0.3:0.2) is 

given.The results of the accounts also show that weak intensive 

local maxlmums (1:0.1) recover sufficiently good (fig. 30). But 

the essential part is played by the width of the spectra.On fig.31 

the reconstruction of model, which appropriate to the experimental 

observations^]. It is clear, that recovery of the spectra from 

one realisation allow to underline the particularities of its 

structure. Comparison analisys shows that in spectra 

reconstructions the locations of local maxlmums coincide with the 

original but the intensities are differ. "It future thes 

difference can be overcomed by using of correlative filters. 

The quality of reconstruction very much depend on the 

quantity and width of reception areas. On fig.32,a reconstruction 

of model from fig.24, made by two-racurs scheme(fig.22), is given. 

Reception angles area - 0^30° and 50^80°.'The same reconstructions 

are made for the experimental model (fig.30). It is clear, that 

3-racurs sceme is prefered. On fig.33 are given spectra 

reconstructions for three reception areas: 0^10°,40^50°,70^80 , 

which are in connection with fig.32. It is clear that to give more 

quality to the reconstruction the width of reception area should 

have optimum value. 
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The description of Fortran Programs 

System Requirements 

- Computer:      IBM AT or compatible (with coprocessor) 
- Operating System: MS-DOS or PC-DOS version 3.0 and later 
- Memory:       at least Extended memory 4 Mbytes 

(depends on size of frame and 
namber of rays) 

- Hard Disk Space: 4 Mbytes 
- Software:      compiler 1.4e and linker 2.2d 

NDP-F0RTRAN-386(c) MicroWay or later 

1. Program <ST-DIR.for> 
This program solves direct problem, namely, 

determines the model structure and calculates 
the random realizations of angle power spectrum. 

Input parameters and files: 
M - size of frame 
NM - size of half frame 
JMN - number of rays in [0;iu/2] range 
KR1 - local maximum size 
KR - central maximum size 
N00 - spectrum coordinate of local maximum 
OTT - level of local maximum power 
array HH - model of angle power spectrum in polar 

coordinates 
array SPAD - correlation function model of scattering field 
Subroutine SMAXMI calculates maximum and minimum of 

one-dimension function 
Subroutine SMAXNI calculates maximum and minimum of 

two-dimension function 
Subroutine SPGEN calculates balance multipliers 
Subroutine RANFIL calculates random fields(complex) 
Subroutine CORPAT calculates random correlation function 
Subroutine F0RT1 calculates one-dimension Fast Fourier 

Transformation 
Function RAN1 calculates uniform random number 
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Output files: 
<RAKDSP.GRD> - contains random realization of angle 

power spectrum,size(JMN:M) 

Execution 
111 st-dir.for 
RUN 
st-dir.exp 

3. Program <ST-INV.for> 
This program solves inverse problem for statistical RT, 

namely, calculates reconstructions of power spectrum of electron 
density in Decart coordinates for varios namber of 
receivers. 
Input parameters and files: 
Parameters 
M - size of frame 
NM - half size of frame 
NN - half size of frame +1 
ITER - number of iterations 
JPI - number of reseivers 
JMN - numer of rays in [0,ic/2] range 
JT1, JT2, JT3, JT4,JT5,JT6 - boundaries of angle ranges 

of reception in degrees 
NU - number of rays in angle ranges of reception 
NXX -number of LeJandr cofficient 
PILE <RANDSP.GRD> contains realization of angle power spectrum 

(OUTPUT file of progpam ST-DIR.for) 
OUTPUT PILE: 

< RECONS.GRD> contains the reconstraction of realizations 
angle power spectrum in Decart 
coordinates,size(M:M). 

Execution 
111 st-inv.for 
RUN 
st-inv.exp 
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0 Po PI,2 

1*10~2 0.034 0.033 

2*10"2 0.066 0.067 

3*10~2 0.100 0.101 

4*10"2 0.134 0.135 

5*10~2 0.165 0.167 

6*10~2 0.201 0.200 

7*10"2 0.229 0.232 

8*10"2 0.267 0.270 

9*10~2 0.302 0.327 

lO"1 0.337 0.332 

Tabl. 1 



*y 

A(KM) Po pi* 

-10 0.154 0.183 

-20 0.345 0.436 

-30 0.439 0.675 

-40 0.672 0.882 

10 0.093 0.101 

20 0.241 0.253 

30 0.468 0.475 

40 0.654 0.717 

Tabl. 2 



1 
Pattern of angle spectrum 

Calculation of correlation 

function of scattering field. 

Calculation of random 

realizations of field 

Calculation of random 

correlation function 

of field r^CPt«^) 

Calculation of realization 

of power spectrum. 

laU. 3 



*9 

Figure 1. 
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